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RÉSUMÉ

La quanti�cation de l'incertitude joue un rôle essentiel dans la gestion du risque technique

de l'exploitation durable des ressources naturelles. Les modèles de champs aléatoires sont

utilisés pour modéliser les attributs naturels d'intérêt, parmi lesquels les attributs à dif-

férents endroits sont représentés comme des variables aléatoires comprenant une distribution

de probabilité conjointe. Les statistiques spatiales, qui varient selon di�érents modèles de

champs aléatoires, décrivent mathématiquement les structures spatiales. Les méthodes de

simulation stochastique génèrent des réalisations multiples basées sur certains modèles de

champs aléatoires a�n de représenter les résultats possibles des attributs naturels consid-

érés. Elles visent à reproduire les statistiques spatiales des données perçues, fournissant

ainsi des outils utiles pour quanti�er l'incertitude spatiale des attributs cibles. Dans le con-

texte des applications minières, la reproduction de structures spatiales, à partir des données-

échantillons, a un impact signi�catif sur la gestion des risques liés aux décisions de plani�-

cation minière. Plus précisément, la valeur actualisée nette (VAN) d'un gisement minéral,

compte tenu d'un calendrier de plani�cation minière donné, dépend des revenus générés par

les séquences d'extraction des matériaux souterrains, les �ux de trésorerie étant actualisés

en fonction des périodes d'exploitation. Les séquences d'extraction des matériaux, à leur

tour, sont déterminées par la distribution spatiale des teneurs en métaux, en particulier la

continuité spatiale des éléments métalliques enrichis.

Les méthodes de simulation stochastique d'ordre élevé ne présupposent aucune distribution

de probabilité spéci�que sur les modèles de champs aléatoires, évitant ainsi les limites des

modèles de champs aléatoires gaussiens traditionnels. De plus, ces méthodes tiennent compte

des statistiques spatiales d'ordre élevé qui caractérisent les interactions statistiques entre les

attributs aléatoires en de multiples endroits et elles ont donc l'avantage de reproduire des

structures spatiales complexes. Par conséquent, cette thèse développe de nouvelles méth-

odes de simulation stochastique d'ordre élevé basées sur un cadre proposé d'apprentissage

statistique et de noyaux orientés sur l'apprentissage, visant à faire progresser les aspects

théoriques des méthodes de simulation stochastique ainsi que les aspects pratiques des déci-

sions minières sous incertitude. Le paradigme général de la simulation séquentielle est adopté

dans cette thèse a�n de générer des réalisations à partir de modèles de champs aléatoires, ce

qui décompose les distributions de probabilités conjointes en une séquence de distributions

de probabilités conditionnelles.

La méthode originale de simulation d'ordre élevé utilise la série d'expansions du polynôme
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de Legendre pour l'approximation des distributions de probabilités conjointes des champs

aléatoires. Les coe�cients de la série d'expansion du polynôme sont dérivés du calcul de ce

que l'on appelle les cumulants spatiaux qui doivent être stockés dans une structure arbores-

cente en mémoire et certains termes de la série du polynôme sont abandonnés compte tenu

de la complexité du calcul. À titre de première contribution, un nouveau modèle de calcul

de simulation d'ordre élevé est ici proposé, évitant le calcul explicite des cumulants spati-

aux et le stockage des résultats calculés. Une fonction uni�ée est dérivée comme une forme

d'équivalence à la série d'expansions du polynôme de Legendre sans abandonner aucun terme,

tout en simpli�ant les calculs en temps polynomial. La méthode de simulation proposée con-

duit à un algorithme récursif de dérivation de la distribution de probabilités conditionnelles.

À titre de deuxième contribution, une nouvelle fonction du noyau, ce qu'on appelle le noyau

spatial du moment de Legendre, est proposée pour intégrer des statistiques spatiales d'ordre

élevé des données originales dans le nouvel espace du noyau. Un cadre d'apprentissage statis-

tique est proposé pour découvrir la distribution de probabilité cible du champ aléatoire en

la faisant correspondre aux statistiques spatiales d'ordre élevé observées dans les données

disponibles grâce à un algorithme à noyau. Le nouveau cadre d'apprentissage statistique

pour la simulation d'ordre élevé a la capacité de généralisation nécessaire pour atténuer les

con�its statistiques entre les données-échantillons et l'image d'entraînement, comme le con-

�rment les études de cas avec des données synthétiques. Un gisement d'or tridimensionnel

est réalisé pour montrer ses aspects pratiques dans une mine réelle, en démontrant la repro-

duction de statistiques spatiales d'ordre élevé à partir des données-échantillons de forage.

Pour éviter l'impact d'éventuels con�its statistiques avec les données-échantillons en utilisant

une image d'entraînement, une méthode de simulation d'ordre élevé sans image d'entraînement

est développée en se basant sur le cadre d'apprentissage statistique ci-dessus. Une nou-

velle approche d'agrégation de noyaux est proposée a�n de permettre la découverte de don-

nées éparses. Les événements de données, comme les données de conditionnement, corre-

spondent aux valeurs d'attribut associées aux modèles spatiaux de diverses con�gurations

géométriques. L'agrégation de noyaux combine l'ensemble des éléments dans di�érents sous-

espaces du noyau pour l'inférence statistique, en utilisant e�cacement les informations in-

complètes des répliques qui correspondent partiellement au modèle spatial d'un événement de

données spéci�que. L'étude de cas montre une bonne reproduction des statistiques spatiales

d'ordre élevé des données-échantillons sans utiliser les images d'entraînement.

Notre dernière contribution vise à atteindre la distribution de probabilité cible des modèles

de champs aléatoires en apprenant des informations spatiales d'ordre élevé provenant de

di�érentes sources à di�érentes échelles. Plus précisément, l'agrégation de noyaux est pro-

posée pour incorporer les statistiques spatiales d'ordre élevé à une échelle grossière à partir
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des données-échantillons et pour compléter les statistiques spatiales d'ordre élevé à petite

échelle à partir de l'image d'entraînement. De plus, un logiciel est développé et décrit pour

faciliter les applications. Des études de cas, dans un gisement d'or et avec un ensemble de

données synthétique, sont menées respectivement a�n de tester la méthode et le programme

développé.
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ABSTRACT

Uncertainty quanti�cation plays a vital role in managing the technical risk of the sustainable

exploitation of natural resources. Random �eld models are utilized to model the natural

attributes of interest, within which the attributes at di�erent locations are represented as

random variables comprising a joint probability distribution. Spatial statistics, varied with

di�erent random �eld models, mathematically describe the spatial patterns. Stochastic simu-

lation methods generate multiple realizations based on certain random �eld models to repre-

sent the possible outcomes of natural attributes under consideration. They aim to reproduce

spatial statistics of the perceived data, thus providing useful tools to quantify the spatial un-

certainty of the target attributes. In the context of mining applications, reproducing spatial

patterns from the sample data has a signi�cant impact on managing the risks of mine plan-

ning decisions. Speci�cally, the net present value (NPV) regarding a certain mine planning

schedule of a mineral deposit depends on the revenue generated by the extraction sequences

of the underground materials, as the cash �ows are discounted by the mining periods. The

extraction sequences of the materials, in turn, are driven by the spatial distributions of metal

grades, especially the spatial continuity of enriched metal elements.

High-order stochastic simulation methods make no assumption of any speci�c probability

distribution on the random �eld models, avoiding the limitation of traditional Gaussian

random �eld models. In addition, the methods account for the high-order spatial statistics

that characterize the statistical interactions among random attributes at multiple locations

and thus have the advantage of reproducing complex spatial patterns. Therefore, this thesis

develops new high-order stochastic simulation methods based on a proposed framework of

statistical learning and learning-oriented kernels, aiming to advance the theoretical aspects

of the stochastic simulation methods, as well as the practical aspects of mining decisions

under uncertainty. The general paradigm of sequential simulation is adopted in this thesis to

generate realizations from the random �eld models, which decomposes the joint probability

distributions into a sequence of conditional probability distributions.

The original high-order simulation method uses the Legendre polynomial expansion series for

the approximation of the joint probability distributions of the random �elds. The coe�cients

of the polynomial expansion series are derived from the computation of so-called spatial

cumulants, which have to be stored in a tree structure in memory. In addition, some terms

from the polynomial series are dropped considering the computational complexity. As a

�rst contribution, a new computational model of high-order simulation is proposed herein,
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which avoids the explicit computation of spatial cumulants and the storage of the computed

results. A uni�ed function is derived as the equivalency form to the Legendre polynomial

expansion series without dropping out any terms, while simplifying the computations to

polynomial time. The proposed simulation method leads to a recursive algorithm of deriving

the conditional probability distribution.

As a second contribution, a new kernel function, the so-termed spatial Legendre moment

kernel, is proposed to embed high-order spatial statistics of the original data into the new

kernel space. A statistical learning framework is proposed to learn the target probability

distribution of the random �eld by matching the expected high-order spatial statistics with

regard to the target distribution to the observed high-order spatial statistics of the available

data through a kernelized algorithm. The new statistical learning framework for high-order

simulation has the generalization capacity to mitigate the statistical con�icts between the

sample data and the training image, as con�rmed by the case studies with a synthetic data set.

Case study at a three-dimensional gold deposit shows the practical aspects of the proposed

method in a real-life mine, demonstrating the reproduction of high-order spatial statistics

from the drill-hole sample data.

To avoid the impact of potential statistical con�icts with the sample data by using a training

image, a training-image free high-order simulation method is developed based on the above

statistical learning framework. A new concept of aggregated kernel statistics is proposed to

enable sparse data learning. The data events, as the conditioning data, correspond to the

attribute values associated with the so-called spatial templates of various geometric con�g-

urations. The aggregated kernel statistics combine the ensemble of the elements in di�erent

kernel subspaces for statistical inference, e�ciently utilizing the incomplete information from

the replicates, which partially match to the spatial template of a given data event. The case

study shows an e�ective reproduction of the high-order spatial statistics of the sample data

without using the TI.

Our last contribution aims to achieve the target probability distributions of the random �eld

models by learning high-order spatial information from di�erent sources at multiple scales.

Speci�cally, the aggregated kernel statistics is proposed to incorporate the high-order spatial

statistics at coarse-scale from the sample data and to complement the high-order spatial

statistics at �ne-scale from the TI. In addition, a software is developed and described to

facilitate the applications. Case studies with a synthetic data set and at a gold deposit are

conducted respectively to test the method and the developed program.
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CHAPTER 1 INTRODUCTION

1.1 Overview

Uncertainty quanti�cation is important in modeling natural phenomena in complex Earth

systems. The perceived attributes from various natural phenomena exhibit randomness in

their spatial structures or patterns as the related natural systems evolved over considerable

time spans and often date to the ancient era of the Planet Earth. The random �eld models

are used to describe the randomness of the spatial attributes of natural phenomena regarding

the complexity of the behind system dynamics. A random �eldZ(u) describes a stochastic

model of the attributes of interestZ as random functions of locationsu. In other words,

for a given set of locationsf u1; : : : ; ung 2 Rd, d = 1; 2, or 3, depending on the spatial

dimension, the random variables at these corresponding locations from the random �eldZ(u),

Z (ui )( i = 1; : : : ; n), comprise a joint probability distribution. To quantify the uncertainty of a

speci�c attribute at a certain location, one needs not only to characterize the proportion from

its local probability distribution but also its statistical interactions in space with the related

attributes at other locations. The statistical interactions among random variables at di�erent

locations are usually captured by the so-termed spatial statistics, and in general, appear as

the spatial patterns in the related natural attributes. Stochastic simulation provides a tool

for building the relevant random �eld models from the perceived earth science data. As a

result, the spatial uncertainty is quanti�ed by the so-called realizations generated from the

random �eld models to represent the possible spatial distributions of the natural attributes.

The uncertainty quanti�cation itself is not the ultimate goal in practice, but acts as an

important input for risk assessment and decision making in engineering applications. The

stochastic orebody modeling and mine planning decisions are speci�cally discussed herein to

highlight the importance of uncertainty quanti�cation in the context of mining applications.

Nevertheless, it should be noted that the stochastic simulation methods developed in this

thesis are general and applicable to other engineering �elds. Mine planning comprises a col-

lection of decisions at di�erent mining stages through the available information to optimize

the pro�t on investment. Generally, mine planning optimization can be categorized as con-

strained optimization problems in the scope of mathematical programming, where the most

favourable solutions achieve the highest net present value (NPV), and the constraints are

various factors related to mining activities, such as operational feasibility, quality constraints

imposed by the processing plants, and other management policies, and so on. The very �rst

step of the above optimization process starts from orebody modelling, through which com-
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puterized representations of orebodies in three-dimensional space are provided as the input

of the desired mine planning optimization. The orebody models are usually represented by

a set of mining blocks discretised in the space of certain mining sites, and each block can be

located by its coordinates in a grid and the related attributes, such as grades and material

types, are attached. It is practically infeasible to take measurements of all the blocks in

an orebody model to acquire the geological attributes of them. As a matter of fact, these

attributes (associated with each block) are often inferred from the limited observations from

the drilling samples, which is a reasonable approach considering the high costs to obtain the

underground information.

Given the inputs from the orebody model and other parameters, such as costs incurred

from mining activities and commodity prices from the market, the mining process can be

regarded as a specializedtransfer function. Meanwhile, the outputs of the transfer function,

or namelyresponsesto the inputs, correspond to the mining objectives, which may vary under

di�erent circumstances. There are also some undetermined decision variables that feed into

the transfer function, which are calledparameters of interest. These parameters decide the

implementation of the optimal plan to achieve certain goals regarding the mining process.

From this point of view, the main task of mine planning optimization is analogous to inverting

the parameters of interest from intensifying responses of transfer functions in the context of

mining processes, which is often solved by operational research methods. Ideally, the optimal

selection of parameters of interest can be acquired by searching the entire solution spaces,

given that the inputs are de�nite. However, in mining practice, the deterministic orebody

models are not su�cient to represent the realistic ore reserves, and neither can the �uctuations

of commodity price be re�ected in a deterministic way. Considerable risk in decision making

emerges because of uncertainty in the input parameters, since the parameters of interest are

usually sensitive to the variation of inputs. The situation is like that of a random signal that

triggers an uncertain response.

The uncertainty of orebody modelling is because only limited information of an ore reserve is

revealed, usually from the sampling of drill holes. Thus, inference is needed to complete the

modelling. For decades, the orebody models as inputs are generated by estimations with var-

ious interpolation methods in the traditional framework of mine planning optimization, with

negligence of existing geological uncertainty. However, most of the interpolation methods are

essentially a moving average and turn out to smooth the outputs by reducing the proportion

of highest and lowest values. The de�ciency of a deterministic orebody model by estimation

is obvious when it is used in mine planning optimization, since, generally, the related mining

process is a non-linear transfer function, and the average of inputs do not necessarily lead to

the average of outcomes associated with the inputs. To reiterate mathematically in a rather
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simpli�ed way, suppose the estimation of parametersp are from some weighted average of

possible valuesp1; : : : ; pn , i.e., p =
P n

i =1 wi pi , wherew1; : : : ; wn are weights for each param-

eter, and let the transfer function bef (�), then the equation
P n

i =1 f (wi pi ) =
P n

i =1 wi f (pi )

generally does not hold iff (�) is a non-linear function.

The risk of decision making in mining projects under geological uncertainty has been regarded

the major factor behind not meeting project expectations and eventual project failure. For

instance, Vallee [1] reports that 60% of mines surveyed have an average rate of production of

less than 70% of the designed capacity in the �rst year of production. Instead of misrepre-

senting the orebody model through a single estimation, which is �precisely wrong�, stochastic

simulation provides an e�ective way to quantify geological uncertainty by representing the

orebody models with a set of realizations of equal probability. In this way, risk assessment

can be applied to re�ect the �uctuation of �nancial forecasts of a certain mining project by

implementing the plan under possible scenarios of an ore reserve situation. The risk analysis

of traditional mine planning optimization from various publications further con�rms the sub-

stantial deviation of their �nancial outcomes from the expectation. Ravenscroft [2] performs

a risk analysis on a conventional mine planning schedule and shows that the chances of devi-

ation from the expected metal grade within the range of 10% is less than 40% in probability.

And as a practical mining project in Dowd [3] demonstrates, there is only 50% possibility of

a conventional mining schedule to achieve a base-case NPV and the mean payback period

is also greater than the expectation. Dimitrakopoulos et al. [4] take risk assessment on a

traditional optimization study of a low-grade, epithermal, gold deposit, showing that there

is a 95% probability of the project returning a lower NPV than predicted and, in the worst

case, the NPV is 45% lower than the expected.

Clearly, geological uncertainty has a crucial impact on the �nancial outcome of a mining

project, whereas conventional optimizers using a single deterministic orebody model are

unable to deal with the adverse e�ect of the uncertainty. Dimitrakopoulos and Ramazan [5]

propose a stochastic integer programming (SIP) framework of mine production scheduling

optimization, which directly integrates the geological uncertainty into the objective function

as the following:

max
pX

t=1

� nX

i =1

E
n
(NPV )t

i

o
bt

i

| {z }
Part A

�
mX

s=1

(cto
u dto

su + cto
l dto

sl + ctg
u + ctg

l dtg
sl )

| {z }
Part B

�

(1.1)

wherep is the total production period, n is the number of blocks, andbt
i is a binary decision

variable indicating whether a blocki is mined during periodt. The variablesd and c represent

the deviation from production targets and the unit cost for deviation, respectively, while the
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subscriptsu and l stand for the deviations or costs from excessive production (upper bound)

and the shortage of production (lower bound), respectively. The superscriptso and g repre-

sent the production targets of ore and grade, ands is the number of realizations of orebody

models. Given a discount rater and periodt, both the NPV and the unit costs of deviation

decrease similarly by a ratio1=(1+ r )t from the start-up of a mining project. The formulation

of Equation 1.1 resembles the two-stage recourse model in stochastic optimization [6], where

the mining decisions in the �rst state (part A) are not involved with uncertainty and the

penalties of the deviations under geological uncertainty are used to correct the decisions in

the second recourse stage (part B). As a result, two case studies of a gold deposit and a

copper deposit applying the stochastic optimizer in Dimitrakopoulos and Ramazan [5] lead

to increasing of NPV by 10% and 25%, respectively. Ramazan and Dimitrakopoulos [7]

establish a more detailed stochastic integer programming (SIP) model of mine production

scheduling, which considers the stockpile option. The application also shows the superior-

ity of managing the deviations from production targets over the conventional optimizer and

leads to higher NPV. The impact of geological uncertainty is even more far reaching when the

mining work�ows include more components to be optimized simultaneously, such as the oper-

ation of multiple mines, stockpiling, blending constraints and alternative processing streams

throughout the supply chain from the mining operation to the end products in the market.

Goodfellow and Dimitrakopoulos [8, 9] propose a new simultaneous stochastic optimization

model that holistically optimizes the mine production schedule from extraction sequences to

processing streams, while accounting for the geological uncertainty. Their experimental study

in a copper-gold mine generates designs that have a good control on the risk of deviations

from production targets and obtains an NPV that is 22.6% higher than an industry-standard

mine planning software.

To summarize, the new paradigm of stochastic mine planning optimization increases the up-

side potential of mining projects and reduces the downside risks. Nevertheless, the potential

value of managing risk under the framework of a stochastic mine planning optimizer can only

be realized through the appropriate quanti�cation of geological uncertainty. The stochastic

simulation methods are by far the most practical approaches to quantify the geological un-

certainty in orebody modelling [2, 10]. Since metal grades (tonnages) are the most sensitive

factor in most mining projects [3] and are the common measurements in drilling core samples,

new stochastic simulation methods with regard to metal grades are especially of interest in

the present research, although the application of the methods should not be con�ned to min-

ing area. In general, a random �eld is utilized to characterize the metal grades distribution

in the three-dimensional space and the simulations are generated from probability distribu-

tions conditioned to the sample data with reproduction of spatial correlations of the random
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�eld. Traditionally, the simulation methods assume that the random �elds are dominated by

multi-Gaussian probability distributions, and that the spatial correlations are characterized

by two-point spatial statistics, such as covariance functions or variograms. Although the

theory of traditional stochastic simulations is well established, as are their implementation

and numerous applications from various area, there are some key limitations when applying

the theory to orebody modelling in mine planning optimization. Firstly, the probability den-

sity functions of Gaussian distributions are symmetric, but metal grades usually have skewed

probability distributions (with positive skewness in many cases). Thus, they coincide with

non-Gaussian distributions instead. Secondly, two-point spatial statistics only deal with the

statistical correlation between a pair of data in di�erent locations and ignore the interactions

among multiple data points. Thus, it cannot capture the spatial continuity, such as the con-

nectivity of high values and low values. These drawbacks of two-point spatial statistics and

the poor reproduction of complex spatial patterns have been reported in various publications

[11�14]. Nevertheless, the spatial continuity of metal grades has a signi�cant impact on the

economic outcome of a mining sequence. For an intuitive understanding, this impact can be

demonstrated by a simpli�ed arti�cial example. As can be seen from Figure 1.1, the mine

with more connectivity in the ore blocks has a higher revenue given the same distribution of

economic values of blocks.

Figure 1.1 Revenues of extracting mining blocks with di�erent spatial connectivity. The
numbers represent the economic values of the blocks, and the blocks to be extracted are in
red rectangles, assuming a slope constraint of45� . The total revenue for the left mine is 12,
but the revenue for the right one is 10.

As a remedy to deal with non-Gaussian probability in simulations, Gaussian anamorphosis

[15] was proposed to transform the original data into normal scores before simulating and

then reverting the transformation after simulating. Although the normal score transformation

ful�ls the prerequisites of traditional stochastic simulations, the preservation of the spatial

statistics structure of the original data after reversion is not guaranteed. Moreover, Gaussian

distribution has the maximum entropy among all the probability distributions with the same

mean and variance [16]. Thus, simulations with Gaussian assumption have an inherent
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weakness, as they do not capture the patterns with spatial structure, such as connectivity,

other than the homogeneous randomness.

In one word, the framework of stochastic mine planning optimization, which can manage risks

associated with geological uncertainty, relies on the quanti�cation of uncertainty in orebody

modelling. Therefore, new stochastic simulation methods for non-Gaussian random �elds

with the capacity to reproduce spatial continuity and complex spatial patterns should be

developed as alternatives to the traditional ones. Recent research in high-order simulations

reveals new concepts of spatial cumulants as a mathematical representation of multi-point

statistics and is shown to be data-driven and competent in the reproduction of high-order

spatial statistics [17�19]. Beyond the relatively few existing research, more re�ned theoretical

models with high-order simulations and practical algorithms with e�ectivity and computa-

tional e�ciency is worthy of further investigation. In addition, it is important to develop

suitable software to launch some real-life applications of orebody modeling based on the new

high-order simulation methods, and thus providing the quanti�cation of geological uncer-

tainty to advance the decision making in mining projects. These above reasoning contributes

to the main motivations of the present research.

1.2 Research Goal and Objectives

The overall goal of the present research aims to develop new high-order stochastic simulation

methods that can quantify spatial uncertainty of non-Gaussian random �elds, and overcome

the limitation of existing high-order simulation methods, particularly by improving the nu-

merical stability with an approximation of conditional probability distribution by Legendre

polynomial series. A new statistical learning framework will be established as the general

foundation of the newly developed high-order simulation methods from which the random

�eld models can be learned from di�erent sources of data with the incorporation of the

high-order spatial statistics. In addition, to meet the practical requirements from orebody

modeling, the new high-order simulation methods will be extended to support training-image

free simulation and address the di�culty of inferring high-order spatial statistics with rela-

tively sparse sample data.

To achieve the above research goal, the research objectives are outlined as following:

1. A comprehensive review of stochastic simulation methods, especially focusing on the

analysis of the limitation of existing high-order simulation methods, including the nu-

merical instability issue of approximating a conditional probability density function

(CPDF) and the computational e�ciency of calculating the high-order spatial statis-
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tics.

2. Develop a new computational model of approximating CPDF based on the concept

of spatial Legendre moments allowing to accommodate �exible spatial templates and

improving the computational e�ciency of the approximation.

3. Develop a new high-order stochastic simulation method based on a statistical learn-

ing framework by representing the CPDFs in the functional space as spatial Legendre

moment kernel Hilbert space, which not only improves the numerical stability of the

previous high-order simulation methods but also owns the generalization capacity to

mitigate the statistical con�icts between the sample data and the training image.

4. Develop a training-image free high-order simulation method that utilizes the interrela-

tions between the low-order and high-order spatial statistics of the sample data, based

on the new proposed kernel-based statistical learning framework.

5. Develop high-order simulation software to facilitate the generation of multiple realiza-

tions of ore reserve models with the reproduction of high-order spatial continuity to

quantify the geological uncertainty and support stochastic mine planning optimization.

1.3 Thesis Outline

The thesis is organized into the following chapters:

� Chapter 1 provides a brief overview of the research background with a short explanation

of the research motivation and main research objectives covered in the thesis.

� Chapter 2 presents a literature review of di�erent kinds of stochastic simulation meth-

ods, including the traditional second-order geostatistical simulation methods, multiple-

point simulation methods and high-order simulation methods, as well as their limita-

tions.

� Chapter 3 introduces the general organization of the thesis and brie�y explains the con-

nections among the articles respectively corresponding to the main research objectives.

� Chapter 4 presents a new computational model of high-order stochastic simulation

based on the concept of spatial Legendre moments, which signi�cantly improves the

computational e�ciency and allows the variable spatial template during the simulation

process.



8

� Chapter 5 proposes a new statistical learning framework in reproducing kernel Hilbert

space to develop the high-order simulation method and improves the numerical stability

of approximating the conditional probability density function by orthogonal polynomial

expansion series. A solution to mitigate the statistical con�icts between the sample data

and the training image is also provided.

� Chapter 6 further explores the relations between the low-order and high-order spatial

statistics associated with a certain spatial template and from which a training-image

free high-order simulation method is developed by utilizing the information from the

so-called partially-matched replicates to the conditioning data.

� Chapter 7 develops and describes a software of high-order stochastic simulation based

on statistical learning, incorporating the high-order spatial information at multiple

scales from the sample data and the training image, which facilitates the generation of

multiple realizations.

� Chapter 8 presents a general discussion of the methods developed in this thesis and

their connections to the other methods.

� Chapter 9 concludes the thesis by highlighting the major contributions to high-order

stochastic simulation methods and recommends related future work.
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CHAPTER 2 LITERATURE REVIEW

Stochastic simulation aims to quantify the uncertainty of attributes in a random �eld by gen-

erating a set of realizations with equal probability of occurrence, whereas the original samples

as the conditioning data remain unchanged. The reproduction of spatial statistics with re-

spect to the real data is of the utmost importance in stochastic simulations. Through several

decades of development, the quanti�cation of spatial statistics has evolved from two-point

spatial correlations to multi-point spatial continuity, or from low-order statistics to high-order

statistics. Accordingly, stochastic simulation methods have also migrated from traditional

variogram-based second-order simulation to multi-point simulation and high-order simula-

tion, and furthermore from Gaussian to non-Gaussian random �elds, which will be elabo-

rated in the followed subsections. Other major stochastic simulation improvement made over

the years are related to the implementation of various algorithms and their computational

e�ciency.

2.1 Sequential Simulation

In the 1970s, the turning-bands method [15, 20] was proposed to generate simulations that

overcome the limitation of computational capacity, but this method has the shortcoming of

loss of accuracy by approximation and struggled to re�ect anisotropic covariance [21]. As an

alternative, sequential simulation framework [22, 23] is adopted in most stochastic simulation

methods up to now.

Consider a stationary and ergodic random �eldZ(u), let Z (u1); : : : ; Z(uN ) be a set of ran-

dom variables with locations at u1; : : : ; uN , respectively. Then theN random variables

Z(u1); : : : ; Z(uN ), constitute a joint multivariate distribution. In terms of stochastic simula-

tion, suppose the realizations are to be generated fromZ(u1); : : : ; Z(uN ), and the available

data set are� 0 = f � (u0
1); : : : ; � (u0

n )g. For simpli�cation, Z (u1); : : : ; Z(uN ) are alternatively

written as Z1 : : : ; ZN , and similar simpli�cation of notations entails knowing the context of a

random �eld. Following the above notation, the stochastic simulation of the random �eld is

based on the sampling from theN -variate probability distribution posterior to the data set

� 0, which can be characterized by a conditional cumulative distribution function (CCDF)

as FZ (z1; : : : ; zN j� 0) or by a probability density function (CPDF) as f Z (z1; : : : ; zN j� 0). The

joint CPDF f Z (z1; : : : ; zN j� 0) can be decomposed into the product of a series of univariate
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CPDFs [24, 25] as

f Z (z1; : : : ; zN j� 0) = f Z1 (z1j� 0) � � � f ZN (zN j� N � 1); (2.1)

where � i (i = 1; : : : ; N � 1) are a series of sets with� i = � i � 1 [ f � (u i )g; i = 1; : : : ; N and

� (u i ) are informed attribute values either from the sample or previous simulated values.

The basic idea of sequential simulation is to sequentially draw random values from the de-

composed univariate CPDFs, following a random path to visit all the nodes to be simulated.

Irrespective of the node's location corresponding to the sequence number, there is no dif-

ference in the sampling procedures. Without loss of generality, the CPDF in every single

sampling procedure can be symbolized uniformly as,f Z0 (z0j�) , whereZ0 means the current

simulating node and� means the set of conditioning data aroundZ0's location u0. Con-

sidering the computational intensity and the statistical relevancy, the conditioning data are

usually con�ned to a neighborhood closest to the simulation node instead of taking account

of all available data on the whole domain of the random �eld. An algorithmic description of

sequential simulation can be summarized as the following steps:

1. Draw a random path to visit all the N nodes to be simulated;

2. For each nodeZ(u i ), derive the conditional probability cumulative distribution FZ i (zi j� i � 1)

or the density function f Z i (zi j� i � 1);

3. Draw a random value� (u i ) from the conditional probability distribution in Step (2)

and update the conditioning data by adding the node value� (u i ) in to the current data

set � i ;

4. Repeat from Step (2) until all the nodes are visited.

Since sequential simulation is �exible to accommodate various stochastic models and thus

it becomes a mainstream way to implement di�erent simulation methods, without further

speci�cation the stochastic simulation methods in the subsequent contexts are developed

under this general framework.

2.2 Second-Order Stochastic Simulation

2.2.1 Sequential Gaussian simulation

Sequential Gaussian simulation (SGS) [22, 26, 27] is developed to generate random outputs

from a Gaussian random �eld following the procedure of sequential simulation. An important
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fact of SGS is that the conditional probability distribution of the variable to be simulated is a

Gaussian distribution with mean as the simple kriging estimation and variance as the simple

kriging variance. Thus, SGS can be implemented to successively draw random values from a

sequential set of conditional probability distributions where the parameters are decided from

solving simple kriging equations. Alternatively, the Gaussian random �eld can be decomposed

as a mean �eld resulted from simple kriging and a residual random �eld respecting the

covariance function from the data. In this way, Davis [21] proposed LU decomposition of the

covariance matrix as a method to generate the simulated values simultaneously. Ideally, either

SGS or simulation by LU decomposition assumes using the data from the whole domain.

In practice, this assumption is always compromised by considering data within a certain

neighbourhood due to intractability of the enormous matrix system with incorporation of all

the nodes. This approximation is called screen e�ect approximation (SEA) since the closest

data tend to screen the in�uence of farther data [26, 28]. Dimitrakopoulos and Luo [28]

show that the accuracy of the above approximation can be measured by a function termed

relative screen e�ect approximation (RSEA) loss, which depends on the ratio of posterior

conditional variance with partial data and with full data. Furthermore, an algorithm named

generalized sequential Gaussian simulation on group size� (GSGS-� ), is developed to improve

the computational e�ciency of SGS dealing with large data [28]. GSGS-� divides theN nodes

on the simulation grid into a set of groups of size� , and the nodes inside each group has the

same neighborhood with conditional data up to a maximum number� max . A random path is

selected to visit each group and simulation is conducted sequentially on each group using LU

decomposition until all the nodes are visited. The computational cost of GSGS-� is greatly

reduced in comparison to SGS because the simulation of the nodes inside a group are not

generated one by one through solving distinct simple kriging systems but were completed

through one matrix decomposition. For the same sake of solving conditional simulation with

large data, Vargas-Guzmán and Dimitrakopoulos [29] propose a new stochastic simulation

method by successive residuals (CSSR). The CSSR method divides the covariance matrix

to block matrices and develops a new approach to take LU decomposition in a stepwise

way, and the mean of the conditional probability distribution is updated step by step by

adding a successive set of residuals which is proven to be equivalent to normal simple kriging

estimation [30]. Intuitively the procedure is to repeat �ltering a mean component out of the

current residual when new data is added and then a new residual remains after the �ltering

with the conditional covariance being updated at the same time; so each time adding the

new data only the updated conditional covariance in the last step is needed to update the

simulation result. Hence CSSR is able to solve conditional simulation of large scale and it also

has the advantage to dynamically update the existed simulation results when new data are
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incorporated without starting the whole simulation once again. Jewbali and Dimitrakopoulos

[31] implement the CCSR method and apply to a stockwork gold deposit where additional

in�lled drill holes are used to update existed simulation results, however some extra storage

of decomposed component of matrices are needed to facilitate the updating as a compromise

of memory cost to gain computational e�ciency.

2.2.2 Sequential indicator simulation

Sequential indicator simulation (SIS) [32�35] is a non-parametric simulation method which

has no assumption of probability distribution, in contrary to the Gaussian assumption in SGS.

To implement SIS, the original data are transformed to indicator code and the corresponding

indicator random function is used to characterize the random �eld. The indicator function

is de�ned as

i (u; zk) =

8
<

:

1 z(u) � zk

0 otherwise
k = 1; : : : ; K; (2.2)

and zk are the threshold values to divide the original data intoK + 1 classes. The random

function after indicator transformation of the original data can be written as

I (u; zk) =

8
<

:

1 Z(u) � zk

0 otherwise
k = 1; : : : ; K: (2.3)

Then the conditional probability distribution of original random variable can be expressed

as the expectation of the indicator random variable, that is

F [Z (u)j�] = Prob[Z (u) � zk j�] = E[I (u; zk)j�] : (2.4)

The covariance functions or variograms are computed from the indicator data, and indicator

kriging (IK) systems are solved to derive the conditional probability distribution (the ex-

pectation E[I (u; zk)j�] . Indicator kriging estimation is less sensitive to the outliers which is

useful when the connectivity of high values are important [36]. In addition, it is possible to

incorporate di�erent sources of soft data into the simulation using SIS.

Since there are a certain number of categories in the SIS method, the cross-correlations can

be derived experimentally from di�erent pairs of random variables and cokriging can be

used to estimate the expectation. In practice, alternative methods are indicator kriging on

each categorical variable separately. In fact, Goovaerts [33] shows that there is no obvious

advantage of using cokriging over the IK through a comparison study, on the contrary it may

cause more problems of order deviations in SIS. The order deviation problems are linked
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to the situation that the conditional probability distributions from SIS are not increasing

functions as they should be, because there are no order relation constraints imposed on the

kriging systems. One of post processing techniques to correct the probability distribution

is based on downwards correction and upwards correction, where the lower part and higher

part of the CDF curves are treated separately to ensure the non-decreasing characteristic

and then take the average between them as the corrected CDF [26]. Another practical issue

with SIS is that the estimation near the lowest and highest cut-o�s maybe unreliable because

the scarce of data with increasing number of categories, and thus the tails of CDF often

are extrapolated, for instance, by linear functions, hyperbolic functions, or power functions

[26]. With appropriate simpli�cation in modelling the cross-correlations and post processing

on CDF, SIS method is a powerful tool to generate realizations for non-Gaussian random

�eld, however, the limitation of two-point geostatistical framework restricts its application

to circumstances with relatively simple spatial structures.

2.2.3 Extension to multiple variables

It is very common in earth science data that various geological attributes are correlated in

addition to spatial correlations of their own. Furthermore, the interrelation between multiple

variables are also dependent on their spatial con�gurations, adding the complexity to model

the random �elds. The analysis of covariance or variograms of multivariate random �elds is

called coregionalization analysis in geostatistics [37]. The linear model of coregionalization

(LMC) is the most widely used model applying to coregionalized variables for its simplicity

[26, 38, 39]. Instead of being a single random variable, there is a random vector corresponding

to each location in the multivariate random �elds. To make the di�erence in notation, here

Z(u) =
�
Z 1(u); : : : ; Zn (u)

�
is used to represent the multivariate random �eld with n distinct

attributes. LMC assumes each random variableZ i (u) can be decomposed into a linear

combination of L + 1 basic structures consisting of independent components with a unit

covariance function, that is,

Z i (u) =
LX

l=0

n lX

k=1

al
ik Y l

k (u) + mi ; (2.5)

where mi = E[Z i (u)] and Y l
k (u) are the unit random components with zero mean andnl

is the number of independent components in each basic structure, whileY 0
k (u) corresponds

to the component with a nugget e�ect. AsY l
k (u) are independent, their correlations can be
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expressed as

cov[Y l
k (u); Y l0

k0(u + h)] =

8
<

:

cl (h) if k = k0; l = l0

0 otherwise
: (2.6)

The cross-covariance can be expressed as

Cij (h) =
LX

l=0

n lX

k=1

al
ik al

jk cl (h); (2.7)

or in the matrix form as

C(h) =
LX

l=0

B lcl (h); (2.8)

where B l is an n � n matrix given the number of variablesn with B l =
hP n l

k=1 al
ik al

jk

i

n� n
.

The cross-variogram matrix�( h) can be derived similarly as

�( h) =
LX

l=0

B l 
 l (h); (2.9)

where
 l (h) are the unit variograms of the basic components.

Since there are in totaln direct variograms andn(n + 1) =2 cross-variograms to be modeled

given n random variables, the computation of modeling the spatial correlations is tedious

and leads to large cokriging systems to solve. Practically the multiple variables are often de-

composed into decorrelated new random variables by taking linear transformation and then

reverse back to the original data space by taking back transformations on separate simula-

tions of each single decorrelated variable. The principal component analysis (PCA) has been

used to decorrelate the coregionalization variables in the past [40�42], however, the decorre-

lation with PCA is only guaranteed in zero-lag variance-covariance matrices yet ignoring the

spatial correlations within the data. An alternative approach transforms the corregionalized

variables into so called Minimum/Maximum autocorrelation factors [43], which is proven to

be decorrelated on all the lags provided there are no more than two structures in LMC. In

this case, the cross-variogram matrix�( h) is written as

�( h) = B1
 1(h) + ( B � B1)
 2(h); (2.10)

whereB is the variance-covariance matrix andB1 is the cross-covariance matrix for the �rst

structure. The spectral decomposition onB gives B = Q� QT with Q be the orthogonal

matrix of eigenvectors. Thus, the PCA factors with respect toB can be written as

Y (u) = � � 1
2 QT Z(u) = AZ (u): (2.11)
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Take variance-covariance analysis onY (u) one can get

A�( h)AT = I
 2(h) + AB 1AT [
 1(h) � 
 2(h)]: (2.12)

Another spectral decomposition onAB 1AT givesAB 1AT = Q1� 1QT
1 with Q1 as the orthog-

onal matrix of eigenvectors. The MAF factors are expressed as

F(u) = QT
1 Y (u) = QT

1 � � 1
2 QT Z(u): (2.13)

Therefore, the variance-covariance analysis onF(u) gives

� F (h) = � 1
 1(h) + ( I � � 1)
 2(h) (2.14)

Thus, the MAF factors F(u) are decorrelated on all lags since the corregionalization matrices

are diagonal. Desbarats and Dimitrakopoulos [44] develop the co-simulation method base on

the MAF transformation. The authors perform simulations based on MAF factors with

suitable univariate simulation method and then the results are back transformed to the

original data space to obtain realizations with reproduction of cross correlations as well as

spatial correlations. For the teaching aid of joint simulation with MAF as well as detailed

explanation of application, the readers are referred to Rondon [45].

2.2.4 Simulation on block support

Extension of stochastic simulation to block support is important in mining applications since

the orebody models are frequently represented by blocks with volumes comparable to selec-

tive mining units (SMU). In terms of available data in mine planning, the block simulation

becomes complicated problem since there are various information in di�erent scales of sup-

port, including core samples, mined blocks, stopes, and bulk samples [46]. The naive way to

deal with changing of support is to discretize the blocks into point supports with smaller vol-

umes and then take the average as the data value of the blocks. However, this is practically

infeasible for orebody modeling of large mines with millions of blocks.

Marcotte [46] proposes a method to generate realizations on block support based on the model

of disjunctive kriging, where the data on various supports are expressed as the normalized

Hermite polynomial series after Gaussian transformation. The coe�cients of Hermite poly-

nomial series with respect to the data in block support can be derived through computing

an integral related to the Hermite polynomials on point support. However, the computation

is complex and the method also relies on an assumption that the random variables in point
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support and block support follow a bivariate Hermite distribution. Emery [47, 48] proposes

an alternative block simulation method based on discrete Gaussian model where an explicit

function related to the so-called change-of-support coe�cient, is established to model the

cross-variograms between random variables at point support and block support. As an ex-

tension to GSGS-� , direct block simulation (DBSIM) has been developed to simulate large

orebodies [49]. The block size can be the same as the selective mining units, and the blocks

are subdivided into a group of internal nodes. The simulation is carried out on these internal

nodes through LU decomposition, which is similar in the way to GSGS-� , however, the values

of internal nodes are discarded after the value of block is set as the average of the internal

nodes and the block values are directly included as the new conditioning data in the followed

simulations. This algorithm turns out to be fast because it signi�cantly reduces the scale of

simulation problem after changing of support from points to blocks. Due to the change of

support in DBSIM, dilution e�ect may exist as a result of smoothing average and also the

covariance or variograms should be calculated separately between points to points, points to

blocks, and blocks to blocks, respectively. Several successful applications to large mine are

available [50, 51], and the simulation method is also extended to co-simulation with MAF

transformation by Boucher and Dimitrakopoulos [52]. All the above methods either assume

a Gaussian distribution or need Gaussian transformation of the random variables, hence have

the limitation to simulate non-Gaussian random �elds.

2.3 Multi-Point Simulation

Multi-point simulation (MPS) allows to reproduce spatial structures with multi-point in-

teractions, for example, the connectivity of extreme values of metal grades, or curvilinear

channels in reservoir models. In contrast to the two-point covariance or variograms which

only consider the pairwise second-order statistics, the multi-point statistics involve multi-

ple random variables with regard to the random �eld and thus lead to high-order statistics.

Generally, multi-point statistics do not rely on the Gaussian model and encompass far more

spatial structures than two-point statistics which works perfectly for Gaussian model. It

turns out that two random �elds with distinct spatial structures, say continuous channels

and lens structures, could share the similar variograms [53, 54], which clearly indicates the

limitation of second-order statistics to capture the complex spatial patterns (Figure 2.1).

In contrast to the second-order spatial statistics being represented by either the covariance

or the variogram, the multi-point statistics are usually borrowed from an exhaustive training

image (TI). Several key concepts from MPS are as follows:
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Figure 2.1 Limitation of second-order statistics to characterize spatial patterns (From [53])

� Training image : An exhaustive image assumed to share similar spatial structures

with the attributes to be simulated. The training image can also be regarded as a

representative realization of the prior random function model before the actual data

are incorporated to update the posterior distribution of the random �eld [55].

� Spatial template : The multi-point statistics are de�ned on multiple random variables

from a random �eld. The geometric con�guration associated to the multiple random

variables is termed the spatial template. Usually the spatial template can be denoted by

a set of distance vectors apart from the center node to be simulated asT = f h1; : : : ; hng.

� Data event : The conditioning data values retrieved from either the samples or the

simulated nodes within the spatial template is called a data event.

Depends on the implementation, the MPS methods falls into two categories of simulations

[56]:

� Pixel-based MPS : The MPS methods where the simulations are carried out sequen-

tially pixel by pixel are called pixel-based algorithms.

� Pattern-based MPS : The simulations are generated as patches instead of as a single

value, sometimes it is also called as patch-based MPS methods.
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2.3.1 Pixel-based MPS

2.3.1.1 SNESIM

The �rst popularized MPS algorithm, the so called single normal equation simulation algo-

rithm (SNESIM), is proposed by Strebelle [57]. The SNESIM algorithm serves as an extension

to the extend normal equations simulation (ENESIM) algorithm proposed by Guardiano and

Srivastava [12], solving the computational di�culty in ENESIM and leading to practical use

of MPS. Suppose the node to be simulated asZ(u0) and let the template be denoted as

� with the data event associated to the it asdn = f Z (u1) = z1; : : : ; Z(un ) = zng where

zi 2 f 1; : : : ; K g belongs to one of theK categories. Then the indicator variance/covariance

between theZ(u0) and data eventdn can be derived as

Cov
h
I (u; zk); I (� ; dn )

i
= P

h
Z0(u) = zk ; dn

i
� P

h
Z0(u) = zk

i
� P(dn ); (2.15)

V ar
h
I (� ; dn )

i
= P(dn ) �

h
1 � P(dn )

i
: (2.16)

Thus, the simple kriging equation can be solved by a single normal equation as

� sk =
Cov

h
I (u; zk); I (� ; dn )

i

V ar
h
I (� ; dn )

i : (2.17)

With simple substitution, the conditional probability can be obtained as

P
h
Z0(u) = zk jdn

i
= E

h
I (u; zk)jdn

i
=

P
h
Z0(u) = zk ; dn

i

P(dn )
; (2.18)

which provides the equivalency of simple kriging solution and Bayes' equation.

From Equation (2.18), the conditional distribution can be estimated from the frequency of

each category among the replicates of data event in the TI. However, the brute-force searching

for the data event from the TI is time consuming and it is the reason that ENESIM algorithm

remains only of theoretical interest. Instead of searching anew the replicates of the data event

for each node to be simulated, a tree data structure is used in SNESIM to store the possible

replicates in the TI associated to the geometry template. Therefore, only one run of scanning

the TI is needed and the searching time for replicates of data events is greatly reduced by

traversing a tree with depth comparable to the number of nodes in the template. In case that

the number of exact replicates of data eventdn is not enough to make reasonable estimation,

the most distant node from the center node is dropped with replacement ofdn as its subset

dn� 1 and this procedure repeats until the number of replicates reaches a minimum threshold.
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The marginal distribution is used to draw a random value if none subset of the data event

corresponds to the replicates in TI with statistical signi�cance.

2.3.1.2 IMPALA

Although SNESIM is fast in computation, it is memory demanding because the number of

tree nodes increases very fast when the template size or the number of category increases,

which eventually increases the searching time as well. Instead of using a tree data structure,

Straubhaar et al. [58] propose an improved parallel multi-point simulation algorithm (IM-

PALA) where a list data structure is used to store the replicates from the training image.

Similar to SNESIM, a searching template is used to scan the TI for only once to construct

the list, but only the leaf nodes are stored in comparison to the tree structure in SNESIM,

and hence the memory usage is greatly reduced so that a large template may be applicable

in the algorithm. However, the searching is more CPU demanding than SNESIM due to

the serial feature of the list data structure. A list sorted by the number of occurrences of a

certain category in the reference node is introduced to accelerate the searching, and further-

more, the list data structure also enables the parallelized implementations which have more

computational e�ciency [58, 59].

2.3.1.3 Direct sampling

Rather than scanning the whole training image to explicitly build the conditional distribution,

Mariethoz et al. [60] propose a new direct sampling (DS) method that allows to draw a random

value directly from the scanning procedure. The main steps of DS are as the following:

(1) Once a certain data eventdn was given, the algorithm starts to randomly pick a replicate

d0
n from the training image with the same template associated to thedn , and a distance

function is de�ned to measure the similarity betweendn and d0
n .

(2) If the distance betweendn and d0
n is less than a certain threshold, i.e., they are deemed

as similar events. Then the value in the reference node ofd0
n is set as the data value of the

node to be simulated and repeat from Step (1).

(3) Otherwise, store the minimal distance betweendn and the replicate up to the current

scanning on the TI, together with the corresponding reference node value.

(4) If no satis�ed replicate is found up to some speci�ed maximum times of scanning, then

chose the reference node value from the replicate which is most similar to the data event and

repeat from Step (1).
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In contrast to SNESIM, DS algorithm requires no additional memory usage and the similarity

measure is de�ned to �nd replicates instead of searching for exact replicate by dropping some

nodes. The running time may depend on the conditional probability distribution since the

�rst occurrence of the replicate of a certain data event varied regarding the distribution,

however an upper bound can be derived from the maximum threshold for scanning. In

addition, it is also possible to simulate continuous random �elds once the related distance

function is de�ned. For the practical guide to apply DS algorithm, the reader is referred to

Meerschman et al. [61].

2.3.1.4 Computationally improved methods of pixel-based MPS

More recently, Strebelle and Cavelius [62] investigate the main factors a�ected the memory

and CPU usage including the size of the template and the proportion of informed nodes

in the data event. They propose a new multiple grid method where extra intermediary

sub-grids are included to increase the proportion of the informed nodes in the data event.

Moreover, the data template to preferentially selecting simulated nodes is suggested to include

more informed data in a relatively small template and an optimal choice of template size is

also introduced. These techniques are combined in a new version of SNESIM to solve the

memory and speed issues. Several of the above-mentioned pixel-based MPS algorithms are

also modi�ed to be implemented with parallelized computations on the graphical processing

units (GPU) and are reported to speed up simulation within orders of tens to hundreds

[63, 64]. However, it should be noted that GPU-version algorithms are hardware demanding

and the GPU memory could be a limitation of conducting large scale simulations.

2.3.2 Pattern-based MPS

Despite the quick developments of pixel-based algorithms, their limitations are that the exact

replicates of data events are not easy to �nd, and in addition, most of these algorithms only

apply to the categorical data. The reason is that the statistical model with regard to pixel-

based MPS methods is essentially a discrete distribution relied on the counting number of

data events occurring in the training image, which becomes unstable when replicates are few.

These limitations are overcome by the pattern-based MPS methods as followed.

2.3.2.1 SIMPAT

Arpat [65] proposes a new stochastic simulation algorithm with patterns (SIMPAT) which

abandons the ideology of pixel-based simulations within a speci�ed statistical framework.
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Instead of drawing a random value for each single node to be simulated, SIMPAT is developed

to search a similar pattern to the data event from the training image to be embedded to the

simulation grid as a whole, and the simulation algorithms followed in this paradigm are

categorized as pattern-based or patch-based MPS algorithms.

Suppose that the template� is de�ned by a set of distance vectors as� = f h1; : : : ; hT g, then

the data event on the simulation gridre is de�ned asdev(u0; � ) = f re(u + h1); : : : ; re(u +

hT )g where u0 represents the node to be simulated, and note that some nodes may be

uninformed in the data event. For a speci�ed node at locationu on the training imageti , a

pattern within the template can be de�ned aspat (u; � ) = f ti (u); ti (u + h1); : : : ; ti (u + hT )g.

A distance function can be de�ned to measure the similarity of the data eventdev(u0; � )

and the pattern pat (u; � ) form the training image. For instance, Manhattan distance was

used in SIMPAT as

d
�
dev(u0; � ); pat (u; � )

�
=

TX

� =1

jdev(u0; � )(h � ) � pat (u; � )(h � )j; (2.19)

which means the more similar are the data eventdev(u0; � ) and the pattern pat (u; � ) as

the distance becomes smaller. The computation of Manhattan distances will be skipped

from the uninformed nodes in the data event. The main procedures of SIMPAT are quite

straightforward as the following:

(1) For each nodeZ(u0) to be simulated, search the neighborhood within the template� to

include the sample data or previously simulated nodes into the data eventdev(u0; � ).

(2) Scanning the training image to �nd the pattern pat � (u; � ) that is the most similar to

dev(u0; � ).

(3) Assign the data values of the most similar patternpat � (u; � ) to all the nodes inside the

template around the reference nodeu0. If there are more than one patterns that have the

similarity measure todev(u0; � ), then randomly pick one of them as the representative.

(4) Repeat Step (1) until all the nodes on the simulation grid are simulated.

2.3.2.2 FILTERSIM

Although the similarity measure is more �exible than searching the exact replicates, the com-

putation of distances throughout the entire pattern database for each node to be simulated

is CPU demanding. To alleviate the computational cost of similarity comparison, Zhang

et al. [66] propose a simulation method using �lter scores (FILTERSIM) which classi�es the

patterns into di�erent categories by applying certain �lter functions.
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For a training image in 2D space, letX (i; j ) be the datum value at location(i; j ), and let

the dimension of the template be(2n + 1) � (2n + 1) , then the �lter score associated to a

speci�ed �lter function f (u; v) can be de�ned as the following [66]:

Sf (i; j ) =
nX

v= � n

nX

u= � n
f (u; v) � X (i + u; j + v): (2.20)

In 2D space, there are six �lter functions de�ned in FILTERSIM algorithm. Each �lter gives

di�erent weights to the nodes on the template to capture di�erent spatial features in the

pattern. For instance, the sixth �lter is de�ned in FILTERSIM as f 6(u; v) = 2jvj
n � 1, which

visually appears like Figure 2.2 capturing the E-W curvature of the pattern. Thus, for each

pattern on the 2D training image, there are in total six scores assigned to the pattern which

transform the pattern of size(2n + 1) � (2n + 1) into a point in six-dimensional �lter score

space. The �lter scores for each of the 6 �lters are further divided into 5 segments by their

quintile thresholds, and hence the whole �lter score space is discretized into56 classes where

each pattern falls into one of the classes. In practice, the actual number of classes would be

much less than56 because many classes are empty due to the limited number of patterns

encountered in the training image. Each class then contains various number of patterns and

a training prototype is de�ned as the average pattern in this class. The rest of the simulation

is as follows:

(1) For each nodeZ(u0) to be simulated, retrieve the data event associated to the template.

Compare the similarity between the data event and all the prototypes to �nd the class with

the patterns closest to the data event, by a prede�ned distance function.

(2) Randomly draw a pattern from the candidate class and paste it to the location centered

at u0.

(3) Repeat from Step (1) until all the nodes are simulated. In addition, a �xed inner part

is de�ned within the template for each pattern. As a rule, the hard data and the inner

part of the simulated nodes within a pasted pattern are frozen during the next sequences of

simulations.

As one time scanning throughout the training image is needed to build the �lter score space

and after that the similarity comparison only takes place between the data events and proto-

types, thus FILTERSIM is quite computationally e�cient. However, the simple �lter func-

tions may not be able to classify complex spatial patterns e�ectively and tend to deteriorate

the reproduction of spatial continuity.
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Figure 2.2 The sixth �lter de�ned in FILTERSIM as a re�ection of E-W curvature

2.3.2.3 DISPAT

Honarkhah and Caers [67] propose a more advanced approach to classify the patterns which

leads to a new MPS algorithm with distance-based modelling of patterns (DISPAT). The

�rst step of the above algorithm is to obtain a similarity matrix between all the patterns by

computations on some prede�ned distance function. Then multidimensional scaling (MDS)

technique is applied to the similarity matrix to reduce the patterns to points in lower di-

mensional space while preserving the order relations of the distances in the original space.

The patterns embedded in the new metric space after MDS transformation are classi�ed into

a certain number of classes using the kernel k-means algorithm [68] where the points are

actually again mapped to a kernel feature space. The rest part of the algorithm is similar

to other pattern-based algorithms to compare the data events with the prototype of each

class and randomly draw a pattern from the most similar class. Although the new algorithm

has better reproduction of spatial continuity than FILTERSIM, however, the implementation

is also more complicated , and several parameters including the size of dimension in MDS

algorithm and the number of classes in k-means algorithm need to be deliberately selected.

2.3.2.4 WAVESIM

Chatterjee et al. [69] propose a pattern-based simulation algorithm using wavelet analysis

(WAVESIM). Wavelets are de�ned as a family of bases by translation and dilation of a square
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integrable function, namely as the mother wavelet, which can be written as

 j;k (x) = 2 � j
2  (2� j x � k); j; k 2 N; (2.21)

where j; k are the scaling parameter and translation parameter, respectively; j;k and  are

the wavelets and mother wavelet, respectively. Scaling bases� j;k (x) are de�ned in the similar

way by a scaling function� (x) as

� j;k (x) = 2 � j
2 � (2� j x � k); j; k 2 N: (2.22)

A square integrable functionf 2 L2(R) can be reconstructed from the wavelets and scaling

functions as

f̂ (x) =
N J � 1X

k=0

aJ;k � J;k (x) +
JX

j =1

N j � 1X

k=0

wj;k  j;k (x); (2.23)

wheref̂ (x) is the reconstructed function andJ is the levels of wavelet decomposition;N j = N
2j

and N is the original range of the domain. For a 2D image, the discrete wavelet composition

(DWT) leads to one approximate sub-band image as the scaling image and three high-

frequency sub-band images as wavelet images. As can be seen from Equation (2.23), these

sub-band images have size1=2j of the original image in the j -th level of decomposition.

The approximate sub-band image is used as the representation of a pattern after DWT

at a speci�ed scaleJ . Thus, the patterns are reduced in dimension by ratio of1=2J ,

and the approximated sub-band images are further classi�ed into di�erent classes using k-

means algorithm. Prototypes are generated for each class of pattern afterwards and the

simulation is carried out similarly as other pattern-based methods. A slight di�erence is that

a distribution of patterns inside a speci�ed class is estimated from the empirical distribution of

the center node and the simulated patterns are randomly drawn according to this probability

distribution. More recently, Chatterjee et al. [70] develop an updated version of WAVESIM

which conducts pattern-based simulation on images in wavelet domain and take the inverse

discrete wavelet decomposition (IDWT) to generate realizations in the spatial domain.

2.3.2.5 CDFSIM

Mustapha et al. [71] propose a simulation algorithm through decomposition of cumulative

distribution functions of transformed spatial patterns (CDFSIM) which transforms the pat-

terns into one-dimensional real data by a non-linear function. The transformation function
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is de�ned as

f
�
ti (u; � )

�
=

TX

j =1

ti (u + h j )s(j ); (2.24)

s(x) =

8
><

>:

1 for continuous image
1
x

for binary image
: (2.25)

Mustapha et al. [71] construct a cumulative distribution function from the transformed data

and the corresponding location indices, and the patterns are classi�ed into a certain number

of classes by an algorithm based on the decomposition of thresholds from the above 1D

distribution. This algorithm is computationally e�cient and easy to implement. It is proven

by Mustapha et al. [71] that if the distance between two transformation functions is bigger

than r , then the two corresponding patterns will also have a distance larger thanr . However,

the converse of the claim is not necessarily to be true, thus the transformation does not fully

preserve the distance order, which may lead to discontinuity in the simulations.

2.3.2.6 Pattern-based MPS as extensions from other methods

As an extension to pixel-based DS algorithm, Rezaee et al. [72] implement a pattern-based

version of DS where the replicates from the TI resembling the data event are pasted to

the simulation grid instead of a single node. Noting that boundary continuity may not be

maintained in common pattern-based simulations, there are several methods borrowing the

concepts of texture synthesis to MPS algorithm which alleviate the boundary con�icts [73�

75]. These methods generally use a so called unilateral raster path to generate realizations

instead of a random path, which means that the simulation is growing along some �xed

directions. The unilateral path is proposed in texture synthesis to reproduce patterns from

a reference texture, assuming a Markovian property [76]. In compliance with the Markovian

property, the nodes are visited in a regular path and only precedent nodes can be included

as conditional data for the current node to be simulated. Parra and Ortiz [75] abandon

the Markovian assumption and adapt the texture synthesis to conditional simulation in two

steps running. The causal nodes in the template which comply to the Markovian property are

�rstly used to search candidate replicates from the training image, and then in the second

run the non-causal nodes are added to re�ne the �nal searching. Tahmasebi et al. [77]

also adopt the raster path in their implementation of a cross-correlation based simulation

(CCSIM). The cross-correlation function is used as the distance measure between patterns in

replacement of the Euclidean distance, which is proven to be more computationally e�cient.

Furthermore, CCSIM introduces an overlapping region between the pasted patterns and
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the current simulation area within the template. And the cross-correlation between the

overlapping region and the TI is computed as the similarity measure, in this way the boundary

continuity can be well reproduced with less computational time. Mahmud et al. [74] propose

a conditional image quilting algorithm (CIQ) which is implemented similarly to CCSIM,

however, CIQ enhances the boundary continuity by a dynamic programming algorithm named

image quilting [78]. For a thorough review of relating texture synthesis to MPS, the readers

are referred to Mariethoz and Lefebvre [79].

2.3.2.7 Multiple grid simulation

For computational reason, the template size in MPS algorithms should be relatively small

compared to the size of TI, however a negative impact is that the large spatial structure

may not be re�ected from the template. The idea of multiple grid simulation [80] is utilized

in various MPS algorithms to solve the problem. The simulation gridD is divided into

multiple nested gridsDg(1 � g � G) with every 2g� 1-th node picked from the original grid

D(g = 1) , and correspondingly a series of template� g(1 � g � G) are generated in the same

way from the original template � (g = 1) . The simulations are carried out sequentially from

the coarsest gridDG with the template � g of the largest size to the �nest gridD(g = 1)

with the template � (g = 1) . Figure 2.3 shows the relation between the coarse grid and the

�ne grid with cascading templates, and Figure 2.4 shows how the coarse template is used to

retrieve data. The strategy of multiple grid simulation is able to integrate spatial structures

at di�erent scales and actually it has been applied to either pixel-based MPS or pattern-based

MPS algorithms, although the implementation may have some di�erence.

2.3.2.8 Scope of application to MPS

In general, pixel-based MPS algorithms are broadly used to reproduce spatial continuity

of categorical random �eld within the Bayesian framework. Their computational e�ciency

varies in terms of di�erent implementations or data structures adopted. However, the prac-

tical di�culty to �nd exact replicates of data events is often a hindrance to reproduce the

multi-point interactions. By contrast, pattern-based MPS algorithms are more �exible to

draw patterns from the TI by introducing the concept of similarity measure with distance

functions. Thus, pattern-based MPS algorithms can be applied to both categorical and

continuous data with reasonable reproduction of spatial structures. The similarity measure

between patterns in fact replaces the role of the conditional probability distribution. The

cutting down of statistical model in pattern-based MPS algorithms is twofold. On the one

hand, it eases the computational burden without estimation of a conditional probability dis-
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Figure 2.3 Coarse grid (grey nodes) with the coarse template (red nodes) overlapping on the
�ne grid with �ne template (blue nodes); note that the coarse template has bigger size to
capture larger spatial structures.

tribution. On the other hand, it also means less strictness in mathematical sense, which

may limit their reliability in practical applications. Most importantly, either pixel-based or

pattern-based MPS algorithms are eventually training image driven, hence their performance

depends on the quality of the training image, and it is hard to resolve the possible con�icts

between the training image and the hard data.

It should be noted that there are also other simulation methods intending to simulate complex

spatial features and of which the framework is out of the scope of MPS. For instance, the

object-based simulation algorithms have been developed to use parametric shapes as the basic

simulating units to �t the conditioning statistics through an iterate process [81�83]. However,

the object-based simulation algorithms are limited in the capability to respect conditioning

data [84], and instead they can act as alternative methods to generate training images for

running MPS [85].
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Figure 2.4 A replicate (right) retrieved by a coarse template form the training image (left).
(Background image fromhttp://sipi.usc.edu/database/ )

2.4 High-Order Stochastic Simulation

High-order stochastic simulation methods aim to generate realizations of non-Gaussian ran-

dom �eld without presumptions of probability distribution and to reproduce high-order spa-

tial statistics among multiple points, as a new approach to overcome the limitations of tra-

ditional second-order stochastic simulations. The terminology of multi-point statistics and

high-order statistics are synonyms in many existing literature. However, to be brief, the

high-order simulation methods di�er from the mainstream MPS algorithms in two aspects.

On the one hand, the formulation of statistical models in high-order simulation is di�erent

from the pixel-based MPS algorithms which attribute to solving a single normal equation.

On the other hand, the di�erence from the patter-based MPS methods is obvious since there

is no explicit statistical model established by the patter-based MPS methods.

2.4.1 Spatial cumulants

Starting from an e�ective quanti�cation of high-order statistics, Dimitrakopoulos et al. [17]

propose a new concept of spatial cumulants, and upon which a statistical model of approx-

imating the multivariate CPDF by Legendre polynomial expansion series is established for

stochastic simulation in Mustapha and Dimitrakopoulos [18]. Cumulant generating function
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is de�ned as the logarithm of moment generating function, and cumulants are the coe�cients

of Taylor expansion of the cumulant generating function [86, 87]. Consider the joint prob-

ability formed by the random vector Z = ( Z1; : : : ; Zn ), let the moment generating function

be

� (� ) = E[ei � T Z ]: (2.26)

Then the cumulant generate functions is de�ned as

 (� ) = ln � (� ); (2.27)

where � is a vector denoted as� = ( � 1; : : : ; � n ). Joint cumulants of multivariate random

variables appear in the Taylor expansion of cumulant generate functions as

 (� ) =
1X

r 1=0

� � �
1X

r n =0

� r 1 ;:::;r n

(i� 1)r 1 � � � (i� n )r n

r1! � � � rn !
; (2.28)

where� r 1 ;:::;r n is the cumulant with order r i for each random variableZ i .

The cumulants and moments can be exchanged to each other as [88]

K (Z1; : : : ; Zn ) =
X

�
(� 1)j � j� 1(j� j � 1)!

j � jY

a=1

E
� Y

i 2 � a

Z i

�
; (2.29)

E(Z1; : : : ; Zn ) =
X

�

j � jY

a=1

� � a ; (2.30)

whereK (Z1; : : : ; Zn ) is the cumulant of ordern (noting that Z1; : : : ; Zn can be redundant in

this expression);� is an arbitrary partition of set f 1; : : : ; ng and j� j is the number of blocks

in partition � . An alternative recursive form handy for computation is given as [89]

� r 1 ;:::;r n =
r 1X

j 1

� � �
r n � 1X

j n � 1

r n � 1X

j n

 
r1

j 1

!

� � �

 
rn� 1

j n� 1

! 
rn � 1

j n

!

� j 1 ;:::;j n � r 1 � j 1 ;:::;r n � j n ; (2.31)

� �
r 1 ;:::;r n

=
r 1X

j 1

� � �
r n � 1X

j n � 1

r n � 1X

j n

 
r1

j 1

!

� � �

 
rn� 1

j n� 1

! 
rn � 1

j n

!

� �
j 1 ;:::;j n

(� � r 1 � j 1 ;:::;r n � j n ); (2.32)

� r 1 ;:::;r n =
r 1X

j 1

� � �
r n � 1X

j n � 1

r n � 1X

j n

 
r1

j 1

!

� � �

 
rn� 1

j n� 1

! 
rn � 1

j n

!

� �
j 1 ;:::;j n

� r 1 � j 1 ;:::;r n � j n ; (2.33)

where� r 1 ;:::;r n and � r 1 ;:::;r n are the moments and cumulants, respectively, and� �
r 1 ;:::;r n

is de�ned

as the moments corresponding to the negative cumulant generating function�  (� ) for the

computation of recursive equation.
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Consider the random �eldZ(u), spatial cumulants are de�ned on a family of random variables

distributed to a spatial template � = f h1; : : : ; hn g, and the explicit form can be derived

from the above Equations from (2.29) to (2.33). For instance, the second-order cumulant is

equivalent to the covariance and is given by

cz
2(h) = E[Z (u)Z (u + h)] � E [Z (u)]2: (2.34)

Through several case studies with di�erent geometry shapes of template, Dimitrakopoulos

et al. [17] point out that spatial cumulants of di�erent orders reveal various interrelations

among multiple points, of which exhibit the so called duality relation between the geological

patterns and spatial cumulants. In general, the mathematical entities of spatial cumulants

provide an e�ective approach to characterize the complex spatial patterns, as a consequence

they have been applied as an alternative tool to validate the realizations from stochastic

simulations [11, 90]. A public domain software for geological pattern recognition using high-

order spatial cumulants (HOSC) has been implemented by [91], and it is able to compute

spatial cumulants either on regular or irregular grids. Li et al. [92] develop a GPU-based

algorithm to calculate the spatial cumulants with considerable acceleration in computation,

however the algorithm is not applicable for irregular grids.

2.4.2 HOSIM

Mustapha and Dimitrakopoulos [18] propose a high-order stochastic simulation (HOSIM)

framework that aims to reproduce complex spatial patterns from a non-Gaussian random

�eld. The sequential decomposition of CPDF is adopted in HOSIM similar to other sequential

simulation methods. Major di�erence is that HOSIM does not assume a speci�c type of

distribution. The derivation of CPDF is based on a Legendre polynomial series. Legendre

polynomials can be de�ned by a di�erential equation as [93, 94]

Pm (z) =
1

2mm!
dm

dzm
[(z2 � 1)m ] =

mX

i

ai;m zi ; (2.35)

wherePm (z) is the mth-degree Legendre polynomial andz 2 [� 1; 1]. The in�nite sequence of

polynomials form a complete orthogonal basis set on the domainD = [ � 1; 1]. The orthogonal

property of the Legendre polynomials can be expressed as

Z

D
Pm (z)Pn (z)dz =

8
>><

>>:

0 m 6= n
2

2m + 1
m = n

; (2.36)
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and the norm of the Legendre polynomialPm (z) is

k Pm k=

s
2

2m + 1
(2.37)

Mustapha and Dimitrakopoulos [18] develop their approximation of probability density func-

tion (PDF) by a truncated Legendre polynomial series with normalization as

f w(z0; z1; : : : ; zn ) =
wX

i 0=0

� � �
i n � 2X

i n � 1=0

i n � 1X

i n =0

L i 0 ;i 1 ;:::;i n
P i 0

(z0) � � � P i n � 1
(zn� 1)P i n (zn ); (2.38)

wheref w(z0; z1; : : : ; zn ) is the approximation of PDF up to orderw; P�i 0
(z0); : : : ;P i n (zn ) are

the normalized Legendre polynomials andi k = i k � i k+1 for k < n . The coe�cients L i 0 ;i 1 ;:::;i n
,

which is called Legendre cumulants in Mustapha and Dimitrakopoulos [18], can be derived

from spatial cumulants as

L i 0 ;i 1 ;:::;i n
=

Z

D
P i 0

(z0) � � � P i n � 1
(zn� 1)P i n (zn )f (z0; z1; : : : ; zn )dz0 : : : dzn = g(ci 0 ;i 1 ;:::;i n

) (2.39)

The local CPDF is obtained by Bayes' equation as

f Z0 (z0j� 0) =
f w(z0; � 0)

(
R

D f w(z0; z1; : : : ; zn )dz0 : : : dzn )� 0

(2.40)

wheref Z0 (z0j� 0) is the CPDF and the denominator is the marginalized distribution overZ0.

The rest main procedures of HOSIM follow as:

(1) The spatial cumulants are precomputed from the training image as well as the hard data

and the results are stored in a tree data structure.

(2) For each node to be simulated, �nd the neighbor of conditioning data within the prede�ned

template and estimate the local CPDF by Equations (2.38) and (2.40).

(3) Draw a random value from the local CPDF to the simulated node.

(4) Repeat from Step (2) until all nodes are simulated.

An important feature of HOSIM is that the spatial cumulants are computed from the sample

data in priority and borrowed higher order statistics from the training image only when the

estimation from the sample data is considered insu�cient in case of scarcity of replicates.

Thus, HOSIM is data-driven, di�ering from the conventional MPS methods that are training

image driven and therefore hard to resolve the con�icts between the data and the training

image. It has been shown in various publications that HOSIM is able to reproduce non-
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Gaussian random �elds with complex geological patterns and remains relatively insensitive

to the inconsistency between TI and the sample data [18, 19]. However, the number of

Legendre cumulants to the orderw goes up to
�

N + w
w

�
given a conditioning data of sizeN ,

which means that the computation increases fast as eitherN or w increasing. Another issue

of HOSIM is that the positiveness is not ensured in the approximation of CPDF, although

asymptotically convergence to a true distribution provided. Mustapha and Dimitrakopoulos

[19] discard some high order terms to reduce the computational cost of Legendre cumulants.

Although the revised HOSIM algorithm is feasible in computation, it also leads to a loss of

accuracy of CPDF. Mustapha and Dimitrakopoulos [18] also mention the positiveness issue

where they force correction on the negative parts of the CPDF to be non-negative with

some post processing techniques. Mustapha and Dimitrakopoulos [95] propose another high-

order simulation method approximating the CPDF with generalized Laguerre expansions

where the coe�cients are estimated from moments, however, the approach does not address

the positiveness issue and interpolation by a quadratic polynomial is applied to correct the

negative parts of CPDF. The positiveness problems are inevitable for all the approximation

of CPDFs by typical polynomial expansions.

2.4.3 Simulation algorithms beyond HOSIM

Vargas-Guzmán [96] proposes a non-Gaussian simulation method for heavy tailed probability

distributions with high-order cumulant parameters. Instead of a distribution-free framework

adopted in HOSIM, Vargas-Guzmán [96] assumes that the non-Gaussian random variables

follow a family of exponential power (EP) PDF and the random variables are decomposed

into a set of random residual variables which can be written as power of the original random

variables with high-order cumulants as the parameters. Several distributions including the

distributions with skewed PDF are explicitly written as a EP distribution with high-order

cumulants. Thus, it is straightforward to estimate parameters from the sample data and

generate the prediction. Nevertheless, the derivation of the decomposition of PDF as residuals

are provided only in one dimensional random variables and therefore not applicable to the

2D or 3D random �elds. Abolhassani et al. [97] develop a new high-order simulation method

assuming the CPDF from exponential family where the parameters are derived by maximum

likelihood estimation. The CPDF is de�ned as function of a so called disparity vector which

is in fact a new distance based on the high-order statistics between data event and replicates

on TI. Eventually the replicates with more similar high-order statistics to the condition data

are given more weights to formulate the likelihood function. As a consequence, the method

is resistant to the con�icts between the hard data and the TI. However, a weak point this

method is that it still relies on replicates from the TI to obtain the parameter estimation
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except the impacts of replicates with lower similarity in high-order statistics to the data

event are �ltered out, thus the stability of the estimation may demand larger TI or more

than one TI. Minniakhmetov and Dimitrakopoulos [98] propose a new high-order simulation

framework which is able to generate realizations for categorical random variables. In their

method, the high order spatial indicator moments are approximated by B-spline functions

with the experimental statistics calculated from the replicates in the hard data, and the

normalized B-spline functions are used as the approximation of CPDF to draw random

values for the simulation. The method is data driven without referring to a TI, whereas it is

di�cult to extend to simulation of continuous attributes.

2.4.4 Extension to multiple variables

The extension of high-order simulation methods to multiple variables are relatively few.

A most recent development of joint high-order simulation with decorrelation of high-order

spatial statistics is proposed by Minniakhmetov and Dimitrakopoulos [99]. In this method,

Minniakhmetov and Dimitrakopoulos [99] develop a decorrelation technique with diagonal

dominant cumulants aiming to approach the statistical independence of the decomposed

factors. A linear transformation is assumed to obtain the new factorsY (u) from the random

�eld Z(u) as

Y (u) = AZ(u): (2.41)

The diagonal dominant factorization can be expressed as a minimization problem with the

objective function as

min
X

d

� dFd(A); (2.42)

and Fd(A) is de�ned as

Fd(A) =
X

k0

1 +
P

non-diagonal k Cum(Y k0 (u); Y k1 (u); : : : ;Y kd� 1 (u)) k2

k Cum(Y k0 (u); Y k0 (u); : : : ;Y k0 (u)) k2
(2.43)

The main idea of the algorithm is to �nd a linear transformation such that the diagonal

elements dominate the cumulants tensor. HOSIM is used to generate realizations for each

decomposed factor and the results are back transformed to the original data space to get the

joint simulations of multiple variables. Currently, the algorithm only considers decorrelation

at lag zero. To consider impact of cross-cumulants at various lags, the objective function

needs to be revised to include more terms which may increase the complexity of solving the

minimization problem.
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2.5 Learning-Based Stochastic Simulation and Kernels

The development of arti�cial intelligence over the past decades leads to various machine learn-

ing methods and their vast applications in engineering domains. State-of-the-art machine

learning techniques have been integrated to uncertainty quanti�cation to develop learning-

based stochastic simulation methods. As an early attempt to apply machine learning method

to stochastic simulation, Caers [100] proposes a simulation method using neural network to

predict the conditional probability distribution with incorporation of multiple point statistics.

The Metropolis-Hasting sampler [101] is used to generate the random values to be simulated

through a iterative updating procedure. The target probability density function is expressed

as a convex combination of certain type of density functions and the related parameters are

learned from the replicates with a given spatial template retrieved from the training image

based on the Expectation-Maximization (EM) algorithm [102]. More recently, a deep learning

technique called generative adversarial networks (GAN) [103] has been substantially studied

and applied to stochastic simulation [104�107]. The architecture of GAN contains two main

components, a generatorG and a discriminator D each corresponded to a neural network.

Given that a set of sample images which are labeled as the real data, the images created by

the generatorG are labeled as the fake data. A latent spaceZ consists of a set of independent

random variables, from which the random samplesz are drawn as the input for the generator

G. The discriminator D is trained to distinguish the two categories of images and label them

correctly as much as possible. On the other hand, the generatorG is trained to create images

as close to the sample images as possible so that discriminatorD can be fooled by the fake

data. This adversary training is achieved by solving a minimization-maximization problem

as

min
G

max
D

Ex � pdata (x )

h
logD(x)

i
+ Ez� p(z)

�

log
�

1 � D
h
G(z)

i ��

; (2.44)

where pdata (x) corresponds to the probability distribution of the real data, andp(z) corre-

sponds the probability distribution of the random variables in the latent space. In the context

of multiple point simulation, the training images act as the real data and the generated re-

alizations are created by the generatorG. While the GAN converges after training, the

generated realizations should get close to the underlying distribution of the training images.

As many of the stochastic simulation methods using GANs are unconstrained by the sample

data, Dupont et al. [105] propose a simulation method conditioned to the physical measure-

ments with GAN. They introduce two loss functions, namely prior loss and the context loss,

to balance the reproduction of the statistics from the training images and the sample data.

The prior loss penalizes the deviation from the distribution of the training images and the

context loss penalized the mismatch between the generated data and the actual measurement
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at the locations of the sample data. Similar loss functions are also introduced in [107] to

develop stochastic subsurface model reconstruction using GAN. A recent research in Avalos

and Ortiz [108] also uses the convolutional neural network (CNN) [109] to develop multiple

point simulation method, where the spatial patterns are captured by the features extracted

by the convolutional layers for learning the probability distribution of spatial attributes given

a certain spatial template.

The kernel methods provide another way to represent the original data as features in a high-

dimensional feature space, and they are widely used in statistical learning [110, 111]. Some

earliest application of kernel to probability density estimation can date back to Parzen [112]

and the related methods are called kernel density estimation (KDE) methods[113�115]. In

general, a kernel function is positive de�nite and has the so-called reproducing property [116],

from which a so-called reproducing kernel Hilbert space (RKHS) is determined. In machine

learning �eld, the so-termed feature space resembles the kernel Hilbert space by taking the

elements from the original data space into the kernel space as features. The features usually

carries higher dimensional information than the raw data, however, the similarity between

the features can be expressed by the kernel functions. In terms of stochastic simulation, the

covariance function is a kernel and de�nes a dual kernel space of the original data space [117].

In the multiple point simulation methods, kernels have been used to measure the similarity

between spatial patterns by feature mapping [67, 118], nevertheless, these applications are

limited in the sense that learning a random �eld model is not under consideration.
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CHAPTER 3 GENERAL ORGANIZATION OF THE DOCUMENT

This thesis research develops new stochastic simulation methods to quantify spatial uncer-

tainty incorporating the high-order spatial statistics of the available data, aiming for better

performance in reproducing the underlying complex patterns in various natural phenomena.

The literature review reveals the evolution of stochastic simulation methods from the conven-

tional second-order stochastic simulation methods to the multiple-point simulation methods,

as well as more recent high-order simulation methods. In general, the trending of the stochas-

tic simulation methods shifts from the Gaussianity to non-Gaussianity, and from pair-wise

correlations to multiple-point spatial continuity. The new paradigm of high-order stochastic

simulation provides a distribution-free random �eld model accounting for high-order spatial

statistics, distinguished from other models. How to e�ectively and e�ciently incorporate

high-order spatial statistics, however, poses challenges from both the theoretical and the

computational aspects, as well as the practical challenges in real-life applications.

To reach the research goal, the thesis contains four di�erent chapters as the main content to

deliver the major research objectives including the theoretical development, computational

model, and the practical aspects. Chapter 4 proposes a new computational model of high-

order simulation based on spatial Legendre moments. Although the proposed computational

model is derived from the concept of spatial Legendre moments, the explicit computation

of the empirical high-order spatial statistics is avoided in the related numerical equation.

Instead, the approximation of probability density function is written in a kernel-like form

with spatial statistics of di�erent orders incorporated in a uni�ed function. The proposed

computational model not only improves the computational e�ciency of utilizing high-order

spatial statistics of the available data during the simulation, but also leads to a concept of

a new kernel function, the so-called spatial Legendre moment kernel (SLM-kernel) proposed

in Chapter 5.

The proposed SLM-kernel is proven to be positive de�nite in Chapter 5 and, thus possesses

the so-called reproducing property to construct a reproducing kernel Hilbert space (RKHS).

A feature mapping is also de�ned to map the replicates of the data events into the new kernel

space. The high-order spatial statistics of the available data are encapsulated in the empirical

kernel statistics. In the same manner, the probability distributions of the related random

�eld model are embedded into the same kernel space in the form of expected kernel statistics.

A new statistical learning framework is proposed for high-order stochastic simulation through

a kernelized learning algorithm.



37

In Chapter 6, the concept of aggregated kernel statistics is proposed to utilize the high-order

spatial statistics from the ensemble set of the replicates retrieved from the sample data with

di�erent spatial con�gurations. The statistical learning framework proposed in Chapter 6 is

further extended to incorporate the aggregated kernel statistics. This extension allows sparse

data learning from the relatively sparse sample data and, thus leads to a new training-image

free, high-order simulation method.

In Chapter 7, the statistical learning framework is adopted to accommodate high-order spatial

information at multiple scales. Speci�cally, a learning algorithm is proposed to incorporate

the high-order spatial statistics at coarse scales from the sample data, while complement the

high-order spatial statistics at �ner scales with the informatin from the training image.

A general discussion on top of the main developments in this thesis is presented in Chapter

8. Chapter 9 concludes the major contributions of the thesis research. Limitations regarding

the thesis research is discussed and potential future research is presented.
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CHAPTER 4 ARTICLE 1: A NEW COMPUTATIONAL MODEL OF

HIGH-ORDER STOCHASTIC SIMULATION BASED ON SPATIAL

LEGENDRE MOMENTS

Abstract: Multiple-point simulations have been introduced over the past decade to over-

come the limitations of second-order stochastic simulations in dealing with geologic complex-

ity, curvilinear patterns and non-Gaussianity. However, a limitation is that they sometimes

fail to generate results that comply with the statistics of the available data while maintain-

ing the consistency of high-order spatial statistics. As an alternative, high-order stochastic

simulations based on spatial cumulants or spatial moments have been proposed; however,

they are also computationally demanding, which limits their applicability. The present work

derives a new computational model to numerically approximate the conditional probability

density function (cpdf) as a multivariate Legendre polynomial series based on the concept of

spatial Legendre moments. The advantage of this method is that no explicit computations

of moments (or cumulants) are needed in the model. The approximation of thecpdf is sim-

pli�ed to the computation of a uni�ed empirical function. Moreover, the new computational

model computes thecpdfs within a local neighborhood without storing the high-order spatial

statistics through a prede�ned template. With this computational model, the algorithm for

the estimation of thecpdf is developed in such a way that the conditional cumulative distri-

bution function (ccdf) can be computed conveniently through another recursive algorithm.

In addition to the signi�cant reduction of computational cost, the new algorithm maintains

higher numerical precision compared to the original version of the high-order simulation. A

new method is also proposed to deal with the replicates in the simulation algorithm, reduc-

ing the impacts of con�icting statistics between the sample data and the training image. A

brief description of implementation is provided, and for comparison and veri�cation, a set of

case studies are conducted and compared with the results of the well-established multi-point

simulation algorithm, �ltersim . This comparison demonstrates that the proposed high-order

simulation algorithm can generate spatially complex geological patterns while also reproduc-

ing the high-order spatial statistics from the sample data.

Keywords: High-order stochastic simulation, multi-point statistics, spatial moments,

Legendre polynomials

Published : Yao L, Dimitrakopoulos R, Gamache M (2018) A new computational model of high-order
stochastic simulation based on spatial Legendre moments. Math Geosci 50 (8):929-960
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4.1 Introduction

For the past several decades, stochastic simulations have been used to quantify spatial uncer-

tainty in earth science applications. Traditionally, stochastic models are built on the basis of

the Gaussian distribution and two-point statistics, where covariance or variograms are used to

capture the spatial correlations [22, 23, 26, 40]. The limitations of the existing two-point sim-

ulation methods have been reported in various publications [11�14, 26, 84], which are mostly

related to the poor reproduction of spatial distributions while dealing with the complex spatial

patterns, spatial connectivity of extreme values and non-Gaussianity. To re�ect the complex

geological patterns, multi-point statistics have to be introduced instead of conventional two-

point statistics. Guardiano and Srivastava [12] propose a multiple-point simulation (mps)

framework and the concept of the training image (TI). The primary di�erence betweenmps

and two-point simulations is that the conditional cumulative distribution functions (ccdf) are

built on empirical estimations of conditional probabilities with multiple-point con�gurations,

which is equivalent to solving a normal equation according to the Bayes' rule. Strebelle [57]

formalizes the method and develops the �rst computationally-e�cient implementation. For

over a decade, research has been focused on various issues aroundmps algorithms, such as

computational e�ciency and various patch-based extensions [60, 62, 63, 66, 67, 70, 75, 119�

124]. In general, thesemps methods are TI-based, and their statistics are estimated from

distributions of replicates of data events in the training image. Their main drawbacks are:

(1) the high-order statistics are partially and indirectly considered; (2) the methods are not

driven by a consistent mathematical framework; and, (3) since they are TI-driven, they may

not generate results that comply with the statistics of actual available data. The latter

shortcoming becomes distinctly clear in mining applications, where dense data sets are used

[125, 126].

As an alternative, a high-order simulation framework with mathematical consistency is pro-

posed with the introduction of a new concept of spatial cumulants [17]. The so-called high-

order simulation algorithm (hosim) and its implementation are developed by [19, 91]. In

this algorithm, the conditional probability density function (cpdf) is approximated by a mul-

tivariate expansion with coe�cients expressed in terms of spatial cumulants. Thehosim

algorithm is extended mostly recently to deal with the joint simulation of multiple variables

as well as the simulation of categorical data [98, 127]; other extensions are approximating

the cpdf with di�erent types of orthogonal polynomial bases, such as expansion series with

Laguerre polynomials and Legendre-Like spline polynomials [95, 128]. However, the related

calculations are computationally demanding, since the number of spatial cumulants involved

in the series increases exponentially either as the order of cumulants or the quantity of con-
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ditioning data increases. In [19], some terms of the expansion series have to be discarded to

obtain computational feasibility, which compromises the accuracy of the approximatedcpdf.

In addition, the computational cost limits the approach for larger-scale applications.

To take full advantage of the high-order simulation, that is, its data-driven aspect and no

presumption of data distribution, and address the computational di�culties, a new stochas-

tic simulation algorithm based on high-order spatial Legendre moments is presented herein.

Rather than just a mathematical equivalency of the previous model of the high-order simu-

lation, the approximation of cpdf by Legendre polynomial series is reformulated under the

framework of the sequential simulation, leading to a much more concise form of the compu-

tational model. In this new method, all explicit calculations of moments are encapsulated in

a uni�ed function to derive the cpdf, cutting down the previous complex computations into

a few iterations of simple operations with polynomial time. Moreover, there is no prede�ned

template con�guration in the new algorithm, as required for the normalmps methods and

the previoushosim model. The spatial con�guration of the template will instead depend on

the local neighborhood of the node to be simulated; note that there is no need to store the

intermediate results in a tree as in most of themps methods including the previoushosim.

The variable template also has the advantage of simultaneously capturing the spatial patterns

either in local scale or global scale.

The remainder of the paper continues with Section 4.2, which describes the stochastic model

based on the concepts of high-order spatial Legendre moments. Section 4.3 develops the com-

putational model as a statistical function. Section 4.4 describes the new proposed high-order

simulation algorithm and analyzes the computational complexity. Section 4.5 explores the

implementation of the new high-order simulation algorithm. Section 4.6 shows the examples

to assess the new method and compare it with�ltersim . Finally, conclusions and future

research are presented in Section 4.7.

4.2 Stochastic Model of High-Order Simulation with Spatial Legendre Moments

4.2.1 Sequential simulation

In this paper, the stochastic model is discussed speci�cally under the sequential simulation

framework [23�25]. Sequential simulation aims to reproduce spatial properties sequentially by

decomposing the multivariate conditional distributions into a set of univariate distributions.

Considering a stationary and ergodic random �eldZ (u ), let Z (u 1) ; : : : ; Z (u N ) be a set of

random variables with locations atu 1; : : : ; u N , respectively. Then, theN random variables

Z (u 1) ; : : : ; Z (u N ) constitute a joint multivariate distribution. In terms of the stochastic
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simulation, it is supposed that realizations are to be generated fromZ (u 1) ; : : : ; Z (u N ), and

the available data set are� 0 = f �
�
u

0

1

�
; : : : ; �

�
u

0

n

�
g, where�

�
u

0

i

�
is the sample data at the

location u
0

i for i = 1; : : : ; n, and n is the number of sample data in total. For simpli�cation,

Z (u 1) ; : : : ; Z (u N ) are alternatively written as Z1; : : : ; ZN , and a similar simpli�cation of

notation applies in the context of a random �eld. Following the above notation, the stochas-

tic simulation of the random �eld is based on the sampling from theN -variate probability

distribution posterior to the data set � 0, which can be characterized by a conditional cumu-

lative distribution function ( ccdf) as FZ (z1; : : : ; zN j� 0) or by a probability density function

(cpdf) as f Z (z1; : : : ; zN j� 0). The joint cpdf f Z (z1; : : : ; zN j� 0) can be decomposed into the

product of a series of univariatecpdfs (Rosenblatt 1952; Johnson 1987) as

f Z (z1; : : : ; zN j� 0) = f Z1 (z1j� 0) � � � f ZN (zN j � N � 1) ; (4.1)

where � i (i = 1; : : : ; N � 1) are a series of sets and� i =� i � 1 [ f � (u i )g ; i = 1; : : : ; N , where

� (u i ) is the value drawn from the conditional probability distribution with a density function

described asf Z i (zi j� 0).

The basic idea of sequential simulation is to sequentially draw random values from the de-

composed univariatecpdfs through a random path that visits all the nodes to be simulated.

Irrespective of the node's location corresponding to the sequence number, there is no di�er-

ence in the sampling procedures. Without loss of generality, thecpdf in every single sampling

procedure can be symbolized uniformly asf Z0 (z0j�) , where Z0 means the current simulat-

ing node and� means the set of conditioning data aroundZ0's location u 0. Considering

the computational intensity and the statistical relevancy, the conditioning data are usually

con�ned to a neighborhood closest to the simulation node instead of taking account of all

available data on the whole domain of the random �eld. For more details on this screen-e�ect

approximation, the reader is referred to Dimitrakopoulos and Luo [28].

An algorithmic description of sequential simulation can be summarized as the following steps:

1. Draw a random path to visit all the N nodes to be simulated.

2. Starting from i = 1 and for each nodeZ(u i ), derive the conditional probability cumu-

lative distribution FZ i (zi j� i � 1) or the density function f Z i (zi j� i � 1).

3. Draw a random value� (u i ) from the conditional probability distribution in Step 2 and

update the conditioning data by adding the node value� (u i ) in to the current data set

� i .

4. Repeat from Step 2 until all the nodes are visited.
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4.2.2 High-order spatial Legendre moments

In probability theory, moments are de�ned as expectations of integer power functions of a

random variable. Given a random variableZ in probability space(
 ; F; P), suppose that the

density of probability measureP is a continuous functionf Z (z). The moment of orderw is

de�ned as

MomZ (w) = E [Z w ] =
Z



[Z (! )]wdP (! ) =

Z

R
zw f Z (z) dz: (4.2)

The moments of random vectorZ = [ Z0; : : : ; ZN ] with a multivariate density f Z (z0; : : : ; zN )

de�ned similarly as

MomZ (w0; � � � ; wN ) = E [zw0
0 � � � zwN

N ] =
Z

RN
zw0

0 � � � zwN
N f Z (z0; : : : ; zN ) dz0 � � � dzN ; (4.3)

wherewi (i= 0;� � � ;N ) are the orders of moments for thei -th element of vectorZ. The spatial

moments of a discrete random �eldZ= [Z (u 0) ; : : : ; Z (u N )] are functions of spatial location

variablesu 0; : : : ; u N . Assuming the random �eldZ (u ) is stationary and ergodic, the spatial

moments ofZ (u ) can be expressed as functions of distance vectors, and thus they are inde-

pendent of the locations. These distance vectors, which keep the spatial con�guration of a

center node and nodes within its neighborhood, can be expressed using a spatial templateT

(Figure 4.1). The terminologies of the spatial templateT and data events [18, 57] are the

following:

(i) Spatial template T : geometry de�ned by N distance vectors(h 1; : : : ; hN ) from the

center nodeu 0, T = f u 0; u 0 + h 1; : : : ; u 0 + hN g.

(ii) Data events: outcomes of the random �eld in the spatial templateT . Speci�cally, the

data events are conditioning data set� in the present work.

The spatial moments of a random �eldZ in a template T can be expressed element-wise as

MomT
Z (w0; � � � ; wN ) = E [ h 1; : : : ; hN ; Z w0

0 � � � Z wN
N ] ; (4.4)

where MomT
Z is the moment function ofZ in the spatial template T , (h 1; : : : ; hN ) are the

distance vectors to represent the geometry ofT and wi are the orders of the moments with

each random variableZ (u i ) (i = 1; : : : ; N ).

The Legendre polynomials are used here to further de�ne the concept of spatial Legendre

moments. Legendre polynomials are one kind of special math functions de�ned on the interval



43

(a)

(b)

Figure 4.1 (a) A size 40� 40 grid to be simulated with a 9� 5 template overlaid on the current
visiting node; (b) Spatial templateT and a certain data event inT , the center square is the
node to be simulated; the black squares are the conditioning data

[� 1; 1], which can be expressed using Rodrigues' formula [94]

Pm (z) =
1

2mm!
dm

dzm

h�
z2 � 1

� m i
; (4.5)

wherePm (z) is the mth-degree Legendre polynomial. The in�nite sequence of polynomials

forms a complete orthogonal basis set on the domainD = [ � 1; 1]. The orthogonal property

of the Legendre polynomials can be expressed as

Z

D
Pm (z) Pn (z) dz =

8
<

:
0 m 6= n

2
2m+1 m = n

(4.6)

and the norm of the Legendre polynomialPm (z) is

k Pm k=

s
2

2m + 1
: (4.7)

With a simple substitution of polynomials in moment function (4.4) into Legendre polyno-
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mials, the spatial Legendre moments are de�ned as

LT
w0w1 ���wN

=
NY

i =0

�

wi +
1
2

�

� E [h1; : : : ; hN ; Pw0 (z0) Pw1 (z1) � � � PwN (zN )]; (4.8)

where LT
w0w1 ���wN

are Legendre moments de�ned on the spatial templateT ; the extra co-

e�cient
�
wi + 1

2

�
on the right-hand side of the equation is intentionally introduced as a

normalization term for convenience of the later computation (see Appendix for the details).

4.2.3 Multivariate expansion series of joint probability density function

A piecewise continuous functionf (z) de�ned on the interval [� 1; 1] can be written as a series

of Legendre polynomials

f (z) =
1X

m=0

LmPm (z): (4.9)

Likewise, the expansion of a multivariate functionf (z0; z1; : : : ; zN ) can de�ned on anN + 1-

dimensional domain in the same way. Speci�cally, suppose that the multivariate function is a

density function related to the joint distribution of random variables on a spatial templateT .

The density function can be expanded into Legendre polynomial series in terms of Legendre

spatial moments and Legendre polynomials as (see Appendix for the details)

f (z0; z1; : : : ; zN ) =
1X

w0=0

1X

w1=0

� � �
1X

wN =0

LT
w0w1 ���wN

Pw0 (z0) Pw1 (z1) � � � PwN (zN ): (4.10)

In practice, the above in�nite series, Equation (4.10), are truncated at a certain order W,

thus leading to the approximated density function

f (z0; z1; : : : ; zN ) � f W (z0; z1; : : : ; zN ) =
WX

w0=0

WX

w1=0

� � �
WX

wN =0

LT
w0w1 ���wN

NY

i =0

Pwi (zi ): (4.11)

From de�nition (4.8), the spatial Legendre moments can be explicitly derived as

LT
w0w1 ���wN

=
Z

D

NY

i =0

" �

wi +
1
2

�

P
wi

(zi )

#

f (z0; z1; : : : ; zN ) dz0dz1 � � � dzN : (4.12)

Experimentally, if there areM replicates of data events associated with templateT found in
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the training image, the spatial Legendre moments can be calculated as

~LT
w0w1 ���wN

=
1

M

MX

t=1

NY

i =0

�

wi +
1
2

�

P
wi

(� t;i ); (4.13)

where � t;i are the data values of replicates in the templateT , t is the sequence number of

replicates andi is sequence number of random variables.

4.3 Computational Model

Combining the Equations (4.10) to (4.13), the empirical jointpdf can be derived as

~f (z0; z1; : : : ; zN ) � ~f W (z0; z1; : : : ; zN ) =
1

M

MX

t=1

WX

w0=0

WX

w1=0

� � �
NY

i =0

��

wi +
1
2

�

Pwi (� t;i ) Pwi (zi )
�

=
1

M

MX

t=1

NY

i =0

" WX

w=0

�

w +
1
2

�

Pw (� t;i ) Pw (zi )

# :

(4.14)

Equation (4.14) gives a uni�ed computational model of empirical estimation of the density

function on the spatial templateT , noticing that, in the right-hand side of the equation, the

subscript i of wi is dropped because of the symmetry of computation.

Now let's consider thecpdf f Z0 (z0 j �) of a single sampling step in sequential simulation

(ref. Section 4.2.1). The joint pdf can be marginalized from the Equation (4.14) to get

the marginal pdf of conditioning random variables. To specify the di�erence between the

empirical models and theoretical models in Equations (4.10)�(4.11),~f and ~f W speci�cally

denote the experimental function corresponding to probability density functionf and its

Legendre polynomial series truncated at orderW, respectively.

For convenience, denote functionsX t (zi ) as

X t (zi ) =
WX

w=0

�

w +
1
2

�

Pw (� t;i ) Pw (zi ): (4.15)

Then, Equation (14) can be rewritten as

~f W (z0; z1; : : : ; zN ) =
1

M

MX

t=1

X t (z0)
NY

i =1

X t (zi ): (4.16)

The result of integration ofX t (z) over [� 1; 1] can be derived from the orthogonal properties
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of Legendre polynomials as Z 1

� 1
X t (zi )dzi = 1: (4.17)

In fact, Equations (4.16) and (4.17) ensures that the integral of the approximated probability

density function to be 1, a necessary property of probability density.

Followed by the marginalization and Equation (4.17), the empirical density of marginal dis-

tribution on the random variablesz1; : : : ; zN is

~f W (z1; : : : ; zN ) =
1

M

MX

t=1

NY

i =1

X t (zi ): (4.18)

From Equations (4.16) and (4.18) and considering the relation between the conditional prob-

ability density function and the joint probability density function, one can derive

f (z0 j �) � ~f W (z0 j �) =
P M

t=1 X t (z0) �
Q N

i =1 X t (� i )
P M

t=1
Q N

i =1 X t (� i )
; (4.19)

which provides a concise computational model of thecpdf.

The above development provides a theoretical equivalency of the approximation ofcpdf by

truncated Legendre series, which was proposed in Mustapha and Dimitrakopoulos [18, 19].

However, the new reformulated model in the current paper leads to a di�erent stochastic

simulation method in view of the related computational aspects. The advantage of the

new model represented by Equation (4.19) is that no explicit computations of moments or

cumulants are needed. In addition, the new model is computationally more accurate than

the hosim program in Mustapha and Dimitrakopoulos [19], in which some terms have to be

dropped from the full expansion of Legendre series in the form of spatial cumulants to gain

computational e�ciency.

4.4 Algorithm Description and Computational Analysis

4.4.1 Algorithm for computing cpdf

From the Equations (4.17) to (4.19), it can be easily shown that

Z 1

� 1

~f W (z0 j �) dz0 = 1: (4.20)

As X t (� t;i ) is a constant from the Equation (4.15), and from Equations (4.15) and (4.19),

it is obvious that ~f W (z0 j �) can be expressed as the summation of a series of Legendre
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polynomials, that is

~f W (z0 j �) =
WX

w=0

cwPw (z0); (4.21)

wherecw(w = 1; : : : ; W) are constants which can be conveniently computed as shown in the

following Algorithm 4.1.

By the property of Legendre polynomial thatP0 (z) = 1 ; 8z 2 [� 1; 1], combined with Equa-

tions (4.15) and (4.21), the computation of coe�cientscw(w = 1; : : : ; W) can be divided into

the computation of functions X t (zi ) over the nodes of each replicate. Especially, the �rst

term of cw is always �xed asc0 = 1
2 .

Algorithm 4.1 Calculation of a cpdf

Data:
(1) data event (conditioning data): �= f � 1; : : : ; � N g;
(2) replicates of data events: � t;i ; t = 1 ; : : : ; M ; i = 1 ; : : : ; N ;
(3) maximum order: W
Result: conditional probability density function
// Initialize the coe�cients
for w = 0 to W do

c[w] = 0;
end for
for t = 1 to M do

//Computation of the function X t (z0)
for w = 0 to W do

X [w] =
�
w + 1

2

�
�Pw (� t; 0);

end for
//According to Equation (4.19), the product

Q N
i =1 X t (� i ) needs to be computed.

//The product is initialized as 1 before the calculation of X t (� i )
X _ Prod = 1;
// Update the product

Q N
i =1 X t (� i ) by computing the function X t (� i )

for i = 1 to N do
X t = 0;
for w = 0 to W do

X t = X t +
�
w + 1

2

�
� Pw (� t;i ) � Pw (� i )

end for
X _ Prod = X _ Prod � X t ;

end for
for w = 0 to W do

X [w] = X [w] � X _ Prod;
c[w] + = X [w] ;

end for
end for
//Note that the denominator in Equation (4.19)

P M
t =1

Q N
i =1 X t (� i ) is actually equal to 2 � c[0]

denom=2 �c[0];
for w = 0 to W do

c[w] = c[w] =denom;
end for
END OF ALGORITHM
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4.4.2 Recursive algorithm for computing a ccdf

From the results of Algorithm 4.1, the conditional probability density function can be ex-

pressed as

f (z0 j �) =
1
2

+
WX

w=1

cwPw (z0): (4.22)

The coe�cient c0 = 1
2 is taken out from the summation in Equation (4.22) so that the

Bonnet's recursion relation of Legendre polynomials can be smoothly applied in the followed

derivation.

According to the Bonnet's recursion relation of Legendre polynomials

(2w + 1) Pw (z) =
d
dz

[Pw+1 (z) � Pw� 1 (z)] ; (4.23)

the following equation can be derived

(2w + 1)
Z z0

� 1
Pw (z) dz = Pw+1 (z0) � Pw� 1 (z0): (4.24)

Therefore, the conditional cumulative distribution function (ccdf), F (z0 j �) , can be deduced

as
F (z0 j �) =

Z z0

� 1
f (z0 j �) dz

=
1
2

+
1
2

z0+
WX

w=1

cw

2w + 1
[Pw+1 (z0) � Pw� 1 (z0)]

=
W +1X

w=0

dwPw (z0)

: (4.25)

As can be seen from Equation (4.25), theccdf is also expressed as the summation of the

univariate Legendre polynomials, with the order of the Legendre polynomials increasing by

one because of the integration. Furthermore, the new coe�cientsdw(w = 0; : : : ; W; W + 1)

now can be computed through Equation (4.25) in an iterative way, as shown in Algorithm

4.2.

4.4.3 Computational complexity

The most computationally demanding part of the high-order simulation algorithm is to cal-

culate the Legendre series coe�cients, which is the basis for estimating the conditional prob-

ability density functions. Considering that the conditional probability density functions are

approximated by Legendre series truncated to a certain orderW, as Equation (4.11) shows,
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Algorithm 4.2 Integration of a cpdf to get a ccdf

Data:
(1) maximum order of cpdf: W ;
(2) coe�cients array of cpdf: c[0; 1; : : : ; W ].
Result : coe�cients array of cumulative distribution function: d[0; 1; : : : ; W + 1] .
// Initialize the coe�cients
for w = 0 to W + 1 do

d [w] = 0;
end for
// Update the coe�cients according to Equation (4.25)
for w = 1 to W do

d [w + 1] = d [w + 1] + c[w ]
2w+1 ;

d [w � 1] = d [w � 1] � c[w ]
2w+1 ;

end for
d [0] = d [0] + 1

2 ;
d [1] = d [1] + 1

2 ;
END OF ALGORITHM

the number of the di�erent coe�cients is (W + 1) N +1 , whereN is the number of data points.

Even the Legendre series are approximated by truncated series, where the sum of orders of

di�erent variables is not greater than W, which is the form adopted in Mustapha and Dim-

itrakopoulos [19]. The number of the di�erent coe�cients is still as big as
P W

w=0
N + w

w for

a single data event. Although this computational complexity can be reduced by discarding

some terms which are regarded as negligible, it should be noted that this simpli�cation may

lead to a loss of accuracy.

From Equations (4.15) and (4.19), it can be seen that all of the di�erent coe�cients introduced

by the explicit expansion of Legendre series are reduced to a calculation of the function
Q N

i =1 X t (zi ). There are onlyNW computations of Legendre polynomials and a few products

and additions included in the calculation of the function
Q N

i =1 X t (� t;i ) for each data event

encountered in the training image. It should be noted that the computational time still

depends on the number of the replicates encountered in the training image, as well as the

maximal order of Legendre polynomials and the number of conditioning in the neighborhood.

However, the computational cost regarding the above-mentioned parameters is signi�cantly

reduced, as opposed to computing the large number of coe�cients in the previous version of

high-order simulation.

4.5 Implementation

The implementation is relatively straightforward in terms of the above algorithms estimating

the cpdf and ccdf according to the framework of sequential simulation. However, a method
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is proposed in this section to deal with the replicates, aiming to reduce the con�icts of

spatial statistics between the sample data and the training image. The main idea of the

method is to deliberately select replicates which are similar to the conditioning data within

a certain range according to some measure of similarity. The reason is that the conditional

probability distribution is a one-dimensional intercept from the multivariate joint probability

distribution, and therefore the replicates that are close to the conditioning data are more

relevant to estimate this one-dimensional local probability distribution.

For every node to be simulated in sequential simulation, a local neighborhood is de�ned to

search for conditional data from both the sample data and the simulation grid. The locations

of these conditional data together with the center node to be simulated constitute a geometry

template. Given a training image, replicates of the geometry template can always be found

from the training image as long as the searching neighborhood is inside of the training

image's extent. In the present work, the measure of similarity between the replicates and

the data event is set to be the average square Euclidean distance between the replicates

and the conditioning data, and the threshold is set as the variance of the sample data. The

replicate will be selected in the estimation ofcpdf if the distance between the replicate and the

conditioning data is less than the variance of the sample data. In addition, when there are few

replicates that can be found from the training image due to the con�icts between the sample

and the training image, some tolerances are given to the shape of the geometry template so

that similar replicates can be found. Figure 4.2 shows a general way to search the candidate

points associated with a certain vector in a spatial template. The parameter� is the angle

tolerance of the candidate point's deviation from the original vector in the template, and� h

and bare the tolerances in the lag and bandwidth, respectively. Possible candidate points are

taken from the shadowed area, and the point that has the closest property to the ending node

of the original vector in the template is selected. To maintain the consistency of the geometry

con�guration, an inner part of the template is speci�ed such that the relative locations to

the center node inside the inner part remains unchanged. In other words, only the nodes

further away from the center node are allowed to have the ability to change locations. This

strategy gives more �exibility to manipulate the geometry con�guration of the replicates.

Figure 4.2 Finding approximate replicates from the training image with the tolerances of the
original geometry template
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The main procedure of the high-order simulation approach can be summarized in the following

steps:

1. Read the sample data and training image into memory. In order to apply the multi-

variate expansion of Legendre polynomials, the property values of the samples or train-

ing image are scaled to the interval[� 1; 1] through a linear transformation.

2. Specify dimensions of a certain neighborhood for searching the conditional data and

other parameters such as the minimum or maximum number of the conditional data.

The geometry of the local template totally depends on the locations of the conditional

data. In the present work, a rectangular shape neighborhood was used and searching

policy was applied to �nd the closest points to the center. Nevertheless, the shape of

the neighborhood and the searching policy can be manipulated to further control the

spatial con�guration of the template.

3. Set the lag tolerance, angle tolerance and bandwidth tolerance to enable searching

approximate replicates from the training image (see Figure 4.2).

4. Generate a random sequence on the indices of the simulation grid to create a random

visiting path.

5. According to the prede�ned visiting path, sequentially pick one node at a time for the

simulation. If the property value is already known (copied from the hard data), then

continue to choose another single node until the property value is not assigned. The

conditioning data are searched inside the neighborhood centered on the chosen node

by the previously speci�ed searching policy from both the hard data and the simulated

nodes.

6. A local spatial template is determined by the data and the center node for later sim-

ulation. This spatial template is then used to �nd similar replicates from the training

image according to the parameters set in Steps 2 and 3. If the number of approximated

replicates is not adequate for statistical inference, then drop the furthest node to the

center node and repeat until the minimum number of conditioning data is reached.

7. The local ccdf is estimated from the replicates using the algorithms elaborated in

Section 4.4. A random value is drawn from the localccdf using the Monte Carlo

method and set as the property value of the node to be simulated.

8. Repeat from Step 5 until all the nodes in the random path are visited.
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4.6 Examples and Comparisons

The data used in this paper are extracted from the Stanford V reservoir data set [129].

A horizontal section serving as the exhaustive image is taken from the Stanford V reservoir

model of porosity in a square grid with100� 100pixels (cells of size 100 meters). As seen from

the exhausting image in Figure 4.3, porosity values are distributed as several channels that

can be distinguished from the background. For the examples and comparisons presented in

the next sections, 200 data points are randomly sampled from the selected exhaustive image

to serve as the sample data set and are displayed in Figure 4.4. Applying the proposed high-

order approach, the selected data is used to simulate the exhaustive image in two di�erent

ways, so as to show the sensitivity of the approach to the chosen TI. Accordingly, in Example

1, the exhaustive data is used as the TI; then, in Example 2, the TI is selected from a

diferrent section of the Stanford V reservoir data set than the exhaustive image. The second

TI is shown in Figure 4.5 and has di�erent spatial patterns than those in the exhaustive

image. In addition, a comparison of the proposed algorithm to the well-establishedmps

method �ltersim [66] is presented. In each of the realizations using the high-order simulation

algorithm, a window of size15� 20 in terms of cell size is used as the search template. The

tolerance angle for searching is set to 15 degrees, the lag tolerance to 2 and the bandwidth

to 1. These parameters are chosen from the calculation of experimental variograms [26].

The minimum number of conditioning data is 6 and the maximum number is 12, while 5

previously simulated values are used. The maximum order of Legendre polynomials is set

to 10. For the realizations generated with�ltersim , the searching template is15� 21 with

an inner patch of size7 � 7 and a multiple grid level of 3, while replicates are classi�ed into

di�erent categories according to their �lter scores. For further details on�ltersim , the reader

is referred to Zhang et al. [66].

4.6.1 Example 1

This example generates simulations using the 200 samples shown in Figure 4.4 and the ex-

haustive image in Figure 4.3 as the TI. In this case, there are no con�icts between the available

data and the training image. Figure 4.6 shows one realization from the high-order simula-

tion and another from �ltersim , respectively. From visual comparison with the exhaustive

image, the realization from the high-order simulation reproduces better the channels of the

original image. To demonstrate the reproduction of the distribution and second-order spa-

tial statistics of simulation results, 10 di�erent realizations for each method are generated.

The histograms of the realizations are displayed in the Figure 4.7 and related variograms

are displayed in Figure 4.8. Both simulation methods reproduce well the bimodal shape
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Figure 4.3 A horizontal section from reser-
voir's porosity values with sinuous connec-
tivity

Figure 4.4 Data points sampled from the
exhaustive image (containing 200 points,
or 2% of the total data)

Figure 4.5 Training image that is di�erent from the exhaustive data

in the histograms; however, in general, high-order simulations show better reproduction in

the proportions of porosity values. High-order simulation methods also reproduce well the

variograms in the X-direction or Y-direction, while the variograms from the�ltersim simula-

tions demonstrate larger �uctuations and have notable deviations from the variogram of the

exhaustive data in the Y-direction. For a comparison of the high-order spatial statistics of

simulation results to the original data in the two di�erent settings, the third-order cumulant

maps are generated by the HOSC program [91]. This program uses a template with two

directions in X-axis and Y-axis, and the number of lags are 70 with lag size as 1, which are
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displayed in Figure 4.9. In comparison to the third-order cumulant map of the exhaustive

image, the high-order simulation performs better in the reproduction of the high-order statis-

tics, although both simulation methods have reasonable similarity in terms of the third-order

cumulant map, as there are no con�icts between the sample data and the training image in

this case.

(a) (b)

Figure 4.6 Simulations with 200 sample data using the exhaustive data as the training image.
one realization from (a) high-order simulation and (b)�ltersim

(a) (b)

Figure 4.7 Reproduction of histograms of 10 realizations with 200 sample data using the
exhaustive data as the training image: (a) and (b) correspond to 10 realizations from the
high-order simulation and�ltersim , respectively
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(a) (b)

(c) (d)

Figure 4.8 Reproduction of the variograms of 10 realizations with 200 sample data using
the exhaustive data as the training image from high-order simulation and�ltersim , respec-
tively. (a) Reproduction of variograms of high-order simulations in the X direction; (b)
Reproduction of variograms of high-order simulations in the Y-direction; (c) Reproduction
of variograms of�ltersim simulations in the X-direction; (d) Reproduction of variograms of
�ltersim simulations in the Y-direction
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(a) (b)

(c)

Figure 4.9 Comparing third-order cumulant maps of realizations with 200 sample data using
the exhaustive data as the TI from the high-order simulation and�ltersim , respectively. a
Third-order cumulant map of the exhaustive image. b Third-order cumulant map of one
realization from the high-order simulation. c Third-order cumulant map of one realization
from �ltersim

4.6.2 Example 2

In this setting, the simulations are conducted with the same conditioning data; however, the

TI is di�erent from the exhaustive data. Figure 4.10 shows one realization from the high-order

simulation and one for�ltersim . Clearly, there are con�icts between the spatial statistics of

the sample data and the TI, which are key factors a�ecting the results of the simulations.

As expected, the reproduction of the spatial patterns is worse when compared to the results

from the simulations in the previous example. Nevertheless, the realization from high-order

simulation method still maintains the spatial structures of the original exhaustive data. As

shown in Figure 4.11, the 10 realizations of the high-order simulation match the histogram of

the exhaustive image very well. By contrast, the 10 realizations of�ltersim mismatched the



57

(a) (b)

Figure 4.10 Simulations with 200 sample data using a separate training image di�erent from
the exhaustive data. one realization from (a) high-order simulation and (b)�ltersim

exhaustive image in some part of the proportions. From the comparison shown in Figure 4.12,

the high-order simulation performs better than�ltersim in reproducing the variograms of the

exhaustive image as well, although there is a minor deviation in the Y-direction. In order to

demonstrate the impact of the con�icts between the sample data and training image during

the simulations, Figure 4.13 (a)�(e) shows the third-order cumulant maps corresponding to

the exhaustive image, the sample data, the training image and one realization of high-order

simulation and �ltersim . The parameter settings to generate the cumulant maps for the grid

data are the same as used in Figure 4.9, whereas the lag size is set to 5 grid cells, with the lag

tolerance being set to 1 grid cell and the angle tolerance being set to 15 degrees for generating

the cumulant map of the sample data. As the sample data is too sparse to compute the

cumulant map at the same scale as the exhaustive image, some smoothing has been applied

to the cumulant map of the sample data for the purpose of visualization. The third-order

cumulant map of the realization from the high-order simulation maintains the main structures

of the exhaustive data. On the other hand, the third-order cumulant map of the realization

from �tlersim resembles the cumulant map of the TI, which di�ers from the cumulant map of

the exhaustive image. This implies that the high-order simulation is primarily data-driven,

whereas the�ltersim method is TI-driven. This result can be explained by the fact that the

high-order simulation seeks to �nd replicates that comply to the statistical con�guration of

the conditioning data from the training image, and the values of nodes to be simulated are

drawn from the related local probability distribution. By contrast, the �ltersim method is

TI-driven, which means that the values of nodes to be simulated comes directly from the paste

of certain replicates from the training image, which is patch-based instead of node-by-node
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as in the high-order simulation. In particular, the impact of the conditioning data is more

important for capturing the large-scale spatial structures in the early stage of the high-order

simulation. For instance, Figure 4.13 (b) shows the cumulant map of the sample data, and

the resolution of the map is much coarser than the exhaustive data. This map shows some

distortion when representing the third-order statistics of the exhaustive image due to the

sparsity of the data. However, the spatial structures of the limited sample data control the

spatial statistics of the results from the high-order simulation. In general, the results in this

case study show that the proposed high-order simulation algorithm can reasonably reproduce

the overall probability distribution, the second-order statistics and the higher-order statistical

features (such as spatial cumulants), as the statistical con�icts between the sample data and

the training image are not severe.

(a) (b)

Figure 4.11 Reproduction of histograms of 10 realizations with 200 sample data using the
training image di�erent from the exhaustive data: (a) and (b) correspond to 10 realizations
from high-order simulation and�ltersim , respectively

4.6.3 Parameter sensitivity testing

Most parameters in the current implementation of high-order stochastic simulation method

are experimental choices. Amongst all the parameters encountered in the current imple-

mentation, some follow common practices in the parameter selection for conventional geo-

statistical simulations, such as the size of the search window, the lag and angle tolerance.

Additionally, in the high-order simulation method presented here, the number of condition-

ing data corresponding to a certain template needs more consideration, as it determines the

dimension of the local probability distribution. In the current implementation, the number
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(a) (b)

(c) (d)

Figure 4.12 Variograms of 10 realizations with 200 sample data using the training image
di�erent from the exhaustive data from the high-order simulation and�ltersim , respectively

of the conditioning data is limited for two important reasons. First, the limited number

of conditioning data reduces the computational time needed to estimate thecpdf. Second,

the method resembles the so-called multiple grid strategy [57] applied in many multi-point

simulation methods in order to maintain both large and small-scale spatial structures. In

the early stage of the simulation process, the neighborhoods are more likely to capture large-
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scale patterns, since the known data are sparse. The neighborhoods gradually correspond

to �ner-scale patterns as the simulation continues and more known data are generated. A

similar search strategy has also been applied and discussed in [60]. The maximum order of

the polynomials is another parameter of importance in the high-order simulation, since it

a�ects the precision of the approximation ofcpdf by a truncated Legendre polynomial series.

Theoretically, the coe�cients in the Legendre polynomial series decay exponentially, and in

general much faster than in Taylor series [130, 131]. The numerical results in [130] show that

Legendre polynomial series with six non-zero coe�cients (order 10 and 11 in their examples)

are highly accurate approximations to the targets. The numerical testing to approximate

a probability distribution regarding the order of Legendre polynomial series has also been

investigated in [18] and led to similar results. However, it should be noted that the above

tests are conducted for the approximation of a determined function, whereas for the approx-

imation of the probability density function, there is also the impact from the limitation of

the number of replicates. Depending on di�erent data sets, Legendre polynomial series with

order from 6 to 20 should be a reasonable range to select.

For validation and sensitivity analysis, further tests are conducted speci�cally to demon-

strate the impacts of the number of conditioning data and the maximum order of Legendre

polynomial series. In order to restrict the e�ects of the con�icting statistics between the TI

and the sample data, the same data set from Example 1 is used to evaluate the sensitivity

of the related parameters. The experiments are taken for each individual parameter without

considering the possible dependencies between them. In all the experiments, the parameters

not being tested remain the same as in Example 1. Furthermore, the random seed used to

generate the visiting path is also �xed for all the simulations in the experiments, so that the

impact of the di�erent visiting path is excluded. Figures 4.14 and 4.15 depict the realizations

of the high-order simulation with di�erent neighborhood sizes and their corresponding third-

order cumulant maps. In addition, Figures 4.16 and 4.17 show the realizations of high-order

simulation with respect to the order of the Legendre polynomial series in order to approxi-

mate thecpdfs (as well as their corresponding third-order cumulant maps). From the results,

it can be seen that both the size of the neighborhood and the maximum order of the poly-

nomials have considerable impacts on the high-order simulation results. In particular, using

a small size of the neighborhood of 6 grid cells or a Legendre polynomial order less than 6

results in a poor reproduction of the spatial patterns as well as the cumulant maps. However,

when the size of the neighborhood increases to more than 12 or the order of polynomials is

greater than 10, the di�erences become trivial. Although the testing is for a speci�c data set,

and the size neighborhood should be larger in 3D space than 2D space, it can be expected

that a similar sensitivity analysis can be applied to choose the appropriate parameters on a
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case-by-case basis.

4.7 Conclusions

The main contributions of the paper are as follows. Firstly, starting from the high-order

simulation method based on Legendre polynomial series, a new computational model in the

form of a uni�ed empirical function is developed to approximate thecpdf. The computational

model leads to an estimation ofcpdf without calculating the high-order spatial cumulants

or moments term by term. As a consequence, it not only greatly reduces the computational

requirements but also provides a more accurate approximation ofcpdf through Legendre

polynomial series in comparison to the previous high-order simulation algorithm based on

Legendre cumulants. Secondly, two new algorithms to derivecpdf and ccdf based on the

above computational model are developed; they both use the properties of Legendre polyno-

mials to simplify the computation and avoid an explicit expansion of a multivariate Legendre

series. Lastly, the spatial template used in the current high-order simulation method is dy-

namically changing with the computation of the probability distribution in real time without

storing data events. In addition, a �exible strategy to search replicates from the training

image is proposed and implemented to deal with the con�icts between the statistics of the

sample data and the training image.

Tests show the capacity of the proposed algorithm to reproduce complex geological patterns,

and, in addition, that both the overall distribution and the high-order spatial statistics of the

data are reproduced by the high-order simulations. Comparing the results of the high-order

simulation in di�erent cases with those of�ltersim , the high-order simulation outperforms in

the reproduction of high-order spatial statistics. This result becomes more notable in cases

where there are con�icts in the spatial statistics between the sample data and the training

image. This demonstrates that the high-order simulation has a more data-driven nature,

whereas the�ltersim is more TI-driven. Although the computational cost is signi�cantly

reduced (depending on the size of the training image, the number of neighborhood and the

maximum order of Legendre polynomial series), the simulation is still slower than the�ltersim

method. However, since the computations of thecpdf is carried out on each replicate with

the same type of calculation, the procedure could be parallelized so that the simulation can

be further accelerated through parallelization techniques, such as GPU programming. It also

should be noted that the approximation ofcpdfs by Legendre series or any kind of polynomial

series may generate problems of non-positive probability densities; further research is needed

to address the issue.
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(a) (b)

(c) (d)

(e)

Figure 4.13 Third-order cumulant maps of (a) exhaustive image, (b) sample data, (c) TI, (d)
high-order simulation and (e)�ltersim
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(a) (b)

(c) (d)

Figure 4.14 Comparing the realizations of high-order simulation by applying di�erent local
neighborhood size, with 200 sample data using the exhaustive data as the training image.
The maximum order of Legendre polynomials to approximate thecpdfs is 10 for all the
realizations. Realizations with neighborhood of (a) 6 conditioning data, (b) 12 conditioning
data, (c) 20 conditioning data, and (d) 30 conditioning data
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(a) (b)

(c) (d)

Figure 4.15 Comparing the third-order cumulant maps of the realizations of the high-order
simulation by applying di�erent local neighborhood size, with 200 sample data using the
exhaustive data as the training image. The maximum order of Legendre polynomials to
approximate the cpdfs is 10 for all the realizations. Third-order cumulant maps of one
realization with neighborhood of (a) 6 conditioning data, (b) 12 conditioning data, (c) 20
conditioning data, and (d) 30 conditioning data
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(a) (b)

(c) (d)

Figure 4.16 Comparing the realizations of the high-order simulation by applying the di�erent
order of truncated Legendre polynomial series, with 200 sample data using the exhaustive
data as the training image. The number of conditioning data in the local neighborhood is
12 for all the realizations. Realizations of the high-order simulation by approximatingcpdf
with Legendre polynomial series up to (a) order 6, (b) order 10, (c) order 20, and (d) order
30
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(a) (b)

(c) (d)

Figure 4.17 Comparing third-order cumulant maps of the realizations of the high-order sim-
ulation by applying the di�erent order of truncated Legendre polynomial series, with 200
sample data using the exhaustive data as the training image. The number of conditioning
data in the local neighborhood is 12 for all realizations. Third-order cumulant map of one
realization of the high-order simulation by approximatingcpdf with Legendre polynomial
series up to (a) order 6, (b) order 10, (c) order 20, and (d) order 30



67

CHAPTER 5 ARTICLE 2: HIGH-ORDER SEQUENTIAL SIMULATION

VIA STATISTICAL LEARNING IN REPRODUCING KERNEL HILBERT

SPACE

Abstract: The present work proposes a new high-order simulation framework based on

statistical learning. The training data consist of the sample data together with a training

image and the learning target is the underlying random �eld model of spatial attributes of

interest. The learning process attempts to �nd a model with expected high-order spatial

statistics that coincide with those observed in the available data, while the learning problem

is approached within the statistical learning framework in a reproducing kernel Hilbert space

(RKHS). More speci�cally, the required RKHS is constructed via a spatial Legendre moment

(SLM) reproducing kernel that systematically incorporates the high-order spatial statistics.

The target distributions of the random �eld are mapped into the SLM-RKHS to start the

learning process, where solutions of the random �eld model amount to solving a quadratic

programming problem. Case studies with a known data set in di�erent initial settings show

that sequential simulation under the new framework reproduces the high-order spatial statis-

tics of the available data and resolves the potential con�icts between the training image and

the sample data. This is due to the characteristics of the spatial Legendre moment kernel

and the generalization capability of the proposed statistical learning framework. A three-

dimensional case study at a gold deposit shows practical aspects of the proposed method in

real-life applications.

Keywords: Stochastic simulation, High-order spatial statistics, Statistical learning; Re-

producing kernel, Multipoint simulation

5.1 Introduction

Stochastic simulations are used to quantify the spatial uncertainty in earth science or engi-

neering applications. Since the early 1990s, the so-termed multipoint statistical simulation

(MPS) methods [12, 55, 57] were �rst proposed to overcome the limitation of the second-order

simulation approaches in reproducing the complex spatial patterns encountered in natural

phenomena. Instead of using a theoretical variogram/covariance model, as is the case with

conventional two-point geostatistical simulations, the MPS methods consider that the so-

Published : Yao L, Dimitrakopoulos R, Gamache M (2019) High-order sequential simulation via statis-
tical learning in reproducing kernel Hilbert space. Math Geosci. doi:10.1007/s11004-019-09843-3
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called training image (TI) contains the prior information of the spatial statistics or patterns

of the attribute to be simulated. A spatial template is de�ned as a geometrical con�gura-

tion of the relative locations among the multiple points, regardless of the coordinates. The

known data within the spatial template at a certain location on the simulation grid acts as

the conditioning data in the simulation and is termed a data event. Over the past decade,

several state-of-the-art MPS algorithms have been proposed to improve the e�ciency and

reproduction of the curvilinear features [56, 122].

An inherent limitation of the MPS algorithms is that the high-order spatial statistics of the

available data are not systematically considered and are partly integrated in ad-hoc ways.

This issue becomes more prominent when the spatial statistics of the TI and the sample

data are di�erent, leading to realizations con�icting with the spatial statistics of the sample

data, especially when the latter data is relatively dense as is the case in mining applications

[125, 126]. As an alternative, high-order simulation methods are proposed to model a random

�eld without any presumption of its probability distribution, and high-order spatial statistics

are systematically incorporated in the model [17, 18, 95]. The �rst algorithm of high-order

simulation, HOSIM, approximates the probability density function (PDF) by the Legendre

polynomial series through the so-called spatial cumulants [17�19]. Further developments of

the high-order simulation paradigm include the simulation of spatially correlated variables

[127] and the direct simulation at the block scale [132]. Most recently, Yao et al. [133]

proposed a new computational model of high-order simulation as a uni�ed empirical function,

which avoids CPU-demanding computations of expansion coe�cients. Furthermore, a kernel

function can be derived from this model and will be used in the present work.

A common issue that runs across all of the above-mentioned high-order simulation methods

is that the approximation of the PDF by orthogonal polynomials cannot be guaranteed

to be positive. The sensitivity of high-order polynomials to the rounding errors near the

endpoints of the approximation weakens the convergence of polynomial series to a stable

analytic function, as discussed in Minniakhmetov et al. [128], who propose an approximation

of the PDF using Legendre-like orthogonal splines as the basis functions, resulting in a

signi�cant improvement in numerical stability. As the deviation of the empirical statistics

from the true expectation arises due to possible statistical con�icts between the sample data

and the TI, the convergence of the approximation to the actual underlying PDF could be

undermined. Under such a circumstance, a postprocessing step has to be introduced to

correct the approximation. For example, the correction procedure through interpolation

around the points of negative densities is applied in Mustapha and Dimitrakopoulos [18].

The present work proposes a new high-order simulation framework based on statistical learn-
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ing [110, 134], which deliberately mitigates the statistical con�icts between the sample data

and the TI, and also overcomes the limitation of approximating the PDF with the orthogonal

expansion series. Statistical learning theory [110] develops a new learning paradigm to ex-

plore functional dependency from a given data set without relying on prior knowledge, which

contrasts with the classical statistical methods that are based on parametric models. Ac-

cording to the learning paradigm, a target model needs to be learned from the available data

set, which represents the training data. The so-called learning machine [110] is frequently

given as a set of functions, from which a speci�c learning model is selected to approximate

the target model according to certain criteria.

To interpret high-order simulation in terms of statistical learning, the training data are re-

garded as the available data from the sample data and/or the TI. The target model is the

probability distribution related to the random �eld of the spatial attributes. The learn-

ing model is the approximated PDF of the target probability distribution, from which the

realizations can be generated. The learning process for high-order simulation is driven by

matching the expected high-order spatial statistics of the target probability distribution to

the high-order spatial statistics observed from the available data. The matching of the high-

order spatial statistics is the most challenging part and is approached herein by a learning

process in a reproducing kernel Hilbert space (RKHS) [111]. A spatial Legendre moment

(SLM) reproducing kernel is proposed to construct the speci�ed RKHS (SLM-RKHS), such

that the high-order spatial statistics are systematically incorporated in this Hilbert space for

a certain probability distribution. The elements in the original data space are mapped into

the SLM-RKHS, termed RKHS embedding [135�138]. In addition, the high-order spatial

statistics of the available data are carried over to the domain after this RKHS embedding.

Eventually, the statistical learning regarding high-order simulation leads to a convex opti-

mization in SLM-RKHS where the solutions amount to solving a quadratic programming

problem.

In the following sections, the general theory of kernel methods, including the reproducing

kernel Hilbert space (RKHS) and RKHS embedding of probability distributions, are in-

troduced. Section 5.2 describes the main work�ow of high-order sequential simulation via

statistical learning, and a spatial Legendre moment reproducing kernel is de�ned to construct

the speci�c SLM-RKHS. Furthermore, this SLM-RKHS is decomposed to lower-dimensional

subspaces, such that conditional probability density functions (CPDF) in the context of se-

quential simulation can be embedded into the corresponding subspaces. Subsequently, a

high-order stochastic simulation method is presented as a learning process based on the em-

bedding of the CPDF into the decomposed subspace of the SLM-RKHS. Next, the proposed

simulation method is tested using a fully known data set. A case study at a gold deposit is
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then presented to show the practical aspects of the proposed method. Conclusions follow.

5.2 Method

5.2.1 Overview of kernel space and embedding a probability distribution

In the general setting of kernel methods, a kernel space needs to be set up and associated

with a prede�ned kernel function, and a feature mapping is de�ned to map an arbitrary

element from the original data space into the kernel space. The related general concepts and

theory are formalized in the followed subsections.

5.2.1.1 Reproducing kernel Hilbert space

A Hilbert space H is a vector space over a �eld endowed with an inner product [139]. For

simplicity, the Hilbert space H over the setR of real numbers is considered here, and the

inner product is de�ned as

hf; g i : H � H ! R; 8f; g 2 H :

The norm is de�ned as

kf kH = hf; f i 1=2 ; 8f 2 H :

Other essential properties can be found in [139]. The concepts of reproducing kernel and

positive de�nite function are from [116] with the modi�cation of the range of kernel function

to R.

Reproducing kernel

Let E be a non-empty set andH be a Hilbert space of functions de�ned onE. Then, a

function K : E � E ! R is a reproducing kernel of a Hilbert spaceH if and only if

(1) 8t 2 E; K (�; t) 2 H , and

(2) 8t 2 E; 8f 2 H ; hf; K (�; t)i = f (t).

The last condition is called �the reproducing property,� because any function inH can be

reproduced by its inner product with the kernelK . In addition, as a direct derivation of the

above conditions, the reproducing kernel can be written as the inner product

K (s; t) = hK (�; s) ; K (�; t)i ; 8s; t 2 E:
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Naturally, a Hilbert space in possession of a reproducing kernel is called a reproducing kernel

Hilbert space. The feature map associated with an RKHSH with kernel K is de�ned as

� : E ! H such that h� (s) ; � (t)i = K (s; t). In fact, � (t) : E ! H ; t 7! K (�; t) ; 8t 2 E

satis�es such a de�nition as the feature map according to the reproducing property. This

type of feature map is called a reproducing kernel map [111] or canonical feature map [140]

and will be used in the present paper.

Positive de�nite function

A real-valued functionK : E� E ! R is positive de�nite if 8n � 1; 8 (a1; : : : ; an ) 2 Rn ; 8(x1; : : : ; xn ) 2

En , there is
nX

i =1

nX

j =1

ai aj K (x i ; x j ) � 0:

5.2.1.2 RKHS embedding of a probability distribution

The range of the feature mapping spans RKHSH by de�nition [111]. Thus, the feature

mapping � is crucial in embedding a data element into the RKHSH. Accordingly, two

mappings are important to embed a probability distribution into the RKHSH [135]

� [p] = E x� p [� (x)] ; (5.1)

and

� [X ] =
1

M

MX

i =1

� (X i ) ; (5.2)

where the �rst equation is the expectation kernel mean map regarding the densityp and the

second one is the empirical kernel mean map with the �nite sample setX = f X 1; : : : ; X M g.

The expectation kernel mean map� [p] is an element in the RKHSH as long asEx� p [K (x; x)] <

1 [135]. Suppose that the samples fromX are independently drawn from the same prob-

ability distribution with density p, then � [p] can be approximated by� [X ] [136], with the

bound of the deviation k� [p] � � [X ]kH with the probability given by [141]. The space of

all probability distributions forms a convex setP; thus, the image of the expectation kernel

mean mapM := f � [p] ; 8p 2 Pg is also convex and is called the marginal polytope [135].

In terms of the RKHS embedding, the goal of the density estimation is to �nd an optimal

probability density p̂ 2 P such that the deviationk� [X ] � � [p̂] kH is minimized. In practice,

the density estimator bp is assumed as a mixture of a set of candidate densities or prototypes
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pi [135, 136] as

p̂ =
nX

i =1

� i pi ; (5.3)

where
P n

i � i = 1 and � i � 0; 81 � i � n. Let us de�ne the subsetP0 of P as

P0 :=

(

p̂ =
nX

i

� i pi j
nX

i =1

� i = 1 and � i � 0; 81 � i � n

)

:

It can be seen thatP0 is a convex hull of the prototypes sincêp is a convex combination of the

candidate densities. The density estimation amounts to solving the minimization problem

restricted to a convex setP0 as

min
p̂2P 0

k� [X ] � � [p̂]k2
H : (5.4)

Explicit expansion of Eq. (5.4) leads to solving a quadratic program for� = ( � 1; : : : ; � n ) as

the following [136]

min
�

1
2

� T (Q + � I ) � � qT �

s.t.
nX

i =1

� i = 1

� i � 0; 81 � i � n; (5.5)

where � is a regularization constant to prevent over�tting, and I is the identity matrix.

Q = [ Qij ]n� n is a matrix, and q = ( q1; : : : ; qn ) is a vector of lengthn, both of which are

entries that depend on the kernel function. The matrixQ is positive de�nite; hence the

above quadratic program (5.5) is a convex optimization problem.

5.2.2 High-order simulation method in spatial Legendre moment kernel space

5.2.2.1 SLM reproducing kernel

The motivation for applying statistical learning to the high-order simulation is to match

the high-order spatial statistics of the output realizations to the training data through the

learning process. This goal is achieved by the learning procedure in a newly de�ned kernel

space, while the kernel is de�ned as

K (X ; Y ) =
NY

i =0

" WX

w=0

�

w +
1
2

�

Pw (x i ) Pw (yi )

#

; (5.6)



73

and is called a spatial Legendre moment kernel (SLM-kernel for short) of order W, where

X ; Y 2 [� 1; 1]N +1 ; X = ( x0; x1; : : : ; xN ) ; Y = ( y0; y1; : : : ; yN ), and Pw (�) is the Legendre

polynomial of orderw de�ned on the interval [� 1; 1].

As the name of the kernel suggests, one reason to de�ne the SLM-kernel in the form of Eq.

(5.6) is that past studies of high-order simulations based on Legendre-polynomial series have

shown the capacity for capturing complex spatial patterns with spatial cumulants or spatial

Legendre moments [17, 18, 133]. In other words, the SLM-kernel is constructed in a way that

the distance between two distributions embedded into the kernel space actually represent the

deviation of spatial Legendre moments from each other. The other reason stems from the

fact that the computational model from Yao et al. [133] leads to a kernel-like expression of

approximating the CPDF [cf. Equation Eq. (14) in [133]].

To prove that K (X ; Y ) is a positive de�nite, one can �rst de�ne a simpler functionk (s; t) =

Pw (s) Pw (t) ; 8s; t 2 [� 1; 1] and show that it is a positive de�nite. In fact,

8n � 1; 8ai ; aj 2 R; 8t i 2 [� 1; 1]; 1 � i; j � n;

it is easy to see that

nX

i =1

nX

j =1

ai aj Pw (t i ) Pw (t j ) =

" nX

i =1

ai Pw (t i )

#2

� 0:

Therefore,k (s; t) is a positive de�nite. Now, we denote

K 0(X ; Y ) =
WX

w=0

�

w +
1
2

�

Pw (x i ) Pw (yi )

=
WX

w=0

�

w +
1
2

�

k (x i ; yi ) :

K 0(X ; Y ) is a positive de�nite because the weighted sum of positive de�nite functions

with non-negative coe�cients is also positive de�nite. Finally, K (X ; Y ) can be written

as K (X ; Y ) =
Q N

i =0 K 0(X ; Y ). Given that the �nite product of positive de�nite functions

is also a positive de�nite [140], it is proven that the functionK (X ; Y ) is positive de�nite,

and thus, it de�nes a reproducing kernel.

5.2.2.2 Sequential simulation via statistical learning in SLM-kernel space

The implementation of a high-order stochastic simulation is under the framework of a se-

quential simulation [23]. By means of decomposing the multivariate probability distribution
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into a consecutive set of univariate distributions, the simulation is carried out sequentially

to generate random values from conditional distributions per a random path visiting the

simulation grid. Speci�cally, let's let us denote the random �eld to be simulated asZ(u),

which composes a multivariate distribution regarding the variable locationsu at a discrete

simulation grid. Suppose an arbitrary nodeZ0 to be simulated within a random path is

located at u0 with a neighborhood� of N conditioning data that contains either the sample

data or the previously simulated nodes along the random path. Without loss of generality,

the key problem in the stochastic simulation is to �nd an estimation o f the CPDFf (Z0j�) ,

given the center nodeZ0 and the N conditioning data. From the spatial con�guration of the

neighborhood, a spatial template can be extracted asT = ( u0; u0 + h1; : : : ; u0 + hN ), where

h1; : : : ; hN are distance vectors of the location of each conditioning data from the center node

u0. Clearly, statistical learning for the simulation aims to learn a target probability distribu-

tion from the available training data, and this turns out to be minimizing the distance of the

empirical distribution and the target distribution after embedding them into the SLM-kernel

space. By the de�nition of the Dirac delta function, one can de�ne an empirical probability

density function (EPDF) [115] corresponding to a sample setX of sizeM as

f emp(x) =
1

M

MX

i =1

� (x � X i ): (5.7)

Then, the empirical kernel mean map� [X ] can be rewritten as a convolution with the kernel

K as

� K [f emp] := � [X ] =
Z

f emp(x)K (x; �)dx: (5.8)

Similarly, the expectation kernel mean map� [p] can also be written as

� K [p] =
Z

p(x)K (x; �)dx: (5.9)

In this way, both the empirical kernel mean map� [X ] and the expectation kernel mean map

� [p] can be regarded as an integral operator� K determined by the kernelK acting on the

EPDF or the PDF. The convolution of the density function with kernels can be analogous to

the regularization of the integral operator to solve the ill-posed problem of density estimation

[110, 142].

Given the above-mentioned templateT = ( u0; u0 + h1; : : : ; u0 + hN ) and the replicate en-

countered in the TI as� t = ( � t;0; � t;1; : : : ; � t;N ) corresponding toT , the EPDF f emp embedded
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in the SLM-RKHS is identical to the density estimator in [133] in the kernel form as

� K [f emp] =
1

M

MX

t=1

K (� t ; �): (5.10)

Furthermore, under the sequential simulation framework, the CPDFf (Z0j�) can be mapped

into a lower-dimensional kernel space through decomposition of the kernel space, so that the

high-order simulation can be reduced to a one-dimensional optimization problem. Note that

the kernel K in Eq. (5.6) can be decomposed as a product of lower-dimensional kernelsK 0

and K N as

K 0(x0; y0) =
WX

w=0

(w +
1
2

)Pw(x0)Pw(y0); (5.11)

and

K N (X 0; Y 0) =
NY

i =1

[
WX

w=0

(w +
1
2

)Pw(x0
i )Pw(y0

i )]; (5.12)

where K 0 is one-dimensional andK N is N -dimensional with X 0 = ( x1; : : : ; xN ); Y 0 =

(y1; : : : ; yN ). Through marginalization of Eq.(5.10), the approximation of the CPDF~f W (z0j�)

can be rewritten in terms of the kernels as

~f W (z0j�) =
P M

t=1 K 0(� t;0; z0) � K N (� 0
t ; �)

P M
t=1 K N (� 0

t ; �)
; (5.13)

where� 0
t = ( � t;1; : : : ; � t;N ). By letting

� t =
K N (� 0

t ; �)
P M

t=1 K N (� 0
t ; �)

; (5.14)

the approximation of the CPDF ~f W (z0j�) can be expressed as

~f W (z0j�) =
MX

t=1

� t � K 0(� t;0; z0): (5.15)

From Eq. (5.15), it turns out that the approximated CPDF ~f W (z0j�) is a linear combination

of kernel bases, and therefore, it lies in the SLM-RKHS with the kernelK 0. Furthermore,

it can be regarded as the embedding of the empirical CPDF into the SLM-RKHS. In other

words, the kernel mean map� K 0 for the conditional distributions can be de�ned as

� K 0 [f emp(z0j�)] =
MX

t=1

� t � K 0(� t;0; �); (5.16)
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and

� K 0 [f (z0j�)] =
Z

f (z0j�) K 0(z0; �)dz0 = E[K 0(z0; �)]; (5.17)

where Eqs. (5.16) and Eq. (5.17) correspond to the SLM-RKHS embedding of the empirical

CPDF and the target CPDF, respectively. Assuming that the CPDF can be expressed as the

convex combination of some candidate distributionspi as in Eq. (5.3), such thatf (z0j�) 2 P 0,

then the density estimation for the CPDF can be solved by a similar minimization problem as

Eq. (5.4) with the kernel mean map changing to� K 0 . Explicit expansion of the minimization

problem leads to a quadratic program similar to Eq. (5.5), whereas the matrixQ and the

vector q are expressed as

Qij = Ez0 � pi ;z0
0 � pj [K 0(z0; z0

0)]; (5.18)

qj =
MX

t=1

� t � Ez0 � pj [K 0(� t;0; z0)]: (5.19)

Therefore, combining Eqs. (5.5), (5.11), (5.18) and (5.19), the RKHS embedding of the CPDF

leads to a quadratic program expressed by the one-dimensional kernelK 0. The solution to

the optimization problem will give the weights� i of each candidate distributionpi ; which

leads to a target distribution matching to the high-order spatial statistics of the available

data.

Figure 5.1 Work�ow of high-order simulation via statistical learning

A general high-order stochastic simulation work�ow via statistical learning is shown in Fig.
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5.1. The main di�erence between the new high-order simulation work�ow and the other

geostatistical simulation methods is that the key element in the proposed work�ow becomes

the kernelization, including the kernel construction and the kernel mean mapping. A detailed

implementation of the algorithm is given in Sect. 5.3.

5.3 Sequential Simulation Algorithm Based on Statistical Learning in SLM-

RKHS

The SLM-RKHS embedding of the CPDF projects the density estimation in high-order

stochastic simulation into a quadratic program in the feature space with SLM-kernelK 0

de�ned in the interval [� 1; 1]. Hence, the sample data and the TI are �rst transformed

into the interval [� 1; 1]. The truncated normal densities on the interval[� 1; 1] are used as

the prototypes. Let us denote the normal density with meanmi and standard deviation�

as g�;m i and its corresponding cumulative distribution function asG�;m i . Then, the density

functions of the prototypes arepi = g�;m i =ci , with ci = G�;m i (1) � G�;m i (� 1). Thus, the

approximated CPDF can be expressed as

f̂ (z0j�) =
nX

i =1

� i g�;m i (z0)=ci ; (5.20)

wheren is the number of the prototypes. The computations of the matrixQ and the vector

q are essential to build the quadratic program for solving the weights� i . Further expansions

of Qij and qj in Eqs. (5.18) and Eq. (5.19) give

Qij =
WX

w=0

(w +
1
2

)Ez0 � pi [Pw(z0)] � Ez0
0 � pj [Pw(z0

0)]; (5.21)

qj =
MX

t=1

� t � (
WX

w=0

(w +
1
2

)Pw(� t;0)Ez0 � pj [Pw(z0)]): (5.22)

As the computations of the coe�cients � t and the Legendre polynomialPw(� t;0) are straight-

forward according to their de�nitions, the Legendre polynomial moment with the truncated

normal densityEz0 � pi [Pw(z0)] remains the only term of more consideration. Here, a recursive

algorithm to compute the Legendre polynomial momentEz0 � pi [Pw(z0)] is developed. Let

us denoteAw;i = Ez0 � pi [Pw(z0)] and Bw;i = Ez0 � pi [z0Pw(z0)]: Note that P0(z0) = 1 , and

P1(z0) = z0; 8z0 2 [� 1; 1]. There are

A0;i = 1; (5.23)
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and

A1;i = B0;i = mi + � 2[g�;m i (� 1) � g�;m i (1)]=ci : (5.24)

The recursive relations of Legendre polynomials [93] are

(w + 1) Pw+1 (z0) = (2 w + 1) z0Pw(z0) � wPw� 1(z0); (5.25)

and

(2w + 1) Pw(z0) =
d

dz0
[Pw+1 (z0) � Pw� 1(z0)]: (5.26)

By Eqs. (5.25) and (5.26) and through integration by parts, one can derive the following

recursive equations

(w + 1) Aw+1 ;i = (2 w + 1) Bw;i � wAw� 1;i ; (5.27)

and

Bw;i = mi Aw;i + � 2[(� 1)wg�;m i (� 1) � g�;m i (1)]=ci

+ � 2[(2(w � 1) + 1]Aw� 1;i + � 2[2(w � 3) + 1]Aw� 3;i + � � � : (5.28)

Combining with the initial conditions in Eqs. (5.23) and (5.24), Eqs. (5.27) and (5.28) form

a complete recursive procedure to computeEz0 � pi [Pw(z0)]. The computations in turn build

the quadratic program for density estimation of the conditional probability distribution in

the simulation.

In a situation with high-dimensional space, the location parametersmi of the prototypes can

be determined by clustering the available data. Here, since the density estimation problem is

cast to the one-dimensional space by kernel decomposition, the locations of the prototypes are

given by a set of peak points of the function from Eq.(5.15). Speci�cally, the interval[� 1; 1]

is divided evenly into 100 subintervals and the prototypes are selected from the subintervals

which contain the peak points of the function Eq. (5.15). This heuristic approach to selecting

prototypes further simpli�es the quadratic program and makes the simulation feasible for

implementation. The scale parameter� can be chosen by the method of stochastic gradient

descent where the gradients can be derived from the recursive equations in Eq. (5.27) and

(5.28).

In summary, the high-order stochastic simulation algorithm based on RKHS embedding

(KERNELSIM hereafter for simpli�cation) can be described as follows:

(1) Scale the property values of the samples and the TI to the interval [-1, 1].

(2) Generate a random path to visit the simulation grid.
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(3) Pick one node from the random path to simulate, with the conditioning data taken from

the neighborhood containing both the sample data and the previously simulated nodes.

(4) Replicates are scanned from the TI according to the template de�ned by the spatial

con�guration of the conditioning data.

(5) Compute the SLM-kernel moments to build the quadratic program.

(6) Solve the quadratic program to estimate of the CPDF with regard to the center node.

Draw a random value from the CPDF as the data value of the center node.

(7) Repeat from step (3) until the simulation is completed.

(8) Back transform the property values of the simulation from [-1,1] to the original data

space.

In a practical implementation, step (5) can be simpli�ed to precompute the Legendre poly-

nomial moments for each prototype distribution, as well as the Legendre polynomial values

of the replicates, and therefore the computations can be greatly reduced at the cost of more

memory usage. The solver for the quadratic program in step (6) applied to the present paper

is based on the algorithm from [143].

The time complexity of the proposed algorithm is of polynomial time overall. Suppose that

the size of the simulation grid isS and the size of the training data isM , the maximum

order of the Legendre moments isW, the maximum number of conditioning data isN , and

the number of the prototype distributions isnp. Searching the replicates of the conditioning

data from a regular grid takesO(M � N ) operations. Computing the kernel moments and

building the quadratic program takesO
�
M � np(W 3 + W 2N )

�
arithmetic operations. Solving

the quadratic program problem also takes polynomial time ofO(n4
p � L); whereL is the size

of the problem encoding in binary [144]. Hence, the overall time complexity is a polynomial

of O
�

S �
�
M � np(W 3 + W 2N ) + n4

p � L
� �

.

5.4 Case Studies

5.4.1 Case study at a fully known reservoir

The porosity attributes from the Stanford V reservoir data set [129] are considered for simu-

lation. Two horizontal sections at di�erent depths are extracted from the reservoir, acting as

the exhaustive image and the TI, respectively. For comparison, the two horizontal sections

shown in Fig. 5.2 and Fig. 5.3 are selected to be the same ones used in a previous study



80

[133]. Firstly, the TI extracted from the original reservoir data set is rotated45� clockwise

to generate a new TI with seemingly di�erent spatial structures, which are noted as TI-1

and TI-2 (Fig. 5.3 and Fig. 5.4), respectively. Furthermore, two di�erent sets of sample

data as DS-1 and DS-2 are drawn from the exhaustive image and are shown in Fig. 5.5 and

Fig. 5.6, corresponding to the relatively sparse and dense samples, respectively. The main

purposes of performing a simulation on these di�erent cases are: (1) testing the sensitivity

of KERNELSIM to the statistical con�icts between the sample data and the TI; (2) testing

the impact of the number of sample data on the realization of KERNELSIM.

Figure 5.2 Exhaustive image: a horizontal section from a fully known reservoir

Figure 5.3 TI-1: another horizontal section from a fully known reservoir
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Figure 5.4 TI-2: rotation of TI-1 45� clockwise

Figure 5.5 DS-1: data samples of 200 points drawn from the exhaustive image

5.4.1.1 Example 1

This example consists of simulation results generated by KERNELSIM with the TI-1 as the

training image and DS-1 and DS-2 as the sample data sets. This example generally represents

the situation where the sample data and the TI are of di�erent origin but are sharing some

similarity in spatial patterns. For instance, the channels in both the exhaustive image and

TI-1 are preferential in the vertical directions.

Figure 5.7 shows one realization of KERNELSIM using TI-1 as the training image and

with DS-1 and DS-2 as the sample data, respectively. For comparison, both realizations
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Figure 5.6 DS-2: data samples of 400 points drawn from the exhaustive image

are generated by the same random path to visit the nodes on the grid. It is clear that

both realizations reproduce the main spatial structures of the exhaustive image along the

vertical channels from the visualization (Fig. 5.7). The realization shown in Fig. 5.7a is

comparable to the case study in [133], and it shows that the present method reproduces

channel connectivity better and eliminates the noisy points that appeared in the realizations

generated using past approaches, which were caused by the impact of statistical con�icts

between the sample data and the TI. Comparisons of the histograms and variograms of 10

realizations of KERNELSIM using either DS-1 or DS-2 as the sample data are illustrated

in Fig. 5.8 and Fig. 5.9, respectively. The third-order cumulant maps of the sample sets

DS-1 (smoothed for visualization) and DS-2 are shown in Fig. 5.10a, b. The cumulant maps

of the exhaustive image and the TI are shown in Fig. 5.10c, d. For comparison, the third-

order cumulant maps of the realizations of KERNELSIM using either the DS-1 or DS-2 as

the sample data are shown in Fig. 5.10 e, f. Figure 5.10g, h shows the average third-order

cumulant maps of 10 realizations using the DS-1 and DS-2 as the sample data, respectively.

Similarly, a further comparison of fourth-order cumulant maps is displayed in Fig. 5.11. The

spatial template for computing the fourth-order cumulant maps included directions along

the X-axis, Y-axis and the diagonal direction. The fourth-order cumulant maps are scaled

by their deviations for clearer visualization of the patterns. Both the third-order and the

fourth-order cumulant maps clearly show that the KERNELSIM realization tends to have

similar spatial patterns to the sample data and the exhaustive image. The above results

show that the KERNELSIM method reproduces both the lower and higher spatial statistics

of the underlying random �eld given that the TI and the sample data share some similarity
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in their spatial distributions. Speci�cally, regardless the number of sample data being used,

the main spatial features of the reservoir are retained in the realizations of KERNELSIM, as

supported from the visual appearance of the vertical channels and the variograms, as well as

from the cumulant maps.

(a) (b)

Figure 5.7 One realization from KERNELSIM using TI-1. a DS-1 as the sample data, b DS-2
as the sample data

(a) (b)

Figure 5.8 Histograms of 10 realizations of KERNELSIM using TI-1. a DS-1 as the sample
data, b DS-2 as the sample data

5.4.1.2 Example 2

By rotating the TI-1 45� clockwise and creating a new training image as TI-2, shown in

Fig. 5.4, there is seemingly a di�erence in the channel orientations between the TI-2 and the

exhaustive image. Thus, this speci�c example aims to test the sensitivity of the KERNELSIM

method to the more apparent statistical con�icts between the TI and the sample data. Fig.

5.12 shows one realization of KERNELSIM using TI-2 as the training image, along with
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(a) (b)

(c) (d)

Figure 5.9 Variograms of 10 realizations of KERNELSIM using TI-1. a, b Along the X and
Y axes with DS-1 as the sample data; c, d, along the X and Y axes with DS-2 as the sample
data
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.10 Third-order cumulant maps of a DS-1, b DS-2, c exhaustive image, d TI-1, e
realization in Fig. 5.7a with DS-1 as the sample data, f realization in Fig. 5.7b with DS-2
as the sample data, g 10 realizations in average with DS-1 as the sample data, and h 10
realizations in average with DS-2 as the sample data
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.11 Fourth-order cumulant maps of a DS-1, b DS-2, c exhaustive image, d TI-1, e
realization in Fig. 5.7a with DS-1 as the sample data, f realization in Fig. 5.7b with DS-2
as the sample data, g 10 realizations in average with DS-1 as the sample data, and h 10
realizations in average with DS-2 as the sample data
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DS-1 and DS-2 as the sample data, respectively. Interestingly, even with relatively sparse

sample data DS-1, the realization of KERNELSIM still re�ects the vertical channels well.

The same phenomena can also be observed in the realization using the denser sample data

DS-2. Comparisons of the histograms and the variograms are shown in Figs. 5.13 and 5.14,

respectively. Further, a comparison of high-order spatial statistics is shown in Fig. 5.15

and 5.16 in a similar way as in Example 1. While the third-order and the fourth-order

cumulant maps of the TI and the exhaustive image are very di�erent, the cumulant maps

of the realizations still maintain the main spatial features of the one from the exhaustive

image. This speci�c example shows that the KERNELSIM method is capable of generalizing

the learning model to adapt to situations in the presence of statistical con�icts between the

sample data and the TI. Of note, even with relatively sparse sample data, the proposed

method can generate realizations with a reasonable reproduction of spatial statistics of the

sample data from the lower to the higher orders.

(a) (b)

Figure 5.12 One realization from KERNELSIM using TI-2. a DS-1 as the sample data, b
DS-2 as the sample data

5.4.1.3 Conditional probability on di�erent spatial patterns

Three con�gurations of the conditioning data are intentionally picked at di�erent locations

to represent the typical spatial patterns that are possibly encountered in the data event.

The KERNELSIM method is applied to generate the conditional probability distributions on

these di�erent spatial patterns to compare the behaviors of the CPDF at di�erent locations

(Fig. 5.17). Since the attribute values are transformed to the domain [-1, 1] of Legendre

polynomials, both the conditioning data and the CPDFs are also in this domain. Fig. 5.17a

shows the pattern of transition between lower values and higher values, which usually happens

near the boundary of the channels in the exhaustive image, while Fig. 5.17b shows its
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(a) (b)

Figure 5.13 Histograms of 10 realizations of KERNELSIM using TI-2. a DS-1 as the sample
data, b DS-2 as the sample data

corresponding CPDF at the center node. In this case, the CPDF has two di�erent modes at

the values of -0.41 and 0.74, which interestingly implies that the possible prediction could

either be a lower value or a higher value, while the higher value has a higher likelihood.

It turns out that the true value at this location after transformation is 0.745. However, it

should be noted here that this double-modal behavior is reasonable near the boundary of

transitioning between lower and higher values. This kind of probability distribution cannot

be characterized by the second-order geostatistical simulation methods based on Gaussian

assumption. Fig. 5.17c, d shows the simulation behavior at a location where the center node

is surrounded by nodes with relatively lower values. Again, the CPDF also shows a bimodal

shape due to the big variation of the spatial patterns. Fig. 5.17e, f shows the behavior of

simulation at a location where the center node is surrounded by nodes with relatively higher

values. The CPDF exhibits a unimodal distribution as the variation in the spatial pattern

is small. Although the behaviors of CPDF could be case-dependent due to di�erent spatial

distributions of attributes of interest, these experiments show that the CPDFs generated by

KERNELSIM are driven by the training data instead of a �xed covariance function, and

thus can re�ect the characteristics of di�erent spatial patterns. In fact, several past studies

have also shown the advantage of high-order simulation methods in reproducing the complex

spatial patterns over the traditional second-order simulation methods, such as sequential

Gaussian simulation [18, 128, 132].

5.4.2 Case study at a gold deposit

The case study at a gold deposit is presented here to demonstrate the practical aspects and

the performance of KERNELSIM in its application to a real-life example. The sample data
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(a) (b)

(c) (d)

Figure 5.14 Variograms of 10 realizations of KERNELSIM using TI-2. a, b Along the X and
Y axes with DS-1 as the sample data; c, d, along the X and Y axes with DS-2 as the sample
data
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(a) (b)

(c) (d)

(e) (f)

Figure 5.15 Third-order cumulant maps of a exhaustive image, b TI-2, c realization in Fig.
5.12a with DS-1 as the sample data, d realization in Fig. 5.12b with DS-2 as the sample data,
e 10 realizations in average with DS-1 as the sample data, and f 10 realizations in average
with DS-2 as the sample data
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(a) (b)

(c) (d)

(e) (f)

Figure 5.16 Fourth-order cumulant maps of a exhaustive image, b TI-2, c realization in Fig.
5.12a with DS-1 as the sample data, d realization in Fig. 5.12b with DS-2 as the sample data,
e 10 realizations in average with DS-1 as the sample data, and f 10 realizations in average
with DS-2 as the sample data
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(a)
(b)

(c) (d)

(e) (f)

Figure 5.17 Behaviors of conditional probability distributions corresponding to conditioning
data with di�erent spatial patterns. The central circle represents the center node to be
simulated, and the colored nodes are the conditioning data in the neighborhood
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are from 407 exploration drill holes and are composited to 10 m in length. The TI comes from

the blast hole data located at a mined-out area of the orebody. Fig. 5.18 shows the TI, a

cross section of the TI and the sample data in a three-dimensional view. The TI is generated

from the blast hole data assuming that the geological settings of the studied area are similar

to the mined-out area, where con�icts would be mitigated by the statistical learning process

dominated by the sample data. Fig. 5.19 shows cross sections of four di�erent realizations

of KERNELSIM for the gold deposit in a three-dimensional view. The histogram of the gold

grades resembles the histogram of the sample data, as can be seen from Fig. 5.20. The

variograms of the sample data and the TI are plotted for comparison with the variograms

of 10 realizations of KERNELSIM from the gold deposit in Fig. 5.21. Figure 5.22 shows

the third-order cumulant maps of the samples, the TI and the realization of KERNELSIM,

respectively, along with the L-shape spatial template in the X-Y plane. Furthermore, the

fourth-order cumulant maps of the samples, the TI and the realization of KERNELSIM are

respectively displayed in Fig. 5.23. The results of the comparison in Figs. 5.22 and 5.23

show that the KERNELSIM reproduces the high-order spatial statistics of the sample data

in addition to the lower-order statistics, even though the spatial patterns of the third-order

and fourth-order cumulant maps of the TI are di�erent to those of the sample data.

5.5 Conclusions

The paper presents a new high-order stochastic simulation framework based on statistical

learning. Within this statistical learning work�ow, the density estimation in the sequential

simulation is kernelized, which renders it equivalent to solving a quadratic programming

problem. The kernelization is approached by embedding the original data space into a ker-

nel Hilbert space. A spatial Legendre moment reproducing kernel is proposed to construct

an RKHS that can incorporate the high-order spatial statistics of the original data. In

addition, a kernel decomposition technique is proposed to project the kernelization into a

one-dimensional kernel Hilbert space to approach the sequential simulation procedure and

to reduce computational complexity. The proposed statistical learning framework is general

and can cope with the possible statistical con�icts between the sample data and the TI.

The implementation of the method presented, termed KERNELSIM, is tested in di�erent

case studies. The examples, which use a fully known reservoir, show that KERNELSIM can

reproduce the main spatial patterns of the sample data. Notably, the generalization capac-

ity of the proposed method mitigates the statistical con�icts between the sample data and

the TI and retains high-order statistical features from the sample data. The two examples

in the �rst case study also provide some insights on how the number of the sample data
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(a) (b)

(c)

Figure 5.18 a TI, b a cross section of the TI, and c the sample data of the Au grades

and the relation of the sample data to the TI a�ect the simulation results. It should be

noted that the simulation results only use the replicates from the TI to infer a conditional

probability distribution. Hence, the proposed statistical framework provides an approach to

condition the local probabilistic models learning from the TI to the existing con�guration of

the sample data based on the generalization capacity of the learning framework. However,

the assumption made is that the TI shares some similarities in the local spatial structures

with the sample data, even though their global structures could be di�erent. The impact of

the TI can also be reduced by only using replicates from the sample data, if the number of

the replicates reaches a certain threshold of statistical signi�cance, similarly to the approach

adopted in previous publications [18, 133]. A case study at a gold deposit demonstrates the

performance of KERNELSIM in a three-dimensional example. The results show that the

KERNELSIM method reproduces the high-order spatial statistics of the drill hole samples
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(a) (b)

(c) (d)

Figure 5.19 Cross sections of four di�erent realizations of KERNELSIM of the Au grades
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Figure 5.20 Histograms of 10 realizations of KERNELSIM for the Au grades of the gold
deposit in comparison to the TI and the samples

well. Thus, the method provides an e�ective approach to simulate the orebody using the drill

hole samples with the TI originating from a suitable mined-out part of the same deposit.
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(a) (b)

(c)

Figure 5.21 Variograms of 10 realizations of KERNELSIM for Au grades at the gold deposit
along a E�W, b N�S, and c down drill holes, in comparison to the sample data and the TI
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(a) (b)

(c) (d)

Figure 5.22 Third-order cumulant maps of a the sample data, b the TI, c the realization of
KERNELSIM and d the 10 realizations of KERNELSIM in average
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(a) (b)

(c) (d)

Figure 5.23 Fourth-order cumulant maps of a the sample data, b the TI, c the realization of
KERNELSIM and d the 10 realizations of KERNELSIM in average
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CHAPTER 6 ARTICLE 3: TRAINING-IMAGE FREE HIGH-ORDER

STOCHASTIC SIMULATION BASED ON AGGREGATED KERNEL

STATISTICS

Abstract: A training-image free, high-order sequential simulation method is proposed

herein, which is based on the e�cient inference of high-order spatial statistics from the

available sample data. A statistical learning framework in kernel space is adopted to develop

the proposed simulation method. Speci�cally, a new concept of aggregated kernel statistics

is proposed to enable sparse data learning. The conditioning data in the proposed high-order

sequential simulation method appear as data events corresponding to the attribute values

associated with the so-called spatial templates of various geometric con�gurations. The

replicates of the data events act as the training data in the learning framework for inference of

the conditional probability distribution and generating simulated values. These replicates are

mapped into spatial Legendre moment kernel spaces and the kernel statistics are computed

thereafter, encapsulating the high-order spatial statistics from the available data. To utilize

the incomplete information from the replicates, which partially match the spatial template of

a given data event, the aggregated kernel statistics combine the ensemble of the elements in

di�erent kernel subspaces for statistical inference, embedding the high-order spatial statistics

of the replicates associated with various spatial templates into the same kernel subspace. The

aggregated kernel statistics are incorporated into a learning algorithm to obtain the target

probability distribution in the underlying random �eld, while preserving in the simulations

the high-order spatial statistics from the available data. The proposed method is tested

using a synthetic data set, showing the reproduction of the high-order spatial statistics of the

sample data. The comparison with the corresponding high-order simulation method using

TIs emphasizes the generalization capacity of the proposed method for sparse data learning.

Keywords: High-order sequential simulation; Statistical learning; Spatial statistics; Ker-

nel space

6.1 Introduction

Stochastic simulation methods are used to quantify the uncertainty of spatially distributed

attributes of geological and other natural phenomena. It is well known that the conventional

Submitted : Yao L, Dimitrakopoulos R, Gamache M (2020) Training-image-free high-order stochastic
simulation based on aggregated kernel statistics. Mathematical Geosciences (Submitted)
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second-order stochastic simulation methods are limited in reproducing the complex patterns

or nonlinear features exhibited in the spatial attributes of interest [14, 145, 146]. The so-called

multiple point simulation (MPS) methods [12, 56, 57, 60, 65, 66, 84, 120, 122, 147] have been

developed to address the limitation of conventional simulation methods based on the concept

of multiple point statistics. The multiple point simulation framework introduced training

images (TI) as statistical analogs of the spatial attributes under consideration. The multiple

point statistics are either (a) captured by occurrences of data events formed by indicators

at multiple locations inside the so-called spatial templates when the spatial attributes are

categorical, or (b) generalized to continuous data as the pattern similarity among patches

from the TI and the proceeding simulation. The multiple point statistics described in the

MPS methods are based on a certain spatial template, however, are limited given that they

do not consistently consider the lower-order spatial statistics in the related sub-templates.

In addition, although the utilization of a TI as prior information to account for multi-point

interactions of spatial attributes is conceptually appealing and justi�ed [84], generally, the

information from TI is not conditioned to the available data. Thus, the potential statistical

con�icts existing between the sample data and the TI is a hinderance for the TI-driven MPS

methods to reproduce the spatial patterns properly. This issue seems more prominent when

the sample data are relatively dense, as in mining applications [126].

The high-order simulation methods provide a new framework to simulate complex spatial

patterns, addressing the drawbacks in MPS methods as discussed in the related publications

[17�19, 98, 99, 127, 132, 133, 148]. The high-order simulation methods equip the multiple-

point spatial structures with well-de�ned mathematical entities, such as spatial cumulants

or high-order spatial moments [17, 18, 128]. The random �eld model in the high-order sim-

ulation framework makes no assumption on any speci�c probability distribution. Instead, a

Legendre polynomial expansion series is adopted to approximate the underlying distribution,

where spatial cumulants are quanti�ed to infer the expansion coe�cients [18, 19]. To cope

with the statistical con�icts between the samples and the TI, the high-order simulation meth-

ods take into account both the high-order spatial statistics from the sample data and the

TI. However, the latter ones are only incorporated when the replicates from the sample data

are insu�cient for inference and, therefore, limit the in�uence of the TI on the realizations

[18, 19]. Minniakhmetov and Dimitrakopoulos [98] propose a high-order simulation method

without TI, which uses instead special relations of high-order indicator moments in boundary

conditions related to a certain spatial template. However, these mathematical relations can

only be established for categorical random variables. Yao et al. [148] propose a statistical

learning framework of high-order simulation in kernel space by constructing a so-called spa-

tial Legendre moment kernel from a new computational model of high-order simulation based
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on spatial Legendre moments [133]. The proposed statistical learning framework in Yao et al.

[148] demonstrates the advantage of its generalization capacity with regards to improving of

the numerical stability, as compared to the previous high-order simulation methods. This

generalization capacity also mitigates the statistical con�icts between the samples and the

TI. This is due to the fact that the high-order spatial statistics are adjusted to the target

probability distribution through the learning process, as opposed to directly being incorpo-

rated into the coe�cients of polynomial expansion series as with the other methods. The

simulation under a statistical learning framework [148] proceeds sequentially according to a

random path based on the sequential decomposition of the multivariate distribution of the

random �eld model [23, 25]. Speci�cally, the replicates are mapped onto the spatial Legendre

moment space and the empirical kernel statistics are computed thereafter. The target prob-

ability distributions are also embedded into the same kernel space to obtain the expected

kernel statistics. Matching these two elements in the kernel space leads to a minimization

problem in the quadratic form determined by the kernel function. Solving the minimization

problem leads to target probability distributions that comply with the high-order spatial

statistics of the available data.

The present paper proposes fundamental adjustments of the above statistical learning frame-

work so that it becomes more suitable for sparse data learning, thus allowing the development

of a TI free high-order simulation method for the continuous spatial attributes. Since retriev-

ing replicates that fully match the spatial template of the data events is di�cult due to the

sparsity of the sample data, it is worth noting that replicates that are partially matched

to the spatial template may exist. These partially matched replicates, nevertheless, provide

useful and relevant information to the related statistical inference, while determining how to

utilize this incomplete information remains a challenge. The above-mentioned matters are

addressed herein by a proposed concept of aggregated kernel statistics. More speci�cally,

each spatial template is associated with a certain kernel subspace, such that any replicate

associated with the same spatial template can be mapped onto an element of the correspond-

ing kernel space. Accordingly, these mapped elements in the kernel subspaces are utilized to

compute the kernel statistics. The kernel statistics in a set of kernel subspaces are combined

to determine the aggregated kernel statistics through the relations introduced in this paper.

Eventually, the aggregated kernel statistics are embedded into the kernel subspace corre-

sponding to the conditional probability distribution encountered in the high-order sequential

simulation framework, and the statistical learning algorithm is applied to approximate a

conditional probability distribution.

The remainder of the paper is organized as follows. Firstly, the mathematical concepts and

the proposed method are presented. Next, a case study from a synthetic data set is used
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to assess the performance of the proposed method and demonstrate its practical aspects.

Conclusions follow.

6.2 Method

Consider the spatial attributes of interest distributed on a discrete grid as a random �eld

model denoted byZ(u) with u = f u1; u2; : : : ; ung corresponding to various locations within

the grid, then Z(u) = f Z (u1); Z (u2); : : : ; Z(un )g comprises a multivariate probability distri-

bution f Z given that Z(u i ) representing random variables at locationu i (i = 1; : : : ; n). Under

the sequential simulation framework [23], the joint probability distributionf Z is decomposed

into a sequence of conditional probability distributions following a random path to visit the

entire simulation grid, random values are drawn from these conditional probability distri-

butions sequentially along the random path to generate one realization. Both the available

sample data and the previous simulated attribute values are considered as the conditioning

data throughout the simulation process.

Without loss of generality, suppose that the current attributeZ(u0) to be simulated locates

at u0, and the informed dataf � 1; : : : ; � N g at the surrounding locationsu0 + h1; : : : ; u0 + hN ,

consist of a data event as the conditioning data. From the geometric con�guration of the data

event, a spatial templateT = f u0; u0 + h1; : : : ; u0 + hN g can be determined with the distance

vectors h1; : : : ; hN pointing outwards from the centeru0 to the surrounding locations. Let

the conditional probability density function (CPDF) be denoted asf (z0j� 1; : : : ; � N ), the key

task to derive the CPDF is achieved by a statistical learning algorithm in kernel space herein.

The related replicates associated with templateT are retrieved from the sample data and

these replicates are used as the training data of statistical learning to infer the underlying

probability distribution. Speci�cally, the retrieved replicates are mapped to elements in

kernel spaces to build kernel statistics carrying the high-order spatial information from the

replicates. The aggregated kernel statistics are proposed allowing to incorporate the high-

order spatial statistics from the ensemble of replicates with di�erent spatial con�gurations.

The target CPDF is then achieved by the statistical learning algorithm approaching the

aggregated kernel statistics from the sample data.
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6.3 Aggregation of Spatial Legendre Kernel Subspaces and Kernel Statistics

6.3.1 Spatial Legendre moment kernel subspaces

The kernel space is a Hilbert space de�ned through a positive kernel function. The spatial

Legendre moment reproducing kernel (SLM-kernel) [148] is presented herein to carry the

information of high-order spatial statistics so that the density estimation in the high-order

sequential simulation could be achieved by a statistical learning process in kernel space.

The SLM-kernel can be de�ned to associate a kernel subspace to random variables within a

certain spatial template. Given a set of random variablesV = f Z0; Z1; : : : ; ZN g with nodes

corresponding to spatial templateT = f u0; u0 + h1; : : : ; u0 + hN g. The kernel subspace can

be determined by a spatial Legendre moment reproducing kernel (SLM-kernel) as

K V (X ; Y ) =
NY

i =0

h WX

w=0

(w +
1
2

)Pw(x i )Pw(yi )
i
; (6.1)

whereN corresponds to size of the spatial template,X = ( x0; x1; : : : ; xN ); Y = ( y0; y1; : : : ; yN ),

and Pw(�) is the Legendre polynomial of orderw de�ned on the interval [� 1; 1] and W is

the maximal order of Legendre polynomials under consideration. Let the original data space

denote asE and the kernel space associated to kernelK denote asH, the canonical feature

map [139], � (t) : E ! H ; t 7! K (�; t); 8t 2 E, de�nes a valid feature map which takes an

element from the original data space to an element in the kernel subspace. In other words,

after the feature mapping, each element in the original data spaceE has a �representer� in

the kernel spaceH.

6.3.1.1 Aggregated SLM-Kernel Statistics

If a training image (TI) is provided as an exhaustive data set, most of the replicates of a

data event fully match the spatial con�guration of the data event while the partially matched

ones are negligible. The replicates of a data event from the sample data, however, include

both fully matched and partially matched replicates which correspond to di�erent con�gu-

ration of spatial templates. Therefore, the replicates are respectively mapped to di�erent

kernel subspaces. Kernel statistics, in general, means either the empirical statistics from the

mapped elements or the expected statistics in the kernel subspaces, such as empirical mean

and expectation. Equation (6.1) suggests that replicates associated with di�erent spatial

templates would be mapped to kernel subspaces with di�erent kernel functions. The kernel

statistics associated with di�erent spatial templates, thus come from di�erent subspaces and

need to be combined appropriately to get the aggregated kernel statistics for the inferring of
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underlying probability distribution afterwards.

For the convenience, the followed notation is de�ned to clarify the relations between the

spatial templates. Given a templateT = f u0; u0 + h1; : : : ; u0 + hN g as a set of locations

with the center node denoted ascenter(T ) = u0, the size of theT is the same as the number

of the elements in it and is denoted asjT j, i.e., jT j = N + 1 here. Since the replicates of

the data events are matched by their relative positions to the center node regardless of the

location of the center node, the relations between the spatial templates are de�ned in the

same manner. LetT a = f ua; ua + h1; : : : ; ua + hNa g and T b = f ub; ub + h1; : : : ; ub + hNbg

be the two spatial templates under consideration, then the relations betweenT a and T b are

the following:

(1) If jT aj = jT bj; 8ta 2 T a; 9! tb 2 T b, such that ta � center(T a) = tb � center(T b), then

T a and T b have the same geometry con�guration and the identical relation is expressed as

T a = T b.

(2) If jT aj � j T bj; 8ta 2 T a; 9! tb 2 T b, such that ta � center(T a) = tb � center(T b), then T b

contains the geometry con�guration as a subset and the relation is expressed asT a � T b or

T b � T a. If jT aj < jT bj strictly, the above relation is expressed asT a � T b or T b � T a.

Suppose that the spatial template of the conditioning data isT = f u0; u0 + h1; : : : ; u0 + hN g

and that the nodes are ordered increasingly according to their distances from the center.

By dropping the furthest node from the templateT each time, a hierarchical set of spatial

templates can be de�ned as

vN = T � vN � 1 = T f u0 + hN g � ; : : : ; � v1 = f u0; u0 + h1g � v0 = f u0g; (6.2)

and the corresponding sets of random variables as

V0 = f Z0g � V1 = f Z0; Z1g � ; : : : ; � VN = f Z0; Z1; : : : ; ZN g: (6.3)

These spatial templates consist of the possible spatial con�gurations of the partially matched

replicates considered in this paper and the entire set is denoted asG = [ N
i =1 vi . Let the

training data from the replicates associated with theG be denoted asG. For any spatial

template v 2 G, the set of random variables associated withv is denoted asV and the

replicates corresponding to the spatial templatev is noted asGv. The size of the setGv

is noted asjGv j representing the number of replicates associated with the spatial template

v. And let the total number of replicates associated withG be jGj. An arbitrary element
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� t;v 2 Gv, represents a sequence of attribute values as

� t;v = f � t;i : i 2 vg; (6.4)

where � t;i are the values from the replicate at the location of nodei in the spatial template

v and 1 � t � jG v j corresponds to one of the replicates. The element mapped to the

corresponding kernel subspace from� t;v can be represented as

� [� t;v ] = K V (� t;v ; �); (6.5)

which is a function element in the kernel space. With the replicates inGv mapping to the

kernel space with kernelK V , the empirical kernel mean� [Gv] can be de�ned as

� [Gv] =
1

jGv j

jGv jX

t=1

� [� t;v ] =
1

jGv j

jGv jX

t=1

K V (� t;v ; �): (6.6)

For any two nodesv; v0 2 G and v0 � v, there would be a hereditary subset of replicates

which are generated from the projection ofv0 onto v by restricting the training data Gv0 to

the spatial template v, and denote this hereditary subset asGv0jv. Obviously, Gv0jv = Gv if

v0 = v. Given that v0 � v, the projected elements in the original data space, their mapped

elements in the kernel spaces and the kernel statistics can be de�ned similarly as

� t;v 0jv = f � t;i : i 2 v0jv; 1 � t � jG v0jg; (6.7)

� [� t;v 0jv] = K V (� t;v 0jv; �); (6.8)

� [Gv0jv] =
1

jGv0j

jGv 0jX

t=1

� [� t;v 0jv] =
1

jGv0j
j

jGv 0jX

t=1

K V (� t;v 0jv; �): (6.9)

Then, the aggregated kernel statistics� [G] based on the replicates associated to the ensemble

of various spatial templates in G can be de�ned as

� [G] =
NX

n=1

1
P N

i = n jGvi j
�

� NX

i = n

�
� [Gvi jvn ] � � [Gvi jvn � 1 ]

�
jGvi j

�

: (6.10)

Combined with Eq. (6.6), it can be also written as
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� [G] =
NX

n=1

1
P N

i = n jGvi j
�

� NX

i = n

jGv i jX

t=1

h
K Vn (� t;v i jvn ; �) � K Vn � 1 (� t;v i jvn � 1 ; �)

i �

: (6.11)

6.3.2 Sequential simulation via statistical learning with aggregated kernel statis-

tics

The general concept of statistical learning refers to learning any functional dependency from

certain data set without prior knowledge of the data [110, 134]. Herein, the statistical

learning framework for the high-order sequential simulation, speci�cally, means to learn the

conditional probability distribution based on the observed replicates from the sample data.

The learning procedure can be achieved conveniently through an optimization algorithm in

the SLM-kernel space. In fact, the kernel mean de�nes a feature map to embed probability

distribution to the associated kernel space [135, 136, 138]. The empirical mean in the kernel

space embeds the empirical probability distribution. Similarly, the expected mean in the

kernel space given a certain probability distribution embeds the distribution as an element

in the kernel space. Minimizing the distance between the two above-mentioned elements in

the kernel space leads to matching of high-order spatial statistics of the target distribution

to those of the available data with the kernel space de�ned by the SLM-kernel.

Equation (6.11) de�nes a feature map through the aggregated kernel statistics from an en-

semble of kernel subspaces. Suppose that the conditioning data is� = f � 1; : : : ; � N g, and

de�ne the conditioned kernel statistics� [G; �] as

� [G; �] =
NX

n=1

1
P N

i = n jGvi j
�

� NX

i = n

jGv i jX

t=1

h
K Vn (� t;v i jvn ; �) � K Vn � 1 (� t;v i jvn � 1 ; �)

i �

(6.12)

Furthermore, marginalization of � [G; �] can be de�ned as

� [Gj�] =
� [G; �]

R
[� 1;1] � [G; �] dz0

: (6.13)

The emphasis herein, is to derive a feasible computational model for the marginalized kernel

statistics, � [Gj�] , de�ned in Eq. (6.13). An interesting property of SLM-kernel from its

de�nition is

K Vi = K Vi nVi � 1 K Vi � 1 ; i = 1; : : : ; N; (6.14)

which means the high-order dimensional kernels could be built incrementally from the lower-

dimensional ones as

K VN = K VN nVN � 1 K VN � 1nVN � 2 � � � K V2nV1 K V1 : (6.15)
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Obviously, Vi nVi � 1 = f Z i g is a single element set and the kernelK Vi nVi � 1 can be written as

K Vi nVi � 1 (x i ; yi ) =
WX

w=0

(w +
1
2

)Pw(x i )Pw(yi ): (6.16)

Note the orthogonal property of Legendre polynomials, it is easy to derive that

Z

[� 1;1]
K V0 (z0; �)dz0 = 1; (6.17)

and therefore, there is

Z

[� 1;1]
� [G; �] dz0 =

NX

n=1

1
P N

i = n jGvi j
�

� NX

i = n

jGv i jX

t=1

h
K Vn nV0 (� t;v i jvn ; �) � K Vn � 1nV0 (� t;v i jvn � 1 ; �)

i �

:

(6.18)

According to Eq. (6.16), the result of Eq. (6.19) can be obtained from the intermediate

result of computing Eq. (6.12). In the end,� [Gj�] an be expressed in the form as

� [Gj�] =
jGjX

t=1

� tK V0 (� t;0; z0); (6.19)

where � t are constant coe�cients that can be computed through Eqs. (6.13) and (6.18).

Equation (6.19) is a linear combination of elements in kernel space determined by kernelK V0 ,

and therefore marginalization of the aggregated kernel statistics,� [Gj�] , embeds the empirical

conditional probability distribution to the corresponding kernel space with kernelK V0 . Given

a convex spaceP0 as the solution space of the target distribution̂p and consider the training

data replicates inG, the two elements embedding into the kernel space H associated to kernel

K V0 are represented as� K V0
[G] and � K V0

[p̂], corresponding to the empirical distribution and

the target distribution, respectively. The target conditional probability distribution p̂ can be

solved by the below minimization problem as

min
p̂

k � K V0
[G] � � K V0

[p̂] k2
H : (6.20)

The minimization in Eq. (6.20) can be expanded to a quadratic programming problem by

noticing that the inner products can be expressed as kernel functions. The details to solve

the problem givenp̂ as a convex combination of certain prototype distributions, is established

in Yao et al. [148] and thus will not be repeated here. It should be noted that although Eq.

(6.19) appears in a similar form as Eq. (16) in Yao et al. [148], the coe�cients� t in Eq.

(6.19) depend on the aggregated kernel statistics with di�erent spatial templates, which is
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critical for the utilization of information from partially matched replicates.

Figure 6.1 Tolerances along each distance vector of the spatial template for retrieving repli-
cates from the samples

With the computation of aggregated kernel statistics of various spatial templates and the

auxiliary procedure to estimate the conditional probability distribution, the sequential sim-

ulation method via statistical learning with aggregated kernel statistics can be described as

the following:

(1) Transform the sample data to the interval [-1, 1] of Legendre polynomials.

(2) Initialize a random path to visit the simulation grid.

(3) For each node to be simulated, �nd the conditioning data as the data event. The nodes

from the spatial template of the data event are ordered increasingly from their distances

to the center node.

(4) For each distance vector in the spatial template, allow certain angle tolerance� and lag

tolerance � h as well as a bandwidthb to �nd matched node from the samples (Fig.

6.1). Start from the distance vector nearest to the center node and go through all the

distance vectors orderly until no matching node is found from the samples. Scan the

entire sample data set and store the replicates to separate lists according to the number

of nodes matched to the spatial template of the data event.

(5) Compute the aggregated kernel statistics from the partially matched replicates retrieved

in Step (4) following Eq. (6.11) and (6.12).
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(6) Compute the marginalized kernel statistics de�ned by Eq. (6.13) and the feature map

� [Gj�] de�ned by Eq. (6.19), solve the minimization problem in Eq. (6.20) to get an es-

timated conditional probability distribution. Draw a random sample from the estimated

probability distribution and add the value to the simulation grid.

(7) Repeat from Step (3) until all the nodes of the simulation grid are visited.

(8) Back transform the simulate grid from the interval [-1, 1] to generate a realization in the

original data space.

6.4 Case Study with a Synthetic Data Set

The synthetic data is a horizontal section extracted from a fully known reservoir data set

of porosity [129]. Two di�erent sample data set are drawn from the section representing

di�erent sampling density. The data set DS-1 contains samples randomly drawn from 200

locations and the data set DS-2 has 400 samples with regular spacing. Figure 6.2 shows the

samples and Fig. 6.3 displays the exhaustive image.

(a) (b)

Figure 6.2 Two di�erent sample data set. a DS-1 with 200 randomly drawn samples, b DS-2
with 400 samples

Two realizations of the proposed high-order simulation method using DS-1 and DS-2 is

demonstrated in Fig. 6.4a, b and Fig. 6.4c, d respectively. The same random paths are

used to for the two realizations for comparison of the impact of sampling density on the

simulation method. The visual comparison with the exhaustive image shows that both re-

alizations reproduce the preferential channels along the vertical direction. This shows that

the proposed method has the generalization capacity to provide stability of simulation with
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Figure 6.3 A horizontal section of porosity attribute from a reservoir, acting as the exhaustive
image

relatively sparse data. On the other hand, the realizations using DS-2 as the sample data

retains more �ne structures as well as the overall spatial connectivity than the other realiza-

tion. The reason is that sparser data set in general has less replicates for small structures

and, thus, the estimated high-order spatial statistics have to be generalized to stabilize the

statistical inference in the situation that the replicates are less. Generally speaking, as the

amount of data increases, the models tend to have more variations in �ner spatial structures

and vice versa.

To further demonstrate the TI-free feature of the proposed simulation method, two realiza-

tions of the high-order simulation based on statistical learning using a TI from Yao et al. [148]

are displayed in Fig. 6.4e, f for comparison. The results show that the TI adds complemen-

tary information to �ner structures of the realizations, however, the additional information

from the TI seems less compliant to the ground truth when the samples are relatively sparse.

As the samples are relatively dense, the contribution of the additional information from the

TI also becomes less important since the TI-free simulation method can generate more details

from the available sample data. The comparison of histograms of 10 realizations with DS-1

and DS-2 as the sample data with the histograms of the two sample data sets, as well as

the exhaustive image, is demonstrated in Fig. 6.5a, b. In both cases, the histograms of the

realizations follow the histograms of the sample data sets, whereas the one with dense data

resembles more to the exhaustive image, as expected.

The variograms of 10 realizations based on the proposed simulation method using the two

di�erent sample data sets are shown in Fig. 6.6, showing that the simulations reproduce
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4 Realizations of TI-free high-order simulation with the sample data DS-1 in a, b
and with the sample data DS-2 in c, d; for comparison, realizations of high-order simulation
using a TI with the sample data DS-1 in e and with the sample data DS-2 in f (from [148])
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(a) (b)

Figure 6.5 Histograms of the sample data, the exhaustive image and 10 realizations using a
DS-1 and b DS-2 as the sample data, respectively

the variograms of the samples. The third-order cumulant maps of the sample data and

the corresponding realizations with the proposed simulation method are shown in Fig. 6.7.

Furthermore, the fourth-order cumulate maps of the sample data and the realizations are

displayed in Fig. 6.8 for comparison. In this example, the third-order cumulant maps are

calculated based on a spatial template along X and Y axes with varied lengths on both

directions. The spatial templates of the fourth-order cumulants include extra distance vectors

along the diagonal direction in addition to the two axes directions. The fourth-order cumulant

maps are also scaled by their deviations for better contrast of the patterns. In general,

these high-order cumulant maps represent more complex spatial patterns which characterize

interrelations among multiple points. The cumulant maps of two representative realizations

from the high-order simulation based on statistical learning using a TI are displayed in

the bottom of Fig. 6.7 and Fig. 6.8 for comparison with the results from the proposed

method. The comparisons of the cumulant maps suggest that the proposed method is able

to reproduce the high-order spatial statistics of the sample data as well as the exhaustive

image. The results above show that the proposed approach leads to a reliable inference on

the underlying random �eld model, given a reasonable number of samples available and thus

avoids the potential statistical con�icts using a TI to carry out the high-order simulation.

6.5 Conclusions

This paper presents a high-order sequential simulation approach based on statistical learning

with aggregated kernel statistics from a set of sample data. Regarding the sparsity of the

sample data used to infer the high-order spatial statistics of the underlying random �eld
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(a) (b)

(c) (d)

Figure 6.6 Variograms of 10 realizations. a and b, along X and Y axis with DS-1 as the
sample data; c and d, along X and Y axis with DS-2 as the sample data
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(a) (b) (c)

(d) (e)

(f) (g)

(h) (i)

Figure 6.7 Third-order cumulant maps of a DS-1, b DS-2, c exhaustive image, d, e realizations
in Fig. 4a, b with DS-1 as the sample data, f, g realizations in Fig. 4c, d with DS-2 as the
sample data, h, i realizations of high-order simulation using a TI with DS-1 and DS-2 as the
sample data, respectively (from [148])
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(a) (b) (c)

(d) (e)

(f) (g)

(h) (i)

Figure 6.8 Fourth-order cumulant maps of a DS-1, b DS-2, c exhaustive image, d, e realiza-
tions in Fig. 4a, b with DS-1 as the sample data, f, g realizations in Fig. 4c, d with DS-2 as
the sample data, h, i realizations of high-order simulation using a TI with DS-1 and DS-2 as
the sample data, respectively (from [148])
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model, the partially matched replicates of the data events encountered in the simulation are

mapped into kernel subspaces. The latter kernel subspaces are de�ned by di�erent kernel

functions corresponding to di�erent con�gurations of spatial templates to create an ensemble

set of elements in kernel subspaces. The ensemble of elements in the kernel subspaces are

aggregated to construct the new concept of aggregated kernel statistics. The aggregated

kernel statistics are crucial in building a new feature map to consider partially matched

replicates together to the same kernel space of the conditional probability distribution. In

addition, the statistical learning framework for high-order simulation o�ers the generalization

capacity for sparse data learning. The combination of the aggregated kernel statistics with

the statistical learning thus provides a new way to derive the proposed TI free high-order

simulation method. The proposed method tackles the issue of statistical con�icts between

the sample data and the TI. The case study from the fully-known data set shows that the

proposed method reproduces both lower-order and higher-order spatial statistics in generated

realizations. Even with relatively sparse samples, the proposed method retains the main

spatial patterns of the available data, which is characterized by high-order spatial statistics.

It should be noted that the concept of aggregated kernel statistics is quite �exible and can

accommodate information from di�erent data sources with various spatial con�gurations.

This represents a potential direction for future research.
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CHAPTER 7 ARTICLE 4: LEARNING HIGH-ORDER SPATIAL

STATISTICS AT MULTIPLE SCALES: A KERNEL-BASED STOCHASTIC

SIMULATION ALGORITHM AND ITS IMPLEMENTATION

Abstract: This paper presents a learning-based stochastic simulation method that incor-

porates high-order spatial statistics at multiple scales from sources with di�erent resolutions.

Regarding the simulation of a certain spatial attribute, the high-order spatial information

from di�erent sources is encapsulated as aggregated kernel statistics in a spatial Legendre

moment kernel space, and the probability distribution of the underlying random �eld model

is derived by a statistical learning algorithm, which matches the high-order spatial statistics

of the target model to the observed ones. In addition, a related software is developed as

the SGeMS plugin. Case studies are conducted with a known data set and a gold deposit,

demonstrating reproduction of high-order spatial statistics from the available data, as well

as practical aspects in mining applications.

Keywords: Stochastic simulation; High-order spatial statistics; High-order simulation

software; Kernel; Statistical learning

7.1 Introduction

High-order stochastic simulation methods are amongst the latest developments in geosta-

tistical simulation, aiming to reproduce complex spatial patterns from the available data.

The spatial patterns represent the interaction of spatial attributes of certain natural phe-

nomena among multiple locations and they can be characterized by the high-order spatial

statistics de�ned in di�erent ways such as high-order spatial cumulants or high-order spa-

tial moments [11, 17, 91]. High-order simulation methods contrast with the multiple point

simulation approaches, where the multi-point interrelations are indirectly captured as either

the frequency of data events occurring at multiple locations [12, 57, 84, 122] or as similar-

ity measures amongst patterns [56, 60, 65�67]. Instead, the high-order simulation methods

explicitly build probabilistic models based on high-order spatial statistics. For instance, Leg-

endre polynomial expansion series are used to approximate the probability distributions of

spatial attributes where the expansion coe�cients are determined by computing the spa-

Submitted: Yao, L., Dimitrakopoulos, R., and Gamache, M. (2020). Learning high-order spatial statistics
at multiple scales: a kernel-based stochastic simulation algorithm and its implementation. Computers &
Geosciences. (Submitted).
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tial cumulants, leading to an early development of a high-order simulation algorithm known

as HOSIM [18, 19]. The concept of high-order spatial statistics has also been extended to

multiple variables to develop joint simulation of spatially correlated attributes [99]. The

probabilistic model of high-order simulation makes no parametric assumptions of the prob-

ability distribution and thus characterizes the non-gaussian and non-linear features of the

spatial attributes. The estimation of the probability distribution yields a numerical model

based on components linked to the empirical high-order spatial statistics calculated from the

available data. In practice, the input data for estimating the probability distribution may

impact the numerical stability of the related estimation. The available sample data alone

may not be su�cient to infer the high-order spatial statistics required and, thus, may in�u-

ence the numerical model. This limitation is alleviated with the use of a training image (TI)

as the complementary statistical analog [18]. Another approximation model of a high-order

simulation that shows substantial improvement with regards to numerical stability is found

in Minniakhmetov et al. [128]. The latter authors use the Legendre-like splines as the basis

functions for the approximation series, which leads to a better reproduction of spatial data

patterns, as compared to the previous HOSIM method.

A concern when using a TI as a statistical analog of the underlying random �eld model is the

possible statistical con�icts between the sample data and the TI. Yao et al. [148] propose a

statistical learning framework for high-order sequential simulation in a newly de�ned kernel

space; the related learning algorithm shows generalization capacity to comply with the in-

ferred model from the TI with the spatial statistics of the sample data, and thereby mitigates

the possible statistical con�icts. A spatial Legendre moment kernel is proposed in Yao et al.

[148] to de�ne the associated kernel space. The replicates of the data events (conditioning

data) retrieved from the available data are mapped into the spatial Legendre moment kernel

space by a feature mapping function. Thereafter, the so-called empirical kernel statistics are

de�ned by taking a sample average of the mapped elements in the kernel space correspond-

ing to the replicates. As a result, the empirical kernel statistics carried high-order spatial

statistics of the replicates. On the other hand, the target probability distribution from the

related random �eld model can be embedded into the same kernel space through the termed

expected kernel statistics. A kernelized learning algorithm is designed speci�cally to match

the expected kernel statistics to the empirical kernel statistics, which results in a simulation

model with a reproduction of high-order spatial statistics from the available data. Although

the proposed statistical learning framework is general, one limitation of the application in

Yao et al. [148] is that the replicates retrieved from the TI act as the only training data in the

related learning algorithm; this may in�uence the spatial continuity of the realizations given

that the statistical con�icts between the sample data and the TI are severe. Yao et al. [149]
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propose a TI-free high-order simulation method based on the statistical learning framework.

The concept of aggregated kernel statistics is de�ned such that the samples with di�erent

spatial con�gurations can be e�ectively utilized for statistical inference of the random �eld

model. A limitation of the above-mentioned TI-free simulation method is that the quality of

the realizations depends on the sampling density. While the sample data are relatively sparse,

the �ne-scale spatial structures of the spatial attributes of interest are not well represented.

The limitations found in previous simulation methods motivate the present research to pro-

pose a new type of aggregated kernel statistics, which aims to incorporate the high-order

spatial information at multiple scales. Speci�cally, the sample data are relatively sparse and

thus carry high-order spatial information at coarse scales. On the other hand, the TIs are

exhaustive and can provide high-order spatial information at �ner scales. The general idea

of the proposed aggregated kernel statistics in this paper is to exclude the in�uence of the

TI from deriving the high-order spatial statistics at coarse scales by only utilizing the sample

data, while complementing the high-order spatial information with TI. Thereafter, the aggre-

gated kernel statistics are utilized in the statistical learning framework for further inference

of the random �eld model. Although the present study considers only two di�erent scales

of data as the samples and the TI, the concept of the aggregated kernel statistics proposed

herein can be generalized to multiple scales. In addition, a high-order simulation program is

developed accordingly and described in this paper. The implementation is written in C++

language and is compatible to the SGeMS software.

In the following sections, Section 7.2 presents the high-order simulation method based on

statistical learning and the concept of the aggregated kernel statistics. Section 7.3 describes

a kernelized high-order simulation program and its implementation in C++ language. Sec-

tion 7.4 contains two di�erent case studies with a synthetic data set and at a gold deposit.

Conclusions are presented in Section 7.5.

7.2 Method

In this section, concepts of high-order sequential simulation are �rst outlined, followed by a

brief overview of the spatial Legendre moment kernel space. The concept of aggregated kernel

statistics at di�erent scales is then presented and utilized to develop a kernelized learning

algorithm.
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7.2.1 High-order sequential simulation

Suppose that the attributes of interest are modeled as a random �eldZ(u) whereu represents

locations at a certain spatial domain. The attributes at multiple locations within the spatial

domain comprise a multivariate probability distribution. The multivariate probability dis-

tribution can be decomposed into a sequence of conditional probability distributions so that

the random values can be sequentially drawn from the multivariate probability distribution

to generate the simulated realizations. Without loss of generality, the conditional probability

density functions (CPDF) can be approximated asf (z0j� 1; : : : ; � N ) given that the nodeZ0

to be simulated center atu0 and the conditioning data within its neighborhood located at

u1; : : : ; uN with the value of attributes corresponding to� 1; : : : ; � N . In terms of high-order

sequential simulation, the high-order spatial statistics are taken into account for approxi-

mating the CPDF f (z0j� 1; : : : ; � N ), and the conditioning data� 1; : : : ; � N are called as a data

event associated with a spatial template de�ned by distance vectors of locationu1; : : : ; uN

to the location u0 of the center node. The high-order spatial statistics are contained in the

replicates of a data event for inference. Note that the replicates of a data event in high-order

simulation methods are not necessary to have identical or similar attribute values to the data

event, but rather to have the same spatial template, i.e., the same data geometry. In general,

the replicates from the sample data correspond to spatial template at coarse scales and the

replicates from the TI provides spatial information at �ner scales because of the sparsity of

the sample data in contrast to the exhaustive TI.

7.2.2 Kernel space and spatial Legendre moment kernel

Suppose the original data space of the considered spatial attributes is represented by a

nonempty set E, then an elementx 2 E can be taken to a kernel spaceH by a so-called

feature mapping function � (x) : E ! H . The kernel spaceH is a Hilbert space with the

inner product de�ned by a positive de�nite kernel function K : E � E ! R whereR is the

set of the real numbers. Given a Hilbert spaceH with the kernel K , then for x; y 2 E and

the corresponding features� (x); � (y) 2 H , the inner product on H can be de�ned as

h� (x); � (y)i H = K (x; y): (7.1)

An interesting property with the kernel K is that the function � (x) : E ! H ; x 7! K (�; x) also

de�nes a feature map namely as reproduce kernel map or canonical feature map [111, 140].
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The kernel function K has the reproducing property as

hf (x); K (�; x)i H = f (x); (7.2)

8x 2 E and 8f 2 H , therefore there is

hK (�; x); K (�; y)i H = K (x; y): (7.3)

This kind of reproduce kernel map is adopted throughout this paper as the feature mapping

function from the original data space to the kernel space. It is obvious from the Eq. (7.3)

that the elements in the kernel space after the feature mapping from the original data space

have the similarity measure de�ned as the distances between each other through the kernel

function K .

The spatial Legendre moment kernel [148] allows to carry over the high-order spatial statistics

information from the original data space to the newly de�ned kernel space with the de�nition

as

K V (X ; Y ) =
NY

i =0

h WX

w=0

(w +
1
2

)Pw(x i )Pw(yi )
i
; (7.4)

whereK V is the kernel corresponding to the set of random variables associated with a spatial

template of N distance vectors, andPw is the Legendre polynomial of orderw.

7.2.3 Aggregating kernel statistics at di�erent scales

With the de�nition of spatial Legendre moment kernel in Eq. (7.4),the empirical kernel

statistics can be de�ned accordingly based on the sample average of the elements in the kernel

space mapped from samples in the original data space. The kernel functionK V depends on

the spatial template involved, and so as the kernel statistics from the available data are

related to the spatial templates of the data events. When both the sample data and the

TI are available for retrieving the replicates and inferring the kernel statistics, the replicates

from the two di�erent sources generally carry high-order spatial statistics information at

di�erent scales. Speci�cally, the sample data are relatively sparse that frequently the spatial

con�guration of the replicates from them could only partially match to the spatial template of

the data event, and theses replicates carry the spatial statistics at coarser scale with relatively

higher compliance to the underlying random �eld. On the contrary, the TI are exhaustive

data and the replicates from it can fully match the spatial template of the data event, thus

the replicates provide spatial statistics at �ner scale but possibly with less compliance to the

underlying random �eld model.
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Suppose that the spatial template of the data event be noted asv and the corresponding set

of random variables be noted asV. Let vs be the spatial template of the replicates of the

data event retrieved from the sample data and the associated set of random variables asVs,

vs and Vs are the subsets ofv and V, respectively. LetGvs be the set of replicates from the

sample data and the number of these replicates bens, the kernel statistics based onGvs can

be de�ned as

� [Gvs ] =
1
ns

nsX

i =1

K Vs (�
s
i;v s

; �); (7.5)

where � s
i;v s

is the vector of the attribute values corresponding to the replicates in setGvs .

The kernel statistics of the replicates from the TI can be de�ned separately in a similar way.

The motivation of aggregating kernel statistics at di�erent scales is to utilize the part of

high-order spatial information of the replicates from the sample data and in the meanwhile

complement the rest part of high-order spatial information using the replicates from the TI. In

other words, the spatial templatev is divided into two sub-templatesvs and vt respectively

corresponding to the sample data and the TI, and so are the set of random variables are

divided into Vs and Vt , respectively. Therefore, there are

v = vs [ vt ; (7.6)

and

V = Vs [ Vt : (7.7)

The above subdivision regarding the spatial template also leads to kernel subspaces with

kernelsK Vs and K Vt . Suppose the ensemble of replicates from both the sample data and the

TI denote as a setGv and let nt denote the number of replicates from the TI. The aggregated

kernel statistics combining the replicates both from the TI and the sample data at di�erent

scales are de�ned as

� [Gv] =
1
ns

nsX

i =1

K Vs (�
s
i;v s

; �) +
1
nt

n tX

j =1

[K V (� t
j;v ; �) � K Vs (�

t
j;v t

; �)]; (7.8)

where� s
i;v s

; � t
j;v and � t

j;v t
represent the replicates from the sample data and the replicates from

the TI with spatial template v and vt , respectively.
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7.2.4 Kernelized high-order sequential simulation algorithm

The high-order spatial information from both the sample and the TI can be represented by

the aggregated kernel statistics at two scales. In terms of high-order sequential simulation,

the target is to obtain conditional probability distributions which match the high-order spa-

tial statistics of the available data. This matching of high-order spatial statistics can be

conveniently achieved by a statistical learning algorithm in kernel space. Suppose that the

target probability density function p̂ lies in the convex space of certain prototype probability

density functionspi as

p̂ =
nX

i =1

� i pi ; (7.9)

where
nP

i =1
� i = 1 and � i � 0; 81 � i � n. It is straightforward that the expected kernel

statistics with regard to the probability distribution can be de�ned as

� 0[p̂] = Ez0 � p̂[K 0(z0; �)]; (7.10)

where Z0 is the center node to be simulated andK 0 is the corresponding kernel function.

The aggregated kernel statistics de�ned in Eq. (7.8) can be projected to the same kernel

space through marginalization, and therefore the expected kernel statistics can be matched

to the observed kernel statistics from the available data simply by minimizing the distance

of two elements in the kernel space. Given that the conditioning data as� = f � 1; : : : ; � N g

and the evaluation of� [Gv] on � as � [Gv j�] , the projection of the aggregated kernel statistics

can be de�ned as

� 0[Gv j�] =
� [Gv; �]

R
[� 1;1] � [Gv; �] dz0

: (7.11)

Speci�cally, the statistical learning of high-order spatial statistics leads to a minimization

problem

min
p̂

k � 0[Gv j�] � � 0[p̂] k2
H : (7.12)

The minimization in Eq. (7.12) amounts to solve a quadratic problem in a general form [136]

as

min
�

1
2

� T (Q + � I ) � � qT �

s.t.
nX

i =1

� i = 1

� i � 0; 81 � i � n; (7.13)
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where � is a regularization constant andI is the identity matrix. Matrix Q and vector q

di�er as the kernel function varies. For deriving the entries of the matrixQ and vector q,

as well as solving the quadratic programming problem in the SLM-kernel space, the readers

are referred to Yao et al. [148].

As long as the target conditional probability density functions are determined through the

above learning process, the rest of simulation follows the general procedure of sequential

simulation. Hence, the kernelized high-order sequential simulation algorithm can be described

as follows

(1) Transform sample data and TI to the domain of Legendre polynomials, the interval

[� 1; 1].

(2) Generate a random path to visit the simulation grid.

(3) Find the conditioning data inside the neighborhood of the current node to simulate as

the data event, the spatial template of the data event is used to retrieve replicates from

the sample data and the TI.

(4) Compute the aggregated kernel statistics de�ned in Eq. (7.8) from the replicates retrieved

from the sample data and the TI.

(5) Match the kernel statistics of the target CPDF to the aggregated kernel statistics and

build the quadratic programming problem through Eq. (7.12) and (7.13). Solve the

quadratic programming problem to derive the target CPDF.

(6) Generate a random value from the target CPDF and add it to the simulation grid.

(7) Repeat from steps (3) to (6) until all the nodes on the simulation grid are simulated.

(8) Back transform the node attributes of the simulation from the interval[� 1; 1] to the

original data space.

7.3 A Kernelized High-Order Simulation Program

The kernelized high-order simulation program is developed as a software plugin compatible

with the SGeMS platform [122]. The program is written in C++ language and follows the

generic programming paradigm adopted in the design of GsTL, a geostatistical template

library [150]. The main work�ow contains three major C++ classes which are described as

the following.
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7.3.1 Class kernelsim

This class is the application class communicating with the SGeMS platform through the

user parameters, as well as running the simulation algorithm from the GUI. The class is

derived from a prede�ned interface from the SGeMS platform so that it is compatible to

the function calling convention of SGeMS. The object from the class kernelsim calls the

sequential simulation function to start the high-order simulation procedure. The parameters

of the proposed simulation algorithm can either be input from the GUI by the user or can

be loaded from an XML �le. The parameters are described in Table 7.1.

Table 7.1 Parameters description

Parameter Range
Maximum order of Legendre polynomials between10 � 20
Maximum number of conditioning data 10 � 30

Number of replicates from the TI
-1: take all the replicates

n>0: n replicates from the TI

Hard data usage
0: only use hard data
1: incorporate both the hard data and the TI
-1: not using the hard data (only use the TI)

Angle tolerance 15� � 45�

Lag tolerance Application dependent
Bandwidth Application dependent
Dimensions of searching window Application dependent
Number of prototype distributions 10 � 20
Number of divisions on the interval 100� 200
Scale parameter of the prototype distribution 0:01 � 0:05

7.3.2 Class SLM_kde_estimator

This class serves as the role to estimate the conditional probability density function through

the learning algorithm. The class SLM_kde_estimator �rst calls the other function class

to process the replicates which returns the aggregated kernel statistics. The main functions

inside the class include the selection of the prototype distributions, construction of quadratic

programming problem in Eq. (7.13), solving the quadratic programming problem to obtain

the target conditional probability density function.
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7.3.3 Class replicate_processor

This class is designed for processing the replicates. The conditioning data, the sample data,

and the TI are used as input to this class. The spatial templates of the data events are

constructed from the spatial con�guration of the conditioning data. There are two major

member functions de�ned in this class. The �rst function retrieves the replicates from both

the sample data and the TI, respectively. The other function computes the aggregated kernel

statistics from the retrieved replicates according to Eq. (7.8). The aggregated kernel statistics

are passed to the object of the class SLM_kde_estimator to estimate the target probability

density function.

7.4 Numerical Results

Two separate case studies are carried out to test the developed simulation program. The �rst

case study is conducted with a synthetic data set to verify the performance of the proposed

simulation method. The other case study carries out the stochastic orebody modeling at a

gold deposit, aiming to test the proposed method in a three-dimensional space, as well as its

practical aspects in real-life mines.

7.4.1 Case study with a synthetic data set

The porosity attributes from the Stanford V Reservoir data set [129] are used to conduct the

simulation in this case study. Speci�cally, two sections are extracted from the data set and

the sections consist100� 100 cells. One section is regarded as the exhaustive image where

200 points are randomly drawn from this image. The other section is rotated45� clockwise

so that the channels have distinct preferential directions from the exhaustive image after the

rotation. The rotated section acts as the TI in this case study to represent the situation of

the statistical con�icts existing between the sample data and the TI. The exhaustive image,

the TI and the sample data are shown in Fig. 7.1.

Two realizations using the above sample and the TI are displayed in Fig. 7.2. The vi-

sualization of the simulated results demonstrates good reproduction of the channels in the

preferential orientation along the vertical direction from the exhaustive image. In addition,

10 realizations are generated to evaluate the overall performance of the simulation method

in reproducing the low-order statistics. The latter includes the proportions and the second-

order spatial statistics from the sample data, where the histograms and variograms of the 10

realizations are compared with those of the sample data, the TI and the exhaustive image,

as shown in Fig. 7.3 and Fig. 7.4, respectively. The comparison of the histograms shows
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(a) (b)

(c)

Figure 7.1 a Exhaustive image; b training image; c sample data drawn from the exhaustive
image
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that the proposed simulation method has a reasonable reproduction of proportions from the

sample data as well as the exhaustive image. The comparison of variograms clearly shows

that the simulated realizations tend to have the similar second-order spatial statistics to the

sample data instead of the TI. A further comparison of the third- and fourth- order cumulant

maps of two separate realizations with those of the sample data, the TI and the exhaustive

image are illustrated in Fig. 7.5 and Fig. 7.6, respectively. The spatial template used in the

third-order cumulant maps includes directions along the X-axis and Y-axis and the spatial

template of the fourth-cumulant maps includes an additional direction along the diagonal.

The fourth-order cumulant maps are normalized to visually highlight the spatial patterns.

Signi�cant di�erence can be seen between the cumulant maps of the TI and those of the

sample data and e exhaustive image. The similarity between the cumulant maps of the real-

izations and the exhaustive image implies that the simulation method is able to mitigate the

statistical con�icts between the samples and the TI, maintaining reasonable reproduction of

both low-order and high-order spatial statistics from the sample data.

(a) (b)

Figure 7.2 Two simulated realizations using the samples and the TI shown in Fig. 7.1

7.4.2 Case study at a gold deposit

The case study at a gold deposit is presented here to demonstrate the practical aspects

of the developed simulation program in stochastic orebody modeling. The gold deposit

contains samples spatially distributed in 407 exploration drill holes as shown in Fig. 7.7a.

The samples are composited to 10 m in length. The simulation grid is de�ned as blocks of

size5m � 5m � 10m. The TI is generated from blast-hole data in a mined-out area of the

deposit, and a cross-section is shown in Fig. 7.7b.
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Figure 7.3 Histograms of 10 simulated realizations using the samples and the TI shown in
Fig. 7.1

(a) (b)

Figure 7.4 Variograms of 10 simulated realizations along a X-axis and b Y-axis, using the
samples and the TI shown in Fig. 7.1
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(a) (b)

(c)

(d) (e)

Figure 7.5 Third-order cumulant maps of a sample data; b exhaustive image; c TI; d realiza-
tion in Fig. 7.2a; e realization in Fig. 7.2b
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(a) (b)

(c)

(d) (e)

Figure 7.6 Fourth-order cumulant maps of a sample data; b exhaustive image; c TI; d real-
ization in Fig. 7.2a; e realization in Fig. 7.2b
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(a) (b)

Figure 7.7 a Drill hole samples at a gold deposit; b TI derived from the blast hole data in an
adjacent area

Cross-sections of two di�erent realizations are shown in Fig. 7.8. The histograms of 10 di�er-

ent realizations are shown in Fig. 7.9 and the comparison shows that the simulation method

reproduces the histogram of the Au grades from the drill hole samples. The variograms of

the same set of 10 realizations are shown in Fig. 7.10. The comparison results also show

that the variograms of the simulated realizations resemble more closely the variograms of

the sample data, instead of those of the TI. Fig. 7.11 shows the comparison of third-order

cumulant maps of the two realizations displayed in Fig. 7.8 to the third-order cumulant

maps of the sample data and the TI. The fourth-order cumulant maps are compared in the

same manner and are shown in Fig. 7.12. Both the third-order or the fourth-order cumulant

maps demonstrate distinct patterns compatible with the corresponding cumulant maps of

the sample data. The high-order spatial information from the TI is only partly incorporated

to complement the �ne spatial structures of the stochastic orebody models generated with

the proposed simulation method. Therefore, the high-order spatial statistics from the sim-

ulated realizations retain the main features from the sample data, reducing the in�uence of

the possible statistical con�icts from the TI.

7.5 Conclusions

The present paper presents an extension of the high-order simulation method based on the

statistical learning framework [148]. A modi�ed concept of aggregated kernel statistics is

proposed to incorporate the high-order spatial information at two di�erent scales from the

sample data and the TI. Speci�cally, the aggregated kernel statistics proposed herein contain
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(a) (b)

Figure 7.8 Two simulated simulations using the sample data and the TI shown in Fig. 7.7

the high-order spatial information at the coarse scales from the sample data with high-order

spatial information at the �ner scales complemented by the TI. These aggregated kernel

statistics are utilized in a kernelized learning algorithm to develop the high-order simulation

method, which incorporates high-order spatial statistics from both the sample data and the

TI. Although the present study only considered the data at two di�erent scales, the proposed

aggregated kernel statistics can be easily extended to scales of more than two, given that the

resolutions of data sets at di�erent scales progressively increase. In practice, it is suitable

for applications where data are progressively expanding along certain time periods. A high-

order simulation program based on the above paradigm is developed and described. The

simulation program is integrated into the SGeMS platform for a user-friendly parameter

selection and visualization in three-dimensional space. This simulation program is utilized

here to carry out two di�erent case studies. The �rst case study with the synthetic data set

demonstrates the capacity of the proposed simulation method in reproducing the low- and

high-order spatial statistics from the sample data, while signi�cantly mitigating the statistical

con�icts between the samples and the TI. The study using a gold deposit shows the practical

aspects of applying the simulation program to simulate pertinent properties of actual mineral

deposits.

7.6 Computer Code Availability

� Name of code: kernelsim

� Developer: Lingqing Yao

� Contact details: COSMO � Stochastic Mine Planning Laboratory, Department of Min-
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Figure 7.9 Histograms of 10 simulated realizations using the samples and the TI shown in
Fig. 7.7

ing and Materials Engineering, McGill University, 3450 University Street, Montreal,

QC H3A 2A7, Canada

� E-mail: yaolingqing@gmail.com

� Year �rst available: 2020

� Hardware required: run on a computer with 4 cores (2.4 GHz each) and 8 GB.

� Software required: Needs SGeMS software

� Program language: C ++

� Program size: 122 kb

� Details on how to access the source code: the source �les of kernelsim can be downloaded

from github: https://github.com/yaolq/kernelsim
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(a) (b)

Figure 7.10 Variograms of 10 simulated realizations along a E-W and b N-S direction, using
the samples and the TI shown in Fig. 7.7
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(a)
(b)

(c) (d)

Figure 7.11 Third-order cumulant maps of a sample data; b TI; d realization in Fig. 7.8a; e
realization in Fig. 7.8b
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(a) (b)

(c) (d)

Figure 7.12 Fourth-order cumulant maps of a sample data; b TI; d realization in Fig. 7.8a;
e realization in Fig. 7.8b
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CHAPTER 8 GENERAL DISCUSSION

Apart from the method developments in the aforementioned chapters, this chapter stresses

certain more general implications from the proposed statistical learning framework for high-

order stochastic simulation.

The early development from Parzen [112] proposes probability density estimation in the

kernel-like form as

f n (z) =
1
n

nX

i =1

K h(z � zi ); (8.1)

whereK h corresponds to the so-called Parzen kernel,zi are the samples and the parameter

h is called the window width. The derivation of the new computational model for high-order

simulation in Chapter 4 resembles the above kernel-like form (ref. Equation (4.18)), while

the kernel is de�ned as the spatial Legendre moment kernel (see Equation (5.6)). Notable is

that the derivation of the spatial Legendre moment kernel is general and thus can be easily

extended to develop kernels based on other type of orthogonal bases.

Interestingly, the second-order covariance function is also positive de�nite and therefore de-

termines a kernel. The covariance kernel de�nes a kernel Hilbert space as the dual of the

random �eld model as discussed in Wahba [117]. Furthermore, the minimum variance linear

unbiased estimator of a spatial attribute given a set of conditioning data can be written as a

dual expression in the Hilbert space with the related covariance kernel [117], which is called

dual kriging in terms of geostatistical theory [26]. In this sense, the spatial Legendre moment

kernel proposed in this thesis has clearer meaning of de�ning a kernel space which carries

higher-order spatial statistical information than the covariance kernel space.

From the machine learning point of view, the proposed statistical framework for high-order

simulation can be categorized as generative model [151] since the probability distributions

are learned from the available data. Typically the generative models assume the underlying

distribution over the data has a speci�c parametric form, and parameters of interest are

estimated from the data, such as the maximum likelihood and other methods [152]. The pro-

posed statistical framework herein, however, does not assume any speci�c form of probability

distribution and thus provides a non-parametric generative model for developing the high-

order simulation methods. It is obvious to appreciate the di�erence between the proposed

statistical framework and the traditional second-order stochastic simulation based on Gaus-

sian random �eld models by noticing the non-parametric feature of the former. However, the

more fundamental element of the present developments in this thesis is an active learning
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process to minimize the gap between the observed high-order spatial statistics and the target

random �eld model. As shown in Figure 8.1, the high-order spatial information is extracted

and observed from the available data, and the target probability distribution is selected from

a given solution space by the statistical learning process. Although the previous high-order

simulation methods based on the approximation of probability distribution by orthogonal

polynomial series are also non-parametric, a distinction is that the learning mechanism plays

more signi�cant role in the simulation framework presented in this thesis. As a result, the

solution space of the target probability distribution is relatively independent from the ob-

servation space of high-order spatial statistics. As an example to show the above-mentioned

distinction, the high-order simulation method based on Legendre polynomial expansion se-

ries directly use the high-order spatial cumulants to compute the coe�cients of the expansion

series. It means that the approximation of the probability distribution is only optimal when

the solution space of the target distribution lies in the vector space of Legendre polynomials.

On the contrary, the statistical learning framework o�ers the �exibility to choose the obser-

vation space of high-order spatial statistics and the solution space of target distributions.

For example, the high-order spatial statistics can be derived from other type of polynomials

than Legendre polynomials while remain the solution space unchanged as the convex space

of certain prototype distributions. From this perspective, the proposed statistical framework

for high-order stochastic simulation is quite general and it is possible to accommodate the

new developments of methods by choosing di�erent de�nitions of high-order spatial statistics

or solution spaces for the random �eld models.

Figure 8.1 General learning statistical framework for high-order stochastic simulation
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CHAPTER 9 CONCLUSION AND RECOMMENDATIONS

The present thesis emphasizes on developing new high-order sequential simulation methods

driven by a learning process in kernel space. Along with development of the proposed meth-

ods, there are certain related new concepts, as well as the new statistical learning framework

presented in this thesis. In the following sections, the major contributions of this thesis are

summarized to highlight the advancement of knowledge regarding the high-order simulation

methods. Limitations of the current research is also discussed to indicate potential directions

of improvement. The future works are presented in the end.

9.1 Summary of Contributions

As proposed in Mustapha and Dimitrakopoulos [18], the original high-order simulation method

takes no assumption of speci�c probability distribution on the random �eld models and the

Legendre polynomial expansion series are used for approximating the probability density

functions encountered in the simulation. However, it requires an explicit expansion of the

Legendre polynomial series and an exhaustive computation of spatial cumulants over di�er-

ent orders. The high-order spatial cumulants have to be stored in a tree structure in memory,

adding to the complexity of implementation. In Chapter 4, a new computational model is

proposed to incorporate the spatial statistics of di�erent orders given a spatial template into

a uni�ed function, thus avoiding the memory storage and the explicit computation of high-

order spatial statistics and gaining higher computational e�ciency with simpli�ed recursive

algorithms. More importantly, it turns out that the proposed computational model can be

written in a kernel-like form.

Thus, a new kernel function is proposed in Chapter 5 to construct the so-called spatial Leg-

endre moment kernel space. The high-order spatial statistics from the available data are

encapsulated in the kernel statistics through the feature mapping. The target probability

distributions of the random �eld model are also embedded into the kernel space through the

concept of expected kernel statistics. Furthermore, a new statistical learning framework for

high-order sequential simulation is proposed and leads to a kernelized learning algorithm,

which matches the high-order spatial statistics of the target distributions to those of the

available data. The learning algorithm towards high-order simulation has the generalization

capacity, and thus addresses the numerical instability regarding the positiveness by approxi-

mating the probability density function via polynomial series. Notable is that the proposed

statistical learning framework is general and provides new perspectives looking into the high-
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order simulation. Under this framework, the high-order simulation methods are characterized

by the kernelization. The main step is to design pertinent kernel functions which entail high-

order spatial information of the available data, and thereafter a kernelized learning algorithm

being developed to achieve the optimal target distribution for generating the realizations.

The concept of aggregated kernel statistics is proposed in Chapter 6 to e�ciently utilize

the incomplete high-order spatial information from the sample data. As a result, the high-

order spatial statistics from the replicates with di�erent spatial con�gurations are combined

together through the aggregated kernel statistics. The aggregated statistics is incorporated to

the statistical framework, enabling a sparse data learning algorithm and leading to a training-

image free high-order simulation method. Chapter 7 proposes another type of aggregated

kernel statistics which incorporates the high-order spatial information at multiple scales from

the sample data and the TI. A high-order sequential simulation algorithm is developed based

on learning the high-order spatial information at multiple scales through the aggregated

kernel statistics. An implementation of the simulation method in C++ language is presented

and the related software compatible to SGeMS platform is developed and tested with practical

applications.

Various case studies are conducted to test the performances of the above-mentioned simula-

tion methods. The results show that all the proposed methods reproduce both the low-order

and high-order spatial statistics of the sample data, whereas the simulation methods based

on the statistical learning framework demonstrate better stability to mitigate the possible

statistical con�icts between the sample data and the TI. In terms of addressing the statis-

tical con�icts between the samples and the TI, several di�erent attempts are approached

from di�erent perspectives. In Chapter 5, it mainly relies on the generalization capacity of

the proposed statistical learning framework, so that the high-order spatial information from

the TI complies to the sample data and, thus mitigates the possible statistical con�icts. In

Chapter 6, the in�uence of the TI is eliminated through the sparse data learning method

based on the high-order spatial information from the sample data. In Chapter 7, the same

goal is achieved by the concept of learning high-order spatial statistics at multiple scales.

The high-order spatial statistics at coarse scales are incorporated into the simulation while

the �ner spatial structures are enhanced by the high-order spatial information at �ne scales

from the TI. The case studies at a gold deposit demonstrate the practical aspects of the

proposed simulation methods in stochastic orebody modeling, as a support of mine planning

decisions under uncertainty.
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9.2 Limitations

The main limitations of the high-order simulation methods developed in this thesis, are

related to the computational aspects in large-scale simulation, as a common problem in most

of the kernel methods. The reason is that in general, the operations with kernels are applied to

each sample, resulting in a data-dependant computation. Speci�cally in the present research,

the computation of the kernel statistics is carried out by averaging the features in the kernel

space mapped from each replicate retrieved from the sample data or the TI. Although the

computation related to each replicate is elementary, the total computational cost depends

on the number of replicates and, in turn, the size of the available data set. Retrieving the

replicates from the sample data is the other factor that in�uences the computational cost,

because the sample data are always distributed irregularly in space and constraints such as

the tolerances of the lags and the angles along the spatial templates have to be considered.

9.3 Future Research

The computational complexity of high-order simulation methods developed in this thesis

mainly depends on the computational e�ciency of kernel statistics. As pointed out in the

limitation, the computation cost of kernel statistics increases as the size of the data set

increases. Nevertheless, the related operations on each replicate is elementary and remain the

same regardless of the spatial locations. Thus, it is suitable to parallelize the computation of

kernel statistics by distributing the elementary operations on the replicates concurrently. It's

also possible to further parallelize the sequential simulation process by making subdivisions

on the simulation domains. Future research on prallelization of the simulation algorithms

could promisingly address the limitation of conducting the large-scale simulation based on

the proposed simulation methods.

Currently, this thesis focuses on high-order simulation of continuous attributes, such as the

metal grades at a mineral deposit. In mining practice, certain geological attributes, such

as lithologies, are described as categorical data. Since the core method of the proposed

statistical learning framework is the kernelization. Therefore, a future research could be

considered to design kernels carrying high-order spatial statistics from the categorical data,

and to develop the relevant high-order simulation methods for categorical data.

Moreover, because the natural attributes always coexist and interact with each other in

space. In addition to the spatial correlations of each single attribute of interest, it is also

important to model the cross-interrelations among all the attributes to better represent the

spatial uncertainty. Therefore, an interesting research is to design kernels working with
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high-order cross-interrelations, and to further develop the high-order simulation methods for

multi-variate attributes.

Lastly, the present research clearly de�nes a learning mechanism for developing the high-order

simulation methods. The kernel statistics of the available data represent the high-order

spatial information for the target random �eld model to learn. It is possible to combine

the deep learning techniques for training the kernel statistics from the available data and

making predictions for the unknown situations. The combination of kernel methods with

deep learning avoids the repeating computation of kernel statistics during the sequential

simulation process, by using the pre-trained model to make predictions. It is promising to

take research along this line to handle the learning from a large data set, and to initiate

online updating with incoming data provided.
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APPENDIX A EXPANSION SERIES OF PROBABILITY DENSITY

FUNCTION BASED ON THE SPATIAL LEGENDRE MOMENTS

Suppose that the multivariate functionf (z0; z1; : : : ; zN ) is the density function related to the

joint distribution of random variables on a spatial templateT , and that it can be expressed

as a Legendre polynomial series. The sequence of Legendre polynomials at di�erent orders

forms a set of orthogonal bases of a Hilbert space containing all the continuous functions

de�ned on D = [ � 1; 1]N +1 ; the inner product is de�ned as

hg; hi =
Z

D
gh dz0 : : : dzN ; (A.1)

whereg; h are functions in the Hilbert space.

From the orthogonal property of Legendre polynomial and the de�nition of its norm shown

in Equation (4.7), there is:

f (z0; z1; : : : ; zN ) =
1X

w0=0

1X

w1=0

� � �
1X

wN =0

hf; Pw0 Pw1 � � � PwN i Pw0 Pw1 � � � PwN ; (A.2)

where the setf Pw0 Pw1 � � � PwN jwi = 0; 1; 2; : : : ; 0 � i � N g are the orthonormal bases of

the Hilbert space, andPwi (zi ) = Pw i (zi )
kPw i k ; 0 � i � N , is the normalized Legendre polynomial.

Therefore,

Pw0 Pw1 � � � PwN =
Pw0 Pw1 � � � PwN

k Pw0 k � � � k PwN k
=

NY

i =0

s

wi +
1
2

� Pw0 Pw1 � � � PwN (A.3)

hf; Pw0 Pw1 � � � PwN i =
NY

i =0

s

wi +
1
2

� hf; P w0 Pw1 � � � PwN i : (A.4)

Combining Equations (A.2)�(A.4), it is:

f (z0; z1; : : : ; zN ) =
1X

w0=0

1X

w1=0

� � �
1X

wN =0

NY

i =0

�

wi +
1
2

�

� hf; P w0 Pw1 � � � PwN i Pw0 Pw1 � � � PwN :

(A.5)

Note that f (z0; z1; : : : ; zN ) is the probability density function, thus

hf; P w0 Pw1 � � � PwN i =
Z

D
Pw0 (z0)Pw1 (z1) � � � PwN (zN )f (z0; z1; : : : ; zN ) dz0 � � � dzN

= E[h1; : : : ; hN ; Pw0 (z0)Pw1 (z1) � � � PwN (zN )]:
(A.6)
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To use the Legendre polynomials as the bases without normalization and avoid computation

of the square roots, the spatial Legendre moments are de�ned as

LT
w0w1 ���wN

=
NY

i =0

�

wi +
1
2

�

� f; P w0 Pw1 � � � PwN ; (A.7)

which is equivalent to the de�nition in Equation (4.8).

Furthermore, from Equations (A.5)�(A.7), one can directly derive the expansion series of

the probability density function based on the spatial Legendre moments, which appears in

Equation (4.10). A similar derivation works for the truncated Legendre polynomial series,

since the corresponding function space forms a �nite-dimensional subspace of the above

Hilbert space.


	DEDICATION
	ACKNOWLEDGEMENTS

