
Titre:
Title:

Analyse de sensibilité pour la réduction de dimension en
optimisation sans dérivée

Auteur:
Author:

Romain Vanden Bulcke

Date: 2020

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Vanden Bulcke, R. (2020). Analyse de sensibilité pour la réduction de dimension
en optimisation sans dérivée [Master's thesis, Polytechnique Montréal].
PolyPublie. https://publications.polymtl.ca/5376/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/5376/

Directeurs de
recherche:

Advisors:
Charles Audet, & Sébastien Le Digabel

Programme:
Program:

Maîtrise recherche en mathématiques appliquées

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/5376/
https://publications.polymtl.ca/5376/

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Analyse de sensibilité pour la réduction de dimension en optimisation sans
dérivée

ROMAIN VANDEN BULCKE
Département de mathématiques et de génie industriel

Mémoire présenté en vue de l’obtention du diplôme de Maîtrise ès sciences appliquées
Mathématiques appliquées

Août 2020

© Romain Vanden Bulcke, 2020.

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Ce mémoire intitulé :

Analyse de sensibilité pour la réduction de dimension en optimisation sans
dérivée

présenté par Romain VANDEN BULCKE
en vue de l’obtention du diplôme de Maîtrise ès sciences appliquées

a été dûment accepté par le jury d’examen constitué de :

Dominique ORBAN, président
Charles AUDET, membre et directeur de recherche
Sébastien LE DIGABEL, membre et codirecteur de recherche
Stéphane ALARIE, membre

iii

DÉDICACE

A mes amis et à ma famille

iv

REMERCIEMENTS

Je profite de ce moment pour remercier tous ceux qui m’ont aidé lors de la réalisation de ce
travail, à commencer par mes directeurs de recherche Charles Audet et Sébastien Le Digabel
ainsi que Miguel Diago Martinez pour leur disponibilité, leurs conseils ainsi que pour leur
contributions qui ont été très appréciés. Tout cela a permis de construire le travail présenté
dans ce document. Je remercie également les membres du GERAD que j’ai pu côtoyés au
cours de ma maîtrise.

J’exprime également ma gratitude aux membres du jury qui ont accepté d’évaluer ce travail.

Pour finir, je tiens à remercier mes proches qui m’ont soutenu durant toute ma scolarité ainsi
que Shana qui était présente à mes côtés cette dernière année.

v

RÉSUMÉ

A l’heure actuelle, le monde industriel regorge de processus et de calculs complexes et l’op-
timisation de ceux-ci se retrouve au cœur de la recherche et du développement d’entreprises.
Ces problèmes ont souvent des caractéristiques qui nécessitent de faire appel à des méthodes
d’optimisation sans dérivée.

Il s’agit d’algorithmes d’optimisation qui permettent de gérer des fonctions non linéaires, non
différentiables, bruitées ou encore non définies en certains points du domaine. La classe d’al-
gorithme Mads rassemble des méthodes qui permettent de résoudre des problèmes contraints
sous forme de boîtes noires correspondant aux résultats d’un code informatique. Par ailleurs,
l’exploration d’un espace de recherche dont aucune information n’est disponible nécessite un
grand nombre d’évaluations. Néanmoins, l’évaluation d’une boîte noire est souvent coûteuse ;
ceci constitue la principale difficulté du domaine, la recherche d’un minimum d’une boîte
noire en un nombre limité d’évaluations.

Cette limite du budget d’évaluations et d’autant plus importante lorsque le problème d’intérêt
est de grande dimension. Il s’agit de la principale motivation pour appliquer une méthode de
réduction de dimension au cours de l’optimisation du problème. L’algorithme Stats-Mads
applique tout d’abord une méthode d’analyse de sensibilité basée sur une analyse de variance
pour identifier les variables ayant le plus d’influence sur l’objectif. Ensuite, l’algorithme al-
terne entre une optimisation en petite dimension, où les variables les moins influentes sont
fixées, et une optimisation en grande dimension. Les phases d’optimisation en petite dimen-
sion ont un rôle prépondérant dans la diminution de la valeur de l’objectif, et donc dans
l’optimisation du problème.

Nous proposons un nouvel algorithme de la classe Mads qui permet de s’attaquer à des
problèmes de grande dimension. Celui-ci applique une analyse de sensibilité basée sur une
analyse en composante principale qui permet d’extraire des combinaisons de variables ayant
le plus d’impact sur la fonction objectif. Cet algorithme a donc été nommé Pca-Mads. D’une
manière similaire à Stats-Mads, l’algorithme Pca-Mads alterne entre une optimisation en
petite et en grande dimension. Toutefois, la structure de l’algorithme permet de poursuivre
l’optimisation en petite dimension tant que celle-ci fournit des solutions améliorant la valeur
de la fonction objectif.

L’algorithme Pca-Mads, principalement basé sur l’instance LTMads, a été implémenté
en MATLAB™. A la lumière des résultats obtenus sur des problèmes allant jusqu’à 1500
variables, l’algorithme Pca-Mads est comparé à d’autres algorithmes d’optimisation sans

vi

dérivée dont CMA-ES, Mads et principalement Stats-Mads afin de pouvoir conclure de
ses performances. Ces tests indiquent clairement l’intérêt de l’approche de Pca-Mads.

vii

ABSTRACT

In today’s industry, the look for highest productivity at smallest costs naturally creates
optimization problems. Precise models often create complex problems along with the need
for derivative free optimization methods.

Those are methods which can handle non-linear, non-differentiable or noisy objective func-
tions. Mads algorithms are well-known black box optimization methods which solve this
type of problem through calls to a black box, i.e. some kind of computer code. When little
is known about the problem, the exploration of the search space requires a large number of
black box evaluations. However, in the context of black box optimization, problems take the
form of expensive-to-evaluate functions. The total number of evaluations is therefore very
limited and this constitutes the main challenge of the field.

When considering black box problems in large dimensions, the limited budget of evaluations
is even more constraining. Standard black box algorithms need to be adapted, for example
through dimension reduction scheme. Stats-Mads is a Mads-based algorithm which applies
an analysis of variance to rank most influential input variables. Then the method alternates
between optimizing the problem in a smaller dimension, where least influential variables
were fixed, and the problem in its original large dimension. Most of the improvement of the
objective value was done during the optimization in the small dimension.

We propose a new Mads algorithm conceived to handle large-scale black box problems. This
method applies a principal component analysis to identify most influential directions in the
search space and is called Pca-Mads. Similarly to Stats-Mads, Pca-Mads alternates
between an optimization in a smaller dimension, where the input can only evolve in the few
most influential directions, and a poll in the large dimension. However, its structure allows
to skip the poll in the large dimension as long as the optimization in the smaller dimension
generates new improving solutions.

A MATLAB™ implementation of the Pca-Mads method, based on the LTMads instance
was run on problems of up to 1500 variables. Its performances are compared to other deriva-
tive free methods such as CMA-ES, Mads and mainly Stats-Mads. The results of these
tests clearly indicate the value of the approach developed for Pca-Mads.

viii

TABLE DES MATIÈRES

DÉDICACE . iii

REMERCIEMENTS . iv

RÉSUMÉ . v

ABSTRACT . vii

TABLE DES MATIÈRES . viii

LISTE DES TABLEAUX . xi

LISTE DES FIGURES . xii

LISTE DES SIGLES ET ABRÉVIATIONS . xiv

CHAPITRE 1 INTRODUCTION . 1
1.1 Concepts de base et contexte du projet . 2
1.2 Problématique . 2
1.3 Structure du document . 3

CHAPITRE 2 MÉTHODES D’ANALYSE DE SENSIBILITÉ 4
2.1 Méthodes locales . 4
2.2 Méthodes de criblage . 5
2.3 Méthodes basées sur la variance . 8

2.3.1 Rapport de corrélation . 9
2.3.2 Indices de Sobol’ . 10
2.3.3 Méthode du Fourier amplitude sensitivity test 12

2.4 Méthode basée sur un modèle linéaire . 14
2.5 Méthode basée sur les métamodèles . 16
2.6 Analyse en composante principale . 17

CHAPITRE 3 MÉTHODES D’OPTIMISATION SANS DÉRIVÉE 20
3.1 Méthodes heuristiques . 20

3.1.1 Algorithme Hit-and-run . 20
3.1.2 Algorithme génétique . 21

ix

3.1.3 Algorithme de Nelder-Mead . 23
3.2 Méthodes basées sur des modèles . 24

3.2.1 Descente basée sur des modèles . 27
3.2.2 Méthodes de région de confiance . 27
3.2.3 Optimisation Bayesienne . 29

3.3 Méthodes de recherche directe . 31
3.3.1 Recherche par coordonnées . 31
3.3.2 Recherche par motif généralisée . 33
3.3.3 Recherche directe sur treillis adaptatif 36

3.4 Optimisation sans dérivée en grande dimension 39
3.4.1 Algorithme de Nelder-Mead en grande dimension 39
3.4.2 Réduction de dimension en optimisation Bayesienne 40
3.4.3 Algorithme STATS-MADS . 41

CHAPITRE 4 ALGORITHME PCA-MADS . 43
4.1 Analyse en composante principale dans PCA-MADS 43
4.2 Changement de variables . 46
4.3 Evaluation de la boîte noire . 49
4.4 Algorithme PCA-MADS . 50
4.5 Analyse de convergence . 51
4.6 Paramètres . 52

CHAPITRE 5 TESTS ET RÉSULTATS . 54
5.1 Profils de performances et profils de données 54
5.2 Plateforme COCO et suite de fonctions bbob 55
5.3 Tests sur la suite COCO . 56
5.4 Comportement de PCA-MADS en petite et grande dimension 59
5.5 Influence des paramètres . 61

5.5.1 Dimension du sous-problème p . 62
5.5.2 Budget d’évaluations pour l’optimisation du sous-problème 63
5.5.3 Ensemble de points utilisés pour l’analyse de sensibilité 65
5.5.4 Evaluation initiale de points . 67
5.5.5 Stratégie de construction et d’évaluation du sous-problème 69

5.6 Comparaison avec d’autres méthodes et algorithmes 69
5.6.1 Comparaison sur la suite COCO . 70
5.6.2 Comparaison sur des problèmes issus de la littérature 71

x

CHAPITRE 6 CONCLUSION ET RECOMMANDATIONS 74
6.1 Synthèse des travaux . 74
6.2 Discussion et limitations de la solution proposée 75
6.3 Améliorations possibles . 75

RÉFÉRENCES . 77

xi

LISTE DES TABLEAUX

Tableau 2.1 Proposition de transformations pour l’éqation (2.7) [60] 13
Tableau 4.1 Ensemble d’évaluations pour les fonctions f1(x1, x2) = 10x1 + x1x2 et

f2(x1, x2) = x1 + x2 . 47
Tableau 5.1 Comparaison des solutions de différents algorithmes sur un ensemble

de problèmes issus de la littérature 73

xii

LISTE DES FIGURES

Figure 1.1 Schéma simplifié du fonctionnement d’une boîte noire 2
Figure 2.1 Exemple d’application de la méthode de Morris sur la fonction (2.3) . 8
Figure 3.1 Représentation du treillis et cadre de sonde de Gps 34
Figure 3.2 Représentation du treillis et cadre de sonde de Mads 37
Figure 4.1 Illustration de la transformation (4.4) en deux dimensions 48
Figure 4.2 Illustration de la transformation (4.4) en trois dimensions. Les vecteur

p1, p2∈ R3 sont issus de l’analyse en composante principale et défi-
nissent le nouvel espace de recherche de dimension 2. Dans cet espace,
le point xk correspond au point (0, 0)> de ce sous-espace et xk+1 au
point (1, 1)> . 49

Figure 5.1 Comparaison de deux implémentations de Mads et de Pca-Mads
similaires, sur la suite de fonctions bbob de coco avec un budget de 10n 58

Figure 5.2 Comparaison des méthodes Mads et Pca-Mads sur deux ensembles
de fonctions de Rosenbrock en petites et grandes dimensions avec des
budgets de 100n et 50n respectivement 60

Figure 5.3 Graphe de convergence des algorithmes Mads et Pca-Mads sur une
fonction de Rosenbrock en dimension 300 61

Figure 5.4 Comparaison des performances de Pca-Mads avec différentes dimen-
sions du sous-problème (paramètre p), sur une partie de la suite de
fonctions bbob-largescale de COCO 63

Figure 5.5 Comparaison des performances de Pca-Mads avec différents budgets
d’évaluations pour l’optimisation du sous-problème, sur une partie de
la suite de fonctions bbob-largescale de COCO 64

Figure 5.6 Comparaison des performances de Pca-Mads avec différents nombres
des derniers points sélectionnés pour l’analyse de sensibilité (stratégies
last−n), sur une partie de la suite de fonctions bbob-largescale de COCO 66

Figure 5.7 Comparaison des performances de Pca-Mads avec différents nombres
des plus proches points sélectionnés pour l’analyse de sensibilité (stra-
tégie closest−n), sur une partie de la suite de fonctions bbob-largescale
de COCO . 66

xiii

Figure 5.8 Comparaison des performances de Pca-Mads avec une stratégie de
sélection de points pour l’analyse de sensibilité basée sur la distance
autour de la solution courante (stratégie dist− ε), sur une partie de la
suite de fonctions bbob-largescale de COCO 67

Figure 5.9 Comparaison des performances de Pca-Mads avec différentes straté-
gies de sélection de points pour l’analyse de sensibilité, sur une partie
de la suite de fonctions bbob-largescale de COCO 68

Figure 5.10 Comparaison des performances de Pca-Mads avec différentes straté-
gies de remplissage initial de la cache pour la première étape de re-
cherche, sur une partie de la suite de fonctions bbob-largescale de COCO 69

Figure 5.11 Comparaison des performances de Pca-Mads avec les deux stratégies
d’évaluation du sous-problème présentées aux équations (4.4) et (4.5),
sur une partie de la suite de fonctions bbob-largescale de COCO . . . 70

Figure 5.12 Comparaison des algorithmes Pca-Mads, Stats-Mads et CMA-ES
au moyen de profils de performance et de données sur la suite de fonc-
tions BBOB-largescale en dimension 80, 160, 320 de COCO avec un
budget de 50n . 71

Figure 5.13 Comparaison des algorithmes Pca-Mads, Stats-Mads et CMA-ES
au moyen de profils de performance et de données sur une partie de la
suite de fonctions BBOB-largescale en dimension 80, 160, 320 de COCO
avec un budget de 50n . 72

xiv

LISTE DES SIGLES ET ABRÉVIATIONS

FAST Fourier amplitude sensitivity test

Gps Recherche par motif généralisée (Generalized pattern search)

LTMads Lower Triangular Mads

Mads Recherche directe par treillis adaptatif (Mesh adaptive direct search)

NOMAD Non Linear Optimization with the Mads algorithm

OrthoMads Mads avec directions orthogonales

Pca-Mads Mads avec analyse en composante principale

Psd-Mads Parallel space decomposition of the mesh direct search algorithm

Stats-Mads Mads avec analyse de sensibilité statistique

SRC Standardized Regression Coefficient

SRRC Standardized Rank Regression Coefficient

xv

Ω Ensemble réalisable

f Fonction objectif

X Domaine de la fonction objectif

ci, i = 1, . . . ,m Fonctions des contraintes

R Ensemble des nombres réels

R̄ R ∪ {−∞,+∞}

k Compteur d’itérations

xk Solution courante à l’itération k

Dk Ensemble générateur positif à l’itération k

Mk Treillis conceptuel à l’itération k

P k Cadre de sonde à l’itération k

δk Taille du treillis à l’itération k

∆k Taille du cadre de sonde à l’itération k

1

CHAPITRE 1 INTRODUCTION

L’optimisation est le domaine des mathématiques appliquées où l’on cherche à minimiser ou à
maximiser une certaine quantité, éventuellement sous la contrainte que les variables d’entrée
du système appartiennent à un ensemble prédéfini. De nos jours, ce genre de problèmes est
extrêmement présent dans notre société ; on peut aisément imaginer une entreprise qui cherche
à minimiser ses coûts de production ou maximiser son rendement. Mais l’optimisation est
également utilisée pour la gestion de réseaux ou de ressources, le calcul d’horaires ou encore
l’apprentissage automatisé.

Un problème d’optimisation général s’écrit

min
x∈X

f(x)

sujet à x ∈ Ω.

La fonction f est appelée fonction objectif, ou plus simplement objectif, tandis que x re-
présente les variables du problème. L’ensemble X ⊆ Rn est l’ensemble de définition de la
fonction objectif f : X 7→ R, et n est la dimension du problème. L’ensemble Ω ⊆ X est l’en-
semble réalisable du problème et est généralement défini par une série de fonctions appelées
contraintes, Ω = {ci(x) ≤ 0, i = 1, 2, . . . ,m}. Il est également possible de définir un problème
d’optimisation avec d’autres types de variables, par exemple entières ou binaires. Bien que la
recherche d’un maximum fasse également partie du domaine de l’optimisation, la convention
préfère écrire les problèmes sous forme de minimisation. Toutefois, il existe une certaine équi-
valence entre la recherche d’un minimum et d’un maximum. Pour cela, l’équivalence suivante
est utilisée.

argmin
x∈Ω

f(x) ⇐⇒ argmax
x∈Ω

−f(x)

La difficulté d’un problème d’optimisation peut venir de la nature de l’objectif (fonction
linéaire, quadratique, convexe, lisse ou non lisse...) ou des contraintes (linéaires, quadratiques,
entières...) ou encore de la dimension du problème. Les problèmes les plus simples peuvent
être résolus à la main ou graphiquement mais les problèmes issus du monde réel sont souvent
bien trop compliqués pour cela. Il faut donc utiliser des algorithmes d’optimisation prévus
pour le type de problèmes auquel on a affaire.

2

1.1 Concepts de base et contexte du projet

Dans le cadre de ce projet, nous nous concentrons plus sur l’optimisation de boîtes noires.
Il s’agit de problèmes dont l’objectif et les contraintes ne sont pas connus analytiquement.
On ne peut évaluer l’objectif et les contraintes qu’en fixant une valeur pour chaque variable.
Ce fonctionnement est représenté graphiquement à la figure 1.1. En pratique, une boîte noire
prend souvent la forme d’une simulation informatique qui ne peut pas être écrite analytique-
ment.

Black Box

for (...)
{ // ... // }

x1, x2, . . . , xn f(x), c1(x), c2(x), . . . , cm(x)

Figure 1.1 Schéma simplifié du fonctionnement d’une boîte noire

Parmi les principales caractéristiques des boîtes noires, on retrouve un long temps d’exécution,
des évaluations qui peuvent mener à des erreurs, des boîtes noires très peu lisses ou encore
bruitées. Le temps d’évaluation de la boîte noire est souvent le facteur critique et définit un
budget d’évaluation maximum. Les dérivées de la fonction objectif ne sont pas accessibles
et/ou n’existent pas. Les méthodes basées sur le gradient ou sur la matrice Hessienne ne sont
donc pas utilisables dans ce contexte. Ces deux outils sont très appréciés en optimisation, car
ils donnent des informations quant à la pente ou la courbure de l’objectif. De plus, vu que
la boîte noire est souvent coûteuse à évaluer, il devient difficile d’estimer les dérivées en un
temps raisonnable. Il faut donc se tourner vers des méthodes propres à l’optimisation sans
dérivée. Il en existe plusieurs qui seront décrites au chapitre 3. La plupart ont de bonnes
performances lorsque les boîtes noires sont d’une taille raisonnable, de l’ordre de quelques
dizaines de variables.

1.2 Problématique

Dans le cadre de ce projet, on considère des problèmes de minimisation d’une boîte noire
sous contraintes de bornes sur les variables :

min
x∈X⊆Rn

f(x)

3

où X = {x ∈ Rn : l ≤ x ≤ u} où l, u ∈ R̄n définit des bornes explicitement connues. Les
problèmes considérés dans ce document possèdent uniquement des variables réelles. Plus
particulièrement, les problèmes étudiés sont des problèmes d’optimisation sans dérivée de
grande taille, de l’ordre de quelques centaines à quelques milliers de variables. Ces problèmes
sont trop grands pour utiliser des méthodes d’optimisation de boîtes noires classiques en un
temps raisonnable.

La principale difficulté des problèmes d’optimisation de boîtes noires est que l’on ne possède
que peu d’information sur le problème. L’idée de départ de ce projet est donc d’en apprendre
un peu plus sur le fonctionnement de la boîtes noires en appliquant des méthodes d’analyse
de sensibilité. Ces méthodes devraient permettre d’identifier des variables ou des combinai-
sons de variables qui ont plus d’influence que les autres. On suppose en effet que certaines
combinaisons de variables sont plus critiques. Cela permettra de concentrer la recherche d’un
minimum dans un sous-espace où seules les valeurs de ces combinaisons de variables pourront
être modifiées, au lieu de l’espace complet. Ce projet propose donc un nouvel algorithme basé
sur un algorithme d’optimisation connu qui applique une méthode d’analyse de sensibilité
pour réduire l’espace de recherche.

1.3 Structure du document

Ce document est structuré de la façon suivante. Le chapitre 2 présente plusieurs méthodes
d’analyse de sensibilité. Celles-ci ont été classées en différentes catégories en fonction de leur
fonctionnement et de leur portée. Le chapitre 3 présente plusieurs méthodes et algorithmes
propres à l’optimisation sans dérivée. La dernière section de ce chapitre porte sur les mé-
thodes d’optimisation de boîtes noires qui ciblent plus particulièrement les problèmes de
grandes tailles. Dans le chapitre 4, on propose un algorithme d’optimisation sans dérivée
utilisant une méthode d’analyse de sensibilité, ainsi qu’une courte analyse de sa convergence,
c’est-à-dire une analyse de son comportement lorsque son nombre d’itérations tend vers l’in-
fini. Le chapitre 5 donne quelques résultats numériques concrets ainsi que des comparaisons
avec d’autres algorithmes connus. Le chapitre 6 présente une discussion des résultats et une
conclusion de ce projet.

4

CHAPITRE 2 MÉTHODES D’ANALYSE DE SENSIBILITÉ

Une analyse de sensibilité cherche à identifier l’influence des variables d’entrée sur la sortie
d’un modèle. Les variables sont aussi appelées facteurs du modèle. Ce projet considère un
modèle à n variables et une sortie :

y = f(x1, x2, . . . , xn).

Etant donné que ce projet porte sur de l’optimisation de boîte noire, le modèle étudié est la
fonction objectif du problème d’optimisation.

En premier lieu, la section 2.1 présente des méthodes locales. Comme leur nom l’indique,
il s’agit des méthodes capables d’identifier la sensibilité du modèle autour d’un point. La
section 2.2 porte sur des méthodes de criblage ; il s’agit d’une généralisation plus globale de
méthodes locales. Contrairement aux méthodes locales, les méthodes globales ont pour but
de donner des mesures de sensibilité qui seraient valides dans tout le domaine des variables
d’entrée et indépendantes d’un choix arbitraire de points nominaux. Les sections suivantes
portent sur des méthodes globales. Parmi celles-ci, les méthodes basées sur la variance, à
la section 2.3, supposent que le modèle est aléatoire et appliquent une analyse de variance.
Les sections 2.4 et 2.5 cherchent à construire des modèles de la fonction à analyser pour en
déduire sa sensibilité aux variables. La dernière section présente une méthode d’analyse en
composante principale.

2.1 Méthodes locales

Dans le cas d’une fonction différentiable, la première mesure de sensibilité qui vient à l’esprit
est sans doute une mesure basée sur les dérivées partielles. Un coefficient Si est défini pour
chaque facteur d’entrée xi, i = 1, . . . , n,

Si = ∂f

∂xi
(x0) (2.1)

où x0 = (x0
1, . . . , x

0
n) est un point de dimension n, appelé point nominal. Toutefois, cette

mesure semble ne pas être toujours appropriée. Considérons l’exemple d’une facture pour n
objets. On note xi > 0 le prix du ie objet, i = 1, . . . , n, et y = f(x) = ∑n

i=1 xi. La mesure de
sensibilité décrite dans (2.1) donnerait Si = 1 pour chaque objet, indépendamment du prix
de chacun de ces objets. Il serait alors intéressant de normaliser la mesure (2.1) en fonction

5

de la valeur du facteur et la valeur de la sortie :

Si = x0
i

f(x0)
∂y

∂xi
(x0).

De cette manière, le coefficient de sensibilité de l’objet le plus cher sera plus grand que ceux
des autres objets.

Une méthode simple pour le calcul numérique d’une approximation des dérivées partielles
est un calcul par différences finies. En faisant varier légèrement un paramètre à la fois, il est
possible de comparer les variations de la sortie du modèle. Ces variations sont appelées effets
élémentaires et sont notées E0

i s’ils sont calculés au point x0. Par exemple, pour une fonction
différentiable,

∂f

∂xi
(x0) ≈ E0

i = f(x0 + ∆ei)− f(x0)
∆ , (2.2)

où ei est un vecteur ne contenant que des 0 et un 1 à la ie composante et ∆ ∈ R. Une petite
valeur pour le paramètre ∆ donne, en général, une bonne approximation. Toutefois, trouver
la valeur idéale reste compliqué. Cependant, d’autres approximations par différences finies
existent dont certaines utilisent plus de points.

Les mesures basées sur les dérivées premières calculées par différences finies dépendent donc
grandement du paramètre ∆ et du point nominal x0. Rien ne peut garantir la qualité de la
mesure en dehors d’un voisinage du point nominal. De plus, cette mesure néglige une possible
interaction entre les différents facteurs en entrée. Bien entendu, des mesures basées sur des
approximations des dérivées d’ordre supérieur tiendraient compte de telles interactions, mais
demanderaient plus de calcul. D’ailleurs, l’idée centrale de ces mesures est d’approximer les
dérivées partielles de la fonction. Dans le cas où celle-ci n’est pas différentiable, le calcul des
différences finies de l’équation (2.2) est toujours possible, mais cela ne donne aucune garantie
de la qualité d’une telle mesure.

Cette méthode requiert de pouvoir choisir les points d’évaluation afin de calculer des mesures
de sensibilité. Ceci n’est pas applicable dans notre situation, car les points mis à disposition
sont issus des évaluations faites à partir d’un algorithme d’optimisation Mads ; celui-ci sera
décrit à la section 3.3.3.

2.2 Méthodes de criblage

La question centrale de l’analyse de sensibilité est, parmi toutes les variables d’entrée, les-
quelles sont réellement importantes, c’est-à-dire plus importantes que les autres. Une hypo-
thèse simple est de supposer que le nombre de variables plus importantes que les autres est

6

relativement petit par rapport à leur nombre total, sinon elles ne seraient pas réellement
importantes.

Les méthodes de criblage sont en général utilisées pour analyser de grands modèles, avec
plusieurs centaines de facteurs d’entrée par exemple. Elles sont considérées comme des mé-
thodes à faible coût, mais donnent uniquement une analyse qualitative, c’est-à-dire elles
peuvent classer les entrées par ordre d’importance ou du moins identifier les variables qui
ont un effet négligeable par rapport aux autres, mais ne peuvent quantifier la différence d’in-
fluence entre deux facteurs. Une utilisation possible des méthodes de criblage est d’exploiter
un petit nombre d’évaluations pour identifier des variables peu influentes sur le modèle, pour
ensuite simplifier le modèle et appliquer d’autres méthodes d’analyse de sensibilité, souvent
plus précises mais plus coûteuses. L’idée derrière les méthodes de criblage est de discrétiser
les valeurs possibles de chaque variable en plusieurs niveaux, et de faire varier les entrées en
fonction de ces niveaux.

Parmi les types de méthodes de criblage, les designs One At a Time (OAT) sont les plus
utilisés. Ils étudient l’importance d’une entrée en faisant varier un facteur à la fois. Bien que
cela ressemble à une analyse locale, les auteurs de [53] présentent une adaptation globale
des méthodes de criblage. Chaque variable peut prendre deux ou trois valeurs possibles, en
général une valeur nominale et deux extrêmes. Ensuite, on applique une étude statistique
d’un échantillon d’effets élémentaires de chaque variable. Il existe d’autres méthodes de type
OAT moins coûteuses que la méthode de Morris décrite dans [53] mais cette dernière reste
considérée comme plus complète [39]. Toutefois, si le nombre d’évaluations est petit, plus
faible que le nombre de variables d’entrée par exemple, d’autres méthodes sont à privilégier
dont certaines sont présentées dans [16,28,46].

La méthode de Morris [53] cherche à classer les variables en trois groupes : celles avec un
effet négligeable, celles avec un effet linéaire et celles avec un effet non linéaire et/ou des
interactions. On suppose que l’on veut analyser un modèle à n variables x1, . . . , xn et une
sortie y = f(x1, . . . , xn), et que chaque facteur peut prendre p > 1 valeurs entre 0 et 1, à
savoir xi ∈

{
0; 1

p−1 ; 2
p−1 ; . . . ; p−2

p−1 ; 1
}
. A partir d’un point nominal x0, un effet élémentaire du

facteur i est défini comme
E0
i = f(x0 + ∆ei)− f(x0)

∆ ,

où ∆ ∈
{

1
p−1 , . . . , 1−

1
p−1

}
. Le calcul d’un effet élémentaire peut être répété à partir de

plusieurs points nominaux. La moyenne de ces effets élémentaires à partir de r points {xj}rj=1

est notée
µi = 1

r

r∑
j=1

EEj
i .

7

De même, on peut calculer une moyenne des valeurs absolues µ∗i et l’écart-type σi des effets
élémentaires de chaque variable,

µ∗i = 1
r

r∑
j=1
|EEj

i |,

σ2
i = 1

r − 1

r∑
j=1

(EEj
i − µi)2.

La moyenne µ∗i donne une mesure de sensibilité du modèle. Si µ∗i est petit, la variable i a un
effet peu important. L’écart-type σi donne une idée de l’importance des interactions entre
les variables. En effet, si σi est grand, cela indique que les effets élémentaires du facteur i
dépendent du point nominal auquel ils sont calculés, et donc des valeurs des autres variables.
A l’opposé, si σi est faible, cela indique que l’effet d’une variable ne dépend pas de la valeur
des autres entrées, et donc que la variable i a un effet plutôt linéaire.

Ces effets élémentaires peuvent avoir des impacts opposés en fonction du point nominal et
cela peut résulter en un faible µi. Dans ce cas, µ∗i sera grand. A partir de µi, µ∗i , σ∗i , on
peut déduire l’importance relative de chaque variable i = 1, . . . , n, et donc les classer en trois
groupes. Cela peut se faire en représentant les variables dans un graphe représentant σ et
fonction de µ∗.

Exemple 2.1 Par exemple, considérons la fonction suivante :

f : [−1; 1]7 7→ R, x→ 110x1 + 100x2 + 10x3 + 60x3x4 + 50x2
5 + 5x6 + 2x7 (2.3)

En appliquant la méthode de Morris en considérant r = 5 répétitions, ce qui donne r(n+1) =
40 évaluations du modèle, nous pouvons construire la figure 2.1. Nous remarquons que l’on
peut distinguer facilement trois groupes de variables. Les premières sont les deux variables
proches de l’origine. Il s’agit des variables qui ont un impact négligeable sur la fonction, les
variables x6 et x7. En effet, aussi bien la moyenne que l’écart-type de leurs effets élémentaires
sont très faibles. Le deuxième groupe reprend les variables en bas à droite, c’est-à-dire x1 et
x2 qui ont un effet uniquement linéaire, tout comme x6 et x7, mais non négligeable ; on peut
le remarquer car l’écart-type de leurs effets élémentaires est nul. Le troisième groupe reprend
les variables qui ont un µ∗ et un σ relativement importants. Il s’agit donc de variables ayant
un effet non négligeable et non linéaire sur le modèle. On peut trouver les variables x3, x4 et
x5 dans ce groupe.

Grâce à ce genre de méthodes, il est possible d’explorer l’entièreté du domaine et avoir une

8

X
1

0 20 40 60 80 100 120
*

0

10

20

30

40

50

60

Exemple de methode de criblage

x 1
x 2
x 3
x 4
x 5
x 6
x 7

X
2

X
5

X
3

X
4

X
7 X

6

Figure 2.1 Exemple d’application de la méthode de Morris sur la fonction (2.3)

idée de l’impact global des variables sur le modèle. Toutefois, les résultats d’une telle analyse
dépendent du choix des points nominaux auxquels les effets élémentaires sont calculés.

Cette méthode n’est pas directement applicable dans notre situation, et ce pour la même
raison que précédemment. On veut exploiter l’ensemble des évaluations effectuées par un
algorithme d’optimisation ; le choix de points spécifiques pour calculer une mesure de sen-
sibilité n’est donc pas possible. Par contre, une telle méthode permet, en un faible nombre
d’évaluations, d’avoir une idée des variables non influentes.

2.3 Méthodes basées sur la variance

Plusieurs méthodes d’analyse de sensibilité sont basées sur la variance. L’intérêt de cette
mesure est son indépendance par rapport au modèle. Elle permet également de mettre en
évidence les effets dus à la variation d’une variable particulière, ainsi que les effets dus aux
interactions entre les variables.

L’idée derrière l’analyse de sensibilité basée sur la variance est de considérer les variables
d’entrée xi et de la sortie y = f(x) comme des variables aléatoires, notées Xi et Y . La
sensibilité de la sortie à une variable correspond à la réduction de variance observée si cette

9

variable d’entrée est fixée. La variance de la sortie peut être décomposée de la manière
suivante :

V ar[Y] =V arXi
[E(Y |Xi)] + EXi

(V ar[Y |Xi]), (2.4)

1 =V arXi
[E(Y |Xi)]

V ar[Y] + EXi
(V ar[Y |Xi])
V ar[Y] , (2.5)

où V arXi
[E(Y |Xi)] est la variance de l’espérance de Y conditionnelle à Xi et EXi

(V ar[Y |Xi])
est l’espérance de la variance de Y conditionnelle à Xi. L’équation (2.5) est obtenue en
divisant l’équation (2.4) par V ar[Y].

Le premier terme de (2.5) est considéré comme une bonne mesure de sensibilité puisqu’il
représente la proportion de variance de Y qui peut être attribuée à Xi. Il s’agit d’une variance
de l’espérance de conditionnelle (VCE), notée

V CE[Xi] = V arXi
[E(Y |Xi)].

Les différentes méthodes présentées ci-dessous décrivent plusieurs moyens d’estimer la VCE
de chaque facteur. Dans ce document, la mesure du rapport de corrélation, la méthode des
indices de Sobol’ et la méthode Fourier amplitude sensitivity test (FAST) sont présentées.

2.3.1 Rapport de corrélation

La méthode des rapports de corrélation cherche à construire un estimateur du rapport de
corrélation d’une variable. Le rapport de corrélation ηi de la variable xi, i = 1, 2, . . . , n est
défini comme

η2
i = V arXi

[E(Y |Xi)]
V ar[Y] , i = 1, 2, . . . , n.

Pour estimer un rapport de corrélation, il faut construire un estimateur de la variance de Y ,
V̂ ar[Y], et de la variance de l’espérance conditionnelle ̂V CE[Xi] . Ensuite l’estimation du
rapport de corrélation se calcule par le rapport entre ces deux estimateurs ;

η̂i
2 =

̂V CE[Xi]
V̂ ar[Y]

.

Les deux estimateurs nécessaires peuvent être calculés à partir de r réplications d’un échan-

10

tillonnage par hypercube latin de m éléments. On pose

V̂ ar[Y] = 1
mr

m∑
j=1

r∑
l=1

(yjl − ȳ)2

où yjl correspond à la sortie d’un échantillon et ȳ = (1/mr)∑m
j=1

∑r
l=1 yjl est la moyenne de

toutes les sorties. La moyenne d’un échantillon est notée ȳj. Le deuxième estimateur est

̂V CE[Xi] = 1
m

m∑
j=1

(ȳj − ȳ)2 − 1
mr2

m∑
j=1

r∑
l=1

(y(i)
jl − ȳj)2,

où y(i)
jl est obtenu en fixant les valeurs prises par la variable Xi à ses valeurs dans la première

réplication, dans chacune des r réplications.

Dans le cadre de ce projet, cette méthode est intéressante, car elle peut être utilisée à partir
d’un ensemble d’évaluations déjà effectuées. D’ailleurs, elle a déjà été utilisée dans des projets
similaires [2–4,15]. Ceux-ci seront décrits à la section 3.4.

2.3.2 Indices de Sobol’

La méthode des indices de Sobol’ [65] se base sur une décomposition de la fonction du modèle
à étudier. Pour décrire cette méthode, on suppose que l’espace des variables est un hypercube
unitaire en dimension n, c’est-à-dire

f : Ωn = [0; 1]n → R.

Chaque sous-ensemble de variables peut avoir un effet sur le modèle. Il est alors possible
de décomposer une fonction f sous une somme de fonctions fi1,...,im représentant l’effet de
chaque sous-ensemble de variables,

f(x) = f0 +
∑
i

fi(xi) +
∑
i

∑
j>i

fij(xi, xj) + · · ·+ f12...k(x1, x2, . . . , xk). (2.6)

En choisissant chaque fonction carré intégrable, comme décrit dans [65], cette décomposition
existe et est unique.

Dans le cadre d’une analyse de sensibilité, nous avons un vecteur aléatoire X = (X1, . . . , Xn)
composé de n variables indépendantes et Y = f(X) la sortie d’un modèle déterministe f(·).
Nous pouvons donc appliquer une analyse de variance fonctionnelle. La variance totale D de

11

la fonction f est définie comme

D =
∫

Ωk
f(x)dx− f 2

0

tandis que les variances partielles sont

Di1,i2,...,is =
∫ 1

0
. . .
∫ 1

0
f 2
i1i2...is(xi1 , xi2 , . . . , xis)dxi1dxi2 . . . dxis ,

où 1 ≤ i1 < i2 < · · · < is et s = 1, . . . , k.

En prenant le carré de (2.6) et en intégrant sur le domaine, on obtient

D =
k∑
i=1

Di +
∑

1≤i<j≤k
Dij + · · ·+Di,2,...,k.

On note alors que D = V ar[Y], Di = V ar[E(Y |Xi)], Dij = V ar[E(Y |Xi, Xj)]−Di −Dj et
ainsi de suite. Les indices de sensibilité sont définis comme

Si1,...,is = Di1,...,is

D
.

Si est l’indice de sensibilité de premier ordre du facteur i, i = 1, . . . , n, et mesure l’effet du
facteur i sur la sortie. Sij est l’indice de sensibilité du deuxième ordre des facteurs i et j,
i < j, et il mesure l’effet de l’interaction des facteurs i et j. Une propriété intéressante de ces
indices est

n∑
i=1

Si +
∑

1≤i<j≤n
Sij + · · ·+ S1,2,...,n = 1.

Le nombre d’indices, correspondant au nombre de sous-ensembles de variables, croît expo-
nentiellement avec la dimension du problème. En pratique, les indices d’ordres supérieurs à
deux ne sont pas calculés.

Les auteurs de [37] présentent également des indices de sensibilité totaux STi d’une variable i
comme la somme de tous les indices qui font intervenir la variable en question. Par exemple,
l’indice de sensibilité totale de la variable x1 d’un modèle à trois variables est

ST1 = S1 + S12 + S13 + S123.

Lorsque le nombre de variables est important, il peut être judicieux de ne calculer que les
indices du premier ordre et les indices totaux.

Les indices de sensibilité du premier ordre peuvent être estimés à partir de deux échantillons

12

de Monte Carlo de taille N . Les estimateurs sont construits de la façon suivante :

f̂0 = 1
N

N∑
m=1

f(xm),

D̂ = 1
N

N∑
m=1

(f(xm)− f̂0)2,

D̂i = 1
N

N∑
m=1

f(x(1)
(∼i)m, x

(1)
im)f(x(2)

(∼i)m, x
(1)
im)− f̂0

2
,

où les exposants (1) et (2) indiquent l’échantillon, xm est un point dans Ωn et

x(∼i)m = (x1m, x2m, . . . , x(i−1)m, x(i+1)m, . . . xnm).

Des manières pratiques de calculer les indices de Sobol’ du premier ordre et les indices totaux
grâce à deux échantillons de Monte Carlo sont décrites dans [59,65] et [61, section 4.6].

Le calcul de ces indices de sensibilité requiert toutefois un grand nombre d’évaluations du
modèle. Les auteurs de [39] décrivent un taux de convergence en

√
N où N est la taille de

l’échantillon, ce qui revient en général à un ordre de 104 évaluations du modèle.

Bien que cette méthode soit intéressante, le nombre d’évaluations nécessaire la rend peu
utilisable dans le cadre de l’optimisation de boîte noire. En effet, le budget d’évaluations de
la boîte noire est normalement très limité.

2.3.3 Méthode du Fourier amplitude sensitivity test

Le Fourier amplitude sensitivity test (FAST) [26] est une méthode qui permet d’estimer
l’espérance et la variance de la sortie d’un modèle, ainsi que la contribution d’une variable
à la variance. Celle-ci se base sur la transformée de Fourier, calculée en certains points et
pour certaines fréquences. L’idée est de transformer des intégrales en n dimensions en des
intégrales en une dimension.

On pose
Xi = Gi(sinωis), i = 1, 2, . . . , n. (2.7)

En choisissant des valeurs adaptées pour les fréquences ωi et de bonnes transformations Gi,
il est possible d’approximer l’espérance de la sortie Y comme

E[Y] ≈ 1
2π

∫ π

−π
f(s)ds,

13

où f(s) = f(G1(sinω1s), G2(sinω2s), . . . , Gn(sinωns)). De même, l’approximation de la va-
riance peut être calculée :

V[Y] = 1
2π

∫ π

−π
f 2(s)ds− [E(Y)]2

≈
∞∑

j=−∞
(A2

j +B2
j)− (A2

0 +B2
0)

≈ 2
∞∑
j=1

(A2
j +B2

j),

où Aj et Bj sont les coefficients de Fourier

Aj = 1
2π

∫ π

−π
f(s) cos(js)ds, Bj = 1

2π

∫ π

−π
f(s) sin(js)ds.

Le choix des transformations Gi est crucial. Différentes sources proposent les différentes
transformations du tableau 2.1. Une bonne transformation devrait proposer une distribution
uniforme pour chaque facteur. Les auteurs de [60] notent que les transformations (C) et (D)
proposent une meilleure distribution que les transformations (A) et (B), et devraient donc
être préférées à ces dernières.

Le calcul des indices de sensibilité se fait en calculant les coefficients Aj et Bj à leur fréquence
fondamentale ωi pour i = 1, . . . , n, ainsi qu’à leurs harmoniques pωi pour p = 1, 2, La
contribution du facteur i à la variance de la sortie peut être approximée comme

Dωi
≈ 2

∞∑
p=1

(A2
pωi

+B2
pωi

).

En remarquant que les amplitudes de Fourier décroissent lorsque p croit, l’estimation de Dωi

Tableau 2.1 Proposition de transformations pour l’éqation (2.7) [60]

Tranformation Gi Référence

(A) xi = x̄ie
v̄i sin(ωis) [26]

(B) xi = x̄i(1 + v̄i sin(ωis)) [42]

(C) xi = 1
2

1
π

arcsin(sin(ωis)) [62]

(D) xi = 1
2

1
π

arcsin(sin(ωis+ φi)) [62]

14

peut être calculée par

D̂ωi
= 2

M∑
p=1

(A2
pωi

+B2
pωi

),

oùM correspond à la plus grande harmonique considérée, en généralM = 4 ouM = 6 [27,60,
section 8.4]. A partir de D̂ωi

, il est possible de calculer des coefficients équivalents aux indices
de Sobol’ du premier ordre. De plus, [60, section 8.4.3] présente une méthode basée sur le
FAST permettant de calculer des indices totaux.

Même si cette méthode est moins coûteuse que la méthode présentée à la section précédente,
elle reste coûteuse et est parfois biaisée ou instable lorsque la dimension du modèle devient
trop grande, supérieur à 10 environ, comme précisé dans [66]. Cette méthode sera donc
difficilement exploitable dans le cadre de ce projet, car les problèmes considérés ont un nombre
de variables de l’ordre de quelques centaines voire quelques milliers de variables.

2.4 Méthode basée sur un modèle linéaire

En supposant que le modèle à étudier est linéaire, il est possible de calculer des coefficients
de régression linéaire. En considérant un échantillon de N points, on suppose la relation

Yj = β0 +
N∑
i=1

βiXij + εj, pour j = 1, 2, . . . , N, (2.8)

où Xij représente l’observation j de la variable xi, pour i = 1, . . . , n et Yj correspond à la
sortie de l’échantillon (X1j, X2j, . . . , Xkj). Les βi sont des coefficients de régression et εj des
termes d’erreur. Les coefficients sont à calculer par une méthode de moindres carrés.

En supposant les variables indépendantes entre elles, et qu’elles le soient également des er-
reurs, il est possible de décomposer la variance du modèle (2.8) comme

V ar[Y] =
k∑
i=1

Vi + Ve,

où Vi donne la contribution de la variable Xi à la variance totale, et Ve la contribution des
termes d’erreur. Les auteurs de [71] montrent qu’une estimation de V et Vi est possible,

V̂ = 1
N − 1

N∑
i=1

(Yi − Ȳ)2,

V̂i = 1
N − 1β

2
i

N∑
i=1

(Xij − X̄i)2.

15

Un coefficient de sensibilité Si peut alors être construit,

Si =

√√√√ V̂i

V̂
.

Celui-ci est connu sous le nom de standardized regression coefficient ou SRC [19].

Si on suppose le modèle monotone, un autre indicateur connu sous le nom de standardized
rank regression coefficient ou SRRC peut également être utilisé. Cela consiste à attribuer 1
à la plus petite valeur de sortie, 2 à la suivante jusqu’à N à la plus grande valeur. La même
procédure est appliquée aux valeurs de chaque variable. Ensuite le calcul se fait de manière
similaire que pour les SRC.

Il existe également d’autres coefficients [39] :
— coefficient de corrélation de Pearson :

ρ(Xi, Y) =
∑N
j=1

(
Xij − E(Xi)

)(
Yj − E(Y)

)
√∑N

j=1

(
Xij − E(Xi)

)2
√∑N

j=1

(
Yj − E(Y)

)2
.

Ce coefficient cherche à indiquer un lien linéaire entre une variable et la sortie du
modèle. Il vaut 1 ou −1 si elles ont une relation linéaire et 0 si elles sont indépendantes.

— coefficient de corrélation partielle [38] :

PCCi = ρ
(
Xi − X̂−i, Y − Ŷ−i

)
,

où X̂−i est la prédiction du modèle linéaire et Ŷ−i est la prédiction du modèle linéaire
lorsque Xi est absent.

Ces méthodes sont applicables dans notre contexte car les mesures sont calculées à partir
d’un nuage de point. Néanmoins, elles se basent sur une hypothèse forte, que la fonction
étudiée ait un certain caractère linéaire. Il existe des coefficients qui permettent de confirmer
cette hypothèse :

— coefficient de détermination R2 :

R2 =
∑N
j=1

(
Ŷj − E(Y)

)2

∑N
j=1

(
Yj − E(Y)

)2

où Ŷj correspond à la prédiction du modèle ;

16

— coefficient prédictif Q2 :

Q2 = 1−
∑M
j=1

(
Yj − Ŷj

)2

∑M
j=1

(
Yj − E[Y]

)2 ,

où l’échantillon de taille M n’a pas été utilisé pour construire le modèle et Ŷj corres-
pond à la prédiction du modèle pour le point Xj = (X1j, . . . , Xnj).

Ces deux coefficients permettent d’exprimer la part de la variabilité de la sortie de la fonction
étudiée qui peut être expliquée par le modèle linéaire. En règle générale, les problèmes étudiés
dans le cadre de l’optimisation de boîte noire ne sont pas linéaires, ce qui rend cette méthode
peu pertinente à ce projet.

2.5 Méthode basée sur les métamodèles

Une boîte noire ayant un long temps d’évaluation ne donne que peu de points disponibles pour
une analyse de sensibilité. L’idée des méthodes basées sur des métamodèles est de trouver
un substitut ou surrogate de la boîte noire ayant un comportement similaire à la fonction
étudiée, mais dont le temps d’évaluation est grandement réduit. Il est alors possible d’évaluer
le substitut un grand nombre de fois et d’appliquer l’une ou l’autre méthode d’analyse de
sensibilité sur les points obtenus. Il existe un grand nombre de techniques possibles pour
créer ce substitut, par exemple un modèle quadratique ou polynomial, l’utilisation de splines
ou des modèles de krigeage. D’ailleurs, il existe des méthodes d’optimisation sans dérivée
qui exploitent des substituts pour diminuer l’objectif. Celles-ci sont décrites un peu plus en
détails à la section 3.2.

Etant donné que le substitut et la fonction à analyser sont différents, les résultats d’une
analyse de sensibilité effectuée sur un substitut peuvent ne pas correspondre parfaitement à
la fonction originale. Toutefois, si le substitut est de bonne qualité, celui-ci peut être utilisé
avec l’une des méthodes d’analyse de sensibilité décrites dans ce chapitre. Il serait alors
possible d’exploiter le substitut pour avoir un grand nombre de points à analyser tout en
préservant le budget d’évaluations limité de la boîte noire décrivant l’objectif.

L’optimisation sans dérivée à l’aide de substitut est un domaine qui mérite un certain intérêt
mais n’est pas l’objet du présent document. En effet, dans le cadre de ce projet, nous ne
supposons pas avoir accès à un modèle simplifié de l’objectif, ce qui rend cette méthode
inexploitable.

17

2.6 Analyse en composante principale

Dans l’introduction de son livre [40], Jolliffe décrit l’idée derrière l’analyse en composante
principale comme celle "de réduire la dimension d’un ensemble de données composées d’un
grand nombre de variables liées entre elles, tout en retenant autant que possible la variabilité
de l’ensemble de données. Cela est réalisé en le transformant en un nouvel ensemble de
variables, les composantes principales, qui sont non corrélées, et qui sont ordonnées telles
que les quelques premières variables retiennent la majorité de la variabilité présente dans
toutes les variables originales" ([40, chapitre 1], notre traduction).

Concrètement, on suppose X un vecteur aléatoire de taille n et les liens entre ces variables,
leur structure de corrélation ou de covariance, nous intéressent. Pour éviter de regarder
les n variances et les n(n−1)

2 covariances ou corrélations, il serait intéressant de regarder
p � n nouvelles variables qui retiennent la majeure partie de l’information contenue dans
ces covariances. Ces nouvelles variables seront construites comme des combinaisons linéaires
des variables originales de la manière suivante.

Dans un premier temps, une transformation linéaire α>1 X = ∑n
i=1 α1,iXi est construite où

α1 ∈ Rn. Puisque la majorité de la variance doit être préservée, celle-ci est construite avec
une variance maximale. Ensuite, on cherche une transformation linéaire α>2 x, non corrélée
avec α>1 x, qui maximise également sa variance. La troisième transformation linéaire ne doit
être corrélée ni avec α>1 x ni avec α>2 x tout en maximisant sa variance et ainsi de suite. Les
vecteurs αi sont appelés les composantes principales. Il existe jusqu’à n transformations,
mais on espère que les p� n premières transformations contiendront la majeure partie de la
variance de l’ensemble de données.

Le calcul des composantes principales se fait à partir de la matrice de covariance Σ ∈ Rn×n

du vecteur aléatoire X. On note λ1 ≥ λ2 ≥ · · · ≥ λn ses valeurs propres. La première
composante principale, le vecteur α1 ∈ Rn, maximise V ar[α>1 x] = α>1 Σα1. Pour s’assurer que
α1 soit unique, il est utile d’imposer que ce dernier soit normé. Cette transformation α1 est
donc la solution du problème d’optimisation

max
α1∈Rn

α>1 Σα1 (2.9)

sujet à α>1 α1 = 1. (2.10)

Pour résoudre ce problème, il est utile d’introduire le multiplicateur de Lagrange λ ∈ R et le
Lagrangien

L(α1, λ) = α>1 Σα1 − λ(α>1 α1 − 1). (2.11)

18

En imposant que le gradient de (2.11) soit nul, on obtient

Σα1 − λα1 = 0 ⇐⇒ (Σ− λIn)α1 = 0,

où In ∈ Rn×n est la matrice identité. Le multiplicateur de Lagrange λ est donc une valeur
propre de Σ et α1 le vecteur propre correspondant. La quantité à maximiser étant

α>1 Σα1 = α>1 λα1 = λα>1 α1 = λ,

le multiplicateur de Lagrange λ est égal à la plus grande valeur propre de Σ, λ = λ1, et α1

le vecteur propre correspondant.

Pour trouver la deuxième composante principale α2 ∈ Rn, un problème d’optimisation simi-
laire à (2.10) est construit, en ajoutant une contrainte. En effet, les composantes principales
doivent être non-corrélées entre elles. Cette nouvelle contrainte est

Cov[α>1 X,α>2 X] = α>1 Σα2 = α>2 Σα1 = α>2 λ1α1 = λ1α
>
2 α1 = 0. (2.12)

En ajoutant une contrainte de normalisation sur α2, on obtient le problème

max
α2∈Rn

α>2 Σα2 (2.13)

sujet à α>2 α2 = 1 (2.14)

α>2 α1 = 0. (2.15)

Pour le résoudre, deux multiplicateurs de Lagrange λ, µ ∈ R et le Lagrangien

L(α2, λ, µ) = α>2 Σα2 − λ(α>2 α2 − 1)− µα>2 α1

sont introduits. En annulant son gradient par rapport à α2, on obtient l’équation

Σα2 − λα2 − µα1 = 0. (2.16)

Il est possible de multiplier cette équation par α>1 6= 0, ce qui donne

α>1 Σα2 − λα>1 α2 − µα>1 α1 = 0.

Puisque α>1 α1 = 1 (2.10), α>1 α2 = 0 (2.15) et α>1 Σα2 = 0 (2.12), l’équation se réduit à µ = 0.
Alors (2.16) devient

Σα2 − λα2 = 0 ⇐⇒ (Σ− λIn)α2 = 0,

19

et λ est également une valeur propre de Σ et α2 son vecteur propre correspondant. Puisqu’il
faut maximiser λ et que les vecteurs propres de Σ, α1 et α2, doivent satisfaire α>2 α1 = 0, λ
correspond à la deuxième plus grande valeur propre de Σ, λ = λ2, et α2 à son vecteur propre
correspondant.

Via un raisonnement similaire pour les (n−2) composantes principales suivantes, on en déduit
qu’elles correspondent aux (n − 2) vecteurs propres associés aux (n − 2) valeurs propres de
Σ suivantes, ordonnées par ordre décroissant.

Alors, pour k = 1, 2, . . . , n, la ke composante principale est zk = α>k x où αk est le vecteur
propre de Σ associé à sa ke plus grande valeur propre λk. De plus, si αk est unitaire, V ar[zk] =
λk.

Si Σ n’est pas connue, elle peut être estimée grâce à un échantillon de réalisations du vecteur
aléatoire X. A partir d’un nuage de N points, il faut estimer la matrice de covariance. On
suppose que D est une matrice N lignes n colonnes. Chaque ligne représente une observation
des variables aléatoires. Une estimation de la matrice de covariance serait une matrice S ∈
Rn×n où

Sij = 1
N − 1

N∑
l=1

(Dli − D̄i)(Dlj − D̄j),

où D̄j = 1
N

∑N
i=1Dij est la moyenne des réalisations de la je variable aléatoire.

Ce projet porte sur l’optimisation de boîte noire. Dans ce contexte, une analyse en composante
principale pourrait être utilisée pour en apprendre plus sur la fonction objectif à minimiser. En
effet, une telle analyse pourrait être appliquée pour déterminer des liens entre les variables,
et plus particulièrement mettre en avant des liens entre certaines variables et la fonction
objectif. Un des avantages de l’analyse en composante principale est qu’elle peut s’appliquer
à un nuage de points. Il ne sera donc pas nécessaire d’utiliser des évaluations pour faire cette
analyse. De plus, lors de l’analyse, des combinaisons de variables apparaissent naturellement,
ce qui est un peu plus général que des coefficients de sensibilité pour chaque variable.

20

CHAPITRE 3 MÉTHODES D’OPTIMISATION SANS DÉRIVÉE

Ce chapitre se concentre sur les méthodes d’optimisation sans dérivée. Ces méthodes sont
développées pour résoudre des problèmes mathématiques de la forme :

min
x∈X

f(x)

sujet à x ∈ Ω,

où les dérivées de la fonction objectif f ne sont pas accessibles ou n’existent pas.

Les algorithmes présentés sont classés dans trois catégories. La première catégorie, décrite à
la section 3.1, reprend des méthodes heuristiques. Il s’agit de méthodes qui ne sont pas sup-
portées par une analyse de convergence prouvée mathématiquement. La section 3.2 reprend
des méthodes basées sur des modèles, tandis que la section 3.3 présente des méthodes de
recherche directe. Les premières tentent de construire un modèle de la fonction objectif plus
simple à optimiser mais gardant un comportement similaire et les secondes ont une struc-
ture spécifique qui permet d’analyser leur convergence. La dernière section revient sur des
algorithmes d’optimisation sans dérivée qui utilisent des méthodes d’analyse de sensibilité.

3.1 Méthodes heuristiques

Bien que les méthodes heuristiques ne soient pas supportées par des résultats de convergence
prouvés mathématiquement, elles sont fortement utilisées en pratique. En effet, elles sont
souvent plus simples à comprendre et à implémenter que d’autres méthodes d’optimisation.
De plus, elles peuvent être modifiées afin de mieux correspondre au problème et peuvent
offrir de bonnes performances. Ces méthodes ont un intérêt supplémentaire, en effet elles
peuvent être utilisées comme sous-méthodes dans d’autres algorithmes qui eux garantissent
des résultats de convergence. Ce document présente rapidement quelques heuristiques connues
en optimisation, notamment la famille des algorithmes génétiques et l’algorithme de Nelder-
Mead.

3.1.1 Algorithme Hit-and-run

Décrit dans [18,58,64], l’algorithme Hit-and-run est d’une conception assez simple. A chaque
itération, la méthode compare la solution courante xk à l’itération k à un autre candidat

21

généré aléatoirement. Si ce candidat améliore la solution, alors l’itéré est mis à jour. La géné-
ration aléatoire des candidats se fait en deux étapes. Dans un premier temps, une direction
d est choisie aléatoirement à partir d’une distribution dense dans la sphère unité. Ensuite,
la longueur du pas s est générée à partir d’une distribution uniforme, telle que xk + sd soit
réalisable. Bien qu’une analyse de convergence de cet algorithme soit proposée dans [14], l’al-
gorithme Hit-and-run est placé dans la catégorie des heuristiques, car il a un comportement
fortement aléatoire et est d’une conception assez simple. En effet, sa convergence repose sur le
fait qu’en évaluant suffisamment de points aléatoirement, la solution finira par être trouvée.

3.1.2 Algorithme génétique

Les algorithmes génétiques, aussi appelés algorithmes évolutifs, se basent sur la théorie de
l’évolution et de survie des individus les mieux adaptés. Pour préserver l’analogie biologique,
une solution est appelée individu, un ensemble de solutions forme une population et les indivi-
dus se combinent pour en créer de nouveaux. Le cadre général des algorithmes génétiques est
décrit à l’algorithme 1. Celui-ci laisse beaucoup de flexibilité et d’interprétation, notamment
au point 3 où aucun critère d’arrêt n’est précisé, ce qui correspond à une heuristique. De
même, la sélection de la population initiale, la métrique d’aptitude (fitness), la sélection des
parents ou des survivants, la création d’une progéniture ou la mutation de celle-ci sont des
étapes clefs mais aucune méthode claire pour choisir ceux-ci n’est définie. De bonnes pratiques
pour certaines de ces décisions existent, sans toutefois donner de règles fixes garantissant la
convergence de la méthode.

C’est dans la flexibilité des algorithmes génétiques que réside leur force, mais aussi leur
principal défaut. En effet, ceux-ci peuvent être adaptés à chaque problème particulier afin
d’améliorer leur performance, mais rien ne garantit que deux algorithmes génétiques aient
un comportement similaire face à un même problème d’optimisation.

La qualité d’un individu est appelée son aptitude. Bien que celle-ci doit être liée à la valeur de
la fonction objectif, plusieurs façons de calculer une aptitude existent. Elles doivent toutefois
respecter deux règles.

1. Pour un problème de minimisation d’une fonction f , si f(x) < f(y), alors la valeur
de l’aptitude de x doit être plus grande que celle de y. Cette règle s’inverse pour un
problème de maximisation.

2. L’aptitude d’un individu doit être strictement positive.

Deux méthodes pour calculer une métrique d’aptitude utilisant la fonction objectif sont
proposées dans [10], il s’agit de l’aptitude de rang, qui ordonne les points en fonction de

22

Données : objectif f : Rn 7→ R et une population initiale P 0 = {x1, x2, . . . , xp̄}
0. Initialisation

γ ∈ (0; 1) Probabilité de mutation
k ← 0 Compteur d’itération

1. Aptitude
. Utiliser la valeur de la fonction objectif f(x) pour déterminer une aptitude de survie
de chaque individu x ∈ P k

2. Croisement
. 2.1 Sélection : sélectionner 2 parents de la population P k et aller à 2.2 ou sélectionner
un survivant de P k et aller à 2.4 ;

. 2.2 Croisement : utiliser les deux parents pour créer une progéniture ;

. 2.3 Mutation : avec une probabilité γ appliquer une mutation à la progéniture et vérifier
la faisabilité de la mutation :
. Si la mutation n’est pas réalisable, déclarer la progéniture morte et aller à 2.1
. Sinon, déclarer la progéniture survivante et aller à 2.4 ;

. 2.4 Mise à jour de la nouvelle génération :
. Placer le survivant dans la population P k+1,
. Si |P k+1| ≥ p̄, aller à 3
. Sinon, aller à 2.1

3. Mise à jour
. Incrémenter k ← k + 1, stop ou aller à 1

Algorithme 1 Algorithme génétique

leur valeur, et de l’aptitude de valeur de la fonction, qui vaut −f(xi) + f̄ + 1 où f̄ =
maxi=1,2,...,p̄ f(xi) pour une population {x1, x2, . . . , , xp}.

Une fois la métrique d’aptitude déterminée, il faut établir une méthode de sélection. Cette
méthode doit permettre de choisir un individu survivant ou deux individus parents d’une
population. Sélectionner deux parents revient à choisir deux fois un survivant, à l’exception
que les deux survivants doivent être différents. La sélection élitiste, la roulette et le tournoi
font partie des méthodes de sélection les plus populaires. La première consiste à garder les
individus avec la meilleure aptitude. La sélection par roulette choisit des individus aléatoi-
rement avec des probabilités pondérées en fonction de leur aptitude. La dernière sélectionne
une sous-population et applique une des deux méthodes précédentes.

Une fois la sélection effectuée viennent les étapes de croisement et de mutation. Celles-ci se
basent sur un système d’encodage. Chaque individu est représenté par un ensemble de bits,
souvent appelé chromosomes pour respecter la métaphore biologique. Plusieurs stratégies de
croisement existent et se basent sur le fait de garder une partie des chromosomes de chaque

23

parent pour créer un nouvel individu. Les stratégies de mutation consistent en l’inversion de
certains bits choisis aléatoirement.

A la troisième étape de l’algorithme 1, l’algorithme génétique a la possibilité de s’arrêter. Tou-
tefois, cet algorithme n’utilise pas de mesure intrinsèque pour quantifier la convergence de la
méthode. Les critères d’arrêt les plus utilisés se basent donc sur un budget d’évaluations ou
sur un nombre maximum d’itérations sans amélioration de la valeur de l’objectif. A l’aide de
certaines hypothèses sur la sélection et l’encodage, la convergence de l’algorithme génétique
peut être étudiée. Des méthodes pour satisfaire ces hypothèses sont données dans [10, sec-
tion 4.2-4.5]. Concrètement, les résultats de convergence de l’algorithme génétique peuvent se
résumer à "en essayant suffisamment de points, on finira par trouver la meilleure solution".
Néanmoins, les algorithmes génétiques sont très populaires et offrent parfois des performances
satisfaisantes. D’une manière générale, si on trouve des stratégies d’encodage et de croisement
qui correspondent très bien au problème, les algorithmes génétiques auront de bonnes per-
formances ; si les stratégies d’encodage et de croisement ne correspondent pas adéquatement
au problème, alors il sera plus intéressant d’utiliser d’autres méthodes.

3.1.3 Algorithme de Nelder-Mead

L’algorithme de Nelder-Mead est une des méthodes d’optimisation sans dérivée les plus po-
pulaires. Celle-ci a été introduite sous le nom de méthode du simplexe [55]. Sa popularité
vient à la fois de sa simplicité d’implémentation et de ses performances. L’algorithme ori-
ginal ne possédait pas de résultat de convergence, même sur des fonctions différentiables et
convexes [48], mais des versions modifiées de l’algorithme existent et assurent sa convergence
vers un point stationnaire [25,41,68].

Comme son nom original l’indique, la méthode de Nelder-Mead se base sur un simplexe. Dans
un espace de dimension n, un simplexe est le sous-espace défini comme l’enveloppe convexe
de (n+ 1) points formant ses sommets.

A chaque itération k, il existe un ensemble de (n + 1) sommets formant le simplexe Yk =
{y0

k, y
1
k, . . . , y

n
k}, ordonnés par ordre croissant de la valeur de f . Ensuite une opération de

réflexion, d’expansion et/ou de contraction est appliquée pour remplacer le dernier sommet.
Le nouveau sommet est

y = yc + δ(yc − yn),

où δ ∈ R et yc = ∑n−1
i=0 y

i/n est le centroïde des n premiers sommets. La valeur du paramètre
δ définit l’opération appliquée et celle-ci dépend du succès des transformations précédentes.
Une réduction peut également être appliquée ; celle-ci ne garde que le meilleur sommet et

24

remplace tous les autres de la manière suivante :

ysi = y0 + δs(yi − y0), i = 1, 2, . . . , n.

Les paramètres δs, δic, δoc, δr, δe correspondent au paramètre δ pour les opérations de ré-
trécissement, de contraction interne, de contraction externe, de réflexion et d’expansion res-
pectivement. Une description de l’algorithme de Nelder-Mead est disponible à l’algorithme
2.

3.2 Méthodes basées sur des modèles

Comme leur nom l’indique, les méthodes d’optimisation sans dérivée basées sur des modèles
utilisent des modèles de la fonction objectif pour optimiser celle-ci. L’idée derrière ces mé-
thodes est d’utiliser ou de construire un modèle plus simple, qui peut être optimisé plus
facilement que le problème orignal. Si la qualité du modèle est satisfaisante, les solutions
obtenues suite à son optimisation devraient être des solutions intéressantes du problème
modélisé.

Il existe deux grandes catégories de modèles : les modèles statiques ou dynamiques. Les
premiers sont plus souvent appelés substituts ou surrogates. Il s’agit de modèles qui ont
un comportement similaire à la fonction objectif mais qui sont plus simples et plus rapides
à évaluer. Ceux-ci sont en général fournis par l’utilisateur et restent les mêmes au cours de
l’optimisation, d’où leur nom de statiques. L’utilisation la plus simple de ces modèles consiste
à les optimiser en supposant que la solution du modèle sera une bonne solution du problème
original.

Les modèles dynamiques sont construits et mis à jour au cours de l’optimisation. Prenons un
modèle quadratique pour exemple. Celui-ci est construit à partir de la base des polynômes
de degré inférieur ou égal à 2, qui possède q + 1 = (n−1)(n−2)

2 éléments :

φ(x) = (φ0(x), φ1(x), . . . , φq(x))

=
(

1, x1, x2, . . . , xn,
x2

1
2 ,

x2
2

2 , . . . ,
x2
n

2 , x1x2, x1x3, . . . , xn−1xn

)
.

Le modèle quadratique de la fonction objectif mf sera donc défini par α ∈ Rq+1, mf (x) =
α>φ(x). La construction du modèle se fait à partir d’un ensemble de p + 1 points de Rn,
Y = {y0, y1, . . . , yp} . Puisque le modèle doit être le plus proche possible de la fonction
objectif, il faut trouver α ∈ Rq+1 tel que ∑y∈Y (f(y) −mf (y))2 soit minimal. En définissant

25

0. Initialisation
. Evaluer f aux points de Y0 = {y0

0, y
1
0, . . . , y

n
0 }

. Choisir les paramètres 0 < δs < 1,−1 < δic < 0 < δoc < δr < δe

. k ← 0
1. Itération
. Ordonnancement

. Ordonner les points de Yk tels que f 0 = f(y0
k) ≤ f 1 = f(y1

k) ≤ · · · ≤ fn = f(ynk)
. Réflexion

. Construire yc et yr = yc + δr(yc − yn)

. Evaluer f r = f(yr)

. Si (f 0 ≤ f r < fn−1)
. Yk+1 ← {y0

k, y
1
k, . . . , y

n+1
k , yr}

. k ← k + 1 et aller à 1
. Expansion si (f r < f 0)

. Construire ye = yc + δe(yc − yn)

. Evaluer f e = f(ye)

. Si (f e ≤ f r)
. Yk+1 ← {y0

k, y
1
k, . . . , y

n+1
k , ye}

. Sinon
. Yk+1 ← {y0

k, y
1
k, . . . , y

n+1
k , yr}

. k ← k + 1 et aller à 1
. Contraction si (f r ≥ fn+1)

. Si (f r < fn) : contraction externe
. Construire yoc = yc + δoc(yc − yn)
. Evaluer f oc = f(yoc)
. Si (f oc ≤ f r)
. Yk+1 ← {y0

k, y
1
k, . . . , y

n+1
k , yoc}

. k ← k + 1, aller à 1
. Sinon
. Aller à Rétrécissement

. Si (f r ≥ fn) : contraction interne
. Construire yic = yc + δic(yc − yn)
. Evaluer f ic = f(yic)
. Si (f ic < f r)
. Yk+1 ← {y0

k, y
1
k, . . . , y

n+1
k , yic}

. k ← k + 1, aller à 1
. Rétrécissement si (f r ≥ fn−1)

. Construire les n points ysi , i = 1, 2, . . . , n

. Evaluer f aux n points

. Yk+1 ← {ys1 , ys2 , . . . , ysn}

. k ← k + 1 et aller à 1

Algorithme 2 Algorithme de Nelder-Mead

26

une matrice M(φ, Y) ∈ R(p+1)×(q+1),

M(φ, Y) =



φ0(y0) φ1(y0) · · · φq(y0)

φ0(y1) φ1(y1) · · · φq(y1)
...

φ0(yp) φ1(yp) · · · φq(yp)


,

cela revient à résoudre M(φ, Y)α = f(Y), où f(Y) = (f(y0), f(y1), . . . , f(yp))>.

Si p > q, plus de points que nécessaire sont disponibles. La construction du modèle se fait en
résolvant

min
α∈Rq+1

‖M(φ, Y)α− f(Y)‖2.

Si p = q, alors la solution est unique. Si p < q, nous ne disposons pas de suffisamment de
points pour construire le modèle, et il existe une infinité de solutions. C’est le cas le plus
fréquent en optimisation de boîte noire, puisque le budget d’évaluations est souvent limité.
Dans ce cas, la solution choisie sera celle qui minimise la norme de Frobenius de la matrice
Hessienne, c’est-à-dire qui minimise la courbure du modèle.

Il peut être intéressant de juger de la qualité d’un modèle donné. En supposant une fonction
f ∈ C1 et ∇f Lipschitz continue, un modèle mf est appelé complètement linéaire (CL) sur
la boule centrée en y de rayon ∆, B(y; ∆), si

 |f(x)−mf (x)| ≤ κf∆2

|∇f(x)−∇mf (x)| ≤ κg∆
,

pour tout x ∈ B(y; ∆) et pour des constantes κf , κg ; ∆ est appelé paramètre de précision
du modèle. Il existe également une définition d’un modèle complètement quadratique (CQ).
Soit f ∈ C2 et ∇2f Lipschitz continue, un modèle mf est complètement quadratique si


|f(x)−mf (x)| ≤ κf∆3

|∇f(x)−∇mf (x)| ≤ κg∆2

|∇2f(x)−∇2mf (x)| ≤ κh∆3

,

pour tout x ∈ B(y; ∆) et pour des constantes κf , κg et κh.

Un ensemble de modèles M = {m : Rn 7→ R,m ∈ C2} est une classe complètement linéaire
(resp. quadratique) s’il existe un modèle complètement linéaire (resp. quadratique) dans

27

M et s’il existe une procédure capable de, soit déterminer si un modèle est complètement
linéaire (resp. quadratique) sur B(x; ∆), soit trouver un modèle complètement linéaire (resp.
quadratique) sur B(x; ∆).

Vu qu’un modèle est généralement plus simple que la fonction objectif du problème d’opti-
misation, les limitations dues au temps d’évaluation de la boîte noire ne s’appliquent plus
aux modèles. Les auteurs de [10] concluent que si les modèles sont de qualité suffisante, alors
il est possible d’adapter des méthodes d’optimisation lisse à l’optimisation sans dérivée. La
suite de cette section présente une généralisation de la méthode du gradient basée sur des
modèles ainsi qu’une méthode de région de confiance.

3.2.1 Descente basée sur des modèles

La méthode du gradient [56, Chapitre 1] est une méthode d’optimisation bien connue. Celle-ci
consiste à réaliser une recherche linéaire dans la direction de plus forte descente, celle opposée
au gradient. Toute la méthode se base donc sur le calcul du gradient à chaque itération pour
trouver la direction de plus forte descente.

Grâce à l’utilisation de modèles, une généralisation de cette méthode sans dérivée est possible.
L’idée de base est la suivante. A chaque itération, un modèle local dérivable est construit,
vient ensuite une recherche linéaire dans la direction opposée au gradient du modèle. La
qualité du modèle est assez importante pour l’optimisation, c’est pourquoi celle-ci est vérifiée
avant d’effectuer la recherche linéaire.

On introduit les notations suivantes. x0 ∈ Rn représente le point de départ et xk ∈ Rn l’itéré
courant, mf est un modèle complètement linéaire de précision ∆k > 0. Un paramètre µ0 > 0
vérifie la précision de l’évaluation du modèle, η ∈]0; 1[le paramètre d’Armijo, εd ∈]0; 1[l’angle
minimum de descente et ε ≥ 0 une tolérance d’arrêt. L’algorithme de descente basée sur des
modèles est décrit à l’algorithme 3.

3.2.2 Méthodes de région de confiance

Les méthodes de région de confiance exploitent un modèle simple, en général lisse et facile
à évaluer, et supposent qu’il a un comportement similaire à l’objectif dans un voisinage, la
région de confiance, de la solution courante.

Un modèle linéaire peut être utilisé car il n’a besoin que de O(n) points pour être construit
mais il ne donne aucune information quant à la courbure du problème. Un modèle quadratique

28

0. Initialisation
. Choisir x0, ∆0, µ0, εd et ε
. k ← 0.
1. Construction du modèle
. Construire mk

f à partir de ∆k et d’un nombre de points
2. Vérification du modèle
. Si (∆k < ε et ‖∇mk

f (xk)‖ < ε) : Stop
. Si (∆k > µ‖∇mk

f (xk)‖) :
. Modèle pas précis
. ∆k+1 ← ∆k/2, µk+1 ← µk, xk+1 ← xk
. k ← k + 1, aller à l’étape 1

. Si (∆k ≤ µ‖∇mk
f (xk)‖) :

. Modèle précis

. Aller à l’étape 3
3. Recherche linéaire
. Choisir dk tel que

(
dk

‖dk‖

)> (∇mk
f (xk)

‖∇mk
f

(xk)‖

)
< −εd

. Chercher tk tel que f(xk + tkdk) < f(xk) + ηtkd
>
k∇mk

f (xk)
4. Mise à jour
. Si tk est trouvé :

. xk+1 ← y où f(y) ≤ f(xk + tkdk)

. µk+1 ← µk
. Sinon :

. xk+1 ← xk

. µk+1 ← µk/2
. ∆k+1 ← ∆k

. k ← k + 1, aller à l’étape 1

Algorithme 3 Descente basée sur des modèles

est donc en général privilégié, de la forme :

mf (x) = f(xk) + g>k (x− xk) + (x− xk)>Hk(x− xk)>,

où gk ∈ Rn et Hk ∈ Rn×n symétrique. Ces paramètres correspondent au gradient et à la
Hessienne du modèle en x = 0 et sont estimés en imposant que le modèle interpole un certain
ensemble de points, mf (xi) = f(xi), i = 0, 2, . . . , p.

Le modèle est supposé fidèle dans un voisinage du point xk, en général ce voisinage est pris
comme la boule de rayon ∆k,

B(xk,∆k) = {x ∈ Rn : ‖x− xk‖ ≤ ∆k} .

29

A chaque itération, ce modèle est minimisé dans la boule de rayon de ∆k. Bien entendu,
le modèle n’est pas toujours très fidèle à l’objectif. C’est pourquoi le calcul d’un rapport r
comparant la réduction prévue par le modèle et celle observée par l’objectif est d’un certain
intérêt. Pour un point t, ce rapport est défini comme

r(t) = f(xk)− f(t)
mf (xk)−mf (t)

.

Si ce rapport n’est pas suffisant, le modèle est considéré comme pas assez fidèle et soit la
taille de la région de confiance est réduite, soit une procédure sensée améliorer la qualité du
modèle est appliquée. L’algorithme complet est décrit à l’algorithme 4.

3.2.3 Optimisation Bayesienne

Les méthodes d’optimisation Bayesienne se basent elles aussi sur des modèles. Toutefois, il
s’agit plutôt de modèles probabilistes.

En optimisation Bayesienne, la fonction objectif est considérée comme aléatoire, puisque celle-
ci n’est pas connue. La fonction objectif suit une distribution a priori, qui représente ce qui
est supposé de la fonction objectif. Une fois que la boîte noire est évaluée, la distribution de
la fonction objectif est mise à jour pour former une distribution a posteriori. Les distributions
a priori et a posteriori sont liées via la règle de Bayes.

En pratique, la fonction objectif est représentée par une variable aléatoire F avec une dis-
tribution a priori p(F). Celle-ci représente notre croyance quant aux possibles valeurs que
pourrait prendre F avant que celle-ci n’ait été observée. Ensuite, en ayant accès à des don-
nées D, des évaluations de l’objectif, et un modèle de vraisemblance p(D|F), il est possible
de construire la distribution a posteriori p(F |D),

p(F |D) ∝ p(D|F)p(F).

Cette distribution a posteriori est ensuite utilisée pour construire une fonction d’acquisition
u qui déterminera de nouveaux points à évaluer. Ces nouveaux points seront utilisés pour
mettre à jour les distributions à l’itération suivante. Une description de haut niveau de cette
méthode est présentée à l’algorithme 5.

Il existe plusieurs manières de construire les distributions a priori et a posteriori ; les pro-
cessus Gaussiens ou les processus de Wiener sont les plus connus. Plusieurs modèles sont
présentés dans [63, section 2 et 3] et dans [20, section 2]. La nature de la fonction d’ac-
quisition est également importante. En effet, les nouveaux points à évaluer sont déterminés

30

0. Initialisation
. Choisir une classe de modèle
. Choisir une méthode d’amélioration du modèle
. Données : x0, ∆max, ∆0 ∈]0; ∆max

. Initialisation le modèle mf

. k ← 0
1. Test critique
. Si ‖gk‖ ≤ ε

. Appliquer la méthode d’amélioration du modèle

. Si le modèle n’est pas assez bon ou la région de confiance trop grande
. Construction d’un nouveau modèle

. Sinon
. Vérifier le critère d’arrêt → STOP

2. Optimisation du sous-problème
. Trouver t ∈ argminx∈B(xk;∆k) mf (x)
. Evaluer f(t) et calculer le rapport r(t)
3. Acceptation du candidat
. Si r(t) ≥ η1

. xk+1 ← t, mise à jour du modèle avec le point t
. Sinon

. xk+1 ← xk
4. Amélioration du modèle
. Si r(t) < η1

. Appliquer la procédure d’amélioration du modèle
5. Mise à jour de la région de confiance

∆k+1 ∈


[∆k; min{γinc∆k; ∆max}] si r(t) ≥ η1

{γdec∆k} si r(t) < η1 et mf est CL
{∆k} si r(t) < η1 et mf n’est pas CL

. k ← k + 1

Algorithme 4 Algorithme de région de confiance sans dérivée

par celle-ci, soit car la valeur de l’objectif est intéressante soit car l’incertitude quant à la
fonction est importante. Cela permet une balance naturelle entre l’exploration de l’espace de
recherche et l’intensification de la recherche à un endroit plus précis. Les exemples les plus
connus consistent à maximiser la probabilité d’amélioration, l’espérance d’amélioration de la
fonction ou une borne de confiance [52]. Une revue de possibles fonctions d’acquisition est
présentée dans [63, section 4] et [20, section 2.3].

31

0. Initialisation
. Ensemble de données D0 = ∅
. Fonction d’acquisition u
. k ← 0
1. Optimisation
. Trouver xk ∈ argmaxx u(x|Dk) à l’aide de la distribution a priori
. Evaluer l’objectif yk = f(xk)
2. Mise à jour
. Dk+1 = {Dk, (xk, yk)}
. Mettre à jour

Algorithme 5 Optimisation Bayesienne

3.3 Méthodes de recherche directe

Les méthodes de recherche directe sont un ensemble d’algorithmes d’optimisation qui ont la
structure suivante. Au début d’une itération, l’algorithme connaît une solution courante. Il
s’agit de la meilleure solution connue par la méthode. Un ensemble de points d’essais est
évalué. Ensuite, des actions sont prises en fonction des évaluations de ces points ; si un de
ces points améliore la solution courante, celle-ci est mise à jour, sinon un paramètre de taille
de pas est réduit et un nouvel ensemble de points d’essais est généré. Il faut noter qu’aucun
modèle de la fonction n’est construit pour générer l’ensemble de points à évaluer, ni aucune
approximation des dérivées. Cette section présente plusieurs méthodes de recherche directe
allant des plus simples, comme la recherche par coordonnées, jusqu’à des méthodes plus
évoluées comme la recherche par treillis adaptatif.

3.3.1 Recherche par coordonnées

Une première méthode de recherche directe assez simple est la recherche par coordonnées [32].
La solution courante à l’itération k est notée xk. Chaque itération est composée d’une étape
de sonde, une étape lors de laquelle les points xk ± δkei sont évalués, où ei est le vecteur
de Rn composé uniquement de 0 et d’un 1 à la ie composante. Si un point améliorant la
solution courante est trouvé, celui-ci devient la nouvelle solution courante et l’itération est
considérée comme un succès ; sinon le paramètre de pas δk est diminué et une nouvelle sonde
est effectuée. Certaines variantes de cet algorithme existent. Par exemple, le paramètre de pas
pourrait être augmenté lors des succès ou la sonde pourrait être interrompue dès qu’un point
améliorant la solution est trouvé. Cette dernière variante est appelée stratégie opportuniste.
Lorsque cette stratégie est appliquée, l’ordre d’évaluation des points de l’ensemble de sonde

32

a une importance non négligeable. La recherche par coordonnées est décrite à l’algorithme 6.

Données : objectif f : Rn 7→ R et un point de départ x0 ∈ Rn

0. Initialisation

δ0 ∈ (0;∞) Taille de pas initiale
εstop ∈ [0;∞) Tolérance d’arrêt
k ← 0 Compteur d’itération

1. Sonde
. Si f(t) < f(xk) pour un certain t ∈ P k :=

{
xk ± δkei : i = 1, 2, . . . , n

}
. xk+1 ← t et δk+1 ← δk

. Sinon
. xk+1 ← xk et δk+1 ← δk

2
2. Terminaison
. Si δk+1 ≥ εstop

. Incrémenter k ← k + 1 et aller à 1
. Sinon

. Stop

Algorithme 6 Recherche par coordonnées

Pour la recherche par coordonnées, il existe un résultat de convergence assez faible. Celui-ci
est décrit au théorème 3.1.

Théorème 3.1 (Convergence de la recherche par coordonnées) Soient f : Rn 7→ R
une fonction C0 avec des ensembles de niveau bornés et {xk} la suite produite par la méthode
de recherche par coordonnées avec εstop = 0. Soit x̂ le point d’accumulation des itérations
échec de {xk}.

Alors, pour tout d ∈ {±ei : i = 1, 2, . . . , n}, soit f ′(x̂; d) ≥ 0, soit f ′(x̂; d) n’existe pas. De
plus, si f ∈ C1, alors x̂ est un point critique de f , c’est-à-dire ∇f(x̂) = 0.

Ce résultat est intéressant mais relativement faible car il ne donne des garanties uniquement
sur les dérivées dans les directions ei.

Prenons par exemple la fonction convexe f : R2 7→ R, f(x) = ‖x‖∞ = max(|x1|, |x2|), et
le point x0 = [1, 1]>. Quelle que soit la valeur de δ, x0 ± ei (pour i = 1, 2) n’améliore pas
la solution courante f(x0) = 1. En effet, les directions ei (i = 1, 2) sont des directions de
montée tandis que les directions −ei sont parallèles aux ensembles de niveau. La recherche
par coordonnées ne peut donc pas trouver le minimum de la fonction, à savoir [0, 0]>. Le
paramètre δ diminue à chaque nouvelle itération car celles-ci sont toujours des échecs.

33

La suite de cette section présente les méthodes de recherche par motif généralisée et de
recherche directe par treillis adaptatif. Ces méthodes ont une structure similaire à la recherche
par coordonnées mais possèdent des résultats de convergence plus intéressants.

3.3.2 Recherche par motif généralisée

La recherche par motif généralisée (Gps) [67] est une amélioration de la recherche par coor-
données. Concrètement, elle propose d’autres directions de recherche que celles alignées sur
les axes, ainsi que la possibilité pour ces directions de changer en fonction des itérations.
En plus de l’étape de sonde, qui est une recherche locale, la recherche par motif généralisée
propose une étape de recherche plus globale appelée simplement étape de recherche. Cette
recherche consiste à évaluer un nombre fini de points dans l’espace de recherche. Si l’étape
de recherche génère un point améliorant la solution courante, il s’agit d’un succès, l’étape
de sonde peut être omise. L’étape de sonde de Gps est assez similaire à l’étape de sonde
de la recherche par coordonnées. Un ensemble de points autour de la solution courante est
généré et évalué en espérant trouver une meilleure solution. La différence porte sur la façon
de générer cet ensemble de sonde.

Pour assurer des résultats de convergence plus intéressants, il faut contrôler les étapes de
sonde et de recherche. Cela est fait au travers d’un treillis, défini à la définition 3.1.

Définition 3.1 (Treillis ([10, chapitre 7], notre traduction) Soit G ∈ Rn×n une ma-
trice inversible et Z ∈ Zn×p telle que les colonnes de Z forment un ensemble générateur
positif de Rn. On définit D = GZ. Le treillis généré par D centré sur la solution courante
xk ∈ Rn de taille de maille δk > 0 est défini par

Mk :=
{
xk + δkDy : y ∈ Np

}
⊂ Rn.

Puisque les colonnes de la matrice Z ∈ Zn×p forment un ensemble générateur positif et que
la matrice G est inversible, les colonnes de la matrice D forment également un ensemble
générateur positif. D est appelée une matrice générateur positif et l’ensemble de directions
composé des colonnes de D est noté D.

Tous les points évalués par l’algorithme doivent appartenir au treillis. Il faut noter que le
treillis est un concept mais ne doit pas être construit en tant que tel au cours de l’exécution
de l’algorithme. Une illustration du treillis lors de trois sondes successives est présentée à la
figure 3.1. La solution courante et les points de sonde sont représentés par le symbole "•". Le
cadre noir retient l’ensemble des points du treillis qui peuvent être évalués lors de la recherche

34

locale. Lors de la première sonde sur la figure 3.1(a), le point p1 améliore la solution. C’est
pourquoi le cadre s’est déplacé sur la figure 3.1(b). Lors de la deuxième sonde, aucun point
améliorant la solution n’est trouvé et le treillis est raffiné, comme cela est représenté sur la
figure 3.1(c). La méthode de recherche par motif généralisée est décrite à l’algorithme 7.

xk p1

p2

p3

(a) δk = 1
2

p1

xk+1

p2

p3

(b) δk+1 = 1
2

p1

xk+2p2

p3

(c) δk+2 = 1
4

Figure 3.1 Représentation du treillis et cadre de sonde de Gps

Pour analyser la convergence de cette méthode, il faut s’intéresser au comportement de
l’algorithme lorsque le nombre d’itérations tend vers l’infini. La convergence de cette méthode
repose sur les arguments suivants. Supposons que l’ensemble de niveau {x ∈ Rn : f(x) ≤
f(x0)} de la fonction à minimiser forme un ensemble compact. Alors, le nombre d’itérations
où une meilleure solution courante est trouvée, un succès, est fini. En effet, puisque lors d’un
succès, la fonction objectif est strictement réduite et que le treillis est une structure discrète,
il n’y a qu’un nombre fini d’itérations formant un succès. Lorsque le nombre d’itérations tend
vers l’infini, on peut en conclure que le nombre d’itérations formant des échecs tend également
vers l’infini. Puisque la taille du maillage δk est réduite à chaque itération infructueuse, il est
possible d’en déduire une limite quant à cette taille de maillage du treillis,

lim
k→∞

inf δk = 0. (3.1)

De plus, il existe une sous-suite d’itérations infructueuses {ki} et un point x∗ tels que

lim
i→∞

δki = 0, lim
i→∞

xki = x∗.

Ceci vient du fait qu’il y a une infinité d’itérations où l’étape de sonde échoue et que la
taille du maillage est réduite uniquement lors de telles itérations. Notons K1

e la sous-suite
d’itérations échecs. Si la limite (3.1) est satisfaite, il existe une sous-suite K2

e ⊂ K1
e tel que

δk tend vers 0, pour tout k ∈ K2
e . La suite {xk}K2

e
est donc bornée et contient une sous-suite

convergente {xk}K3
e
. On note x∗ = limk∈K3

e
xk.

35

Données : objectif f : Rn 7→ R et un point de départ x0 ∈ Rn

0. Initialisation

δ0 ∈ (0;∞) Paramètre de treillis intial
D = GZ Matrice générateur positif
τ ∈ (0; 1), rationnel Paramètre d’ajustement du treillis
εstop ∈ [0;∞) Tolérance d’arrêt
k ← 0 Compteur d’itération

1. Recherche
. Si f(t) < f(xk) pour un certain t d’un sous-ensemble fini du treillis Mk

. xk+1 ← xk, δk+1 ← τ−1δk, et aller à 3
. Sinon

. Aller à 2
2. Sonde
. Choisir un ensemble générateur positif Dk ⊆ D
. Si f(t) < f(xk) pour un certain t ∈ P k :=

{
xk ± δkd : d ∈ Dk

}
. Alors xk+1 ← t et δk+1 ← τ−1δk

. Sinon xk est un minimum local du treillis
. xk+1 ← xk et δk+1 ← τδk

3. Terminaison
. Si δk+1 ≥ εstop

. incrémenter k ← k + 1 et aller à 1
. Sinon

. Stop

Algorithme 7 Recherche par motif généralisée

Cela implique que l’algorithme raffine le maillage du treillis dans le voisinage de la solution
courante. En supposant que la fonction objectif est localement Lipschiptz autour du point
x∗, on peut conclure d’un résultat quant aux dérivées directionnelles de Clarke [22],

f ◦(x∗; d) ≥ 0, ∀d ∈ D∗, (3.2)

où D∗ est un ensemble générateur positif de D et

f ◦(x; d) = lim sup
y→x,t↓0

f(y + td)− f(y)
t

.

36

En imposant que la fonction objectif est strictement dérivable au point x∗, on obtient

∇f(x∗) = 0.

Ce résultat de convergence est plus général que celui de la recherche par coordonnées mais
souffre d’un défaut majeur. La matrice générateur positif D est de dimension finie. Il existe
donc un ensemble fini de générateurs positifs et donc de directions explorées autour de la
solution x∗.

Une étude plus complète de la convergence de Gps peut être trouvée dans [7,10,24, chapitre
7].

3.3.3 Recherche directe sur treillis adaptatif

Bien que la Gps généralise la recherche par coordonnées en sondant dans une plus grande
variété de directions, les résultats de convergence ne sont pas encore à la hauteur de nos
espérances. En effet, l’initialisation de Gps requiert une matrice générateur positif. Toutes
les directions de sonde vont être sélectionnées parmi les colonnes de cette matrice, ce qui
implique un nombre fini de directions de sonde dans Gps.

Pour généraliser la recherche par motif généralisée, la recherche directe par treillis adaptatif
(Mads) [8] propose un moyen d’avoir une infinité de directions de sonde possibles. Cela
permet de contrecarrer les limites de convergence de Gps. Un autre avantage de Mads est
sa gestion des contraintes notamment via la barrière progressive. La gestion des contraintes
n’est pas au cœur de ce projet mais cela reste tout de même un avantage de cet algorithme.

Contrairement à Gps, la recherche directe par treillis adaptatif possède un paramètre pour
la taille du treillis δk et un paramètre pour la taille du cadre de sonde ∆k. Celui-ci n’était
pas nécessaire dans Gps car cette dernière peut être vue comme un cas particulier de Mads
où ces deux paramètres ont la même valeur.

Mads introduit donc les notions de cadre de sonde et de taille du cadre de sonde reprises
dans la définition 3.2.

Définition 3.2 (Cadre de sonde [10, section 8.1], notre traduction) Soit G ∈ Rn×n

une matrice inversible et Z ∈ Zn×p telle que les colonnes de Z forment un ensemble générateur
positif de Rn. On définit D = GZ. On choisit un paramètre de taille de treillis δk > 0 et on
définit ∆k tel que δk ≤ ∆k. Le cadre de taille ∆k généré par D centré sur la solution courante
xk ∈ Rn est défini par

F k :=
{
x ∈Mk : ‖x− xk‖∞ ≤ ∆kb

}

37

avec b = max{‖d′‖∞ : d′ ∈ D} et où ∆k est appelé paramètre de taille du cadre.

L’ensemble de sonde de Gps est inclus dans le cadre de sonde de Mads, qui est lui-même
est sous-ensemble du treillis, pour un treillis et une solution courante donnés. En réduisant
plus rapidement le paramètre de taille du treillis que celui de taille du cadre, l’ensemble de
directions de sonde pouvant être sélectionnées est plus grand, de manière à créer un ensemble
de directions de sonde dense dans la sphère unité. Les paramètres de taille du treillis et de
sonde doivent respecter 0 < δk ≤ ∆k à chaque itération et

lim
k∈K

δk = 0 ⇐⇒ lim
k∈K

∆k = 0, pour tout sous-ensemble d’indices K.

Pour cela, la stratégie δk = min{∆k, (∆k)2} est proposée, bien que d’autres stratégies sont
possibles [11].

L’augmentation du nombre de directions de sonde possibles est illustrée à la figure 3.2. Il
s’agit d’une situation similaire à celle de la figure 3.1, mais adaptée à la situation de Mads.
Il est possible d’y voir qu’il y a une augmentation de points du treillis dans le cadre lorsque
le maillage est raffiné. En effet, lorsque le treillis est raffiné à la figure 3.2(c), on passe de
25 = (4 + 1)2 à 81 = (8 + 1)2 points du treillis qui appartiennent dans le cadre de sonde. Ceci
illustre la densité croissante des directions de sonde lorsque ∆k tend vers 0. La méthode de
recherche directe par treillis adaptatif est présentée à l’algorithme 8.

xk p1

p2

p3

(a) δk = 1
4 ,∆k = 1

2

p1

xk+1

p2

p3

(b) δk+1 = 1
4 ,∆k = 1

2

p1

xk+2p2

p3

(c) δk+2 = 1
16 ,∆k = 1

4

Figure 3.2 Représentation du treillis et cadre de sonde de Mads

L’analyse de convergence de Mads est similaire à celle de Gps. La différence la plus im-
portante repose sur le fait qu’il y a une infinité de directions de sonde possibles. De plus, la
différentiation du cadre de sonde et du treillis permet d’avoir un ensemble de directions de
sonde plus riche que Gps, et donc un résultat de convergence plus fort. En effet, puisque le
paramètre de taille du treillis doit toujours être plus petit que le paramètre de taille du cadre

38

Données : objectif f : Rn 7→ R et un point de départ x0 ∈ Rn

0. Initialisation

∆0 ∈ (0;∞) Paramètre de cadre initial
D = GZ Matrice générateur positif
τ ∈ (1;∞), rationnel Paramètre d’ajustement du treillis
ω+ ≥ 0, ω− ≤ −1 Paramètres d’ajustement du treillis
εstop ∈ [0;∞) Tolérance d’arrêt
k ← 0 Compteur d’itération

1. Mise à jour du paramètre
. Définir le paramètre de taille du treillis δk = min{∆k, (∆k)2}
2. Recherche
. Si f(t) < f(xk) pour un certain t d’un sous-ensemble fini Sk du treillis Mk

. xk+1 ← xk, ∆k+1 ← τω
+∆k, et aller à 4

. Sinon
. Aller à 3

3. Sonde
. Choisir un ensemble générateur positif Dk

∆ tel que P k = {xk + δkd : d ∈ Dk
∆} soit un

sous-ensemble du cadre F k de taille ∆
. Si f(t) < f(xk) pour un certain t ∈ P k

. Alors xk+1 ← t et ∆k+1 ← τω
+∆k

. Sinon xk est un minimum local du treillis
. xk+1 ← xk et ∆k+1 ← τω

−∆k

4. Terminaison
. Si ∆k+1 ≥ εstop

. incrémenter k ← k + 1 et aller à 1
. Sinon

. Stop

Algorithme 8 Recherche directe par treillis adaptatif

de sonde, plus de directions peuvent être utilisées pour créer un ensemble générateur positif.
Lorsque le nombre d’itérations tend vers l’infini, cet ensemble de directions de sonde possibles
devient dense dans la sphère unité. L’analyse de convergence de Gps tient également pour
Mads. Puisqu’il y a un plus grand ensemble de directions de sonde possible, le résultat de
convergence de Gps (3.2) peut être étendu pour Mads en

f ◦(x∗; d) ≥ 0, ∀d ∈ Rn.

Une analyse de convergence complète de Mads est reprise dans [10, 24, chapitre 7] ou [8].

39

La qualité de Mads dépend de la manière de générer les ensembles générateur positif aux
étapes de sonde. Différentes implémentations sont présentées dans [1, 8, 45, 69].

Il est important de noter que l’analyse de convergence de Gps et de Mads se base essentielle-
ment sur l’étape de sonde. L’étape de recherche doit uniquement satisfaire les deux conditions
suivantes :

1. Evaluer un nombre fini de points,

2. Tous les points évalués doivent appartenir au treillis.

Le cadre algorithmique de Mads laisse donc de grandes libertés permettant d’intégrer des
stratégies de recherche diverses et variées comme une recherche basée sur des modèles ou sur
une heuristique, tant que celles-ci satisfont ces deux conditions.

Par exemple, il est possible d’intégrer la méthode de Nelder-Mead dans un algorithme Mads,
comme présenté dans [13]. Une autre possibilité, présentée dans [23], est d’appliquer une étape
de recherche basée sur des modèles quadratiques.

3.4 Optimisation sans dérivée en grande dimension

Cette section se concentre sur les méthodes d’optimisation sans dérivée qui s’appliquent
plus spécifiquement aux problèmes en grande dimension. Une approche assez simple serait
d’utiliser le parallélisme. Cela permet d’effectuer plusieurs évaluations de la boîte noire si-
multanément et limiter le temps d’exécution des algorithmes.

Ce travail s’intéresse plus particulièrement aux stratégies de réduction de dimension. Cela
permet de résoudre des problèmes de grande de taille, sans exploiter le parallélisme. Par
exemple, une adaptation de la méthode de descente basée sur des modèles en grande di-
mension est présentée dans [70]. Les algorithmes supportés par une analyse de convergence
nous semblent préférables, c’est pourquoi des stratégies de réduction de dimension pour les
algorithmes d’optimisation Bayesienne et Mads sont présentées aux sections 3.4.2 et 3.4.3
respectivement. Toutefois, une version de l’algorithme de Nelder-Mead adapté pour des pro-
blèmes de grande dimension est également décrite.

3.4.1 Algorithme de Nelder-Mead en grande dimension

Dans [49], Mehta explique que l’algorithme de Nelder-Mead, avec ses paramètres mis à leur
valeur par défaut, a de mauvaises performances sur les problèmes en grande dimension. Les
auteurs de [33] expliquent que les opérations d’expansion et de contraction ont une certaine
propriété de descente mais que l’efficacité de celle-ci diminue lorsque la taille du problème

40

augmente. Dans ce cas, l’algorithme est alors dominé par l’opération de réflexion. Plusieurs
stratégies ont alors été proposées pour fixer les paramètres de l’algorithme. Celles-ci se basent
principalement sur des paramètres qui s’adaptent à la taille du problème.

Les auteurs de [30] ont appliqué un algorithme génétique pour faire évoluer l’algorithme de
Nelder-Mead tandis que dans [43], les résultats d’une analyse de sensibilité sont exploités
pour fixer ces paramètres. Dans [49], Mehta présente une manière de fixer ces paramètres en
se basant sur les points de Chebyshev. Une autre approche pour améliorer les performances
de l’algorithme est de perturber le centroïde aléatoirement ce qui améliore sa convergence,
comme présenté dans [31]. La méthode de Nelder-Mead n’est pas fondamentalement trans-
formée lors de ces adaptations, car celles-ci reposent plus sur le fait de trouver de bonnes
valeurs pour les paramètres inhérents de la méthode.

3.4.2 Réduction de dimension en optimisation Bayesienne

En plus des versions exploitant le parallélisme, il existe également des méthodes d’optimisa-
tion Bayesienne appliquant des stratégies de réduction de dimension.

Celles-ci supposent que l’objectif a une dimension effective petite comparée à sa dimension.
Concrètement, une fonction objectif f : Rn 7→ R possède une dimension effective ne ≤ n s’il
existe un sous-espace linéaire T de dimension ne tel que pour tous vecteurs x ∈ T et x> ∈ T>,

f(x+ x>) = f(x).

La dimension effective ne est la plus petite dimension satisfaisant cette égalité. On parle
également de fonctions avec un sous-espace actif T .

Au lieu d’essayer de résoudre le problème original

min
x∈Rn

f(x)

sujet à x ∈ X

où X désigne des bornes sur les variables, l’idée est de résoudre le problème

min
y∈Rne

f(Ay)

sujet à y ∈ Y

où A ∈ Rn×ne et Y représente le nouvel espace réalisable.

La difficulté de cette stratégie vient du fait que la matrice A ainsi que la dimension effective

41

ne sont pas connues. La matrice A est souvent choisie comme une matrice aléatoire [21, 54].
Le choix du domaine de petite dimension Y peut aussi avoir un impact sur les performances
de l’algorithme [17].

3.4.3 Algorithme STATS-MADS

Comme précisé précédemment, le cadre algorithmique de Mads offre une certaine flexibi-
lité quant à l’étape de recherche. En effet, celle-ci n’est pas indispensable et doit respecter
certaines conditions pour pouvoir préserver l’analyse de convergence de la méthode.

L’algorithme Stats-Mads, décrit dans [2, 15], est une instance de Mads développée pour
résoudre des problèmes d’optimisation sans dérivée de grande dimension. Stats-Mads se
base sur l’idée d’identifier les variables les plus importantes et d’alterner entre une optimisa-
tion en n dimensions et une optimisation sur un sous-espace dans lequel certaines variables
sont fixées.

L’ensemble des indices des n variables du problème est noté I = {1, 2, . . . , n}. Jl ⊂ I désigne
un sous-ensemble de variables. Au cours de l’optimisation, lancer une instance de Mads sur
Jl signifie que toutes les variables j ⊂ I \ Jl, les variables dont l’indice n’appartient pas à Jl,
sont fixées à x̂j, la solution courante. La nouvelle instance de Mads est donc une instance
en dimension |Jl|.

L’identification de ces variables prépondérantes se fait en appliquant une méthode d’analyse
de sensibilité basée sur une analyse de variance. Pour chaque variable, le rapport de corréla-
tion, décrit à la section 2.3.1, permet de mesurer la sensibilité de la boîte noire par rapport à
cette variable. Ensuite, les variables sont classées par ordre croissant de sensibilité et les dpne
premières sont fixées, où p est un paramètre fixé par l’utilisateur qui définit la proportion
de variables devant être fixées. Deux autres paramètres doivent être définis ; nI désigne le
nombre maximal d’évaluations successives de la boîte noire dans l’espace entier et nJ désigne
le nombre maximal d’évaluations successives dans le sous-espace. L’algorithme Stats-Mads
est décrit à l’algorithme 9.

Les travaux présentés dans [2,15] montrent que l’algorithme Stats-Mads améliore effective-
ment les performances de Mads sur un ensemble de problèmes d’optimisation non contraints.
Cette amélioration est principalement due à l’optimisation en petite dimension.

Une autre approche pour s’attaquer aux problèmes en grande dimension avec Mads est
d’utiliser le parallélisme. De plus amples informations sur le parallélisme sont disponibles
dans [6,9]. Dans la version parallèle de Mads, l’espace de recherche est divisé de telle manière
à ce qu’un processeur n’ait qu’un petit nombre de variables à traiter. Une version de cet

42

0. Initialisation

∆0 ∈ (0;∞) Paramètre de cadre initial
x0 ∈ X point initial
nI nombre maximum d’évaluations successives dans l’espace entier
nJ nombre maximum d’évaluations successives dans le sous-espace

1. Boucle : Pour l = 0, 1, 2, . . . ,
. Lancer une instance de Mads à partir de xl avec taille de treillis initial ∆l et budget
nI ;

. soit x̂l la meilleure solution trouvée et ∆l+1 la taille de treillis final ;

. Calculer les indices de sensibilité et définir Jl ⊂ I ;

. Lancer Mads sur Jl à partir de x̂l avec taille de pas initial ∆l et budget nJ ;

. soit xl+1 la meilleure solution trouvée ;

Algorithme 9 Algorithme Stats-Mads

algorithme applique une méthode d’analyse de sensibilité pour déterminer l’attribution des
variables aux processeurs disponibles ; cet algorithme est décrit dans [3, 4].

43

CHAPITRE 4 ALGORITHME PCA-MADS

Afin d’améliorer les performances de l’algorithme Mads en grande dimension, il est intéres-
sant de développer une nouvelle stratégie pour l’étape de recherche. Celle-ci consiste à utiliser
une méthode d’analyse de sensibilité afin de définir un nouveau problème d’optimisation de
plus petite taille. Cela a déjà été fait dans certains travaux comme ceux décrits à la section
3.4. La méthode Stats-Mads identifie puis fixe, momentanément, les variables les moins
influentes. A la différence de cette méthode, l’algorithme proposé cherche à fixer des com-
binaisons de variables. L’étape de recherche applique une analyse en composante principale,
décrite à la section 2.6, pour construire un problème de plus petite dimension. Nous appelons
cet algorithme Pca-Mads.

L’analyse et la construction du problème en petite dimension sont décrites dans les sections
4.1, 4.2 et 4.3. La section 4.4 décrit le nouvel algorithme proposé tandis que la section 4.6
reprend les paramètres principaux de celui-ci. L’influence de ses paramètres sera analysée au
chapitre 5.

4.1 Analyse en composante principale dans PCA-MADS

L’analyse en composante principale est une méthode statistique qui permet, à partir de (n+1)
variables aléatoires corrélées, de définir (n+1) variables non corrélées. Celles-ci sont des com-
binaisons linéaires des variables originales. En pratique, la première composante principale
correspond à la direction qui reprend la plus grande variabilité des variables aléatoires. La
deuxième composante principale est la direction qui reprend le plus de variabilité tout en
étant orthogonale à la première, et ainsi de suite. L’optimisation de boîte noire a, en géné-
ral, comme facteur critique le nombre d’évaluations du problème. C’est pourquoi l’analyse
de sensibilité de la boîte noire se fait à partir de l’ensemble des évaluations déjà effectuées,
contenues dans la cache, pour déterminer des directions intéressantes.

Supposons donc que l’on dispose de (n+ 1) variables aléatoires, notées X, qui correspondent
aux n variables du problème d’optimisation et à la valeur correspondante à la fonction
objectif. A partir des évaluations déjà effectuées, il est possible d’estimer une matrice de
covariance et d’effectuer une analyse en composante principale à partir de cette matrice.
Cette analyse permet de fournir (n + 1) directions ; celles-ci seront écrites dans une matrice
M+ ∈ R(n+1)×(n+1). Les nouvelles variables non corrélées X̄ ∈ Rn+1 sont obtenues grâce à la

44

transformation des variables originales X et les directions obtenues par l’analyse :

X̄ = M>
+X.

L’analyse en composante principale est utilisée pour repérer des corrélations entre des va-
riables aléatoires à partir d’un nuage de points. Or, le but de cette analyse est de déterminer
des directions en dimension n selon lesquelles la fonction objectif a le plus de variabilité. Les
directions issues de l’analyse en composante principale seront ordonnées en fonction de leur
alignement avec la dimension de l’objectif. De cette manière, les premières directions sont
celles qui influent le plus sur la fonction objectif.

Soit M ∈ Rn×n une matrice qui correspond aux n premières lignes des n premières colonnes
de la matriceM+ réordonnée. Celles-ci donnent les directions de Rn qui ont le plus d’influence
sur l’objectif. La direction ayant le moins d’impact sur l’objectif est négligée afin d’obtenir
une matrice carrée. Il existe donc une transformation qui permet de transformer un vecteur
x ∈ Rn en un vecteur x̄ ∈ Rn,

x̄ = M>x (4.1)

où les premières variables ont plus d’influence sur l’objectif que les dernières.

L’algorithme proposé cherche à réduire la dimension de l’espace de recherche en ne gardant
que des dimensions qui ont une grande influence sur l’objectif. La matriceM peut être divisée
en deux matrices de projection P ∈ Rn×p et Q ∈ Rn×(n−p) ,

M = [P Q] . (4.2)

La matrice P contient les p directions qui ont le plus d’impact sur l’objectif ; la matrice Q,
quant à elle, contient les (n − p) directions qui ont peu ou pas d’influence sur la fonction
objectif. D’une manière similaire à (4.1), il est possible de définir les vecteurs y ∈ Rp et
z ∈ Rn−p comme

x̄ =
 y
z

 =
P>
Q>

x (4.3)

Exemple 4.1 Par exemple, considérons la fonction f1(x1, x2) = 10x1 + x1x2 et le nuage de
points en deux dimensions {(−5,−5); (−5, 5); (5,−5); (5, 5); (0, 5); (5, 0); (1, 5); (5, 1); (−1, 5);
(−5, 1)}. L’ensemble des points évalués est repris dans le tableau 4.1. A partir de ce nuage

45

de points, nous pouvons construire une matrice de covariance S,

S =


19.389 −0.944 200.556

−0.944 16.456 −9.444

200.556 −9.444 2361.111

 .

Les vecteurs propres de cette matrice de covariance sont les composantes principales du nuage
de points. Ceux-ci sont les colonnes de la matrice M+ ci-dessous,

M+ =


−0.9964 −0.0096 0.0847

−0.0100 0.9999 −0.0040

0.0847 0.0049 0.9964

 .

Dans notre situation, nous cherchons à minimiser la fonction objectif, on s’intéresse donc
aux composantes principales étant les plus alignées sur la direction de l’objectif, c’est-à-dire
le vecteur ayant la plus grande (n + 1)e composante en valeur absolue. En réordonnant les
colonnes de la matrice M+ selon leur valeur dans la (n+ 1)e ligne, par ordre décroissant, on
obtient

M ′
+ =


0.0847 −0.9964 −0.0096

−0.0049 −0.0100 0.9999

0.9964 0.0847 0.0049

 .

Puisque l’espace de recherche est un sous-ensemble de R2, la matrice M+ est amputée de sa
dernière ligne et de sa dernière colonne pour construire une matrice M ′,

M ′ =

 0.0847 −0.9964

−0.0049 −0.0100

 .

Les colonnes de cette matrice M ′ forment les directions de Rn qui nous intéressent. En
normant ces directions, on obtient la matrice M ,

M =

 0.9983 −0.9999

−0.0578 −0.0101

 .

46

Cette matrice M permet de définir les matrices de projection P et Q de l’équation (4.2), en
fonction de la dimension p qui nous intéresse. Dans ce cas-ci, la direction (0.9983,−0.0578)>

indique que la variable x1 a plus d’importance que la variable x2 sur l’objectif f1(x1, x2) =
10x1 + x1x2.

Exemple 4.2 Considérons la fonction f2(x1, x2) = x1+x2 et le même ensemble de points que
l’exemple précédent. Suite à une procédure similaire à l’exemple précédent, les composantes
principales du nuage de points sont

M+ =


0.5774 0.6729 0.4625

0.5774 −0.7370 0.3515

−0.5774 −0.0641 0.8140

 .

En réordonnant les colonnes de la matrice en fonction de la dernière ligne, on obtient

M ′
+ =


0.4625 0.5774 0.6729

0.3515 0.5774 −0.7370

0.8140 −0.5774 −0.0641

 .

Ensuite, en tronquant la dernière ligne et la dernière colonne et en normant les vecteurs
restant, il est possible d’écrire la matrice M ,

M =

0.7962 0.7071

0.6051 0.7071

 .

Dans ce cas, les directions proposées sont assez proches de (1√
2 ,

1√
2)>, ce qui correspond à la

direction attendue, au vu de la fonction objectif f2(x1, x2) = x1 + x2.

4.2 Changement de variables

Le sous-problème d’optimisation est défini à partir des variables y ∈ Rp. Celles-ci corres-
pondent aux p < n combinaisons linéaires des variables x qui ont le plus d’impact sur
l’objectif. Puisque la dimension p est plus petite que la dimension n, plusieurs points en
dimension n peuvent être projetés sur un même point y en dimension p.

47

Tableau 4.1 Ensemble d’évaluations pour les fonctions f1(x1, x2) = 10x1+x1x2 et f2(x1, x2) =
x1 + x2

x f1(x) f2(x)

(−5,−5) −25 −10

(−5, 5) −75 0

(5,−5) 25 0

(5, 5) 75 10

(0, 5) 0 5

(5, 0) 50 5

(1, 5) 15 6

(5, 1) 55 6

(−1, 5) −15 4

(−5, 1) −55 −4

Lors de la recherche dans le sous-espace, les points sont de dimension p. A partir de ces
points, il faut pouvoir retrouver les points correspondants en dimension n afin d’évaluer la
boîte noire. On propose ici deux stratégies afin de pouvoir construire un point en dimension
n correspondant à y ∈ Rp. Les différences de performance entre ces deux stratégies sont
étudiées à la section 5.5.5.

La première solution consiste à compléter les informations manquantes par des informations
disponibles. Lorsqu’une instance de Mads est lancée sur le sous-problème, il faut lui fournir
un point de départ. Celui-ci va être défini comme l’origine du sous-espace de recherche. En
pratique, ce point de départ correspond au meilleur point trouvé jusqu’à présent, la solution
courante à l’itération k, xk ∈ Rn. Au moment d’évaluer un point y ∈ Rp, le point

x = xk + Py (4.4)

est construit. Puisque la matrice P est de dimension n × p, le point xk + Py est bien de
dimension n. De plus, lorsque y = 0, le point construit correspond effectivement à la solution
courante xk. Des illustrations de cette transformation sont présentées aux figures 4.1 et 4.2.

La deuxième méthode se base sur l’opérateur de la pseudo-inverse. Soit une matrice A ∈
Rm×n, avec m ≤ n. La pseudo-inverse de Moore-Penrose [57] de A est une matrice A† ∈ Rn×n

48

x1

x2

xk

xk + Py0

y

z

xk + Py1

x̄ = round(xk + Py1)

Figure 4.1 Illustration de la transformation (4.4) en deux dimensions

telle que
AA†A = A; A†AA† = A+; (AA†)> = AA†; (A†A)> = A†A.

Si A a des colonnes linéairement indépendantes, alors A† = (A>A)−1A>. La pseudo-inverse
de Moore-Penrose de la transposée de la matrice P est notée (P>)†. Si cette matrice est réelle
et a des colonnes linéairement indépendantes, alors

(P>)† = (PP>)−1P.

En multipliant la relation y = P>x, définie à l’équation (4.3), par la pseudo-inverse de P>,
un point de dimension n est construit,

x = (P>)†y.

Cette matrice pseudo-inverse peut donc être utilisée pour passer d’un espace à l’autre. Afin
que l’origine du sous-espace corresponde à la meilleure solution trouvée xk, la transformation

x = xk + (P>)†y (4.5)

est privilégiée.

49

x1

x2

x3

y = (0; 0) = xk

p1

p2

y = (1; 1) = xk+1

Figure 4.2 Illustration de la transformation (4.4) en trois dimensions. Les vecteur p1, p2∈ R3

sont issus de l’analyse en composante principale et définissent le nouvel espace de recherche
de dimension 2. Dans cet espace, le point xk correspond au point (0, 0)> de ce sous-espace et
xk+1 au point (1, 1)>

4.3 Evaluation de la boîte noire

Dans le cadre de l’algorithme Mads, tous les points sont évalués sur un treillis. Dans l’al-
gorithme Pca-Mads proposé, des points en dimension p sont projetés sur des points en
dimension n afin d’être évalués. Pour préserver les résultats de convergence de l’algorithme
original, ceux-ci seront alors arrondis afin d’appartenir au treillis en n dimensions. Les points
évalués n’appartiendront pas toujours au sous-espace défini et cela permettra de récupérer
un peu d’information hors de l’espace de recherche.

Considérons que le treillis de l’algorithme Mads est défini par la matrice D = [In− In] où In
est la matrice identité en n dimensions. Soit ∆m

min la valeur du plus petit paramètre de taille
du treillis au cours de l’exécution de l’algorithme. Un point x ∈ Rn sera projeté sur le point

x̄ = xk + ∆m
min × round

(
x− xk

∆m
min

)
, (4.6)

où xk est un point sur le treillis et l’opérateur round(·) est tel que round(0.5) = 1 et
round(−0.5) = −1.

50

Lors de l’optimisation du problème en dimension p, un point y ∈ Rp est évalué de la façon
suivante. Dans un premier temps, l’une des méthodes (4.4) ou (4.5) est utilisée pour en
construire un nouveau. Cela permet de définir un point x ∈ Rn correspondant au point
y ∈ Rp à évaluer. Ensuite, le point x ∈ Rn est projeté sur un point x̄ du treillis de Mads
en dimension n selon (4.6). La boîte noire est évaluée au point x̄ et sa sortie est utilisée
dans l’optimisation du sous-problème comme si cette valeur correspondait à l’évaluation de
la boîte noire réduite au point y ∈ Rp.

4.4 Algorithme PCA-MADS

Comme précisé à la section 3.3.3, le cadre algorithmique de Mads laisse la possibilité d’ajou-
ter une étape de recherche qui peut évaluer un nombre fini de points sur le treillis. L’algo-
rithme Pca-Mads propose d’optimiser un problème en dimension réduite comme étape de
recherche. La construction de ce problème se base sur une analyse en composantes princi-
pales et évalue des points sur le treillis. En donnant un budget fini pour l’optimisation de
ce problème en petite dimension et en évaluant la boîte noire sur le treillis, cette étape de
recherche satisfait donc bien les conditions d’une étape de recherche dans Mads. Idéalement,
l’étape de recherche en petite dimension devrait se poursuivre tant que celle-ci trouve des
solutions plus intéressantes que celles déjà connues. Si la recherche n’améliore pas la solution
courante, alors il faut effectuer une étape de sonde en grande dimension, selon l’algorithme
Mads classique.

Une description de l’algorithme Pca-Mads est proposée à l’algorithme 10.

0. Initialisation
1. Evaluer N points sur le treillis
2. Boucle :

2.1 Définir un sous-problème de dimension p à partir des N derniers points évalués et
d’une analyse en composante principale ;

2.2 Lancer une instance de Mads sur le sous-problème avec un budget B fini ;
2.3 Si aucun point améliorant la solution n’a été trouvé, effectuer une étape de sonde

en n dimension ;
2.4 Evaluer les critères de terminaison de l’algorithme en dimension n et mettre à jour

les paramètres en conséquence

Algorithme 10 Pca-Mads

51

4.5 Analyse de convergence

L’algorithme Pca-Mads proposé fait partie de la classe d’algorithmes Mads décrits à la
section 3.3.3. Son analyse de convergence sera donc similaire à l’analyse de convergence de
cette classe d’algorithmes.

A chaque itération de l’algorithme Pca-Mads, deux étapes successives peuvent être effec-
tuées. La première est l’étape de recherche, qui consiste en la construction d’un sous-problème
et l’optimisation de celui-ci avec un certain budget d’évaluations fini. La deuxième est l’étape
de sonde qui n’est appliquée que si l’étape de recherche n’a pas généré de nouvelle solution
améliorante. De plus, aussi bien à l’étape de recherche qu’à l’étape de sonde, tous les points
évalués appartiennent à une structure finie appelée treillis, définie à la définition 3.1.

En appliquant les règles de mise à jour des paramètres de taille du treillis δk et de taille de
cadre ∆k,

δk = min(∆k, (∆k)2), ∆k+1 = τωk∆k,

pour ωk ∈

 {0, 1, 2, . . . , ω+} si un point améliorant la solution est trouvé,

{ω−, ω− − 1, . . . ,−1} sinon,

le maillage du treillis est raffiné uniquement lors des itérations infructueuses, c’est-à-dire les
itérations où aucun point améliorant la solution n’a été trouvé.

Pour analyser la convergence de l’algorithme, il faut s’intéresser à la situation où le nombre
d’itérations tend vers l’infini. Prenons une fonction objectif dont l’ensemble de niveau {x ∈
Rn : f(x) ≤ f(x0)} forme un compact. Puisque tous les points évalués appartiennent au
treillis et que ce dernier est une structure finie, il n’y a qu’un nombre fini d’itérations réussies,
c’est-à-dire une itération où une nouvelle solution améliorante a été générée. Donc, il y a
un nombre infini d’itérations infructueuses. Le cadre de sonde sera raffiné infiniment ; le
paramètre définissant sa taille suit donc la limite

lim
k→∞

inf ∆k = 0;

et puisque δk ≤ ∆k,
lim
k→∞

inf δk = 0.

Par un raisonnement similaire que pour l’analyse de convergence de Gps à la section 3.3.2,

52

il existe une sous-suite d’itérations infructueuses {ki} et un point x∗ tels

lim
i→∞

δki = 0, lim
i→∞

xki = x∗.

Cela implique que l’algorithme raffine le treillis autour de la solution courante x∗. En suppo-
sant que la fonction est localement Lipschitz autour de x∗, on en conclut que

f ◦(x∗; d) ≥ 0, ∀d ∈ Rn.

Les résultats de convergence sont donc similaires à la classe d’algorithme Mads originale.

4.6 Paramètres

Le cadre algorithmique de Mads laisse des libertés quant à la valeur de certains paramètres,
ainsi que la présence et les caractéristiques de l’étape de recherche. La variante proposée
Pca-Mads profite notamment de ces libertés. Une liste des paramètres et des choix à faire
pour un algorithme Mads, ainsi que ceux supplémentaires issus de la variante Pca-Mads
est reprise ci-dessous.

Les paramètres et les choix d’implémentation pour l’algorithme Mads général sont les sui-
vants.

1. Initialisation :
— paramètre de taille de cadre initial ∆0,
— matrice générateur positif D,
— paramètres d’ajustement du treillis τ , ω+ et ω−,
— tolérance d’arrêt ε

2. Etape de recherche : nombre de points à évaluer et façon de les générer ;

3. Etape de sonde : nombre de directions ((n+1) ou 2n directions) et façon de les générer.

Lors de l’initialisation, des valeurs des paramètres sont proposées dans [8]. Pour l’étape de
sonde, plusieurs implémentations sont proposées dans [1, 8, 69].

Pour l’algorithme Pca-Mads, la façon de générer des points lors de l’étape de recherche
repose sur une analyse en composante principale et une méthode d’optimisation. Les para-
mètres liés à cette étape sont repris dans la liste suivante :

— budget d’évaluations pour l’optimisation du sous-problème B ;
— choix de la dimension du sous-problème p ;

53

— nombre de points nécessaires pour effectuer l’étape de rechercheN search
min et la possibilité

d’en générer pour compléter la cache ;
— nombre de points utilisés dans l’analyse en composante principale N search

pca et la façon
de les sélectionner ;

— méthode de construction du sous-problème à partir de l’analyse en composante prin-
cipale et la façon d’évaluer la boîte noire ;

— paramètres inhérents à la méthode d’optimisation du sous-problème.
Une méthode de construction du sous-problème et d’évaluations de la boîte a été présentée
aux sections précédentes.

54

CHAPITRE 5 TESTS ET RÉSULTATS

Ce chapitre vise à comparer les performances de l’algorithme proposé Pca-Mads avec celles
d’autres méthodes d’optimisation sans dérivée. Dans un premier temps, quelques tests explo-
ratoires sont effectués sur des fonctions simples pour observer le comportement de l’algorithme
Pca-Mads, ensuite celui-ci est lancé sur des problèmes plus difficiles. Les performances des
algorithmes d’optimisation sans dérivée sont comparées à l’aide de profils de performance et
de données. La construction de ces derniers est décrite à la section 5.1. La plateforme COCO,
qui permet de fournir des suites de problèmes, est décrite à la section 5.2 et les résultats de
tests effectués sur celle-ci sont présentés à la section 5.3. Par la suite, le comportement de
l’algorithme Pca-Mads en petite et grande dimension est étudié à la section 5.4. Dans la
section 5.5, l’influence des principaux paramètres de l’algorithme est étudiée. La section 5.6
compare Pca-Mads avec d’autres algorithmes d’optimisation, sur une suite de tests et sur
des problèmes issus de la littérature.

5.1 Profils de performances et profils de données

Les performances de différents algorithmes peuvent être comparées au moyen de profils de
performances et de données. Ceux-ci ont été introduits par Dolan, Moré et Wild [29, 51] et
sont construits de la façon suivante.

Considérons un ensemble de problèmes P , un ensemble d’algorithmes ou méthodes S et
une mesure de performance tp,s. Cette dernière est choisie comme le nombre d’évaluations
nécessaires pour satisfaire un test de convergence,

f(x0)− f(xk) ≥ (1− τ)(f(x0)− fL)

où xi représente la ie évaluation, τ est une tolérance et fL la valeur de la meilleure solution
trouvée pour un problème donné. A partir de cette mesure de performance, un ratio de
performance rp,s est obtenu comme

rp,s = tp,s
min{tp,a : a ∈ S} .

Le profil de performance d’un algorithme s ∈ S est la proportion de problèmes dont le ratio

55

de performance est au plus α, avec α ≥ 1 :

ρs(α) = |{p ∈ P : rp,s ≤ α}|
|P|

.

La valeur de ρs(1) représente la proportion de problèmes pour lesquels l’algorithme s a
trouvé la meilleure solution et la valeur de ρs(α) représente la proportion de problèmes pour
lesquels l’algorithme s a satisfait le test de convergence en un nombre d’évaluations inférieur
à α multiplié par le nombre d’évaluations nécessaires au meilleur algorithme pour trouver
la solution d’un problème donné. Pour α suffisamment grand, ρs(α) donne la proportion de
problèmes pour lesquels l’algorithme s a satisfait le critère de convergence.

Le profil de données d’un algorithme s est

ds(κ) =

∣∣∣{p ∈ P : tp,s

np+1 ≤ κ
}∣∣∣

|P|
,

où np est le nombre de variables du problème p. Le profil de données d’un algorithme repré-
sente la proportion de problèmes pour lesquels la méthode a satisfait le test de convergence
avec au plus κ, κ ≥ 0, groupes de np + 1 évaluations.

Ces profils donnent une performance relative de chaque algorithme par rapport aux autres,
sur un ensemble de problèmes donnés. L’algorithme présentant la courbe au-dessus des autres
a de meilleures performances, car il résout une plus grande proportion de problèmes que les
autres pour un budget donné.

5.2 Plateforme COCO et suite de fonctions bbob

COCO [35] est une plateforme visant à comparer des méthodes d’optimisation de boîtes
noires continues. Celle-ci fournit plusieurs suites de problèmes à minimiser, de différentes
dimensions, et ils peuvent être bruités ou contraints. Les fonctions sont implémentées en C
mais la plateforme offre des interfaces en C/C++, Java, Matlab/Octave ou Python. Le but de
cette plateforme est d’automatiser la procédure de comparaison d’algorithme d’optimisation
sans dérivée et de traitements des résultats.

Toutes ces suites se basent sur un ensemble de 24 fonctions définies dans [36]. Chacune des
fonctions peut être utilisée pour créer plusieurs instances. Toutes les fonctions peuvent être
définies en plusieurs dimensions et les variables sont bornées par [−5; 5]n. L’ensemble de
fonctions peut être divisé en plusieurs sous-ensembles avec certaines caractéristiques, comme
cela est décrit dans [36]. Ceux-ci sont

56

— 5 fonctions séparables ;
— 4 fonctions avec un conditionnement faible à modéré ;
— 5 fonctions avec un haut conditionnement et unimodales ;
— 5 fonctions multimodales avec une structure globale adéquate ;
— 5 fonctions multimodales avec une faible structure globale.

De plus amples informations sur les fonctions sont disponibles dans [36]. Les solutions opti-
males sont connues pour chacun de ces problèmes. La plateforme crée plusieurs instances de
problème à partir de chaque fonction et fournit les bornes et un point de départ pour chaque
instance. Le budget d’évaluations total est défini par l’utilisateur via un facteur multipliant
la dimension du problème.

La plateforme COCO traite également les résultats issus des expériences sur leur suite de fonc-
tions. Elle utilise comme élément central pour comparer les différents algorithmes le nombre
d’évaluations des fonctions pour atteindre un certain seuil, une certaine valeur de l’objectif.
Nous préférons comparer les performances des algorithmes via des profils de performances et
de données décrits à la section 5.1.

5.3 Tests sur la suite COCO

Les premiers tests sur la plateforme COCO ont pour but de comparer les performances de
Pca-Mads et d’une version plus standard de Mads. Pour ce faire, une implémentation de
Pca-Mads est comparée à la même implémentation avec l’étape de recherche désactivée.
Cette dernière sera nommée simplement Mads. Les différences entre les deux méthodes
comparées portent sur l’étape de recherche de Mads. Dans sa version basique, aucune étape
de recherche n’est effectuée tandis que dans la version Pca-Mads, une étape de recherche
basée sur une analyse en composante principale telle que décrite au chapitre 4 est effectuée.

Une étape importante de l’algorithme Mads ainsi que Pca-Mads est l’étape de sonde. Lors
de celle-ci, la méthode génère des directions de sonde et plusieurs méthodes pour générer
ces directions ont été décrites dans la littérature. La première, nommée LTMads, présentée
dans [8], se base sur des matrices triangulaires inférieures pour générer les directions de sonde.
Une deuxième méthode, nommée OrthoMads et décrite dans [1], génère des directions de
sonde orthogonales. Un avantage de cette méthode est son déterminisme. Van Dyke et Asaki
décrivent dans [69] une méthode permettant de générer des directions de sonde uniformément
dans l’espace. Cette méthode se base sur une décomposition QR. Le choix de l’une ou l’autre
de ces méthodes a été guidé par leur rapidité à implémenter et à s’exécuter. La méthode
retenue est donc la méthode LTMads.

57

Les deux méthodes sont initialisées avec
— ∆0 = 1 ;
— D = [In − In] ;
— τ = 2, ω− = −1 et ω+ = 1 ;
— εstop = 10−15 ;
— Sonde de 2n points générés à la manière de LTMADS, avec stratégie opportuniste.

Pour l’étape de recherche de Pca-Mads, les paramètres suivants sont utilisés,
— dimension p = dn5 e ;
— nombre d’évaluations minimum pour effectuer une recherche N search

min = 2n, généré par
échantillonnage par hypercube latin ;

— nombre de points utilisés dans l’analyse en composante principale N search
pca est l’en-

semble des points évalués ;
— budget d’évaluations de l’optimisation du sous-problème égal à un vingtième du budget

total ;
— transformation x = xk + Py (4.4) ;
— critère d’arrêt pour l’optimisation du sous-problème εstop = ∆k

2 ;
— les autres paramètres de la méthode Mads optimisant le sous-problème sont les mêmes

que pour la méthode Mads du problème original en dimension n.
Cet ensemble de paramètres est utilisé pour tous les tests présentés dans la suite de ce
chapitre, sauf si précisé autrement.

L’ensemble de problèmes sur lesquels ces algorithmes seront comparés vient de la plate-
forme COCO. La suite de fonctions bbob offre un ensemble de problèmes non bruités et non
contraints. Cette suite est composée des 24 fonctions en dimension 2, 3, 5, 10. Pour chaque
fonction et dans chaque dimension, 16 instances de problèmes sont créées. Cela donne un
total de 1440 problèmes. Le budget d’évaluations est fixé à 10n pour chaque algorithme, où
n est la dimension du problème.

La figure 5.1 présente des profils de performance et des profils de données pour ces tests. Les
méthodes Mads et Pca-Mads sont assez proches, avec un léger avantage à Mads tout de
même. Ces tests ont été effectués sur une suite de fonctions de dimension petite et avec un
budget assez restreint et ne permet pas de généraliser les résultats obtenus.

Sur cette figure, les profils de performance stagnent assez vite et n’apportent pas de nouvelles
informations par rapport aux profils de données construits avec le même critère de conver-
gence. Les prochains résultats seront donc présentés avec des profils de données uniquement
si les profils de performance n’apportent pas d’information complémentaire.

58

0 2 4 6 8 10 12 14 16 18

Rapport de performance,

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

P
ro

p
o

rt
io

n
 d

e
 p

ro
b

le
m

e
s

Profil de performance = 1e-01

PCA-MADS

MADS

(a) Profil de performance pour une tolé-
rance τ = 10−1

0 2 4 6 8 10

Nombre de gradients simplexes,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ro

p
o
rt

io
n
 d

e
 p

ro
b
le

m
e
s

Profil de données : = 1e-01

PCA-MADS

MADS

(b) Profil de données pour une tolérance
τ = 10−1

0 2 4 6 8 10 12

Rapport de performance,

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

P
ro

p
o
rt

io
n
 d

e
 p

ro
b
le

m
e
s

Profil de performance = 1e-03

PCA-MADS

MADS

(c) Profil de performance pour une tolé-
rance τ = 10−3

0 2 4 6 8 10

Nombre de gradients simplexes,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

p
o
rt

io
n
 d

e
 p

ro
b
le

m
e
s

Profil de données : = 1e-03

PCA-MADS

MADS

(d) Profil de données pour une tolérance
τ = 10−3

1 1.5 2 2.5 3 3.5

Rapport de performance,

0.5

0.52

0.54

0.56

0.58

0.6

0.62

P
ro

p
o

rt
io

n
 d

e
 p

ro
b

le
m

e
s

Profil de performance = 1e-07

PCA-MADS

MADS

(e) Profil de performance pour une tolé-
rance τ = 10−7

0 2 4 6 8 10

Nombre de gradients simplexes,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

p
o
rt

io
n
 d

e
 p

ro
b
le

m
e
s

Profil de données : = 1e-07

PCA-MADS

MADS

(f) Profil de données pour une tolérance
τ = 10−7

Figure 5.1 Comparaison de deux implémentations de Mads et de Pca-Mads similaires, sur
la suite de fonctions bbob de coco avec un budget de 10n

59

5.4 Comportement de PCA-MADS en petite et grande dimension

Les premiers tests exploratoires en grande dimension permettent de comparer les perfor-
mances de l’algorithme Pca-Mads proposé avec une implémentation similaire de Mads sur
des problèmes simples. Nous considérons la fonction de Rosenbrock à dimension variable
suivante :

f(x) =
n−1∑
i=1

b(xi+1 − x2
i)2 + (a− xi)2, (5.1)

où a = 1 et b = 100. Pour ces tests, deux ensembles d’instances de la fonction de Rosenbrock
sont considérés. Le premier ensemble reprend cette fonction avec n = 2, 3, . . . , 20 variables,
tandis que le second reprend la fonction de Rosenbrock à n = 100, 200, . . . , 500 variables.
Cela permet de mettre en évidence le comportement de l’algorithme aussi bien en petite
qu’en grande dimension.

Ces tests comparent également une version simple de Mads et le nouvel algorithme Pca-
Mads. Ces deux méthodes ont été initialisées de la même manière que les tests de la section
précédente. Des profils de données ont été tracés pour une implémentation de Mads et de
Pca-Mads. Ceux-ci sont représentés sur la figure 5.2.

Lorsque la tolérance du critère de convergence est assez faible, c’est-à-dire τ relativement
grand, τ = 10−3 par exemple, l’algorithme Pca-Mads semble avoir de meilleures perfor-
mances que Mads, comme l’indique la figure 5.2(a). Avec une tolérance plus petite, le com-
portement des algorithmes semble s’inverser. Cela est visible sur la figure 5.2(b). Cela indique
que Mads a tendance à trouver de meilleures solutions que Pca-Mads en petite dimension,
mais ce dernier trouve des solutions proches de la solution de Mads plus rapidement.

En regardant les profils pour la même fonction en plus grande dimension, visibles sur les
figures 5.2(c) et 5.2(d), une situation différente est à noter. En effet, en plus grande dimen-
sion, l’algorithme Pca-Mads semble avoir de meilleures performances que l’implémentation
Mads. Pour la plupart des problèmes, Pca-Mads trouve de meilleures solutions et plus
rapidement que Mads. Cela indique que la stratégie de réduction de dimension semble être
plus efficace pour des problèmes de grande dimension, aux alentours de quelques centaines de
variables, par rapport aux problèmes en petite dimension, soit quelques dizaines de variables
sur cette fonction particulière.

Le nombre et la variété des problèmes testés étant restreints, aucune conclusion définitive
quant aux performances de chacun des algorithmes proposés n’est réellement possible. De
plus, il y a de nombreux paramètres et stratégies qui peuvent jouer sur la performance des
algorithmes.

60

0 5 10 15 20 25 30

Nombre de gradients simplexes,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o
rt

io
n
 d

e
 p

ro
b
le

m
e
s

Profil de données : = 1e-03

PCA-MADS

MADS

(a) Rosenbrock en petite dimension

0 10 20 30 40 50 60 70 80 90

Nombre de gradients simplexes,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ro

p
o
rt

io
n
 d

e
 p

ro
b
le

m
e
s

Profil de données : = 1e-06

PCA-MADS

MADS

(b) Rosenbrock en petite dimension

0 2 4 6 8 10 12

Nombre de gradients simplexes,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o
rt

io
n
 d

e
 p

ro
b
le

m
e
s

Profil de données : = 1e-01

PCA-MADS

MADS

(c) Rosenbrock en grande dimension

0 5 10 15 20 25 30 35

Nombre de gradients simplexes,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o
rt

io
n
 d

e
 p

ro
b
le

m
e
s

Profil de données : = 1e-03

PCA-MADS

MADS

(d) Rosenbrock en grande dimension

Figure 5.2 Comparaison des méthodes Mads et Pca-Mads sur deux ensembles de fonctions
de Rosenbrock en petites et grandes dimensions avec des budgets de 100n et 50n respective-
ment

Il est possible de regarder plus en détails les différences de comportement de ces deux mé-
thodes. La figure 5.3 présente des graphes de convergence pour les deux algorithmes sur une
fonction de Rosenbrock en dimension 300. La figure 5.3(a) indique la valeur de l’objectif de
la meilleure solution connue au cours de l’exécution de l’algorithme et la figure 5.3(b) donne
le logarithme de cette valeur.

Ces figures permettent de mettre en avant un comportement particulier de Pca-Mads. Au
tout début de l’exécution de la méthode, une diminution très rapide de l’objectif est observée.
Ceci est probablement dû à la stratégie de remplissage de la cache. En effet, lors de la première
itération de l’algorithme, la cache ne contient qu’un seul point, le point le départ. Il n’est donc

61

pas pertinent d’effectuer une analyse de sensibilité avec un seul point. Un échantillonnage
par hypercube latin permet d’évaluer des points répartis dans l’espace de recherche afin de
pouvoir appliquer une analyse de sensibilité à la deuxième itération.

Après cette phase de diminution très rapide vient une phase de diminution très faible. A
ce moment-là, la stratégie de recherche n’est pas très efficace. Cela vient probablement du
fait que les points contenus dans la cache ne permettent pas de récupérer des directions
exploitables et du fait que le treillis est encore assez grossier. En effet, celui-ci est raffiné
lors des itérations formant des échecs et au début de l’exécution, on n’observe pas ou peu
d’itérations infructueuses. Lors de l’étape de recherche, les points à évaluer sont projetés sur
le treillis ce qui se traduit par un nombre important de ré-évaluations de points déjà présents
dans la cache.

Par la suite, la recherche semble devenir efficace et la diminution de l’objectif reprend. La
figure 5.3(b) permet de voir que Pca-Mads trouve de meilleures solutions que Mads, et ce
plus rapidement. Au total, il apparaît qu’environ une moitié des itérations bénéficient d’une
étape de recherche améliorant la solution objectif.

0 5000 10000 15000

Evaluations

0

0.5

1

1.5

2

2.5

V
a
le

u
r

d
e
 l
 o

b
je

c
ti
f

10 8 Graphe de convergence

PCA-MADS

MADS

(a) Graphe de convergence

0 5000 10000 15000

Evaluations

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

V
a
le

u
r

d
e
 l
 o

b
je

c
ti
f
(l
o
g
)

Graphe de convergence

PCA-MADS

MADS

(b) Graphe de convergence (log)

Figure 5.3 Graphe de convergence des algorithmes Mads et Pca-Mads sur une fonction de
Rosenbrock en dimension 300

5.5 Influence des paramètres

Il existe plusieurs paramètres et stratégies pouvant influencer les performances de Pca-
Mads. Afin de pouvoir recommander des valeurs par défaut à un utilisateur de Pca-Mads,
étudier l’influence de celles-ci est primordial. De plus, cela permettra de comparer l’algorithme
Pca-Mads avec ses meilleures performances à d’autres méthodes connues. Pour ce faire, les

62

principaux paramètres de l’algorithme sont identifiés et plusieurs valeurs ou stratégies sont
comparées au moyen de profils de données.

L’ensemble de fonctions utilisé pour ces tests est basé sur la suite de fonctions disponibles dans
COCO. Puisque l’algorithme a été conçu pour résoudre des problèmes en relativement grande
dimension, sans bruit et sans contrainte, la suite bbob-largescale de la plateforme COCO sera
utilisée. Afin de limiter les temps d’exécution de ces tests, la première instance de 10 fonctions
représentatives de la suite sera utilisée, et ce en dimension 80, 160, 320, 640. Cela donne un
total de 40 problèmes. Nous avons sélectionné les fonctions 2, 4, 7, 9, 11, 13, 16, 18, 21 et 23.
De cette façon, deux fonctions avec chaque caractéristique se retrouvent dans l’ensemble de
problèmes. Le budget d’évaluations est fixé à 50n. A la suite de l’étude d’un paramètre,
celui-ci est fixé à sa valeur la plus performante pour l’analyse de l’influence des paramètres
suivants.

5.5.1 Dimension du sous-problème p

Au cours de l’étape de recherche, l’algorithme Pca-Mads construit un sous-problème de plus
faible dimension et cherche à l’optimiser. La dimension de ce sous-problème semble être un
paramètre critique, qui peut influencer les performances de l’algorithme. Plusieurs stratégies
peuvent donc être comparées. La dimension du problème original est notée n et la dimension
du sous-problème est notée p. Les premières stratégies consistent simplement à diviser la
dimension du problème original par un facteur constant. Chaque sous-problème construit
aura donc la même dimension. Une alternative à cette stratégie est d’utiliser un algorithme
de classement pour séparer les directions issues de l’analyse en composante principale et de les
diviser en deux groupes. L’algorithme k−means est utilisé pour sa simplicité d’utilisation. En
mettant k = 2, celui-ci permet de séparer les (n+1) directions en deux groupes. La dimension
du problème p correspondra à la taille de l’ensemble des directions ayant les directions les
plus influentes sur l’objectif.

Toutes les stratégies comparées sont reprises dans la liste ci-dessous.

1. Stratégie p = dn5 e ;

2. Stratégie p = d n10e ;

3. Stratégie p = d n20e ;

4. Stratégie k −means.

Les performances de l’algorithme, en fonction de ces stratégies, sont comparées à l’aide de
profils de données tels que décrits à la section 5.1. Ceux-ci sont repris à la figure 5.4.

Lorsque le critère de convergence est relativement précis, par exemple τ = 10−3 sur le profil

63

0 10 20 30 40 50

Nombre de gradients simplexes,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

p
o
rt

io
n
 d

e
 p

ro
b
le

m
e
s

Profil de données : = 1e-03

n/5

n/10

n/20

kmeans

(a) Profil de données pour une tolérance τ =
10−3

0 10 20 30 40 50

Nombre de gradients simplexes,

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
ro

p
o
rt

io
n
 d

e
 p

ro
b
le

m
e
s

Profil de données : = 1e-05

n/5

n/10

n/20

kmeans

(b) Profil de données pour une tolérance τ =
10−5

Figure 5.4 Comparaison des performances de Pca-Mads avec différentes dimensions du sous-
problème (paramètre p), sur une partie de la suite de fonctions bbob-largescale de COCO

5.4(a), deux stratégies se distinguent. Il s’agit des stratégies p = dn5 e et p = d n10e. Cela peut
s’expliquer par les dimensions des problèmes utilisés pour la comparaison. En effet, avec la
stratégie p = dn5 e (resp. p = d n10e), les sous-problèmes construits sont de taille 16 à 128 (resp.
8 à 64). Il s’agit de tailles pour lesquelles l’algorithme Mads a de bonnes performances.
Lorsque le critère de convergence pour la création des profils est encore plus strict, avec
τ = 10−5 par exemple, la stratégie p = d n20e est la meilleure des stratégies comparées. Sur
le profil de performance 5.4(b), aucune des autres stratégies ne parvient à s’approcher de la
stratégie p = d n20e. La stratégie basée sur l’algorithme k−means ne semble pas être un choix
judicieux par rapport aux autres stratégies étudiées.

5.5.2 Budget d’évaluations pour l’optimisation du sous-problème

L’étape de recherche consiste à optimiser un nouveau problème d’optimisation de petite
dimension avec un algorithme Mads. Le budget alloué à cette optimisation aura une influence
sur la qualité de celle-ci. Dans le cadre de l’algorithme Pca-Mads, il y a une alternance
entre cette minimisation et une étape de sonde en grande dimension. Le budget maximum
d’évaluations pour l’optimisation de ce sous-problème devrait avoir une influence sur les
performances de Pca-Mads. n étant la dimension du problème original, le budget total
d’évaluations est noté B et le nombre d’évaluations déjà effectuées est noté ev.

Les stratégies suivantes sont comparées :

1. Stratégie d B10e : le budget maximum d’évaluations pour le sous-problème correspond

64

à un dixième du budget total d’évaluations.

2. Stratégie d B20e : le budget maximum d’évaluations pour le sous-problème correspond
à un vingtième du budget total d’évaluations.

3. Stratégie n : le budget maximum d’évaluations pour le sous-problème correspond au
nombre de variables du problème original.

4. Stratégie 2n : le budget maximum d’évaluations pour le sous-problème correspond à
deux fois le nombre de variables du problème original.

5. Stratégie inc : à l’étape de recherche, on donne un budget de d(1 + 5ev
B

)n2 e évaluations.
Cela donne un budget minimum de n

2 et maximum de 3n évaluations et le budget
augmente à chaque nouvelle étape de recherche.

6. Stratégie dec : à l’étape de recherche, on donne un budget de d(1− 5ev
6B)3ne évaluations.

Cela donne un budget minimum de n
2 et maximum de 3n évaluations et le budget

diminue à chaque nouvelle étape de recherche.

Plusieurs profils de données ont été tracés pour comparer ces stratégies. Ceux-ci sont repris
à la figure 5.5. Les profils avec une faible précision, visibles sur la figure 5.5(a), indiquent
que la stratégie visant à diminuer le budget au fur et à mesure des itérations semble un peu
plus intéressante que les autres, bien que ces dernières soient relativement proches. Lorsque
la précision augmente, la stratégie 2n s’isole comme une meilleure stratégie que les autres.
Cela semble donc être le choix le plus approprié parmi les stratégies proposées.

0 10 20 30 40 50

Nombre de gradients simplexes,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ro

p
o
rt

io
n
 d

e
 p

ro
b
le

m
e
s

Profil de données : = 1e-01

n

2n

B/10

B/20

inc

dec

(a) Profil de données pour une tolérance τ =
10−1

0 10 20 30 40 50

Nombre de gradients simplexes,

0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

p
o
rt

io
n
 d

e
 p

ro
b
le

m
e
s

Profil de données : = 1e-03

n

2n

B/10

B/20

inc

dec

(b) Profil de données pour une tolérance τ =
10−3

Figure 5.5 Comparaison des performances de Pca-Mads avec différents budgets d’évalua-
tions pour l’optimisation du sous-problème, sur une partie de la suite de fonctions bbob-
largescale de COCO

65

5.5.3 Ensemble de points utilisés pour l’analyse de sensibilité

L’algorithme Pca-Mads repose principalement sur la construction d’un sous-problème de
dimension inférieure au problème original. La construction de ce sous-problème est donc une
étape critique de l’algorithme. Cette construction se fait à l’aide d’une analyse en composante
principale à partir d’un nuage de points. Les combinaisons de variables qui auraient le plus
d’influence sur la valeur de l’objectif sont déduites du résultat de cette analyse. Le choix de
l’ensemble de points utilisés pour l’analyse en composante principale peut donc avoir une
certaine influence sur les performances de l’algorithme.

Tous les points utilisés lors de l’analyse de sensibilité sont des points qui appartiennent déjà
à la cache et ont donc déjà été évalués lors des itérations précédentes de l’algorithme. Il faut
donc définir différentes stratégies de sélection des points dans la cache, ainsi que le nombre
de ces points.

Pour le nombre de points sélectionnés, les trois possibilités suivantes sont considérées :
n, 2n, 3n points, où n est la dimension du problème original. Cela nous paraît un bon com-
promis entre ne pas sélectionner trop de points pour garder un temps d’exécution raisonnable
et garder suffisamment de points pour avoir une analyse de sensibilité qui donne des résultats
pertinents. Les différentes stratégies de sélection des points sont les suivantes :

1. last− x : les x derniers points de la cache sont sélectionnés.

2. closest−x : les points sont triés en fonction de leur distance avec la solution courante
au moment de l’analyse de sensibilité et les x points les plus proches sont sélectionnés
pour l’analyse en composante principale.

3. dist − ε : les points sont triés en fonction de leur distance avec la solution courante
au moment de l’analyse de sensibilité et les points à une distance inférieure à ε∆m

min

sont sélectionnés pour l’analyse en composante principale. ∆m
min désigne la plus petite

valeur que le paramètre de taille du maillage ∆m a pris au cours de l’exécution de
l’algorithme. Cela permet de lier la distance considérée avec la taille du treillis.

Ces différentes stratégies ont été comparées sur le même ensemble de problèmes que pour les
paramètres précédents. Pour plus de clarté, des profils de performance et de données ont été
tracés pour chaque stratégie aux figures 5.6, 5.7 et 5.8. Chacune de ces figures reprend une
stratégie (resp. last, closest et dist) avec plusieurs valeurs pour leur paramètre. La figure 5.9
compare les trois stratégies avec leur meilleur paramètre.

La figure 5.6 montre que, parmi les stratégies de sélection des derniers points évalués, la
stratégie last − 2n semble avoir de meilleures performances que les autres pour une faible
précision, tandis que la stratégie last− 3n prend le dessus avec une plus forte précision pour

66

0 10 20 30 40 50

Nombre de gradients simplexes,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o
rt

io
n
 d

e
 p

ro
b
le

m
e
s

Profil de données : = 1e-01

last-n

last-2n

last-3n

(a) Profil de données pour une tolérance τ =
10−1

0 10 20 30 40 50

Nombre de gradients simplexes,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

p
o
rt

io
n
 d

e
 p

ro
b
le

m
e
s

Profil de données : = 1e-03

last-n

last-2n

last-3n

(b) Profil de données pour une tolérance τ =
10−3

Figure 5.6 Comparaison des performances de Pca-Mads avec différents nombres des derniers
points sélectionnés pour l’analyse de sensibilité (stratégies last−n), sur une partie de la suite
de fonctions bbob-largescale de COCO

le critère de convergence des profils.

0 10 20 30 40 50

Nombre de gradients simplexes,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o
rt

io
n
 d

e
 p

ro
b
le

m
e
s

Profil de données : = 1e-01

closest-n

closest-2n

closest-3n

(a) Profil de données pour une tolérance τ =
10−1

0 10 20 30 40 50

Nombre de gradients simplexes,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
ro

p
o
rt

io
n
 d

e
 p

ro
b
le

m
e
s

Profil de données : = 1e-03

closest-n

closest-2n

closest-3n

(b) Profil de données pour une tolérance τ =
10−3

Figure 5.7 Comparaison des performances de Pca-Mads avec différents nombres des plus
proches points sélectionnés pour l’analyse de sensibilité (stratégie closest−n), sur une partie
de la suite de fonctions bbob-largescale de COCO

La figure 5.7 indique que lorsqu’il s’agit de sélectionner les points les plus proches de la
solution courante pour l’analyse en composante principale, la stratégie qui en sélectionne 3n

67

est plus intéressante que les autres.

0 10 20 30 40 50

Nombre de gradients simplexes,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ro

p
o
rt

io
n
 d

e
 p

ro
b
le

m
e
s

Profil de données : = 1e-01

dist-5

dist-10

dist-20

(a) Profil de données pour une tolérance τ =
10−1

0 10 20 30 40 50

Nombre de gradients simplexes,

0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

p
o
rt

io
n
 d

e
 p

ro
b
le

m
e
s

Profil de données : = 1e-05

dist-5

dist-10

dist-20

(b) Profil de données pour une tolérance τ =
10−5

Figure 5.8 Comparaison des performances de Pca-Mads avec une stratégie de sélection
de points pour l’analyse de sensibilité basée sur la distance autour de la solution courante
(stratégie dist− ε), sur une partie de la suite de fonctions bbob-largescale de COCO

Les stratégies les plus performantes sont celles avec un plus grand nombre de points sélec-
tionnés pour l’analyse de sensibilité de la boîte noire. Cela se confirme également pour la
stratégie dist− ε, dont les comparaisons sont visibles sur la figure 5.8.

Les profils de la figure 5.9 permettent de comparer les trois stratégies avec leur meilleur
nombre de points. Une stratégie se distingue sur ces profils ; il s’agit de la stratégies closest−
3n, qui sélectionne les 3n points les plus proches de la solution courante pour appliquer l’ana-
lyse de sensibilité. La figure 5.7 semble indiquer que les performances de cette stratégie sont
améliorées lorsqu’un plus grand ensemble de points est sélectionné. Il serait donc intéressant
d’essayer de trouver s’il y a un nombre de points optimum ou si la sélection de l’entièreté de
la cache est en fait le meilleure stratégie possible.

5.5.4 Evaluation initiale de points

Lors de la première itération, la cache ne contient qu’un seul point, le point de départ de
l’algorithme. Comme vu précédemment, les performances de l’algorithme sont améliorées
lorsqu’un relativement grand nombre de points sont sélectionnés pour l’analyse en composante
principale. Afin de pouvoir profiter de l’étape de recherche dès la première itération, il serait
intéressant d’évaluer un certain nombre de points avant d’effectuer cette étape. Un nombre

68

0 5 10 15 20 25 30 35 40 45

Nombre de gradients simplexes,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o
rt

io
n
 d

e
 p

ro
b
le

m
e
s

Profil de données : = 1e-01

last-3n

closest-3n

dist-20

(a) Profil de données pour une tolérance τ =
10−1

0 10 20 30 40 50

Nombre de gradients simplexes,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

p
o
rt

io
n
 d

e
 p

ro
b
le

m
e
s

Profil de données : = 1e-03

last-3n

closest-3n

dist-20

(b) Profil de données pour une tolérance τ =
10−3

Figure 5.9 Comparaison des performances de Pca-Mads avec différentes stratégies de sé-
lection de points pour l’analyse de sensibilité, sur une partie de la suite de fonctions bbob-
largescale de COCO

de 2n points semble approprié ; suffisamment de points pour avoir des résultats intéressants
mais pas trop pour préserver le budget d’évaluations pour les itérations ultérieures.

Les trois stratégies suivantes sont proposées pour évaluer des points à la première itération.
— Echantillonnage par hypercube latin (LHS) : il s’agit d’une méthode d’échantillonnage

aléatoire qui permet de bien répartir les points échantillonnés dans l’espace tout entier.
— GRID : une méthode d’échantillonnage déterministe qui répartit les points sélectionnés

sur une grille dans l’espace.
— POLL : une stratégie qui consiste à effectuer une sonde pour remplir la cache. Cela

revient à ignorer l’étape de recherche lors de la première itération.
Les performances des différentes stratégies sont comparées à la figure 5.10. Les profils in-
diquent clairement que la stratégie d’échantillonnage par hypercube latin a des meilleures
performances que les autres stratégies, aussi bien à faible qu’à plus forte précision. Cela n’est
pas surprenant, une étape de recherche basée sur un échantillonnage par hypercube latin a
déjà été appliquée avec l’algorithme Mads ou Gps, comme cela est précisé dans [8].

69

0 10 20 30 40 50

Nombre de gradients simplexes,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ro

p
o
rt

io
n
 d

e
 p

ro
b
le

m
e
s

Profil de données : = 1e-01

LHS

GRID

POLL

(a) Profil de données pour une tolérance τ =
10−1

0 10 20 30 40 50

Nombre de gradients simplexes,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

p
o
rt

io
n
 d

e
 p

ro
b
le

m
e
s

Profil de données : = 1e-03

LHS

GRID

POLL

(b) Profil de données pour une tolérance τ =
10−3

Figure 5.10 Comparaison des performances de Pca-Mads avec différentes stratégies de rem-
plissage initial de la cache pour la première étape de recherche, sur une partie de la suite de
fonctions bbob-largescale de COCO

5.5.5 Stratégie de construction et d’évaluation du sous-problème

Dans la section 4.2, deux stratégies sont proposées pour la transformation d’un point en
dimension p en un point en dimension n. Celles-ci sont

x = xk + Py, éq (4.4) et x = xk + (P>)†y, éq. (4.5).

Etant donné que ces transformations sont au cœur de l’algorithme Pca-Mads, celles-ci
devraient avoir une certaine influence sur les performances de la méthode. Les deux stratégies
sont comparées à l’aide de profils de performance et de données, visibles à la figure 5.11.

Ces profils indiquent clairement que la stratégie utilisant l’opérateur de pseudo-inverse, lé-
gendée ps-inv, a de meilleures performances que la transformation plus simple, et ce aussi
bien avec une faible qu’une forte précision pour le critère de convergence des profils. La
transformation de l’équation (4.5) sera donc privilégiée.

5.6 Comparaison avec d’autres méthodes et algorithmes

Cette section permet de comparer l’algorithme proposé Pca-Mads avec d’autres algorithmes
d’optimisation. Ceux-ci sont l’algorithme Stats-Mads, décrit à la section 3.4.3 et l’algo-
rithme CMA-ES [34], un algorithme génétique similaire à ceux décrits à la section 3.1.2.

70

0 10 20 30 40 50

Nombre de gradients simplexes,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o
rt

io
n
 d

e
 p

ro
b
le

m
e
s

Profil de données : = 1e-01

Simple

ps-inv

(a) Profil de données pour une tolérance τ =
10−1

0 10 20 30 40 50

Nombre de gradients simplexes,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

p
o
rt

io
n
 d

e
 p

ro
b
le

m
e
s

Profil de données : = 1e-03

Simple

ps-inv

(b) Profil de données pour une tolérance τ =
10−3

Figure 5.11 Comparaison des performances de Pca-Mads avec les deux stratégies d’évalua-
tion du sous-problème présentées aux équations (4.4) et (4.5), sur une partie de la suite de
fonctions bbob-largescale de COCO

Dans un premier temps, ces algorithmes seront comparés sur la suite bbob-largescale de la
plateforme COCO et ensuite sur un nouvel ensemble de problèmes issus de la littérature.

5.6.1 Comparaison sur la suite COCO

Une nouvelle fois, la plateforme COCO est utilisée pour comparer des algorithmes. La suite de
fonctions bbob-largescale est utilisée pour ces tests. Les dimensions des problèmes considérés
sont 80, 160, 320 et 640. Cela permet d’avoir un échantillon de problèmes de grande dimension.
L’ensemble de problèmes est composé de la première instance de chaque fonction dans chaque
dimension, ce qui donne un total de 96 problèmes.

Les profils de données de la figure 5.12 permettent de comparer les performances des trois
algorithmes. Ceux-ci montrent que l’algorithme Stats-Mads semble avoir des performances
similaires, voire meilleures que l’algorithme Pca-Mads jusqu’à 25n à 30n évaluations. En-
suite, Pca-Mads prend clairement l’avantage.

Il faut noter que Pca-Mads possède un certain avantage par rapport aux autres algorithmes.
En effet, les paramètres de celui-ci ont été fixés en fonction des résultats obtenus sur une
partie de la suite considérée. C’est pourquoi des profils ont également été tracés en gardant
uniquement les problèmes qui n’ont pas été utilisés lors des tests de la section 5.5. Ces profils
sont visibles à la figure 5.13. A faible précision, bien que leurs performances soient assez

71

0 10 20 30 40 50

Nombre de gradients simplexes,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ro

p
o
rt

io
n
 d

e
 p

ro
b
le

m
e
s

Profil de données : = 1e-01

PCA-MADS

STATS-MADS

CMA-ES

(a) Profil de données pour une tolérance τ =
10−1

0 10 20 30 40 50 60

Nombre de gradients simplexes,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
ro

p
o
rt

io
n
 d

e
 p

ro
b
le

m
e
s

Profil de données : = 1e-03

PCA-MADS

STATS-MADS

CMA-ES

(b) Profil de données pour une tolérance τ =
10−3

Figure 5.12 Comparaison des algorithmes Pca-Mads, Stats-Mads et CMA-ES au moyen
de profils de performance et de données sur la suite de fonctions BBOB-largescale en dimen-
sion 80, 160, 320 de COCO avec un budget de 50n

proches, Stats-Mads semble avoir un avantage par rapport à Pca-Mads. Ce comportement
n’est pas visible à plus forte précision. En effet Pca-Mads a clairement un avantage par
rapport à Stats-Mads lorsque le critère de convergence est plus strict, ce qui est visible sur le
profil de la figure 5.13(b). L’algorithme génétique CMA-ES a de moins bonnes performances
que les deux autres algorithmes dans tous les cas.

5.6.2 Comparaison sur des problèmes issus de la littérature

Pour la suite de la comparaison, nous considérons un ensemble de problèmes de dimension
variable issus de la littérature. Ceux-ci sont repris dans le tableau 5.1. Ce tableau contient
les meilleures solutions, pour chaque problème et chaque dimension, obtenues par les deux
meilleurs algorithmes des tests précédents, à savoir Pca-Mads et Stats-Mads. Pour chaque
problème, la meilleure solution obtenue par l’un ou l’autre algorithme est indiquée en gras.

L’algorithme Pca-Mads trouve de meilleures solutions que Stats-Mads pour certains des
problèmes et pour la plupart des dimensions. Néanmoins, Stats-Mads domine clairement
Pca-Mads pour le problème PENALTY1. Le problème G2 est un problème dont les con-
traintes sont difficiles à satisfaire. Les deux algorithmes ont donc du mal à trouver des
solutions réalisables différentes même si les meilleures solutions trouvées ne sont pas les
points de départ. Néanmoins, cela confirme les résultats de la section précédente, l’approche
de Pca-Mads est intéressante lors de l’optimisation de boîtes noires de grande dimension

72

0 10 20 30 40 50

Nombre de gradients simplexes,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ro

p
o
rt

io
n
 d

e
 p

ro
b
le

m
e
s

Profil de données : = 1e-01

PCA-MADS

STATS-MADS

CMA-ES

(a) Profil de données pour une tolérance τ =
10−1

0 10 20 30 40 50

Nombre de gradients simplexes,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

p
o
rt

io
n
 d

e
 p

ro
b
le

m
e
s

Profil de données : = 1e-03

PCA-MADS

STATS-MADS

CMA-ES

(b) Profil de données pour une tolérance τ =
10−3

Figure 5.13 Comparaison des algorithmes Pca-Mads, Stats-Mads et CMA-ES au moyen
de profils de performance et de données sur une partie de la suite de fonctions BBOB-
largescale en dimension 80, 160, 320 de COCO avec un budget de 50n

avec l’algorithme Mads.

73

Tableau 5.1 Comparaison des solutions de différents algorithmes sur un ensemble de pro-
blèmes issus de la littérature

Problème Dimension Pca-Mads Stats-Mads

BROWNAL
n = 600 −216305309.391029 −216197339.471389

n = 800 −512459636.278400 −512348752.593470

[50, Problème 27]
n = 1000 −1000756562.998527 −1000537007.708609

n = 1500 −3376668083.684607 −3376197820.744400

G2 [9]

n = 600 −51.334076 −51.334076

n = 800 −68.378302 −68.378302

n = 1000 −85.422528 −85.422528

n = 1500 −128.033092 −128.033092

L1HILB [47]

n = 600 0.509424 1.896469

n = 800 0.616835 2.392375

n = 1000 4.490846 2.515649

n = 1500 2.433164 3.902208

PENALTY1
n = 600 −383.202462 −603.041571

n = 800 −499.452491 −805.309644

[50, Problème 23]
n = 1000 −599.723565 −1003.565068

n = 1500 −891.330350 −1509.736833

VARDIM
n = 600 8932322761.775856 11317779579.835079

n = 800 33427194649.599163 38882984612.787933

[50, Problème 25]
n = 1000 77736754861.641235 98219498344.552536

n = 1500 463537077338.545654 519702720318.423035

74

CHAPITRE 6 CONCLUSION ET RECOMMANDATIONS

L’optimisation de boîtes noires est le domaine des mathématiques appliquées qui se concentre
sur la recherche d’extrema d’une fonction objectif dont les dérivées, ou celles des contraintes,
ne sont pas accessibles ou n’existent pas. Il s’agit d’un domaine qui regroupe n’importe
quel problème qui, pour une entrée donnée, peut retourner des valeurs pour l’objectif et les
contraintes. Ces problèmes prennent généralement la forme d’une simulation ou d’un code
informatique dont les fonctionnements internes ne sont pas connus de l’optimiseur ; c’est la
raison pour laquelle ils sont appelés boîtes noires.

6.1 Synthèse des travaux

Le travail présenté dans ce document se concentre sur une catégorie spécifique de problèmes
d’optimisation de boîtes noires, il s’agit de problèmes d’optimisation sans dérivée de grande
dimension et non contraints. Dans le contexte de boîtes noires, un problème est considéré de
grande dimension lorsqu’il possède de quelques centaines à quelques milliers de variables.

Parmi les caractéristiques principales des problèmes d’optimisation sans dérivée, outre l’ab-
sence de dérivées, on retrouve un long temps d’exécution et donc un budget total d’évaluations
limité. De plus, étant donné le manque d’information disponible, un algorithme pertinent se
doit de sonder l’espace de recherche autour de la solution trouvée afin de s’assurer de la qua-
lité de celle-ci. En grande dimension, cela se traduit par un très grand nombre d’évaluations
nécessaires, et donc une exécution très longue.

L’algorithme Mads permet de pallier ces problèmes. Il s’agit d’une méthode bien connue et
flexible qui permet de résoudre des problèmes d’optimisation sans dérivée de quelques dizaines
de variables. L’algorithme Stats-Mads, basé sur Mads, applique une analyse de sensibilité
au moyen d’une méthode statistique afin d’identifier les variables prépondérantes, c’est-à-dire
celles qui ont le plus d’influence sur l’objectif. Ensuite, l’algorithme alterne entre une instance
de Mads en grande dimension et une instance de Mads dont les variables les moins influentes
du problème ont été fixées. Les conclusions des travaux de Stats-Mads [15] indiquent que
la plupart de la diminution de l’objectif s’effectue lors de l’optimisation du problème en plus
petite dimension.

Ce travail propose un nouvel algorithme d’optimisation de la classe Mads, inspiré de Stats-
Mads, qui fait appel à des analyses en composante principale. L’algorithme proposé est donc
appelé Pca-Mads. Celui-ci cherche à réduire, momentanément, la dimension du problème

75

au moyen d’une analyse en composante principale. En permettant de passer l’étape de sonde
en grande dimension si l’étape de recherche en petite dimension a permis de diminuer la
fonction objectif, l’algorithme Pca-Mads évite l’étape la plus coûteuse en évaluations. Cela
permet notamment de poursuivre la recherche en petite dimension tant que celle-ci génère
des solutions améliorantes, contrairement à Stats-Mads. De plus, de par sa structure, Pca-
Mads hérite des propriétés de convergence de l’algorithme Mads sur lequel il est basé. Cela
permet notamment d’assurer de trouver un point stationnaire après une infinité d’itérations
et ce résultat est obtenu grâce à la sonde en grande dimension. L’algorithme Pca-Mads
hérite également de la flexibilité de Mads via son étape de recherche.

6.2 Discussion et limitations de la solution proposée

Les résultats obtenus indiquent clairement l’intérêt de l’approche de Pca-Mads pour des
problèmes en grande dimension. L’algorithme génétique CMA-ES ne rivalise pas avec les
performances de Pca-Mads. Stats-Mads, quant à lui, a des performances qui s’approchent
de celles de Pca-Mads et trouve même de meilleures solutions sur certains problèmes. Tou-
tefois, sur l’ensemble des problèmes de quelques centaines de variables considérés lors de
ce travail, Pca-Mads reste supérieur à Stats-Mads. En petite dimension, Pca-Mads ne
semble pas avoir un comportement réellement intéressant, bien que celui-ci n’ait pas été
étudié en profondeur.

La principale limitation de l’algorithme est sa sensibilité à ses nombreux paramètres. Bien
que l’influence de certains d’entre eux ait été étudiée, il en existe d’autres qui pourraient
jouer sur son comportement. Une autre limitation, certes inhérente au domaine, est son long
temps d’exécution. Le choix de la valeur de certains paramètres comme ceux liés à l’analyse
en composante principale revient à faire un compromis entre la qualité de l’analyse et une
demande en ressources, notamment au niveau du temps et de la mémoire. Il faut également
noter que, lors de l’étape de recherche, un nouveau problème est construit basé sur des
combinaisons linéaires de variables. Celles-ci, en fonction du problème étudié, pourraient
n’avoir aucun sens physique.

6.3 Améliorations possibles

La première amélioration vient en réponse aux limitations de l’algorithme. L’utilisation de
méthodes d’optimisation pour choisir les valeurs des paramètres d’un algorithme est une
approche à envisager. Cela a déjà été fait dans d’autres travaux, notamment [5,12,44]. L’étude
des paramètres de ce travail n’a été faite que sur un ensemble restreint de problèmes tests et les

76

valeurs comparées ont été choisies arbitrairement. Une approche algorithmique permettrait
d’envisager d’autres combinaisons de paramètres et d’améliorer l’algorithme.

Une autre perspective de recherche serait d’inclure l’approche de Pca-Mads à l’algorithme
Psd-Mads [9], une version parallèle de Mads. Cet algorithme cherche à diviser l’espace de
recherche et d’en attribuer une partie à chaque processeur. Cela se fait en ne laissant libres
que quelques variables par processeur. Une possibilité serait d’attribuer des combinaisons
de variables issues d’une analyse en composante principale similaire à Pca-Mads. Cela
permettrait de faire évoluer certains processeurs dans de nouveaux sous-espaces de recherche.

77

RÉFÉRENCES

[1] M.A. Abramson, C. Audet, J.E. Dennis, Jr., and S. Le Digabel. OrthoMADS : A Deter-
ministic MADS Instance with Orthogonal Directions. SIAM Journal on Optimization,
20(2) :948–966, 2009.

[2] L. Adjengue, C. Audet, and I. Ben Yahia. A variance-based method to rank input va-
riables of the Mesh Adaptive Direct Search algorithm. Optimization Letters, 8(5) :1599–
1610, 2014.

[3] S. Alarie, N. Amaioua, C. Audet, S. Le Digabel, and L.-A. Leclaire. Selection of variables
in parallel space decomposition for the mesh adaptive direct search algorithm. Technical
Report G-2018-38, Les cahiers du GERAD, 2018.

[4] N. Amaioua. Modèles quadratiques et décomposition parallèle pour l’optimisation sans
dérivées. PhD thesis, Polytechnique Montréal, 2018.

[5] C. Audet, C.-K. Dang, and D. Orban. Algorithmic Parameter Optimization of the DFO
Method with the OPAL Framework. In Software Automatic Tuning : From Concepts to
State-of-the-Art Results, chapter 15, pages 255–274. Springer, K. Naono and K. Teranishi
and J. Cavazos and R. Suda edition, 2010.

[6] C. Audet, C.-K. Dang, and D. Orban. Efficient use of parallelism in algorithmic para-
meter optimization applications. Optimization Letters, 7(3) :421–433, 2013.

[7] C. Audet and J.E. Dennis, Jr. Analysis of generalized pattern searches. SIAM Journal
on Optimization, 13(3) :889–903, 2003.

[8] C. Audet and J.E. Dennis, Jr. Mesh Adaptive Direct Search Algorithms for Constrained
Optimization. SIAM Journal on Optimization, 17(1) :188–217, 2006.

[9] C. Audet, J.E. Dennis, Jr., and S. Le Digabel. Parallel Space Decomposition of the Mesh
Adaptive Direct Search Algorithm. SIAM Journal on Optimization, 19(3) :1150–1170,
2008.

[10] C. Audet and W. Hare. Derivative-Free and Blackbox Optimization. Springer Series
in Operations Research and Financial Engineering. Springer International Publishing,
Cham, Switzerland, 2017.

[11] C. Audet, S. Le Digabel, and C. Tribes. The Mesh Adaptive Direct Search Algorithm
for Granular and Discrete Variables. SIAM Journal on Optimization, 29(2) :1164–1189,
2019.

[12] C. Audet and D. Orban. Finding optimal algorithmic parameters using derivative-free
optimization. SIAM Journal on Optimization, 17(3) :642–664, 2006.

78

[13] C. Audet and C. Tribes. Mesh-based Nelder-Mead algorithm for inequality constrained
optimization. Computational Optimization and Applications, 71(2) :331–352, 2018.

[14] C. Bélisle, H.E. Romeijn, and R.L. Smith. Hit-and-run algorithms for generating multi-
variate distributions. Technical Report 2, 1993.

[15] I. Ben Yahia. Identification statistique de variables importantes pour l’optimisation de
boîtes noires. Master’s thesis, École Polytechnique de Montréal, 2012.

[16] B. Bettonvil and J.P.C. Kleijnen. Searching for important factors in simulation models
with many factors : Sequential bifurcation. European Journal of Operational Research,
96(1) :180–194, 1997.

[17] M. Binois, D. Ginsbourger, and O.Roustant. On the choice of the low-dimensional
domain for global optimization via random embeddings. Journal of global optimization,
76(1) :69–90, 2020.

[18] A. Boneh and A. Golan. Constraints’ redundancy and feasible region boundedness by
random feasible point generator (RFPG). In Third European congress on operations
research (EURO III), Amsterdam, 1979.

[19] E. Borgonovo and E. Plischke. Sensitivity analysis : a review of recent advances. Euro-
pean Journal of Operational Research, 248(3) :869–887, 2016.

[20] E. Brochu, V.M. Cora, and N. De Freitas. A tutorial on Bayesian optimization of
expensive cost functions, with application to active user modeling and hierarchical rein-
forcement learning. arXiv preprint arXiv :1012.2599, 2010.

[21] C. Cartis and A. Otemissov. A dimensionality reduction technique for unconstrained
global optimization of functions with low effective dimensionality. Technical report,
2020.

[22] F.H. Clarke. Optimization and Nonsmooth Analysis. John Wiley & Sons, New York,
1983. Reissued in 1990 by SIAM Publications, Philadelphia, as Vol. 5 in the series
Classics in Applied Mathematics.

[23] A.R. Conn and S. Le Digabel. Use of quadratic models with mesh-adaptive direct search
for constrained black box optimization. Optimization Methods and Software, 28(1) :139–
158, 2013.

[24] A.R. Conn, K. Scheinberg, and L.N. Vicente. Introduction to Derivative-Free Optimiza-
tion. MOS-SIAM Series on Optimization. SIAM, Philadelphia, 2009.

[25] D.D. Cox and S. John. A statistical method for global optimization. In [Proceedings]
1992 IEEE International Conference on Systems, Man, and Cybernetics, pages 1241–
1246. IEEE, 1992.

79

[26] R.I. Cuckier, C.M. Fortuin, K.E. Shuler, and A.G. Petschek. Study of sensitivity of
coupled reaction systems to uncertainties in rate coefficients. I. Theory. J. of Chem.
Phys, 59(8) :3873–3878, 1973.

[27] R. I. Cukier, J. H. Schaibly, and K. E. Shuler. Study of the sensitivity of coupled reaction
systems to uncertainties in rate coefficients. III. Analysis of the approximations. The
Journal of Chemical Physics, 63(3) :1140–1149, 1975.

[28] A. Dean and S. Lewis. Screening : methods for experimentation in industry, drug disco-
very, and genetics. Springer Science & Business Media, 2006.

[29] E.D. Dolan and J.J. Moré. Benchmarking optimization software with performance pro-
files. Mathematical Programming, 91(2) :201–213, 2002.

[30] I. Fajfar, J. Puhan, and Á. Bűrmen. Evolving a Nelder–Mead algorithm for optimization
with genetic programming. Evolutionary computation, 25(3) :351–373, 2017.

[31] I. Fajfar, J. Puhan, and Á. Bűrmen. The Nelder–Mead simplex algorithm with perturbed
centroid for high-dimensional function optimization. Optimization Letters, 13(5) :1011–
1025, 2019.

[32] E. Fermi and N. Metropolis. Numerical solution of a minimum problem. Los Alamos
Unclassified Report LA–1492, Los Alamos National Laboratory, Los Alamos, USA, 1952.

[33] F. Gao and L. Han. Implementing the Nelder-Mead simplex algorithm with adaptive
parameters. Computational Optimization and Applications, 51(1) :259–277, 2012.

[34] N. Hansen. The CMA Evolution Strategy : A Comparing Review. In J. Lozano, P. Lar-
rañaga, I. Inza, and E. Bengoetxea, editors, Towards a New Evolutionary Computation,
volume 192 of Studies in Fuzziness and Soft Computing, pages 75–102. Springer Berlin
Heidelberg, 2006.

[35] N. Hansen, A. Auger, O. Mersmann, T. Tusar, and D. Brockhoff. COCO : A plat-
form for comparing continuous optimizers in a black-box setting. arXiv preprint
arXiv :1603.08785, 2016.

[36] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization
benchmarking 2009 : Noiseless functions definitions. Technical Report RR-6829, INRIA,
2009.

[37] T. Homma and A. Saltelli. Importance measures in global sensitivity analysis of nonli-
near models. Reliability Engineering & System Safety, 52(1) :1–17, 1996.

[38] B. Iooss. Revue sur l’analyse de sensibilité globale de modèles numériques. Journal de
la Société Française de Statistique, 152(1) :1–23, 2011.

80

[39] B. Iooss and P. Lemaître. A review on global sensitivity analysis methods. In Uncertainty
management in simulation-optimization of complex systems, pages 101–122. Springer,
Boston, MA, 2015.

[40] I.T. Jolliffe. Principal Component Analysis. Springer Series in Statistics. Springer-Verlag,
New York, 1986.

[41] C. T. Kelley. Detection and remediation of stagnation in the Nelder–Mead algorithm
using a sufficient decrease condition. SIAM journal on optimization, 10(1) :43–55, 1999.

[42] M. Koda, G. J. Mcrae, and J. H. Seinfeld. Automatic sensitivity analysis of kinetic
mechanisms. International Journal of Chemical Kinetics, 11(4) :427–444, 1979.

[43] G.N. Sesh Kumar and V.K. Suri. Multilevel Neider Mead’s simplex method. In 2014
9th International Conference on Industrial and Information Systems (ICIIS), pages 1–6.
IEEE, 2014.

[44] D. Lakhmiri, S. Le Digabel, and C. Tribes. HyperNOMAD : Hyperparameter optimi-
zation of deep neural networks using mesh adaptive direct search. Technical Report
G-2019-46, Les cahiers du GERAD, 2019.

[45] S. Le Digabel. Algorithm 909 : NOMAD : Nonlinear Optimization with the MADS
algorithm. ACM Transactions on Mathematical Software, 37(4) :44 :1–44 :15, 2011.

[46] D.K.J. Lin. A new class of supersaturated designs. Technometrics, 35(1) :28–31, 1993.

[47] L. Lukšan and J. Vlcek. Test problems for nonsmooth unconstrained and linearly
constrained optimization. Technical Report 798, Institute of Computer Science, Aca-
demy of Sciences of the Czech Republic, 2000.

[48] K.I.M. McKinnon. Convergence of the Nelder-Mead simplex method to a nonstationary
point. SIAM Journal on Optimization, 9(1) :148–158, 1998.

[49] V.K. Mehta. Improved Nelder–Mead algorithm in high dimensions with adaptive pa-
rameters based on Chebyshev spacing points. Engineering Optimization, pages 1–15,
2019.

[50] J.J. Moré, B.S. Garbow, and Kenneth E. Hillstrom. Testing unconstrained optimization
software. ACM Transactions on Mathematical Software, 7(1) :17–41, 1981.

[51] J.J. Moré and S.M. Wild. Benchmarking derivative-free optimization algorithms. SIAM
Journal on Optimization, 20(1) :172–191, 2009.

[52] R. Moriconi, K.S. Sesh Kumar, and M.P. Deisenroth. High-dimensional Bayesian op-
timization with projections using quantile Gaussian processes. Optimization Letters,
14(1) :51–64, 2020.

81

[53] M.D. Morris. Factorial sampling plans for preliminary computational experiments. Tech-
nometrics, 33(2) :161–174, 1991.

[54] A. Nayebi, A. Munteanu, and A. Poloczek. A Framework for Bayesian Optimization in
Embedded Subspaces. In International Conference on Machine Learning, pages 4752–
4761, 2019.

[55] J.A. Nelder and R. Mead. A simplex method for function minimization. The Computer
Journal, 7(4) :308–313, 1965.

[56] Y. Nesterov. Introductory lectures on convex optimization : A basic course. Springer
Science & Business Media, Cham, 2013.

[57] R. Penrose. A generalized inverse for matrices. In Mathematical proceedings of the
Cambridge philosophical society, volume 51, pages 406–413. Cambridge University Press,
1955.

[58] L.M. Rios and N.V. Sahinidis. Derivative-free optimization : a review of algorithms and
comparison of software implementations. Journal of Global Optimization, 56(3) :1247–
1293, 2013.

[59] A. Saltelli. Making best use of model evaluations to compute sensitivity indices. Com-
puter physics communications, 145(2) :280–297, 2002.

[60] A. Saltelli, K. Chan, M. Scott, et al. Sensitivity analysis. Probability and statistics series.
New York : John Wiley & Sons, 2000.

[61] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana,
and S. Tarantola. Global sensitivity analysis : the primer, volume 1. John Wiley & Sons,
2008.

[62] A. Saltelli, S. Tarantola, and KP-S. Chan. A quantitative model-independent method
for global sensitivity analysis of model output. Technometrics, 41(1) :39–56, 1999.

[63] B. Shahriari, K. Swersky, Z. Wang, R.P. Adams, and N. De Freitas. Taking the human
out of the loop : A review of Bayesian optimization. Proceedings of the IEEE, 104(1) :148–
175, 2015.

[64] R.L. Smith. Efficient monte carlo procedures for generating points uniformly distributed
over bounded regions. Operations Research, 32 :1296–1308, 1984.

[65] I.M. Sobol. Sensitivity estimates for nonlinear mathematical models. Mathematical
modelling and computational experiments, 1(4) :407–414, 1993.

[66] J.-Y. Tissot and C. Prieur. Bias correction for the estimation of sensitivity indices based
on random balance designs. Reliability Engineering & System Safety, 107 :205–213, 2012.

82

[67] V. Torczon. On the convergence of pattern search algorithms. SIAM Journal on Opti-
mization, 7(1) :1–25, 1997.

[68] P. Tseng. Fortified-Descent Simplicial Search Method : A General Approach. SIAM
Journal on Optimization, 10(1) :269–288, 1999.

[69] B. Van Dyke and T.J. Asaki. Using QR Decomposition to Obtain a New Instance of
Mesh Adaptive Direct Search with Uniformly Distributed Polling Directions. Journal of
Optimization Theory and Applications, 159(3) :805–821, 2013.

[70] Y. Wang, S. Du, S. Balakrishnan, and A. Singh. Stochastic zeroth-order optimization
in high dimensions. arXiv preprint arXiv :1710.10551, 2017.

[71] C. Xu and G. Z. Gertner. Uncertainty and sensitivity analysis for models with correlated
parameters. Reliability Engineering & System Safety, 93(10) :1563–1573, 2008.

	DÉDICACE
	REMERCIEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE DES MATIÈRES
	LISTE DES TABLEAUX
	LISTE DES FIGURES
	LISTE DES SIGLES ET ABRÉVIATIONS
	1 INTRODUCTION
	1.1 Concepts de base et contexte du projet
	1.2 Problématique
	1.3 Structure du document

	2 MÉTHODES D'ANALYSE DE SENSIBILITÉ
	2.1 Méthodes locales
	2.2 Méthodes de criblage
	2.3 Méthodes basées sur la variance
	2.3.1 Rapport de corrélation
	2.3.2 Indices de Sobol'
	2.3.3 Méthode du Fourier amplitude sensitivity test

	2.4 Méthode basée sur un modèle linéaire
	2.5 Méthode basée sur les métamodèles
	2.6 Analyse en composante principale

	3 MÉTHODES D'OPTIMISATION SANS DÉRIVÉE
	3.1 Méthodes heuristiques
	3.1.1 Algorithme Hit-and-run
	3.1.2 Algorithme génétique
	3.1.3 Algorithme de Nelder-Mead

	3.2 Méthodes basées sur des modèles
	3.2.1 Descente basée sur des modèles
	3.2.2 Méthodes de région de confiance
	3.2.3 Optimisation Bayesienne

	3.3 Méthodes de recherche directe
	3.3.1 Recherche par coordonnées
	3.3.2 Recherche par motif généralisée
	3.3.3 Recherche directe sur treillis adaptatif

	3.4 Optimisation sans dérivée en grande dimension
	3.4.1 Algorithme de Nelder-Mead en grande dimension
	3.4.2 Réduction de dimension en optimisation Bayesienne
	3.4.3 Algorithme STATS-MADS

	4 ALGORITHME PCA-MADS
	4.1 Analyse en composante principale dans PCA-MADS
	4.2 Changement de variables
	4.3 Evaluation de la boîte noire
	4.4 Algorithme PCA-MADS
	4.5 Analyse de convergence
	4.6 Paramètres

	5 TESTS ET RÉSULTATS
	5.1 Profils de performances et profils de données
	5.2 Plateforme COCO et suite de fonctions bbob
	5.3 Tests sur la suite COCO
	5.4 Comportement de PCA-MADS en petite et grande dimension
	5.5 Influence des paramètres
	5.5.1 Dimension du sous-problème p
	5.5.2 Budget d'évaluations pour l'optimisation du sous-problème
	5.5.3 Ensemble de points utilisés pour l'analyse de sensibilité
	5.5.4 Evaluation initiale de points
	5.5.5 Stratégie de construction et d'évaluation du sous-problème

	5.6 Comparaison avec d'autres méthodes et algorithmes
	5.6.1 Comparaison sur la suite COCO
	5.6.2 Comparaison sur des problèmes issus de la littérature

	6 CONCLUSION ET RECOMMANDATIONS
	6.1 Synthèse des travaux
	6.2 Discussion et limitations de la solution proposée
	6.3 Améliorations possibles

	RÉFÉRENCES

