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RÉSUMÉ

En raison de la popularité croissante des modèles de langage à base de Transformers (TLMs),
il est de plus en plus nécessaire de mieux comprendre leurs forces et leurs limites s’ils doivent
être utilisés pour aider les humains à résoudre des tâches complexes avec des implications
réelles. Cette thèse se concentre particulièrement sur leurs capacités de raisonnement à
plusieurs étapes, car il s’agit à la fois d’une faiblesse des modèles de langage et d’une direction
de recherche potentiellement impactante.

Tout d’abord, la généralisation compositionnelle des TLMs est évaluée sur une tâche de
raisonnement logique en langage naturelle. Des modèles de Transformers décodeurs sont
entraînés à répondre à des questions de prédiction de lien entre des personnes en raison-
nant sur leurs relations intermédiaires. En particulier, pour mieux comprendre comment
les TLMs raisonnent, les modèles sont entraînés à générer différents types d’explications en
langage naturel (preuves) avant de générer leur réponse finale. L’exactitude des réponses
et des preuves sont évaluées sur des problèmes nécessitant un nombre spécifique d’étapes
de raisonnement qui ne sont pas vues pendant l’entraînement. Cette première contribution
confirme que les TLMs souffrent de problèmes de généralisation lorsqu’ils sont testés sur des
problèmes plus longs que ceux pour lesquels ils ont été entraînés. De plus, elle révèle que
les TLMs généralisent mieux lorsqu’ils sont entraînés sur des preuves exhaustives et longues
que sur des preuves courtes. Les résultats montrent également que les TLMs généralisent
mieux lorsqu’ils sont entraînés à générer des chaines de preuves inverse (“backward-chaining”)
plutôt que des chaînes directes (“forward-chaining”). Cependant, on observe également que
les modèles entraînés à prédire directement la réponse finale sans générer d’explication logique
généralisent mieux aux problèmes plus complexes. Cela suggère que les TLMs ont des straté-
gies de raisonnement interne difficiles à interpréter, et que bénéficier d’énoncés de preuves
logiques naturelles nécessite des représentations internes plus complexes. Des expériences
additionelles ont d’ailleurs montré que les modèles pré-entraînés ont de meilleures capacités
de raisonnement bien qu’ils n’aient pas été explicitement entraînés à résoudre de telles tâches.
Cette première contribution est publiée dans les “Advances in Neural Information Processing
Systems (NeurIPS)” 2020.

La prochaine contribution introduit un biais inductif d’abstraction dans les TLMs pré-
entraînés et démontre ses avantages sur des tâches de raisonnement symbolique. Étant donné
que la manipulation de concepts génériques simplifie les processus de raisonnement et permet
aux humains de généraliser leurs connaissances entre domaines, cette contribution utilise la



vii

reconnaissance de type d’entitées pour augmenter l’information donnée en entrée au mod-
èle. Cinq stratégies sont proposées pour incorporer ces connaissances supplémentaires dans
un TLM encodeur-décodeur: deux méthodes basées sur l’embedding, deux méthodes basées
sur l’encodage et une méthode basée sur une tâche auxiliaire. Les modèles sont évalués
sur divers ensembles de données, allant du raisonnement compositionnel, au raisonnement
abductif, aux questions-réponses multi-sauts (“multi-hop”) et aux questions-réponses con-
versationnelles. Les résultats expérimentaux indiquent que les meilleurs modèles conscients
des types d’entitées améliorent les performances des TLMs jusqu’à 20% sur les tâches ex-
igeant explicitement un raisonnement symbolique, confirmant ainsi les avantages de ce biais
inductif. Cependant, la méthode d’abstraction proposée n’est pas aussi efficace sur les tâches
plus axées sur le langage naturel. Une analyse plus approfondie suggère que l’abstraction
des types d’entitées n’est bénéfique que pour les tâches avec (1) des d’abstraction de bonne
qualité et (2) une répartition des données d’entraînement/test en fonction de la complex-
ité de raisonnement de chaque exemple. Cette deuxième contribution est publiée dans les
“Transactions on Machine Learning Research” (TMLR).

Enfin, avec la croissance des interfaces de discussions, la troisième contribution se tourne
vers les environnements textuels interactifs. Ces environnements nécessitent que le modèle
effectue un raisonnement à plusieurs étapes, car leur tâche consiste à d’atteindre un objectif
final en générant des commandes textuelles pour interagir avec l’environnement et évoluer
petit à petit vers cet objectif final. Dans le but de mieux contrôler le comportement des TLMs
dans ces environnements, la dernière contribution propose une méthode d’apprentissage par
renforcement qui tire parti des TLMs pré-entraînés et les conditionne à un résultat souhaité.
Les expériences sur certains des jeux Jericho les plus difficiles montrent que les TLMs peuvent
apprendre une correspondance entre une condition de résultat et une action, et confirment
ainsi l’avantage significatif de l’utilisation de l’inclinaison exponentielle (“exponential tilt”)
lorsque le modèle génère sa propre condition de résultat. De plus, plusieurs méthodes de
conditionnement sont proposées et comparées les unes aux autres. Les résultats montrent
que les méthodes proposées peuvent améliorer les performances moyennes jusqu’à 10% par
rapport aux méthodes précédentes. Finalement, en exploitant l’utilisation des TLMs dans les
environnements textuels, des expériences supplémentaires montrent que les modèles entraînés
à prédire les conséquences de leurs actions améliorent également les performances moyennes
de 10%.

En résumé, cette thèse tente d’éclairer les capacités de raisonnement à plusieurs étapes des
modèles de langage à base de Transformers et présente de nouveaux mécanismes pour con-
struire des modèles de langage plus logiques et plus contrôlables.
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ABSTRACT

Due to the growing popularity of Transformer Language Models (TLMs), there is an increas-
ing need to better understand their strengths and limitations if they are to be widely used
to help humans solve complex tasks with real-world implications. This thesis is particularly
centered around their multi-step reasoning capabilities as it is both a weakness of language
models and a potentially impactful research direction.

First, the compositional generalization of TLMs is evaluated on a logical reasoning task in
natural language. Transformer decoder models are trained to answer link-prediction questions
by reasoning over relationships between entities. In particular, to better understand how
TLMs reason, models are trained to generate various types of natural language explanations
(proofs) before generating their final answer. Both the models’ answer accuracy and proof
accuracy are evaluated on problems requiring specific numbers of reasoning steps that are
not seen during training. This first contribution confirms that TLMs suffer from length-
generalization issues when tested on longer-than-trained problems. Additionally, it reveals
that TLMs generalize better when trained on longer, exhaustive proofs than with shorter ones.
Results also show that TLMs generalize better when trained to generate backward-chaining
rather than forward-chaining proofs. However, it is also observed that models trained to
predict the answer directly without generating a logical explanation generalize better to
more complex problems. This suggests that TLMs have internal reasoning strategies that
are hard to interpret and that benefiting from naturally stated logical proof statements
requires more complex internal representations. Additional experiments showed for instance
that pre-trained models have better reasoning capacities although not explicitly trained to
solve such tasks. This first contribution is published as a conference paper in the Advances
in Neural Information Processing Systems (NeurIPS) 2020.

The next contribution introduces an abstraction inductive bias into pre-trained TLMs and
demonstrates its benefits on symbolic reasoning tasks. As manipulating generic concepts
simplifies reasoning processes and allows humans to generalize knowledge across domains,
this contribution makes use of named entity recognition to label entity types in input se-
quences. Five strategies are proposed to incorporate this additional knowledge into an
encoder-decoder TLM: two embedding-based methods, two encoding-based methods, and
one auxiliary-loss-based method. Models are evaluated on various reasoning datasets rang-
ing from compositional reasoning, abductive reasoning, multi-hop question answering, and
conversational question answering. Experimental results indicate that the best entity-type
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abstraction-aware models improve the performance of TLMs by up to 20% on tasks explicitly
requiring symbolic reasoning thus confirming the advantages of this inductive bias. However,
the proposed abstraction method is not as effective on more natural language tasks. Further
analysis suggests that entity-type abstraction is only beneficial in tasks with (1) good quality
abstraction labels and (2) with train/test data split according to the reasoning complexity of
each example. This second contribution is published as a journal paper in the Transactions
on Machine Learning Research (TMLR).

Finally, with the increasing prevalence of chat interfaces, the third contribution moves away
from single-turn question-answering tasks and towards interactive text environments. These
environments require the model to perform multi-step reasoning by design as the goal is to
reach a final objective by generating text commands to interact with the environment and
evolve toward that final goal step by step. In an effort to better control the behavior of TLMs
in those environments, the last contribution proposes an offline reinforcement learning method
that leverages pre-trained TLMs and condition them on a desired outcome. Experimental
results on some of the most challenging Jericho text games show that TLMs can learn a
mapping from goal condition to action, and thus confirm the significant advantage of using
exponential tilt when the model is generating its own outcome condition. Furthermore,
multiple conditioning methods are proposed and compared against each other. Results show
that the proposed methods can improve average performance by up to 10% over previous
baselines. Eventually, taking advantage of the use of TLMs in text environments, additional
experiments demonstrate that models trained to predict the consequences of their actions
also improve the averaged normalized performance by 10%.

In summary, this thesis attempts to shed light on the multi-step reasoning abilities of Trans-
former language models and introduces novel mechanisms to build more logical and control-
lable language models.
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CHAPTER 1 INTRODUCTION

Since the advent of modern computers, the frequency of human-to-machine interactions has
been rising continuously. This can largely be attributed to machines being capable of per-
forming tasks that were once deemed impossible. With ongoing and accelerating techno-
logical advancements, humans have become used to interacting with machines for a range
of purposes. However, these interactions are typically done with special commands through
multiple clicks and mouse drags, which are often inefficient, tedious, and not flexible enough
to express one’s true intention. On the other hand, humans communicate with one another
efficiently using natural language. The field of natural language processing (NLP) aims to
bridge this gap by teaching machines how to understand and generate natural language. Nat-
ural language interfaces can potentially increase the efficiency and productivity of workers
trying to achieve a task by offering a chat-based experience on any computer application.
As such, advances in the field of NLP research bring us closer to the goal of communicating
with machines in natural language.

Having a conversation with computers is not a novel idea. Already in the 1950s Allan Turing
was thinking about it and introduced the “Turing test” [11]. Shortly thereafter, Weizenbaum
developed the first computer program that could interact with humans in natural language
(ELIZA [12]) using templates and decision tree rules. A couple of years later, computation
with layered networks of artificial neurons was introduced. [13, 14]. However such networks
required (and still do) a lot of data to be trained and thus were not used for NLP systems until
recently. Recent progress in computer hardware and the availability of significant amounts
of data changed our approach to building NLP systems. We now have powerful enough
computers and sufficient amounts of public data to train artificial neural networks of millions
to billions of parameters and build data-driven NLP systems.

1.1 The Field of Research

Natural Language Processing (NLP) is a field of artificial intelligence (AI) that aims to
enable computers to understand and generate natural language, most often in written form
rather than spoken (which is the domain of Speech Processing). Some popular tasks to
test this ability are: Question Answering (QA), which involves answering a question using a
given document, Natural Language Inference (NLI), which involves identifying whether one
sentence entails or contradicts another, Machine Translation (MT), which involves generating
the equivalent of a sentence in one language from a sentence in another language, Language
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Modeling, which involves predicting the subsequent words of a sentence given its beginning,
and many other related tasks.

The modern approach to tackle these tasks is to use vectors of hundreds of dimensions
to represent words (i.e., word vectors/embeddings) and sentences (i.e., sentence embed-
dings) [15–17] and then process them through neural networks. Traditionally, sequences
of word vectors were processed with neural network architectures such as Recurrent Neural
Networks (RNNs) [18], Long Short-Term Memory networks (LSTM) [19] and Gated Recur-
rent Units (GRU) [20]. However, more recently, a new type of architecture relying heavily
on the attention mechanism [21], called Transformers, has been demonstrated to outperform
traditional recurrent architectures on multiple tasks [10,17,22].

Neural networks are commonly trained to minimize a differentiable loss function between
their predicted output and a ground truth target using optimization algorithms such as
stochastic gradient descent (SGD) [23]. Recently, a new training paradigm emerged from the
literature: by training Transformer networks to perform the language modeling task on large
amounts of data (such as the entire web, or collections of books), one can achieve state-of-the-
art performance on a variety of NLP tasks by fine-tuning the network on a relatively small
amount of data for a relatively small amount of time [24–26]. This suggests that language
modeling, when performed on large-scale Transformers with massive datasets, is a task that
captures useful features for all other NLP tasks. Transformer networks with a large number
of parameters (in the range of billions) pre-trained in this fashion on enormous corpora of text
are referred to as Large Language Models (LLMs) or Foundation Models in the literature.

1.2 Motivation

Although significant progress has been made in the field of NLP, it is still uncertain to which
extent Transformer Language Models (TLMs) are capable of logical reasoning. For text-
generative systems such as TLMs to be widely used as a tool to help humans solve complex
tasks, they must be able to decompose problems into smaller ones, propose a solution for each
of them individually, and compose these solutions back to accomplish the original task. In
addition, generative systems should output truthful sentences that can be verified by logical
reasoning steps instead of convincing the end user that they generated correct knowledge by
“sounding” confident about what they generate. If not, such systems can have the potential
of propagating false information at massive scales. For these reasons, generative TLMs must
be able to logically reason from a set of given facts and infer new ones by thinking step by
step with truthful inference mechanisms.
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In the past, recurrent language models were known to be weak logical reasoners. In particular,
these models were found to be better at memorizing data from their training sets rather than
learning general compositional rules [27]. Multiple studies suggest that language models can
be easily deceived when it comes to tasks requiring compositional generalization [28–31].

With the impressive progress made by Transformers on various NLP tasks, the motivation
of this research is thus to understand if TLMs can be used to perform logical reasoning on
natural language tasks. A challenging task in the NLP community is the “link prediction”
problem, which involves inferring new facts that are coherent given a set of true facts. The
name link prediction comes from the graph neural network (GNN) community [32] where the
task is to discover new relationships (links) between entities (nodes) in a knowledge graph.
The core limitation of GNNs is that the data must be represented as a graph structure.
However, most human knowledge is not available in graphs but in texts which is difficult to
reason over automatically due to the ambiguity of natural language. As a result, the idea of
inferring new knowledge by ‘reading’ existing facts in text form is an attractive and powerful
one.

Furthermore, when inferring new knowledge from existing facts, an important concept arises:
systematic generalization. When a model is expected to perform on unseen combinations
of knowledge, the task is said to be evaluating the generalization capacity of the model.
Systematic generalization has been characterized as the capacity to understand and produce
a potentially infinite number of novel combinations from known components [33, 34]. More
recently, systematic generalization has been seen as “the ability to manipulate concepts in new
combinations after being trained on all possible concepts, but only a subset of all their possible
combinations” [35]. For instance, if a model is trained to identify blue squares, blue triangles
and green triangles, it should also be able to identify green squares. In this toy example, two
concepts (shape and colour) are mixed together. More broadly, if a system has been trained
on a wide range of factual information, it should be able to integrate and combine them in
novel ways to deduce new facts. This perception of systematic generalization encapsulates
the reasoning aspect within the learning paradigm.

Research Question Overall, this thesis asks the following question: “are Transformer
language models able to reason logically across multiple steps and what is required for them
to be better at it?”

1.3 Research Objectives

The above question is further divided into three research objectives.
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1. The primary objective of this thesis is to investigate the factors that influence the
ability of vanilla Transformer models to capture logical rules. Specifically, one objective
is to evaluate if training a model to generate intermediate logical steps in a question-
answering setting helps to generate the final answer. This will help identify whether the
model is using the intermediate reasoning steps like humans would, or if it is actually
better to simply decode the answer without generating intermediate steps. The model
will be tested against its ability to generalize to increasingly more complex questions
requiring longer reasoning chains but, that rely on the same logical rules present in
the training set. This idea of systematic generalization is a core evaluation metric that
allows seeing if the model has indeed captured the latent rules of the environment and
is able to recursively apply them, or if it is instead trying to memorize solutions and
rely on non-logical factors such as syntax and memorization. The first work in this
thesis presented in Chapter 4 addresses this first objective by measuring systematic
generalization through the ability of a model to reason about unseen combinations of
inference rules despite being trained on all individual inference rules.

2. The second objective of this research is to enhance the reasoning capacity of TLMs by
introducing some form of inductive bias into the model and exploring new mechanisms
that can be added to the training procedure of the network. Focusing on the inductive
bias of abstraction, the objective is for the model to reason about abstract entity types
rather than grounded tokens. This objective is motivated by the fact that humans
abstract to simplify reasoning and become very efficient. This is true for instance in
mathematics when manipulating variables instead of raw numbers. The introduction of
generic variables allows progress in a logical reasoning process without keeping track of
every grounded atomic entity. Manipulating abstract concepts allows humans to gen-
eralize knowledge across domains. The hypothesis is that introducing some abstraction
to the network will help the model generalize to more complex tasks. The second work
of this thesis presented in Chapter 5 undertakes this second objective by asking the
question “does entity abstraction help generative transformers reason?”

3. Eventually, the final objective of this thesis is to gain more control over the behavior
of TLMs by conditioning their generation on some desired objective. As people spend
a significant fraction of their lives performing activities closely linked with natural
languages, such as having conversations, writing e-mails, filling out forms, reading and
writing documents, having an intelligent assistant able to perform complex tasks in a
natural way would increase one’s productivity. Interactive text-based games allow for
experimental research as a good proxy for such settings without having to allocate any
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human resources. Each environment (or game) has a main objective with some side
quests (or sub-objectives), all expressed in text. The goal of the agent is to accomplish
as much as possible in this virtual world by communicating actions to take at each step.
The interactive nature of these environments also makes them an ideal framework to
evaluate the multi-step reasoning abilities of TLMs. The goal of this research objective
is to leverage pre-trained TLMs to solve long text-based interactive tasks and propose
improvements over previous methods. Chapter 6 of this thesis accomplishes such an
objective by introducing “long-context language decision transformers and exponential
tilt for interactive text environments”.

1.4 Methodology

To answer the research question, let’s first define what is meant by “logically reasoning across
multiple steps”. There exist multiple forms of reasoning (deductive, inductive, abductive,
mathematical, and more) but this thesis does not focus on any specific form. Here, reasoning
is defined as being able to decompose a potentially complex task into simpler subtasks,
solve each subtask, and compose their answers to eventually solve the original task. One
desideratum towards achieving this goal is to have language models capable of producing
outputs that are logically coherent with their contextual input, regardless of the reasoning
form at hand. For instance, if the model is given the facts that “all humans are mortal and
Alice is a human”, it should know that “Alice is mortal” (deductive reasoning). Similarly, if
the model is given the facts that “Alice picks 3 apples per day and gives one to Bob every
day”, it should know that “after 3 days, Alice has 6 apples” (mathematical reasoning).

The main focus of the thesis resides in the aspect of multi-step reasoning. As mentioned above,
this refers to situations when a model needs to decompose a complex task, solve intermediate
tasks, and compose intermediate solutions. This research investigates this aspect of reasoning
by setting language models in situations in which they need to either (i) combine multiple
sources of information in their context to generate an answer, or (ii) generate multiple answers
each logically following each other, or (iii) both. The multi-step reasoning aspect will be
evaluated throughout all contributions of the thesis by using tasks requiring the model to
‘think’ step by step. In particular, this methodology will be applied to the three objectives
listed above like so:

1. First, the capacity of vanilla transformer models to capture logical rules will be evalu-
ated with a question-answering task (CLUTRR [36]) in which the answer to the question
is not explicitly stated in the input. To correctly answer, the model will be required to
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do multi-hop inference: that is (1) extracting relevant information from its input, (2)
combining the information in order to infer new knowledge, (3) repeating the procedure
until it can correctly answer the question. This type of question-answering problem is
appealing not only for its difficulty but also for its explicit requirement to perform
reasoning steps over multiple sentences. The model will be trained on a collection of
examples varying from different difficulty levels. The model will then be triggered to
not only answer the question but also explain itself by generating the intermediate rea-
soning steps required to go from the question to the final answer. The work presented
in Chapter 4 will evaluate generative TLMs on both the correctness aspect (did the
model generate the correct answer) and the logical reasoning aspect (was the model
able to identify the relevant intermediate steps). In addition, the capacity of the model
to generalize to unseen difficulty levels of questions will be evaluated.

2. Second, the abstraction inductive bias will be added to vanilla TLMs by leveraging
existing NLP libraries such as spacy1 to annotate training data. In particular, a named
entity recognition (NER) model will be used to extract entity types from the dataset.
These automatically retrieved labels will then be used as additional inputs to the model
and as an additional auxiliary prediction objective. Different abstraction strategies will
be compared against each other. Model variants will be tested based on their ability
to solve different reasoning tasks. Multiple datasets will be used to better under-
stand when such abstraction is beneficial. In particular, both controlled setups such as
CLUTRR [36] and ProofWritter [37], and more natural datasets such as HotpotQA [38]
and CoQA [39] will be explored. The first two tasks are algorithmically designed to
evaluate multi-step reasoning while the latter two are designed to be more ‘realistic’
with human written text which is more natural but harder to control for multi-step
reasoning. The results of this work are detailed in Chapter 5.

3. Eventually, in order to explore the reasoning capacity of TLMs in interactive text en-
vironments, the third contribution of this thesis will leverage text-based games such as
Jericho [40]. These artificial environments are chosen because of their analogy to intel-
ligent text assistants helping people with various tasks. At the same time, interactive
environments also exhibit multi-step reasoning requirements yet are under-explored in
the NLP community. Decision transformers (DTs) with exponential tilt will be used
to frame the reinforcement learning (RL) task as an offline supervised learning proce-
dure by sequencing the series of observations, actions, and rewards experienced while
interacting with an environment [3]. Different conditioning methods of DTs will be

1https://spacy.io

https://spacy.io
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introduced and compared. In addition, the proposed model will be trained with an
additional auxiliary loss to perform better in text-based games. The aforementioned
improvements will result in a novel model: “long-context language decision transform-
ers” (LLDTs) and be further presented in Chapter 6.

1.5 Thesis Outline

The chapters of this thesis are organized as follows. Chapter 2 provides some technical
background and a critical literature review of the field of NLP specifically centred around
multi-step reasoning. This chapter also introduces Reinforcement Learning (RL) in the con-
text of interactive text environments. Chapter 3 explains the organization of this thesis and
the relation of the following three chapters (4, 5 and 6) to the research objectives described
above. Chapter 4 measures the systematic generalization of language models in a proof gen-
eration framework. This chapter is the result of a paper published in Advances in Neural
Information Processing Systems 2020. Chapter 5 introduces entity abstraction techniques to
improve the generalization capacity of language models. This chapter is the result of a paper
published in the Transactions on Machine Learning Research journal in 2022. Chapter 6
proposes novel methods to improve the performance of language models in complex text-
interactive environments. Chapter 7 present a summary of the works and examines some
of its limitations. Finally, Chapter 8 concludes the thesis by proposing interesting future
directions to solve some of the aforementioned limitations.
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CHAPTER 2 LITERATURE REVIEW

This chapter provides a critical literature review of the field of NLP specifically centred
around multi-step reasoning. Reinforcement Learning (RL) is also introduced in the context
of interactive text environments. First of all, some technical background on various neural
network architectures most commonly used to process text is introduced in Section 2.1. Addi-
tionally, Section 2.2 briefly summarizes some influential work on Systematic Generalization.
The chapter then covers some methods for reasoning on text such as neural theorem provers
(Section 2.3), graph-based methods (Section 2.4), and knowledge-augmented language models
(Section 2.5), with a focus on knowledge-graph, memory, and input/output-based methods.
The chapter then continues by covering previous work on text-based environments and online
reinforcement learning methods to solve them in Section 2.6 before focusing on offline RL
methods and return conditioned supervised learning in Section 2.7. Eventually, this chapter
closes in Section 2.8 with some of the most recent progress in the field of NLP (in the context
of reasoning) that happened after the first contribution presented in this thesis, as the field
has seen significant progress in 2020-2023.

2.1 Technical Background

This section provides some technical background on neural network architectures that are
widely used for reading, representing and generating text. Moreover, a brief overview of the
Reinforcement Learning (RL) field will be given to better contextualize the last contribution
of the thesis.

Recurrent Neural Networks In order to encode variable-length sequences (i.e. sentences
made of tokens) into fixed representations (i.e. vectors), the traditional neural architectures
were Recurrent Neural Networks (RNNs) [18, 41–43] until Transformers [10] were invented
(more about this architecture below). Each token is represented by a vector (or embedding)
and given as input to RNNs. These networks are flexible enough to encode data that is
correlated in time by introducing a feedback loop on each artificial neuron. This can be
represented as a directed cyclic graph as illustrated in Figure 2.1. In theory, by unfolding
this graph, the network can encode sequences from any length.

Unfortunately, in practice, it has been observed that it is difficult to train RNNs to capture
long-term dependencies because the learning gradients tend to either vanish (most of the
time) or explode (rarely, but with severe effects) [44,45]. Long short-term memory networks



9

U

W

V

W

V V

U U

...

U

V

U

W

V
Unroll

Figure 2.1 Computational graph of a 1-layer RNN; the unrolled RNN is shown on the right.
Matrices U, W, and V are the parameters of this network.

(LSTMs) are a special case of RNNs, introduced primarily to overcome the vanishing gradient
problem [19]. The key idea behind LSTMs is that they add an additional state (memory
state) that gets only slightly modified throughout the input sequence. It is thus easy for
information to flow as the input gets longer. The amount of information that can be added
to (or removed from) the memory state is carefully regulated by multiple gating mechanisms.
A few years later, Gated Recurrent Unit networks (GRUs) [20] were introduced to solve the
same issue as LSTMs but with fewer parameters, resulting in simpler implementation and
easier training.

Formally, given an input sequence X made of n token embeddings {xt}n
t=1, RRNs iteratively

construct a sequence of hidden states ht and produce a sequence of outputs yt. RNNs are
defined by the following update equations at each time step t:

ht = tanh(Wht−1 + Uxt + b), (2.1)

yt = softmax(Vht + c), (2.2)

with W, U, V, b and c being parameters of the network that do not depend on the time step
t. To learn the optimal value of each parameter, the network is trained with an optimiza-
tion algorithm such as stochastic gradient descent (SGD) [23]. Overall, RNNs, LSTMs and
GRUs all share a common structure of repeating neural network modules when unrolled as
seen in Figure 2.1. The main difference between RNNs, LSTMs and GRUs resides in the
implementation of the repeating module itself (Equation 2.1).

Encoder-Decoder Conditional text generation tasks such as question answering require
the input and output sequences to be of different lengths. In that case, sequential models
such as RNNs (or Transformers as discussed below) can be combined in an encoder-decoder
fashion [46, 47] where one encoder model transforms input text X1..n into a dense vector
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hn and another decoder model transforms hn into an output sequence Y1..m. The unrolled
computational graph of such architecture is depicted in Figure 2.2. Note that the input
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Encoder
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Figure 2.2 Computational graph of a 1-layer RNN encoder-decoder.

and output of the decoder network is the same sequence, but with the input being shifted
to the right by one token. This corresponds to the language modeling objective mentioned
in Section 1.1, which involves predicting the next token given the previous ones [48]. This
objective is commonly used on decoder architectures as we will see multiple times during
the thesis. In addition, it is important to note that when decoding, the generation of the
target sequence may not only depend on the last hidden representation of the encoder hn

even though it is supposed to capture all the input sequence information. This motivated
the development of the attention mechanism [21].

Attention Mechanism The idea of the attention mechanism [21] is to take a weighted sum
of all the encoder hidden states with attention weights depending on the current generation
step: ∑n

j=1 αi,jhj. The attention weights αi,j are dynamically learned along with the rest
of the network parameters via an optimization algorithm such as SGD. The computational
graph of this procedure is depicted in Figure 2.3. Since introduced, having an attention
mechanism in RNNs has been the norm. However, some problems still remain with RNNs:
although LSTMs and GRUs allow for information to ‘flow’ better from distant tokens than
original RNNs, the iterative nature of the architecture still greatly limits their long-term
representation ability in practice [25, 49]. In addition, their cyclic behavior also limits their
parallelization on graphical processing units (GPUs) [10].

Transformer To mitigate the above limitations, Vaswani et al. [10] proposed a new archi-
tecture called Transformer without any cycles and only relying on attention, thus greatly
improving the parallelization power of their RNN predecessors. The Transformer network



11

U

W W

U U

...

W' W'

V'

U'

...

Decoder

...
Encoder ...

Figure 2.3 Computational graph of the attention mechanism for one decoding step.

is an encoder-decoder architecture composed of multiple encoder and decoder blocks. Each
block’s output is fed to the next as input.

Attention mechanisms within each block vary slightly between the ones used in encoder blocks
and the ones used in decoder blocks, but they all rely on the same principle. Attention can
be defined as a function taking as input a set of n query vectors (Q ∈ Rn×d), m key vectors
(K ∈ Rm×d) and m value vectors (V ∈ Rm×d), each of dimension d. For each query vector, the
mechanism computes an attention distribution α over the key vectors: α = softmax(Q.KT

√
d

).
The function then returns a weighted combination of the value vectors: attn(Q, K, V ) = αV .

In encoder-decoder Transformers, the “regular” attention mechanism has the query vectors
(Q) representing the current decoder time-step, while the key (K) and value (V ) vectors
represent all the information previously encoded by the encoder module. When the query
(Q), key (K), and value (V ) vectors are all the same, the attention mechanism is called
“self-attention”. This type of attention is used in encoder Transformers to capture relation-
ships between tokens belonging to the same sequence. In generative models such as decoder
Transformers, the model should not consider future information when computing the present
token representation. In particular, tokens that will be predicted at later time steps should
not influence the current token. As such, the self-attention in decoder Transformers is of-
ten modified to mask future tokens. This type of attention mechanism is called “causal
attention”.

Transformer encoder blocks are defined by two consecutive operations: (1) a self-attention
mechanism on the output of the previous block, and (2) a feed-forward network. Each
operation is followed by a layer normalization step to facilitate training. Decoder blocks are



12

defined by three consecutive operations: (1) a causal attention mechanism on the output of
the previous block, (2) a regular attention between the last encoder block and the current
decoder block, and (3) a feed-forward network. Each operation is again followed by a layer
normalization step to facilitate training. The entire Transformer computational graph is
pictured in Figure 2.4.
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Figure 2.4 Computational graph of a L-layer Transformer network [10].

Note that this entire procedure does not encode any information about the original order of
tokens in the input and output sequences. This makes the current model behaves like a bag-
of-word model [10]. In order to solve this issue, the authors of the original paper summed the
token embeddings with sinusoidal positional embeddings representing the relative position of
each token in the source and target sequences respectively.

The significant advantage of Transformers comes from the fact that their attention mech-
anism is done over every token simultaneously in a sequence. This allows the information
between two tokens to be directly encoded even if they are relatively far from each other.
As a result, Transformers initiated a wave of innovation in the NLP research community.
With their advantage of greater parallelization, these networks can be extended to billions of
parameters and trained on terabytes of text to learn useful representations for many down-
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stream tasks [17, 22, 24–26, 50]. Pre-training on large datasets and fine-tunning on specific
tasks became a new training paradigm that achieves state-of-art performances on many NLP
tasks such as Natural Language Inference (NLI) [51], Question Answering (QA) [51, 52],
Machine Translation (MT) [52], and many others [50].

2.1.1 Large Language Models (LLMs)

Since the introduction of the Transformer network, multiple variations have been developed,
in particular with increasing model size. Transformer networks with a large number of
parameters (in the range of hundred of millions to billions for 2022 standards) trained to
predict the next word (language modeling objective) on massive corpora of text are referred
to as Large Language Models (LLMs) or Foundation Models [53].

Some of these models such as BERT (bidirectional encoder representations from Transform-
ers) [17] and RoBERTa (a robustly optimized BERT pretraining approach) [51] only use
Transformer encoder blocks and are trained with a de-noising objective such as Masked Lan-
guage Modeling (MLM), which consists of predicting masked words in the input sequence.
BERT and RoBERTa are trained on 16GB and 160GB of English text and their largest model
size have 340 and 355 million parameters respectively. These types of models are often used
as a starting point for building text encoders, classifiers or retrievers [17, 51,54–56].

Other models such as T5 (text-to-text transfer Transformer) [52] and BART (a denoising
autoencoder for pretraining sequence-to-sequence models) [57] are encoder-decoder models
similar to the original Transformer architecture. T5 is trained with the language modeling
objective on 750GB of English text and its model size varies from 60 million to 11 billion
parameters. These models are used for conditional generation tasks such as summarization,
machine translation or question answering [52,57,58].

Eventually, other models such as GPT-1,2,3 (generative pre-trained Transformers) [22,24,50]
and PaLM (pathways language model) [59] are fully auto-regressive, decoder-only models.
After removing the inter-attention module between the encoder and decoder of the tradi-
tional Transformer architecture, these models use decoder blocks with causal attention only.
As such these types of models are also called “causal Transformers”. GPT-3 and PaLM are
trained on 45TB and 70TB of text (ranging from multi-lingual sources to source code) with
the language modeling objective and their largest model size have 175 and 540 billion param-
eters respectively. These models are often used for tasks such as summarization, machine
translation or question answering. Additionally, at this scale of parameters, these models
have been shown to perform a multitude of tasks by simply giving a few examples of in-
put/output pairs in their context [50, 59]. This is referred to as “in-context learning” and
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“prompting”. These methods yielded powerful applications in the context of multi-step rea-
soning that will be mentioned in Section 2.8 as they were discovered after the publication of
the first work presented in this thesis.

Overall, pre-trained LLMs like BERT, T5, or GPT are often used as building blocks or as
initialization of model weights. This is because they encode world knowledge and natural
language processing inductive biases in their parameters which can be transferred to any
task at hand [50, 60–62]. The work presented in this thesis will focus on encoder-decoder
and decoder-only Transformers since they are generative models capable of producing text
as output.

2.1.2 Reinforcement Learning

This subsection briefly introduces some concepts of Reinforcement Learning (RL) to better
understand where the last contribution of this thesis is in context with the field.

To use optimization algorithms such as SGD, the model’s objective function must be differ-
entiable [23]. For instance, the language modeling objective is equivalent to the maximum
likelihood function [48], which is differentiable. When the objective of the model is not a
differentiable function, Reinforcement Learning (RL) is used. This is particularly useful in
environments such as games where the goal of the model is to ‘win’ the game, or achieve a
high score as we will see in Chapter 6. In such settings, the classical learning procedure is
to let the system self-improve by interacting with a given environment (simulators or game
engines) during multiple episodes. In practice, given a current ‘state’ st the model provides

Agent Environment

(a) Online Reinforcement Learning.

Agent_1 Environment

Agent_2

(b) Offline Reinforcement Learning.

Figure 2.5 Reinforcement Learning loop between an agent and an environment

‘action’ at to the environment, and the environment returns the resulting reward rt and the
next state st+1. This loop is repeated until a final state is reached. The goal of the agent is to
learn an optimal policy π(st) = at that maps states to actions. A policy is considered optimal
if it maximizes the expected sum of discounted future rewards (also known as the expected
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return): E[Gt] = E[∑k=0 γkrt+k], with γ being the discount factor [63]. This interactive set-
ting is referred to as “online” reinforcement learning since the model has direct access to the
environment and can observe the consequences of its evolving behavior. Another paradigm
called “offline” reinforcement learning is to learn an optimal policy from a fixed collection of
previous interactions. The dataset of interactions can come from expert policies if available
(Imitation Learning, Behavior Cloning) or from non-optimal policies (Reinforcement Learn-
ing via Supervised Learning - RvS [64]). Offline RL is often used in real-life settings where
exploration is risky or costly due to humans involved in the loop [65]. It has the advantage of
learning from data rather than from interactions when the said interactions are impractical
or dangerous. However, unlike online RL, the agent cannot ‘test’ its behavior against the
environment while learning, which brings multiple challenges such as distribution mismatch
where the policy learned from the data is not optimal for the desired environment [65]. In
this setting, the goal of the agent is to learn a behavior that will maximize its expected return
once deployed in the environment. See Figure 2.5 for a pictorial illustration of the two main
approaches.

The last contribution of the thesis leverages the advancement in the representation power of
Transformer language models to propose an offline RL approach to text-based environments.

2.2 Systematic Generalisation

This section defines what is meant by systematically generalizing and presents some influen-
tial work on the topic. Note that ‘systematic generalization’ and ‘compositional generaliza-
tion’ will be used interchangeably in this thesis.

In natural language, systematic compositionality is defined as the ability to comprehend and
create an unlimited number of new combinations using known elements [33, 34, 66]. Natural
language offers a good framework for this as language can be broken down into small reusable
units (words) that can be combined into complex sentences expressing an infinite range of
meanings. One of the simplest examples is if you understand the sentence “Alice loves Bob”,
you can also understand the sentence “Bob loves Alice”.

2.2.1 Datasets

SCAN Systematic generalization has gained attention over the years for its significance in
assessing the capabilities and limitations of neural networks. Lake & Baroni [67] investigated
the systematicity of language models by proposing a synthetic instruction-following task
named SCAN. The goal of the task is for a model to be able to interpret instructions that
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were not seen during training but with words that have been seen during training. For
example, a model should understand commands such as “jump twice” after being trained
on “jump”, “run twice”, and “walk twice”. This view of systematic generalization puts the
emphasis on neural network learning and the design of train/test dataset splits. In their
investigation, Lake & Baroni [67] show that RNN language models [21, 47] do not learn
general rules on how to compose words and fail to generalize in a compositional manner.

Inspired by neuroscience [68], Russin et al. [69] propose a novel model called “Syntactic
Attention” that separates systems for syntactic and semantic processing. Given a sentence,
a semantic module processes words with a simple linear attention, while a syntactic module
processes words with an RNN, allowing to capture temporal information. The syntactic
module then determines the attention it requires over the word representations from the
semantic module at each step during decoding. The resulting model achieves better results
on SCAN [67] than models without any hand-engineered features.

SQOOP Bahdanau et al. [35] investigate the compositional generalization capacity of vi-
sual question-answering systems by proposing a synthetic task called “Spacial Queries On
Objects Pairs” (SQOOP) which consists in answering yes/no questions about spacial relation-
ships of objects in images. In particular, the SQOOP dataset consists of 64x64 RGB images
containing symbols and questions of the form “is there a letter A left of a letter B?”. In this
context, the authors characterize a model that can systematically generalize if it is “able to
reason about all possible object combinations despite being trained on a very small subset
of them” [35]. Their experimental results show that neural module networks (NMNs) [70]
generalize more systematically than traditional multi-modal architecture such as FiLM [71]
leveraging RNNs and convolutional neural networks (CNNs). However, NMNs rely strongly
on their underlying module layout, which, when learned end-to-end, does not allow for strong
compositional generalization.

CFQ One limitation common to most of the previous works presented above is that test-
ing compositional generalization is often done in synthetic scenarios or tasks, which are not
present in more realistic data. This is what the Compositional Freebase Questions (CFQ)
dataset [72] aims to solve. As mentioned previously, testing systematic generalization puts
the emphasis on the design of train/test data splits. As a technique to quantitatively esti-
mate the suitability of a dataset split for measuring compositional generalization, the authors
introduce the “distribution-based compositionality assessment” (DBCA) method. This tech-
nique can also be used to create new datasets. As an example, they introduce the CFQ
dataset consisting of realistic questions that are mapped to their corresponding SPARQL
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queries, which can thus be used to train semantic parsing models.

CLUTRR Since then, other work focusing on non-synthetic datasets explored systematic
generalization. One dataset that is used multiple times in this thesis is the Compositional
Language Understanding with Text-based Relational Reasoning (CLUTRR) dataset [36].
In this work, the authors introduce a benchmark to generate synthetic graphs based on
kinship relationships. CLUTRR proposes a graph version and multiple text versions. The
text versions are random-order linearizations of (entity, relation, entity) triples based on
templates. Both a simple template and a more natural amazon mechanical turk (AMT)
template are available. The AMT templates rephrase every relation in the graph with a
natural language scenario involving the entities of interest, for instance “Kristin and her son
Justin went to visit her mother Carol on a nice Sunday afternoon. They went out for a
movie together and had a good time.”. The task consists of predicting the relation between
two entities (in this case persons) given the (family) graph/story they are in. Questions about
entities are constructed such that their relationship can only be discovered by traversing the
family graph and combining relationships along the way. In the example above, to infer the
relationship between Justin and Carol, one must combine the facts that Justin is the son of
Kristin and that Kristin is the daughter of Carol. The minimum number of combinations
of facts required to answer a question is referred to as the number of ‘steps’ (or ‘hops’) or
the ‘depth’ of a question. The interesting aspect of CLUTRR is that with a fixed set of
entities, relations, and family rules, graphs can be of arbitrary complexity with questions
requiring any number of reasoning steps. This allows to test for systematic generalization by
training models on some graph sizes and testing on others, after making sure that all entities,
relations, and family rules are present in the training set. This is exactly what is first studied
in Chapter 4.

RuleTaker / ProofWriter Around the same time as the work presented in Chapter 4,
Clark et al. [1] propose a synthetic question-answering dataset called RuleTaker to investigate
the capacity of Transformer language models to reason over knowledge formulated as natural
language. It was later updated with the ProofWriter paper [37] and renamed accordingly.
The goal of this task is for a model to predict if a given fact is true, false, or unanswerable
based on a given collection of true facts and logical rules. For instance, a fact can be “Dave is
green” and a logical rule can be “All rough people are green”. Multiple logical rules must often
be composed together to verify if a query is true or false. Interestingly, the authors released
multiple train/test splits of their dataset that require a different number of combinations of
rules to verify the query. The number of combinations of rules is often referred to as the
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number of ‘steps’ (or ‘hops’) in a proof, or the ‘depth’ of a proof. As such, one can decide to
test for compositional generalization by training models on questions requiring ≤ n number
of hops, and test on questions requiring > n number of hops, similarly to CLUTRR [36].

2.2.2 Case Studies in NLI and Semantic Parsing

NLI In an effort to better understand the limitations of neural networks to systematically
generalize, Dasgupta et al. [28] present a natural language inference (NLI) diagnostic test
dataset to study the sentence representations of neural networks during training. Their results
show that by default neural systems learn heuristic strategies rather than compositional rules.
However, the authors were able to improve results by modifying the training distribution
with various data augmentation techniques. Nevertheless, they still observed shortcomings
in this generalization behavior. Around the same time, Andreas [73] also proposed a “good-
enough compositional data augmentation” (GECA) to improve performance on the SCAN
dataset [67] and a semantic parsing task.

Goodwin et al. [29] evaluate systematic generalization in an NLI setting with a linguistic
perspective. In particular, they design controlled probes, metrics, and test cases to observe
the failure cases of neural architectures. Similarly to Lake & Baroni [67], they observe
that Natural Language Understanding (NLU) systems can achieve high overall performance
without being systematic.

Semantic Parsing Zheng & Lapata [74] propose to improve the generalization of models
in the context of semantic parsing, which consists of predicting the database query corre-
sponding to a natural language question. Their approach is to decompose the problem into
two easier tasks: first tagging each token in the utterance with its corresponding semantic
tag, and then using both the original tokens and their predicted tags to predict the final
meaning of the utterance. Evaluated on questions for a flight-booking task (ATIS [75, 76]),
questions about US geography (GeoQuery [77]), and more natural questions about Wikipedia
tables (WikiSQL [78]), their method seems to perform better than previous baselines and
data augmentation approaches such as GECA [73].

Again in the semantic parsing context, Oren et al. [79] analyze the impact of different mod-
eling choices on compositional generalization using multiples datasets such as ATIS [75, 76],
GeoQuery [77], Advising [80], Scholar [81] and DROP [82,83]. Focusing on encoder-decoder
architectures, they examine the effect of contextualized representations such as ELMO [84]
and BERT [17] on the encoder, grammar-based decoding versus classical left-to-right decod-
ing on the decoder, various attention methods, and downsampling examples from the training
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set that have frequent templates. Their results show that many of the techniques introduc-
ing inductive biases such as grammar-based decoding, attention mechanisms, and contextual
representations improve the generalization performance of their model, but the authors also
argue that further innovations are needed for better compositional generalization.

More recently, one such innovation was introduced by Bergen at al., [85] who introduced
Edge Transformers as a new model that combines inspiration from Transformers and rule-
based symbolic AI. The core idea of Edge Transformers is to learn a vector representation
for every edge, that is, for every pair of input nodes (tokens) as opposed to just every node
(token), as it is done in traditional Transformer models. This new attention mechanism
(called “triangular” attention) objective is to better represent relationships between objects
and entities represented as words in sequences of text. For a sequence of length n and
vectors of dimension d, traditional Transformers learn contextualized representations for
each token, thus the input representation is of shape n × d. Edge Transformers on the other
hand learn to represent pairs of tokens, thus their contextualized input representation is of
shape n × n × d. Similarly, the attention scores of shape n × n in traditional Transformers
are augmented to have shape n × n × n in order to represent how informative one pair of
tokens is for each specific token. Concretely, Edge Transformers are implemented as regular
Transformers but with the addition of a new dimension of size n. One obvious drawback
with this increased representation power is that the architecture is extremely slow to train.
As a result, experimental analysis was done on relatively small datasets compared to any
foundational models. Nevertheless, when compared to Transformers of the same parameter
size, Edge Transformers perform better on many compositional generalization tasks. The
authors evaluated their model on datasets such as COGS [86], CLUTRR [36], and CFQ [72].
In all cases, the Edge Transformer outperforms relation-aware Transformers [87], Universal
Transformers [88] and classical Transformer baselines with the same number of parameters.

In the next section, we introduce Neural Theorem Provers (NTPs) [89] as they are efficient
and interpretable solutions for systematically composing knowledge.

2.3 Neural Theorem Provers

One initial inspiration for this thesis was the work done by Rocktäschel et al. [89] that seeks to
bridge the gap between the neural and symbolic paradigms of artificial intelligence. Symbolic
and logical methods can handle complex reasoning under restricted domains while statistical
approaches such as neural networks can handle unconstrained data but cannot systematically
reason [90].
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NTP The Neural Theorem Prover (NTP) is a good example of such a neuro-symbolic
system that combines constrained, logical and symbolic solvers with flexible neural systems.
[89]. NTPs are end-to-end differentiable deductive reasoners based on Prolog’s backward
chaining algorithm [91]. They assume a knowledge base (K) of facts in the form [p, A, B]
representing the atom p(A,B) with predicate p and arguments A, B. They also assume a
set of logical rules (R) of the form H:- B such as p(A,C):- q(A,B),r(B,C) meaning that
the body q(A,B),r(B,C) implies the head p(A,C) with p,q,r being predicates and A,B,C
being variables. Following the backward-chaining algorithm, NTPs can prove if a goal atom
g(A,B) is true or false given the current knowledge K and rules R. The main difference
with prolog solvers is that NTPs replace the ‘exact match’ unification operation with a
differentiable Gaussian kernel [89]. Prolog solvers use (‘unify’) atoms only if their predicate
exactly matches the ones present in the set of rules. NTPs are more flexible in that they unify
atoms based on their predicate representation similarity as measured by a Gaussian kernel.
Predicate representations are learned embeddings. This soft unification allows to unify atoms
even if their predicates do not exactly match. In addition to this unify module, NTPs also
define or and and modules that call themselves recursively to find a valid proof. The or
module initially takes as input the goal atom to be proven (denoted g for simplicity) and
applies the unify module between g and all facts f ∈ K. For all successful unify(g,f), the
or module terminates and returns the proof score as being the minimum similarity measure
of all previous unifications. If none of the unifications were successful with the knowledge
facts f ∈ K, the or module calls unify(g,h) for all proof head h in rules h:- B ∈ R. For all
successful unify(g,h), the or module then calls the and module on each body atom B of the
rule that was unified with g. The and module takes in a list of atoms, (now considered as
sub-goals to be proven), and recursively calls the or module on each of them. This process
finishes when all possible proofs of a given depth are explored. Each proof is given a score,
defined as the minimum of all the substitution scores in the proof. Each substitution score is
defined as the similarity between the two predicates. The successful proof with the maximum
score is returned as the final answer and the goal atom is considered true. If none of the
proofs were successful, the goal atom is considered false.

Predicate embeddings are learned by minimizing the cross-entropy loss on the proof score
of true facts (equivalent to maximizing proof scores of true facts). One interesting aspect
of NTPs is that rules can also be learned in this process. That is, instead of relying on
hard-coded rules with known predicates such as p,q,r in p(A,C):- q(A,B),r(B,C), one
can instantiate unknown embeddings for rule predicates (ie: θp(A,C):- θq(A,B),θr(B,C)).
This allows learning a representation for the most likely set of predicates that satisfy this
type of rule. At inference time the unknown rule predicates can be deduced by taking the
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known predicate in the knowledge base with the most similar representation. While this
relaxes the burden of having to specify the exact logical rules governing the knowledge base,
one must still decide the number of rules to instantiate, and their structure (ie: associative,
transitive, etc...).

Originally, NTPs are used to reason on knowledge bases and solve the link prediction task
that asks if a link exists between two nodes in a graph. The authors demonstrate that NTPs
can perform this task as well as state-of-the-art models on small knowledge bases but they
have the advantage of being fully interpretable since they also generate proof traces. One
limitation of NTPs is that their procedure is time-consuming and thus does not scale well in
applications with a large number of rules and facts.

NLProlog is an extension of NTPs to work with text datasets [92]. Since the number of
candidate proofs grows exponentially with the number of rules and the number of hops to
perform, NTPs cannot scale to natural language. NLProlog can use facts from databases like
NTPs but also facts present in text documents. To do so, Weber et al. [92] extract entities
from each sentence using Spacy1 and consider all the remaining text in one sentence as a
single predicate binding the entity tokens present in that sentence. If a sentence has more
than two entities, all possible entity pairs are considered and the predicate string includes
the other entities as regular text. Predicate strings are encoded by a fixed sentence-to-vector
model and a two-layer MLP network that is trained to maximize the likelihood of true facts.
The proof search procedure is then identical to NTPs. In order to reduce the run time
complexity of the proof search, the authors keep track of the most probable proof and only
look for better proofs than the previous best one. This is done by defining a unification
threshold that is always set to the most likely previous proof score.

NLProlog is evaluated on the multiple choice WikiHop and MedHop QA datasets [93]. All
candidate answers are run through the model and the candidate that has the highest final
proof score is returned as the answer. The proposed method achieves competitive results on
MedHop and outperforms two baseline models on a subset of WikiHop.

GNTP Greedy Neural Theorem Provers (GNTPs) [94] is an extension of NTPs and NL-
Prolog to work with both text and knowledge graphs and be even more computationally
efficient. This allows the authors to experiment on larger knowledge bases by several orders
of magnitude. They do that by modifying the or module in two ways: (1) by efficiently
selecting the top-kf facts that are most likely to prove a given goal, instead of unifying the

1https://spacy.io

https://spacy.io
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goal with all the database facts, and (2) by selecting the top-kr rules that are most likely to
give a high scoring proof, rather than expanding all rules in the database in order to prove
a given goal. The authors select the top-kf facts based on their representation similarity
with the goal to be proven based on an efficient GPU implementation of Nearest Neighbour
Search [95]. The top-kr rules are selected similarly based on their head similarity with the
goal to be proven.

In addition, when learning rule predicates, the model introduces additional parameters for
each predicate as previously explained (θp ∈ Rk). In order to reduce the number of parame-
ters, GNTPs introduce an attention mechanism [21] that represents unknown rule predicates
as a linear combination of known predicate embeddings. The known predicates are extracted
from facts in the knowledge base and their representation is learned during training. In cases
where the predicate embedding dimension k is much larger than the number of known pred-
icates, this method allows learning fewer parameters. GNTPs outperformed NTPs on small
databases and produced competitive results on larger knowledge bases such as WordNet [96]
and Freebase [97]. To evaluate their method on natural language, the authors manually
replaced a few predicates with simple template sentences linking two entities.

CTP One limitation of NTPs [89] (and potentially GNTPs [94]), is that they need to
consider all possible proof paths for explaining a goal, thus making them unfit for large-scale
applications. In an effort to resolve this limitation, Minervini et al. [98] propose Conditional
Theorem Provers (CTPs) as an extension over NTPs and GNTPs. In this work, when
proving a goal G, instead of selecting all possible rules in the knowledge base, CTPs rely
on a selectθ(G) module that is responsible for generating the most appropriate rules given
the current goal to prove. This is done by reformulating the goal G into a rule of the form
H :- B1,B2 with three differentiable functions (such as linear projections): fH(G), fB1(G)
and fB2(G), each mapping the goal G to the most appropriate head and body predicates.
Being differentiable, the select module is learned alongside the other parameters of the
system via backpropagation. Evaluated on the graph version of CLUTRR [36] as well as
the Countries [99], Nations, UMLS, and Kinship datasets [100], CTPs outperform GNTPs,
graph attention networks (GATs) [101], and recurrent models such as RNNs [18], LSTMs [19]
and GRUs [20]. In addition, CTPs show strong generalization to unseen reasoning depths on
CLUTRR, thus highlighting the benefits of neuro-symbolic approaches.

Nevertheless, one limitation of Neural Theorem Provers in their current form is that they are
not flexible enough to be integrated into auto-regressive language models, and thus cannot
leverage the vast amount of knowledge represented in natural language. NTPs are designed
to prove or disprove statements that are either true or false, making their output binary-
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like. As a result, if multiple candidate solutions exist to a problem, each must be evaluated
individually until a provably true solution is found.

2.4 Graph Based Methods To Reason Over Text

Another inspiration for this thesis was the idea of using graph topology to build better
reasoning systems.

KG-MRC Some of the first inspiring work for this thesis was “Building Dynamic Knowl-
edge Graph from text using Machine Reading Comprehension” [102]. In this work, the authors
leverage a machine reading comprehension (MRC) system [103] based on bidirectional LSTM
networks [19] to build a simple bipartite graph tracking entity locations in procedural texts.
They evaluated their method on the ProPara dataset [104] which measures the capacity of
models to track state changes of entities in procedural text. The entities to track are tokens
identified in an input document and the state can be any span of text in the document. This
task is thus a span-prediction problem. The authors process each sentence in a document
incrementally: for each sentence st and sentence entity ei they query their MRC system to
predict a span of text yi,t describing the state of ei at time step t. The MRC system is con-
ditioned both on sentences up until st, and the graph representations from the previous time
step Gt−1. The span predictions yi,t are then encoded for all entities ei, and used to update
the representation of the graph Gt. When reading the last sentence sT of the document, the
predicted spans yi,T are used to predict the final state of entities ei.

The idea of tracking entity states in a document is one application of multi-step reasoning.
For instance in the following story “The box is in the kitchen. Alice takes the box. Alice goes
to the living room. Where is the box?”, the model needs to track the location (‘state’) of the
box (‘entity’) across multiple sentences. While the above example is a simple toy problem, the
same methodology can be applied to more complex situations involving multiple entities and
states across longer documents. The first contribution of this work presented in Chapter 4
extends this idea of automatically tracking entities’ states but by generating reasoning steps
in text rather than a graph, with unlabeled documents, and using multiple types of relations.

HGN Another graph-inspired work applied to multi-step reasoning on text is Hierarchical
Graph Networks (HGNs) [105]. HGNs are introduced as a solution to the multi-hop ques-
tion answering dataset HotpotQA [38] in which the task is to answer questions based on a
collection of Wikipedia documents. Questions are designed by humans to require multi-step
reasoning, by combining information from usually two documents. HGNs create a graph
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for each document with different granularity levels and node types: the top nodes represent
paragraphs, each of which is connected to sentence nodes representing sentences in the cor-
responding paragraphs, and each sentence node is connected to entity nodes representing
entities 2 from the corresponding sentences. This collection of trees (each rooted at its para-
graph node) is linked together by adding edges between consecutive paragraph nodes and
between consecutive sentence nodes. All the node representations are initialized with BERT
encodings, and a message-passing algorithm from graph attention networks (GATs) [101] is
used to update node representations.

Overall, this work shows how inductive biases like the ones present in graph networks and in
hierarchical topologies can help achieve strong performance on multi-hop QA tasks. Moti-
vated by the fact that not all sources of information can be easily represented by graphs, one
objective of this thesis is to add inductive biases to language generation systems and observe
similar capacities. The second contribution of this thesis presented in Chapter 5 will show
some work towards this objective.

Other methods tried to incorporate external knowledge graphs (KGs) as a way to better
inform language models and make them better at various tasks. We describe such methods
in the next section, along with other ways to augment language models.

2.5 Knowledge Augmented Language Models

This section describes related methods that were used in the literature to augment language
models with additional external knowledge. In particular, the focus is on knowledge graph
incorporation, memory-based networks, and input/output augmented language models.

2.5.1 Knowledge-Graph Augmented Language Models

Although multi-step reasoning is not the focus of the following approaches, these works
inspired this thesis to explore if “entity-aware” models could be better reasoners in Chapter 5.

ERNIE is a model enhancing language representation with informative entities [106]. The
goal of this work is to incorporate external knowledge graphs (KGs) into transformer lan-
guage models. ERNIE is an encoder-based model made of BERT-style encoder blocks [17]
encoding tokens into contextual representations (X = T-Enc(X)), followed by “knowledge”
encoder blocks encoding tokens and entity representations together (X, E = K-Enc(X, E)).
Wikipedia entities in the input text are automatically identified with TAGME [107] and their

2extracted using https://spacy.io

https://spacy.io
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vector representation (embeddings) are computed using TransE: a method which models re-
lationships by interpreting them as translations operating on the low-dimensional embed-
dings of the entities [108]. Knowledge encoder blocks concatenate entity embeddings Ee to
their corresponding token embeddings Xe and feed them to a multi-head attention mech-
anism [10]. The output is then split back into separate token and entity representations
for the next knowledge encoder layer. Experimental results have demonstrated that ERNIE
achieves significant improvements on various knowledge-driven tasks such as entity typing,
relation classification, and some GLUE tasks [109].

ERNIE assumes that a one-to-one mapping between entities mentioned in the input text and
KB entities is available. The next work removes this assumption and instead selects 30 entity
candidates per mention.

KnowBERT is a general method to insert knowledge bases (KBs) into large pre-trained
models with a Knowledge Attention and Recontextualization (KAR) mechanism [54]. The
authors integrate WordNet [96] and a subset of Wikipedia into the BERT model [17] to
create a knowledge-enhanced version of BERT. In particular, the KAR mechanism operates
between two Transformer layers in the middle of a pre-trained model. First, a set of (30) entity
candidates Ee = [e1, ..., e30] are retrieved from the KB of interest for each entity mention Xe

in the text. An entity linker mechanism is trained to map entity mentions (Xe) to the
appropriate KG entity embedding (ei). This linker is used to compute a linear combination
of the candidate entity embeddings for each entity mention: Ee = softmax(W ).Ee with
wi = linker(ei, Xe). Eventually, the resulting vector representation is summed to the entity
mention representation (X = Ee + Xe) and given as input to the next Transformer layer.
After integrating this knowledge, KnowBERT demonstrates improved performance on various
tasks such as relationship extraction, entity typing, and word sense disambiguation [54].

EaE Another example of incorporating entity knowledge to better inform language models
is the work done by Fevry et al. in “Entities as Experts: Sparse Memory Access with Entity
Supervision” (EaE) [110]. The authors created an encoder-only Transformer model that
incorporates entity knowledge from English Wikipedia text. This was accomplished by adding
an entity memory containing Wikipedia entities whose embeddings are updated each time
the corresponding entity is mentioned in the text. Similarly to KnowBERT, the authors
introduce a custom neural module between Transformer layers.

In particular, tokens are first encoded with four Transformer layers. These representations are
then used to identify entity mentions in the text by predicting beginning-inside-outside (BIO)
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labels [111]. Each entity mention vector representation (Xe) is then used to retrieve its top-k
closest entity embeddings from the memory based on cosine similarity (Ee = top-ke(Xe, e)).
Eventually, each entity mention embedding is summed with a weighted combination of its
retrieved entity embeddings (Xe = LayerNorm(Xe + W.Ee)). The model is trained with
(i) the masked language modeling (MLM) objective [17] which corresponds to predicting
masked tokens from the input text, (ii) a mention detection objective which corresponds to
predicting BIO labels [111] on the input sequence, and (iii) an entity linking objective which
corresponds to predicting the correct memory for each entity mention in the text. Entities
in the text are automatically extracted with the help of the Google Cloud Natural Language
API3 in order to provide supervised data to train these objectives. Experimental results on
question-answering tasks like TriviaQA [112] and WebQuestions [113] show that this model
has more factual knowledge than larger-sized BERT models.

To summarize, ERNIE and KnowBERT are systems that have the ability to access external
knowledge graphs. Similarly, EaE integrates Wikipedia entities with the help of a “memory”.
However, this memory is closer to a knowledge base than an external memory since the model
does not add new information or remove old information from it, it only learns to represent a
fixed set of Wikipedia entities. The next section first introduces the origins of memory nets
before summarizing more recent work such as Verga et al, [114] that will resolve some of the
limitations in EaE by introducing an explicit fact memory.

2.5.2 Memory Based Networks

Initial brainstorming for this thesis considered memory-based models as a way to save logical
rules and be able to re-use them arbitrarily when needed. Although not in the resulting contri-
butions of this thesis, this idea is what evolved into some of the current explorations described
in Chapter 8 involving external API calls performing logical operations systematically. Addi-
tionally, some work summarized below contributed to the intuition that entity-aware models
could be better logical reasoners, as further explored in Chapter 5.

Memory Networks Weston et al. [115] introduced Memory Networks in 2014 as a new
type of neural model capable of writing to and reading from a dynamic memory in the
context of question answering. A memory is defined as a list of string vector representa-
tions. The model then learns to write, read, and edit memory slots with specialized learnable
components. An input feature map first converts input tokens to an internal feature repre-
sentation: I(x). A generalization module updates memory slots with the new information:

3https://cloud.google.com/natural-language/docs/basics

https://cloud.google.com/natural-language/docs/basics#entity_analysis
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mi = G(mi, I(x)). An output feature map then retrieves the top-k most relevant memory
slots based on the current input: oi = argmaxjO(mj, [x, o1, ..., oi−1]). Eventually, a response
module decodes the output features into tokens: r = argmaxwR(w, [x, o1, ..., ok]) for all w

in the vocabulary of tokens. The authors argue that any classical ML tool such as RNNs,
support vector machines and decision trees can be used as implementation for each of these
modules (I, G, O, and R). Experiments on a simulated question-answering task showed the
reasoning advantages of such models compared to vanilla RNNs.

The limitation of memory networks is that they require full supervision during training: input
questions, output answers and supporting sentences must be available. In addition, they can
be challenging to train end-to-end because they need supervision at each layer.

End-to-end Memory Networks In many question-answering tasks however the model
needs to perform multi-step reasoning as previously motivated. In this case, it would be ben-
eficial for the model to access the memory multiple times (multiple “hops”) before generating
an answer. This is what Sukhbaatar et al. proposed in “End-to-end Memory Networks” [116]:
an extension of memory networks.

Formally, sentences from the context are encoded twice: once to represent input memory
features (A(x)) and once to represent output memory features (C(x)). Questions are encoded
separately (B(q)). For each memory lookup, the inner product between the question and
memory input features is used to compute attention weights (W = softmax(B(q)A(x))).
The output of the memory lookup is then the weighted linear combination of the sentences
in memory: O = C(x) × W . Eventually, the question representation gets updated with this
memory output (B(q) = B(q) + O) and can be reused for another memory hop. The above
procedure is repeated a fixed number of times before the final answer is predicted. End-
to-end Memory Networks also simplify the original approach to be able to train the model
end-to-end with less supervision while achieving comparable results on question-answering
and language modeling tasks.

FaE Since then, multiple works have been experimenting with memory-based models, and
more recently with memory-based Transformer language models. One such example is the
work done by Verga et al. in “Facts as Experts: Adaptable and Interpretable Neural Memory
over Symbolic Knowledge” (FaE) [114]. This work proposes an interface between explicit,
symbolically bound memories and sub-symbolic distributed neural models. The authors ex-
tend the “entities-as-experts” (EaE) model [110] by introducing a symbolic memory of fact
triples which are made of learned entity representations, and as in EaE, the entity repre-
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sentations are learned end-to-end. The model makes predictions by integrating contextual
embeddings with retrieved knowledge from the external memory, where those memories are
bound to symbolic facts which can be added and modified. Importantly, the external fact
memory can be updated with any new facts without retraining the whole network.

The fact memory is defined as a dictionary mapping head pairs {subject si, relation ri} to tail
sets {objects oi;1, ..., oi;n}. Note that all ‘subjects’ and ‘objects’ are entities with their corre-
sponding embeddings shared with the entities in the EaE model. Each head pair is encoded
as the concatenation of the subject embedding and relation embedding headi = W1.[si; ri].
Each tail set is encoded as a weighted sum of each object embedding (taili = W2.[oi;1, ..., oi;n]).
The model first encodes a piece of text with the entity-enriched Transformer (EaE [110]).
After the final Transformer layer, the contextual representation of the masked token (recall
that encoder-based Transformers are trained to predict masked tokens in sentences) is used
to ‘query’ the fact memory and the top-k {subject, relation} pairs are selected. Eventually,
a weighted sum of the corresponding top-k object tails is computed and used to update the
final representation of the mask token before predicting its label from the vocabulary.

Experimental results show improved performance on question-answering datasets such as
Freebase [97] and WebQuestion [113] compared to previous state-of-the-art and EaE. The
authors also showed that the fact memory can be updated without retraining the network as
long as entities and relations from the same vocabulary as the one seen during training are
used.

EMAT Another example of recent memory-based Transformer language models is the Ef-
ficient Memory-Augmented Transformer (EMAT) that combines the strengths of parametric
and retrieval-augmented models [117]. Fully parametric methods such as BERT [17], T5 [52]
or GPT-3 [50] trained with the language modeling objective on vast amounts of text data have
been shown to contain some knowledge about the world in their parameters. This knowledge
is computationally cheap and fast to retrieve once the model is trained [62,118], however, such
models can also hallucinate false information. On the other hand, retrieval-based methods
such as REALM [119], RAG [120] or FiD [121] provide truthful information, by retrieving
relevant passages from external knowledge bases to inform generation. However, these meth-
ods are often computationally intensive and slow. EMAT tries to combine the benefits of
both approaches by building memory within the parameters of the model with truthful QA
information. In particular, a memory of key-value pairs is built in which keys are contextual
representations of natural language questions, and values are contextual representations of
answers based on the Wikipedia-based PAQ question-answering dataset [122]. Given a text
input sequence, the model will dynamically retrieve the most relevant memory based on its
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key representations and inform the generation with the corresponding value representations.
Evaluated on WoW [123] and ELI5 [124], EMAT produces both faster and more accurate
answers than retrieval-based methods.

Non-Symbolic Memory Transformers While the previous works introduced a symbolic
memory with interpretable content, memory-augmented Transformers is a field that has also
seen a lot of contributions with non-symbolic approaches. Some of them are summarized
below without going into the same amount of detail as the previous works since they were
less influential for the creation of this thesis as they do not focus on the combination of
symbolic and neural approaches.

Dai et al. [25] introduced back the concepts of memory through recurrence in Transformer
models with the “Transformer-XL”. This model addresses the fixed-size input limitation of
Transformers by diving long sequences into sub-sequences and caching each layer’s hidden
state into a fixed-sized queue that is re-used in the following sub-sequence.

Gupta et al. [125] proposed “global memory augmentation for Transformers”: a method that
prepends M memory tokens to an L-token long input sequence with M << L. The L input
tokens perform sparse attention to each other, and dense attention to the M memory tokens.
The M memory tokens do dense attention to the entire input sequence (L + M).

Similarly, Burtsev et al. [126] proposed the “memory Transformer” which also prepends [mem]
tokens to input sequences. The authors propose three variants: (i) the Mem Transformer
which processes the extended sequence with traditional Transformer layers, (ii) the MemCtrl
Transformer which has a dedicated sub-network for memory tokens, and (iii) the MemBot-
tleneck Transformer which process first the memory tokens and then the remaining of the
sequence based on the final memory contextual representation.

Wu et al. [127] propose the “Memformer”: an efficient sequence modeling Transformer that
utilizes an external dynamic memory to encode and retrieve past information. The authors
propose an encoder-decoder Transformer architecture with a memory component that gets
updated between each encoder layer. The encoder is responsible for reading from and writing
to the memory, while the decoder is standard.

Feedback Transformers [128] addresses some limitations of decoder-only Transformers by
introducing feedback memories. This model processes each token sequentially through all
layers, and summarizes the hidden representation of all layers into a ‘memory’ representation
so that subsequent tokens can use this memory representation in their contextual represen-
tation. Simply put, Feedback Transformers add connections from top to bottom layers by
introducing a memory cell between each time step in a sequence.
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2.5.3 Input/Output Augmented Language Models

Besides graphs and external memories, language models can receive additional information in
text modality directly in their input sequence (input augmented), or as target output sequence
(output augmented). This sub-section covers some related work augmenting language models
in such ways.

Dynamic Entity Representation in Neural LM Incorporating knowledge about enti-
ties into neural language models has been a common approach to enhance their capabilities.
Before the introduction of Transformers, Ji et al. [129] trained an Entity Neural Language
Model to predict sequences of entities with an LSTM [19]. At each sampling step, they
predict (i) the next word (traditional language modeling objective), (ii) a binary variable
indicating the presence of an entity at that position, (iii) a categorical variable indicating the
entity ID, and (iv) a categorical variable indicating the number of remaining tokens in the
mention of this entity. Experimental results showed that this “entity aware” model achieves
lower perplexity (equivalent to higher likelihood) and better results on co-reference resolution
and entity prediction tasks than a 5-gram language model and a traditional LSTM. This is an
example of augmenting the language model by training it to predict additional information
(output augmented). Training a model to predict additional information can help ensure
that the model has that information represented in its parameters. However, one drawback
is that this may reduce the model’s representation power for its primary task.

KALM More recently, Rosset et al. [130] present “Knowledge Aware Language Models”
(KALM) an alternative pre-training technique for Transformer language models in order to
make them more ‘knowledge aware’. In addition to pre-training a model with the traditional
language modeling objective, this work proposes an entity prediction task as pre-training
similar to Ji et al. [129]. Entity mentions in the text are identified with a pre-existing external
dictionary. For each token belonging to an entity, the authors used a contrastive loss on the
final Transformer layer to teach the model to differentiate between the corresponding entity
and any other one. In addition, KALM incorporates entity representations at the input level
by summing the word embedding and its corresponding entity embedding together before
feeding it to the Transformer layers. This is an example of both input- and output-augmented
language models. In particular, the model learns an additional embedding for each entity
so that tokens belonging to an entity are represented by the sum of their word and entity
embeddings. Experimental results show that such a pre-training method yields models with
greater factual knowledge according to the LAMA knowledge probing task [62] compared to
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vanilla GPT2 models [24]. In addition, it is also reported that such models perform better
than a GPT2 model of the same size on TriviaQA [112], Natural Questions [131] and Web
Questions [113], in a zero-shot setting; and achieve competitive results when compared to
larger models.

Abstraction Augmented LMs Previously covered work such as KALM [130], ERNIE
[106], KnowBERT [54] and EaE [110] augment language models with entity knowledge but
do not add any abstract information. Indeed, the additional knowledge added in these models
is grounded entity tokens which are specific in nature. Similarly, for FaE [114] covered in
Section 2.5.2, the additional information stored in memory was grounded facts. One objective
for this thesis is to leverage reusable and abstract knowledge such as logic rules involving
different variable types for instance. The following relevant works introduce abstraction into
language models by incorporating syntactic information, word senses, predicate-argument
structures, and hypernym relations.

Syntax Augmented LMs Prior work by Swayamdipta et al., [132], Eriguchi et al. [133],
and Nadejde et al. [134] incorporated syntax information into language models. This was
done similarly to Ji et al. [129] and Rosset et al. [130] by introducing an auxiliary loss to the
model (output augmented language models). Experimental results show that models trained
to also predict syntactic information achieve stronger performances on various tasks such as
PropBank semantics [135] and Neural Machine Translation. More recently, Sundararaman et
al. [136] incorporated part-of-speech (POS) tags [111] into the input embedding of a BERT
model (input augmented). Experimental results show improved BLEU scores on machine
translation and higher accuracy than baselines on the GLUE benchmark [109].

WordSense Augmented LMs Levine et al. [56] trained a BERT-like model to learn word
senses. They gave the model access to WordNet supersenses [96] at the input level and as
an additional training loss. The model, named SenseBERT, is pre-trained to predict not
only masked words but also their WordNet supersenses. By infusing word sense information
into BERT’s pre-training signal, the authors explicitly expose the model to lexical semantics
when learning from a large unannotated corpus. This results in achieving better performance
than other baselines on the SemEval Word Sense Disambiguation task [137].

Predicate-Argument Augmented LMs Moosavi et al. [138] propose to improve the
robustness of language models to data biases by augmenting training datasets with predicate-
argument structures. Each sentence in the input sequence is extended with its predicate-
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argument structure in text format with the introduction of special tokens such as “[PRD]” and
“[AG0]”. This is thus an example of input-augmented language models. The authors argue
that this provides a high-level abstraction over different realizations of the same meaning and
helps the model recognize important parts of sentences. They examine the impact of this
linguistic augmentation by training a BERT-base model [17] with PropBank-style semantic
role labelling [139] on MultiNLI [140] and SWAG [141] datasets. Experimental results show
that incorporating predicate-argument structure in the input sequence during training makes
the model more robust to adversarial examples during inference even if syntactic information
is not available on sequences used at runtime.

Hypernym Augmented LMs More recently, Porada et al. [142] and Bai et al. [143]
augmented Transformer models with hypernym relations from the WordNet [96]. Porada
et al. [142] replaced input tokens by their hypernyms to evaluate the plausibility of events.
Results show that their model is able to better predict human plausibility judgement than
other baselines. Bai et al. [143] explore the effectiveness of class-based language models [144]
in the context of Transformer LMs. In particular, they substitute a subset of the tokens in the
input and output sequences by their WordNet hypernyms and train a model with the classical
language modeling objective. The amount of tokens replaced by their hypernyms starts high
and is slowly decayed during training. Their curriculum strategy, called Hypernym Class
Prediction (HCP) achieves lower perplexity (higher likelihood) on the Wikitext-103 [145]
and arXiv [146] datasets.

Overall, all these prior works leverage the general idea of explicitly giving more abstract
knowledge to language models. Taking inspiration from all these works, Chapter 5 will
leverage entity types as an abstraction technique with the objective to improve the reasoning
skills of Transformer language models.

2.6 Text-Interactive Environments & Corresponding Methods

Thus far, proof generation and traditional NLP tasks like question-answering (QA), semantic
parsing, and natural language inference (NLI) were discussed. Another paradigm that can
also be used to evaluate the multi-step reasoning capacity of language models is text-based
interactive environments (also referred to as ‘text games’). Usually used in Reinforcement
Learning (RL), these environments simulate virtual worlds in which an agent must interact
with the world by performing actions, which corresponds in this case to generating text
commands. Similarly to a dialogue, the environment then responds to the agent with the
next state text description. This section describes multiple text-based environments and
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some of their most popular online reinforcement learning solutions.

Q-learning & DQN As introduced in Section 2.1.2, the goal of an agent in RL is to select
action at at state st that maximizes the expected sum of future rewards Gt = ∑

k=0 γkrt+k

with discounting factor γ controlling the importance of future rewards. Q-learning [147]
is a method used to learn an optimal Q(s, a) value function. The agent first starts with
a random estimation of Q and iteratively updates its estimate according to the Bellman
equation [63] by interacting with the environment and observing rewards: Qi+1(st, at) =
E[r + γmaxat+1Qi(st+1, at+1)]. If successful, the agent can then select actions based on at =
argmaxaQ(st, a). Mnih et al. [148] introduced Deep Q-Networks (DQN) and showed that
using deep neural nets only (in contrast to hand-engineered features) to learn such Q-value
functions can yield strong performance in the context of Atari games.

LSTM-DQN One limitation of Deep Q-Networks (DQN) (and Q-learning in general) is
that they require evaluating the Q-value function for all possible actions. This restricts their
use to environments with small action spaces and makes them unsuitable for environments
with combinatorially large action spaces such as text environments. As a result, text games
as a framework for testing RL and NLP models did not get a wide interest until the work done
by Narasimhan et al. [149] introducing LSTM-DQN. The authors combined LSTMs [19] with
DQNs [148] in order to learn an optimal Q-value function from text sequences describing
the current state. States are first encoded with an LSTM into a fixed-size vector before
being passed as input to a DQN. The authors evaluated their approach on two custom text-
based games (Home World & Fantasy World) in which actions can be any combination of
a verb and an object. In order to deal with this combinatorial action space, the authors
used two output layers on their DQN to predict two separate Q-values based on the current
state representation: one over the list of verbs, and one over the list of objects. The final
action would then be the one with the maximum-valued verb and the maximum-valued object
based on the current state representation. The resulting LSTM-DQN model yielded better
performance than previous bag-of-word baselines.

DRRN Shortly after LSTM-DQN, He et al. [150] introduced the Deep Reinforcement Rel-
evance Network (DRRN) that also learns to discover an optimal Q-value function in the
context of text worlds. However, their method does not tackle the combinatorial action
space in text environments and instead assumes to have access to a small set of candidate
actions for each state. In particular, the authors compared multiple approaches to learning
a Q-value function: (i) Max-action DQN, which corresponds to encoding st and all possible
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actions {ai
t}n

i=1 together to predict all q-values Q(st, a1
t ), ..., Q(st, an

t ) in one forward pass
through the network; (ii) Per-action DQN, which corresponds to encoding st and ai

t together
to predict one Q(st, ai

t) value function per forward pass; and (iii) DRRN, which corresponds
to encoding st and ai

t separately and predict Q(st, ai
t) based on the pairwise interaction func-

tion (usually the inner product) between their respective vector representations. Another
differentiating factor from LSTM-DQNs, is that DRRNs also consider a natural language
action space in addition to the state space. Evaluated on two different custom text-based
games (Saving John & Machine of Death) with a small action space, the authors showed that
DRRNs learn better Q-value functions faster than other approaches.

TextWorld As seen with the previous two works, many teams performed independent re-
search, creating their own text environments to evaluate their methods, making comparisons
between different approaches difficult. In an effort to create a common test benchmark for
text-based environments, Côté et al. [151] introduced TextWorld, a logic engine to create
game worlds all under the same design rules. Agents can interact with TextWorld via a
set of primitive actions (e.g. ‘take’, ‘move’, ‘eat’, ‘drop’ etc...) that can be compositionally
combined with objects (e.g. ‘knife’, ‘map’, ‘microwave’, etc...), locations (‘river ’, ‘kitchen’,
‘garden’, etc...) and spacial and logical connectors (‘and’, ‘on top of ’, ‘inside’, etc...) based
on simple grammatical templates. By default, the library provides a “Home” and a “Me-
dieval” environment in which goals are generally to put a specific object in a certain state
(e.g. “put the green book on top of the library shelf ”). Users can specify the number of rooms,
the number of objects and the number of steps or commands required to accomplish the goal.
The TextWorld game generator will then generate a random environment with a random task
accordingly. Other environment features such as partial state observability, state transition
stochasticity, and reward sparsity can be controlled. TextWorld can thus be used to design
environments with specific difficulty features and allows to research generalization capacities
of language models in the context of Reinforcement Learning. The release of TextWorld
resulted in multiple text environments such as Treasure Hunter [151], Coin Collector [152],
CookingWorld [153], and the QAit dataset [154].

Jericho Shortly after the release of TextWorld, Hausknecht et al. [40] released a collection of
56 interactive fiction (IF) games through the Jericho python library. Similarly to TextWorld,
the Jericho games are fully textual: states and actions are described in natural language only.
However, unlike TextWorld, the Jericho library consists of ‘real’ games designed by humans
to entertain human players in the 1970s back when computers were not as powerful as today.
As a result, the Jericho games are generally much more complex in nature, covering a variety
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of genres (dungeon crawl, sci-fi, mystery, comedy, horror) with long quests (requiring more
than 1000 actions depending on the game), large state space, sparse rewards, partial state
observability (mentioned as ‘pitch-black’ rooms in games), stochastic state transitions, and
numerous sub-quests per game. The authors collected these games from the online Interactive
Fiction Database 4 and created a common python environment to test RL agents on these,
similarly to TextWorld. In order to make the environment more accessible for automated
agents, the library provides one human experience (sequence of actions) completing the game
from start to finish achieving the maximum score for one specific random seed, called the
“walkthrough” or “golden” path. Additionally, at every state in a game, the Jericho game
engine can provide a list of candidate actions that are valid for that specific state. The work
presented in Chapter 6 of this thesis leverages these two pieces of information to propose a
solution to these environments.

TDQN Alongside the Jericho games, Hausknecht et al. [40] proposed the Template-DQN
(TDQN) model to try to solve some of these games. TDQNs build upon LSTM-DQNs [149]
by leveraging template-based action generation. Jericho games are quite complex and can
understand multiple action templates. For instance, Zork1 can understand 697 vocabulary
words and has multiple templates combining up to 4 words, which would result in 6974 ≈ 200
billion potential actions. To deal with this added complexity the authors added a third
output layer to their DQN that is responsible to compute the Q-value over templates based
on the current state. The other two output layers are responsible for predicting the Q-value
over verbs and objects in the vocabulary similarly to LSTM-DQN. Another particularity of
TDQN is that to represent the current game state, the model takes as input the previous
action taken by the agent in addition to the current narrative text, inventory, and room
description. Since then, it is common practice to include the previous action as part of the
current state representation. The authors evaluated their method on a selection of 33 Jericho
games and compared it to random action selection, a heuristic rule-based agent NAIL [155]
and DRRN. On many games, DRRN outperformed TDQN because it assumes access to the
list of available actions per state. However, TDQN managed to exceed DRRN on a few other
games. Nevertheless, all previously proposed methods fail to achieve the games’ maximum
score (and this is surprisingly still the case in early 2023), thus showing how complex these
environments can be.

4https://ifdb.org

https://ifdb.org
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2.6.1 Recent Online RL Models

More recent approaches were proposed to tackle text-based games such as Jericho. Most
of them are online reinforcement learning methods. Some of them are described here, and
Chapter 6 will present a new offline method that outperforms previous baselines.

Graph based methods: KG-DQN, KG-A2C, SHA-KG As mentioned in Section 2.4
and 2.5.1 graph-based method can be powerful representation tools. Thus multiple deep
RL approaches leverage graphs topology to represent complex state spaces such as in inter-
active fiction games. Ammanabrolu and Riedl [156] present KG-DQN a deep RL method
that combines knowledge graphs and deep Q-networks. The authors design update rules to
dynamically construct a graph representing the current state of the game based on past and
current observations. This graph tracks object locations (‘chamber,has,bed’), the location
of entrance and exits (‘basement,exit,north’), and relative room locations (‘chamber,east-
of,basement’). A Graph Attention Network (GAT) [101] is used to embed this information
into a state vector. A list of candidate actions (pruned based on current graph) is encoded
with an LSTM [19] and multiplied to the state vector to predict Q-values Q(st, ai

t).

Shortly after, Ammanabrolu and Hausknecht [157] present KG-A2C, an agent that similarly
builds a knowledge graph dynamically while exploring its environment. The graph is made of
<subject, relation, object> triples automatically extracted with templates based on past and
current observations. Their model is based on template-based action generation similarly
to TDQN [40] in order to deal with the combinatorial large action space of text-games.
Additionally, they use the Advantage Actor Critic method (A2C) [158] to train their model,
which consists of training a model (the ‘actor’) to predict actions and a model (the ‘critic’)
to evaluate the state value function V (st).

Shortly after, Xu et al. [159] introduce Stacked Hierarchical Attention with Knowledge
Graphs (SHA-KG) as an extension of KG-A2C. One key difference with previous approaches
is that in this work the authors define four sub-graphs within the complete graph representing
the current game state: (1) representing the connectivity of visited rooms, (2) representing
the objects within the current room, (3) representing the objects in the agent’s current inven-
tory, and (4) representing any information that is not linked to ‘you’ (the agent playing the
game). They combine this hierarchy of information with GATs [101] and multiple attention
mechanisms [21] to construct a vector representation of the current state. Similarly to previ-
ous works, SHA-KG is using template-based action generation to deal with the combinatorial
large action space of text-games [40], and is trained with the Advantage Actor Critic method
(A2C) [158].
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LLM approaches: CALM & DBERT-DRRN As previously mentioned in Section 2.1.1
pre-trained Large Language Models (LLMs) are powerful tools to process text because they
encode world knowledge and NLP inductive biases in their parameters [50, 60–62]. As such,
multiple methods also leverage LLMs to tackle text-based environments. The work presented
in Chapter 6 follows the same motivation and also leverages large pre-trained language mod-
els.

Yao et al. [160] decided to leverage large pre-trained language models to deal with the combi-
natorial action space of text-world games and proposed Contextual Action Language Model
(CALM). With games having multiple templates using 1 to 7 words in a vocabulary of
hundreds of words, some games can have a potential list of actions in the hundreds of bil-
lions. To alleviate this challenge, the authors propose to use a pre-trained GPT-2 model [24]
to suggest a set of potential actions to a DRRN agent [150]. In particular, their GPT-2
model is fine-tuned with the language modeling objective to predict actions (token by token,
from left to right) given the previous interactions, on sequences of observation-action pairs
(o1, a1, ..., ol, al). In practice, the authors use a context window size of two steps: they predict
at conditioned on (ot−1, at−1, ot). To generate multiple answers at inference time, the authors
use beam search with a beam size of 40 and select the top 30 most likely actions. The current
observation ot and candidate actions at,1, ..., at,30 are then passed to a DRRN [150] to com-
pute the Q-value function Q(st, at,i). Observations and actions are encoded with separate
GRU networks [20] before being combined in a multi-layer feed-forward network trained to
predict the optimal Q-value function. Evaluated on Jericho games, CALM performs similarly
on average to previous methods having access to the list of candidate actions given by the
environment such as KG-A2C and DRRN.

Another method leveraging pre-trained language models is the work done by Singh et al. [55]
in which they present DBERT-TDQN and DBERT-DRRN, a combination of a DistilBERT
model [161] (a smaller yet as powerful version of BERT) with traditional RL methods such
as TDQN [40] and DRRN [150]. Specifically, the authors first fine-tune a DistilBERT model
with the masked language modeling objective on sequences of observation-action pairs from a
collection of game interactions. They then use this fined-tuned Transformer encoder to obtain
contextual vector representations of state observations, room descriptions, agent inventory,
and agent actions. The resulting vectors are eventually given to GRU networks [20] inside
either a DRRN or a TDQN model to predict the corresponding Q-value function. DBERT-
DRRN takes as input the current observation, room description and inventory to represent
the current state. It also assumes to have access to a small list of candidate actions which are
encoded separately before being combined with the state vector representation in a multi-
layer feed-forward network trained to predict the optimal Q-value function. DBERT-TDQN
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takes as input the current observation, room description, inventory, and previous action
to represent the current state. This information is combined in a multi-layer feed-forward
network to predict the optimal Q-value function based on action templates, verbs, and objects
separately similarly to TDQN [40]. Evaluated on Jericho games, DBERT-DRRN outperforms
previous baselines, including CALM.

Both CALM and DBERT-DRRN show that interactive text environments can benefit from
pre-trained language models, similarly to more traditional NLP tasks.

2.7 Reinforcement Learning via Supervised Learning

Note that all solutions discussed in the previous section were online RL methods: learning
from interacting with the environment. Although not applied to text-based environments,
this section discusses some influential work on offline RL methods that inspired the work
presented in Chapter 6.

As briefly introduced in Section 2.1.2, offline RL consists of learning an optimal policy from a
dataset of previous interactions collected by an agent with the environment of interest. This
approach offers the benefit of learning from existing data instead of learning from interactions
that may be costly, unfeasible, or hazardous in real-life environments [65]. One limitation
though is that the dataset of previous interactions must come from a near-optimal or expert
agent in order for the model to learn to imitate it. This is referred to as Imitation learning or
Behavior Cloning [63]. However, collecting expert data on environments can also be costly
making the approach as impractical [65] as online RL. From this limitation, the research
community started exploring methods to learn from non-optimal offline data.

UDRL & RCP One solution proposed by Schmidhuber [162] is to “turn traditional RL on
its head” calling it upside-down reinforcement learning (UDRL), which consists of mapping
rewards to actions. At the same time, Kumar et al. [6] introduced reward-conditioned policies
(RCP), which consist of learning policies of the form π(st, Z) = at with Z being a measure of
value such as next step reward of total return. In both works, the main idea is to condition
the prediction of action at on both the current state st and a measure of quality Z such as
the next step reward. The key observation is that any experience can be used as optimal
supervision data if the model is also conditioned on the quality of these experiences. In
other words, actions that result in weak returns provide valuable guidance to learning a
weak policy. Conditioning on the future effect of taking an action can seem unfeasible or
counter-intuitive, but in offline RL, this is possible because one has access to full trajectories
(s1, a1, r1, ..., sT , aT , rT ) before training the agent. As such, one can easily change the order
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in which a model sees this information to (s1, r1, a1, ..., sT , rT , aT ) when constructing their
training data, and thus condition the generation of at given both st and rt. The hypothesis
of UDRL and RCP is that if the agent is able to learn a correct mapping from reward to
action, it should be able to generalize to higher rewards and perform close to an expert when
conditioned on expert rewards, even though it may have only been trained on few experts or
only non-expert interactions.

RvS This idea of using non-expert offline trajectories to train RL agents shifts the paradigm
of reinforcement learning to a supervised learning problem, which tends to be a better fit for
deep neural networks. As a result, a multitude of works was published in the field such as goal-
conditioned policies [163], goal-conditioned imitation learning [164], hindsight inference [165],
inverse dynamics models [166], decision transformers [3, 7], and trajectory transformers [9].
In an effort to unify all these works under the same paradigm, Emmons et al. [64] coined
“Reinforcement Learning via Supervised Learning” (RvS) to encapsulate the idea of shifting
the RL problem to a supervised learning one. In this work, the authors probe the limits of
RvS methods and they found that if the training data comes from random interactions with
the environment, the model will not be able to perform well. Indeed, shifting the RL problem
to supervised learning introduces a well-known limitation of supervised learning, which is the
(in)capacity of generalizing to out-of-domain data. As a result, if expert reward conditions
are not in the training data it can become difficult for the model to understand those at test
time.

D2D In a similar effort to unify previous work under the same paradigm to better compare
them, Piché et al [2] introduce the Density-to-Decision (D2D) framework. D2D is formulated
as a two-step process: (1) density estimation, often implemented as learning some conditional
distribution over actions p(a|s, Z) (2) decision-making by sampling with exponential tilt on
the density. Using their framework the authors categorize popular RvS methods and propose
‘Implicit RvS’. One important aspect present in this work is the concept of exponential tilt.
As mentioned previously, supervised learning on non-expert data is likely to result in non-
expert behavior. In order to alleviate this issue, one proposed solution is to sample actions
that have a high likelihood under the density estimated by the model but that also result
in high rewards. This can be done by ‘tilting’ the density estimation towards higher valued
actions. Concretely, assuming a learned distribution pθ over actions a conditioned on states
s and a measure of quality Z, one can sample actions based on pθ(a|s, Z)exp(αZ + β) with α

and β being hyper-parameters. This method allows to ‘steer’ the model towards high return
actions even though such actions may not be likely under the training data distribution.
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Chapter 6 will use this method and empirically show its effectiveness in the context of text-
based environments.

2.7.1 Decision Transformers

This sub-section focuses on recent RvS methods leveraging Transformers as they influenced
the third contribution of this thesis.

DTs One popular instance of the RvS paradigm is the work done by Chen et al. [3] proposing
Decision Transformers (DTs). In this work, the authors use a decoder-only GPT model [22]
to learn to predict actions based on previous interactions and the return-to-go (RTG). Con-
cretely, they give ordered sequences of return-to-go (Ri), state (si), and action (ai) such as
(R1, s1, a1, ..., RT , sT , aT ) to an auto-regressive model trained to predict the next sequence
item as if the sequence items were regular text tokens. However, in this case, the loss is only
taking into consideration the prediction of the action items ai. The return-to-go is defined as
the (un-discounted) sum of all future rewards: Ri = ∑T

t=i rt. Again, this is possible because
the dataset is constructed after having collected entire trajectories from another agent. To be
able to represent each of the sequence items as one vector, they first learn a linear embedding
for each modality: return-to-go, state, and action, which projects raw inputs to an embed-
ding dimension. To encode visual states, they use a convolutional neural network (CNN)
instead of a linear layer. In addition, they learn a time-step embedding that is summed to
each {RTG, state, action} embeddings to give additional temporal information to the model
as one step consists of three embeddings in this case. Evaluated on individual Atari games,
DTs performed better than Q-learning and Behavior Cloning. One limitation of this work is
that at test time, the initial return-to-go condition must be given by a human according to
his/her judgment on the maximum achievable score for each specific game. For instance, in
their experiments, the authors used 90 for the game Breakout (≈ 1× max in the dataset),
2500 for the game Qbert (≈ 5× max in the dataset), 20 for Pong (≈ 1× max in the dataset),
and 1450 for Seaquest (≈ 5× max in the dataset). These numbers are arbitrary and may
result from multiple trial-and-error experiments.

Multi-game DTs This limitation was later addressed by Lee et al. [7] which introduced
Multi-game Decision Transformers. In this work, the authors decide to predict the return-
to-go instead of manually giving it to the model. Here the authors re-order the trajectory
sequences from the training data to be of the form (s1, R1, a1, r1, ..., sT , RT , aT , rT ) with si,
Ri, ai, and ri being the state, return-to-go, action, and reward at time step i respectively.
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As such, given to an auto-regressive Transformer decoder, the model learns to predict RTG
based on the current state (p(R|s)), next action given state and RTG (p(a|s, R)), and observed
reward given state, RTG, and action (p(r|s, R, a)). However, as mentioned in the previous
section, sampling from p(R|s) only according to the model’s likelihood will result in the
most likely behavior from the training data which may not be optimal. To mitigate this
problem, the authors ‘tilt’ their distribution towards higher return-to-go conditioning values
by multiplying p(R|s) by exp(αR + β) with α and β being hyper-parameters (exponential
tilt). Another distinction from the original DT work is that here the authors train the same
model on multiple Atari games collectively by mixing their trajectories in the training set.
As a result, they show that their model can generalize to unseen Atari games and outperform
previous baselines.

TTs Around the same time as Decision Transformers was released, Janner et al. [9] intro-
duced a similar approach called Trajectory Transformers (TTs). In this work, the authors
also leverage auto-regressive causal transformers and train them on sequences of interac-
tions. However, their setup is different in that they are motivated by learning a realistic
model of the environment (world modeling). As such their training data trajectories are
of the form (s1, a1, r1, ..., sT , aT , rT ) with each state and action items discretized indepen-
dently in continuous cases (such as in multi degrees of freedom robots): si = [si,1, ..., si,n]
and ai = [ai,1, ..., ai,m]. Trained with the maximum likelihood objective on entire sequences
coming from multiple interactions, the model will learn the dynamics of the environment
and be able to predict not only the next actions but also the next states and rewards. The
authors then demonstrate that imitation learning, goal-conditioned RL, and offline RL are
all instances of their model. In the case of imitation learning nothing needs to be changed,
the model’s likelihood will try to imitate the behavior presented in the training data. Given
the left-to-right attention mechanism of causal decoder-only Transformers, one can prepend
a goal state at the beginning of the sequence to implement a goal-conditioned RL agent.
Eventually, to sample good trajectories, the authors note that the model can also be trained
to predict return-to-go values after each reward prediction. At inference time, the strategy
used by the authors is to sample multiple trajectories according to the model’s likelihood
using beam search and select the one with the highest cumulative reward plus reward-to-go.
Tested on control tasks where the goal is to generate ‘realistic’ plans such as in the ‘Hu-
manoid walk’, TTs generate more realistic trajectories compared to standard dynamic model
parametrizations such as feedforward Gaussian.

To summarize, Section 2.6 introduced interactive text environments and multiple online RL
solutions including some leveraging pre-trained language models. Section 2.7 introduced a
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new paradigm consisting of reframing reinforcement learning as a supervised learning problem
(RvS) and multiple works leveraging Transformers to better learn sequential data. The last
contribution of this thesis in Chapter 6 will combine these two ideas and propose an offline
RL solution to interactive text environments by leveraging large pre-trained Transformer
language models.

2.8 Relevant Work after publications

This section describes some relevant work that was published after the first publication of
this thesis.

2.8.1 On Prompting-Based Methods

With the ever-growing model size of TLMs, an interesting pattern started to emerge from
the literature. LLMs with hundreds of billions of parameters such as GPT-3 175B [50] and
PaLM 540B [59] can elicit reasoning abilities in a few shot prompting mechanism called
chain-of-thought prompting [167].

Let’s first describe what standard prompting is. Popularized by Brown et al. [50], the idea of
prompting is that once you have a pre-trained LLM, instead of finetuning it on each desired
individual task and saving multiple model weights for each task, one can simply “prompt” the
model with a few input/output examples of the task in the input sequence. For instance, one
can prompt the model with “Translate English to French: see otter -> loutre de mer . cheese
-> ” to perform machine translation, or with “ Q: what is 98 plus 45? A: 143 Q: what is 17
minus 14? A:” for mathematical reasoning; and let the model generates the rest, token by
token. This method has been surprisingly successful for a range of simple question-answering
tasks [50].

When dealing with more complex reasoning tasks, Wei et al. [167] showed that standard
prompting is not enough. They thus introduced chain-of-though (CoT) prompting, which
corresponds to adding intermediate reasoning steps before the final answer in the prompt.
For instance, in the following story: “Q: Roger has 5 tennis balls. He buys 2 more cans
of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?”,
instead of giving this question and the final answer “A: The answer is 11.” to the model, CoT
prompting includes “A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis
balls. 5+6=11. The answer is 11.”. The authors showed that giving examples with step-
by-step reasoning instructions to the model as part of its prompt improves the performance
of LLMs in mathematic, commonsense, and symbolic reasoning tasks, even surpassing fine-
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tuned models in some cases.

Since the introduction of prompting and in particular CoT prompting, multiple works tried
to extend these ideas to multi-step reasoning tasks. For instance, Yao et al [168] use LLMs
to generate reasoning traces and perform task-specific actions in an interleaved manner in
their proposed system called Reason+Act. Creswell et al [169] present a new way (Selection-
Inference) to perform multi-step logical reasoning tasks with frozen pre-trained LLMs. In
particular, they first select a few (most often two) pieces of information by scoring each
sentence in the input context with the model’s log-likelihood (Selection step). The retrieved
facts are then concatenated and the model generates a conclusion based only on those facts
(Inference step). The resulting conclusion is added back to the list of facts in the model’s
context and the process is repeated until a final answer is generated.

Other prompting methods are also explored recently. For instance, Zhou et al [170] show that
algorithmic prompting yields better generalization on arithmetic tasks. Levy et al. [171] show
that creating prompts with diverse examples that cover all possible grammatical structures
yields better performance in semantic parsing tasks. Overall, these research directions seem
to indicate that prompting may become a new ‘programming’ language for LLMs, which
would revolutionize (once again) the way we build NLP systems. Very recent work presented
as closing remarks of this thesis in Chapter 8 further confirm this vision.

One limitation of CoT prompting-based method however, is the need to create natural lan-
guage rationales explaining each logical step of a problem. This can become a limiting factor
when dealing with datasets that do not have such explanations or that require multiple skills.
Some early work was proposed by Zelikman et al. [172] to mitigate this limitation. Their
method consists of using pre-trained LLMs to generate rationales and use those that yielded
correct responses as fine-tuning examples to improve the model’s ability to generate bet-
ter rationales. This self-loop is applied over multiple iterations and the authors show that
the resulting model performs comparably to a fine-tuned 30× larger model on Common-
snseQA [173].

Another limitation of prompting-based methods with Transformers is that TLMs have a fixed
input window size. As a result, the more information one puts in a prompt, the less space is
available to input the original problem of interest. This can become a limiting factor when
complex problems need long chains of reasoning or when multiple examples are needed for
the model to correctly understand what is required. In fact, Fu et al. [174] demonstrated
that models prompted with longer and more complex chain-of-thought sequences perform
significantly better than models prompted with standard CoT sequences. Long context
size and efficient Transformers were an active research direction before the introduction of
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prompting, and it has become even more relevant recently. Some interesting work in these
directions include Longformer [175] and LongT5 [58].

2.8.2 On Proof Generation

Another active field of research since the releases of large pre-trained language models such
as RoBERTa [51] and GPT-2 [24] is the domain of proof generation. Some related work in
this field are described below.

PROVER Shortly after the first contribution presented in this thesis, Saha et al [176]
propose a system called PROVER that relies on a pre-trained RoBERTa model to predict
yes/no answers and generate proof graphs for the QA dataset RuleTaker [1]. Their model is
fine-tuned on examples containing a series of facts and logic rules (the context) and a question
in the form of an unknown fact. Since RoBERTa is an encoder only model, they rely on the
embedding of the “[CLS]” token to predict a binary label (true/false) for the unknown fact.
The authors additionally predict which fact (node in their proof-graph construction) from
the context are part of the proof and which edges are present between each predicted graph
node. Their experiments show that while predicting proof-graphs yields stronger results,
performance drops as the depth of reasoning increases, similar to our findings.

GPT-f Polu and Sutskever [177] trained a decoder-only Transformer model (GPT-f) with
774 million parameters on proof trajectories from the Metamath library. They processed
38,000 theorems with their respective proofs, linearize them in sequences of the form “GOAL
<GOAL> PROOFSTEP <PROOFSTEP> <EOT>”, and trained their model with the regular condi-
tional language modeling objective. At runtime, the authors test their model by conditioning
it on a specific GOAL and let the model generates the remaining of the sequence (the proof
steps). Their experiments show that GPT-f can generate new short proofs that were accepted
into the Metamath library. This thesis is more interested in natural language explanations
rather than formal mathematical proofs, but nevertheless this work shows the promises of
LLMs in more formal setups.

LAMBADA Previous work such as CoT prompting [167] and Selection Inference [169]
search for proofs in the forward direction from known facts to the conclusion. These methods
can result in combinatorial explosion of the search space, resulting in failure cases on problems
requiring long chains of reasoning. To address this limitation, Kazemi et al. [178] propose
LAMBADA, a system that perform backward-chaining proof resolution: going from the goal
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to classify as true or false, to the set of known axioms. In particular their method leverages
the power of prompting with the PaLM 540B model to define four modules: Fact Check,
Rule Selection, Goal Decomposition, and Sign Agreement. Each of those module is “just”
a carefully designed prompt that shows the model some input/output examples to tell it
what is expected. Remarkably, the authors show that their method, without any fine-tuning,
outperforms previous methods on the ProofWriter dataset [37]. These results confirm the
impressive effectiveness of pompting-based method on very large language models as discussed
in the previous sub-section.

A flurry of other works was published in the recent months (late 2022) on using LLMs
for proof generation as it is an important research direction as motivated in Chapter 1.
Yang et al. [179] propose the NLProofS method that searches natural language proofs by
generating a proof tree and fine-tuning a verifier module (based on RoBERTa [51]) that
checks the validity of each proof step. Welleck et al. [180] generate mathematical proofs with
a GPT-3 based model [50] by conditioning on background references such as theorems and
definitions, and by adding some constraints to the decoding procedure. Lample et al. [181]
propose HyperTree Proof Search (HTPS) which combines an encoder-decoder Transformer
model of 600 million parameters with Monte Carlo Tree Search to prove theorems from the
Metamath and Lean environment. They pre-train their model on 40GB of latex code from
the mathematical section of arXiv before finetuning it on their different environments. To
deal with more complex environments such as mathematical competition problems, Jiang et
al. [182] introduce a system called Draft, Sketch, and Prove (DSP) that relies on both LLMs
and automated theorem provers. They first prompt the Codex model [183] (LLM pre-trained
on code data) to generate informal proofs, and give those to guide an automated theorem
prover. Overall, all these works demonstrate the enthusiasm around the use of LLMs for
proof generation as the field is rapidly evolving.
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CHAPTER 3 ORGANIZATION OF THE THESIS

In order to answer the research question introduced in Chapter 1: “are Transformer language
models able to reason logically across multiple steps and what is required for them to be better
at it?”, this thesis is composed of three contributions presented in chronological order in
Chapter 4, 5, and 6. Each of these chapters addresses the three research objectives defined
in Chapter 1. We describe below how the three chapters fit together.

Chapter 4 investigates the systematic generalization ability of TLMs on a logical reasoning
task expressed in natural language. Inspired by how humans reason by thinking step by
step, the first contribution studies if training a model to generate intermediate reasoning
steps before generating a final answer is beneficial in the context of relation prediction. The
dataset used for this first analysis is a collection of synthetic knowledge graphs expressed in
natural language that can be of arbitrary complexities. The goal of the task is to predict which
relation links two entities in the underlying graph. The advantage of using this dataset is that
we can carefully control the amount of compositional generalization required to solve the task,
and we can use the graph of each problem to construct multiple reasoning paths (proofs) by
traversing the graph. Multiple proof strategies are explored and compared against each other
based on the generalization capacity of the model in both interpolation and extrapolation
settings.

Chapter 5 continues to research methods that improve the reasoning capacity of TLMs, but
to gain a wider perspective, it extends the first contribution by considering a broader range
of problems since not all question-answering datasets have proofs associated with them.
Inspired by how humans reason with variables rather than grounded entities, the second
contribution explores if entity-type abstraction is beneficial to pre-trained encoder-decoder
TLMs in the context of multi-step question answering. This contribution uses the same
compositional relational reasoning dataset as the first contribution but also considers three
other QA datasets ranging in the type of reasoning required (abductive reasoning, multi-hop
question answering, conversational question answering) and their vocabulary sizes. After
leveraging an automatic named entity tagger, several model architecture designs are proposed
to incorporate entity type abstraction into a pre-trained encoder-decoder TLM. Each method
is evaluated and compared based on the model’s performance on each QA dataset.

Chapter 6 extends the previous two contributions by exploring the reasoning capacity of
TLMs in an even broader scope: interactive text environments. These human-generated nat-
ural language environments require multi-step reasoning by design, as the task is completed
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after multiple interactions with the environment. As a good proxy for such environments,
text-based games are used in this last contribution. These games are originally designed by
humans for human players to have fun while struggling to solve them. The goal is to obtain
the maximum score by interacting with the environment through text commands multiple
times until a final state is reached. Although the player’s text commands can be synthetic
templates, the text responses from the environment describing the state the player is in are
human-generated text and can be very long and varied, not following any template. Each
game can have sub-quests in them requiring an agent to decompose a complex task into
simpler sub-tasks, solve each of them, and compose their solutions to eventually solve the
original problem, which is exactly how multi-step reasoning is defined in Chapter 1. Previ-
ous work in the literature envisioned online Reinforcement Learning methods to tackle these
environments, some leveraging pre-trained language models, but none in an offline RL set-
ting. On the other hand, previous work in offline RL leverage Transformers to learn from
sequences of interactions, but none taking advantage of pre-trained TLMs or in the context
of text environments. The third contribution of this thesis bridges this gap by proposing
an offline method (Long-context Language Decision Transformers) that leverages pre-trained
TLMs in interactive text environments.
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Abstract We are interested in understanding how well Transformer language models (TLMs)
can perform reasoning tasks when trained on knowledge encoded in the form of natural lan-
guage. We investigate their systematic generalization abilities on a logical reasoning task in
natural language, which involves reasoning over relationships between entities grounded in
first-order logical proofs. Specifically, we perform soft theorem-proving by leveraging TLMs
to generate natural language proofs. We test the generated proofs for logical consistency,
along with the accuracy of the final inference. We observe length-generalization issues when
evaluated on longer-than-trained sequences. However, we observe TLMs improve their gen-
eralization performance after being exposed to longer, exhaustive proofs. In addition, we
discover that TLMs are able to generalize better using backward-chaining proofs compared
to their forward-chaining counterparts, while they find it easier to generate forward chaining
proofs. We observe that models that are not trained to generate proofs are better at gen-
eralizing to problems based on longer proofs. This suggests that Transformers have efficient
internal reasoning strategies that are harder to interpret. These results highlight the system-
atic generalization behavior of TLMs in the context of logical reasoning, and we believe this
work motivates deeper inspection of their underlying reasoning strategies.

4.1 Introduction

Systematic Generalization has been characterized as the capacity to understand and produce
a potentially infinite number of novel combinations from known components [33, 34]. For
example, in Figure 4.1, a model could be exposed to a set of facts (e.g., “Nat is the grand-
daughter of Betty”, “Greg is the brother of Nat”, “Flo is the sister of Greg”), but not to all
the possible facts that can be inferred by combination of the known components (e.g., “Flo
is the granddaughter of Betty”). More recent work has examined systematic generalization
in terms of the ability of “a model to manipulate concepts in new combinations after being
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trained on all concepts, but only on a limited set of their combinations” [35]. This view
of systematic generalization shifts emphasis from reasoning to learning. Here we examine
systematic generalization through measuring the ability of a model to reason about new
inference step combinations despite being trained on a limited subset of them.

granddaughter

brother
Nat.

grandson

Greg.

granddaughter

sister

sister
Flo.

Betty

Figure 4.1 Example of
a CLUTRR graph with
known facts (solid lines)
and unknown facts to infer
(dotted lines).

Recent developments in natural language processing (NLP)
have shown that Transformer [10] Language Models (TLMs)
are able to capture linguistic knowledge [184–186], and yield
state-of-the-art performance for many NLP tasks [17, 22], in-
cluding but not limited to answering reading comprehension
questions [24, 50] and generating factual knowledge [62] with
little to no task supervision. These models are optimized on
large corpora to predict the next words or a set of masked
words in a sentence. While yielding impressive results, it is not
clear if TLMs rely on many superficial patterns in the data or
if they actually learn re-usable skills, enabling them to gener-
alize to new tasks by leveraging the compositionality of those
skills [27, 67]. Training on massive data can give certain ad-
vantages with respect to understanding the meanings of words,
but we conjecture that such data gives models less experience with reasoning over inference
chains.

In our work, we study the less understood issues related to how well TLMs are able to perform
long chains of reasoning. In particular, we use TLMs for the task of theorem proving, where
facts and proofs are specified in natural language. Using theorem proving, we test if TLMs
can generate interpretable proofs with logically consistent language modeling as their main
objective. In particular, we study their behavior as logical reasoners on text by analyzing
the generated proofs and the final answer. This setup allows us to evaluate the reasoning
and generalization capabilities of TLMs. Recent work such as Petroni et al. [62]; Raffel et
al. [52]; Brown et al. [50] suggest that language models can be treated as knowledge bases.
This directly motivates us to investigate if language models can also learn certain reasoning
strategies. Studying these abilities can give us insights to facilitate the use of such models
as dynamic knowledge bases that could infer new knowledge even if it is not seen during
pre-training.

For natural language theorem proving, we use the question answering CLUTRR benchmark
suite [36] to perform controlled studies. This dataset is of interest because: (i) the composi-
tional nature of tasks involved make it well suited for evaluating systematic generalization,
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and (ii) each question–answer pair is accompanied by a proof that can be used to explain
how to arrive at the answer. We use this dataset as a medium to understand the reasoning
capacity of TLMs.

Our experiments reveal the following:

1. TLMs suffer from length generalization: they cannot extrapolate to proofs requiring
more proof steps than seen during training time.

2. They generalize better when trained to generate long proofs compared to short proofs.

3. They generalize better when trained to generate backward-chaining proofs rather than
forward-chaining.

4. Surprisingly, they generalize better when they are trained to directly generate the
answer instead of learning to generate the proof and then the answer.

To the best of our knowledge, we are the first to use a language modeling objective to do
interpretable theorem proving with a Transformer. We hope that this work can shed some
light on the reasoning capacity of TLMs and inspire future research to design models with
greater reasoning capacity.

4.2 Related Work

Systematic generalization has recently been in spotlight due to its importance in understand-
ing the strengths and weaknesses of neural networks. Bahdanau et al. [35, 187] identify and
evaluate the generalization capacity of visual question answering models. We however focus
this study on a fully natural language domain. Dasgupta et al. [28] introduce a natural
language inference (NLI) dataset which proves to be challenging for language understand-
ing models for compositional generalization. Goodwin et al. [29] also evaluate systematic
generalization in an NLI setting with controlled test cases to observe the failures of neural
architectures. We however focus this study on the systematic generation of logical reasoning
sentences by Transformer-based [10] language models in a question answering setting with
the CLUTRR suite [36]. Similar datasets include SCAN [67] which has been instrumental
to test systematic generalization [30, 31] and CFQ [72] which measures the systematicity of
language understanding via a question answering setup. Sinha et al. [36] propose a series
of baseline models with the CLUTRR dataset but none of them took advantage of the pro-
vided proof attached with each example. In addition, their Transformer baselines were not
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fine-tuned on the task. Unlike them, we focus on learning and generating proofs for studying
systematic generalization.

Neural proof generation [188] and neural theorem proving [89, 92, 94] have been explored in
previous work. They tend to combine symbolic and statistical approaches to leverage the
compositionality and interpretability of symbolic systems and the flexibility of statistical
systems. Nevertheless, these combined systems all assume some predefined set of atoms
and rules making up the environment. We instead use natural language text to define our
environment and measure the limits of a purely statistical approach.

Similarly to us, Clark et al. [1] leverage logical rules expressed in natural language to an-
swer compositional questions. However their system is not generative, rather they predict a
true/false binary label on candidate answers. We instead focus on the systematic generaliza-
tion capacity of generating proofs and using them to generate the final answer.

4.3 Evaluating systematic generalization through interpretable reasoning

4.3.1 The task

Background. We use the family relation CLUTRR benchmark suite [36] to generate our
dataset1. Each example is composed of: (i) a family graph G = (V, E) (referred as story)
with entities as nodes (v ∈ V ) and relationships as edges (e ∈ E), (ii) a query about the
relationship between two entities (v1, _, vn) separated by more than one hop in the family
graph (iii) a reasoning path (referred as proof ) expressed as a list of (vi, ej, vk) tuples, referred
to as facts and (iv) the target relationship e∗ between the two queried entities (referred to as
the answer). The dataset contains 272 distinct entities and 20 relationship types, ordering to
∼ 1.5M possible facts. Each (vi, ej, vk) fact can be expressed in natural language using either
one of 5 factual sentences (referred to as facts template), or by using one of 6, 000 noisy
but more natural sentences written by mechanical turkers (refered as amt template). Family
graphs are expressed using either the facts template or the amt template, while queries,
proofs and answers are always expressed with the facts template. A CLUTRR example can
be seen in Table 4.1 and Figure 4.1.

Terminology. In order to evaluate systematic generalization, we define the following build-
ing blocks that constitute a proof :

• entity: one node (e.g., “Anna”).

• relation: one edge (e.g., “mother”).
1Dataset and code can be downloaded at https://github.com/NicolasAG/SGinPG

https://github.com/NicolasAG/SGinPG
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raw facts amt

story
[(Natasha, granddaughter, Betty),

(Florence, sister, Gregorio),
(Gregorio, brother, Natasha)]

<STORY>
Natasha is a granddaughter to Betty.

Florence is Gregorio ’s sister.
Gregorio is a brother of Natasha.

<STORY> Betty likes picking berries with
her son ’s daughter. Her name is Natasha.

Gregorio took his sister, Florence, to a baseball game.
Gregorio and his sister Natasha love it when their

grandmother visits because she spoils them.
She is coming this week to watch them while

their parents are out of town.
query (Florence, _, Betty) <QUERY> Who is Florence for Betty ?

proof

[{(Florence, granddaughter, Betty):
[(Florence, sister, Gregorio),

(Gregorio, grandson, Betty)]},
{(Gregorio, grandson, Betty):
[(Gregorio, brother, Natasha),

(Natasha, granddaughter, Betty)]}]

<PROOF>
since Florence is a sister of Gregorio, and Gregorio is a grandson to Betty,

then Florence is a granddaughter to Betty.
since Gregorio is a brother of Natasha, and Natasha is the granddaughter of Betty,

then Gregorio is a grandson of Betty.

answer granddaughter <ANSWER> Florence is the granddaughter of Betty

Table 4.1 CLUTRR example of level 3 (ie: 4 entities, 3 relations, 2 proof steps). The proof follows
the short-proof-rev strategy. We refer the reader to Figure 4.1 to visualize the corresponding
graph in which solid lines refer to the facts given in the story and dotted lines refer to the new facts
inferred in each proof step.

• fact: one factual sentence representing a (vi, ej, vk) tuple using facts template (e.g.,
“Anna is the mother of Bob”).

• proof_step: one inference step combining two facts to get a new one (e.g., “since
Anna is the mother of Bob and Bob is the brother of Carl then Anna is the mother of
Carl.”).

• proof: the entire resolution chain, consisting of multiple ordered proof_steps.

Following the setup of CLUTRR, we define the relative difficulty of individual examples
according to the number of edges present in the family graph. For instance, Table 4.1 and
Figure 4.1 show a level-3 example because there are 3 solid edges (known facts) between 4
entities. In general, a level k task consists of k edges (corresponding to k sentences in
the story) between k + 1 nodes and k − 1 hidden edges to infer (corresponding to k − 1
proof steps to solve the task). As the levels increase, so does the number of sentences in the
story and the number of proof steps in the proof.

Problem Setup. We trigger a model to: (1) given a story and query, generate a proof
followed by an answer, and (2) given a story, query, and a proof, generate an answer. In
particular, we train a Transformer-based decoder [189] with the language modeling objective
on entire sequences of “<STORY> [story] <QUERY> [query] <PROOF> [proof] <ANSWER>
[answer]”:

L(θ) =
∑

i

log P (wi|w1, . . . , wi−1; θ)

This setup enables to generate both the answer to a query and the proof to arrive at this
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answer, given as input the family graph story and a question. Concretely, we inject sequences
of the story and query having delimiters “<STORY>” and “<QUERY>” to the language
model and trigger it to generate the corresponding proof and answer with tokens “<PROOF>”
and “<ANSWER>” respectively.

4.3.2 Proof resolution strategies

sp

since Gregorio is a brother of Natasha, and Natasha is the granddaughter of Betty,
then Gregorio is a grandson of Betty.
since Florence is a sister of Gregorio, and Gregorio is a grandson to Betty,
then Florence is a granddaughter to Betty.

spr

since Florence is a sister of Gregorio, and Gregorio is a grandson to Betty,
then Florence is a granddaughter to Betty.
since Gregorio is a brother of Natasha, and Natasha is the granddaughter of Betty,
then Gregorio is a grandson of Betty.

lp

since Gregorio is the brother of Natasha, and Natasha is the granddaughter of Betty,
then Gregorio is the grandson of Betty.
since Florence is the sister of Gregorio, and Gregorio is the brother of Natasha,
then Florence is the sister of Natasha.
since Florence is the sister of Natasha, and Natasha is the granddaughter of Betty,
then Florence is the granddaughter of Betty.

lpr

since Florence is the sister of Natasha, and Natasha is the granddaughter of Betty,
then Florence is the granddaughter of Betty.
since Florence is the sister of Gregorio, and Gregorio is the brother of Natasha,
then Florence is the sister of Natasha.
since Gregorio is the brother of Natasha, and Natasha is the granddaughter of Betty,
then Gregorio is the grandson of Betty.

Table 4.2 Proof resolution types for an example of level 3. We refer the reader to Figure 4.1 for
the kinship graph corresponding to this example. sp=short-proof, spr=short-proof-reversed,
lp=long-proof, lpr=long-proof-reversed.

In our task, we turn language models into approximate proof generators. Specifically, we train
TLMs to generate proofs (as defined in Section 4.3.1). We do not explicitly perform inference
on the generated proofs, but reformulate the language generation objective to generate the
inferred answer after the proof sequence. This allows to leverage TLMs to generate forward
and backward chaining resolution paths used in Inductive Logic Programming (ILP) [190]. In
our case, these resolution paths are expressed in natural language. To simulate approximate
theorem generation, we introduce four different types of proof that can be used to derive
the answer given a story and query. An example of each type can be seen in Table 4.2 and
we describe them below:
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short-proof-rev (spr). This setup is the backward-chaining resolution path provided by
the CLUTRR dataset, which is generated by recursive application of the kinship logical rules.
This proof strategy can be viewed as an explain-why scenario, where the first sentence in the
proof contains the answer (target relationship) and the subsequent sentences contain the
intermediate steps required to explain that answer. We refer the reader to Sinha et al. [36]
for further details on the generation of this proof setting.
short-proof (sp). Here we reverse the resolution chain provided by the CLUTRR dataset by
swapping all sentences from the short-proof-rev setup. Doing so, we arrive at a forward-
chaining inference path, in which the final proof step consists of the target relationship.
Specifically, the first sentence in the proof combines two facts from the given story to infer
a new fact. In subsequent proof steps, the inferred fact from the previous step is combined
with a fact from the story, to infer a new fact until the answer is found.
long-proof (lp). Forward-chaining inference in ILP consists of generating all possible new
facts from the starting facts, and evaluate each of them for the resolution of the target an-
swer [91]. Similarly, in this setup, we extend the short-proof setup where we attempt to
infer all possible facts given the ones present in the input story. Each proof step combines
any two previously known facts to infer a new fact until the answer is found. Pseudo-code
for generating this type of proof can be found in Appendix A.
long-proof-rev (lpr). This setting is the same as the previous one, but in reverse. It starts
from the answer and goes back to the facts originally given in the story. This resolution strat-
egy can be viewed as a backward-chaining strategy where all possible paths are considered.
This proof strategy is obtained by swapping all sentences from the long-proof setting.

We compare each strategy in our experiments to understand which form of logical resolution
is easier to learn for TLMs. In particular, we note that the reversed proof strategies (spr
and lpr) fall in the backward-chaining family of logical resolution, while the non-reversed
strategies (sp and lp) represent the forward-chaining resolutions. Backward-chaining family
features the proof step containing the answer at the beginning of the proof. On the other
hand, forward-chaining type proofs (sp and lp) feature the proof step containing the answer
at the end of the proof.

4.3.3 Systematic generalization in proof generation

Now that we have defined the task and various proof generation strategies available in
our setup, we proceed to define the aspects of generalization we aim to test. Our initial
CLUTRR formulation tested the generalization capacity of a model to new facts hence new
proof_steps and new proofs, after being trained on all entities and relations. Initial
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ANON TEST lvl.2 lvl.3 lvl.4 lvl.5 lvl.6 lvl.7 lvl.8 lvl.9 lvl.10
proofs
(many proof steps) 16.28% 0% 0% 0% 0% 0% 0% 0% 0%

proof steps
(“since A-r1-B
and B-r2-C
then A-r3-C”)

73.08% 58.06% 52.75% 54.28% 50.93% 59.04% 56.92% 53.55% 52.17%

facts (A-r-B) 100% 100% 100% 100% 100% 100% 100% 100% 100%
entities (A) 100% 100% 100% 100% 100% 100% 100% 100% 100%
relations (r) 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 4.3 Percentage of the test proof’s building blocks also present in the training set (composed
of levels 2, 4, 6) for all levels. We colored all cells with a value of 100% to better visualize which
building blocks were entirely contained in the training set.

experiments on this setup showed that TLMs fail to generalize to unseen facts. Due to the
presence of a large number of entities in CLUTRR, we ended up with a combinatorially large
number of possible facts. The model may thus not be able to learn how to represent each
entity effectively, hence reducing its chances to learn higher-order structures such as unseen
facts. Experimental results on this original setting are provided in Appendix 4.A.

We instead slightly simplify the generalization evaluation and allow the model to also be
exposed to all possible facts. This formulation tests a model capacity to generalize to new
proof_steps hence new proofs, after being trained on all entities, relations and facts.
Since providing a training corpus covering all possible facts would significantly increase the
training data, we instead reduce the number of entities by replacing them by one of k2

randomly sampled entity tokens, resulting in significantly fewer possible facts, and thus all
facts being contained in the training set (Table 4.3).

Interpolation and Extrapolation. Having access to the level of difficulty of each test
examples, we evaluate both how Transformers can generalize to unseen proofs of the same
difficulty as seen during training (inductive generalization); and how they can generalize to
unseen proofs of unseen difficulty levels. In particular, we test interpolation in which the
testing difficulty levels are less than training levels; and extrapolation in which the test diffi-
culty levels are higher than training levels. This systematically tests the length generalization
capabilities of TLMs in logical theorem proving.

2k = 20 in our case because we know that the maximum number of entities in a story is less than 20.
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4.4 Experiments and Analysis

We aim to answer the following questions to analyze the proof generation capabilities of
Transformer-based language models (TLMs):

1. Are TLMs able to reason better after being trained to generate interpretable proofs
expressed in natural language?

2. Which types of proof are easier to learn and to generate for TLMs?

3. Which types of proof are more useful for TLMs to generate accurate answers?

Setup. In all our experiments we used a Transformer decoder architecture [189] with 2.5M
and 3.5M parameters with a vocabulary size of 90 and 1, 800 tokens for stories expressed with
the facts and amt template respectively. Detailed parameter settings for our models are given
in Appendix 4.B. We also ran preliminary experiments with a larger model (145M parameters)
(Appendix 4.C), with a GPT2 model [24] (Appendix 4.D), and with a more complex network
(an encoder-decoder transformer) (Appendix 4.E) but found similar conclusions or further
investigation being required. We generate 390, 000 CLUTRR examples of level 2 to 10. We
train the models on 300, 000 examples of levels 2, 4 and 6 and evaluate the model on a
test set of 10, 000 examples for all levels from 2 to 10. Specifically, we test levels 3 and 5
for interpolation; levels 2, 4 and 6 for inductive generalization; and levels 7, 8, 9 and 10 for
extrapolation.

Evaluation Metrics. In the following experiments, we evaluate both the generated proof
factual consistency (that we denote ‘validity’ in the rest of this document) and answer accu-
racy. The answer is defined as the first sentence after the “<ANSWER>” tag in the generated
sequence. Since all answers during training were expressed using the facts template, we in-
verse this template to extract the (entity, relation, entity) triple from the generated answer.
If the extraction fails, we consider the generated answer wrong. We then compare the ex-
tracted triple to the ground truth provided in the CLUTRR dataset. For comparison, in all
experiments, we also report the accuracy of the naive most-frequent-relation (MFR) base-
line consisting of predicting the relation that is the most frequent in the training set for the
queried entity pair.

A proof is defined as the ordered sequence of all sentences generated between the “<PROOF>”
and “<ANSWER>” tokens. For validating a proof, since all proofs during training were ex-
pressed using the facts template, we inverse this template to extract all (entity, relation, entity)
triples from the generated proof sentences. If the extraction process fails at any point, the
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entire proof is considered invalid. The ordered sequence of each proof step is then evaluated
against the transitivity rules defined by the CLUTRR environment. In addition, we also
check that all the facts necessary for the proof are either given in the input story, or inferred
from a previous proof step. If any of these conditions fail, we consider the proof invalid,
otherwise we consider the proof ‘valid’ (ie: factually consistent).

No proof setup. In addition to the four proof strategies defined in Section 4.3.2, we
also compare in all our experiments with a model that is trained to directly generate the
answer after the story and query. In particular, this no-proof model is trained on sequences
of “<STORY> [story] <QUERY> [query] <PROOF> none . <ANSWER> [answer]”. This
allows us to estimate how important is the proof for our models to be able to generalize.

4.4.1 Answer Accuracy

We evaluate the answer accuracy of models trained with different proof settings on the test
set described earlier by Table 4.3. Each model is given as input a story, query and the proof
trigger token (“<STORY> [story] <QUERY> [query] <PROOF>”), and we let them decode
the next tokens, that is, the proof followed by the answer.
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Figure 4.2 Answer accuracy for all test levels from 2 to 10. The models are given as input
“<STORY> [story] <QUERY> [query] <PROOF>” and they generate the proof and answer.
The models are trained on levels 2, 4, 6 only. Different proof settings are evaluated: sp =
short-proof, spr = short-proof-reversed, lp = long-proof, lpr = long-proof-reversed, np =
no-proof. We also report the naive most-frequent-relation (mfr) baseline.

Q: Are TLMs able to generalize to unseen proof steps? A: For simple language, yes in
interpolation and no in extrapolation. For complex language, no in both cases.

In Figure 4.2a we evaluate models trained wit stories expressed with the facts template. We
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observe that in all proof setups, with the exception of short-proofs, TLMs are able to sys-
tematically generalize to predict the correct answer inferred from unseen proof_steps and
proofs, both in inductive (levels 2, 4, 6) and interpolation levels (levels 3 and 5). However,
in all proof setups TLMs have difficulties to extrapolate to longer problems requiring a larger
number of reasoning steps, conforming to length generalization issues discovered in related
tasks [30].
In Figure 4.2b we note that models trained on noisy amt stories fail to systematically gen-
eralize to predict the correct answer. In addition, we can see a linear decrease in accuracy
with the level of difficulty. Having to de-noise the input stories to extract relevant kinship
relations, in addition to running logical inference, makes the task much more challenging for
our network. We conjecture that generalizing in this harder setting may require additional
capacity added to the model, either in terms of model size, model architecture, training
data, or a combination of all the above. For instance, we explore the benefit of fine-tuning
GPT2 [24] in Section 4.D as an initial step, but leave room for further improvement in future
work.

Q: Which reasoning strategy generalizes better? A: Backward-chaining is better than forward-
chaining, but no-proof can be better than both. Long-proofs are better than short-proofs.

We observe that backward proof strategies (spr, lpr) better help the model to answer ac-
curately than their respective forward strategies (sp, lp) (Figure 4.2), with the exception of
long proofs in the amt story template. This suggests that backward chaining is easier to
learn, easier to use, or both, than forward chaining for TLMs. We believe this effect is due
to the position-dependent exploitation of TLMs. Indeed, the answer is in the first generated
proof-step in case of backward-chaining proofs. In addition, we note in Figure 4.2 that long-
proofs (lp, lpr) yield better generalization performance than short-proofs (sp, spr) with the
exception of reversed strategies in the facts story template.
It is also interesting to see that models trained to go directly to the answer by generating the
“none” token as a proof tend to perform better than all other models required to generate
the proof in facts stories (Figure 4.2a). One hypothesis is that the generated proof may
be invalid most of the time and hence the extra information given by the proof is actually
deteriorating the model’s performance. To see if that may be the case, we next look at the
validity of the generated proofs for all models (except the trivial no-proof).

4.4.2 Proof Validity

We evaluate the proof validity of models trained with different proof settings on the test set
(previously described by Table 4.3) in Figure 4.3. Similarly as above, each model is given as
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input a story and query and we trigger the model to decode the proof and answer with the
trigger tokens “<PROOF>” and “<ANSWER>” respectively.
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Figure 4.3 Proof validity for all test levels from 2 to 10. The models are given as input
“<STORY> [story] <QUERY> [query] <PROOF>” and they generate the proof and answer.
The models are trained on levels 2, 4, 6 only. Different proof settings are evaluated: sp =
short-proof, spr = short-proof-reversed, lp = long-proof, lpr = long-proof-reversed, np =
no-proof.

Q: Which reasoning strategy is easier to generate? A: forward-chaining is easier than
backward-chaining and long-proofs are easier than short-proofs.

From Figure 4.3a we observe that forward-chaining strategies (sp, lp) tend to be easier to
generate than their respective reversed strategies (spr, lpr). This is contrary to the previous
observation where backward-chaining strategies were easier for the models to understand.
We believe that this is due to the fact that the model has a higher chance of generating the
first proof step correctly than the final proof step. Since backward chaining proofs contain
the answer in the first proof step, when re-using that information to predict the answer, there
is a higher chance that the answer will be correct. This explains why the answer accuracy of
such model is relatively high while their proof validity is relatively low.
In addition, we observe that in both facts and amt stories (Figure 4.3), long proof strategies
are easier to generate than shorter ones. This was not expected at first since long sequences
are usually harder to model in language models. One hypothesis is that since long-proofs
come from a systematic construction (see Appendix A) they are easier to generate than the
more arbitrary short proofs.

Q: Are TLMs able to generate valid proofs of unseen lengths? A: No.

We observe that valid proofs are difficult to generate for TLMs in unseen difficulty levels,
both in interpolation and extrapolation setting (Figure 4.3a). This partially explains why
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the no-proof setting in the previous section yielded better generalization performances. In
addition, we note in Figure4.3b that the generated proofs from models trained on noisy amt
stories are mostly invalid. We believe that this is due to the fact that models need to de-noise
the information from the input story in addition to generating a valid proof, making the task
much harder. To understand if models rely on the validity of the proof, we next evaluate
their answer accuracy when given the real proof as input rather than the generated one.

4.4.3 Proof is given

To understand if models rely on the proof, we again evaluate the answer accuracy as in
Section 4.4.1, but this time the models are given as input the story, the query and the real
proof followed by the answer trigger token: “<STORY> [story] <QUERY> [query] <PROOF>
[proof] <ANSWER>”. We then let the language model decode the next tokens making up
the answer. Note that the no-proof model is given “none” as its “[proof]” so we don’t expect
this model performance to change from Section 4.4.1.
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(b) stories expressed with the amt template.

Figure 4.4 Answer accuracy for all levels from 2 to 10. The models are given as input
“<STORY> [story] <QUERY> [query] <PROOF> [proof] <ANSWER>” and they generate
the answer. The models are trained on levels 2, 4, 6 only. Different proof settings are
evaluated: sp = short-proof, spr = short-proof-reversed, lp = long-proof, lpr = long-proof-
reversed, np = no-proof. We also report the naive most-frequent-relation (mfr) baseline.

Q: Are ground-truth proofs useful for TLMs to generalize systematically? A: Yes.

When the proof is provided in the input, all models outperform the no-proof model in in-
ductive and interpolation test cases (Figure 4.4). In extrapolation test cases, models trained
on facts stories (Figure 4.4a) benefit from the proof compared to Section 4.4.1, and models
trained with amt stories outperform the no-proof model (Figure 4.4b). This suggests that
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models do learn to use the correct proof to better generalize during inference. However, as the
difficulty of the examples increases, the generalization performance of all models decreases.
Even when given the proof containing the correct answer, TLMs fail to copy the correct
information from sequences of greater length than seen during training. Our hypothesis for
this is that Transformers strongly rely on the position of the answer and have trouble learning
simple tasks – such as copying the answer from the proof – if the information for this task
happens at unseen positions.

Q: Which reasoning strategy is easier to use when generating answers? A: backward-chaining
is easier to use than forward-chaining and long-proofs are easier to use than short-proofs.

Another interesting observation is that, in general, the reversed proofs (dotted lines in Fig-
ure 4.4) tend to be more useful than forward strategies for our model in generating the correct
answer, aligning with our findings in Section 4.4.1. Similarly as above, we believe that this
is due to the facts that Transformers strongly rely on the position of the answer. Indeed, in
reversed proofs (spr, lpr), the answer is always in the first proof step, for which the position
depends only on the story length; whereas in sp and lp the answer is always in the last proof
step, for which the position depends both on the story length and on the proof length.
We also see that long, exhaustive proofs are easier to be used when generating the final an-
swer, compared to short-proof strategies. This suggests that while being a longer sequence of
tokens to encode, if a model was able to generate such proofs, it would ease its generalization
capacities.

4.5 Conclusion

TLMs are state of the art models for a wide variety of natural language processing tasks.
Given their widespread use, it is important to understand the limits of their ability to reason
on knowledge expressed in natural language and to extrapolate learned inference procedures
to unseen problem instances. Our explorations reveal multiple insights. Firstly, TLMs suffer
from length-generalization issues in generating proofs. Secondly, TLMs get better at reason-
ing when trained with longer, exhaustive proofs. In addition, the fact that backward-chaining
proof models perform better than forward-chaining ones makes us believe that backward-
chaining strategies are easier to use albeit being harder to generate. Moreover, we find
that no-proof models perform better than those trained to produce proofs. We conjecture
that benefiting from naturally stated logical proof statements requires more complex inter-
nal representations. Recent work on developing position-agnostic attention mechanisms for
Transformers [191] can be useful as a future direction to develop generalizable models. Fur-
thermore, our results motivates the use of neuro-symbolic methods such as Neural Theorem
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Provers [89] as an alternative avenue to achieving systems that systematically generalize on
logical and compositional reasoning tasks. Combining these approaches with large pre-trained
language models is left as future research. We hope that this work will inspire research on
the systematic generalization capacity of language models and motivate further study and
the creation of neural models with greater reasoning capacity.

Broader Impact

Transformer based models have been very effective for various language understanding and
generation tasks. Due to their recent successes, there is significant interest in the applica-
tions of these models to real world scenarios such as: Dialogue, Question Answering and
text-classification. However, failure of such systems could produce nonsensical, wrong or
racially-biased results [192]. Therefore, a logical analysis of their limitations and issues in
generalization to unseen data, such as in this work, could have a positive impact on building
safer, more robust and interpretable systems in these domains.

In this work, we rely on systematic tests to trigger Transformer-based models to generate an
interpretable proof in natural language, and then evaluate the robustness properties of that
proof. Using a first-order logic based dataset, we explicitly test the logical consistency of such
proof. This research can shed some light into developing more robust and systematic models
in the future. In addition, it can help us understand the reasoning strategies employed by
Transformer-based models for both inference and generation. However, the fact that proof-
free inference works so well, may also imply that models which generate proofs, do so in a
decoupled way from the computations yielding the final answer. This negative result could
give users a false sense of explainability.
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4.A Original CLUTRR evaluation

ORIGINAL TEST lvl.2 lvl.3 lvl.4 lvl.5 lvl.6 lvl.7 lvl.8 lvl.9 lvl.10
proofs
(many proof steps) 99.62% 0% 0% 0% 0% 0% 0% 0% 0%

proof steps
(“since A-r1-B
and B-r2-C
then A-r3-C”)

99.62% 0% 99.96% 0% 100% 0% 0% 0% 0%

facts (A-r-B) 100% 0.47% 100% 0.83% 100% 0.20% 0.20% 0.10% 0.42%
entities (A) 100% 23.81% 100% 35.72% 100% 26.19% 21.43% 30.95% 30.95%
relations (r) 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 4.4 Percentage of the original test proof building blocks also present in the training set
(composed of levels 2, 4, 6) for all levels. We colored all cells with a value close to 100% to better
visualize which building blocks were entirely contained in the training set.

The original CLUTRR data generation framework made sure that each test proof is not in
the training set in order to test whether a model is able to generalize to unseen proofs. Initial
results on the original CLUTRR test sets resulted in strong model performance (∼ 99%) on
levels seen during training (2, 4, 6) but no generalization at all (∼ 0%) to other levels.
After further analysis, we noticed that due to the cloze style nature of CLUTRR tasks, the
first names representing entities were chosen arbitrarily. This resulted in level-k test set’s
proof_steps and facts also being in the level-k training set. In addition, level-k test set’s
entities were mostly seen only in level-k training set. This resulted in a big overlap between
training and test sets for examples of the same level, but a weak overlap on other levels as
we can see in Table 4.4.

NAMED TEST lvl.2 lvl.3 lvl.4 lvl.5 lvl.6 lvl.7 lvl.8 lvl.9 lvl.10
proofs
(many proof steps) 2.13% 0% 0% 0% 0% 0% 0% 0% 0%

proof steps
(“since A-r1-B
and B-r2-C
then A-r3-C”)

2.13% 0% 1.33% 1.74% 1.42% 1.80% 1.38% 0.99% 1.40%

facts (A-r-B) 15.48% 5.52% 6.77% 10.92% 6.38% 9.63% 10.51% 10.33% 8.33%
entities (A) 100% 100% 100% 100% 100% 100% 100% 100% 100%
relations (r) 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 4.5 Percentage of the Named test proof’s building blocks also present in the training set
(composed of levels 2, 4, 6) for all levels. We colored all cells with a value of 100% to better visualize
which building blocks were entirely contained in the training set
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Figure 4.5 Answer accuracy on the Named test
for all levels from 2 to 10. The models are
given as input “<STORY> [story] <QUERY>
[query] <PROOF>” and asked to generate the
proof and answer. Models are trained on levels
2, 4, 6 only. Different proof settings are eval-
uated: sp = short-proof, lp = long-proof, np
= no-proof. We also report the naive most-
frequent-relation (mfr) baseline.

In our case, the entity names are important
to evaluate systematic generalization. We
want to evaluate the capacity of a model
to generalize to new facts, proof_steps,
and proofs, but keeping the entities and
relations the same. We thus modified the
original CLUTRR dataset to select test enti-
ties according to entities present in the train-
ing set. We devise a test set that uses all
relations and entities from the train-
ing set but new facts, proof_steps and
proofs for all levels. We call this dataset
the Named data: all entities are referred by
their original first name. Train and test over-
lap percentages between all building blocks
are in Table 4.5.

Given as input the story and the query fol-
lowed by the proof trigger token (“<STORY> [story] <QUERY> [query] <PROOF>”) the
model generated the corresponding proof and answer. We report in Figure 4.5 the answer
accuracy and in Figure 4.6a the proof validity of all our models. Similarly, in Figure 4.6b we
report the answer accuracy of our models when they are given as input the story, the query
and the real proof, followed by the answer trigger token (“<STORY> [story] <QUERY>
[query] <PROOF> [proof] <ANSWER>”).

Experiments on this setup show that Transformer language models fail to generalize to unseen
facts. Indeed, due to the presence of a large number of entities in CLUTRR, we end up with
combinatorially large number of possible facts. The model may thus not be able to learn how
to represent each entity effectively, hence reducing its chances to learn higher-order structures
such as unseen facts.
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(a) Proof validity on the Named test for all lev-
els from 2 to 10. The models are given as
input “<STORY> [story] <QUERY> [query]
<PROOF>” and asked to generate the proof and
answer.
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(b) Answer accuracy on the Named test for all
levels from 2 to 10. The models are given as
input “<STORY> [story] <QUERY> [query]
<PROOF> [proof] <ANSWER>” and asked to
generate the answer.

Figure 4.6 Evaluation of models trained on levels 2, 4, 6 only.

4.B Experiments parameter settings

small large
patience 20 20
batch size 512 256
float precision 16 16
embedding dimension 192 768
number of layers 5 20
dropout 0.1 0.1
transformer mlp hidden size 768 3072
attention heads 3 12
max length 1, 024 512
activation gelu gelu
number of warmup steps 20, 000 20, 000
optimizer adam adam
total parameters ∼ 3, 000, 000 ∼ 145, 000, 000

Table 4.6 Parameter settings.

All experiments in the
main section of the paper
were run with the small
model size.

Additional experiments in
Section 4.C were run with
the large model size.
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4.C More parameters
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Figure 4.7 Answer accuracy for all test levels from 2 to
10. The models are given as input “<STORY> [story]
<QUERY> [query] <PROOF>” and they generate the
proof and answer. Models are trained on levels 2, 4,
6 only. Stories are expressed with the facts template.
Different proof settings are evaluated: np = no-proof
and spr = short-proof-reversed. We also report the
naive most-frequent-relation (mfr) baseline. Results on
other proof settings with the 2.5M parameter network
can be found in Figure 4.2a.

In this section we report the answer
accuracy of a model trained with
∼145M parameters and compare
its generalization performance with
our initial smaller network (∼2.5M
parameters). Models are trained on
levels 2, 4 and 6. Each model is
given the story and query as input,
and triggered to generate the proof
and answer with the “<PROOF>”
and “<ANSWER>” tokens respec-
tively.

We observe in Figure 4.7 that
the generalization capacity of the
larger 145M network is almost
identical to the smaller 2.5M pa-
rameter network trained on the
same data (facts stories and short-
proof-reversed). In addition, we
also observe that the 145M model
trained on reversed short proofs (145M / spr) is not better than the 2.5M model trained with-
out any proof (2.5M / np). Overall, results show that model size improves only marginally
the generalization capacity in our task.
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4.D Fine-tuning GPT2
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Figure 4.8 Answer accuracy for all test levels from 2 to
10. The models are given as input “<STORY> [story]
<QUERY> [query] <PROOF>” and they generate the
proof and answer. Models are fine-tuned on levels 2, 4, 6
only. Stories are expressed with the amt template. Dif-
ferent proof settings are evaluated: sp = short-proof,
spr = short-proof-reversed, np = no-proof. We com-
pare the performance of models trained from scratch
(dotted lines; gtp2FS-) and of fine-tuned models (solid
lines; gpt2FT-).

In this section we report the an-
swer accuracy of GPT2 models [24]
trained from-scratch (gpt2FS-) on
the CLUTRR dataset and of
pre-trained GPT2 models fine-
tuned (gpt2FT-) on the CLUTRR
dataset. We leverage the GPT2 im-
plementation from the huggingface
library [193]. The resulting mod-
els have ∼125M parameters. In all
experiments the models are trained
on stories expressed in the amt tem-
plate. Models are fine-tuned on
levels 2, 4 and 6. Each model is
given the story and query as input,
and triggered to generate the proof
and answer with the “<PROOF>”
and “<ANSWER>” tokens respec-
tively.

In Figure 4.8 we observe that in
general, fine-tuned models perform better than the ones trained from scratch. We can also
see that reversed-proof strategies are better than their forward proof counterpart, which is
in accordance with what we discussed in Section 4.4.1. Although fine-tuning seems to im-
prove the generalization capacity of GPT2, it is also interesting to note that the benefit of
fine-tuning GPT2 on short-proofs (sp) is negligible compared to the benefits of fine-tuning
GPT2 on short-proofs-reversed (spr) or no-proof (np). This suggests that fine-tuning alone
is not enough to yield strong generalization performance, but the choice of proof strategy
also influences greatly the answer accuracy.
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4.E Encoder-Decoder Network
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Figure 4.9 Answer accuracy for all test levels from 2 to
10. The models encodes the input “<STORY> [story]
<QUERY> [query]” and they decode the proof and an-
swer. Models are trained on levels 2, 4, 6 only. Sto-
ries are expressed with the facts template. Different
proof settings are evaluated: sp = short-proof, spr =
short-proof-reversed, lp = long-proof, lpr = long-proof-
reversed, np = no-proof. We also report the naive most-
frequent-relation (mfr) baseline.

In this section we evaluate the
answer accuracy of sequence-to-
sequence models trained on facts
templated stories of level 2, 4 and
6. These models consist of a 5-layer
Transformer encoder and a 5-layer
Transformer decoder, each of them
following the same parameter set-
tings than what is described in the
‘small’ column of Table 4.6. This
resulted in 5.22M parameter mod-
els. Sequence-to-sequence models
are trained to encode the story and
question with the encoder, and gen-
erate the proof and answer with the
decoder. Models trained on levels
2, 4 and 6. Each model is given
the story and query as input, and
triggered to generate the proof and
answer with the “<PROOF>” and
“<ANSWER>” tokens respectively.

In the results shown in Figure 4.9, we see that sequence-to-sequence models do not generalize
well to unseen difficulty levels, both in extrapolation settings (levels 7–10) but also in inter-
polation settings (levels 3 and 5). This suggests that encoder-decoder architectures are more
sensible to the sequence length seen during training. On the other hand, it is important
to note that the encoder network was trained with the auto-regressive language modeling
objective back-propagated from the decoder. It would be interesting to see if pre-training
the encoder with a more traditional objective, that is masked language modeling [17], would
improve the generalization performance. We leave this exercise as future work. In addition,
we plan to explore pre-trained models such as T5 [52] in future work in order to improve
performance with this type of architecture.



69
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Abstract We study the utility of incorporating entity type abstractions into pre-trained
Transformers and test these methods on four NLP tasks requiring different forms of logical
reasoning: (1) compositional language understanding with text-based relational reasoning
(CLUTRR), (2) abductive reasoning (ProofWriter), (3) multi-hop question answering (Hot-
potQA), and (4) conversational question answering (CoQA). We propose and empirically
explore three ways to add such abstraction: (i) as additional input embeddings, (ii) as a sep-
arate sequence to encode, and (iii) as an auxiliary prediction task for the model. Overall, our
analysis demonstrates that models with abstract entity knowledge performs better than with-
out it. The best abstraction aware models achieved an overall accuracy of 88.8% and 91.8%
compared to the baseline model achieving 62.9% and 89.8% on CLUTRR and ProofWriter
respectively. However, for HotpotQA and CoQA, we find that F1 scores improve by only
0.5% on average. Our results suggest that the benefit of explicit abstraction is significant in
formally defined logical reasoning settings requiring many reasoning hops, but point to the
notion that it is less beneficial for NLP tasks having less formal logical structure.

5.1 Introduction

Transformer language models (TLMs) [10] have enabled rapid progress in natural language
processing (NLP). When pre-trained on large corpora (such as the web) to predict the next
tokens or a set of masked tokens from an input sequence, TLMs can capture linguistic knowl-
edge [184–186], and yield state-of-the-art performance on many NLP tasks with little to no
task supervision [17, 22, 24, 50]. However, it is not clear if these models can capture higher
level knowledge such as reasoning skills that can be re-used in arbitrary contexts, and in ways
that leverage the compositionality of those skills [27,67], something logical reasoners can do
relatively well on a smaller scale [194, 195]. Simple compositional tasks such as SCAN [67],
CLUTRR [36], and ProofWritter [1, 37] can help diagnose the compositional generalization
behavior of language models. Recent work on some of these datasets showed that TLMs
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still struggle to learn reasoning strategies that can be re-used in out-of training distribution
settings [67, 196].

Humans do abstraction to simplify reasoning and become very efficient. This is particularly
true in mathematics when manipulating variables instead of numbers. Manipulating abstract
concepts allows humans to generalize knowledge across domains. If we look at how logical
reasoners operate, we find that they have an important abstraction component (going from
grounded entities to higher level concepts) before logical reasoning can start [194]. Going
from an original text sequence to its higher-order meaning is an important part of the NLP
pipeline (part of it being entity type tagging). Similarly in mathematics, the introduction
of generic variables allows to progress in a logical reasoning process without keeping track
of every (grounded) atomic entity. Overall, this idea that we call abstraction, seems to be
an important part of logical reasoning. Recent work suggests that incorporating external
knowledge about grounded entities could improve language models’ abilities to reason and
generalize [106, 129, 130, 138]. However the empirical effect of incorporating generic entity
types remains unclear, especially with recent studies suggesting that pre-trained models
already encode some of that linguistic knowledge in their parameters [60, 61, 197, 198]. In
this work, we study the effect of explicitly providing entity type abstraction in addition to
the original input to pre-trained Transformers.

We explore and evaluate different ways to incorporate entity type abstraction and observe
that some methods are more effective than others. To construct the abstract representation
incorporated into TLMs, we leverage entity type information given by fixed pre-trained mod-
els. This allows for automatic and reproducible data processing. In general, our approach is
the following: given an input sequence, we use an entity tagger to label entity types in the
sequence. We then use these labels to construct a copy of the original sequence in which all
entities are replaced by their corresponding entity types. This new sequence can then be used
as extra input (Sections 5.3.1 & 5.3.2) or as extra training signal to the model (Sections 5.3.3).
In particular, we explore three different ways to augment pre-trained Transformers with this
abstract knowledge:

1. by combining token embeddings from both the original and the abstract sequence before
encoding (Section 5.3.1) (Figure 5.1a & 5.1b).

2. by encoding both the original and the abstract sequence and combining them before
decoding the target output (Section 5.3.2) (Figure 5.1c & 5.1d).

3. by adding a second language model head on top of the Transformer decoder to predict
the abstract sequence (Section 5.3.3) (Figure 5.1e).
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A series of controlled experiments on two synthetic datasets show that models having ac-
cess to abstract knowledge about entity types yield better performance at inference time
both when interpolating and extrapolating to unseen lengths of reasoning chains. Since no
(non-synthetic) natural language dataset systematically and explicitly requires long chains of
reasoning, we used synthetic datasets in which we can control for the degree of compositional
generalization required. Nevertheless, in order to understand if the benefits observed could
also be applicable in more realistic settings, we ran a series of experiments on two question
answering datasets requiring some degrees of multi-hop reasoning. Results on these more nat-
ural language datasets show that abstraction aware models are not significantly better than
baseline models. We conclude that these “real-world” problems do not have strong enough
logical structure to benefit from the abstraction technique and that the pre-trained weights
of large language models seem to be “enough” for such natural language tasks, confirming
previous results [60, 185]. It is only when tasked on logical problems that explicitly require
reasoning depths unseen during training that abstraction becomes significantly beneficial.

Overall our work contributions are the following:

1. we introduce and compare empirically different ways to incorporate abstraction into
pre-trained TLMs.

2. we show that incorporating abstract knowledge can significantly improve compositional
generalization to unseen lengths of reasoning chains in multi-step reasoning tasks.

3. we show that abstraction aware models may not benefit much when language is more
natural and less procedural.

We hope that our work will inspire future research in the field to look for simple inductive
biases that can complement pre-trained models in their quest to achieve logical reasoning at
scale.

5.2 Related Work

Augmenting neural language models with knowledge about entities has been a popular
method to improve their functionality. Ji et al. [129] trained an entity neural language model
to predict sequences of entities with an LSTM [19]. At each sampling step, they predict
the next word alongside a categorical variable indicating the current token’s entity ID. They
obtained lower perplexity and better results on co-reference resolution and entity prediction
tasks than a variety of baselines. Similarly, Rosset et al. [130] trained a GPT2 model [24]
by giving it access to entity knowledge at the input level and as an additional pre-training
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loss. Their model achieved better factual correctness on benchmarks such as LAMA [62], and
performed better than a baseline GPT2 model in various question answering tasks. Inspired
by this work and motivated by the goal of building better reasoning language models, we
instead focus on the prediction of entity types rather than entity identifiers taken from a
fixed list of entities. This allows our solution to be robust to new entities. In addition, we ex-
plore and compare different ways to incorporate the entity knowledge in an encoder-decoder
architecture.

Besides entity knowledge, other types of explicit information has also been given to language
models. Prior work by Swayamdipta et al. [132], Eriguchi et al. [133], Nădejde et al. [134]
tried incorporating syntax information into language models by introducing an auxiliary
loss to the model. Results show that models trained to also predict syntactic information
achieved stronger performances on various tasks such as PropBank semantics and Neural
Machine Translation. Inspired by this work, we also introduce an auxiliary loss but to pre-
dict entity types, and with an application towards reasoning tasks. Also working with syntax
information, Sundararaman et al. [136] incorporated POS tags into the input embedding
of a BERT model. Results show improved BLEU score on machine translation and higher
accuracy than baselines on the GLUE benchmark [109]. Similarly, Sachan et al. [199] aug-
mented a pre-trained BERT model with a syntax graph neural network in order to encode
syntax trees. Their results show that the quality of the trees are highly tied to the perfor-
mance boost observed. Levine et al. [56] trained a BERT-like model to learn word senses.
They gave their model access to WordNet supersenses at the input level and as an additional
training loss. They achieve better performance than other baselines on the SemEval Word
Sense Disambiguation task [137]. Moosavi et al. [138] propose to improve robustness to data
biases by augmenting the training data with predicate-argument structures. They train a
BERT-base model [17] with PropBank-style semantic role labeling [139] on MultiNLI [140]
and SWAG [141] datasets. Their results show that incorporating predicate-argument struc-
ture in the input sequence (only during training) makes the model more robust to adversarial
examples in MultiNLI. More recently, Porada et al. [142] extended a RoBERTa model [51]
with hypernym abstraction based on WordNet to evaluate the plausibility of events. Their
model is able to better predict human plausibility judgement than other RoBERTa baselines.
Although different in application, all these prior works leverage the general idea
of explicitly giving more abstract knowledge to language models, hence showing
how flexible and generic this strategy can be. We take a similar approach with entity
types, but in the hope of improving the reasoning skills of our baseline model.

A flurry of recent work has also examined ways to augment TLMs with entities from exter-
nal knowledge bases [54, 106, 110, 114]. However, most of the time, these solutions rely on
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external components such as knowledge graphs with pre-trained entity embeddings, and/or
an additional memory. While they often use entity linking as a way to perform co-reference
resolution, they do not incorporate higher level of abstractions such as entity types like we
do here.

5.3 Introducing Abstraction Inductive Biases

In this section we describe five different ways to incorporate abstraction into a pre-trained
encoder-decoder model. Given an input sequence X, we use spacy named entity tagger1 to
make a simplified copy Xs of the input. This is a more generic copy of X.

We run the spacy recognizer on X to extract entity tags such as PERSON, ORG, GPE, etc...
For each entity type, we create n additional vocabulary entries (with randomly initialized
embeddings) such as [PERSON_1, . . . , PERSON_n, ORG_1, . . . , ORG_n, . . .]. Every token in X is
then replaced by their (randomly numbered) entity tag to make the simplified sequence Xs.
If the same entity is present multiple times in X, each occurrence will be replaced by the same
entity tag in Xs. If no entity is found for a token in X, the original token’s text is kept in Xs

(e.g. “Bob Smith has a cat that he loves. Bob also loves Alexandra.” would be transformed
into “PERSON_11 has a cat that he loves. PERSON_11 also loves PERSON_3.”).

We select n greater than one as we believe that for some tasks it is important to differentiate
between two entities of the same type. At the same time we select n to be much smaller
than the total number of entities in the dataset, thus forcing abstraction. In particular, the
hyper-parameter n is set to the smallest possible value such that each distinct entity within
the same example gets a different entity tag. This is different for each dataset depending on
the number of unique entities per example. Individual values can be seen in Appendix 5.A.
If the same entity appears more than once in a single example, it will get the same tag
every time within that example. Since we re-use the same finite set of entity tags across
all examples, each entity tag will be used for different entity tokens, thus after seeing many
examples, entity tags of the same type will likely have a similar embedding. We discuss some
result highlighting this phenomenon in Appendix 5.B.

In order to better understand the influence of having multiple tags for the same entity type,
we also ran experiments in which we set n = 1, thus forcing all entities of the same type
to be mapped to the same embedding. However we noticed both more variance and weaker
performance of our models, so the rest of this work will focus on the n > 1 setting described
above. Results can be seen in Appendix 5.C.

1https://spacy.io/models/en

https://spacy.io/models/en
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In the following subsections, we describe different strategies to incorporate Xs into an
encoder-decoder Transformer model.

(a) emb-sum architecture (b) emb-cat architecture

(c) enc-sum architecture (d) enc-cat architecture

(e) dec-loss architecture

Table 5.1 Different architectures for different abstraction strategies. X (blue) is the original
sequence embedding, Xs (green) is the embedding of the simplified sequence with entities
replaced by their entity type tags, “ENC” is the T5 encoder, H (blue) is the contextualized
representation of sequence X, Hs (green) is the contextualized representation of sequence
Xs, “DEC” is the T5 decoder, and Y is the target sequence to predict.

5.3.1 Abstraction as an additional embedding

Our first strategy is to combine Xs with X at the embedding level. To do that, we construct
Xs to be of the same length of X. If a spacy entity spans over multiple tokens (e.g. [“Alex”,
“andra”, “Smith” “is”, “the”, “wife”, “of ”, “Bob”]), we copy its entity tag at each sub-
token positions (e.g. [“PERSON_3”, “PERSON_3”, “PERSON_3”, “is”, “the”, “wife”,
“of ”, “PERSON_11”]). For each token within both sequences we either sum (emb-sum
experiments) or concatenate (emb-cat experiments) their respective token embeddings.

sum. In emb-sum experiments (Figure 5.1a), if tokens do not have entity tags associated
with them, we ignore their embedding to avoid summing the same embedding twice for non-
entity tokens. We only sum embeddings of tokens that do have an abstract tag associated
with them. This is to ensure that we only modify pre-trained embeddings that correspond
to entity tokens. This is done by masking out the tokens in Xs that are the same in X.
The input given to the model’s encoder is then emb(X) + mask × emb(Xs) + positional

with emb() being the embedding matrix, mask defined as the X ̸= Xs binary tensor, and
positional being the regular Transformer positional embedding. This resembles the setting
used by Rosset et al. [130], however their knowledge-aware embedding comes from a sequence
of entities from a dictionary lookup, rather than a sequence of entity types from a pre-trained
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tagger. The advantage of our method is that it is robust to unseen entities of the same type.

concat. In emb-cat experiments (Figure 5.1b), if tokens do not have an entity tag associ-
ated with them, we replace their embedding with a generic (learnable) “<grounded>” token
embedding. This ensures that all non-entity token embeddings gets modified in the same
way compared to entity tokens. We eventually resize the concatenated embeddings with a
learnable matrix W1 ∈ R2e×e with e being the model’s embedding size. The input given to
the model’s encoder is then [emb(X); emb(Xs)] · W1 + positional with emb() being the em-
bedding matrix, [; ] defined as the concatenation operator, and positional being the regular
Transformer positional embedding. In this setup the model has 2e2 + e more parameters.

5.3.2 Abstraction as an additional sequence to encode

Our second strategy is to combine Xs with X at the encoding level. To do that, we again
construct Xs to be of the same length of X. Similarly as above, if a spacy entity spans over
multiple tokens, we copy its entity tag at each sub-token positions. We then encode both
X and Xs with the same encoder weights to have two contextualized encodings: H and Hs

respectively. For each token within both sequences we either sum (enc-sum experiments) or
concatenate (enc-cat experiments) their respective contextualized encodings.

sum. For enc-sum experiments (Figure 5.1c), the input given to the model’s decoder becomes
H + Hs. Unlike in Section 5.3.1, in these experiments we do not mask any position because
the encodings are contextualized over the entire sequence. All token representations were
influenced by all other tokens because of the Transformer encoder attention mask. Thus
even non-entity token representations were influenced by entity tokens.

concat. For enc-cat experiments (Figure 5.1d), we introduce a learnable matrix W2 ∈ R2d×d

with d being the model’s encoding size in order to resize the concatenated encodings, similarly
to Section 5.3.1. The input given to the model’s decoder is then [H; Hs] · W2 with [; ] defined
as the concatenation operator. In this setup the model has 2d2 more parameters.

5.3.3 Abstraction as an auxiliary task

Our third strategy is to incorporate Xs into the model with an additional cross entropy loss
(dec-loss experiments). The model will now be tasked to predict both the target output
Y as well as the abstracted input Xs. To do that, we introduce a second language model
head Wabs ∈ Rd×vocab (with d being the model’s decoder size) on top of the model’s decoder,
initialized to have the same weights than the original language model head Wlm, and fine-
tuned during training with a second cross-entropy loss. The final model’s loss is then the



76

average between the two cross entropy losses:

0.5 ∗ 1
|Xs|

|Xs|∑
i=0

P (Xs)i ∗ log(softmax(Hdec · Wabs))i

+0.5 ∗ 1
|Y |

|Y |∑
j=0

P (Y )j ∗ log(softmax(Hdec · Wlm))j,

with Hdec being the output tensor of the model’s decoder. Note that Xs and Y have different
lengths (|Xs| and |Y | respectively), which is why we differentiate indices between the two
sums. By sharing the decoder weights (except for the additional language model head), we
make sure that most of the network parameters are influenced by the additional cross-entropy
loss. This acts as a regularizer and forces the model to “know” about entity types within its
original parameters. In this setup, the model has d ∗ vocab more parameters. Figure 5.1e
illustrates this strategy. While not in the scope of our initial experiments, we evaluated the
performance of this model to predict abstract sequences with its additional language model
head. Curious readers can refer to Appendix 5.B for more details.

5.4 Experiments

In this section we describe the experiments we ran on various datasets. We start with the
CLUTRR benchmark [36] in Section 5.4.1 as controlled experiments in which we know how
much compositional generalisation is required. We then test our models on the ProofWriter
[1, 37] dataset in Section 5.4.2. This allows to verify if entity type abstraction is beneficial
in formally defined logical reasoning environments with simple language. We next report
experiments on the multi-hop question answering task HotpotQA [38] in Section 5.4.3. This
allows to test if entity type abstraction is beneficial in two-hop question answering settings
with more natural language which is by nature more noisy. Eventually, we also report results
on the conversational question answering task CoQA [39] in Section 5.4.4. This allows to
test if entity type abstraction is beneficial in conversational settings in which the entity being
discussed may be originally introduced much earlier in the conversation, thus requiring some
entity linking before answering.

For all experiments we trained one model for each of the 5 different strategies presented in
Section 5.3, in addition to a baseline model fine-tuned without any abstraction knowledge. We
used the AllenNLP library [200] with the HuggingFace transformers library [193] PyTorch
implementation of T5-small with 16-bit floating point precision. Each experiment was run
on tesla V100 32gb GPUs with early stopping and a patience of 10 epochs on the validation
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set (defined as a 10% split of the training set). We report all hyper-parameters and library
versions in Appendix 5.A for reproducibility purposes.

5.4.1 Compositional generalization with CLUTRR

Although synthetic, CLUTRR is used because it allows for controlled experiments in which
we can clearly measure both interpolation and extrapolation performance of our model. We
generated 390, 000 examples that were roughly split 77/23 between training and testing. Each
example consists of a unique (non-cyclic) family graph. The goal of this task is to infer the
type of edge (family relation) between two nodes (two entities) that are the further apart in
the input graph. The bigger the graph, the more hops are required to infer the missing edge.
We express each family graph, along with its question and answer in text using a simple
“[e_1] is the [rel] of [e_2]” template. Some examples of input/output sequence pairs can be
seen in Appendix B.

We evaluate the generated answer accuracy. The answer is defined as the first sentence in the
generated sequence. Since all answers during training were expressed using a simple template,
we inverse this template to extract the (ê1, r̂el, ê2) triple from the generated answer. If the
extraction fails, we consider the generated answer wrong. We then compare the extracted
triple to the ground truth provided by the CLUTRR dataset. If the reference solution is
(e1, rel, e2), we accept both (e1, rel, e2) and (e2, inv_rel, e1) as valid solutions, with inv_rel

being the inverse relation of rel. For instance, the inverse relation of “father” can be “son”
or “daughter”, we accept both.

Testing Compositional generalization

We carefully divided train and test sets to force the model to generalize to both unseen graph
sizes (i.e.: unseen reasoning depth) and unseen (e1, rel, e2) triples. Specifically, the training
set is made of graphs with 2, 4 and 6 relations between 3, 5 and 7 entities respectively, while
the test set is made of graphs with up to 10 relations between 11 entities. In addition, all
possible entities and relations are seen during training but only 9.58% of (e1, rel, e2) triples
from the test set are also in the training set. This small overlap makes the test set harder
than originally designed and allows to analyse the compositional generalization capacity of
our model.

We fine-tuned a T5-small model on 300, 000 training examples of levels 2, 4 and 6 and
evaluate the model on 9 test sets of 10, 000 examples each for all levels from 2 to 10. The
level is defined as the number of edges (relations) in the graph. The higher the level is,
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the bigger the graph is, the further apart the two entities to link are, and the greater the
number of hops required to answer the query is. Specifically, we test levels 2, 4 and 6 for
compositional generalization, levels 3 and 5 for interpolation, and levels 7, 8, 9 and 10 for
extrapolation.

Results

CLUTRR 2 3 4 5 6 7 8 9 10 avg.
no abstraction 100% 84.4% 64.8% 61.5% 54.2% 56.6% 45.5% 42.6% 56.8% 62.9%(±0.18)
emb-sum 100% 85.3% 74.6% 59.3% 64.3% 67.7% 65.1% 58.9% 68.4% 71.5%(±0.13)
emb-cat 94.6% 60.0% 35.6% 42.0% 40.2% 74.3% 78.2% 77.9% 80.6 64.8%(±0.21)
enc-sum 100% 94.8% 86.9% 89.9% 85.6% 87.2% 85.1% 84.3% 85.5% 88.8%(±0.05)
enc-cat 100% 86.1% 72.6% 70.2% 66.7% 69.1% 63.8% 61.9% 74.0% 73.8%(±0.12)
dec-loss 100% 74.7% 64.9% 59.3% 56.2% 61.3% 52.8% 47.8% 61.3% 64.2%(±0.15)

Table 5.2 Prediction accuracy on CLUTRR test set for all difficulty levels. Models have been
trained on levels 2, 4, 6 with only 9.58% of all the (e1, rel, e2) triples present in the test set.
Per-level performance is colored in shades of green for better visualisation. The red boxed
area indicates test problems at depths unseen during training.

Table 5.2 shows answer accuracy on each test set level for models trained with n = 20 tokens
per entity type. As mentioned in Section 5.3, this helps keeping track of “who’s who” in the
abstracted sequence, which is important for solving a task such as CLUTRR. We see that the
best model (enc-sum) strongly outperforms all other models with an average score of 88.8%
compared to 62.9% for the baseline.

sum -vs- concatenation. We can see that for both the embedding strategies (emb-cat
& emb-sum) and the encoding strategies (enc-cat & enc-sum), summing representations
together yields better performance than feeding their concatenation through a linear layer.
One hypothesis is that in the emb-cat model, all pre-trained embeddings are modified by
either a entity type token embedding or the “<grounded>” embedding, whereas the emb-sum
model keeps most of its pre-trained embeddings unchanged. This result also suggests that
sometimes, simpler methods are more effective.

embedding -vs- encoding. From Table 5.2 we also see that, on average, processing the
abstract sequence through the encoder yields better performance than only processing it
through the token embedder. This is expected as more layers of the Transformer can process
the abstracted sequence.

learning the abstraction. In the last line of Table 5.2 the abstraction is given as output
to the model. This experiment tests if learning how to abstract along-side the original task
helps the model. We can see that learning to predict the abstract sequence can indeed
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help generalize as the average score increases from 62.9% for the baseline to 64.2% for the
dec-loss model. However it is not the most effective method in this case. We believe this is
because we test longer reasoning lengths (up to 10 steps), making the input sequence much
longer than what is seen during training (up to 6 steps). This is because in CLUTRR, to
make long reasoning chains the input family story gets longer. This penalizes the dec-loss
model since it is designed to generate the abstracted version of the input, regardless of its
length.

Overall, we can see that abstraction-aware models can all extrapolate better than the baseline
model, suggesting that entity abstraction does help pre-trained Transformers to composition-
ally generalize. To verify that this is not just a feature of the CLUTRR dataset, we perform
the same analysis on another synthetic dataset in the next section.

5.4.2 Abductive Reasoning with ProofWriter

Similarly to CLUTRR, the ProofWriter dataset [37] is a collection of synthetic facts and rules
with derived conclusions. The goal of this task is to infer the truth value of an unknown
statement given a series of known facts and 1-hop inference rules. Each example is made of
a different set of facts, rules, and an unknown statement. The model then has to predict if
the unknown statement is “True”, “False”, or “Unknown” according to the input knowledge.
Each fact and rule is expressed in simple templated language given by a grammar. Some
examples of input/output pairs can be seen in Appendix B.

The dataset also provides the required chain of inference required to arrive at the final answer.
The number of such 1-hop inference steps is considered the “depth” of the example. For
instance a depth-0 (D0) example simply requires to see if the unknown statement is present
in the input list of fact or not; a depth-1 (D1) example requires to apply one inference rule
to one fact to arrive at the answer; etc... The dataset contains examples of up to depth-5
(D5) inference chains. We test for compositional generalisation by training on examples of
up to depth 2 reasoning chains (D0, D1, D2) and testing on examples for each depth from
D0 to D5.

We fine-tuned T5-small models on the official training and development set from the depth
≤ 2 data folder and tested it on the test set from the depth ≤ 5 data folder; consisting
of 70,076 training examples and 20,030 testing examples. We trained one model for each
of the 5 different strategies presented in Section 5.3, in addition to a baseline model fine-
tuned without any abstraction knowledge. Unlike in all other experiments, for ProofWriter
examples, we did not use the generic spacy named entity tagger because it did not support
the entity types covered by ProofWriter examples. Instead, we used the real abstraction labels



80

ProofWriter RoBERTa-large
[1] CWA

no abstraction
OWA

emb-sum
OWA

emb-cat
OWA

enc-sum
OWA

enc-cat
OWA

dec-loss
OWA

Overall 83.9%(±0.29) 89.8%(±0.11) 90.9%(±0.07) 90.9%(±0.09) 88.4%(±0.08) 90.1%(±0.07) 91.8%(±0.07)
D0 100.0% 99.5% 99.2% 99.5% 98.9% 99.2% 99.4%
D1 98.8% 95.6% 93.5% 95.3% 89.5% 91.8% 95.1%
D2 98.8% 87.9% 81.0% 87.1% 75.3% 83.5% 86.6%
D3 71.1% 83.7% 84.6% 85.9% 81.7% 85.2% 87.4%
D4 43.4% 77.3% 87.4% 82.2% 84.7% 84.1% 85.0%
D5 37.2% 70.0% 85.3% 74.8% 84.0% 79.6% 80.6%

Table 5.3 Prediction accuracy on different slices of the ProofWriter D5 test set for all our
models and the originally reported numbers by Clark et al. [1]. Models have been trained
on depth D0, D1, D2. Models are trained in the “open-world” assumption (OWA), except
for the original Clark et al. [1] model which was trained in the “closed-world” assumption
(CWA). Per-depth performance is colored in shades of green for better visualisation. The
red boxed area indicates test problems at depths unseen during training.

provided by the grammar files2, and defined the following abstraction tokens: “PERSON”,
“ATTRIBUTE”, “ANIMAL”, “RELATION”.

Table 5.3 shows the prediction accuracy on different slices of the D5 test set for all our
models. Although trained on an older version of the dataset (“closed-world” assumption
- CWA), we also report the original performance by Clark et al. [1]. While not directly
comparable because of the different version of the dataset, we can still see that our T5-small
experiments all extrapolate (D3-D5) better than the original RoBERTa-large model despite
having less parameters. RoBERTa-large performs better at depths seen during training (D0-
D2), which may be due to the model size being bigger (hence having greater capacity to
model questions of previously seen depths), however, without abstraction, the larger model
struggles to generalize to unseen reasoning depths, unlike our models.

Most importantly, if we compare with our “no abstraction” baseline model, Table 5.3 also
shows that our abstraction methods help extrapolate to unseen reasoning depths. While our
baseline model performs 83.7%, 77.3%, and 70% on examples from D3, D4, D5 respectively;
all other abstraction-aware models extrapolate better, with the best overall model (dec-loss)
performing 87.4%, 85%, and 80.6% on D3, D4, D5 examples respectively.

We also note that, unlike in CLUTRR, in this dataset the depth of reasoning (D0-D5) is not
tied to the input length. In ProofWriter, all examples have a similar average input length,
regardless of the depth of reasoning required to predict the answer. Thus the dec-loss
model is not penalized like it was the case in CLUTRR, which result in it being the best
model overall.

Overall, we achieve new state-of-the-art results on the ProofWriter dataset when trained only
2https://tinyurl.com/proofwritergrammars

https://tinyurl.com/proofwritergrammars
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on examples from D0-D2. This is suggesting that entity abstraction does help pre-trained
Transformers to compositionally generalize to unseen reasoning chains. One impor-
tant thing to note however is that both CLUTRR and ProofWriter sentences are relatively
simple to abstract: 100% of the entities are correctly abstracted in both datasets. In the next
sections we will see if explicit abstraction is still beneficial on more realistic but less formally
defined tasks.

5.4.3 Multi-hop Question Answering with HotpotQA

In this section we report experiments on the multi-hop question answering (HotpotQA)
dataset [38]. HotpotQA contains natural language, making it more diverse and harder to get
abstraction labels than CLUTRR. In addition, HotpotQA has 2-hop inference chains both
in its training and testing data splits, thus we are not able to test generalisation to longer
reasoning chains. Nevertheless, we believe it is a good compromise between natural language
and multi-hop reasoning.

Used in the distractor setting, each example consists of a list of 10 Wikipedia paragraphs,
a question that requires the model to combine information from two paragraphs, and the
answer. Since concatenating all of the 10 paragraphs would result in a context size much
larger than what regular Transformer models allowed (512 or 1024 tokens), we instead only
took the two golden paragraphs as context, plus the question. While this beats the original
purpose of retrieving the useful paragraphs, we are not interested in achieving state-of-the
art on this benchmark. We are rather interested in using it to compare the usefulness of our
approach on a more natural multi-hop question-answering setup. An example of input/output
sequence pair can be seen in Appendix B.

Because the official test set is not public, we used the official validation set as our test set
to compare our models and fine-tuned a T5-small model on 90% of the training set while
keeping the remaining 10% as our custom validation set for early stopping. We trained one
model for each of the 5 different strategies presented in Section 5.3, in addition to a baseline
model fine-tuned without any abstraction knowledge.

Table 5.4 shows exact match, F1 scores, Precision and Recall on our test set. We can see from
these results that the best of our models is the abstraction-aware dec-loss model (trained
to predict both the answer and the input in its abstract form) with an F1 score of 69.8%
against 68.9% for the baseline model (“no abstraction” row). However, the baseline model
is a strong candidate and the abstraction does not always benefit the model depending on
how it is incorporated. This may be due to the fact that entity abstraction labels are harder
to predict on natural language, and that entity type abstraction may not be required in
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HOTPOTQA ExactMatch F1 Precision Recall
no abstraction 54.7 (±0.01) 68.9 (±0.01) 72.4 (±0.01) 69.1 (±0.01)
emb-sum 54.3 (±0.01) 68.4 (±0.01) 72.0 (±0.01) 68.6 (±0.01)
emb-cat 52.6 (±0.01) 66.5 (±0.01) 69.7 (±0.01) 67.0 (±0.01)
enc-sum 54.2 (±0.01) 68.5 (±0.01) 72.0 (±0.01) 68.7 (±0.01)
enc-cat 52.9 (±0.01) 67.2 (±0.01) 71.0 (±0.01) 67.3 (±0.01)
dec-loss 55.7 (±0.02) 69.8 (±0.01) 73.3 (±0.01) 69.9 (±0.01)

Table 5.4 Average test performance for all models on HotpotQA. Average and standard
deviation computed with 3 random seeds.

problems with little to no formal logical structure. We further discuss this in Section 5.6.

In an effort to contextualize these results, we note that our models performance is slightly
above the “Query Focused Extractor” [201] performance of 53.86 Exact Match and 68.06
F1. At the time of writing, the SOTA model on HotpotQA is the “From Easy to Hard”
model [202] with Exact Match of 71.89 and F1 score of 84.44. We note however that the
test & training data in our setting is slightly different, so these are not perfectly comparable
results. In addition, we are more interested in evaluating the effect of entity abstraction by
comparing our model variants.

5.4.4 Conversational Question Answering with CoQA

Eventually, motivated by the use of a generative model, we test the same abstraction strat-
egy in a conversational setting. For that, we leveraged the conversational question answering
dataset CoQA [39]. The task presented by this dataset is to understand a text passage and
answer a series of inter-connected questions in a conversation. The conversation aspect intro-
duces follow-up questions that forces the model to keep track of what entity is currently being
referred to and to look back at previous interactions. Examples of input/output sequence
pairs can be found in Appendix B. The dataset does not always explicitly forces multi-hop
reasoning steps, but it could still happen (i.e. see the last CoQA example of Appendix B
in which the model must perform a substraction between all subjects and the ones already
mentioned). In addition, the conversational nature of this dataset often introduces a co-
reference step to be made before fetching the information from the paragraph in context. In
this setting we will thus test if abstraction can help in this multi-step information retrieval
procedure.

Similarly to HotpotQA, because the official test set is not public, we used the official vali-
dation set as our test set to compare our models and fine-tuned a T5-small model on 90%
of the training set while keeping the remaining 10% as our custom validation set for early
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stopping. We trained one model for each of the 5 different strategies presented in Section 5.3,
in addition to a baseline model fine-tuned without any abstraction knowledge.

CoQA ExactMatch F1
no abstraction 66.0%(±0.001) 74.4%(±0.000)
emb-sum 65.7%(±0.002) 74.2%(±0.002)
emb-cat 63.8%(±0.001) 72.3%(±0.001)
enc-sum 65.8%(±0.001) 74.1%(±0.002)
enc-cat 65.2%(±0.002) 73.8%(±0.002)
dec-loss 66.4%(±0.001) 74.9%(±0.001)

Table 5.5 Average test performance for all models on CoQA. Average and standard deviation
computed with 3 random seeds.

Table 5.5 shows the exact match and F1 score on our test set. Although by a small margin,
we can see that the best of our model is again the abstraction aware dec-loss model (trained
to predict both the answer and the input in its abstract form) with an F1 score of 74.9%
against 74.4% for the baseline (“no abstraction” row). The baseline model is quite strong
already and the benefit of abstraction is questionable in this case. We further discuss this
result in the following section. As in previous experiments, the worst performing model is
emb-cat and one of the best is the enc-sum model (after dec-loss in this case).

In an effort to contextualize these results, we note that our models performance is better
than DrQA + seq2seq with copy attention [39] and BiDAF++ [203] with an F1 score of
67.0 and 71.6 respectively. The next closest model in the CoQA leaderboard is the FlowQA
model [204] with an F1 score of 76.3. At the time of writing, the SOTA model on CoQA is
RoBERTa+AT+KD [205] with an F1 score of 90.9. We note however that the test data in
our setting is slightly different, so these are not perfectly comparable results. In addition,
we are more interested in evaluating the effect of entity abstraction by comparing our model
variants.

5.5 Discussion

In this section we aim to analyse further the results presented above by comparing them and
measuring some key characteristic about each datasets.

Let’s first summarize the results from all experiments. Overall, in all datasets (except for
CLUTRR) the best model on average was the dec-loss model, which is trained to predict
both the target output sequence and the input sequence in its abstracted form. As discussed
previously, we believe that the reason why the dec-loss model did not perform as good as
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the other models in CLUTRR is because input sequence length is tied to the reasoning depth
required to answer the question. Indeed, a question of level n (2 ≤ n ≤ 10) will have exactly
n sentences in its input. Thus, during testing, the model must generate sequences of unseen
lengths. Previous work showed that length generalization is a common weakness of classical
language models [1, 196, 206–208]. Overall, our results suggest that when input sequence
length is relatively stable across all examples, the dec-loss abstraction strategy
is beneficial to multi-step reasoning tasks.

We then investigate why results on the two “natural”, less procedural tasks (HotpotQA &
CoQA) do not yield strong conclusions like in the synthetic cases of CLUTRR & ProofWriter.
The first major difference between these datasets is that CLUTRR and ProofWriter are
designed explicitly to test for compositional generalisation and reasoning extrapolation. In
both datasets, the model is tested on examples of longer reasoning chains than what is
observed during training. The language vocabulary is limited and the required reasoning
depth is controlled. This is possible when working with tasks that are formally defined in a
logical reasoning setting. On the other hand, HotpotQA and CoQA are designed from human
written text (Wikipedia for Hotpot, human conversations for CoQA). This natural setting
implies two things. (1) It is harder to control the reasoning depth required: all HotpotQA
examples require to combine two pieces of information in order to answer the question. CoQA
examples require to solve long co-reference resolution chains, however the test set does not
contain longer chains of reasoning. (2) The language vocabulary is more noisy, making it
harder to extract the useful information from a piece of text. These distinctions suggest that
entity type abstraction is mostly beneficial for formally defined logical tasks in
which the model must reason at unseen depths during inference time.

Dataset Entity Tokens F1
CLUTRR 22.2% (±0.019) 100% (±0)
ProofWriter 36.0% (±0.036) 100% (±0)
HotpotQA 37.0% (±0.085) 88.5% (±0.092)
CoQA 17.7% (±0.095) 88.4% (±0.085)

Table 5.6 Percentage of tokens being tagged as entities
and estimated F1 score of the tagger on each dataset.

A second differentiating factor be-
tween these datasets is the quantity
and quality of entity tags provided
to the model. In an effort to esti-
mate the influence of the tagger ac-
curacy on our results, we compare
each dataset in terms of the amount
of entity tags they contain, as well
as the accuracy of these tags. The
reported performance of the entity tagger we used is 0.85 F13. To further validate this met-
ric, for each dataset, we estimate (i) the percentage of tokens tagged as entities, (ii) the

3https://tinyurl.com/encoreweblg

https://tinyurl.com/encoreweblg
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correctness of the tagged entities (precision), and (iii) the amount of correctly tagged entities
out of all the entities that should have been tagged (recall). We estimate these metrics by
manual inspection of a random set of examples for each dataset and report the F1 metric in
Table 5.6. We can see that the percentage of tokens tagged as entities is roughly the same
across datasets, except for CoQA which has fewer entity tokens. This is likely due to the fact
that a lot of entities are referred to by co-reference in conversational QA. The average quality
of entity tags for HotpotQA and CoQA is in line with the reported 85% F1 performance of
the tagger. However, we note that all entities in CLUTRR and ProofWriter are correctly
labeled. This distinction suggests that the quality of the entity tagger can influence
the benefits of performing entity type abstraction.

0%

25%

50%

75%

100%

emb-sum emb-cat enc-sum enc-cat dec-loss

0% noise

25% noise

50% noise

75% noise

no abstraction

CLUTRR

0%

25%

50%

75%

100%

emb-sum emb-cat enc-sum enc-cat dec-loss

0% noise

25% noise

50% noise

75% noise

no abstraction

RoBERTa

ProofWriter

Figure 5.1 Average answer accuracy on extrapolation reasoning levels for models trained
with 0%, 25%, 50% and 75% entity tagger noise on CLUTRR and ProofWriter. The baseline
model (no abstraction) is represented by a black dotted line. Previous work on ProofWriter
is represented by a black solid line.

To further estimate this influence, we ran experiments on the CLUTRR and ProofWriter
benchmarks in which we added noise to the abstract labels, thus artificially simulating a
weaker tagger. In particular, we modified 25%, 50%, and 75% of the entities by either
replacing their entity type or by deleting the tag altogether. We report in Figure 5.1 the
average answer accuracy of our models across extrapolation reasoning levels of the test set
for both benchmark dataset (lvl 7-10 for CLUTRR and D3-D5 for ProofWriter). Overall,
we can see that as the tagging noise increases, all models see their performance reduced and
sometimes under-performing the baseline when the performance of the tagger is too weak.
For instance once the noise reaches 50% or more, all models on ProofWriter and almost all
models on CLUTRR (except enc-sum & enc-cat) become weaker than the baseline. This
confirms that as the tagger accuracy decreases, the overall performance of the
model does so to. In addition, it also shows that it is better for the model to not have
additional complications (abstraction in this case) if the additional parameters needed for
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that are used on noise more than 50% of the time.

In an effort to better characterize the failure cases of our models on the more natural datasets
we report in Appendix C model predictions on various datasets. In particular, Appendix C
shows examples of HotpotQA in which abstraction models answered correctly but not the
baseline (no-abstraction) model and vice-versa. Overall, we observe that many examples in
HotpotQA don’t require multiple reasoning hops, which can be an additional source of noise
beside the tagging accuracy.

Overall, we believe three factors are influencing our results on the more natural tasks: (i) the
effect of a weaker entity tagger performance as shown in Table 5.6 and Figure 5.1, (ii) the
depth of reasoning being relatively shallow and the same across training and testing sets as
observed in Appendix B and C, (iii) the natural and conversational language being further
away from a formal language. These factors result in “real-world” problems not having strong
enough logical structure which can benefit from the abstraction technique. It is only when
tasked on more logical problems explicitly requiring reasoning depths unseen during training
that abstraction becomes significantly beneficial.

5.6 Conclusion

Conclusion. We presented various ways to incorporate abstract knowledge into Transformer
Language Models. Focusing on entity types, this work evaluated model performance on rea-
soning tasks requiring compositional generalization and multi-hop reasoning. Overall our
results demonstrate three things: (i) incorporating abstract knowledge significantly improves
reasoning and compositional generalization in both interpolation and extrapolation when the
environment is formally defined in a logical reasoning setting; (ii) different ways to incorpo-
rate abstraction yields different performance boosts: enc-sum and dec-loss are generally
performing better than others; (iii) abstraction is not beneficial when the task at hand is
more natural, less procedural, and not requiring long reasoning chains. This last result is
due to the noisy entity tagging from “off-the-shelf” taggers, and due to the nature of the task
at hand.

Limitations. One limitation of our work is that the method we present requires annotated
data which is not always available. Furthermore, this additional data processing can take
time and may not scale well to larger datasets if implemented naively. Overall, we did not
find significantly longer training time for all approaches except for the dec-loss model that
was training on average 2 times longer than the other methods. The most important factor
in training time was the dataset used rather than the method used. Models trained on
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natural language datasets CoQA and HotpotQA took days to train while models trained on
CLUTRR and ProofWriter took a few hours.

Future Explorations. One hypothesis that results from our work is the following question:
could pre-training Transformer models with additional abstraction data result in stronger
performance when fine-tuned with abstraction data like we do in this work? Although we
could not train from-scratch a T5 model on its original C4 dataset [52], we believe that
augmenting C4 with abstract annotations like we do on a smaller scale and training T5 from
scratch on this augmented dataset could potentially yield a stronger language model.

Another interesting future direction worth exploring would be the ethical benefit of incor-
porating explicit abstraction into large language models. Previous work showed that pre-
trained language models can have some undesired societal biases [192, 209, 210]. Although
not explored in this work, we believe that giving abstract entity types like we do in this
work could have a positive societal impact on language models, potentially alleviating some
of these biases. For instance, through abstraction, a model can be exposed to female and
male names both being “PERSON”s and that a “PERSON” can equally be a “manager”
or an “assistant” regardless of its gender. Similar exposure could be achieved with other
abstraction types such as “RELIGION”, “JOB”, “COUNTRY ”, “NATIONALITY ”, etc...
Benchmarks such as StereoSet [211] could be used to measure the beneficial impact that
explicit abstraction can have.
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5.A Hyperparameters

We used the default T5-small hyperparameters from the HuggingFace library [193]. We
present in Table 5.7 below the library version we used and the model hyperparameters used
for all experiments.

The only difference between each dataset is the number of same-type entity tags allowed
in each input sequence n. These values were chosen to be the smallest possible number
while still being able to identify all the different entities in one sequence. For CLUTRR the
maximum number of same-type entities was 20, for ProofWriter it was 10, and for HotpotQA
and CoQA it was 100. This is due to the larger context size and the diversity of natural
language texts. Results on CLUTRR when n = 1 can be found below in Appendix 5.C.

n for CLUTRR 20
n for ProofWriter 10

n for HotpotQA 100
n for CoQA 100

AllenNLP version 2.2.0
Transformers version 4.4.2

Spacy version 2.3.5
batch size 256

16-bit floating point True
dim embedding 512

dim feedforward 2048
dim key-value 64

dropout 0.1
max length 512
#of heads 8
#of layers 6
optimizer AdamW

learning rate 1.00E-05
betas [0.9, 0.999]

epsilon 1.00E-08
gradient norm 1.0

sampler top-p
p 0.9

temperature 1.0

Table 5.7 Library version and model hyper-parameters.

https://docs.allennlp.org/main/api/training/optimizers/#huggingfaceadamwoptimizer
https://docs.allennlp.org/main/api/nn/beam_search/#toppsampler


89

5.B On the abstraction accuracy of the dec-loss model

After training the dec-loss models for each task, one question we might ask is whether the
model is able to correctly predict abstract tokens with its dedicated language model head.

After generating abstract sequences for all test sets, we measured that the model is correctly
predicting entity types 100% of the time for CLUTRR and ProofWriter, and around 70% of
the time for HotpotQA and CoQA compared to the types predicted by our “off-the-shelve”
tagger.

One interesting finding though, is that the model is not consistent with entity numbers
across the same example. While it can correctly predict the type of an entity (“PERSON”
vs “LOCATION”), it is almost impossible to stay consistent with entity IDs of that type
(“PERSON_11” vs “PERSON_23”). This suggests that at inference time, the distribution
of abstract tokens belonging to the same entity type is very close to uniform, which also
suggests that all these token embeddings are close to each other.

5.C CLUTRR results when n=1

To better understand the effect of the hyper-parameter n in our models, we ran additional
experiments on the CLUTRR benchmark for different values of n. When n = 20 all entities
in each example gets a unique abstract token ID. When n = 1, all entities of the same type
are mapped to the same abstract token. In order to keep track of which entity is related
to which, token identity must be preserved. When n = 1, the only way to preserve token
identity is for the model to use the original (non abstracted) sequence. We report below the
average answer accuracy of our models on CLUTRR for different values of n. The average is
taken across all test levels from 2 to 10.

n = 20 n = 1
no abstraction 62.9%

emb-sum 71.5% 75.0%
emb-cat 64.8% 30.4%
enc-sum 88.8% 85.3%
enc-cat 73.8% 36.1%
dec-loss 64.2% 75.7%

Table 5.8 Average CLUTRR answer accuracy for models trained with n = 20 and n = 1
token per entity tag.

We can see that the emb-cat and enc-cat models perform much worse in the n = 1 setting,
while the other models are relatively similar in both settings. This suggests that concate-
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nating representations together and then performing a matrix multiplication to resize the
representation does not keep entity identity as well as the other methods.
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CHAPTER 6 LONG-CONTEXT LANGUAGE DECISION
TRANSFORMERS AND EXPONENTIAL TILT FOR INTERACTIVE TEXT

ENVIRONMENTS

This chapter presents the last contribution of this thesis. Here we explore the multi-step
reasoning capacity of TLMs in the context of text-interactive environments. Text-interactive
environments such as text games are by design testing the multi-step reasoning capacity of
their agent since they consist of achieving a final goal by interacting multiple times with an
environment through text commands. Traditionally used to evaluate Reinforcement Learn-
ing agents, we instead propose an offline method that learns from a collection of previous
trajectories. We condition our method on a metric that measures the quality of the said
trajectory in the hopes of controlling the agent’s quality at test time. As such, our method
falls into the Reinforcement Learning via Supervised Learning (RvS) paradigm [64].

Text-based game environments are challenging because agents must deal with long sequences
of text, execute compositional actions using text and learn from sparse rewards. We address
these challenges by proposing Long-Context Language Decision Transformers (LLDTs), a
framework that is based on long transformer language models and decision transformers
(DTs). LLDTs extend DTs with 3 components: (1) exponential tilt to guide the agent
towards high obtainable goals, (2) novel goal conditioning methods yielding significantly
better results than the traditional return-to-go (sum of all future rewards), and (3) a model
of future observations. Our ablation results show that predicting future observations improves
agent performance. To the best of our knowledge, LLDTs are the first to address offline RL
with DTs on these challenging games. Our experiments show that LLDTs achieve the highest
scores among many different types of agents on some of the most challenging Jericho games,
such as Enchanter.

6.1 Introduction

People spend a significant fraction of their lives performing activities closely linked with nat-
ural languages, such as having conversations, writing e-mails, filling out forms, reading and
writing documents, and so on. Recently, the excitement around the use of Large Language
Models (LLMs) for dialogue has brought the setting of interactive dialogue into the spotlight.
Interactive text-based games allow one to explore and test interactive agents, alternative neu-
ral architectures, and techniques. However, text environments remain challenging for existing
Reinforcement Learning (RL) agents since the action space is vast due to the compositional
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nature of language, making exploration difficult. Fortunately, language has the advantage
that knowledge can often be reused across environments, such as the fact that fire burns or
that doors open. To solve real-world text-based tasks and play rich text-based games well,
RL agents can also benefit from the knowledge about the human world acquired from large
offline data sources by leveraging pre-trained LLMs.

100 rnd.
steps
(x10)

100 rnd.
steps
(x10)

100 rnd.
steps
(x10)

Walkthrough (x1)

Game Engine
(seed)

20 break points
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(x10)

Seeds: 1, 2, 3, 4, 5

Data Generation
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Seeds: 6, 7, 8, 9, 10
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Next Action

Score end-of-game 
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TrainingGoal Condition
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Figure 6.1 Overview of our approach: Noisy trajectories
are generated from a high quality game walkthrough by
taking 100 random steps at each 5% of the trajectory.
The collection of trajectories on multiple games is used
to train our LLDT model offline to predict a goal con-
dition, next action, and next observation. The LLDT
is then evaluated in each game environment, initialized
with 5 random seeds.

In real-world settings, the low-
performing behavior exhibited by
online RL agents during learning
makes them impractical to use with
humans in the loop. This situation
arises in many other contexts [65]
and has motivated a lot of research
on offline RL. Offline RL meth-
ods have a long history, but more
recently, several approaches have
been proposed that focused on us-
ing powerful transformer-based se-
quence models, including Trajec-
tory Transformers (TTs) [9], and
Decision Transformers (DTs) [3].
However, these approaches are for-
mulated and examined within con-
tinuous control robotics problems.
Unlike the methods above, our ap-
proach is designed to handle the
complexity and richness of human language by leveraging pre-trained LLMs.

Motivated by the analogy of text-games to intelligent text assistants helping people with var-
ious tasks, we assume that a few expensive expert demonstrations are available for learning.
As such, we use the Jericho text games [40], which provide a single golden path trajectory
per game. To create a large and diverse dataset, we then generate trajectories with pertur-
bations from that golden path as described in Section 6.4.2 and depicted in Figure 6.1. The
complexity and richness of Jericho games make them a reasonable proxy for the kind of data
one might obtain in real-world assistive agent settings.

In this work, we use a pre-trained Transformer language model that we fine-tune on offline
game trajectories to predict: trajectory goal conditions, future actions, and observations. To
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sample high goal conditions from our model, we convert distributions over discrete token
representations of numerical values into continuous ones, allowing us to maximize goal con-
ditions that are likely achievable through an exponential tilting technique. In addition, we
compare different conditioning methods and introduce an auxiliary loss to predict future ob-
servations. We will refer to our approach as Long-Context Language Decision Transformers
(LLDTs) with exponential tilt. Our approach is visualized in Figure 6.2. See Table 6.1 for
a comparison of how our formulation for density estimation and decision-making is situated
with respect to prior frameworks. We also note that none of these previous frameworks have
been applied to text-based action spaces, so none have leveraged pre-trained LLMs as in our
framework.

"<STATE>" "<STATE>"

Figure 6.2 Our Long-Context Language Decision Transformer framework. A trajectory of
length T is split at a random index t ∈ [0, T − 1]. The model encodes the sequence of
observations (o), goal conditions (g), and actions (a) up to time step t. The first o1 and last
ot observations are fully written, but to shorten the input sequence, the other intermediate
observations are replaced by a special “< STATE >” token. The decoder predicts the goal
condition gt, action to take at, and next observation ot+1.

To conclude, our contributions can be summarized as follows: (1) Our work is the first to
address the challenging Jericho text-based games in an offline return conditioned sequence
learning setup, wherein we train models on noisy walkthrough trajectories from multiple
games simultaneously. (2) We improve agent behavior with fewer assumptions by letting
the model predict goal conditions in a manner where no knowledge of the maximum score is
needed through our use of an exponential tilting technique. (Section 6.5.1). (3) We explore
and empirically compare 3 novel definitions of goal conditioning that perform better than the
return-to-go perspective of Decision Transformers (DTs). (Section 6.5.2). (4) We propose
a novel auxiliary loss to train DTs that draws parallels to model-based RL and empirically
shows better performance compared to the traditional model-free loss of DTs (Section 6.5.3).
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6.2 Methodology

6.2.1 Problem setup

Text-based games can be formulated as partially observable Markov decision processes (POMDP)
described by (S, T , A, O, R, γ). The current game state st ∈ S is partially observable in
ot ∈ O which is often a text description of the current scene (inventory, location, items).
The agent can take an action at ∈ A to interact with the environment and causes a state
change based on a transition function T (st, at) leading to a new state st+1 ∈ S. Some games
are stochastic in that the same action for the same state can lead to different states. Once
the agent transitions to the new state, a reward rt is given by an unknown reward function
R(st, at) that the game designers defined. The reward can either be positive, negative, or
neutral.

Offline Reinforcement Learning. The goal of the agent is to learn a policy π(at|st)
which maximizes the expected return E[∑T

t=0 rt] in the POMDP by observing a series of
static trajectories obtained in the same or similar environments. Each trajectory is defined
as τ = (o0, a0, r0, o1, a1, r1, ..., oT , aT , rT ), and it is obtained by observing rollouts of arbitrary
policies. This setup is similar to supervised learning, where models are trained from a static
dataset. It is more difficult than online reinforcement learning since agents cannot interact
with the environment to recollect more data.

Reinforcement Learning in text-based games. One of the main differences between
traditional RL environments, such as Atari or Mujoco, and text-based environments is that
both A and O consist of text. Therefore, due to the compositional nature of language, A is
significantly more complex than in common RL scenarios, where the action space is restricted
to a few well-defined actions. To deal with such complexity, we model A, O and R with a
large pre-trained language model: xi = LLM(xi|x1:i−1), where xi is the ith text token in a
text sequence of length L. The goal is that the LLM uses its pre-existing knowledge about
the world (e.g., doors can be opened), to propose valid actions given an observation.

Decision Transformers. To perform offline learning on text-based games, we adapt the
language model (particularly LongT5 [58]) to be a decision transformer (DT) [3] which ab-
stracts reinforcement learning as a sequential modeling problem. DTs are trained with the
language modeling objective on sequences of {gt, ot, at}T

t=0 triples, where the goal condition
gt is defined as the undiscounted sum of future rewards, or return-to-go: gt = ∑T

i=t ri. Conse-
quently, we have a model that can be conditioned on a desired goal (or return, in this case).
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In the following subsections, we discuss the novelties we bring to the original formulation of
DTs.

6.2.2 Goal conditioning

One limitation of DTs is that the best final score of a game must be known to condition on it
at the first step with g0 [3]. Although we have g0 for the training trajectories, it is impossible
to know the best target score when starting a new game. This is especially problematic for
Jericho games where maximum scores vary greatly between games [40].

One solution is to normalize g0 during training with the maximum game score. This procedure
leads to goal conditions between 0 and 1 for the training games and allows to use an initial
goal condition of 1 at test time. However, this solution also assumes that we know the
maximum score of every game since intermediate rewards returned by the environment rt

also need to be normalized to update gt+1:

gt+1 = gt − rt

max score , (6.1)

To remove the dependence on manual goal conditioning, we take a similar approach to
Lee et al. [7] and train the model on ordered sequences of {ot, gt, at}T

t=0 triples instead of
{gt, ot, at}T

t=0. Moving the goal condition gt after the observation ot allows us to predict the
goal condition based on the current observation rather than manually defining it. This vari-
ation allows deciding at inference time if we want to sample or replace the value of gt based
on Pθ(gt|ot) (θ being the parameters of our system) by modeling the joint probability of at

and gt as:
Pθ(at, gt|ot) = Pθ(at|gt, ot) · Pθ(gt|ot). (6.2)

One challenge is that sampling gt can produce low and inaccurate target returns. To alleviate
this issue, we perform exponential tilting on the predicted probabilities of gt. In particular
we sample gt like so:

gt = argmaxgt

[
Pθ(gt|ot) · exp(αgt)

]
, (6.3)

with α ≥ 0 being a hyper-parameter that controls the amount of tilting we perform. This al-
lows us to sample high but probable target returns. We compare results with α = {0, 1, 10, 20}
in Section 6.5.1.

Another significant advantage of predicting the goal condition gt based on ot is that we can
explore various strategies of goal conditions that cannot be defined manually at inference
time. We describe below the original return-to-go used by decision transformers and three
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novel goal condition strategies.

Return-To-Go (RTG): gt = ∑T
i=t ri, is the original strategy of the return-to-go. It is

the undiscounted sum of future rewards, which will be high at the beginning of trajectories
achieving a high score. These values will decrease as the agent progresses since fewer future
rewards will be available in a trajectory with intermediate rewards.

Immediate Reward (ImR): In the setting where gt = rt, each step is conditioned on the
reward observed right after the predicted action. We expect that with this goal condition
method, the agent will learn what type of actions usually yield higher rewards (opening
chest -vs- moving in a direction). We expect this strategy to encourage the model to get
high rewards as fast as possible. However, we expect this strategy to work well only for
environments with dense reward signals.

Final Score (FinS): gt = ∑T
i=0 ri. In this setting, each step is conditioned on the final score

achieved by the agent. The final score is defined as the sum of all rewards observed during
the entire trajectory. Note that, unlike all the other goal condition definitions, this score
will not change over the course of a trajectory. This setting is closer to the traditional RL
paradigm in which we often define rewards based on the final performance of an agent: did it
win or did it lose. We expect the agent to learn to differentiate successful from unsuccessful
trajectories in this setting. Since the model is not conditioned on immediate rewards, we
expect it will produce longer trajectories, which can eventually achieve higher final scores.

Average Return-To-Go (AvgRTG): gt =
∑T

i=t
ri

(T −t) . In this setting, each step is condi-
tioned on the average of all future rewards. This is also defined as the return-to-go divided
by the number of steps remaining. The motivation for this goal condition is that it will
capture the sparsity of rewards in a trajectory, unlike all the others.

To reduce the variance in the numbers observed between different games, all goal condition
numbers during training are normalized by the maximum score of the current game, where:

gt = int
[
100 · gt

max score

]
. (6.4)

At inference time, we can either manually specify goal condition numbers (assuming we know
the game maximum score), or we can let the model predict those goal condition numbers
with exponential tilt (more flexible).
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We experiment with all these goal condition definitions in our experiments and report results
in Section 6.5.2.

6.2.3 Next State Prediction

Density Estimation (L(θ)) Decision Making (π(a|s; η))
DTs log pθ(at | ot, Gt) pθ(a | st, Gt)
RWR exp(η−1Gt) log pθ(at | ot) pθ(a | st)
RCP log pθ(at | ot, Gt)pθ(Gt | ot) pθ(a | st, G)pθ(G | st) exp(η−1G − κ(η))
RBC log pθ(Gt | ot, at)pθ(at | ot) pθ(G | st, a)pθ(a | st) exp(η−1G − κ(η))
IRvS log pθ(at, Gt | ot) pθ(a, G | st) exp(η−1G − κ(η))
MB-RCP (ours) log pθ(ot+1 | at, ot, Gt)pθ(at | ot, Gt)pθ(Gt | ot) pθ(a | st, G)pθ(G | st) exp(η−1G − κ(η))

Table 6.1 Comparison of different policy training and action selection techniques (adapted
from Piche et al. [2]). We compare our approach with Decision Transformers (DTs) [3],
Reward Weighted Regression (RWR) [4, 5], Reward-Conditioned Policies (RCP) [6] (also
used by Multi-Game Decision Transformers [7]), Reweighted Behavior Cloning (RBC) [8]
(also used by Trajectory Transformer (TT) [9]), and Implicit RL via supervised learning
(IRvS) [2]. Where s represents the state as encoded by the model and depends on the
architecture and inputs used.

To give more training signal to the model and make it more robust to stochastic environments,
we also experiment with learning to predict the next observation ot+1. Concretely, we predict
ot+1 after taking action at in state st. Although the prediction of the next observation is not
used to interact with the environment at test time, we believe that the agent will perform
better if it can predict how its action will impact the world. Furthermore, predicting the
next observation indirectly informs the model about the stochasticity of the environment.
This technique draws parallels with the model-based paradigm in Reinforcement Learning,
where the agent can predict how the environment will evolve after each action. Formally, the
model estimates the following probability:

Pθ(ot+1, at, gt|ot) =Pθ(ot+1|at, gt, ot)·

Pθ(at|gt, ot) · Pθ(gt|ot), (6.5)

which is a type of Reward Conditioned Policy (RCP) with the additional term Pθ(ot+1|at, gt, ot).
We call our technique model-based reward conditioned policy (MB-RCP). We compare our
formulation to prior work in Table 6.1. We are interested in using this additional prediction
as a form of regularization and therefore treat predicting the next observation as an auxiliary
loss, leading to:

L = LCE([ĝtât]; [gtat]) + λ · LCE(ôt+1; ot+1)
1 + λ

, (6.6)
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with LCE being the regular cross entropy loss and λ being a hyper-parameter set to 0.5 in
all our experiments. This weighted average prevents the model from spending too much of
its representation power on the next observation prediction, as it is not strictly required to
be able to interact in an environment. At inference time, only the next goal condition and
next action predictions will be used. We perform an ablation study on this aspect of our
approach by comparing models trained with (λ = 0.5) and without (λ = 0) this auxiliary
loss and report our results in Section 6.5.3.

6.3 Related Work

Upside-down RL (UDRL) [2,6,162] poses the task of learning a policy as a supervised learning
problem where an agent is conditioned on an observation and a target reward to produce an
action. Instead of generating the next action for a target reward, goal-conditioning methods
generate trajectories conditioned on an end-goal [166,212]. Most relevant to our work, Chen
et al. [3] recast supervised RL as a sequence modeling problem with decision transformers
(DTs), but they did not examine text environments. DTs have been extended to multi-
task environments by training them on multiple Atari games [7]. To address the problem
of modeling text-based environments Furman et al. [213] proposed DT-BERT for question
answering in TextWorld environments [151]. However, the maximum number of steps in
their trajectories is 50, and the environments are only differing in their number of rooms
and objects. Here we go a step further and propose to learn agents that fully solve Jericho
games [40] with diverse game dynamics and scenarios by training on offline trajectories across
multiple games.

Jericho is a challenging python framework composed of 33 text-based interactive fiction
games [40]. It was initially introduced with a new Template-DQN, and compared with the
Deep Reinforcement Relevance Network (DRRN) [150]. However, both methods are trained
online, which requires an expensive simulator and requires domain-specific knowledge, such as
the set of possible actions in order to be trained. Yao et al. [160] proposed CALM, extending
DRRNs to solve the problem of it needing to know the set of possible actions in advance.
They use a GPT-2 [24] language model to generate a set of possible candidate actions for
each game state. Then, they use an RL agent to select the best action among the (top-k=30)
generated ones.

One of the main challenges of leveraging language models to solve Jericho games is to encode
the full context of the game trajectory. As such, KG-A2C [157] and Q*BERT [214] use a
knowledge graph to represent the environment state at each step and learn a Q-value function.
SHA-KG [159] uses graph attention network [101] to encode the game history and learn a
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value function. RC-DQN [215] uses a reading comprehension approach by retrieving relevant
previous observations, encoding them with GRUs [20], and learning a Q-value function.
DBERT-DRRN [55] leverages a DistilBERT to encode state and action and feed it to an
MLP to learn a Q-value function. XTX [216] re-visits different frontiers in the state space
and performs local exploration to overcome bottleneck states and dead-ends. CBR [217]
stores previous interactions in memory and leverages a graph attention network [101] to
encode the similarity between states.

The above previous methods are online-based RL, thus suffering from sample inefficien-
cies. Here, we take a simpler approach by simply leveraging long context transformers like
LongT5 [58] to model the sequence of state observations, target goal scores, and actions of
past game trajectories as a sequence of tokens. Then, given a state observation, we leverage
exponential tilt [2,7] to produce the action with the best possible target goal score. We find
that our LLDT approach is effective enough to outperform all previous methods that we have
examined on Jericho games.

6.4 Experimental setup

6.4.1 Jericho Engine

Jericho is a well-known Python framework that consists of 33 text-based interactive fiction
games that are challenging learning environments [40]. Developers manually create them,
each having its own way of defining the rules and goals for each game, making the games
quite diverse.

Text adventure games are challenging on their own because of their combinatorially large
action space and sparse rewards. Usually, text adventure games have a large action vocabu-
lary (around 2000 words on average), and each action is made of multiple words (1 to 4 on
average). This makes the action space as big as 20004 = 1.6 × 1013. To alleviate this issue,
the Jericho benchmark provides a list of valid actions for each state. However, this makes
the environment much slower as the game engine validates all possible actions against the
simulator. In addition, the action space becomes dynamic as it changes from state to state.
The above challenge in combination with extremely sparse rewards makes text adventure
games very challenging for current RL methods.

In this work, we focus on a subset of Jericho games, in particular, the ones belonging to
the Zork Universe: enchanter, sorcerer, spellbrkr, spirit, ztuu1. We generate trajectories
(Section 6.4.2) for each of these games and train our model on the collection of all trajectories

1we selected games belonging to the same universe to favor transfer of knowledge between games.
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from all games.

6.4.2 Data Collection

Jericho provides one human walkthrough trajectory per game that achieves the maximum
score. However, since some games are stochastic, every walkthrough is only valid for a
specific default seed when initializing the game. To obtain a more diverse dataset with
incorrect or partially correct trajectories, we propose to generate trajectories by following
the walkthrough trajectories for some steps and then deviating from them. Concretely, to
collect a large number of trajectories with different performances we follow the walkthrough
trajectory for X% of its total number of steps and then take 100 additional random steps.
We repeat that procedure 10 times for each X ∈ [0, 5, 10, ..., 85, 90, 95]. When X = 0%, this
is the same as a fully random trajectory. When X = 95%, the agent follows the walkthrough
path for 95% of the steps and then takes 100 random steps. This results in a collection of
201 trajectories, including 1 original walkthrough for each game. Note that we also tried to
include TDQN and DRRN trajectories trained on individual games, but these agents did not
bring any significant information gain in our collection of trajectories.

To not overfit on the default seed for each game, we ran the same procedure on 5 different
seeds. This resulted in 1,005 trajectories of various lengths and qualities for each game. Note
that only 1 (or 5 if the game is not stochastic) of those obtain a 100% final score by following
the walkthrough actions given by Jericho. We report in Appendix 6.A the normalized scores
(Figure 6.4) and lengths (Figure 6.5) observed in the collection of trajectories collected for
each game. The top part of Figure 6.1 illustrates the data generation procedure.

6.4.3 Sequence Definition

In this section, we describe in detail what defines ordered sequences of {ot, gt, at}T
t=0 triples

in the setting of Jericho games collected as described in Section 6.4.2.

To train an encoder-decoder architecture, trajectories are split between input and output se-
quences after a random number of steps. After sampling a random index t ∈ [0, T −1] to split
the trajectory, the input sequence is defined as [o0, g0, a0, o1, ..., gt−1, at−1, ot] and the output
sequence is defined as [gt, at, ot+1] (also depicted in Figure 6.2). Each of these {ot, gt, at}T

t=0

elements are represented in natural language text as described below and concatenated to-
gether to form two long text sequences: one for the input, one for the output.

at: each intermediate action is written as returned by agents playing the game, with the addi-
tion of special token delimiters. Each action is written in text like this: “Action: {a_t} </s>
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</s>”, with {a_t} being replaced by the action taken by the agent.

gt: each goal condition is computed based on the list of intermediate rewards returned by
the environment against the agent playing, depending on the strategy used among the ones
described in Section 6.2.2. With the addition of special token delimiters, each goal condition
is written in text like this: “GC: {g_t} </s></s>”, with {g_t} being replaced by the goal
condition number after being normalized between 0 and 100 (see Equation 6.4).

ot: state observations are defined by multiple state characteristics available to Jericho games.
At each step, we use (i) candidate actions available, (ii) the message returned by the game
engine, (iii) the description of the current room (if it is not already present in the message
returned by the game engine), and (iv) the current inventory of the agent. Each observation,
with the addition of special token delimiters, is written in text like this: “Actions: {cand}
</s></s> State: {msg} </s></s> Description: {desc} </s></s> Inventory: {inv}
</s></s>”, with {cand}, {msg}, {desc} and {inv} being the list of candidate actions, the
game message after taking the previous action, the description of the current room, and the
inventory of the player respectively, all given by the Jericho game engine.

After realizing that game trajectories can be as long as 1000 steps and that the current
definition of {ot, gt, at}T

t=0 triples can make input sequences as long as tens of thousands of
tokens, we greatly simplified the definition of input sequences. We replaced state observations
ot to be a single placeholder token “<STATE>” for all intermediate observations except the
first (o0) and current one (ot) as depicted in Figure 6.2.

6.5 Experimental Results

Since Jericho games have long storylines, we leverage LongT5 [58], a text-to-text Transformer
with a wide attention span. We use the pre-trained LongT5-base model in all experiments
as the base for our encoder-decoder architecture. We then fine-tuned the model for multiple
epochs on the generated trajectories from Section 6.4.2. The hyperparameter settings can be
found in Appendix 6.B.

For each game, we initialize its environment with a random seed. We let the model predict
the next goal condition and action at each step. The agent performs the predicted action,
leading to the next observation in the environment. The model uses this observation as
context for the next step. We run these steps in a cycle until we reach the end of the game
and compute the final score. The game ends when the agent reaches the final state, the model
generates an invalid action, or the model fails to generate an action. We repeat this process
on 5 different random seeds and take the average final score. The bottom part of Figure 6.1
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illustrates the training and evaluation process. Next we examine the effect of exponential
tilt, the effect of different goal conditioning methods, and the effect of learning to predict the
next observation ot+1 as part of the loss function.

6.5.1 The Effect of Exponential Tilt

To analyze the effect of exponential tilt we compare a model that doesn’t have access to the
maximum score of a game (but uses various amounts of exponential tilt) with one that has
that information.

We fine-tuned our model with the loss function described in Equation 6.6 on all our generated
trajectories split into input and output sequence pairs as described in Section 6.4.3 and
depicted in Figure 6.2. The model was trained with the regular return-to-go goal condition
(gt = ∑T

i=t ri) and with λ = 0.5 for the auxiliary loss of predicting ot+1. We tested the model
on all games, normalized the obtained score based on the maximum human score for each
game, and recorded the average across games and 5 random seeds for each game.

To measure the effect of exponential tilt, the predicted gt were sampled according to Equa-
tion 6.3 with α = 0, 1, 10, 20 (“Predicted GC / alpha=α” in Figure 6.3). In addition, we
evaluated the model with the goal-condition being manually given (“Optimal GC” in Fig-
ure 6.3) at each step. In the first step the model is conditioned with g0 = 100 (the maximum
possible according to Equation 6.4) and at every step, gt is reduced by the amount of ob-
served reward as in Equation 6.1. This “Optimal GC” evaluation assumes we know the game’s
maximum score. We aim to achieve similar performance by simply predicting gt instead of
manually defining it.

We report in Figure 6.3 the normalized score averaged across games for each method of
predicting gt at different training stages of the model. As we prioritize high numerical return-
to-go over their likelihood (α increasing), the model’s performance is getting closer to the
“Optimal GC” performance. During training the model is exposed to trajectories of various
performances (detailed in Figure 6.4), so without any exponential tilt the model will output
the most probable goal-condition based on what it observed during training, which is less than
ideal (solid red “Predicted GC / alpha=0” line). If we slightly prioritize higher numerical
values (solid yellow “Predicted GC / alpha=1” line), the performance of the model improves
slightly but is still very unstable. As α increases to 10 (solid green line) and 20 (solid orange
line), the performance is on par with the model that was manually given the “optimal” goal
condition based on the game’s maximum score. In realistic scenarios, we do not have the
optimal goal condition when starting a new game. In addition, predicting the goal condition
offers greater flexibility in the design of goal-conditions. We can now explore conditioning
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Figure 6.3 Average normalized score across different Jericho games (enchanter, sorcerer, spell-
brkr, spirit, ztuu) with various amounts of exponential tilt (“Predicted GC” lines). We also
report the performance of a model being conditioned on the optimal goal according to each
game’s maximum score (“Optimal GC” line). The average normalized score of various base-
lines trained on each game is depicted with dotted lines.

methods that would be impossible to define manually during run time. This is exactly what
we explore in the next section.

The above results demonstrate two things: (1) the numerical value of the goal-condition
has indeed an effect on the quality of the next generated answer, and (2) it is possible to
recover the same performance as the “optimal” goal-conditioning by increasing the amount
of exponential tilt without knowing the game’s maximum score.

In addition, we show in Figure 6.3 the reported average performance of various previous
works on the same set of games (dotted lines). Although not directly comparable since all
previous methods were trained on each game in an online RL fashion, our offline method
beats previous methods with very little training in the case of “Optimal GC” and “Predicted
GC / alpha=10 & 20”.

6.5.2 Our Goal Conditioning Strategies

To evaluate our goal conditioning strategies, we fine-tune 4 models with the loss function de-
scribed in Equation 6.6 on all our generated trajectories split into input and output sequence
pairs as described in Section 6.4.3 and depicted in Figure 6.2. We train each model with a
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different goal condition (as described in Section 6.2.2) and with λ = 0.5 for the auxiliary loss
of predicting ot+1. We test the models on all games after 31.4k training steps and record the
average score across 5 random seeds for each game.

In these experiments, we have the model generate goal-conditions because at inference time,
unlike with return-to-go (RTG), we cannot compute the immediate reward (ImR) and the
average return-to-go (AvgRTG), even if we know the game maximum score. To be able to
manually provide the optimal immediate reward condition, we need to know at each step
the maximum achievable reward among all candidate actions, which is infeasible in practice.
Similarly in order to provide the optimal average RTG condition, we need to know the
number of steps remaining after each state, which is also infeasible in practice. Fortunately,
our model can generate these two goal-conditions (as well as any others), while leveraging the
exponential tilt for producing better trajectories. Therefore, all models in these experiments
are evaluated by sampling gt according to Equation 6.3 with α = 10.

GC = Return-To-Go Immediate Reward Final Score Avg. Return-To-Go
avg. stdev. max. avg. stdev. max. avg. stdev. max. avg. stdev. max.

enchanter 45.00 0.00 45.00 235.00 0.00 235.00 231.00 56.69 280.00 175.00 0.00 175.00
sorcerer 124.00 90.63 235.00 112.00 75.93 205.00 124.00 90.63 235.00 132.00 100.43 255.00
spellbrkr 31.00 7.35 40.00 31.00 7.35 40.00 25.00 0.00 25.00 40.00 0.00 40.00
spirit 18.40 3.88 26.00 22.40 8.69 38.00 26.00 15.35 56.00 5.60 0.80 6.00
ztuu 73.00 7.48 85.00 75.00 9.49 90.00 75.00 9.49 90.00 75.00 9.49 90.00
Norm. Avg. 26.74% 35.94% 36.36% 45.90% 36.62% 50.02% 33.66% 42.84%

Table 6.2 Average and the maximum score for each game across 5 random seeds for each
goal condition (GC) variation. On the bottom line, scores are normalized according to the
maximum human score (enchanter: 400; sorcerer: 400; spellbrkr: 280; spirit: 250; ztuu: 100)
and averaged across games.

Table 6.2 reports the average score, standard deviation, and maximum score obtained on
each game across 5 random seeds for all goal-conditioning methods. The bottom line reports
the normalized average score based on the maximum human score for each game. On av-
erage, the classical return-to-go goal conditioning method yields weaker performance than
all other variants. The average performance of immediate reward (36.36%) and final score
(36.62%) conditioning is even higher than the maximum average score of return-to-go condi-
tioning (35.94%). It is also interesting to note that the best-performing method on average
is the "Final Score" conditioning strategy with 50.02% average max score. As mentioned in
Section 6.2.2, this setting is closer to the traditional RL paradigm in which we often define
rewards based on the final performance of an agent, which is only based on whether it won
or lost a game.

Overall, these results show that the classical return-to-go conditioning method performs
poorly in all environments. However, the winning goal conditioning strategy depends on the
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game which can vary between ImR, FinS, or AvgRTG but not RTG. These results further
motivate the advantages of generating goal-conditions that cannot be computed at runtime
such as ImR and AvgRTG.

6.5.3 Predicting the Next Observation

Here we analyze the effect of predicting the next observation ot+1 as part of the loss function.
Therefore, we fine-tuned another 4 models, each with a different goal condition similar to
the above section, but with the loss function described in Equation 6.6 with λ = 0.0 for the
auxiliary loss of predicting ot+1. We tested the models on all games after 31.4k training steps
and recorded the average score across 5 random seeds for each game. To compare the effect
of the auxiliary loss, we averaged the scores again across all goal-conditioning methods.

λ = 0.0 λ = 0.5
avg. stdev. max. avg. stdev. max.

enchanter (max=400) 138.75 55.83 235.00 171.50 81.86 280.00
sorcerer (max=400) 79.50 39.43 130.00 123.00 90.12 255.00
spellbrkr (max=280) 25.75 3.27 40.00 31.75 7.46 40.00
spirit (max=250) 10.15 9.75 36.00 18.10 11.87 56.00
ztuu (max=100) 55.75 33.10 90.00 74.50 9.07 90.00
Normalized Average 24.71% 41.99% 33.34% 52.09%

Table 6.3 Average and the maximum score for each game across 5 random seeds and 4
goal conditioning methods, with (λ = 0.5) and without (λ = 0.0) the auxiliary loss on
the prediction of the next observation ot+1. Scores are then normalized according to the
maximum human score (‘max=#’) and averaged across games on the bottom line.

Table 6.3 reports the average score, standard deviation, and maximum score obtained on
each game over 20 runs (5 random seeds × 4 goal-conditioning methods) for models trained
with (λ = 0.5) and without (λ = 0.0) the auxiliary loss on the predicted next observation
ot+1. The bottom line reports the normalized average score based on the maximum human
score for each game.

In all games, models trained to predict the next observation ot+1 resulting from the predicted
action at and goal-condition gt perform better than models trained to only predict the goal-
condition gt and next action at. Overall, these results show that our proposed model-based
reward-conditioned policy (MB-RCP) learning objective yields stronger performance than
the classical reward-conditioned policy (RCP) objective.
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6.6 Conclusion

In this work, we have proposed Long-Context Language Decision Transformers (LLDTs)
as an offline reinforcement learning method for interactive text environments, and we have
performed experiments using the challenging text-based games of Jericho. LLDTs are built
from pre-trained LLMs followed by training on multiple games simultaneously to predict: the
trajectory goal condition, the next action, and the next observation. We have shown that
by using exponential tilt, LLDT-based agents get much better performance than otherwise.
In fact, the model obtains similar performance as if it was conditioned on the optimal goal,
despite the fact that in most realistic scenarios, we do not have access to that optimal
goal condition. We have also explored different conditioning methods and observed that
the traditional return-to-go was the weakest strategy. Finally we have seen that training
the model to predict the next observation as an auxiliary loss improves performance. As
future work, we plan on extending this framework to multiple and more diverse games and
environments. We hope this work can provide a missing piece to the substantial advances in
the application of large language models in the context of real-world interactive task-oriented
dialogues.
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6.A Trajectories Statistics

In this section, we report the normalized scores (Figure 6.4) and lengths (Figure 6.5) observed
in the collection of trajectories collected for each game as described in Section 6.4.2.

Figure 6.4 Proportion of trajectory normalized scores for a selection of games. In each sub-
figure title, n is the number of trajectories and ms is the maximum score. The X-axis is
the normalized score the trajectory achieves. The Y-axis is the proportion of trajectories
finishing with that score.
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Figure 6.5 Proportion of trajectory lengths for a selection of games. In each sub-figure title,
n is the number of trajectories. The X-axis is the number of steps in a trajectory. The Y-axis
is the proportion of trajectories of that length.

6.B Hyperparameters

optimizer Adafactor
learning rate 1e-4

precision 32
batch size 16

max input length 4096
max output length 1024

base model LongT5-base with
Transient Global Attention



109

CHAPTER 7 GENERAL DISCUSSION

This chapter first summarizes the three contributions of this thesis that evaluated the reason-
ing ability of Transformer Language Models (TLMs) in various settings ranging from proof
generation, entity type abstraction, and Interactive Fiction (IF) games. Second, this chapter
discusses the limitation of each contribution and of the whole thesis more broadly.

7.1 Summary of Works

In Chapter 4 a Transformer decoder architecture is trained from scratch on the CLUTRR
dataset [36] after constructing a train/test data split that tests for compositional general-
ization based on the presence of (entity, relation, entity) triples and their combinations over
multiple proof steps. Multiple versions of the data are created with either no proof, short
proof, short proof reversed, long proof, and long proof reversed before answering questions.
To test compositional generalization in both interpolation and extrapolation settings, the
models are trained on CLUTRR examples of reasoning difficulty 2, 4, 6, and tested on ex-
amples from levels 3, 5, 7, 8, 9, and 10. Experiments reveal that models trained to generate
exhaustive proofs tend to be better reasoners than the ones trained with shorter ones. In ad-
dition, experiments show that backward-chaining proofs are easier to use albeit being harder
to generate than forward-chaining ones. Eventually, in all experimental setups TLMs suf-
fer from length generalization issues, thus models trained to generate only the final answer
(shorter output sequence) tend to be more robust than models trained to generate intermedi-
ate proof steps before the answer (longer output sequences). Additional experiments indicate
that pre-trained models are also better reasoners and more robust to length generalization
than models trained from scratch.

In Chapter 5 a T5-small model [52] is fine-tuned on different question-answering datasets after
being given entity-type information. The spacy named entity recognizer1 is used to automat-
ically label documents with named entities. This information is given to the encoder-decoder
model through five different model variants: embedding sum, embedding concatenation, en-
coding sum, encoding concatenation, or decoder auxiliary loss. Thorough experiment analysis
shows that entity-type abstraction does help TLMs to reason at unseen complexities (com-
positionally generalize), especially in the context of synthetically designed tasks that rely
on a symbolic structure beneath them. In particular, for the same CLUTRR [36] setup as
in Chapter 4, entity type abstraction significantly improves the compositional generalization

1https://spacy.io/models/en

https://spacy.io/models/en
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of the pre-trained model more than proof generation did in the first contribution. Models
trained with the encoding sum and decoder auxiliary loss tend to show stronger generaliza-
tion capacities than models trained with the other three augmentation methods (emb-cat,
emb-sum, enc-cat). Nonetheless, entity-type abstraction has little effect on natural language
tasks composed of human-generated text. Additional analysis suggests that entity-type ab-
straction is only beneficial in tasks where (1) good quality abstraction labels are available
and (2) train/test data is split according to the reasoning complexity of each example, which
is often not the case for human-generated language tasks.

Chapter 6 introduces an extension of Decision Transformers (DTs) for interactive text envi-
ronments. A LongT5-base model [58] is fine-tuned with the language modeling objective on
sequences of interactions created automatically by mixing a golden path and some random
exploration on Jericho text games [40]. An offline dataset of trajectories is created by order-
ing state observations ot, some action quality metric that we called ‘goal condition’ gt, and
the action taken at. To reduce the length of these sequences so that they fit in the context
window of the LongT5 model some observations ot in the middle of the trajectory are re-
placed by a special single token. Experimental analysis indicates that pre-trained TLMs can
learn to map performance metrics to actions, thus allowing greater control over their behav-
ior and strong long-term results when using the exponential tilt method. In addition, this
work proposes multiple ‘goal condition’ definitions in addition to the traditional return-to-go
(RTG) used in DTs. These include immediate reward, final score, and average return-to-go.
When tested across several environments, these new conditioning methods appear to perform
better than RTG. Eventually, further experiments demonstrate that TLMs behave more op-
timally if they are also trained to predict the effect of their actions, which is similar to world
modeling. This approach is particularly advantageous because it is easy to implement with
pre-trained language models as the observations from the environment are in textual form.

7.2 Limitations

One limitation of this research is that most experiments were conducted with relatively small
model sizes compared to what big industrial labs can use. Recent work showed that by
scaling up model sizes and data quantities, TLMs can (or at least pretend they can) perform
impressive tasks (such as reasoning) simply by being prompted in specific ways [50, 218]. In
an effort to mitigate this limitation, most of the work presented in this thesis was done in
collaboration with an industrial research lab that provided a lot of computing resources.

Another important limitation of this research is that, by nature, Transformer language models
are statistical machines: they generate sentences by sampling tokens one after the other based
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on some learned distribution. As a result, it is challenging for them to have deterministic
behavior and perform systematic logical operations. In cases when we know how to solve a
small problem systematically and have a program for that, it may be more natural to use
that deterministic program rather than a language model.

At very large scales (models with tens of billions of parameters), TLMs seem to be able to
perform logical reasoning when prompted with a few examples or key phrases like “let’s think
step-by-step”. However, there are no verification mechanisms and the model is still free to
generate according to its belief of the most likely output. It is the human’s responsibility
to verify the model’s output and fact-check it. This is a potentially dangerous limitation:
if TLMs can produce convincing hallucinations they can be used to create disinformation
or propaganda at scale. In the end, it all comes down to interpretability and transparency:
understanding how and why a model generated a particular output. However, as competition
increases in the field of generative AI, large corporations are not incentivized to be transparent
at the risk of losing their technological advantage.

Another limitation of large language models, as briefly mentioned above, is their enormous
computing resource requirements to train them. For example, GPT-3 has 175 billion pa-
rameters and was estimated to cost about $12 million to train on public cloud GPU/TPU
cost models. Such high costs can concentrate the development of LLMs to the richest orga-
nizations of the world, and restrict their development in places with limiting resources such
as academia, developing countries, and smaller enterprises. Moreover, training LLMs also
consumes a large amount of energy and contributes to carbon emissions.



112

CHAPTER 8 CONCLUSION AND RECOMMENDATIONS

As a starting point to address the previously mentioned limitations, this chapter discusses
some promising research directions to improve upon this research.

Let’s first discuss some interesting research directions to address the limitation that large
language models (LLMs) are statistical machines and hence not always appropriate in situa-
tions where a deterministic and reproducible behavior is required. Some of the earlier work
to consider this idea is Cobbe et al. [219] which used the python interpreter to evaluate the
result of simple math computations. The language model is responsible for generating special
tokens that trigger a call to the python interpreter during generation. For instance in the
sequence “Her sister gave her 20+10=«20 + 10 = 30»” the LLM generates all tokens except
the “30” that is returned by the python command “20 + 10” inside the “« »” brackets.

Going one step further, Gao et al. [220] propose Program-aided Language Models (PAL).
They train an LLM to generate python code for individual reasoning steps in mathematical
reasoning. In their case, the LLM produces both natural language steps (such as “Roger
bought 2 cans of 3 tennis balls each”) and their corresponding meaning in simple python
code (“bought_balls = 2 * 3”). The model then generates the mathematical formula to
answer the question (“answer = tennis_balls + bought_balls”) and a python interpreter
runs the program to return the numerical answer. Importantly, the LLM is never responsible
for computing anything, it is only responsible for generating a plan or executable program
that can then be run by a reliable program executor. Similar work by Chen et al. [221]
introduced program-of-thoughts (PoT) prompting which also relies on generating natural
language and code to answer a numerical reasoning task.

This idea is gaining traction in the research community and keeps evolving at a fast pace.
Very recently Schick et al. [222] proposed Toolformer, an LLM that learns to use external
APIs to accomplish complex tasks beyond mathematical reasoning, such as machine transla-
tion, question answering, and Wikipedia searches. Similarly to previous works, their model
generates natural language responses with the addition of trigger tokens that are used to call
an external API at run time. To gain a feel for how fast things are moving in this space, while
I was writing this paragraph, OpenAI announced ChatGPT pluggins1, a library of tools for
ChatGPT to access up-to-date information, run computations, or use third-party services.

As exciting as the field of generative AI is, one must take a pause in this environment of
“AI race” to make sure we do not forget about the aforementioned limitations of LLMs and

1https://openai.com/blog/chatgpt-plugins

https://openai.com/blog/chatgpt-plugins
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consider ethical questions associated with them. It remains the case that these models are
prohibitively large and expensive to train, and can generate convincing facts while halluci-
nating. Some interesting research directions to tackle these challenges include developing
more efficient and sustainable methods for training LLMs (such as model distillation to re-
duce their number of parameters) and investigating the ethical and societal implications of
deploying LLMs in the world.

Another promising research direction to limit LLM hallucinations is to consider retrieval-
based language models such as EMAT [117], REALM [119], RAG [120] or FiD [121]. In
these works the model generally generates answers in a two-step procedure, first, a retrieval
system returns the most relevant documents from a trusted knowledge source, and second, an
LLM generates a response based on the returned documents. This method has the tendency
to ground the language model in some truthful context and mitigates hallucinations. A recent
implementation of this method is the new Bing search engine2.

To conclude, this thesis evaluated Transformer Language Models in various settings and
proposed novel extensions to improve their reasoning abilities and control their behavior as
it is a crucial component that will take conversational interfaces to the next level as we are
starting to see in 2023.

2https://www.bing.com/new

https://www.bing.com/new
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APPENDIX A ARTICLE 1 / LONG PROOF PSEUDO-CODE

def get_long_proof(story_facts, rules, query):

"""

:params story_facts: list of (e_1, r, e_2) facts

:params rules: list of composition rules. each rule is a dict

of the form {r1--r2: r3}

:params query: tuple of entities for which we must find a relation (src, tgt)

"""

proof = [] # list of proof steps to return

# get all known relations (original, and reversed)

all_facts = []

for (e1, r, e2) in story_facts:

inv_r = reverse_fact(e1, r, e2)

all_facts.append((e1, r, e2))

all_facts.append((e2, inv_r, e1))

# go through every possible pair of facts

for f1, f2 in itertools.combinations(all_facts, 2):

e11, r1, e12 = f1

e21, r2, e22 = f2

inv_r1 = reverse_fact(e11, r1, e12)

inv_r2 = reverse_fact(e21, r2, e22)

# find the possible AB+BC combination.

# there are 4 possible ways to combine 2

# sentences with 2 entities each and 1 in common:

if e11 == e21 and e12 != e11 and e12 != e22:

# AB+BC <=> inv_f1+f2

A, new_r1, B = e12, inv_r1, e11

B, new_r2, C = e21, r2, e22

inv_r1 = r1

elif e11 == e22 and e12 != e11 and e12 != e21:

# AB+BC <=> f2+f1

A, new_r1, B = e21, r2, e22

B, new_r2, C = e11, r1, e12

# swap inv_r1 and inv_r2
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inv_r1, inv_r2 = inv_r2, inv_r1

elif e12 == e21 and e11 != e12 and e11 != e22:

# AB+BC <=> f1+f2

A, new_r1, B = e11, r1, e12

B, new_r2, C = e21, r2, e22

elif e12 == e22 and e11 != e12 and e11 != e21:

# AB+BC <=> f1+inv_f2

A, new_r1, B = e11, r1, e12

B, new_r2, C = e22, inv_r2, e21

inv_r2 = r2

else:

continue # invalid pair of facts

# try to combine AB+BC

if new_r1--new_r2 in rules:

r3 = rules[new_r1--new_r2]

inv_r3 = reverse_fact(A, r3, C)

all_facts.append((A, r3, C))

all_facts.append((C, inv_r3, A))

proof.append(since A new_r1 B and B new_r2 C then A r3 C)

# try to combine CB+BA

elif inv_r2--inv_r1 in rules:

r3 = rules[inv_r2--inv_r1]

inv_r3 = reverse_fact(C, r3, A)

all_facts.append((C, r3, A))

all_facts.append((A, inv_r3, C))

proof.append(since C inv_r2 B and B inv_r1 A then C r3 A)

else:

continue # invalid pair of facts

# check if we found the link between the two queried entities

(A, r, B) = all_facts[-1]

if A==query[0] and B==query[1]: break

if A==query[1] and B==query[0]: break

return proof
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APPENDIX B ARTICLE 2 / INPUT - OUTPUT EXAMPLES

CLUTRR.

lvl.2 input:
“question : How is Anne related to Gary ? context :

Brett is Anne ’s father . Gary is a son to Brett .”

output: “answer : Anne has a brother named Gary .”

lvl.4 input:

“question: What is the family connection between Patricia

and Timothy ? context : May is the aunt of Doris . Patricia

has a daughter called Doris . Timothy is Charles ’s brother .”

May has a son called Charles .

output: “answer : Timothy is the nephew of Patricia .”
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ProofWriter.

Depth-0
input:

“context : The cow is round. The cow needs the lion. The cow

needs the rabbit. The cow sees the lion. The cow visits the rabbit.

The lion is round. The rabbit is kind. The rabbit visits the tiger.

The tiger is big. The tiger is kind. The tiger sees the rabbit.

The tiger visits the rabbit. If something is kind and it visits the

rabbit then it is young. If something sees the tiger and it visits

the lion then it sees the rabbit. If something is big and young then

it sees the lion. If something visits the rabbit then the rabbit

needs the lion. If something is big then it visits the rabbit. If

something sees the tiger then it is rough. If something visits the

rabbit and it is kind then the rabbit needs the lion. If something

is rough and kind then it visits the lion. If something needs the

lion then it is big. question : The tiger visits the rabbit.”

Depth-0
output:

“answer : True”

Depth-2
input:

“context : Anne is nice. Charlie is blue. Charlie is furry.

Charlie is green. Charlie is kind. Charlie is nice. Charlie is

red. Fiona is furry. Fiona is green. Harry is furry. Harry is

kind. Harry is nice. All nice people are rough. If someone is

red and furry then they are blue. Rough, kind people are furry.

If Charlie is furry then Charlie is nice. All furry people are

nice. If someone is rough then they are kind. If someone is red

and nice then they are blue. All furry people are red.

question : Harry is not blue.”

Depth-2
output:

“answer : False”
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HotpotQA.

input:

“question : Which magazine was started first Arthur’s Magazine or

First for Women ? context : Arthur’s Magazine (1844-1846) was an

American literary periodical published in Philadelphia in the 19th

century. Edited by T.S. Arthur, it featured work by Edgar A. Poe,

J.H. Ingraham, Sarah Josepha Hale, and others. In May 1846 it was

merged into “Godey’s Lady’s Book”. First for Women is a woman’s

magazine published by Bauer Media Group in the USA. The magazine

was started in 1989. It is based in Englewood Cliffs, New Jersey.

In 2011 the circulation of the magazine was 1,310,696 copies.”

output: “answer : Arthur’s Magazine”

CoQA.

context:

“context : The Vatican Apostolic Library, more commonly called

the Vatican Library or simply the Vat, is the library of the

Holy See, located in Vatican City. Formally established in 1475,

although it is much older, it is one of the oldest libraries in

the world and contains one of the most significant collections

of historical texts. It has 75,000 codices from throughout

history, as well as 1.1 million printed books, which include some

8,500 incunabula. The Vatican Library is a research library for

history, law, philosophy, science and theology. The Vatican Library

is open to anyone who can document their qualifications and research

needs.” [...] “Only a handful of volumes survive from this

period, though some are very significant.”

input: context above + “question : When was the Vat formally opened?”

output: “answer : It was formally established in 1475.”

input:
context above + “question : When was the Vat formally opened? answer :

It was formally established in 1475. question : what is the library

for? answer : research. question : for what subjects?”

output: “answer : history, and law.”

input:

context above + “question : When was the Vat formally opened? answer :

It was formally established in 1475. question : what is the library

for? answer : research. question : for what subjects? answer :

history, and law. question : what else ?”

output: “philosophy, science and theology.”
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APPENDIX C ARTICLE 2 / PREDICTION EXAMPLES

CLUTRR In this section we present output examples of our models on the CLUTRR level
3 test set.

input no
abstraction emb-sum emb-cat enc-sum enc-cat dec-loss

Jonathan is the father of
Anne . Anne is a aunt to
Stephanie . Stephanie is
the daughter of Veronica .
How is Veronica related
to Jonathan ?

Jonathan
is
Veronica
’s father

Jonathan
is
Veronica
’s father

Jonathan
is
Veronica
’s uncle

Jonathan
is
Veronica
’s father

Jonathan
is
Veronica
’s father

Jonathan
is
Veronica
’s father

Stephanie is the
granddaughter of
Jonathan . Bryant is
Stephanie ’s father . Eric
is a son of Bryant . How
are Jonathan and Eric
related to each other ?

Eric is the
grandson
of Jonathan

Eric is
Jonathan
’s grand-
son

Eric is
Jonathan
’s grand-
son

Eric is
Jonathan
’s grand-
son

Eric is
Jonathan
’s grand-
son

Eric is
Jonathan
’s grand-
son

Joyce has a daughter
called Stephanie . Betty
is a grandmother to
Stephanie . Paul has a
wife who is Joyce . For
Paul , who is Betty ?

Betty is
Paul ’s
mother-
in-law

Betty is
Paul ’s
mother-
in-law

Betty is
Paul ’s
aunt

Betty is
Paul ’s
mother-
in-law

Betty is
Paul ’s
mother-
in-law

Betty is
Paul ’s
mother-
in-law

Bryant is a son of
Jonathan . Jonathan
is the husband of Betty .
Craig is a son of Bryant .
Who is Craig from the
point of relation of Betty ?

Craig is
Betty
’s son

Betty
has a
grandson
who is
Craig

Craig is
Betty ’s
grandson

Betty
has a
grandson
who is
Craig

Craig is
Betty
’s son

Craig is
the son-
in-law
of Betty

Stephanie is a
granddaughter to Betty .
Anne is Bryant ’s sister .
Bryant is a brother of
Stephanie . Who is Anne
from the point of relation
of Betty ?

Anne is
Betty ’s
grand-
daughter

Anne is
Betty ’s
grand-
daughter

Anne is
Betty ’s
grand-
daughter

Anne is
Betty ’s
grand-
daughter

Anne is
Betty ’s
grand-
daughter

Anne is
Betty ’s
grand-
daughter

score 4/5 5/5 3/5 5/5 4/5 4/5
score on lvl.3 test set
reported in Table 5.2 84.4% 85.3% 60.0% 94.8% 86.1% 74.7%

Table C.1 CLUTRR test set level 3 output examples. Correct answers are in green and wrong
answers are in red for better visibility.

Out of these 5 examples, the emb-cat model makes two mistakes (line1 and line3), the
no-abstraction, enc-cat, dec-loss models make one mistake (line4) and the emb-sum and
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enc-sum models make zero mistake.

The emb-cat model mistakes (line1 & line3) are due to the prediction of uncle/aunt relations
instead of father/mother-in-law respectively. It is interesting to note that these relations are
similar in the sense that they all link one generation to the one just above.

It is also interesting to note that the example in which the no-abstraction, enc-cat and
dec-loss models fail (line4), the emb-cat model on the other hand answers correctly. In
this specific example the correct relationship is “grandson” which links one generation to 2
generations below, however the mistakes made by the failing models only link one generation
to 1 below (son, son, son-in-law).

HotpotQA In this section we present HotpotQA examples in which all our abstraction
models correctly answered the question but not the baseline (no abstraction) model.

--------------------
Question: Are both Elko Regional Airport and Gerald R. Ford International

Airport located in Michigan?
facts : [
"Elko Regional Airport (IATA: EKO, ICAO: KEKO, FAA LID: EKO) , formerly Elko
Municipal Airport, is a mile west of downtown Elko, in Elko County,
Nevada.",

"Gerald R. Ford International Airport (IATA: GRR, ICAO: KGRR, FAA LID: GRR)
is a commercial airport in Cascade Township approximately 13 mi southeast
of Grand Rapids, Michigan. The facility is owned by the Kent County Board
of Commissioners and managed by an independent authority. The Federal
Aviation Administration (FAA) National Plan of Integrated Airport Systems
for 2017–2021 categorized it as a small hub primary commercial service
facility."]

Answer : no
baseline: yes
embsum : no
embcat : no
encsum : no
enccat : no
decloss : no
--------------------
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This is a yes/no question with many acronyms and entities. The abstraction can be beneficial
here in order to simplify the context.

--------------------
Question: What act for Innocent Records achieved Platinum sales and shares

its name with a primary color in the RGB color model?
facts : [
"Blue is the colour between violet and green on the spectrum of visible
light. Human eyes perceive blue when observing light with a wavelength
between 450 and 495 nanometres. Blues with a higher frequency and thus
a shorter wavelength appear more violet, while those with a lower
frequency and a longer wavelength gradually appear more green.
Pure blue, in the middle, has a wavelength of 470 nanometres.
In painting and traditional colour theory, blue is one of the three
primary colours of pigments, along with red and yellow, which can be
mixed to form a wide gamut of colours. Red and blue mixed together
form violet, blue and yellow together form green. Blue is also a
primary colour in the RGB colour model, used to create all the
colours on the screen of a television or computer monitor.",

"Innocent Records was a pop record label created to cater to for EMI’s
Virgin Records more pop oriented acts. Following the success of the
Spice Girls, Virgin Records decided to delve into the pop market.
In doing so they poached Hugh Goldsmith from RCA Records (famous
for steering Take That’s initial flagging sales, to a multi-platinum
act). They let him launch his own Virgin Records offshoot. His first
signing was Billie Piper, followed by Martine McCutcheon, along with
several dance acts Todd Terry to name one. The label continued
to thrive well into the mid-2000s with Atomic Kitten and Blue achieving
Platinum sales."]

Answer : Blue
baseline: Atomic Kitten
embsum : Blue
embcat : Blue
encsum : Blue
enccat : Blue
decloss : Blue
--------------------
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This is a question with long paragraphs in the context, abstracting entities could help simplify
the context to better answer the question. Nevertheless, note that if we assume the model
already knows that blue is a color (or that Atomic Kitten is not a color), then the second
paragraph is enough to answer the question.

--------------------
Question: William Cammisano was part of which Mafia family?
facts : [
"William "Willie Rat" Dominick Cammisano Sr. (April 26, 1914 – January 26,
1995) was a Kansas City, Missouri, mobster and enforcer for Nicholas
Civella\’s Kansas City crime family.",

"The Kansas City Crime Family, also known as Civella crime family
(pronounced ] ), is a Mafia family based in Kansas City, Missouri."]

Answer : Kansas City crime family
baseline: Nicholas Civella
embsum : Kansas City Crime Family
embcat : Kansas City Crime Family
encsum : Kansas City Crime Family
enccat : Kansas City Crime Family
decloss : Kansas City Crime Family
--------------------

Here the baseline model predicted the owner of the mafia family, which is also used to refer
to the mafia group according to the second paragraph. Note again, the question can be
answered with the first paragraph.

--------------------
Question: Who is older out of Bob Saget, the American comedian, and Indian

director S. Shankar?
facts : [
"Shankar Shanmugam (born 17 August 1963), credited mononymously as Shankar,
is an Indian film director and producer who predominantly works in Tamil
cinema. He was identified by S. A. Chandrasekhar. Recognized for directing
high budget films, he is also a pioneer of vigilante movies in Tamil. He
made his directorial debut in "Gentleman" (1993) produced by K. T.
Kunjumon, for which he was awarded the Filmfare Best Director Award and
the Tamil Nadu State Film Award for Best Director. He is the highest paid
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film-maker in India among his contemporaries.",
"Robert Lane "Bob" Saget (born May 17, 1956) is an American stand-up
comedian, actor, and television host. His television roles include Danny
Tanner on the ABC sitcom "Full House" (1987–95) and its Netflix sequel
"Fuller House", and hosting "America\’s Funniest Home Videos" from 1989
to 1997. Saget is also known for his adult-oriented stand-up routine.
He also provided the voice of the future Ted Mosby on the CBS sitcom
"How I Met Your Mother" from 2005 to 2014."]

Answer : Robert Lane "Bob" Saget
baseline: Ted Mosby
embsum : Robert Lane
embcat : Robert Lane " Bob " Saget
encsum : Robert Lane
enccat : Robert Lane " Bob " Saget
decloss : Robert Lane " Bob " Saget
--------------------

This question asks to compare two different entities of the same type. The baseline model
answers with a person’s name but not the correct one. Since there are lots of entities in this
example, abstraction can be beneficial to simplify the context and select the correct person
in the end.
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Next, we present HotpotQA examples in which all our abstraction models incorrectly an-
swered the question but not the baseline (no abstraction) model.

--------------------
Question: What city does Paul Clyne and David Soares have in common?
facts : [
"Paul Clyne was the District Attorney of Albany County, New York from
January 2001 through December 2004. A graduate of Albany Law School, he
spent about 14 years as an assistant district attorney, before he
was tapped by local politicians to replace the retiring District Attorney,
Sol Greenberg. He was defeated for re-election by David Soares, first
in the Democratic Party primary election in September 2004, and then in
the general election in November 2004, in which he ran on an independent
line. After a stint teaching at the New York Prosecutors Institute, he
went into private practice as a criminal defense attorney in 2007, with an
office in Albany, New York.",

"P. David Soares (born October 26, 1969, Brava, Cape Verde) is the Albany
County, N.Y. District Attorney. He is a Democrat."]

Answer : New York
baseline: New York
embsum : Albany
embcat : Albany
encsum : Albany
enccat : Albany
decloss : Albany
--------------------

In this example the abstraction models all answered ‘Albany’, which is also a valid answer. In
fact, the question asks for a city and not a state. In addition, the second paragraph doesn’t
mention New York City, so Albany should probably have been the correct answer.

--------------------
Question: what producer of The Real Housewives of Orange County

also hosts "Watch What Happens Live with Andy Cohen"?
facts : [
"Andrew Joseph "Andy" Cohen (born June 2, 1968) is an American talk show
and radio host, author and producer. Cohen hosts the Bravo nightly
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series "Watch What Happens Live with Andy Cohen". He is the first openly
gay host of an American late-night talk show. After being head of
development at Bravo for more than 10 years, Cohen resigned in November
2013. He continues to serve as an executive producer of "The
Real
Housewives" franchise.",

"The eleventh season of "The Real Housewives of Orange County", an American
reality television series, is broadcast on Bravo. It aired June 20, 2016,
until November 21, 2016, and is primarily filmed in Orange County,
California. Its executive producers are Adam Karpel, Alex Baskin, Douglas
Ross, Gregory Stewart, Scott Dunlop, Stephanie Boyriven and Andy Cohen."]

Answer : Andy Cohen
baseline: Andy Cohen
embsum : Adam Karpel
embcat : Adam Karpel
encsum : Adam Karpel
enccat : Adam Karpel
decloss : Adam Cohen
--------------------

In this example the abstraction models all answer with the first entity listed as being a
producer of The Real Housewives, eventhough it is not the person who hosts What Happens
Live. Note that this example contains the answer in the question, which may be confusing
the abstraction models.

--------------------
Question: What Actor whose birth name was Charles Dennis Buchinsky,

was part of the Leslie Nielsen comedy?
facts : [
"Charles Bronson (born Charles Dennis Buchinsky; Lithuanian:
"Karolis Dionyzas Bučinskis" ; November 3, 1921 – August 30, 2003)
was an American actor.",

"Allan A. Goldstein (born May 23, 1949) is an American film director
and screenwriter, perhaps best known for directing the Charles Bronson
vehicle and the Leslie Nielsen comedy".]

Answer : Charles Bronson
baseline: Charles Bronson



143

embsum : Allan A. Goldstein
embcat : Allan A. Goldstein
encsum : Allan A. Goldstein
enccat : Allan A. Goldstein
decloss : Allan A. Goldstein
--------------------

In this example the answer can be answered directly from the first paragraph since we are
asking for the name of the actor born ‘Charles Denis Buchinsky’. Here the abstraction models
all answered with the person from the second paragraph. This is probably due to the fact
that a two hop question, starting with entity ‘Charles Dennis Buchinsky’, and asking for a
person would first link the first and second paragraph with the entity ‘Charles Bronson’, and
then answer with the entity ‘Allan A. Goldstein’.
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APPENDIX D ARTICLE 2 / GEOQUERY RESULTS

In this section we report results of our different models on the GeoQuery [77] benchmark.
In particular, we use two versions described by Shaw et al. [223], focusing on compositional
generalization: a train/test split based on query length and a train/test split based on Target
Maximum Compound Divergence (TMCD). Each train and test set contains 440 examples.

We trained our models on both of these splits and evaluated the exact match of the predicted
output of our models. Below are our average results based on 3 random seeds:

LENGTH split TMCD split
no-abstraction 24.24% (+- 0.001) 36.06% (+- 0.001)
emb-sum 27.05% (+- 0.000) 34.47% (+- 0.001)
emb-cat 15.91% (+- 0.002) 18.56% (+- 0.001)
enc-sum 18.64% (+- 0.002) 35.08% (+- 0.001)
enc-cat 17.50% (+- 0.000) 27.58% (+- 0.001)
dec-loss 24.09% (+- 0.000) 30.38% (+- 0.001)

We can see that for the length split, one abstraction model performs better than the baseline
(no-abstraction), but on the TMCD split, models with abstraction are not better than the
baseline. However, we believe this dataset may not be a good candidate to showcase if
abstraction is useful for 2 reasons:

First, all examples in the dataset have a few number of entities (2 maximum):

entities per example examples percentage of the dataset
0 207 23.5%
1 667 75.8%
2 6 0.7%

Total 880 100%
This makes each abstract input very similar to the original input. Thus the abstract sequence
provides very little information to the model.

Second, the dataset as a whole contains a few number of entities. 12% of tokens per input
are tagged as entities. This is a relatively small number compared to the other datasets as
we can see below.

Fraction of tokens per input in each dataset identified as entities by spacy NER:
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Data avg (+-std)
CLUTRR 0.22 (+- 0.019)
Proofwriter 0.36 (+- 0.036)
HotpotQA 0.37 (+- 0.085)
CoQA 0.18 (+- 0.095)
Geoquery 0.12 (+- 0.080)

We can say from these results that in order for the abstraction technique to be useful, the
dataset must contain at least more than 2 entities per input sequence.
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