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Safety Benefits of Automated Speed
Advisory Systems at Signalized
Intersections

Wooseok Do1 , Nicolas Saunier2 , and Luis Miranda-Moreno1

Abstract
Human-driving behavior at signalized intersections may lack efficiency because drivers try to reach their desired speed with-
out the upcoming traffic-signal information. This causes idling time, sharp accelerations, hard braking, traffic congestion, emis-
sions, and energy consumption. Connected vehicles, for example those equipped with a speed advisory system (SAS), can
provide prior information to drivers for optimizing their driving behavior while approaching signalized intersections.
However, the current literature focuses only on the fuel consumption, emissions, and travel-delay reduction impacts of SASs.
This paper evaluates the safety impact of SAS vehicles using the proposed approach that simulates mixed-traffic situations
between SAS and human-driven vehicles (HDVs). HDVs in the model follow real vehicle trajectories based on car-following
conditions. The study investigates various scenarios including the impact of the different ranks of SAS vehicles in the vehicle
group, the lane-changing possibility, and market penetration rates (MPRs). The results suggest that SAS vehicles can reduce
rear-end collision risks from 25% MPR. The minimum time to collision increases by 1.2 s and the deceleration rate to avoid
crash declines by 0.3m=s2 on average for 100% MPR relative to 0%. The study demonstrated that this safety benefit is also
strongly related to the rank of SAS vehicles within a vehicle group. In addition, the conflict locations in the approaching lane
gradually move away from the intersection up to where the communication range starts as the MPR increases, which would
reduce abrupt vehicle speed changes near pedestrian crosswalks.

Keywords
automated/autonomous/connected vehicles, intelligent transportation systems, operations, safety, surrogate safety measures,
traffic simulation

The temporal separation of traffic flow movements
allowed by traffic signals is one of the most essential ele-
ments for traffic safety in urban networks. In contrast,
vehicles passing through signalized intersections experi-
ence delay and idling time with stop-and-go traffic situa-
tions. Idling vehicles at signalized intersections are one
of the leading causes of wasted gas, consuming billions
of gallons of fuel and generating tons of toxic emissions
annually (1). The Texas Transportation Institute esti-
mated that annually 12–67h of travel time delay per per-
son is related to congestion in urban areas (2).

Recent advances in the connected vehicle (CV) tech-
nology can provide prior signal information to drivers
for optimizing their behavior when approaching signa-
lized intersections (3). Speed advisory systems (SASs) are
one of the early applications of the CV technology. A
SAS provides the optimum speed to the vehicles

approaching signalized intersections to minimize stopped
time at red lights. There are two types of SAS, whether
the information is provided for drivers to take action
(manual SAS), or the SAS has control over the vehicle
acceleration to implement the optimum speed (auto-
mated SAS) (4, 5). This paper considers only the second
kind and SAS refers to an automated SAS unless noted
otherwise. The primary benefits of the SAS in the current
literature are summarized as follows. (i) Reduced fuel
consumption and carbon dioxide: both simulation and
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field experiments have shown that a SAS saves 14% of
fuel consumption and CO2 emissions. The savings are
mainly from speed control for early deceleration and
cruising through intersections without stopping (6). (ii)
Benefits to the following vehicles of SAS vehicles:
human-driven vehicles (HDVs—i.e., non-SAS vehicles)
following a SAS vehicle show similar acceleration con-
trol to SAS vehicles. This leads to higher mean and mini-
mum speeds for HDVs as well as increased throughputs
at all passed intersections (7). (iii) Reduced traffic delays:
SAS vehicles reducing stopped time at red lights results
in decreased traffic delays and throughput benefits. A
previous study demonstrates savings of 15% in travel
time (1).

There exists a large body of literature on SAS model-
ing and its impact analysis. However, the primary focus
of the literature is placed only on traffic delay, fuel con-
sumption, and emission savings (1, 7–10). For practical
applications, several field-based experiments have been
conducted in restricted road environments, yet their
focus is also limited to energy and emission savings
(6, 11, 12). A first and critical step for implementing SAS
vehicles is to estimate their safety impacts with consider-
ation of the various possible scenarios. To the best of
our knowledge, there is a paucity of research on estimat-
ing the safety impact of SAS vehicles, particularly eva-
luation with empirical data under mixed-traffic scenarios
between SAS vehicles and HDVs.

In this study, we propose an approach to explain the
safety impacts of SAS vehicles using real vehicle trajec-
tories. In detail, the acceleration control algorithm ran-
domly replaces the real vehicle trajectories with SAS
vehicles. While SAS vehicles follow the optimum speed,
the acceleration control of HDVs is the same as the real
vehicles in the trajectory data based on the car-following
conditions: if doing so would generate a collision with a
preceding SAS vehicle, HDVs obey the acceleration con-
trol of a modified intelligent driver model (IDM+). The
proposed approach records the traffic flow disturbance
caused by SAS vehicles in the output trajectories. The
output trajectories include velocity, acceleration, x–y
coordinates, and vehicle length collected with a 0.1-s res-
olution. To quantify the safety impacts of SAS vehicles,
we calculate surrogate measures of safety (SMoSs) with
the output trajectories from the simulation results. The
proposed model can simulate the mixed-traffic situations
of SAS vehicles and HDVs and the model allows one to
investigate various scenarios, including the impact of the
different ranks of SAS vehicles in the approaching vehi-
cle group, the lane-changing possibility, and various mar-
ket penetration rates (MPRs).

The remainder of this paper is organized as follows.
The following section presents a literature review on the
SAS and field experiments, as well as SMoSs at

signalized intersections. The third section describes the
acceleration control method and the applied SMoSs. The
fourth section presents the experimental results and
safety implications based on multiple scenarios. The last
section summarizes the study results and suggests future
research directions.

Literature Review

Drivers generally try to reach their desired speed regard-
less of the traffic signals because they have no access to
the upcoming traffic-signal information (8). This may
cause sharp accelerations or hard braking, and unneces-
sary idling time, which, in turn, cause additional fuel con-
sumption and emissions (12, 13). Therefore, a great deal
of research efforts have focused on optimizing such driv-
ing behavior using CV technology (8–10, 12, 14, 15).

Speed Advisory System

The current literature has demonstrated the efficiency of
SAS vehicles using various algorithms. Coppola et al.
(10) developed a method to test the green light optimal
speed advisory (i.e., GLOSA) system in an integrated
simulation environment. The method enables one to test
multiple factors in the GLOSA system, including the
traffic signal and phase, communication distance, mini-
mum speed, and electric engines. Guardiola et al. (16)
estimated the impact of traffic-signal information from
the perspectives of energy consumption and emissions
for a Euro-5 diesel vehicle. The results from three traffic
information scenarios reported that traffic light informa-
tion can decrease fuel consumption in urban conditions
by 7.5%–12% and NOx emission by 13%–32% in a
1 km length of the case study road segment. Simchon
and Rabinovici (17) developed a real-time speed advisory
algorithm to calculate the optimal vehicle speed for the
traffic-signal information. The optimization problem
considered the road section length, slope, and signal
information. The proposed model reduced the time to
calculate the optimum speed relative to the conventional
GLOSA model, which enables the implementation of a
real-time GLOSA. Mandava et al. (18) developed arterial
velocity planning algorithms that maximize the probabil-
ity of having a green light at signalized intersections. The
simulation results indicated that savings of 1.1% in travel
time, 12% in fuel, and 14% in CO2 emissions, respec-
tively. Asadi and Vahidi (19) proposed model predictive
control (MPC) to reduce idling time and fuel consump-
tion. A single vehicle is simulated with eight signalized
intersections. The study concluded that the MPC vehicles
use 59% less fuel while generating 39% less CO2 emis-
sions than conventional vehicles. Katsaros et al. (20)
aimed to reduce fuel consumption and stop time at
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signalized intersections by using the GLOSA system. The
proposed GLOSA was evaluated using Simulation of
Urban Mobility (SUMO) software at two intersections
under different MPRs. The study reported that the pro-
posed model reduces idling time by up to 80% while sav-
ing fuel consumption by 7%. Faraj et al. (21) proposed
the SAS algorithm to investigate the AV platooning
impacts at signalized intersections. The results reported
that the platooning based on speed optimization outper-
formed the leader’s speed-only optimized platoon and no
speed optimization scenarios from the perspective of the
average idling time. Ubiergo and Jin (1) used car-
following models (i.e., Gipps’s model [22], IDM [23], and
an optimal velocity model [24]) to simulate several
vehicle-to-infrastructure (V2I)-based CVs. The study
demonstrated around 15% of travel time savings and
around 8% of fuel consumption and emission reduction.

Field Experiments of Manual SASs

Few studies have investigated the impact of manual SASs
in field experiments. Zhang et al. (9) developed a hier-
archical GLOSA system to improve the energy-saving
performance considering the queuing effect and actual
tracking error of drivers. The developed GLOSA model
is tested in both simulation and field experiments. The
result shows that the proposed model can save energy
consumption by 11.8% and 4.9% in simulation and field
experiments, respectively. While providing the optimum
speed to the drivers, Xia et al. (6) collected the speed pro-
file and applied the comprehensive modal emissions
model (CMEM) to estimate fuel consumption and emis-
sions. The study reported that manual SASs can reduce
fuel consumption and CO2 emissions by around 14%.
Another study, by Stahlmann et al. (12), demonstrated
how manual SASs can be implemented on real roads.
They reported that most simulation-based SAS studies
are too optimistic from the perspective of communication
performance. The potential benefit of electric vehicles
with V2I communication was estimated using the field
data collected from six signalized intersections in Wu
et al. (11). The study reported that the optimal speed pro-
file can reduce energy consumption by up to 47.5% for
the journey of 2 mi.

Surrogate Measures of Safety at Signalized
Intersections

Historically, predicting the safety of new and innovative
traffic measures has been challenging (25). There have
been significant efforts in estimating the safety impacts
of CV applications. SMoSs are frequently used for such
applications, primarily because new technologies have
little to no accident history (26). SMoSs provide tools

that can quantitatively evaluate traffic events without a
collision between road users before any harm is caused
(27, 28). They are based on the observation of traffic in
particular events with a link to potential crashes, such as
near misses and conflicts. Methods such as traffic conflict
techniques provide tools to collect such data using objec-
tive and quantitative safety indicators for each event.

Wang and Stamatiadis (29) proposed the aggregated
crash propensity metric (ACPM) as a safety indicator for
their simulation-based conflict studies. The model gener-
ates the ACPM for three accident categories: rear-end,
crossing, and lane change. Saccomanno et al. (30) used
the time to collision (TTC), deceleration rate to avoid
crash (DRAC), and crash potential index (CPI) to assess
the safety impact of signalized intersections and round-
abouts using micro-simulation models. For dilemma
zones at signalized intersections, a safety surrogate histo-
gram (SSH) was developed by Machiani and Abbas (31)
to capture the degree and frequency of dilemma zone
related conflicts at each intersection approach. Zhou and
Huang (32) simulated one signalized intersection in
VISSIM software to extract vehicle trajectories. The sur-
rogate safety assessment model analyzed the output tra-
jectories to identify traffic conflicts before and after the
speed-limit reduction.

SASs have been widely evaluated through simulations
and a few field experiments. Meanwhile, substantial
efforts on evaluating the safety of signalized intersections
are carried out using SMoSs. The findings from the pre-
vious studies have demonstrated that operating SASs at
signalized intersections is beneficial for fuel consumption,
emissions, and travel time. However, none of the above-
mentioned studies has focused on the safety impacts of
SAS vehicles despite the importance of the safety impact
of this technology. A research gap exists in the develop-
ment of the SAS simulation frameworks for the safety
impact analysis because the current models are developed
to evaluate the efficiency of SAS vehicles but not their
safety. In addition, the current simulation frameworks
often use a default car-following model in simulation
software without considering real vehicle data. This
paper provides a novel simulation-based approach to
evaluate the safety impact of SAS vehicles at traffic light
corridors using real vehicle trajectories.

Methodology

In this section, we first present the simulation prelimin-
aries to define the required assumptions for modeling
and simulations. We next introduce the developed accel-
eration control algorithm. The algorithm simulates
mixed-traffic situations including HDVs and SAS vehi-
cles under different MPRs. We used real vehicle trajec-
tories for HDVs in simulations, and SAS vehicles are
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controlled by the algorithm. Various simulation scenar-
ios are tested, including lane-changing conditions, the
first vehicle equipped with a SAS in a group of approach-
ing vehicles, and different ranks of SAS vehicles. Lastly,
we present the employed SMoSs to estimate the safety
impact of SASs.

Simulation Preliminaries

Simulating realistic traffic conditions including SAS vehi-
cles requires complex car-following situations between
HDVs and SAS vehicles. The following preliminaries
make the simulations feasible while simplifying several
less relevant variables:

� the communication has no error or delay;
� the real vehicles are randomly replaced by SAS

vehicles;
� the simulation model is collision free;
� the signal timing plan in the case study area is

used;
� the study uses the real vehicle length observed

from the case study area.

A gradual increase in MPR is expected because the
MPR of SAS vehicles will be affected by exogenous vari-
ables, such as public acceptance, policy, legislation, and/
or V2I communication technology capability (33). The
simulation uses five MPRs (i.e., from 0% to 100% in
25% increments) to consider different levels of SAS
penetration. For each MPR, we randomly assign SAS
vehicles in the real vehicle trajectories during the simula-
tion. The essential input of the proposed model is real
vehicle trajectories, vehicle lengths, and signal timing.
The simulation time step is set to 0.1 s as a trade-off
between computing time and accurate and detailed simu-
lation of the traffic phenomena.

Acceleration Control Algorithm

Figure 1 shows the developed acceleration control
algorithm. The algorithm indicates how the simulated
vehicles change the control regimes between the human-
driven, SAS, and car-following models at any time step
during simulations. Initially, all the vehicles follow the
observed trajectories. When generated, each vehicle is
randomly assigned a type, whether it is a HDV or a SAS
vehicle based on the MPR scenario. After the vehicle
type assignment, once vehicles enter the communication
range, SAS vehicles start following the optimum accel-
eration control by the algorithm to avoid stopping at the
intersection. The simulation of SAS vehicles ends when
the vehicle arrives at the intersection. HDVs follow their
real trajectory as long as they do not become too close to

a preceding vehicle that departed from its real trajectory
because of a downstream SAS vehicle. If there is a pre-
ceding vehicle and the distance gap (s) to the preceding
vehicle is below the threshold (t), the HDV follows the
acceleration control by the IDM+ car-following model
(see aIDM+ in Figure 1) to avoid a collision.

The optimum acceleration is calculated using the
desired speed (v0), distance to the intersection (DTL), cur-
rent signal phase and timing (G—green, Y—yellow, and
R—red), and the remaining time in the current phase
(Gl, Yl, and Rl). It is important to note that the speed
updates in the algorithm are conducted by gradual accel-
erations similar to real vehicle accelerations. When the
current phase is green, the algorithm first calculates if
the vehicle can pass the intersection within the current
phase or not. If the vehicle can pass the intersection (i.e.,
Gl.DTL=v0), the vehicle updates its speed to v0. If the
vehicle cannot pass the intersection (i.e., Gl\DTL=v0),
the vehicle will accept the optimum constant speed
(i:e:, DTL=(Gl + Y +R)) to pass the intersection in the
next green phase. When the current signal is yellow, the
process is similar to the green signal situation, adapting
the optimum speed formula. When the current signal is
red, the vehicle adopts the optimum constant speed to
pass the intersection in the next green phase without
stopping.

Figure 2 illustrates how the algorithm operates in the
case of four vehicles approaching a signalized intersection
with the different vehicle control regimes. The two HDVs
in black-solid lines follow real vehicle trajectories without
modifications in the case study area. The following SAS
vehicle in the red-dotted line follows the optimum accel-
erations calculated by the speed control algorithm. The
last HDV vehicle in the blue-dotted line obeys the car-
following model to avoid a collision.

Car-following Model for Collision Avoidance

When the acceleration control algorithm assigns a SAS
vehicle within a HDV group, different speed controls
between HDVs and SAS vehicles may cause collisions.
For example, when the preceding SAS vehicle decelerates
to follow the suggested optimum speed, the following
HDV might accelerate to pursue the real trajectories.
While the algorithm ensures the individual HDV’s het-
erogeneity for following real trajectories, a car-following
model is needed when the simulated vehicles would col-
lide otherwise. In this paper, we employ the IDM+,
which has been validated in field experiments (34). The
IDM is a widely used car-following model to simulate
adaptive cruise control, while some studies use it for
automated vehicles (35, 36). The acceleration of the orig-
inal IDM is computed by following Equations 1 and 2:
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_vn = an � 1� vn

vn, 0

� �4

� s� vn,Dvnð Þ
sn

� �2
 !

ð1Þ

s� vn,Dvnð Þ= sn, 0 + vnTn +
vnDvn

2
ffiffiffiffiffiffiffiffiffi
anbn

p ð2Þ

where _vn denotes an acceleration estimated from the
IDM model, an denotes the maximum acceleration of the
current vehicle n, vn is the current vehicle speed, vn, 0

denotes the desired speed of the current vehicle, sn is the

distance gap between the preceding and current vehicle,
sn, 0 denotes the jam distance gap, s� vn,Dvnð Þ is the
desired minimum gap, which is a function of vn and the
speed difference between the current and preceding vehi-
cle Dvn, Tn denotes the safety time gap, and an and bn are
the desired acceleration and deceleration rates,
respectively.

However, the original IDM shows an inconsistent
acceleration control in the field experiments (34).
Therefore, the IDM needs to be modified to constrain

Figure 1. Integrated acceleration control algorithm.
Note: V2I = vehicle-to-infrastructure; SAS = speed advisory system.
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the last term in Equation 2 to prevent it from becoming
negative. The desired gap is redefined as Equation 3,
which defines the IDM+:

s� vn,Dvnð Þ= sn, 0 +max 0, vnTn +
vnDvn

2
ffiffiffiffiffiffiffiffiffi
anbn

p
� �

ð3Þ

Table 1 shows the used IDM+ parameters for the car-
following model in the algorithm. The parameters are
tested before simulations to assure that the IDM+ repro-
duces car-following behaviors adequately for the case
study area. Similar parameters are also applied in previ-
ous simulation studies (34, 37). Desired speed (vn, 0) var-
ies based on the road type and conditions of a case study
area. To consider variations of the HDV capabilities,
we included randomly drawn 6 20% variations in the

maximum acceleration and deceleration capabilities for
HDVs, while SAS vehicles have no variation in their
parameters.

Lane-changing Rules

This section introduces the simplified discretionary lane-
changing model to estimate the safety impact of SAS
vehicles with possibilities of lane changing (38, 39).
Discretionary lane changing is generally modeled by
utility-based approaches that drivers change a lane to
gain better utility after comparing the current and target
lanes. In the proposed algorithm, the early deceleration
from SAS vehicles deteriorates the utility of the current
lane relative to other lanes. Under the discretionary lane-
changing rules, this results in all following HDVs chang-
ing their lane to others that have higher attractiveness.
To this end, we embed the lane-changing probability into
a discretionary lane-changing model. We applied the
average lane-changing rate (i.e., 20%) of the case study
area to reproduce a similar lane-changing behavior.

We set the vehicle speed as the utility that determines
the driver’s lane-changing decision. When the speed of
the current lane is significantly lower than that of other
lanes, the following vehicles decide to change their lane.
For example, if a deceleration of the preceding vehicle
causes a speed drop that is higher than a threshold tv

(i.e., vn, t � vn, t�1.tv), 20% of the following vehicles
change lane. The lane-changing threshold is set to 8m/s,
which is half the speed limit in the case study area.

Figure 2. An illustration for simulated trajectories under the various car-following situations.
Note: V2I = vehicle-to-infrastructure; SAS = speed advisory system; HDV = human-driven vehicle; C-F = car-following. (Color online only.)

Table 1. Modified Intelligent Driver Model Parameters for the
Simulation Vehicles

Definitions Constant variables Units

Desired speed Vn, 0 m/s
Desired time gap Tn = 1.5 s
Jam distance gap sn, 0 = 2 m
Maximum accelerationa an = 1 m=s2

Maximum decelerationa bn = 2 m=s2

aNote that maximum acceleration and deceleration for human-driven

vehicles are randomly drawn with 6 20% variations around the value in

the table.
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Surrogate Measures of Safety

The most frequent category of collisions on approaching
lanes at signalized intersections is rear-end collisions
caused by stop-and-go situations (40). For this study, we
focus on rear-end collision risks as a primary safety cri-
terion. The rear-end collision risks are measured by three
safety indicators.

Time to Collision. As one of the primary safety indicators,
TTC has been extensively applied in the literature to esti-
mate rear-end collision risks (30, 41–43). TTC was first
introduced by Hayward (44) to measure the expected
time for the current vehicle n to crash with the preceding
vehicle n� 1 at any instant t, if their speed and direction
remain the same. The definition of TTC is shown in
Equation 4:

TTCn, t =

(Xn�1, t � Xn, t)� Ln�1

Vn, t � Vn�1, t

8t such that Vn, t.Vn�1, t ð4Þ

where TTCn, t is the TTC for vehicle n at time t,
Xn, t and Xn�1, t denote the longitudinal front positions,
respectively, of the current and preceding vehicles at
time t, Ln�1 denotes the preceding vehicle length, and
Vn, t and Vn�1, t denote the speed of the current and pre-
ceding vehicles, respectively.

Deceleration Rate to Avoid a Crash. For rear-end collision
risks, DRAC is a safety indicator frequently used with
TTC. The DRAC is the current vehicle’s deceleration
rate required to avoid a crash with the preceding vehicle.
Higher values of the required deceleration rate indicate
more dangerous traffic situations. The definition is the
speed difference between the current and preceding vehi-
cle divided by their closing time. DRAC is given as
Equation 5:

DRACn, t + 1 =

(Vn, t � Vn�1, t)
2

2� (Xn�1, t � Xn, t � Ln�1)
8t such that Vn, t.Vn�1, t

ð5Þ

where DRACn, t + 1 denotes the DRAC for the current
vehicle n at time t + 1.

Crash Potential Index. Because TTC and DRAC do not
consider the deceleration capability of current vehicles,
Cunto and Saccomanno (45) defined the CPI to reflect the
probability that the current vehicle’s DRAC exceeds its
maximum available deceleration rate (MADR). There are
two elements to calculate the CPI: (i) the DRAC of the
current vehicle in each time step and (ii) the MADR of the

current vehicle. The MADR is the braking capability of
each vehicle and depends on factors such as pavement con-
ditions, vehicle weight, tires, and braking conditions. In
this study, the MADR is set to follow a truncated normal
distribution with a mean value of 8.45m=s2 and a stan-
dard deviation of 1.4m=s2, as Cunto and Saccomanno
(46) used for small vehicles in dry pavement conditions.
The CPI indicator is defined in Equation 6:

CPIn =
Xtn

t = 0

P(DRACn, t.MADRn)3 Dt 3
bn, t

tn
ð6Þ

where CPIn denotes the CPI of vehicle n, Dt is the time
interval, tn denotes the total simulation time of vehicle n,
and bn;t denotes a binary variable, which is 1 if DRACn, t

. 0 or 0 otherwise.

Experimental Results

Case Study Area—Peachtree Street, Atlanta, Georgia

The safety impact of SAS vehicles is evaluated with the
use of real trajectory data collected by the next genera-
tion simulation (NGSIM) project, which is an empirical
microscopic dataset (47). We applied the developed algo-
rithm to the NGSIM data primarily because (i) the case
study intersection has a longer approach lane than other
microscopic datasets, and (ii) the data includes all
required input for the algorithm. The data was collected
at four signalized intersections on Peachtree Street,
Atlanta, Georgia, on 8 November 2006. The data include
detailed vehicle trajectories with the vehicle ID, time, x–
y coordinates, distance gap, speed, acceleration, vehicle
type, and vehicle length. The recorded arterial segment is
about 600m long and consists of two or three lanes in
each direction. This study used the northbound vehicles
in the upper 230m of the segment. The variables given
from the case study area are the signal timing and a
speed limit of 15.3m/s. Note that the signal phase and
timing are dynamic in the case study area, and the signal
information is extracted by the recorded video using
video processing by the NGSIM project. The trajectory
data was recorded at 0.1 s time resolution. The V2I com-
munication range is set to be 100m.

Vehicle Trajectories and Speed Profile in Mixed Traffic

Figure 3 visualizes the simulation results generated by
the acceleration control algorithm applied to the case
study area with the different MPR scenarios. Because
the position of SAS vehicles in the approaching vehicle
group might affect the simulation results and the IDM+

parameters are also randomized, we conduct five itera-
tions of randomly assigned SAS vehicles for the mixed-
traffic situations, including 25%, 50%, and 75% MPRs.
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Figure 3 shows one of the five iterations. Note that the
0% and 100% MPR scenarios do not require iterations
because there is no change in the order of SAS vehicles
and the other parameters are fixed. One can see that the
first HDVs in a platoon simply follow the real vehicle
trajectories without modifications in Figure 3c, and all
vehicles in Figure 3a (with 0% MPR). On the other
hand, HDVs follow the IDM+ to avoid a collision with
a preceding SAS vehicle, for example, the second vehicles
in the second and third signal cycle in Figure 3g. The tra-
jectory results in the mixed-traffic situations show that
one SAS vehicle can affect the speed of the following

HDVs, such as the last vehicles in the second and third
cycles in Figure 3c. This causes HDVs to follow the opti-
mal speeds of the preceding SAS vehicle, which leads to
similar benefits to SAS vehicles. Speed profiles indicate
that stopped time (i.e., when the speed reaches 0m/s at
the intersection) disappears at 100% MPR in contrast to
mixed-traffic situations (MPRs 25%, 50%, and 75%).

Safety Impacts of SAS Vehicles

Figure 4 shows the safety impacts of SAS vehicles esti-
mated from the simulation results. The lower TTC,

Figure 3. Vehicle trajectories and speeds at different speed advisory system (SAS) market penetration rates (MPRs): (a)–(e) vehicle
trajectories at MPRs from 0% to 100% in 25% increments; (f)–(j) speed distributions at MPRs from 0% to 100% in 25% increments,
respectively.
Note: The red-dotted and black-solid lines represent the SAS vehicles and human driven vehicles (HDVs), respectively. (Color online only.)
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higher DRAC, and higher CPI values represent more
dangerous traffic situations. The TTC values are plotted
in two ways: a violin plot for the minimum TTC and box
plots for the overall TTC values (i.e., all the instanta-
neous TTC measurements). The minimum TTC reflects
the most severe instant of an interaction, while the overall
TTC values include all the measures but may not repre-
sent each vehicle interaction in equal terms. The overall
TTC values are calculated for all pairs of the preceding
and the following vehicles within a 10m gap to avoid
including many large TTC values in the distributions.

The minimum TTC values in Figure 4a show that the
newly assigned SAS vehicles increase the minimum TTC
values from 25% MPR, and similar tendencies were
observed from 25% to 100% MPRs. Similarly, the over-
all TTC in Figure 4b shows that the TTC values gradu-
ally increase as the MPR of SAS vehicles rises. The
overall TTC result indicates that not only the median
but also the quartile increases with higher MPRs. This
observation implies that the increasing number of SAS
vehicles can benefit traffic safety. However, the impact
on the most severe instant of each conflict can be rela-
tively marginal. Figure 4c shows that the inter-quantile
range of DRAC values dramatically declines as the

MPR increases, which indicates that the vehicles require
lower DRAC in the higher SAS MPRs. These benefits
are achieved by the consistent speed changes caused by
SAS vehicles.

After estimating the DRAC in each simulation time
step, we obtained the CPI using the probability density
function of the MADR. Figure 4d shows that SAS vehi-
cles also reduce CPI, like the DRAC results. We can
observe a significant reduction in CPI values with 25%
MPR, and gradual reductions as MPR increases. The
primary reason is that even a small number of SAS vehi-
cles, such as 25%, can affect the following vehicles’ accel-
eration control.

Impacts of SAS Vehicles on the Conflict Area

Figure 5 illustrates the location of low TTC (less than
6 s) situations in a two-dimensional histogram. The his-
togram represents the conflict locations in the approach-
ing lane for each MPR. We can observe that the conflict
locations change from a small portion of SAS vehicles
(e.g., 25% MPR). The major conflict area at 0% MPR is
near the traffic-signal location (see the red solid line in
Figure 5); however, the area moves toward the location

Figure 4. The safety impacts of speed advisory system vehicles: (a) minimum time to collision (TTC); (b) overall TTC; (c) deceleration
rate to avoid crash (DRAC); (d) crash potential index (on a logarithm scale) based on market penetration rates (MPRs).
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where the V2I communication range starts (i.e., 100m)
from MPR 25% because of the early decelerations from
SAS vehicles. The conflict area of mixed-traffic situa-
tions (25%, 50%, and 75%) is similarly located, while
we can observe a gradual reallocation of the conflict area
from 25% to 75%. For 100% MPR, the major conflict
area is completely moved to the location where the V2I
communication starts, since all the vehicles decelerate at
the beginning of the V2I communication range.

Impacts of the First SAS Vehicle in an Approaching
Vehicle Group

When lane changing is not allowed, the following vehi-
cles must comply with the acceleration control of the pre-
ceding vehicle to avoid a collision. Thus, the preceding
SAS vehicles’ early deceleration can lead to the following
HDVs’ decelerations. In this section, we investigate the
first SAS vehicle’s impact by assigning a SAS to the first
vehicle in the approaching vehicle group and compare it
to the 100% MPR scenario. Figure 6 shows the trajec-
tories and speed profile of the first positioned SAS vehi-
cle and 100% MPR scenarios. The trajectories of the
following HDVs (see the solid black line in Figure 6a)
are similar to the first positioned SAS vehicle (see red
dotted line in Figure 6a). A similar result is shown in the
speed profiles.

Figure 7 shows the comparison of the safety indica-
tors between the first positioned SAS vehicle and 100%
MPR scenarios. We can observe that having a first vehi-
cle equipped with a SAS results in a significant reduction
in rear-end collision risks, similar to the 100% MPR sce-
nario. The observed result implies that the safety of the
entire approaching vehicle group can benefit as much as

the 100% MPR case when the first vehicle is equipped
with a SAS and lane changes are impossible or rare.

Impacts of Lane Changing

The proposed algorithm regulates the SAS vehicles to
initiate an early deceleration to avoid unnecessary stops
at signalized intersections. The following HDVs will
decide whether to change lane or to comply with the pre-
ceding SAS vehicle’s deceleration. In this section, we
apply the proposed lane-changing rule in the case study
area to estimate the safety impact of SAS vehicles in the
lane-changing allowed situation.

The 25% MPR scenario is chosen as a benchmark to
compare the two scenarios with and without lane-
changing possibilities. The minimum and overall TTC
values in Figure 8, a and b, show that lane changing
entails a slightly higher rear-end collision risk than lane-
changing restricted roads. Similar tendencies are
observed in the DRAC and CPI values, which show a
slightly higher collision risk when lane changing is possi-
ble. This observation can be explained by the large gap
generated after the preceding vehicle’s lane change (i.e.,
leaving the current lane), which creates higher speed var-
iations because the following vehicle accelerates to catch
up with the new preceding vehicle.

Conclusion

This paper estimated the safety impacts of SAS vehicles
at signalized intersections using a hybrid method between
a simulation and field observations that makes the results
more realistic than a simulation study, but more general
than a field experiment in a limited road environment.

Figure 5. Conflict locations at speed advisory system market penetration rates (MPRs): (a)–(e) the conflict locations of the MPRs from
0% to 100% in 25% increments, respectively.
Note: TTC = time to collision. (Color online only.)
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Figure 6. Trajectories and speed distributions for the first positioned speed advisory system (SAS) vehicle and 100% market penetration
rate (MPR): (a), (b) trajectories and speed distributions of the first positioned SAS vehicle, respectively, and (c), (d) trajectories and speed
distributions at 100% MPR, respectively. (Color online only.)

Figure 7. Safety comparisons between the first vehicle equipped with a speed advisory system (SAS) and 100% market penetration rate
(MPR): (a) minimum time to collision (TTC), (b) overall TTC, (c) deceleration rate to avoid crash (DRAC), and (d) crash potential index
(CPI) (on a logarithm scale) based on MPRs.
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The proposed approach enables one to test the impact of
various MPRs, a lane-changing possibility, and ordering
of vehicle types. The method is applicable to other signa-
lized intersections to evaluate the safety impact of SAS
vehicles before implementation. In addition, this paper
provides the first insight into the safety impact of SAS
vehicles considering various scenarios that were not
investigated in the previous literature.

The findings of this paper are summarized as follows.
Firstly, the safety benefit of approaching vehicles is
strongly related to the position of SAS vehicles within
the group. In particular, HDVs following a SAS vehicle
can reduce the collision risks by using similar accelera-
tions as the SAS vehicles. If the first vehicle is a SAS
vehicle and lane changing is not possible, the crash
risks decrease as in the 100% MPR traffic situation.
Secondly, the minimum TTCs increase 1.2 s on average
for 100% MPR relative to 0%, and the average DRAC
for 100% MPR declined for 0.3m=s2 compared to 0%
MPR. This result implies that the increasing number of
SAS vehicles can lower the risk of rear-end collisions.
Thirdly, even a small proportion of SAS vehicles at
25% MPR significantly changes the location of the
conflict area. This conflict-area relocation may bring
safety benefits because the conflict area is moved from

nearby the pedestrian crosswalk to where the communi-
cation range starts.

The proposed approach has some limitations. (i)
HDVs following SAS vehicles are simulated based on the
IDM+ car-following model when interrupted. Although
the IDM+ is a state-of-the-art microscopic driver model
validated in previous work, it requires data about real
drivers following SAS vehicles to calibrate the model. (ii)
The safety implications of this study are limited to the
specific case study, including the driver behavior, road
environment (e.g., geometry and traffic control), and
vehicle characteristics. Other trajectory datasets are
needed to address this issue. (iii) This paper estimates the
safety impact of SAS vehicles for one signalized intersec-
tion, while further safety investigations are required con-
sidering multiple signalized intersection cases.

Possible future research includes evaluating the safety
implication of the manual SAS in which drivers have a
choice to follow the optimum speed provided by the sys-
tem or not. When a SAS provides the optimum speed to
drivers with driver choices, we could observe the compli-
ance probability of drivers with the optimum speed. We
are also interested in further estimating the lane-changing
impacts of SAS vehicles. Although we developed the
lane-changing model, which estimates the current lane’s

Figure 8. Safety impacts in the lane changing allowed corridor: (a) minimum time to collision (TTC), (b) overall TTC, (c) deceleration
rate to avoid crash (DRAC), and (d) crash potential index (CPI) (on a logarithm scale) based on market penetration rates.
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safety impact, future works can encompass the impacts
of other lanes. Different types of safety indicators should
be used to consider the angles of collisions.
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