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Full Length Article 

A data-driven model for safety risk identification from flight data analysis 

Mickael Rey a, Daniel Aloise *,b,c, François Soumis b,c, Romanic Pieugueu c 

a Ecole Polytechnique, 91128 Palaiseau Cedex, France 
b Polytechnique Montréal, 2500, chemin de Polytechnique Montréal (Québec), Canada 
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A R T I C L E  I N F O   
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A B S T R A C T   

Most aviation accidents take place in the final phase of a flight. One possible accident is the runway overrun - the 
fact that an aircraft leaves the runway unexpectedly on landing. Even though such accidents are well docu-
mented and studied in the aviation industry, this paper aims at identifying less direct links between data recorded 
by planes and the risk of runway overrun, or linked events. Indeed, a better understanding of these events using 
available flight data helps to reduce their number. Nonetheless, such analysis is not straightforward given the 
massive volume of data collected during the flights. For that purpose, we propose a data-driven approach with 
the use of data analysis methods and machine learning tools. After a quick correlation analysis, a boosted tree 
classifier was trained to classify flights as safe or at risk. The classifications were accurate enough to extract 
contributing factors, and a more extensive analysis was conducted on multiple airports. That analysis revealed 
the importance of particular factors, leading to new insights about potential approaches to aviation safety.   

1. Introduction 

In civil aviation, accidents often lead to substantial consequences. 
Thanks to strategies that were initially reactive and later proactive [1], 
players in the aviation industry have continuously succeeded in 
reducing the number of accidents and incidents. To illustrate, the 
number of deaths per passenger-hour was divided by 10 between 1996 
and 2004. 

Various types of incidents can happen during a flight. These are 
generally not problematic, but their accumulation can lead to compli-
cations, and even accidents, if the problem is not detected early enough 
and correctly managed. Moreover, these incidents are not evenly 
distributed over the duration of a flight. Between 1959 and 2008 [2], 
nearly 46% of fatal accidents occurred during the final approach or 
landing. These numbers are still high today (38% of serious accidents 
between 2015 and 2020 [3]). 

When landing, there is a risk that the plane may not be able to stop 
within the paved surface resulting in an overrun at the end or the side of 
the runway. These events, which can seriously damage the aircraft and 
the surrounding areas, can be related to unstable approaches, poor 
weather conditions, or braking problems, among other factors. The early 
detection and prediction of such incidents can help to prevent flight 

accidents. Nonetheless, considering the enormous amount of data 
collected by operating planes, automatic data analysis methods seem to 
be the most appropriated tool to try and shed light on information 
regarding the origin of incidents in aviation. 

Machine learning tools can help tackle multiple issues by means of a 
data-driven methodology approach. Whether it is to predict travel time 
on roads [4], to diagnostic cancer [5] or to help find the suitable amount 
of fuel for an engine [6], this quickly developing field often brings 
promising results. It regroups useful techniques for performing tasks 
such as classification or prediction, among other things. The advantage 
is that this is performed without an explicit programming of how to do 
so, so that machine learning can be used to make decisions based only on 
the data available. For instance, Kimera and Nangolo [7] used a machine 
learning approach to reassert the optimal time for maintenance of 
ballast pumps on floating docks, then predicting their expected time of 
failure. 

Nonetheless, the use of machine learning requires reflection about 
potential misuses and consumed resources, which have been increas-
ingly powered by steady and rapid advances in artificial intelligence [8]. 
In order to envisage the use of machine learning in a sustainable and 
trustworthy way, specially in aviation, its associated models and algo-
rithms need to prioritize transparency so that ML-supported systems 
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could be investigated in detail in case they are hacked or invaded, or 
even if their guidance is arguable. Moreover, machine learning models 
tend to be complex to augment their classification performance, 
requiring the adjustment of several hundreds or thousand of parameters 
while demanding a massive amount of computational and energy re-
sources (see e.g. [9]). These issues constitute major challenges for the 
use of AI by sustainable societies [10]. 

The goal of the work presented here is to find relationships between 
the risk that a particular event occurs and all information gathered by an 
aircraft. The events considered are the previously described runway 
overrun and unstable flight approach incidents. To that purpose, ma-
chine learning tools were used to detect potential links between the data 
recorded during a flight and the risk of occurrence of the selected events. 
The link between the data from a flight and a runway excursion incident 
is probably complex, and it is conceivable that some aspects may not be 
obvious. For this reason, data mining/machine learning models are 
employed to reveal correlations between pre-processed values and the 
incident in question in a interpretable way. 

The International Air Transport Association (IATA) is the trade as-
sociation for the worlds airlines, representing some 290 airlines. IATA 
has been analyzing the aggregated de-identified flight data to monitor 
eventful flights and highlight areas of flight safety concern, with 
benchmarking available at a global, regional and airport level. To better 
understand how the multiple features correlate to the certain types of 
events, IATA provided the data used in this work in the form of aggre-
gated and de-identified time-series aircraft state parameters. These re-
cordings are studied in our present paper and analysed by means of a 
machine learning approach so as to identify the features which are the 
most correlated to the studied events. 

Our paper is organized as follows. Section 2 presents a review of the 
related works using similar methodological tools for the aviation field. 
Then, the methodology, composed by the pre-processing phase of the 
data, as well as the modelling part, is explained in Section 4. The results 
of the conducted study are presented in Section 5. Finally concluding 
remarks are given in Section 6. 

2. Related works 

Data recorded by aircrafts have been used for decades in order to 
assist pilots to limit flight risks. For example, runway overrun preven-
tion systems have been created by manufacturers, such as Airbus and 
Boeing, by computing the distances required to stop a plane according to 
the state of the flight at a given moment (speed, approach angle, wet or 
dry runway, etc.). However, the data collected and recorded by aircrafts 
are vast, requiring the use of sophisticated data analysis methods to 
investigate less direct casual links for flight accidents. Machine learning 
can process a large amount of information from flights (both eventful 
and uneventful) making use of the multitude of available sensored data. 

At first, most of the work concerning the study of air accidents using 
flight data seemed to focus on the evolution of the number of accidents 
(each year or according to the number of passenger-kilometers, e.g. 
[11], [12], [13]). These works use various methods, but the most effi-
cient ones seem to use hybrid predictors. For example, the work in [11] 

proposed a prediction model by separating the linear and non-linear part 
of the time series of the number of incidents using an Auto Regressive 
Integrated Moving Average (ARIMA) and a SVM (Support Vector 
Machine). 

Next, some researchers focused on classifying and studying incidents 
using information derived from flight information or from previous 
analysis of incidents. Zhang and Mahadevan [14] used neural networks 
and SVMs to classify incidents according to their severity, exploiting 
written reports. Drees and Holzapfelont [15] identified various 
contributing factors for incidents that are summed up in Contributing 
Factor Trees (CFT). This work is based on human choices and studies of 
anomalous values of certain variables measured during a flight. They 
considered runway overruns, the type of incident we investigate in our 
work, as an application example of their methods. However, their 
method differs from ours since it consists of a statistical analysis coming 
from a physical study, while ours is directly based on the recorded data, 
without prior consideration of the physical reasons for a runway 
overrun. 

Finally, other works are centered on the risk analysis of individual 
flights, using flight recorded data. This data is massive corresponding to 
measurements made by the aircrafts sensors which typically collect 
several thousand values of hundreds of variables during a flight. This 
high scale data is both an advantage and a drawback since it offers great 
potential but is difficult to exploit. In particular, the available variables 
vary according to the type of the aircraft and the flight, which compli-
cates their selection by a general approach. Nanduri and Sherry [16] 
used recurrent neural networks to analyze the evolution of time series, 
and to determine if a flight was abnormal, using artificially generated 
data with a hundred variables. This kind of model helped to deal with 
the large dimension situation, but their number of features was smaller 
than the total number of recorded ones. With a different approach, 
Memarzadeh et. al. [17] used a very interesting auto-encoding technique 
based on convolutional neural networks, that maps a flight into a smaller 
latent space and reconstruct it. Outliers, i.e., flights that present anom-
alous behaviour in their flight data, are recognized by their large 
reconstruction error. 

Dimensionality reduction methods help to analyze complete flight 
data by generating more exploitable vectors. Li et. al. [18] used PCA [19] 
to project their dataset on a smaller space, on which a cluster analysis 
was performed to detect outliers and abnormal flight operation. Puranik 
et. al. [20] used a similar anomaly detection technique, by creating 
energy-based derived feature vectors on which a cluster analysis was 
conducted. 

The listed works in this section differ from ours in the sense that their 
main goals are related to detecting abnormal events during flights, 
thereby identifying outliers in the flight data. Our main goal in this work 
is to identify contributing factors regarding the risk of runway overruns 
and unstable approaches. 

3. Data preparation 

Fortunately, runway overruns occur very rarely. However, most 
machine learning models require large amounts of data for training. 
Besides, if machine learning models can use safe flights for risk predic-
tion, they also need to use data from eventful flights for comparison. 

Due to the small amount of runway overrun events, the definition of 
eventful flights was extended to include events related to unstable ap-
proaches. With this new categorization of flights, we gathered re-
cordings of planes heading towards nine different airports. For each 
airport, a few hundred flights were made available by IATA (see 
Table 1). 

Since environmental conditions are different for each airport for the 
collected data, the main contributing factors for incidents might be 
potentially different at each location. Consequently, a separate but 
similar analysis was conducted for each airport. The extracted data 
contained time series of measurements made by each plane’s sensors (e. 

Table 1 
Number of flights available for each airport.  

Airport Number of flights Proportion of eventful flights (%) 

North American airport 1 500 50 
European airport 1 441 44 
European airport 2 280 12 
European airport 3 358 30 
North American airport 2 500 50 
Central American airport 297 16 
South American airport 1 486 51 
South American airport 2 384 35 
Asian airport 495 50  
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g. air temperature, acceleration), as well as other recorded flight feature 
values (e.g. selected airspeed), and parameters derived from the previous 
raw features (e.g. angle of attack). Our method made use of both raw and 
derived features as input for the trained machine leaning models. 

3.1. Flight phase selection 

First of all, we assume that the entire flight data is not necessary to 
identify the most crucial features to predict the risk of a runway overrun. 
Our hypothesis is that only the final phases of a flight should be 
considered. Consequently, only the measurements corresponding to the 
final approach and landing phases are kept and studied for each flight. 
We analysed data from the flights from the moment the aircrafts reached 
the altitude of 10,000 ft. during their descent procedures. 

3.2. Colinearity removal and feature selection 

Colinearity in features can harm the classification performance of 
machine learning models [21]. Hence, it is advisable to remove highly 
correlated features before training machine learning models, to get rid of 
redundant information. To perform this task, a wrapper algorithm was 
implemented based on the colinearity of the features during the landing 
phase. Algorithm 1 presents its pseudo-code. This method starts by 
selecting a random feature to the selected set of features S. Then, at each 
step, the least correlated feature to the features already in S is added to 
the latter. This is performed until that correlation is higher than 0.9. The 
correlation between a feature f and a set of features S is defined as Cor(f ,
S) = max

g ∈ S
Cor(f , g). 

Since the analysis was supposed to be as general as possible, the 
features that were available in less than 50% of flights (e.g. due to 
different aircraft models) were discarded beforehand, In addition to the 
feature selection expressed by Algorithm 1. This filtering process was 
performed regarding flights from each airport, separately. 

Following the feature selection performed by Algorithm 1, a lasso- 
based feature selection [22] was performed as well to remove uninfor-
mative features. Finally, once automatic feature selection was 
completed, flight data analysts from IATA were consulted to validate it. 
In the end, only a few hundreds features were kept, depending on the 
airport (see Table 2). 

3.3. Discretization of time series 

Even after restricting the analysed flight data to the landing final 
phase and performing feature selection, the resulting time-series still 
contain a large amount of data for each flight, as each one of the plane’s 
sensor can make measurements with a large frequency during several 
minutes. For example, the acceleration is collected at 8Hz during 
thousands of seconds. In addition, this information can be redundant as 
two measurements very close in time are likely to correspond to similar 
flight events. 

In order to reduce the size of the analysed time series to a tractable 
size, we decided to take data snapshots. More explicitly, the value of 
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Table 2 
Number of features before and after the wrapper algorithm and lasso selection.  

Airport Initial number of features Final number of features 

North American airport 1 906 217 
European airport 1 882 133 
European airport 2 842 110 
European airport 3 858 129 
North American airport 2 906 189 
Central American airport 890 177 
South American airport 1 890 174 
South American airport 2 834 177 
Asian airport 906 220  
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each feature is collected at given predefined frequencies, instead of 
keeping all the recorded information. In order to reduce the information 
loss incurred by such discretization, the snapshots were taken at mul-
tiple altitudes during the final phase of the flight. The values of the 
features were taken every 500 feet for altitudes between 4000 feet and 
500 feet (see Fig. 1). 

3.4. Data normalization 

The final data preprocessing step consisted in the standardization of 
the dataset. Three types of standardization were applied. 

The first one was specific to our dataset, which contains data 
collected from different aircrafts, each one of them with its own 
manufacturing characteristics. To get rid of this bias, the features spe-
cific to each aircraft were standardized accordingly. For example, the 
gross weight of a plane was adjusted according to the aircraft model – by 
dividing the measured weight by the mean weight value of the aircrafts 
of the same manufacturer. 

Secondly, a normalization based on the months of the year was 
performed. We observed in our exploratory data analysis that eventful 
flights were concentrated in summer. That led to a bias, as some features 
such as the temperature and the pressure are highly correlated to the 
months, and could have been used by the models for directly detecting 
unstable flights. Hence, these features were standardized based on the 
months of the year to remove this bias. More explicitly, this means that a 
value that was measured in a given month is divided by the mean value 
of the corresponding feature for flights that took place in that month. 

The final normalization was a classical one, which standardizes the 
features by adjusting them with a zero-mean and one-variance [23]. 

4. Methodology 

The machine learning algorithm that was used in our conducted 

Fig. 1. Altitude (ft) during the approach (s). The red dots correspond to data 
snapshots. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

Fig. 2. Example of a simplified decision tree for flight risk analysis.  

Fig. 3. Simplification of another decision tree used in this analysis.  
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analysis and prediction is a boosted tree classifier, XGBoost [24]. This 
algorithm is a tree based classifier. 

A decision tree corresponds to a series of successive nodes where 
feature values are evaluated for deciding the class of a data sample. An 
example of this intuitive process is presented in Fig. 2 where a flight is 
predicted as at risk or not at the leaf nodes of the tree depending on the 
values of the features consulted at the intermediate nodes. 

Such a model is produced by training the decision tree to classify as 
well as possible the available labelled data, i.e., data for which the actual 
class (risk/no risk) is known. Thus, the tree nodes and their corre-
sponding features used for class discrimination are thus chosen and hi-
erarchically structured in order to maximize the accuracy of the decision 
tree. 

In order to improve the generalization of such a model, it is possible 
to use multiple decision trees not necessarily trained on the same part of 
the dataset, e.g. via cross-validation (see Section 4.1). The combination 
of them yield a more robust classifier, and help reduce overfitting. 
Overfitting might happen when a model is trained too specifically on a 
dataset that captures only partially the observed phenomenon. Such a 
model obtains good results on the dataset it is trained on, but does not 
generalize well to new data samples. Various techniques exist to try to 
avoid overfitting, including combining multiple decision trees trained 
on different training sets. Each one of these trees is eventually different, 
implying different splits according to distinct features or feature values. 
Fig. 3 illustrates an example of another decision tree for flight risk 
prediction. Note that the features used for the splits are different from 
those used in Fig. 2. 

Indeed, different decision trees might provide different predictions 
for the same input data. By combining them, one can achieve better 
classification performance in a process denoted ensemble learning  [25]. 

Random forests [26] add a stochastic element to the model by 
randomly selecting subsets of the whole training dataset on which the 
decision trees are trained. Finally, boosted trees use a gradient boosting 
algorithm to weight the decision trees of a random forest according to 
their performance on correctly classifying the most critical data samples. 
XGBoost [24] is a popular exemplar of boosted tree, and it is the one 
used in this work. 

Decision trees are less explicit about how the data features impact 
classification, but some metrics can extract such information. For those 
models, the importance of each feature may be determined using purity 
or the Gini index [27]. 

4.1. Cross-validation 

An important part of machine learning is to verify that the trained 
models generalize well. The first idea that comes to mind is to split the 
dataset into a training set, on which the model is trained and fine-tuned 
(e.g. for the choice of hyper-parameters such as the number of decision 
trees in a forest), and a testing set on which the model is applied to verify 
its generalization to unseen (unlabelled) data. In our case, 20% of the 
dataset was dedicated to testing. 

Cross validation [28] is a technique largely used for preventing 
overfitting. A k-fold cross validation consists in separating the dataset in 
k groups, and successively using one of the group as testing, while 
training on the k − 1 remaining ones. Thus, cross-validation provides a 
better approximation of the real efficiency of a model and its variance. 
The selection of the hyper-parameters for our model was made using a 
5-fold cross validation on the training set. 

4.2. Complete workflow 

Fig. 4 presents the pipeline of our process to identify the most 
important features for predicting flight runaway overruns. 

This process can be divided into two phases: preprocessing and 
analysis. The preprocessing phase, described in the first part of Section 
3, consists of the data preparation (removal of unexploitable features, 
modification of time series into more usable structure, data standardi-
zation, etc.) and feature selection (reduction of the number of features to 
improve the model’s efficiency). 

The second phase is data analysis. The chosen machine learning 
model, i.e. XGBoost, is fine-tuned by cross validation, and trained on the 
dataset for predicting the safety of a flight. Then, once it was trained, it 
was possible to verify that its results were satisfactory, and to extract the 
feature more commonly related to unstable flight approaches. Finally, 

Fig. 4. Description of the complete analysis process.  

Table 3 
Classification metrics on the testing set for each airport obtained by the XGBoost 
predictor.  

Airport F1-score (%) Recall (%) Precision (%) 

North American airport 1 94 93 96 
European airport 1 91 89 93 
European airport 2 55 46 76 
European airport 3 90 89 93 
North American airport 2 87 83 92 
Central American airport 89 91 88 
South American airport 1 92 96 89 
South American airport 2 90 88 92 
Asian airport 91 90 93  
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the extracted features are analysed. The results of this process are pre-
sented in the next section. 

5. Results 

To validate the assumption that the features importance for per-
forming a prediction are indeed linked to flight safety issues, it is 
necessary for those predictions to be accurate. To assess the accuracy of 
the proposed model, we begin by computing the true positive, true 
negative, false positive and false negative counts across all the flights: an 
eventful flight predicted as unstable is a true positive (TP), an uneventful 
flight predicted as safe is a true negative (TN), an uneventful flight 

predicted as unstable is a false positive (FP), and an eventful flight pre-
dicted as safe is a false negative (FN). Using these numbers, we can 
evaluate the accuracy of the proposed model via the three following 
standard measures:  

• Precision = TP
TP+FP;  

• Recall = TP
TP+FN;  

• F1-score = 2 Precision×Recall
Precision+Recall. 

1000 
Table 3 presents the F1-score as well as the precision and recall 

Fig. 5. Kernel density estimations of the top 3 features for both safe and risked 
flights at Asian airport. Fig. 6. Kernel density estimations of the top 3 features for both safe and risked 

flights at North American airport 1. 
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metrics of our XGBoost for each test set used in our study. These metrics 
take into account the misclassified flights as well as the rightly classified 
ones [29], and a value close to one means a good overall prediction. 
Globally, the developed predictive model managed to classify the flights 
efficiently for all tested airports. 

For 8 out of the 9 data instances, an F1-score of over 87% was 
reached, with 55% for the European Airport 2 which is the most 
imbalanced dataset of our study, with a minority of eventful flights. 
Similarly, the recall was larger than 82% for 8 out of 9 data instances, 
with a smaller value of 46% for the European Airport 2 as well. 

Due to the fact that identified biases were removed in our primary 
analysis (see Section 3.4), we can assume that there exists a strong 
relationship between the selected data features and undesirable flight 
events during landing. 

The important features identified by our model regarding each 
studied airport are presented in Appendix A. Here, we comment over the 
results obtained for the Asian airport and North American airport 1, for 
which the largest volume of data was available for our study. 

For the Asian airport, the three most important features identified by 
our machine learning model were the flap lever (at 500ft.), the roll mode 
(at 3000ft.) and the stabilizer (at 500ft.). On the other hand, the top 
three contributing features identified for the North American airport 1 
were the Engine T20 selected (at multiple altitudes), the flap angle (at 
500ft.) and the airspeed (at 1000ft.). While the model successfully 
identified the importance of the features for each airport, such difference 
may result from the different characteristics of each airport, such as 
runway configurations, approach and landing procedures, weather, etc. 
However, considering that the aggregated dataset includes data from 
various aircraft types from multiple operators, which might vary with 
respect to which type of approach or landing procedures was used, it is 
impossible to conclude that these differences are solely based on the 
factors related to the airports, or from other external factors. 

Now, in order to visualize the differences in values for these features 
according to the stability of the flight approach, we use a kernel density 
estimator. A kernel density estimator (kde) is designed to estimate the 
distribution of the values assumed by a variable. Given some values 
taken by a feature, this estimator approaches the probability distribution 
of a random variable from which the observed values would have been 
sampled. In Figs. 5 and 6, we plot the kde curves for the tree features 
found as the most important regarding the flights of the Asian and the 
North American 1 airports. 

We can notice that even if similar values for these variables are taken 
by both uneventful and unstable flights, aircrafts with unstable ap-
proaches tend to report more extreme values than those with safe 
descent and landing. We observe that the plots in Figs. 5a, b, 6 a, b, c 
show less concentrated distributions for unstable flights. The remaining 
plot of Fig. 5c does not directly support this claim, but still shows a 
difference in the distribution of the two classes of flights. 

6. Concluding remarks 

Better understanding the reasons behind flight incidents is para-
mount to reduce their occurrence, as well as potential accidents. In this 
paper, a data-driven analysis was conducted in order to reveal links 
between recorded data collected during flights, and the risk of unstable 
approaches. Machine learning models were used for this purpose, in an 
attempt to detect non-linear connections among the flight data features. 

After selecting the most relevant factor and preparing the data for 
analysis, a gradient boosted tree classifier was trained to predict the 
likelihood of unstable approaches in each flight, and the most important 
features for this task were extracted. This model performed very well in 
its classification task, and the features used were consequently consid-
ered as discriminating. 

Although establishing a causality relation between the most 
contributing features and unstable approaches during landing is far from 
trivial, we demonstrate throughout our experiments the existence of 

links between the identified factors by our model and the considered 
events. We believe the identification of such links can be boosted by 
taking into consideration the expertise of flight specialists, particularly 
providing insights about the co-related dynamics between the features 
over time. Another research direction is to devise more advanced ma-
chine learning models able to grasp the dynamics of the task — remark 
that for a particular snapshot our data features are treated as indepen-
dent, and snapshots are independent from each other in our study. 

In the field of aviation safety, considering multiple approaches to the 
same issue can be beneficial to not miss any possibility. The data driven 
analysis considered here was made trying to avoid prior assumptions as 
much as possible thereby obtaining results directly from the flight 
measurements. Finally, our proposed methodology can be transposed to 
any other dataset, though it is recommended that the results are vali-
dated by subject matter experts to figure out whether causality relations 
can be actually established for risky flights. 
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Appendix A 

Results for all airports Tables A.4 and A.5 

Table A.4 
Ten most important features found for each airport (part 1).  

North American airport 1  European airport 1  
Features Importance Features Importance 

Eng (2) T20 Selected 
500ft 

12.24 Eng (1) Oil Temp 
2500.0ft 

8.11 

Eng (1) T20 Selected 
500ft 

6.83 Flap Angle 1000.0ft 4.76 

Eng (2) T20 Selected 
2000.0ft 

4.97 Eng (2) T20 4000.0ft 4.06 

Flap Angle 500ft 3.56 Eng (1) Oil Temp 
3000.0ft 

3.5 

Airspeed 1000.0ft 3.39 Wind Speed 4000.0ft 3.42 
Eng (2) T20 Selected 

1000.0ft 
3.21 Eng (1) Oil Temp 500ft 2.91 

Eng (1) T20 Selected 
2000.0ft 

2.73 Pitch 500ft 2.81 

Eng (1) T20 Selected 
3000.0ft 

2.01 Eng (2) T20 1000.0ft 2.69 

Stabilizer 1000.0ft 1.99 Eng (1) Oil Temp 
3500.0ft 

2.57 

Eng (2) T20 Selected 
2500.0ft 

1.99 Subframe Offset In 
Data 500ft 

2.55 

European airport 2  European airport 3  
Features Importance Features Importance 
Flap Angle 1000.0ft 11.87 Eng (2) N2 1000.0ft 17.72 
Longitude 500ft 4.07 Eng (1) N2 500ft 4.72 
TCAS Sensitivity Level 

2000.0ft 
3.86 Altitude STD 500ft 4.57 

Wind Direction 1000.0ft 2.47 Eng (1) N2 1000.0ft 3.3 
Eng (1) N2 3500.0ft 2.14 Flap Angle 1000.0ft 2.96 
Flap Angle 500ft 2.12 Airspeed Selected 

1000.0ft 
2.94 

Acceleration Lateral 
3500.0ft 

2.08 Altitude STD 1000.0ft 2.89 

Longitude 4000.0ft 1.93 Eng (2) N2 500ft 2.82 
Eng (2) Fuel Flow 500ft 1.82 Longitude 500ft 2.11 
Acceleration Normal 

2000.0ft 
1.8 V1 500ft 2.04  
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Table A.5 
Ten most important features found for each airport (part 2).  

North American airport 
2  

Central American 
airport  

Features Importance Features Importance 

Flap Angle 1000.0ft 22.12 Flap Lever 500ft 30.36 
Mach 1000.0ft 2.45 Eng (1) Oil Qty 500ft 22.6 
Drift 4000.0ft 2.35 AOA (R) 500ft 3.61 
Airspeed 500ft 1.9 Eng (1) Oil Temp 

3000.0ft 
3.22 

Hour 1000.0ft 1.65 AOA (R) 3500.0ft 3.08 
Altitude Selected 

2000.0ft 
1.61 Eng (1) Oil Temp 

2000.0ft 
2.57 

Gross Weight 500ft 1.57 AT Mode 1000.0ft 2.47 
FD Roll 3500.0ft 1.46 Eng (1) Gas Temp 

2500.0ft 
1.93 

FD (B) Engaged 
1000.0ft 

1.37 Eng (1) Oil Qty 3500.0ft 1.41 

DME (2) 1000.0ft 1.34 Acceleration Normal 
2000.0ft 

1.31 

South American 
airport 1  

South American 
airport 2  

Features Importance Features Importance 
Flap Angle 1000.0ft 31.25 Fuel Qty 2500.0ft 6.65 
Fuel Qty 2000.0ft 3.25 Wind Direction 1000.0ft 6.58 
Airspeed 1000.0ft 2.66 Heading Selected 

2000.0ft 
4.53 

Slat Angle 3000.0ft 1.6 Wind Speed 1000.0ft 4.12 
Eng (1) T20 Selected 

4000.0ft 
1.51 Wind Direction 3000.0ft 3.42 

Eng (1) T20 Selected 
1000.0ft 

1.38 Fuel Qty 1000.0ft 3.18 

Fuel Qty 1500.0ft 1.34 Fuel Qty 4000.0ft 3.15 
Eng (1) T20 Selected 

500ft 
1.34 Fuel Qty 3500.0ft 2.91 

Drift 2000.0ft 1.31 Wind Direction 2000.0ft 2.68 
Eng (2) T20 Selected 

1000.0ft 
1.31 Fuel Qty 2000.0ft 2.62 

Asian airport    
Features Importance   
Flap Lever 500ft 10.24   
Roll Mode 3000.0ft 5.5   
Stabilizer 500ft 3.81   
Eng (1) Gas Temp 

1000.0ft 
3.21   

Airspeed Selected 500ft 3.14   
Flap Angle 1500.0ft 2.79   
Roll Mode 3500.0ft 2.49   
Altitude Radio (C) 

1500.0ft 
2.18   

Airspeed 1000.0ft 1.93   
Gross Weight 500ft 1.9    
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