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RÉSUMÉ

La quantification de l’incertitude joue un rôle essentiel dans la gestion du risque technique
de l’exploitation durable des ressources naturelles. Les modèles de champs aléatoires sont
utilisés pour modéliser les attributs naturels d’intérêt, parmi lesquels les attributs à dif-
férents endroits sont représentés comme des variables aléatoires comprenant une distribution
de probabilité conjointe. Les statistiques spatiales, qui varient selon différents modèles de
champs aléatoires, décrivent mathématiquement les structures spatiales. Les méthodes de
simulation stochastique génèrent des réalisations multiples basées sur certains modèles de
champs aléatoires afin de représenter les résultats possibles des attributs naturels consid-
érés. Elles visent à reproduire les statistiques spatiales des données perçues, fournissant
ainsi des outils utiles pour quantifier l’incertitude spatiale des attributs cibles. Dans le con-
texte des applications minières, la reproduction de structures spatiales, à partir des données-
échantillons, a un impact significatif sur la gestion des risques liés aux décisions de planifi-
cation minière. Plus précisément, la valeur actualisée nette (VAN) d’un gisement minéral,
compte tenu d’un calendrier de planification minière donné, dépend des revenus générés par
les séquences d’extraction des matériaux souterrains, les flux de trésorerie étant actualisés
en fonction des périodes d’exploitation. Les séquences d’extraction des matériaux, à leur
tour, sont déterminées par la distribution spatiale des teneurs en métaux, en particulier la
continuité spatiale des éléments métalliques enrichis.

Les méthodes de simulation stochastique d’ordre élevé ne présupposent aucune distribution
de probabilité spécifique sur les modèles de champs aléatoires, évitant ainsi les limites des
modèles de champs aléatoires gaussiens traditionnels. De plus, ces méthodes tiennent compte
des statistiques spatiales d’ordre élevé qui caractérisent les interactions statistiques entre les
attributs aléatoires en de multiples endroits et elles ont donc l’avantage de reproduire des
structures spatiales complexes. Par conséquent, cette thèse développe de nouvelles méth-
odes de simulation stochastique d’ordre élevé basées sur un cadre proposé d’apprentissage
statistique et de noyaux orientés sur l’apprentissage, visant à faire progresser les aspects
théoriques des méthodes de simulation stochastique ainsi que les aspects pratiques des déci-
sions minières sous incertitude. Le paradigme général de la simulation séquentielle est adopté
dans cette thèse afin de générer des réalisations à partir de modèles de champs aléatoires, ce
qui décompose les distributions de probabilités conjointes en une séquence de distributions
de probabilités conditionnelles.

La méthode originale de simulation d’ordre élevé utilise la série d’expansions du polynôme
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de Legendre pour l’approximation des distributions de probabilités conjointes des champs
aléatoires. Les coefficients de la série d’expansion du polynôme sont dérivés du calcul de ce
que l’on appelle les cumulants spatiaux qui doivent être stockés dans une structure arbores-
cente en mémoire et certains termes de la série du polynôme sont abandonnés compte tenu
de la complexité du calcul. À titre de première contribution, un nouveau modèle de calcul
de simulation d’ordre élevé est ici proposé, évitant le calcul explicite des cumulants spati-
aux et le stockage des résultats calculés. Une fonction unifiée est dérivée comme une forme
d’équivalence à la série d’expansions du polynôme de Legendre sans abandonner aucun terme,
tout en simplifiant les calculs en temps polynomial. La méthode de simulation proposée con-
duit à un algorithme récursif de dérivation de la distribution de probabilités conditionnelles.
À titre de deuxième contribution, une nouvelle fonction du noyau, ce qu’on appelle le noyau
spatial du moment de Legendre, est proposée pour intégrer des statistiques spatiales d’ordre
élevé des données originales dans le nouvel espace du noyau. Un cadre d’apprentissage statis-
tique est proposé pour découvrir la distribution de probabilité cible du champ aléatoire en
la faisant correspondre aux statistiques spatiales d’ordre élevé observées dans les données
disponibles grâce à un algorithme à noyau. Le nouveau cadre d’apprentissage statistique
pour la simulation d’ordre élevé a la capacité de généralisation nécessaire pour atténuer les
conflits statistiques entre les données-échantillons et l’image d’entraînement, comme le con-
firment les études de cas avec des données synthétiques. Un gisement d’or tridimensionnel
est réalisé pour montrer ses aspects pratiques dans une mine réelle, en démontrant la repro-
duction de statistiques spatiales d’ordre élevé à partir des données-échantillons de forage.

Pour éviter l’impact d’éventuels conflits statistiques avec les données-échantillons en utilisant
une image d’entraînement, une méthode de simulation d’ordre élevé sans image d’entraînement
est développée en se basant sur le cadre d’apprentissage statistique ci-dessus. Une nou-
velle approche d’agrégation de noyaux est proposée afin de permettre la découverte de don-
nées éparses. Les événements de données, comme les données de conditionnement, corre-
spondent aux valeurs d’attribut associées aux modèles spatiaux de diverses configurations
géométriques. L’agrégation de noyaux combine l’ensemble des éléments dans différents sous-
espaces du noyau pour l’inférence statistique, en utilisant efficacement les informations in-
complètes des répliques qui correspondent partiellement au modèle spatial d’un événement de
données spécifique. L’étude de cas montre une bonne reproduction des statistiques spatiales
d’ordre élevé des données-échantillons sans utiliser les images d’entraînement.

Notre dernière contribution vise à atteindre la distribution de probabilité cible des modèles
de champs aléatoires en apprenant des informations spatiales d’ordre élevé provenant de
différentes sources à différentes échelles. Plus précisément, l’agrégation de noyaux est pro-
posée pour incorporer les statistiques spatiales d’ordre élevé à une échelle grossière à partir
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des données-échantillons et pour compléter les statistiques spatiales d’ordre élevé à petite
échelle à partir de l’image d’entraînement. De plus, un logiciel est développé et décrit pour
faciliter les applications. Des études de cas, dans un gisement d’or et avec un ensemble de
données synthétique, sont menées respectivement afin de tester la méthode et le programme
développé.
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ABSTRACT

Uncertainty quantification plays a vital role in managing the technical risk of the sustainable
exploitation of natural resources. Random field models are utilized to model the natural
attributes of interest, within which the attributes at different locations are represented as
random variables comprising a joint probability distribution. Spatial statistics, varied with
different random field models, mathematically describe the spatial patterns. Stochastic simu-
lation methods generate multiple realizations based on certain random field models to repre-
sent the possible outcomes of natural attributes under consideration. They aim to reproduce
spatial statistics of the perceived data, thus providing useful tools to quantify the spatial un-
certainty of the target attributes. In the context of mining applications, reproducing spatial
patterns from the sample data has a significant impact on managing the risks of mine plan-
ning decisions. Specifically, the net present value (NPV) regarding a certain mine planning
schedule of a mineral deposit depends on the revenue generated by the extraction sequences
of the underground materials, as the cash flows are discounted by the mining periods. The
extraction sequences of the materials, in turn, are driven by the spatial distributions of metal
grades, especially the spatial continuity of enriched metal elements.

High-order stochastic simulation methods make no assumption of any specific probability
distribution on the random field models, avoiding the limitation of traditional Gaussian
random field models. In addition, the methods account for the high-order spatial statistics
that characterize the statistical interactions among random attributes at multiple locations
and thus have the advantage of reproducing complex spatial patterns. Therefore, this thesis
develops new high-order stochastic simulation methods based on a proposed framework of
statistical learning and learning-oriented kernels, aiming to advance the theoretical aspects
of the stochastic simulation methods, as well as the practical aspects of mining decisions
under uncertainty. The general paradigm of sequential simulation is adopted in this thesis to
generate realizations from the random field models, which decomposes the joint probability
distributions into a sequence of conditional probability distributions.

The original high-order simulation method uses the Legendre polynomial expansion series for
the approximation of the joint probability distributions of the random fields. The coefficients
of the polynomial expansion series are derived from the computation of so-called spatial
cumulants, which have to be stored in a tree structure in memory. In addition, some terms
from the polynomial series are dropped considering the computational complexity. As a
first contribution, a new computational model of high-order simulation is proposed herein,
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which avoids the explicit computation of spatial cumulants and the storage of the computed
results. A unified function is derived as the equivalency form to the Legendre polynomial
expansion series without dropping out any terms, while simplifying the computations to
polynomial time. The proposed simulation method leads to a recursive algorithm of deriving
the conditional probability distribution.

As a second contribution, a new kernel function, the so-termed spatial Legendre moment
kernel, is proposed to embed high-order spatial statistics of the original data into the new
kernel space. A statistical learning framework is proposed to learn the target probability
distribution of the random field by matching the expected high-order spatial statistics with
regard to the target distribution to the observed high-order spatial statistics of the available
data through a kernelized algorithm. The new statistical learning framework for high-order
simulation has the generalization capacity to mitigate the statistical conflicts between the
sample data and the training image, as confirmed by the case studies with a synthetic data set.
Case study at a three-dimensional gold deposit shows the practical aspects of the proposed
method in a real-life mine, demonstrating the reproduction of high-order spatial statistics
from the drill-hole sample data.

To avoid the impact of potential statistical conflicts with the sample data by using a training
image, a training-image free high-order simulation method is developed based on the above
statistical learning framework. A new concept of aggregated kernel statistics is proposed to
enable sparse data learning. The data events, as the conditioning data, correspond to the
attribute values associated with the so-called spatial templates of various geometric config-
urations. The aggregated kernel statistics combine the ensemble of the elements in different
kernel subspaces for statistical inference, efficiently utilizing the incomplete information from
the replicates, which partially match to the spatial template of a given data event. The case
study shows an effective reproduction of the high-order spatial statistics of the sample data
without using the TI.

Our last contribution aims to achieve the target probability distributions of the random field
models by learning high-order spatial information from different sources at multiple scales.
Specifically, the aggregated kernel statistics is proposed to incorporate the high-order spatial
statistics at coarse-scale from the sample data and to complement the high-order spatial
statistics at fine-scale from the TI. In addition, a software is developed and described to
facilitate the applications. Case studies with a synthetic data set and at a gold deposit are
conducted respectively to test the method and the developed program.
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CHAPTER 1 INTRODUCTION

1.1 Overview

Uncertainty quantification is important in modeling natural phenomena in complex Earth
systems. The perceived attributes from various natural phenomena exhibit randomness in
their spatial structures or patterns as the related natural systems evolved over considerable
time spans and often date to the ancient era of the Planet Earth. The random field models
are used to describe the randomness of the spatial attributes of natural phenomena regarding
the complexity of the behind system dynamics. A random field Z(u) describes a stochastic
model of the attributes of interest Z as random functions of locations u. In other words,
for a given set of locations {u1, . . . ,un} ∈ Rd, d = 1, 2, or 3, depending on the spatial
dimension, the random variables at these corresponding locations from the random field Z(u),
Z(ui)(i = 1, . . . , n), comprise a joint probability distribution. To quantify the uncertainty of a
specific attribute at a certain location, one needs not only to characterize the proportion from
its local probability distribution but also its statistical interactions in space with the related
attributes at other locations. The statistical interactions among random variables at different
locations are usually captured by the so-termed spatial statistics, and in general, appear as
the spatial patterns in the related natural attributes. Stochastic simulation provides a tool
for building the relevant random field models from the perceived earth science data. As a
result, the spatial uncertainty is quantified by the so-called realizations generated from the
random field models to represent the possible spatial distributions of the natural attributes.

The uncertainty quantification itself is not the ultimate goal in practice, but acts as an
important input for risk assessment and decision making in engineering applications. The
stochastic orebody modeling and mine planning decisions are specifically discussed herein to
highlight the importance of uncertainty quantification in the context of mining applications.
Nevertheless, it should be noted that the stochastic simulation methods developed in this
thesis are general and applicable to other engineering fields. Mine planning comprises a col-
lection of decisions at different mining stages through the available information to optimize
the profit on investment. Generally, mine planning optimization can be categorized as con-
strained optimization problems in the scope of mathematical programming, where the most
favourable solutions achieve the highest net present value (NPV), and the constraints are
various factors related to mining activities, such as operational feasibility, quality constraints
imposed by the processing plants, and other management policies, and so on. The very first
step of the above optimization process starts from orebody modelling, through which com-
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puterized representations of orebodies in three-dimensional space are provided as the input
of the desired mine planning optimization. The orebody models are usually represented by
a set of mining blocks discretised in the space of certain mining sites, and each block can be
located by its coordinates in a grid and the related attributes, such as grades and material
types, are attached. It is practically infeasible to take measurements of all the blocks in
an orebody model to acquire the geological attributes of them. As a matter of fact, these
attributes (associated with each block) are often inferred from the limited observations from
the drilling samples, which is a reasonable approach considering the high costs to obtain the
underground information.

Given the inputs from the orebody model and other parameters, such as costs incurred
from mining activities and commodity prices from the market, the mining process can be
regarded as a specialized transfer function. Meanwhile, the outputs of the transfer function,
or namely responses to the inputs, correspond to the mining objectives, which may vary under
different circumstances. There are also some undetermined decision variables that feed into
the transfer function, which are called parameters of interest. These parameters decide the
implementation of the optimal plan to achieve certain goals regarding the mining process.
From this point of view, the main task of mine planning optimization is analogous to inverting
the parameters of interest from intensifying responses of transfer functions in the context of
mining processes, which is often solved by operational research methods. Ideally, the optimal
selection of parameters of interest can be acquired by searching the entire solution spaces,
given that the inputs are definite. However, in mining practice, the deterministic orebody
models are not sufficient to represent the realistic ore reserves, and neither can the fluctuations
of commodity price be reflected in a deterministic way. Considerable risk in decision making
emerges because of uncertainty in the input parameters, since the parameters of interest are
usually sensitive to the variation of inputs. The situation is like that of a random signal that
triggers an uncertain response.

The uncertainty of orebody modelling is because only limited information of an ore reserve is
revealed, usually from the sampling of drill holes. Thus, inference is needed to complete the
modelling. For decades, the orebody models as inputs are generated by estimations with var-
ious interpolation methods in the traditional framework of mine planning optimization, with
negligence of existing geological uncertainty. However, most of the interpolation methods are
essentially a moving average and turn out to smooth the outputs by reducing the proportion
of highest and lowest values. The deficiency of a deterministic orebody model by estimation
is obvious when it is used in mine planning optimization, since, generally, the related mining
process is a non-linear transfer function, and the average of inputs do not necessarily lead to
the average of outcomes associated with the inputs. To reiterate mathematically in a rather
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simplified way, suppose the estimation of parameters p are from some weighted average of
possible values p1, . . . , pn, i.e., p = ∑n

i=1wipi, where w1, . . . , wn are weights for each param-
eter, and let the transfer function be f(·), then the equation ∑n

i=1 f(wipi) = ∑n
i=1wif(pi)

generally does not hold if f(·) is a non-linear function.

The risk of decision making in mining projects under geological uncertainty has been regarded
the major factor behind not meeting project expectations and eventual project failure. For
instance, Vallee [1] reports that 60% of mines surveyed have an average rate of production of
less than 70% of the designed capacity in the first year of production. Instead of misrepre-
senting the orebody model through a single estimation, which is “precisely wrong”, stochastic
simulation provides an effective way to quantify geological uncertainty by representing the
orebody models with a set of realizations of equal probability. In this way, risk assessment
can be applied to reflect the fluctuation of financial forecasts of a certain mining project by
implementing the plan under possible scenarios of an ore reserve situation. The risk analysis
of traditional mine planning optimization from various publications further confirms the sub-
stantial deviation of their financial outcomes from the expectation. Ravenscroft [2] performs
a risk analysis on a conventional mine planning schedule and shows that the chances of devi-
ation from the expected metal grade within the range of 10% is less than 40% in probability.
And as a practical mining project in Dowd [3] demonstrates, there is only 50% possibility of
a conventional mining schedule to achieve a base-case NPV and the mean payback period
is also greater than the expectation. Dimitrakopoulos et al. [4] take risk assessment on a
traditional optimization study of a low-grade, epithermal, gold deposit, showing that there
is a 95% probability of the project returning a lower NPV than predicted and, in the worst
case, the NPV is 45% lower than the expected.

Clearly, geological uncertainty has a crucial impact on the financial outcome of a mining
project, whereas conventional optimizers using a single deterministic orebody model are
unable to deal with the adverse effect of the uncertainty. Dimitrakopoulos and Ramazan [5]
propose a stochastic integer programming (SIP) framework of mine production scheduling
optimization, which directly integrates the geological uncertainty into the objective function
as the following:

max
p∑
t=1

[ n∑
i=1

E
{

(NPV )ti
}
bti︸ ︷︷ ︸

Part A

−
m∑
s=1

(ctou dtosu + ctol d
to
sl + ctgu + ctgl d

tg
sl )︸ ︷︷ ︸

Part B

]
(1.1)

where p is the total production period, n is the number of blocks, and bti is a binary decision
variable indicating whether a block i is mined during period t. The variables d and c represent
the deviation from production targets and the unit cost for deviation, respectively, while the
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subscripts u and l stand for the deviations or costs from excessive production (upper bound)
and the shortage of production (lower bound), respectively. The superscripts o and g repre-
sent the production targets of ore and grade, and s is the number of realizations of orebody
models. Given a discount rate r and period t, both the NPV and the unit costs of deviation
decrease similarly by a ratio 1/(1+r)t from the start-up of a mining project. The formulation
of Equation 1.1 resembles the two-stage recourse model in stochastic optimization [6], where
the mining decisions in the first state (part A) are not involved with uncertainty and the
penalties of the deviations under geological uncertainty are used to correct the decisions in
the second recourse stage (part B). As a result, two case studies of a gold deposit and a
copper deposit applying the stochastic optimizer in Dimitrakopoulos and Ramazan [5] lead
to increasing of NPV by 10% and 25%, respectively. Ramazan and Dimitrakopoulos [7]
establish a more detailed stochastic integer programming (SIP) model of mine production
scheduling, which considers the stockpile option. The application also shows the superior-
ity of managing the deviations from production targets over the conventional optimizer and
leads to higher NPV. The impact of geological uncertainty is even more far reaching when the
mining workflows include more components to be optimized simultaneously, such as the oper-
ation of multiple mines, stockpiling, blending constraints and alternative processing streams
throughout the supply chain from the mining operation to the end products in the market.
Goodfellow and Dimitrakopoulos [8, 9] propose a new simultaneous stochastic optimization
model that holistically optimizes the mine production schedule from extraction sequences to
processing streams, while accounting for the geological uncertainty. Their experimental study
in a copper-gold mine generates designs that have a good control on the risk of deviations
from production targets and obtains an NPV that is 22.6% higher than an industry-standard
mine planning software.

To summarize, the new paradigm of stochastic mine planning optimization increases the up-
side potential of mining projects and reduces the downside risks. Nevertheless, the potential
value of managing risk under the framework of a stochastic mine planning optimizer can only
be realized through the appropriate quantification of geological uncertainty. The stochastic
simulation methods are by far the most practical approaches to quantify the geological un-
certainty in orebody modelling [2, 10]. Since metal grades (tonnages) are the most sensitive
factor in most mining projects [3] and are the common measurements in drilling core samples,
new stochastic simulation methods with regard to metal grades are especially of interest in
the present research, although the application of the methods should not be confined to min-
ing area. In general, a random field is utilized to characterize the metal grades distribution
in the three-dimensional space and the simulations are generated from probability distribu-
tions conditioned to the sample data with reproduction of spatial correlations of the random
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field. Traditionally, the simulation methods assume that the random fields are dominated by
multi-Gaussian probability distributions, and that the spatial correlations are characterized
by two-point spatial statistics, such as covariance functions or variograms. Although the
theory of traditional stochastic simulations is well established, as are their implementation
and numerous applications from various area, there are some key limitations when applying
the theory to orebody modelling in mine planning optimization. Firstly, the probability den-
sity functions of Gaussian distributions are symmetric, but metal grades usually have skewed
probability distributions (with positive skewness in many cases). Thus, they coincide with
non-Gaussian distributions instead. Secondly, two-point spatial statistics only deal with the
statistical correlation between a pair of data in different locations and ignore the interactions
among multiple data points. Thus, it cannot capture the spatial continuity, such as the con-
nectivity of high values and low values. These drawbacks of two-point spatial statistics and
the poor reproduction of complex spatial patterns have been reported in various publications
[11–14]. Nevertheless, the spatial continuity of metal grades has a significant impact on the
economic outcome of a mining sequence. For an intuitive understanding, this impact can be
demonstrated by a simplified artificial example. As can be seen from Figure 1.1, the mine
with more connectivity in the ore blocks has a higher revenue given the same distribution of
economic values of blocks.

Figure 1.1 Revenues of extracting mining blocks with different spatial connectivity. The
numbers represent the economic values of the blocks, and the blocks to be extracted are in
red rectangles, assuming a slope constraint of 45◦. The total revenue for the left mine is 12,
but the revenue for the right one is 10.

As a remedy to deal with non-Gaussian probability in simulations, Gaussian anamorphosis
[15] was proposed to transform the original data into normal scores before simulating and
then reverting the transformation after simulating. Although the normal score transformation
fulfils the prerequisites of traditional stochastic simulations, the preservation of the spatial
statistics structure of the original data after reversion is not guaranteed. Moreover, Gaussian
distribution has the maximum entropy among all the probability distributions with the same
mean and variance [16]. Thus, simulations with Gaussian assumption have an inherent
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weakness, as they do not capture the patterns with spatial structure, such as connectivity,
other than the homogeneous randomness.

In one word, the framework of stochastic mine planning optimization, which can manage risks
associated with geological uncertainty, relies on the quantification of uncertainty in orebody
modelling. Therefore, new stochastic simulation methods for non-Gaussian random fields
with the capacity to reproduce spatial continuity and complex spatial patterns should be
developed as alternatives to the traditional ones. Recent research in high-order simulations
reveals new concepts of spatial cumulants as a mathematical representation of multi-point
statistics and is shown to be data-driven and competent in the reproduction of high-order
spatial statistics [17–19]. Beyond the relatively few existing research, more refined theoretical
models with high-order simulations and practical algorithms with effectivity and computa-
tional efficiency is worthy of further investigation. In addition, it is important to develop
suitable software to launch some real-life applications of orebody modeling based on the new
high-order simulation methods, and thus providing the quantification of geological uncer-
tainty to advance the decision making in mining projects. These above reasoning contributes
to the main motivations of the present research.

1.2 Research Goal and Objectives

The overall goal of the present research aims to develop new high-order stochastic simulation
methods that can quantify spatial uncertainty of non-Gaussian random fields, and overcome
the limitation of existing high-order simulation methods, particularly by improving the nu-
merical stability with an approximation of conditional probability distribution by Legendre
polynomial series. A new statistical learning framework will be established as the general
foundation of the newly developed high-order simulation methods from which the random
field models can be learned from different sources of data with the incorporation of the
high-order spatial statistics. In addition, to meet the practical requirements from orebody
modeling, the new high-order simulation methods will be extended to support training-image
free simulation and address the difficulty of inferring high-order spatial statistics with rela-
tively sparse sample data.

To achieve the above research goal, the research objectives are outlined as following:

1. A comprehensive review of stochastic simulation methods, especially focusing on the
analysis of the limitation of existing high-order simulation methods, including the nu-
merical instability issue of approximating a conditional probability density function
(CPDF) and the computational efficiency of calculating the high-order spatial statis-
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tics.

2. Develop a new computational model of approximating CPDF based on the concept
of spatial Legendre moments allowing to accommodate flexible spatial templates and
improving the computational efficiency of the approximation.

3. Develop a new high-order stochastic simulation method based on a statistical learn-
ing framework by representing the CPDFs in the functional space as spatial Legendre
moment kernel Hilbert space, which not only improves the numerical stability of the
previous high-order simulation methods but also owns the generalization capacity to
mitigate the statistical conflicts between the sample data and the training image.

4. Develop a training-image free high-order simulation method that utilizes the interrela-
tions between the low-order and high-order spatial statistics of the sample data, based
on the new proposed kernel-based statistical learning framework.

5. Develop high-order simulation software to facilitate the generation of multiple realiza-
tions of ore reserve models with the reproduction of high-order spatial continuity to
quantify the geological uncertainty and support stochastic mine planning optimization.

1.3 Thesis Outline

The thesis is organized into the following chapters:

• Chapter 1 provides a brief overview of the research background with a short explanation
of the research motivation and main research objectives covered in the thesis.

• Chapter 2 presents a literature review of different kinds of stochastic simulation meth-
ods, including the traditional second-order geostatistical simulation methods, multiple-
point simulation methods and high-order simulation methods, as well as their limita-
tions.

• Chapter 3 introduces the general organization of the thesis and briefly explains the con-
nections among the articles respectively corresponding to the main research objectives.

• Chapter 4 presents a new computational model of high-order stochastic simulation
based on the concept of spatial Legendre moments, which significantly improves the
computational efficiency and allows the variable spatial template during the simulation
process.
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• Chapter 5 proposes a new statistical learning framework in reproducing kernel Hilbert
space to develop the high-order simulation method and improves the numerical stability
of approximating the conditional probability density function by orthogonal polynomial
expansion series. A solution to mitigate the statistical conflicts between the sample data
and the training image is also provided.

• Chapter 6 further explores the relations between the low-order and high-order spatial
statistics associated with a certain spatial template and from which a training-image
free high-order simulation method is developed by utilizing the information from the
so-called partially-matched replicates to the conditioning data.

• Chapter 7 develops and describes a software of high-order stochastic simulation based
on statistical learning, incorporating the high-order spatial information at multiple
scales from the sample data and the training image, which facilitates the generation of
multiple realizations.

• Chapter 8 presents a general discussion of the methods developed in this thesis and
their connections to the other methods.

• Chapter 9 concludes the thesis by highlighting the major contributions to high-order
stochastic simulation methods and recommends related future work.
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CHAPTER 2 LITERATURE REVIEW

Stochastic simulation aims to quantify the uncertainty of attributes in a random field by gen-
erating a set of realizations with equal probability of occurrence, whereas the original samples
as the conditioning data remain unchanged. The reproduction of spatial statistics with re-
spect to the real data is of the utmost importance in stochastic simulations. Through several
decades of development, the quantification of spatial statistics has evolved from two-point
spatial correlations to multi-point spatial continuity, or from low-order statistics to high-order
statistics. Accordingly, stochastic simulation methods have also migrated from traditional
variogram-based second-order simulation to multi-point simulation and high-order simula-
tion, and furthermore from Gaussian to non-Gaussian random fields, which will be elabo-
rated in the followed subsections. Other major stochastic simulation improvement made over
the years are related to the implementation of various algorithms and their computational
efficiency.

2.1 Sequential Simulation

In the 1970s, the turning-bands method [15, 20] was proposed to generate simulations that
overcome the limitation of computational capacity, but this method has the shortcoming of
loss of accuracy by approximation and struggled to reflect anisotropic covariance [21]. As an
alternative, sequential simulation framework [22, 23] is adopted in most stochastic simulation
methods up to now.

Consider a stationary and ergodic random field Z(u), let Z(u1), . . . , Z(uN) be a set of ran-
dom variables with locations at u1, . . . ,uN , respectively. Then the N random variables
Z(u1), . . . , Z(uN), constitute a joint multivariate distribution. In terms of stochastic simula-
tion, suppose the realizations are to be generated from Z(u1), . . . , Z(uN), and the available
data set are Λ0 = {ζ(u′1), . . . , ζ(u′n)}. For simplification,Z(u1), . . . , Z(uN) are alternatively
written as Z1 . . . , ZN , and similar simplification of notations entails knowing the context of a
random field. Following the above notation, the stochastic simulation of the random field is
based on the sampling from the N -variate probability distribution posterior to the data set
Λ0, which can be characterized by a conditional cumulative distribution function (CCDF)
as FZ(z1, . . . , zN |Λ0) or by a probability density function (CPDF) as fZ(z1, . . . , zN |Λ0). The
joint CPDF fZ(z1, . . . , zN |Λ0) can be decomposed into the product of a series of univariate
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CPDFs [24, 25] as

fZ(z1, . . . , zN |Λ0) = fZ1(z1|Λ0) · · · fZN
(zN |ΛN−1), (2.1)

where Λi(i = 1, . . . , N − 1) are a series of sets with Λi = Λi−1 ∪ {ζ(ui)}, i = 1, . . . , N and
ζ(ui) are informed attribute values either from the sample or previous simulated values.

The basic idea of sequential simulation is to sequentially draw random values from the de-
composed univariate CPDFs, following a random path to visit all the nodes to be simulated.
Irrespective of the node’s location corresponding to the sequence number, there is no dif-
ference in the sampling procedures. Without loss of generality, the CPDF in every single
sampling procedure can be symbolized uniformly as, fZ0(z0|Λ), where Z0 means the current
simulating node and Λ means the set of conditioning data around Z0’s location u0. Con-
sidering the computational intensity and the statistical relevancy, the conditioning data are
usually confined to a neighborhood closest to the simulation node instead of taking account
of all available data on the whole domain of the random field. An algorithmic description of
sequential simulation can be summarized as the following steps:

1. Draw a random path to visit all the N nodes to be simulated;

2. For each node Z(ui), derive the conditional probability cumulative distribution FZi
(zi|Λi−1)

or the density function fZi
(zi|Λi−1);

3. Draw a random value ζ(ui) from the conditional probability distribution in Step (2)
and update the conditioning data by adding the node value ζ(ui) in to the current data
set Λi;

4. Repeat from Step (2) until all the nodes are visited.

Since sequential simulation is flexible to accommodate various stochastic models and thus
it becomes a mainstream way to implement different simulation methods, without further
specification the stochastic simulation methods in the subsequent contexts are developed
under this general framework.

2.2 Second-Order Stochastic Simulation

2.2.1 Sequential Gaussian simulation

Sequential Gaussian simulation (SGS) [22, 26, 27] is developed to generate random outputs
from a Gaussian random field following the procedure of sequential simulation. An important
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fact of SGS is that the conditional probability distribution of the variable to be simulated is a
Gaussian distribution with mean as the simple kriging estimation and variance as the simple
kriging variance. Thus, SGS can be implemented to successively draw random values from a
sequential set of conditional probability distributions where the parameters are decided from
solving simple kriging equations. Alternatively, the Gaussian random field can be decomposed
as a mean field resulted from simple kriging and a residual random field respecting the
covariance function from the data. In this way, Davis [21] proposed LU decomposition of the
covariance matrix as a method to generate the simulated values simultaneously. Ideally, either
SGS or simulation by LU decomposition assumes using the data from the whole domain.
In practice, this assumption is always compromised by considering data within a certain
neighbourhood due to intractability of the enormous matrix system with incorporation of all
the nodes. This approximation is called screen effect approximation (SEA) since the closest
data tend to screen the influence of farther data [26, 28]. Dimitrakopoulos and Luo [28]
show that the accuracy of the above approximation can be measured by a function termed
relative screen effect approximation (RSEA) loss, which depends on the ratio of posterior
conditional variance with partial data and with full data. Furthermore, an algorithm named
generalized sequential Gaussian simulation on group size ν (GSGS-ν), is developed to improve
the computational efficiency of SGS dealing with large data [28]. GSGS-ν divides theN nodes
on the simulation grid into a set of groups of size ν, and the nodes inside each group has the
same neighborhood with conditional data up to a maximum number νmax. A random path is
selected to visit each group and simulation is conducted sequentially on each group using LU
decomposition until all the nodes are visited. The computational cost of GSGS-ν is greatly
reduced in comparison to SGS because the simulation of the nodes inside a group are not
generated one by one through solving distinct simple kriging systems but were completed
through one matrix decomposition. For the same sake of solving conditional simulation with
large data, Vargas-Guzmán and Dimitrakopoulos [29] propose a new stochastic simulation
method by successive residuals (CSSR). The CSSR method divides the covariance matrix
to block matrices and develops a new approach to take LU decomposition in a stepwise
way, and the mean of the conditional probability distribution is updated step by step by
adding a successive set of residuals which is proven to be equivalent to normal simple kriging
estimation [30]. Intuitively the procedure is to repeat filtering a mean component out of the
current residual when new data is added and then a new residual remains after the filtering
with the conditional covariance being updated at the same time; so each time adding the
new data only the updated conditional covariance in the last step is needed to update the
simulation result. Hence CSSR is able to solve conditional simulation of large scale and it also
has the advantage to dynamically update the existed simulation results when new data are
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incorporated without starting the whole simulation once again. Jewbali and Dimitrakopoulos
[31] implement the CCSR method and apply to a stockwork gold deposit where additional
infilled drill holes are used to update existed simulation results, however some extra storage
of decomposed component of matrices are needed to facilitate the updating as a compromise
of memory cost to gain computational efficiency.

2.2.2 Sequential indicator simulation

Sequential indicator simulation (SIS) [32–35] is a non-parametric simulation method which
has no assumption of probability distribution, in contrary to the Gaussian assumption in SGS.
To implement SIS, the original data are transformed to indicator code and the corresponding
indicator random function is used to characterize the random field. The indicator function
is defined as

i(u; zk) =

1 z(u) ≤ zk

0 otherwise
k = 1, . . . , K, (2.2)

and zk are the threshold values to divide the original data into K + 1 classes. The random
function after indicator transformation of the original data can be written as

I(u; zk) =

1 Z(u) ≤ zk

0 otherwise
k = 1, . . . , K. (2.3)

Then the conditional probability distribution of original random variable can be expressed
as the expectation of the indicator random variable, that is

F [Z(u)|Λ] = Prob[Z(u) ≤ zk|Λ] = E[I(u; zk)|Λ]. (2.4)

The covariance functions or variograms are computed from the indicator data, and indicator
kriging (IK) systems are solved to derive the conditional probability distribution (the ex-
pectation E[I(u; zk)|Λ]. Indicator kriging estimation is less sensitive to the outliers which is
useful when the connectivity of high values are important [36]. In addition, it is possible to
incorporate different sources of soft data into the simulation using SIS.

Since there are a certain number of categories in the SIS method, the cross-correlations can
be derived experimentally from different pairs of random variables and cokriging can be
used to estimate the expectation. In practice, alternative methods are indicator kriging on
each categorical variable separately. In fact, Goovaerts [33] shows that there is no obvious
advantage of using cokriging over the IK through a comparison study, on the contrary it may
cause more problems of order deviations in SIS. The order deviation problems are linked
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to the situation that the conditional probability distributions from SIS are not increasing
functions as they should be, because there are no order relation constraints imposed on the
kriging systems. One of post processing techniques to correct the probability distribution
is based on downwards correction and upwards correction, where the lower part and higher
part of the CDF curves are treated separately to ensure the non-decreasing characteristic
and then take the average between them as the corrected CDF [26]. Another practical issue
with SIS is that the estimation near the lowest and highest cut-offs maybe unreliable because
the scarce of data with increasing number of categories, and thus the tails of CDF often
are extrapolated, for instance, by linear functions, hyperbolic functions, or power functions
[26]. With appropriate simplification in modelling the cross-correlations and post processing
on CDF, SIS method is a powerful tool to generate realizations for non-Gaussian random
field, however, the limitation of two-point geostatistical framework restricts its application
to circumstances with relatively simple spatial structures.

2.2.3 Extension to multiple variables

It is very common in earth science data that various geological attributes are correlated in
addition to spatial correlations of their own. Furthermore, the interrelation between multiple
variables are also dependent on their spatial configurations, adding the complexity to model
the random fields. The analysis of covariance or variograms of multivariate random fields is
called coregionalization analysis in geostatistics [37]. The linear model of coregionalization
(LMC) is the most widely used model applying to coregionalized variables for its simplicity
[26, 38, 39]. Instead of being a single random variable, there is a random vector corresponding
to each location in the multivariate random fields. To make the difference in notation, here
Z(u) =

(
Z1(u), . . . , Zn(u)

)
is used to represent the multivariate random field with n distinct

attributes. LMC assumes each random variable Zi(u) can be decomposed into a linear
combination of L + 1 basic structures consisting of independent components with a unit
covariance function, that is,

Zi(u) =
L∑
l=0

nl∑
k=1

alikY
l
k(u) +mi, (2.5)

where mi = E[Zi(u)] and Y l
k(u) are the unit random components with zero mean and nl

is the number of independent components in each basic structure, while Y 0
k (u) corresponds

to the component with a nugget effect. As Y l
k(u) are independent, their correlations can be
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expressed as

cov[Y l
k(u), Y l′

k′ (u + h)] =

cl(h) if k = k′, l = l′

0 otherwise
. (2.6)

The cross-covariance can be expressed as

Cij(h) =
L∑
l=0

nl∑
k=1

alika
l
jkcl(h), (2.7)

or in the matrix form as
C(h) =

L∑
l=0

Blcl(h), (2.8)

where Bl is an n × n matrix given the number of variables n with Bl =
[∑nl

k=1 a
l
ika

l
jk

]
n×n

.
The cross-variogram matrix Γ(h) can be derived similarly as

Γ(h) =
L∑
l=0

Blγl(h), (2.9)

where γl(h) are the unit variograms of the basic components.

Since there are in total n direct variograms and n(n + 1)/2 cross-variograms to be modeled
given n random variables, the computation of modeling the spatial correlations is tedious
and leads to large cokriging systems to solve. Practically the multiple variables are often de-
composed into decorrelated new random variables by taking linear transformation and then
reverse back to the original data space by taking back transformations on separate simula-
tions of each single decorrelated variable. The principal component analysis (PCA) has been
used to decorrelate the coregionalization variables in the past [40–42], however, the decorre-
lation with PCA is only guaranteed in zero-lag variance-covariance matrices yet ignoring the
spatial correlations within the data. An alternative approach transforms the corregionalized
variables into so called Minimum/Maximum autocorrelation factors [43], which is proven to
be decorrelated on all the lags provided there are no more than two structures in LMC. In
this case, the cross-variogram matrix Γ(h) is written as

Γ(h) = B1γ1(h) + (B −B1)γ2(h), (2.10)

where B is the variance-covariance matrix and B1 is the cross-covariance matrix for the first
structure. The spectral decomposition on B gives B = QΛQT with Q be the orthogonal
matrix of eigenvectors. Thus, the PCA factors with respect to B can be written as

Y(u) = Λ− 1
2QTZ(u) = AZ(u). (2.11)
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Take variance-covariance analysis on Y(u) one can get

AΓ(h)AT = Iγ2(h) + AB1A
T [γ1(h)− γ2(h)]. (2.12)

Another spectral decomposition on AB1A
T gives AB1A

T = Q1Λ1Q
T
1 with Q1 as the orthog-

onal matrix of eigenvectors. The MAF factors are expressed as

F(u) = QT
1 Y(u) = QT

1 Λ− 1
2QTZ(u). (2.13)

Therefore, the variance-covariance analysis on F(u) gives

ΓF(h) = Λ1γ1(h) + (I − Λ1)γ2(h) (2.14)

Thus, the MAF factors F(u) are decorrelated on all lags since the corregionalization matrices
are diagonal. Desbarats and Dimitrakopoulos [44] develop the co-simulation method base on
the MAF transformation. The authors perform simulations based on MAF factors with
suitable univariate simulation method and then the results are back transformed to the
original data space to obtain realizations with reproduction of cross correlations as well as
spatial correlations. For the teaching aid of joint simulation with MAF as well as detailed
explanation of application, the readers are referred to Rondon [45].

2.2.4 Simulation on block support

Extension of stochastic simulation to block support is important in mining applications since
the orebody models are frequently represented by blocks with volumes comparable to selec-
tive mining units (SMU). In terms of available data in mine planning, the block simulation
becomes complicated problem since there are various information in different scales of sup-
port, including core samples, mined blocks, stopes, and bulk samples [46]. The naive way to
deal with changing of support is to discretize the blocks into point supports with smaller vol-
umes and then take the average as the data value of the blocks. However, this is practically
infeasible for orebody modeling of large mines with millions of blocks.

Marcotte [46] proposes a method to generate realizations on block support based on the model
of disjunctive kriging, where the data on various supports are expressed as the normalized
Hermite polynomial series after Gaussian transformation. The coefficients of Hermite poly-
nomial series with respect to the data in block support can be derived through computing
an integral related to the Hermite polynomials on point support. However, the computation
is complex and the method also relies on an assumption that the random variables in point
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support and block support follow a bivariate Hermite distribution. Emery [47, 48] proposes
an alternative block simulation method based on discrete Gaussian model where an explicit
function related to the so-called change-of-support coefficient, is established to model the
cross-variograms between random variables at point support and block support. As an ex-
tension to GSGS-ν, direct block simulation (DBSIM) has been developed to simulate large
orebodies [49]. The block size can be the same as the selective mining units, and the blocks
are subdivided into a group of internal nodes. The simulation is carried out on these internal
nodes through LU decomposition, which is similar in the way to GSGS-ν, however, the values
of internal nodes are discarded after the value of block is set as the average of the internal
nodes and the block values are directly included as the new conditioning data in the followed
simulations. This algorithm turns out to be fast because it significantly reduces the scale of
simulation problem after changing of support from points to blocks. Due to the change of
support in DBSIM, dilution effect may exist as a result of smoothing average and also the
covariance or variograms should be calculated separately between points to points, points to
blocks, and blocks to blocks, respectively. Several successful applications to large mine are
available [50, 51], and the simulation method is also extended to co-simulation with MAF
transformation by Boucher and Dimitrakopoulos [52]. All the above methods either assume
a Gaussian distribution or need Gaussian transformation of the random variables, hence have
the limitation to simulate non-Gaussian random fields.

2.3 Multi-Point Simulation

Multi-point simulation (MPS) allows to reproduce spatial structures with multi-point in-
teractions, for example, the connectivity of extreme values of metal grades, or curvilinear
channels in reservoir models. In contrast to the two-point covariance or variograms which
only consider the pairwise second-order statistics, the multi-point statistics involve multi-
ple random variables with regard to the random field and thus lead to high-order statistics.
Generally, multi-point statistics do not rely on the Gaussian model and encompass far more
spatial structures than two-point statistics which works perfectly for Gaussian model. It
turns out that two random fields with distinct spatial structures, say continuous channels
and lens structures, could share the similar variograms [53, 54], which clearly indicates the
limitation of second-order statistics to capture the complex spatial patterns (Figure 2.1).

In contrast to the second-order spatial statistics being represented by either the covariance
or the variogram, the multi-point statistics are usually borrowed from an exhaustive training
image (TI). Several key concepts from MPS are as follows:
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Figure 2.1 Limitation of second-order statistics to characterize spatial patterns (From [53])

• Training image: An exhaustive image assumed to share similar spatial structures
with the attributes to be simulated. The training image can also be regarded as a
representative realization of the prior random function model before the actual data
are incorporated to update the posterior distribution of the random field [55].

• Spatial template: The multi-point statistics are defined on multiple random variables
from a random field. The geometric configuration associated to the multiple random
variables is termed the spatial template. Usually the spatial template can be denoted by
a set of distance vectors apart from the center node to be simulated as T = {h1, . . . ,hn}.

• Data event: The conditioning data values retrieved from either the samples or the
simulated nodes within the spatial template is called a data event.

Depends on the implementation, the MPS methods falls into two categories of simulations
[56]:

• Pixel-based MPS: The MPS methods where the simulations are carried out sequen-
tially pixel by pixel are called pixel-based algorithms.

• Pattern-based MPS: The simulations are generated as patches instead of as a single
value, sometimes it is also called as patch-based MPS methods.
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2.3.1 Pixel-based MPS

2.3.1.1 SNESIM

The first popularized MPS algorithm, the so called single normal equation simulation algo-
rithm (SNESIM), is proposed by Strebelle [57]. The SNESIM algorithm serves as an extension
to the extend normal equations simulation (ENESIM) algorithm proposed by Guardiano and
Srivastava [12], solving the computational difficulty in ENESIM and leading to practical use
of MPS. Suppose the node to be simulated as Z(u0) and let the template be denoted as
τ with the data event associated to the it as dn = {Z(u1) = z1, . . . , Z(un) = zn} where
zi ∈ {1, . . . , K} belongs to one of the K categories. Then the indicator variance/covariance
between the Z(u0) and data event dn can be derived as

Cov
[
I(u; zk), I(τ ; dn)

]
= P

[
Z0(u) = zk, dn

]
− P

[
Z0(u) = zk

]
· P (dn), (2.15)

V ar
[
I(τ , dn)

]
= P (dn) ·

[
1− P (dn)

]
. (2.16)

Thus, the simple kriging equation can be solved by a single normal equation as

λsk =
Cov

[
I(u; zk), I(τ ; dn)

]
V ar

[
I(τ , dn)

] . (2.17)

With simple substitution, the conditional probability can be obtained as

P
[
Z0(u) = zk|dn

]
= E

[
I(u; zk)|dn

]
=
P
[
Z0(u) = zk, dn

]
P (dn) , (2.18)

which provides the equivalency of simple kriging solution and Bayes’ equation.

From Equation (2.18), the conditional distribution can be estimated from the frequency of
each category among the replicates of data event in the TI. However, the brute-force searching
for the data event from the TI is time consuming and it is the reason that ENESIM algorithm
remains only of theoretical interest. Instead of searching anew the replicates of the data event
for each node to be simulated, a tree data structure is used in SNESIM to store the possible
replicates in the TI associated to the geometry template. Therefore, only one run of scanning
the TI is needed and the searching time for replicates of data events is greatly reduced by
traversing a tree with depth comparable to the number of nodes in the template. In case that
the number of exact replicates of data event dn is not enough to make reasonable estimation,
the most distant node from the center node is dropped with replacement of dn as its subset
dn−1 and this procedure repeats until the number of replicates reaches a minimum threshold.
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The marginal distribution is used to draw a random value if none subset of the data event
corresponds to the replicates in TI with statistical significance.

2.3.1.2 IMPALA

Although SNESIM is fast in computation, it is memory demanding because the number of
tree nodes increases very fast when the template size or the number of category increases,
which eventually increases the searching time as well. Instead of using a tree data structure,
Straubhaar et al. [58] propose an improved parallel multi-point simulation algorithm (IM-
PALA) where a list data structure is used to store the replicates from the training image.
Similar to SNESIM, a searching template is used to scan the TI for only once to construct
the list, but only the leaf nodes are stored in comparison to the tree structure in SNESIM,
and hence the memory usage is greatly reduced so that a large template may be applicable
in the algorithm. However, the searching is more CPU demanding than SNESIM due to
the serial feature of the list data structure. A list sorted by the number of occurrences of a
certain category in the reference node is introduced to accelerate the searching, and further-
more, the list data structure also enables the parallelized implementations which have more
computational efficiency [58, 59].

2.3.1.3 Direct sampling

Rather than scanning the whole training image to explicitly build the conditional distribution,
Mariethoz et al. [60] propose a new direct sampling (DS) method that allows to draw a random
value directly from the scanning procedure. The main steps of DS are as the following:

(1) Once a certain data event dn was given, the algorithm starts to randomly pick a replicate
d′n from the training image with the same template associated to the dn, and a distance
function is defined to measure the similarity between dn and d′n.

(2) If the distance between dn and d′n is less than a certain threshold, i.e., they are deemed
as similar events. Then the value in the reference node of d′n is set as the data value of the
node to be simulated and repeat from Step (1).

(3) Otherwise, store the minimal distance between dn and the replicate up to the current
scanning on the TI, together with the corresponding reference node value.

(4) If no satisfied replicate is found up to some specified maximum times of scanning, then
chose the reference node value from the replicate which is most similar to the data event and
repeat from Step (1).
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In contrast to SNESIM, DS algorithm requires no additional memory usage and the similarity
measure is defined to find replicates instead of searching for exact replicate by dropping some
nodes. The running time may depend on the conditional probability distribution since the
first occurrence of the replicate of a certain data event varied regarding the distribution,
however an upper bound can be derived from the maximum threshold for scanning. In
addition, it is also possible to simulate continuous random fields once the related distance
function is defined. For the practical guide to apply DS algorithm, the reader is referred to
Meerschman et al. [61].

2.3.1.4 Computationally improved methods of pixel-based MPS

More recently, Strebelle and Cavelius [62] investigate the main factors affected the memory
and CPU usage including the size of the template and the proportion of informed nodes
in the data event. They propose a new multiple grid method where extra intermediary
sub-grids are included to increase the proportion of the informed nodes in the data event.
Moreover, the data template to preferentially selecting simulated nodes is suggested to include
more informed data in a relatively small template and an optimal choice of template size is
also introduced. These techniques are combined in a new version of SNESIM to solve the
memory and speed issues. Several of the above-mentioned pixel-based MPS algorithms are
also modified to be implemented with parallelized computations on the graphical processing
units (GPU) and are reported to speed up simulation within orders of tens to hundreds
[63, 64]. However, it should be noted that GPU-version algorithms are hardware demanding
and the GPU memory could be a limitation of conducting large scale simulations.

2.3.2 Pattern-based MPS

Despite the quick developments of pixel-based algorithms, their limitations are that the exact
replicates of data events are not easy to find, and in addition, most of these algorithms only
apply to the categorical data. The reason is that the statistical model with regard to pixel-
based MPS methods is essentially a discrete distribution relied on the counting number of
data events occurring in the training image, which becomes unstable when replicates are few.
These limitations are overcome by the pattern-based MPS methods as followed.

2.3.2.1 SIMPAT

Arpat [65] proposes a new stochastic simulation algorithm with patterns (SIMPAT) which
abandons the ideology of pixel-based simulations within a specified statistical framework.
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Instead of drawing a random value for each single node to be simulated, SIMPAT is developed
to search a similar pattern to the data event from the training image to be embedded to the
simulation grid as a whole, and the simulation algorithms followed in this paradigm are
categorized as pattern-based or patch-based MPS algorithms.

Suppose that the template τ is defined by a set of distance vectors as τ = {h1, . . . ,hT}, then
the data event on the simulation grid re is defined as dev(u0; τ ) = {re(u + h1), . . . , re(u +
hT )} where u0 represents the node to be simulated, and note that some nodes may be
uninformed in the data event. For a specified node at location u on the training image ti, a
pattern within the template can be defined as pat(u; τ ) = {ti(u), ti(u+h1), . . . , ti(u+hT )}.
A distance function can be defined to measure the similarity of the data event dev(u0; τ )
and the pattern pat(u; τ ) form the training image. For instance, Manhattan distance was
used in SIMPAT as

d
(
dev(u0; τ ),pat(u; τ )

)
=

T∑
α=1
|dev(u0; τ )(hα)− pat(u; τ )(hα)|, (2.19)

which means the more similar are the data event dev(u0; τ ) and the pattern pat(u; τ ) as
the distance becomes smaller. The computation of Manhattan distances will be skipped
from the uninformed nodes in the data event. The main procedures of SIMPAT are quite
straightforward as the following:

(1) For each node Z(u0) to be simulated, search the neighborhood within the template τ to
include the sample data or previously simulated nodes into the data event dev(u0; τ ).

(2) Scanning the training image to find the pattern pat∗(u; τ ) that is the most similar to
dev(u0; τ ).

(3) Assign the data values of the most similar pattern pat∗(u; τ ) to all the nodes inside the
template around the reference node u0. If there are more than one patterns that have the
similarity measure to dev(u0; τ ), then randomly pick one of them as the representative.

(4) Repeat Step (1) until all the nodes on the simulation grid are simulated.

2.3.2.2 FILTERSIM

Although the similarity measure is more flexible than searching the exact replicates, the com-
putation of distances throughout the entire pattern database for each node to be simulated
is CPU demanding. To alleviate the computational cost of similarity comparison, Zhang
et al. [66] propose a simulation method using filter scores (FILTERSIM) which classifies the
patterns into different categories by applying certain filter functions.
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For a training image in 2D space, let X(i, j) be the datum value at location (i, j), and let
the dimension of the template be (2n + 1) × (2n + 1), then the filter score associated to a
specified filter function f(u, v) can be defined as the following [66]:

Sf (i, j) =
n∑

v=−n

n∑
u=−n

f(u, v) ·X(i+ u, j + v). (2.20)

In 2D space, there are six filter functions defined in FILTERSIM algorithm. Each filter gives
different weights to the nodes on the template to capture different spatial features in the
pattern. For instance, the sixth filter is defined in FILTERSIM as f6(u, v) = 2|v|

n
− 1, which

visually appears like Figure 2.2 capturing the E-W curvature of the pattern. Thus, for each
pattern on the 2D training image, there are in total six scores assigned to the pattern which
transform the pattern of size (2n + 1)× (2n + 1) into a point in six-dimensional filter score
space. The filter scores for each of the 6 filters are further divided into 5 segments by their
quintile thresholds, and hence the whole filter score space is discretized into 56 classes where
each pattern falls into one of the classes. In practice, the actual number of classes would be
much less than 56 because many classes are empty due to the limited number of patterns
encountered in the training image. Each class then contains various number of patterns and
a training prototype is defined as the average pattern in this class. The rest of the simulation
is as follows:

(1) For each node Z(u0) to be simulated, retrieve the data event associated to the template.
Compare the similarity between the data event and all the prototypes to find the class with
the patterns closest to the data event, by a predefined distance function.

(2) Randomly draw a pattern from the candidate class and paste it to the location centered
at u0.

(3) Repeat from Step (1) until all the nodes are simulated. In addition, a fixed inner part
is defined within the template for each pattern. As a rule, the hard data and the inner
part of the simulated nodes within a pasted pattern are frozen during the next sequences of
simulations.

As one time scanning throughout the training image is needed to build the filter score space
and after that the similarity comparison only takes place between the data events and proto-
types, thus FILTERSIM is quite computationally efficient. However, the simple filter func-
tions may not be able to classify complex spatial patterns effectively and tend to deteriorate
the reproduction of spatial continuity.
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Figure 2.2 The sixth filter defined in FILTERSIM as a reflection of E-W curvature

2.3.2.3 DISPAT

Honarkhah and Caers [67] propose a more advanced approach to classify the patterns which
leads to a new MPS algorithm with distance-based modelling of patterns (DISPAT). The
first step of the above algorithm is to obtain a similarity matrix between all the patterns by
computations on some predefined distance function. Then multidimensional scaling (MDS)
technique is applied to the similarity matrix to reduce the patterns to points in lower di-
mensional space while preserving the order relations of the distances in the original space.
The patterns embedded in the new metric space after MDS transformation are classified into
a certain number of classes using the kernel k-means algorithm [68] where the points are
actually again mapped to a kernel feature space. The rest part of the algorithm is similar
to other pattern-based algorithms to compare the data events with the prototype of each
class and randomly draw a pattern from the most similar class. Although the new algorithm
has better reproduction of spatial continuity than FILTERSIM, however, the implementation
is also more complicated , and several parameters including the size of dimension in MDS
algorithm and the number of classes in k-means algorithm need to be deliberately selected.

2.3.2.4 WAVESIM

Chatterjee et al. [69] propose a pattern-based simulation algorithm using wavelet analysis
(WAVESIM). Wavelets are defined as a family of bases by translation and dilation of a square
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integrable function, namely as the mother wavelet, which can be written as

ψj,k(x) = 2−
j
2ψ(2−jx− k), j, k ∈ N, (2.21)

where j, k are the scaling parameter and translation parameter, respectively; ψj,k and ψ are
the wavelets and mother wavelet, respectively. Scaling bases φj,k(x) are defined in the similar
way by a scaling function φ(x) as

φj,k(x) = 2−
j
2φ(2−jx− k), j, k ∈ N. (2.22)

A square integrable function f ∈ L2(R) can be reconstructed from the wavelets and scaling
functions as

f̂(x) =
NJ−1∑
k=0

aJ,kφJ,k(x) +
J∑
j=1

Nj−1∑
k=0

wj,kψj,k(x), (2.23)

where f̂(x) is the reconstructed function and J is the levels of wavelet decomposition; Nj = N
2j

and N is the original range of the domain. For a 2D image, the discrete wavelet composition
(DWT) leads to one approximate sub-band image as the scaling image and three high-
frequency sub-band images as wavelet images. As can be seen from Equation (2.23), these
sub-band images have size 1/2j of the original image in the j-th level of decomposition.
The approximate sub-band image is used as the representation of a pattern after DWT
at a specified scale J . Thus, the patterns are reduced in dimension by ratio of 1/2J ,
and the approximated sub-band images are further classified into different classes using k-
means algorithm. Prototypes are generated for each class of pattern afterwards and the
simulation is carried out similarly as other pattern-based methods. A slight difference is that
a distribution of patterns inside a specified class is estimated from the empirical distribution of
the center node and the simulated patterns are randomly drawn according to this probability
distribution. More recently, Chatterjee et al. [70] develop an updated version of WAVESIM
which conducts pattern-based simulation on images in wavelet domain and take the inverse
discrete wavelet decomposition (IDWT) to generate realizations in the spatial domain.

2.3.2.5 CDFSIM

Mustapha et al. [71] propose a simulation algorithm through decomposition of cumulative
distribution functions of transformed spatial patterns (CDFSIM) which transforms the pat-
terns into one-dimensional real data by a non-linear function. The transformation function
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is defined as

f
(
ti(u; τ )

)
=

T∑
j=1

ti(u + hj)s(j), (2.24)

s(x) =


1 for continuous image
1
x

for binary image
. (2.25)

Mustapha et al. [71] construct a cumulative distribution function from the transformed data
and the corresponding location indices, and the patterns are classified into a certain number
of classes by an algorithm based on the decomposition of thresholds from the above 1D
distribution. This algorithm is computationally efficient and easy to implement. It is proven
by Mustapha et al. [71] that if the distance between two transformation functions is bigger
than r, then the two corresponding patterns will also have a distance larger than r. However,
the converse of the claim is not necessarily to be true, thus the transformation does not fully
preserve the distance order, which may lead to discontinuity in the simulations.

2.3.2.6 Pattern-based MPS as extensions from other methods

As an extension to pixel-based DS algorithm, Rezaee et al. [72] implement a pattern-based
version of DS where the replicates from the TI resembling the data event are pasted to
the simulation grid instead of a single node. Noting that boundary continuity may not be
maintained in common pattern-based simulations, there are several methods borrowing the
concepts of texture synthesis to MPS algorithm which alleviate the boundary conflicts [73–
75]. These methods generally use a so called unilateral raster path to generate realizations
instead of a random path, which means that the simulation is growing along some fixed
directions. The unilateral path is proposed in texture synthesis to reproduce patterns from
a reference texture, assuming a Markovian property [76]. In compliance with the Markovian
property, the nodes are visited in a regular path and only precedent nodes can be included
as conditional data for the current node to be simulated. Parra and Ortiz [75] abandon
the Markovian assumption and adapt the texture synthesis to conditional simulation in two
steps running. The causal nodes in the template which comply to the Markovian property are
firstly used to search candidate replicates from the training image, and then in the second
run the non-causal nodes are added to refine the final searching. Tahmasebi et al. [77]
also adopt the raster path in their implementation of a cross-correlation based simulation
(CCSIM). The cross-correlation function is used as the distance measure between patterns in
replacement of the Euclidean distance, which is proven to be more computationally efficient.
Furthermore, CCSIM introduces an overlapping region between the pasted patterns and
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the current simulation area within the template. And the cross-correlation between the
overlapping region and the TI is computed as the similarity measure, in this way the boundary
continuity can be well reproduced with less computational time. Mahmud et al. [74] propose
a conditional image quilting algorithm (CIQ) which is implemented similarly to CCSIM,
however, CIQ enhances the boundary continuity by a dynamic programming algorithm named
image quilting [78]. For a thorough review of relating texture synthesis to MPS, the readers
are referred to Mariethoz and Lefebvre [79].

2.3.2.7 Multiple grid simulation

For computational reason, the template size in MPS algorithms should be relatively small
compared to the size of TI, however a negative impact is that the large spatial structure
may not be reflected from the template. The idea of multiple grid simulation [80] is utilized
in various MPS algorithms to solve the problem. The simulation grid D is divided into
multiple nested grids Dg(1 ≤ g ≤ G) with every 2g−1-th node picked from the original grid
D(g = 1), and correspondingly a series of template τg(1 ≤ g ≤ G) are generated in the same
way from the original template τ (g = 1). The simulations are carried out sequentially from
the coarsest grid DG with the template τg of the largest size to the finest grid D(g = 1)
with the template τ (g = 1). Figure 2.3 shows the relation between the coarse grid and the
fine grid with cascading templates, and Figure 2.4 shows how the coarse template is used to
retrieve data. The strategy of multiple grid simulation is able to integrate spatial structures
at different scales and actually it has been applied to either pixel-based MPS or pattern-based
MPS algorithms, although the implementation may have some difference.

2.3.2.8 Scope of application to MPS

In general, pixel-based MPS algorithms are broadly used to reproduce spatial continuity
of categorical random field within the Bayesian framework. Their computational efficiency
varies in terms of different implementations or data structures adopted. However, the prac-
tical difficulty to find exact replicates of data events is often a hindrance to reproduce the
multi-point interactions. By contrast, pattern-based MPS algorithms are more flexible to
draw patterns from the TI by introducing the concept of similarity measure with distance
functions. Thus, pattern-based MPS algorithms can be applied to both categorical and
continuous data with reasonable reproduction of spatial structures. The similarity measure
between patterns in fact replaces the role of the conditional probability distribution. The
cutting down of statistical model in pattern-based MPS algorithms is twofold. On the one
hand, it eases the computational burden without estimation of a conditional probability dis-
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Figure 2.3 Coarse grid (grey nodes) with the coarse template (red nodes) overlapping on the
fine grid with fine template (blue nodes); note that the coarse template has bigger size to
capture larger spatial structures.

tribution. On the other hand, it also means less strictness in mathematical sense, which
may limit their reliability in practical applications. Most importantly, either pixel-based or
pattern-based MPS algorithms are eventually training image driven, hence their performance
depends on the quality of the training image, and it is hard to resolve the possible conflicts
between the training image and the hard data.

It should be noted that there are also other simulation methods intending to simulate complex
spatial features and of which the framework is out of the scope of MPS. For instance, the
object-based simulation algorithms have been developed to use parametric shapes as the basic
simulating units to fit the conditioning statistics through an iterate process [81–83]. However,
the object-based simulation algorithms are limited in the capability to respect conditioning
data [84], and instead they can act as alternative methods to generate training images for
running MPS [85].
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Figure 2.4 A replicate (right) retrieved by a coarse template form the training image (left).
(Background image from http://sipi.usc.edu/database/)

2.4 High-Order Stochastic Simulation

High-order stochastic simulation methods aim to generate realizations of non-Gaussian ran-
dom field without presumptions of probability distribution and to reproduce high-order spa-
tial statistics among multiple points, as a new approach to overcome the limitations of tra-
ditional second-order stochastic simulations. The terminology of multi-point statistics and
high-order statistics are synonyms in many existing literature. However, to be brief, the
high-order simulation methods differ from the mainstream MPS algorithms in two aspects.
On the one hand, the formulation of statistical models in high-order simulation is different
from the pixel-based MPS algorithms which attribute to solving a single normal equation.
On the other hand, the difference from the patter-based MPS methods is obvious since there
is no explicit statistical model established by the patter-based MPS methods.

2.4.1 Spatial cumulants

Starting from an effective quantification of high-order statistics, Dimitrakopoulos et al. [17]
propose a new concept of spatial cumulants, and upon which a statistical model of approx-
imating the multivariate CPDF by Legendre polynomial expansion series is established for
stochastic simulation in Mustapha and Dimitrakopoulos [18]. Cumulant generating function

http://sipi.usc.edu/database/
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is defined as the logarithm of moment generating function, and cumulants are the coefficients
of Taylor expansion of the cumulant generating function [86, 87]. Consider the joint prob-
ability formed by the random vector Z = (Z1, . . . , Zn), let the moment generating function
be

φ(θ) = E[eiθT Z]. (2.26)

Then the cumulant generate functions is defined as

ψ(θ) = lnφ(θ), (2.27)

where θ is a vector denoted as θ = (θ1, . . . , θn). Joint cumulants of multivariate random
variables appear in the Taylor expansion of cumulant generate functions as

ψ(θ) =
∞∑
r1=0
· · ·

∞∑
rn=0

κr1,...,rn

(iθ1)r1 · · · (iθn)rn

r1! · · · rn! , (2.28)

where κr1,...,rn is the cumulant with order ri for each random variable Zi.

The cumulants and moments can be exchanged to each other as [88]

K(Z1, . . . , Zn) =
∑
σ

(−1)|σ|−1(|σ| − 1)!
|σ|∏
a=1

E
( ∏
i∈σa

Zi
)
, (2.29)

E(Z1, . . . , Zn) =
∑
σ

|σ|∏
a=1

κσa , (2.30)

where K(Z1, . . . , Zn) is the cumulant of order n (noting that Z1, . . . , Zn can be redundant in
this expression); σ is an arbitrary partition of set {1, . . . , n} and |σ| is the number of blocks
in partition σ. An alternative recursive form handy for computation is given as [89]

µr1,...,rn =
r1∑
j1

· · ·
rn−1∑
jn−1

rn−1∑
jn

(
r1

j1

)
· · ·

(
rn−1

jn−1

)(
rn − 1
jn

)
µj1,...,jnκr1−j1,...,rn−jn , (2.31)

µ∗r1,...,rn
=

r1∑
j1

· · ·
rn−1∑
jn−1

rn−1∑
jn

(
r1

j1

)
· · ·

(
rn−1

jn−1

)(
rn − 1
jn

)
µ∗j1,...,jn(−κr1−j1,...,rn−jn), (2.32)

κr1,...,rn =
r1∑
j1

· · ·
rn−1∑
jn−1

rn−1∑
jn

(
r1

j1

)
· · ·

(
rn−1

jn−1

)(
rn − 1
jn

)
µ∗j1,...,jnµr1−j1,...,rn−jn , (2.33)

where µr1,...,rn and κr1,...,rn are the moments and cumulants, respectively, and µ∗r1,...,rn
is defined

as the moments corresponding to the negative cumulant generating function −ψ(θ) for the
computation of recursive equation.
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Consider the random field Z(u), spatial cumulants are defined on a family of random variables
distributed to a spatial template τ = {h1, . . . ,hn}, and the explicit form can be derived
from the above Equations from (2.29) to (2.33). For instance, the second-order cumulant is
equivalent to the covariance and is given by

cz2(h) = E[Z(u)Z(u + h)]− E[Z(u)]2. (2.34)

Through several case studies with different geometry shapes of template, Dimitrakopoulos
et al. [17] point out that spatial cumulants of different orders reveal various interrelations
among multiple points, of which exhibit the so called duality relation between the geological
patterns and spatial cumulants. In general, the mathematical entities of spatial cumulants
provide an effective approach to characterize the complex spatial patterns, as a consequence
they have been applied as an alternative tool to validate the realizations from stochastic
simulations [11, 90]. A public domain software for geological pattern recognition using high-
order spatial cumulants (HOSC) has been implemented by [91], and it is able to compute
spatial cumulants either on regular or irregular grids. Li et al. [92] develop a GPU-based
algorithm to calculate the spatial cumulants with considerable acceleration in computation,
however the algorithm is not applicable for irregular grids.

2.4.2 HOSIM

Mustapha and Dimitrakopoulos [18] propose a high-order stochastic simulation (HOSIM)
framework that aims to reproduce complex spatial patterns from a non-Gaussian random
field. The sequential decomposition of CPDF is adopted in HOSIM similar to other sequential
simulation methods. Major difference is that HOSIM does not assume a specific type of
distribution. The derivation of CPDF is based on a Legendre polynomial series. Legendre
polynomials can be defined by a differential equation as [93, 94]

Pm(z) = 1
2mm!

dm

dzm
[(z2 − 1)m] =

m∑
i

ai,mz
i, (2.35)

where Pm(z) is the mth-degree Legendre polynomial and z ∈ [−1, 1]. The infinite sequence of
polynomials form a complete orthogonal basis set on the domain D = [−1, 1]. The orthogonal
property of the Legendre polynomials can be expressed as

∫
D
Pm(z)Pn(z)dz =


0 m 6= n

2
2m+ 1 m = n

, (2.36)
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and the norm of the Legendre polynomial Pm(z) is

‖ Pm ‖=
√

2
2m+ 1 (2.37)

Mustapha and Dimitrakopoulos [18] develop their approximation of probability density func-
tion (PDF) by a truncated Legendre polynomial series with normalization as

fw(z0, z1, . . . , zn) =
w∑

i0=0
· · ·

in−2∑
in−1=0

in−1∑
in=0

Li0,i1,...,inP i0
(z0) · · ·P in−1

(zn−1)P in(zn), (2.38)

where fw(z0, z1, . . . , zn) is the approximation of PDF up to order w; P ī0(z0), . . . , P in(zn) are
the normalized Legendre polynomials and ik = ik− ik+1 for k < n. The coefficients Li0,i1,...,in ,
which is called Legendre cumulants in Mustapha and Dimitrakopoulos [18], can be derived
from spatial cumulants as

Li0,i1,...,in =
∫
D
P i0

(z0) · · ·P in−1
(zn−1)P in(zn)f(z0, z1, . . . , zn)dz0 . . . dzn = g(ci0,i1,...,in) (2.39)

The local CPDF is obtained by Bayes’ equation as

fZ0(z0|Λ0) = fw(z0,Λ0)
(
∫
D fw(z0, z1, . . . , zn)dz0 . . . dzn)Λ0

(2.40)

where fZ0(z0|Λ0) is the CPDF and the denominator is the marginalized distribution over Z0.

The rest main procedures of HOSIM follow as:

(1) The spatial cumulants are precomputed from the training image as well as the hard data
and the results are stored in a tree data structure.

(2) For each node to be simulated, find the neighbor of conditioning data within the predefined
template and estimate the local CPDF by Equations (2.38) and (2.40).

(3) Draw a random value from the local CPDF to the simulated node.

(4) Repeat from Step (2) until all nodes are simulated.

An important feature of HOSIM is that the spatial cumulants are computed from the sample
data in priority and borrowed higher order statistics from the training image only when the
estimation from the sample data is considered insufficient in case of scarcity of replicates.
Thus, HOSIM is data-driven, differing from the conventional MPS methods that are training
image driven and therefore hard to resolve the conflicts between the data and the training
image. It has been shown in various publications that HOSIM is able to reproduce non-
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Gaussian random fields with complex geological patterns and remains relatively insensitive
to the inconsistency between TI and the sample data [18, 19]. However, the number of
Legendre cumulants to the order w goes up to

(
N+w
w

)
given a conditioning data of size N ,

which means that the computation increases fast as either N or w increasing. Another issue
of HOSIM is that the positiveness is not ensured in the approximation of CPDF, although
asymptotically convergence to a true distribution provided. Mustapha and Dimitrakopoulos
[19] discard some high order terms to reduce the computational cost of Legendre cumulants.
Although the revised HOSIM algorithm is feasible in computation, it also leads to a loss of
accuracy of CPDF. Mustapha and Dimitrakopoulos [18] also mention the positiveness issue
where they force correction on the negative parts of the CPDF to be non-negative with
some post processing techniques. Mustapha and Dimitrakopoulos [95] propose another high-
order simulation method approximating the CPDF with generalized Laguerre expansions
where the coefficients are estimated from moments, however, the approach does not address
the positiveness issue and interpolation by a quadratic polynomial is applied to correct the
negative parts of CPDF. The positiveness problems are inevitable for all the approximation
of CPDFs by typical polynomial expansions.

2.4.3 Simulation algorithms beyond HOSIM

Vargas-Guzmán [96] proposes a non-Gaussian simulation method for heavy tailed probability
distributions with high-order cumulant parameters. Instead of a distribution-free framework
adopted in HOSIM, Vargas-Guzmán [96] assumes that the non-Gaussian random variables
follow a family of exponential power (EP) PDF and the random variables are decomposed
into a set of random residual variables which can be written as power of the original random
variables with high-order cumulants as the parameters. Several distributions including the
distributions with skewed PDF are explicitly written as a EP distribution with high-order
cumulants. Thus, it is straightforward to estimate parameters from the sample data and
generate the prediction. Nevertheless, the derivation of the decomposition of PDF as residuals
are provided only in one dimensional random variables and therefore not applicable to the
2D or 3D random fields. Abolhassani et al. [97] develop a new high-order simulation method
assuming the CPDF from exponential family where the parameters are derived by maximum
likelihood estimation. The CPDF is defined as function of a so called disparity vector which
is in fact a new distance based on the high-order statistics between data event and replicates
on TI. Eventually the replicates with more similar high-order statistics to the condition data
are given more weights to formulate the likelihood function. As a consequence, the method
is resistant to the conflicts between the hard data and the TI. However, a weak point this
method is that it still relies on replicates from the TI to obtain the parameter estimation
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except the impacts of replicates with lower similarity in high-order statistics to the data
event are filtered out, thus the stability of the estimation may demand larger TI or more
than one TI. Minniakhmetov and Dimitrakopoulos [98] propose a new high-order simulation
framework which is able to generate realizations for categorical random variables. In their
method, the high order spatial indicator moments are approximated by B-spline functions
with the experimental statistics calculated from the replicates in the hard data, and the
normalized B-spline functions are used as the approximation of CPDF to draw random
values for the simulation. The method is data driven without referring to a TI, whereas it is
difficult to extend to simulation of continuous attributes.

2.4.4 Extension to multiple variables

The extension of high-order simulation methods to multiple variables are relatively few.
A most recent development of joint high-order simulation with decorrelation of high-order
spatial statistics is proposed by Minniakhmetov and Dimitrakopoulos [99]. In this method,
Minniakhmetov and Dimitrakopoulos [99] develop a decorrelation technique with diagonal
dominant cumulants aiming to approach the statistical independence of the decomposed
factors. A linear transformation is assumed to obtain the new factors Y(u) from the random
field Z(u) as

Y(u) = AZ(u). (2.41)

The diagonal dominant factorization can be expressed as a minimization problem with the
objective function as

min
∑
d

αdFd(A), (2.42)

and Fd(A) is defined as

Fd(A) =
∑
k0

1 +
∑

non-diagonal ‖ Cum(Yk0(u),Yk1(u), . . . ,Ykd−1(u)) ‖2

‖ Cum(Yk0(u),Yk0(u), . . . ,Yk0(u)) ‖2
(2.43)

The main idea of the algorithm is to find a linear transformation such that the diagonal
elements dominate the cumulants tensor. HOSIM is used to generate realizations for each
decomposed factor and the results are back transformed to the original data space to get the
joint simulations of multiple variables. Currently, the algorithm only considers decorrelation
at lag zero. To consider impact of cross-cumulants at various lags, the objective function
needs to be revised to include more terms which may increase the complexity of solving the
minimization problem.
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2.5 Learning-Based Stochastic Simulation and Kernels

The development of artificial intelligence over the past decades leads to various machine learn-
ing methods and their vast applications in engineering domains. State-of-the-art machine
learning techniques have been integrated to uncertainty quantification to develop learning-
based stochastic simulation methods. As an early attempt to apply machine learning method
to stochastic simulation, Caers [100] proposes a simulation method using neural network to
predict the conditional probability distribution with incorporation of multiple point statistics.
The Metropolis-Hasting sampler [101] is used to generate the random values to be simulated
through a iterative updating procedure. The target probability density function is expressed
as a convex combination of certain type of density functions and the related parameters are
learned from the replicates with a given spatial template retrieved from the training image
based on the Expectation-Maximization (EM) algorithm [102]. More recently, a deep learning
technique called generative adversarial networks (GAN) [103] has been substantially studied
and applied to stochastic simulation [104–107]. The architecture of GAN contains two main
components, a generator G and a discriminator D each corresponded to a neural network.
Given that a set of sample images which are labeled as the real data, the images created by
the generator G are labeled as the fake data. A latent space Z consists of a set of independent
random variables, from which the random samples z are drawn as the input for the generator
G. The discriminator D is trained to distinguish the two categories of images and label them
correctly as much as possible. On the other hand, the generator G is trained to create images
as close to the sample images as possible so that discriminator D can be fooled by the fake
data. This adversary training is achieved by solving a minimization-maximization problem
as

min
G

max
D

Ex∼pdata(x)
[

logD(x)
]

+ Ez∼p(z)

[
log

(
1−D

[
G(z)

])]
, (2.44)

where pdata(x) corresponds to the probability distribution of the real data, and p(z) corre-
sponds the probability distribution of the random variables in the latent space. In the context
of multiple point simulation, the training images act as the real data and the generated re-
alizations are created by the generator G. While the GAN converges after training, the
generated realizations should get close to the underlying distribution of the training images.
As many of the stochastic simulation methods using GANs are unconstrained by the sample
data, Dupont et al. [105] propose a simulation method conditioned to the physical measure-
ments with GAN. They introduce two loss functions, namely prior loss and the context loss,
to balance the reproduction of the statistics from the training images and the sample data.
The prior loss penalizes the deviation from the distribution of the training images and the
context loss penalized the mismatch between the generated data and the actual measurement
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at the locations of the sample data. Similar loss functions are also introduced in [107] to
develop stochastic subsurface model reconstruction using GAN. A recent research in Avalos
and Ortiz [108] also uses the convolutional neural network (CNN) [109] to develop multiple
point simulation method, where the spatial patterns are captured by the features extracted
by the convolutional layers for learning the probability distribution of spatial attributes given
a certain spatial template.

The kernel methods provide another way to represent the original data as features in a high-
dimensional feature space, and they are widely used in statistical learning [110, 111]. Some
earliest application of kernel to probability density estimation can date back to Parzen [112]
and the related methods are called kernel density estimation (KDE) methods[113–115]. In
general, a kernel function is positive definite and has the so-called reproducing property [116],
from which a so-called reproducing kernel Hilbert space (RKHS) is determined. In machine
learning field, the so-termed feature space resembles the kernel Hilbert space by taking the
elements from the original data space into the kernel space as features. The features usually
carries higher dimensional information than the raw data, however, the similarity between
the features can be expressed by the kernel functions. In terms of stochastic simulation, the
covariance function is a kernel and defines a dual kernel space of the original data space [117].
In the multiple point simulation methods, kernels have been used to measure the similarity
between spatial patterns by feature mapping [67, 118], nevertheless, these applications are
limited in the sense that learning a random field model is not under consideration.
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CHAPTER 3 GENERAL ORGANIZATION OF THE DOCUMENT

This thesis research develops new stochastic simulation methods to quantify spatial uncer-
tainty incorporating the high-order spatial statistics of the available data, aiming for better
performance in reproducing the underlying complex patterns in various natural phenomena.
The literature review reveals the evolution of stochastic simulation methods from the conven-
tional second-order stochastic simulation methods to the multiple-point simulation methods,
as well as more recent high-order simulation methods. In general, the trending of the stochas-
tic simulation methods shifts from the Gaussianity to non-Gaussianity, and from pair-wise
correlations to multiple-point spatial continuity. The new paradigm of high-order stochastic
simulation provides a distribution-free random field model accounting for high-order spatial
statistics, distinguished from other models. How to effectively and efficiently incorporate
high-order spatial statistics, however, poses challenges from both the theoretical and the
computational aspects, as well as the practical challenges in real-life applications.

To reach the research goal, the thesis contains four different chapters as the main content to
deliver the major research objectives including the theoretical development, computational
model, and the practical aspects. Chapter 4 proposes a new computational model of high-
order simulation based on spatial Legendre moments. Although the proposed computational
model is derived from the concept of spatial Legendre moments, the explicit computation
of the empirical high-order spatial statistics is avoided in the related numerical equation.
Instead, the approximation of probability density function is written in a kernel-like form
with spatial statistics of different orders incorporated in a unified function. The proposed
computational model not only improves the computational efficiency of utilizing high-order
spatial statistics of the available data during the simulation, but also leads to a concept of
a new kernel function, the so-called spatial Legendre moment kernel (SLM-kernel) proposed
in Chapter 5.

The proposed SLM-kernel is proven to be positive definite in Chapter 5 and, thus possesses
the so-called reproducing property to construct a reproducing kernel Hilbert space (RKHS).
A feature mapping is also defined to map the replicates of the data events into the new kernel
space. The high-order spatial statistics of the available data are encapsulated in the empirical
kernel statistics. In the same manner, the probability distributions of the related random
field model are embedded into the same kernel space in the form of expected kernel statistics.
A new statistical learning framework is proposed for high-order stochastic simulation through
a kernelized learning algorithm.
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In Chapter 6, the concept of aggregated kernel statistics is proposed to utilize the high-order
spatial statistics from the ensemble set of the replicates retrieved from the sample data with
different spatial configurations. The statistical learning framework proposed in Chapter 6 is
further extended to incorporate the aggregated kernel statistics. This extension allows sparse
data learning from the relatively sparse sample data and, thus leads to a new training-image
free, high-order simulation method.

In Chapter 7, the statistical learning framework is adopted to accommodate high-order spatial
information at multiple scales. Specifically, a learning algorithm is proposed to incorporate
the high-order spatial statistics at coarse scales from the sample data, while complement the
high-order spatial statistics at finer scales with the informatin from the training image.

A general discussion on top of the main developments in this thesis is presented in Chapter
8. Chapter 9 concludes the major contributions of the thesis research. Limitations regarding
the thesis research is discussed and potential future research is presented.
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CHAPTER 4 ARTICLE 1: A NEW COMPUTATIONAL MODEL OF
HIGH-ORDER STOCHASTIC SIMULATION BASED ON SPATIAL

LEGENDRE MOMENTS

Abstract: Multiple-point simulations have been introduced over the past decade to over-
come the limitations of second-order stochastic simulations in dealing with geologic complex-
ity, curvilinear patterns and non-Gaussianity. However, a limitation is that they sometimes
fail to generate results that comply with the statistics of the available data while maintain-
ing the consistency of high-order spatial statistics. As an alternative, high-order stochastic
simulations based on spatial cumulants or spatial moments have been proposed; however,
they are also computationally demanding, which limits their applicability. The present work
derives a new computational model to numerically approximate the conditional probability
density function (cpdf ) as a multivariate Legendre polynomial series based on the concept of
spatial Legendre moments. The advantage of this method is that no explicit computations
of moments (or cumulants) are needed in the model. The approximation of the cpdf is sim-
plified to the computation of a unified empirical function. Moreover, the new computational
model computes the cpdf s within a local neighborhood without storing the high-order spatial
statistics through a predefined template. With this computational model, the algorithm for
the estimation of the cpdf is developed in such a way that the conditional cumulative distri-
bution function (ccdf ) can be computed conveniently through another recursive algorithm.
In addition to the significant reduction of computational cost, the new algorithm maintains
higher numerical precision compared to the original version of the high-order simulation. A
new method is also proposed to deal with the replicates in the simulation algorithm, reduc-
ing the impacts of conflicting statistics between the sample data and the training image. A
brief description of implementation is provided, and for comparison and verification, a set of
case studies are conducted and compared with the results of the well-established multi-point
simulation algorithm, filtersim. This comparison demonstrates that the proposed high-order
simulation algorithm can generate spatially complex geological patterns while also reproduc-
ing the high-order spatial statistics from the sample data.

Keywords: High-order stochastic simulation, multi-point statistics, spatial moments,
Legendre polynomials

Published: Yao L, Dimitrakopoulos R, Gamache M (2018) A new computational model of high-order
stochastic simulation based on spatial Legendre moments. Math Geosci 50 (8):929-960
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4.1 Introduction

For the past several decades, stochastic simulations have been used to quantify spatial uncer-
tainty in earth science applications. Traditionally, stochastic models are built on the basis of
the Gaussian distribution and two-point statistics, where covariance or variograms are used to
capture the spatial correlations [22, 23, 26, 40]. The limitations of the existing two-point sim-
ulation methods have been reported in various publications [11–14, 26, 84], which are mostly
related to the poor reproduction of spatial distributions while dealing with the complex spatial
patterns, spatial connectivity of extreme values and non-Gaussianity. To reflect the complex
geological patterns, multi-point statistics have to be introduced instead of conventional two-
point statistics. Guardiano and Srivastava [12] propose a multiple-point simulation (mps)
framework and the concept of the training image (TI). The primary difference between mps
and two-point simulations is that the conditional cumulative distribution functions (ccdf ) are
built on empirical estimations of conditional probabilities with multiple-point configurations,
which is equivalent to solving a normal equation according to the Bayes’ rule. Strebelle [57]
formalizes the method and develops the first computationally-efficient implementation. For
over a decade, research has been focused on various issues around mps algorithms, such as
computational efficiency and various patch-based extensions [60, 62, 63, 66, 67, 70, 75, 119–
124]. In general, these mps methods are TI-based, and their statistics are estimated from
distributions of replicates of data events in the training image. Their main drawbacks are:
(1) the high-order statistics are partially and indirectly considered; (2) the methods are not
driven by a consistent mathematical framework; and, (3) since they are TI-driven, they may
not generate results that comply with the statistics of actual available data. The latter
shortcoming becomes distinctly clear in mining applications, where dense data sets are used
[125, 126].

As an alternative, a high-order simulation framework with mathematical consistency is pro-
posed with the introduction of a new concept of spatial cumulants [17]. The so-called high-
order simulation algorithm (hosim) and its implementation are developed by [19, 91]. In
this algorithm, the conditional probability density function (cpdf ) is approximated by a mul-
tivariate expansion with coefficients expressed in terms of spatial cumulants. The hosim
algorithm is extended mostly recently to deal with the joint simulation of multiple variables
as well as the simulation of categorical data [98, 127]; other extensions are approximating
the cpdf with different types of orthogonal polynomial bases, such as expansion series with
Laguerre polynomials and Legendre-Like spline polynomials [95, 128]. However, the related
calculations are computationally demanding, since the number of spatial cumulants involved
in the series increases exponentially either as the order of cumulants or the quantity of con-
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ditioning data increases. In [19], some terms of the expansion series have to be discarded to
obtain computational feasibility, which compromises the accuracy of the approximated cpdf.
In addition, the computational cost limits the approach for larger-scale applications.

To take full advantage of the high-order simulation, that is, its data-driven aspect and no
presumption of data distribution, and address the computational difficulties, a new stochas-
tic simulation algorithm based on high-order spatial Legendre moments is presented herein.
Rather than just a mathematical equivalency of the previous model of the high-order simu-
lation, the approximation of cpdf by Legendre polynomial series is reformulated under the
framework of the sequential simulation, leading to a much more concise form of the compu-
tational model. In this new method, all explicit calculations of moments are encapsulated in
a unified function to derive the cpdf, cutting down the previous complex computations into
a few iterations of simple operations with polynomial time. Moreover, there is no predefined
template configuration in the new algorithm, as required for the normal mps methods and
the previous hosim model. The spatial configuration of the template will instead depend on
the local neighborhood of the node to be simulated; note that there is no need to store the
intermediate results in a tree as in most of the mps methods including the previous hosim.
The variable template also has the advantage of simultaneously capturing the spatial patterns
either in local scale or global scale.

The remainder of the paper continues with Section 4.2, which describes the stochastic model
based on the concepts of high-order spatial Legendre moments. Section 4.3 develops the com-
putational model as a statistical function. Section 4.4 describes the new proposed high-order
simulation algorithm and analyzes the computational complexity. Section 4.5 explores the
implementation of the new high-order simulation algorithm. Section 4.6 shows the examples
to assess the new method and compare it with filtersim. Finally, conclusions and future
research are presented in Section 4.7.

4.2 Stochastic Model of High-Order Simulation with Spatial Legendre Moments

4.2.1 Sequential simulation

In this paper, the stochastic model is discussed specifically under the sequential simulation
framework [23–25]. Sequential simulation aims to reproduce spatial properties sequentially by
decomposing the multivariate conditional distributions into a set of univariate distributions.
Considering a stationary and ergodic random field Z(u), let Z (u1) , . . . , Z (uN) be a set of
random variables with locations at u1, . . . ,uN , respectively. Then, the N random variables
Z (u1) , . . . , Z (uN) constitute a joint multivariate distribution. In terms of the stochastic
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simulation, it is supposed that realizations are to be generated from Z (u1) , . . . , Z (uN), and
the available data set are Λ0 = {ζ

(
u
′
1

)
, . . . , ζ

(
u
′
n

)
}, where ζ

(
u
′
i

)
is the sample data at the

location u′i for i = 1, . . . , n, and n is the number of sample data in total. For simplification,
Z (u1) , . . . , Z (uN) are alternatively written as Z1, . . . , ZN , and a similar simplification of
notation applies in the context of a random field. Following the above notation, the stochas-
tic simulation of the random field is based on the sampling from the N -variate probability
distribution posterior to the data set Λ0, which can be characterized by a conditional cumu-
lative distribution function (ccdf ) as FZ(z1, . . . , zN |Λ0) or by a probability density function
(cpdf ) as fZ(z1, . . . , zN |Λ0). The joint cpdf fZ(z1, . . . , zN |Λ0) can be decomposed into the
product of a series of univariate cpdf s (Rosenblatt 1952; Johnson 1987) as

fZ (z1, . . . , zN |Λ0) = fZ1 (z1|Λ0) · · · fZN
(zN | ΛN−1) , (4.1)

where Λi(i = 1, . . . , N − 1) are a series of sets and Λi=Λi−1 ∪ {ζ(ui)} , i = 1, . . . , N , where
ζ(ui) is the value drawn from the conditional probability distribution with a density function
described as fZi

(zi|Λ0).

The basic idea of sequential simulation is to sequentially draw random values from the de-
composed univariate cpdf s through a random path that visits all the nodes to be simulated.
Irrespective of the node’s location corresponding to the sequence number, there is no differ-
ence in the sampling procedures. Without loss of generality, the cpdf in every single sampling
procedure can be symbolized uniformly as fZ0(z0|Λ), where Z0 means the current simulat-
ing node and Λ means the set of conditioning data around Z0’s location u0. Considering
the computational intensity and the statistical relevancy, the conditioning data are usually
confined to a neighborhood closest to the simulation node instead of taking account of all
available data on the whole domain of the random field. For more details on this screen-effect
approximation, the reader is referred to Dimitrakopoulos and Luo [28].

An algorithmic description of sequential simulation can be summarized as the following steps:

1. Draw a random path to visit all the N nodes to be simulated.

2. Starting from i = 1 and for each node Z(ui), derive the conditional probability cumu-
lative distribution FZi

(zi|Λi−1) or the density function fZi
(zi|Λi−1).

3. Draw a random value ζ(ui) from the conditional probability distribution in Step 2 and
update the conditioning data by adding the node value ζ(ui) in to the current data set
Λi.

4. Repeat from Step 2 until all the nodes are visited.
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4.2.2 High-order spatial Legendre moments

In probability theory, moments are defined as expectations of integer power functions of a
random variable. Given a random variable Z in probability space (Ω, F, P ), suppose that the
density of probability measure P is a continuous function fZ (z). The moment of order w is
defined as

MomZ (w) = E [Zw] =
∫

Ω
[Z (ω)]wdP (ω) =

∫
R
zwfZ (z) dz. (4.2)

The moments of random vector Z = [Z0, . . . , ZN ] with a multivariate density fZ(z0, . . . , zN)
defined similarly as

MomZ (w0, · · · , wN) = E [zw0
0 · · · z

wN
N ] =

∫
RN
zw0

0 · · · z
wN
N fZ (z0, . . . , zN) dz0 · · · dzN , (4.3)

where wi(i= 0,· · ·,N) are the orders of moments for the i-th element of vector Z. The spatial
moments of a discrete random field Z=[Z (u0) , . . . , Z (uN)] are functions of spatial location
variables u0, . . . ,uN . Assuming the random field Z (u) is stationary and ergodic, the spatial
moments of Z (u) can be expressed as functions of distance vectors, and thus they are inde-
pendent of the locations. These distance vectors, which keep the spatial configuration of a
center node and nodes within its neighborhood, can be expressed using a spatial template T
(Figure 4.1). The terminologies of the spatial template T and data events [18, 57] are the
following:

(i) Spatial template T: geometry defined by N distance vectors (h1, . . . ,hN) from the
center node u0, T = {u0,u0 + h1, . . . ,u0 + hN}.

(ii) Data events: outcomes of the random field in the spatial template T. Specifically, the
data events are conditioning data set Λ in the present work.

The spatial moments of a random field Z in a template T can be expressed element-wise as

MomT
Z (w0, · · · , wN) = E [h1, . . . ,hN ;Zw0

0 · · ·Z
wN
N ] , (4.4)

where MomT
Z is the moment function of Z in the spatial template T, (h1, . . . ,hN) are the

distance vectors to represent the geometry of T and wi are the orders of the moments with
each random variable Z (ui) (i = 1, . . . , N).

The Legendre polynomials are used here to further define the concept of spatial Legendre
moments. Legendre polynomials are one kind of special math functions defined on the interval
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(a)

(b)

Figure 4.1 (a) A size 40×40 grid to be simulated with a 9×5 template overlaid on the current
visiting node; (b) Spatial template T and a certain data event in T, the center square is the
node to be simulated; the black squares are the conditioning data

[−1, 1], which can be expressed using Rodrigues’ formula [94]

Pm (z) = 1
2mm!

dm

dzm

[(
z2 − 1

)m]
, (4.5)

wherePm (z) is the mth-degree Legendre polynomial. The infinite sequence of polynomials
forms a complete orthogonal basis set on the domain D = [−1, 1]. The orthogonal property
of the Legendre polynomials can be expressed as

∫
D
Pm (z)Pn (z) dz =

 0 m 6= n
2

2m+1 m = n
(4.6)

and the norm of the Legendre polynomial Pm (z) is

‖ Pm ‖=
√

2
2m+ 1 . (4.7)

With a simple substitution of polynomials in moment function (4.4) into Legendre polyno-



44

mials, the spatial Legendre moments are defined as

LTw0w1···wN
=

N∏
i=0

(
wi + 1

2

)
· E [h1, . . . , hN ;Pw0 (z0)Pw1 (z1) · · ·PwN

(zN)], (4.8)

where LTw0w1···wN
are Legendre moments defined on the spatial template T; the extra co-

efficient
(
wi + 1

2

)
on the right-hand side of the equation is intentionally introduced as a

normalization term for convenience of the later computation (see Appendix for the details).

4.2.3 Multivariate expansion series of joint probability density function

A piecewise continuous function f(z) defined on the interval [−1, 1] can be written as a series
of Legendre polynomials

f (z) =
∞∑
m=0

LmPm (z). (4.9)

Likewise, the expansion of a multivariate function f(z0, z1, . . . , zN) can defined on an N + 1-
dimensional domain in the same way. Specifically, suppose that the multivariate function is a
density function related to the joint distribution of random variables on a spatial template T.
The density function can be expanded into Legendre polynomial series in terms of Legendre
spatial moments and Legendre polynomials as (see Appendix for the details)

f (z0, z1, . . . , zN) =
∞∑

w0=0

∞∑
w1=0
· · ·

∞∑
wN =0

LTw0w1···wN
Pw0 (z0)Pw1 (z1) · · ·PwN

(zN). (4.10)

In practice, the above infinite series, Equation (4.10), are truncated at a certain order W,
thus leading to the approximated density function

f (z0, z1, . . . , zN) ≈ fW (z0, z1, . . . , zN) =
W∑

w0=0

W∑
w1=0
· · ·

W∑
wN =0

LTw0w1···wN

N∏
i=0

Pwi
(zi). (4.11)

From definition (4.8), the spatial Legendre moments can be explicitly derived as

LTw0w1···wN
=
∫
D

N∏
i=0

[(
wi + 1

2

)
P
wi

(zi)
]
f (z0, z1, . . . , zN) dz0dz1 · · · dzN . (4.12)

Experimentally, if there are M replicates of data events associated with template T found in
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the training image, the spatial Legendre moments can be calculated as

L̃Tw0w1···wN
= 1
M

M∑
t=1

N∏
i=0

(
wi + 1

2

)
P
wi

(ζt,i), (4.13)

where ζt,i are the data values of replicates in the template T, t is the sequence number of
replicates and i is sequence number of random variables.

4.3 Computational Model

Combining the Equations (4.10) to (4.13), the empirical joint pdf can be derived as

f̃ (z0, z1, . . . , zN) ≈ f̃W (z0, z1, . . . , zN) = 1
M

M∑
t=1

W∑
w0=0

W∑
w1=0
· · ·

N∏
i=0

[(
wi + 1

2

)
Pwi

(ζt,i)Pwi
(zi)

]

= 1
M

M∑
t=1

N∏
i=0

[
W∑
w=0

(
w + 1

2

)
Pw (ζt,i)Pw (zi)

] .

(4.14)

Equation (4.14) gives a unified computational model of empirical estimation of the density
function on the spatial template T, noticing that, in the right-hand side of the equation, the
subscript i of wi is dropped because of the symmetry of computation.

Now let’s consider the cpdf fZ0 (z0 | Λ) of a single sampling step in sequential simulation
(ref. Section 4.2.1). The joint pdf can be marginalized from the Equation (4.14) to get
the marginal pdf of conditioning random variables. To specify the difference between the
empirical models and theoretical models in Equations (4.10)–(4.11), f̃ and f̃W specifically
denote the experimental function corresponding to probability density function f and its
Legendre polynomial series truncated at order W , respectively.

For convenience, denote functions Xt (zi) as

Xt (zi) =
W∑
w=0

(
w + 1

2

)
Pw (ζt,i)Pw (zi). (4.15)

Then, Equation (14) can be rewritten as

f̃W (z0, z1, . . . , zN) = 1
M

M∑
t=1

Xt (z0)
N∏
i=1

Xt (zi). (4.16)

The result of integration of Xt (z) over [−1, 1] can be derived from the orthogonal properties
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of Legendre polynomials as ∫ 1

−1
Xt (zi)dzi = 1. (4.17)

In fact, Equations (4.16) and (4.17) ensures that the integral of the approximated probability
density function to be 1, a necessary property of probability density.

Followed by the marginalization and Equation (4.17), the empirical density of marginal dis-
tribution on the random variables z1, . . . , zN is

f̃W (z1, . . . , zN) = 1
M

M∑
t=1

N∏
i=1

Xt (zi). (4.18)

From Equations (4.16) and (4.18) and considering the relation between the conditional prob-
ability density function and the joint probability density function, one can derive

f (z0 | Λ) ≈ f̃W (z0 | Λ) =
∑M
t=1Xt (z0) ·∏N

i=1Xt (ζi)∑M
t=1

∏N
i=1Xt (ζi)

, (4.19)

which provides a concise computational model of the cpdf.

The above development provides a theoretical equivalency of the approximation of cpdf by
truncated Legendre series, which was proposed in Mustapha and Dimitrakopoulos [18, 19].
However, the new reformulated model in the current paper leads to a different stochastic
simulation method in view of the related computational aspects. The advantage of the
new model represented by Equation (4.19) is that no explicit computations of moments or
cumulants are needed. In addition, the new model is computationally more accurate than
the hosim program in Mustapha and Dimitrakopoulos [19], in which some terms have to be
dropped from the full expansion of Legendre series in the form of spatial cumulants to gain
computational efficiency.

4.4 Algorithm Description and Computational Analysis

4.4.1 Algorithm for computing cpdf

From the Equations (4.17) to (4.19), it can be easily shown that
∫ 1

−1
f̃W (z0 | Λ) dz0 = 1. (4.20)

As Xt (ζt,i) is a constant from the Equation (4.15), and from Equations (4.15) and (4.19),
it is obvious that f̃W (z0 | Λ) can be expressed as the summation of a series of Legendre
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polynomials, that is

f̃W (z0 | Λ) =
W∑
w=0

cwPw (z0), (4.21)

where cw(w = 1, . . . ,W ) are constants which can be conveniently computed as shown in the
following Algorithm 4.1.

By the property of Legendre polynomial that P0 (z) = 1,∀z ∈ [−1, 1], combined with Equa-
tions (4.15) and (4.21), the computation of coefficients cw(w = 1, . . . ,W ) can be divided into
the computation of functions Xt (zi) over the nodes of each replicate. Especially, the first
term of cw is always fixed as c0 = 1

2 .

Algorithm 4.1 Calculation of a cpdf

Data:
(1) data event (conditioning data): Λ={ζ1, . . . , ζN};
(2) replicates of data events: ζt,i, t = 1, . . . ,M ; i = 1, . . . , N ;
(3) maximum order: W
Result: conditional probability density function
// Initialize the coefficients
for w = 0 to W do

c [w] = 0;
end for
for t = 1 to M do

//Computation of the function Xt (z0)
for w = 0 to W do

X [w] =
(
w + 1

2
)
·Pw(ζt,0);

end for
//According to Equation (4.19), the product

∏N
i=1 Xt (ζi) needs to be computed.

//The product is initialized as 1 before the calculation of Xt (ζi)
X_Prod = 1;
// Update the product

∏N
i=1 Xt (ζi) by computing the function Xt (ζi)

for i = 1 to N do
Xt = 0;
for w = 0 to W do

Xt = Xt +
(
w + 1

2
)
· Pw (ζt,i) · Pw(ζi)

end for
X_Prod = X_Prod ·Xt;

end for
for w = 0 to W do

X [w] = X [w] ·X_Prod;
c [w] + = X [w] ;

end for
end for
//Note that the denominator in Equation (4.19)

∑M
t=1
∏N

i=1 Xt (ζi) is actually equal to 2 · c[0]
denom=2·c[0];
for w = 0 to W do

c [w] = c [w] /denom;
end for
END OF ALGORITHM
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4.4.2 Recursive algorithm for computing a ccdf

From the results of Algorithm 4.1, the conditional probability density function can be ex-
pressed as

f (z0 | Λ) = 1
2 +

W∑
w=1

cwPw (z0). (4.22)

The coefficient c0 = 1
2 is taken out from the summation in Equation (4.22) so that the

Bonnet’s recursion relation of Legendre polynomials can be smoothly applied in the followed
derivation.

According to the Bonnet’s recursion relation of Legendre polynomials

(2w + 1)Pw (z) = d

dz
[Pw+1 (z)− Pw−1 (z)] , (4.23)

the following equation can be derived

(2w + 1)
∫ z0

−1
Pw (z) dz = Pw+1 (z0)− Pw−1 (z0). (4.24)

Therefore, the conditional cumulative distribution function (ccdf ), F (z0 | Λ), can be deduced
as

F (z0 | Λ) =
∫ z0

−1
f (z0 | Λ)dz

=1
2+1

2z0+
W∑
w=1

cw
2w + 1 [Pw+1 (z0)− Pw−1 (z0)]

=
W+1∑
w=0

dwPw (z0)

. (4.25)

As can be seen from Equation (4.25), the ccdf is also expressed as the summation of the
univariate Legendre polynomials, with the order of the Legendre polynomials increasing by
one because of the integration. Furthermore, the new coefficients dw(w = 0, . . . ,W,W + 1)
now can be computed through Equation (4.25) in an iterative way, as shown in Algorithm
4.2.

4.4.3 Computational complexity

The most computationally demanding part of the high-order simulation algorithm is to cal-
culate the Legendre series coefficients, which is the basis for estimating the conditional prob-
ability density functions. Considering that the conditional probability density functions are
approximated by Legendre series truncated to a certain order W , as Equation (4.11) shows,
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Algorithm 4.2 Integration of a cpdf to get a ccdf

Data:
(1) maximum order of cpdf : W ;
(2) coefficients array of cpdf : c[0, 1, . . . ,W ].
Result: coefficients array of cumulative distribution function: d[0, 1, . . . ,W + 1].
// Initialize the coefficients
for w = 0 to W + 1 do

d [w] = 0;
end for
// Update the coefficients according to Equation (4.25)
for w = 1 to W do

d [w + 1] = d [w + 1] + c[w]
2w+1 ;

d [w − 1] = d [w − 1]− c[w]
2w+1 ;

end for
d [0] = d [0] + 1

2 ;
d [1] = d [1] + 1

2 ;
END OF ALGORITHM

the number of the different coefficients is (W + 1)N+1, where N is the number of data points.
Even the Legendre series are approximated by truncated series, where the sum of orders of
different variables is not greater than W, which is the form adopted in Mustapha and Dim-
itrakopoulos [19]. The number of the different coefficients is still as big as ∑W

w=0
N+w
w for

a single data event. Although this computational complexity can be reduced by discarding
some terms which are regarded as negligible, it should be noted that this simplification may
lead to a loss of accuracy.

From Equations (4.15) and (4.19), it can be seen that all of the different coefficients introduced
by the explicit expansion of Legendre series are reduced to a calculation of the function∏N
i=1Xt(zi). There are only NW computations of Legendre polynomials and a few products

and additions included in the calculation of the function ∏N
i=1Xt(ζt,i) for each data event

encountered in the training image. It should be noted that the computational time still
depends on the number of the replicates encountered in the training image, as well as the
maximal order of Legendre polynomials and the number of conditioning in the neighborhood.
However, the computational cost regarding the above-mentioned parameters is significantly
reduced, as opposed to computing the large number of coefficients in the previous version of
high-order simulation.

4.5 Implementation

The implementation is relatively straightforward in terms of the above algorithms estimating
the cpdf and ccdf according to the framework of sequential simulation. However, a method
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is proposed in this section to deal with the replicates, aiming to reduce the conflicts of
spatial statistics between the sample data and the training image. The main idea of the
method is to deliberately select replicates which are similar to the conditioning data within
a certain range according to some measure of similarity. The reason is that the conditional
probability distribution is a one-dimensional intercept from the multivariate joint probability
distribution, and therefore the replicates that are close to the conditioning data are more
relevant to estimate this one-dimensional local probability distribution.

For every node to be simulated in sequential simulation, a local neighborhood is defined to
search for conditional data from both the sample data and the simulation grid. The locations
of these conditional data together with the center node to be simulated constitute a geometry
template. Given a training image, replicates of the geometry template can always be found
from the training image as long as the searching neighborhood is inside of the training
image’s extent. In the present work, the measure of similarity between the replicates and
the data event is set to be the average square Euclidean distance between the replicates
and the conditioning data, and the threshold is set as the variance of the sample data. The
replicate will be selected in the estimation of cpdf if the distance between the replicate and the
conditioning data is less than the variance of the sample data. In addition, when there are few
replicates that can be found from the training image due to the conflicts between the sample
and the training image, some tolerances are given to the shape of the geometry template so
that similar replicates can be found. Figure 4.2 shows a general way to search the candidate
points associated with a certain vector in a spatial template. The parameter θ is the angle
tolerance of the candidate point’s deviation from the original vector in the template, and ∆h
and b are the tolerances in the lag and bandwidth, respectively. Possible candidate points are
taken from the shadowed area, and the point that has the closest property to the ending node
of the original vector in the template is selected. To maintain the consistency of the geometry
configuration, an inner part of the template is specified such that the relative locations to
the center node inside the inner part remains unchanged. In other words, only the nodes
further away from the center node are allowed to have the ability to change locations. This
strategy gives more flexibility to manipulate the geometry configuration of the replicates.

Figure 4.2 Finding approximate replicates from the training image with the tolerances of the
original geometry template



51

The main procedure of the high-order simulation approach can be summarized in the following
steps:

1. Read the sample data and training image into memory. In order to apply the multi-
variate expansion of Legendre polynomials, the property values of the samples or train-
ing image are scaled to the interval [−1, 1] through a linear transformation.

2. Specify dimensions of a certain neighborhood for searching the conditional data and
other parameters such as the minimum or maximum number of the conditional data.
The geometry of the local template totally depends on the locations of the conditional
data. In the present work, a rectangular shape neighborhood was used and searching
policy was applied to find the closest points to the center. Nevertheless, the shape of
the neighborhood and the searching policy can be manipulated to further control the
spatial configuration of the template.

3. Set the lag tolerance, angle tolerance and bandwidth tolerance to enable searching
approximate replicates from the training image (see Figure 4.2).

4. Generate a random sequence on the indices of the simulation grid to create a random
visiting path.

5. According to the predefined visiting path, sequentially pick one node at a time for the
simulation. If the property value is already known (copied from the hard data), then
continue to choose another single node until the property value is not assigned. The
conditioning data are searched inside the neighborhood centered on the chosen node
by the previously specified searching policy from both the hard data and the simulated
nodes.

6. A local spatial template is determined by the data and the center node for later sim-
ulation. This spatial template is then used to find similar replicates from the training
image according to the parameters set in Steps 2 and 3. If the number of approximated
replicates is not adequate for statistical inference, then drop the furthest node to the
center node and repeat until the minimum number of conditioning data is reached.

7. The local ccdf is estimated from the replicates using the algorithms elaborated in
Section 4.4. A random value is drawn from the local ccdf using the Monte Carlo
method and set as the property value of the node to be simulated.

8. Repeat from Step 5 until all the nodes in the random path are visited.
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4.6 Examples and Comparisons

The data used in this paper are extracted from the Stanford V reservoir data set [129].
A horizontal section serving as the exhaustive image is taken from the Stanford V reservoir
model of porosity in a square grid with 100×100 pixels (cells of size 100 meters). As seen from
the exhausting image in Figure 4.3, porosity values are distributed as several channels that
can be distinguished from the background. For the examples and comparisons presented in
the next sections, 200 data points are randomly sampled from the selected exhaustive image
to serve as the sample data set and are displayed in Figure 4.4. Applying the proposed high-
order approach, the selected data is used to simulate the exhaustive image in two different
ways, so as to show the sensitivity of the approach to the chosen TI. Accordingly, in Example
1, the exhaustive data is used as the TI; then, in Example 2, the TI is selected from a
diferrent section of the Stanford V reservoir data set than the exhaustive image. The second
TI is shown in Figure 4.5 and has different spatial patterns than those in the exhaustive
image. In addition, a comparison of the proposed algorithm to the well-established mps
method filtersim [66] is presented. In each of the realizations using the high-order simulation
algorithm, a window of size 15× 20 in terms of cell size is used as the search template. The
tolerance angle for searching is set to 15 degrees, the lag tolerance to 2 and the bandwidth
to 1. These parameters are chosen from the calculation of experimental variograms [26].
The minimum number of conditioning data is 6 and the maximum number is 12, while 5
previously simulated values are used. The maximum order of Legendre polynomials is set
to 10. For the realizations generated with filtersim, the searching template is 15 × 21 with
an inner patch of size 7× 7 and a multiple grid level of 3, while replicates are classified into
different categories according to their filter scores. For further details on filtersim, the reader
is referred to Zhang et al. [66].

4.6.1 Example 1

This example generates simulations using the 200 samples shown in Figure 4.4 and the ex-
haustive image in Figure 4.3 as the TI. In this case, there are no conflicts between the available
data and the training image. Figure 4.6 shows one realization from the high-order simula-
tion and another from filtersim, respectively. From visual comparison with the exhaustive
image, the realization from the high-order simulation reproduces better the channels of the
original image. To demonstrate the reproduction of the distribution and second-order spa-
tial statistics of simulation results, 10 different realizations for each method are generated.
The histograms of the realizations are displayed in the Figure 4.7 and related variograms
are displayed in Figure 4.8. Both simulation methods reproduce well the bimodal shape
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Figure 4.3 A horizontal section from reser-
voir’s porosity values with sinuous connec-
tivity

Figure 4.4 Data points sampled from the
exhaustive image (containing 200 points,
or 2% of the total data)

Figure 4.5 Training image that is different from the exhaustive data

in the histograms; however, in general, high-order simulations show better reproduction in
the proportions of porosity values. High-order simulation methods also reproduce well the
variograms in the X-direction or Y-direction, while the variograms from the filtersim simula-
tions demonstrate larger fluctuations and have notable deviations from the variogram of the
exhaustive data in the Y-direction. For a comparison of the high-order spatial statistics of
simulation results to the original data in the two different settings, the third-order cumulant
maps are generated by the HOSC program [91]. This program uses a template with two
directions in X-axis and Y-axis, and the number of lags are 70 with lag size as 1, which are
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displayed in Figure 4.9. In comparison to the third-order cumulant map of the exhaustive
image, the high-order simulation performs better in the reproduction of the high-order statis-
tics, although both simulation methods have reasonable similarity in terms of the third-order
cumulant map, as there are no conflicts between the sample data and the training image in
this case.

(a) (b)

Figure 4.6 Simulations with 200 sample data using the exhaustive data as the training image.
one realization from (a) high-order simulation and (b) filtersim

(a) (b)

Figure 4.7 Reproduction of histograms of 10 realizations with 200 sample data using the
exhaustive data as the training image: (a) and (b) correspond to 10 realizations from the
high-order simulation and filtersim, respectively
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(a) (b)

(c) (d)

Figure 4.8 Reproduction of the variograms of 10 realizations with 200 sample data using
the exhaustive data as the training image from high-order simulation and filtersim, respec-
tively. (a) Reproduction of variograms of high-order simulations in the X direction; (b)
Reproduction of variograms of high-order simulations in the Y-direction; (c) Reproduction
of variograms of filtersim simulations in the X-direction; (d) Reproduction of variograms of
filtersim simulations in the Y-direction
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(a) (b)

(c)

Figure 4.9 Comparing third-order cumulant maps of realizations with 200 sample data using
the exhaustive data as the TI from the high-order simulation and filtersim, respectively. a
Third-order cumulant map of the exhaustive image. b Third-order cumulant map of one
realization from the high-order simulation. c Third-order cumulant map of one realization
from filtersim

4.6.2 Example 2

In this setting, the simulations are conducted with the same conditioning data; however, the
TI is different from the exhaustive data. Figure 4.10 shows one realization from the high-order
simulation and one for filtersim. Clearly, there are conflicts between the spatial statistics of
the sample data and the TI, which are key factors affecting the results of the simulations.
As expected, the reproduction of the spatial patterns is worse when compared to the results
from the simulations in the previous example. Nevertheless, the realization from high-order
simulation method still maintains the spatial structures of the original exhaustive data. As
shown in Figure 4.11, the 10 realizations of the high-order simulation match the histogram of
the exhaustive image very well. By contrast, the 10 realizations of filtersim mismatched the
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(a) (b)

Figure 4.10 Simulations with 200 sample data using a separate training image different from
the exhaustive data. one realization from (a) high-order simulation and (b) filtersim

exhaustive image in some part of the proportions. From the comparison shown in Figure 4.12,
the high-order simulation performs better than filtersim in reproducing the variograms of the
exhaustive image as well, although there is a minor deviation in the Y-direction. In order to
demonstrate the impact of the conflicts between the sample data and training image during
the simulations, Figure 4.13 (a)–(e) shows the third-order cumulant maps corresponding to
the exhaustive image, the sample data, the training image and one realization of high-order
simulation and filtersim. The parameter settings to generate the cumulant maps for the grid
data are the same as used in Figure 4.9, whereas the lag size is set to 5 grid cells, with the lag
tolerance being set to 1 grid cell and the angle tolerance being set to 15 degrees for generating
the cumulant map of the sample data. As the sample data is too sparse to compute the
cumulant map at the same scale as the exhaustive image, some smoothing has been applied
to the cumulant map of the sample data for the purpose of visualization. The third-order
cumulant map of the realization from the high-order simulation maintains the main structures
of the exhaustive data. On the other hand, the third-order cumulant map of the realization
from fitlersim resembles the cumulant map of the TI, which differs from the cumulant map of
the exhaustive image. This implies that the high-order simulation is primarily data-driven,
whereas the filtersim method is TI-driven. This result can be explained by the fact that the
high-order simulation seeks to find replicates that comply to the statistical configuration of
the conditioning data from the training image, and the values of nodes to be simulated are
drawn from the related local probability distribution. By contrast, the filtersim method is
TI-driven, which means that the values of nodes to be simulated comes directly from the paste
of certain replicates from the training image, which is patch-based instead of node-by-node
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as in the high-order simulation. In particular, the impact of the conditioning data is more
important for capturing the large-scale spatial structures in the early stage of the high-order
simulation. For instance, Figure 4.13 (b) shows the cumulant map of the sample data, and
the resolution of the map is much coarser than the exhaustive data. This map shows some
distortion when representing the third-order statistics of the exhaustive image due to the
sparsity of the data. However, the spatial structures of the limited sample data control the
spatial statistics of the results from the high-order simulation. In general, the results in this
case study show that the proposed high-order simulation algorithm can reasonably reproduce
the overall probability distribution, the second-order statistics and the higher-order statistical
features (such as spatial cumulants), as the statistical conflicts between the sample data and
the training image are not severe.

(a) (b)

Figure 4.11 Reproduction of histograms of 10 realizations with 200 sample data using the
training image different from the exhaustive data: (a) and (b) correspond to 10 realizations
from high-order simulation and filtersim, respectively

4.6.3 Parameter sensitivity testing

Most parameters in the current implementation of high-order stochastic simulation method
are experimental choices. Amongst all the parameters encountered in the current imple-
mentation, some follow common practices in the parameter selection for conventional geo-
statistical simulations, such as the size of the search window, the lag and angle tolerance.
Additionally, in the high-order simulation method presented here, the number of condition-
ing data corresponding to a certain template needs more consideration, as it determines the
dimension of the local probability distribution. In the current implementation, the number
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(a) (b)

(c) (d)

Figure 4.12 Variograms of 10 realizations with 200 sample data using the training image
different from the exhaustive data from the high-order simulation and filtersim, respectively

of the conditioning data is limited for two important reasons. First, the limited number
of conditioning data reduces the computational time needed to estimate the cpdf. Second,
the method resembles the so-called multiple grid strategy [57] applied in many multi-point
simulation methods in order to maintain both large and small-scale spatial structures. In
the early stage of the simulation process, the neighborhoods are more likely to capture large-
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scale patterns, since the known data are sparse. The neighborhoods gradually correspond
to finer-scale patterns as the simulation continues and more known data are generated. A
similar search strategy has also been applied and discussed in [60]. The maximum order of
the polynomials is another parameter of importance in the high-order simulation, since it
affects the precision of the approximation of cpdf by a truncated Legendre polynomial series.
Theoretically, the coefficients in the Legendre polynomial series decay exponentially, and in
general much faster than in Taylor series [130, 131]. The numerical results in [130] show that
Legendre polynomial series with six non-zero coefficients (order 10 and 11 in their examples)
are highly accurate approximations to the targets. The numerical testing to approximate
a probability distribution regarding the order of Legendre polynomial series has also been
investigated in [18] and led to similar results. However, it should be noted that the above
tests are conducted for the approximation of a determined function, whereas for the approx-
imation of the probability density function, there is also the impact from the limitation of
the number of replicates. Depending on different data sets, Legendre polynomial series with
order from 6 to 20 should be a reasonable range to select.

For validation and sensitivity analysis, further tests are conducted specifically to demon-
strate the impacts of the number of conditioning data and the maximum order of Legendre
polynomial series. In order to restrict the effects of the conflicting statistics between the TI
and the sample data, the same data set from Example 1 is used to evaluate the sensitivity
of the related parameters. The experiments are taken for each individual parameter without
considering the possible dependencies between them. In all the experiments, the parameters
not being tested remain the same as in Example 1. Furthermore, the random seed used to
generate the visiting path is also fixed for all the simulations in the experiments, so that the
impact of the different visiting path is excluded. Figures 4.14 and 4.15 depict the realizations
of the high-order simulation with different neighborhood sizes and their corresponding third-
order cumulant maps. In addition, Figures 4.16 and 4.17 show the realizations of high-order
simulation with respect to the order of the Legendre polynomial series in order to approxi-
mate the cpdf s (as well as their corresponding third-order cumulant maps). From the results,
it can be seen that both the size of the neighborhood and the maximum order of the poly-
nomials have considerable impacts on the high-order simulation results. In particular, using
a small size of the neighborhood of 6 grid cells or a Legendre polynomial order less than 6
results in a poor reproduction of the spatial patterns as well as the cumulant maps. However,
when the size of the neighborhood increases to more than 12 or the order of polynomials is
greater than 10, the differences become trivial. Although the testing is for a specific data set,
and the size neighborhood should be larger in 3D space than 2D space, it can be expected
that a similar sensitivity analysis can be applied to choose the appropriate parameters on a
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case-by-case basis.

4.7 Conclusions

The main contributions of the paper are as follows. Firstly, starting from the high-order
simulation method based on Legendre polynomial series, a new computational model in the
form of a unified empirical function is developed to approximate the cpdf. The computational
model leads to an estimation of cpdf without calculating the high-order spatial cumulants
or moments term by term. As a consequence, it not only greatly reduces the computational
requirements but also provides a more accurate approximation of cpdf through Legendre
polynomial series in comparison to the previous high-order simulation algorithm based on
Legendre cumulants. Secondly, two new algorithms to derive cpdf and ccdf based on the
above computational model are developed; they both use the properties of Legendre polyno-
mials to simplify the computation and avoid an explicit expansion of a multivariate Legendre
series. Lastly, the spatial template used in the current high-order simulation method is dy-
namically changing with the computation of the probability distribution in real time without
storing data events. In addition, a flexible strategy to search replicates from the training
image is proposed and implemented to deal with the conflicts between the statistics of the
sample data and the training image.

Tests show the capacity of the proposed algorithm to reproduce complex geological patterns,
and, in addition, that both the overall distribution and the high-order spatial statistics of the
data are reproduced by the high-order simulations. Comparing the results of the high-order
simulation in different cases with those of filtersim, the high-order simulation outperforms in
the reproduction of high-order spatial statistics. This result becomes more notable in cases
where there are conflicts in the spatial statistics between the sample data and the training
image. This demonstrates that the high-order simulation has a more data-driven nature,
whereas the filtersim is more TI-driven. Although the computational cost is significantly
reduced (depending on the size of the training image, the number of neighborhood and the
maximum order of Legendre polynomial series), the simulation is still slower than the filtersim
method. However, since the computations of the cpdf is carried out on each replicate with
the same type of calculation, the procedure could be parallelized so that the simulation can
be further accelerated through parallelization techniques, such as GPU programming. It also
should be noted that the approximation of cpdf s by Legendre series or any kind of polynomial
series may generate problems of non-positive probability densities; further research is needed
to address the issue.
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(a) (b)

(c) (d)

(e)

Figure 4.13 Third-order cumulant maps of (a) exhaustive image, (b) sample data, (c) TI, (d)
high-order simulation and (e) filtersim
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(a) (b)

(c) (d)

Figure 4.14 Comparing the realizations of high-order simulation by applying different local
neighborhood size, with 200 sample data using the exhaustive data as the training image.
The maximum order of Legendre polynomials to approximate the cpdf s is 10 for all the
realizations. Realizations with neighborhood of (a) 6 conditioning data, (b) 12 conditioning
data, (c) 20 conditioning data, and (d) 30 conditioning data
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(a) (b)

(c) (d)

Figure 4.15 Comparing the third-order cumulant maps of the realizations of the high-order
simulation by applying different local neighborhood size, with 200 sample data using the
exhaustive data as the training image. The maximum order of Legendre polynomials to
approximate the cpdf s is 10 for all the realizations. Third-order cumulant maps of one
realization with neighborhood of (a) 6 conditioning data, (b) 12 conditioning data, (c) 20
conditioning data, and (d) 30 conditioning data
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(a) (b)

(c) (d)

Figure 4.16 Comparing the realizations of the high-order simulation by applying the different
order of truncated Legendre polynomial series, with 200 sample data using the exhaustive
data as the training image. The number of conditioning data in the local neighborhood is
12 for all the realizations. Realizations of the high-order simulation by approximating cpdf
with Legendre polynomial series up to (a) order 6, (b) order 10, (c) order 20, and (d) order
30
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(a) (b)

(c) (d)

Figure 4.17 Comparing third-order cumulant maps of the realizations of the high-order sim-
ulation by applying the different order of truncated Legendre polynomial series, with 200
sample data using the exhaustive data as the training image. The number of conditioning
data in the local neighborhood is 12 for all realizations. Third-order cumulant map of one
realization of the high-order simulation by approximating cpdf with Legendre polynomial
series up to (a) order 6, (b) order 10, (c) order 20, and (d) order 30
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CHAPTER 5 ARTICLE 2: HIGH-ORDER SEQUENTIAL SIMULATION
VIA STATISTICAL LEARNING IN REPRODUCING KERNEL HILBERT

SPACE

Abstract: The present work proposes a new high-order simulation framework based on
statistical learning. The training data consist of the sample data together with a training
image and the learning target is the underlying random field model of spatial attributes of
interest. The learning process attempts to find a model with expected high-order spatial
statistics that coincide with those observed in the available data, while the learning problem
is approached within the statistical learning framework in a reproducing kernel Hilbert space
(RKHS). More specifically, the required RKHS is constructed via a spatial Legendre moment
(SLM) reproducing kernel that systematically incorporates the high-order spatial statistics.
The target distributions of the random field are mapped into the SLM-RKHS to start the
learning process, where solutions of the random field model amount to solving a quadratic
programming problem. Case studies with a known data set in different initial settings show
that sequential simulation under the new framework reproduces the high-order spatial statis-
tics of the available data and resolves the potential conflicts between the training image and
the sample data. This is due to the characteristics of the spatial Legendre moment kernel
and the generalization capability of the proposed statistical learning framework. A three-
dimensional case study at a gold deposit shows practical aspects of the proposed method in
real-life applications.

Keywords: Stochastic simulation, High-order spatial statistics, Statistical learning; Re-
producing kernel, Multipoint simulation

5.1 Introduction

Stochastic simulations are used to quantify the spatial uncertainty in earth science or engi-
neering applications. Since the early 1990s, the so-termed multipoint statistical simulation
(MPS) methods [12, 55, 57] were first proposed to overcome the limitation of the second-order
simulation approaches in reproducing the complex spatial patterns encountered in natural
phenomena. Instead of using a theoretical variogram/covariance model, as is the case with
conventional two-point geostatistical simulations, the MPS methods consider that the so-

Published: Yao L, Dimitrakopoulos R, Gamache M (2019) High-order sequential simulation via statis-
tical learning in reproducing kernel Hilbert space. Math Geosci. doi:10.1007/s11004-019-09843-3
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called training image (TI) contains the prior information of the spatial statistics or patterns
of the attribute to be simulated. A spatial template is defined as a geometrical configura-
tion of the relative locations among the multiple points, regardless of the coordinates. The
known data within the spatial template at a certain location on the simulation grid acts as
the conditioning data in the simulation and is termed a data event. Over the past decade,
several state-of-the-art MPS algorithms have been proposed to improve the efficiency and
reproduction of the curvilinear features [56, 122].

An inherent limitation of the MPS algorithms is that the high-order spatial statistics of the
available data are not systematically considered and are partly integrated in ad-hoc ways.
This issue becomes more prominent when the spatial statistics of the TI and the sample
data are different, leading to realizations conflicting with the spatial statistics of the sample
data, especially when the latter data is relatively dense as is the case in mining applications
[125, 126]. As an alternative, high-order simulation methods are proposed to model a random
field without any presumption of its probability distribution, and high-order spatial statistics
are systematically incorporated in the model [17, 18, 95]. The first algorithm of high-order
simulation, HOSIM, approximates the probability density function (PDF) by the Legendre
polynomial series through the so-called spatial cumulants [17–19]. Further developments of
the high-order simulation paradigm include the simulation of spatially correlated variables
[127] and the direct simulation at the block scale [132]. Most recently, Yao et al. [133]
proposed a new computational model of high-order simulation as a unified empirical function,
which avoids CPU-demanding computations of expansion coefficients. Furthermore, a kernel
function can be derived from this model and will be used in the present work.

A common issue that runs across all of the above-mentioned high-order simulation methods
is that the approximation of the PDF by orthogonal polynomials cannot be guaranteed
to be positive. The sensitivity of high-order polynomials to the rounding errors near the
endpoints of the approximation weakens the convergence of polynomial series to a stable
analytic function, as discussed in Minniakhmetov et al. [128], who propose an approximation
of the PDF using Legendre-like orthogonal splines as the basis functions, resulting in a
significant improvement in numerical stability. As the deviation of the empirical statistics
from the true expectation arises due to possible statistical conflicts between the sample data
and the TI, the convergence of the approximation to the actual underlying PDF could be
undermined. Under such a circumstance, a postprocessing step has to be introduced to
correct the approximation. For example, the correction procedure through interpolation
around the points of negative densities is applied in Mustapha and Dimitrakopoulos [18].

The present work proposes a new high-order simulation framework based on statistical learn-
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ing [110, 134], which deliberately mitigates the statistical conflicts between the sample data
and the TI, and also overcomes the limitation of approximating the PDF with the orthogonal
expansion series. Statistical learning theory [110] develops a new learning paradigm to ex-
plore functional dependency from a given data set without relying on prior knowledge, which
contrasts with the classical statistical methods that are based on parametric models. Ac-
cording to the learning paradigm, a target model needs to be learned from the available data
set, which represents the training data. The so-called learning machine [110] is frequently
given as a set of functions, from which a specific learning model is selected to approximate
the target model according to certain criteria.

To interpret high-order simulation in terms of statistical learning, the training data are re-
garded as the available data from the sample data and/or the TI. The target model is the
probability distribution related to the random field of the spatial attributes. The learn-
ing model is the approximated PDF of the target probability distribution, from which the
realizations can be generated. The learning process for high-order simulation is driven by
matching the expected high-order spatial statistics of the target probability distribution to
the high-order spatial statistics observed from the available data. The matching of the high-
order spatial statistics is the most challenging part and is approached herein by a learning
process in a reproducing kernel Hilbert space (RKHS) [111]. A spatial Legendre moment
(SLM) reproducing kernel is proposed to construct the specified RKHS (SLM-RKHS), such
that the high-order spatial statistics are systematically incorporated in this Hilbert space for
a certain probability distribution. The elements in the original data space are mapped into
the SLM-RKHS, termed RKHS embedding [135–138]. In addition, the high-order spatial
statistics of the available data are carried over to the domain after this RKHS embedding.
Eventually, the statistical learning regarding high-order simulation leads to a convex opti-
mization in SLM-RKHS where the solutions amount to solving a quadratic programming
problem.

In the following sections, the general theory of kernel methods, including the reproducing
kernel Hilbert space (RKHS) and RKHS embedding of probability distributions, are in-
troduced. Section 5.2 describes the main workflow of high-order sequential simulation via
statistical learning, and a spatial Legendre moment reproducing kernel is defined to construct
the specific SLM-RKHS. Furthermore, this SLM-RKHS is decomposed to lower-dimensional
subspaces, such that conditional probability density functions (CPDF) in the context of se-
quential simulation can be embedded into the corresponding subspaces. Subsequently, a
high-order stochastic simulation method is presented as a learning process based on the em-
bedding of the CPDF into the decomposed subspace of the SLM-RKHS. Next, the proposed
simulation method is tested using a fully known data set. A case study at a gold deposit is
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then presented to show the practical aspects of the proposed method. Conclusions follow.

5.2 Method

5.2.1 Overview of kernel space and embedding a probability distribution

In the general setting of kernel methods, a kernel space needs to be set up and associated
with a predefined kernel function, and a feature mapping is defined to map an arbitrary
element from the original data space into the kernel space. The related general concepts and
theory are formalized in the followed subsections.

5.2.1.1 Reproducing kernel Hilbert space

A Hilbert space H is a vector space over a field endowed with an inner product [139]. For
simplicity, the Hilbert space H over the set R of real numbers is considered here, and the
inner product is defined as

〈f, g〉 :H×H → R, ∀f, g ∈ H.

The norm is defined as
‖f‖H = 〈f, f〉1/2 , ∀f ∈ H.

Other essential properties can be found in [139]. The concepts of reproducing kernel and
positive definite function are from [116] with the modification of the range of kernel function
to R.

Reproducing kernel

Let E be a non-empty set and H be a Hilbert space of functions defined on E. Then, a
function K:E× E→ R is a reproducing kernel of a Hilbert space H if and only if

(1) ∀t ∈ E, K(·, t) ∈ H, and

(2) ∀t ∈ E,∀f ∈ H, 〈f,K (·, t)〉 = f(t).

The last condition is called “the reproducing property,” because any function in H can be
reproduced by its inner product with the kernel K. In addition, as a direct derivation of the
above conditions, the reproducing kernel can be written as the inner product

K (s, t) = 〈K (·, s) , K (·, t)〉 , ∀s, t ∈ E.
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Naturally, a Hilbert space in possession of a reproducing kernel is called a reproducing kernel
Hilbert space. The feature map associated with an RKHS H with kernel K is defined as
φ:E → H such that 〈φ (s) , φ (t)〉 = K(s, t). In fact, φ (t) :E → H, t 7→ K (·, t) ,∀t ∈ E
satisfies such a definition as the feature map according to the reproducing property. This
type of feature map is called a reproducing kernel map [111] or canonical feature map [140]
and will be used in the present paper.

Positive definite function

A real-valued functionK:E×E→ R is positive definite if ∀n ≥ 1,∀ (a1, . . . , an) ∈ Rn,∀(x1, . . . , xn) ∈
En, there is

n∑
i=1

n∑
j=1

aiajK (xi, xj) ≥ 0.

5.2.1.2 RKHS embedding of a probability distribution

The range of the feature mapping spans RKHS H by definition [111]. Thus, the feature
mapping φ is crucial in embedding a data element into the RKHS H. Accordingly, two
mappings are important to embed a probability distribution into the RKHS H [135]

µ [p] = Ex∼p [φ (x)] , (5.1)

and
µ [X] = 1

M

M∑
i=1

φ (Xi) , (5.2)

where the first equation is the expectation kernel mean map regarding the density p and the
second one is the empirical kernel mean map with the finite sample set X = {X1, . . . , XM}.
The expectation kernel mean map µ[p] is an element in the RKHSH as long as Ex∼p [K (x, x)] <
∞ [135]. Suppose that the samples from X are independently drawn from the same prob-
ability distribution with density p, then µ[p] can be approximated by µ[X] [136], with the
bound of the deviation ‖µ[p]− µ[X]‖H with the probability given by [141]. The space of
all probability distributions forms a convex set P ; thus, the image of the expectation kernel
mean map M := {µ [p] , ∀p ∈ P} is also convex and is called the marginal polytope [135].
In terms of the RKHS embedding, the goal of the density estimation is to find an optimal
probability density p̂ ∈ P such that the deviation ‖µ [X]− µ [p̂] ‖H is minimized. In practice,
the density estimator p̂ is assumed as a mixture of a set of candidate densities or prototypes
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pi [135, 136] as

p̂ =
n∑
i=1

αipi, (5.3)

where ∑n
i αi = 1 and αi ≥ 0,∀1 ≤ i ≤ n. Let us define the subset P0 of P as

P0 :=
{
p̂ =

n∑
i

αipi|
n∑
i=1

αi = 1 and αi ≥ 0, ∀1 ≤ i ≤ n

}
.

It can be seen that P0 is a convex hull of the prototypes since p̂ is a convex combination of the
candidate densities. The density estimation amounts to solving the minimization problem
restricted to a convex set P0 as

min
p̂∈P0
‖µ [X]− µ [p̂]‖2

H . (5.4)

Explicit expansion of Eq. (5.4) leads to solving a quadratic program for α = (α1, . . . , αn) as
the following [136]

min
α

1
2α

T (Q + λI)α− qTα

s.t.
n∑
i=1

αi = 1

αi ≥ 0, ∀1 ≤ i ≤ n, (5.5)

where λ is a regularization constant to prevent overfitting, and I is the identity matrix.
Q = [Qij]n×n is a matrix, and q = (q1, . . . , qn) is a vector of length n, both of which are
entries that depend on the kernel function. The matrix Q is positive definite; hence the
above quadratic program (5.5) is a convex optimization problem.

5.2.2 High-order simulation method in spatial Legendre moment kernel space

5.2.2.1 SLM reproducing kernel

The motivation for applying statistical learning to the high-order simulation is to match
the high-order spatial statistics of the output realizations to the training data through the
learning process. This goal is achieved by the learning procedure in a newly defined kernel
space, while the kernel is defined as

K (X,Y ) =
N∏
i=0

[
W∑
w=0

(
w + 1

2

)
Pw (xi)Pw (yi)

]
, (5.6)
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and is called a spatial Legendre moment kernel (SLM-kernel for short) of order W, where
X,Y ∈ [− 1, 1]N+1,X = (x0, x1, . . . , xN) ,Y = (y0, y1, . . . , yN), and Pw (·) is the Legendre
polynomial of order w defined on the interval [− 1, 1].

As the name of the kernel suggests, one reason to define the SLM-kernel in the form of Eq.
(5.6) is that past studies of high-order simulations based on Legendre-polynomial series have
shown the capacity for capturing complex spatial patterns with spatial cumulants or spatial
Legendre moments [17, 18, 133]. In other words, the SLM-kernel is constructed in a way that
the distance between two distributions embedded into the kernel space actually represent the
deviation of spatial Legendre moments from each other. The other reason stems from the
fact that the computational model from Yao et al. [133] leads to a kernel-like expression of
approximating the CPDF [cf. Equation Eq. (14) in [133]].

To prove that K(X,Y ) is a positive definite, one can first define a simpler function k (s, t) =
Pw (s)Pw (t) ,∀s, t ∈ [− 1, 1] and show that it is a positive definite. In fact,

∀n ≥ 1, ∀ai, aj ∈ R, ∀ti ∈ [−1, 1] , 1 ≤ i, j ≤ n,

it is easy to see that

n∑
i=1

n∑
j=1

aiajPw (ti)Pw (tj) =
[
n∑
i=1

aiPw (ti)
]2

≥ 0.

Therefore, k (s, t) is a positive definite. Now, we denote

K ′ (X,Y ) =
W∑
w=0

(
w + 1

2

)
Pw (xi)Pw (yi)

=
W∑
w=0

(
w + 1

2

)
k (xi, yi) .

K ′ (X,Y ) is a positive definite because the weighted sum of positive definite functions
with non-negative coefficients is also positive definite. Finally, K (X,Y ) can be written
as K (X,Y ) = ∏N

i=0K
′ (X,Y ). Given that the finite product of positive definite functions

is also a positive definite [140], it is proven that the function K(X,Y ) is positive definite,
and thus, it defines a reproducing kernel.

5.2.2.2 Sequential simulation via statistical learning in SLM-kernel space

The implementation of a high-order stochastic simulation is under the framework of a se-
quential simulation [23]. By means of decomposing the multivariate probability distribution
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into a consecutive set of univariate distributions, the simulation is carried out sequentially
to generate random values from conditional distributions per a random path visiting the
simulation grid. Specifically, let’s let us denote the random field to be simulated as Z(u),
which composes a multivariate distribution regarding the variable locations u at a discrete
simulation grid. Suppose an arbitrary node Z0 to be simulated within a random path is
located at u0 with a neighborhood Λ of N conditioning data that contains either the sample
data or the previously simulated nodes along the random path. Without loss of generality,
the key problem in the stochastic simulation is to find an estimation o f the CPDF f(Z0|Λ),
given the center node Z0 and the N conditioning data. From the spatial configuration of the
neighborhood, a spatial template can be extracted as T = (u0,u0 + h1, . . . ,u0 + hN), where
h1, . . . , hN are distance vectors of the location of each conditioning data from the center node
u0. Clearly, statistical learning for the simulation aims to learn a target probability distribu-
tion from the available training data, and this turns out to be minimizing the distance of the
empirical distribution and the target distribution after embedding them into the SLM-kernel
space. By the definition of the Dirac delta function, one can define an empirical probability
density function (EPDF) [115] corresponding to a sample set X of size M as

femp(x) = 1
M

M∑
i=1

δ(x−Xi). (5.7)

Then, the empirical kernel mean map µ [X] can be rewritten as a convolution with the kernel
K as

µK [femp] .= µ[X] =
∫
femp(x)K(x, ·)dx. (5.8)

Similarly, the expectation kernel mean map µ [p] can also be written as

µK [p] =
∫
p(x)K(x, ·)dx. (5.9)

In this way, both the empirical kernel mean map µ[X] and the expectation kernel mean map
µ[p] can be regarded as an integral operator µK determined by the kernel K acting on the
EPDF or the PDF. The convolution of the density function with kernels can be analogous to
the regularization of the integral operator to solve the ill-posed problem of density estimation
[110, 142].

Given the above-mentioned template T = (u0,u0 + h1, . . . ,u0 + hN) and the replicate en-
countered in the TI as ζt = (ζt,0, ζt,1, . . . , ζt,N) corresponding to T, the EPDF femp embedded
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in the SLM-RKHS is identical to the density estimator in [133] in the kernel form as

µK [femp] = 1
M

M∑
t=1

K(ζt, ·). (5.10)

Furthermore, under the sequential simulation framework, the CPDF f(Z0|Λ) can be mapped
into a lower-dimensional kernel space through decomposition of the kernel space, so that the
high-order simulation can be reduced to a one-dimensional optimization problem. Note that
the kernel K in Eq. (5.6) can be decomposed as a product of lower-dimensional kernels K0

and KN as

K0(x0, y0) =
W∑
w=0

(w + 1
2)Pw(x0)Pw(y0), (5.11)

and
KN(X ′,Y ′) =

N∏
i=1

[
W∑
w=0

(w + 1
2)Pw(x′i)Pw(y′i)], (5.12)

where K0 is one-dimensional and KN is N -dimensional with X ′ = (x1, . . . , xN),Y ′ =
(y1, . . . , yN). Through marginalization of Eq.(5.10), the approximation of the CPDF f̃W (z0|Λ)
can be rewritten in terms of the kernels as

f̃W (z0|Λ) =
∑M
t=1K0(ζt,0, z0) ·KN(ζ ′t,Λ)∑M

t=1KN(ζ ′t,Λ)
, (5.13)

where ζ ′t = (ζt,1, . . . , ζt,N). By letting

βt = KN(ζ ′t,Λ)∑M
t=1KN(ζ ′t,Λ)

, (5.14)

the approximation of the CPDF f̃W (z0|Λ) can be expressed as

f̃W (z0|Λ) =
M∑
t=1

βt ·K0(ζt,0, z0). (5.15)

From Eq. (5.15), it turns out that the approximated CPDF f̃W (z0|Λ) is a linear combination
of kernel bases, and therefore, it lies in the SLM-RKHS with the kernel K0. Furthermore,
it can be regarded as the embedding of the empirical CPDF into the SLM-RKHS. In other
words, the kernel mean map µK0 for the conditional distributions can be defined as

µK0 [femp(z0|Λ)] =
M∑
t=1

βt ·K0(ζt,0, ·), (5.16)
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and
µK0 [f(z0|Λ)] =

∫
f(z0|Λ)K0(z0, ·)dz0 = E[K0(z0, ·)], (5.17)

where Eqs. (5.16) and Eq. (5.17) correspond to the SLM-RKHS embedding of the empirical
CPDF and the target CPDF, respectively. Assuming that the CPDF can be expressed as the
convex combination of some candidate distributions pi as in Eq. (5.3), such that f(z0|Λ) ∈ P0,
then the density estimation for the CPDF can be solved by a similar minimization problem as
Eq. (5.4) with the kernel mean map changing to µK0 . Explicit expansion of the minimization
problem leads to a quadratic program similar to Eq. (5.5), whereas the matrix Q and the
vector q are expressed as

Qij = Ez0∼pi,z′0∼pj
[K0(z0, z

′
0)], (5.18)

qj =
M∑
t=1

βt · Ez0∼pj
[K0(ζt,0, z0)]. (5.19)

Therefore, combining Eqs. (5.5), (5.11), (5.18) and (5.19), the RKHS embedding of the CPDF
leads to a quadratic program expressed by the one-dimensional kernel K0. The solution to
the optimization problem will give the weights αi of each candidate distribution pi, which
leads to a target distribution matching to the high-order spatial statistics of the available
data.

Figure 5.1 Workflow of high-order simulation via statistical learning

A general high-order stochastic simulation workflow via statistical learning is shown in Fig.
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5.1. The main difference between the new high-order simulation workflow and the other
geostatistical simulation methods is that the key element in the proposed workflow becomes
the kernelization, including the kernel construction and the kernel mean mapping. A detailed
implementation of the algorithm is given in Sect. 5.3.

5.3 Sequential Simulation Algorithm Based on Statistical Learning in SLM-
RKHS

The SLM-RKHS embedding of the CPDF projects the density estimation in high-order
stochastic simulation into a quadratic program in the feature space with SLM-kernel K0

defined in the interval [− 1, 1]. Hence, the sample data and the TI are first transformed
into the interval [− 1, 1]. The truncated normal densities on the interval [− 1, 1] are used as
the prototypes. Let us denote the normal density with mean mi and standard deviation σ
as gσ,mi

and its corresponding cumulative distribution function as Gσ,mi
. Then, the density

functions of the prototypes are pi = gσ,mi
/ci, with ci = Gσ,mi

(1) − Gσ,mi
(− 1). Thus, the

approximated CPDF can be expressed as

f̂(z0|Λ) =
n∑
i=1

αigσ,mi
(z0)/ci, (5.20)

where n is the number of the prototypes. The computations of the matrix Q and the vector
q are essential to build the quadratic program for solving the weights αi. Further expansions
of Qij and qj in Eqs. (5.18) and Eq. (5.19) give

Qij =
W∑
w=0

(w + 1
2)Ez0∼pi

[Pw(z0)] · Ez′0∼pj
[Pw(z′0)], (5.21)

qj =
M∑
t=1

βt · (
W∑
w=0

(w + 1
2)Pw(ζt,0)Ez0∼pj

[Pw(z0)]). (5.22)

As the computations of the coefficients βt and the Legendre polynomial Pw(ζt,0) are straight-
forward according to their definitions, the Legendre polynomial moment with the truncated
normal density Ez0∼pi

[Pw(z0)] remains the only term of more consideration. Here, a recursive
algorithm to compute the Legendre polynomial moment Ez0∼pi

[Pw(z0)] is developed. Let
us denote Aw,i = Ez0∼pi

[Pw(z0)] and Bw,i = Ez0∼pi
[z0Pw(z0)]. Note that P0(z0) = 1, and

P1(z0) = z0,∀z0 ∈ [−1, 1]. There are
A0,i = 1, (5.23)
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and
A1,i = B0,i = mi + σ2[gσ,mi

(−1)− gσ,mi
(1)]/ci. (5.24)

The recursive relations of Legendre polynomials [93] are

(w + 1)Pw+1(z0) = (2w + 1)z0Pw(z0)− wPw−1(z0), (5.25)

and
(2w + 1)Pw(z0) = d

dz0
[Pw+1(z0)− Pw−1(z0)]. (5.26)

By Eqs. (5.25) and (5.26) and through integration by parts, one can derive the following
recursive equations

(w + 1)Aw+1,i = (2w + 1)Bw,i − wAw−1,i, (5.27)

and

Bw,i = miAw,i + σ2[(−1)wgσ,mi
(−1)− gσ,mi

(1)]/ci
+ σ2[(2(w − 1) + 1]Aw−1,i + σ2[2(w − 3) + 1]Aw−3,i + · · · . (5.28)

Combining with the initial conditions in Eqs. (5.23) and (5.24), Eqs. (5.27) and (5.28) form
a complete recursive procedure to compute Ez0∼pi

[Pw(z0)]. The computations in turn build
the quadratic program for density estimation of the conditional probability distribution in
the simulation.

In a situation with high-dimensional space, the location parameters mi of the prototypes can
be determined by clustering the available data. Here, since the density estimation problem is
cast to the one-dimensional space by kernel decomposition, the locations of the prototypes are
given by a set of peak points of the function from Eq.(5.15). Specifically, the interval [−1, 1]
is divided evenly into 100 subintervals and the prototypes are selected from the subintervals
which contain the peak points of the function Eq. (5.15). This heuristic approach to selecting
prototypes further simplifies the quadratic program and makes the simulation feasible for
implementation. The scale parameter σ can be chosen by the method of stochastic gradient
descent where the gradients can be derived from the recursive equations in Eq. (5.27) and
(5.28).

In summary, the high-order stochastic simulation algorithm based on RKHS embedding
(KERNELSIM hereafter for simplification) can be described as follows:

(1) Scale the property values of the samples and the TI to the interval [-1, 1].

(2) Generate a random path to visit the simulation grid.
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(3) Pick one node from the random path to simulate, with the conditioning data taken from
the neighborhood containing both the sample data and the previously simulated nodes.

(4) Replicates are scanned from the TI according to the template defined by the spatial
configuration of the conditioning data.

(5) Compute the SLM-kernel moments to build the quadratic program.

(6) Solve the quadratic program to estimate of the CPDF with regard to the center node.
Draw a random value from the CPDF as the data value of the center node.

(7) Repeat from step (3) until the simulation is completed.

(8) Back transform the property values of the simulation from [-1,1] to the original data
space.

In a practical implementation, step (5) can be simplified to precompute the Legendre poly-
nomial moments for each prototype distribution, as well as the Legendre polynomial values
of the replicates, and therefore the computations can be greatly reduced at the cost of more
memory usage. The solver for the quadratic program in step (6) applied to the present paper
is based on the algorithm from [143].

The time complexity of the proposed algorithm is of polynomial time overall. Suppose that
the size of the simulation grid is S and the size of the training data is M , the maximum
order of the Legendre moments is W , the maximum number of conditioning data is N , and
the number of the prototype distributions is np. Searching the replicates of the conditioning
data from a regular grid takes O(M · N) operations. Computing the kernel moments and
building the quadratic program takes O

(
M ·np(W 3 +W 2N)

)
arithmetic operations. Solving

the quadratic program problem also takes polynomial time of O(n4
p · L), where L is the size

of the problem encoding in binary [144]. Hence, the overall time complexity is a polynomial
of O

(
S ·

(
M · np(W 3 +W 2N) + n4

p · L
))

.

5.4 Case Studies

5.4.1 Case study at a fully known reservoir

The porosity attributes from the Stanford V reservoir data set [129] are considered for simu-
lation. Two horizontal sections at different depths are extracted from the reservoir, acting as
the exhaustive image and the TI, respectively. For comparison, the two horizontal sections
shown in Fig. 5.2 and Fig. 5.3 are selected to be the same ones used in a previous study
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[133]. Firstly, the TI extracted from the original reservoir data set is rotated 45◦ clockwise
to generate a new TI with seemingly different spatial structures, which are noted as TI-1
and TI-2 (Fig. 5.3 and Fig. 5.4), respectively. Furthermore, two different sets of sample
data as DS-1 and DS-2 are drawn from the exhaustive image and are shown in Fig. 5.5 and
Fig. 5.6, corresponding to the relatively sparse and dense samples, respectively. The main
purposes of performing a simulation on these different cases are: (1) testing the sensitivity
of KERNELSIM to the statistical conflicts between the sample data and the TI; (2) testing
the impact of the number of sample data on the realization of KERNELSIM.

Figure 5.2 Exhaustive image: a horizontal section from a fully known reservoir

Figure 5.3 TI-1: another horizontal section from a fully known reservoir
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Figure 5.4 TI-2: rotation of TI-1 45◦ clockwise

Figure 5.5 DS-1: data samples of 200 points drawn from the exhaustive image

5.4.1.1 Example 1

This example consists of simulation results generated by KERNELSIM with the TI-1 as the
training image and DS-1 and DS-2 as the sample data sets. This example generally represents
the situation where the sample data and the TI are of different origin but are sharing some
similarity in spatial patterns. For instance, the channels in both the exhaustive image and
TI-1 are preferential in the vertical directions.

Figure 5.7 shows one realization of KERNELSIM using TI-1 as the training image and
with DS-1 and DS-2 as the sample data, respectively. For comparison, both realizations
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Figure 5.6 DS-2: data samples of 400 points drawn from the exhaustive image

are generated by the same random path to visit the nodes on the grid. It is clear that
both realizations reproduce the main spatial structures of the exhaustive image along the
vertical channels from the visualization (Fig. 5.7). The realization shown in Fig. 5.7a is
comparable to the case study in [133], and it shows that the present method reproduces
channel connectivity better and eliminates the noisy points that appeared in the realizations
generated using past approaches, which were caused by the impact of statistical conflicts
between the sample data and the TI. Comparisons of the histograms and variograms of 10
realizations of KERNELSIM using either DS-1 or DS-2 as the sample data are illustrated
in Fig. 5.8 and Fig. 5.9, respectively. The third-order cumulant maps of the sample sets
DS-1 (smoothed for visualization) and DS-2 are shown in Fig. 5.10a, b. The cumulant maps
of the exhaustive image and the TI are shown in Fig. 5.10c, d. For comparison, the third-
order cumulant maps of the realizations of KERNELSIM using either the DS-1 or DS-2 as
the sample data are shown in Fig. 5.10 e, f. Figure 5.10g, h shows the average third-order
cumulant maps of 10 realizations using the DS-1 and DS-2 as the sample data, respectively.
Similarly, a further comparison of fourth-order cumulant maps is displayed in Fig. 5.11. The
spatial template for computing the fourth-order cumulant maps included directions along
the X-axis, Y-axis and the diagonal direction. The fourth-order cumulant maps are scaled
by their deviations for clearer visualization of the patterns. Both the third-order and the
fourth-order cumulant maps clearly show that the KERNELSIM realization tends to have
similar spatial patterns to the sample data and the exhaustive image. The above results
show that the KERNELSIM method reproduces both the lower and higher spatial statistics
of the underlying random field given that the TI and the sample data share some similarity
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in their spatial distributions. Specifically, regardless the number of sample data being used,
the main spatial features of the reservoir are retained in the realizations of KERNELSIM, as
supported from the visual appearance of the vertical channels and the variograms, as well as
from the cumulant maps.

(a) (b)

Figure 5.7 One realization from KERNELSIM using TI-1. a DS-1 as the sample data, b DS-2
as the sample data

(a) (b)

Figure 5.8 Histograms of 10 realizations of KERNELSIM using TI-1. a DS-1 as the sample
data, b DS-2 as the sample data

5.4.1.2 Example 2

By rotating the TI-1 45◦ clockwise and creating a new training image as TI-2, shown in
Fig. 5.4, there is seemingly a difference in the channel orientations between the TI-2 and the
exhaustive image. Thus, this specific example aims to test the sensitivity of the KERNELSIM
method to the more apparent statistical conflicts between the TI and the sample data. Fig.
5.12 shows one realization of KERNELSIM using TI-2 as the training image, along with
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(a) (b)

(c) (d)

Figure 5.9 Variograms of 10 realizations of KERNELSIM using TI-1. a, b Along the X and
Y axes with DS-1 as the sample data; c, d, along the X and Y axes with DS-2 as the sample
data
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.10 Third-order cumulant maps of a DS-1, b DS-2, c exhaustive image, d TI-1, e
realization in Fig. 5.7a with DS-1 as the sample data, f realization in Fig. 5.7b with DS-2
as the sample data, g 10 realizations in average with DS-1 as the sample data, and h 10
realizations in average with DS-2 as the sample data
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.11 Fourth-order cumulant maps of a DS-1, b DS-2, c exhaustive image, d TI-1, e
realization in Fig. 5.7a with DS-1 as the sample data, f realization in Fig. 5.7b with DS-2
as the sample data, g 10 realizations in average with DS-1 as the sample data, and h 10
realizations in average with DS-2 as the sample data
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DS-1 and DS-2 as the sample data, respectively. Interestingly, even with relatively sparse
sample data DS-1, the realization of KERNELSIM still reflects the vertical channels well.
The same phenomena can also be observed in the realization using the denser sample data
DS-2. Comparisons of the histograms and the variograms are shown in Figs. 5.13 and 5.14,
respectively. Further, a comparison of high-order spatial statistics is shown in Fig. 5.15
and 5.16 in a similar way as in Example 1. While the third-order and the fourth-order
cumulant maps of the TI and the exhaustive image are very different, the cumulant maps
of the realizations still maintain the main spatial features of the one from the exhaustive
image. This specific example shows that the KERNELSIM method is capable of generalizing
the learning model to adapt to situations in the presence of statistical conflicts between the
sample data and the TI. Of note, even with relatively sparse sample data, the proposed
method can generate realizations with a reasonable reproduction of spatial statistics of the
sample data from the lower to the higher orders.

(a) (b)

Figure 5.12 One realization from KERNELSIM using TI-2. a DS-1 as the sample data, b
DS-2 as the sample data

5.4.1.3 Conditional probability on different spatial patterns

Three configurations of the conditioning data are intentionally picked at different locations
to represent the typical spatial patterns that are possibly encountered in the data event.
The KERNELSIM method is applied to generate the conditional probability distributions on
these different spatial patterns to compare the behaviors of the CPDF at different locations
(Fig. 5.17). Since the attribute values are transformed to the domain [-1, 1] of Legendre
polynomials, both the conditioning data and the CPDFs are also in this domain. Fig. 5.17a
shows the pattern of transition between lower values and higher values, which usually happens
near the boundary of the channels in the exhaustive image, while Fig. 5.17b shows its
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(a) (b)

Figure 5.13 Histograms of 10 realizations of KERNELSIM using TI-2. a DS-1 as the sample
data, b DS-2 as the sample data

corresponding CPDF at the center node. In this case, the CPDF has two different modes at
the values of -0.41 and 0.74, which interestingly implies that the possible prediction could
either be a lower value or a higher value, while the higher value has a higher likelihood.
It turns out that the true value at this location after transformation is 0.745. However, it
should be noted here that this double-modal behavior is reasonable near the boundary of
transitioning between lower and higher values. This kind of probability distribution cannot
be characterized by the second-order geostatistical simulation methods based on Gaussian
assumption. Fig. 5.17c, d shows the simulation behavior at a location where the center node
is surrounded by nodes with relatively lower values. Again, the CPDF also shows a bimodal
shape due to the big variation of the spatial patterns. Fig. 5.17e, f shows the behavior of
simulation at a location where the center node is surrounded by nodes with relatively higher
values. The CPDF exhibits a unimodal distribution as the variation in the spatial pattern
is small. Although the behaviors of CPDF could be case-dependent due to different spatial
distributions of attributes of interest, these experiments show that the CPDFs generated by
KERNELSIM are driven by the training data instead of a fixed covariance function, and
thus can reflect the characteristics of different spatial patterns. In fact, several past studies
have also shown the advantage of high-order simulation methods in reproducing the complex
spatial patterns over the traditional second-order simulation methods, such as sequential
Gaussian simulation [18, 128, 132].

5.4.2 Case study at a gold deposit

The case study at a gold deposit is presented here to demonstrate the practical aspects and
the performance of KERNELSIM in its application to a real-life example. The sample data
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(a) (b)

(c) (d)

Figure 5.14 Variograms of 10 realizations of KERNELSIM using TI-2. a, b Along the X and
Y axes with DS-1 as the sample data; c, d, along the X and Y axes with DS-2 as the sample
data
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(a) (b)

(c) (d)

(e) (f)

Figure 5.15 Third-order cumulant maps of a exhaustive image, b TI-2, c realization in Fig.
5.12a with DS-1 as the sample data, d realization in Fig. 5.12b with DS-2 as the sample data,
e 10 realizations in average with DS-1 as the sample data, and f 10 realizations in average
with DS-2 as the sample data
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(a) (b)

(c) (d)

(e) (f)

Figure 5.16 Fourth-order cumulant maps of a exhaustive image, b TI-2, c realization in Fig.
5.12a with DS-1 as the sample data, d realization in Fig. 5.12b with DS-2 as the sample data,
e 10 realizations in average with DS-1 as the sample data, and f 10 realizations in average
with DS-2 as the sample data
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(a) (b)

(c) (d)

(e) (f)

Figure 5.17 Behaviors of conditional probability distributions corresponding to conditioning
data with different spatial patterns. The central circle represents the center node to be
simulated, and the colored nodes are the conditioning data in the neighborhood
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are from 407 exploration drill holes and are composited to 10 m in length. The TI comes from
the blast hole data located at a mined-out area of the orebody. Fig. 5.18 shows the TI, a
cross section of the TI and the sample data in a three-dimensional view. The TI is generated
from the blast hole data assuming that the geological settings of the studied area are similar
to the mined-out area, where conflicts would be mitigated by the statistical learning process
dominated by the sample data. Fig. 5.19 shows cross sections of four different realizations
of KERNELSIM for the gold deposit in a three-dimensional view. The histogram of the gold
grades resembles the histogram of the sample data, as can be seen from Fig. 5.20. The
variograms of the sample data and the TI are plotted for comparison with the variograms
of 10 realizations of KERNELSIM from the gold deposit in Fig. 5.21. Figure 5.22 shows
the third-order cumulant maps of the samples, the TI and the realization of KERNELSIM,
respectively, along with the L-shape spatial template in the X-Y plane. Furthermore, the
fourth-order cumulant maps of the samples, the TI and the realization of KERNELSIM are
respectively displayed in Fig. 5.23. The results of the comparison in Figs. 5.22 and 5.23
show that the KERNELSIM reproduces the high-order spatial statistics of the sample data
in addition to the lower-order statistics, even though the spatial patterns of the third-order
and fourth-order cumulant maps of the TI are different to those of the sample data.

5.5 Conclusions

The paper presents a new high-order stochastic simulation framework based on statistical
learning. Within this statistical learning workflow, the density estimation in the sequential
simulation is kernelized, which renders it equivalent to solving a quadratic programming
problem. The kernelization is approached by embedding the original data space into a ker-
nel Hilbert space. A spatial Legendre moment reproducing kernel is proposed to construct
an RKHS that can incorporate the high-order spatial statistics of the original data. In
addition, a kernel decomposition technique is proposed to project the kernelization into a
one-dimensional kernel Hilbert space to approach the sequential simulation procedure and
to reduce computational complexity. The proposed statistical learning framework is general
and can cope with the possible statistical conflicts between the sample data and the TI.
The implementation of the method presented, termed KERNELSIM, is tested in different
case studies. The examples, which use a fully known reservoir, show that KERNELSIM can
reproduce the main spatial patterns of the sample data. Notably, the generalization capac-
ity of the proposed method mitigates the statistical conflicts between the sample data and
the TI and retains high-order statistical features from the sample data. The two examples
in the first case study also provide some insights on how the number of the sample data
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(a) (b)

(c)

Figure 5.18 a TI, b a cross section of the TI, and c the sample data of the Au grades

and the relation of the sample data to the TI affect the simulation results. It should be
noted that the simulation results only use the replicates from the TI to infer a conditional
probability distribution. Hence, the proposed statistical framework provides an approach to
condition the local probabilistic models learning from the TI to the existing configuration of
the sample data based on the generalization capacity of the learning framework. However,
the assumption made is that the TI shares some similarities in the local spatial structures
with the sample data, even though their global structures could be different. The impact of
the TI can also be reduced by only using replicates from the sample data, if the number of
the replicates reaches a certain threshold of statistical significance, similarly to the approach
adopted in previous publications [18, 133]. A case study at a gold deposit demonstrates the
performance of KERNELSIM in a three-dimensional example. The results show that the
KERNELSIM method reproduces the high-order spatial statistics of the drill hole samples
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(a) (b)

(c) (d)

Figure 5.19 Cross sections of four different realizations of KERNELSIM of the Au grades
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Figure 5.20 Histograms of 10 realizations of KERNELSIM for the Au grades of the gold
deposit in comparison to the TI and the samples

well. Thus, the method provides an effective approach to simulate the orebody using the drill
hole samples with the TI originating from a suitable mined-out part of the same deposit.



97

(a) (b)

(c)

Figure 5.21 Variograms of 10 realizations of KERNELSIM for Au grades at the gold deposit
along a E–W, b N–S, and c down drill holes, in comparison to the sample data and the TI
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(a) (b)

(c) (d)

Figure 5.22 Third-order cumulant maps of a the sample data, b the TI, c the realization of
KERNELSIM and d the 10 realizations of KERNELSIM in average
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(a) (b)

(c) (d)

Figure 5.23 Fourth-order cumulant maps of a the sample data, b the TI, c the realization of
KERNELSIM and d the 10 realizations of KERNELSIM in average
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CHAPTER 6 ARTICLE 3: TRAINING-IMAGE FREE HIGH-ORDER
STOCHASTIC SIMULATION BASED ON AGGREGATED KERNEL

STATISTICS

Abstract: A training-image free, high-order sequential simulation method is proposed
herein, which is based on the efficient inference of high-order spatial statistics from the
available sample data. A statistical learning framework in kernel space is adopted to develop
the proposed simulation method. Specifically, a new concept of aggregated kernel statistics
is proposed to enable sparse data learning. The conditioning data in the proposed high-order
sequential simulation method appear as data events corresponding to the attribute values
associated with the so-called spatial templates of various geometric configurations. The
replicates of the data events act as the training data in the learning framework for inference of
the conditional probability distribution and generating simulated values. These replicates are
mapped into spatial Legendre moment kernel spaces and the kernel statistics are computed
thereafter, encapsulating the high-order spatial statistics from the available data. To utilize
the incomplete information from the replicates, which partially match the spatial template of
a given data event, the aggregated kernel statistics combine the ensemble of the elements in
different kernel subspaces for statistical inference, embedding the high-order spatial statistics
of the replicates associated with various spatial templates into the same kernel subspace. The
aggregated kernel statistics are incorporated into a learning algorithm to obtain the target
probability distribution in the underlying random field, while preserving in the simulations
the high-order spatial statistics from the available data. The proposed method is tested
using a synthetic data set, showing the reproduction of the high-order spatial statistics of the
sample data. The comparison with the corresponding high-order simulation method using
TIs emphasizes the generalization capacity of the proposed method for sparse data learning.

Keywords: High-order sequential simulation; Statistical learning; Spatial statistics; Ker-
nel space

6.1 Introduction

Stochastic simulation methods are used to quantify the uncertainty of spatially distributed
attributes of geological and other natural phenomena. It is well known that the conventional

Submitted: Yao L, Dimitrakopoulos R, Gamache M (2020) Training-image-free high-order stochastic
simulation based on aggregated kernel statistics. Mathematical Geosciences (Submitted)
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second-order stochastic simulation methods are limited in reproducing the complex patterns
or nonlinear features exhibited in the spatial attributes of interest [14, 145, 146]. The so-called
multiple point simulation (MPS) methods [12, 56, 57, 60, 65, 66, 84, 120, 122, 147] have been
developed to address the limitation of conventional simulation methods based on the concept
of multiple point statistics. The multiple point simulation framework introduced training
images (TI) as statistical analogs of the spatial attributes under consideration. The multiple
point statistics are either (a) captured by occurrences of data events formed by indicators
at multiple locations inside the so-called spatial templates when the spatial attributes are
categorical, or (b) generalized to continuous data as the pattern similarity among patches
from the TI and the proceeding simulation. The multiple point statistics described in the
MPS methods are based on a certain spatial template, however, are limited given that they
do not consistently consider the lower-order spatial statistics in the related sub-templates.
In addition, although the utilization of a TI as prior information to account for multi-point
interactions of spatial attributes is conceptually appealing and justified [84], generally, the
information from TI is not conditioned to the available data. Thus, the potential statistical
conflicts existing between the sample data and the TI is a hinderance for the TI-driven MPS
methods to reproduce the spatial patterns properly. This issue seems more prominent when
the sample data are relatively dense, as in mining applications [126].

The high-order simulation methods provide a new framework to simulate complex spatial
patterns, addressing the drawbacks in MPS methods as discussed in the related publications
[17–19, 98, 99, 127, 132, 133, 148]. The high-order simulation methods equip the multiple-
point spatial structures with well-defined mathematical entities, such as spatial cumulants
or high-order spatial moments [17, 18, 128]. The random field model in the high-order sim-
ulation framework makes no assumption on any specific probability distribution. Instead, a
Legendre polynomial expansion series is adopted to approximate the underlying distribution,
where spatial cumulants are quantified to infer the expansion coefficients [18, 19]. To cope
with the statistical conflicts between the samples and the TI, the high-order simulation meth-
ods take into account both the high-order spatial statistics from the sample data and the
TI. However, the latter ones are only incorporated when the replicates from the sample data
are insufficient for inference and, therefore, limit the influence of the TI on the realizations
[18, 19]. Minniakhmetov and Dimitrakopoulos [98] propose a high-order simulation method
without TI, which uses instead special relations of high-order indicator moments in boundary
conditions related to a certain spatial template. However, these mathematical relations can
only be established for categorical random variables. Yao et al. [148] propose a statistical
learning framework of high-order simulation in kernel space by constructing a so-called spa-
tial Legendre moment kernel from a new computational model of high-order simulation based
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on spatial Legendre moments [133]. The proposed statistical learning framework in Yao et al.
[148] demonstrates the advantage of its generalization capacity with regards to improving of
the numerical stability, as compared to the previous high-order simulation methods. This
generalization capacity also mitigates the statistical conflicts between the samples and the
TI. This is due to the fact that the high-order spatial statistics are adjusted to the target
probability distribution through the learning process, as opposed to directly being incorpo-
rated into the coefficients of polynomial expansion series as with the other methods. The
simulation under a statistical learning framework [148] proceeds sequentially according to a
random path based on the sequential decomposition of the multivariate distribution of the
random field model [23, 25]. Specifically, the replicates are mapped onto the spatial Legendre
moment space and the empirical kernel statistics are computed thereafter. The target prob-
ability distributions are also embedded into the same kernel space to obtain the expected
kernel statistics. Matching these two elements in the kernel space leads to a minimization
problem in the quadratic form determined by the kernel function. Solving the minimization
problem leads to target probability distributions that comply with the high-order spatial
statistics of the available data.

The present paper proposes fundamental adjustments of the above statistical learning frame-
work so that it becomes more suitable for sparse data learning, thus allowing the development
of a TI free high-order simulation method for the continuous spatial attributes. Since retriev-
ing replicates that fully match the spatial template of the data events is difficult due to the
sparsity of the sample data, it is worth noting that replicates that are partially matched
to the spatial template may exist. These partially matched replicates, nevertheless, provide
useful and relevant information to the related statistical inference, while determining how to
utilize this incomplete information remains a challenge. The above-mentioned matters are
addressed herein by a proposed concept of aggregated kernel statistics. More specifically,
each spatial template is associated with a certain kernel subspace, such that any replicate
associated with the same spatial template can be mapped onto an element of the correspond-
ing kernel space. Accordingly, these mapped elements in the kernel subspaces are utilized to
compute the kernel statistics. The kernel statistics in a set of kernel subspaces are combined
to determine the aggregated kernel statistics through the relations introduced in this paper.
Eventually, the aggregated kernel statistics are embedded into the kernel subspace corre-
sponding to the conditional probability distribution encountered in the high-order sequential
simulation framework, and the statistical learning algorithm is applied to approximate a
conditional probability distribution.

The remainder of the paper is organized as follows. Firstly, the mathematical concepts and
the proposed method are presented. Next, a case study from a synthetic data set is used
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to assess the performance of the proposed method and demonstrate its practical aspects.
Conclusions follow.

6.2 Method

Consider the spatial attributes of interest distributed on a discrete grid as a random field
model denoted by Z(u) with u = {u1,u2, . . . ,un} corresponding to various locations within
the grid, then Z(u) = {Z(u1), Z(u2), . . . , Z(un)} comprises a multivariate probability distri-
bution fZ given that Z(ui) representing random variables at location ui(i = 1, . . . , n). Under
the sequential simulation framework [23], the joint probability distribution fZ is decomposed
into a sequence of conditional probability distributions following a random path to visit the
entire simulation grid, random values are drawn from these conditional probability distri-
butions sequentially along the random path to generate one realization. Both the available
sample data and the previous simulated attribute values are considered as the conditioning
data throughout the simulation process.

Without loss of generality, suppose that the current attribute Z(u0) to be simulated locates
at u0, and the informed data {ζ1, . . . , ζN} at the surrounding locations u0 + h1, . . . ,u0 + hN ,
consist of a data event as the conditioning data. From the geometric configuration of the data
event, a spatial template T = {u0,u0 +h1, . . . ,u0 +hN} can be determined with the distance
vectors h1, . . . ,hN pointing outwards from the center u0 to the surrounding locations. Let
the conditional probability density function (CPDF) be denoted as f(z0|ζ1, . . . , ζN), the key
task to derive the CPDF is achieved by a statistical learning algorithm in kernel space herein.
The related replicates associated with template T are retrieved from the sample data and
these replicates are used as the training data of statistical learning to infer the underlying
probability distribution. Specifically, the retrieved replicates are mapped to elements in
kernel spaces to build kernel statistics carrying the high-order spatial information from the
replicates. The aggregated kernel statistics are proposed allowing to incorporate the high-
order spatial statistics from the ensemble of replicates with different spatial configurations.
The target CPDF is then achieved by the statistical learning algorithm approaching the
aggregated kernel statistics from the sample data.
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6.3 Aggregation of Spatial Legendre Kernel Subspaces and Kernel Statistics

6.3.1 Spatial Legendre moment kernel subspaces

The kernel space is a Hilbert space defined through a positive kernel function. The spatial
Legendre moment reproducing kernel (SLM-kernel) [148] is presented herein to carry the
information of high-order spatial statistics so that the density estimation in the high-order
sequential simulation could be achieved by a statistical learning process in kernel space.
The SLM-kernel can be defined to associate a kernel subspace to random variables within a
certain spatial template. Given a set of random variables V = {Z0, Z1, . . . , ZN} with nodes
corresponding to spatial template T = {u0,u0 + h1, . . . ,u0 + hN}. The kernel subspace can
be determined by a spatial Legendre moment reproducing kernel (SLM-kernel) as

KV (X,Y) =
N∏
i=0

[ W∑
w=0

(w + 1
2)Pw(xi)Pw(yi)

]
, (6.1)

whereN corresponds to size of the spatial template, X = (x0, x1, . . . , xN),Y = (y0, y1, . . . , yN),
and Pw(·) is the Legendre polynomial of order w defined on the interval [−1, 1] and W is
the maximal order of Legendre polynomials under consideration. Let the original data space
denote as E and the kernel space associated to kernel K denote as H, the canonical feature
map [139], φ(t) : E → H, t 7→ K(·, t), ∀t ∈ E, defines a valid feature map which takes an
element from the original data space to an element in the kernel subspace. In other words,
after the feature mapping, each element in the original data space E has a “representer” in
the kernel space H.

6.3.1.1 Aggregated SLM-Kernel Statistics

If a training image (TI) is provided as an exhaustive data set, most of the replicates of a
data event fully match the spatial configuration of the data event while the partially matched
ones are negligible. The replicates of a data event from the sample data, however, include
both fully matched and partially matched replicates which correspond to different configu-
ration of spatial templates. Therefore, the replicates are respectively mapped to different
kernel subspaces. Kernel statistics, in general, means either the empirical statistics from the
mapped elements or the expected statistics in the kernel subspaces, such as empirical mean
and expectation. Equation (6.1) suggests that replicates associated with different spatial
templates would be mapped to kernel subspaces with different kernel functions. The kernel
statistics associated with different spatial templates, thus come from different subspaces and
need to be combined appropriately to get the aggregated kernel statistics for the inferring of
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underlying probability distribution afterwards.

For the convenience, the followed notation is defined to clarify the relations between the
spatial templates. Given a template T = {u0,u0 + h1, . . . ,u0 + hN} as a set of locations
with the center node denoted as center(T) = u0, the size of the T is the same as the number
of the elements in it and is denoted as |T|, i.e., |T| = N + 1 here. Since the replicates of
the data events are matched by their relative positions to the center node regardless of the
location of the center node, the relations between the spatial templates are defined in the
same manner. Let Ta = {ua,ua + h1, . . . ,ua + hNa} and Tb = {ub,ub + h1, . . . ,ub + hNb

}
be the two spatial templates under consideration, then the relations between Ta and Tb are
the following:

(1) If |Ta| = |Tb|,∀ta ∈ Ta,∃! tb ∈ Tb, such that ta − center(Ta) = tb − center(Tb), then
Ta and Tb have the same geometry configuration and the identical relation is expressed as
Ta = Tb.

(2) If |Ta| ≤ |Tb|,∀ta ∈ Ta,∃! tb ∈ Tb, such that ta− center(Ta) = tb− center(Tb), then Tb

contains the geometry configuration as a subset and the relation is expressed as Ta ⊆ Tb or
Tb ⊇ Ta. If |Ta| < |Tb| strictly, the above relation is expressed as Ta ⊂ Tb or Tb ⊃ Ta.

Suppose that the spatial template of the conditioning data is T = {u0,u0 + h1, . . . ,u0 + hN}
and that the nodes are ordered increasingly according to their distances from the center.
By dropping the furthest node from the template T each time, a hierarchical set of spatial
templates can be defined as

vN = T ⊇ vN−1 = T {u0 + hN} ⊇, . . . ,⊇ v1 = {u0,u0 + h1} ⊇ v0 = {u0}, (6.2)

and the corresponding sets of random variables as

V0 = {Z0} ⊆ V1 = {Z0, Z1} ⊆, . . . ,⊆ VN = {Z0, Z1, . . . , ZN}. (6.3)

These spatial templates consist of the possible spatial configurations of the partially matched
replicates considered in this paper and the entire set is denoted as G = ∪Ni=1vi. Let the
training data from the replicates associated with the G be denoted as G. For any spatial
template v ∈ G, the set of random variables associated with v is denoted as V and the
replicates corresponding to the spatial template v is noted as Gv. The size of the set Gv
is noted as |Gv| representing the number of replicates associated with the spatial template
v. And let the total number of replicates associated with G be |G|. An arbitrary element
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ζt,v ∈ Gv, represents a sequence of attribute values as

ζt,v = {ζt,i : i ∈ v}, (6.4)

where ζt,i are the values from the replicate at the location of node i in the spatial template
v and 1 ≤ t ≤ |Gv| corresponds to one of the replicates. The element mapped to the
corresponding kernel subspace from ζt,v can be represented as

κ[ζt,v] = KV (ζt,v, ·), (6.5)

which is a function element in the kernel space. With the replicates in Gv mapping to the
kernel space with kernel KV , the empirical kernel mean κ[Gv] can be defined as

κ[Gv] = 1
|Gv|

|Gv |∑
t=1

κ[ζt,v] = 1
|Gv|

|Gv |∑
t=1

KV (ζt,v, ·). (6.6)

For any two nodes v, v′ ∈ G and v′ ⊇ v, there would be a hereditary subset of replicates
which are generated from the projection of v′ onto v by restricting the training data Gv′ to
the spatial template v, and denote this hereditary subset as Gv′|v. Obviously, Gv′|v = Gv if
v′ = v. Given that v′ ⊇ v, the projected elements in the original data space, their mapped
elements in the kernel spaces and the kernel statistics can be defined similarly as

ζt,v′|v = {ζt,i : i ∈ v′|v, 1 ≤ t ≤ |Gv′|}, (6.7)

κ[ζt,v′|v] = KV (ζt,v′|v, ·), (6.8)

κ[Gv′|v] = 1
|Gv′|

|Gv′ |∑
t=1

κ[ζt,v′|v] = 1
|Gv′|
|
|Gv′ |∑
t=1

KV (ζt,v′|v, ·). (6.9)

Then, the aggregated kernel statistics κ[G] based on the replicates associated to the ensemble
of various spatial templates in G can be defined as

κ[G] =
N∑
n=1

1∑N
i=n |Gvi

|
·
( N∑
i=n

(
κ[Gvi|vn ]− κ[Gvi|vn−1 ]

)
|Gvi
|
)
. (6.10)

Combined with Eq. (6.6), it can be also written as
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κ[G] =
N∑
n=1

1∑N
i=n |Gvi

|
·
( N∑
i=n

|Gvi |∑
t=1

[
KVn(ζt,vi|vn , ·)−KVn−1(ζt,vi|vn−1 , ·)

])
. (6.11)

6.3.2 Sequential simulation via statistical learning with aggregated kernel statis-
tics

The general concept of statistical learning refers to learning any functional dependency from
certain data set without prior knowledge of the data [110, 134]. Herein, the statistical
learning framework for the high-order sequential simulation, specifically, means to learn the
conditional probability distribution based on the observed replicates from the sample data.
The learning procedure can be achieved conveniently through an optimization algorithm in
the SLM-kernel space. In fact, the kernel mean defines a feature map to embed probability
distribution to the associated kernel space [135, 136, 138]. The empirical mean in the kernel
space embeds the empirical probability distribution. Similarly, the expected mean in the
kernel space given a certain probability distribution embeds the distribution as an element
in the kernel space. Minimizing the distance between the two above-mentioned elements in
the kernel space leads to matching of high-order spatial statistics of the target distribution
to those of the available data with the kernel space defined by the SLM-kernel.

Equation (6.11) defines a feature map through the aggregated kernel statistics from an en-
semble of kernel subspaces. Suppose that the conditioning data is Λ = {ζ1, . . . , ζN}, and
define the conditioned kernel statistics κ[G; Λ] as

κ[G; Λ] =
N∑
n=1

1∑N
i=n |Gvi

|
·
( N∑
i=n

|Gvi |∑
t=1

[
KVn(ζt,vi|vn ,Λ)−KVn−1(ζt,vi|vn−1 ,Λ)

])
(6.12)

Furthermore, marginalization of κ[G; Λ] can be defined as

κ[G|Λ] = κ[G; Λ]∫
[−1,1] κ[G; Λ]dz0

. (6.13)

The emphasis herein, is to derive a feasible computational model for the marginalized kernel
statistics, κ[G|Λ], defined in Eq. (6.13). An interesting property of SLM-kernel from its
definition is

KVi
= KVi\Vi−1KVi−1 , i = 1, . . . , N, (6.14)

which means the high-order dimensional kernels could be built incrementally from the lower-
dimensional ones as

KVN
= KVN\VN−1KVN−1\VN−2 · · ·KV2\V1KV1 . (6.15)
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Obviously, Vi\Vi−1 = {Zi} is a single element set and the kernel KVi\Vi−1 can be written as

KVi\Vi−1(xi, yi) =
W∑
w=0

(w + 1
2)Pw(xi)Pw(yi). (6.16)

Note the orthogonal property of Legendre polynomials, it is easy to derive that
∫

[−1,1]
KV0(z0, ·)dz0 = 1, (6.17)

and therefore, there is

∫
[−1,1]

κ[G; Λ]dz0 =
N∑
n=1

1∑N
i=n |Gvi

|
·
( N∑
i=n

|Gvi |∑
t=1

[
KVn\V0(ζt,vi|vn ,Λ)−KVn−1\V0(ζt,vi|vn−1 ,Λ)

])
.

(6.18)

According to Eq. (6.16), the result of Eq. (6.19) can be obtained from the intermediate
result of computing Eq. (6.12). In the end, κ[G|Λ] an be expressed in the form as

κ[G|Λ] =
|G|∑
t=1

βtKV0(ζt,0, z0), (6.19)

where βt are constant coefficients that can be computed through Eqs. (6.13) and (6.18).
Equation (6.19) is a linear combination of elements in kernel space determined by kernel KV0 ,
and therefore marginalization of the aggregated kernel statistics, κ[G|Λ], embeds the empirical
conditional probability distribution to the corresponding kernel space with kernel KV0 . Given
a convex space P0 as the solution space of the target distribution p̂ and consider the training
data replicates in G, the two elements embedding into the kernel space H associated to kernel
KV0 are represented as µKV0

[G] and µKV0
[p̂], corresponding to the empirical distribution and

the target distribution, respectively. The target conditional probability distribution p̂ can be
solved by the below minimization problem as

min
p̂
‖ µKV0

[G]− µKV0
[p̂] ‖2

H . (6.20)

The minimization in Eq. (6.20) can be expanded to a quadratic programming problem by
noticing that the inner products can be expressed as kernel functions. The details to solve
the problem given p̂ as a convex combination of certain prototype distributions, is established
in Yao et al. [148] and thus will not be repeated here. It should be noted that although Eq.
(6.19) appears in a similar form as Eq. (16) in Yao et al. [148], the coefficients βt in Eq.
(6.19) depend on the aggregated kernel statistics with different spatial templates, which is



109

critical for the utilization of information from partially matched replicates.

Figure 6.1 Tolerances along each distance vector of the spatial template for retrieving repli-
cates from the samples

With the computation of aggregated kernel statistics of various spatial templates and the
auxiliary procedure to estimate the conditional probability distribution, the sequential sim-
ulation method via statistical learning with aggregated kernel statistics can be described as
the following:

(1) Transform the sample data to the interval [-1, 1] of Legendre polynomials.

(2) Initialize a random path to visit the simulation grid.

(3) For each node to be simulated, find the conditioning data as the data event. The nodes
from the spatial template of the data event are ordered increasingly from their distances
to the center node.

(4) For each distance vector in the spatial template, allow certain angle tolerance θ and lag
tolerance ∆h as well as a bandwidth b to find matched node from the samples (Fig.
6.1). Start from the distance vector nearest to the center node and go through all the
distance vectors orderly until no matching node is found from the samples. Scan the
entire sample data set and store the replicates to separate lists according to the number
of nodes matched to the spatial template of the data event.

(5) Compute the aggregated kernel statistics from the partially matched replicates retrieved
in Step (4) following Eq. (6.11) and (6.12).
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(6) Compute the marginalized kernel statistics defined by Eq. (6.13) and the feature map
κ[G|Λ] defined by Eq. (6.19), solve the minimization problem in Eq. (6.20) to get an es-
timated conditional probability distribution. Draw a random sample from the estimated
probability distribution and add the value to the simulation grid.

(7) Repeat from Step (3) until all the nodes of the simulation grid are visited.

(8) Back transform the simulate grid from the interval [-1, 1] to generate a realization in the
original data space.

6.4 Case Study with a Synthetic Data Set

The synthetic data is a horizontal section extracted from a fully known reservoir data set
of porosity [129]. Two different sample data set are drawn from the section representing
different sampling density. The data set DS-1 contains samples randomly drawn from 200
locations and the data set DS-2 has 400 samples with regular spacing. Figure 6.2 shows the
samples and Fig. 6.3 displays the exhaustive image.

(a) (b)

Figure 6.2 Two different sample data set. a DS-1 with 200 randomly drawn samples, b DS-2
with 400 samples

Two realizations of the proposed high-order simulation method using DS-1 and DS-2 is
demonstrated in Fig. 6.4a, b and Fig. 6.4c, d respectively. The same random paths are
used to for the two realizations for comparison of the impact of sampling density on the
simulation method. The visual comparison with the exhaustive image shows that both re-
alizations reproduce the preferential channels along the vertical direction. This shows that
the proposed method has the generalization capacity to provide stability of simulation with
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Figure 6.3 A horizontal section of porosity attribute from a reservoir, acting as the exhaustive
image

relatively sparse data. On the other hand, the realizations using DS-2 as the sample data
retains more fine structures as well as the overall spatial connectivity than the other realiza-
tion. The reason is that sparser data set in general has less replicates for small structures
and, thus, the estimated high-order spatial statistics have to be generalized to stabilize the
statistical inference in the situation that the replicates are less. Generally speaking, as the
amount of data increases, the models tend to have more variations in finer spatial structures
and vice versa.

To further demonstrate the TI-free feature of the proposed simulation method, two realiza-
tions of the high-order simulation based on statistical learning using a TI from Yao et al. [148]
are displayed in Fig. 6.4e, f for comparison. The results show that the TI adds complemen-
tary information to finer structures of the realizations, however, the additional information
from the TI seems less compliant to the ground truth when the samples are relatively sparse.
As the samples are relatively dense, the contribution of the additional information from the
TI also becomes less important since the TI-free simulation method can generate more details
from the available sample data. The comparison of histograms of 10 realizations with DS-1
and DS-2 as the sample data with the histograms of the two sample data sets, as well as
the exhaustive image, is demonstrated in Fig. 6.5a, b. In both cases, the histograms of the
realizations follow the histograms of the sample data sets, whereas the one with dense data
resembles more to the exhaustive image, as expected.

The variograms of 10 realizations based on the proposed simulation method using the two
different sample data sets are shown in Fig. 6.6, showing that the simulations reproduce
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4 Realizations of TI-free high-order simulation with the sample data DS-1 in a, b
and with the sample data DS-2 in c, d; for comparison, realizations of high-order simulation
using a TI with the sample data DS-1 in e and with the sample data DS-2 in f (from [148])
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(a) (b)

Figure 6.5 Histograms of the sample data, the exhaustive image and 10 realizations using a
DS-1 and b DS-2 as the sample data, respectively

the variograms of the samples. The third-order cumulant maps of the sample data and
the corresponding realizations with the proposed simulation method are shown in Fig. 6.7.
Furthermore, the fourth-order cumulate maps of the sample data and the realizations are
displayed in Fig. 6.8 for comparison. In this example, the third-order cumulant maps are
calculated based on a spatial template along X and Y axes with varied lengths on both
directions. The spatial templates of the fourth-order cumulants include extra distance vectors
along the diagonal direction in addition to the two axes directions. The fourth-order cumulant
maps are also scaled by their deviations for better contrast of the patterns. In general,
these high-order cumulant maps represent more complex spatial patterns which characterize
interrelations among multiple points. The cumulant maps of two representative realizations
from the high-order simulation based on statistical learning using a TI are displayed in
the bottom of Fig. 6.7 and Fig. 6.8 for comparison with the results from the proposed
method. The comparisons of the cumulant maps suggest that the proposed method is able
to reproduce the high-order spatial statistics of the sample data as well as the exhaustive
image. The results above show that the proposed approach leads to a reliable inference on
the underlying random field model, given a reasonable number of samples available and thus
avoids the potential statistical conflicts using a TI to carry out the high-order simulation.

6.5 Conclusions

This paper presents a high-order sequential simulation approach based on statistical learning
with aggregated kernel statistics from a set of sample data. Regarding the sparsity of the
sample data used to infer the high-order spatial statistics of the underlying random field
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(a) (b)

(c) (d)

Figure 6.6 Variograms of 10 realizations. a and b, along X and Y axis with DS-1 as the
sample data; c and d, along X and Y axis with DS-2 as the sample data
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(a) (b) (c)

(d) (e)

(f) (g)

(h) (i)

Figure 6.7 Third-order cumulant maps of a DS-1, b DS-2, c exhaustive image, d, e realizations
in Fig. 4a, b with DS-1 as the sample data, f, g realizations in Fig. 4c, d with DS-2 as the
sample data, h, i realizations of high-order simulation using a TI with DS-1 and DS-2 as the
sample data, respectively (from [148])
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(a) (b) (c)

(d) (e)

(f) (g)

(h) (i)

Figure 6.8 Fourth-order cumulant maps of a DS-1, b DS-2, c exhaustive image, d, e realiza-
tions in Fig. 4a, b with DS-1 as the sample data, f, g realizations in Fig. 4c, d with DS-2 as
the sample data, h, i realizations of high-order simulation using a TI with DS-1 and DS-2 as
the sample data, respectively (from [148])



117

model, the partially matched replicates of the data events encountered in the simulation are
mapped into kernel subspaces. The latter kernel subspaces are defined by different kernel
functions corresponding to different configurations of spatial templates to create an ensemble
set of elements in kernel subspaces. The ensemble of elements in the kernel subspaces are
aggregated to construct the new concept of aggregated kernel statistics. The aggregated
kernel statistics are crucial in building a new feature map to consider partially matched
replicates together to the same kernel space of the conditional probability distribution. In
addition, the statistical learning framework for high-order simulation offers the generalization
capacity for sparse data learning. The combination of the aggregated kernel statistics with
the statistical learning thus provides a new way to derive the proposed TI free high-order
simulation method. The proposed method tackles the issue of statistical conflicts between
the sample data and the TI. The case study from the fully-known data set shows that the
proposed method reproduces both lower-order and higher-order spatial statistics in generated
realizations. Even with relatively sparse samples, the proposed method retains the main
spatial patterns of the available data, which is characterized by high-order spatial statistics.
It should be noted that the concept of aggregated kernel statistics is quite flexible and can
accommodate information from different data sources with various spatial configurations.
This represents a potential direction for future research.
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CHAPTER 7 ARTICLE 4: LEARNING HIGH-ORDER SPATIAL
STATISTICS AT MULTIPLE SCALES: A KERNEL-BASED STOCHASTIC

SIMULATION ALGORITHM AND ITS IMPLEMENTATION

Abstract: This paper presents a learning-based stochastic simulation method that incor-
porates high-order spatial statistics at multiple scales from sources with different resolutions.
Regarding the simulation of a certain spatial attribute, the high-order spatial information
from different sources is encapsulated as aggregated kernel statistics in a spatial Legendre
moment kernel space, and the probability distribution of the underlying random field model
is derived by a statistical learning algorithm, which matches the high-order spatial statistics
of the target model to the observed ones. In addition, a related software is developed as
the SGeMS plugin. Case studies are conducted with a known data set and a gold deposit,
demonstrating reproduction of high-order spatial statistics from the available data, as well
as practical aspects in mining applications.

Keywords: Stochastic simulation; High-order spatial statistics; High-order simulation
software; Kernel; Statistical learning

7.1 Introduction

High-order stochastic simulation methods are amongst the latest developments in geosta-
tistical simulation, aiming to reproduce complex spatial patterns from the available data.
The spatial patterns represent the interaction of spatial attributes of certain natural phe-
nomena among multiple locations and they can be characterized by the high-order spatial
statistics defined in different ways such as high-order spatial cumulants or high-order spa-
tial moments [11, 17, 91]. High-order simulation methods contrast with the multiple point
simulation approaches, where the multi-point interrelations are indirectly captured as either
the frequency of data events occurring at multiple locations [12, 57, 84, 122] or as similar-
ity measures amongst patterns [56, 60, 65–67]. Instead, the high-order simulation methods
explicitly build probabilistic models based on high-order spatial statistics. For instance, Leg-
endre polynomial expansion series are used to approximate the probability distributions of
spatial attributes where the expansion coefficients are determined by computing the spa-

Submitted: Yao, L., Dimitrakopoulos, R., and Gamache, M. (2020). Learning high-order spatial statistics
at multiple scales: a kernel-based stochastic simulation algorithm and its implementation. Computers &
Geosciences. (Submitted).
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tial cumulants, leading to an early development of a high-order simulation algorithm known
as HOSIM [18, 19]. The concept of high-order spatial statistics has also been extended to
multiple variables to develop joint simulation of spatially correlated attributes [99]. The
probabilistic model of high-order simulation makes no parametric assumptions of the prob-
ability distribution and thus characterizes the non-gaussian and non-linear features of the
spatial attributes. The estimation of the probability distribution yields a numerical model
based on components linked to the empirical high-order spatial statistics calculated from the
available data. In practice, the input data for estimating the probability distribution may
impact the numerical stability of the related estimation. The available sample data alone
may not be sufficient to infer the high-order spatial statistics required and, thus, may influ-
ence the numerical model. This limitation is alleviated with the use of a training image (TI)
as the complementary statistical analog [18]. Another approximation model of a high-order
simulation that shows substantial improvement with regards to numerical stability is found
in Minniakhmetov et al. [128]. The latter authors use the Legendre-like splines as the basis
functions for the approximation series, which leads to a better reproduction of spatial data
patterns, as compared to the previous HOSIM method.

A concern when using a TI as a statistical analog of the underlying random field model is the
possible statistical conflicts between the sample data and the TI. Yao et al. [148] propose a
statistical learning framework for high-order sequential simulation in a newly defined kernel
space; the related learning algorithm shows generalization capacity to comply with the in-
ferred model from the TI with the spatial statistics of the sample data, and thereby mitigates
the possible statistical conflicts. A spatial Legendre moment kernel is proposed in Yao et al.
[148] to define the associated kernel space. The replicates of the data events (conditioning
data) retrieved from the available data are mapped into the spatial Legendre moment kernel
space by a feature mapping function. Thereafter, the so-called empirical kernel statistics are
defined by taking a sample average of the mapped elements in the kernel space correspond-
ing to the replicates. As a result, the empirical kernel statistics carried high-order spatial
statistics of the replicates. On the other hand, the target probability distribution from the
related random field model can be embedded into the same kernel space through the termed
expected kernel statistics. A kernelized learning algorithm is designed specifically to match
the expected kernel statistics to the empirical kernel statistics, which results in a simulation
model with a reproduction of high-order spatial statistics from the available data. Although
the proposed statistical learning framework is general, one limitation of the application in
Yao et al. [148] is that the replicates retrieved from the TI act as the only training data in the
related learning algorithm; this may influence the spatial continuity of the realizations given
that the statistical conflicts between the sample data and the TI are severe. Yao et al. [149]
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propose a TI-free high-order simulation method based on the statistical learning framework.
The concept of aggregated kernel statistics is defined such that the samples with different
spatial configurations can be effectively utilized for statistical inference of the random field
model. A limitation of the above-mentioned TI-free simulation method is that the quality of
the realizations depends on the sampling density. While the sample data are relatively sparse,
the fine-scale spatial structures of the spatial attributes of interest are not well represented.
The limitations found in previous simulation methods motivate the present research to pro-
pose a new type of aggregated kernel statistics, which aims to incorporate the high-order
spatial information at multiple scales. Specifically, the sample data are relatively sparse and
thus carry high-order spatial information at coarse scales. On the other hand, the TIs are
exhaustive and can provide high-order spatial information at finer scales. The general idea
of the proposed aggregated kernel statistics in this paper is to exclude the influence of the
TI from deriving the high-order spatial statistics at coarse scales by only utilizing the sample
data, while complementing the high-order spatial information with TI. Thereafter, the aggre-
gated kernel statistics are utilized in the statistical learning framework for further inference
of the random field model. Although the present study considers only two different scales
of data as the samples and the TI, the concept of the aggregated kernel statistics proposed
herein can be generalized to multiple scales. In addition, a high-order simulation program is
developed accordingly and described in this paper. The implementation is written in C++
language and is compatible to the SGeMS software.

In the following sections, Section 7.2 presents the high-order simulation method based on
statistical learning and the concept of the aggregated kernel statistics. Section 7.3 describes
a kernelized high-order simulation program and its implementation in C++ language. Sec-
tion 7.4 contains two different case studies with a synthetic data set and at a gold deposit.
Conclusions are presented in Section 7.5.

7.2 Method

In this section, concepts of high-order sequential simulation are first outlined, followed by a
brief overview of the spatial Legendre moment kernel space. The concept of aggregated kernel
statistics at different scales is then presented and utilized to develop a kernelized learning
algorithm.
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7.2.1 High-order sequential simulation

Suppose that the attributes of interest are modeled as a random field Z(u) where u represents
locations at a certain spatial domain. The attributes at multiple locations within the spatial
domain comprise a multivariate probability distribution. The multivariate probability dis-
tribution can be decomposed into a sequence of conditional probability distributions so that
the random values can be sequentially drawn from the multivariate probability distribution
to generate the simulated realizations. Without loss of generality, the conditional probability
density functions (CPDF) can be approximated as f(z0|ζ1, . . . , ζN) given that the node Z0

to be simulated center at u0 and the conditioning data within its neighborhood located at
u1, . . . ,uN with the value of attributes corresponding to ζ1, . . . , ζN . In terms of high-order
sequential simulation, the high-order spatial statistics are taken into account for approxi-
mating the CPDF f(z0|ζ1, . . . , ζN), and the conditioning data ζ1, . . . , ζN are called as a data
event associated with a spatial template defined by distance vectors of location u1, . . . ,uN
to the location u0 of the center node. The high-order spatial statistics are contained in the
replicates of a data event for inference. Note that the replicates of a data event in high-order
simulation methods are not necessary to have identical or similar attribute values to the data
event, but rather to have the same spatial template, i.e., the same data geometry. In general,
the replicates from the sample data correspond to spatial template at coarse scales and the
replicates from the TI provides spatial information at finer scales because of the sparsity of
the sample data in contrast to the exhaustive TI.

7.2.2 Kernel space and spatial Legendre moment kernel

Suppose the original data space of the considered spatial attributes is represented by a
nonempty set E, then an element x ∈ E can be taken to a kernel space H by a so-called
feature mapping function φ(x) : E → H. The kernel space H is a Hilbert space with the
inner product defined by a positive definite kernel function K : E × E → R where R is the
set of the real numbers. Given a Hilbert space H with the kernel K, then for x, y ∈ E and
the corresponding features φ(x), φ(y) ∈ H, the inner product on H can be defined as

〈φ(x), φ(y)〉H = K(x, y). (7.1)

An interesting property with the kernelK is that the function φ(x) : E→ H, x 7→ K(·, x) also
defines a feature map namely as reproduce kernel map or canonical feature map [111, 140].



122

The kernel function K has the reproducing property as

〈f(x), K(·, x)〉H = f(x), (7.2)

∀x ∈ E and ∀f ∈ H, therefore there is

〈K(·, x), K(·, y)〉H = K(x, y). (7.3)

This kind of reproduce kernel map is adopted throughout this paper as the feature mapping
function from the original data space to the kernel space. It is obvious from the Eq. (7.3)
that the elements in the kernel space after the feature mapping from the original data space
have the similarity measure defined as the distances between each other through the kernel
function K.

The spatial Legendre moment kernel [148] allows to carry over the high-order spatial statistics
information from the original data space to the newly defined kernel space with the definition
as

KV (X,Y) =
N∏
i=0

[ W∑
w=0

(w + 1
2)Pw(xi)Pw(yi)

]
, (7.4)

where KV is the kernel corresponding to the set of random variables associated with a spatial
template of N distance vectors, and Pw is the Legendre polynomial of order w.

7.2.3 Aggregating kernel statistics at different scales

With the definition of spatial Legendre moment kernel in Eq. (7.4),the empirical kernel
statistics can be defined accordingly based on the sample average of the elements in the kernel
space mapped from samples in the original data space. The kernel function KV depends on
the spatial template involved, and so as the kernel statistics from the available data are
related to the spatial templates of the data events. When both the sample data and the
TI are available for retrieving the replicates and inferring the kernel statistics, the replicates
from the two different sources generally carry high-order spatial statistics information at
different scales. Specifically, the sample data are relatively sparse that frequently the spatial
configuration of the replicates from them could only partially match to the spatial template of
the data event, and theses replicates carry the spatial statistics at coarser scale with relatively
higher compliance to the underlying random field. On the contrary, the TI are exhaustive
data and the replicates from it can fully match the spatial template of the data event, thus
the replicates provide spatial statistics at finer scale but possibly with less compliance to the
underlying random field model.
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Suppose that the spatial template of the data event be noted as v and the corresponding set
of random variables be noted as V . Let vs be the spatial template of the replicates of the
data event retrieved from the sample data and the associated set of random variables as Vs,
vs and Vs are the subsets of v and V , respectively. Let Gvs be the set of replicates from the
sample data and the number of these replicates be ns, the kernel statistics based on Gvs can
be defined as

κ[Gvs ] = 1
ns

ns∑
i=1

KVs(ζsi,vs
, ·), (7.5)

where ζsi,vs
is the vector of the attribute values corresponding to the replicates in set Gvs .

The kernel statistics of the replicates from the TI can be defined separately in a similar way.
The motivation of aggregating kernel statistics at different scales is to utilize the part of
high-order spatial information of the replicates from the sample data and in the meanwhile
complement the rest part of high-order spatial information using the replicates from the TI. In
other words, the spatial template v is divided into two sub-templates vs and vt respectively
corresponding to the sample data and the TI, and so are the set of random variables are
divided into Vs and Vt, respectively. Therefore, there are

v = vs ∪ vt, (7.6)

and
V = Vs ∪ Vt. (7.7)

The above subdivision regarding the spatial template also leads to kernel subspaces with
kernels KVs and KVt . Suppose the ensemble of replicates from both the sample data and the
TI denote as a set Gv and let nt denote the number of replicates from the TI. The aggregated
kernel statistics combining the replicates both from the TI and the sample data at different
scales are defined as

κ[Gv] = 1
ns

ns∑
i=1

KVs(ζsi,vs
, ·) + 1

nt

nt∑
j=1

[KV (ζtj,v, ·)−KVs(ζtj,vt
, ·)], (7.8)

where ζsi,vs
, ζtj,v and ζtj,vt

represent the replicates from the sample data and the replicates from
the TI with spatial template v and vt, respectively.
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7.2.4 Kernelized high-order sequential simulation algorithm

The high-order spatial information from both the sample and the TI can be represented by
the aggregated kernel statistics at two scales. In terms of high-order sequential simulation,
the target is to obtain conditional probability distributions which match the high-order spa-
tial statistics of the available data. This matching of high-order spatial statistics can be
conveniently achieved by a statistical learning algorithm in kernel space. Suppose that the
target probability density function p̂ lies in the convex space of certain prototype probability
density functions pi as

p̂ =
n∑
i=1

αipi, (7.9)

where
n∑
i=1

αi = 1 and αi ≥ 0,∀1 ≤ i ≤ n. It is straightforward that the expected kernel
statistics with regard to the probability distribution can be defined as

κ0[p̂] = Ez0∼p̂[K0(z0, ·)], (7.10)

where Z0 is the center node to be simulated and K0 is the corresponding kernel function.
The aggregated kernel statistics defined in Eq. (7.8) can be projected to the same kernel
space through marginalization, and therefore the expected kernel statistics can be matched
to the observed kernel statistics from the available data simply by minimizing the distance
of two elements in the kernel space. Given that the conditioning data as Λ = {ζ1, . . . , ζN}
and the evaluation of κ[Gv] on Λ as κ[Gv|Λ], the projection of the aggregated kernel statistics
can be defined as

κ0[Gv|Λ] = κ[Gv; Λ]∫
[−1,1] κ[Gv; Λ]dz0

. (7.11)

Specifically, the statistical learning of high-order spatial statistics leads to a minimization
problem

min
p̂
‖ κ0[Gv|Λ]− κ0[p̂] ‖2

H . (7.12)

The minimization in Eq. (7.12) amounts to solve a quadratic problem in a general form [136]
as

min
α

1
2α

T (Q + λI)α− qTα

s.t.
n∑
i=1

αi = 1

αi ≥ 0, ∀1 ≤ i ≤ n, (7.13)
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where λ is a regularization constant and I is the identity matrix. Matrix Q and vector q
differ as the kernel function varies. For deriving the entries of the matrix Q and vector q,
as well as solving the quadratic programming problem in the SLM-kernel space, the readers
are referred to Yao et al. [148].

As long as the target conditional probability density functions are determined through the
above learning process, the rest of simulation follows the general procedure of sequential
simulation. Hence, the kernelized high-order sequential simulation algorithm can be described
as follows

(1) Transform sample data and TI to the domain of Legendre polynomials, the interval
[−1, 1].

(2) Generate a random path to visit the simulation grid.

(3) Find the conditioning data inside the neighborhood of the current node to simulate as
the data event, the spatial template of the data event is used to retrieve replicates from
the sample data and the TI.

(4) Compute the aggregated kernel statistics defined in Eq. (7.8) from the replicates retrieved
from the sample data and the TI.

(5) Match the kernel statistics of the target CPDF to the aggregated kernel statistics and
build the quadratic programming problem through Eq. (7.12) and (7.13). Solve the
quadratic programming problem to derive the target CPDF.

(6) Generate a random value from the target CPDF and add it to the simulation grid.

(7) Repeat from steps (3) to (6) until all the nodes on the simulation grid are simulated.

(8) Back transform the node attributes of the simulation from the interval [−1, 1] to the
original data space.

7.3 A Kernelized High-Order Simulation Program

The kernelized high-order simulation program is developed as a software plugin compatible
with the SGeMS platform [122]. The program is written in C++ language and follows the
generic programming paradigm adopted in the design of GsTL, a geostatistical template
library [150]. The main workflow contains three major C++ classes which are described as
the following.
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7.3.1 Class kernelsim

This class is the application class communicating with the SGeMS platform through the
user parameters, as well as running the simulation algorithm from the GUI. The class is
derived from a predefined interface from the SGeMS platform so that it is compatible to
the function calling convention of SGeMS. The object from the class kernelsim calls the
sequential simulation function to start the high-order simulation procedure. The parameters
of the proposed simulation algorithm can either be input from the GUI by the user or can
be loaded from an XML file. The parameters are described in Table 7.1.

Table 7.1 Parameters description

Parameter Range
Maximum order of Legendre polynomials between 10 ∼ 20
Maximum number of conditioning data 10 ∼ 30

Number of replicates from the TI -1: take all the replicates
n>0: n replicates from the TI

Hard data usage
0: only use hard data
1: incorporate both the hard data and the TI
-1: not using the hard data (only use the TI)

Angle tolerance 15◦ ∼ 45◦
Lag tolerance Application dependent
Bandwidth Application dependent
Dimensions of searching window Application dependent
Number of prototype distributions 10 ∼ 20
Number of divisions on the interval 100 ∼ 200
Scale parameter of the prototype distribution 0.01 ∼ 0.05

7.3.2 Class SLM_kde_estimator

This class serves as the role to estimate the conditional probability density function through
the learning algorithm. The class SLM_kde_estimator first calls the other function class
to process the replicates which returns the aggregated kernel statistics. The main functions
inside the class include the selection of the prototype distributions, construction of quadratic
programming problem in Eq. (7.13), solving the quadratic programming problem to obtain
the target conditional probability density function.
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7.3.3 Class replicate_processor

This class is designed for processing the replicates. The conditioning data, the sample data,
and the TI are used as input to this class. The spatial templates of the data events are
constructed from the spatial configuration of the conditioning data. There are two major
member functions defined in this class. The first function retrieves the replicates from both
the sample data and the TI, respectively. The other function computes the aggregated kernel
statistics from the retrieved replicates according to Eq. (7.8). The aggregated kernel statistics
are passed to the object of the class SLM_kde_estimator to estimate the target probability
density function.

7.4 Numerical Results

Two separate case studies are carried out to test the developed simulation program. The first
case study is conducted with a synthetic data set to verify the performance of the proposed
simulation method. The other case study carries out the stochastic orebody modeling at a
gold deposit, aiming to test the proposed method in a three-dimensional space, as well as its
practical aspects in real-life mines.

7.4.1 Case study with a synthetic data set

The porosity attributes from the Stanford V Reservoir data set [129] are used to conduct the
simulation in this case study. Specifically, two sections are extracted from the data set and
the sections consist 100 × 100 cells. One section is regarded as the exhaustive image where
200 points are randomly drawn from this image. The other section is rotated 45◦ clockwise
so that the channels have distinct preferential directions from the exhaustive image after the
rotation. The rotated section acts as the TI in this case study to represent the situation of
the statistical conflicts existing between the sample data and the TI. The exhaustive image,
the TI and the sample data are shown in Fig. 7.1.

Two realizations using the above sample and the TI are displayed in Fig. 7.2. The vi-
sualization of the simulated results demonstrates good reproduction of the channels in the
preferential orientation along the vertical direction from the exhaustive image. In addition,
10 realizations are generated to evaluate the overall performance of the simulation method
in reproducing the low-order statistics. The latter includes the proportions and the second-
order spatial statistics from the sample data, where the histograms and variograms of the 10
realizations are compared with those of the sample data, the TI and the exhaustive image,
as shown in Fig. 7.3 and Fig. 7.4, respectively. The comparison of the histograms shows
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(a) (b)

(c)

Figure 7.1 a Exhaustive image; b training image; c sample data drawn from the exhaustive
image
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that the proposed simulation method has a reasonable reproduction of proportions from the
sample data as well as the exhaustive image. The comparison of variograms clearly shows
that the simulated realizations tend to have the similar second-order spatial statistics to the
sample data instead of the TI. A further comparison of the third- and fourth- order cumulant
maps of two separate realizations with those of the sample data, the TI and the exhaustive
image are illustrated in Fig. 7.5 and Fig. 7.6, respectively. The spatial template used in the
third-order cumulant maps includes directions along the X-axis and Y-axis and the spatial
template of the fourth-cumulant maps includes an additional direction along the diagonal.
The fourth-order cumulant maps are normalized to visually highlight the spatial patterns.
Significant difference can be seen between the cumulant maps of the TI and those of the
sample data and e exhaustive image. The similarity between the cumulant maps of the real-
izations and the exhaustive image implies that the simulation method is able to mitigate the
statistical conflicts between the samples and the TI, maintaining reasonable reproduction of
both low-order and high-order spatial statistics from the sample data.

(a) (b)

Figure 7.2 Two simulated realizations using the samples and the TI shown in Fig. 7.1

7.4.2 Case study at a gold deposit

The case study at a gold deposit is presented here to demonstrate the practical aspects
of the developed simulation program in stochastic orebody modeling. The gold deposit
contains samples spatially distributed in 407 exploration drill holes as shown in Fig. 7.7a.
The samples are composited to 10 m in length. The simulation grid is defined as blocks of
size 5m × 5m × 10m. The TI is generated from blast-hole data in a mined-out area of the
deposit, and a cross-section is shown in Fig. 7.7b.
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Figure 7.3 Histograms of 10 simulated realizations using the samples and the TI shown in
Fig. 7.1

(a) (b)

Figure 7.4 Variograms of 10 simulated realizations along a X-axis and b Y-axis, using the
samples and the TI shown in Fig. 7.1
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(a) (b)

(c)

(d) (e)

Figure 7.5 Third-order cumulant maps of a sample data; b exhaustive image; c TI; d realiza-
tion in Fig. 7.2a; e realization in Fig. 7.2b
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(a) (b)

(c)

(d) (e)

Figure 7.6 Fourth-order cumulant maps of a sample data; b exhaustive image; c TI; d real-
ization in Fig. 7.2a; e realization in Fig. 7.2b
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(a) (b)

Figure 7.7 a Drill hole samples at a gold deposit; b TI derived from the blast hole data in an
adjacent area

Cross-sections of two different realizations are shown in Fig. 7.8. The histograms of 10 differ-
ent realizations are shown in Fig. 7.9 and the comparison shows that the simulation method
reproduces the histogram of the Au grades from the drill hole samples. The variograms of
the same set of 10 realizations are shown in Fig. 7.10. The comparison results also show
that the variograms of the simulated realizations resemble more closely the variograms of
the sample data, instead of those of the TI. Fig. 7.11 shows the comparison of third-order
cumulant maps of the two realizations displayed in Fig. 7.8 to the third-order cumulant
maps of the sample data and the TI. The fourth-order cumulant maps are compared in the
same manner and are shown in Fig. 7.12. Both the third-order or the fourth-order cumulant
maps demonstrate distinct patterns compatible with the corresponding cumulant maps of
the sample data. The high-order spatial information from the TI is only partly incorporated
to complement the fine spatial structures of the stochastic orebody models generated with
the proposed simulation method. Therefore, the high-order spatial statistics from the sim-
ulated realizations retain the main features from the sample data, reducing the influence of
the possible statistical conflicts from the TI.

7.5 Conclusions

The present paper presents an extension of the high-order simulation method based on the
statistical learning framework [148]. A modified concept of aggregated kernel statistics is
proposed to incorporate the high-order spatial information at two different scales from the
sample data and the TI. Specifically, the aggregated kernel statistics proposed herein contain
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(a) (b)

Figure 7.8 Two simulated simulations using the sample data and the TI shown in Fig. 7.7

the high-order spatial information at the coarse scales from the sample data with high-order
spatial information at the finer scales complemented by the TI. These aggregated kernel
statistics are utilized in a kernelized learning algorithm to develop the high-order simulation
method, which incorporates high-order spatial statistics from both the sample data and the
TI. Although the present study only considered the data at two different scales, the proposed
aggregated kernel statistics can be easily extended to scales of more than two, given that the
resolutions of data sets at different scales progressively increase. In practice, it is suitable
for applications where data are progressively expanding along certain time periods. A high-
order simulation program based on the above paradigm is developed and described. The
simulation program is integrated into the SGeMS platform for a user-friendly parameter
selection and visualization in three-dimensional space. This simulation program is utilized
here to carry out two different case studies. The first case study with the synthetic data set
demonstrates the capacity of the proposed simulation method in reproducing the low- and
high-order spatial statistics from the sample data, while significantly mitigating the statistical
conflicts between the samples and the TI. The study using a gold deposit shows the practical
aspects of applying the simulation program to simulate pertinent properties of actual mineral
deposits.

7.6 Computer Code Availability

• Name of code: kernelsim

• Developer: Lingqing Yao

• Contact details: COSMO – Stochastic Mine Planning Laboratory, Department of Min-
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Figure 7.9 Histograms of 10 simulated realizations using the samples and the TI shown in
Fig. 7.7

ing and Materials Engineering, McGill University, 3450 University Street, Montreal,
QC H3A 2A7, Canada

• E-mail: yaolingqing@gmail.com

• Year first available: 2020

• Hardware required: run on a computer with 4 cores (2.4 GHz each) and 8 GB.

• Software required: Needs SGeMS software

• Program language: C ++

• Program size: 122 kb

• Details on how to access the source code: the source files of kernelsim can be downloaded
from github: https://github.com/yaolq/kernelsim

https://github.com/yaolq/kernelsim
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(a) (b)

Figure 7.10 Variograms of 10 simulated realizations along a E-W and b N-S direction, using
the samples and the TI shown in Fig. 7.7
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(a) (b)

(c) (d)

Figure 7.11 Third-order cumulant maps of a sample data; b TI; d realization in Fig. 7.8a; e
realization in Fig. 7.8b
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(a) (b)

(c) (d)

Figure 7.12 Fourth-order cumulant maps of a sample data; b TI; d realization in Fig. 7.8a;
e realization in Fig. 7.8b
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CHAPTER 8 GENERAL DISCUSSION

Apart from the method developments in the aforementioned chapters, this chapter stresses
certain more general implications from the proposed statistical learning framework for high-
order stochastic simulation.

The early development from Parzen [112] proposes probability density estimation in the
kernel-like form as

fn(z) = 1
n

n∑
i=1

Kh(z − zi), (8.1)

where Kh corresponds to the so-called Parzen kernel, zi are the samples and the parameter
h is called the window width. The derivation of the new computational model for high-order
simulation in Chapter 4 resembles the above kernel-like form (ref. Equation (4.18)), while
the kernel is defined as the spatial Legendre moment kernel (see Equation (5.6)). Notable is
that the derivation of the spatial Legendre moment kernel is general and thus can be easily
extended to develop kernels based on other type of orthogonal bases.

Interestingly, the second-order covariance function is also positive definite and therefore de-
termines a kernel. The covariance kernel defines a kernel Hilbert space as the dual of the
random field model as discussed in Wahba [117]. Furthermore, the minimum variance linear
unbiased estimator of a spatial attribute given a set of conditioning data can be written as a
dual expression in the Hilbert space with the related covariance kernel [117], which is called
dual kriging in terms of geostatistical theory [26]. In this sense, the spatial Legendre moment
kernel proposed in this thesis has clearer meaning of defining a kernel space which carries
higher-order spatial statistical information than the covariance kernel space.

From the machine learning point of view, the proposed statistical framework for high-order
simulation can be categorized as generative model [151] since the probability distributions
are learned from the available data. Typically the generative models assume the underlying
distribution over the data has a specific parametric form, and parameters of interest are
estimated from the data, such as the maximum likelihood and other methods [152]. The pro-
posed statistical framework herein, however, does not assume any specific form of probability
distribution and thus provides a non-parametric generative model for developing the high-
order simulation methods. It is obvious to appreciate the difference between the proposed
statistical framework and the traditional second-order stochastic simulation based on Gaus-
sian random field models by noticing the non-parametric feature of the former. However, the
more fundamental element of the present developments in this thesis is an active learning
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process to minimize the gap between the observed high-order spatial statistics and the target
random field model. As shown in Figure 8.1, the high-order spatial information is extracted
and observed from the available data, and the target probability distribution is selected from
a given solution space by the statistical learning process. Although the previous high-order
simulation methods based on the approximation of probability distribution by orthogonal
polynomial series are also non-parametric, a distinction is that the learning mechanism plays
more significant role in the simulation framework presented in this thesis. As a result, the
solution space of the target probability distribution is relatively independent from the ob-
servation space of high-order spatial statistics. As an example to show the above-mentioned
distinction, the high-order simulation method based on Legendre polynomial expansion se-
ries directly use the high-order spatial cumulants to compute the coefficients of the expansion
series. It means that the approximation of the probability distribution is only optimal when
the solution space of the target distribution lies in the vector space of Legendre polynomials.
On the contrary, the statistical learning framework offers the flexibility to choose the obser-
vation space of high-order spatial statistics and the solution space of target distributions.
For example, the high-order spatial statistics can be derived from other type of polynomials
than Legendre polynomials while remain the solution space unchanged as the convex space
of certain prototype distributions. From this perspective, the proposed statistical framework
for high-order stochastic simulation is quite general and it is possible to accommodate the
new developments of methods by choosing different definitions of high-order spatial statistics
or solution spaces for the random field models.

Figure 8.1 General learning statistical framework for high-order stochastic simulation
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CHAPTER 9 CONCLUSION AND RECOMMENDATIONS

The present thesis emphasizes on developing new high-order sequential simulation methods
driven by a learning process in kernel space. Along with development of the proposed meth-
ods, there are certain related new concepts, as well as the new statistical learning framework
presented in this thesis. In the following sections, the major contributions of this thesis are
summarized to highlight the advancement of knowledge regarding the high-order simulation
methods. Limitations of the current research is also discussed to indicate potential directions
of improvement. The future works are presented in the end.

9.1 Summary of Contributions

As proposed in Mustapha and Dimitrakopoulos [18], the original high-order simulation method
takes no assumption of specific probability distribution on the random field models and the
Legendre polynomial expansion series are used for approximating the probability density
functions encountered in the simulation. However, it requires an explicit expansion of the
Legendre polynomial series and an exhaustive computation of spatial cumulants over differ-
ent orders. The high-order spatial cumulants have to be stored in a tree structure in memory,
adding to the complexity of implementation. In Chapter 4, a new computational model is
proposed to incorporate the spatial statistics of different orders given a spatial template into
a unified function, thus avoiding the memory storage and the explicit computation of high-
order spatial statistics and gaining higher computational efficiency with simplified recursive
algorithms. More importantly, it turns out that the proposed computational model can be
written in a kernel-like form.

Thus, a new kernel function is proposed in Chapter 5 to construct the so-called spatial Leg-
endre moment kernel space. The high-order spatial statistics from the available data are
encapsulated in the kernel statistics through the feature mapping. The target probability
distributions of the random field model are also embedded into the kernel space through the
concept of expected kernel statistics. Furthermore, a new statistical learning framework for
high-order sequential simulation is proposed and leads to a kernelized learning algorithm,
which matches the high-order spatial statistics of the target distributions to those of the
available data. The learning algorithm towards high-order simulation has the generalization
capacity, and thus addresses the numerical instability regarding the positiveness by approxi-
mating the probability density function via polynomial series. Notable is that the proposed
statistical learning framework is general and provides new perspectives looking into the high-
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order simulation. Under this framework, the high-order simulation methods are characterized
by the kernelization. The main step is to design pertinent kernel functions which entail high-
order spatial information of the available data, and thereafter a kernelized learning algorithm
being developed to achieve the optimal target distribution for generating the realizations.

The concept of aggregated kernel statistics is proposed in Chapter 6 to efficiently utilize
the incomplete high-order spatial information from the sample data. As a result, the high-
order spatial statistics from the replicates with different spatial configurations are combined
together through the aggregated kernel statistics. The aggregated statistics is incorporated to
the statistical framework, enabling a sparse data learning algorithm and leading to a training-
image free high-order simulation method. Chapter 7 proposes another type of aggregated
kernel statistics which incorporates the high-order spatial information at multiple scales from
the sample data and the TI. A high-order sequential simulation algorithm is developed based
on learning the high-order spatial information at multiple scales through the aggregated
kernel statistics. An implementation of the simulation method in C++ language is presented
and the related software compatible to SGeMS platform is developed and tested with practical
applications.

Various case studies are conducted to test the performances of the above-mentioned simula-
tion methods. The results show that all the proposed methods reproduce both the low-order
and high-order spatial statistics of the sample data, whereas the simulation methods based
on the statistical learning framework demonstrate better stability to mitigate the possible
statistical conflicts between the sample data and the TI. In terms of addressing the statis-
tical conflicts between the samples and the TI, several different attempts are approached
from different perspectives. In Chapter 5, it mainly relies on the generalization capacity of
the proposed statistical learning framework, so that the high-order spatial information from
the TI complies to the sample data and, thus mitigates the possible statistical conflicts. In
Chapter 6, the influence of the TI is eliminated through the sparse data learning method
based on the high-order spatial information from the sample data. In Chapter 7, the same
goal is achieved by the concept of learning high-order spatial statistics at multiple scales.
The high-order spatial statistics at coarse scales are incorporated into the simulation while
the finer spatial structures are enhanced by the high-order spatial information at fine scales
from the TI. The case studies at a gold deposit demonstrate the practical aspects of the
proposed simulation methods in stochastic orebody modeling, as a support of mine planning
decisions under uncertainty.
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9.2 Limitations

The main limitations of the high-order simulation methods developed in this thesis, are
related to the computational aspects in large-scale simulation, as a common problem in most
of the kernel methods. The reason is that in general, the operations with kernels are applied to
each sample, resulting in a data-dependant computation. Specifically in the present research,
the computation of the kernel statistics is carried out by averaging the features in the kernel
space mapped from each replicate retrieved from the sample data or the TI. Although the
computation related to each replicate is elementary, the total computational cost depends
on the number of replicates and, in turn, the size of the available data set. Retrieving the
replicates from the sample data is the other factor that influences the computational cost,
because the sample data are always distributed irregularly in space and constraints such as
the tolerances of the lags and the angles along the spatial templates have to be considered.

9.3 Future Research

The computational complexity of high-order simulation methods developed in this thesis
mainly depends on the computational efficiency of kernel statistics. As pointed out in the
limitation, the computation cost of kernel statistics increases as the size of the data set
increases. Nevertheless, the related operations on each replicate is elementary and remain the
same regardless of the spatial locations. Thus, it is suitable to parallelize the computation of
kernel statistics by distributing the elementary operations on the replicates concurrently. It’s
also possible to further parallelize the sequential simulation process by making subdivisions
on the simulation domains. Future research on prallelization of the simulation algorithms
could promisingly address the limitation of conducting the large-scale simulation based on
the proposed simulation methods.

Currently, this thesis focuses on high-order simulation of continuous attributes, such as the
metal grades at a mineral deposit. In mining practice, certain geological attributes, such
as lithologies, are described as categorical data. Since the core method of the proposed
statistical learning framework is the kernelization. Therefore, a future research could be
considered to design kernels carrying high-order spatial statistics from the categorical data,
and to develop the relevant high-order simulation methods for categorical data.

Moreover, because the natural attributes always coexist and interact with each other in
space. In addition to the spatial correlations of each single attribute of interest, it is also
important to model the cross-interrelations among all the attributes to better represent the
spatial uncertainty. Therefore, an interesting research is to design kernels working with
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high-order cross-interrelations, and to further develop the high-order simulation methods for
multi-variate attributes.

Lastly, the present research clearly defines a learning mechanism for developing the high-order
simulation methods. The kernel statistics of the available data represent the high-order
spatial information for the target random field model to learn. It is possible to combine
the deep learning techniques for training the kernel statistics from the available data and
making predictions for the unknown situations. The combination of kernel methods with
deep learning avoids the repeating computation of kernel statistics during the sequential
simulation process, by using the pre-trained model to make predictions. It is promising to
take research along this line to handle the learning from a large data set, and to initiate
online updating with incoming data provided.
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APPENDIX A EXPANSION SERIES OF PROBABILITY DENSITY
FUNCTION BASED ON THE SPATIAL LEGENDRE MOMENTS

Suppose that the multivariate function f(z0, z1, . . . , zN) is the density function related to the
joint distribution of random variables on a spatial template T, and that it can be expressed
as a Legendre polynomial series. The sequence of Legendre polynomials at different orders
forms a set of orthogonal bases of a Hilbert space containing all the continuous functions
defined on D = [−1, 1]N+1; the inner product is defined as

〈g, h〉 =
∫
D
gh dz0 . . . dzN , (A.1)

where g, h are functions in the Hilbert space.

From the orthogonal property of Legendre polynomial and the definition of its norm shown
in Equation (4.7), there is:

f (z0, z1, . . . , zN) =
∞∑

w0=0

∞∑
w1=0
· · ·

∞∑
wN =0

〈f, Pw0Pw1 · · ·PwN
〉Pw0Pw1 · · ·PwN

, (A.2)

where the set {Pw0Pw1 · · ·PwN
|wi = 0, 1, 2, . . . , 0 ≤ i ≤ N} are the orthonormal bases of

the Hilbert space, and Pwi
(zi) = Pwi (zi)

‖Pwi‖
, 0 ≤ i ≤ N , is the normalized Legendre polynomial.

Therefore,

Pw0Pw1 · · ·PwN
= Pw0Pw1 · · ·PwN

‖ Pw0 ‖ · · · ‖ PwN
‖

=
N∏
i=0

√
wi + 1

2 · Pw0Pw1 · · ·PwN
(A.3)

〈f, Pw0Pw1 · · ·PwN
〉 =

N∏
i=0

√
wi + 1

2 · 〈f, Pw0Pw1 · · ·PwN
〉. (A.4)

Combining Equations (A.2)–(A.4), it is:

f (z0, z1, . . . , zN) =
∞∑

w0=0

∞∑
w1=0
· · ·

∞∑
wN =0

N∏
i=0

(
wi + 1

2

)
· 〈f, Pw0Pw1 · · ·PwN

〉Pw0Pw1 · · ·PwN
.

(A.5)
Note that f(z0, z1, . . . , zN) is the probability density function, thus

〈f, Pw0Pw1 · · ·PwN
〉 =

∫
D
Pw0(z0)Pw1(z1) · · ·PwN

(zN)f (z0, z1, . . . , zN) dz0 · · · dzN

= E[h1, . . . , hN ;Pw0(z0)Pw1(z1) · · ·PwN
(zN)].

(A.6)
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To use the Legendre polynomials as the bases without normalization and avoid computation
of the square roots, the spatial Legendre moments are defined as

LTw0w1···wN
=

N∏
i=0

(
wi + 1

2

)
· f, Pw0Pw1 · · ·PwN

, (A.7)

which is equivalent to the definition in Equation (4.8).

Furthermore, from Equations (A.5)–(A.7), one can directly derive the expansion series of
the probability density function based on the spatial Legendre moments, which appears in
Equation (4.10). A similar derivation works for the truncated Legendre polynomial series,
since the corresponding function space forms a finite-dimensional subspace of the above
Hilbert space.
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