Title: Tuning particle–particle interactions to control Pickering emulsions constituents separation. Suppléments

Authors: Faezeh Sabri, Kevin Berthomier, Chang-Sheng Wang, Louis Fradette, Jason Robert Tavares et Nick Virgilio

Date: 2019

Type: Article de revue / Journal article

URL de PolyPublie: https://publications.polymtl.ca/5335/

Version: Matériel supplémentaire / Supplementary material

Conditions d’utilisation: Tous droits réservés / All rights reserved

Document publié chez l’éditeur officiel

Titre de la revue: Green Chemistry (vol. 21, no 5)

Maison d’édition: Royal Society of Chemistry

URL officiel: https://doi.org/10.1039/c8gc03007c

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal

http://publications.polymtl.ca
Supporting Information

Tuning Particle-Particle Interactions to Control Pickering Emulsions
Constituents Separation

Faezeh Sabri, Kevin Berthomier, Chang-Sheng Wang, Louis Fradette, Jason R. Tavares and Nick Virgilio*

* Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec, H3C 3A7, Canada
Figure S1. SEM micrographs of SP and SP-SA particles before and after homogenizer processing.
Figure S2. Pictures of concentrated oil-in-water Pickering emulsions comprising 4% SP-SA particles ($\phi_o = 0.8$) when contained into the plastic molds (a), removed from plastic molds (b, c), and under compressive stress (d, e).
Figure S3. Effect of oil volume fraction ϕ_o on emulsion aspect, with 4% (w/v) particles: a) and b), emulsions prepared with unmodified silica particles (SP) at pHs 3.0 and 7.0, respectively; c) and d), emulsions prepared with sodium alginate-modified particles (SP-SA), at pHs 3.0 and 7.0; e) emulsion composed of SP particles (4% w/v) at $\phi_o = 0.8$, compared to f) emulsion composed of SP-SA particles (4% w/v) at $\phi_o = 0.8$.
Figure S4. Emulsion stability in time at 3 different oil volume fractions ϕ_0, and constant 4% (w/v) particles.
Figure S5. Number average diameter d of oil droplets as a function of oil volume fraction ϕ_o, for both SP and SP-SA particles, at pH 3.0 and 7.0, as obtained by laser diffraction (Mastersizer).
Figure S6. Normalized height ($h(t)/h_0$) with the error bars as a function of time t and applied stress on molded concentrated emulsions ($\phi_o = 0.8$) comprising 4% SP or SP-SA particles, at pH 3.0 and 7.0.
Figure S7. Pictures of the particle’s behavior during sedimentation in water (height of test tube = 15.3 cm) for SP (a, b) and SP-SA (c, d), over 60 min at pHs 3.0 and 7.0.
Scheme S1 Reaction Schemes to modify SP particles with APTMS, TMPS and SA molecules respectively