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RÉSUMÉ

Ce travail de recherche offre un cadre théorique pour analyser, comparer et améliorer les
algorithmes de détection de contact entre des paires d’ellipses et d’ellipsoïdes. On se con-
centre surtout sur la catégorie d’algorithmes qui sont les plus efficaces numériquement, qui
peuvent produire des estimations de la distance de séparation et de pénétration entre des
ellipses et des ellipsoïdes, et qui peuvent définir un point de contact et une direction normale
pour calculer les forces, comme nécessaires dans les simulations par éléments discrets. Plus
précisément, seules les représentations analytiques des ellipses et ellipsoïdes sont étudiées et
la détection de contact entre des ellipsoïdes en mouvement n’est pas traitée ici. La première
contribution est d’offrir un cadre mathématique pour étudier ces algorithmes, plus partic-
ulèrement les preuves d’existence et d’unicité de solutions pour certaines classes d’algorithmes
de détection de contact, pour décrire rigoureusement des paires d’ellipses en contact presque
parfait, avec ou sans chevauchement, et pour analyser globalement les contraintes sur les
vecteurs normaux. Ce cadre met en valeur le rôle clé joué par les différentes définitions de
contact trouvées dans la littérature, indépendamment des stratégies de calcul utilisées pour
calculer les distance de séparation ou de pénétration. Plus précisément, on montre que tous
les algorithmes étudiés peuvent être exprimés comme des problèmes de minimisation, avec
ou en l’absence de contraintes non saturées sur les vecteurs normaux aux points de con-
tact, et que des contraintes additionnelles peuvent être utilisées pour identifier le minimum
global parmi les points critiques du problème de minimisation. Une autre contribution de
cette recherche, fondée sur le cadre mathématique proposé, est une meilleure classification
des algorithmes existants. Ces algorithmes sont comparés sur des cas test et leurs forces et
faiblesses sont mises en évidence et expliquées par rapport à cette classification. L’utilité
de cette analyse mathématique est illustrée par la présentation d’un algorithme performant
combinant de nouvelles idées et d’autres plus anciennes. Cette algorithme appartient à la
classe des méthodes de potentiel géométrique, lesquelles considèrent la solution de deux prob-
lèmes de minimisation pour déterminer un point de contact entre les particules. L’efficacité
de l’algorithme repose sur plusieurs ingrédients, à savoir une transformation qui associe à une
paire d’ellipses (ellipsoïdes) une ellipse (ellipsoïde) centrée à l’origine et un cercle (une sphère)
unitaire, la construction d’un point initial efficace pour la résolution du problème de min-
imisation non linéaire, l’utilisation de la méthode de Newton pour le problème de recherche
de racine, et l’imposition d’une contrainte supplémentaire pour garantir la convergence vers
la racine recherchée. Les résultats de plusieurs exemples numériques montrent que le nouvel
algorithme de détection de contact est plusieurs fois plus rapides que les algorithmes existants



vi

à précision comparable. On présente aussi un nouvel algorithme pour générer aléatoirement
des paires d’ellipses ou d’ellipsoïdes permettant de comparer la performance et la précision
des algorithmes de détection de contact sur de grands volumes de données.
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ABSTRACT

This research provides a theoretical framework to analyze, compare, and improve contact
detection algorithms for pairs of ellipses and ellipsoids. We focus primarily on the category
of algorithms that are the most computationally efficient and can produce estimates of the
separation and penetration distance between ellipses and ellipsoids, and can define a contact
point and a normal direction to compute forces, as are necessary in Discrete Element Simu-
lations. Specifically, only analytic representations of the ellipses and ellipsoids are considered
and contact detection for moving pairs of ellipsoids is not treated. The first contribution is a
mathematical framework for the study of these algorithms, most notably with existence and
uniqueness proofs for classes of contact detection algorithms, formal descriptions of pairs of
ellipses in near-perfect contact, with or without overlap, and a global analysis of constraints
on the normals. The framework highlights the key role played by the different definitions of
contact found in the literature, independent of the numerical strategies deployed to estimate
the separation/penetration distance. Specifically, it is shown that all the studied algorithms
can be expressed as minimization problems, with or without non-binding constraints on the
normal(s) at the contact point(s), and that constraints can be used to identify the global
minima among the critical points in the minimization problem. Another contribution of
this research, based on the mathematical framework introduced, is a better classification of
the known algorithms. These algorithms are compared on established test problems and
their strengths and weaknesses are highlighted and explained in terms of their classification.
The usefulness of the new framework is illustrated with the introduction of a very fast algo-
rithm combining some new and old ideas. The algorithm belongs to the class of geometrical
potential methods, which consider the solution of two minimization problems in order to
determine a contact point between the particles. The efficiency of the algorithm relies on
several ingredients, namely, a transformation that maps the pair of ellipses (ellipsoids) into
an ellipse (ellipsoid) centered at the origin and a unit circle (sphere), the construction of an
effective initial guess for the solution of the nonlinear minimization problem, the use of New-
ton’s method for the root finding problem, and the introduction of an additional constraint
to guarantee convergence to the desired root. The results from several numerical examples
show that the new contact detection algorithm is several times faster than the existing al-
gorithms for comparable accuracy. A novel algorithm to randomly generate pairs of ellipses
or ellipsoids is also described and allows one to compare the performance and accuracy of
contact detection algorithms on large data sets.
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CHAPTER 1 INTRODUCTION

1.1 Scientific Context

Human beings are increasingly expanding cities, farms, and infrastructures over the earth due
to high demands for energy, food, and shelter. Human-made structures, such as buildings,
waterways, and dams are built on various types of soil. Thus, soil stability is essential to
the continued growth and prosperity of modern civilization. Moreover, this is particularly
true in this era of climate change since a significant portion of the world population live
at or near sea level. Water-saturated soil can weaken the integrity of the soil, which is
a potential threat for buildings and engineering structures. Interactions between soil and
water can initiate a variety of destructive phenomena, such as internal erosion, backward
erosion, heave, dispersion, suffusion and liquefaction.

Soil found near the ground surface is often the result of erosion and therefore formed of
individual particles with a large void ratio, possibly saturated with water. Under compression
and shear, such soil does not behave like homogeneous materials (constant soil properties
along the soil profile). Although engineers require predictions at the large scale, the behavior
of such soil is intimately related to the particles composing it, and to the dynamics of force
transmission at the contacts between particles. In other words, the statistics of the geometry
of the particles composing the soil are key to its macroscale behavior.

The aforementioned phenomena are yet to be fully understood and possibly controlled. By
modeling and simulating soil-water interactions, we hope to be able to understand their
underlying mechanisms in order to predict it and implement procedures to control its damage.
The simulation of such phenomena is thus of major interest in different fields of science, such
as geology, mechanical engineering and civil engineering.

Models of soil mechanics are generally divided into two categories: continuum models and
discrete models. Continuum models are essentially layer-scale models in which the soil layer is
considered as a continuum. By contrast, discrete models consider the granular material as an
assemblage of discrete particles. Continuum models require phenomenological models of the
stress-strain relation that are unable to capture the discrete physics between particles [1, 2].
Unlike continuum models, discrete models can capture the non-linear behavior of granular
materials. In addition, they require fewer model parameters than continuum models, which
require a large number of phenomenological parameters that need to be evaluated empirically
such as initial shear strength, initial tangent shear modulus, permeability, initial tangent
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coefficient of volume compressibility, and relative density.

The Discrete Element Method (DEM) is the most common method to solve problems de-
scribed with a discrete model of particles. Molecular Dynamics (MD) [3] is another discrete
method which is used mostly for gases, solids, or crystals. The DEM is a straightforward
numerical method that models each particle and their contacts individually, using no more
than Newtonian mechanics and Hookian or Hertzian contact models to compute the force be-
tween the particles. It was first proposed in 1971 by Cundall and Strack [4,5] to analyze rock
mechanics problems, at a time when computer power was extremely limited. The method
considers the small displacement and rotation of particles and identifies new contact between
particles after each displacement. Particles are assumed rigid but are allowed to overlap in
order to account for their deformation.

In practice, DEM can be used to predict transitions from static to hydraulic regimes, often
occurring along shear planes. Such phase transitions in granular material is fundamental
to the efficient manipulation, transportation, and mixing in the chemical industry, and in
particular the large scale food manufacturing. Moreover, it is used to evaluate the mechanical
properties of composite materials [6], to study a cement matrix in concrete technology [7],
or to model powder based structures [8].

Spheres are the most common particle model for soil simulation due to the simplicity of their
collision detection. However, spheres are different from real soil particles, in terms of shape,
centers of mass, and hence, the manner by which one rotates around the other. Some studies
demonstrate that the particle shape plays a key role in the simulated macroscopic properties
of static and dynamic assemblies of particles [9, 10]. More complex geometries have been
proposed, such as ellipses [11], ellipsoids [12–14], superquadrics [15,16], and polygons [17,18].
Another approach for particle representation is based on clusters of overlapping [19] or non-
overlapping [20] spheres. However, using such representations instead of discs or spheres
makes it more difficult to find contact points.

For soil simulation, the most straightforward improvement over spherical particles is using
ellipsoidal ones. The main advantage of ellipsoids is that unlike spherical particles, a normal
contact force induces a moment to the ellipsoidal particles. This affects the rotation and
resistance of particles and gives a better representation of the overall kinetics. This also
makes the rotational degrees of freedom easier to excite and enables stacks of aligned flat
ellipsoids to be more stable, thereby decreasing void ratio [21].

Identifying contact points for ellipses and ellipsoids is not as straightforward as with circular
or spherical particles. Yan and Regueiro [22] reported that the computational time of contact
detection for a pair of ellipsoids is an order of magnitude (approximately 50 times) higher
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than sphere contact detection. Moreover, contact detection using the existing algorithms is
the main computational bottleneck in DEM simulations when dealing with a large number
of ellipsoidal particles [13,23]. For example, one study shows that contact detection accounts
for 81.4% of the total computation time for a DEM simulation of 2, 000 ellipsoids [22].
In comparison, the contact detection for 2, 000 spherical particles takes 5.15% of the total
computation time. Therefore, an improvement in the computational time of the contact
detection translates into a significant saving in the total computational time, the ability to
simulate larger assemblies of grain and ultimately approach the macro-scale behavior of soil.

In addition to the computational cost, existing algorithms may become unstable in some
conditions [24]. The accuracy and stability of contact detection algorithms in DEM may
affect the calculation of the direction and magnitude of normal and tangential contact forces.
Errors will propagate both in time and space and may have a significant impact on the
short and long term mechanical behavior of assemblies of particles. These issues, along with
the low performance of existing algorithms, motivated us to design a new contact detection
algorithm to increase the DEM simulation performance while retaining high accuracy.

Another difficulty is that the notion of contact point is not uniquely defined for two over-
lapping ellipses. In the literature, a variety of methods and algorithms were proposed and
developed in order to find contact points for ellipses and ellipsoids. As a result, a review of
these algorithms is needed to compare and classify them. For this purpose, it is essential
to develop some preliminary definitions to understand the strength and weakness of these
algorithms. Therefore, in this research we provide new preliminaries and definitions to study
and compare all the existing contact detection algorithms fundamentally.

During DEM simulations, contact detection plays a key role during both the initialization
phase and during the dynamic phase. During initialization, the objective is to prepare an
assembly of grains in force equilibrium, before compression or shear forces are applied, in
a manner that follows established experimental procedures for soil preparation. At the ini-
tialization phase, one way is initializing particles randomly in a container with the non-
overlapping condition until reaching a desired density, a specific height in the container, or a
predefined number of particles. In this case, contact detection for particles is used to evalu-
ate the overlap between particles. This is known as random packing of particles. Although
some algorithms are specifically designed to detect the overlapping between two elliptical
particles [25–27], elliptical contact detection can be also employed to calculate the penetra-
tion or separation distance [28–30]. During the dynamic phase, the required accuracy of the
estimates of the contacts will be limited by the accuracy of the time stepping, and hence can
be relaxed. Moreover, algorithms should allow one to update the new contact point between
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two particles previously in contact in a minimal number of operations in order to be efficient.

Contact detection between two objects is also a fundamental problem in computer graphics,
particularly in virtual reality models and in video games. Yet in those applications, sim-
ple contact detection algorithms based on planes and circles are usually sufficient because
speed trumps accuracy. Contact detection also plays a critical role in the development of
autonomous vehicles or in the control of swarms of robots and drones [31]. More sophisti-
cated contact detection algorithms such as elliptical contact detection are applied in obstacle
collision detection in the field of robotics [32, 33].

1.2 State of the Art

There are some contact detection methods which employ the approximation of ellipses for
contact detection between pairs of elliptical particles. For instance, an ellipse can be approx-
imated by segments of circles [21,34–36], by grid or polar representation of particles [37], by
four-arc approximation [35,36], as a polyhedral surface [38], or using Non-Uniform Rational
Basis Spline (NURBS) [39, 40]. One of the disadvantages of using approximations of actual
ellipses is that it can lead to a contact point laying outside of the overlap region. We will
not consider these approaches in this work.

Contact detection algorithms based on definitions which rely on the analytical representation
of two ellipses and ellipsoids, find a pair of points as a contact pair. The contact point is
then defined as the mid point of the contact pair. In this case, the contact point definition is
not uniquely introduced. The straightforward approach is to identify the contact pair, if any,
belonging to the intersection of the two ellipses. This method was originally developed in 2-D
to provide intersection points of two colliding ellipses [41]. It was then extended and modified
for ellipsoids in 3-D [42]. The method consists in finding the intersection set between two
particles with small overlap. The intersection points in 2D can be found by solving a quartic
equation. The method may become unstable and lead to inaccurate solutions as the overlap
becomes very small, i.e. as the intersection set reduces to a single point [11]. This issue makes
the method unsuitable for DEM simulations.

Another approach to find a contact pair begins with non-overlapping ellipses by identifying
the pair of closest points on the ellipses. By introducing a constraint on the normal vectors
to the ellipses at the contact pair [43], the notion of minimum distance pair can be extended
to overlapping ellipses. This serves as the basis for the algorithm, studied by Wellmann et
al. [44]. The problem can be formulated as a coupled minimization problem for the contact
pair, which makes the method more computationally expensive than other methods [43],
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although it provides a better representation of normal force direction [45]. However, we note
that the formulation proposed in [43] is ill-posed and may return an incorrect contact pair
for some configurations of particles.

Several researchers have developed algorithms that split the contact detection problem into
two decoupled minimization problems, each one consisting in finding the closest point on
one ellipse to the other and vice versa. Typically, closeness is measured with respect to
the induced norm of the associated ellipse. This approach is the basis of the algorithms
proposed in [24,43,46,47], which differ only in the solution process but not in the underlying
problem definition. Lin et al. [43] solve the minimization problem using Lagrange multipliers.
Cramer’s rule [48, 49] was also applied to construct a quartic equation. Ting et al. [46]
propose to map two ellipses to a unit circle located at origin and a transformed ellipse.
A new constraint is also applied to the problem, in order to define a better conditioned
quartic equation. However, the quartic equation degenerates to quadratic equation for some
configurations of ellipses, such as when two ellipses are aligned with each other and have the
same aspect ratio. Dziugys and Peters [24] claimed to obtain more stable algorithm than
Ting. In this algorithm, a quartic equation is derived by transferring two ellipses to one
unit circle and an ellipse located at origin with no rotation. In another study, Mustoe and
Miyata [47] propose using the parametric equation of ellipse to simplify the quartic equation.
In 3-D, the degree of these contact point equations is up to six. To find the contact pair,
one approach is choosing the desired point from all solutions according to the aforementioned
problem definition. However, finding all the roots of a polynomial function to ultimately keep
only one has a non negligible computational cost. Alternatively, one may consider using root-
finding algorithms, such as Newton’s method, but the difficulty in this case is to determine a
suitable initial guess that guarantees one to converge to the root associated with the unique
solution of the minimization problem.

The published contact detection algorithms for pairs of ellipses or ellipsoids tend to propose
incremental improvements over past methods, offer few comparisons to significantly different
algorithms, and rarely distinguish their underlying mathematical problem from their numer-
ical algorithm. As far as we know, the only attempt at a survey of these algorithms has been
a dedicated chapter in a monograph [50]. In that survey, algorithms in [43, 46] are covered
briefly and no comparison between the algorithms is made. In other studies [24,51], accuracy
and performance of some contact detection algorithms are compared on specific test cases. In
addition, Lin et al [43] compare their algorithms in terms of their accuracy and performance
for 1, 000 ellipsoids. No such detailed review is found to compare all existing algorithms over
different test cases for a pair and a large number of ellipses/ellipsoids.
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1.3 Scientific Contributions

Contributions from this dissertation work can be summed up as follows:

1. This research describes a unified framework for the analysis and comparison of contact
detection algorithms for pairs of ellipses and ellipsoids. Developing the framework is
an attempt at bringing to light the common mathematical and computational concepts
among the published algorithms. In this mathematical analysis of the contact detection
problem, we

• motivate and highlight different definitions of contact points,

• recast the contact detection problems as minimization problems, each associated
with a specific definition of contact point,

• prove existence and uniqueness of solutions to the minimization problems,

• provide a mathematical definition to characterize the notion of small overlap be-
tween particles,

• propose a classification of the existing contact detection algorithms according to
the definitions of contact point and determine some connections between them,

• establish test cases to highlight the strengths and weaknesses of the algorithms,

• provide comparisons in terms of performance, accuracy, and stability between the
most efficient algorithms for each class over a large number of random pairs of
ellipses or ellipsoids.

2. One of the main contributions is the development of a fast and robust contact detection
algorithm that is computationally more efficient than existing algorithms. The algo-
rithm belongs to the class of geometric potential methods, which consider the solution
of two minimization problems in order to determine a contact point between the par-
ticles. The algorithm involves an original approach to provide an inexpensive estimate
of the solution to one of the two minimization problems that can be used as an initial
guess for the root finding iterative method. It also features a specific constraint that al-
lows one to distinguish the global minima among the critical points in the minimization
problems.

3. The last contribution deals with the development of a novel algorithm to randomly
generate pairs of ellipses or ellipsoids. The algorithm allows one to create a pair of
random particles for which the solution to one of the minimization problems in the
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geometric potential methods is exactly known. The algorithm was largely used for
code verification and for assessing the accuracy and performance of contact detection
algorithms.

1.4 Outline

This dissertation is organized as follows. Following this introduction, we provide in Chapter 2
some preliminaries and general notations about the mathematical representations of ellipses
and ellipsoids. We also describe the notion of concentric families of ellipses and ellipsoids and
establish a new lemma whose purpose is to enumerate several properties of their associated
normal vectors.

Chapter 3 describes a detailed mathematical analysis of the contact detection problem
thereby laying the foundation results for our description of the various contact detection
techniques presented in Chapter 4. We define three separate notions of contact resulting from
the following definitions of contact pair: the Intersection Set (IS), the Minimum Distance
Pair (MDP), and the Minimum Potential Pair (MPP). We define minimization problems
associated with the definitions of these pairs in the case of disjoint ellipses, ellipses in perfect
contact, and ellipses with overlap. We establish a new mathematical criterion to make the
notion of small overlap precise when dealing with two overlapping ellipses. We show that the
contact pair solutions to the minimization problems exist and are unique in the configura-
tion of ellipses in near-perfect contact. In addition, we describe two mapping approaches to
normalize a pair of ellipses/ellipsoids into a unit circle/sphere and an ellipse/ellipsoid. We
will show how these transformations can help one to simplify the contact detection problem.

We review in Chapter 4 the contact detection algorithms available from the literature and
analyze their respective advantages and disadvantages. Following our mathematical analysis
of the contact detection problem, we show that all existing algorithms actually belong to
one of the three classes of methods associated with the three definitions of contact pair. We
will describe how the algorithms within a class differ from each other with respect to specific
choices in the solution techniques used to solve the corresponding minimization problem.

We present in Chapter 5 the novel algorithm for contact detection between ellipses and
ellipsoids. The algorithm produces the Minimum Potential Pair as solution of the problem.
We describe in particular the approach for the calculation of an initial guess point and the
additional constraint that we enforce to ensure that the iterative method converges to the
global minimum of the objective function. The algorithm is shown to be robust, efficient,
and fast when compared to existing algorithms.
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In Chapter 6, we present a series of numerical examples to compare the accuracy, stability,
and computational cost of the different algorithms. We describe some examples that illustrate
how contact points may differ according their definitions. We also describe in the appendix
section the algorithm to generate random pairs of ellipses or ellipsoids that are used in the
numerical experiments to assess the accuracy of some algorithms.

Finally, we provide in Chapter 7 some concluding remarks and directions for future works.
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CHAPTER 2 NOTATION AND PRELIMINARIES ON ELLIPSES AND
ELLIPSOIDS

This chapter sets the stage for the comparison between different contact detection algorithms
by collecting often recurring notation and definitions. By beginning with a compact but co-
herent introduction to the terms and expressions, we hope to make the similarities between
the different algorithms quickly transparent. All of these notations and definitions are stan-
dard and well-known in the literature, except a lemma at the end of this chapter. The lemma
provides several properties regarding the normal vectors to ellipses.

2.1 Representation of Ellipses

An ellipse E is the set of roots x = [x, y]T ∈ R2 of a quadratic polynomial of the form

f(x) := (x− c)TQ(x− c)− 1, (2.1)

where Q is a symmetric positive-definite (SPD) matrix in R2×2 and c = [cx, cy]T ∈ R2 is the
center of the ellipse. Formally written, an ellipse is defined as:

E =
{
x ∈ R2 ; (x− c)TQ(x− c)− 1 = 0

}
.

The coordinates x in which an ellipse is initially given will be referred to as the global
coordinates but there exists an isometry to a system of coordinates in which the geometry of
E is especially straightforward. Indeed, a fundamental result of linear algebra states that for
each SPD matrix Q, there exists an orthogonal matrix R, that is satisfying R−1 = RT and
therefore in the form

R :=
cos θ − sin θ

sin θ cos θ

 , θ ∈ [−π, π[, (2.2)

such that the matrix

D := RTQR =
1/a2 0

0 1/b2

 , (2.3)

is diagonal with strictly positive entries, i.e. the eigenvalues of Q. An example of an ellipse
is shown in Figure 2.1 under the assumption that a ≥ b. The axes corresponding to a and
b are called the semi-major axis and the semi-minor axis, respectively. Accordingly, a and b
are usually referred to as the semi-axes of the ellipse.
Further including a translation to send the center c to the origin, we can introduce the local
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coordinates ξ = [ξ, η]T ,
ξ = RT (x− c), (2.4)

with respect to which the ellipse consists in the set of roots of

f̂(ξ) = ξTDξ − 1, (2.5)

which can be recast in the classical form

f̂(ξ, η) = ξ2

a2 + η2

b2 − 1. (2.6)

In this dissertation, f will be called the global geometric potential, or simply potential, of the
ellipse while f̂ will be called the local potential. Clearly, the potential will always be a convex
function with a minimum at the center c of the ellipse.

Definition 1. [Q-norm] A SPD matrix Q induces the so-called Q-norm

‖x‖Q :=
√
xTQx, ∀x ∈ R2. (2.7)

This definition allows one to interpret an ellipse E as the “circle” satisfying ‖x − c‖2
Q = 1

in the global coordinates. Eventually, when we consider the contact problem for two ellipses
Ei and Ej, we may replace the subscript Q by the index i of the ellipse Ei. Throughout this
dissertation, the norm ‖·‖ written without a subscript will denote the usual Euclidean norm.

We now proceed with an explicit description of an ellipse as defined by (2.1). Let the matrix
Q be explicitly given by

Q =
A C

C B

 , (2.8)

where positive-definiteness is ensured by the conditions A > 0, B > 0, and detQ = AB −
C2 > 0. Then, in the global coordinates, the potential (2.1) is given as

f(x, y) = A(x− cx)2 +B(y − cy)2 + 2C(x− cx)(y − cy)− 1. (2.9)

For convenience, we provide below the explicit relationships between D andR, andQ, namely

A = cos2 θ

a2 + sin2 θ

b2 ,

B = sin2 θ

a2 + cos2 θ

b2 ,

C = sin θ cos θ
( 1
a2 −

1
b2

)
.

(2.10)
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Figure 2.1 Ellipse in global coordinate system (O, x, y) with local coordinate system (O, ξ, η)
centered at c.

An alternative form in which to express the potential is based on separating out the quadratic,
linear, and constant terms. Starting from (2.1), we find that the points x on an ellipse satisfy

f(x) = (x− c)TQ(x− c)− 1

= xTQx− xTQc− cTQx+ cTQc− 1

= xTQx− xT (Qc)− (Qc)Tx+ cTQc− 1.

(2.11)

Introducing

F = cTQc− 1,
D
E

 = −Qc, P =


A C D

C B E

D E F

 , z =


x

y

1

 , (2.12)

the potential f can then be rewritten in augmented matrix form as

f(x, y) = zTPz = Ax2 +By2 + 2Cxy + 2Dx+ 2Ey + F. (2.13)

Another useful description is based on the parameterization of the ellipse in terms of a
parameter t ∈ [−π, π[ such that all points given by

ξ(t) =
ξ(t)
η(t)

 = D−1/2

cos t
sin t

 =
a cos t
b sin t

 , (2.14)

lie on the ellipse. Using the mapping (2.4), the ellipse in the global coordinate system consists
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then of the points

x(t) = Rξ(t) + c = RD−1/2

cos t
sin t

+ c, t ∈ [−π, π[. (2.15)

Certain algorithms for contact detection between two ellipses require the outward unit normal
vector at a point x or, equivalently, at a point ξ, on an ellipse. From the definitions of the
potentials f and f̂ , see Equations (2.1) and (2.5), respectively, a simple calculation shows
that the normal is given in global coordinates as,

n(x) = ∇f(x)
‖∇f(x)‖ = Q(x− c)

‖Q(x− c)‖ , (2.16)

or in local coordinates as,

n(ξ) = ∇f̂(ξ)
‖∇f̂(ξ)‖

= Dξ
‖Dξ‖

. (2.17)

Without delving into the explicit calculations, which can be found in several references [52,53],
we note that the minimum radius of curvature along an ellipse is given by

ρ = b2

a
. (2.18)

There exist several alternative descriptions of ellipses. For the sake of completeness, we men-
tion here some of the most important descriptions. The first one will nevertheless motivate
an algorithm for finding initial guess points, to be detailed in Section 5.3. We recall that the
focal points of an ellipse, f 1 and f 2, are located on its semi-major axis, at equal distance
from the center, and are explicitly given in local coordinates as

f 1 =
(
−
√
a2 − b2, 0

)
, f 2 =

(
+
√
a2 − b2, 0

)
. (2.19)

The ellipse can then be defined as the set of points x that satisfy

‖x− f 1‖+ ‖x− f 2‖ = 2a. (2.20)

Moreover, it is possible to show that the normal vector at x generates a line that bisects
the angle ∠f 1xf 2. There is also a well-known description of an ellipse in terms of its
eccentricity e =

√
a2 − b2/a ∈ [0, 1], with e = 0 corresponding to a circle [54]. Ellipses can

be geometrically obtained as the cross-section of the intersection of an inclined plane with a
conic section, but this description of a 2-D ellipse requires three dimensions, thus making it
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less practical. Ellipses can also be described using mechanical means, such as the Trammel
of Archimedes, the Tusi couple, or the ellipsograph of Benjamin Bramer [54–56]. The Steiner
method for the construction of an ellipse is quite elegant but requires a discretization, and
is therefore not relevant to the continuous contact detection problem. In summary, ellipses
possess a wealth of fascinating and unexpected properties but none of these seem to be as
useful as (2.1) or (2.5) when one needs to numerically estimate contact points.

2.2 Representation of Ellipsoids

Similarly to ellipses, an ellipsoid E ⊂ R3 is the set of roots to the potential:

f(x) := (x− c)TQ(x− c)− 1 (2.21)

where Q is a 3 × 3 SPD matrix and c ∈ R3 is the center of the ellipsoid. As in 2-D, there
exists an orthogonal change of variable R ∈ R3×3, R−1 = RT , which diagonalizes Q such
that D = RTQR. The eigenvalues of Q, i.e. the entries of D, are all strictly positive and
are denoted by a−2, b−2, and c−2, where the positive constants a, b, and c are assumed to be
ordered as c ≤ b ≤ a. Using the change of variable (2.4), with ξ = [ξ, η, ζ]T , one can write
the local potential in its so-called local coordinate system (O, ξ, η, ζ) as:

f̂(ξ) = ξTDξ − 1,

or
f̂(ξ, η, ζ) = ξ2

a2 + η2

b2 + ζ2

c2 − 1. (2.22)

The positive constants a, b, and c are called the semi-axes of the ellipsoid.

Remark 1. Unlike in 2-D, the explicit form of the rotation matrix R can be obtained in
several manners. We first note that an arbitrary ellipsoid is defined in terms of nine parame-
ters: the coordinates of its center c = [cx, cy, cz]T and the six entries of the symmetric matrix
Q. However, since the matrix Q can also be written as RDRT , these six entries can also
be identified with the positive eigenvalues a, b, and c appearing as the diagonal elements of
D, and the three parameters needed to describe a general orthogonal transformation R. In
other words, one needs to introduce three angles, each corresponding to an elementary rota-
tion, and write R as the composition of the three rotation matrices in order to map the local
coordinate system into the principal axes of the ellipsoid in the global coordinate system. The
choice of the three angles is actually not unique and depends on the representation considered,
for example the Euler rotations [57] or the quaternion rotations [58]. We will not describe
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these methods here and will simply assume that R, if necessary, is provided using one of the
methods as

R =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 .

An ellipsoid in the local coordinate system can be represented in terms of the spherical
coordinates (u, v) ∈ [−π, π[×[0, π[ as

ξ(u, v) = D−1/2


cosu sin v
sin u sin v

cos v

 =


a 0 0
0 b 0
0 0 c




cosu sin v
sin u sin v

cos v

 =


a cosu sin v
b sin u sin v
c cos v

 . (2.23)

Using the mapping x = Rξ + c, the ellipsoid in the global coordinate system is therefore
parameterized as

x(u, v) = Rξ(u, v) + c = RD−1/2


cosu sin v
sin u sin v

cos v

+


cx

cy

cz

 , ∀(u, v) ∈ [−π, π[×[0, π[. (2.24)

As in 2-D, the outward unit normal vector at a point x on an ellipsoid is given in global
coordinates by

n(x) = ∇f(x)
‖∇f(x)‖ = Q(x− c)

‖Q(x− c)‖ , (2.25)

or in local coordinates by

n(ξ) = ∇f̂(ξ)
‖∇f̂(ξ)‖

= Dξ
‖Dξ‖

. (2.26)

We conclude by observing that the gradient in 3-D is given by the same formula as (2.18)
while the minimum radius of curvature is, assuming a ≥ b ≥ c

ρ = c2

a
. (2.27)

2.3 Family of Concentric Similar Ellipses and Ellipsoids

Let E be an arbitrary ellipse or ellipsoid with potential

f(x) = (x− c)TQ(x− c)− 1.
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Then, the family of concentric similar ellipses (d = 2) or ellipsoids (d = 3) associated with E
consists of the sets

E(r) :=
{
x ∈ Rd ; f(x)− (r2 − 1) = 0

}
, ∀r ≥ 0, (2.28)

or as the roots of fr(x) := f(x) − (r2 − 1) = (x − x)TQ(x − x) − r2. We note that two
ellipses or two ellipsoids within the same family, i.e. E(r1) and E(r2) with r1 6= r2, form a
homoeoid, that is, the bounded region between E(r1) and E(r2). Moreover, E(0) reduces to
the singleton {c} while E(1) corresponds to E . Furthermore, for every point x ∈ Rd, there
exists a unique r ≥ 0 such that x ∈ E(r) and the gradient of fr at x ∈ E(r) is given by

∇fr(x) = ∇f(x) = 2Q(x− c).

In other words, the outward unit normal vector to the ellipse/ellipsoid E(r) associated with
E at an arbitrary point x ∈ Rd\{c} is then given by

n(x) = ∇fr(x)
‖∇fr(x)‖ = ∇f(x)

‖∇f(x)‖ = Q(x− c)
‖Q(x− c)‖ . (2.29)

We now provide some properties satisfied by the vector field n(x) associated to an ellipse
E which will be extensively used in Chapter 3. These properties will be expressed using
complex multiplication and elements of projective geometry which we now recall. Let S1 be
the set of points of unit modulus in the complex plane C, which will be used to represent
both the unit gradient field n and unit direction w. Given the points eiω and eiθ in S1, then
complex multiplication between the two points can be written as

eiωeiθ = ei(ω+θ) ,

thereby representing the composition of two rotations.

In projective geometry, the real plane R2 is embedded into the compact space of all directions
in R3 using the association of [x, y]T ∈ R2 to the direction

[x : y : 1] := { [xt, yt, t]T ∈ R3 | t ∈ R+ } ,

identified here in homogeneous coordinates. The space of all directions

[x : y : z] := { [xt, yt, zt]T ∈ R3 \ {0} | t ∈ R+ } ,
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is called the projective sphere SP 2, not to be confused with the projective plane obtained
after associating antipodal points in the projective sphere. The points at infinity are those
corresponding to the directions [x : y : 0], thus forming a circle. In fact, given a first degree
map g : R2 → R2, say

g(x) = T x+ b ,

for b ∈ R2 and T a 2× 2 matrix, then along the segment in direction w ∈ S1

x = c+ tw , t ∈ R+ ,

we can define a limiting direction

lim
t→∞

1
t
g(x) = lim

t→∞

1
t
g(c+ tw) = lim

t→∞
T w + 1

t
T c+ 1

t
b = T w .

This association is independent of c and the parametrization t, thus leading to a well defined
map g∞ : S1 → S1 according to

w 7−→ T w
‖T w‖

.

This map is the restriction at infinity of the extension of g from the projective sphere to
itself.

Lemma 1. Consider an ellipse E ⊂ R2 centered at c ∈ R2 whose unit vector associated with
the semi-major and semi-minor axes are ξ and η, respectively, oriented counter-clockwise.
The vector field n given by (2.29) satisfies the following properties:

i) The vector field n(x) is well-defined ∀x ∈ R2 \ {c}.

ii) The relations n(c± tξ) = ±ξ and n(c± tη) = ±η hold ∀t ∈ R+.

iii) Given w ∈ S1, n(c+ tw) is constant ∀t ∈ R+.

iv) The map
N : S1 −→ S1

w 7−→ lim
r→∞

n(c+ rw) ,
(2.30)

is well-defined and satisfies the following properties:

(a) ±ξ and ±η are fixed points.

(b) N is bijective and N is the identity if and only if E is a circle.
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(c) If w = eiσξ ∈ S1, σ ∈ [0, 2π[, there exists θ ∈ ]− π/2, π/2[ such that

N (w) = eiθw = ei(θ+σ)ξ , with tan(θ + σ) = (a/b)2 tan σ . (2.31)

(d) If x0 6= c, there exists R = R(x0) ∈ R+, such that for r ≥ R the estimate

∥∥∥N (w)− n(x0 + rw)
∥∥∥ = O

(
r−1‖x0 − c‖

)
, (2.32)

is uniform with respect to w ∈ S1.

Proof. From (2.29), the vector field n(x) is the unit vector field associated with the gradient
field

∇f(x) = 2Q(x− c). (2.33)

Given that Q is SPD, ∇f only vanishes at x = c. This proves property i). To demonstrate
property ii), we observe that ξ and η are the eigenvectors ofQ associated with the eigenvalues
1/a2 and 1/b2, respectively; see (2.3). Hence, substituting x = c± tξ into (2.33) we find

2Q(x− c) = 2Q(±tξ) = ±2t
a2ξ,

which implies that n(x) = ±ξ. Similarly, substituting x = c ± tη into (2.33) shows that
n(x) = ±η.

Let w ∈ S1 and consider the half-line supported by w, i.e. the set of points x = c+ tw with
t > 0. The gradients along the half-line

∇f(x) = 2tQw (2.34)

are all positive multiples of the same vector Qw. Hence, the vector field n(x) is constant
along the half-line, which proves property iii). This is illustrated in Figure 2.2.

We now consider the proof of iv) by first demonstrating (d). The bound (2.32) will imply
that the function

N (w) = lim
r→∞

n(c+ rw)

is in fact the same as if we had taken limn(x0 + rw), and therefore does not depend on the
origin x0 of the segment x0 + rw. For any x0 6= c and any direction w,

∇f(x0 + rw) = 2Q
(
rw − (c− x0)

)
= 2rQw − 2Q(c− x0).
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w
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w

w

ξ

w

η

Figure 2.2 Illustration of the property iii) of Lemma 1, showing that the vector n(c+ tw) is
constant for a given vector w and t > 0. The angle θ is the angle between n and w measured
counter-clockwise.

For large and positive r, we have that

n(x0 + rw) = Qw − r−1Q(c− x0)
‖Qw − r−1Q(c− x0)‖ = Qw

‖Qw‖
+O

(
r−1‖x0 − c‖

)
≈ N (w).

As a matter of fact, this approximation can be made uniform in w for r sufficiently large. In
other words, there exists constants R, δ, and C such that ∀r ≥ R and ∀x0 ∈ R2 satisfying
‖x0 − c‖ < δ, one has

∥∥∥N (w)− n(x0 + rw)
∥∥∥ < C

‖x0 − c‖
r

, ∀w ∈ S1.

Property iv)-(a) follows immediately from ii). Property iv)-(b) will follow immediately from
iv)-(c). In particular, we observe that N (w) is the identity if and only if θ = 0 which
according to the relation (2.31) occurs if and only if a/b = 1.

Only property iv)-(c) still needs to be demonstrated. We will begin by proving it for w ∈
[ξ,η] ⊂ S1. Consider the parameterization by σ ∈ [0, π/2] of every direction w(σ) ∈ [ξ,η]
according to

σ 7−→ w(σ) := cos σ ξ + sin σ η, (2.35)

and remark that

∇f
(
c+ rw(σ)

)
= 2rQw(σ) = 2r

[
cosσ
a2 ξ + sin σ

b2 η

]
.

From this expression, it is clear that N
(
w(σ)

)
belongs between [ξ,η] ⊂ S1, and hence that
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there exists an angle σ̂ ∈ [0, π/2] such that

N
(
w(σ)

)
= w(σ̂),

In fact, for all σ ∈ [0, π/2[ and σ̂ ∈ [0, π/2[, we have the relation

tan σ̂ = a2

b2 tan σ (2.36)

announced in (2.31). We remark that the derivative of the map (2.30) in the coordi-
nates (2.35) satisfies

dσ̂

dσ
= a2

b2
cos2 σ̂

cos2 σ
> 0. (2.37)

This shows that the map is bijective over [ξ,η] and that the map is the identity if and only
if the ellipse is a circle (i.e. b = a). In the map (2.30), the angle θ is given by

θ = σ̂ − σ,

and because σ̂ > σ by (2.36) while both angles belong to [0, π/2[, then θ ∈ [0, π/2[. Since N
has a fixed point at w = η, that is when σ = π/2, we conclude that θ(π/2) = 0. Therefore,
for all σ ∈ [0, π/2], we have θ(σ) ∈ [0, π/2[. In fact, the parameterization (2.35) with
σ ∈ [−π/2, 0] can be used for w(σ) ∈ [−η, ξ] ⊂ S1, and leads again to the relation (2.36).
Applying the same argument (or by symmetry along the η axis) over [η,−ξ] and [−ξ,−η]
demonstrates iv)-(c). In all these cases, we have that θ ∈ ] − π/2, π/2[. This concludes the
proof.



20

CHAPTER 3 MATHEMATICAL FRAMEWORK FOR PAIRS OF
ELLIPSES AND ELLIPSOIDS

The purpose of this chapter is to introduce elementary notions of contact points and of their
properties for pairs of ellipses and ellipsoids. Lacking a common framework, much of the
past work provided little indication of the connections between the different algorithms. This
chapter is an attempt at filling this void by presenting a few precise definitions and results
which will serve as a common thread in later comparisons of the different contact detection
algorithms. Our approach shares the same level of mathematical rigor as that provided by
Perram, Wertheim et al. [25,59] in their development of Potential Contact Theory, based on
earlier work of Vieillard-Baron [60], and leads to its own definition of separation/penetration
distance. We will not be considering the Perram-Wertheim theory because of its inherently
high computational cost [61]. A rigorous theory for the continuous contact detection problem
has also been developed by Wang and his collaborators [26,62,63], but it is too computation-
ally expensive for the quasi-static regime found in DEM, and therefore will not be described.
Nevertheless, we will make connections to those theories in Section 3.5. Unfortunately, the
most computationally efficient algorithms are not expressed with the same level of rigor,
which is what this chapter attempts to correct within the literature. In order to make the
presentation more concise, we will focus on the 2-D contact detection problem and will indi-
cate in Section 3.6 how these results could be extended to the 3-D case. At the end of this
chapter, we introduce two mapping approaches for a pair of ellipses, which can be straightfor-
wardly adapted to the case of ellipsoids. These mapping are independent from other sections
of the current chapter and will be used in some contact detection algorithms which we will
describe in Chapter 4.

In practice, every contact detection algorithm for ellipses should provide a single contact
point, a single contact normal, and either a separation or a penetration distance. However,
given two elliptical particles1 Ei and Ej ⊂ R2, and two points judiciously constructed on each
particle, say xi ∈ Ei and xj ∈ Ej, one could compute the distance between xi and xj as
the separation or penetration distance and define the midpoint between xi and xj as the
contact point (which should provide reasonable approximations of the contact properties in
case of ellipses with small overlap). The contact normal could then be defined in terms of
the segment joining xi to xj. For most of the algorithms we shall describe in Chapter 4, this
is precisely how the contact point and contact normal are actually computed.

1Note that we have chosen to follow the usual notation Ei and Ej for an arbitrary pair of ellipses in order
to be consistent with the notation most frequently encountered in the literature.
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Estimating the contact point between all possible configurations of pairs of ellipses is in
general not necessary in DEM applications or could involve a number of degenerate cases,
such as when the center of mass of one of the ellipses is inside the area of the second ellipse
or when one ellipse is virtually penetrating completely through the other. See Figure 3.1 for
examples of configurations of pairs of ellipses. Our objective is to restrict ourselves to the
configurations (a), (b), and (c) that we encounter in DEM applications, thus avoiding the
other degenerate contacts. The first few definitions and lemmas below aim at characterizing
such configurations, which we will refer to as near perfect contact. When pairs of ellipses are
in near perfect contact, then Theorem 9 will show that only a few cases need to be studied.

3.1 Intersection of Ellipses

Definition 2. [Intersection set] Let Ei, Ej ⊂ R2 be two ellipses. Their intersection set is
defined as:

Iij = Ei ∩ Ej. (3.1)

Before proceeding with an analysis of the intersection set, observe that, it is at least formally,
computable as the solution to a minimization problem, Iij 6= ∅. Although not the only
possible formulation, it is nevertheless the most obvious.

Lemma 2. Given two ellipses Ei and Ej such that Iij 6= ∅, with potentials fi and fj,
respectively, then

Iij = argmin
x∈R2

[
fi(x)2 + fj(x)2

]
. (3.2)

Proof. It is obvious that the minimum of the sum of two positive functions occurs where
both functions simultaneously vanish, i.e. at the common roots of fi and fj.

Intuitively, it is easy to imagine the different forms that the intersection set (see Figure 3.1)
may take but it is less straightforward to give a complete and thorough description. Bézout’s
Theorem [64,65] applied to the roots of two quadratic bivariate polynomials in R2 states that
the intersection set Iij can be either

1. empty: the ellipses are disjoint;

2. one point: the ellipses are in perfect contact (see Definition 4);

3. two, three, or four points: the ellipses intersect;

4. or an entire ellipse, if the two ellipses coincide.
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(a) (b)

(c) (d)

(e)

Ei
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cj
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Figure 3.1 Illustration of possible configurations for a pair of ellipses Ei and Ej: (a) disjoint
ellipses with no overlap, (b) ellipses in perfect contact (see Definition 4), (c) ellipses with two
intersection points, (d) ellipses with three intersection points, (e) ellipses with four intersec-
tion points, (f) ellipses coincide. Note that all configurations satisfy non-penetrating CoM
(see Definition 3), except (f) and that only the cases (a), (b), and (c) are of interest in DEM
applications.
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We first state the following definition that will allow us to disregard trivial cases such as
when one ellipse lies fully within a second ellipse or when two ellipses coincide.

Definition 3. [Ellipses with non-penetrating centers of mass] Two ellipses Ei, Ej ⊂ R2

are said to have non-penetrating centers of mass (CoM) if the distances between the centers,
evaluated in both the Ei- and Ej-norms (2.7), satisfy

‖cj − ci‖Ei
≥ 1, (3.3)

‖ci − cj‖Ej
≥ 1. (3.4)

3.2 Case of two Disjoint Ellipses

In this section, we consider the case of two disjoint ellipses Ei and Ej, i.e. Iij = ∅, that
satisfy the non-penetrating CoM property, see Definition 3. In this case, there is obviously
no contact nor overlap but one can estimate the distance between the two particles. Our
objective in doing so is to find formulations of the separation distance that can be extended
to the definition of distance, or contact point, when the ellipses are overlapping.

The most obvious and straightforward formulation of the distance between two ellipses, which
could naturally be applied to any pair of objects, is characterized in the following lemma.

Lemma 3. [Minimum Distance Pair] Let Ei and Ej be two disjoint ellipses with non-
penetrating CoM. Then, there exists a unique pair of points (xi,xj) ∈ Ei×Ej which minimizes
the Euclidean norm ‖xi − xj‖, i.e.

(xi,xj) = argmin
(x̂i,x̂j)∈Ei×Ej

‖x̂i − x̂j‖ = argmin
(x̂i,x̂j)∈Ei×Ej

1
2‖x̂i − x̂j‖

2. (3.5)

Moreover, at the minimum, the unit normal vectors ni(xi) and nj(xj) to Ei and Ej, respec-
tively, are opposite

ni(xi) + nj(xj) = 0. (3.6)

The pair (xi,xj) ∈ Ei×Ej will be referred to as the minimum distance pair (MDP) of ellipses
Ei and Ej.

Proof. The existence of a unique pair (xi,xj) ∈ Ei × Ej that minimizes distance ‖xi − xj‖
follows from elementary results in linear algebra [66], which we now present.

Consider the convex and compact set Ek :=
{
x ∈ R2 ; fk(x) ≤ 0

}
, k = i, j, formed by Ek and

its interior. Since Ei and Ej are disjoint and have non-penetrating CoM, then Ei ∩ Ej = ∅.
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It implies that the set

D :=
{
d ∈ R2 ; d = xi − xj, ∀ (xi,xj) ∈ Ei × Ej

}
,

is also compact and convex. Hence there exists a unique d ∈ D minimizing ‖d‖. In fact,
if d = xi − xj for (xi,xj) ∈ Ei × Ej, then the pair must belong to Ei × Ej. If not, say
xi ∈ Ei \ Ei, then one could always find an ε, 0 < ε� 1, such that xi− εd ∈ Ei and the pair
(xi − εd,xj) would define a smaller distance

∥∥∥(xi − εd)− xj
∥∥∥ =

∥∥∥(1− ε)d∥∥∥ < ‖d‖.
Finally, we observe that the pair (xi,xj) ∈ Ei × Ej must be unique. Indeed, if one can find
(yi,yj) ∈ Ei × Ej such that d = xi − xj = yi − yj, then all pairs

(1− λ)
(
xi,xj

)
+ λ

(
yi,yj

)
, ∀λ ∈ [0, 1],

would also minimize distance∥∥∥((1− λ)xi + λyi
)
−
(
(1− λ)xj + λyj

)∥∥∥ =
∥∥∥(1− λ)(xi − xj) + λ(yi − yj)

∥∥∥
≤ (1− λ)‖xi − xj‖+ λ‖yi − yj‖ = ‖d‖,

and thus, by virtue of the previous result, should lie on the boundaries of Ei and Ej. However,
the points (1− λ)xi + λyi, (resp. (1− λ)xj + λyj), ∀λ ∈ [0, 1], form a straight segment and
cannot lie on the boundary of Ei (resp. Ej), since the ellipses are strictly convex. This shows
that (xi,xj) ∈ Ei × Ej is unique.

Let fi and fj be the global potentials of Ei and Ej, respectively. In order to show that the
unit normal vectors are opposite, we introduce the Lagrangian functional:

L(x̂i, x̂j, λi, λj) = 1
2‖x̂i − x̂j‖

2 − λifi(x̂i)− λjfj(x̂j),

where λi ∈ R and λj ∈ R denote the Lagrange multipliers associated with the constraints
fi(x̂i) = 0 and fj(x̂j) = 0, i.e. x̂i ∈ Ei and x̂j ∈ Ej, respectively, in the minimization
problem (3.5). The derivative L(x̂i,x̂j) of L with respect to (x̂i, x̂j) is given, ∀(vi,vj) ∈ R2×R2,
by

L(x̂i,x̂j)(x̂i, x̂j, λi, λj,vi,vj) =
[
(x̂i − x̂j)− λi∇fi(x̂i)

]
· vi +

[
− (x̂i − x̂j)− λj∇fj(x̂j)

]
· vj.
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The solution (xi,xj) to (3.5) is a stationary point of L and must satisfy:

L(xi,xj)(xi,xj, λi, λj,vi,vj) = 0, ∀(vi,vj) ∈ R2 × R2,

or, equivalently,
(xi − xj)− λi∇fi(xi) = 0,

(xi − xj) + λj∇fj(xj) = 0.

Combining those two equations leads to

λi∇fi(xi) + λj∇fj(xj) = 0,

meaning that the gradients ∇fi(xi) and ∇fj(xj) share the same or opposite direction. The
fact that Ei and Ej are disjoint and satisfy the property of non-penetrating CoM allows one
to conclude that (3.6) is satisfied.

It is worth noting that (3.6) represents a non-binding constraint as it is automatically verified
by the solution to the minimization problem. Therefore, (3.5) can be recast as:

(xi,xj) = argmin
(x̂i, x̂j) ∈ Ei × Ej

ni(x̂i) + nj(x̂j) = 0

‖x̂i − x̂j‖ = argmin
(x̂i, x̂j) ∈ Ei × Ej

ni(x̂i) + nj(x̂j) = 0

1
2‖x̂i − x̂j‖

2. (3.7)

Remark 2. In the case of two disjoint circles Ci and Cj, the solution pair (xi,xj) to (3.5)
are actually aligned with the centers of the circles, ci and cj. From this observation, one can
reformulate the distance ‖xi − xj‖ as

‖xi − xj‖ = ‖xi − cj‖+ ‖xj − ci‖ − ‖ci − cj‖

so that the minimization problem (3.5) can be recast as

min
(x̂i,x̂j)∈Ci×Cj

[
‖x̂i − cj‖+ ‖x̂j − ci‖

]
= min

x̂i∈Ci

‖x̂i − cj‖ + min
x̂j∈Cj

‖x̂j − ci‖.

It follows that the minimization problem can be separated into the fully decoupled minimiza-
tion problems

xi = argmin
x∈Ci

‖x− cj‖,

xj = argmin
x∈Cj

‖x− ci‖.

In other words, the points xi and xj can be viewed as the closest points on Ci and Cj to
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the centers cj and ci, respectively. Recalling that ellipses can be viewed as circles in their
respective E-norms, one can actually introduce similar decoupled minimization problems in
the case of ellipses.

Lemma 4. [Minimum Potential Pair] Let Ei and Ej be two disjoint ellipses with non-
penetrating CoM with global potentials fi and fj, respectively. Then, there exists a unique
pair of points (xi,xj) ∈ Ei × Ej satisfying the two problems

xi = argmin
x∈Ei

‖x− cj‖Ej
= argmin

x∈Ei

fj(x), (3.8)

xj = argmin
x∈Ej

‖x− ci‖Ei
= argmin

x∈Ej

fi(x). (3.9)

Moreover, following the convention (2.29), we have

ni(xi) + nj(xi) = 0, (3.10)

ni(xj) + nj(xj) = 0. (3.11)

The unique pair (xi,xj) ∈ Ei × Ej will be referred to as the minimum potential pair (MPP)
with respect to the i-norm and the j-norm.

Proof. Since fj(x) = ‖x− cj‖2
Ej
− 1, it follows that the two minimization problems in (3.8)

are equivalent. The same reasoning implies that the two minimization problems in (3.9)
are also equivalent. The demonstration of the existence and uniqueness to the minimization
problems (3.8), or (3.9), is similar to the one given in Lemma 3. Consider the problem of
minimizing

min
x∈Ei

‖x− cj‖Ej
, (3.12)

where Ei = {x ∈ R2| fi(x) ≤ 0} is compact and strictly convex. Then it is well-known
that (3.12) has a unique solution, say xi. As we argued earlier, xi must in fact belong to the
boundary Ei and is unique because Ei is strictly convex.

The Lagrangian functional associated with the constrained minimization problem (3.8) is
given by

Li(x, λ) = fj(x)− λfi(x).

Since the solution xi to (3.8) is a stationary point of Li, it necessarily satisfies

∇fj(xi)− λ∇fi(xi) = 0,

which, using the fact that the two ellipses are disjoint and have non-penetrating CoM, implies



27

that the two normals at xi are in the same or opposite direction. As we observe in the
Figure 3.2, for only xi which is the solution to (3.10), we have

ni(xi) + nj(xi) = 0.

The relation (3.11) is shown in the same manner by introducing the Lagrangian functional
Lj associated with the minimization problem (3.9).

Since the relations (3.10) and (3.11) are satisfied at the points of the MPP (xi,xj), they
can each be added to the minimization problems (3.8) and (3.9), respectively, as non-binding
constraints so that the two problems can be recast as

xi = argmin
x ∈ Ei

ni(x) + nj(x) = 0

‖x− cj‖Ej
= argmin

x ∈ Ei

ni(x) + nj(x) = 0

fj(x), (3.13)

and

xj = argmin
x ∈ Ej

ni(x) + nj(x) = 0

‖x− ci‖Ei
= argmin

x ∈ Ej

ni(x) + nj(x) = 0

fi(x). (3.14)

Before proceeding with the other cases, we will make a few remarks on the solution to
Problem (3.8). One classical approach for solving the constrained minimization problem
proceeds by means of Lagrange multipliers, as seen earlier. However, the resulting problem
could lead to several solutions as the nonlinear Lagrangian functional may have up to four
critical points depending on the configuration and size of the ellipses. In other words, the
solutions correspond to local minima and maxima of the potential function fj restricted to
Ei. This is exemplified in Figure 3.2. In practice, all of the known methods identify all of
the critical points and distinguish the global minimum by explicitly evaluating the distance
at each critical point.

It is worth noting here that the non-binding constraint in the minimization problem (3.13)
has the added benefit of yielding a Lagrangian functional with a unique critical point. Indeed,
the constraint (3.10) is only satisfied at the global minimum. Alternatively, one may enforce
the uniqueness of the critical point by considering the inequality constraint ni(x) ·nj(x) < 0
or ∇fi(x) · ∇fj(x) < 0.



28

ni

ni

ni

ni
nj

Ej Ej(r1) Ej(r2) Ej(r3) Ej(r4)
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ci

cj
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nj
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Figure 3.2 Illustration of four critical points of Problem (3.8), with xk, k = 1, · · · , 4. We can
observe that ni(xk) + nj(xk) = 0 only if k = 1.

3.3 Case of two Ellipses in Perfect Contact

The case of perfect contact between ellipses with non-penetrating CoM can be viewed as
a limiting case of two disjoint ellipses. Therefore, we shall see that the previous results
straightforwardly apply to this particular case.

Definition 4. [Perfect contact point] Two ellipses Ei, Ej ⊂ R2 with non-penetrating CoM
are said to be in perfect contact if Iij consists of a single point. That point is then called a
perfect contact point.

Lemma 5. Let Ei and Ej be two ellipses in perfect contact at point xc with non-penetrating
CoM. Moreover, let ni(xc) and nj(xc) denote the outward normal unit vectors at xc to Ei and
Ej, respectively. Then, the pair (xc,xc) is the MDP and MPP of the two ellipses. Moreover,
it holds that:

ni(xc) + nj(xc) = 0. (3.15)

Proof. We first show that (xc,xc) is the MDP. If xc is a perfect contact point, then for all
(xi,xj) ∈ Ei × Ej, such that (xi,xj) 6= (xc,xc), the distance ‖xi − xj‖ > 0. Hence (xc,xc)
is the unique solution to (3.5). To show that (xc,xc) is the MPP, we observe that for any
point x ∈ Ei \ {xc} then x /∈ Ej and therefore fj(x) > 0. Hence

1 = ‖xc − cj‖Ej
< ‖x− cj‖Ej

.
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This shows that xc is the unique solution to (3.8), and, in a similar manner, xc is also
the unique solution to (3.9). Finally, the relation (3.15) is clearly a consequence of (3.10)
and (3.11) when xc = xi = xj.

3.4 Case of two Ellipses with Overlap

The case of overlapping ellipses with non-penetrating CoM is more difficult to analyze than
the previous two cases for the simple reason that the intersection set Iij may consist of two,
three, or even four points. However, in applications dealing with assemblies of ellipses, one is
usually concerned with pairs of particles whose configurations can be viewed as perturbations
of particles in perfect contact. In DEM applications, for instance, ellipses are only allowed
to slightly overlap, meaning that the Iij would consist of only two points. The main goal in
this section is to rigorously define the notion of small overlaps in order to clearly discard the
other two cases where the intersection set Iij consists of three or four points.

The analysis in the previous two sub-sections has highlighted the importance of the relation-
ship that the gradients of the potential functions associated with ellipses/ellipsoids satisfy at
the contact point, in case of perfect contact, or at the MPP, in case of disjoint particles. We
are now in a position to introduce an important locus in R2, which we shall refer to as the
co-gradient locus. The locus is actually equivalent to the locus of common slope, which was
first introduced, to the best of our knowledge, in [46, 67]. However, the main issue with the
locus of common slope is that it does not straightforwardly extend to the 3-D case, while the
one given below does.

Definition 5. [Co-gradient function and co-gradient locus] Given two ellipses Ei,
Ej ⊂ R2, the co-gradient function is defined as

H(x) := ∇fi(x)×∇fj(x). (3.16)

The associated co-gradient locus is the set of all roots of the co-gradient function, i.e.

Hij :=
{
x ∈ R2 ; H(x) = 0

}
. (3.17)

In 2-D, the cross product defining the co-gradient function is interpreted as a cross-product
in 3-D between the gradients in the 2-D plane. It therefore results in a 3-D vector with only
one non-zero component along the z-axis, which is given by the scalar function

H(x) := det
[
∇fi(x) ∇fj(x)

]
= ∂xfi(x)∂yfj(x)− ∂yfi(x)∂xfj(x). (3.18)
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We shall consider this definition of the co-gradient function when dealing with ellipses rather
than the vector-valued H in (3.16). Introducing the anti-symmetric matrix,

A =
 0 1
−1 0

 , (3.19)

the co-gradient function can also be written as:

H(x) = (∇fi(x))TA∇fj(x) = 4(x− ci)TQiAQj(x− cj), (3.20)

where we have used the fact that Qi is symmetric. We immediately observe that H is a
quadratic polynomial in x and that the centers ci and cj of the ellipses belong to Hij. If the
product QiAQj was symmetric, then the determinant of the product could immediately tells
us the geometry of the co-gradient locus. Unfortunately, the detailed characterization of Hij

presented in Theorem 6 will require significantly more work.

A second characterization can be made by normalizing the gradients in (3.16). Recalling the
definition of the unit normal vectors (2.16), i.e.

nk(x) = ∇fk(x)
‖∇fk(x)‖ , k = i, j, (3.21)

then the normalized co-gradient function is

Ĥ(x) = ni(x)× nj(x). (3.22)

The scalar component in the z-direction of Ĥ(x) ∈ R3 is equal to sin ηij(x) where ηij(x) is
the angle between ni and nj, well-defined modulo 2π. Mimicking the definition (3.20) of the
z-component of Ĥ , the co-gradient locus in 2-D is simply the set of roots of

Ĥ(x) = sin ηij(x). (3.23)

The angle ηij(x) can also be defined by identifying ni and nj with unitary complex numbers,
so that, using complex multiplication

nj(x) = eiηij(x)ni(x). (3.24)

The roots of Ĥ correspond to ηij(x) = mπ, m ∈ Z. We note that at infinity, the relation
(3.24) can be rewritten as Nj(w) = eiηij(w)Ni(w) using Equation (2.32), that is the angle
ηij = ηij(w) only depends on the direction w. Eventually, we will show that the angle ηij
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must belong to ]− π, π[, and hence is well-defined.

We now characterize the co-gradient locus in the case of arbitrary pairs of ellipses with
non-penetrating CoM.

Theorem 6. [Co-gradient locus] Let Ei, Ej ⊂ R2 be two ellipses with non-penetrating
CoM. Then the co-gradient locus Hij is a hyperbola and the two centers of the ellipses belong
to only one branch of the hyperbola. The portion of Hij between ci and cj can be parameterized
by a smooth injection γij : [0, 1] −→ Hij satisfying

γij(0) = ci,

γij(1) = cj.
(3.25)

Moreover, there exists a unique pair of parameters tk ∈ [0, 1], for k = i, j, such that

γij(tk) ∈ Ek. (3.26)

Proof. The proof will show that the co-gradient functionH, which the formula (3.20) shows is
a quadratic function, possesses four roots at infinity. This will imply that the roots Hij ⊂ R2

form a hyperbola because ellipses, parabolas and hyperbolas possesses respectively 0, 2 and
4 roots at infinity on the projective sphere. Afterwards, we will argue that a single branch of
the hyperbola must cross both centers of the ellipses, thereby justifying the existence of the
parametrization.

The majority of the analysis will be performed on a pair of ellipses in a generic configuration
but this will require us to begin the proof with a lengthy study of different degenerate con-
figurations. Bivariate quadratic polynomials have roots that can degenerate to either of the
following configurations: two intersecting lines, two parallel lines, a line with a second line
at infinity, two coincident lines, and a single point. The last option will never occur because
H already vanishes at the centers ci 6= cj. The analysis below will show that Hij always
contains at least four points at infinity, and hence cannot be formed of two parallel lines or
two coincident lines.

The first configuration we study assumes that cj belongs to the axis ξi and that the principal
axes of Ej are aligned with those of Ei, although the argument will also work if cj belongs to
the axes ηi and ηi = ξj. Under these conditions, for all t, s ∈ R, property ii) of Lemma 1
shows that

ni(ci + tξi) = sign(t)ξi = ±ξj = ±nj(cj + sξj) .

Hence every point of the axis ci + tξi belongs to Hij. Furthermore, the fact that the axis are
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cj = γij(1)

Hij

Ejγij(ti)

γij(tj)

Ei
ci = γij(0)

Figure 3.3 Illustration of the smooth injection γij onto the gradient locus Hij, as formulated
in Theorem 6. The smooth injection γij from Theorem 6 is a single component of the
hyperbola Hij which passes through both centers ci ad cj.

aligned and property iv)-(a) of Lemma 1 implies that

Ni(ηi) = Nj(ηj) ,

or in other words H possesses roots at infinity in the direction w = ±ηi = ±ηj. In this
configuration, the co-gradient locus has four roots at infinity and contains a line, and hence
is either two intersecting lines, or a line with a second line at infinity. If the two ellipses have
the same aspect ratio, then the relation (2.31) of Lemma 1 states that Ni(w) = Nj(w), for
all w ∈ S1. In other words, Hij contains the line at infinity. On the other hand, when the
aspect ratios are different then the same relation shows that Ni 6= Nj and the co-gradient
locus is formed of two intersecting lines.

Consider now the case where cj does not belong to either principal axes of Ei but continue to
assume that the principal axes of both ellipses are aligned, say ξi = ξj and ηi = ηj. Property
iv)-(a) of Lemma 1 tells us that

Ni(±ξi) = Nj(±ξj) , Ni(±ηi) = Nj(±ηj) ,

hence there are at least four roots at infinity. Again, if the ellipses have the same aspect
ratio, then Ni = Nj and the co-gradient locus is degenerate and contains a line at infinity.
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Otherwise, the co-gradient locus is a hyperbola, which or may not be degenerate; see Corollary
7 for more on this issue.

The general configuration on which we will focus the remainder of our attention assumes that
the principal axes of the two ellipses are not aligned, whether or not either center belongs to
the axis of its brethren. In this case, we observe that the straight line cj + tξj, t ∈ R, for |t|
sufficiently large, belongs to two opposing quadrants; either [ξi,ηi] and [−ξi,−ηi] or [ηi,−ξi]
and [−ηi, ξi]. When the second case occurs, then the line tξi crosses the opposing quadrants
[ξj,ηj] and [−ξj,−ηj]. Hence, the second case can be brought into the first configuration
by translating Ej to the origin and exchanging the indices i and j. The Figure 3.4 illustrates
this configuration, after assuming a translation and a rotation sending ci to the origin and
the axes of Ei over to the usual Cartesian axes.

The map (2.30) associates to each direction w ∈ S1, the unique normals Ni(w) and Nj(w)
on the line at infinity. We may then measure the angle ηij = ηij(w) between the normals at
infinity using the relation (3.24), rewritten here using complex multiplication as

Nj(w) = eiηij(w)Ni(w), (3.27)

In this last identity, positive or negative angles correspond respectively to a counter-clockwise
or clockwise rotation when rotating Ni towards Nj. It is essential to observe that the angle
ηij is well-defined within ]−π, π[ because property iv)-(c) of Lemma 1 states that the rotation
θ from w to either Ni(w) or Nj(w) is strictly bounded |θ| < π/2, and hence the rotation
from Ni to Nj must be by an angle ηij strictly less than π in absolute value. As w moves
counter-clockwise around S1 starting at ξi, the configuration we have chosen, as shown in
Figure 3.4, implies that we will encounter in order the directions ξi, ξj, ηi, ηj, −ξi, −ξj, −ηi,
−ηj, ξi. We will focus on demonstrating that ηij possesses a root inside the arc [ξj,ηi] ⊂ S1,
but similar arguments will show that there are at least three other roots, one in each of
the three arcs [ηj,−ξi], [−ξj,−ηi], and [−ηj,−ξi]. Each root of ηij corresponds to equal
normals and hence to a root of H, thereby demonstrating that Hij is a hyperbola.

Consider the principal axes for Ej centered at cj 6= ci, i.e. take w = ξj. Then the esti-
mate (2.32) and property iv)-(d) of Lemma 1 show that the unit normal nj(ci + rξj) con-
verges to Nj(ξj) = ξj as the radius r increases. Furthermore, if ξj = eiσjξi for σj ∈ [0, π/2[,
then property iv)-(c) of Lemma 1 states that

Ni(ξj) = eiθiξj ,
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Figure 3.4 Illustration of the proof of Theorem 6. The ellipses Ei and Ej are in a configuration
with ci at the origin and Ei is aligned with horizontal axis. The circle with radius r is large
enough that all normals are external on the ellipses, i.e. ni · nj > 0.

with
tan(θi + σj) =

(
ai
bi

)2
tan σj .

Given that tan σj > 0 and ai/bi > 1, we find that θi > 0 and therefore must belong to
[0, π/2[. Using these facts and the estimate (2.32), we find

Ni(ξj) = eiθiξj = eiθiNj(ξj) = eiθieiηijNi(ξj).

This implies that ηij(ξj) = −θi ≤ 0. On the other hand, we have Ni(ηi) = ηi while
Inequality (2.31) states that

Nj(ηi) = eiθjηi = eiθjNi(ηi) = eiθje−iηijNj(ηi) ,

with θj ∈ [0, π/2[ following the previous argument. Hence, ηij(ηi) = θj ≥ 0. Since
ηij(w) ∈ ] − π, π[ and changes sign as the direction w varies from ξj to ηi, there exists
a direction w in ]ξj,ηi[ where ηij vanishes and both normals are equal. The same argument
applied to the three other intervals, shows that there are four directions at infinity where the
normals coincide, i.e. the co-gradient function H has four roots at infinity.
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To conclude the proof, we need to show that a single connected component of the hyperbola
crosses the centers of the two ellipses. It is easy to verify that ci and cj belong to Hij

by substituting directly into (3.20). Consider the function α(x) = ni(x) · nj(x) for all x
belonging to the smooth affine variety Hij. By construction, α only takes on the values
±1 and is ill-defined at both centers. Since α is continuous on Hij \ {ci, cj}, it must have
constant values over each connected component of Hij \ {ci, cj}. Furthermore, for points x
far from the centers, the normals are related by nj = eiηijni where ηij ∈ ]−π, π[ and therefore
the dot product must take positive values, i.e. α(x) = +1. If the points ci and cj belong
to different branches of the hyperbola Hij, then each connected component of Hij \ {ci, cj}
reaches infinity and α must be equal to +1 everywhere. Yet, in the neighborhood of a center,
say ci, the normal nj varies smoothly, and along the tangent to Hij at ci, property ii) of
Lemma 1 states that the normals ni are equal and opposite on both sides of ci. Hence, the
function α must take opposite values, i.e. +1 and −1, when passing through the center ci
along the branch of the hyperbola. This would contradict the conclusion that α is identically
+1 on Hij \{ci, cj}, following from the hypothesis that ci and cj belong to different branches
of Hij. The existence of the parameterization γij is a trivial consequence of the fact that
both centers belong to the same branch of the hyperbola.

Corollary 7. Two ellipses Ei, Ej ⊂ R2 with non-penetrating CoM are parameterized by an
open subset of

(
R2×SPD2(R)

)2
, a manifold of dimension 10. The hyperbola Hij only degen-

erates for a subset of codimension 3. When the hyperbola Hij degenerates, then it can only be
either two intersecting lines, or a line with a second line at infinity. The line at infinity can
only appear if the principal axes of both ellipses are aligned and have the same aspect ratio.

Proof. The analysis in Lemma 6 has already shown that the degenerate quadratic cannot
be formed of a single point (ci, cj ∈ Hij), two parallel lines or two coincident lines (Hij at
infinity always has ≥ 4 points). The only two remaining possibilities are those mentioned
in the statement of the Corollary. To complete the proof we will first deduce the conditions
required for Hij to contain a line at infinity. Afterwards, we will identify the conditions under
which the co-gradient locus contains at least one line.

If the ellipses have aligned axes, then the relation (2.31) clearly implies that the co-gradient
locus possesses a line at infinity if and only if the aspect ratios are the same. Suppose now
that the axes are not aligned but that the co-gradient locus still possesses a line at infinity.
We will show that these hypothesis lead to a contradiction. Considering the axis directions as
elements of S1, suppose that ξj ∈]ξi,ηi] although similar arguments will apply if it belonged
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to ]ηi,−ξi[. Given thatHij possesses a line at infinity, we have thatNi = Nj and in particular

Ni(ξj) = Nj(ξj) = ξj , Nj(ξi) = Ni(ξi) = ξi . (3.28)

The map Ni cannot be the identity map, or else both ellipses would be circles and hence
have aligned axes. Hence, for w = eiσξi with σ ∈]0, π/2[, there exists θ ∈]0, π/2[ satisfying

N (eiσξi) = ei(θ+σ)ξi , with tan(θ + σ) = (ai/bi)2 tan σ .

The first relation in (3.28) for ξj = eiσξi gives us

ξj = Ni(ξj) = Ni(eiσξi) = ei(θ+σ)ξi = eiθξj ,

that is θ = 0. The implicit relationship (2.31) between θ and σ shows that θ can vanish only
if ai/bi = 1. Repeating the same argument with the second relation in (3.28) proves that
aj/bj = 1. In conclusion, if the axes are not aligned but Hij possesses a line at infinity then
both ellipses are circles.

We now attempt to determine the most general conditions under which the co-gradient locus
can degenerate to a pair of intersecting lines. If we examine the values of the continuous
function α(x) = ni(x) · nj(x) along Hij, we notice that it only takes on the values ±1.
During the proof of Theorem 6, we observed that α changes sign as we cross either center
but that α on co-gradient locus always took the value α(x) = 1 when ‖x‖ was sufficiently
large. This implies that if Hij degenerates to two intersecting lines, then the two centers
cannot belong to different lines, and when they do, the second line cannot cross the first
between the two centers.

Consider the line connecting both centers, which can be parametrized as ci+tw, for t ∈ ]0, τ [,
with w = (cj − ci)/‖cj − ci‖ so that τ = ‖cj − ci‖. Along this segment, property iii) of
Lemma 1 states that the normals are constant. Using properties ii) and iv)-(c) of Lemma 1
only on the portion of the line between both centers, we compute

ni(ci + tw) = Ni(w) = eiθiw,

nj(ci + tw) = nj(cj + (t− τ)w) = Nj(−w) = −eiθjw = −eiθje−iθiNi(w) .

In the previous identities, the angles were functions θk = θk(σk) for w = eiσkξk, k = i, j,

according to the implicit relations

tan
(
θk + σk

)
=
(
ak
bk

)2
tan σk, k = i, j. (3.29)
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Since Ni(w) = −Nj(−w), we conclude that

θi = θj. (3.30)

Each ellipse is parameterized in a space of dimension 5, two for each center ck and three
for each matrix Qk. These 10 parameters determine ak, bk, σk, and θk, hence the three
identities (3.30) and (3.29) determine a subspace of co-dimension 3 where Hij is degenerate.
In other words, Sard’s Theorem [68, 69] states that Hij degenerates only over a subset of
measure zero in the space of parameters for Ei and Ej.

Remark 3. We will present a degenerate co-gradient locus formed of two intersecting lines
but for a pair of ellipses whose principal axes are not aligned. This example is instructive
in that it goes beyond the degenerate examples identified during the proof of Theorem 6 and
demonstrates that Conditions (3.29) and (3.30) are non-empty. Furthermore, this example
is new to the literature and could be used for code verification.

Consider the ellipse Ei described by its geometric potential

fi(x) = x2

3 + y2 − 1 . (3.31)

The point xi = [
√

3/2, 1/
√

2]T belongs to Ei and the line ` through the origin and xi forms
an angle of π/6 with the horizontal axis because

tan(π/6) = 1/
√

3 .

Using the formula (2.16) shows that the gradient to Ei at xi is given by

∇fi(xi) = [
√

3/2,
√

2]T .

A simple calculation shows that the angle measured counter-clockwise between xi and ∇fi(xi)
is also π/6. This conforms with the relation (2.31),

tan
(
π

6 + π

6

)
=
(√

3
)2

tan
(
π

6

)
.

Our objective is to construct an ellipse Ej whose center cj belongs to the line ` and whose
normal Nj in the direction −xi is opposite to the normal Ni in the direction xi. To keep this
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as simple as possible, we will describe the ellipse in its local coordinates

f̂j(x) = ξ2

2 +
√

3
+ η2 − 1 , (3.32)

and we introduce the point

x̂j =

−
√√√√2 +

√
3

3 +
√

3
,−

√√√√2 +
√

3
3 +
√

3


T

,

on the ellipse. With respect to the ξj axis and measured counter-clockwise, the line through
the origin and x̂j forms an angle of 5π/4. The gradient to Ej gradient at x̂j is

∇f̂j(x̂j) = 2

− 1√
(2 +

√
3)(3 +

√
3)
,−

√√√√2 +
√

3
3 +
√

3


T

,

and it is easy to see that it forms an angle of π/6 with x̂j. Hence, the relation (2.31) is again
satisfied

tan
(
π

6 + 5π
4

)
=
(
2 +
√

2
)

tan
(5π

4

)
,

using the fact that tan(5π/12) = 2 +
√

3.

The ellipse Ej can be translated so that cj is located along the line `, say in the first quadrant,
and then it can be rotated by −π/12 = π/6− π/4 so that the point x̂j also falls on the line.
Afterwards, the axes of the two ellipses will no longer be aligned but their normals will be
opposite everywhere on the line between the two centers. The line ` will therefore be a part of
the co-gradient locus. We conclude by remarking that this example clearly satisfies the three
conditions for degeneracy of Corollary 7.

As mentioned at the beginning of Section 3.1, the intersection of two ellipses can lead to four
different types of intersection sets. Yet in practice, the estimation of the distance between
two ellipses is usually of interest when they are close, which is intuitive but contradictory
statement. How can one say two objects are close without estimating their distance? We
begin by studying the intersection of two circles and presenting a condition under which the
intersection of two overlapping circles contains only two points.

Lemma 8. Consider a pair of overlapping circles Ci, Cj with non-penetrating CoM. If Di and
Dj are the closed discs bounded by the respective circles Ci and Cj, then the intersection can
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be split into closed domains
Di ∩Dj = A+

ij ∪ A−ij,

whose intersection is A+
ij∩A−ij = Hij∩(Di∩Dj), both of which are diffeomorphic to a triangle

T =
{

(λi, λj) ∈ R2
∣∣∣∣ λ̂j(λi) ≤ λj ≤ 1

}
,

defined by the constraint λ̂j : [0, 1]→ R, with the help of the maps

ϕ± : A±ij −→ T

x 7−→
(
λi(x), λj(x)

)
.

(3.33)

Proof. We begin by simplifying the geometry through a translation and a rotation sending
the center ci to the origin, and the second center cj to (cj, 0) along the positive x-axis.
Corollary 7 states that the co-gradient locus is the x-axis with a second branch at infinity.
The potential for the circles are

fi(x, y) =
(
x

ri

)2
+
(
y

ri

)2
− 1,

fj(x, y) =
(
x− cj
rj

)2
+
(
y

rj

)2
− 1,

and the normalized distance to the centers as

λi(x, y) =
(
fi(x, y) + 1

)1/2
,

λj(x, y) =
(
fj(x, y) + 1

)1/2
.

Notice that the notation cj = (cj, 0) might induce some confusion.

We now proceed to detail the intersection between the two discs. The circles are overlapping,
hence cj < ri + rj. The non-penetrating CoM implies the additional condition

{ri, rj} < cj .

The intersection can be characterized as

Di ∩Dj =
{
x ∈ R2

∣∣∣∣λi(x), λj(x) ≤ 1
}

= A+
ij ∪ A−ij,
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where

A+
ij =

{
x = (x, y) ∈ Di ∩Dj

∣∣∣x ≥ 0
}
, A−ij =

{
x = (x, y) ∈ Di ∩Dj

∣∣∣x ≤ 0
}
.

It is clear that A+
ij ∩A−ij is the portion of Hij at the intersection of the two discs. For a point

x ∈ Di ∩Dj, the smallest value that can be attained by λj(x) occurs along the x-axis and is
(cj − riλi(x))/rj. For each value of λi, the value of λj therefore ranges between [λ̂j, 1] where

λ̂j(λi) := cj − riλi
rj

.

This allows us to define the triangular domain

T :=
{

(λi, λj) ∈ R2
∣∣∣∣ (cj − rj)/ri ≤ λi ≤ 1, λ̂j(λi) ≤ λj ≤ 1

}
.

Our objective is now to show that the maps ϕ± are bijective diffeomorphisms. Given a point
(λi, λj) ∈ T , we will find a point x ∈ A+

ij, or A−ij, such that

ϕ+(x) = (λi, λj), or ϕ−(x) = (λi, λj).

For x = (x, y), the map is

λ2
i =

(
x

ri

)2
+
(
y

ri

)2
,

λ2
j =

(
x− cj
rj

)2
+
(
y

rj

)2
.

If we isolate the x coordinate, we find

r2
jλ

2
j − r2

i λ
2
i = (x− cj)2 − x2 = −2xcj + c2

j =⇒ x = 1
2cj

(
r2
i λ

2
i − r2

jλ
2
j + c2

j

)
.

Substituting back into the equation for λ2
i and simplifying

y2 = r2
i λ

2
i − x2 = r2

i λ
2
i −

1
4c2
j

(
r2
i λ

2
i − r2

jλ
2
j + c2

j

)2
.

This equation possesses two solutions for y, corresponding to either the map ϕ+ or ϕ−. Taking
λi = λj = 1, we can quickly verify that there are only two solutions at the intersection of the
two circles.

The previous calculation shows that ϕ± are bijective between A±ij and T . To show that they
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are diffeomorphisms, we compute the differential by first observing that

∇fk = ∇λk = 2λk∇λk,

hence

dϕ±(x) =
 ∇λi
∇λj

 =


1

2λi
∇fi

1
2λj
∇fj

 .
If one recalls the definition (3.20) of H, once can conclude that

det
(
dϕ±(x)

)
= H(x)

4λi(x)λj(x) .

In the case of two circles, a simple calculation shows that

det
(
dϕ±(x)

)
= ycj
λi(x)λj(x)r2

i r
2
j

,

which only vanishes along the co-gradient locus.

The analysis of the overlap between two circles has demonstrated that the condition of non-
penetrating CoM is sufficient to characterize closeness. The next definition is a condition
for ellipses that generalizes the previous condition, but relies on the intrinsic notion of co-
gradient locus. Such a description can be used to clarify the convergence analysis of contact
detection algorithms, much in the same way that a Taylor series is used, thereby avoiding
the study of degenerate cases. To the best of the our knowledge, no such precise description
exists in the literature.

Definition 6. [Ellipses in near perfect contact] Two ellipses Ei, Ej ⊂ R2 with non-
penetrating CoM are said to be in near perfect contact if

|ti − tj| · ‖γ ′ij(ti)‖
mink=i,j 2ρ

k
|γ ′ij(tk) · nk(γij(tk))|

� 1, (3.34)

where γij, ti, tj are defined as in Theorem 6, nk(γij(tk)) is the outward normal unit vector
to Ek at point γij(tk) on Ek, and ρk = b2

k/ak (2.18) is the smallest radius of curvature on Ek,
k = i, j.

Remark 4. The proof of the next theorem will show that this analytic condition implies
that the pair of ellipses satisfy two geometric properties. To explain these conditions, we
introduce D+

k (r) the disc of radius r tangent to Ek at γij(tk) but whose interior is disjoint
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from Ek := {x | fk(x) ≤ 0}. Similarly, let D−k (r) be the disc of radius r tangent to Ek whose
interior lies inside Ek. Intuitively, D+

k (r) (D−k (r)) is the disc tangent to Ek placed on the
outside (inside) of Ek, see Figure 3.5 (a). We will also be using ρ

k
and ρk the minimum and

the maximum of the radius of curvature of the ellipse Ek, respectively.

Condition 6 implies that

1) the discs D−i (ρ
i
) and D−j (ρ

j
) have non-penetrating CoM; and

2) the portion of Hij inside the intersection of the two ellipses is entirely inside the inter-
section D−i (ρ

i
) ∩D−j (ρ

j
).

Theorem 9. Consider two ellipses Ei, Ej ⊂ R2 in near perfect contact, and let ti and tj be
defined as in Theorem 6. Then the intersection Iij = Ei ∩ Ej is one of three options:

1) if ti < tj, then Iij = ∅, i.e. the ellipses are disjoint;

2) if ti = tj, then Iij consists of a singleton, i.e. the ellipses are in perfect contact;

3) if ti > tj, then Iij consists of two distinct points, i.e. the ellipses have small overlap.

Proof. This will not be a complete proof of Theorem 9 but will attempt to explain how the
condition is related to the two geometrical properties in the previous remark, as well as the
maps ϕ± describing the intersection. We begin by studying the neighborhood of the point
γij(ti) ∈ Ei. The tangent to the curve γij at γij(ti) is not necessarily in the same direction
as the normal ni(γij(ti)), but certainly not perpendicular, and we note the defect as

η = arccos
(
ni(γij(ti)) · γ ′ij(ti)

‖γ ′ij(ti)‖

)
∈ ]− π/2, π/2[ .

We now establish a condition under which the tangent line to γij at γij(ti) remains inside
D−i (ρ

i
) ∪ D+

i (ρ
i
). By translating γij(ti) to the origin, then applying a rotation to send the

tangent line to Ei at ti to the horizontal x-axis, see Figure 3.5 (b). We observe that we can
reduce the analysis to showing that a curve crossing the origin at an angle η with respect to
the vertical axis remains inside the discs tangent to the x-axis centered at the origin.

Recall the formula (2.18) for the smallest radius of curvature ρ
i

:= b2
i /ai, and the parame-

terization of the points on the boundary of D−i (ρ
i
), centered at (0,−ρ

i
) below the horizontal

axis: (
ρ
i
cos(θ), ρ

i
sin(θ)− ρ

i

)
, ∀θ ∈ [−π, π[.
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Ei

Ej

Hij

x
γij(ti)

γij(tj)

D+
i (ρ

i
)

D−j (ρ
j
)

D−i (ρ
i
)

D+
j (ρ

j
)

D+
i (ρ

i
)

D−i (ρ
i
)

ti

γij

ni
γ ′ij

y

(a) (b)

Figure 3.5 (a) Illustration of disks at points γij(tk) with k = i, j for a pair of ellipses Ei and
Ej. (b) Transformation of two disks D±i (ρ

i
) where γij(ti) is at the origin and the tangent line

to Ei at ti is aligned with the horizontal x-axis.

The smooth curve γij remains close to its tangent line sγ ′ij(ti), ∀s ∈ R. We now compute
the length of the portion of the tangent line inside D−i (ρ

i
), which by symmetry will be of

the same length inside D+
i (ρ

i
). The tangent line forms an angle η with the vertical axis and

let p 6= 0 be the unique point on D−i (ρ
i
) where the tangent line crosses. We observe that

an equilateral triangle is formed between the origin 0, the center (0,−ρ
i
), and the point p

with two sides of length ρ
i
and two angles of measure η. The length we are looking for is the

length of the side of this equilateral triangle opposite to the center (0,−ρ
i
). Based on this

geometry, it is easy to verify that the length of the portion of the tangent line inside D−i (ρ
i
)

is
2ρ

i
cos(η) = 2ρ

i
ni
(
γij(ti)

)
·
γ ′ij(ti)
‖γ ′ij(ti)‖

.

The curve γij(t) will remain close to its tangent line as long as the parameter t stays close to
ti, with the deviation being proportional to |t− ti|2 and the curvature of γij. Requiring that
the distance |ti− tj| along the curve γij be small when compared to the length above implies
that the curve cannot exit D+

i ∩D−i and hence the portion of Hij with t close to both ti and
tj crosses Ei only once. The minimum over i and j in (3.34) also constrains the co-gradient
locus, at least the part inside D−j (ρ

j
) ∪ D+

j (ρ
j
), to contain only a single point from Ej. It

is also clear that by taking tj − ti sufficiently small and negative, then the two discs D−i (ρ
i
)
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and D−j (ρ
j
) will satisfy the non-penetrating CoM condition.

We can now distinguish the following three cases:

• If ti = tj then the definition of the co-gradient locus implies that both ellipses have
opposing normals and that the two ellipses are in perfect contact.

• Suppose now that both ti < tj and (3.34) are satisfied. The portion of the co-gradient
locus between γij(ti) and γij(tj) must be inside D+

i (ρ
i
) ∪D+

j (ρ
j
), which is outside of

both ellipses. There exists a unique ellipse Ej(rj) which is tangent to Ei at γij(ti) and
because γij(ti) is outside of Ej, rj must be greater than 1. Since both Ei and Ej(rj) are
convex and tangent, then Ei is disjoint from Ej(rj) and the set Ej strictly bounded by
Ej(rj). These remarks imply that the ellipses are disjoint when ti < tj.

• Suppose now that both tj < ti and (3.34) hold. The objective is to show that Ei ∩ Ej
contains exactly two points, which is fundamentally no longer a question only about a
neighborhood of γij(t) and t ∈ [ti, tj]. The question will be answered by providing a
detailed description of the region at the intersection Ei ∩ Ej. The characterization of
the intersection Ei∩Ej will be a simple corollary of the description of Ei∩Ej. We shall
show that there exists a diffeomorphism of a triangle towards each half of the domain
Ei ∩ Ej \ Hij.

We begin by identifying a subdivision of Ei∩Ej. Following the definition of H in (3.18),
we can construct

A+
ij =

{
x ∈ Ei ∩ Ej ; H(x) ≥ 0

}
,

A−ij =
{
x ∈ Ei ∩ Ej ; H(x) ≤ 0

}
,

and deduce that
A+
ij ∪ A−ij = Ei ∩ Ej .

Intuitively, the normalized co-gradient function (3.23) can be used to uniquely define
the angle ηij(x) between the two normals in a neighborhood of Hij according to

Ĥ(x) = sin ηij(x) = 0 ⇐⇒ ηij(x) = π,

and the convention that we measure increasing ηij when rotating counter-clockwise from
ni to nj. Hence, for all x in a neighborhood of Hij = A+

ij ∪A−ij, there is a well-defined
angle ηij(x) with values near π. Since the scalar function H is the z-component of the
cross-product ni × nj, the two regions A+

ij and A−ij correspond to the regions where
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ηij(x) is respectively less than π and greater than π, see Figure 3.6 (a). As introduced
earlier in Section 2.3, each point x ∈ R2 belongs to unique scaled ellipses Ei(λi(x)) and
Ej(λj(x)) where the real valued functions

λk(x) =
√
fk(x) + 1, k = i, j,

are smooth. The gradient of these functions are multiples of the gradient because

∇fk = ∇λ2
k = 2λk∇λk.

The values of λi and λj along the co-gradient locus range between

λi ∈ [ri, 1], λj ∈ [rj, 1],

where ri := λi(γij(tj)) and rj := λj(γij(ti)). More precisely, along the segment
γij([ti, tj]) the parameter λi(γij(t)) is increasing and λj(γij(t)) is decreasing and there-
fore we can parameterize λj as a function of λi along the segment, say λ̂j(λi). From
this, we can define a triangular domain

T =
{

(s1, s2) ∈ [ri, 1]× [rj, 1]
∣∣∣ s2 ≥ λ̂j(s1)

}
,

and two smooth maps

ϕ± : A±ij −→ T

x 7−→
(
λi(x), λj(x)

)
.

The determinants of the differentials of these maps are

det
(
dϕ±

)
=

∣∣∣∣∣∣ (∇λi)T

(∇λj)T

∣∣∣∣∣∣ = 1
4λi(x)λj(x)

∣∣∣∣∣∣ (∇fi)T

(∇fj)T

∣∣∣∣∣∣ = H(x)
4λi(x)λj(x) ,

hence the maps ϕ± are of rank 2 except along Hij. This implies that each map is
locally bijective, at least in the interior of A±ij.

The analysis presented so far shows that ϕ± is a diffeomorphism only in a neighborhood
of Hij. A complete proof would require a proof that λj is monotone along the boundary
of Ei in A±ij, and vice versa for λi. This would demontrate that ϕ± is bijective along
the boundaries. Given that D−k (ρ

k
) is tangent to Ek, it is intuitively clear that if

Lemma 8 holds for both discs, then the maps ϕ± for ellipses should also characterize
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s1 = ri s1 = 1

s2 = 1

s2 = rj

Ei

Ej

A+
ij

A−ij

Hij

ri 1

s1

s2

1

rj

T

λ̂j

γij(ti)

γij(tj)

(a) (b)

Figure 3.6 Illustration of the proof of Theorem 9. (a) The ellipses Ei and Ej are in near perfect
contact with overlap. The region A+

ij is illustrated with bold boundary. (b) The region T
which is mapped by function ϕ from region A+

ij. The curve λ̂j which is mapped from the
curve A+

ij ∩ A−ij.

the intersection Ei ∩ Ej.

Remark 5. If we consider MDP as a pair of points (xi,xj) ∈ Ei × Ej without satisfying the
condition of opposite outward unit normal vectors ni(xi) and nj(xj) to Ei and Ej, respectively,
we have:

(xi,xj) = argmin
(x̂i,x̂j)∈Ei×Ej

‖x̂i − x̂j‖ = argmin
(x̂i,x̂j)∈Ei×Ej

1
2‖x̂i − x̂j‖

2. (3.35)

The solution of above problem is the intersection pair for ellipses Ei and Ej with small overlap.
Moreover, if we add opposite outward unit normal constraint to Problem (3.35), then we find
a unique solution as MDP pair:

(xi,xj) = argmin
(x̂i, x̂j) ∈ Ei × Ej

ni(x̂i) + nj(x̂j) = 0

‖x̂i − x̂j‖ = argmin
(x̂i, x̂j) ∈ Ei × Ej

ni(x̂i) + nj(x̂j) = 0

1
2‖x̂i − x̂j‖

2. (3.36)

On the other hand, the MPP (xi,xj) ∈ Ei × Ej for two ellipses Ei and Ej with small overlap
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is the unique solution to problem

xi = argmin
x∈Ei

‖x− cj‖Ej
= argmin

x∈Ei

fj(x), (3.37)

xj = argmin
x∈Ej

‖x− ci‖Ei
= argmin

x∈Ej

fi(x), (3.38)

and the constraints

ni(xi) + nj(xi) = 0, (3.39)

ni(xj) + nj(xj) = 0. (3.40)

are still non-binding.

Therefore, the unique MPP (xi,xj) is also the solution to problems

xi = argmin
x ∈ Ei

ni(x) + nj(x) = 0

‖x− cj‖Ej
= argmin

x ∈ Ei

ni(x) + nj(x) = 0

fj(x), (3.41)

xj = argmin
x ∈ Ej

ni(x) + nj(x) = 0

‖x− ci‖Ei
= argmin

x ∈ Ej

ni(x) + nj(x) = 0

fi(x). (3.42)

and

xi = argmin
x∈Ei∩Hij

fj(x), (3.43)

xj = argmin
x∈Ej∩Hij

fi(x). (3.44)

3.5 Relationship to Time-dependent Contact Detection

For pairs of rapidly moving and/or rotating ellipses/ellipsoids, estimating the contact point
and the penetration distance requires anticipating future positions. More specifically, the
future contact point might be very different from the MDP at a given time when the relative
velocity of the two particles is large and their surfaces are close. In this section, we show
that the constraint of the co-gradient locus Hij appearing in the MPP can be interpreted
as enforcing displacements of the ellipses along a specific trajectory. In other words, we
can interpret Hij as a specific particle trajectory bringing the two ellipses in contact. The
purpose of this section is not to study time-dependent collision detection for which there
exists particular techniques, such as the continuous contact detection method of Wang et
al. [63].
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Consider two ellipses Ei, Ej that are disjoint but in near perfect contact. Consider the
parameterization γij of the curve Hij going from ci = γij(0) to cj = γij(1), and fix t ∈ ]ti, tj[
corresponding to γij(t) in the exterior of both ellipses. Along the directed line cjγij(t),
there is one unique intersection point pj(t) ∈ Ej, which depends analytically on t, and the
translation is defined by

Tt : R2 −→ R2

x 7−→ x+
(
γij(t)− pj(t)

)
.

Remark that γij(t)− cj and γij(t)− pj(t) are colinear, hence the displaced ellipse TtEj has
the same normal along the line Ttcj to Ttpj(t) as it had along the line connecting cj to γij(t).
This implies that Tt will map pj(ti) to γj(ti) and that at γij(ti), the normal to TtEj will be
the same as nj for Ej. The definition of Hij then implies that the image of TtiEj will be in
perfect contact with Ei.

We have therefore shown that as t goes from tj to ti, the transformation Tt brings Ej in
contact with Ei at γij(t). This transformation does not correspond to a freefall trajectory
for Ej, because on one hand, each translation Tt preserves the orientation and therefore the
physical displacement could not have applied torque. Yet, the displacement of the center of
mass Ttcj is determined (indirectly) by the points on a hyperbola in any rotated frame of
reference, and therefore does not follow a parabola. Hence Tt does not describe a physical
displacement.

We conclude this section by highlighting a relationship between the MPP and the Perram-
Wertheim theory of contact detection [25, 59]. The construction described above can be
symmetrized by redefining the translation Tt as T (j)

t and introducing a second one

T
(i)
t : R2 −→ R2

x 7−→ x+
(
γij(t)− pi(t)

)
where pi(t) is the unique intersection point of the directed line ciγij(t) with Ei. In this case,
for every t ∈ [ti, tj] the translations T (i)

t and T (j)
t send Ei and Ej respectively to ellipses that

are in perfect contact at γij(t). This is similar to the construction of Perram and Wertheim
that identifies the family of scalings of Ei and Ej such that the scaled ellipses come in perfect
contact. A notion of distance is then defined from this construction, just as |ti− tj| serves as
a proxy for distance. It is also interesting to note that the Perram-Wertheim theory is also
expressed as a basic unconstrained minimization problem.



49

3.6 Extension to Ellipsoids

One of our objective is to review and compare algorithms for the rapid and accurate estima-
tion of separation/penetration distance for pairs of ellipses and ellipsoids in the quasi-static
regime. The main mathematical results are Lemma 1, Theorem 6 and Theorem 9 which were
all stated and demonstrated in 2-D, so it is natural to enquire as to what can be said in three-
space dimension. In this section, we will briefly suggest how these three could be extended
to 3-D. Before proceeding, we remark that Definitions 4 and 5 have obvious extensions, that
Lemmas 3 and 4 and Theorem 5 have identical statements and proofs in 3-D.

The most difficult result to extend to 3-D is Theorem 6 and it should be studied with the
techniques of algebraic geometry [64,70]. Lemma 1 was only a preliminary result for the proof
of Theorem 6 and provided tools to circumvent real projective geometry, hence we will analyze
only Theorem 6. As far as Theorem 9 is concerned, the extension to 3-D is straightforward
assuming that Hij has been characterized. In fact, our initial proof of Theorem 9 was carried
out in 3-D and the key map ϕ is slightly easier to study because the intersection Ei ∩ Ej is
path-connected (but not simply connected).

The statement in 3-D of Theorem 6 concerns the co-gradient locus Hij which is now the set
of common roots of each of the three components of the cross-product (3.16), each of which
can be written roughly in a quadratic form similar to (3.20). Each component defines a 2-
dimensional subvariety that intersects the sphere at infinity in real projective space of three
dimension RP 3 along a curve. We conjecture that, as we did in 2-D, we can characterize the
common zeros in R3 by identifying the isolated intersection points of the three 1-D curves
at infinity. Each ellipse will define three planes corresponding to each pair of its orthogonal
axis, where the normals take on known values. These six curves on the sphere at infinity will
provide a triangular subdivision of the sphere and the existence of a root to (3.16) in each
triangle will be determined by examining the signs of the components of H along the edges
and nodes of the triangle.

We deemed that complete proofs in 3-D would have distracted readers from the focus on
the definitions of contact points and on the comparison between the different algorithms.
Nevertheless, such extensions should be studied and we encourage other researchers more
familiar with the necessary tools to address these questions.

3.7 Mapping of (Ei, Ej)

Many of the algorithms to be presented in Chapters 4 and 5 share a common feature that the
problem can be simplified by introducing normalized coordinates where one of the ellipses has
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become a circle. In this section, we review two mapping steps, see sections 3.7.1 and 3.7.2.
The mapping will simplify the later presentation of the algorithms, and one of our proposed
techniques for guessing the contact point, see Section 5.3, is done in one of the normalized
coordinate systems we introduce below. We remark that the estimation of the contact point
is rarely addressed in the literature and, to the best of our knowledge, the focal point estimate
presented in Section 5.3 is new. It is worth noting that the following mappings are easily
extendable to ellipsoids.

3.7.1 Mapping of (Ei, Ej) into a Unit Circle Ĉi Centered at Origin and an Ellipse
Êj

The first mapping was suggested by Ting et al. in [46]. Let Ei and Ej be two arbitrary ellipses
defined by

fi(x) = (x− ci)TQi(x− ci)− 1 = (x− ci)TRiDiRT
i (x− ci)− 1 = 0, (3.45)

fj(x) = (x− cj)TQj(x− cj)− 1 = (x− cj)TRjDjRT
j (x− cj)− 1 = 0, (3.46)

where the diagonal matrices Di and Dj and the rotation matrices Ri and Rj are as defined
in (2.3) and (2.2), respectively.

ĉj

Ĉi

Ô x̂

Êj

cj

ci

Ei

Ej

O x

y ŷ

Figure 3.7 Mapping of (Ei, Ej) into a unit circle Ĉi centered at origin and an ellipse Êj.

The mapping consists in transforming one of the two ellipses, say Ei, into the unit circle Ĉi
centered at the origin and the other ellipse Ej into the ellipse Êj, see Figure 3.7. The mapping
that transforms Ĉi into Ei consists of the transformation D−1/2

i , followed by the rotation Ri

of angle θi and the translation ci. We thus have

x = RiD−1/2
i x̂+ ci. (3.47)
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Indeed, it is straightforward to check that the equation of the circle Ĉi in the coordinate
system (Ô, x̂, ŷ), using (3.47) in (3.45), thus reads:

f̂i(x̂) = x̂T x̂− 1 = 0. (3.48)

The equation of the new ellipse Êj, following the mapping of ellipse Ej, is obtained by sub-
stituting (3.47) in (3.46). We find that Êj in the (Ô, x̂, ŷ) coordinates are the roots of

f̂j(x̂) = (x̂− ĉj)TD−1/2
i RT

i QjRiD−1/2
i (x̂− ĉj)− 1 = 0,

where we have introduced ĉj satisfying

RiD−1/2
i ĉj = cj − ci, (3.49)

The equation for f̂j reduces to

f̂j(x̂) = (x̂− ĉj)T Q̂j(x̂− ĉj)− 1 = 0, (3.50)

where
Q̂j = R̂jD̂jR̂T

j ≡ D
−1/2
i RT

i QjRiD−1/2
i = D−1/2

i RT
i RjDjRT

j RiD−1/2
i .

For the sake of completeness, we remark that the coefficients of Q̂j, i.e.

Q̂j =
Âj Ĉj

Ĉj B̂j


can be found explicitly as

Âj = a2
i

(
cos2(θj − θi)

a2
j

+ sin2(θj − θi)
b2
j

)
,

B̂j = b2
i

(
sin2(θj − θi)

a2
j

+ cos2(θj − θi)
b2
j

)
,

Ĉj = aibi

(
1
a2
j

− 1
b2
j

)
cos(θj − θi) sin(θj − θi),

and the parameters {âj, b̂j, θ̂j} associated with ellipse Êj can be recovered by identification
from the Formulas (2.10) or by computing the eigenvalues and eigenvectors of Q̂j.

The following lemma explains that the minimization problem in the new coordinates is related
to a minimization in the original coordinates.
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Lemma 10. In the coordinate system (Ô, x̂, ŷ), the Euclidean distance is the same as the
distance with respect to the Ei-norm in the original coordinates (O, x, y).

Proof. For every x, its image x̂ is computed as

D1/2RT
i (x− ci) = x̂.

We then have, for arbitrary x̂ and ŷ,
∥∥∥x̂− ŷ∥∥∥2

=
(
x̂− ŷ

)T(
x̂− ŷ

)
=
(
D1/2
i RT

i (x− ci)−D1/2
i RT

i (y − ci)
)T(
D1/2
i RT

i (x− ci)−D1/2
i RT

i (y − ci)
)

=
((
x− ci

)
−
(
y − ci

))T(
D1/2
i RT

i

)T
D1/2
i RT

i

((
x− ci

)
−
(
y − ci

))
=
(
x− y

)T
RiDiRT

i

(
x− y

)
=
∥∥∥x− y∥∥∥2

Qi

.

3.7.2 Mapping of (Ei, Ej) into a Unit Circle C̄i and an Ellipse Ēj Centered at
Origin

Džiugys and Peters [24] suggested another mapping such that the ellipse Êj introduced above
is now positioned in its local reference system denoted here as (Ō, x̄, ȳ). We will describe this
new mapping as the previous mapping followed by a rotation and a translation sending the
previous ellipse Êj to the origin with axes aligned with (Ō, x̄, ȳ). The circle Ĉi, previously at
the origin under the mapping of Section 3.7.1, is now shifted around the ellipse centered at
the origin, see Figure 3.8.

The mapping amounts to considering the transformation that maps x̄ into x̂ in R2 by the
rotation R̂j and translation ĉj:

x̂ = R̂jx̄+ ĉj, (3.51)

so that circle Ĉi, located at the origin, is now mapped into circle C̄i with center c̄i as

c̄i = −R̂T
j ĉj.
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Figure 3.8 Mapping of (Ei, Ej) into a unit circle C̄i and an ellipse Ēj centered at origin.

The equations of the two ellipses in the new coordinate system (Ō, x̄, ȳ) are then given by

f̄i(x̄) = (x̄− c̄i)T (x̄− c̄i)− 1 = 0,

f̄j(x̄) = x̄T D̂jx̄− 1 = 0.
(3.52)

In other words, the original ellipse Ej is now transformed into the ellipse Ēj centered at the
origin and the ellipse Ei is mapped into the unit circle C̄i centered at c̄i using the global
transformation obtained by combining (3.47) and (3.51)

x = RiD−1/2
i (R̂jx̄+ ĉj)+ci = RiD−1/2

i R̂jx̄+
(
RiD−1/2

i ĉj +ci
)

= RiD−1/2
i R̂jx̄+cj, (3.53)

where, we have used (3.49) to obtain the last expression.

Remark 6. The transformation of an arbitrary pair of ellipses into an ellipse in its local
coordinate system and a circle can be useful to simplify the mathematical analysis of the pair
of ellipses. As an example, we can easily show that the co-gradient locus is a hyperbola.
Recalling the co-gradient function (3.20), the equation of the co-gradient locus reads

H(x) = 4(x− ci)TQiAQj(x− cj) = 0,

where in this particular case

A =
 0 1
−1 0

 , Qi =
1 0

0 1

 , Qj =
1/a2

j 0
0 1/b2

j

 , ci =
cx
cy

 , cj = 0.
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The equation can be rewritten as

xTM(x− ci) = xTMx− xTMci = 0,

where matrix M is given by

M =
 0 −1/a2

j

1/b2
j 0

 .
Developing the above equation leads to

(a2
j − b2

j)xy + b2
jcyx− a2

jcxy = 0. (3.54)

This is actually the equation of a hyperbola in the case that ai 6= bi. Indeed, using classical
formulas, the center of the hyperbola, is given by

xh =
a2
j

a2
j − b2

j

cx,

yh =
b2
j

b2
j − a2

j

cy,

and, using the change of variables ξ = x− xh and η = y − yh, the equation can be recast as

ξη =
a2
jb

2
j

(a2
j − b2

j)2 cxcy.

In the case that aj = bj, the locus reduces to a straight line passing through the origin (i.e.
the center of ellipse Ej, which is a circle here) and the center of circle Ci.
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CHAPTER 4 CONTACT DETECTION ALGORITHMS

The main goal of this chapter is to review the main contact detection algorithms for pairs of
ellipses that have been proposed in the literature and, more specifically, recast the methods as
minimization problems such as those satisfied by the MDP and MPP introduced in Chapter 3.
Many of the algorithms to be discussed were not explicitly defined as minimization problems
(with or without explicit constraints) and they were often categorized differently by the
researchers themselves. Since it is ultimately our hope to better highlight the similarities
and differences between the published algorithms, it is incumbent on us to introduce a new
classification which may conflict with those found in the literature. Whenever possible, we
will indicate those conflicts in naming and justify the new terms.

The framework will consist of a pair of ellipses Ei, Ej ⊂ R2 in near perfect contact, with or
without overlap, as defined in Definition 6, but we shall discuss, when deemed necessary, the
behavior of the algorithms for other configurations of the ellipses. A common feature of all
algorithms presented here is that they compute two points xi and xj on the ellipses Ei and
Ej, respectively. Then the contact point is defined as the midpoint between xi and xj

xc = 1
2
(
xi + xj

)
, (4.1)

and allows one to compute a penetration (or separation) distance dij = ‖xi−xj‖. Moreover,
one identifies the contact normal as unit vector of the average vector nc computed from the
normal vector ni(xi) and the opposite normal vector nj(xj)

nc(xc) = ni(xi)− nj(xj)
‖ni(xi)− nj(xj)‖

, (4.2)

or
nc(xc) = ni(xc)− nj(xc)

‖ni(xc)− nj(xc)‖
. (4.3)

In the case of finding the intersection of two ellipses, the normal is defined as a normal to the
line passes through the intersection set [41]. Moreover, the computation of normal vector is
proposed as a vector passes through the centers of two tangent circles at xi and xj [47]. The
tangent line is then defined as the line perpendicular to nc. As the relative positions of the
ellipses approach that of perfect contact, then the points xi and xj coalesce, the distance dij
vanishes, and the tangent line approaches to those of both Ei and Ej.
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4.1 Intersection Algorithm (IA)

The Intersection Algorithm was introduced by Rothenburg et al. in [41], and relies on esti-
mating the points in the intersection set Iij = Ei∩Ej introduced in Definition 2. It is perhaps
the most intuitive algorithm. We believe that it needs to be included in this chapter, despite
some of its drawbacks and limitations described below.

The Intersection Algorithm can be cast as the minimization problem (3.2), which, from a
practical point of view, consists in solving the system of equations:

fi(x, y) = Aix
2 +Biy

2 + 2Cixy + 2Dix+ 2Eiy + Fi = 0,

fj(x, y) = Ajx
2 +Bjy

2 + 2Cjxy + 2Djx+ 2Ejy + Fj = 0,
(4.4)

where fi and fj from Equation (2.13) are the global geometric potentials of Ei and Ej, re-
spectively. A priori, we make no assumptions concerning the two ellipses. If Ei and Ej do not
coincide, the system of equations can naturally be reduced into a single quartic equation in
the first coordinate x (alternatively, in the second coordinate y):

4∑
k=0

akx
k = 0. (4.5)

where the coefficients ak, k = 0, . . . , 4, of the polynomial can be explicitly given in terms of
the coefficients of (4.4), see [41] or Appendix A. The quartic equation (4.5) admits at most
four real roots x`, ` = 1, . . . , 4. Moreover, for each root x`, one can use an explicit formula
(see [41]) to compute the corresponding coordinate y`.

Different configurations of the ellipses will provide a different number of solutions to the
quartic equation (4.5):

1. There are no real root. This is the case when the two ellipses are disjoint, i.e. Iij = ∅,
whether they are disjoint with non-penetrating CoM or one ellipse lies inside the other
(penetrating CoM). In this case, the algorithm does not provide information about the
penetration distance.

2. There is one real root of multiplicity two. This is the case when there is a point at
which the two ellipses are in perfect contact or when the x-coordinate of two distinct
intersection points coincide. In the latter case, one cannot compute the y-coordinate
of the two distinct points using the explicit formula in [41]. Instead, given the common
x-coordinate x`, one should solve the quadratic equation in y using the global potential
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Figure 4.1 The points xi and xj are the intersection points of ellipses Ei and Ej, i.e. Iij =
{xi,xj} from Definition 2. The contact point xc between the ellipses is obtained by the
Intersection Algorithm (IA).

of ellipse Ei,
Biy

2 + (2Cix` + 2Ei)y + (Aix2
` + 2Dix` + Fi) = 0.

Alternatively, one could consider solving the quartic equation in y to obtain two distinct
roots yk. If a single root in x corresponds to a single point (x, y), then the separation
distance and the normal can be computed easily.

3. There are two real distinct roots only. This is the most common configuration if the
ellipses are in near perfect contact with overlap.

If xi and xj are two intersection points, the length ‖xi−xj‖ provides an approximation
of the length of the overlap. However, additional work needs to be done to provide an
estimate of the penetration, see more details in [41].

4. The four roots of the polynomial are all real, either all distinct, or two distinct roots
and one root of multiplicity two, or two roots of multiplicity two. In practice, these
cases are unlikely to occur in DEM applications since all are indicative of relatively
large overlaps between ellipses.

Drawbacks in the Intersection Algorithm are that one needs to compute all real roots of the
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quartic polynomial and handle all specific cases depending on the number of roots and their
multiplicity. A major issue though is that the algorithm is prone to numerical instabilities [41]
in the case of very small overlaps between ellipses when estimating the two points {xi,xj}
and the normal direction. For these reasons, it is usually not the recommended approach for
contact detection.

Moreover, the extension of the Intersection Algorithm to 3-D is increasingly more elaborate
since the intersection set Iij consists of 2-D ellipses on the surface of the ellipsoids. Given the
weaknesses of this approach, we will not be providing further details on its extension to 3-D.
However, we refer the reader to Ouadfel and Rothenburg [42] who proposed an algorithm in
3-D to find the contact point and contact normal.

4.2 Geometric Potential Algorithm (GPA)

The Geometric Potential Algorithm was first described by Ng et al. [43, 71] and has been
further improved by Ting et al. [46], Mustoe and Miyata [47], and Džiugys and Peters [24].
The GPA is based on the symmetric pair of minimization problems (3.8)-(3.9) that we recall
here for convenience

xi = argmin
x∈Ei

fj(x), (4.6)

xj = argmin
x∈Ej

fi(x). (4.7)

For any pair of ellipses in near perfect contact the two above problems have unique solutions,
see Lemma 4.

As the numerical experiments will show, the GPA is quite robust, even for pairs of ellipses with
high aspect ratios, and at a computational cost competitive with other methods. However,
two distinct problems must be solved and each problem generates up to four critical points
from which the global minimum must be found. Instabilities in the method may appear
during the root-finding step, although they have a geometric source.

We present several numerical implementations of the GPA, including Lagrangian and para-
metric formulations. Penalization has not been found to be an effective means of solv-
ing (3.8)-(3.9) because the wide range of values of volume and aspect ratio make the choice
of the penalization parameter difficult. In practice, the parametric implementation of the
GPA is fastest but requires slightly more analytic effort by the user. In GPA algorithm,
xi and xj are found by solving two distinct problems in the same way. Therefore, in the
following, we present only finding the point xj. The point xi is found in a similar fashion.

For convenience, the various algorithms and the problems in GPA are summarized in Table
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4.1. We also include in the table the Constrained GPA described in Section 4.3.

Table 4.1 Geometric potential algorithms with associated minimization problems

Algorithm Minimization Problem Reference

Lagrangian GPA (L-GPA)
xi = argmin

x∈Ei

fj(x)

xj = argmin
x∈Ej

fi(x) Lin and NG, 1995 [43]

Parametric GPA (P-GPA)
ti = argmin

t∈[−π,π[
f̂j(t)

tj = argmin
t∈[−π,π[

f̂i(t)
Mustoe and Miyata, 2001 [47]

Mapped GPA (M-GPA)
x̄i = argmin

x̄∈Ēi

‖x̄− c̄j‖2

x̄j = argmin
x̄∈Ēj

‖x̄− c̄i‖2 Džiugys and Peters, 2001 [24]

Constrained GPA (C-GPA)
x̂i = argmin

x̂∈Ĉi∩Hij

f̂j(x)

x̂j = argmin
x̂∈Ĉj∩Hij

f̂i(x)
Ting et al., 1993 [46]

4.2.1 Lagrangian GPA (L-GPA)

We describe the solution method proposed in [43] for the constrained minimization prob-
lem (4.7) to find xj. We thus introduce

Lj(x, λ) = fi(x)− λfj(x), ∀x ∈ R2, ∀λ ∈ R,

where the constraint x ∈ Ej, i.e. fj(x) = 0, is enforced via the Lagrange multiplier λ. Using
the representation (2.1) for fk, k = i, j, i.e.

Lj(x, λ) = (x− ci)TQi(x− ci)− λ(x− cj)TQj(x− cj),

the stationary points (x, λ) of the Lagrangian Li satisfy the system:

0 = ∂xLi(x, λ) = 2Qi(x− ci)− 2λQj(x− cj), (4.8)

0 = ∂λLi(x, λ) = (x− cj)TQj(x− cj)− 1. (4.9)
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Figure 4.2 The points xi and xj are obtained by the Geometric Potential Algorithm which
provides MPP, i.e. (xi,xj). Note that the contact point xc does not necessary belong to
gradient locus Hij.

Isolating x as a function of λ from (4.8), we find

x(λ) = (Qi − λQj)−1(Qici − λQjcj). (4.10)

Substituting (4.10) for x(λ) in (4.9) produces a quartic polynomial in λ:

4∑
k=1

akλ
k = 0, (4.11)

whose coefficients ak can be computed explicitly and can be found in [43] or Appendix B.1.1.
Solving (4.11) provides at least two and at most four real roots λ`, which in turn yields four
candidate points x(λ`), ` = 1, . . . , 4, according to (4.10). Then the point xj is selected as the
point that minimizes fi(x) among the points x(λ`). Extension of the Lagrangian approach
to the case of ellipsoids is straightforward and results in a root-finding problem equivalent
to (4.11), but involving a polynomial of degree 6 (see [43] or Appendix B.1.2 for details).
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4.2.2 Parametric GPA (P-GPA)

We briefly describe here the approach proposed in [47] to solve the minimization prob-
lem (4.7). The main idea is to use the parametric representation (2.15) of an ellipse in
order to eliminate the constraint from the minimization problem. This technique works in
both two and three dimensions. Let the local potential f̂i of Ei be given as in (2.5), i.e.

f̂i(ξ) = ξTDiξ − 1, (4.12)

where

Di =
1/a2

i 0
0 1/b2

i

 .
The points x on Ej can be parameterized in the local coordinate system by

ζ(t) = (aj cos t, bj sin t),

for t ∈ [−π, π[. Using (2.4), the coordinates of x in the local reference system (O, ξ, η)
associated with Ei are then given by:

ξ(t) = RT
i

[
(Rjζ(t) + cj)− ci

]
= RT

i Rjζ(t) + ξ0 , (4.13)

with ξ0 = (ξ0, η0) = RT
i (cj − ci). Replacing ξ(t) in (4.12) by (4.13), one can then express f̂i

as a function of parameter t only, i.e.

f̂i(t) = ξ(t)TDiξ(t)− 1 = [RT
i Rjζ(t) + ξ0]TDi[RT

i Rjζ(t) + ξ0]− 1,

which can be reduced to

f̂i(t) =

(
aj cos θij cos t− bj sin θij sin t+ ξ0

)2

a2
i

+

(
bj cos θij sin t+ aj sin θij cos t+ η0

)2

b2
i

− 1.

where θij = θj − θi, with θk for k = i, j, being the angle of rotation of Rk, as defined in (2.2).
It follows that the constrained minimization problem (3.9) for xj can be recast into the
unconstrained minimization problem in one variable

tj = argmin
t∈[−π,π[

f̂i(t), (4.14)
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from which one would obtain the point xj ∈ Ej by the change of variable (2.4):

xj = Rjζ(tj) + cj. (4.15)

The nonlinear functions f̂k(t), k = i, j, may have several extrema, which makes root-finding
algorithms for (f̂k)′(t) = 0 difficult. For example, in Figure 4.4, we plot f̂i(t) and f̂j(t)
associated with the pair of ellipses Ei and ellipse Ej shown in Figure 4.3. In particular, we
observe that the function f̂j(t) has two minima and two maxima. In order words, without
any additional constraint, one needs to search for all extrema in order to find the global
minimum.

4.2.3 Mapped GPA (M-GPA)

Džiugys and Peters [24] proposed an alternative approach by introducing the mapping de-
scribed in Section 3.7.2, which transforms Ei into a unit circle Ĉi and the other ellipse Ej into
an ellipse Êj in its local reference system by the same mapping. Assuming the map has been
applied and dropping the hat symbols, the circle and ellipse are then given by

fi(x) = (x− ci)T (x− ci)− 1 = 0,

fj(x) = xTDjx− 1 = 0.

We first observe that the Ei-norm is simply the Euclidean norm as the ellipse Ei is now
reduced to the circle Ci; see Lemma 10. It follows that the minimization problem (4.7) now
reads

xj = argmin
x∈Ej

fi(x) = argmin
x∈Ej

‖x− ci‖2. (4.16)

In other words, the problem is to find the point xj on ellipse Ej that is the closest to ci in
Euclidean norm.

Džiugys and Peters [24, 72] proposed to solve the minimization problem (4.16) using two
different approaches, one based on an iteration method and the other based on partial ana-
lytical results. We will present only the latter approach below. Introducing the distance ρi
from the center of circle Ci to any point x ∈ Ej

ρi(x) = ‖x− ci‖, (4.17)

they enforce the constraint x ∈ Ej explicitly by rewriting ρi as a function of x only, using
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Figure 4.3 The configuration of two ellipses Ei and Ej in which the minimization Prob-
lem (4.14) has non-unique minimum, which is illustrated in Figure 4.4. The ellipses are
{ai = 15, bi = 1, ci = (5, 2), θi = 0.4363} and {aj = 5, bj = 1, cj = (4, 5.5), θj = 1.2217}. The
points which are corresponding to minimum and maximum are shown by a dot (•) and a
disc(◦), respectively.
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Figure 4.4 The graphs of functions f̂i(t) (left) and f̂j(t) (right) are associated with the
ellipses Ei and Ej shown in Figure 4.3. The function f̂i(t) has exactly one minimum and one
maximum. However, the function f̂j(t) has two local minima and maxima for t ∈ [−π, π[. In
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the equation of ellipse Ej

ρ2
i (x) = (x− cx)2 + (±κ

√
a2
j − x2 − cy)2, |x| ≤ aj, (4.18)

where κ = bj/aj and ci = (cx, cy). The goal is therefore to find the global minimizer of the
functional ρ2

i , i.e.
xj = argmin

|x|≤aj

ρ2
i (x).

Finding the critical points of the minimization problem leads to solving a quartic equation
in x:

4∑
k=0

akx
k = 0, with



a4 = (1− κ2)2,

a3 = −2cx(1− κ2),

a2 = c2
x + κ2c2

y − a2
j(1− κ2)2,

a1 = 2a2
jcx(1− κ2),

a0 = −a2
jc

2
x.

(4.19)

The quartic equation has a maximum of four roots, with possibly some conjugate complex
roots, which can be found using an iterative nonlinear solver. Džiugys and Peters [24] also
suggested an approach in which the solution procedure could be reduced to solving a cubic
equation after introducing a special change of variable. Once the roots x`, for ` = 1, . . . , 4
are found, one can compute the corresponding y` coordinate, and the point xj is selected
among the solutions x` = (x`, y`) such that it minimizes ρi(x) in (4.17).
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Džiugys and Peters [24] proposed using iterative approaches and introduced some conditions
for the initial point p as following, see Figure 4.5. If the center of circle ci = (cx, cy), then the
point q is defined as (cx, 0). The initial point p should be located inside the triangular cOq.
At the same time, p is on the ellipse Ej between s, the intersection of cO, and the x-axis. In
other words, the coordinate of xp and yp of point p should satisfy the following conditions

sign(xp) = sign(cx), (4.20)

sign(yp) = sign(cy), (4.21)

|xp| ≤ min(|cx|, aj), (4.22)

|xp| ≥
|cx|√

c2
x/aj

2 + c2
y/bj

2
, (4.23)

|yp| ≤
|cy|√

c2
x/aj

2 + c2
y/bj

2
. (4.24)

We have described how to solve the minimization problem (4.16) for xj ∈ Ej, but applying
the map of Section 3.7.2 by switching Ei and Ej, we can then solve for xi ∈ Ei using the same
procedure as above.

4.3 Constrained Geometric Potential Algorithm (C-GPA)

The constrained geometric potential algorithm was introduced by Ting and his collaborators
[46, 67, 73]. It can be viewed as an extension to the GPA with the additional constraints on
the normals (3.10) and (3.11) after applying the mapping described in Section 3.7.1. More
specifically, it was shown in Lemma 4 that those two constraints are always satisfied at the
GPA and in Theorem 6 this constraint defines a hyperbola, the so-called co-gradient locus.
Although the additional constraint on the normals are non-binding and could simply be
ignored, it does significantly modify how the problems are solved and should further stabilize
the problems.

The point xj (resp. xi) is then defined as the closest point with respect to the Ei-norm (resp.
Ej-norm) to the center of ellipse Ei (resp. Ej) that intersects the co-gradient locus Hij and the
ellipse Ej (resp. Ei). Formally, the problems can be recast as the constrained minimization
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Figure 4.6 The two steps of the C-GPA are illustrated above. First, the mapping of Sec-
tion 3.7.1 is applied to transform ellipses Ei and Ej to ellipse Ei the unit circle Cj with center
at the origin. Second, the solution of Problem (4.26) provides the point xj as the closest
point to ellipse Ei among the points that intersect co-gradient locus Hij and circle Cj.

problems:

xi = argmin
x∈Ei∩Hij

fj(x), (4.25)

xj = argmin
x∈Ej∩Hij

fi(x). (4.26)

The problems above are nevertheless different from the minimization problems (3.13) and (3.14).
Indeed, the fact that a point x belongs to the co-gradient locusHij does not necessarily imply
that ni(x) + nj(x) = 0 as one could also have ni(x) = nj(x).

The method proposed by Ting et al. in [46, 67] to solve Problems (4.25) and (4.26) aims at
finding the intersection points between each ellipse and the locus Hij. Since the two branches
of the hyperbola may cross twice each ellipse, the solutions xi and xj are chosen as those that
minimize fi and fj (equivalently, the Ei- and Ej-norms), respectively. In order to simplify the
analysis to search for xi, Ting et al. in [46, 67] proposed to consider the transformation of
Section 3.7.1 that maps Ei into the unit circle Ci centered at the origin. Similarly, the second
point xj is found by transforming the other ellipse Ej into the unit circle Cj while mapping
the ellipse Ei into a new ellipse under the same transformation, see Figure 4.6.
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We briefly describe the algorithm in the case of a unit circle Cj and an ellipse Ei given by

fi(x) = (x− ci)TQi(x− ci)− 1 = 0,

fj(x) = xTx− 1 = 0.

The equation of the co-gradient locus Hij, see Equation (3.20), is given in that case by

H(x) = 4xTAQi(x− ci) = 0,

where A is the anti-symmetric matrix (3.19). Using the notation of Chapter 2, the co-gradient
function can be written as

H(x, y) = 4Cix2 − 4Ciy2 + 4(Bi − Ai)xy + 4Eix− 4Diy = 0. (4.27)

The intersection of Hij and Cj can be found by combining this equation with x2 + y2− 1 = 0
to obtain a single quartic equation in x

4∑
k=0

akx
k = 0, with



a4 = (Ai −Bi)2 + 4C2
i ,

a3 = 2(Ai −Bi)Di + 4CiEi,

a2 = −(Ai −Bi)2 − 4C2
i +D2

i + E2
i ,

a1 = −2(Ai −Bi)Di − 2CiEi,

a0 = C2
i −D2

i .

(4.28)

Solving for (4.28) leads a maximum of four real roots x`, ` = 1, . . . , 4. Ting et al. [46, 67]
compute the second coordinate y` from x` using the formula derived from the equations of
the circle and ellipse:

y` = Ci(2x2
` − 1) + Eix`

(Ai −Bi)x` +Di

, ` = 1, 2, (4.29)

as long as the denominator does not vanish for x`. There may be an issue when the solution
of (4.28) yields one real root of multiplicity two, which is the case when the two intersection
points between the circle and the ellipse have the same coordinate x`. Similarly to IA, the
computation of the y-coordinate using (4.29) would result in one intersection point. A remedy
would be to use the equation of the circle to solve for y`

y` = ±
√

1− x2
` .

Actually, one could use this equation in all cases, which would provide two or four points and
choose xj that minimizes fi(x), i.e. the closest point to the center of ellipse Ei with respect
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to the Ei-norm.

4.4 Common Normal Algorithm (CNA)

The Common Normal Algorithm (CNA), first studied by Lin et al. [43], rewrites the condition
on the normals (3.6), that is usually a consequence of the MDP definition (3.5), into a system
of solvable equations for points xi ∈ Ei and xj ∈ Ej. The condition on the normals, namely

ni(xi) + nj(xj) = 0, (4.30)

is an obvious property of the minimum distance pair of closest points (xi,xj) ∈ Ei × Ej,
when the ellipses are disjoint, but it is interesting to remark that the condition is relevant
even when the ellipses are in near perfect contact, while the minimization problem (3.5) is
no longer applicable. Below, we will re-interpret the original formulation of the CNA into a
minimization problem, before discussing how it can be implemented.

Let Ei and Ej be two arbitrary ellipses. For any given point xi on Ei, one can always identify a
unique point xj on Ej such that nj(xj) +ni(xi) = 0. This implies that the set of constraints
(xi,xj) ∈ Ei × Ej and ni(xi) + nj(xj) = 0 still provides an underdetermined system and,
more precisely one additional scalar constraint is required. In order to determine candidate
pairs of points xi and xj, one needs to set additional constraints. Lin and Ng [43] proposed
to consider that the unit vector going from xi towards xj be also equal to the normal vectors
nj(xj) and −ni(xi). Introducing the unit vector

n(xi,xj) = xj − xi
‖xj − xi‖

,

the problem of finding xi and xj would then consist in the following set of equations


fi(xi) = 0,

fj(xj) = 0,

nj(xj) + ni(xi) = 0,

nj(xj)− ni(xi) = 2n(xi,xj).

(4.31)

Unfortunately, the problem above presents a few issues, which can be clearly described in the
case of two circles: 1) if the two circles are disjoint, the problem has a unique solution, but
the distance between the two points xi and xj reaches a maximum rather than a minimum,
meaning that it is not really the pair of points that one is looking for; 2) if the two circles
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overlap, the problem admits two solutions, one solution for which the distance between the
two points is a minimum and the other for which the distance is a maximum; 3) moreover,
if the overlap between the two circles becomes very small, the calculation of the vector n
becomes problematic and the problem is ill-posed in the limit case of perfect contact.
Finally, System (4.31) consists of six equations for the four variables xi = (xi, yi) and

xj = (xj, yj).We illustrate the existence of two solutions in the system of the equations (4.31)
in Figure 4.9. The method proposed by Lin and Ng [43] in 3-D would translate in the 2-D
case into arbitrarily selecting the following four nonlinear equations only



fi(xi) = 0,

fj(xj) = 0,
xj − xi
‖xj − xi‖

= − 1
‖∇fi‖

∂fi
∂x

(xi),

xj − xi
‖xj − xi‖

= + 1
‖∇fj‖

∂fj
∂x

(xj).

(4.32)

Such an arbitrary selection of equations introduce additional solutions, as seen in Figure 4.8.
This is due to the fact that one should consider the direction of the normal vectors rather
than simply equating their components in the x-direction. For all these reasons, the com-
mon normal algorithm is deemed inappropriate for finding contact points between ellipses or
ellipsoids. As a final remark, Problem (4.31) is equivalent to the constrained minimization
problem:

(xi,xj) = argmin
(x̂i, x̂j) ∈ Ei × Ej

ni(x̂i) + nj(x̂j) = 0

‖nj(x̂j)− ni(x̂i)− 2n(x̂i, x̂j)‖2. (4.33)

We note that above problem is actually similar to the minimization problem (3.7) except
for the choice of the minimization functional. We now elaborate on the closest co-normal
algorithm.

4.5 Closest Co-Normal Algorithm (CCA)

The algorithm was proposed in [44] as a variation of the Common Normal Algorithm. The
problem is formulated as the closest co-normal minimization problem (3.7) that we recall
here for convenience:

(xi,xj) = argmin
(x̂i, x̂j) ∈ Ei × Ej

ni(x̂i) + nj(x̂j) = 0

‖x̂i − x̂j‖2. (4.34)

We know from Lemmas 3, 5, and Remark 5 that above problem admits a unique solution
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Figure 4.7 Equations (4.31) and (4.32) may prove non-unique pairs of solution. For the
same pair of ellipses Ei and Ej. The figure at the left presents a pair of (xi,xj) which has a
maximum distance. The figure at the right presents the pair with minimum distance.
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Figure 4.8 The pair (xi,xj) is found by solving system of equations (4.32). Ellipses Ei and
Ej are the same ellipses as defined in the Figure 4.3. The normal vectors are obtained
as ni = (0.410,−0.912) and nj = (−0.410,−0.912). We see that Equation (4.31) is only
satisfied with respect to x-component. This shows that the system of equations (4.32) leads
to a wrong solution, since the y-component of the normal vectors are equal rather than being
opposite.
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for all configurations of ellipses in near-perfect contact. We note that such a problem can
be solved by various minimization methods, e.g. Lagrangian method. However, the authors
in [44] proposed an original approach by parameterizing the distance ‖xj − xi‖ in terms of
a single parameter t ∈ [−π, π[. The main idea relies on the fact that there exists a bijection
between a point on an ellipse and the normal vector to the ellipse at that point. Indeed, let
each ellipse Ek, k = i or j, be defined in its own local reference system as:

f̂k(ξ) = ξTDkξ − 1 = 0. (4.35)

The outward unit normal vector at ξ to Ek is then given by:

n̂k(ξ) = ∇f̂k
‖∇f̂k‖

= 2Dkξ
‖∇f̂k‖

,

which implies that:

ξ = ‖∇f̂k‖2 D−1
k n̂k(ξ). (4.36)

Since the normal vector nk in the global reference system is related to n̂k by the rotation
matrix Rk of angle θk (2.2) as:

n̂k = RT
knk, (4.37)

we get using (2.5):

xk = Rkξ + ck = ‖∇f̂k‖2 RkD−1
k RT

knk + ck. (4.38)

Moreover, substituting (4.36) for ξ in (4.35) provides the new expression for the norm of the
gradient:

1
‖∇f̂k‖2

= 1
4n̂

T
kD−1

k n̂k = 1
4‖D

−1/2
k n̂k‖2 = 1

4‖D
−1/2
k RT

knk‖2 (4.39)

that is:
‖∇f̂k‖ = 2

‖D−1/2
k RT

knk‖
,

so that:
xk = RkD−1

k RT
knk

‖D−1/2
k RT

knk‖
+ ck, k = i, j. (4.40)

The minimization problem (4.34) can thus be recast as that of finding the value tij ∈ [−π, π[
such that:

tij = argmin
t∈[−π,π[

‖xj(t)− xi(t)‖2. (4.41)
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Figure 4.9 The points xi and xj are reached the global minimum of Equation (4.41) for the
pair of ellipses Ei and Ej. We see that the points xi and xj are not necessary located on Hij.

-5 0 5 10 15
x

-6

-4

-2

0

2

4

6

8

10

12

y ci

Ei
cj

Ej

xj

xi

Figure 4.10 The points xi and xj are the local minimum of Problem (4.41) for the pair of
ellipses Ei and Ej from Figure 4.3. The function d(t) = ‖xj(t) − xi(t)‖ and the location of
the local minimum is shown in Figure 4.11.



73

−π −π/2 0 π/2 π

t

0

50

100

150

200

250

300

350

400

Figure 4.11 Plot of function d(t) = ‖xj(t) − xi(t)‖ for the pairs of ellipses Ei and Ej of
Figure 4.10. The location of local minimum of Problem (4.41) is shown with a dot (•).

Using above formula, one can now express the difference xj − xi as:

xj − xi =
 RjD−1

j RT
j nj

‖D−1/2
j RT

j nj‖
− RiD−1

i RT
i ni

‖D−1/2
i RT

i ni‖

+ (cj − ci).

In order to apply the constraint ni + nj = 0, one can introduce the common direction n,
parameterized with respect to t ∈ [−π, π[, i.e.

n(t) =
cos t

sin t


such that n(t) = nj = −ni. Therefore:

xj(t)− xi(t) =
 RjD−1

j RT
j

‖D−1/2
j RT

j n(t)‖
+ RiD−1

i RT
i

‖D−1/2
i RT

i n(t)‖

n(t) + (cj − ci).

The original minimization problem with multiple constraints in the four variables (xi,xj)
is now replaced by the unconstrained minimization problem (4.41) in the only variable t.
However, the distance d(t) = ‖xj(t) − xi(t)‖ can be, for some configurations of ellipses,
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difficult to minimize as it may exhibit very flat regions and multiple extrema (up to two local
minima and two local maxima), as shown in Figures 4.10 and 4.11. The efficiency of the
method is also dependent on the choice of an initial guess t0. If such a choice is not available,
one has then to find all local minima and select the one that actually minimizes the distance
function.

Finally, we note that the algorithm extends straightforwardly to the case of ellipsoids by
considering the following parameterization of the normal vector:

n(u, v) =


cosu cos v
sin u cos v

sin v

 , u ∈ [−π, π[, v ∈ [0, π]. (4.42)



75

CHAPTER 5 NEW CONTACT DETECTION ALGORITHM

We introduce in this chapter a new contact detection method in the case of two ellipses Ei
and Ej with non-penetrating CoM. Moreover, we further assume that the two ellipses are
in near perfect contact, meaning that the ellipses are either fully disjoint, or are in perfect
contact, or exhibit a small overlap. This ensures that the intersection set between Ei and Ej
either is the empty set, or reduces to a single point, the contact point, or is exactly formed
of two points, respectively.

The proposed method intrinsically belongs to the family of the constrained geometrical po-
tential methods. We recall that the point xi on ellipse Ei is defined as the closest point
to the center cj of ellipse Ej, with respect to the Ej-norm, while the point xj on Ej is the
closest point to the center ci of Ei, with respect to the Ei-norm. The attractive feature of
this approach is that the pair of points, referred here as the contact pair, are solutions to
uncoupled minimization problems that can be solved separately. Moreover, the solution to
each problem exists and is unique. Furthermore, following Definition (5), the solution xi
to (3.8) belongs to Hij. Using the same reasoning, we show that the solution xj to (3.9) is
also on Hij. Moreover, the two points xi and xj actually belong to the same branch of the
hyperbola Hij as that passing through the centers. The properties satisfied by the contact
pair can be added as non-binding constraints to the minimization problems (4.25) and (4.26).
We note that these minimization problems are structurally similar. The proposed method
to solve these problems is described below considering only one of them, say (4.26) to find
xj, in the case of a unit circle and an ellipse at origin without rotation, which is described in
Section 3.7.2. Then, our objective is now to solve Problem (4.26) in this new configuration
of the ellipses and to transfer the solution back to the original coordinate system using the
transformation (3.53).

5.1 Solution Method

In this section, we consider Problem (4.26) in the particular case where the pair of ellipses
consists of the ellipse Ej defined in its local coordinate system and the unit circle Ci centered
at ci = (cx, cy), as shown in Figure 5.1. The parameters of the problem are reduced to the
semi-axes aj and bj of ellipse Ej and the center ci of circle Ci.

We begin by providing a geometrical interpretation of the solution xj ∈ Ej to Problem (4.26).
Supposing first that ellipse Ej and circle Ci are in perfect contact at xj, i.e. Ej∩Ci = {xj}, then
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Figure 5.1 Ellipse Ej and circle Ci with overlap. The circle Ci(r) of radius r is constructed as
the smallest circle centered at ci such that Ej and Ci(r) are in perfect contact. The point xj,
defined as the intersection point between Ej and Ci(r), is the solution to Problem (4.26).

it is clear that xj is the closest point on Ej to the center ci of Ci such that ni(xi)+nj(xi) = 0.
We also observe that the line supported by the normal vector to Ej at xj passes through ci.
In the case Ej and Ci are not in perfect contact, one can construct the smallest circle Ci(r)
of radius r centered at ci such that Ci(r) is in perfect contact with Ej, see Figure 5.1. The
intersection point is actually the unique solution xj to Problem (4.26): indeed, xj ∈ Ej, it is
the closest point to ci with respect to the Euclidean norm (which is the same as the Ci-norm
since Qi is here the identity matrix), and it satisfies ni(xj) + nj(xj) = 0, or simply

∇fi(xj)×∇fj(xj) = 0, (5.1)

meaning that xj ∈ Hij.

We proceed with the fact that the solution to Problem (4.26) belongs to the ellipse Ej and the
co-gradient locus Hij (see Definition 5). Recalling (3.54), x = (x, y) ∈ Ei ∩ Hij if it satisfies
the following system of quadratic equations in x and y:

b2
jx

2 + a2
jy

2 − a2
jb

2
j = 0,

(a2
j − b2

j)xy + b2
jcyx− a2

jcxy = 0.
(5.2)

One could formally eliminate one of the variables x or y, say y, by combining the above two
equations to obtain an algebraic equation of order four in x. This means that there could be
at most four roots of the polynomial function depending on the configuration of the ellipse
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and circle. In other words, we can find at most four points that belong to the set Ej ∩ Hij.
This result could be expected since Hij is known to be a hyperbola. Indeed, one of the two
branches of Hij passes through the centers of Ej and Ci and thus necessarily intersects the
ellipse Ej at two points. The other branch, depending of the shape of the ellipse and the
respective position of the circle, could intersect the ellipse at no point, at one point, or at
two points. In other words, the set Ej ∩Hij consists of two, three, or four points. In order to
select the solution to Problem (4.26), one would need to find the closest point to ci among
those points. This approach is not necessarily the most efficient as it requires to compute all
real roots of the polynomial of degree four when one needs to find only the one that provides
the closest point to ci. We propose below a different approach based on the parametrization
of Ej. The points x on Ej can be described in terms of a single parameter t ∈ [−π, π[ as

x(t) =
x(t)
y(t)

 =
aj cos t
bj sin t

 . (5.3)

It follows, using (3.54), that the points in Ei ∩ Hij can be obtained from the roots of the
nonlinear function:

h(t) = (a2
j − b2

j) cos t sin t+ bjcy cos t− ajcx sin t. (5.4)

The scalar function h(t) is clearly 2π-periodic and is continuous on t ∈ [−π, π[. Moreover,
it may have up to four roots. The function is obviously non-convex. If one wants to use
the second-order Newton method to find the root of h(t), one needs to define an accurate
initial guess and possibly an additional constraint to ensure that the method converges to
the desired root tj, which will provide the actual solution xj to Problem (4.26). These will
be presented in the next two sections.

Before proceeding further, we show that the roots of h(t) are actually the critical points of
fi(x) when subjected to the constraint that x ∈ Ej. Indeed, using the parametric form of
the ellipse, we introduce

g(t) := 1
2fi(x(t)) = 1

2
[
(x(t)− cx)2 + (y(t)− cy)2−1

]
= 1

2
[
(aj cos t− cx)2 + (bj sin t− cy)2−1

]
,

so that:
g′(t) = −aj sin t(aj cos t− cx) + 2bj cos t(bj sin t− cy)

= −
[
(a2
j − b2

j) cos t sin t− ajcx sin t+ bjcy cos t
]

= −h(t).

In other words, the roots of h(t) also satisfy g′(t) = 0, meaning that the points in Ej ∩ Hij
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Figure 5.2 (a) Example of a circle Ci and an ellipse Ej such that the set Ej ∩ Hij consists
of four points xk, k = 1, . . . , 4. The point x1 is the closest point among the four points to
the center ci of Ci and corresponds to the solution xj to Problem (4.26). (b) Plot of the
corresponding functions h(t) and g(t). The four roots of h(t) are denoted by tk, k = 1, . . . , 4.
The function g(t) reaches two local minima, at t1 and t3, and two local maxima, at t2 and
t4, in t ∈ [−π, π[. It reaches the global minimum at t1, which corresponds to the point x1.

are either at a minimal or maximal distance from ci when traveling along the ellipse Ej. The
point that corresponds to the global minimal distance is thus the point xj. We also note
that the lines spanned by the unit outward normal vector to Ej at the points in Ej ∩Hij all
pass through the center ci of the circle.

We show in Figure 5.2(a) an example of an ellipse Ej and a circle Ci for which the set Ej ∩Hij

consists of four points xk, k = 1, . . . , 4. The point x1 in this case is the solution xj to
Problem (4.26) and corresponds to the global minimum of the function g(t). We observe in
Figure 5.2(b) that the roots of h(t) corresponds to two local minima and two local maxima
of g(t).

Remark 7. After applying the mapping, if ellipse Ej is also a circle, i.e. aj and bj are equal,
then we can directly find the point xj

xj = aj
ci
‖ci‖

. (5.5)
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Figure 5.3 (a) The two dash lines originating from ci are constructed such that they are
tangent to the ellipse Ej. The intersection point between each line and Ej satisfies ∇fi(x) ·
∇fj(x) = 0. Those two points determine the end points of the set S. We note that the point
x1 satisfies the constraint ∇fi(x1) · ∇fj(x1) < 0. (b) The function q(t) is negative only at t1
among the roots t1, . . . , t4 of h(t).

5.2 Additional Constraint

We have seen so far that the solution xj to Problem (4.26) is one of the points in Ej ∩ Hij.
If one wants to find the unique point xj, instead of estimating every root of h(t), one needs
to consider an additional constraint in order to enforce the unicity of the solution. We
observe from Figure 5.2(a) that a property that distinguishes x1, the actual solution of the
minimization problem, from the other points xk, k = 2, . . . , 4, is that the normal vector
n1 = nj(x1) to Ej at x1 is the only vector that points in the opposite direction to the vectors
xk − ci, k = 1, . . . , 4. In other words, we have:

∇fi(x1) · ∇fj(x1) < 0,

∇fi(xk) · ∇fj(xk) > 0, k = 2, . . . , 4.

This motivates us to introduce the function q(t) defined on [−π, π[ as:

q(t) = 1
4∇fi(x(t))·∇fj(x(t)) = x(t)

a2
j

(x(t)−cx)+ y(t)
b2
j

(y(t)−cy) = 1− cx
aj

cos t− cy
bj

sin t (5.6)

and the constraint set S:
S = {t ∈ [−π, π[; q(t) < 0}. (5.7)
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We see in Figure 5.3(b), which corresponds to the example of Figure 5.2, that t1 is the
only root of h(t) such that t1 ∈ S. The following lemma states that the solution xj to
Problem (4.26) is the unique point in Ej∩Hij that satisfies the constraint ∇fi(xj)·∇fj(xj) <
0. Another way of stating this is as follows, xj = x(tj) is the solution to Problem (4.26),
where tj is the only root of h(t) that satisfies the constraint tj ∈ S.

Lemma 11. Let Ci be the unit circle centered at ci and let Ej be an arbitrary ellipse centered
at the origin and defined in its local coordinate system such that Ci and Ej are in near perfect
contact. Then there exists one and only one point xj in Ej ∩Hij that satisfies the condition
∇fi(xj) · ∇fj(xj) < 0.

Proof. Let the ellipse Ej be such that aj 6= bj. The proof relies on the fact that the co-gradient
locus is a hyperbola and on the analysis of the scalar function α(x) = ni(x) ·nj(x) along the
two branches of the hyperbola. We provide here only a sketch of the proof as more details
can be found in the proof of Theorem 6.

We first note that ∇fi(x) 6= 0 everywhere in R2 except at the center of the ellipse ci = 0.
Similarly, ∇fj(x) 6= 0, ∀x ∈ R2\{cj}. Therefore, the function α(x) is defined everywhere in
R2 except at the two centers. Moreover, it is continuous along the branches of the hyperbola,
apart from the points ci and cj, where it could possibly be discontinuous. In fact, we remark
that α(x) can only take the values +1 or −1 for all x ∈ Hij\{ci, cj}. Indeed, x ∈ Hij if
∇fi(x)×∇fj(x) = 0; this implies that ni(x)×nj(x) = 0 for all x ∈ Hij\{ci, cj}, meaning
that the unit vectors ni(x) and nj(x) are either in the same direction or in the opposite
direction.

Let us consider a circle Cij centered at cj = 0 with a sufficiently large radius that Cij surrounds
Ci, Ej, and a portion of both branches of Hij, as shown in Figure 5.4. Then, it is clear that
the hyperbola Hij must intersect Cij at four points xk, k = 1, . . . , 4. Moreover, at each
of these points, ni(xk) = nj(xk), which implies that α(xk) = +1, k = 1, . . . , 4. Let us
concentrate for now on the branch of Hij that passes through the center ci of Ci and the
center cj of Ej. The branch can intersect the ellipse Ej at only one point when one travels
along the branch between ci and cj. The intersection point is in fact the solution xj to
Problem (4.26), for which we know that ni(xj) + nj(xj) = 0. It follows that α(xj) = −1,
so that ∇fi(xj) · ∇fj(xj) < 0. In other words, the function α(x) along the branch takes the
value +1 when one goes from Cij to ci, is discontinuous at ci, takes the value −1 when one
goes from ci to cj, is again discontinuous at cj, and finally takes the value +1 when one goes
from cj to Cij. For the other branch, there is no singular point, which implies that α(x) = +1
for all points of the branch.
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Figure 5.4 Example of a circle Cij that surrounds the ellipse Ej, the circle Ci, and a portion
of both branches of the hyperbola Hij.

In summary, we have shown that the set Ej ∩ Hij is non empty, as it contains at least the
point xj. Moreover, xj is the only point of Ej ∩ Hij for which α(xj) = −1, or equivalently
∇fi(xj) · ∇fj(xj) < 0.

In the case when Ej is a circle, i.e. aj = bj, the set Hij degenerates into the line passing
through the centers ci and cj. It is then trivial to show that there exists for that case one
and only one point xj in Ej ∩Hij that satisfies the condition ∇fi(xj) · ∇fj(xj) < 0.

The above lemma allows us to conclude that Problem (4.26) can be solved by searching for
the unique root tj of h(t) that satisfies the constraint tj ∈ S. In addition to q(t), we also
introduce, for reasons that will become clearer below, the function q̂(t) defined on [−π, π[:

q̂(t) = ni(x(t)) · nj(x(t)) = cos η(t), (5.8)

where η(t) is the angle between the unit normal vectors ni and nj. It is obvious that q̂(t) < 0
for all t ∈ S. Moreover, q̂ reaches its minimum −1 at the unique tj and its maximum +1 at
the other roots of h(t). It is explicitly given by

q̂(t) = ∇fi(x(t)) · ∇fj(x(t))
‖∇fi(x(t))‖ ‖∇fj(x(t))‖ = ajbj − cxbj cos t− cyaj sin t√

(bj cos t)2 + (aj sin t)2
√

(aj cos t− cx)2 + (bj sin t− cy)2
.

Although the function q̂ exhibits attractive features, the function itself as well as its first
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derivative are computationally more expensive to evaluate than function q(t) and function
h(t), respectively.

We propose to use the Newton’s method to find the root tj ∈ S of h(t), see Equation (5.4),
since it is a second-order method. However, the function h(t) is non-convex on [−π, π[. Thus,
there is always a risk that the initial guess point will be outside of the basin of attraction of
tj, in which case the method will converge to another root of h(t). In order to circumvent
this issue, we check that each new iterate belongs to S. If the constraint is not satisfied, we
then use one iteration of the line search method to approach the minimizer tj of q̂(t). We
also propose below an approach that allows one to compute an initial guess point for the
Newton’s method that is reasonably close to the desired root tj and that, most of the time,
prevents one from resorting to the line search method.

5.3 Initial Point Algorithm

In this section, we propose an algorithm to compute an initial guess point t0 that approxi-
mates the root tj of h(t). The approach is motivated by the fact that, given a point x ∈ Ei,
the normal vector −nj(x) to Ej at x bisects the angle formed by the vectors f 1 − x and
f 2−x, where f 1 and f 2 are the focal points of Ei, see Equation (2.19). This approach could
be used by other iterative algorithms if they also used a mapping to reduce the problem to
an ellipse and a circle.

We therefore introduce the unit vectors

v1 = (f 1 − ci)/‖f 1 − ci‖, (5.9)

v2 = (f 2 − ci)/‖f 2 − ci‖, (5.10)

and the unit vector v defined as
v = v1 + v2

‖v1 + v2‖
. (5.11)

The vector v can thus be viewed as an approximation of −nj(xj) at xj ∈ Ej. The line
spanned by v and passing through the center ci of Ci necessarily intersects the ellipse Ej at
two points. Parametrizing the line as the set of points ci + rv, r ∈ R, the points at the
intersection of the line and Ej satisfy the quadratic equation in r:

fj(ci + rv) = (ci + rv)TDj(ci + rv)− 1 = (vTDjv)r2 + 2(vTDjci)r + (cTi Djci)− 1 = 0.

Introducing the positive quantities α = (vTDjv), β = −(vTDjci), and γ = (cTi Djci)− 1, the
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Figure 5.5 Location of initial point p = ci + rminv on ellipse Ej where ci is the center of
the unit circle Ci and the unit vector v computed from vectors v1 and v2. The point p is
the closest point on Ej from ci in the direction of v. The vectors v1 and v2 are defined
with respect to the focal points f 1 and f 2 of Ej. The initial t0 ∈ S is obtained such that
p = (aj cos t0, bj sin t0).

solutions to the quadratic equation αr2 − 2βr + γ = 0 are thus given by

r = β ±
√
β2 − αγ
α

. (5.12)

We choose as an approximation of xj the point p, among the two intersection points, that is
the closest to ci, that is, the point which is given by the smallest root of fj(ci + rv), i.e.

rmin = β −
√
β2 − αγ
α

. (5.13)

Therefore p = ci + rminv. This is illustrated in Figure 5.5. Finally, we compute the initial
t0 ∈ [−π, π[ from p = (px, py) as

t0 = arctan
(
ajpy
bjpx

)
. (5.14)

We note that by construction t0 ∈ S. Moreover, t0 becomes a better approximation of tj as
the parameters aj and bj of Ej become larger.
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5.4 Contact Point Algorithm

We now make some final overall comments on the contact detection algorithm, which is
summarized below in pseudo-language in Algorithm 1. Using the same line of thought as other
algorithms, the new algorithm is coined S-GPA, standing for Steered Geometric Potential
Algorithm, since the iterative method is steered toward the solution to the minimization
problem through the choice of the initial guess point and the use of the additional constraint.

First of all, we reiterate that the solution xi to Problem (4.25) can be found in the same
manner by transforming the ellipse Ei to the ellipse Ēi centered at the origin and the ellipse
Ej to the unit circle C̄j centered at c̄j.

Second of all, it is possible to avoid having to apply the second transformation, which is
desirable because the two transformations usually dominate the total computational cost.
Indeed, once the point x̄j is found in the configuration of Ēj and C̄i, the point x̄i could be
approximated by

x̃i = c̄i − n̄j(x̄j).

Accuracy in x̃i improves as the overlap gets smaller. Such an approximation could be used
when high accuracy is not essential.

Algorithm 1 Algorithm to find a contact point xc between two ellipses Ei and Ej
Initialize ellipses Ei = {Qi, ci} and Ej = {Qj, cj}
for k = i and j do
Transform the pair of ellipses into ellipse Ēk and unit circle using the mapping of Sec-
tion 3.7.2
Compute the initial point t0 using (5.14) and set t to t0
while |h(t)| > ε (given tolerance) do
Set t = t− h(t)/h′(t) (one iteration of the Newton’s method)
if q(t) > 0 then
Set t = t+ h(t)/h′(t)
Set t = t+ αq̂′(t) (where α is obtained by the line search method)

end if
end while
Set x̄k = (āk cos t, b̄k sin t)
Map x̄k to point xk in original coordinate system using transformation (3.53)

end for
Compute contact point xc using (4.1) and normal vector nc(xc) using (4.2)
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5.5 Extension to Ellipsoids

The contact detection algorithm in the case of two ellipsoids is similar to that of two ellipses.
Here we only concentrate on the distinctive features of the algorithm in 3D. We thus consider
an ellipsoid Ej centered at the origin in its local coordinate system and a sphere Si centered at
ci = (cx, cy, cz), obtained after transforming two arbitrary ellipsoids in near perfect contact
using the mapping of Section 3.7.2. We recall that an ellipsoid Ej in its local coordinate
system, with semi-axes aj, bj, and cj, can be parameterized in terms of the angles ψ ∈ [0, 2π[
and φ ∈ [0, π[ such that

x(ψ, φ) =


aj cosψ sinφ
bj sinψ sinφ
cj cosφ

 . (5.15)

The co-gradient vector-valued function is given by:

H(x) = ∇fi(x)×∇fj(x),

whose components read:

Hx(x) = (z − cz)y/b2
j − (y − cy)z/c2

j ,

Hy(x) = (x− cx)z/c2
j − (z − cz)x/a2

j ,

Hz(x) = (y − cy)x/a2
j − (x− cx)y/b2

j ,

from which we straightforwardly obtain that:

x

a2
j

Hx(x) + y

b2
j

Hy(x) + z

c2
j

Hz(x) = 0.

Therefore, a point x belongs to the co-gradient locusHij = {x ∈ R3; H(x) = 0} if it satisfies
e.g. Hx(x) = 0 and Hy(x) = 0, as the third equation Hz(x) = 0 is necessarily satisfied if
Hx(x) = 0 and Hy(x) = 0 (and z 6= 0). It follows that the points x = x(ψ, φ) in Ei ∩Hij are
given by the roots of the vector-valued function H = (h1, h2) in [0, 2π[×[0, π[:

h1(ψ, φ) = (b2
j − c2

j) sinψ cosφ sinφ− bjcy cosφ+ cjcz sinψ sinφ,

h2(ψ, φ) = (a2
j − c2

j) cosψ sinψ sinφ− ajcx cosφ+ bjcy cosψ sinφ.
(5.16)
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Moreover, we can introduce the scalar function on [0, 2π[×[0, π[

q(ψ, φ) = 1
4∇fi(x(ψ, φ)) · ∇fj(x(ψ, φ))

= x(ψ, φ)
a2
j

(x(ψ, φ)− cx) + y(ψ, φ)
b2
j

(y(ψ, φ)− cy) + z(ψ, φ)
c2
j

(z(ψ, φ)− cz)

= 1− cx
aj

cosψ sinφ− cy
bj

sinψ sinφ− cz
cj

cosψ.

As in the 2D case, we know that there is only one root of H(ψ, φ) that belongs to the
constraint set

S = {(ψ, φ) ∈ [0, 2π[×[0, π[; q(ψ, φ) < 0}.

We also consider the function q̂(ψ, φ) defined on [0, 2π[×[0, π[ as

q̂(ψ, φ) = ∇fi(x(ψ, φ)) · ∇fj(x(ψ, φ))
‖∇fi(x(ψ, φ))‖ ‖∇fj(x(ψ, φ))‖ ,

which attains its minimum for the root (ψi, φi) of H(ψ, φ) in S, such that xj = x(ψj, φj).

We now adapt the algorithm of Section 5.3 to find an initial guess in 3D. We note that the
notion of focal points does not straightfowardly extend to the case of ellipses. However, one
can still define the two sets of pairs, (f 1x,f 2x) and (f 1y,f 2y), such that

f 1x = (+dx, 0, 0), f 2x = (−dx, 0, 0),

f 1y = (0,+dy, 0), f 2y = (0,−dy, 0),

where dx =
√
a2
j − b2

j and dy =
√
b2
j − c2

j . Following the steps described in the equa-
tions (5.9), (5.10), and (5.11), one can compute the vector vab from the set (f 1x,f 2x) and
the vector vbc from the set (f 1y,f 2y). We then introduce the unit vector v as

v = vab + vbc
‖vab + vbc‖

.

The initial point p = (px, py, pz) on the ellipsoid Ej is thus obtained as

p = ci + rminv, (5.17)

where rmin is given by (5.13). We finally derive the initial angles ψ0 and φ0 to find the roots
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of (5.16) by Newton’s method as

φ0 = arccos
(
pz
cj

)
,

ψ0 = arctan
(
ajpy
bjpx

)
.

In conclusion, the algorithm to identify the contact point between two ellipsoids follows the
same steps as those described in Algorithm 1.
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CHAPTER 6 NUMERICAL RESULTS

The objective of this chapter is to provide direct comparisons in accuracy and efficiency
between the different contact detection algorithms presented in Chapters 4 and 5. In fact,
the existing literature only provides a few comparisons between existing algorithms, mostly
on a few pairs of ellipses, and so many of results presented below are new. Comparisons are
difficult in practice because

(i) algorithms based on different minimization problems have fundamentally different so-
lutions;

(ii) some algorithms may be based on root finding of scalar polynomial equations, others
on coupled nonlinear systems, and others may have a key transformation to normalized
coordinate systems. These choices dramatically affect accuracy and cost, how they are
initialized, and even how accuracy is measured;

(iii) the wide variety of numerical techniques deployed imply that the computational effi-
ciency is highly dependent on specific implementation details (code optimization, lan-
guage strengths and platform choice);

(iv) some algorithms have weakness in robustness, or may not be able to exploit prior
accurate estimates of contacts, which render them undesirable in certain applications.

These difficulties will be circumvented by focusing mostly on the underlying minimization
problems driving the algorithms and then dedicating Sections 6.5, 6.6, and 6.7 to applying
the algorithms on large number of pairs of ellipses in close/almost contact. The goal of the
comparison is to demonstrate on several numerical examples the performance and accuracy
of the new contact detection algorithm and compare its efficiency with the existing ones. For
this purpose, To overcome these difficulties, we will compare different algorithms on large
sets of pairs of ellipses and ellipsoids generated randomly by the algorithms described in
Section C.1.1 and Section C.1.2, respectively. These algorithms produce a large number of
pairs of ellipses or ellipsoids in near perfect contact for which we know the exact position
of the point xj from Equation 3.9. This will help us in particular to assess the accuracy
in finding an approximation of xj when using the Geometric Potential Algorithms (GPAs).
We note however that the exact position of the associated xi is not known for these pairs of
particles.
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All algorithms are prototyped in MATLAB. The algorithms for L-GPA, M-GPA, C-GPA, and
IA, require finding the roots of a polynomial function of degree four in 2D. For consistent
comparison between the methods, we have chosen the same algorithm to find the roots in
all cases, that consists in defining the companion matrix associated with the polynomial
function and evaluating all eigenvalues using the Francis’ algorithm [74]. For P-GPA, we
combine the golden-section search method and Newton’s method to search for the critical
points associated with Problem (3.8). However, we note that in the absence of an additional
constraint such as the one introduced in Section 5.2, the algorithm may converge for some
pairs of ellipses to a local extremum instead of the global minimum. We nevertheless report
the results obtained with this method in the examples below.

The first four examples, detailed in subsections 6.1-6.4, will present pairs of ellipses for
which the differences are attributable solely to the minimization problem on which they are
based. This implies that the computational cost will be ignored and all the algorithms will
be run with a high tolerance in order to provide to machine precision the exact solution to
the minimization problem. For these first four test problems, none of the contact detection
algorithms failed, so we could focus only on the minimization problem.

In Section 6.5, our objective is to highlight the algorithmic aspects of the resolution of
the different minimization problems. To accomplish this, ten thousand pairs of ellipses in
close/almost contact are generated according to an algorithm in Section C.1. For each algo-
rithm, the total computational time is found and then further subdivided into its different
steps; see Tables 6.10, 6.11 and 6.12. This allows us to address issues (ii) and (iii). For those
tests, uniformly low tolerances were used.

We compare the algorithms for 1, 000 pairs of ellipses in Section 6.6 with respect to their
aspect ratio a/b and relative size aibi/ajbj. In this section, we also study the influence of
overlap size on performance and accuracy of the algorithms in GPA class. In Section 6.7,
we compare performance of L-GPA and the S-GPA for 1, 000 pairs of ellipses and ellipsoids
while keeping the same accuracy. Overall, the comparison indicates that the new contact
detection algorithm is the fastest, but because of issues just mentioned at the beginning of
this introduction, any comparison between algorithms comes with significant caveats.

6.1 Comparing the Intersection Set (IS), the MDP, and the MPP

The objective of this example is to demonstrate that with strict tolerances, the contact
point obtained by a given algorithm will depend only on the minimization problem which
the algorithm attempted to solve. Following this remark, the numerical results of Sections
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Figure 6.1 Locations of the contact points using different contact detection algorithms : the
Intersection Set is the pair (xi,xj) with a contact xc, the MPP is (yi,yj) with a contact
point yc, and the MDP is (zi, zj) with a contact point zc. The co-gradient locus Hij is drawn
as a dashed line and it traverses both centers ci and cj. The dotted line presents the scaled
ellipses that are tangent at the MPP.

6.2 and 6.3 will focus only on the different solutions associated either to MDP and MPP.
Nevertheless, the example in this section is also interesting in its own right since it presents
a pair of overlapping ellipses, given in Table 6.1, for which the Intersection Set (xi,xj), the
Minimum Distance Pair (zi, zj), and the Minimum Potential Pair (yi,yj) are different. In
particular, this example shows that the resulting contact points xc, zc and yc will be distinct,
as seen in Figure 6.1. On the other hand, the normals at each of these three contact points
are roughly the same, computed according to either (4.2) or (4.3). In general, we have found
the normals to be less sensitive to the choice of the algorithm than the estimates of the
contact point.

The numerical results in Tables 6.2 and 6.3 show that the MPP (yi,yj) are the same whether
they are computed by the P-GPA, L-GPA, M-GPA, C-GPA, or the S-GPA. Similarly, using
sufficiently high tolerances we find the estimated MDP is the same whether computed by the
CNA or the CCNA.

Examining Figure 6.1 and comparing it to the definition of the MPP and MDP, it is easy to
explain the differences between the contact points xc, yc, and zc . For example, the MPP
(yi,yj) clearly belong to the co-gradient locus but their normals are different at each point.
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On the other hand, it is clear in Figure 6.1 that the normals at the MDP (zi, zj) have the
same normals. The contact point zc is far from the co-gradient locus because both ellipses
have roughly parallel surfaces along a large portion of the intersection Ei ∪ Ej.

Table 6.1 The two ellipses Ei and Ej of Example 6.1.

a b c θ a/b

Ellipse Ei 10 4.1 (0, 0) −0.5 2.44
Ellipse Ej 10 4.1 (4, 5) −1 2.44

Table 6.2 The contact points xc for the different contact detection algorithms in Example 6.1.

Algorithm xi xj xc

IA (8.977,−3.611) (−0.619, 4.816) (4.179, 0.602)
P-GPA (4.497, 2.002) (2.778,−0.154) (3.638, 0.923)
L-GPA (4.497, 2.002) (2.778,−0.154) (3.638, 0.923)
M-GPA (4.497, 2.002) (2.778,−0.154) (3.638, 0.923)
C-GPA (4.497, 2.002) (2.778,−0.154) (3.638, 0.923)
S-GPA (4.497, 2.002) (2.778,−0.154) (3.638, 0.923)
CNA (6.108, 0.703) (4.118,−1.504) (5.113,−0.401)
CCA (6.108, 0.703) (4.118,−1.504) (5.113,−0.401)

Table 6.3 The normal vectors nc for the different contact detection algorithms in Example 6.1.

Algorithm ni nj nc

IA (0.994, 0.112) (−0.890,−0.455) (0.660, 0.751)
P-GPA (0.587, 0.809) (−0.744,−0.668) (0.669, 0.743)
L-GPA (0.587, 0.809) (−0.744,−0.668) (0.669, 0.743)
M-GPA (0.587, 0.809) (−0.744,−0.668) (0.669, 0.743)
C-GPA (0.587, 0.809) (−0.744,−0.668) (0.669, 0.743)
S-GPA (0.587, 0.809) (−0.744,−0.668) (0.669, 0.743)
CNA (0.670, 0.743) (−0.670,−0.743) (0.670, 0.743)
CCA (0.670, 0.743) (−0.670,−0.743) (0.670, 0.743)
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Figure 6.2 Two disjoint ellipses Ei and Ej with the same major and minor axis are aligned
with x-axis. In this configuration, Hij degenerates to a straight line passing through ci and
cj. The MDP (zi, zj) are not located on the co-gradient locus Hij as the MPP (yi,yj).
However, the contact points zc and yc are identical and are both located on the co-gradient
locus Hij.

6.2 Different MDP and MPP with the Same Contact Points

In this example, we present a pair of ellipses, described in Table 6.4, for which the contact
point zc of the MDP (zi, zj) and the contact point yc of the MPP (yi,yj) are the same,
but the associated normals are different. This expands on the previous example because the
pairs are different, yet lead to equal contacts. The fact that the normals are different but
the contact points are the same implies that the choice of using the MDP or the MPP could
lead to significantly different forces between ellipses in a DEM model.

The example is quite simple because, as Table 6.4 shows, both ellipses have the same aspect
ratio and the co-gradient locus degenerates to a straight line through both centers. The
quartic equations (4.19) and (4.28) derived from M-GPA and C-GPA, respectively, degenerate
in this case to quadratic equations, i.e. a4 = a3 = a1 = 0. This implies that the mappings in
Sections 3.7.1 and 3.7.2, applied respectively in M-GPA and C-GPA, send both ellipses to
circles. In those new coordinates, the contact is easy to compute analytically. This shows
that the coincidence zc = yc is exact, and not simply an artifact of the numerical algorithms.

In Table 6.5, we present the MDP and the MPP obtained by respectively a GPA algorithm
and the CCN with high tolerance. It is a coincidence in this example that the normals are
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opposite, both for the MDP and the MPP.

Table 6.4 The two ellipses Ei and Ej of Example 6.2.

a b c θ a/b

Ellipse Ei 4 1.5 (0, 0) 0 2.67
Ellipse Ej 4 1.5 (8, 2) 0 2.67

Table 6.5 The contact points xc and their normal vectors nc for the two classes of contact
detection algorithms in Example 6.2.

GPA CCA
xi (3.328, 0.832) (3.662, 0.604)
xj (4.672, 1.168) (4.338, 1.396)
xc (4, 1) (4, 1)
ni(xi) (0.490, 0.872) (0.649, 0.761)
nj(xj) (−0.490,−0.872) (−0.649,−0.761)
nc(xc) (0.490, 0.872) (0.649, 0.761)

6.3 Ellipses in Perfect Contact

Following the work of Dziugys et al. [24, 72], we consider a pair ellipses of high-aspect ratio
in perfect contact, according to Definition 4. This is a numerically challenging case, yet both
the MDP and the MPP coincide mathematically in this case. As expected, every algorithm
identified the same contact point. This perfect contact is illustrated in Figure 6.3. The ellipses
are described in Table 6.6 and the resulting MDP and MPP pair are given in Table 6.7.

Table 6.6 The two ellipses Ei and Ej of Example 6.3.

a b c θ a/b

Ellipse Ei 1 0.025 (−0.7073277, 0) 0.753 40
Ellipse Ej 1 0.025 (0.7073277, 0) −0.753 40
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Figure 6.3 The location of the contact points xc is the same for both GPA and CCA.

Table 6.7 Contact point xc and normal vector nc obtained by contact detection algorithms
in Example 6.3.

GPA CCA
xi (1.73e−8, 0.706) (1.73e−8, 0.706)
xj (−1.73e−8, 0.706) (−1.73e−8, 0.706)
xc (0, 0.706) (0, 0.706)
ni(xi) (1, 0) (1, 0)
nj(xj) (−1, 0) (−1, 0)
nc(xc) (1, 0) (1, 0)

6.4 Ellipses with Small Overlap

In this challenging test, the two ellipses of high-aspect ratio have a relatively innocuous
overlap which, with respect to their size, one would not expect to cause trouble. Yet, as
Figure 6.4 shows, the contact point xc from intersection set is located close to the boundary
of ellipse Ei. The point zc associated to the MDP does not belong to the intersection of
both ellipses, i.e. Ei ∩Ej. However, the MPP produces a reasonable contact point yc inside
the intersection of both ellipses. We insist here that these ellipses are not in near perfect
contact, that is according to the Definition 6, because the two disks of radius ρ

i
and ρ

j
,
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tangent to respectively yi and yj, are disjoint. The description of the ellipses is given in
Table 6.8. The estimates of the contact points for both the IS, the MDP, and the MPP are
given in Table 6.9. We note that the estimated normals are very close to each other.
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Figure 6.4 Locations of contact points using different contact detection algorithms, (xi,xj,xc)
are obtained by using IA, (yi,yj,yc) are obtained by using GPA, and (zi, zj, zc) are obtained
by using CCA.

Table 6.8 The ellipses Ei and Ej of Example 6.1.

a b c θ a/b

Ellipse Ei 7 0.025 (0.235, 0.477) 1.2077 280
Ellipse Ej 7 0.025 (7.2113, 0.9515) 0.0750 280
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Table 6.9 Contact point xc and normal vector nc obtained by different algorithms in Exam-
ple 6.4.

IA GPA CCA
xi (0.24348, 0.42893) (0.24291, 0.42743) (0.24111, 0.42270)
xj (0.24234, 0.42592) (0.23102, 0.42653) (0.23102, 0.42653)
xc (0.24291, 0.42743) (0.23696, 0.42698) (0.23606, 0.42462)
ni(xi) (0.934815,−0.355135) (0.934815,−0.35513) (0.934814,−0.35514)
nj(xj) (0.012235,−0.99992) (−0.934807, 0.35515) (−0.934814, 0.35514)
nc(xc) (0.934815,−0.35513) (0.934810,−0.35514) (0.934814,−0.35514)

6.5 Statistical Comparison of the Algorithms for Ellipses

In contrast to the previous four sections, we attempt to analyze and compare the accuracy
and efficiency of the algorithms presented in Chapters 4 and 5. More precisely, we study the
individual numerical approximations implemented in the algorithms used to solve the two
main contact detection problems we identified, that is the MDP and the MPP, independent
of the characteristics of the problems themselves studied in the previous four sections. As we
argued in the introduction of this chapter, there are many reasons why comparisons between
contact detection algorithms could be difficult. Nevertheless, as we will explain below, we
can come to a limited number of conclusions by studying the behavior of these algorithms
on a large sample of pairs of ellipses in close contact, and then separately considering the
contributions to accuracy and efficiency of the individual components of the algorithm. The
tests in this section are new to the literature and should help to establish benchmarks for
comparisons between such algorithms for contact detection.

The first step is to generate a random set of 10, 000 pairs of ellipses in almost/close contact,
according to an algorithm described in Appendix C.1.1, and to apply to each pair of ellipses
one of the seven algorithms of Chapter 4 and the S-GPA in Chapter 5. In order to reproduce
pairs of ellipses one might encounter in the DEM, the generating algorithm provided some
control on the aspect ratio of each ellipse, on their relative orientation, on their relative
closeness, and on the location of the contact point along the boundary of each ellipse. First
of all, the first ellipse Ei was permitted to have maximum aspect ratio of a/b = 5 while ellipse
Ej was permitted to have an aspect ratio as large as a/b = 20. Figure 6.5 presents the actual
distribution of the aspect ratio a/b for Ei and Ej. The generating algorithm assumes that
ajbj = 1 for Ej, but the distribution of the area πab for Ei is randomly determined and shown
in Figure 6.6a.
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The algorithm generating these pairs was able to provide the exact MPP, thus allowing us
to estimate the relative error of the algorithms in the GPA family, i.e the P-GPA, L-GPA,
M-GPA, C-GPA, and the S-GPA. On the other hand, for the IS algorithm and the MDP
algorithms we were not able to provide estimates of the error. In any case, this implies that
we are able to provide in Figure 6.6b the distribution of the penetration/separation distance,
measured according to ‖xi − xj‖/min{‖xi − ci‖, ‖xj − cj‖} supporting our claim that the
pairs of ellipses in our tests were relatively close. Furthermore, the generation of the MPP
for the pair of ellipses also allowed for the pair to be selected uniformly along the boundary
of the first ellipse, thereby ensuring that we tested MPP occurring both in the flatter or more
curved regions of the boundary of the ellipses.
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Figure 6.5 Distribution of the aspect ratio of the ellipses Ei and Ej.

The numerical results of the experiments are summarized in Tables 6.10 and 6.11, where a
relative tolerance of 10−5 was used, and in Table 6.12 where a stricter relative tolerance of
10−9 was used. We will discuss the results of Table 6.12 later, since it mostly concerns the
observed convergence and how it depends on the underlying numerical approximations. Ta-
bles 6.10 and 6.11 present for each of the seven algorithms of Chapter 4 and the S-GPA, the
total computational time required for the resolution of the 104 pairs of ellipses, the statistics
of the number of iterations required for the resolution, and the statistics of the error in those
approximate solutions. First of all, the error could only be measured for the algorithms esti-
mating the MPP, since the algorithm generating the pairs only provided the exact MPP. This
explains why the error for the CNA and the CCA was not tabulated. The tables also include
the number iterations that were required to attain the desired relative tolerance, but one
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Figure 6.6 (a) Distribution of the area of the ellipses Ei. (b) Distribution of the pene-
tration/separation distance for the pairs of ellipses, where a positive (negative) distance
represents a separation (penetration) distance.

must be careful when comparing these values because the nature of the iterations in, say, the
golden search algorithm, Newton’s method, or in Francis’ algorithm are completely different.
Finally, we have included the total computational time required to solve the 104 pairs of
ellipses, as measured by the profiler in MATLAB. Although estimates of computational time
in MATLAB are known to be somewhat variable, we have performed many such studies and
found the estimates of computational time to be consistently reproducible to within 10%.

We now proceed to analyze the results of the experiments in Tables 6.10 and 6.11, going
from the most general to the most specific conclusions. First of all, we remark that the
median error was roughly 10−11, that is several orders of magnitude lower than the chosen
tolerance, showing that for most pairs of ellipses, the algorithms converged quickly to the
MPP. The relatively low standard deviation further shows that the error was close to the
relative tolerance of 10−5 for only a small subset of the pairs of ellipses. In Tables 6.10 and
6.11, we immediately remark that the total computational time is only roughly equal to the
sum of the time required for the different components because we omitted the computationally
insignificant but necessary step of computing the coefficients in the systems of equations we
needed to solve. We observe that in the L-GPA, M-GPA and C-GPA algorithms, a significant
fraction of the computational effort is spent on finding the roots of a polynomial. However,
in the S-GPA, mapping costs more than finding a root by Newton’s method. The data also
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shows that the most expensive algorithm was CNA because it required a system of equations
to be solved rather than simply finding the roots of a polynomial of degree four as in the
case of the algorithms L-GPA, M-GPA, and C-GPA.

Tables 6.10 and 6.11 contain some interesting observations about the efficiency of the iter-
ative solvers underlying some of these algorithms. First of all, it appears that the Lagrange
approach leads to the system requiring the smallest number of iterations. On the other hand,
the P-GPA uses a golden search algorithm to compute initial estimates of the minima and
maxima before invoking Newton’s method to converge rapidly to the minima and maxima.
Unfortunately, our tests indicate that it is difficult to reduce the number of iterations in
the golden search without obtaining initial estimates for which Newton’s method will not
converge. As a matter of fact, even using the golden search algorithm with the recommended
tolerances, roughly 1% of the pairs of ellipses did not converge to a contact point for the P-
GPA. In order to maintain the consistency of our tests, the pairs of ellipses for which P-GPA
failed to converge were also excluded from our tests with the other methods. We remark that
the standard deviation of number of iterations for M-GPA and C-GPA are higher than the
other algorithms, which leads us to conclude the number of iterations of M-GPA and C-GPA
depend on the relative configuration of the two ellipses. In contrast, the convergence of the
S-GPA appears to be independent of the relative geometry between the ellipses.

Later in this section, we will examine the pairs of ellipses for which different algorithms
attained the maximum number of iterations; see Figures 6.7, 6.8, and 6.9. Although the
number of iterations required by different algorithms are not necessarily correlated, the pairs
of ellipses for which a specific algorithm had more difficulty could indicate that certain
geometrical properties reduce robustness.

Overall, the data indicates that the new algorithm was the most efficient. Our hypothesis
is this algorithm combines a good initial estimate of the MPP (for an ellipse at origin and
a unit circle) with Newton’s method quadratic convergence. In practice, we found that the
S-GPA converged in a single iteration. Finally, the numerical experiments indicate that the
CNA and CCA algorithms were by far the most costly alternatives. We will therefore refrain
from discussing them any further.
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Table 6.10 Computational cost, number of iterations, and logarithmic error for MPP algo-
rithms using a relative tolerance of 10−5.

P-GPA L-GPA M-GPA C-GPA S-GPA
total computational cost (s) 8.24 10.79 15.22 13.76 1.96

mapping 0 0 1.31 1.07 1.31
initialization (focal points) 0 0 0 0 0.21
initialization (golden search) 5.55 0 0 0 0
root finding (Francis’ algorithm) 0 9.90 12.79 11.65 0
root finding (Newton’s method) 0.09 0 0 0 0.09

number of iterations
maximum 199 41 56 50 4
minimum 15 11 5 5 1
median 18 18 23 22 3
standard deviation 7.31 3.27 8.31 8.11 0.68

logarithmic error
maximum −5.18 −5.17 −5.05 −5.12 −5.12
median −10.84 −11.97 −12.00 −12.46 −10.22
standard deviation 1.65 2.14 2.4261 2.386 2.61

Table 6.11 Computational cost, number of iterations, and logarithmic error for MDP algo-
rithms using a relative tolerance of 10−5.

CNA CCA
total computational cost (s) 107.58 22.03
root finding (MATLAB functions) 101.22 17.47

number of iterations
maximum 109 13
minimum 4 1
median 10 4
standard deviation 17.90 2.07

We now turn to the data in Table 6.12 obtained using the same set of pairs of ellipses but
with a stricter tolerance of 10−9. A priori, we expect the results to indicate the same overall
trends but the stricter tolerance should help to identify any robustness issues. It is clear
that the stricter tolerance produces more accurate estimates and requires a larger number of
iterations. Yet, it is noticeable that the median number of iterations is almost identical while
the median error is roughly 10−4 smaller. This indicates that for the majority of the test
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cases we considered, the algorithm was already within the asymptotic regime of convergence
and in many cases one or no iterations were required to satisfy the desired tolerances.

Among the L-GPA, M-GPA, and C-GPA, the L-GPA is again the most efficient and accurate,
but it is still an order of magnitude slower than the S-GPA. The low standard deviation of the
number of iterations suggests that the S-GPA was also the most robust algorithm. It appears
that the M-GPA and C-GPA algorithms both required more iterations of their root-finding
algorithm, Francis’ method, in order to obtain the MPP, particularly when contrasted with
L-GPA. We hypothesize that the mapping step, present in M-GPA and C-GPA but not in L-
GPA, might make the root-finding problem harder, although further tests would be required
to confirm this.

Table 6.12 Computational cost, number of iterations, and logarithmic error for different
algorithms using a relative tolerance of 10−9.

P-GPA L-GPA M-GPA C-GPA S-GPA
total computational cost (s) 8.26 12.12 16.57 15.20 1.98
mapping 0 0 1.31 1.07 1.31
initialization (focal points) 0 0 0 0 0.21
initialization (golden search) 5.55 0 0 0 0
root finding (Francis’ algorithm) 0 11.25 14.14 13.09 0
root finding (Newton’s method) 0.11 0 0 0 0.11
root finding (Matlab functions) 0 0 0 0 0

number of iterations
maximum 201 46 59 55 6
minimum 15 14 5 5 2
median 19 21 26 24 5
standard deviation 7.24 3.37 8.66 8.53 0.80

logarithmic error
maximum −9.08 −9.14 −9.16 −9.05 −9.16
median −15.14 −14.61 −14.75 −15.41 −15.67
standard deviation 2.01 1.47 1.01 0.88 0.84

Finally, we conclude this section by examining pairs of ellipses for which certain algorithms
required the largest number of iterations from among our sample set. Figure 6.7 presents the
pair of ellipse that required the largest number of iterations in Francis’ method. In this case,
the two ellipses appear to have their principal axis roughly aligned and to be in contact near
the regions of highest curvature. We also note that in this configuration, the points on the
segment formed by yi and yj cross the segment formed of zi and zj. It is somewhat surprising



102

that this configuration might be difficult for the M-GPA to handle. Figure 6.8 presents the
pair of ellipses that required the most iterations of the L-GPA. This configuration appears
very similar to the one associated to the M-GPA. Finally, Figure 6.9 presents the worst
case scenario for the C-GPA and again, the configuration seems unexeceptional although
the principal axis are angled by roughly π/4 and the contact occurs at points where the
curvature is intermediate. In other words, the pair of ellipse in Figure 6.9 is completely the
opposite than what we found in the previous two configurations. We did not present the
pair of ellipse associated to the worst case scenario for the new algorithm because there was
very little variation on the number of iterations. Furthermore, the new algorithm profited
from a unique initialization, hence a comparison with the other GPA-type algorithm would
be biased.
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Figure 6.7 In this configuration of ellipses Ei and Ej, M-GPA requires the largest number
of iterations to find yj. The points (yi,yj,yc) are the MPP and the contact point while
(zi, zj, zc) is the MDP and its contact point.
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6.6 Performance and Accuracy of the Algorithms for Ellipses with Respect to
their Aspect Ratio, Size and Overlap

The main objective of this section is to compare the performance of existing algorithms for
contact detection with the S-GPA. We shall compare in particular the computational time
needed to compute contact points as we are interested in fast algorithms. In order to do
so, we generate sample sets made of 1, 000 pairs of ellipses randomly generated using the
algorithm described in Section C.1.1 or a variant of it. We also study the influence of certain
parameters such as the aspect ratio a/b of the ellipses, their size ab, or the penetration length
or separation distance ε between the ellipses. We note that the generator can either create
ellipses that overlap (ε < 0) or are separated (ε > 0), with ε = 0 being the case of perfect
overlap. We will not consider the Intersection Method in this study as the intersection set is
empty when the two ellipses do not overlap.

Effect of the aspect ratio: In this test, the size ab of ellipse Ei and the overlap ε are
uniformly distributed in the ranges [1, 100] and [−0.2, 0.2], respectively. However, we control
the aspect ratio a/b of the two ellipses Ei and Ej following a uniform distribution in the specific
ranges listed in Table 6.13. We report in the table the total computational time in seconds
to compute the contact point for the 1,000 pairs of ellipses for each interval of the aspect
ratio. On the one hand, we observe that the computational time in the case of the S-GPA
and P-GPA is independent of the aspect ratio. On the other hand, we see some significant
variations in the computational times for L-GPA, M-GPA, and C-GPA. More specifically,
by increasing the aspect ratio of the ellipses, the efficiency of L-GPA and M-GPA tends to
improve while it deteriorates for C-GPA. The trend is less clear in the case of CCA but the
algorithm is consistently slower than all the others.

Table 6.13 Computational time (in seconds) for 1,000 pairs of ellipses with respect to their
aspect ratio.

Aspect ratio L-GPA P-GPA M-GPA C-GPA CCA S-GPA
1–5 1.16 0.93 1.66 1.79 2.21 0.31
5–10 0.91 0.95 1.53 1.95 2.19 0.32
10–20 0.76 0.95 1.45 1.99 2.23 0.31
20–40 0.65 0.93 1.32 2.05 2.16 0.32
40–80 0.56 0.93 1.29 2.08 2.13 0.31
80–160 0.42 0.92 1.22 2.13 2.10 0.32
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Effect of the relative size: We consider here an experiment similar to the one previously
described in order to study the effect of the relative size of the ellipses on the computational
time. In this test, the aspect ratio a/b of the ellipses and the overlap ε are uniformly
distributed in the ranges [1, 10] and [−0.2, 0.2], respectively. However, the size of Ej is kept
equal to one while the size of Ei is uniformly drawn within the intervals given in Table 6.14.
It is clear from the results that the relative size of the ellipses has little effect or even no
effect on the performance of the algorithms.

Table 6.14 Computational time (in seconds) for 1,000 pairs of ellipses with respect to their
relative size.

Relative size L-GPA P-GPA M-GPA C-GPA CCA S-GPA
1–5 0.93 0.97 1.63 2.30 2.42 0.33
5–10 0.89 0.99 1.70 2.29 2.39 0.34
10–20 0.91 0.96 1.67 2.27 2.33 0.33
20–40 0.89 0.99 1.69 2.24 2.35 0.33
40–60 0.85 0.99 1.68 2.30 2.43 0.34
60–180 0.87 0.98 1.67 2.29 2.36 0.34

Effect of the overlap size: In this example, we only consider the geometric potential
methods, the reason being that the generator of Section C.1.1 provides pairs of ellipses for
which we know the exact solution xi to Problem (3.8). In that case, we can compute the
relative error in the approximations of xi by the various algorithms for each pair of ellipses and
use as a metric of accuracy the maximum relative error over the 1,000 pairs of ellipses. The
objective here is to study the influence of the overlap size ε on the computational time while
controlling the overall accuracy of the algorithms. We emphasize that the GPAs involve
iterative methods with distinct criteria for convergence. In order to provide meaningful
comparisons between the algorithms, we therefore aim at calculating solutions with a similar
accuracy. The sample sets consist here of 1,000 pairs of ellipses whose aspect ratio varies in
the range [1, 20] and relative size varies in the range [1, 10]. Each sample set involves pairs of
ellipses whose overlap size ε is either 10−1, 10−5, 10−10, or 10−15. The convergence criterion
of each algorithm is tuned so that the maximum relative error lies between 10−9 and 10−10,
as shown in Table 6.15. The computational times are reported in Table 6.16. We observe
that the overlap size has in fact limited effect on the performance of the algorithms.

The main conclusions from this series of experiments are as follows: 1) The performance of
the S-GPA is insensitive to variations in the aspect ratio, the relative size, or the overlap size
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Table 6.15 Logarithmic maximum error for 1,000 pairs of ellipses with respect to the overlap
size.

Overlap size L-GPA P-GPA M-GPA C-GPA S-GPA
10−1 −9.34 −9.34 −9.38 −9.38 −9.45
10−5 −9.17 −9.23 −9.55 −9.48 −9.45
10−10 −9.17 −9.31 −9.56 −9.48 −9.45
10−15 −9.17 −9.31 −9.56 −9.48 −9.45

Table 6.16 Computational time (in seconds) for 1,000 pairs of ellipses with respect to the
overlap size.

Overlap size L-GPA P-GPA M-GPA C-GPA S-GPA
10−1 0.83 0.99 1.61 2.22 0.33
10−5 0.85 1.01 1.61 2.05 0.33
10−10 0.87 1.00 1.58 1.99 0.33
10−15 0.83 1.01 1.58 1.84 0.33

of the pair of ellipses; 2) Only the aspect ratio of the ellipses may have a significant effect
on the performance of the other algorithms; 3) All Geometric Potential Algorithms (GPAs)
outperform the Closest Normal Algorithm (CCA); 4) L-GPA seems to be the most efficient
algorithm among the existing GPAs; 5) The S-GPA is consistently more efficient than the
other algorithms by a factor between two and seven when considering ellipses.

6.7 Performance of L-GPA and S-GPA for Ellipses and Ellipsoids

In this section, we refine our analysis of the performance of the S-GPA, by limiting the
comparison to only the L-GPA, which we demonstrated was consistently the second fastest.
As before, we generate sample sets of 1,000 pairs of ellipses and ellipsoids using the algorithms
of Sections C.1.1 and C.1.2. The parameters for the generation of the ellipses are γmax = 20,
ωmax = 50, εmax = 0.2, Nmin = 0, Nmax = 15, rmax = 10. The parameters for the generation
of the ellipsoids: are γ1,max = 20, γ2,max = 20, ωmax = 50, εmax = 0.2, Nmin = 0, Nmax = 15,
and rmax = 10. In other words, the ellipsoids have aspect ratios a/b and b/c in the range
[1, 60] for Ei and in the range [1, 10] for Ej. The size abc of Ei lies in the range [1, 20] and that
of Ej is 1.

We report in Table 6.17 the computational time, the number of iterations in the root finding
algorithms, and some statistics for the relative error. We first observe that the two algorithms
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provide similar accuracy whether in 2D or in 3D. We note however that while the S-GPA is
three times faster than L-GPA for ellipses, the speed-up reaches a factor of five for ellipsoids.
In the case of the S-GPA, more than half of the time is spent on the mapping and the
calculation of the guess point for the Newton’s method. On the other hand, the iterative
solver requires only a few iterations (the median number is 4 iterations in 2D and 7 iterations
in 3D) to converge to the solution of the problem. By contrast, the median number of
iterations in L-GPA almost triples in 3D when compared to 2D. Moreover, each iteration is
more costly as it requires finding the six roots of a polynomial of degree six in 3D compared
to the four roots of a polynomial of degree four in 2D. We also remark that if these algorithms
were used in DEM, where initial estimates of the contact point could be obtained by using
the estimates at the previous time step, then the new iterative algorithm would be vastly
superior to the L-GPA.

Finally, it is worth mentioning that, for the S-GPA, the standard deviation in the number of
iterations remains close to unity in 2D and 3D and that the maximum number of iterations
never exceed 14 for these two sets of ellipses and ellipsoids. Moreover, the Newton’s method
accounts for a fraction of the total computational cost of the algorithm. These features thus
makes it a suitable candidate for the development of a parallel version as the loads would
reasonably be well distributed among processors.
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Table 6.17 Computational time, number of iterations, and maximum relative error for L-GPA
and the S-GPA for 1,000 pairs of ellipses and ellipsoids.

2D 3D
L-GPA S-GPA L-GPA S-GPA

Computational time (in seconds)
total 1.05 0.34 2.57 0.47
guess point − 0.05 − 0.06
mapping − 0.19 − 0.21
root finding 0.89 0.02 2.34 0.16
Number of iterations
maximum 37 7 71 14
minimum 11 2 28 3
median 14 4 40 7
standard deviation 4.14 0.82 6.26 1.34
Log of relative error
maximum −7.80 −7.81 −7.88 −7.94
minimum −16.63 −17.00 −16.31 −17.00
median −12.88 −13.01 −12.21 −12.24
standard deviation 1.71 1.77 1.77 1.79
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CHAPTER 7 CONCLUSION AND RECOMMENDATIONS

7.1 Summary of Works

This research has been concerned with the development of contact detection methods for
ellipses and ellipsoids in near perfect contact. We hope that we were able to convey the idea
that the problem may seem deceptively simple. The main reasons are essentially twofold: 1)
the definition of contact point and normal is not unique for ellipsoidal particles; 2) there is
no analytical solution that allows one to solve the problem in a finite number of operations
and one has then to resort to numerical methods to identify such points and normals. The
major challenge is therefore to develop very efficient algorithms in order to be able to consider
very large systems of ellipsoidal particles in Discrete Element Simulations. An ideal solution
method should be fast, robust, and precise to handle all possible configuration pairs and
particle sizes.

A major objective was to define a rigorous mathematical framework to study the problem of
contact detection for elliptical and ellipsoidal particles and formalize key concepts in contact
detection. Starting with disjoint particles, we have identified two minimization problems to
compute their separation distance. The solutions of these problems are given in terms of
two points, one on each ellipse, that we have referred here to as the Minimum Distance Pair
(MDP) and the Minimum Potential Pair (MPP). The notion of the MDP and MPP happens
to coincide in the case of two ellipses or ellipsoids in perfect contact. In that particular case,
one can also find the contact point by looking at the Intersection Set (IS), which obviously
consists here of a single point. Our contribution was then to extend those three notions to the
case of overlapping particles and show that the corresponding minimization problems were
still well-posed. We have in particular conceptualized the notion of near-perfect contact and
proposed a formal definition of what is meant by small overlap between particles. The latter
relies on the introduction of the so-called co-gradient locus associated with a pair of ellipses,
which was previously identified as the line of common slope. We have shown that the co-
gradient locus is in fact a hyperbola in 2D. Using these concepts and definitions, we were able
to extend the minimization problems to the case of overlapping ellipses and ellipsoids and
show existence and uniqueness of their solutions, which has been rarely, if ever, addressed in
the literature. We have also highlighted the role played by non-binding constraints involving
the normals in the solution of the minimization problems.

The mathematical analysis of contact detection for ellipses and ellipsoids has led us to con-
clude that there are in fact only three broad classes of methods, each associated with a
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specific definition of the contact point: the intersection methods, which search for the inter-
section set between particles, 2) the geometric potential methods, which provide the MPP,
and 3) the common normal methods, which look for the MDP. Geometric potential methods
can also be distinguished by the fact that the minimization problem imposes, or not, the
non-binding constraints that the solution be on the co-gradient locus or that the normals
at each point of the MPP be opposite. We have also identified variants within the common
normal methods. It is then interesting to realize that the known algorithms all falls within
one of these three classes of methods, sometimes unbeknown to the authors. We note that
the contact points obtained by these methods get closer to each other as the overlap between
particles become smaller and eventually coincide when the particles are in perfect contact.
However, the difference can be noticeable if the pair of ellipses does not satisfy our definition
of small overlap. The intersection methods are conceptually simple and straightforward to
implement in two dimensions, but lacks stability and accuracy when the two ellipses ap-
proaches the configuration of perfect contact. Moreover, the method does not provide any
information about the separation distance when the particles are fully disjoint. The common
normal methods assume that one simultaneously find the contact pair of points by solving
one minimization problem, which results in a higher computational cost when compared to
the other methods. Moreover, we have shown that for some configurations of ellipses and
ellipsoids, the MPP may lie outside of the overlap region, which may be counterintuitive.
In our opinion, the geometric potential methods seem to provide the method of choice in
terms of computational cost and physical interpretation. We note that several algorithms
within the geometric potential methods have been developed to date. The algorithms vary
in essence from each other depending on the approach chosen to solve the constrained mini-
mization problems, on the use of normalization mappings of the particle pair or not, on the
parametrization of one of the ellipses or ellipsoids or not, on the choice of the root finding or
optimization approach and the choice of the initial guess point, and whether the non-binding
constraint on the gradients or normals is used or not. Finally, we emphasize that the solution
process for several of the geometric algorithms leads to finding the roots of polynomials of
degree four for ellipses and of degree six for ellipsoids. In this case, one usually computes all
roots and select among those the one that provides the global minimizer of the minimization
functional. It is in our opinion counterproductive and one should design an algorithm that
produces the global minimizer only without the need to evaluate the other minimizers, or
maximizers, associated with the objective function.

The mathematical analysis of the contact detection problem for ellipsoidal particles in near
perfect contact has thus led us to develop a novel algorithm that falls within the geometric po-
tential methods. The proposed algorithm make use of the normalization transformation that
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maps one of the two ellipses (ellipsoids) into an ellipse (ellipsoid) centered at the origin and
aligned with the coordinate axes and the other into a unit circle (sphere). Each minimization
problem to determine the contact pair is then recast into one of finding the roots of a simple
trigonometric scalar-valued function and vector-valued function after parametrization of the
ellipse and the ellipsoid, respectively. A byproduct in using such a transformation is the pos-
sibility to efficiently construct an accurate initial guess point for the root finding problem.
The problem is solved using a few iterations of the Newton’s method and convergence to the
desired root is guaranteed by enforcing an additional constraint that only the solution to the
minimization problem satisfies. The combination of all these ingredients has allowed us to
design an algorithm that is fast, robust, and suitable for any pair of ellipses and ellipsoids
in near perfect contact. The performance of the algorithm was assessed on large sample sets
of pairs of particles for which we have shown that it was several times faster than existing
algorithms for similar accuracy. Moreover, we have run experiments to demonstrate that
the computational time of the novel algorithm was independent of the aspect ratio, relative
size, and overlap size of the ellipses and ellipsoids and that its computational cost did not
significantly increase when passing from the 2D case to the 3D case, in contrast with the ex-
isting algorithms. For verification purposes, we have actually developed a general algorithm
to generate random pairs of ellipses and ellipsoids in near perfect contact. The originality of
these algorithms lies in the fact that one constructs pairs of ellipses or ellipsoids for which the
solution to one of the minimization problems in the geometric potential method is exactly
known, which allows one to precisely verify the accuracy of the contact detection algorithm.

7.2 Future Research

The mathematical analysis presented in this thesis has brought to light several new concepts
and notions for a better understanding of the contact detection problem for ellipses and ellip-
soids. We nevertheless recognize that this original work, while bringing some mathematical
rigor to the problem, also opens up new opportunities for future research. We list some
examples below:

1. The co-gradient locus has been fully characterized in the 2D case as it was rigorously
proved to be a hyperbola. However, the co-gradient locus in 3D still needs to be properly
characterized apart from the fact it is the intersection of two surfaces, each defined by
a quadratic equation. In the same spirit, one should also extend the definition of small
overlap to overlapping ellipsoids and complete the proof of some theorems for the 3D
case.
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2. We have proposed a novel algorithm based on our mathematical analysis of the con-
tact detection problem and showed that it is more efficient than existing algorithms.
However, we do not rule out the possibility that one could design an even faster algo-
rithm. In order to do so, one could explore different combinations of transformations,
parameterizations, root finding algorithms, methods to find initial guesses, constraints,
etc. It is possible that one could find an optimal combination that lower the number
of operations need to identify the contact point and contact normal for ellipses and
ellipsoids. Moreover, the algorithm should eventually be implemented on a parallel
machine in order to study very large assemblies of particles by the Discrete Element
Method and verify that it properly scales up for high-performance computing.

3. There is a growing interest in the use of super-quadrics to represent particles as they
cover a wide variety of shape geometries that resemble cubes, octahedra, cylinders,
lozenges, or spindles, with rounded or sharp corners. It would then be interesting to
extend the current mathematical framework to the contact detection problems involving
convex super-quadrics. For example, an intriguing problem would be to characterize
the co-gradient locus for a pair of two super-quadratics.

4. In DEM simulations, it is customary to decompose the contact detection problem into a
narrow phase search and a broad phase search. The latter is concerned with identifying
the list of candidate neighboring particles associated with each particle of an assembly
that should be considered in the former. Only in the narrow phase search does one
actually employ the accurate contact detection algorithm to determine the contact point
and contact normal. It is clear that the fewer neighboring particles that one marks
during the broad phase, the more efficient the overall algorithm for contact detection
would be. We believe that one could improve on the broad phase algorithms by using
tools from machine learning. One could for example design a deep neural network
to estimate the distance, with some level of confidence, between pairs of ellipsoids.
Training and validation of the model could then be performed using both the algorithm
to generate random pairs of ellipsoids and the contact detection algorithm to determine
the separation distance that were developed in this work.
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APPENDIX A INTERSECTION ALGORITHM

A.1 Intersection Algorithm

The coefficients of the Polynomial 4.5 corresponding to Intersection Algorithm from Sec-
tion 4.1 are defined as following:

a4 = AiP
2 +BiQ

2 + 2CiPQ,

a3 = 2AiSP + 2BiQU + 2Ci(PU + SQ) + 2DiP
2 + 2EiPQ,

a2 = AiS
2 +BiU

2 + 2BiQV + 2Ci(PV + SU) + 4DiSP + 2Ei(PU + SQ) + FiP
2,

a1 = 2BiUV + 2CiSV + 2DiS
2 + 2Ei(PV + SU) + 2FiSP,

a0 = BiV
2 + 2EiSV + FiS

2,

where we have introduced the following parameters

P = 2BiCj −BjCi

Q = AiBj − AjBi

S = 2BiEj − 2BjEi

U = 2DiBj − 2DjBi

V = FiBj − FjBi.
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APPENDIX B LAGRANGIAN GPA

B.1 Lagrangian GPA

B.1.1 Algorithm in 2-D

The two Equations (4.8) and (4.9) can be rewritten in the matrix form as
Ai + λAj Ci + λCj

Ci + λCj Bi + λBj

 x
y

 =
−Di − λDj

−Ei − λEj

 . (B.1)

with constraint:
Ajx

2 +Bjy
2 + 2Cjxy + 2Djx+ 2Ejy + Fj = 0.

By using Cramer’s rule, we can write (x, y) in terms of λ

x = Dx

D∗
,

y = Dy

D∗
,

(B.2)

where Dx, Dy, and D∗ denote the following determinants

Dx =

∣∣∣∣∣∣−Di − λDj Ci + λCj

−Ei − λEj Bi + λBj

∣∣∣∣∣∣ , Dy =

∣∣∣∣∣∣Ai + λAj −Di − λDj

Ci + λCj −Ei − λEj

∣∣∣∣∣∣ ,

D∗ =

∣∣∣∣∣∣Ai + λAj Ci + λCj

Ci + λCj Bi + λBj

∣∣∣∣∣∣ .
Developing above equations yields

x = axλ
2 + bxλ+ cx

a∗λ2 + b∗λ+ c∗
,

y = ayλ
2 + byλ+ cy

a∗λ2 + b∗λ+ c∗
,

with
ax = −BjDj + CjEj,

bx = −DjBi −DiBj + EiCj + EjCi,

cx = −DiBi + CiEi,
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ay = −AjEj + CjDj,

by = −AjEi − AiEj +DiCj +DjCi,

cy = −AiEi + CiDi,

a∗ = AjBj − C2
j ,

b∗ = AjBi + AiBj − 2CiCj,

c∗ = AiBi − C2
i .

By substituting the new expressions for x and y in fj(x, y) = 0, we obtain Polynomial (4.11)
respect to λ where its coefficients are defined as

a4 = Aja
2
x +Bja

2
y + 2Cjaxay + 2Djaxa

∗ + 2Ejaya∗ + Fja
∗2,

a3 = 2Ajaxbx + 2Bjayby + 2Cj(axby + bxay) + 2Dj(axb∗ + bxa
∗),

+ 2Ej(ayb∗ + bya
∗) + 2Fja∗b∗,

a2 = Aj(b2
x + 2axcx) +Bj(b2

y + 2aycy) + 2Cj(bxby + cxay + cyax),

+ 2Dj(bxb∗ + cxa
∗ + axc

∗) + 2Ej(byb∗ + cya
∗ + ayc

∗) + Fj(b∗2 + 2a∗c∗),

a1 = 2Ajbxcx + 2Bjbycy + 2Cj(bxcy + cxby) + 2Dj(bxc∗ + cxb
∗),

+ 2Ej(byc∗ + cyb
∗) + 2Fjb∗c∗,

a0 = Aic
2
x +Bjc

2
y + 2Cjcxcy + 2Djcxc

∗ + 2Ejc∗cy + Fjc
∗2.

B.1.2 Algorithm in 3-D

Equation (B.1) in 3-D can be recast as

Ai + λAj Fi + λFj Ei + λEj

Fi + λFj Bi + λBj Di + λDj

Ei + λEj Di + λDj Ci + λCj



x

y

z

 =


−Gi − λGj

−Hi − λHj

−Ii − λIj


with constraint

Ajx
2 +Bjy

2 + Cjz
2 + 2Djyz + 2Ejzx+ 2Fjxy + 2Gjx+ 2Hjy + 2Ijz + Jj = 0
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By using Cramer’s rule, we can solve for (x, y, z) in terms of λ such that

x = Dx

D∗

y = Dy

D∗

z = Dz

D∗

(B.3)

where

Dx =

∣∣∣∣∣∣∣∣∣
−Gi − λGj Fi + λFj Ei + λEj

−Hi − λHj Bi + λBj Di + λDj

−Ii − λIj Di + λDj Ci + λCj

∣∣∣∣∣∣∣∣∣ , Dy =

∣∣∣∣∣∣∣∣∣
Ai + λAj −Gi − λGj Ei + λEj

Fi + λFj −Hi − λHj Di + λDj

Ei + λEj −Ii − λIj Ci + λCj

∣∣∣∣∣∣∣∣∣

Dz =

∣∣∣∣∣∣∣∣∣
Ai + λAj Fi + λFj −Gi − λGj

Fi + λFj Bi + λBj −Hi − λHj

Ei + λEj Di + λDj −Ii − λIj

∣∣∣∣∣∣∣∣∣ , D∗ =

∣∣∣∣∣∣∣∣∣
Ai + λAj Fi + λFj Ei + λEj

Fi + λFj Bi + λBj Di + λDj

Ei + λEj Di + λDj Ci + λCj

∣∣∣∣∣∣∣∣∣
Developing above equations yields

x = axλ
3 + bxλ

2 + cxλ+ dx
a∗λ3 + b∗λ2 + c∗λ+ d∗

y = ayλ
3 + byλ

2 + cyλ+ dy
a∗λ3 + b∗λ2 + c∗λ+ d∗

z = azλ
3 + bzλ

2 + czλ+ dz
a∗λ3 + b∗λ2 + c∗λ+ d∗

(B.4)

where
ax = −Gj(CjBj −D2

j )− Fj(DjIj −HjCj) + Ej(IjBj −HjDj)

bx = −Gj(CiBj +BiCj − 2DiDj)−Gi(CjBj −D2
j )

− Fj(−CiHj − CjHi +DiIj +DjIi)− Fi(DjIj −HjCj)

+ Ej(−HjDi −HiDj +BjIi +BiIj) + Ei(IjBj −HjDj)

cx = −Gi(CiBj +BiCj − 2DiDj)−Gj(BiCi −D2
i )

− Fi(−CiHj − CjHi +DiIj +DjIi)− Fj(DiIi −HiCi)

+ Ei(−HjDi −HiDj +BjIi +BiIj) + Ej(IiBi −HiDi)

dx = −Gi(BiCi −D2
i )− Fi(DiIi −HiCi) + Ei(IiBi −HiDi)
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ay = Aj(−CjHj +DjIj) +Gj(CjFj −DjEj) + Ej(EjHj − FjIj)

by = Aj(−CiHj − CjHi +DjIi +DiIj) + Ai(−CjHj +DjIj)

+Gj(FiCj + FjCi −DiEj − EiDj) +Gi(CjFj −DjEj)

+ Ej(−FjIi − FiIj + EiHj + EjHi) + Ei(EjHj − FjIj)

cy = Ai(−CiHj − CjHi +DjIi +DiIj) + Aj(−CiHi +DiIi)

+Gi(FiCj + FjCi −DiEj − EiDj) +Gj(CiFi −DiEi)

+ Ei(−FjIi − FiIj + EiHj + EjHi) + Ej(EiHi − FiIi)

dy = Ai(−CiHi +DiIi) +Gi(CiFi −DiEi) + Ei(EiHi − FiIi)

az = Aj(−BjIj +HjDj) + Fj(FjIj −HjEj)−Gj(FjDj −BjEj)

bz = Aj(HjDi +HiDj − IiBj − IjBi) + Ai(HjDj − IjBj)

+ Fj(FjIi + FiIj −HjEi −HiEj) + Fi(FjIj −HjEj)

−Gj(FjDi + FiDj −BjEi −BiEj)−Gi(FjDj −BjEj)

cz = Ai(HjDi +HiDj − IiBj − IjBi) + Aj(HiDi − IiBi)

+ Fi(FjIi + FiIj −HjEi −HiEj) + Fj(FiIi −HiEi)

−Gi(FjDi + FiDj −BjEi −BiEj)−Gj(FiDi −BiEi)

dz = Ai(−BiIi +HiDi) + Fi(FiIi −HiEi)−Gi(FiDi −BiEi)

a∗ = Aj(BjCj −D2
j )− Fj(FjCj −DjEj) + Ej(FjDj −BjEj)

b∗ = Aj(BjCi +BiCj − 2DiDj) + Ai(BjCj −D2
j )

− Fj(FjCi + FiCj −DjEi −DiEj)− Fi(FjCj −DjEj)

+ Ej(FjDi + FiDj −BjEi −BiEj) + Ei(FjDj −BjEj)

c∗ = Ai(BjCi +BiCj − 2DiDj) + Aj(BiCi −D2
i )

− Fi(FjCi + FiCj −DjEi −DiEj)− Fj(FiCi −DiEi)

+ Ei(FjDi + FiDj −BjEi −BiEj) + Ej(FiDi −BiEi)

d∗ = Ai(BiCi −D2
i )− Fi(FiCi −DiEi) + Ei(FiDi −BiEi)

Substituting the new expressions (B.4) for x, y, and z in fj(x, y, z) = 0, we obtain a polyno-
mial degree sixth with respect to λ

a6λ
6 + a5λ

5 + a4λ
4 + a3λ

3 + a2λ
2 + a1λ+ a0 = 0 (B.5)
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where

a6 = Aja
2
x +Bja

2
y + Cja

2
z + 2Djayaz + 2Ejazax + 2Fjaxay

+ 2Gja
∗ax + 2Hjaya

∗ + 2Ijaza∗ + Jja
∗2

a5 = 2Ajaxbx + 2Bjayby + 2Cjazbz + 2Dj(azby + aybz)

+ 2Ej(bzax + bxaz) + 2Fj(bxay + byax) + 2Gj(axb∗ + bxa
∗)

+ 2Hj(ayb∗ + bya
∗) + 2Ij(azb∗ + bza

∗) + Jj(2a∗b∗)

a4 = Aj(b2
x + 2axcx) +Bj(b2

y + 2cyay) + Cj(b2
z + 2czaz)

+ 2Dj(aycz + cyaz + bybz) + 2Ej(azcx + axcz + bxbz)

+ 2Fj(axcy + cxay + bxby) + 2Gj(axc∗ + a∗cx + bxb
∗)

+ 2Hj(ayc∗ + cya
∗ + byb

∗) + 2Ij(cza∗ + azc
∗ + bzb

∗)

+ Jj(b∗2 + 2a∗c∗)

a3 = Aj(2axdx + 2cxbx) +Bj(2aydy + 2bycy)

+ Cj(2azdz + 2bzcz) + 2Dj(aydz + dyaz + bycz + cybz)

+ 2Ej(azdx + dzax + bzcx + czbx) + 2Fj(axdy + dxay + bxcy + bycx)

+ 2Gj(axd∗ + dxa
∗ + cxb

∗ + bxc
∗) + 2Hj(ayd∗ + dya

∗ + byc
∗ + cyb

∗)

+ 2Ij(azd∗ + dza
∗ + bzc

∗ + czb
∗) + Jj(2a∗d∗ + 2c∗b∗)

a2 = Aj(c2
x + 2bxdx) +Bj(c2

y + 2dyby) + Cj(c2
z + 2dzbz)

+ 2Dj(bydz + dybz + cycz) + 2Ej(bzdx + bxdz + cxcz)

+ 2Fj(bxdy + bydx + cxcy) + 2Gj(bxd∗ + b∗dx + cxc
∗)

+ 2Hj(byd∗ + b∗dy + cyc
∗) + 2Ij(bzd∗ + b∗dz + czc

∗)

+ Jj(c∗2 + 2b∗d∗)

a1 = Aj(2dxcx) +Bj(2dycy) + Cj(2czdz)

+ 2Dj(cydz + dycz) + 2Ej(czdx + cxdz) + 2Fj(cxdy + cydx)

+ 2Gj(cxd∗ + c∗dx) + 2Hj(cyd∗ + dyc
∗) + 2Ij(czd∗ + c∗dz) + Jj(2d∗c∗)

a0 = Ajd
2
x +Bjd

2
y + Cjd

2
z + 2Djdydz + 2Ejdzdx + 2Fjdxdy + 2Gjdxd

∗ + 2Hjdyd
∗

+ 2Ijdzd∗ + Jjd
∗2



125

APPENDIX C ALGORITHM FOR THE GENERATION OF PAIRS OF
RANDOM ELLIPSES AND ELLIPSOIDS

C.1 Algorithm for the Generation of Pairs of Random Ellipses and Ellipsoids

C.1.1 Algorithm for Ellipses

We present in this section an algorithm to generate arbitrary pairs of ellipses that may
overlap or not for which we know the exact position of the solution xj to the minimization
problem (3.9) The idea is to start by defining an ellipse Ēj, centered at the origin and
aligned with the coordinate system (Ō, x̄, ȳ), and by constructing a unit circle C̄i. The final
ellipses Ei and Ej are obtained in the coordinate system (O, x, y) using the transformations
of Section 3.7.2

Ellipse Ēj: We propose to characterize the semi-axes (āj, b̄j) of Ēj in terms of two dimen-
sionless parameters, namely the aspect ratio γj of Ēj and the ratio ωj between the volumes
of the ellipse, VĒj

, and of the unit circle, VC̄i
:

γj = āj

b̄j
, ωj =

VĒj

VC̄i

= πāj b̄j
π12 = āj b̄j.

Given γj and ωj, the semi-axes are then obtained as:

āj = √ωjγj,

b̄j =
√
ωj/γj.

Constraints on the ratios are as follows:

1 ≤ γj ≤ γmax,

1 ≤ ωj ≤ ωmax.

with γmax and ωmax possibly large. The constraints on γj and ωj ensure that the semi-axes
are finite, such that 0 < b̄j ≤ āj, and that the volume of the ellipse Ēj is greater than that of
the circle C̄i. The values of γj and ωj can be drawn using uniform distributions or lognormal
distributions.
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Circle C̄i: The unit circle C̄i is constructed with respect to a point xj chosen on ellipse
Ēj with a small “overlap” ε. If ε > 0, the circle is fully outside of the ellipse. If ε ≤ 0, |ε|
measures the penetration length of C̄i into Ej. The center of the unit circle is determined in
terms of xj and ε as follows:

1. Using the parametric representation of Ēj, one can take tj ∈ [0, 2π[ so that

x̄j =
āj cos tj
b̄j sin tj

 .
If one chooses for example that tj should follow a uniform distribution, one can draw
ρ ∼ U(0, 1) and compute tj = 2πρ.

2. We suppose that, given εmax ≤ 1, the “overlap" satisfies −εmax ≤ ε ≤ εmax. For
instance, one can choose ρ ∼ U(0, 1), compute N(ρ) = (1 − ρ)Nmin + ρNmax and set
ε = ±εmax10−N(ρ), with Nmin and Nmax given. In doing so, one can restrict the overlap
to certain subintervals of [−εmax, εmax] or consider all separation lengths up to about
machine precision by taking e.g. Nmin = 0 and Nmax = 15.

Therefore, the unit circle C̄i is fully defined by providing the center c̄i as

c̄i = x̄j + (1 + ε)n̄j(x̄j),

where n̄j(x̄j) is the unit outward normal to Ēj at x̄j computed from (2.16).

Transformation: The objective here is to transform the circle C̄i and the ellipse Ēj into
the ellipses Ei and Ej with an arbitrary orientation in the coordinate system (O, x, y) using
the transformation of Section 3.7.2, that we recall here for convenience

x̄ = R̄T
j D

1/2
i RT

i (x− cj).

In other words, one needs to specify the two rotations Ri and R̄j, the diagonal matrix Di
associated with Ei, and the center cj of Ej.

The center is conveniently generated in polar coordinates, i.e. cj = (r cos θ, r sin θ). We
choose ρ ∼ U(0, 1) and compute θ = 2πρ. For the length r, we provide a maximal value rmax,
choose ρ ∼ U(0, 1), and compute r = rmaxρ.

The two rotations Ri and R̄j are defined in 2D in terms of the two angles θi and θ̄j ∈ [0, 2π]
according to Eq. (2.2). We suppose that the angles follow a uniform distribution such that
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θi = 2πρ and θ̄j = 2πρ with ρ ∼ U(0, 1) for each rotation.

In order to transform the circle into an ellipse, we introduce the diagonal matrix Di:

Di =
1/a2

i 0
0 1/b2

i


where the semi-axes ai and bi are selected in a fashion similar to that for Ēj. However, we
impose here that the volume ratio ωi between C̄i and Ei be equal to unity, i.e. ωi = 1, which
will be motivated below. In other words, we just need to draw a value for the aspect ratio
γi, so that we have:

ai = √γi,

bi = 1/√γi = a−1
i .

Equations of ellipses Ei and Ej in (O, x, y): The equation of ellipse Ei is given by

fi(x) = (x− ci)TQi(x− ci)− 1 = 0,

where
Qi = RiDiRT

i ,

ci = cj +RiD−1/2
i R̄j c̄i.

The equation of Ej in (O, x, y) reads:

fj(x) = (x− cj)TQj(x− cj)− 1 = 0,

where
Qj = RiD1/2

i R̄jD̄jR̄T
j D

1/2
i RT

i .

The semi-axes ai and bi of Ei and angle of rotation θi can be obtained from the eigenvalues
and eigenvectors of Qj = RjDjRT

j . The fact that we chose ωi = 1 implies that we also control
the volume ratio ωij between the two ellipses Ei and Ej as it is the same as the volume ratio
ωj = āj b̄j. Indeed, on the one hand, ωi = 1 implies that aibi = 1. On the other hand, by
definition of Qj, we have:

detQj = 1
a2
j

1
b2
j

= det D̄j detDi = 1
ā2
j

1
b̄2
j

1
a2
i

1
b2
i
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so that ajbj = āj b̄j. It follows that

ωij = πajbj
πaibi

= ajbj = āj b̄j = ωj.

Coordinates of point xj: The point xj on Ej is obtained from x̄j through the transfor-
mation as

xj = cj +RiD−1/2
i R̄jx̄j.

This is the unique solution to Problem (3.9) for ellipses Ei and Ej in the coordinate system
(O, x, y).

Input and output: Apart from the choice of the distributions, the main input data to
generate a pair of ellipses are γmax, ωmax, εmax, Nmin, Nmax, rmax. However, one can imagine
variants of above algorithm, which could introduce additional input parameters. The output
data consists mainly of the data for the two ellipses, namely Qi and ci for Ei and Qj and cj
for Ej, and the point xj on Ej. The ellipses can also be described in terms of their semi-axes
and angle of rotation, i.e. {ai, bi, θi, ci} and {aj, bj, θj, cj}.

C.1.2 Algorithm for Ellipsoids

We describe in this section the algorithm to generate pairs of ellipsoids. The approach is
similar to the 2D case: it starts by constructing an ellipsoid Ēj centered at the origin, whose
semi-axes are aligned with the coordinate system (Ō, x̄, ȳ, z̄), and a sphere S̄i of unit radius
overlapping, or not, with Ēj. The final pair of ellipsoids Ei and Ej are obtained by extending
to the 3D case the transformations proposed in [24].

Ellipsoid Ēj: The semi-axes (āj, b̄j, c̄j) of ellipsoid Ēj are characterized in terms of three
dimensionless parameters: 1) the aspect ratio γj,1 between āj and b̄j; 2) the aspect ratio γj,2
between b̄j and c̄j; 3) and the ratio ω between the volumes of the ellipsoid, VĒj

, and of the
sphere, VS̄i

:

γj,1 = āj

b̄j
, γj,2 = b̄j

c̄j
, ωj =

VĒj

VS̄i

= āj b̄j c̄j.

Given γj,1, γj,2, and ωj, the semi-axes are then obtained as:

āj = 3
√
ωjγ2

j,1γj,2, b̄j = 3

√
ωj
γj,2
γj,1

, c̄j = 3

√
ωj

γj,1γ2
j,2
.
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Constraints on the ratios are as follows:

1 ≤ γj,1 ≤ γ1,max,

1 ≤ γj,2 ≤ γ2,max,

1 ≤ ωj ≤ ωmax,

with γ1,max, γ2,max, ωmax possibly large. The values of the three parameters can be drawn
from uniform or lognormal distributions.

Sphere S̄i: The construction of the sphere is similar to that of the circle in the 2D case.
The unit sphere S̄i is constructed with a point xj on ellipsoid Ēj with a small “overlap” ε.
The center c̄i of S̄i is determined in terms of xj and ε as follows:

1. Using the parametric representation of the ellipsoid Ēj:

x̄(u, v) =


āj cosu sin v
b̄j sin u sin v
c̄j cos v

 , u ∈ [−π, π], v ∈ [0, π],

one can draw two numbers, e.g. ρ1 ∼ U(0, 1) and ρ2 ∼ U(0, 1), and compute uj = 2πρ1

and vj = πρ2. We then define the point x̄j on Ēj such that:

x̄j =


āj cosuj sin vj
b̄j sin uj sin vj
c̄j cos vj

 .

2. We choose a value of ε in the same manner as in the 2D case, e.g. −εmax ≤ ε ≤ εmax.

The center c̄i of the sphere S̄i is thus defined as:

c̄i = x̄j + (1 + ε)n̄j(x̄j)

where n̄j(x̄j) is the unit outward normal to Ēj at x̄j.

Transformation: We now transform the ellipsoid Ēi and the sphere S̄j into two ellipsoids
Ei and Ej in the coordinate system (O, x, y, z) using the transformation

x̄ = R̄T
j D

1/2
i RT

i (x− cj),
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where one needs to specify the two rotations Ri and R̄j, the diagonal matrix Di associated
with Ei, and the center cj of Ej.

The center is constructed using the spherical coordinates, i.e. cj = (r sin θ cosϕ, r sin θ sinϕ, r cos θ).
We compute θ = πρ and ϕ = 2πρ, with ρ ∼ U(0, 1) for each angle. For the length r, we
provide a maximal value rmax, choose ρ ∼ U(0, 1), and compute r = rmaxρ.

Rotations in 3D can be represented in several ways. A rotation R will be expressed here in
terms of three elementary rotations as follows:

R(α1, α2, α3) = Rα3Rα2Rα1 =


1 0 0
0 cosα3 − sinα3

0 sinα3 cosα3




cosα2 0 sinα2

0 1 0
− sinα2 0 cosα2




cosα1 − sinα1 0
sinα1 cosα1 0

0 0 1


where α1, α3 ∈ [0, 2π] and α2 ∈ [0, π]. We will consider the two rotations, Ri and R̄j, with
parameters chosen as α1, α3 ∼ 2πU(0, 1) and α2 ∼ πU(0, 1).

The semi-axes (ai, bi, ci) of ellipsoid Ei, which form the diagonal matrix Di:

Di =


1/a2

i 0 0
0 1/b2

i 0
0 0 1/c2

i

 ,

are selected in the same fashion as that for Ēj. However, we impose here that the volume
ratio ωi between Ei and S̄i be equal to unity, i.e. ωi = 1. In other words, we just need to
draw values for the aspect ratios γi,1 and γi,2, so that:

ai = 3
√
γ2
i,1γi,2, bi = 3

√
γi,2
γi,1

, ci = 3

√√√√ 1
γi,1γ2

i,2
.

Equations of ellipsoids Ei and Ej in (O, x, y, z): As in 2D, the equation of ellipsoid Ei
in (O, x, y, z) can be written as:

fi(x) = (x− ci)TQi(x− ci)− 1 = 0

where:
Qi = RiDiRT

i ,

ci = cj +RiD−1/2
i R̄j c̄i.
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The equation of Ej in (O, x, y) reads:

fj(x) = (x− cj)TQj(x− cj)− 1 = 0,

where
Qj = RiD1/2

i R̄jD̄jR̄T
j D

1/2
i RT

i .

The semi-axes (aj, bj, cj) are obtained from the eigenvalues λ1 ≤ λ2 ≤ λ3 of Qi as:

aj = 1√
λ1
, bj = 1√

λ2
, cj = 1√

λ3
.

Coordinates of point xj: The point xj is obtained from x̄j through the transformation

xj = cj +RiD−1/2
i R̄jx̄j.

Output: The main input data to generate a pair of ellipses are γ1,max, γ2,max, ωmax, εmax,
Nmin, Nmax, rmax. The output data consists of the data for the two ellipsoids, namely Qi and
ci for Ei and Qj and cj for Ej, and the point xj on Ej.
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