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RÉSUMÉ

Le diabète est une maladie chronique qui touche plus de 400 millions d’adultes dans le monde.
Cette maladie peut entraîner plusieurs complications au cours de la vie d’un malade. Une
de ces complications est la rétinopathie diabétique. Il s’agit de la principale cause de cécité
chez l’adulte. Cette maladie apparaît souvent sans symptômes, il est donc important pour les
personnes atteintes de diabète d’effectuer des vérifications régulières chez un ophtalmologue.
Cette vérification s’effectue par la prise d’images numériques de fond d’oeil du patient. Ces
images sont ensuite examinées par un médecin afin de donner un diagnostic.

Dans ce travail, il est question d’automatiser le diagnostic de la rétinopathie diabétique à
l’aide des images numériques de fond d’oeil ainsi que l’apprentissage profond. En effet, les
réseaux de neurones ont suscité ces dernières années un intérêt important dans différents
domaines, notamment ceux du médical et de la vision par ordinateur. Les réseaux convolutifs
permettent des applications tel que la classification ou la segmentation d’images. Ici, la
classification correspond à classer les images selon la présence ou non de la rétinopathie
diabétique dans les images et la segmentation correspond à extraire des régions d’intérêt,
comme les vaisseaux sanguins par exemple. Cependant, certaines images ne sont pas de
qualité suffisante pour effectuer un diagnostic. Le Scottish Diabetic Retinopathy Grading
Scheme (SDRGS) décrit les normes de qualité des images de fond d’oeil. Selon ce document,
la qualité des images est importante puisqu’une image de mauvaise qualité ne peut pas
être diagnostiquée. L’évaluation de la qualité des images de fond d’oeil est donc tout aussi
important que l’automatisation de leur diagnostic.

Nous pouvons ainsi définir comme objectif global celui d’automatiser le diagnostic de la
rétinopathie diabétique dans les images de fond d’oeil. Cela implique aussi l’évaluation de la
qualité de ces images de fond d’oeil.

L’évaluation de la qualité des images est basée sur l’extraction de régions d’intérêt dans les
images de fond d’oeil, la macula ainsi que les vaisseaux présents autour de la fovéa. Ces
régions seront extraites à l’aide de réseaux convolutifs effectuant de la segmentation. Cette
méthode d’évaluation établit un score de qualité pour une image. Il est important que ce
score soit interprétable afin de mieux comprendre les résultats. Cette approche est beaucoup
inspirée de celle utilisée par les cliniciens pour évaluer la qualité des images. Cet algorithme
a obtenu 100% de sensibilité et 93% de spécificité sur une base de données de 88 images.

Ensuite, le diagnostic des images est effectué avec des réseaux de neurones convolutifs effec-
tuant de la classification et de la régression. Ces réseaux sont entraînés sur des ensembles
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d’images de fond d’oeil, notamment lors d’une compétition Kaggle. Le modèle en question a
obtenu un kappa de 0.915 sur la base de données de test privé de cette compétition. Nous
avons ensuite étudié l’impact de la qualité des images lors des phases d’entraînement et de
test des modèles. Ceci nous a permis de remarquer que la qualité des images a beaucoup
d’importance lors de la phase de test.

Ce travail a pour but d’aider le processus de dépistage de la RD en ajoutant des outils d’auto-
matisation. La méthode permettant d’évaluer la qualité des images numériques peut être un
outil intéressant lors du processus d’acquisition des images afin de ne plus transmettre aux
cliniciens des images de mauvaise qualité. En effet, cette méthode permettrait aux techniciens
de s’assurer que les images prises sont de bonne qualité et de reprendre certaines images lors-
qu’il est nécessaire. Le module de dépistage automatique peut permettre un processus plus
facile dans les zones où le dépistage est difficile pour obtenir un aperçu rapide de la situation.
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ABSTRACT

Diabetes is a chronic disease that currently concerns more than 400 millions of adults in
the world. This disease can cause several complications during the life of a person. One
of these complications is diabetic retinopathy. Being one of the leading cause of blindness
in the working age population, this complication is serious and requires medical prevention.
This disease often appear without any symptoms, meaning that regular examinations with
an ophtalmologist are required to enable its detection and treatment.

This work is about automating the diagnostic of diabetic retinopathy, with the use of digital
fundus images and deep learning. Indeed, deep learning and neural networks have recently
been used in several fields, such as medical applications or computer vision. Convolutional
neural networks perform applications such as image classification or image segmentation
really well. Here, classification means to label each image based on the presence or absence
of diabetic retinopthy in the images and segmentation means to extract regions of interest in
the image, such as blood vessels. However, some images do not meet the quality requirements
to be diagnosed. The Scottish Diabetic Retinopthy Grading Scheme describes the quality
norms in fundus images. According to this document, evaluation of fundus image quality
is mandatory, because a bad quality image cannot be diagnosed. Evaluation of the image
quality is as important as the automation of the screening.

This work can therefore be defined with two main goals : the evaluation of fundus image
quality and the automatic screening.

The evaluation of the fundus image quality is based on segmenting regions of interest in
those images. These regions are the macula as welle as the small vessels radiating around
the fovea. Segmentation models are used to extract these regions. Once these regions are
extracted, a score is computed to match the overall quality of the image. This score needs
to be as much interpretable as possible, as we need to understand why an image is good
or bad quality. This approach is deeply inspired by the way clinicians assess fundus image
quality. The method achieved 100% sensitivity and 93% specificity on a dataset containing
88 images.

Then, the grading of the fundus images is done with convolutional neural networks. The
objectives of these neural networks are classification or regression. These networks are trained
using different dataset and during a Kaggle challenge. Our model achieved a kappa of 0.915
on the private test dataset of this challenge. We then studied the impact of image quality
during the training and testing of our models. We noticed that image quality has a significant
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role during testing.

This work aims to help the screening procedure of diabetic retinopathy by introducing some
automatisation tools. The quality evaluation method could be used to improve the image
aquisition process. This work can help technicians better assess the image quality and retake
images when necessary. The screening model could be used to allow an easier diagnosis in
certains difficult areas to quickly obtain an overview of the situation.
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CHAPITRE 1 INTRODUCTION

1.1 Contexte

Selon l’organisation mondiale de la santé, environ 422 millions de personnes sont atteintes de
diabète en 2017 [4], et la prévalence de cette maladie est en forte augmentation, notamment
dans les pays pauvres et en voie de développement. Le diabète est une maladie chronique
liée au manque d’insuline. Il s’agit d’une hormone sécrétée par le pancréas et son rôle est de
favoriser l’absorption du glucose par certaines cellules. Un manque d’insuline signifie que le
glucose ne peut pas être absorbé par ces cellules. Ceci se traduit par un taux élevé de sucre
dans le sang et entraîne de nombreuses complications. Parmi ces complications, la fragilisation
des parois des vaisseaux sanguins de la rétine est celle qui cause la RD. La rétine est une
membrane fine sensible à la lumière au fond du globe oculaire qui transforme les signaux
lumineux en influx nerveux à l’aide de photorécepteurs. Chez une personne atteinte de RD,
les vaisseaux rétiniens sont fragiles et entraînent des lésions. Ceci cause une perte progressive
de la vision, surtout lorsque la zone de la macula est atteinte. La macula est une zone du fond
de l’oeil, proche du centre de la rétine. Cette zone est responsable de notre vision centrale
et son bon fonctionnement est très important. La figure 1.1 présente l’anatomie de l’oeil. La
RD entraîne la baisse de l’acuité visuelle jusqu’à la cécité dans les cas les plus graves. Il s’agit
d’une des principales causes de perte de vue et touche 25-30% des gens atteints de diabètes,
soit environ 120 millions de personnes dans le monde. Heureusement, des traitements efficaces
existent afin de ralentir la maladie.

La RD peut apparaître sans aucun symptôme, c’est pourquoi il est important d’effectuer des
examens régulier en prévention pour contrôler son avancée. Lors de ces examens, des images
numériques du fond d’oeil du patient sont prises à l’aide de caméras spécialisées. En général, il
est recommandé aux techniciens de prendre trois images par oeil : deux centrées sur la macula,
et une centrée sur la papille. Ces images sont ensuite examinées par un clinicien permettant de
donner un diagnostic sur l’avancée de la RD. Il existe plusieurs méthodes pour diagnostiquer
la RD. Au Quebec, le Scottish Diabetic Retinopathy Grading Scheme (SDRGS) [5] est utilisé.
Ce document explique en détail comment diagnostiquer la RD. Dans ce travail, nous suivons
en majeur partie les règles proposées par le SDRGS.

Ce document explique en détail quels sont les différents niveaux d’avancée de la maladie et
les différents critères sur la qualité. Ces informations sont résumées dans le tableau 1.1. La
sévérité de la maladie est classée sur 5 niveaux : R0 (absent), R1 (légère), R2 (modérée),
R3 (non proliférante sévère) et R4 (proliférante). Ces niveaux dépendent de caractéristiques
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Figure 1.1 Schéma de l’oeil [1]

comme des hémorragies, des exudats ou des microanévrysmes. La figure 1.2 présente ces
caractéristiques. Le niveau R5 correspond aux personnes ayant un oeil énuclée, il ne sera
donc pas important pour notre travail. Le niveau R6 correspond aux cas où aucune des
images numériques n’est de qualité suffisante pour donner un diagnostic.

Les critères de qualité sont aussi définis par le SDRGS et sont les suivants :

1. La région photographiée correspond à la bonne région de la rétine :
— L’entièreté du disque optique doit être visible.
— La fovea doit être éloignée d’une valeur supérieure à 2 diamètres du disque optique

des bords de l’image. (Figure 1.3a)

2. La clarté de l’image est adéquate :
— La troisième génération de vaisseaux présents autour de la fovéa doit être visible.

(Figure 1.3b)

La figure 1.3 présente ces deux critères de qualité.

L’automatisation du diagnostic de la RD est un problème important, permettant d’aider les
cliniciens à diagnostiquer les patients. L’avancée des réseaux de neurones et de l’apprentis-
sage profond ces dernières années a permis d’obtenir des résultats comparables à ceux des
cliniciens. De plus, le dépistage automatique permet un diagnostic plus accessible dans les
pays pauvres et en voie de développement.
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Figure 1.2 Caractéristiques qui définissent le niveau de sévérité de la RD par Abdullah et
al [2].

1.2 Objectifs de recherche

L’objectif global de ce mémoire est d’automatiser le diagnostic de la RD dans les images de
fond d’oeil. Pour ce faire, nous devons réaliser plusieurs sous-objectifs.

En premier lieu, il est question d’établir un modèle évaluant la qualité des images de fond
d’oeil. Les images de mauvaise qualité sont une perte de temps et de ressources pour les
cliniciens, les techniciens et les patients. Ce modèle nous permettra d’évaluer la qualité d’une
image en lui associant un score de qualité. Il doit pouvoir être interprétable pour nous per-
mettre de comprendre les résultats. Il devra donc suivre les règles imposées par le SDRGS.

Ensuite, nous concevrons un modèle permettant de diagnostiquer ces images en fonction
de leur niveau de maladie. Nous étudierons les performances de différents types de réseaux
de neurones, ainsi que plusieurs stratégies d’apprentissage. Ce modèle permet de prédire le
niveau d’avancée de la maladie dans une image.

Enfin, il est question d’étudier l’impact de la qualité des images dans les phases d’apprentis-
sage et d’entraînement des modèles d’apprentissage profond.
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(a) (b)

Figure 1.3 Critères de qualité définis par le SDRGS. (a) La fovea doit être éloignée d’au moins
2 diamètres du disque optique des bords de l’image. (b) La troisième génération de vaisseaux
présents autour de la fovéa doit être visible. Figures attribuées à [3]

1.3 Plan du mémoire

Le prochain chapitre présente d’abord les concepts importants de l’apprentissage machine.
Ensuite, nous aborderons les travaux étudiés dans la littérature sur l’évaluation de la qualité
des images de fond d’oeil et dans le diagnostic de la RD. Nous détaillerons les méthodes
retenues pour effectuer ces objectifs dans le chapitre 3. Nous discuterons ensuite des résultats
des méthodes dans le chapitre 4. Enfin, nous présenterons les limitations et les les travaux
futurs dans une conclusion.
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Tableau 1.1 Niveaux de la rétinopathie diabétique définis dans le Scottish Diabetic Retino-
pathy Grading Scheme

Niveau Description Résultats

R0 (absent) Pas de signe de la maladie Refaire le test de dé-
pistage dans 12 mois

R1 (légère)

Présence d’au moins une des caractéristiques sui-
vantes :
points hémorragiques, micro-anévrismes, exsudats
durs, nodules cotonneux, hémorragies en taches,
hémorragies superficielles / en flammèches

Refaire le test de dé-
pistage dans 12 mois

R2 (modérée) 4 ou plus hémorragies en taches présentes dans un
hémichamp* seulement (supérieur ou inférieur)

Refaire le test de dé-
pistage dans 6 mois

R3 (non prolifé-
rante sévère)

Présence d’au moins une des caractéristiques sui-
vantes :
4 ou plus hémorragies en taches dans chaque hé-
michamp (inférieur et supérieur), chapelets vei-
neux, anomalies microvasculaires intrarétiniennes
(AMIR)

Orienter vers un spé-
cialiste

R4 (proliférante)

Présence d’au moins une des caractéristiques sui-
vantes :
néovaisseaux au niveau de la papille optique, néo-
vaisseaux ailleurs, hémorragie intravitréenne, dé-
collement de rétine

Orienter vers un spé-
cialiste

R5 (énuclée) Oeil énuclée
Refaire le test de dé-
pistage dans 12 mois
(autre oeil)

R6 (inadéquat) Qualité insuffisante : La rétine n’est pas suffisam-
ment visible pour l’évaluation de la RD

Echec technique. Or-
ganiser un examen de
dépistage alternatif
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CHAPITRE 2 REVUE DE LITTÉRATURE

Dans ce chapitre, nous allons détailler les notions importantes et les études réalisées dans le
domaine. Tout d’abord, nous allons introduire certaines notions importantes de l’apprentis-
sage machine et donner leur définitions. Ensuite, nous aborderons le problème d’évaluation
de la qualité des images de fond d’oeil. Enfin, nous présenterons les méthodes de dépistage
automatique.

2.1 L’apprentissage machine

L’apprentissage machine est le domaine informatique regroupant les algorithmes pouvant
s’adapter à un problème en apprenant d’exemples donnés. Ces algorithmes ou modèles ap-
prennent de représentations ou de motifs dans des données afin de leur permettre de résoudre
certaines fonctions. Cet apprentissage peut être supervisé ou non, selon les données à dis-
positions et la tâche à effectuer. Dans notre travail, nous abordons l’apprentissage supervisé
pour nos modèles.

2.1.1 L’apprentissage supervisé

Il s’agit d’un apprentissage basé sur des exemples annotés, formant des paires entrée - sortie
qui constituent un ensemble d’entraînement pour le modèle. Pour chaque exemple, le modèle
va essayer de prédire la sortie sachant l’entrée. Ce modèle peut donc être représenté par
une fonction f : x → ŷ qui prédit la sortie ŷ sachant l’entrée x. De plus, on peut aussi
définir une fonction de perte L : (ŷ, y) → l qui permet de quantifier l’erreur l entre la
prédiction de notre modèle ŷ et la véritable sortie y correspondant à l’entrée x. Dans le cadre
de l’apprentissage supervisé, le but du modèle est de minimiser cette fonction L pour tout
l’ensemble d’entraînement. Il existe de nombreuses fonctions de pertes selon le problème à
résoudre et les fonctions utilisés pour l’apprentissage de nos modèles seront présentées dans
la section 2.1.4.

2.1.2 Les réseaux de neurones et l’apprentissage profond

Les réseaux de neurones sont un type de modèles très répandus pour effectuer ce genre de
tâche. Originalement inspirés des neurones biologiques du cerveau, les neurones artificiels
sont des fonctions mathématiques simples. Les connexions entre les neurones, inspirées des
synapses biologiques, sont des poids qui multiplient les sorties des neurones. Un réseau est
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structuré en couches ordonnées de neurones. Les neurones d’une couche sont connectés aux
neurones des couches précédente et suivante. Les données en entrée parcourent donc le ré-
seau de couches en couches jusqu’à atteindre la couche de sortie qui correspond au résultat.
Lorsque le nombre de couches est important, on parle d’apprentissage profond. Le percep-
tron multicouche (MLP) est un type de réseau de neurone où tous les neurones de couches
adjacentes sont connectés entre eux. Ces couches sont dites « complètement connectées » .
La figure 2.1 présente ce type d’architecture.

Figure 2.1 Schéma d’un perceptron multicouche. Le vecteur d’entrée est propagé au sein
du réseau, Chaque synapse correspond à une multiplication et chaque neurone possède une
fonction d’activation.

L’apprentissage est effectué à l’aide d’algorithmes de rétro-propagation. Ces algorithmes cal-
culent la perte l entre la prédiction du réseau ŷ et la solution y à l’aide de la fonction L
pour un exemple donné (x, y). Ensuite, les paramètres de chaque neurone est ajusté afin de
minimiser L et donc de rapprocher ŷ de la solution y. Cette opération est effectuée plusieurs
fois pour tous les exemples (x, y) d’entraînement.

2.1.3 Les réseaux de neurones convolutifs

Les réseaux de neurones convolutifs (CNN) sont des réseaux très largement utilisés en ap-
prentissage machine, et surtout lorsque les données sont des images. Ce type de réseau se
distingue du MLP par des couches de convolution. Les images sont des données de grande
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taille, ce qui augmente énormément le nombre de connexions entre les couches d’un MLP.
Les couches de convolution permettent de réduire ce nombre de connexions trop élevé tout
en conservant les informations importantes. Ces couches utilisent des opérateurs convolutifs,
semblables à des filtres, qui conservent les corrélations locales dans l’image. Il s’agit d’opéra-
teurs très largement utilisés dans le domaine de traitement des signaux, et donc appropriés
aux images.

Ces réseaux de neurones sont utilisés dans le domaine de la vision par ordinateur pour
effectuer différentes taches, comme la classification et la segmentation. La classification a
pour but de séparer les images en un certain nombre de classes. Dans notre cas, il s’agira de
répartir les images selon le tableau 1.1, ou plus simplement de distinguer un patient malade
d’un patient sain. La segmentation consiste à extraire certaines régions dans les images. En
d’autre termes, il s’agit de classifier chacun des pixels de l’image. Cela permet d’extraire des
régions d’intérêt dans une image, comme les vaisseaux sanguins par exemple.

La performance des CNN sur les tâches de vision par ordinateur a révolutionné les méthodes
en classification et en segmentation d’images. Krizhevsky et al. [6] montrent en 2012 la
capacité des CNN larges à effectuer de la classification d’images sur la base de données
ImageNet [7] en utilisant l’apprentissage supervisé. Cette base de données contient plus de 15
millions d’images naturelles annotées réparties en plus de 22000 classes, il s’agit de la référence
en terme de classification d’image. En général, 1000 classes sont utilisées, avec environ 1000
images par classe. De nombreux autres travaux ont ensuite amélioré les performances des
CNN pour la classification d’images sur ImageNet en introduisant des architecture différentes,
comme les réseaux AlexNet [6], VGG [8], Inception [9], ResNet [10] ou EfficientNet [11].
Chaque architecture est différente et introduit de nouvelles opérations. Dans notre travail, il
sera question des réseaux ResNet et EfficientNet en majeure partie.

Le réseau ResNet a pour but de simplifier l’apprentissage, en introduisant des fonctions rési-
duelles, simplifiant l’optimisation. En effet, l’optimisation de réseaux très larges est complexe,
et augmenter le nombre de couches ne suffit pas pour augmenter les performances d’un ré-
seau. Le concept de ces fonctions résiduelles est d’introduire des connections raccourcies qui
sautent des couches de convolutions. La figure 2.2 présente l’architecture d’un ResNet-34,
constitué d’un faible nombre de paramètres à optimiser comparé a un réseau VGG, tout en
obtenant de très bonnes performances. Le chiffre 34 correspond au nombre de couches dans le
réseau. Il existe d’autres ResNets avec un nombre de couches différentes, comme ResNet-18,
ResNet-50 ou ResNet-101 par exemple.

D’avantages d’ajouts ont été effectués sur cette architecture. Par exemple, l’ajout de couches
résiduelles agrégées donnent naissance aux ResNeXt [12] et l’ajout de couche de compression
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Figure 2.2 L’architecture d’un réseau ResNet-34

et d’excitation donne lieu au modèle SE-ResNeXt [13].

Les réseaux EfficientNet cherchent aussi à optimiser l’apprentissage des réseaux convolutifs.
L’idée de ce travail est de changer la manière dont les réseaux sont agrandis. En général, il
existe trois approches pour augmenter la taille d’un réseau convolutif : augmenter le nombre
de couches (profondeur), augmenter la taille des couches (épaisseur), ou augmenter la réso-
lution des images d’entrée. Dans ce travail, il est montré qu’il existe un équilibre entre ces
trois paramètres afin d’optimiser l’agrandissement d’un réseau. Aussi, une architecture de
base adaptée à ce type d’augmentation appelée EfficientNet est développée. Le modèle de
base EfficientNet-B0 est agrandi en épaisseur, en profondeur et en résolution pour donner les
réseaux EfficientNet-B1 à EfficientNet-B7.

Tout comme la classification d’images, le domaine de la segmentation d’images utilise aussi
des CNN mais les architectures sont différentes. Le U-Net [14] publié en 2015 est un réseau qui
révolutionne la segmentation d’images, notamment dans le domaine médical. Son architecture
est basée sur deux parties, une première permettant de capturer le contexte et une seconde
permettant de capturer la localisation. Ce type de réseau est très performant et ne requiert
pas un nombre très important d’images d’entraînement pour fonctionner, ce qui en fait un
modèle très fiable.
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2.1.4 Métriques

Plusieurs métriques sont utilisées afin de calculer les performances d’un modèle informatique.
Les plus importantes sont le kappa de Cohen [15], la sensibilité, la spécificité, la précision, le
rappel, et les fonctions de perte L.

Kappa de Cohen

Le kappa de Cohen permet de mesurer un accord entre deux listes de diagnostics. Cette
métrique permet de mesurer si les diagnostics prédits par notre modèle correspondent aux
diagnostics des cliniciens. Cette métrique est calculée à l’aide de la formule suivante :

κ = 1−
∑

i

∑
j wijcij∑

i

∑
j wijmij

(2.1)

avec W la matrice des poids, C la matrice de confusion entre les listes et M la matrice du
produit cartésien entre les histogrammes des deux listes. En général, les poids utilisés sont
quadratiques, ce qui signifie que les erreurs de diagnostic entre deux classes proches ont un
léger impact sur le kappa, et les erreurs entre deux classes éloignées ont un impact plus
important.

Les valeurs possibles du kappa vont de -1 à 1. Un kappa de 1 signifie un accord parfait entre
les listes, un kappa de -1 signifie un accord opposé entre les listes. Un kappa de 0 signifie que
l’accord entre les listes est absent, ici cela signifie que le modèle n’est pas plus performant
que le hasard.

Sensibilité et spécificité

La sensibilité et la spécificité sont deux métriques qui permettent de mesurer les performances
d’un modèle lors d’une classification binaire, comme le tri de la qualité des images. Ces
métriques utilisent la matrice de confusion binaire C entre les listes pour le calcul. Cette
matrice contient le taux de faux positif (fp), faux négatif (fn), vrai positif (vp) et vrai
négatif (vn).

La sensibilité mesure la proportion d’exemples positifs qui ont été correctement identifiés.
L’équation est la suivante :

se = vp

vp+ fn
(2.2)

A l’inverse, la spécificité mesure la proportion d’exemples négatifs qui ont été correctement
identifiés. L’équation est la suivante :
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sp = vn

vn+ fp
(2.3)

Précision et rappel

La précision et le rappel sont des mesures complémentaires à la sensibilité et à la spécificité.
Elles mesurent aussi les performances d’un modèle lors d’une classification binaire et utilisent
la matrice de confusion C.

La précision mesure la proportion d’exemples réellement positifs parmi les exemples détectés
positifs. L’équation est la suivante :

p = vp

vp+ fp
(2.4)

Le rappel mesure la proportion d’exemples positifs détectés. L’équation est la suivante :

r = vp

vp+ fn
(2.5)

Les fonctions de pertes L

Pour un problème de classification d’images, la fonction de perte Lclass la plus couramment
utilisée est l’entropie croisée. Elle permet des prédictions discrètes et est définie selon la
formule suivante :

Lclass(x, c) = − log exp(x[c])∑
j exp(x[j]) (2.6)

avec x un vecteur contenant le score de chaque classe et c l’index de la classe désirée.

Nous pouvons aussi utiliser un modèle effectuant des prédictions continues, car les classes
en question sont ordonnées. Pour ce faire, nous utiliserons un modèle ayant pour objectif la
régression. La fonction de perte Lreg pour un modèle de régression est l’erreur quadratique
moyenne. Elle est définie selon la formule suivante :

Lreg(x, c) = mean[(x1 − c1)2, ..., (xn − cn)2] (2.7)

avec x un vecteur contenant les prédictions de n exemples et c un vecteur contenant les n
classes désirées.
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2.1.5 Pré-traitement

Le pré-traitement est un moyen de corriger certains défauts des images pour un meilleur
apprentissage. En général cela se traduit par l’application de filtres d’images ou des opérations
sur l’histogramme de l’image. Cela permet aux images d’être semblables et agit comme une
normalisation en entrée du réseau.

2.1.6 Augmentations de données

Un autre moyen d’augmenter les performances d’un modèle et d’effectuer de l’augmentation
de données. L’augmentation de données est un processus permettant aux modèles de mieux
généraliser. En pratique, il s’agit d’effectuer des transformations sur une image lors de l’en-
traînement, comme des rotations, des agrandissements d’image ou des retournements. Ceci
permet d’augmenter la variabilité d’une base de données à partir des images d’origine.

2.1.7 Méthodes ensemblistes

Différentes méthodes ensemblistes permettent d’augmenter d’avantage les performances, après
l’entraînement des modèles. La première méthode ensembliste utilisée est l’augmentation de
données lors de la phase de test (test time augmentation ou TTA en anglais). Cette méthode
consiste à appliquer les transformations d’images utilisées pour l’augmentation de données
lors de la phase d’entraînement sur les images de test. Ces transformations sont effectuées
sur plusieurs copies d’une même image de test et le modèle effectue les prédictions sur cha-
cune des images. Ceci forme un ensemble de prédictions pour une même image de test. Cet
ensemble est ensuite utilisé pour la prédiction finale de l’image. Si le modèle a un objectif de
classification, les prédictions sont discrètes et la prédiction finale est obtenue par un système
de vote : la prédiction obtenant la majorité est la prédiction finale. Si le modèle a un objec-
tif de régression, les prédictions sont continues et la prédiction finale peut être obtenue en
arrondissant la moyenne des prédictions.

Une autre méthode ensembliste consiste à regrouper les prédictions de plusieurs modèles
différents. L’arrondi de la moyenne des prédictions de chaque modèle pour une image de test
correspond à la prédiction finale de l’image. Cette méthode utilise la diversité de différents
modèles et regroupe des prédictions avec des variations. En général, on cherche à regrouper
des modèles différents pour qu’ils soient complémentaires.
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2.2 La qualité des images de fond d’oeil

Une revue de littérature complète concernant les algorithmes d’évaluation de la qualité des
images de fond d’oeil a été faite par A.Raj et al. [16] en 2019. Elle détaille de manière exhaus-
tive les principales méthodes permettant l’évaluation de la qualité des images de fond d’oeil.
Cette revue divise ces algorithmes en trois principales catégories : basées sur la similarité, sur
la segmentation et sur l’apprentissage machine. Nous allons étudier chacune de ses catégories
afin d’en comprendre les avantages et les inconvénients.

2.2.1 Méthodes basés sur la similarité

Les méthodes basées sur la similarité comparent des caractéristiques des images de fond
d’oeil avec celles d’une base d’images préétabli comme étant de bonne qualité. Il s’agit de la
première approche d’évaluation de la qualité des images de rétine, par Lee et Wang [17]. Dans
ce travail, l’histogramme de l’image à évaluer est comparé avec les histogrammes d’images
de bonne qualité en utilisant le produit de convolution. L’avantage de cette technique est
sa simplicité d’implémentation. Cependant, elle est difficilement généralisable car la création
d’une base complète d’images de bonne qualité est complexe. Aussi, cette approche basée sur
les histogrammes perd toute information locale dans l’image, et n’utilise pas les structures
importantes. Cette approche ne se base pas sur les connaissances de l’anatomie, elle n’a pas
de réelle interprétation clinique.

Lalonde et al. [18] proposent une méthode basée sur la similarité utilisant la distribution de
l’amplitude des contours ainsi que la distribution d’intensité locale. Contrairement à [17],
cette approche conserve certaines informations locales. Cependant, elle souffre des mêmes
problèmes de généralisation. Aussi, les structures étudiées ici ne sont pas celles étudiées dans
le SDRGS, ce qui rend l’interprétation de la méthode difficile.

2.2.2 Méthodes basées sur la segmentation

Les méthodes basées sur la segmentation vont extraire des régions d’intérêt dans les images
afin de déterminer la qualité de l’image. Ces méthodes sont généralement séparées en deux
parties : la segmentation et l’analyse. Par exemple, A.Hunter et al. [19] segmentent les vais-
seaux sanguins présents dans l’image. Ensuite, ils utilisent le contraste de ces vaisseaux afin
d’évaluer la qualité des images. L’approche de Fleming et al. [20] est basée sur l’analyse des
petits vaisseaux présents autour de la fovea. La localisation de la macula et la segmentation
des vaisseaux est effectuée à l’aide d’outils classiques du traitement d’images comme l’utilisa-
tion de la transformée de Hough et l’analyse du contraste. L’avantage de ces méthodes basées
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sur la segmentation est leur réel interprétation clinique. En effet, ces méthodes se rapprochent
le plus du SDRGS. Cependant, la plupart de ces méthodes utilisent des outils classiques du
traitement d’images comme les filtres, les transformées, les analyses de contraste ou les his-
togrammes. En général, ces fonctions utilisent des paramètres ou des variables qui dépendent
d’une base de données en particulier. Il est difficile pour ces méthodes de généraliser pour
prendre en compte une plus forte variabilité des données sans changer les paramètres et les
variables.

2.2.3 Méthodes basées sur l’apprentissage machine

Les méthodes basées sur l’apprentissage machine peuvent encore être séparées en deux sous-
catégories : les algorithmes basés sur des caractéristiques sélectionnées en amont et ceux basés
sur des caractéristiques de l’apprentissage profond. Par exemple, dans [21–23] les caractéris-
tiques sélectionnées en amont sont la couleur, la texture ou la netteté. Ces caractéristiques
ne correspondent pas à la définition de la qualité du SDRGS, il s’agit seulement de critères
de qualité pour des images naturelles. L’apprentissage profond est utilisé par [24, 25] pour
extraire des caractéristiques et ainsi évaluer la qualité des images. Cependant, les caracté-
ristiques extraites par l’apprentissage machine sont souvent critiquées pour être des « boites
noires » qui sont peu interprétables. L’avantage des méthodes basées sur l’apprentissage ma-
chine est la généralisation puisqu’elles utilisent souvent des bases de données volumineuses.

2.3 L’utilisation de l’apprentissage machine pour le diagnostic de la rétinopathie
diabétique

2.3.1 Le diagnostic automatique

Différentes méthodes d’automatisation du diagnostic de la RD ont été étudiées. Les premières
approches utilisaient des outils classiques d’apprentissage machine comme les machines à
vecteur de support (SVM). Acharya et al. [26] utilisent un SVM avec des caractéristiques de
texture pour effectuer la classification de la DR. Noronha et al. [27] utilisent un SVM ainsi
que les caractéristiques d’une transformation d’ondelette. Ces méthodes sont graduellement
remplacées par l’utilisation d’apprentissage profond, comme les CNN par exemple.

L’utilisation de CNN afin de diagnostiquer des maladies à partir d’images médicales se répand
progressivement dans différents domaines comme celui de la radiologie [28], la dermatologie
[29] ou l’ophtalmologie. Le diagnostic automatique de la RD a notamment été abordé lors
d’une compétition web en 2015 sur le site Kaggle [30]. Les données de cette compétition
consistent en une base de données d’entraînement et une base de données de test. La base



15

de données d’entraînement regroupe plus de 30000 images réparties en 5 niveaux de RD. Le
base de données de test contient plus de 50000 images. La métrique utilisée pour évaluer les
performances d’un modèle est le kappa de Cohen, décrit par l’équation 2.1. Cette métrique
permet de mesurer l’accord entre les valeurs réelles et celles prédites par les modèles. Un
kappa de 1 signifie un accord parfait et un kappa de 0 signifie une absence d’accord. Lors de
la compétition Kaggle, le meilleur modèle a obtenu un kappa de 0,850. En 2019, une nouvelle
compétition Kaggle [31] a été organisée à laquelle nous avons participé.

Le gagnant de la compétition Kaggle 2019 détaille son approche sur le site [32]. Dans ce
document, il dit fusionner les base de données Kaggle 2015 et 2019 pour l’entraînement de
ses modèles. Il est important de noter qu’il n’applique aucun pré-traitement aux images mais
il effectue un grand nombre d’augmentations de données. Le modèle est un ensemble de
modèles Inception et SE-ResNeXt. L’auteur aurait aimé ajouter des réseaux EfficientNet s’il
en avait le temps.

Les méthodes de diagnostic automatique se basant sur les CNN progressent en même temps
que ces derniers. La base de données publique de Kaggle 2015 est souvent utilisé par les
travaux sur le diagnostic automatique de la RD. Par exemple, Lam et al. [33] utilisent les
réseaux Inception [9] et AlexNet [6] préentraînés sur ImageNet et continuent l’entraînement
sur la base de données Kaggle 2015 pour effectuer un diagnostic de RD. Dans ce travail,
le modèle est entraîné plusieurs fois pour effectuer des classifications à 2, 3 et 4 classes.
Il est notable que les performances décroissent avec le nombre de classes, car la tâche de
discerner deux classes devient plus difficile car les détails sont plus subtils. De plus, il est
aussi abordé l’importance de la base de données d’entraînement ainsi que du pré-traitement
sur les résultats des modèles. Le réseau VGG [8] est aussi utilisé sur la base de données Kaggle
2015 par Rakhlin et al. [34] pour effectuer le diagnostic de la RD. Dans ce travail, l’importance
de la qualité des images est relevé au vu des meilleures performances de leur modèle sur des
bases de données d’images de bonne qualité, comme Messidor-2 [35]. En effet, ils évaluent la
proportion des images de qualité de la base de données Kaggle 2015 à 75%. Dans ce travail,
il est question de classification binaire ayant pour but de distinguer un patient malade d’un
patient sain. Ces deux travaux étudient aussi la difficulté des modèles pour classifier certaines
classes. En effet, la classe de RD modérée (R2) décrite dans le tableau 1.1 pose beaucoup de
problèmes aux modèle car la différence avec les autres classes est parfois subtile.

Notre travail sur l’évaluation de la qualité des images de fond d’oeil a pour but de lier les
avantages des méthodes basées sur la segmentation et ceux des méthodes basées sur l’appren-
tissage machine. Nous utiliserons l’apprentissage profond, permettant une généralisation sur
un grand nombre de données afin d’effectuer la segmentation des régions d’intérêt pour obte-
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nir des résultats interprétables qui suivent la définition du SDRGS. Ensuite, nous étudierons
différents modèles de dépistage et l’utilisation des techniques d’apprentissage profond pour
effectuer le dépistage automatique.
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CHAPITRE 3 MÉTHODOLOGIE

Le diagnostic automatique de la RD permettrait d’aider les cliniciens dans le dépistage de
la maladie, en introduisant des outils de vision par ordinateur. Cependant, il n’existe pas
encore de solution déployée en clinique pour le moment.

Dans ce chapitre, nous détaillons les méthodes retenues pour effectuer ce diagnostic. Tout
d’abord, nous abordons le modèle d’évaluation de la qualité des images de fond d’oeil. Ensuite,
nous présentons les algorithmes réalisés pour effectuer le dépistage automatique. Enfin, nous
étudions l’importance de la qualité dans l’entraînement et le test des modèles de dépistage.

Dans ce chapitre, tous les modèles et algorithmes ont été réalisés en Python. La bibliothèque
logicielle utilisée pour les modèles d’apprentissage profond est PyTorch [36], les bibliothèques
utilisées pour le traitement d’image sont Pillow [37] et OpenCv [38]. Les bibliothèques utilisées
pour le traitement des données sont Numpy [39] et Pandas [40].

3.1 Qualité des images

L’objectif de cette section est d’établir un algorithme d’évaluation de la qualité des images de
fond d’oeil. Cet algorithme est inspiré du SGDRS et de la manière avec laquelle les cliniciens
évaluent les images de fond d’oeil. Ces images peuvent être réparties en deux catégories,
utilisables pour le dépistage ou non selon leur qualité. Une image de bonne qualité contient
la macula ainsi que les vaisseaux sanguins autour de la fovea. Le but de l’algorithme est de
segmenter ces deux régions d’intérêt et ainsi de donner un score interprétable sur la qualité de
l’image. Tout d’abord la segmentation de la macula et des vaisseaux est effectuée de manière
indépendante, puis un score est calculé sur une région autour de la macula dans l’image où
les vaisseaux sont segmentés. Ce score donne une indication sur la qualité de l’image et un
seuil peut être déterminé pour classifier l’image comme utilisable ou non.

Deux réseaux U-Nets [14] différents sont utilisés pour la segmentation de la macula et des
vaisseaux dans l’image de fond d’oeil. Ces deux modèles sont entraînés de manière indépen-
dante et possèdent des architectures différentes.

L’algorithme 1 et la figure 3.1 présentent l’entièreté de la méthode d’évaluation de la qualité
des images.

Un article publié dans la conférence ICIAR 2020 présentant cette méthode est disponible en
annexe A.
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Figure 3.1 Diagramme détaillant le processus complet de la méthode d’évaluation de la qualité
des images de fond d’oeil. Les étapes de segmentation de la macula et de segmentation des
vaisseaux sont indépendantes. L’étape d’évaluation de la région calcule un score basé sur ces
deux segmentations

3.1.1 Pré-traitement

Les deux U-Nets utilisent le même pré-traitement des images de fond d’oeil. Ce pré-traitement
consiste à l’application d’une fonction de Contrast-Limited Adaptive Histogram Equalization
(CLAHE) dans l’espace de couleur LAB. Il s’agit d’une méthode efficace et utilisée couram-
ment pour augmenter la qualité des images de rétine [41]. En effet, la présence de bruit prove-
nant d’une illumination inégale dans les images de fond d’oeil peut heurter les performances
des modèles. La fonction de CLAHE permet de réduire l’effet de ce bruit en améliorant le
contraste de l’image. Ceci permet de mieux percevoir des caractéristiques importantes des
images de fond d’oeil comme les vaisseaux sanguins par exemple.

3.1.2 Segmentation de la macula

Un U-Net est utilisé pour segmenter la macula sur l’image après le pré-traitement. L’ar-
chitecture et la stratégie utilisées sont identiques à celles utilisées par Ronneberger et al.
dans [14]. Ce modèle est ensuite entraîné sur 2000 images de la base de donnée Kaggle 2015
manuellement annotée.

Un algorithme de mean shift permet ensuite de localiser le centre de la macula et de réduire
les erreurs de segmentation. Cet algorithme regroupe les pixels activés par le U-Net selon
leur localisation. Les pixels correspondant à la macula sont donc regroupés ensemble et le
centre de ce groupe est calculé. Cet algorithme de mean shift permet aussi de ne pas tenir
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Algorithm 1: Le processus complet de la méthode
Result: Score de l’image
image = Image.open(fundusImage)
preprocessed_image = preprocess(image)

unet_macula = load_unet(model_macula)
unet_vessels = load_unet(model_vessels)

macula_segmented = unet_macula(preprocessed_image)
x, y = mean_shift(macula_segmented)

vessels_segmented = unet_vessels(preprocessed_image)

patch = extract_patch(vessels_segmented, x, y)
skeleton = skeletonize(patch)
score = sum(skeleton)

return score

compte des erreurs de segmentation du U-Net dans le calcul du centre de la macula car ces
erreurs ne seront pas groupées avec la macula. Si la macula ne peut pas être segmentée,
l’image est automatiquement classifiée comme inutilisable. La figure 3.2 présente les résultats
de l’algorithme sur quelques images de segmentation de macula.

3.1.3 Segmentation des vaisseaux

Le modèle effectuant la segmentation des vaisseaux est aussi un U-Net mais avec une archi-
tecture différente de l’originale. Comparé au modèle présenté dans [14], ce modèle possède

(a) (b) (c)

Figure 3.2 Algorithme de mean shift permettant de localiser le centre de la macula. En rouge,
le centre de la maculé trouvé dans les images. En vert, le centre de groupes de pixels qui ne
sont pas la macula
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deux fois plus de couches et deux fois moins de caractéristiques par couches. Ceci permet
de réduire le sur-apprentissage et élargit le champ récepteur. Ce modèle U-Net est entraîné
sur 20 images provenant de la base de données DRIVE [42] et sur 100 images provenant de
la base de données Messidor [43]. Ce modèle est entraîné sur 100 epochs avec l’optimiseur
ADAM [44]. Aussi, les augmentations de données suivantes ont été utilisées : rotations de
l’image suivant une loi uniforme entre -180 et +180 degrés, retournement horizontaux de
l’image avec probabilité de 0.5, sélection aléatoire d’une région centrée sur un pixel de vais-
seau d’une taille de 516x516 pixels, changement de contraste suivant une loi normale d’écart
type 0.4 et changement de gamma suivant une loi normale d’écart type 0.15. Ce modèle est
utilisé pour segmenter les vaisseaux sur l’image d’origine après pré-traitement. Les résultats
sont visibles sur la figure 3.3 (c).

3.1.4 Évaluation de la qualité des images

Les coordonnées du centre de la macula sont utilisées pour extraire une région dans l’image qui
contient les vaisseaux. Cette région est centrée sur la macula et contient les petits vaisseaux
autour de la fovea. La macula n’est pas visible dans cette image car seulement les vaisseaux
sont segmentés.

Il est indiqué dans le SDRGS que cette région doit couvrir une distance d’un diamètre du
disque optique depuis le centre de la macula. Afin de décider de la taille de la région, nous
avons mesuré manuellement le diamètre moyen du disque optique dans les images de fond
d’oeil. Nous avons remarqué que la taille du disque optique varie peu, il est donc possible de
fixer le diamètre du disque optique à une valeur constante. Cette valeur correspond à environ
12,5% des dimensions originale de l’image. La taille de la région extraite est donc de 25% de la
hauteur et 25% de la largeur de l’image originale, afin de couvrir une distance correspondant
au diamètre du disque optique depuis le centre de la macula. Ajouter un moyen de segmenter
le disque optique afin d’obtenir une valeur plus précise que cette valeur constante pourrait
augmenter la propagation des erreurs car une erreur sur la segmentation du disque optique
entraînerait une erreur sur la taille de la région et ainsi entraînerait une erreur sur l’évaluation
globale de la qualité de l’image. Les résultats sont visibles sur la figure 3.3 (d).

Ensuite, une squelettisation de la région contenant les petits vaisseaux proche de la fovea est
effectuée. Ceci réduit l’impact des vaisseaux larges et met plus d’importance sur le nombre
de vaisseaux visibles et leur longueur. Ceci est aussi expliqué par Hunter et al. dans [19].
Cela permet de réduire le nombre de faux positifs puisque les artefacts peuvent parfois être
détectés comme des vaisseaux. Avec la squelettisation, leur poids sur le score est réduit
significativement. Enfin, le nombre de pixels blancs restants permet d’obtenir le score final
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(a)

(b) (c)

(d) (e)

Figure 3.3 Détails de l’algorithme de détection de la qualité sur une image de bonne qualité.
(a) l’image de fond d’oeil originale. (b) la macula segmentée dans l’image originale. Le centre
de la macula est indiqué en rouge. (c) les vaisseaux segmentés dans l’image originale. Le
centre de la macula localisé en (b) est indiquée en rouge. (d) la région extraite de l’image (c)
centrée sur la macula. (e) le squelette de l’image (d).



22

de qualité. Les résultats sont visibles sur la figure 3.3 (e).

Ce score est une indication interprétable de la qualité de l’image. Un score nul signifie que
la macula n’a pas été segmentée par le premier U-Net ou qu’aucun vaisseau n’est présent
dans la région centrée sur la macula. Dans les deux cas, l’image n’est pas de qualité suffisante
pour être utilisable dans le dépistage de la RD. Un bon score signifie qu’un grand nombre
de vaisseaux longs ont été segmentés autour de la fovea, ce qui implique que la qualité de
l’image est suffisante pour se prononcer sur l’avancée de la RD dans l’image. En effet, la
qualité d’image autour de la fovea doit être suffisante pour permettre un diagnostic.

Nous pouvons ensuite définir un seuil permettant de classer les images selon leur qualité. La
quantité de vaisseaux qui doit apparaître dans la région autour de la fovea n’est pas discuté
dans le SDRGS, la valeur est subjective et semble varier selon les images et selon les cliniciens.
Afin de définir ce seuil, nous avons fait annoter une base de données de 50 images par un
clinicien. Nous avons ensuite déterminé le seuil qui correspondait le plus aux décisions du
cliniciens sur cette base de données de test. Le seuil retenu est une valeur de 500 pixels blancs
dans l’image du squelette des vaisseaux dans une région autour de la fovea (voir figure 3.3
(e)).

Le seuil permet de réduire le nombre de faux positifs, mais peut ajouter des faux négatifs.
Dans notre cas, la précision (équation 2.4) est la mesure la plus importante car plusieurs
images d’un même patient sont disponibles et une seule image de bonne qualité suffit pour
évaluer la sévérité de la RD. Détecter toutes les images de bonne qualité n’est pas aussi
important que d’être certain que les images détectées sont de bonne qualité.

Les résultats du modèle sont discutés dans la section 4.1.

3.2 Modèle de dépistage

Le dépistage automatique de la RD est un problème de classification d’images. En effet, il
s’agit d’associer un niveau de maladie à une image. Les niveaux de maladies sont présentés
dans le tableau 1.1. Pour simplifier nous parlerons ici des niveaux allant de 0 (absence de
RD) à 4 (RD proliférante). Dans cette section, nous allons étudier la conception d’un modèle
d’apprentissage profond permettant le dépistage de la RD dans les images de fond d’oeil.
Pour cela, nous présenterons les différents modèles conçus pour la compétition Kaggle 2019
et nous expliquerons en détail les approches étudiées.
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3.2.1 Kaggle 2019

Nous avons entraîné différents réseaux dans le cadre de la compétition Kaggle APTOS 2019
[31]. Une base de données d’entraînement de 3662 images avec labels était fournie. La figure
3.4 illustre la répartition des classes dans cette base de données. On remarque que la base
n’est pas équilibré, la prévalence de la classe 0 est importante.

Lors de cette compétition Kaggle, un système de classement public et classement privé a
été mis en place. Une équipe pouvait soumettre jusqu’à 5 soumissions par jour et un score
public était dévoilé pour chaque soumission. Ce score public est calculé sur 15% de la base
de donnée de test. Les 75% restant sont utilisés pour calculer le score privé qui n’est dévoilé
qu’à la toute fin de la compétition, correspondant au score final. Le score public pouvait donc
être utilisé comme validation des modèles tout au long de la compétition. Après la fin de la
compétition, les scores privés de toutes les soumissions ont été dévoilés. Ces scores seront
utilisés afin de comparer les différents modèles utilisés.

3.2.2 Modèle

Pré-traitement

Lors de cette compétition, nous avons étudié l’importance du pré-traitement pour diagnosti-
quer la RD. Le pré-traitement utilisé est décrit par un membre de la compétition sur le site
Kaggle [45]. Il s’agit d’un pré-traitement inspiré de celui du gagnant de la compétition 2015,
Benjamin Graham [46]. Ce pré-traitement consiste à soustraire la couleur moyenne locale en
utilisant un filtre de flou gaussien. Les images sont aussi coupées pour ne garder que l’oeil
et elles sont redimensionnées pour avoir la même taille. La figure 3.5 présente des exemples
d’images après pré-traitement.

Augmentation de données

Les transformations que nous avons appliquées sont les suivantes : retournement horizontal et
vertical de l’image, translation horizontale et verticale, rotation et agrandissements. La figure
3.6 présente des exemples des différents types d’augmentations utilisés lors de l’entraînement.
L’augmentation de données permet de générer de nouvelles données à partir d’une base de
données. En général, les performances d’un modèle peuvent augmenter avec le nombre de
données différentes, c’est pourquoi différentes base de données peuvent aussi être fusionnés
afin de créer une base plus volumineuse. Ces bases de données doivent être similaires pour que
la fusion soit bénéfique. La base d’entraînement de la compétition Kaggle Eyepacs 2015 [30]
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Figure 3.4 Répartition des images selon la sévérité de la RD dans les images de la base de
données d’entraînement de kaggle 2019. La proportion des images n’est pas équilibrée, la
classe 0 est majoritaire.

compte plus de 30000 images de fond d’oeil similaires à celles de la compétition APTOS
2019. De plus, le système de gradation des niveaux est identique, ce qui fait que la fusion
des bases est possible. Augmenter la taille de la base de données d’entraînement ainsi que
réaliser des augmentations de données permet au modèle de mieux généraliser et ainsi obtenir
de meilleurs résultats.

Régression et Classification

Cette compétition présente un problème de classification, puisqu’il s’agit de répartir les
images en différentes catégories discrètes définies par le niveau de RD dans les images. Ce-
pendant, une approche de régression peut aussi être abordée. La régression consiste à prédire
un nombre réel. Contrairement à la prédiction discrète de la classification, la prédiction de
la régression est continue. Ici, la RD est classée en 5 niveaux. Les niveaux sont progressifs (0
à 4) et la régression a pour but de rendre cette progression continue. Les fonctions de pertes
associés à ces deux méthodes sont définies dans la section 2.1.4.

Les méthodes de classification et de régression obtiennent des résultats similaires, malgré leur
approches différentes. Il est difficile d’interpréter ces résultats, des arguments supportent les
deux méthodes. La méthode de classification suit l’approche des cliniciens et du SDRGS
en classant les images selon 5 catégories. La méthode de régression tient compte de l’ordre
des classes et possède un fonction de perte plus adaptée à la mesure du kappa quadratique
(équation 2.1). En effet, l’erreur quadratique moyenne (équation 2.7) et le kappa quadratique
mesurent une distance entre la solution et la prédiction. Si une classe 4 est prédite par le
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5 Exemple de pré-traitement sur des images de la base de données Kaggle 2019. Pré-
traitement inspiré par celui du gagnant de la compétition Kaggle 2015, Benjamin Graham
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6 Exemple d’augmentation de données sur une image de la base de données Kaggle
2019. Les augmentations suivantes sont effectuées : retournements horizontal et vertical,
agrandissements, rotation, translation
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modèle de régression alors que la valeur attendue était 0, l’erreur sera plus importante que
si la prédiction était 1. Cette notion de distance n’est pas présente dans la fonction de perte
utilisée par la classification (l’entropie croisée, voir équation 2.6). Cependant, la prédiction
de la méthode par régression n’a pas de réelle interprétation clinique puisque cette prédiction
est un nombre réel qu’il faut ensuite arrondir à une valeur entière comprise entre 0 et 4. Les
deux méthodes semblent adaptées au problème, ces approches seront par la suite regroupées
dans un modèle ensembliste pour leur complémentarité.

Architecture

Plusieurs types de ResNets [10] et EfficientNets [11] ont été entraînés lors de cette compéti-
tion. Ces réseaux convolutifs sont utilisés pour la classification d’images naturelles, sur des
bases de données comme ImageNet par exemple. Ceci nous permet d’utiliser l’apprentissage
par transfert. Il s’agit d’utiliser les poids des réseaux pré-entraînés sur ImageNet et de les
modifier pour effectuer une tâche différente. En effet, les réseaux entraînés sur ImageNet
apprennent certaines représentations et caractéristiques des images naturelles. Ces caracté-
ristiques peuvent aussi être utiles pour la classification de la RD, c’est pourquoi entraîner un
modèle à partir des poids appris sur ImageNet peut améliorer les résultats.

Les différentes architectures utilisées sont les suivantes : EfficientNet-B3, EfficientNet-B4,
EfficientNet-B5, EfficientNet-B6, ResNet-50, ResNet-101.

Apprentissage

Nous avons utilisé l’optimiseur ADAM pour l’apprentissage, ainsi qu’un planificateur de taux
d’apprentissage. Ce dernier permet de modifier le taux d’apprentissage lorsque le modèle
n’améliore plus son score de validation. Il s’agit donc de réduire le taux d’apprentissage
pour permettre au réseau d’effectuer des modifications plus précises et ainsi d’améliorer les
résultats.

Aussi, nous avons élaboré une stratégie d’apprentissage qui consiste à d’abord entraîner le
réseau sur la base de donnée d’entraînement de Kaggle 2015 composée d’environ 30000 images
pour 20 epochs. La validation lors de cette première phase d’apprentissage est la base de
donnée Kaggle 2019. Le meilleur réseau sur cette première phase d’entraînement sera ensuite
utilisé comme départ d’un deuxième entraînement sur la base de donnée d’entraînement de
Kaggle 2019. Cette méthode permet au réseau d’apprendre sur une base de donnée importante
tout en se spécialisant aux images de la compétition en question.
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Méthodes ensemblistes

Nous avons d’abord effectué l’apprentissage des différents réseaux. Ensuite, nous avons ap-
pliqué la méthode d’augmentation de données lors de la phase de test à certains réseaux.
Ensuite, nous avons regroupé quatre réseaux afin de créer un modèle ensembliste. Ce mo-
dèle effectue la prédiction d’une image en calculant l’arrondi de la moyenne des prédictions
des réseaux qui le constituent. Afin d’augmenter la variabilité, nous avons regroupé des ré-
seaux avec des architecture différentes (EfficientNet-B3, B4 et B5), des objectifs différents
(classification et régression) et une résolution des images d’entrée différente (300, 380 et 456).

Les résultats du modèle sont discutés dans la section 4.2.

3.3 Ajout de la qualité

Nous avons présenté dans la section 3.1 un algorithme d’évaluation de la qualité des images
de fond d’oeil et dans la section 3.2.2 un modèle de dépistage. L’objectif de cette section est
d’utiliser le score de qualité pour étudier l’impact de la qualité des images de fond d’oeil lors
de la phase d’entraînement et de la phase de test, au travers de différentes expériences.

La base de données de Kaggle 2015 est utilisée ici car la base de test est accessible. En effet,
la base de test de Kaggle 2019 n’est pas disponible publiquement. La base d’entraînement
de Kaggle 2015 contient environ 35000 images de fond d’oeil et la base de test en contient
environ 53000. La répartition des données dans la bases de données est présentée en figure
3.7. On remarque encore la proportion très forte des images de classe 0. Nous allons étudier
l’impact de la qualité des images dans les modèles de dépistage de la RD en deux parties :
lors de la phase d’entraînement et lors de la phase de test.

3.3.1 Phase d’entraînement

Tout d’abord, nous avons filtré les images de mauvaise qualité dans la base de données
d’entraînement Kaggle 2015 afin de comparer l’apprentissage de deux modèles identiques sur
la base de données originale et la base contenant seulement des images de bonne qualité.
Nous avons utilisé des modèles qui ont prouvé leur efficacité lors de la compétition Kaggle
2019 résumé en partie précédente. C’est pourquoi l’architecture choisie pour cette expérience
est un modèle EfficientNet-B5. L’objectif du modèle est la classification et il est entraîné sur
25 epochs avec un optimisateur ADAM. Nous avons décidé de faire varier certains paramètres
de la méthode d’apprentissage afin de mieux comprendre quel facteur permet à la qualité
d’impacter les résultats. Ces paramètres variables sont le pré-traitement et les augmentations
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Figure 3.7 Répartition des images selon la sévérité de la RD dans les images de la base de
données d’entraînement de kaggle 2015. La proportion des images n’est pas équilibrée, la
classe 0 est majoritaire

de données, en plus de la base de données d’entraînement.

Les résultats sont discutés dans la section 4.3.1.

3.3.2 Phase de test

Les performances de différents modèles sont mesurées sur les images de la base de données
de test en fonction de leur qualité. Les architectures testées ici sont les mêmes que celles de
la section précédente, ainsi que celles présentées dans la méthode ensembliste de la section
Kaggle 2019, i.e. EfficientNet-B3, EfficientNet-B4 et EfficientNet-B5. Les réseaux B3, B4 et un
B5 ont un objectif de régression tandis qu’un réseau B5 a un objectif de classification. Tous les
réseaux sont entraînés pendant 25 epochs avec l’optimisateur ADAM sur la base de données
d’entraînement Kaggle 2015. Comme indiqué dans la section 3.3.1, certains réseaux sont
entraînés seulement sur les images de bonne qualité de la base de données. Certains réseaux
sont entraînés avec le pré-traitement de B. Graham [46], et certains avec des transformations
d’augmentation de données (retournement et transformations affines).

Les résultats sont discutés dans la section 4.3.2.
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CHAPITRE 4 DISCUSSION GÉNÉRALE ET RÉSULTATS

4.1 Résultats du modèle d’évaluation de la qualité

La base de données de validation utilisée pour évaluer les performances du modèle évaluant
la qualité des images de fond d’oeil est construite à partir de la base de données utilisée
par Fasih et al. dans [21]. Nous avons utilisé 88 images annotées par un clinicien en deux
catégories : utilisable et non utilisable. La base de données contient 44 images de chaque
classe. La méthode proposée obtient une sensibilité de 100%, une spécificité de 93% une
précision de 94% et un rappel de 100% sur cette base. Il existe d’autres bases de données
publiques possédant plus d’images, comme EyeQ [47] ou DR2 [48] par exemple, cependant,
elles ne suivent pas les critères de qualité définis par le SDRGS. Afin de mesurer au mieux
les performances de notre modèle d’évaluation de la qualité des images, nous avons décidé
d’utiliser la base de données de Fasih et al. car elle suit les critères de qualité définis par le
SDRGS (figure 1.3).

4.1.1 Discussion

L’interprétabilité de notre score nous permet de mieux comprendre les résultats de l’évalua-
tion. Quand une image est classée comme inutilisable, on peut savoir si cette décision provient
du manque de vaisseaux autour de la fovea ou si la macula est manquante. Cela nous donne
des informations importantes pour mieux évaluer la qualité des images de fond d’oeil. Par
exemple, les cliniciens utilisent plusieurs images du même oeil d’un patient pour établir le
diagnostic de la DR. Les images possédant un score faible ne sont pas suffisantes pour établir
ce diagnostic, mais elles peuvent donner des informations utiles lorsqu’elles sont couplées à
d’autres images.

La figure 4.1 présente l’histogramme de la qualité des images, réparties selon leur classe. On
remarque une distinction importante entre les deux classes. En effet, le score permet bien
de distinguer les images de mauvaise qualité des images de bonne qualité avec le seuil à 500
définit à la section 3.1.4. Cependant, on remarque trois images de mauvaise qualité ayant un
score similaire aux images de bonne qualité. Ces images sont faussement détectées comme
étant de bonne qualité. La figure 4.2 présente les différentes étapes de l’algorithme pour ces
trois faux positifs. On remarque sur les trois exemples que la macula est détectée alors qu’elle
n’est pas visible sur les images originales. L’exemple (b) présente des artefacts d’illumination
qui entraînent aussi une mauvaise segmentation des vaisseaux. Une absence de segmentation
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de la macula aurait permis de correctement classifier ces trois images, soulignant l’importance
de la segmentation de la macula.

Nous avons aussi remarqué que 40% des images de mauvaise qualité ont été correctement
détectées grâce au modèle de segmentation de la macula. Ceci montre encore l’importance
d’une telle étape. Il s’agit d’un critère crucial dans l’évaluation de la qualité des images de
fond d’oeil.

4.2 Résultats du modèle de dépistage de Kaggle 2019

Les résultats des différents modèles entraînés pour la compétition Kaggle 2019 sont présentés
dans le tableau 4.1. Nous utilisons les résultats obtenus sur la base de test privé de Kaggle 2019
pour comparer les différents modèles. Le kappa de Cohen quadratique décrit par l’équation
2.1 est le score utilisé afin de classer les différents réseaux.

4.2.1 Discussion

Il est notable que les approche régression et classification obtiennent des résultats similaires.
De plus, la méthode d’apprentissage semble robuste car elle permet à différentes architectures
d’obtenir des résultats similaires. Les réseaux EfficientNet étaient plus facile à entraîner, c’est
pourquoi nous les avons largement utilisés dans cette compétition. La méthode ensembliste
d’augmentation de données lors de la phase de test permet d’augmenter les performances d’un
réseau seul en introduisant de la variabilité. La méthode ensembliste regroupant différents
modèles a permis d’obtenir les meilleurs résultats, juste en arrondissant la moyenne des
modèles en question. Afin d’augmenter la diversité des modèles utilisés dans cette méthode
ensembliste, nous avons fait varier les architectures, les tailles des images et nous avons intégré
des modèles de classification et de régression.

On remarque aussi l’importance faible du pré-traitement. Dans notre cas, il ne permet pas
d’obtenir de meilleurs résultats. Cela signifie que la qualité des images n’est pas augmentée
par le pré-traitement. Le pré-traitement étudié n’est probablement pas assez général et n’est
pas adapté à la base de donnée Kaggle 2019. De plus, lorsque les images de cette base sont de
bonne qualité, elles sont utilisables sans pré-traitement. Il est possible pour les spécialistes de
la rétine de travailler sur des images sans pré-traitement, lorsque la qualité est suffisante. Ils
ont à leur disposition l’image avant et après pré-traitement afin de donner leur diagnostic, il
est donc probable que les images sans pré-traitement étaient utilisées ici. Aussi, le gagnant de
la compétition n’utilise pas de pré-traitement. Ceci souligne l’importance faible des méthodes
de pré-traitement étudiées ici.
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Figure 4.1 Histogramme de la qualité des images en fonction de leur score. En rouge, les images
de mauvaise qualité, en bleu les images de bonne qualité. Le score permet de distinguer les
deux classes. On remarque cependant trois faux positifs.

4.3 Ajout de la qualité

4.3.1 Phase d’entraînement

Les performances des modèles sont calculées sur la base de données de test de Kaggle 2015.
La qualité est considérée faible lorsque le score de qualité est strictement inférieur à 500. La
base de données complète contient 53 576 images, dont 41 934 de qualité haute.

Les résultats obtenus sont visibles dans les tableau 4.2.

On remarque que, lors de l’entraînement, il semble important de conserver les images de
mauvaise qualité. En effet, les performances du modèle sont en général meilleures lorsqu’il
apprend sur le dataset original. Le meilleur résultat est obtenu lorsqu’aucun pré-traitement
n’est appliqué, que des transformations de retournements et affines sont appliquées lors de
l’augmentation de données et que l’entraînement est effectué sur le dataset original compor-
tant aussi les images de mauvaise qualité. Ces images de mauvaise qualité semblent quand
même contenir des informations importantes pour améliorer les résultats des modèles. Ces
informations peuvent être présentes dans les régions éloignées de la fovea par exemple. En
effet, si l’image est classée comme étant de mauvaise qualité, cela signifie que la région autour
de la fovea n’est pas suffisamment visible. Cependant, les régions plus éloignées peuvent être
visible et contenir des informations sur le diagnostic. Ces images peuvent aussi être utili-
sées par des spécialistes de la rétine lorsque plusieurs image sont disponible pour un même
oeil d’un patient. Les images contiennent des informations différentes et elles peuvent être
utilisées de manière complémentaire.
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(a)

(b)

(c)

Figure 4.2 Faux positifs détectés par le modèle d’évaluation de la qualité des images de fond
d’oeil. L’erreur de classification vient principalement du fait que la macula ne devrait pas
être détectée
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Tableau 4.1 Résultats des modèles obtenus lors de la compétition Kaggle 2019

Modèle Input Preprocess Augmentations Training Détail Kappa

1 RN-101 224 Aucun Retournements 2019 Régression 0.787

2 RN-101 224 Graham Retournements 2015, 2019 Régression 0.885

3 RN-50 224 Graham Retournements,
Affines 2015, 2019 Classification 0.890

4 EN-B5 456 Graham Retournements,
Affines 2015, 2019 Régression 0.894

5 EN-B5 456 Graham Retournements,
Affines 2015, 2019 Régression, TTA 0.910

6 EN-B6 528 Graham Retournements,
Affines 2015, 2019 Régression 0.885

7 EN-B5 456 Graham Retournements,
Affines 2015, 2019 Classification 0.905

8 EN-B5 456 Graham Retournements,
Affines 2015, 2019 Classification,

TTA 0.907

9 EN-B4 380 Graham Retournements,
Affines 2019 Régression 0.898

10 EN-B3 300 Graham Retournements,
Affines 2015, 2019 Régression 0.880

11 Ensemble Model 4, 7, 9, 10 0.915

4.3.2 Phase de test

Les performances des modèles sont calculées sur la même base de données de test que la
section précédente. Premièrement, le kappa de Cohen quadratique est calculé sur les images
dont le score de qualité est faible (kappa 1). Ensuite, nous avons calculé le kappa de Cohen
quadratique sur les images dont le score de qualité est élevé (kappa 2). Les résultats sont
visibles dans le tableau 4.3.

On remarque que le score sur la base de test contenant seulement des images de bonne
qualité est meilleur dans la majorité des cas. Ceci montre que les modèles ont des difficultés
à diagnostiquer la RD sur des images de mauvaise qualité. Aussi, l’écart entre les résultats
pour les modèles ayant un objectif de régression est bien plus faible que l’écart pour les
modèles ayant un objectif de classification. La régression semble être plus robuste au manque
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Tableau 4.2 Impact de la qualité des images lors de l’apprentissage

Preprocess Augmentations Dataset Kappa

Aucun Aucunes original 0.766

Aucun Aucunes qualité 0.750

Graham Aucunes original 0.695

Graham Aucunes qualité 0.732

Graham Retournements
+ Affines original 0.751

Graham Retournements
+ Affines qualité 0.713

Aucun Retournements
+ Affines original 0.800

Aucun Retournements
+ Affines qualité 0.776

de qualité dans les images. La seule différence entre un modèle de régression et un modèle de
classification est la fonction de perte. Celle d’un modèle de régression est l’erreur quadratique
moyenne, qui tient en compte de l’ordre des classes afin de définir des distances. Ceci permet
une marge d’erreur plus grande qu’un modèle de classification. En effet, le diagnostic d’une
image de mauvaise qualité est difficile à prédire car certaines caractéristiques de l’image sont
peu visibles ou manquantes. L’erreur de prédiction effectuée par un modèle de régression pour
la classe 2 est plus importante lorsque la prédiction est 0.3 ou 3.7 que si la prédiction est 1.6
ou 2.4. Ce n’est pas le cas pour un modèle de classification, pour qui l’erreur de prédiction
pour la classe 2 lorsque les prédictions sont 0 ou 1 est la même. Un modèle de régression
cherche à rapprocher la valeur prédite de la valeur réelle, sans nécessairement l’atteindre
pour des images complexes comme des images de mauvaise qualité, alors qu’un modèle de
classification cherche à obtenir exactement la valeur réelle, ce qui est difficile pour des images
de mauvaise qualité. C’est pourquoi les modèles ayant comme objectif la régression semblent
plus robustes au manque de qualité dans les images.

Le modèle ensembliste obtient les meilleurs résultats pour les deux bases de données de test.
Ce modèle généralise mieux car il est constitué de différents modèles.

Ce travail sur l’étude de la qualité renforce l’idée que la base de données Kaggle 2015 est
complexe puisque la base de test est constituée à plus de 20% d’images de qualité faible. Ceci
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Tableau 4.3 Impact de la qualité des images lors du test

Prétraitement Augmentations Dataset Détail Kappa 1 Kappa 2

1 Aucun Aucunes original Classification B5 0.748 0.771

2 Aucun Aucunes qualité Classification B5 0.714 0.764

3 Graham Aucunes original Classification B5 0.664 0.707

4 Graham Aucunes qualité Classification B5 0.683 0.753

5 Graham Retournements
+ Affines original Classification B5 0.719 0.764

6 Graham Retournements
+ Affines qualité Classification B5 0.646 0.744

7 Aucun Retournements
+ Affines original Classification B5 0.781 0.806

8 Aucun Retournements
+ Affines qualité Classification B5 0.723 0.800

9 Aucun Retournements
+ Affines original Regression B5 0.801 0.808

10 Aucun Retournements
+ Affines original Regression B4 0.801 0.798

11 Aucun Retournements
+ Affines original Regression B3 0.753 0.754

12 Ensemble
7,9,10,11 0.818 0.822

a permis de montrer que les modèles sont moins performants sur des images de mauvaise
qualité, quel que soit les images d’entraînement. Ceci soulève des remarques intéressantes pour
l’entraînement des modèles futurs. En effet, ces modèles peuvent être améliorés en ajoutant
cette information de qualité lors de l’entraînement. Sachant qu’une image est de bonne ou
de mauvaise qualité, le modèle pourrait s’adapter, en analysant des régions différentes de
l’image par exemple. En effet, on a vu précédemment que la région au centre de l’image
est très importante dans les images de bonne qualité mais elle est aussi très peu importante
lorsque les images sont de mauvaise qualité. Connaître la qualité de l’image en amont pourrait
permettre un apprentissage meilleur.
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CHAPITRE 5 CONCLUSION

L’objectif de ce travail est d’étudier le dépistage automatique de la RD dans les images de
fond d’oeil à l’aide de l’apprentissage profond.

5.1 Synthèse des travaux

Dans la section 3.1, nous avons abordé l’élaboration d’un modèle permettant d’évaluer la
qualité des images de fond d’oeil. Ce modèle utilise l’apprentissage profond au travers de
deux U-Nets permettant la segmentation de la macula et des vaisseaux sanguins. Ces zones
représentent des régions d’intérêt dans l’évaluation de la qualité d’une image. Nous avons
ensuite calculé un score de qualité sur une région des vaisseaux autour de la macula. Ce score
nous permet d’obtenir 100% de sensibilité et 93% de spécificité sur une base de données de
88 images.

Dans la section 3.2.2, nous avons étudié les performances de différents modèles pour effectuer
le dépistage automatique de la RD. Nous avons élaboré un ensemble de modèle obtenant un
kappa de Cohen quadratique de 0.915 sur la base de données de test de Kaggle 2019.

Enfin, dans la section 3.3, nous avons étudié l’impact de la qualité des images de fond d’oeil
lors des phases d’entraînement et de test des modèles. Dans cette étude, les modèles apprenant
sur la totalité des images obtiennent des meilleurs résultats dans la majorité des cas. Aussi,
nous avons montré l’importance de la qualité des images lors de la phase de test.

5.2 Limitations de la solution proposée

L’algorithme d’évaluation de la qualité des images de fond d’oeil est basé sur la segmentation
de deux régions d’intérêt : la macula et les vaisseaux. La segmentation de la macula est
critique, car si elle est défectueuse la sélection de la région dans l’image des vaisseaux sera
mauvaise et le score ne sera pas représentatif de la qualité de l’image. Les faux positifs détectés
par le modèle présentés sur la figure 4.2 soulignent l’importance du modèle de segmentation
de la macula.

L’algorithme de mean shift permet de combler certains défauts de la segmentation de la
macula. En effet, cet algorithme permet d’améliorer les résultats lorsque plusieurs zones sont
extraites par la segmentation de la macula. Cependant, il s’agit d’un algorithme coûteux en
temps qui augmente grandement le temps d’exécution de la méthode. Le temps d’exécution



38

dépend du nombre de pixels segmentés par le modèle de segmentation des vaisseaux. Cet
algorithme de mean shift peut aller jusqu’à décupler le temps d’exécution, ce qui peut heurter
la mise en oeuvre d’une telle méthode.

L’algorithme de dépistage obtient de bons résultats sur la base de données Kaggle 2019 mais
ces résultats ne sont pas généralisables sur des bases de données privées d’exemples de cas
réels. Une méthode d’apprentissage sur de telles bases de données doit être mise en place
afin que le modèle soit utilisable. Ceci peut être expliqué par le fait que les caméras utilisées
pour l’acquisition des images sont différentes de celles utilisées par la base de données Kaggle
2019. De plus, plusieurs images d’un même oeil d’un patient sont parfois disponibles dans
ces bases de données de cas réels. Le modèle de dépistage pourrait être modifié pour prendre
en compte ces multiples images.

L’étude de l’impact de la qualité des images de fond d’oeil sur l’entraînement et le test des
modèles de dépistage a été effectuée sur la base de données Kaggle 2015, les résultats peuvent
être différents sur d’autres bases de données. Il pourrait être intéressant d’étudier de la même
manière l’impact de la qualité des images de différentes bases de données, cela permettrait de
mieux comprendre certaines caractéristiques des images de mauvaise qualité et de renforcer
les remarques effectuées en section 4.3.

5.3 Améliorations futures

Il est actuellement très compliqué de tester les algorithmes d’évaluation de la qualité des
images de fond d’oeil car il existe peu de bases de données de test. De plus, les bases de données
utilisent des normes différentes de qualité, ce qui signifie que les performances d’un modèle
ne sont pas parfaitement évalués. La création d’une grande base de données permettant
d’évaluer les méthodes en fonction des normes du SDRGS pourrait être intéressant. De plus,
la base de données utilisée dans ce travail n’est pas beaucoup variée. Les images sont en
général de très bonne ou de très mauvaise qualité. Ceci manque d’exemples qui constituent
des représentations plus fidèles de la réalité. Les images de qualité moyenne, comme des
images floues, des images non centrées sur la macula, ou des images ayant des artefacts
permettraient de mieux évaluer les performances d’un modèle, et aussi d’aider un modèle à
mieux généraliser.

Une amélioration du modèle effectuant la segmentation de la macula permettrait de se pas-
ser de l’algorithme de mean shift coûteux en temps. Ce modèle pourrait être amélioré en
augmentant la variabilité de la base de données d’entraînement. En effet, l’entraînement du
modèle est effectué sur 2000 images provenant de la base de données kaggle 2015. Il pourrait
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être intéressant d’ajouter plus d’images différentes.

L’ajout de la segmentation du disque optique peut aussi améliorer les performances et l’inter-
prétabilité du modèle. En effet, le disque optique est une région d’intérêt fortement utilisée
par les cliniciens lors de l’évaluation de la qualité. Elle est notamment utilisée dans le SDRGS
pour situer la macula et les vaisseaux autour de la macula. Ajouter un modèle de segmenta-
tion du disque optique pourrait cependant introduire des erreurs qui auront un lourd impact
en fin d’algorithme.

Le modèle de dépistage a été entraîné pour classer les images selon l’avancement de la maladie
(0 à 4 selon le tableau 1.1). Il pourrait être intéressant d’étudier un modèle effectuant un
dépistage plus simple « référable vs non-référable » . Ceci pourrait réduire les erreurs dues aux
classes difficiles à discerner. De plus, il pourrait être d’avantage amélioré en utilisant plus de
données correspondant aux patients, comme les autres images d’une visite, les informations
correspondant à l’autre oeil, ou même l’âge.

Aussi, le modèle de dépistage prend en entrée des images de taille faible (de 224x224 à
528x528 pixels). Les images originales sont beaucoup plus grandes et permettent de voir des
détails autrement invisibles. Ces détails sont très importants pour les cliniciens car il peut
s’agir de points hémorragiques, de micro-anévrismes ou d’exsudats durs par exemple. Ces
détails sont au coeur du diagnostic de la RD, et ne sont pas visibles à des résolutions plus
faibles. Élaborer un modèle prenant un entrée des images de haute résolution permettrait
des résultats plus précis, et mieux interprétables.

Enfin, la qualité des images est importante lors de la phase de test. En effet, les modèles ont
de meilleurs résultats sur les images de bonne qualité, comme le montre le tableau 4.3. Afin
d’améliorer le modèle de dépistage, il pourrait être intéressant d’intégrer le score de qualité
lors de l’apprentissage. Ce score pourrait être concaténé aux caractéristiques extraites par le
modèle, avant la couche complètement connectées de classification ou de régression. Ce score
pourrait aussi être intégré comme pondération de la fonction de perte. La fusion du score de
qualité et du modèle de dépistage pourrait ainsi rendre la méthode plus robuste au manque
de qualité dans les images de fond d’oeil.
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ANNEXE A ARTICLE 1 : AN INTERPRETABLE DATA-DRIVEN SCORE
FOR THE ASSESSMENT OF FUNDUS IMAGE QUALITY

ARTICLE 1 : AN INTERPRETABLE DATA-DRIVEN SCORE FOR THE AS-
SESSMENT OF FUNDUS IMAGE QUALITY

L’article suivant a été écrit pour la conférence ICIAR 2020. Il résume les travaux effectués
sur la qualité des images de fond d’oeil. Cependant, des améliorations ont été effectuées afin
de répondre aux problème relevés.

Cet article aborde les deux U-nets présentés dans la section 3.1 ainsi que l’approche d’éva-
luation du patch. Le U-Net ayant pour but de segmenter la macula a ensuite été amélioré au
vues de certains problèmes présentés dans cet article.



An interpretable data-driven score for the
assessment of fundus images quality
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Abstract. Fundus images are usually used for the diagnosis of ocular
pathologies such as diabetic retinopathy. Image quality need however to
be sufficient in order to enable grading of the severity of the condition.
In this paper, we propose a new method to evaluate the quality of reti-
nal images by computing a score for each image. Images are classified as
gradable or ungradable based on this score. First, we use two different U-
Net models to segment the macula and the vessels in the original image.
We then extract a patch around the macula in the image containing the
vessels. Finally, we compute a quality score based on the presence of small
vessels in this patch. The score is interpretable as the method is heav-
ily inspired by the way clinicians assess image quality, according to the
Scottish Diabetic Retinopathy Grading Scheme. The performances are
evaluated on a validation database labeled by a clinician. This method
presented a sensitivity of 95% and a specificity of 100% on this database.

Keywords: diabetic retinopathy · image quality · deep learning · structure-
based · data-driven

1 Introduction

Diabetic retinopathy is the leading cause of visual impairment in the working
age population as this condition can appear without any symptom. Regular eye
examinations are required to enable its detection and treatment. Technicians
acquire retinal images of the patient’s eyes and retina specialists assess them.
Technicians most often take multiple images for each eye of the patient. How-
ever, some images may not be used by specialists due to their lack of quality. In
the worst case, none of the images meet the quality requirements and specialists
cannot grade the images. This can lead to a significant waste of time and re-
sources for technicians, clinicians, and patients. Also, the task of evaluating the
quality of a retinal image may have a subjective component as different clinicians
or technicians provide different evaluations, based on their experience.

A detailed survey of the image quality assessment methods have been made
by Raj et al. [9], dividing methods into three different categories : similarity-
based, segmentation-based and machine learning based. Similarity-based meth-
ods rely on comparing fundus image features with those a selected set of good
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quality images. Segmentation-based methods segment precise structures in fun-
dus images to assess its quality. Blood vessels are the main structure used in
segmentation-based methods. For example, Hunter et al. [8] use blood vessels
contrast to assess the fundus image quality. Machine learning based methods
are data-driven. They learn to classify the data into different categories (e.g.
”good quality”, ”poor quality”). Among these machine learning based meth-
ods, we can distinguish two other types of techniques. First, techniques that are
based on hand-crafted features and techniques that are based on deep learning
features. For example, in [6, 4, 5] the quality of the images are evaluated based
on a set of hand-crafted features such as colour, texture or sharpness. These fea-
tures are not interpretable for clinical purposes, they are typically used to assess
the quality of natural images and not fundus images. Deep learning is used in
[11, 7] to assess the fundus image quality by extracting features. The features
extracted by deep learning based methods are most often not interpretable and
described as black boxes.

Our method uses deep learning to segment structures that are relevant to clin-
icians, resulting to an interpretable score. In this paper, we propose a segmentation-
based deep learning method to evaluate the quality of each individual image to
help technicians to better assess their quality and retake images when neces-
sary. This new method is based on macula and vessel segmentations, which are
regions of interest on retinal images. These regions are extracted using deep
learning, but the resulting score is interpretable. This work is inspired by the
way clinicians assess image quality in the Scottish Diabetic Retinopathy Grad-
ing Scheme [3]. Here, we are focused on evaluating the quality of images used to
detect diabetic retinopathy but this work can also be applied to other diseases or
condition detection that uses fundus images, such as age-macular degeneration
or glaucoma.

2 Method

In this paper, we propose a new method inspired by the quality evaluation in
the Scottish Diabetic Retinopathy Grading Scheme. According to this grading
scheme, fundus images can be classified as gradable or ungradable based on
quality. A gradable image contains the optic disk, the macula and ”the third
generation vessels radiating around the fovea”. Also, the fovea needs to be more
than 2 times the diameter of the optic disk from the edges of the image. Here, we
will only consider the presence of the macula and the third generation vessels, as
they are the most crucial regions of interest to assess the quality of the image.
The goal of the method will focus on segmenting these two regions as well as
giving an interpretable score to assess the quality of the image. We first segment
the macula and the vessels independently in the original image. Then, we com-
pute a score based on a patch around the macula in the vessel segmentation to
evaluate the quality of the images. A threshold can be selected to classify the
image as gradable or ungradable. Two different U-Net models [10] are used to
segment the macula and the vessels. This model has proven to be very efficient
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in biomedical image segmentation. The two models are trained independently
and have different architectures.

Fig. 1 shows the pipeline of the method on a good quality example. Algorithm
1 presents the entire process.

2.1 Preprocessing

Both U-Net models are using the same preprocessing of the retinal images. This
preprocessing consist of applying a Contrast-Limited Adaptive Histogram Equal-
ization (CLAHE) on the LAB color space. This preprocessing is commonly used
to enhance images for Diabetic Retinopathy examination.

2.2 Macula segmentation

A U-Net model is first used to segment the macula on the preprocessed im-
age. The architecture and the training strategy are similar to those used by
Ronneberger et al. in [10]. The model is then trained on 200 retinal images an-
notated by retina specialists. This segmentation is used to locate the center of
the macula. We compute the mean of the detected pixels to obtain the coordi-
nates of the center of the macula. If the macula cannot be segmented, the image
is automatically classified as ungradable. The result corresponds to Fig.1 (b).

2.3 Vessel Segmentation

The vessel segmentation model is also a U-Net model but with a different archi-
tecture than the original one. Compared to the model used in [10], this model
has twice the number of layers and half the number of features by layers. This
prevents overfitting and widens the receptive field. This U-Net model is trained
on 20 images from the DRIVE dataset [1] and 100 images from the MESSIDOR
dataset [2]. The model is trained for 100 epoch with an ADAM optimizer. We
also performed the following data augmentations during the training : rotation,
flip and elastic deformations. The model is used to segment the vessels on the
original image. The results corresponds to Fig.1 (c).

2.4 Evaluation of the quality of the image

The coordinates of the center of the macula are used to extract a patch from the
image containing the vessels. This patch is centered on the macula and contains
the small vessels around the fovea. Note that the macula should not be visible in
this patch because only the vessels are segmented. The size of the patch should
cover approximately 1 diameter of the optic disk from the macula. We decided to
set the size of the patch to a constant value of 25% of the original image height
and 25% of the original image width because the size of the optic disk is almost
constant. Also, by not introducing another model that segments the optic disk,
we reduce the propagation of errors, because an error in the segmentation of the
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(a) (b) (c)

(d) (e)

Fig. 1: pipeline of the method on a good quality example. (a) is the original
fundus image. (b) is the macula segmented in the original image. The center of
the macula is marked in red. (c) is the vessels segmented in the original image.
The center of the macula found in (b) is marked in red. (d) is the patch extracted
from (c) centered on the macula. (e) is the skeleton of image (d).

Algorithm 1: the entire process of the method

Result: Score of the image
image = Image.open(fundusImage);
preprocessed image = preprocess(image);
unet macula = load unet(model macula);
unet vessels = load unet(model vessels);
macula segmented = unet macula(preprocessed image);
x, y = get center of macula(macula segmented);
vessels segmented = unet vessels(preprocessed image);
patch = extract patch(vessels segmented, x, y);
skeleton = skeletonize(patch);
score = sum(skeleton);
return score;
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optic disk leads to an error in the global evaluation of the quality of the image.
The results corresponds to Fig.1 (d).

Then, we compute a skeletonization on the patch of segmented vessels. This
reduces the impact of large vessels and puts more weight on the number of visible
vessels and their length. This is also explained by Hunter in [8]. This helps
reducing the number of false positive as artifacts can sometimes be detected
as vessels. With the skeletonization, their weight on the score is significantly
reduced. We then simply count the number of remaining white pixels to obtain
the final quality score. The results corresponds to Fig.1 (e).

This score is an interpretable indication of the quality of the image. A null
score means that the macula was not found on the image or that the vessels in the
patch around the macula were not segmented, resulting in an ungradable image.
A good score means that enough lengthy vessels were segmented, resulting in
a gradable image. A low score means that only a few vessels were segmented
around the macula. Here, we decided to set a threshold to separate gradable and
ungradable images based on their score.

We set the threshold value to match the decisions of a clinician on a training
set. The amount of vessels that needs to appear on the image is not addressed
in the Scottish Diabetic Retinopaty Grading Scheme., the value is somewhat
subjective. The threshold also helps reducing the number of false positives, at
the cost of false negatives. In our case, precision is the most important measure
because we often have multiple images of a patient’s eye, and we only need one
gradable image to evaluate the severity of the disease. Detecting all the gradable
images is not as much important as making sure that the detected images are
indeed gradable.

3 Results and discussion

The validation set used to evaluate the performance of our method is constructed
from the dataset used by Fasih in [6]. We used 88 images annotated by a clinician
as gradable or ungradable. The dataset contains 44 images of each class. The
proposed method obtained a sensitivity of 95% and a specificity of 100% on this
validation set.

Only two classification errors were made ; the macula on only two gradable
images were not detected. Fig.2 (c) shows one of the images where the macula
could not be found by our algorithm, resulting to a misclassification.

The interpretability of our score allows to better understand the output of
our method. When an image is classified as ungradable, we can know if this
classification is due to the lack of vessels in the patch or if the macula has
not been segmented. This gives us important information to better assess the
quality of an image. For example, clinicians are using multiple images of the same
patient’s eye to establish the diagnosis of the diabetic retinopathy. Images with
low score are ungradable alone, but they still give some information that can
be used by clinicians for the grading of the overall disease, paired with another
image.
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(a) (b)

(c)

Fig. 2: A low score example, and a false negative example. (a) good quality
image where the macula is successfully detected. (b) is the insufficient vessel
segmentation around the macula of (a). (c) is a good quality image where the
macula has not been detected
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Fig.2 (a) and (b) show an example of a good quality retinal image having a
low score with our method. This image is classified as gradable by our method,
but its score is low and just above our threshold. Fig.2 (b) shows the vessel
segmentation around the macula. Compared to Fig.1 (e), very few vessels have
been segmented in this example. This means that the image can be gradable,
but its quality may not be optimal. If other images of the same patient’s eye are
available with a better score, they should be prioritized for the diagnostic.

The importance of the macula segmentation is also highlighted in the results
of our method. We noted that 80% of the ungradable images were successfully
classified due to the macula detection method. This shows how crucial this de-
tection is. The macula is the main criterion to filter out bad quality images.

In this database, all the good quality images were centered on the macula.
This is not the case for real life examples. Multiple images are taken for each
of the patient’s eyes and they are centered on the optic disk as well as on the
macula. Our work can be further improved by generalizing this methodology on
databases representative of real-life fundus image acquisitions.

4 Conclusion

In this paper, we proposed a new method for evaluating the gradability of fun-
dus images based on the Scottish Diabetic Retinopathy Grading Scheme. This
method uses two different U-Net models for the macula and vessel segmentation.
The score computed is interpretable and helps understanding the evaluation of
quality detection. We achieved a sensitivity of 95% and specificity of 100% while
showing the importance of macula segmentation in this methodology. In future
works, this method can be used to filter out ungradable images to improve the
reliability of deep learning algorithms for diabetic retinopathy grading. Intro-
ducing optic disk segmentation is required to further generalize this method by
taking into account other relevant information used by clinicians to assess fundus
image quality.
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