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RESUME

A T’heure actuelle, le monde industriel regorge de processus et de calculs complexes et ’op-
timisation de ceux-ci se retrouve au cceur de la recherche et du développement d’entreprises.
Ces problemes ont souvent des caractéristiques qui nécessitent de faire appel a des méthodes

d’optimisation sans dérivée.

Il s’agit d’algorithmes d’optimisation qui permettent de gérer des fonctions non linéaires, non
différentiables, bruitées ou encore non définies en certains points du domaine. La classe d’al-
gorithme M ADS rassemble des méthodes qui permettent de résoudre des problemes contraints
sous forme de boites noires correspondant aux résultats d’'un code informatique. Par ailleurs,
I’exploration d’un espace de recherche dont aucune information n’est disponible nécessite un
grand nombre d’évaluations. Néanmoins, I'évaluation d’une boite noire est souvent cotiteuse ;
ceci constitue la principale difficulté du domaine, la recherche d’un minimum d’une boite

noire en un nombre limité d’évaluations.

Cette limite du budget d’évaluations et d’autant plus importante lorsque le probleme d’intérét
est de grande dimension. Il s’agit de la principale motivation pour appliquer une méthode de
réduction de dimension au cours de l'optimisation du probleme. L’algorithme STATS-MADS
applique tout d’abord une méthode d’analyse de sensibilité basée sur une analyse de variance
pour identifier les variables ayant le plus d’influence sur 1'objectif. Ensuite, 'algorithme al-
terne entre une optimisation en petite dimension, ou les variables les moins influentes sont
fixées, et une optimisation en grande dimension. Les phases d’optimisation en petite dimen-
sion ont un réle prépondérant dans la diminution de la valeur de 1'objectif, et donc dans

I’optimisation du probleme.

Nous proposons un nouvel algorithme de la classe MADS qui permet de s’attaquer a des
problemes de grande dimension. Celui-ci applique une analyse de sensibilité basée sur une
analyse en composante principale qui permet d’extraire des combinaisons de variables ayant
le plus d’impact sur la fonction objectif. Cet algorithme a donc été nommé PcA-MADS. D’une
maniere similaire & STATS-MADS, 'algorithme PCA-MADS alterne entre une optimisation en
petite et en grande dimension. Toutefois, la structure de ’algorithme permet de poursuivre
I'optimisation en petite dimension tant que celle-ci fournit des solutions améliorant la valeur

de la fonction objectif.

L’algorithme PcA-MADS, principalement basé sur l'instance LTMADS, a été implémenté
en MATLAB™. A la lumiere des résultats obtenus sur des problemes allant jusqu’'a 1500

variables, ’'algorithme PCA-MADS est comparé a d’autres algorithmes d’optimisation sans
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dérivée dont CMA-ES, MADS et principalement STATS-MADS afin de pouvoir conclure de

ses performances. Ces tests indiquent clairement l'intérét de 'approche de PCA-MADS.
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ABSTRACT

In today’s industry, the look for highest productivity at smallest costs naturally creates
optimization problems. Precise models often create complex problems along with the need

for derivative free optimization methods.

Those are methods which can handle non-linear, non-differentiable or noisy objective func-
tions. MADS algorithms are well-known black box optimization methods which solve this
type of problem through calls to a black box, i.e. some kind of computer code. When little
is known about the problem, the exploration of the search space requires a large number of
black box evaluations. However, in the context of black box optimization, problems take the
form of expensive-to-evaluate functions. The total number of evaluations is therefore very

limited and this constitutes the main challenge of the field.

When considering black box problems in large dimensions, the limited budget of evaluations
is even more constraining. Standard black box algorithms need to be adapted, for example
through dimension reduction scheme. STATS-MADS is a MADS-based algorithm which applies
an analysis of variance to rank most influential input variables. Then the method alternates
between optimizing the problem in a smaller dimension, where least influential variables
were fixed, and the problem in its original large dimension. Most of the improvement of the

objective value was done during the optimization in the small dimension.

We propose a new MADS algorithm conceived to handle large-scale black box problems. This
method applies a principal component analysis to identify most influential directions in the
search space and is called PCA-MADS. Similarly to STATS-MADS, PCA-MADS alternates
between an optimization in a smaller dimension, where the input can only evolve in the few
most influential directions, and a poll in the large dimension. However, its structure allows
to skip the poll in the large dimension as long as the optimization in the smaller dimension

generates new improving solutions.

A MATLAB™ implementation of the PCA-MADS method, based on the LTMADS instance
was run on problems of up to 1500 variables. Its performances are compared to other deriva-
tive free methods such as CMA-ES, MADS and mainly STATS-MADS. The results of these
tests clearly indicate the value of the approach developed for PCA-MADS.
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CHAPITRE 1 INTRODUCTION

L’optimisation est le domaine des mathématiques appliquées ot ’on cherche a minimiser ou a
maximiser une certaine quantité, éventuellement sous la contrainte que les variables d’entrée
du systeme appartiennent a un ensemble prédéfini. De nos jours, ce genre de problemes est
extrémement présent dans notre société ; on peut aisément imaginer une entreprise qui cherche
a minimiser ses cofits de production ou maximiser son rendement. Mais 'optimisation est
également utilisée pour la gestion de réseaux ou de ressources, le calcul d’horaires ou encore

I’apprentissage automatisé.
Un probleme d’optimisation général s’écrit
min - f(z)

sujet a  x € (.

La fonction f est appelée fonction objectif, ou plus simplement objectif, tandis que = re-
présente les variables du probleme. L’ensemble X C R™ est I'ensemble de définition de la
fonction objectif f : X — R, et n est la dimension du probleme. L’ensemble 2 C X est 'en-
semble réalisable du probleme et est généralement défini par une série de fonctions appelées
contraintes, 2 = {¢;(z) <0,7=1,2,...,m}. Il est également possible de définir un probléme
d’optimisation avec d’autres types de variables, par exemple entieres ou binaires. Bien que la
recherche d’un maximum fasse également partie du domaine de I'optimisation, la convention
préfere écrire les problemes sous forme de minimisation. Toutefois, il existe une certaine équi-
valence entre la recherche d'un minimum et d’un maximum. Pour cela, I’équivalence suivante
est utilisée.
argmin f(z) <= argmax—f(z)
x€eQ) z€eQ

La difficulté d’un probléeme d’optimisation peut venir de la nature de l'objectif (fonction
linéaire, quadratique, convexe, lisse ou non lisse...) ou des contraintes (linéaires, quadratiques,
entiéres...) ou encore de la dimension du probléme. Les problémes les plus simples peuvent
étre résolus a la main ou graphiquement mais les problemes issus du monde réel sont souvent
bien trop compliqués pour cela. Il faut donc utiliser des algorithmes d’optimisation prévus

pour le type de problemes auquel on a affaire.



1.1 Concepts de base et contexte du projet

Dans le cadre de ce projet, nous nous concentrons plus sur l'optimisation de boites noires.
Il s’agit de probléemes dont 'objectif et les contraintes ne sont pas connus analytiquement.
On ne peut évaluer I'objectif et les contraintes qu’en fixant une valeur pour chaque variable.
Ce fonctionnement est représenté graphiquement a la figure 1.1. En pratique, une boite noire
prend souvent la forme d’une simulation informatique qui ne peut pas étre écrite analytique-

ment.

Black Box
X1, L2y ..., Ty f(x),01($),02(33),...7Cm(£17)
for ( ... )
{// ... //}

Figure 1.1 Schéma simplifié du fonctionnement d’une boite noire

Parmi les principales caractéristiques des boites noires, on retrouve un long temps d’exécution,
des évaluations qui peuvent mener a des erreurs, des boites noires tres peu lisses ou encore
bruitées. Le temps d’évaluation de la boite noire est souvent le facteur critique et définit un
budget d’évaluation maximum. Les dérivées de la fonction objectif ne sont pas accessibles
et /ou n’existent pas. Les méthodes basées sur le gradient ou sur la matrice Hessienne ne sont
donc pas utilisables dans ce contexte. Ces deux outils sont trés appréciés en optimisation, car
ils donnent des informations quant a la pente ou la courbure de 'objectif. De plus, vu que
la boite noire est souvent cotiteuse a évaluer, il devient difficile d’estimer les dérivées en un
temps raisonnable. Il faut donc se tourner vers des méthodes propres a 'optimisation sans
dérivée. Il en existe plusieurs qui seront décrites au chapitre 3. La plupart ont de bonnes
performances lorsque les boites noires sont d'une taille raisonnable, de 1'ordre de quelques

dizaines de variables.

1.2 Problématique

Dans le cadre de ce projet, on considére des probléemes de minimisation d’une boite noire

sous contraintes de bornes sur les variables :



ol X = {zreR": 1<z <u} ot l,u € R* définit des bornes explicitement connues. Les
problémes considérés dans ce document possedent uniquement des variables réelles. Plus
particulierement, les problemes étudiés sont des problemes d’optimisation sans dérivée de
grande taille, de I'ordre de quelques centaines a quelques milliers de variables. Ces problémes
sont trop grands pour utiliser des méthodes d’optimisation de boites noires classiques en un

temps raisonnable.

La principale difficulté des problemes d’optimisation de boites noires est que 'on ne possede
que peu d’information sur le probleme. L’idée de départ de ce projet est donc d’en apprendre
un peu plus sur le fonctionnement de la boites noires en appliquant des méthodes d’analyse
de sensibilité. Ces méthodes devraient permettre d’identifier des variables ou des combinai-
sons de variables qui ont plus d’influence que les autres. On suppose en effet que certaines
combinaisons de variables sont plus critiques. Cela permettra de concentrer la recherche d’un
minimum dans un sous-espace ou seules les valeurs de ces combinaisons de variables pourront
étre modifiées, au lieu de I’espace complet. Ce projet propose donc un nouvel algorithme basé
sur un algorithme d’optimisation connu qui applique une méthode d’analyse de sensibilité

pour réduire I'espace de recherche.

1.3 Structure du document

Ce document est structuré de la facon suivante. Le chapitre 2 présente plusieurs méthodes
d’analyse de sensibilité. Celles-ci ont été classées en différentes catégories en fonction de leur
fonctionnement et de leur portée. Le chapitre 3 présente plusieurs méthodes et algorithmes
propres a l'optimisation sans dérivée. La derniere section de ce chapitre porte sur les mé-
thodes d’optimisation de boites noires qui ciblent plus particulierement les problemes de
grandes tailles. Dans le chapitre 4, on propose un algorithme d’optimisation sans dérivée
utilisant une méthode d’analyse de sensibilité, ainsi qu'une courte analyse de sa convergence,
¢’est-a-dire une analyse de son comportement lorsque son nombre d’itérations tend vers I'in-
fini. Le chapitre 5 donne quelques résultats numériques concrets ainsi que des comparaisons
avec d’autres algorithmes connus. Le chapitre 6 présente une discussion des résultats et une

conclusion de ce projet.



CHAPITRE 2 METHODES D’ANALYSE DE SENSIBILITE

Une analyse de sensibilité cherche a identifier I'influence des variables d’entrée sur la sortie
d’un modele. Les variables sont aussi appelées facteurs du modele. Ce projet considéere un

modele & n variables et une sortie :

y = f(z1,29,...,2,).

Etant donné que ce projet porte sur de 'optimisation de boite noire, le modele étudié est la

fonction objectif du probleme d’optimisation.

En premier lieu, la section 2.1 présente des méthodes locales. Comme leur nom l'indique,
il s’agit des méthodes capables d’identifier la sensibilité du modele autour d’un point. La
section 2.2 porte sur des méthodes de criblage; il s’agit d’'une généralisation plus globale de
méthodes locales. Contrairement aux méthodes locales, les méthodes globales ont pour but
de donner des mesures de sensibilité qui seraient valides dans tout le domaine des variables
d’entrée et indépendantes d’un choix arbitraire de points nominaux. Les sections suivantes
portent sur des méthodes globales. Parmi celles-ci, les méthodes basées sur la variance, a
la section 2.3, supposent que le modele est aléatoire et appliquent une analyse de variance.
Les sections 2.4 et 2.5 cherchent a construire des modeles de la fonction a analyser pour en
déduire sa sensibilité aux variables. La derniere section présente une méthode d’analyse en

composante principale.

2.1 Méthodes locales

Dans le cas d’'une fonction différentiable, la premiere mesure de sensibilité qui vient a ’esprit

est sans doute une mesure basée sur les dérivées partielles. Un coefficient S; est défini pour

chaque facteur d’entrée x;, 1 =1,...,n,
of
S; = z? 2.1
= o) 2.)
ot % = (29,...,2%) est un point de dimension n, appelé point nominal. Toutefois, cette

mesure semble ne pas étre toujours appropriée. Considérons I'exemple d’une facture pour n
objets. On note x; > 0 le prix du i° objet, i =1,...,n, et y = f(x) = X", ;. La mesure de
sensibilité décrite dans (2.1) donnerait S; = 1 pour chaque objet, indépendamment du prix

de chacun de ces objets. Il serait alors intéressant de normaliser la mesure (2.1) en fonction



de la valeur du facteur et la valeur de la sortie :

) Oy
Si = (%) o, (z9).

De cette maniere, le coefficient de sensibilité de I'objet le plus cher sera plus grand que ceux

des autres objets.

Une méthode simple pour le calcul numérique d'une approximation des dérivées partielles
est un calcul par différences finies. En faisant varier légerement un parametre a la fois, il est
possible de comparer les variations de la sortie du modele. Ces variations sont appelées effets
élémentaires et sont notées E? s’ils sont calculés au point z°. Par exemple, pour une fonction

différentiable,
af £+ Aey) — F(2°)
8% A ’

ol e; est un vecteur ne contenant que des 0 et un 1 a la ¢ composante et A € R. Une petite

(2°) ~ E? = (2.2)

valeur pour le parametre A donne, en général, une bonne approximation. Toutefois, trouver
la valeur idéale reste compliqué. Cependant, d’autres approximations par différences finies

existent dont certaines utilisent plus de points.

Les mesures basées sur les dérivées premieres calculées par différences finies dépendent donc
grandement du parameétre A et du point nominal 2°. Rien ne peut garantir la qualité de la
mesure en dehors d’un voisinage du point nominal. De plus, cette mesure néglige une possible
interaction entre les différents facteurs en entrée. Bien entendu, des mesures basées sur des
approximations des dérivées d’ordre supérieur tiendraient compte de telles interactions, mais
demanderaient plus de calcul. D’ailleurs, 1'idée centrale de ces mesures est d’approximer les
dérivées partielles de la fonction. Dans le cas ou celle-ci n’est pas différentiable, le calcul des
différences finies de 1’équation (2.2) est toujours possible, mais cela ne donne aucune garantie

de la qualité d’une telle mesure.

Cette méthode requiert de pouvoir choisir les points d’évaluation afin de calculer des mesures
de sensibilité. Ceci n’est pas applicable dans notre situation, car les points mis a disposition
sont issus des évaluations faites a partir d'un algorithme d’optimisation MADS ; celui-ci sera

décrit a la section 3.3.3.

2.2 Meéthodes de criblage

La question centrale de I'analyse de sensibilité est, parmi toutes les variables d’entrée, les-
quelles sont réellement importantes, c’est-a-dire plus importantes que les autres. Une hypo-

these simple est de supposer que le nombre de variables plus importantes que les autres est



relativement petit par rapport a leur nombre total, sinon elles ne seraient pas réellement

importantes.

Les méthodes de criblage sont en général utilisées pour analyser de grands modeles, avec
plusieurs centaines de facteurs d’entrée par exemple. Elles sont considérées comme des mé-
thodes a faible colit, mais donnent uniquement une analyse qualitative, c’est-a-dire elles
peuvent classer les entrées par ordre d’importance ou du moins identifier les variables qui
ont un effet négligeable par rapport aux autres, mais ne peuvent quantifier la différence d’in-
fluence entre deux facteurs. Une utilisation possible des méthodes de criblage est d’exploiter
un petit nombre d’évaluations pour identifier des variables peu influentes sur le modele, pour
ensuite simplifier le modele et appliquer d’autres méthodes d’analyse de sensibilité, souvent
plus précises mais plus cotliteuses. L’idée derriere les méthodes de criblage est de discrétiser
les valeurs possibles de chaque variable en plusieurs niveaux, et de faire varier les entrées en

fonction de ces niveaux.

Parmi les types de méthodes de criblage, les designs One At a Time (OAT) sont les plus
utilisés. Ils étudient 'importance d’une entrée en faisant varier un facteur a la fois. Bien que
cela ressemble & une analyse locale, les auteurs de [53] présentent une adaptation globale
des méthodes de criblage. Chaque variable peut prendre deux ou trois valeurs possibles, en
général une valeur nominale et deux extrémes. Ensuite, on applique une étude statistique
d’un échantillon d’effets élémentaires de chaque variable. Il existe d’autres méthodes de type
OAT moins coiiteuses que la méthode de Morris décrite dans [53] mais cette derniére reste
considérée comme plus complete [39]. Toutefois, si le nombre d’évaluations est petit, plus
faible que le nombre de variables d’entrée par exemple, d’autres méthodes sont a privilégier

dont certaines sont présentées dans [16,28, 46].

La méthode de Morris [53] cherche & classer les variables en trois groupes : celles avec un
effet négligeable, celles avec un effet linéaire et celles avec un effet non linéaire et/ou des
interactions. On suppose que 'on veut analyser un modele a n variables zy,...,x, et une

sortie y = f(x1,...,z,), et que chaque facteur peut prendre p > 1 valeurs entre 0 et 1, &
o102 . . p=2.
' p—17 p—17° " p—1)
facteur ¢ est défini comme

savoir x; € {O 1}. A partir d’un point nominal z°, un effet élémentaire du

[+ Aey) — f(2?)

0
El — A y
ou A € {]ﬁ, R p%l} Le calcul d'un effet élémentaire peut étre répété a partir de

. o o 717 . N . . YT
plusieurs points nominaux. La moyenne de ces effets élémentaires a partir de r points {x7} i1

est notée L
T4



De méme, on peut calculer une moyenne des valeurs absolues p} et I'écart-type o; des effets

élémentaires de chaque variable,

* 1 j
rj:l

1 < ,
o} = Y (EE] — ).

7“—1].:1

La moyenne p; donne une mesure de sensibilité du modele. Si p est petit, la variable ¢ a un
effet peu important. L’écart-type o; donne une idée de I'importance des interactions entre
les variables. En effet, si o; est grand, cela indique que les effets élémentaires du facteur ¢
dépendent du point nominal auquel ils sont calculés, et donc des valeurs des autres variables.
A Topposé, si o; est faible, cela indique que 'effet d’une variable ne dépend pas de la valeur
des autres entrées, et donc que la variable ¢ a un effet plutot linéaire.

Ces effets élémentaires peuvent avoir des impacts opposés en fonction du point nominal et

cela peut résulter en un faible p;. Dans ce cas, p sera grand. A partir de p;, pf, of, on
peut déduire I'importance relative de chaque variable ¢ = 1,...,n, et donc les classer en trois
groupes. Cela peut se faire en représentant les variables dans un graphe représentant o et

fonction de p*.

Exemple 2.1 Par exemple, considérons la fonction suivante :

f[=1;1]7 = R,z — 11021 + 10025 + 1023 + 602374 + 5022 + 526 + 277 (2.3)

En appliquant la méthode de Morris en considérant r = 5 répétitions, ce qui donner(n+1) =
40 évaluations du modéle, nous pouvons construire la figure 2.1. Nous remarquons que [’on
peut distinguer facilement trois groupes de variables. Les premiéres sont les deux variables
proches de l'origine. Il s’agit des variables qui ont un impact négligeable sur la fonction, les
variables xg et x7. En effet, aussi bien la moyenne que l’écart-type de leurs effets élémentaires
sont trés faibles. Le deuziéme groupe reprend les variables en bas a droite, ¢’est-a-dire xy et
To qui ont un effet uniquement linéaire, tout comme xg et x7, mais non négligeable ; on peut
le remarquer car l’écart-type de leurs effets élémentaires est nul. Le troisieme groupe reprend
les variables qui ont un p* et un o relativement importants. Il s’agit donc de variables ayant
un effet non négligeable et non linéaire sur le modéle. On peut trouver les variables x3, x4 et

x5 dans ce groupe.

Grace a ce genre de méthodes, il est possible d’explorer I'entiereté du domaine et avoir une



Exemple de methode de criblage
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Figure 2.1 Exemple d’application de la méthode de Morris sur la fonction (2.3)

idée de I'impact global des variables sur le modele. Toutefois, les résultats d’une telle analyse

dépendent du choix des points nominaux auxquels les effets élémentaires sont calculés.

Cette méthode n’est pas directement applicable dans notre situation, et ce pour la méme
raison que précédemment. On veut exploiter 'ensemble des évaluations effectuées par un
algorithme d’optimisation ; le choix de points spécifiques pour calculer une mesure de sen-
sibilité n’est donc pas possible. Par contre, une telle méthode permet, en un faible nombre

d’évaluations, d’avoir une idée des variables non influentes.

2.3 Méthodes basées sur la variance

Plusieurs méthodes d’analyse de sensibilité sont basées sur la variance. L’intérét de cette
mesure est son indépendance par rapport au modele. Elle permet également de mettre en
évidence les effets dus a la variation d’une variable particuliere, ainsi que les effets dus aux

interactions entre les variables.

L’idée derriere 'analyse de sensibilité basée sur la variance est de considérer les variables
d’entrée z; et de la sortie y = f(x) comme des variables aléatoires, notées X; et Y. La

sensibilité de la sortie a une variable correspond a la réduction de variance observée si cette



variable d’entrée est fixée. La variance de la sortie peut étre décomposée de la maniere

suivante :

VarlY] =Varx,[E(Y|X;)] + Ex,(VarlY|X,)), (2.4)
Varx,[E(Y|X;)]  Ex,(Var[Y|Xj])
b= VarlY] Var[Y] ’ (2:5)

ou Vary,[E(Y|X;)] est la variance de I'espérance de Y conditionnelle a X; et Ex,(Var[Y|X;])
est l'espérance de la variance de Y conditionnelle a X;. L’équation (2.5) est obtenue en

divisant I’équation (2.4) par Var[Y].

Le premier terme de (2.5) est considéré comme une bonne mesure de sensibilité puisqu’il
représente la proportion de variance de Y qui peut étre attribuée a X;. Il s’agit d’une variance

de l'espérance de conditionnelle (VCE), notée

Les différentes méthodes présentées ci-dessous décrivent plusieurs moyens d’estimer la VCE
de chaque facteur. Dans ce document, la mesure du rapport de corrélation, la méthode des

indices de Sobol” et la méthode Fourier amplitude sensitivity test (FAST) sont présentées.

2.3.1 Rapport de corrélation

La méthode des rapports de corrélation cherche a construire un estimateur du rapport de
corrélation d’une variable. Le rapport de corrélation 7; de la variable x;, ¢« = 1,2,...,n est

défini comme

s Varx,[E(Y|X)]
i = VarlY] ’

=1,2,...,n.

Pour estimer un rapport de corrélation, il faut construire un estimateur de la variance de Y,
—_—

VarlY], et de la variance de l'espérance conditionnelle VC/E?Q] . Ensuite 'estimation du

rapport de corrélation se calcule par le rapport entre ces deux estimateurs;

—

_, VCE[X]]
T m] .

Les deux estimateurs nécessaires peuvent étre calculés a partir de r réplications d’un échan-
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tillonnage par hypercube latin de m éléments. On pose

T

1 m
Var —ZZyﬂ—y
] 17=1

ou y;; correspond a la sortie d'un échantillon et y = (1/mr) 372, >51_, v est la moyenne de

toutes les sorties. La moyenne d'un échantillon est notée y;. Le deuxieme estimateur est

m

VOB = - > (0~ ) — 5 > >l )

j=1 j=1l1=1

ot y;/

réplication, dans chacune des r réplications.

est obtenu en fixant les valeurs prises par la variable X; a ses valeurs dans la premiere

Dans le cadre de ce projet, cette méthode est intéressante, car elle peut étre utilisée a partir
d’un ensemble d’évaluations déja effectuées. D’ailleurs, elle a déja été utilisée dans des projets

similaires [2-4,15]. Ceux-ci seront décrits a la section 3.4.

2.3.2 Indices de Sobol’

La méthode des indices de Sobol’ [65] se base sur une décomposition de la fonction du modele
a étudier. Pour décrire cette méthode, on suppose que 'espace des variables est un hypercube

unitaire en dimension n, c¢’est-a-dire
f:Q"=[0;1]" - R.

Chaque sous-ensemble de variables peut avoir un effet sur le modele. Il est alors possible

représentant 'effet de

m

de décomposer une fonction f sous une somme de fonctions f;, . ;

chaque sous-ensemble de variables,

f0+ZfZ ;) —I—ZZfU T, x;) + o+ froo k(@1 e, L Tg). (2.6)

i J>0

En choisissant chaque fonction carré intégrable, comme décrit dans [65], cette décomposition

existe et est unique.

Dans le cadre d’une analyse de sensibilité, nous avons un vecteur aléatoire X = (Xi,..., X,)
composé de n variables indépendantes et Y = f(X) la sortie d'un modele déterministe f(-).

Nous pouvons donc appliquer une analyse de variance fonctionnelle. La variance totale D de
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la fonction f est définie comme

D= [ flxix—f

tandis que les variances partielles sont

1 1
2
Di1,i2,...,is = /0 e /0 fhigu.is (ZL’il,ZL'Z‘2, N ,mis)dxildxiz e dZEZ‘S,
oul<iy<ig<---<igets=1,... k.
En prenant le carré de (2.6) et en intégrant sur le domaine, on obtient

k
D= ZDi + Z Dij+ -+ Do .
i=1

1<i<j<k

On note alors que D = Var([Y], D; = Var|E(Y|X;)|, Di; = Var[E(Y|X;, X;)] — D; — D; et

ainsi de suite. Les indices de sensibilité sont définis comme

D .
D
S; est I'indice de sensibilité de premier ordre du facteur ¢, ¢ = 1,...,n, et mesure l'effet du

facteur 7 sur la sortie. S;; est I'indice de sensibilité du deuxiéme ordre des facteurs i et j,
1 < j, et il mesure 'effet de I'interaction des facteurs i et j. Une propriété intéressante de ces

indices est

ZSi+ Z Sij+"'+sl’27m’n: 1.
=1

1<i<j<n
Le nombre d’indices, correspondant au nombre de sous-ensembles de variables, croit expo-
nentiellement avec la dimension du probléme. En pratique, les indices d’ordres supérieurs a

deux ne sont pas calculés.

Les auteurs de [37] présentent également des indices de sensibilité totaux S7; d’une variable
comme la somme de tous les indices qui font intervenir la variable en question. Par exemple,

I'indice de sensibilité totale de la variable x; d’'un modeéle & trois variables est
ST, = Sy + Si2 + Si3 + Sios.

Lorsque le nombre de variables est important, il peut étre judicieux de ne calculer que les

indices du premier ordre et les indices totaux.

Les indices de sensibilité du premier ordre peuvent étre estimés a partir de deux échantillons
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de Monte Carlo de taille N. Les estimateurs sont construits de la fagcon suivante :

O
fO :N mZ:1 f(xm)7
—~ 1 X \2
D :N Z(f(xm> - fo) )
m=1
5 LN My ® Oy 72
D; _N Z_l f(x(Nz)m’xim)f(x(’%)m’xlm) N fO ’

ou les exposants (1) et (2) indiquent ’échantillon, x,, est un point dans Q" et
X(~i)ym = (xlma Tomy - -+ 5 T(i—1)m> L(i+1)m> - - :Bnm)

Des manieres pratiques de calculer les indices de Sobol” du premier ordre et les indices totaux

grace a deux échantillons de Monte Carlo sont décrites dans [59,65] et [61, section 4.6].

Le calcul de ces indices de sensibilité requiert toutefois un grand nombre d’évaluations du
modele. Les auteurs de [39] décrivent un taux de convergence en vV N ou N est la taille de

I’échantillon, ce qui revient en général & un ordre de 10* évaluations du modéle.

Bien que cette méthode soit intéressante, le nombre d’évaluations nécessaire la rend peu
utilisable dans le cadre de 'optimisation de boite noire. En effet, le budget d’évaluations de

la boite noire est normalement tres limité.

2.3.3 Meéthode du Fourier amplitude sensitivity test

Le Fourier amplitude sensitivity test (FAST) [26] est une méthode qui permet d’estimer
I'espérance et la variance de la sortie d’un modele, ainsi que la contribution d’une variable
a la variance. Celle-ci se base sur la transformée de Fourier, calculée en certains points et
pour certaines fréquences. L’idée est de transformer des intégrales en n dimensions en des

intégrales en une dimension.
On pose
X; = Gy(sinw;s), 1=1,2,...,n. (2.7)

En choisissant des valeurs adaptées pour les fréquences w; et de bonnes transformations Gj,

il est possible d’approximer 'espérance de la sortie Y comme

Blv]~ 5 [ f(s)ds

2T —T
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ou f(s) = f(Gi(sinwys), Go(sinwss), ..., Gp(sinw,s)). De méme, 'approximation de la va-

riance peut étre calculée :

V[Y] = 217T /_7; f2(s)ds — [E(Y)]?

~ D (A7 B)) — (A5 + Bg)

j=—o0

~2) (A2+ BY),

Jj=1

ou A; et B; sont les coefficients de Fourier
1 7 , 1 = ..
A= %/_W f(s)cos(ys)ds, B;= %/_W f(s)sin(js)ds.

Le choix des transformations G; est crucial. Différentes sources proposent les différentes
transformations du tableau 2.1. Une bonne transformation devrait proposer une distribution
uniforme pour chaque facteur. Les auteurs de [60] notent que les transformations (C) et (D)
proposent une meilleure distribution que les transformations (A) et (B), et devraient donc

étre préférées a ces dernieres.

Le calcul des indices de sensibilité se fait en calculant les coefficients A; et B; a leur fréquence
fondamentale w; pour ¢+ = 1,...,n, ainsi qu’a leurs harmoniques pw; pour p = 1,2,.... La

contribution du facteur ¢ a la variance de la sortie peut étre approximée comme

D 23 (A2, + BL).

7
p=1

En remarquant que les amplitudes de Fourier décroissent lorsque p croit, '’estimation de D,

Tableau 2.1 Proposition de transformations pour 1'éqation (2.7) [60]

Tranformation | G; Référence
(A) r; = Tyl Snwis) [26]
(B) x; = T;(1 4 v; sin(w;s)) [42]
(C) x; = 3= arcsin(sin(w;s)) [62]
(D) x; = 5+ arcsin(sin(w;s + ¢;)) [62]
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peut étre calculée par

M
Z o T B

ou M correspond a la plus grande harmonique considérée, en général M = 4 ou M = 6 [27,60,
section 8.4]. A partir de D: , il est possible de calculer des coefficients équivalents aux indices
de Sobol” du premier ordre. De plus, [60, section 8.4.3] présente une méthode basée sur le

FAST permettant de calculer des indices totaux.

Méme si cette méthode est moins cotiteuse que la méthode présentée a la section précédente,
elle reste cotiteuse et est parfois biaisée ou instable lorsque la dimension du modele devient
trop grande, supérieur a 10 environ, comme précisé dans [66]. Cette méthode sera donc
difficilement exploitable dans le cadre de ce projet, car les problemes considérés ont un nombre

de variables de I'ordre de quelques centaines voire quelques milliers de variables.

2.4 Meéthode basée sur un modeéle linéaire

En supposant que le modele a étudier est linéaire, il est possible de calculer des coefficients

de régression linéaire. En considérant un échantillon de N points, on suppose la relation

N
}/jzﬁo—l—ZB’Lle—i—ej? pOUI‘j:]_,Q,...,N, (28>
i=1
ou Xj; représente 'observation j de la variable x;, pour i = 1,...,n et Y} correspond a la
sortie de I'échantillon (Xi;, Xoj,...,X;). Les §; sont des coefficients de régression et €; des

termes d’erreur. Les coefficients sont a calculer par une méthode de moindres carrés.

En supposant les variables indépendantes entre elles, et qu’elles le soient également des er-

reurs, il est possible de décomposer la variance du modele (2.8) comme
k
VarlY] = ZVi + V.,
i=1

ou V; donne la contribution de la variable X; a la variance totale, et V. la contribution des

termes d’erreur. Les auteurs de [71] montrent qu'une estimation de V' et V; est possible,
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Un coefficient de sensibilité S; peut alors étre construit,

S, =

@

Celui-ci est connu sous le nom de standardized regression coefficient ou SRC [19].

Si on suppose le modele monotone, un autre indicateur connu sous le nom de standardized
rank regression coefficient ou SRRC peut également étre utilisé. Cela consiste a attribuer 1
a la plus petite valeur de sortie, 2 a la suivante jusqu'a N a la plus grande valeur. La méme
procédure est appliquée aux valeurs de chaque variable. Ensuite le calcul se fait de maniere

similaire que pour les SRC.

Il existe également d’autres coefficients [39] :

— coefficient de corrélation de Pearson :

¥ (X - EX) (Y - E(Y))

p(X,,Y) = = .
@1 Xy~ E(0)' S (v - B0)

Ce coefficient cherche a indiquer un lien linéaire entre une variable et la sortie du

modele. Il vaut 1 ou —1 si elles ont une relation linéaire et 0 si elles sont indépendantes.

— coeflicient de corrélation partielle [38] :

— —

PCC; = p(X;— XY —Y,),

ot X_; est la prédiction du modele linéaire et Y_; est la prédiction du modele linéaire
lorsque X; est absent.
Ces méthodes sont applicables dans notre contexte car les mesures sont calculées a partir
d’un nuage de point. Néanmoins, elles se basent sur une hypothese forte, que la fonction
étudiée ait un certain caractere linéaire. Il existe des coefficients qui permettent de confirmer
cette hypothese :

— coefficient de détermination R? :

SN (Y —E(Y))
e i (% <>)2

(Y -E(Y))

ou Y; correspond a la prédiction du modele;
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— coefficient prédictif Q? :

My -1)

S (Y, - E[Y])

Q*=1-

ou I’échantillon de taille M n’a pas été utilisé pour construire le modele et if; corres-
pond a la prédiction du modele pour le point X; = (Xy;,..., Xpj).
Ces deux coefficients permettent d’exprimer la part de la variabilité de la sortie de la fonction
étudiée qui peut étre expliquée par le modele linéaire. En regle générale, les problemes étudiés
dans le cadre de I'optimisation de boite noire ne sont pas linéaires, ce qui rend cette méthode

peu pertinente a ce projet.

2.5 Meéthode basée sur les métamodeéles

Une boite noire ayant un long temps d’évaluation ne donne que peu de points disponibles pour
une analyse de sensibilité. L’idée des méthodes basées sur des métamodeles est de trouver
un substitut ou surrogate de la boite noire ayant un comportement similaire a la fonction
étudiée, mais dont le temps d’évaluation est grandement réduit. Il est alors possible d’évaluer
le substitut un grand nombre de fois et d’appliquer I'une ou 'autre méthode d’analyse de
sensibilité sur les points obtenus. Il existe un grand nombre de techniques possibles pour
créer ce substitut, par exemple un modele quadratique ou polynomial, I'utilisation de splines
ou des modeles de krigeage. D’ailleurs, il existe des méthodes d’optimisation sans dérivée
qui exploitent des substituts pour diminuer 'objectif. Celles-ci sont décrites un peu plus en

détails a la section 3.2.

Etant donné que le substitut et la fonction a analyser sont différents, les résultats d’une
analyse de sensibilité effectuée sur un substitut peuvent ne pas correspondre parfaitement a
la fonction originale. Toutefois, si le substitut est de bonne qualité, celui-ci peut étre utilisé
avec I'une des méthodes d’analyse de sensibilité décrites dans ce chapitre. Il serait alors
possible d’exploiter le substitut pour avoir un grand nombre de points a analyser tout en

préservant le budget d’évaluations limité de la boite noire décrivant ’objectif.

L’optimisation sans dérivée a l'aide de substitut est un domaine qui mérite un certain intérét
mais n’est pas I'objet du présent document. En effet, dans le cadre de ce projet, nous ne
supposons pas avoir acces a un modele simplifié de 1'objectif, ce qui rend cette méthode

inexploitable.
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2.6 Analyse en composante principale

Dans l'introduction de son livre [40], Jolliffe décrit I'idée derriere I’analyse en composante
principale comme celle "de réduire la dimension d’un ensemble de données composées d’un
grand nombre de variables liées entre elles, tout en retenant autant que possible la variabilité
de l’ensemble de données. Cela est réalisé en le transformant en un nouvel ensemble de
variables, les composantes principales, qui sont non corrélées, et qui sont ordonnées telles
que les quelques premieres variables retiennent la magjorité de la variabilité présente dans

toutes les variables originales” ( [40, chapitre 1], notre traduction).

Concretement, on suppose X un vecteur aléatoire de taille n et les liens entre ces variables,

leur structure de corrélation ou de covariance, nous intéressent. Pour éviter de regarder

n(n—1)
2

p < n nouvelles variables qui retiennent la majeure partie de l'information contenue dans

les n variances et les covariances ou corrélations, il serait intéressant de regarder
ces covariances. Ces nouvelles variables seront construites comme des combinaisons linéaires

des variables originales de la maniére suivante.

Dans un premier temps, une transformation linéaire o] X = 37, a,;X; est construite ou
ay € R". Puisque la majorité de la variance doit étre préservée, celle-ci est construite avec

une variance maximale. Ensuite, on cherche une transformation linéaire o z, non corrélée

avec aj r, qui maximise également sa variance. La troisiéme transformation linéaire ne doit

étre corrélée ni avec o x ni avec o, x tout en maximisant sa variance et ainsi de suite. Les
vecteurs «a; sont appelés les composantes principales. Il existe jusqu’a n transformations,
mais on espere que les p < n premicres transformations contiendront la majeure partie de la

variance de 'ensemble de données.

Le calcul des composantes principales se fait a partir de la matrice de covariance ¥ € R™*"”
du vecteur aléatoire X. On note Ay > Ay > --- > )\, ses valeurs propres. La premiere
composante principale, le vecteur o € R", maximise Var|a] z] = of Ya;. Pour s’assurer que
a1 soit unique, il est utile d’imposer que ce dernier soit normé. Cette transformation oy est

donc la solution du probléme d’optimisation

max o) Loy (2.9)
sujet & o ay = 1. (2.10)

Pour résoudre ce probleme, il est utile d’introduire le multiplicateur de Lagrange A € R et le
Lagrangien
L(a,\) = af Zag — Maj a; — 1). (2.11)



En imposant que le gradient de (2.11) soit nul, on obtient

Yai —da; =0 — (E — )\In)Oél =0,
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ou I, € R™" est la matrice identité. Le multiplicateur de Lagrange A est donc une valeur

propre de Y et «a; le vecteur propre correspondant. La quantité a maximiser étant

o] Yoy = of dag = Ao ap = A,

le multiplicateur de Lagrange \ est égal a la plus grande valeur propre de ¥, A = A\, et a3

le vecteur propre correspondant.

Pour trouver la deuxieme composante principale ap € R™, un probleme d’optimisation simi-

laire & (2.10) est construit, en ajoutant une contrainte. En effet, les composantes principales

doivent étre non-corrélées entre elles. Cette nouvelle contrainte est
Covla] X, ay X] = a] Yag = ay Yag = ay Aoy = Mag ag = 0.
En ajoutant une contrainte de normalisation sur as, on obtient le probleme

max oy Lo
agsER™

sujet & g ap = 1

oy ay = 0.

Pour le résoudre, deux multiplicateurs de Lagrange A, u € R et le Lagrangien
Lo, A\, ) = ay Bag — Mg oy — 1) — porg oy
sont introduits. En annulant son gradient par rapport a as, on obtient I’équation
Yag — Aag — pag = 0.
Il est possible de multiplier cette équation par o] # 0, ce qui donne

o Yo — Ay ay — pof ag = 0.

(2.12)

(2.16)

Puisque o a; = 1 (2.10), of ap = 0 (2.15) et o Sy = 0 (2.12), équation se réduit & p = 0.

Alors (2.16) devient
ZO&Q — )\042 =0 <= (E — )\In)OtQ = O,
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et A est également une valeur propre de ¥ et ap son vecteur propre correspondant. Puisqu’il
faut maximiser A et que les vecteurs propres de 3, a; et ay, doivent satisfaire ay a; = 0, A
correspond a la deuxieme plus grande valeur propre de ¥, A = \o, et g a son vecteur propre

correspondant.

Via un raisonnement similaire pour les (n—2) composantes principales suivantes, on en déduit
qu’elles correspondent aux (n — 2) vecteurs propres associés aux (n — 2) valeurs propres de

> suivantes, ordonnées par ordre décroissant.

Alors, pour k = 1,2,...,n, la k° composante principale est z; = a; z ot oy, est le vecteur

propre de ¥ associé a sa k¢ plus grande valeur propre \i. De plus, si o est unitaire, Var[zy] =
Ak

Si ¥ n’est pas connue, elle peut étre estimée grace a un échantillon de réalisations du vecteur
aléatoire X. A partir d'un nuage de N points, il faut estimer la matrice de covariance. On
suppose que D est une matrice N lignes n colonnes. Chaque ligne représente une observation
des variables aléatoires. Une estimation de la matrice de covariance serait une matrice S €
RTIJXTL Ofl

1 N _ _
S R

=1

NEEEN 1 N T . . . . .
ou D = « >;1; Djj est la moyenne des réalisations de la j¢ variable aléatoire.

Ce projet porte sur I'optimisation de boite noire. Dans ce contexte, une analyse en composante
principale pourrait étre utilisée pour en apprendre plus sur la fonction objectif & minimiser. En
effet, une telle analyse pourrait étre appliquée pour déterminer des liens entre les variables,
et plus particulierement mettre en avant des liens entre certaines variables et la fonction
objectif. Un des avantages de I’analyse en composante principale est qu’elle peut s’appliquer
a un nuage de points. Il ne sera donc pas nécessaire d’utiliser des évaluations pour faire cette
analyse. De plus, lors de 'analyse, des combinaisons de variables apparaissent naturellement,

ce qui est un peu plus général que des coefficients de sensibilité pour chaque variable.
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CHAPITRE 3 METHODES D’OPTIMISATION SANS DERIVEE

Ce chapitre se concentre sur les méthodes d’optimisation sans dérivée. Ces méthodes sont

développées pour résoudre des problemes mathématiques de la forme :

min  f(z)

TeX

sujet a x € €,

ou les dérivées de la fonction objectif f ne sont pas accessibles ou n’existent pas.

Les algorithmes présentés sont classés dans trois catégories. La premiere catégorie, décrite a
la section 3.1, reprend des méthodes heuristiques. Il s’agit de méthodes qui ne sont pas sup-
portées par une analyse de convergence prouvée mathématiquement. La section 3.2 reprend
des méthodes basées sur des modeles, tandis que la section 3.3 présente des méthodes de
recherche directe. Les premieres tentent de construire un modele de la fonction objectif plus
simple a optimiser mais gardant un comportement similaire et les secondes ont une struc-
ture spécifique qui permet d’analyser leur convergence. La derniere section revient sur des

algorithmes d’optimisation sans dérivée qui utilisent des méthodes d’analyse de sensibilité.

3.1 Meéthodes heuristiques

Bien que les méthodes heuristiques ne soient pas supportées par des résultats de convergence
prouvés mathématiquement, elles sont fortement utilisées en pratique. En effet, elles sont
souvent plus simples & comprendre et a implémenter que d’autres méthodes d’optimisation.
De plus, elles peuvent étre modifiées afin de mieux correspondre au probleme et peuvent
offrir de bonnes performances. Ces méthodes ont un intérét supplémentaire, en effet elles
peuvent étre utilisées comme sous-méthodes dans d’autres algorithmes qui eux garantissent
des résultats de convergence. Ce document présente rapidement quelques heuristiques connues
en optimisation, notamment la famille des algorithmes génétiques et I'algorithme de Nelder-
Mead.

3.1.1 Algorithme Hit-and-run

Décrit dans [18,58,64], 'algorithme Hit-and-run est d’une conception assez simple. A chaque

itération, la méthode compare la solution courante z* & litération k & un autre candidat
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généré aléatoirement. Si ce candidat améliore la solution, alors I'itéré est mis a jour. La géné-
ration aléatoire des candidats se fait en deux étapes. Dans un premier temps, une direction
d est choisie aléatoirement a partir d’une distribution dense dans la sphere unité. Ensuite,
la longueur du pas s est générée a partir d'une distribution uniforme, telle que z* + sd soit
réalisable. Bien qu'une analyse de convergence de cet algorithme soit proposée dans [14], I'al-
gorithme Hit-and-run est placé dans la catégorie des heuristiques, car il a un comportement
fortement aléatoire et est d’'une conception assez simple. En effet, sa convergence repose sur le

fait qu’en évaluant suffissamment de points aléatoirement, la solution finira par étre trouvée.

3.1.2 Algorithme génétique

Les algorithmes génétiques, aussi appelés algorithmes évolutifs, se basent sur la théorie de
I’évolution et de survie des individus les mieux adaptés. Pour préserver I’analogie biologique,
une solution est appelée individu, un ensemble de solutions forme une population et les indivi-
dus se combinent pour en créer de nouveaux. Le cadre général des algorithmes génétiques est
décrit a I'algorithme 1. Celui-ci laisse beaucoup de flexibilité et d’interprétation, notamment
au point 3 ou aucun critere d’arrét n’est précisé, ce qui correspond a une heuristique. De
méme, la sélection de la population initiale, la métrique d’aptitude (fitness), la sélection des
parents ou des survivants, la création d’une progéniture ou la mutation de celle-ci sont des
étapes clefs mais aucune méthode claire pour choisir ceux-ci n’est définie. De bonnes pratiques
pour certaines de ces décisions existent, sans toutefois donner de regles fixes garantissant la

convergence de la méthode.

C’est dans la flexibilité des algorithmes génétiques que réside leur force, mais aussi leur
principal défaut. En effet, ceux-ci peuvent étre adaptés a chaque probléme particulier afin
d’améliorer leur performance, mais rien ne garantit que deux algorithmes génétiques aient

un comportement similaire face a un méme probleme d’optimisation.

La qualité d’un individu est appelée son aptitude. Bien que celle-ci doit étre liée a la valeur de
la fonction objectif, plusieurs facons de calculer une aptitude existent. Elles doivent toutefois

respecter deux regles.

1. Pour un probléme de minimisation d'une fonction f, si f(z) < f(y), alors la valeur
de I'aptitude de x doit étre plus grande que celle de y. Cette regle s’inverse pour un

probleme de maximisation.
2. L’aptitude d’un individu doit étre strictement positive.

Deux méthodes pour calculer une métrique d’aptitude utilisant la fonction objectif sont

proposées dans [10], il s’agit de 'aptitude de rang, qui ordonne les points en fonction de
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Données : objectif f : R” — R et une population initiale P° = {z! 2%, ... 2}
0. Initialisation

v € (0;1) Probabilité de mutation
k<0 Compteur d’itération

1. Aptitude
> Utiliser la valeur de la fonction objectif f(x) pour déterminer une aptitude de survie
de chaque individu =z € P*
2. Croisement
> 2.1 Sélection : sélectionner 2 parents de la population P* et aller & 2.2 ou sélectionner
un survivant de P* et aller a 2.4;
> 2.2 Croisement : utiliser les deux parents pour créer une progéniture ;
> 2.3 Mutation : avec une probabilité v appliquer une mutation a la progéniture et vérifier
la faisabilité de la mutation :
> Si la mutation n’est pas réalisable, déclarer la progéniture morte et aller a 2.1
> Sinon, déclarer la progéniture survivante et aller a 2.4 ;
> 2.4 Mise a jour de la nouvelle génération :
> Placer le survivant dans la population P*+!,
> Si |PFT| > p, aller a 3
> Sinon, aller a 2.1
3. Mise a jour
> Incrémenter k <— k + 1, stop ou aller a 1

Algorithme 1 Algorithme génétique

leur valeur, et de l'aptitude de valeur de la fonction, qui vaut —f(z') + f+1lou f =

max;—1 o5 f(2') pour une population {z' z? ..., 2P}

Une fois la métrique d’aptitude déterminée, il faut établir une méthode de sélection. Cette
méthode doit permettre de choisir un individu survivant ou deux individus parents d'une
population. Sélectionner deux parents revient a choisir deux fois un survivant, a ’exception
que les deux survivants doivent étre différents. La sélection élitiste, la roulette et le tournoi
font partie des méthodes de sélection les plus populaires. La premiere consiste a garder les
individus avec la meilleure aptitude. La sélection par roulette choisit des individus aléatoi-
rement avec des probabilités pondérées en fonction de leur aptitude. La derniére sélectionne

une sous-population et applique une des deux méthodes précédentes.

Une fois la sélection effectuée viennent les étapes de croisement et de mutation. Celles-ci se
basent sur un systéme d’encodage. Chaque individu est représenté par un ensemble de bits,
souvent appelé chromosomes pour respecter la métaphore biologique. Plusieurs stratégies de

croisement existent et se basent sur le fait de garder une partie des chromosomes de chaque
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parent pour créer un nouvel individu. Les stratégies de mutation consistent en I'inversion de

certains bits choisis aléatoirement.

A la troisieme étape de I'algorithme 1, 'algorithme génétique a la possibilité de s’arréter. Tou-
tefois, cet algorithme n’utilise pas de mesure intrinseque pour quantifier la convergence de la
méthode. Les criteres d’arrét les plus utilisés se basent donc sur un budget d’évaluations ou
sur un nombre maximum d’itérations sans amélioration de la valeur de 'objectif. A I'aide de
certaines hypotheses sur la sélection et I’encodage, la convergence de I'algorithme génétique
peut étre étudiée. Des méthodes pour satisfaire ces hypothéses sont données dans [10, sec-
tion 4.2-4.5]. Concretement, les résultats de convergence de 1'algorithme génétique peuvent se
résumer a "en essayant suffisamment de points, on finira par trouver la meilleure solution’”.
Néanmoins, les algorithmes génétiques sont tres populaires et offrent parfois des performances
satisfaisantes. D’une maniere générale, si on trouve des stratégies d’encodage et de croisement
qui correspondent tres bien au probléme, les algorithmes génétiques auront de bonnes per-
formances; si les stratégies d’encodage et de croisement ne correspondent pas adéquatement

au probleme, alors il sera plus intéressant d’utiliser d’autres méthodes.

3.1.3 Algorithme de Nelder-Mead

L’algorithme de Nelder-Mead est une des méthodes d’optimisation sans dérivée les plus po-
pulaires. Celle-ci a été introduite sous le nom de méthode du simplexe [55]. Sa popularité
vient a la fois de sa simplicité d’implémentation et de ses performances. L’algorithme ori-
ginal ne possédait pas de résultat de convergence, méme sur des fonctions différentiables et
convexes [48], mais des versions modifiées de 'algorithme existent et assurent sa convergence

vers un point stationnaire [25,41,68].

Comme son nom original I'indique, la méthode de Nelder-Mead se base sur un simplexe. Dans
un espace de dimension n, un simplexe est le sous-espace défini comme 1’enveloppe convexe

de (n + 1) points formant ses sommets.

A chaque itération k, il existe un ensemble de (n + 1) sommets formant le simplexe Y;, =
{yd, yk,...,yl}, ordonnés par ordre croissant de la valeur de f. Ensuite une opération de
réflexion, d’expansion et/ou de contraction est appliquée pour remplacer le dernier sommet.

Le nouveau sommet est
=y + 5(yc - yn)v
o1 § € Ret y¢ ="} y'/n est le centroide des n premiers sommets. La valeur du paramétre

0 définit 'opération appliquée et celle-ci dépend du succes des transformations précédentes.

Une réduction peut également étre appliquée; celle-ci ne garde que le meilleur sommet et
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remplace tous les autres de la maniere suivante :
i ="+ 0y —”), i=12,...,n.

Les parametres 6%, 5%, §°¢, 6", §¢ correspondent au parameétre § pour les opérations de ré-
trécissement, de contraction interne, de contraction externe, de réflexion et d’expansion res-
pectivement. Une description de l'algorithme de Nelder-Mead est disponible a 1’algorithme
2.

3.2 Meéthodes basées sur des modeéles

Comme leur nom l'indique, les méthodes d’optimisation sans dérivée basées sur des modeles
utilisent des modeles de la fonction objectif pour optimiser celle-ci. L’idée derriere ces mé-
thodes est d’utiliser ou de construire un modele plus simple, qui peut étre optimisé plus
facilement que le probléeme orignal. Si la qualité du modele est satisfaisante, les solutions
obtenues suite a son optimisation devraient étre des solutions intéressantes du probleme
modélisé.

Il existe deux grandes catégories de modeles : les modeles statiques ou dynamiques. Les
premiers sont plus souvent appelés substituts ou surrogates. 11 s’agit de modeles qui ont
un comportement similaire a la fonction objectif mais qui sont plus simples et plus rapides
a évaluer. Ceux-ci sont en général fournis par I'utilisateur et restent les mémes au cours de
I'optimisation, d’ou leur nom de statiques. L utilisation la plus simple de ces modeles consiste
a les optimiser en supposant que la solution du modele sera une bonne solution du probléme

original.

Les modeles dynamiques sont construits et mis a jour au cours de 'optimisation. Prenons un

modele quadratique pour exemple. Celui-ci est construit a partir de la base des polynémes

de degré inférieur ou égal a 2, qui possede g + 1 = % éléments :
o(x) = (do(x), d1(x), . .., Pq(2))
vi 3 ap
=|1,21,29,...,%,, PR ?,1'1[['2,1'11'3, ey T 1Ty | -

Le modele quadratique de la fonction objectif m; sera donc défini par o € R?™, my(z) =
a'¢(x). La construction du modele se fait a partir d'un ensemble de p + 1 points de R",
Y = {4 y',...,yP}. Puisque le modele doit étre le plus proche possible de la fonction
objectif, il faut trouver a € R?" tel que 3¢y (f(y) — my(y))? soit minimal. En définissant



0. Initialisation
> Evaluer f aux points de Yy = {30, v¢,...,y0}
> Choisir les paramétres 0 < §° < 1, —1 < 6 < 0 < §°¢ < §" < §¢
> k<0
1. Itération
> Ordonnancement
> Ordonner les points de Y}, tels que [0 = f(y2) < f1 = f(yi) <--- < f* = f(yp?)
> Réflexion
> Construire y© et y" = y° + 0" (y° — y")
> Evaluer f" = f(y")
- S (0 < f7 < fro)
> Ve < {u vt - wi Ly}
> k< k+1etalleral
> Expansion si (f" < f)

> Construire y¢ = y° + §¢(y° — y")
> Evaluer f¢ = f(y°)
> Si(f¢ < f7)

> Vg < {ulh vt wi %)
> Sinon

> Yk—i—l — {yl[g?yliv te 7yl?+17 yr}

> k< k+1letalleral
> Contraction si (f7 > fm*!)
> Si (f" < f") : contraction externe
> Construire y° = y° + 6°°(y¢ — y™)
> Evaluer f° = f(y%)
> Si(fee < f7)

> }/;c—‘rl — {yl(g]ayla ce a?/;?“a?/oc}
> k< k+1, alleral
> Sinon

> Aller a Rétrécissement
> Si (f" > f™) : contraction interne
> Construire y* = y° + 6“(y° — y")
> Evaluer f = f(y%)
> Si(fe<f7)
> Yk—H — {yga yli? c 7y2+17 yic}
> k< k+1, alleral
> Rétrécissement si (f7 > f*1)
> Construire les n points y®*,71=1,2,...,n
> Evaluer f aux n points

> Yk+1 < {y81uy827' .. 7y5n}
> k< k+1letalleral

Algorithme 2 Algorithme de Nelder-Mead
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une matrice M (¢,Y) € RP+H)x(a+1),

do(y°) o1(¥°) -+ dg(y°)
M(6.Y) = ¢o(.y) ¢1('y) %(‘y) |

do(yP) D1(yP) - dg(yP)

cela revient & résoudre M (¢, Y)a = f(Y), ot f(Y) = (f(4°), fF(yY), ..., fF(y?)".

Si p > q, plus de points que nécessaire sont disponibles. La construction du modele se fait en

résolvant

min [ M(¢,Y)a — f(V)||*.

a€cRatl
Si p = q, alors la solution est unique. Si p < ¢, nous ne disposons pas de suffisamment de
points pour construire le modele, et il existe une infinité de solutions. C’est le cas le plus
fréquent en optimisation de boite noire, puisque le budget d’évaluations est souvent limité.
Dans ce cas, la solution choisie sera celle qui minimise la norme de Frobenius de la matrice

Hessienne, c¢’est-a-dire qui minimise la courbure du modele.

Il peut étre intéressant de juger de la qualité d’'un modele donné. En supposant une fonction
f € C' et Vf Lipschitz continue, un modeéle m; est appelé complétement linéaire (CL) sur

la boule centrée en y de rayon A, B(y; A), si

{ f () —mg(z)| < rpA?
IV f(x) — Vimg(z)| < koA

pour tout z € B(y; A) et pour des constantes k¢, ky; A est appelé parametre de précision
du modele. Il existe également une définition d’'un modele complétement quadratique (CQ).

Soit f € C* et V2f Lipschitz continue, un modeéle m; est complétement quadratique si

|f(x) —myg(x)] < KpA°
IVf(x) = Vmg(z)] < rgA*
V2 f(x) = VPmy(z)| < mpd?

pour tout x € B(y; A) et pour des constantes Ky, K, et Ky,

Un ensemble de modeles M = {m : R" — R, m € C?} est une classe complétement linéaire

(resp. quadratique) s’il existe un modele completement linéaire (resp. quadratique) dans
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M et ¢’il existe une procédure capable de, soit déterminer si un modele est complétement
linéaire (resp. quadratique) sur B(z; A), soit trouver un modele complétement linéaire (resp.

quadratique) sur B(z; A).

Vu qu'un modele est généralement plus simple que la fonction objectif du probleme d’opti-
misation, les limitations dues au temps d’évaluation de la boite noire ne s’appliquent plus
aux modeles. Les auteurs de [10] concluent que si les modeles sont de qualité suffisante, alors
il est possible d’adapter des méthodes d’optimisation lisse a 'optimisation sans dérivée. La
suite de cette section présente une généralisation de la méthode du gradient basée sur des

modeles ainsi qu'une méthode de région de confiance.

3.2.1 Descente basée sur des modéles

La méthode du gradient [56, Chapitre 1] est une méthode d’optimisation bien connue. Celle-ci
consiste a réaliser une recherche linéaire dans la direction de plus forte descente, celle opposée
au gradient. Toute la méthode se base donc sur le calcul du gradient a chaque itération pour

trouver la direction de plus forte descente.

Grace a I'utilisation de modeles, une généralisation de cette méthode sans dérivée est possible.
L’idée de base est la suivante. A chaque itération, un modele local dérivable est construit,
vient ensuite une recherche linéaire dans la direction opposée au gradient du modele. La
qualité du modele est assez importante pour I'optimisation, ¢’est pourquoi celle-ci est vérifiée

avant d’effectuer la recherche linéaire.

On introduit les notations suivantes. o € R™ représente le point de départ et x;, € R™ l'itéré
courant, my est un modele completement linéaire de précision Ay > 0. Un parametre p9 > 0
vérifie la précision de I’évaluation du modele,  €]0; 1] le parametre d’Armijo, €4 €]0; 1] 'angle
minimum de descente et € > 0 une tolérance d’arrét. L’algorithme de descente basée sur des

modeles est décrit a ’algorithme 3.

3.2.2 Meéthodes de région de confiance

Les méthodes de région de confiance exploitent un modele simple, en général lisse et facile
a évaluer, et supposent qu’il a un comportement similaire & 1'objectif dans un voisinage, la

région de confiance, de la solution courante.

Un modele linéaire peut étre utilisé car il n’a besoin que de O(n) points pour étre construit

mais il ne donne aucune information quant a la courbure du probleme. Un modele quadratique
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0. Initialisation
> Choisir g, Ay, po, €4 €t €
> k< 0.
1. Construction du modele
> Construire m’} a partir de A, et d’'un nombre de points
2. Vérification du modele
> Si (A < eet |[|[Vmh(zp)| <€) : Stop
> Si (A > pl|Vmf(a)]) -
> Modele pas précis
> Apgr & Ap/2, flgs1 < fig, Thp1 < T
> k< k+1, aller a 'étape 1
> Si (A < [ V(o))
> Modele précis
> Aller a I’étape 3
3. Recherche linéaire

.. T Vmk (x,)
> Choisir dj tel que (%) <Vm§(x';)”> < —€q

> Chercher ty, tel que f(zy + tpdy) < f(zk) + ntrdy Vml(z,)
4. Mise a jour
> Si t; est trouvé :
>z <y ou f(y) < flag + trdy)
D M1 < Mk
> Sinon :
D> Tpy1 < Tk
> flks1 < fe/2
> App1 Ay
> k< k+ 1, aller a I'étape 1

Algorithme 3 Descente basée sur des modeles

est donc en général privilégié, de la forme :
mg(w) = flar) + g (v —2p) + (v — ax) Hi(z — )",

ou gr € R" et Hp € R™" symétrique. Ces parametres correspondent au gradient et a la
Hessienne du modele en x = 0 et sont estimés en imposant que le modele interpole un certain

ensemble de points, my(a?) = f(2'),i=0,2,...,p.

Le modele est supposé fidele dans un voisinage du point xj, en général ce voisinage est pris

comme la boule de rayon Ay,

B(l’k,Ak) = {l‘ e R": ||ZE — l’k” < Ak} .
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A chaque itération, ce modele est minimisé dans la boule de rayon de Aj. Bien entendu,
le modele n’est pas toujours tres fidele a 'objectif. C’est pourquoi le calcul d’un rapport r
comparant la réduction prévue par le modele et celle observée par I'objectif est d’un certain

intérét. Pour un point ¢, ce rapport est défini comme

Si ce rapport n’est pas suffisant, le modele est considéré comme pas assez fidele et soit la
taille de la région de confiance est réduite, soit une procédure sensée améliorer la qualité du

modele est appliquée. L’algorithme complet est décrit a ’algorithme 4.

3.2.3 Optimisation Bayesienne

Les méthodes d’optimisation Bayesienne se basent elles aussi sur des modeles. Toutefois, il

s’agit plutot de modeles probabilistes.

En optimisation Bayesienne, la fonction objectif est considérée comme aléatoire, puisque celle-
ci n’est pas connue. La fonction objectif suit une distribution a priori, qui représente ce qui
est supposé de la fonction objectif. Une fois que la boite noire est évaluée, la distribution de
la fonction objectif est mise a jour pour former une distribution a posteriori. Les distributions

a priori et a posteriori sont liées via la regle de Bayes.

En pratique, la fonction objectif est représentée par une variable aléatoire F' avec une dis-
tribution a priori p(F). Celle-ci représente notre croyance quant aux possibles valeurs que
pourrait prendre F' avant que celle-ci n’ait été observée. Ensuite, en ayant acces a des don-
nées D, des évaluations de I'objectif, et un modele de vraisemblance p(D|F), il est possible

de construire la distribution a posteriori p(F|D),

p(F|D) o p(D|F)p(F).

Cette distribution a posteriori est ensuite utilisée pour construire une fonction d’acquisition
u qui déterminera de nouveaux points a évaluer. Ces nouveaux points seront utilisés pour
mettre a jour les distributions a l'itération suivante. Une description de haut niveau de cette

méthode est présentée a l'algorithme 5.

Il existe plusieurs manieres de construire les distributions a priori et a posteriori; les pro-
cessus Gaussiens ou les processus de Wiener sont les plus connus. Plusieurs modeles sont
présentés dans [63, section 2 et 3] et dans [20, section 2|. La nature de la fonction d’ac-

quisition est également importante. En effet, les nouveaux points a évaluer sont déterminés
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0. Initialisation
> Choisir une classe de modele
> Choisir une méthode d’amélioration du modele
> Données : Zg, Amazs Do €]0; Aae
> Initialisation le modele my
> k<0
1. Test critique
> Si llgell < e
> Appliquer la méthode d’amélioration du modele
> Si le modele n’est pas assez bon ou la région de confiance trop grande
> Construction d’'un nouveau modele
> Sinon
> Vérifier le critere d’arrét — STOP
2. Optimisation du sous-probléme
> Trouver ¢ € argmin,ep,, .a,) M5 (7)
> Evaluer f(t) et calculer le rapport r(t)
3. Acceptation du candidat
> Sir(t) >m
> Zry1 < T, mise a jour du modele avec le point ¢
> Sinon
D> Tpy1 < Tk
4. Amélioration du modeéle
> Sir (t) <M
> Appliquer la procédure d’amélioration du modele
5. Mise a jour de la région de confiance

[Aku mln{’y'chky Amax}} si T<t> Z ™
JAVIRIS {VaecAr} sir(t) <m et my est CL
{Ay} sir(t) <m et my n'est pas CL

> k<« k+1

Algorithme 4 Algorithme de région de confiance sans dérivée

par celle-ci, soit car la valeur de l'objectif est intéressante soit car 'incertitude quant a la
fonction est importante. Cela permet une balance naturelle entre I'exploration de ’espace de
recherche et I'intensification de la recherche a un endroit plus précis. Les exemples les plus
connus consistent a maximiser la probabilité d’amélioration, I’espérance d’amélioration de la
fonction ou une borne de confiance [52]. Une revue de possibles fonctions d’acquisition est

présentée dans [63, section 4] et [20, section 2.3].
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0. Initialisation
> Ensemble de données Dy = ()
> Fonction d’acquisition u
> k<0
1. Optimisation
> Trouver zj € argmax, u(z|Dy) a l'aide de la distribution a priori
> Evaluer 'objectif y, = f(z)
2. Mise a jour
> Dip1 = {Dk, (xk;yk)}
> Mettre a jour

Algorithme 5 Optimisation Bayesienne

3.3 Méthodes de recherche directe

Les méthodes de recherche directe sont un ensemble d’algorithmes d’optimisation qui ont la
structure suivante. Au début d’une itération, I’algorithme connait une solution courante. Il
s’agit de la meilleure solution connue par la méthode. Un ensemble de points d’essais est
évalué. Ensuite, des actions sont prises en fonction des évaluations de ces points; si un de
ces points améliore la solution courante, celle-ci est mise a jour, sinon un parametre de taille
de pas est réduit et un nouvel ensemble de points d’essais est généré. Il faut noter qu’aucun
modele de la fonction n’est construit pour générer ’ensemble de points a évaluer, ni aucune
approximation des dérivées. Cette section présente plusieurs méthodes de recherche directe
allant des plus simples, comme la recherche par coordonnées, jusqu'a des méthodes plus

évoluées comme la recherche par treillis adaptatif.

3.3.1 Recherche par coordonnées

Une premiere méthode de recherche directe assez simple est la recherche par coordonnées [32].
La solution courante a I'itération k est notée z*. Chaque itération est composée d'une étape
de sonde, une étape lors de laquelle les points 2* + §Fe; sont évalués, ol e; est le vecteur
de R™ composé uniquement de 0 et d’'un 1 a la ¢ composante. Si un point améliorant la
solution courante est trouvé, celui-ci devient la nouvelle solution courante et l'itération est
considérée comme un succes ; sinon le parametre de pas 6% est diminué et une nouvelle sonde
est effectuée. Certaines variantes de cet algorithme existent. Par exemple, le parametre de pas
pourrait étre augmenté lors des succes ou la sonde pourrait étre interrompue des qu'un point
améliorant la solution est trouvé. Cette derniere variante est appelée stratégie opportuniste.

Lorsque cette stratégie est appliquée, 'ordre d’évaluation des points de I’ensemble de sonde
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a une importance non négligeable. La recherche par coordonnées est décrite a I’algorithme 6.

Données : objectif f : R" — R et un point de départ 2° € R®
0. Initialisation

6% € (0;00) Taille de pas initiale
Estop € [0; 00) Tolérance d’arrét
k<0 Compteur d’itération

1. Sonde
> Si f(t) < f(2%) pour un certain t € P* := {xk + 6Fe;1i=1,2,... ,n}
>kttt et 6P« 6F
> Sinon
>kt 2k et §FH
2. Terminaison
> Si 0" > egop
> Incrémenter k < k+ 1 et aller a 1
> Sinon
> Stop

6k
2

Algorithme 6 Recherche par coordonnées

Pour la recherche par coordonnées, il existe un résultat de convergence assez faible. Celui-ci

est décrit au théoréme 3.1.

Théoréme 3.1 (Convergence de la recherche par coordonnées) Soient f : R" — R
une fonction C° avec des ensembles de niveau bornés et {x*} la suite produite par la méthode

de recherche par coordonnées avec €gq, = 0. Soit & le point d’accumulation des itérations

échec de {x*}.

Alors, pour tout d € {£e; :i=1,2,...,n}, soit f'(;d) > 0, soit f'(Z;d) n’existe pas. De

plus, si f € C', alors & est un point critique de f, c’est-a-dire V f(2) = 0.

Ce résultat est intéressant mais relativement faible car il ne donne des garanties uniquement

sur les dérivées dans les directions e;.

Prenons par exemple la fonction convexe f : R* — R, f(z) = ||z]|c = max(|z1], |z2]), et
le point 2° = [1,1]". Quelle que soit la valeur de §, 2° + ¢; (pour i = 1,2) n’améliore pas
la solution courante f(z°) = 1. En effet, les directions e; (i = 1,2) sont des directions de
montée tandis que les directions —e; sont paralleles aux ensembles de niveau. La recherche
par coordonnées ne peut donc pas trouver le minimum de la fonction, & savoir [0,0]". Le

parametre 9 diminue a chaque nouvelle itération car celles-ci sont toujours des échecs.
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La suite de cette section présente les méthodes de recherche par motif généralisée et de
recherche directe par treillis adaptatif. Ces méthodes ont une structure similaire a la recherche

par coordonnées mais possedent des résultats de convergence plus intéressants.

3.3.2 Recherche par motif généralisée

La recherche par motif généralisée (GPS) [67] est une amélioration de la recherche par coor-
données. Concretement, elle propose d’autres directions de recherche que celles alignées sur
les axes, ainsi que la possibilité pour ces directions de changer en fonction des itérations.
En plus de I'étape de sonde, qui est une recherche locale, la recherche par motif généralisée
propose une étape de recherche plus globale appelée simplement étape de recherche. Cette
recherche consiste a évaluer un nombre fini de points dans I’espace de recherche. Si I'étape
de recherche génere un point améliorant la solution courante, il s’agit d’un succes, I'étape
de sonde peut étre omise. L’étape de sonde de GPS est assez similaire a 1’étape de sonde
de la recherche par coordonnées. Un ensemble de points autour de la solution courante est
généré et évalué en espérant trouver une meilleure solution. La différence porte sur la fagon

de générer cet ensemble de sonde.

Pour assurer des résultats de convergence plus intéressants, il faut controler les étapes de

sonde et de recherche. Cela est fait au travers d’un treillis, défini a la définition 3.1.

Définition 3.1 (Treillis ( [10, chapitre 7], notre traduction) Soit G € R™" une ma-
trice inversible et Z € Z"*P telle que les colonnes de Z forment un ensemble générateur
positif de R™. On définit D = GZ. Le treillis généré par D centré sur la solution courante
2% € R" de taille de maille 6¢ > 0 est défini par

MF = {xk—l—(SkDy Ty € Np} C R™

Puisque les colonnes de la matrice Z € Z™*P forment un ensemble générateur positif et que
la matrice G est inversible, les colonnes de la matrice D forment également un ensemble
générateur positif. D est appelée une matrice générateur positif et I’ensemble de directions

composé des colonnes de D est noté D.

Tous les points évalués par 'algorithme doivent appartenir au treillis. Il faut noter que le
treillis est un concept mais ne doit pas étre construit en tant que tel au cours de I'exécution
de l'algorithme. Une illustration du treillis lors de trois sondes successives est présentée a la
figure 3.1. La solution courante et les points de sonde sont représentés par le symbole "eo". Le

cadre noir retient ’ensemble des points du treillis qui peuvent étre évalués lors de la recherche
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locale. Lors de la premiére sonde sur la figure 3.1(a), le point p' améliore la solution. C’est
pourquoi le cadre s’est déplacé sur la figure 3.1(b). Lors de la deuxieéme sonde, aucun point
améliorant la solution n’est trouvé et le treillis est raffiné, comme cela est représenté sur la

figure 3.1(c). La méthode de recherche par motif généralisée est décrite a ’algorithme 7.

=

Tk | pt Tr+1

is!

p? p?

() 0k = 3 (b) k1 = 3 () Ohpo =%

Figure 3.1 Représentation du treillis et cadre de sonde de GPS

Pour analyser la convergence de cette méthode, il faut s’intéresser au comportement de
I’algorithme lorsque le nombre d’itérations tend vers I'infini. La convergence de cette méthode
repose sur les arguments suivants. Supposons que I'ensemble de niveau {z € R" : f(z) <
f(zo)} de la fonction & minimiser forme un ensemble compact. Alors, le nombre d’itérations
ou une meilleure solution courante est trouvée, un succes, est fini. En effet, puisque lors d’un
succes, la fonction objectif est strictement réduite et que le treillis est une structure discrete,
il n’y a qu'un nombre fini d’itérations formant un succes. Lorsque le nombre d’itérations tend
vers I'infini, on peut en conclure que le nombre d’itérations formant des échecs tend également
vers 'infini. Puisque la taille du maillage 6 est réduite a chaque itération infructueuse, il est

possible d’en déduire une limite quant a cette taille de maillage du treillis,

lim inf 6" = 0. (3.1)
k—o0

De plus, il existe une sous-suite d’itérations infructueuses {k;} et un point z* tels que

k,L': *

lim 6% =0, limz x*.

1—00 1—00
Ceci vient du fait qu’il y a une infinité d’itérations ou I’étape de sonde échoue et que la
taille du maillage est réduite uniquement lors de telles itérations. Notons K! la sous-suite
d’itérations échecs. Si la limite (3.1) est satisfaite, il existe une sous-suite K2 C K! tel que
d5, tend vers 0, pour tout k € K2. La suite {x)}x2 est donc bornée et contient une sous-suite

convergente {x}gs. On note x* = limyc ks 7.
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Données : objectif f : R" — R et un point de départ 2° € R”
0. Initialisation

6% € (0;00) Parametre de treillis intial
D=GZ Matrice générateur positif

€ (0;1), rationnel Parametre d’ajustement du treillis
Estop € [0; 00) Tolérance d’arrét
k<0 Compteur d’itération

1. Recherche
> Si f(t) < f(2%) pour un certain ¢ d’un sous-ensemble fini du treillis M*
> aFtt  oF ) §FH  7715F et aller A 3
> Sinon
> Aller a 2
2. Sonde
> Choisir un ensemble générateur positif D
> Si f(t) < f(zF) pour un certain t € P* :=

> Alors ¢t < t et FH1 «— 716K

> Sinon z* est un minimum local du treillis
> bt gk et gL 7oF

3. Terminaison

> Si 8" > €g0p
> incrémenter k < k+ 1 et aller a 1

> Sinon
> Stop

/—Aﬂ

iékd de Dk}

Algorithme 7 Recherche par motif généralisée

Cela implique que l'algorithme raffine le maillage du treillis dans le voisinage de la solution
courante. En supposant que la fonction objectif est localement Lipschiptz autour du point

x*, on peut conclure d’un résultat quant aux dérivées directionnelles de Clarke [22],
fe(z*;d) >0, VdeD*, (3.2)
ou D* est un ensemble générateur positif de D et

£°(a: d) = lim sup fly+1td) - f(y)

y—ax,tl0 t
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En imposant que la fonction objectif est strictement dérivable au point z*, on obtient

Vf(*)=0.

Ce résultat de convergence est plus général que celui de la recherche par coordonnées mais
souffre d'un défaut majeur. La matrice générateur positif D est de dimension finie. Il existe
donc un ensemble fini de générateurs positifs et donc de directions explorées autour de la

solution z*.

Une étude plus complete de la convergence de GPS peut étre trouvée dans [7,10,24, chapitre

7.

3.3.3 Recherche directe sur treillis adaptatif

Bien que la GPs généralise la recherche par coordonnées en sondant dans une plus grande
variété de directions, les résultats de convergence ne sont pas encore a la hauteur de nos
espérances. En effet, 'initialisation de GPS requiert une matrice générateur positif. Toutes
les directions de sonde vont étre sélectionnées parmi les colonnes de cette matrice, ce qui

implique un nombre fini de directions de sonde dans GPS.

Pour généraliser la recherche par motif généralisée, la recherche directe par treillis adaptatif
(MADs) [8] propose un moyen d’avoir une infinité de directions de sonde possibles. Cela
permet de contrecarrer les limites de convergence de GPs. Un autre avantage de MADS est
sa gestion des contraintes notamment via la barriere progressive. La gestion des contraintes

n’est pas au cceur de ce projet mais cela reste tout de méme un avantage de cet algorithme.

Contrairement a GPS, la recherche directe par treillis adaptatif possede un parametre pour
la taille du treillis 0% et un parameétre pour la taille du cadre de sonde AF. Celui-ci n’était
pas nécessaire dans GPS car cette derniere peut étre vue comme un cas particulier de MADS

ou ces deux parametres ont la méme valeur.

MADS introduit donc les notions de cadre de sonde et de taille du cadre de sonde reprises
dans la définition 3.2.

Définition 3.2 (Cadre de sonde [10, section 8.1], notre traduction) Soit G € R"*"
une matrice inversible et Z € Z"*P telle que les colonnes de Z forment un ensemble générateur
positif de R™. On définit D = GZ. On choisit un paramétre de taille de treillis 6% > 0 et on
définit A* tel que 6% < AF. Le cadre de taille A* généré par D centré sur la solution courante
zF € R"™ est défini par

FF .= {x e MF: ||z — 2F||o < Akb}
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avec b = max{||d'||o : ' € D} et ou AF est appelé parametre de taille du cadre.

L’ensemble de sonde de GPs est inclus dans le cadre de sonde de MADS, qui est lui-méme
est sous-ensemble du treillis, pour un treillis et une solution courante donnés. En réduisant
plus rapidement le parameétre de taille du treillis que celui de taille du cadre, ’ensemble de
directions de sonde pouvant étre sélectionnées est plus grand, de maniere a créer un ensemble
de directions de sonde dense dans la sphere unité. Les parametres de taille du treillis et de

sonde doivent respecter 0 < §¥ < A* & chaque itération et
limé, =0 <= lim A, =0, pour tout sous-ensemble d’indices K.
keK keK

Pour cela, la stratégie 0¥ = min{A¥, (A¥)?} est proposée, bien que d’autres stratégies sont

possibles [11].

L’augmentation du nombre de directions de sonde possibles est illustrée a la figure 3.2. 1l
s’agit d’une situation similaire a celle de la figure 3.1, mais adaptée a la situation de MADS.
Il est possible d’y voir qu’il y a une augmentation de points du treillis dans le cadre lorsque
le maillage est raffiné. En effet, lorsque le treillis est raffiné a la figure 3.2(c), on passe de
25 = (44 1)% a 81 = (8+1)? points du treillis qui appartiennent dans le cadre de sonde. Ceci
illustre la densité croissante des directions de sonde lorsque Ay tend vers 0. La méthode de

recherche directe par treillis adaptatif est présentée a I’algorithme 8.

Tk | pl k41

(a) o0 = 3, A = (b) k41 =5, Ak = (€) Opgo = 15, Ap = 1

=
N~
N[ =

Figure 3.2 Représentation du treillis et cadre de sonde de MADS

L’analyse de convergence de MADS est similaire a celle de Gps. La différence la plus im-
portante repose sur le fait qu’il y a une infinité de directions de sonde possibles. De plus, la
différentiation du cadre de sonde et du treillis permet d’avoir un ensemble de directions de
sonde plus riche que GPS, et donc un résultat de convergence plus fort. En effet, puisque le

parametre de taille du treillis doit toujours étre plus petit que le parametre de taille du cadre
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Données : objectif f : R" — R et un point de départ 2° € R”
0. Initialisation

A € (0;00) Parameétre de cadre initial
D=GZ Matrice générateur positif
7 € (1;00), rationnel Parametre d’ajustement du treillis
wh>0,w” < -1 Parameétres d’ajustement du treillis
Estop € [0;00) Tolérance d’arrét
k<+0 Compteur d’itération

1. Mise a jour du parametre
> Définir le parametre de taille du treillis 0¥ = min{A*, (A*)?}
2. Recherche
> Si f(t) < f(2%) pour un certain ¢ d'un sous-ensemble fini S* du treillis M*
> bt gk AR 29T AR et aller A 4
> Sinon
> Aller a 3
3. Sonde
> Choisir un ensemble générateur positif DX tel que P* = {2* + §*d : d € DX} soit un
sous-ensemble du cadre F* de taille A
> Si f(t) < f(2F) pour un certain t € P*
> Alors zFt! < ¢ et AR 7@ AR
> Sinon ¥ est un minimum local du treillis
> Rl aF et AR 79T AR
4. Terminaison
> Si AM > ey,
> incrémenter k < k + 1 et aller a 1
> Sinon
> Stop

Algorithme 8 Recherche directe par treillis adaptatif

de sonde, plus de directions peuvent étre utilisées pour créer un ensemble générateur positif.
Lorsque le nombre d’itérations tend vers I'infini, cet ensemble de directions de sonde possibles
devient dense dans la sphere unité. L’analyse de convergence de GPS tient également pour
MADS. Puisqu’il y a un plus grand ensemble de directions de sonde possible, le résultat de

convergence de GPS (3.2) peut étre étendu pour MADS en

fola*;d) >0, VdeR"

Une analyse de convergence complete de MADS est reprise dans [10, 24, chapitre 7] ou [§].
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La qualité de MADS dépend de la maniere de générer les ensembles générateur positif aux

étapes de sonde. Différentes implémentations sont présentées dans [1,8,45,69].

Il est important de noter que ’analyse de convergence de GPs et de MADS se base essentielle-
ment sur I’étape de sonde. L’étape de recherche doit uniquement satisfaire les deux conditions

suivantes :
1. Evaluer un nombre fini de points,
2. Tous les points évalués doivent appartenir au treillis.

Le cadre algorithmique de MADS laisse donc de grandes libertés permettant d’intégrer des
stratégies de recherche diverses et variées comme une recherche basée sur des modeles ou sur

une heuristique, tant que celles-ci satisfont ces deux conditions.

Par exemple, il est possible d’intégrer la méthode de Nelder-Mead dans un algorithme MADS,
comme présenté dans [13]. Une autre possibilité, présentée dans [23], est d’appliquer une étape

de recherche basée sur des modeles quadratiques.

3.4 Optimisation sans dérivée en grande dimension

Cette section se concentre sur les méthodes d’optimisation sans dérivée qui s’appliquent
plus spécifiquement aux probléemes en grande dimension. Une approche assez simple serait
d’utiliser le parallélisme. Cela permet d’effectuer plusieurs évaluations de la boite noire si-

multanément et limiter le temps d’exécution des algorithmes.

Ce travail s’intéresse plus particulierement aux stratégies de réduction de dimension. Cela
permet de résoudre des probléemes de grande de taille, sans exploiter le parallélisme. Par
exemple, une adaptation de la méthode de descente basée sur des modeles en grande di-
mension est présentée dans [70]. Les algorithmes supportés par une analyse de convergence
nous semblent préférables, c¢’est pourquoi des stratégies de réduction de dimension pour les
algorithmes d’optimisation Bayesienne et MADS sont présentées aux sections 3.4.2 et 3.4.3
respectivement. Toutefois, une version de ’algorithme de Nelder-Mead adapté pour des pro-

blemes de grande dimension est également décrite.

3.4.1 Algorithme de Nelder-Mead en grande dimension

Dans [49], Mehta explique que 'algorithme de Nelder-Mead, avec ses parameétres mis a leur
valeur par défaut, a de mauvaises performances sur les problemes en grande dimension. Les
auteurs de [33] expliquent que les opérations d’expansion et de contraction ont une certaine

propriété de descente mais que l'efficacité de celle-ci diminue lorsque la taille du probleme
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augmente. Dans ce cas, I'algorithme est alors dominé par I'opération de réflexion. Plusieurs
stratégies ont alors été proposées pour fixer les parametres de 1'algorithme. Celles-ci se basent

principalement sur des parametres qui s’adaptent a la taille du probléme.

Les auteurs de [30] ont appliqué un algorithme génétique pour faire évoluer 'algorithme de
Nelder-Mead tandis que dans [43], les résultats d'une analyse de sensibilité sont exploités
pour fixer ces parametres. Dans [49], Mehta présente une maniere de fixer ces parametres en
se basant sur les points de Chebyshev. Une autre approche pour améliorer les performances
de 'algorithme est de perturber le centroide aléatoirement ce qui améliore sa convergence,
comme présenté dans [31]. La méthode de Nelder-Mead n’est pas fondamentalement trans-
formée lors de ces adaptations, car celles-ci reposent plus sur le fait de trouver de bonnes

valeurs pour les parametres inhérents de la méthode.

3.4.2 Réduction de dimension en optimisation Bayesienne
En plus des versions exploitant le parallélisme, il existe également des méthodes d’optimisa-
tion Bayesienne appliquant des stratégies de réduction de dimension.

Celles-ci supposent que 'objectif a une dimension effective petite comparée a sa dimension.
Concretement, une fonction objectif f : R™ +— R possede une dimension effective n, < n s’il

existe un sous-espace linéaire 1" de dimension n, tel que pour tous vecteurs x € T et x+ € 1T,

flx+a7) = f(2).

La dimension effective n. est la plus petite dimension satisfaisant cette égalité. On parle

également de fonctions avec un sous-espace actif 7.

Au lieu d’essayer de résoudre le probleme original

min  f(x)

z€R™

sujet a x € X
ou X désigne des bornes sur les variables, I'idée est de résoudre le probléme

min  f(Ay)

yERMe

sujet a  ye)y

ou A € R" " et ) représente le nouvel espace réalisable.

La difficulté de cette stratégie vient du fait que la matrice A ainsi que la dimension effective
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ne sont pas connues. La matrice A est souvent choisie comme une matrice aléatoire [21,54].
Le choix du domaine de petite dimension ) peut aussi avoir un impact sur les performances
de l'algorithme [17].

3.4.3 Algorithme STATS-MADS

Comme précisé précédemment, le cadre algorithmique de MADS offre une certaine flexibi-
lité quant a I’étape de recherche. En effet, celle-ci n’est pas indispensable et doit respecter

certaines conditions pour pouvoir préserver l'analyse de convergence de la méthode.

L’algorithme STATS-MADS, décrit dans [2,15], est une instance de MADS développée pour
résoudre des problemes d’optimisation sans dérivée de grande dimension. STATS-MADS se
base sur I'idée d’identifier les variables les plus importantes et d’alterner entre une optimisa-
tion en n dimensions et une optimisation sur un sous-espace dans lequel certaines variables

sont fixées.

L’ensemble des indices des n variables du probléme est noté I = {1,2,...,n}. J; C I désigne
un sous-ensemble de variables. Au cours de I'optimisation, lancer une instance de MADS sur
J; signifie que toutes les variables j C I\ J, les variables dont l'indice n’appartient pas a .Jj,
sont fixées a 2, la solution courante. La nouvelle instance de MADS est donc une instance

en dimension |Jj].

L’identification de ces variables prépondérantes se fait en appliquant une méthode d’analyse
de sensibilité basée sur une analyse de variance. Pour chaque variable, le rapport de corréla-
tion, décrit a la section 2.3.1, permet de mesurer la sensibilité de la boite noire par rapport a
cette variable. Ensuite, les variables sont classées par ordre croissant de sensibilité et les [pn]
premieres sont fixées, ou p est un parametre fixé par 'utilisateur qui définit la proportion
de variables devant étre fixées. Deux autres parameétres doivent étre définis; n! désigne le
nombre maximal d’évaluations successives de la boite noire dans 1’espace entier et n’/ désigne
le nombre maximal d’évaluations successives dans le sous-espace. L’algorithme STATS-MADS

est décrit a l'algorithme 9.

Les travaux présentés dans [2,15] montrent que I'algorithme STATS-MADS améliore effective-
ment les performances de MADS sur un ensemble de problemes d’optimisation non contraints.

Cette amélioration est principalement due a 'optimisation en petite dimension.

Une autre approche pour s’attaquer aux problemes en grande dimension avec MADS est
d’utiliser le parallélisme. De plus amples informations sur le parallélisme sont disponibles
dans [6,9]. Dans la version parallele de MADS, I’espace de recherche est divisé de telle maniere

a ce qu’'un processeur n’ait qu’un petit nombre de variables a traiter. Une version de cet
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0. Initialisation

A® € (0; 00) Parametre de cadre initial
P eXx point initial
I . 52 . . T .
n nombre maximum d’évaluations successives dans 1’espace entier
n’ nombre maximum d’évaluations successives dans le sous-espace

1. Boucle : Pour [ =0,1,2,...,
> Lancer une instance de MADS & partir de 2! avec taille de treillis initial A! et budget
I

n';

soit 2! la meilleure solution trouvée et Ay, la taille de treillis final ;

Calculer les indices de sensibilité et définir J; C [;

Lancer MADS sur J; & partir de 2! avec taille de pas initial A; et budget n” ;

soit x;y1 la meilleure solution trouvée;

v v Vv VvV

Algorithme 9 Algorithme STATS-MADS

algorithme applique une méthode d’analyse de sensibilité pour déterminer I'attribution des

variables aux processeurs disponibles; cet algorithme est décrit dans [3,4].
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CHAPITRE 4 ALGORITHME PCA-MADS

Afin d’améliorer les performances de l'algorithme MADS en grande dimension, il est intéres-
sant de développer une nouvelle stratégie pour I’étape de recherche. Celle-ci consiste a utiliser
une méthode d’analyse de sensibilité afin de définir un nouveau probléeme d’optimisation de
plus petite taille. Cela a déja été fait dans certains travaux comme ceux décrits a la section
3.4. La méthode STATS-MADS identifie puis fixe, momentanément, les variables les moins
influentes. A la différence de cette méthode, I’algorithme proposé cherche a fixer des com-
binaisons de variables. L’étape de recherche applique une analyse en composante principale,
décrite a la section 2.6, pour construire un probléme de plus petite dimension. Nous appelons
cet algorithme PcA-MADS.

L’analyse et la construction du probléme en petite dimension sont décrites dans les sections
4.1, 4.2 et 4.3. La section 4.4 décrit le nouvel algorithme proposé tandis que la section 4.6
reprend les parametres principaux de celui-ci. L’influence de ses parametres sera analysée au

chapitre 5.

4.1 Analyse en composante principale dans PCA-MADS

L’analyse en composante principale est une méthode statistique qui permet, a partir de (n+1)
variables aléatoires corrélées, de définir (n+ 1) variables non corrélées. Celles-ci sont des com-
binaisons linéaires des variables originales. En pratique, la premiére composante principale
correspond a la direction qui reprend la plus grande variabilité des variables aléatoires. La
deuxieme composante principale est la direction qui reprend le plus de variabilité tout en
étant orthogonale a la premiere, et ainsi de suite. L’optimisation de boite noire a, en géné-
ral, comme facteur critique le nombre d’évaluations du probleme. C’est pourquoi ’analyse
de sensibilité de la boite noire se fait a partir de ’ensemble des évaluations déja effectuées,

contenues dans la cache, pour déterminer des directions intéressantes.

Supposons donc que I'on dispose de (n + 1) variables aléatoires, notées X, qui correspondent
aux n variables du probléeme d’optimisation et a la valeur correspondante a la fonction
objectif. A partir des évaluations déja effectuées, il est possible d’estimer une matrice de
covariance et d’effectuer une analyse en composante principale a partir de cette matrice.
Cette analyse permet de fournir (n + 1) directions; celles-ci seront écrites dans une matrice

M, € ROH+UX(+1D) Tes nouvelles variables non corrélées X € R™! sont obtenues grace a la
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transformation des variables originales X et les directions obtenues par ’analyse :
X =M]X.

L’analyse en composante principale est utilisée pour repérer des corrélations entre des va-
riables aléatoires a partir d’'un nuage de points. Or, le but de cette analyse est de déterminer
des directions en dimension n selon lesquelles la fonction objectif a le plus de variabilité. Les
directions issues de I'analyse en composante principale seront ordonnées en fonction de leur
alignement avec la dimension de 'objectif. De cette maniére, les premieres directions sont

celles qui influent le plus sur la fonction objectif.

Soit M € R™™ une matrice qui correspond aux n premieres lignes des n premieres colonnes
de la matrice M, réordonnée. Celles-ci donnent les directions de R™ qui ont le plus d’influence
sur 'objectif. La direction ayant le moins d’impact sur 'objectif est négligée afin d’obtenir
une matrice carrée. Il existe donc une transformation qui permet de transformer un vecteur
xr € R™ en un vecteur x € R,

T=M"z (4.1)

ou les premieres variables ont plus d’influence sur I'objectif que les dernieéres.

L’algorithme proposé cherche a réduire la dimension de I'espace de recherche en ne gardant
que des dimensions qui ont une grande influence sur I'objectif. La matrice M peut étre divisée

en deux matrices de projection P € R™P et ) € R**("=7) |
M=[P Q. (4.2)

La matrice P contient les p directions qui ont le plus d’impact sur 'objectif; la matrice @,
quant a elle, contient les (n — p) directions qui ont peu ou pas d’influence sur la fonction
objectif. D'une maniére similaire & (4.1), il est possible de définir les vecteurs y € R? et

z € R"P comme
PT

T 4.3
o (4.3)

Exemple 4.1 Par exemple, considérons la fonction fi(x1,x) = 10x; + z129 et le nuage de
points en deuzx dimensions {(—5,—5);(=5,5); (5, —5);(5,5); (0,5);(5,0); (1,5); (5,1); (—1,5);

(=5,1)}. L’ensemble des points évalués est repris dans le tableau 4.1. A partir de ce nuage
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de points, nous pouvons construire une matrice de covariance S,

19.389 —0.944 200.556

S=1-0944 16.456 —9.444

200.556 —9.444 2361.111

Les vecteurs propres de cette matrice de covariance sont les composantes principales du nuage

de points. Ceux-ci sont les colonnes de la matrice M, ci-dessous,

—0.9964 —0.0096 0.0847

My =1-0.0100 0.9999 —0.0040] -

0.0847  0.0049  0.9964

Dans notre situation, nous cherchons a minimiser la fonction objectif, on s’intéresse donc
aux composantes principales étant les plus alignées sur la direction de ['objectif, ¢’est-a-dire

¢ composante en valeur absolue. En réordonnant les

le vecteur ayant la plus grande (n + 1)
colonnes de la matrice M, selon leur valeur dans la (n+ 1)¢ ligne, par ordre décroissant, on

obtient

0.0847 —0.9964 —0.0096

M, = 1{-0.0049 —0.0100 0.9999

0.9964  0.0847  0.0049

Puisque l’espace de recherche est un sous-ensemble de R?, la matrice M, est amputée de sa

derniere ligne et de sa derniére colonne pour construire une matrice M’,

0.0847 —0.9964

—0.0049 —0.0100

Les colonnes de cette matrice M’ forment les directions de R™ qui nous intéressent. En

normant ces directions, on obtient la matrice M,

0.9983  —0.9999

—0.0578 —0.0101
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Cette matrice M permet de définir les matrices de projection P et Q) de l’équation (4.2), en
fonction de la dimension p qui nous intéresse. Dans ce cas-ci, la direction (0.9983, —0.0578) "
indique que la variable x1 a plus d’importance que la variable xo sur l'objectif fi(xq1,x9) =

1021 + 2129

Exemple 4.2 Considérons la fonction fo(x1,x9) = x1+29 et le méme ensemble de points que
l’exemple précédent. Suite a une procédure similaire a l’exemple précédent, les composantes

principales du nuage de points sont

0.5774  0.6729 0.4625

M, =1 05774 —0.7370 0.3515

—0.5774 —0.0641 0.8140

En réordonnant les colonnes de la matrice en fonction de la derniére ligne, on obtient

0.4625 0.5774  0.6729

M, = 103515 0.5774 —0.7370

0.8140 —0.5774 —0.0641

Ensuite, en tronquant la derniére ligne et la derniére colonne et en normant les vecteurs

restant, il est possible d’écrire la matrice M,

0.7962 0.7071
M=

0.6051 0.7071
)T

Dans ce cas, les directions proposées sont assez proches de (%, % , ce qui correspond a la

direction attendue, au vu de la fonction objectif fo(z1,x9) = 1 + T2.

4.2 Changement de variables

Le sous-probleme d’optimisation est défini a partir des variables y € RP. Celles-ci corres-
pondent aux p < n combinaisons linéaires des variables x qui ont le plus d’impact sur
I'objectif. Puisque la dimension p est plus petite que la dimension n, plusieurs points en

dimension n peuvent étre projetés sur un méme point y en dimension p.
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Tableau 4.1 Ensemble d’évaluations pour les fonctions fi(z1,x9) = 10z, + 2129 et fo(x1, 29) =
T+ X9

x filz) | falz)
(=5,—5) | =25 | —10
(=5,5) | =75 | 0
(5,—5) | 25 0
) 75| 10
) 0 5
) | 50 5
) 15 6
) 6

4

55
5) | —15
1) | =55 | —4

Lors de la recherche dans le sous-espace, les points sont de dimension p. A partir de ces
points, il faut pouvoir retrouver les points correspondants en dimension n afin d’évaluer la
boite noire. On propose ici deux stratégies afin de pouvoir construire un point en dimension
n correspondant a y € RP. Les différences de performance entre ces deux stratégies sont

étudiées a la section 5.5.5.

La premiere solution consiste a compléter les informations manquantes par des informations
disponibles. Lorsqu’une instance de MADS est lancée sur le sous-probleme, il faut lui fournir
un point de départ. Celui-ci va étre défini comme 1'origine du sous-espace de recherche. En
pratique, ce point de départ correspond au meilleur point trouvé jusqu’a présent, la solution

courante a l'itération k, ¥ € R”. Au moment d’évaluer un point y € RP, le point
r ="+ Py (4.4)

est construit. Puisque la matrice P est de dimension n X p, le point z¥ 4+ Py est bien de
dimension n. De plus, lorsque y = 0, le point construit correspond effectivement a la solution

courante z¥. Des illustrations de cette transformation sont présentées aux figures 4.1 et 4.2.

La deuxiéme méthode se base sur 'opérateur de la pseudo-inverse. Soit une matrice A €

R™ " avec m < n. La pseudo-inverse de Moore-Penrose [57] de A est une matrice AT € R™*"
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'y
Kk + Px 1 il !
=
) il X = round(x* + Py?!)
X =
wll kK Py

Figure 4.1 Illustration de la transformation (4.4) en deux dimensions

telle que
AATA=A;  ATAAT = AT, (AANT = AAT, (ATA)T = ATA.

Si A a des colonnes linéairement indépendantes, alors AT = (ATA)"'AT. La pseudo-inverse
de Moore-Penrose de la transposée de la matrice P est notée (PT)T. Si cette matrice est réelle

et a des colonnes linéairement indépendantes, alors
(PH = (PP"H'P.

En multipliant la relation y = PTx, définie a I’équation (4.3), par la pseudo-inverse de PT,

un point de dimension n est construit,
r=(P"y.

Cette matrice pseudo-inverse peut donc étre utilisée pour passer d’un espace a l'autre. Afin

que lorigine du sous-espace corresponde a la meilleure solution trouvée x*, la transformation
="+ (PNly (4.5)

est privilégiée.
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T2

X1

€3

Figure 4.2 Tllustration de la transformation (4.4) en trois dimensions. Les vecteur p', p?e R3
sont issus de I'analyse en composante principale et définissent le nouvel espace de recherche
de dimension 2. Dans cet espace, le point 2% correspond au point (0,0)" de ce sous-espace et
281 au point (1,1) 7

4.3 Evaluation de la boite noire

Dans le cadre de l'algorithme MADS, tous les points sont évalués sur un treillis. Dans 1’al-
gorithme PCA-MADS proposé, des points en dimension p sont projetés sur des points en
dimension n afin d’étre évalués. Pour préserver les résultats de convergence de I’algorithme
original, ceux-ci seront alors arrondis afin d’appartenir au treillis en n dimensions. Les points
évalués n’appartiendront pas toujours au sous-espace défini et cela permettra de récupérer
un peu d’information hors de I’espace de recherche.

Considérons que le treillis de 1'algorithme MADS est défini par la matrice D = [I,, — I, ou I,

m
min

est la matrice identité en n dimensions. Soit A" la valeur du plus petit parametre de taille

du treillis au cours de 'exécution de I’algorithme. Un point x € R" sera projeté sur le point

r=2x"+ A" X round — , (4.6)
Amin
olt 2% est un point sur le treillis et 'opérateur round(-) est tel que round(0.5) = 1 et

round(—0.5) = —1.
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Lors de I'optimisation du probléme en dimension p, un point y € RP est évalué de la fagon
suivante. Dans un premier temps, I'une des méthodes (4.4) ou (4.5) est utilisée pour en
construire un nouveau. Cela permet de définir un point z € R™ correspondant au point
y € RP & évaluer. Ensuite, le point x € R™ est projeté sur un point x du treillis de MADS
en dimension n selon (4.6). La boite noire est évaluée au point T et sa sortie est utilisée
dans 'optimisation du sous-probléme comme si cette valeur correspondait a I’évaluation de

la boite noire réduite au point y € RP.

4.4 Algorithme PCA-MADS

Comme précisé a la section 3.3.3, le cadre algorithmique de M ADS laisse la possibilité d’ajou-
ter une étape de recherche qui peut évaluer un nombre fini de points sur le treillis. L’algo-
rithme PCA-MADS propose d’optimiser un probleme en dimension réduite comme étape de
recherche. La construction de ce probléme se base sur une analyse en composantes princi-
pales et évalue des points sur le treillis. En donnant un budget fini pour I'optimisation de
ce probleme en petite dimension et en évaluant la boite noire sur le treillis, cette étape de
recherche satisfait donc bien les conditions d'une étape de recherche dans MADS. Idéalement,
I’étape de recherche en petite dimension devrait se poursuivre tant que celle-ci trouve des
solutions plus intéressantes que celles déja connues. Si la recherche n’améliore pas la solution
courante, alors il faut effectuer une étape de sonde en grande dimension, selon I’algorithme

MADS classique.

Une description de 'algorithme PCA-MADS est proposée a 1’algorithme 10.

0. Initialisation
1. Evaluer N points sur le treillis
2. Boucle :

2.1 Définir un sous-probleme de dimension p a partir des N derniers points évalués et
d’une analyse en composante principale ;

2.2 Lancer une instance de MADS sur le sous-probleme avec un budget B fini;

2.3 Si aucun point améliorant la solution n’a été trouvé, effectuer une étape de sonde
en n dimension ;

2.4 Evaluer les criteres de terminaison de I'algorithme en dimension n et mettre a jour
les parametres en conséquence

Algorithme 10 PcA-MADS
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4.5 Analyse de convergence

L’algorithme PcA-MADS proposé fait partie de la classe d’algorithmes MADS décrits a la
section 3.3.3. Son analyse de convergence sera donc similaire a ’analyse de convergence de

cette classe d’algorithmes.

A chaque itération de I'algorithme PCA-MADSs, deux étapes successives peuvent étre effec-
tuées. La premiere est ’étape de recherche, qui consiste en la construction d’un sous-probléme
et 'optimisation de celui-ci avec un certain budget d’évaluations fini. La deuxieme est I'étape
de sonde qui n’est appliquée que si ’étape de recherche n’a pas généré de nouvelle solution
améliorante. De plus, aussi bien a I’étape de recherche qu’a I’étape de sonde, tous les points

évalués appartiennent a une structure finie appelée treillis, définie a la définition 3.1.

En appliquant les régles de mise & jour des parametres de taille du treillis 6% et de taille de

cadre AF,

(5k _ min(Ak, (Ak)Q), Ak—H — kaAk:’

{0,1,2,...,w™} si un point améliorant la solution est trouvé,

pour wy €
{w™,w™ —1,...,—1} sinon,

le maillage du treillis est raffiné uniquement lors des itérations infructueuses, c¢’est-a-dire les

itérations o aucun point améliorant la solution n’a été trouvé.

Pour analyser la convergence de l'algorithme, il faut s’intéresser a la situation ou le nombre
d’itérations tend vers l'infini. Prenons une fonction objectif dont 1’ensemble de niveau {z €
R™ : f(z) < f(zo)} forme un compact. Puisque tous les points évalués appartiennent au
treillis et que ce dernier est une structure finie, il n’y a qu’un nombre fini d’itérations réussies,
c’est-a-dire une itération ou une nouvelle solution améliorante a été générée. Donc, il y a
un nombre infini d’itérations infructueuses. Le cadre de sonde sera raffiné infiniment; le

parametre définissant sa taille suit donc la limite
lim inf A* = 0;
k—o00

et puisque 6% < AF,

lim inf 6* = 0.
k—o0

Par un raisonnement similaire que pour 'analyse de convergence de GPs a la section 3.3.2,
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il existe une sous-suite d’itérations infructueuses {k;} et un point z* tels

k

*

lim 6% =0, lim 2" = z*.

1—>00 1—00
Cela implique que l'algorithme raffine le treillis autour de la solution courante x*. En suppo-

sant que la fonction est localement Lipschitz autour de x*, on en conclut que

fo(z*;d) >0, VdeR"
Les résultats de convergence sont donc similaires a la classe d’algorithme MADS originale.

4.6 Parameétres

Le cadre algorithmique de MADS laisse des libertés quant a la valeur de certains parametres,
ainsi que la présence et les caractéristiques de I'étape de recherche. La variante proposée
Pca-MADS profite notamment de ces libertés. Une liste des parametres et des choix a faire
pour un algorithme MADS, ainsi que ceux supplémentaires issus de la variante PCA-MADS

est reprise ci-dessous.

Les parametres et les choix d’implémentation pour 'algorithme MADS général sont les sui-

vants.

1. Initialisation :
— parametre de taille de cadre initial A°,
— matrice générateur positif D,
— parametres d’ajustement du treillis 7, w™ et w™,

— tolérance d’arrét e
2. Etape de recherche : nombre de points a évaluer et fagon de les générer ;
3. Etape de sonde : nombre de directions ((n+1) ou 2n directions) et fagon de les générer.

Lors de l'initialisation, des valeurs des parameétres sont proposées dans [8]. Pour 1'étape de

sonde, plusieurs implémentations sont proposées dans [1,8,69].

Pour I'algorithme PcA-MADSs, la facon de générer des points lors de 1'étape de recherche
repose sur une analyse en composante principale et une méthode d’optimisation. Les para-
metres liés a cette étape sont repris dans la liste suivante :

— budget d’évaluations pour I'optimisation du sous-probleme B ;

— choix de la dimension du sous-probleme p;
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— nombre de points nécessaires pour effectuer I'étape de recherche N¢r<" et la possibilité
d’en générer pour compléter la cache;
— mnombre de points utilisés dans I'analyse en composante principale N;ﬁg”h et la facon
de les sélectionner ;
— méthode de construction du sous-probleme a partir de ’analyse en composante prin-
cipale et la facon d’évaluer la boite noire;
— parametres inhérents a la méthode d’optimisation du sous-probleme.
Une méthode de construction du sous-probleme et d’évaluations de la boite a été présentée

aux sections précédentes.
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CHAPITRE 5 TESTS ET RESULTATS

Ce chapitre vise a comparer les performances de ’algorithme proposé PCA-MADS avec celles
d’autres méthodes d’optimisation sans dérivée. Dans un premier temps, quelques tests explo-
ratoires sont effectués sur des fonctions simples pour observer le comportement de 1’algorithme
PcA-MADS, ensuite celui-ci est lancé sur des problemes plus difficiles. Les performances des
algorithmes d’optimisation sans dérivée sont comparées a l'aide de profils de performance et
de données. La construction de ces derniers est décrite a la section 5.1. La plateforme COCO,
qui permet de fournir des suites de problémes, est décrite a la section 5.2 et les résultats de
tests effectués sur celle-ci sont présentés a la section 5.3. Par la suite, le comportement de
I’algorithme PCA-MADS en petite et grande dimension est étudié a la section 5.4. Dans la
section 5.5, 'influence des principaux parametres de 1'algorithme est étudiée. La section 5.6
compare PCA-MADS avec d’autres algorithmes d’optimisation, sur une suite de tests et sur

des problemes issus de la littérature.

5.1 Profils de performances et profils de données

Les performances de différents algorithmes peuvent étre comparées au moyen de profils de
performances et de données. Ceux-ci ont été introduits par Dolan, Moré et Wild [29,51] et

sont construits de la fagon suivante.

Considérons un ensemble de problemes P, un ensemble d’algorithmes ou méthodes S et
une mesure de performance t,,. Cette derniere est choisie comme le nombre d’évaluations

nécessaires pour satisfaire un test de convergence,

fa®) = f(z") = (1= 7)(f(2°) = fr)

ol 2’ représente la i¢ évaluation, 7 est une tolérance et f;, la valeur de la meilleure solution
trouvée pour un probleme donné. A partir de cette mesure de performance, un ratio de

performance 7, ¢ est obtenu comme

Tps = fp.s
P2 min{t,, :a € S}’

Le profil de performance d'un algorithme s € S est la proportion de problemes dont le ratio
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de performance est au plus «, avec @ > 1 :

HpeP: Tps < at|
s\Y) =
ps(a) P

La valeur de p,(1) représente la proportion de problemes pour lesquels l'algorithme s a
trouvé la meilleure solution et la valeur de py(a) représente la proportion de problémes pour
lesquels 'algorithme s a satisfait le test de convergence en un nombre d’évaluations inférieur
a « multiplié par le nombre d’évaluations nécessaires au meilleur algorithme pour trouver
la solution d’un probléme donné. Pour « suffisamment grand, ps(«) donne la proportion de

problemes pour lesquels I'algorithme s a satisfait le critere de convergence.

Le profil de données d’'un algorithme s est

= PP i <o)

P ’

ou n, est le nombre de variables du probleme p. Le profil de données d’un algorithme repré-
sente la proportion de problemes pour lesquels la méthode a satisfait le test de convergence

avec au plus k, k > 0, groupes de n, + 1 évaluations.

Ces profils donnent une performance relative de chaque algorithme par rapport aux autres,
sur un ensemble de problémes donnés. L’algorithme présentant la courbe au-dessus des autres
a de meilleures performances, car il résout une plus grande proportion de problemes que les

autres pour un budget donné.

5.2 Plateforme COCO et suite de fonctions bbob

COCO [35] est une plateforme visant a comparer des méthodes d’optimisation de boites
noires continues. Celle-ci fournit plusieurs suites de problemes a minimiser, de différentes
dimensions, et ils peuvent étre bruités ou contraints. Les fonctions sont implémentées en C
mais la plateforme offre des interfaces en C/C++, Java, Matlab/Octave ou Python. Le but de
cette plateforme est d’automatiser la procédure de comparaison d’algorithme d’optimisation

sans dérivée et de traitements des résultats.

Toutes ces suites se basent sur un ensemble de 24 fonctions définies dans [36]. Chacune des
fonctions peut étre utilisée pour créer plusieurs instances. Toutes les fonctions peuvent étre
définies en plusieurs dimensions et les variables sont bornées par [—5;5]". L’ensemble de
fonctions peut étre divisé en plusieurs sous-ensembles avec certaines caractéristiques, comme

cela est décrit dans [36]. Ceux-ci sont
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— b5 fonctions séparables ;

— 4 fonctions avec un conditionnement faible a modéré ;

— b fonctions avec un haut conditionnement et unimodales

— b fonctions multimodales avec une structure globale adéquate ;

— 5 fonctions multimodales avec une faible structure globale.
De plus amples informations sur les fonctions sont disponibles dans [36]. Les solutions opti-
males sont connues pour chacun de ces problemes. La plateforme crée plusieurs instances de
probléme a partir de chaque fonction et fournit les bornes et un point de départ pour chaque
instance. Le budget d’évaluations total est défini par I'utilisateur via un facteur multipliant

la dimension du probleme.

La plateforme COCO traite également les résultats issus des expériences sur leur suite de fonc-
tions. Elle utilise comme élément central pour comparer les différents algorithmes le nombre
d’évaluations des fonctions pour atteindre un certain seuil, une certaine valeur de 1’objectif.
Nous préférons comparer les performances des algorithmes via des profils de performances et

de données décrits a la section 5.1.

5.3 Tests sur la suite COCO

Les premiers tests sur la plateforme COCO ont pour but de comparer les performances de
PcA-MADS et d’une version plus standard de MADS. Pour ce faire, une implémentation de
Pca-MADS est comparée a la méme implémentation avec 1’étape de recherche désactivée.
Cette derniere sera nommée simplement MADS. Les différences entre les deux méthodes
comparées portent sur ’étape de recherche de MADS. Dans sa version basique, aucune étape
de recherche n’est effectuée tandis que dans la version PCA-MADS, une étape de recherche

basée sur une analyse en composante principale telle que décrite au chapitre 4 est effectuée.

Une étape importante de I'algorithme MADS ainsi que PCA-MADS est ’étape de sonde. Lors
de celle-ci, la méthode génére des directions de sonde et plusieurs méthodes pour générer
ces directions ont été décrites dans la littérature. La premiere, nommée LTMADS, présentée
dans [8], se base sur des matrices triangulaires inférieures pour générer les directions de sonde.
Une deuxieme méthode, nommée ORTHOMADS et décrite dans [1], génere des directions de
sonde orthogonales. Un avantage de cette méthode est son déterminisme. Van Dyke et Asaki
décrivent dans [69] une méthode permettant de générer des directions de sonde uniformément
dans I'espace. Cette méthode se base sur une décomposition QR. Le choix de I'une ou l'autre
de ces méthodes a été guidé par leur rapidité a implémenter et a s’exécuter. La méthode
retenue est donc la méthode LTMADS.
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Les deux méthodes sont initialisées avec

— A" =1;
— D =11, - 1,];
— 7=2,w =—-letwr=1;

— €Estop = 10715;
— Sonde de 2n points générés a la maniere de LTMADS, avec stratégie opportuniste.

Pour I'étape de recherche de PCA-MADS, les parametres suivants sont utilisés,

— dimension p = [£];

— mnombre d’évaluations minimum pour effectuer une recherche N3¢ = 2n_ généré par

échantillonnage par hypercube latin;

— nombre de points utilisés dans 'analyse en composante principale N;gg’"ch est 1’en-

semble des points évalués;
— budget d’évaluations de I'optimisation du sous-probléme égal a un vingtieme du budget
total ;

— transformation x = 2% + Py (4.4) ;

Ak

2

— les autres parametres de la méthode M ADS optimisant le sous-probléme sont les mémes

— critere d’arrét pour l'optimisation du sous-probleme €4, =

que pour la méthode MADS du probléme original en dimension n.
Cet ensemble de parametres est utilisé pour tous les tests présentés dans la suite de ce

chapitre, sauf si précisé autrement.

L’ensemble de problémes sur lesquels ces algorithmes seront comparés vient de la plate-
forme COCO. La suite de fonctions bbob offre un ensemble de problemes non bruités et non
contraints. Cette suite est composée des 24 fonctions en dimension 2, 3,5, 10. Pour chaque
fonction et dans chaque dimension, 16 instances de problémes sont créées. Cela donne un
total de 1440 problemes. Le budget d’évaluations est fixé a 10n pour chaque algorithme, ou

n est la dimension du probleme.

La figure 5.1 présente des profils de performance et des profils de données pour ces tests. Les
méthodes MADS et PCA-MADS sont assez proches, avec un léger avantage a MADS tout de
méme. Ces tests ont été effectués sur une suite de fonctions de dimension petite et avec un

budget assez restreint et ne permet pas de généraliser les résultats obtenus.

Sur cette figure, les profils de performance stagnent assez vite et n’apportent pas de nouvelles
informations par rapport aux profils de données construits avec le méme critere de conver-
gence. Les prochains résultats seront donc présentés avec des profils de données uniquement

si les profils de performance n’apportent pas d’information complémentaire.
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Figure 5.1 Comparaison de deux implémentations de MADS et de PCA-MADS similaires, sur
la suite de fonctions bbob de coco avec un budget de 10n



29

5.4 Comportement de PCA-MADS en petite et grande dimension

Les premiers tests exploratoires en grande dimension permettent de comparer les perfor-
mances de 'algorithme PCA-MADS proposé avec une implémentation similaire de MADS sur
des problemes simples. Nous considérons la fonction de Rosenbrock a dimension variable

suivante :
n—1

fl@) = blzipy —27)* + (a — 27)°, (5.1)

i=1
oua =1 et b= 100. Pour ces tests, deux ensembles d’instances de la fonction de Rosenbrock
sont considérés. Le premier ensemble reprend cette fonction avec n = 2,3, ..., 20 variables,
tandis que le second reprend la fonction de Rosenbrock a n = 100,200, ...,500 variables.
Cela permet de mettre en évidence le comportement de ’algorithme aussi bien en petite

qu’en grande dimension.

Ces tests comparent également une version simple de MADS et le nouvel algorithme Pca-
MADS. Ces deux méthodes ont été initialisées de la méme maniere que les tests de la section
précédente. Des profils de données ont été tracés pour une implémentation de MADS et de

PcAa-MaDS. Ceux-ci sont représentés sur la figure 5.2.

Lorsque la tolérance du critere de convergence est assez faible, c’est-a-dire 7 relativement
grand, 7 = 1073 par exemple, 'algorithme PCcA-MADS semble avoir de meilleures perfor-
mances que MADS, comme l'indique la figure 5.2(a). Avec une tolérance plus petite, le com-
portement des algorithmes semble s’inverser. Cela est visible sur la figure 5.2(b). Cela indique
que MADS a tendance a trouver de meilleures solutions que PCA-MADS en petite dimension,

mais ce dernier trouve des solutions proches de la solution de MADS plus rapidement.

En regardant les profils pour la méme fonction en plus grande dimension, visibles sur les
figures 5.2(c) et 5.2(d), une situation différente est a noter. En effet, en plus grande dimen-
sion, l'algorithme PcA-MADS semble avoir de meilleures performances que I'implémentation
MADS. Pour la plupart des problemes, PCA-MADS trouve de meilleures solutions et plus
rapidement que MADS. Cela indique que la stratégie de réduction de dimension semble étre
plus efficace pour des problémes de grande dimension, aux alentours de quelques centaines de
variables, par rapport aux problemes en petite dimension, soit quelques dizaines de variables

sur cette fonction particuliere.

Le nombre et la variété des problemes testés étant restreints, aucune conclusion définitive
quant aux performances de chacun des algorithmes proposés n’est réellement possible. De
plus, il y a de nombreux parameétres et stratégies qui peuvent jouer sur la performance des

algorithmes.
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Figure 5.2 Comparaison des méthodes MADS et PCA-MADS sur deux ensembles de fonctions
de Rosenbrock en petites et grandes dimensions avec des budgets de 100n et 50n respective-
ment

Il est possible de regarder plus en détails les différences de comportement de ces deux mé-
thodes. La figure 5.3 présente des graphes de convergence pour les deux algorithmes sur une
fonction de Rosenbrock en dimension 300. La figure 5.3(a) indique la valeur de I'objectif de
la meilleure solution connue au cours de 'exécution de 'algorithme et la figure 5.3(b) donne

le logarithme de cette valeur.

Ces figures permettent de mettre en avant un comportement particulier de PCA-MADS. Au
tout début de I'exécution de la méthode, une diminution tres rapide de I'objectif est observée.
Ceci est probablement di a la stratégie de remplissage de la cache. En effet, lors de la premiere

itération de l'algorithme, la cache ne contient qu'un seul point, le point le départ. Il n’est donc
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pas pertinent d’effectuer une analyse de sensibilité avec un seul point. Un échantillonnage
par hypercube latin permet d’évaluer des points répartis dans ’espace de recherche afin de

pouvoir appliquer une analyse de sensibilité a la deuxiéme itération.

Apres cette phase de diminution tres rapide vient une phase de diminution tres faible. A
ce moment-la, la stratégie de recherche n’est pas tres efficace. Cela vient probablement du
fait que les points contenus dans la cache ne permettent pas de récupérer des directions
exploitables et du fait que le treillis est encore assez grossier. En effet, celui-ci est raffiné
lors des itérations formant des échecs et au début de ’exécution, on n’observe pas ou peu
d’itérations infructueuses. Lors de ’étape de recherche, les points a évaluer sont projetés sur
le treillis ce qui se traduit par un nombre important de ré-évaluations de points déja présents

dans la cache.

Par la suite, la recherche semble devenir efficace et la diminution de 1'objectif reprend. La
figure 5.3(b) permet de voir que PCA-MADS trouve de meilleures solutions que MADS, et ce
plus rapidement. Au total, il apparait qu’environ une moitié des itérations bénéficient d’une

étape de recherche améliorant la solution objectif.

%10 8 Graphe de convergence Graphe de convergence

——— PCA-MADS
——MADS 8r

25

—— PCA-MADS
——MADS

Valeur de | objectif
Valeur de | objectif (log)
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Evaluations Evaluations

(a) Graphe de convergence (b) Graphe de convergence (log)

Figure 5.3 Graphe de convergence des algorithmes MADS et PCA-MADS sur une fonction de
Rosenbrock en dimension 300

5.5 Influence des parameétres

Il existe plusieurs parametres et stratégies pouvant influencer les performances de Pca-
MADS. Afin de pouvoir recommander des valeurs par défaut a un utilisateur de PCA-MADS,
étudier 'influence de celles-ci est primordial. De plus, cela permettra de comparer 1’algorithme

PcaA-MADS avec ses meilleures performances a d’autres méthodes connues. Pour ce faire, les
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principaux parametres de l'algorithme sont identifiés et plusieurs valeurs ou stratégies sont

comparées au moyen de profils de données.

L’ensemble de fonctions utilisé pour ces tests est basé sur la suite de fonctions disponibles dans
COCO. Puisque 'algorithme a été conc¢u pour résoudre des problémes en relativement grande
dimension, sans bruit et sans contrainte, la suite bbob-largescale de la plateforme COCO sera
utilisée. Afin de limiter les temps d’exécution de ces tests, la premiere instance de 10 fonctions
représentatives de la suite sera utilisée, et ce en dimension 80, 160, 320, 640. Cela donne un
total de 40 probléemes. Nous avons sélectionné les fonctions 2,4,7,9,11,13,16, 18,21 et 23.
De cette fagon, deux fonctions avec chaque caractéristique se retrouvent dans I’ensemble de
problemes. Le budget d’évaluations est fixé a 50n. A la suite de I'étude d’un parametre,
celui-ci est fixé a sa valeur la plus performante pour 'analyse de I'influence des parametres

suivants.

5.5.1 Dimension du sous-probleme p

Au cours de I’étape de recherche, I’algorithme PCcA-MADS construit un sous-probléeme de plus
faible dimension et cherche a I'optimiser. La dimension de ce sous-probléme semble étre un
parametre critique, qui peut influencer les performances de ’algorithme. Plusieurs stratégies
peuvent donc étre comparées. La dimension du probleme original est notée n et la dimension
du sous-probleme est notée p. Les premieres stratégies consistent simplement a diviser la
dimension du probleme original par un facteur constant. Chaque sous-probleme construit
aura donc la méme dimension. Une alternative a cette stratégie est d’utiliser un algorithme
de classement pour séparer les directions issues de I'analyse en composante principale et de les
diviser en deux groupes. L’algorithme k—means est utilisé pour sa simplicité d'utilisation. En
mettant k = 2, celui-ci permet de séparer les (n+1) directions en deux groupes. La dimension
du probleme p correspondra a la taille de I’ensemble des directions ayant les directions les

plus influentes sur 1’objectif.
Toutes les stratégies comparées sont reprises dans la liste ci-dessous.
1. Stratégie p = [£];
2. Stratégie p = [{5];
3. Stratégie p = [55];
4. Stratégie k — means.

Les performances de I'algorithme, en fonction de ces stratégies, sont comparées a l'aide de

profils de données tels que décrits a la section 5.1. Ceux-ci sont repris a la figure 5.4.

Lorsque le critére de convergence est relativement précis, par exemple 7 = 1073 sur le profil
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Figure 5.4 Comparaison des performances de PcA-MADS avec différentes dimensions du sous-
probléeme (parametre p), sur une partie de la suite de fonctions bbob-largescale de COCO

n

5.4(a), deux stratégies se distinguent. Il s’agit des stratégies p = [£] et p = [{5]. Cela peut
s’expliquer par les dimensions des problemes utilisés pour la comparaison. En effet, avec la
stratégie p = [£] (resp. p = [{5]), les sous-problemes construits sont de taille 16 a 128 (resp.
8 a 64). Il s'agit de tailles pour lesquelles 'algorithme MADS a de bonnes performances.
Lorsque le critere de convergence pour la création des profils est encore plus strict, avec
7 = 107° par exemple, la stratégie p = [%1 est la meilleure des stratégies comparées. Sur
le profil de performance 5.4(b), aucune des autres stratégies ne parvient a s’approcher de la
stratégie p = [ 5 |. La stratégie basée sur I'algorithme k —means ne semble pas étre un choix

judicieux par rapport aux autres stratégies étudiées.

5.5.2 Budget d’évaluations pour 'optimisation du sous-probléme

L’étape de recherche consiste a optimiser un nouveau probleme d’optimisation de petite
dimension avec un algorithme MADS. Le budget alloué a cette optimisation aura une influence
sur la qualité de celle-ci. Dans le cadre de I'algorithme PCcA-MADs, il y a une alternance
entre cette minimisation et une étape de sonde en grande dimension. Le budget maximum
d’évaluations pour l'optimisation de ce sous-probléme devrait avoir une influence sur les
performances de PCA-MADS. n étant la dimension du probleme original, le budget total

d’évaluations est noté B et le nombre d’évaluations déja effectuées est noté ev.
Les stratégies suivantes sont comparées :

1. Stratégie [%1 : le budget maximum d’évaluations pour le sous-probléme correspond
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a un dixieme du budget total d’évaluations.

Stratégie [2%1 : le budget maximum d’évaluations pour le sous-probleme correspond

a un vingtieéme du budget total d’évaluations.

Stratégie n : le budget maximum d’évaluations pour le sous-probléme correspond au

nombre de variables du probleme original.

Stratégie 2n : le budget maximum d’évaluations pour le sous-probleme correspond a

deux fois le nombre de variables du probleme original.

Stratégie inc : & I'étape de recherche, on donne un budget de [(14 252)%] évaluations.
%
augmente a chaque nouvelle étape de recherche.

Cela donne un budget minimum de % et maximum de 3n évaluations et le budget

Stratégie dec : a I’étape de recherche, on donne un budget de [(1— 56%)3n-| évaluations.

Cela donne un budget minimum de % et maximum de 3n évaluations et le budget

2
diminue a chaque nouvelle étape de recherche.

Plusieurs profils de données ont été tracés pour comparer ces stratégies. Ceux-ci sont repris

a la figure 5.5. Les profils avec une faible précision, visibles sur la figure 5.5(a), indiquent

que la stratégie visant a diminuer le budget au fur et a mesure des itérations semble un peu

plus intéressante que les autres, bien que ces dernieres soient relativement proches. Lorsque

la précision augmente, la stratégie 2n s’isole comme une meilleure stratégie que les autres.

Cela semble donc étre le choix le plus approprié parmi les stratégies proposées.
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5.5.3 Ensemble de points utilisés pour ’analyse de sensibilité

L’algorithme PCA-MADS repose principalement sur la construction d’un sous-probléme de
dimension inférieure au probleme original. La construction de ce sous-probléme est donc une
étape critique de 'algorithme. Cette construction se fait a I’aide d’une analyse en composante
principale a partir d’'un nuage de points. Les combinaisons de variables qui auraient le plus
d’influence sur la valeur de I'objectif sont déduites du résultat de cette analyse. Le choix de
I’ensemble de points utilisés pour l'analyse en composante principale peut donc avoir une

certaine influence sur les performances de 1'algorithme.

Tous les points utilisés lors de I'analyse de sensibilité sont des points qui appartiennent déja
a la cache et ont donc déja été évalués lors des itérations précédentes de I'algorithme. Il faut
donc définir différentes stratégies de sélection des points dans la cache, ainsi que le nombre

de ces points.

Pour le nombre de points sélectionnés, les trois possibilités suivantes sont considérées :
n, 2n, 3n points, ou n est la dimension du probleme original. Cela nous parait un bon com-
promis entre ne pas sélectionner trop de points pour garder un temps d’exécution raisonnable
et garder suffisamment de points pour avoir une analyse de sensibilité qui donne des résultats

pertinents. Les différentes stratégies de sélection des points sont les suivantes :
1. last — x : les x derniers points de la cache sont sélectionnés.

2. closest — x : les points sont triés en fonction de leur distance avec la solution courante
au moment de 'analyse de sensibilité et les x points les plus proches sont sélectionnés

pour 'analyse en composante principale.

3. dist — € : les points sont triés en fonction de leur distance avec la solution courante
au moment de 'analyse de sensibilité et les points a une distance inférieure a eA”.
sont sélectionnés pour ’analyse en composante principale. A~ désigne la plus petite

valeur que le parametre de taille du maillage A™ a pris au cours de 'exécution de

I’algorithme. Cela permet de lier la distance considérée avec la taille du treillis.

Ces différentes stratégies ont été comparées sur le méme ensemble de problemes que pour les
parametres précédents. Pour plus de clarté, des profils de performance et de données ont été
tracés pour chaque stratégie aux figures 5.6, 5.7 et 5.8. Chacune de ces figures reprend une
stratégie (resp. last, closest et dist) avec plusieurs valeurs pour leur parametre. La figure 5.9

compare les trois stratégies avec leur meilleur parametre.

La figure 5.6 montre que, parmi les stratégies de sélection des derniers points évalués, la
stratégie last — 2n semble avoir de meilleures performances que les autres pour une faible

précision, tandis que la stratégie last — 3n prend le dessus avec une plus forte précision pour
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Figure 5.6 Comparaison des performances de PCA-MADS avec différents nombres des derniers
points sélectionnés pour I'analyse de sensibilité (stratégies last —n), sur une partie de la suite
de fonctions bbob-largescale de COCO

le critere de convergence des profils.
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Figure 5.7 Comparaison des performances de PCA-MADS avec différents nombres des plus
proches points sélectionnés pour I'analyse de sensibilité (stratégie closest —n), sur une partie
de la suite de fonctions bbob-largescale de COCO

La figure 5.7 indique que lorsqu’il s’agit de sélectionner les points les plus proches de la

solution courante pour I'analyse en composante principale, la stratégie qui en sélectionne 3n
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est plus intéressante que les autres.

09 - Profil de données : 7=1e-01 06 - Profil de données : 7=1e-05
——dist-5 ——dist-5 ¥
0.8 - |—0- dist-10 —O- dist-10
* - dist-20 05 | | % dist-20
0.7
Hoke oz
806 So® 804l
s g 5 ¥
805 Hhe S
o e 203+ o]
B 04t * 3 |
5 <P 5 i
S 03+ LD 6 02+ i
a K Q @
o [
o o G
0.2 - i) %
*
0.1
0 I I I I J
0 10 20 30 40 50 0 10 20 30 40 50
Nombre de gradients simplexes, K Nombre de gradients simplexes, K
(a) Profil de données pour une tolérance T = (b) Profil de données pour une tolérance 7 =
101 10—®

Figure 5.8 Comparaison des performances de PCA-MADS avec une stratégie de sélection
de points pour I'analyse de sensibilité basée sur la distance autour de la solution courante
(stratégie dist — €), sur une partie de la suite de fonctions bbob-largescale de COCO

Les stratégies les plus performantes sont celles avec un plus grand nombre de points sélec-
tionnés pour 'analyse de sensibilité de la boite noire. Cela se confirme également pour la

stratégie dist — e, dont les comparaisons sont visibles sur la figure 5.8.

Les profils de la figure 5.9 permettent de comparer les trois stratégies avec leur meilleur
nombre de points. Une stratégie se distingue sur ces profils; il s’agit de la stratégies closest —
3n, qui sélectionne les 3n points les plus proches de la solution courante pour appliquer 'ana-
lyse de sensibilité. La figure 5.7 semble indiquer que les performances de cette stratégie sont
améliorées lorsqu’un plus grand ensemble de points est sélectionné. Il serait donc intéressant
d’essayer de trouver s’il y a un nombre de points optimum ou si la sélection de ’entiereté de

la cache est en fait le meilleure stratégie possible.

5.5.4 Evaluation initiale de points

Lors de la premiere itération, la cache ne contient qu’un seul point, le point de départ de
l’algorithme. Comme vu précédemment, les performances de 'algorithme sont améliorées
lorsqu’un relativement grand nombre de points sont sélectionnés pour ’analyse en composante
principale. Afin de pouvoir profiter de I’étape de recherche des la premiere itération, il serait

intéressant d’évaluer un certain nombre de points avant d’effectuer cette étape. Un nombre
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Figure 5.9 Comparaison des performances de PCA-MADS avec différentes stratégies de sé-
lection de points pour 'analyse de sensibilité, sur une partie de la suite de fonctions bbob-
largescale de COCO

de 2n points semble approprié ; suffisamment de points pour avoir des résultats intéressants

mais pas trop pour préserver le budget d’évaluations pour les itérations ultérieures.

Les trois stratégies suivantes sont proposées pour évaluer des points a la premiere itération.
— Echantillonnage par hypercube latin (LHS) : il s’agit d’'une méthode d’échantillonnage
aléatoire qui permet de bien répartir les points échantillonnés dans I’espace tout entier.
— GRID : une méthode d’échantillonnage déterministe qui répartit les points sélectionnés
sur une grille dans I’espace.
— POLL : une stratégie qui consiste a effectuer une sonde pour remplir la cache. Cela
revient a ignorer I’étape de recherche lors de la premiere itération.
Les performances des différentes stratégies sont comparées a la figure 5.10. Les profils in-
diquent clairement que la stratégie d’échantillonnage par hypercube latin a des meilleures
performances que les autres stratégies, aussi bien a faible qu’a plus forte précision. Cela n’est
pas surprenant, une étape de recherche basée sur un échantillonnage par hypercube latin a

déja été appliquée avec 'algorithme MADS ou GPs, comme cela est précisé dans [8].



69

Profil de données : 7=1e-01 Profil de données : 7=1e-03

o
©

o
©

o o o
o o ~

o
w
Proportion de problemes

Proportion de problemes
o
S

o
o

o

o

10 20 30 40 50

Nombre de gradients simplexes, K Nombre de gradients simplexes, K
(a) Profil de données pour une tolérance 7 = (b) Profil de données pour une tolérance T =
10-! 10-?

Figure 5.10 Comparaison des performances de PCA-MADS avec différentes stratégies de rem-
plissage initial de la cache pour la premiere étape de recherche, sur une partie de la suite de
fonctions bbob-largescale de COCO

5.5.5 Stratégie de construction et d’évaluation du sous-probleme

Dans la section 4.2, deux stratégies sont proposées pour la transformation d’un point en

dimension p en un point en dimension n. Celles-ci sont

r=a"4+ Py, éqdd) et x=2aF+ PNy,  éq (4.5).

Etant donné que ces transformations sont au coeur de l'algorithme PcA-MADS, celles-ci
devraient avoir une certaine influence sur les performances de la méthode. Les deux stratégies

sont comparées a 'aide de profils de performance et de données, visibles a la figure 5.11.

Ces profils indiquent clairement que la stratégie utilisant l'opérateur de pseudo-inverse, 1é-
gendée ps-inv, a de meilleures performances que la transformation plus simple, et ce aussi
bien avec une faible qu'une forte précision pour le critere de convergence des profils. La

transformation de I’équation (4.5) sera donc privilégiée.

5.6 Comparaison avec d’autres méthodes et algorithmes

Cette section permet de comparer I’algorithme proposé PCcA-MADs avec d’autres algorithmes
d’optimisation. Ceux-ci sont l'algorithme STATS-MADS, décrit a la section 3.4.3 et l'algo-

rithme CMA-ES [34], un algorithme génétique similaire & ceux décrits a la section 3.1.2.
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Figure 5.11 Comparaison des performances de PCA-MADS avec les deux stratégies d’évalua-
tion du sous-probléme présentées aux équations (4.4) et (4.5), sur une partie de la suite de
fonctions bbob-largescale de COCO

Dans un premier temps, ces algorithmes seront comparés sur la suite bbob-largescale de la

plateforme COCO et ensuite sur un nouvel ensemble de problemes issus de la littérature.

5.6.1 Comparaison sur la suite COCO

Une nouvelle fois, la plateforme COCO est utilisée pour comparer des algorithmes. La suite de
fonctions bbob-largescale est utilisée pour ces tests. Les dimensions des problémes considérés
sont 80, 160, 320 et 640. Cela permet d’avoir un échantillon de problemes de grande dimension.
L’ensemble de problémes est composé de la premiere instance de chaque fonction dans chaque

dimension, ce qui donne un total de 96 problémes.

Les profils de données de la figure 5.12 permettent de comparer les performances des trois
algorithmes. Ceux-ci montrent que I’algorithme STATS-MADS semble avoir des performances
similaires, voire meilleures que 'algorithme PcA-MADS jusqu’a 25m a 30n évaluations. En-

suite, PCA-MADS prend clairement ’avantage.

Il faut noter que PCA-MADS possede un certain avantage par rapport aux autres algorithmes.
En effet, les parametres de celui-ci ont été fixés en fonction des résultats obtenus sur une
partie de la suite considérée. C’est pourquoi des profils ont également été tracés en gardant
uniquement les problemes qui n’ont pas été utilisés lors des tests de la section 5.5. Ces profils

sont visibles a la figure 5.13. A faible précision, bien que leurs performances soient assez
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Figure 5.12 Comparaison des algorithmes PCA-MADS, STATS-MADS et CMA-ES au moyen
de profils de performance et de données sur la suite de fonctions BBOB-largescale en dimen-

sion 80, 160, 320 de COCO avec un budget de 50n

proches, STATS-MADS semble avoir un avantage par rapport a PCA-MADs. Ce comportement
n’est pas visible a plus forte précision. En effet PCA-MADs a clairement un avantage par
rapport a STATS-MADS lorsque le critere de convergence est plus strict, ce qui est visible sur le
profil de la figure 5.13(b). L’algorithme génétique CMA-ES a de moins bonnes performances

que les deux autres algorithmes dans tous les cas.

5.6.2 Comparaison sur des problémes issus de la littérature

Pour la suite de la comparaison, nous considérons un ensemble de problemes de dimension
variable issus de la littérature. Ceux-ci sont repris dans le tableau 5.1. Ce tableau contient
les meilleures solutions, pour chaque probleme et chaque dimension, obtenues par les deux
meilleurs algorithmes des tests précédents, a savoir PCA-MADS et STATS-MADS. Pour chaque

probléme, la meilleure solution obtenue par I'un ou 'autre algorithme est indiquée en gras.

L’algorithme PCcA-MADS trouve de meilleures solutions que STATS-MADS pour certains des
problemes et pour la plupart des dimensions. Néanmoins, STATS-MADS domine clairement
Pca-MADS pour le probleme PENALTY1. Le probleme G2 est un probleme dont les con-
traintes sont difficiles a satisfaire. Les deux algorithmes ont donc du mal a trouver des
solutions réalisables différentes méme si les meilleures solutions trouvées ne sont pas les
points de départ. Néanmoins, cela confirme les résultats de la section précédente, 'approche

de PcA-MADS est intéressante lors de 'optimisation de boites noires de grande dimension
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Figure 5.13 Comparaison des algorithmes PCA-MADS, STATS-MADS et CMA-ES au moyen
de profils de performance et de données sur une partie de la suite de fonctions BBOB-

largescale en dimension 80, 160, 320 de COCO avec un budget de 50n

avec 'algorithme MADS.
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Tableau 5.1 Comparaison des solutions de différents algorithmes sur un ensemble de pro-
blémes issus de la littérature

[50, Probleme 25]

n = 1500

463537077338.545654

Probléme Dimension Pca-Mads Stats-Mads

n = 600 —216305309.391029 —216197339.471389
BROWNAL

n = 800 —512459636.278400 —512348752.593470

n = 1000 —1000756562.998527 | —1000537007.708609

[50, Probleme 27|

n = 1500 —3376668083.684607 | —3376197820.744400

n = 600 —51.334076 —51.334076

n = 800 —68.378302 —68.378302
G2 [9] n = 1000 —85.422528 —85.422528

n = 1500 —128.033092 —128.033092

n = 600 0.509424 1.896469

n = 800 0.616835 2.392375
L1HILB [47] n = 1000 4.490846 2.515649

n = 1500 2.433164 3.902208

n = 600 —383.202462 —603.041571
PENALTY1

n = 800 —499.452491 —805.309644

n = 1000 —599.723565 —1003.565068

[50, Probleme 23]

n = 1500 —&91.330350 —1509.736833

n = 600 8932322761.775856 11317779579.835079
VARDIM

n = 800 33427194649.599163 | 38882984612.787933

n = 1000 T7736754861.641235 | 98219498344.552536

519702720318.423035
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CHAPITRE 6 CONCLUSION ET RECOMMANDATIONS

L’optimisation de boites noires est le domaine des mathématiques appliquées qui se concentre
sur la recherche d’extrema d’une fonction objectif dont les dérivées, ou celles des contraintes,
ne sont pas accessibles ou n’existent pas. Il s’agit d’'un domaine qui regroupe n’importe
quel probléme qui, pour une entrée donnée, peut retourner des valeurs pour l'objectif et les
contraintes. Ces problemes prennent généralement la forme d’une simulation ou d’un code
informatique dont les fonctionnements internes ne sont pas connus de l'optimiseur; c’est la

raison pour laquelle ils sont appelés boites noires.

6.1 Syntheése des travaux

Le travail présenté dans ce document se concentre sur une catégorie spécifique de problemes
d’optimisation de boites noires, il s’agit de problemes d’optimisation sans dérivée de grande
dimension et non contraints. Dans le contexte de boites noires, un probléeme est considéré de

grande dimension lorsqu’il possede de quelques centaines a quelques milliers de variables.

Parmi les caractéristiques principales des problemes d’optimisation sans dérivée, outre ’ab-
sence de dérivées, on retrouve un long temps d’exécution et donc un budget total d’évaluations
limité. De plus, étant donné le manque d’information disponible, un algorithme pertinent se
doit de sonder I'espace de recherche autour de la solution trouvée afin de s’assurer de la qua-
lité de celle-ci. En grande dimension, cela se traduit par un trés grand nombre d’évaluations

nécessaires, et donc une exécution tres longue.

L’algorithme MADS permet de pallier ces problémes. Il s’agit d’'une méthode bien connue et
flexible qui permet de résoudre des problemes d’optimisation sans dérivée de quelques dizaines
de variables. L’algorithme STATS-MADS, basé sur MADS, applique une analyse de sensibilité
au moyen d’une méthode statistique afin d’identifier les variables prépondérantes, ¢’est-a-dire
celles qui ont le plus d’influence sur 'objectif. Ensuite, 'algorithme alterne entre une instance
de MADS en grande dimension et une instance de MADS dont les variables les moins influentes
du probleéme ont été fixées. Les conclusions des travaux de STATS-MADS [15] indiquent que
la plupart de la diminution de I'objectif s’effectue lors de 'optimisation du probléme en plus

petite dimension.

Ce travail propose un nouvel algorithme d’optimisation de la classe MADS, inspiré de STATS-
MADS, qui fait appel a des analyses en composante principale. L’algorithme proposé est donc

appelé PcA-MADS. Celui-ci cherche a réduire, momentanément, la dimension du probleme
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au moyen d’une analyse en composante principale. En permettant de passer ’étape de sonde
en grande dimension si I’étape de recherche en petite dimension a permis de diminuer la
fonction objectif, I'algorithme PCA-MADS évite ’étape la plus cotiteuse en évaluations. Cela
permet notamment de poursuivre la recherche en petite dimension tant que celle-ci génere
des solutions améliorantes, contrairement a STATS-MADS. De plus, de par sa structure, Pca-
MADS hérite des propriétés de convergence de ’algorithme MADS sur lequel il est basé. Cela
permet notamment d’assurer de trouver un point stationnaire apres une infinité d’itérations
et ce résultat est obtenu grace a la sonde en grande dimension. L’algorithme PcA-MADS

hérite également de la flexibilité de MADS via son étape de recherche.

6.2 Discussion et limitations de la solution proposée

Les résultats obtenus indiquent clairement l'intérét de l'approche de PcA-MADS pour des
problemes en grande dimension. L’algorithme génétique CMA-ES ne rivalise pas avec les
performances de PCA-MADS. STATS-MADS, quant a lui, a des performances qui s’approchent
de celles de PCA-MADS et trouve méme de meilleures solutions sur certains problemes. Tou-
tefois, sur ’ensemble des problemes de quelques centaines de variables considérés lors de
ce travail, PCA-MADS reste supérieur a STATS-MADS. En petite dimension, PCA-MADS ne
semble pas avoir un comportement réellement intéressant, bien que celui-ci n’ait pas été

étudié en profondeur.

La principale limitation de ’algorithme est sa sensibilité a ses nombreux parametres. Bien
que l'influence de certains d’entre eux ait été étudiée, il en existe d’autres qui pourraient
jouer sur son comportement. Une autre limitation, certes inhérente au domaine, est son long
temps d’exécution. Le choix de la valeur de certains parameétres comme ceux liés a 'analyse
en composante principale revient a faire un compromis entre la qualité de 'analyse et une
demande en ressources, notamment au niveau du temps et de la mémoire. Il faut également
noter que, lors de I’étape de recherche, un nouveau probléme est construit basé sur des
combinaisons linéaires de variables. Celles-ci, en fonction du probleme étudié, pourraient

n’avoir aucun sens physique.

6.3 Améliorations possibles

La premiere amélioration vient en réponse aux limitations de l'algorithme. L’utilisation de
méthodes d’optimisation pour choisir les valeurs des parametres d'un algorithme est une
approche a envisager. Cela a déja été fait dans d’autres travaux, notamment [5,12,44]. L’étude

des parametres de ce travail n’a été faite que sur un ensemble restreint de problémes tests et les
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valeurs comparées ont été choisies arbitrairement. Une approche algorithmique permettrait

d’envisager d’autres combinaisons de parametres et d’améliorer ’algorithme.

Une autre perspective de recherche serait d’inclure ’approche de PCA-MADS a l'algorithme
PsD-MADS [9], une version parallele de MADs. Cet algorithme cherche a diviser 1’espace de
recherche et d’en attribuer une partie a chaque processeur. Cela se fait en ne laissant libres
que quelques variables par processeur. Une possibilité serait d’attribuer des combinaisons
de variables issues d’'une analyse en composante principale similaire a PcA-MADs. Cela

permettrait de faire évoluer certains processeurs dans de nouveaux sous-espaces de recherche.
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