POLYTECHNIQUE

POLYPUBLIE

A [
UNIVERSITE o

Polytechnique Montréal D'INGENIERIE
Titre: o _
Title: Optimization of heterogeneous employee scheduling problems
Auteur: . .
Author: Dalia Attia

Date: 2020
Type: Mémoire ou thése / Dissertation or Thesis

LEL . 'Attia, D. (2020). Optimization of heterogeneous employee scheduling problems
Reférence: [Ph.D. thesis, Polytechnique Montréal]. PolyPublie.

Citation: 'https://publications.polymtl.ca/5291/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:) C
PolyPublie URL: https://publications.polymtl.ca/5291/

Directeurs de
recherche: Francois Soumis, & Guy Desaulniers
Advisors:

Programme:

P ' |Doctorat en mathématiques
rogram:

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca/
https://publications.polymtl.ca/5291/
https://publications.polymtl.ca/5291/

POLYTECHNIQUE MONTREAL

affiliée a "Université de Montréal

Optimization of heterogeneous employee scheduling problems

DALIA ATTIA

Département de mathématiques et de génie industriel

These présentée en vue de I'obtention du diplome de Philosophie Doctor

Mathématiques

Mai 2020

© Dalia Attia, 2020.

POLYTECHNIQUE MONTREAL

affiliée a "Université de Montréal

Cette these intitulée :

Optimization of heterogeneous employee scheduling problems

présentée par Dalia ATTIA
en vue de 'obtention du dipléme de Philosophie Doctor

a été dliment acceptée par le jury d’examen constitué de :

Nadia LAHRICHI, présidente

Frangois SOUMIS, membre et directeur de recherche

Guy DESAULNIERS, membre et codirecteur de recherche
Antoine LEGRAIN, membre

Quentin LEQUY, membre externe

1ii

DEDICATION

To my beloved husband and kids,

to my mother and to my father’s soul.

iv

ACKNOWLEDGEMENTS

Pursuing my PhD is a dream coming true. It would not have been possible without the
guidance and support of many people. First of all, I would love to thank my supervisors who
gave me this opportunity, Prof. Dr. Francois Soumis and Prof. Dr. Guy Desaulniers. You
taught me, helped me and encouraged me a lot through the past years.

I am also grateful to Prof. Dr. Nadia Lahrichi, Prof. Dr. Antoine Legrain and Prof. Dr.
Quentin Lequy for accepting to be part of the jury.

Furthermore, a special thanks to Prof. Dr. Mohamed Ismail, whose encouragement was the

first spark of this journey.

I would like to thank Kronos Canadian Systems and the Natural Sciences and Engineering

Research Council (NSERC) for supporting the research with needed funds.

A very special gratitude goes out to all my family. To my beloved husband, Mina, without
you I would not have succeeded, your support cannot be expressed in words, you have always
believed in me, thank you. To my kids, Mark, Maria and George, I love you. To my guardian
angel, my mother Fadia, you are my inspiration. To my father Waguih, you are always my
idol, especially on engineering and mathematics, I miss you. To my cousins, Mary, Samer
and Michael, thank you for your help and encouragement. And before all to God, who gave

me strength and grace.

RESUME

Le probleme de planification d’horaires du personnel consiste a créer les horaires de travail
des employés d’une organisation. Le nombre d’employés requis par unité de temps, appelé
la demande en employés par période, est donné pour un horizon de planification. Différentes
regles et contraintes régissent ’élaboration des horaires des employés. Ces regles dépendent
des besoins de l'organisation, des contrats des employés et de la convention collective de

travail.

Le probleme de planification est dit hétérogene quand il concerne des employés ayant des qual-
ifications différentes, habituellement, dans le cadre d’un probleme de planification d’employés
multi-taches ou multi-départements. Dans un contexte multi-départements avec transferts
entre départements, un quart de travail peut étre effectué dans son ensemble dans un dé-
partement, ou un transfert de département peut avoir lieu au sein du quart de travail lorsque

I’employé a les qualifications requises.

Lorsque les transferts sont autorisés, le nombre de quarts de travail possibles par employé
devient énorme. L’optimisation d’'un tel probleme est souvent essentielle pour le succes de
I'organisation. Par contre, sa résolution directe comme un programme linéaire en nombres

entiers s’avere impossible pour les grandes instances.

Dans la premiere partie de cette these, nous proposons une heuristique de décomposition en
plusieurs phases (MP-DH) pour le probléme de planification des employés avec transferts.
Dans ce probléme, la sous-couverture et la sur-couverture sont acceptées mais pénalisés dans
la fonction objectif. Un département d’origine est introduit pour chaque employé ot I’employé
doit travailler la majorité de son temps. En plus, il/elle peut étre qualifié(e) pour travailler
dans plusieurs autres départements. La premiere phase commence par déduire la demande
en employés qui ne peut pas étre couverte par les employés du département. Ces pieces
de demandes extraites sont appelées intervalles critiques, car elles nécessitent des employés
transférés d’autres départements pour y travailler. Cela se fait en résolvant un programme en
nombres entiers de planification d’horaires de personnel anonyme pour chaque département
séparément, puis en extrayant la demande non-couverte qui définit un ensemble d’intervalles

critiques.

vi

Pour chacun des intervalles critiques, la deuxieme phase choisit un département qui lui at-
tribue la responsabilité de transférer un de ses employés pour travailler pendant cet intervalle
critique. Ceci est accompli en résolvant un autre programme en nombres entiers de planifi-
cation d’horaires de personnel anonyme avec transferts, pour un seul jour, pour chacun des
jours de I’horizon. La décomposition journaliere rend la taille du probleme gérable spéciale-
ment pour les grandes instances. Cette phase se termine par la migration de toute demande
d'un département d; couverte par un employé d’un département dy, formant la demande de

transfert d’employé de ds vers d;.

Finalement, pour chaque département, la troisieme phase résout un programme en nombres
entiers de planification d’horaires de personnel mono-départemental avec transfert. La de-
mande utilisée est la nouvelle demande résultant de la migration de toutes les demandes de

transfert pendant la deuxieme phase.

L’heuristique MP-DH a réussi a décomposer le probleme de planification d’employés multi-
départements en plusieurs, plus petits, problemes de planification d’employés mono-départe-
mentaux, ce qui a permis de réduire de beaucoup les temps de calcul et de transformer les
grandes instances non résolubles en instances résolubles avec une légere baisse dans la qualité

des solutions obtenues.

Chacune des trois phases de MP-DH utilise le parallélisme. Dans la premiere phase, les pro-
grammes en nombres entiers des départements s’optimisent en parallele. La deuxiéme phase
exécute chaque probleme journalier en parallele. Enfin, la troisieme phase optimise chaque
département en paralléle. A la fin de chaque phase, tous les résultats des problémes paralléles

sont fusionnés pour former la solution finale.

Dans les tests réalisés pour ’heuristique MP-DH, les deux premieres phases sont extréme-
ment rapides, tandis que la troisieme phase peut atteindre deux heures de temps de résolution
pour les grandes instances. Pour pallier a cet inconvénient, nous présentons une heuristique
hybride dans la deuxieme partie de la these, visant a réduire fortement le temps d’exécution

de la troisieme phase tout en conservant la qualité de la solution.

L’heuristique hybride utilise deux modeles de maniére interchangeable afin de résoudre la
troisieme phase le plus précisément et rapidement possible. Le premier modele est celui déja
presenté pour la troisieme phase du MP-DH que nous appelons le modéle de base. Le second

est un probleme de planification d’horaires du personnel mono-département avec transfert

vii

semi-anonyme que nous appelons le modeéle semi-anonyme. La version semi-anonyme réduit
le nombre d’employés pour lesquels les horaires sont optimisés et remplace les quarts des
employés restants par un ensemble de quarts anonymes agrégés, puis résout le probléme pour
les employés restants par la suite. L’heuristique hybride commence par résoudre le modele de
base. Si apres un délai donné, I’écart d’optimalité est supérieur a un seuil donné, la résolution
de modele de base est annulé et une version semi-anonyme est résolue. Cette opération est
répétée jusqu’a ce que tous les horaires des employés soient optimisés. L’heuristique hybride
a réussi a réduire le temps d’exécution de la troisieme phase jusqu’a 87% en moyenne, tout

en perdant seulement 4 % dans le cofit de la solution en moyenne.

Dans la troisieme partie de la these, nous abordons une version différente du probleme de
planification d’horaires de personnel, soit le probléeme de planification d’horaires de person-
nel multi-taches, ot ni les transferts ni la sous-couverture ne sont autorisés. A la place
de la sous-couverture, des quarts anonymes appelés open-shifts sont utilisés pour couvrir la
demande incouvrable par aucun employé. Nous développons une métaheuristique parallele
de recherche a grands voisinage (LNS) pour ce probleme. Le concept de sub-scope est util-
is¢é comme unité de décomposition dans l'algorithme LNS. Un sub-scope est défini comme:
un sous-ensemble d’employés, un sous-ensemble de taches et un sous-ensemble continu de
I’horizon du probleme. L’heuristique LNS est définie par des procédures de destruction et de
réparation. Notre procédure de destruction choisit des sub-scopes, entrainant un cofit élevé,
a détruire. Lorsqu'un sub-scope d’une solution est détruit, tous les quarts travaillés pendant
I’horizon du sub-scope par un employé appartenant au sub-scope, pour I'une des taches du

sub-scope, sont supprimés de la solution.

Les coflits principaux affectant la fonction objectif sont les suivants: le colit de la sur-
couverture, le cotit d’utilisation des open-shifts et la pénalité pour la violation des heures
de travail minimales des employés. La procédure de destruction se concentre donc sur la
destruction des sub-scopes entrainant de tels cotits dans une solution donnée. Apres la de-
struction des sub-scopes d’une solution, la procédure de réparation reconstruit une nouvelle
solution améliorée. La procédure de réparation que nous proposons résout un programme
en nombres entiers de planification d’horaires de personnel multi-taches pour les sub-scopes
déja détruits. Les procédures de destruction et de réparation sont répétées séquentiellement

jusqu’a ce que la condition d’arrét soit atteinte.

La procédure de destruction parallele détruit plusieurs sub-scopes disjoints, puis chaque sub-

viii

scope est réparé dans un fil (thread) parallele différent. Nous comparons 'heuristique présen-
tée avec le modele exact résolu dans le systeme commercial WFC par Kronos Inc. Les ré-
sultats expérimentaux montrent qu’en moyenne, ’algorithme LNS parallele peut réduire les

temps d’exécution jusqu’a 80% et améliorer les cofits des solutions jusqu’a 1, 8%.

X

ABSTRACT

The employee scheduling problem consists of creating working schedules for an organization
staff. The number of required employees per time unit, called employee requirement per pe-
riod, is given for the full problem horizon. Different rules and constraints govern an employee
scheduling problem, these rules depends on the organization needs, employees contracts and

the collective labor agreement.

A heterogeneous employee scheduling problem deals with employees having different working
skills, usually within a multi-job or multi-department employee scheduling context, where one
employee can be qualified for several of the organization activities, and can work for any activ-
ity he/she is qualified for. One working shift can be accomplished in a single department, or

a department transfer can take place within a shift when the employee has the required skills.

When a department transfer within a shift is allowed, the number of possible working shifts
per employee becomes huge. Optimizing such heterogeneous employee scheduling problem
is often essential for organizational success. However, solving such problems directly as a

mixed integer linear program (MILP) is intractable for large instances.

In the first part of this thesis, we propose a multi-phase decomposition heuristic (MP-DH)
for the employee scheduling problem with inter-department transfers. In this problem, the
concept of department of origin is introduced, where each employee is qualified to work in
several departments, but he/she has exactly one department of origin, where the employee
should work the majority of his/her time. The first phase starts by extracting from each
department employee requirement, the uncoverable requirement parts by internal employees,
i.e. if only the department internal employees can work. These extracted requirement parts
are called critical intervals, because they need transferred employees from other departments
to fulfill them. This is done by solving an anonymous employee scheduling problem modeled
as a MILP for each department apart, before extracting the uncovered requirement parts

that form the set of critical intervals.

For each of the critical intervals, in the second phase, one department is chosen to assign
it the responsibility of fulfilling this critical interval requirement, i.e. to transfer one of its

employees to work during the critical interval. This is accomplished by solving a one-day

anonymous employee scheduling problem with inter-department transfers for the critical in-
tervals modeled as a MILP, for each of the problem horizon days. The day decomposition
renders the problem size manageable in computer memory, especially for large instances (up
to 25 departments). This phase ends by migrating any department d; requirement covered by

an employee from department d,, building a new employee transfer requirement from ds to d;.

The third phase solves, for each department, a mono-department employee scheduling prob-
lem with derived inter-department transfers as a MILP. The input to the third phase is the

new final requirement resulting from the requirement migration of phase two.

The MP-DH heuristic succeeds to decompose the multi-department employee scheduling
problem into several mono-department employee scheduling problems to save substantial
computational time. This allows to solve large instances while not deteriorating much the

solution quality.

Each phase of the MP-DH algorithm uses parallelism. In the first phase, all department
MILPs and post-processing are accomplished in parallel. The second phase runs all single-
day problems in parallel. Finally the third phase optimizes all department problems in
parallel. At the end of each phase, all parallel problem solutions are merged to form the final

solution.

In the reported computational experiments, we observe that the first two phases are solved
extremely fast compared to the third phase. The size of the solved MILPs in the first two
phases is not proportional with the size of the optimized instance, while the third phase
MILP size is. To overcome the computational issues of the third phase we present the hybrid
heuristic in the second part of the thesis. The hybrid heuristic aims at greatly reducing the

MP-DH third phase computational time, while maintaining the solution quality.

The hybrid heuristic uses two models interchangeably in order to solve the third phase as
accurate and as fast as possible. The first is the third phase MILP of the MP-DH algorithm,
which we call the basic model. The second is a semi-anonymous employee scheduling problem
with derived inter-department transfers modeled as a MILP that we call the semi-anonymous
model. The semi-anonymous version reduces the number of employees for whom the schedules
are optimized, and replaces the remaining employee shifts by a set of aggregated anonymous

shifts. Once such a model is solved, the schedules of the selected employees are fixed and

xi

the algorithm moves on to solving another MILP where another set of employees must be
scheduled. The hybrid heuristic starts by solving the basic model, then if, after a given time
limit, the MILP optimality gap is higher than a given threshold, the resolution of the basic
model is stopped and a semi-anonymous version is solved. This is done repeatedly until
all employee schedules are optimized. The hybrid heuristic succeeded in reducing on average

up to 87% of the third phase computational time while only loosing 4% in the solution quality.

In the third part of the thesis, we tackle a different employee scheduling problem variant:
the multi-job employee scheduling problem, where neither transfers nor under-coverage is
allowed. Instead, anonymous shifts called open-shifts are used to cover any unavoidable
under-coverage. The three main costs composing the objective function are: Over-coverage
cost, open-shift usage cost, and minimum employees working hours violation penalty. A par-
allel large neighborhood search (LNS) metaheuristic for the multi-job employee scheduling
problem is developed. Where a sub-scope denotes: a subset of the employees, a subset of
the jobs and a continuous subset of the problem horizon. The LNS heuristic is defined by
destroy and repair procedures. Our destroy procedure chooses sub-scopes coupled with a
high cost in the objective function to be destroyed. When a solution sub-scope is destroyed,
all shifts, occurring within the sub-scope horizon and worked by an employee belonging to
the sub-scope, for one of the sub-scope jobs, are removed from the current solution schedule.
Once the solution sub-scopes are destroyed, the repair operator tries to build an enhanced

solution. Our proposed repair operator solves a MILP restricted to the destroyed sub-scopes.

The parallel LNS destroy operator creates several disjoint sub-scopes, then each sub-scope is
repaired in a different parallel thread. We compare the presented heuristic with the formal
MILP solved within the commercial system WFC for Kronos Inc. Experimental results show
that the parallel LNS algorithm can save up to an average of 80% in the computational time

and 1.8% in the solution cost.

xii

TABLE OF CONTENTS

DEDICATION iii
ACKNOWLEDGEMENTS e iv
RESUME v
ABSTRACT . . . e ix
LIST OF SYMBOLS AND ACRONYMS Xix
CHAPTER 1 INTRODUCTION 1
1.1 Problem and motivationo 2
1.1.1 Multi-job employee scheduling problem 2

1.1.2 Employee scheduling problem with inter-department transfers 3

1.2 Research objectives 4

1.3 Thesisoutline 5
CHAPTER 2 LITERATURE REVIEW 6
2.1 Employee scheduling problem specifications 6
2.1.1 Shift, days-oftf and tour scheduling 6

2.1.2 Cost . . .o 6

2.1.3 Problem constraints oL 7

2.1.4 Demand modelingo 8

2.1.5 Application areas 9

2.2 Mathematical optimizationo 10
2.2.1 Set Covering Model 10

2.2.2 Implicit programming Lo 10

2.3 Metaheuristics 11
2.3.1 Neighborhood search 11

2.3.2 Large neighborhood search 12

2.3.3 Parallel metaheuristic., 18

xiii

2.4 Employee scheduling with inter-department transfers 21
2.4.1 Large neighborhood search for the employee scheduling problem . . . 23

2.4.2 Parallel metaheuristic for the employee scheduling problem 24
CHAPTER 3 GENERAL ORGANIZATION OF THE THESIS 25

CHAPTER 4 ARTICLE1: A DECOMPOSITION-BASED HEURISTIC FOR LARGE
EMPLOYEE SCHEDULING PROBLEMS WITH INTER-DEPARTMENT TRANS-

FERS . . e 26
4.1 Introduction L 27
4.2 Literature 29
4.3 The employee scheduling problem with inter-department transfers 31
4.3.1 Problem statement 0000 32
4.3.2 A mixed-integer programming formulation 33
4.3.3 Anexample 35
4.4 A three-phase solution method for ESP-IDT 35
4.4.1 First phase: Generate promising external and transfer shifts 37
4.4.2 Second phase: Derive inter-department demands 43
4.4.3 Third phase: Department-per-department optimization 46
4.5 Computational experiments L 48
4.5.1 Experimental settingo 48
4.5.2 Computation times and MILP sizes in MP-DH 50
4.5.3 Value of the inter-department transfer feature 52
4.5.4 Comparison of MP-DH with proven optimal solutions 53
4.5.5 Importance of the first phase in MP-DH 54
4.5.6 Comparison of MP-DH with literature results 56
4.6 Concluding remarkso 59

CHAPTER 5 A HYBRID HEURISTIC FOR THE EMPLOYEE SCHEDULING PROB-

LEM WITH DERIVED INTER-DEPARTMENT TRANSFERS 65
5.1 Problem statement Lo 65
5.2 The SA-ESP-DIDT mixed-integer programming formulation 66
5.3 The hybrid heuristic o 69
5.4 Computational experiments L. 72

5.4.1 Experimental setting o0 72

5.4.2 SA heuristic 73

5.4.3 Sensitivity analysis of the HH parameters 73

xXiv

5.4.4 DISCUSSION o o 77

CHAPTER 6 PARALLEL LARGE NEIGHBORHOOD SEARCH FOR MULTI-JOB

EMPLOYEE SCHEDULING PROBLEM 81
6.1 The multi-job employee scheduling problem 81
6.2 A mixed-integer program formulationo L 83
6.3 Large neighborhood search L. 85
6.3.1 Destroy operator 86
6.3.2 Repair operator 102
6.3.3 Algorithm pseudo-code 102

6.4 Parallel large neighborhood search 0. 103
6.4.1 Domain decompositiono 103
6.4.2 Multi-thread destroy operator 105

6.5 Computational experimentso 110
6.5.1 Datasets and initial solutions 110
6.5.2 Experimental setting 111
6.5.3 Destroy percent analysis oL 114
6.5.4 Initial solution analysis L. 115
6.5.5 Single-thread and multi-thread LNS results 117
CHAPTER 7 GENERAL DISCUSSION 119
CHAPTER 8 CONCLUSION AND RECOMMENDATION 121
8.1 Summary of works 121
8.2 Limitations 122
8.3 Futureresearch 123

REFERENCES 125

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 5.1

Table 5.2

Table 5.3

Table 5.4

LIST OF TABLES

Relative optimality gaps (in %) of MP-DH for the instances with
20 employees grouped by the number of departments.

Relative gaps (in %) between the results of MP-DH and those of
IH and TDH, given by 100(res — bench)/bench, where res and bench
refer to the values obtained with MP-DH and IH/TDH, respectively.
No solution was given for D20 800 _P1 with TDH. We exclude this
instance in the average value computations.

Detailed results for our main experimental setting. Solution val-
ues rounded to one decimal place, computation times given in seconds
and rounded to the nearest integer. The best values among MP-DH
and MP-DH-noP1 are highlighted in boldface. Average solution values
and computation times are given for the groups of small, medium and
large instances.

Detailed results for the setting of Dahmen et al. [22]. Solu-
tion values rounded to one decimal place. Computation times given in
seconds and rounded to the nearest integer. The best values among
MP-DH, MP-DH-noP1, TH, and TDH are highlighted in boldface. Av-
erage solution values and computation times are given for the groups
of medium and large instances.

Cost and computation time in seconds for the semi-anonymous
model with different number of employees per iteration (numEmp) for
the medium datasets

Cost and computation time in seconds for the semi-anonymous
model with different number of employees per iteration (numEmp) for
the large datasets L

Average cost and time in seconds for different employee percent-
ages empPercent, and time limits ¢; for the HH.

Comparing the basic model to the SA and HH heuristics cost

and duration for the medium datasets.

XV

o4

o8

60

63

74

75

77

Table 5.5

Table 6.1
Table 6.2

Table 6.3
Table 6.4

Table 6.5

Table 6.6
Table 6.7

Table 6.8

Table 6.9

Comparing the basic model to the SA and HH heuristics cost
and duration for the large datasets.
Employee availability per day for both jobs
Best solution cost and computational time (in seconds) using the
WFEC solver.
Statistics of the initial solutions.
Average cost gain (%) and time gain (%) for different destroy
percentages, using one thread.
Average number of iterations for different destroy percentages,
using one thread. oo o
Initial solutions analysis.
Average cost gain (%) and time gain (%) for single-thread exe-
cution and different number of parallel thread execution. Average cost
and time is over 10 runs using the I.S — W F'C initial solution and 40%
destroy percentage.
Average number of JobDays optimized per iteration and thread,
for different number of threads using 40% destroy percentage and 1.5 —
W FC initial solution.,
Average number of employees optimized per iteration and thread,
for different number of threads using 40% destroy percentage and 1.5 —
W FC initial solution.,

xvi

80
86

111
112

113

114
116

117

118

Figure 4.1
Figure 4.2
Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 5.1

Figure 5.2

LIST OF FIGURES

The two departments of our illustrative example.
The three phases of MP-DH.

An optimal solution of model (4.3) for each department of our

example.

An optimal solution of model (4.4) for each day of our exam-
ple. The external and transfer shifts are depicted in the department
providing the employees. The colors of the shifts indicate where the
employee is working: dark gray for department D;, light gray for Ds.

The final solution of our example obtained by solving model (4.7)
for both departments.

Box plots of the computation times and the number of variables
of the MILPs solved during the second phase (left) and the third phase

xvii

45

49

(right) of MP-DH. Some box plots are cropped for readability purposes. 52

Box plots of the absolute differences between the solution values
of MP-DH (column 6 in Table 4.3, here res for short) and those of
model (4.2) without including external and transfer shifts (column 2
in Table 4.3, here bench for short). The differences are computed by
res — bench. Hence, MP-DH is better if this difference is negative. . .

Box plots of the number of internal, external, and transfer shifts
present in the solutions obtained by MP-DH.

Box plots of the absolute differences between the solution values
of MP-DH (column 6 in Table 4.3, here res for short) and those of
MP-DH without the first phase (column 8 in Table 4.3, here bench for
short). The differences are computed by res — bench. Hence, MP-DH
is better if the difference is negative.

Graph showing, for each department within an instance, the
basic MILP model computational time vs. the number of employees
working for the department.

Simplified example: EmpPercent analysis

52

93

95

68

xviii

Figure 6.1 Current schedule for the illustrative example. 87
Figure 6.2 The destroyed solution. Destroyed shifts are crossed out. Fixed

shifts and their requirement coverage are kept unchanged. 101

MILP

ESP

ESP-IDT
ESP-DIDT
MP-DH
SA-ESP-DIDT

SA heuristic
HH

MJ-ESP
LNS

PLNS
ALNS

WEFC

Xix

LIST OF SYMBOLS AND ACRONYMS

Mixed integer linear program

Employee scheduling problem

Employee scheduling problem with inter-department transfers
Employee scheduling problem with derived inter-department transfers
Multi-phase decomposition heuristic

Semi-anonymous employee scheduling problem with derived inter-
department transfers

Semi-anonymous heuristic

Hybrid heuristic

Multi-job employee scheduling problem

Large neighborhood search

Parallel large neighborhood search

Adaptive large neighborhood search

Workforce Central

CHAPTER 1 INTRODUCTION

Employee scheduling is an important process for several industries, where each employee is
assigned his working shifts for a predefined working time-span called horizon. Small savings
in every employee schedule can result in huge benefits for the organization. Savings can
be seen from a cost perspective, where minimizing the number of employee working hours
can save lots of money. But nowadays many other optimization perspectives are considered.
Employee satisfaction as well as customer satisfaction are of great importance for an organi-

zation to grow.

When an employee is satisfied, his performance is higher than when he works under pressure
or unsatisfactory conditions. An employee is satisfied if his choices of working days and days
off are respected, as well as his needed rest duration between successive shifts, his requested
shift duration, and the minimum and maximum weekly working hours. An employee work-
ing a side job, just for extra pocket money, has different needs than an employee working
to maintain his family, and need to work full time to be able to sustain his family needs.
Customer satisfaction is directly proportional with the organization success, unsatisfied cus-
tomer will probably stop dealing with the unsatisfying organization. One of the parameters
affecting customer satisfaction is the waiting time for receiving the needed service. A cus-
tomer standing too long on a cashier line, or waiting too long on a phone call may simply
decide not to buy his goods and skip the line, or cancel his asked service and hang up the
call. Customers will wait a lot if the number of available employees is less than the actual

needed number of working employees, which we call in our study under-coverage.

With the growth of an organization (companies, retailers, hospitals, ...), the number of em-
ployees increases, along with the size and cost of scheduling their shifts. As a result, any
small percentage of cost reduction, within each employee shift schedule, is reflected in a huge
benefit for the organization. Over the years, employee scheduling problems become more
complex. Beside larger instances due to the growth of the companies, additional constraints
need to be handled to guarantee employee and customer satisfaction. Also the variation of
the work load along the hours of the day (or week or month) makes the shift placement a

complicated task, where the morning-evening-night shift pattern is not suitable anymore.

1.1 Problem and motivation

In our study, we solve two different variants of the employee scheduling problem. The first
one is called the multi-job employee scheduling problem, where every employee has several
qualifications, thus can work on several jobs. For each of the employee working days, the
employee is assigned at most one shift for one of his qualified jobs, without exceeding the
employee maximum working hours. The second variant deals with organizations having
multiple departments, where employees can work for two different departments within the
same shift, yielding what we call inter-department transfers. Allowing transfers between
departments within a single shift gives a preference for multi-department in the problem name
over multi-job. These employee scheduling problems are usually found in service centers and

retail stores.

1.1.1 Multi-job employee scheduling problem

For the multi-job scheduling problem, employees have multiple qualifications along with high
flexibility with respect to their shift preferences. Employees can specify their own preferred
maximum and minimum weekly working hours, their maximum and minimum single shift
duration, their days off, minimum rest duration between shifts, as well as their shift starting
time. Some employees prefer to start their shifts early, others late. A single shift serves
exactly one job, an employee cannot work for a job that he is not qualified for, and can work

at most one shift per day.

Under-coverage is not allowed, instead, unassigned shifts are created in order to cover any
unavoidable under-coverage when no employee is found to accomplish the shift. The unas-
signed shifts, called open shifts, have their own minimum and maximum duration rule. Open
shifts are supposed to be assigned to employees who only work on demand, thus they cannot

be of arbitrary size, and they can even be a source of some over-coverage cost.

Over-coverage is a result of having extra working employees when they are not really needed.
Over-coverage is caused by either personalized shifts or open shifts. An open shift covering,
e.g. one hour of unavoidable under-coverage and causing an additional three hours of over-
coverage, in case of minimum shift duration of four hours, may be preferred in our problem
over the one hour under-coverage, as over-coverage means some extra spent salary, while

under-coverage results in customer dissatisfaction.

Several costs are taken into account in the multi-job employee scheduling problem, shaping
together the quality of a schedule. First there are personalized shift costs: employee working
hours are mapped to a convex cost function. Opposite to the linear cost function, convex cost
function guarantees fair workload balance between employees. An open shift is more expen-
sive than its respective personalized shift, in order to prioritize assigning shifts to the current
contracted employees. Second, a cost is incurred for violating the preferred minimum number
of working hours of an employee. Employees maximum working hours limit is maintained
with hard constraints, but violating employee preferred minimum working hours is penalized
in the objective function using a convex function of the deviated number of hours. Again the
convex function helps in equally distributing any dissatisfaction among employees. Third,
there are over-coverage cost. Under-coverage is not allowed in our model, but over-coverage
is allowed and penalized in order to minimize its presence. Also any existing over-coverage
per period is mapped to a convex function, so that peaks of over-coverage at a single time
period is avoided, and the over-coverage, if any, is spread among the entire working horizon

as much as possible.

1.1.2 Employee scheduling problem with inter-department transfers

In this problem variant, we are concerned with a feature imposed by institutional growth,
namely: inter-department transfers. This feature is supported by the quote “A key oppor-
tunity inherent in solid scheduling, is in using employees in different functions, as needed.”

from Thompson [72].

Along with fluctuating demand and different employee qualifications and preferences, man-

agers need to fulfill all departments’ requirements with the least cost.

Permitting an employee to work in many departments would minimize the total number of
required employees, and eventually reduces the cost. Meanwhile, changing the employee’s
department transition time and cost must be considered. Thus the scheduling process is not

simplified, but complicated.

In this problem variant, under-coverage is permitted but penalized in the objective function
as well as over-coverage. A new parameter for each employee is introduced, namely the
home department, which is the main department to which the employee is attached. The

employee qualified departments are all departments where the employee can work, including

the home department. Only transfers to or from the home department are allowed, and a
maximum of one transfer per shift is permitted. Another allowed shift type is the external

shift, where the whole shift starts and ends in a department other then the home department.

Several attempts have been made in the literature for optimizing different employee schedul-
ing problems with different sets of constraints. One conclusion can be found in all studies:
formal methods cannot solve large problem instances in reasonable time. In order to solve
such instances, heuristics, constraints relaxation, and/or problem decomposition must be

used, and a tolerance on the solution quality must be accepted.

1.2 Research objectives

In this thesis, our first objective is to develop a decomposition-based heuristic for the em-
ployee scheduling problem with inter-department transfers. The presented decomposition
scheme transforms the multi-department problem into several mono-department problems.
Decomposition introduces some loss of information leading to a degradation in the solution
quality. In this problem, the needed transfer information is lost with the department decom-
position. To overcome this drawback, a pre-processing procedure creating a set of expected
needed transfers between each department is presented. Each department expected transfers
are then used in its mono-department employee scheduling problem with derived transfers

optimization.

The presented decomposition-based heuristic transforms the multi-department employee sched-
uling problem into several mono-department employee scheduling problems with expected
transfers, which means that one large problem is decomposed into m smaller sub-problems,
where m is the number of departments. But each mono-department problem remains a large,
highly constrained problem. Thus our second objective is to establish a hybrid heuristic with
the main objective of minimizing the computational time of the employee scheduling problem

with expected transfers.

The third objective is to create a parallel large neighborhood search heuristic for the multi-
job employee scheduling problem. Meta-heuristics are among the highly scalable solution
methods, as they can solve very small sub-problems in each iteration to find a new solution in

the current neighborhood. This makes meta-heuristics suitable for optimizing large problem

instances. Additionally, parallelism helps investigate the solution space faster by using the
computer multi-processing capability. Large neighborhood search is best suited for problems
that can be easily decomposed, in order to create smaller sub-problems to be destroyed then
repaired. This characteristic can be found in the multi-job employee scheduling problem,

where a sub-problem is defined by a sub-horizon, a subset of jobs and a subset of employees.

1.3 Thesis outline

This thesis is organized as follows. Chapter 2 reviews the literature for the employee schedul-
ing problem. Chapter 3 discusses the organizing of the following main chapters. Chapter 4
presents the decomposition based heuristic for the employee scheduling problem with inter-
department transfers. In Chapter 5 we develop a hybrid heuristic accelerating the mono-
department employee scheduling problem with transfers. Chapter 6 develops the parallel
large neighborhood search heuristic for the multi-job employee scheduling problem. The

overall work is further discussed in Chapter 7. And we conclude in Chapter 8.

CHAPTER 2 LITERATURE REVIEW

In the literature, the employee scheduling problem is studied in diverse application areas.
Each area imposes its unique set of hypotheses and constraints. This makes it hard to find
many previous works with exactly similar specifications as the problems of interest in our
work. We first present a general review of the employee scheduling problem in various areas,

then elaborate on works sharing some specifications with ours.

2.1 Employee scheduling problem specifications

We start by presenting the different problem specifications found in the literature for the em-
ployee scheduling problem. Afterwards, we discuss the different solution methods, including

exact and heuristic methods.

2.1.1 Shift, days-off and tour scheduling

When it comes to the creation of employee working timetables, one of the next problems is
considered (Baker [5])

o Shift Scheduling: The simplest form of scheduling. For a single day horizon, we need

to create employee shift covering the demand for each time period along the day.

o Days-Off scheduling: In a weekly problem usually employees work less than 7 days per
week. Employee days-off are scheduled to control the employee availability along the

week.
o Tour scheduling: The mix between shift scheduling and days-off scheduling. Tour
scheduling is the most frequent in the literature (Van den Bergh et al. [73]).

2.1.2 Cost

Different costs, to be minimized, are associated with different problems in the literature. For

example:

« Minimizing the employee salary. Employee salary can increase with skills, seniority, or

use of overtime.

e Adding penalties for any under or over-coverage with respect to the workforce require-

ment, (Munezero [57]).

o Transportation costs or transition costs are found when employees need to move in

order to continue their shifts in a new site (Bard and Wan [8]).

o Penalties for employee dissatisfaction when employee preferences are not respected
(Biirgy et al. [12]).

o Minimizing re-scheduling changes. In some areas, periodic re-scheduling is mandatory
in order to accommodate any employee sudden unavailability or new workforce demand.

When re-scheduling, schedule perturbations should be minimized, (Bard and Purnomo
[7])-
2.1.3 Problem constraints
Several sets of constraints are found in the literature for the employee scheduling problem.
Here we present the main and usually used constraints.
Employee specifications

Many characteristics can be associated with each employee in an organization.

o The contract type: Full time employees or part time employees. An optimization
problem can involve one or more contract types, controlling the number of maximum

and minimum employee working hours (Bard and Wan [8]).

o Specific skills: The assignment of an employee to a task which he is not qualified
can be either forbidden or allowed with a penalty. Heterogeneous multi-job employee

scheduling problem always involves checking the employee skills (Biirgy et al. [12]).
« Employee seniority: Seniority, whether in term of age or experience, can give privileges
to an employee, e.g. his/her preferences are prioritized (Volgenant [74]).
Shift organization

e Timing: Maximum and minimum shift duration. Most of the times it is imposed by

enumerating only the eligible shifts.

« Stint based shifts: For some application areas, employee shift must follow special stint,

e.g. Day-Day-Evening-Evening-Night-Night shift sequence (Ernst et al. [33]).

o Cyclic vs acyclic: Some problems deal with cyclic demand, where the same demand is
repeated every week (or any horizon duration). Other problems are acyclic, where the

demand is changed continuously (Millar and Kiragu [55]).

Days-off

Some organizations operate seven days a week, while the rules restrict the number of weekly
worked days and hours per employee, introducing the days-off scheduling constraints (Baker

and Magazine [6]). Examples of days-off constraints include:

Weekly consecutive days-off.

One day, of each employee days-off, must be on a week end.

At least one complete week end for each employee every month.

Predetermined employee days-off (Munezero [57]).

2.1.4 Demand modeling

Non-overlapping shift employee scheduling problems are easy to solve as per Baker [5]. But

problems involving demand fluctuation must use overlapping shifts.

o Stable demand: Where three 8-hour shift pattern is used (day-shift, evening-shift and
night-shift). The demand is constant during each shift (Bard and Purnomo [7]).

o Fluctuating demand: This model is found in call centers and service providers, where
the number of incoming service requests varies all over the day (Dahmen and Rekik
[20]).

Demand coverage constraints

Demand coverage is achieved by assigning enough employees in each time period for the

planning horizon. In the literature, this is accomplished by:

o Hard constraints: Explicitly add a constraint to guarantee the demand coverage. This

is applied when under-coverage is not allowed (Bard and Wan [8]).

o Soft constraints : Adding penalties to the objective function minimizing any under-

coverage, (Munezero [57]).

Uncertainty

In employee scheduling, two types of uncertainty can be found:

o Demand uncertainty: In many cases, the work load distribution is an estimation based
on previous demand data and marginal analysis (Easton and Rossin [31]). Deviation
in the incoming demand can happen, especially in the service organizations like call
centers and retail stores. Easton and Rossin [31] use a probability distribution to model

the required employee demand for each time period of the horizon.

« Employees arrival uncertainty: Late arrival or sudden absence of employees can cause
a degradation in the service level. Increasing the workforce requirement based on the

expected late/absence would help in enhancing the service.

Michon-Lacaze [54] deals with both types of uncertainty, calling them perturbations, either
demand perturbations (sudden increase in the demand) or employees arrival time perturba-
tion (late employee). Shifts are created in a way which facilitates future possible changes to
cover a sudden perturbation. Given the perturbation probabilities, Michon-Lacaze [54] up-

dates the problem demand then solves the updated problem using an integer linear program.

2.1.5 Application areas

Employee scheduling is a popular problem found in diverse application areas. We cannot
restrict the optimization of employee scheduling problem only in the next contexts, but we
list the most popular ones in the literature. The reader is encouraged to check Defraeye and
Van Nieuwenhuyse [25] for scheduling papers dealing in various application areas.

Popular areas where employee scheduling is applied include health care, transportation, ser-
vices, and manufacturing. Optimizing nurse rosters in hospitals is of great importance in the
health industry. In the transportation industry, airlines, bus, railways and subways person-
nel schedules are optimized. Service organizations and retailers also use employee scheduling
heavily in order to optimize the number of service providers with respect to the number of
customers. Examples of the service organization are call centers, emergency services like am-
bulance and fire services, shipping and mailing service providers, and chain retailers (Canon
[14], Bard and Wan [8], Talarico and Duque [71]). In the manufacturing area, employee
scheduling is used in order to optimize the machines’ utilization and maximize the produc-

tion with the minimal number of employees.

10

2.2 Mathematical optimization

Several methods have been proposed to solve an employee scheduling problem. The method is
chosen according to the problem characteristics, like the expected problem size and acceptable

computational time.

2.2.1 Set Covering Model

Mathematical programming is one of the oldest methods used for solving the employee
scheduling problem. As previously stated, recent problems are different from the early em-
ployee scheduling problem. One of the first articles dealing with employee scheduling was
presented by Edie [32]. The author was trying to reduce the costs associated with the collec-
tion of vehicle tolls at The Port of New York Authority tunnels and bridges. A sophisticated
statistical model was developed to estimate the necessary number of working toll booths for
every half hour of the day. Edie’s last step was to create employee schedules: assign toll
collectors to shifts, so that the toll booth-hour requirements, and the collectors’ relief time
are maintained. “This is largely a trial-and-error problem, and preparation of such schedules
may be very time-consuming when the objective is to make the schedule as efficient as pos-
sible.” Edie [32]. This is how Edie tackled the employee scheduling problem at that time.
This model shows more than 98% satisfaction, as per the author’s measurement “The ratio
of the number of collectors required by the booth-hour to the number supplied by the schedule”
Edie [32].

In Dantzig [23], the author modeled Edie’s employee scheduling problem as a set covering
problem. The model minimizes the cost associated with the whole set of employees, under
constraints ensuring the existence of enough employees satisfying total demand, and suitable
relief time for each person. This classical set covering optimization model still plays an

essential role in many recent problem solution algorithms.

2.2.2 Implicit programming

More than forty years later, Bechtold and Jacobs [10] presented a new integer programming
model with fewer variables then Dantzig [23]. Bechtold and Jacobs [10] qualified their model
as implicit. They implicitly represent the break assignments in all shifts by associating the
break variables with the planning periods instead of the shifts. This model shows significant
reduction in the number of variables in comparison with the old set-covering model. However,

the validity of the proposed model relies on a set of nine assumptions that can be found in

11

many real-life problems.

Aykin [3] relaxed most of these assumptions and proposed a generalized implicit integer pro-
gramming model allowing multiple breaks for employees. In the comparative study Aykin
[4], Aykin’s implicit model was found to be 66% faster than Bechtold and Jacobs’ model, on

average.

Dahmen et al. [21] generalize the shift scheduling implicit model to the multi-activity context,

with adapted forward and backward constraints.

2.3 Metaheuristics

Metaheuristics form an important family for solving optimization problems. They have many
advantages like they can fit for nearly any problem, they are simple to implement, and can
produce a feasible solution, often of high quality, for problems where exact methods can
spend a lot of time without returning any solution. Their main disadvantage is that they

cannot guarantee optimality.

Metaheuristics are categorized under two famous classes: population-based methods (evolu-
tionary algorithms) and trajectory-based methods (neighborhood search). Population-based
methods generally consist of an interaction between many solutions (or semi-solutions) to
introduce another set of new solutions (new generation). The basic idea is to merge the best
part of every parent-solution in order to produce a better child-solution. Example of such
algorithms are genetic algorithms and scatter search. Aickelin et al. [1] introduce a genetic
algorithms evolutionary technique by adding a selection step and an evolution step to the
search technique for nurse scheduling. Burke et al. [13] present a scatter search algorithm
for nurse rostering. Trajectory-based methods start with a feasible solution, and move for-
ward to another solution by making a simple change to the current solution. We are more
concerned about the parallel neighborhood search, specifically parallel large neighborhood
search. Thus we review both the large neighborhood search and the parallel metaheuristics

with more details in Sections 2.3.2 and 2.3.3, respectively.

2.3.1 Neighborhood search

For a combinatorial optimization problem P, neighborhood search is an iterative process,

defining a set of neighbor solutions N(s.) for a current solution s.. Let S be the feasible

12

solution space. Then N(s.) C S. A cost function f(s) maps each solution s to its cost,
f: S — R. When minimizing the cost, we search for s* where f(s*) < f(s) VseS.

In neighborhood search, starting with an initial solution sq, at each iteration ¢, the neighbor-
hood N (s;) is computed for the current solution s;, and the cost for each solution s € N(s;) is
calculated. We denote by the neighborhood design the algorithm of calculating the neighbor-
hood N(s;), and by neighborhood exploration, the process of calculating the cost function
of each solution in the neighborhood. Finally the neighbor solution with the least cost is
chosen to be the new current solution: s;;1 = argmingen(s,){f(s)} If f(siy1) > f(s;), then

no improvement is possible and the search ends, returning the last best solution s;.

Such neighborhood search leads to local optima, not guaranteed to be a global optima.
Several heuristics are designed to escape local optima, e.g. by accepting new solutions having
a cost greater than or equal to the current solution cost f(s;+1) > f(s;). In this case, other
constraints are added to guarantee the search convergence. In the tabu search metaheuristic
by Glover [36], changes made to the solutions are preserved in a tabu list for a given number of
iterations. Changes existing in the tabu list are forbidden to be re-applied in order to forbid
cycling and redirect the search toward new area in the solution space. For the simulated
annealing heuristic of Kirkpatrick et al. [44], the probability of accepting a deteriorating

solution decreases over time.

2.3.2 Large neighborhood search

A Large Neighborhood Search (LNS) metaheuristic was first introduced by Shaw [69] for solv-
ing the vehicle routing problem. The core idea of LNS is to replace the neighborhood design
and the neighbors solutions exploration by destroy and repair operators, respectively. The
destroy operator chooses a subset of the current solution to be destroyed, then the neighbor-
hood exploration is replaced by a repair operator, which is an algorithm to re-construct the
destroyed parts of the solution, in a manner to ensure as much as possible an improvement
in the current solution cost. For a mathematical program, the destroy operator can be seen
as a relaxation of a subset of the problem variables, and the repair operator is re-assigning

values to the relaxed variables intelligently.

Shaw [69] presents LNS as a heuristic combining the power of local search and constraint
programming, where the destroy and repair operators produce together a new solution from
an old solution as in local search moves. At the same time the proposed repair operator

in Shaw [69] is performed by constraint programming, which is a short-cut to achieve the

13

optimal neighbor solution without exploring the whole neighborhood.

In LNS, the deterioration of a portion of the current solution and its repair become time
consuming due to its large size. Thus the number of iterations per second is small compared
to other metaheuristics. However the iterations become more powerful and achieve higher
improvement (Shaw [69]). In Ropke and Pisinger [63], the destroy operator randomly chooses
a destruction degree up to half of the problem variables. The authors confirm that very good
performance is observed even if the needed computation time per iteration is much higher
compared with standard metaheuristics. Shaw [69] proposed to gradually increase the degree
of destruction. Other works limit the maximum number of destroyed variables to a prede-
fined value, acting as the maximum hamming distance between the current solution and the
new neighbor solution (Della Croce and Salassa [26]). The power of each move is the core
idea behind LNS. However, precaution is to be taken not to destroy an extremely large part
of the problem at each move and turning the metaheuristic into successive re-optimization,

leading to poor-quality solutions (Pisinger and Ropke [61]).

It is interesting to cite the ruin and recreate (R & R) method presented in Schrimpf et al. [68]
published after Shaw [69]. R & R is similar to the LNS idea, where iteratively parts of the
solution are ruined then re-constructed. Schrimpf et al. [68] presents the ruin and recreate
strategy for the vehicle routing problem and the telecommunication network optimization
problem. For the vehicle routing problem, radial, random and sequential ruining procedures
are used. In radial ruin, a random node is chosen along with its nearest n nodes, and all
of them are removed from the current route. Random removal is a simple random choice of
n nodes to be removed from the solution route. And finally the sequential ruin removes n
sequential nodes from a randomly selected round trip route. The recreate step uses a greedy
best insertion for simplicity. For the network optimization problem, simple ruining technique
is used by removing some demand and downsizing the links bandwidth. Then the re-create
operator uses a collective best insert procedure. Single best insert is done by inserting the
cheapest path for the chosen demand, while collective best insert tries to add several best
paths simultaneously. In the paper, simulated annealing (Kirkpatrick et al. [44]), threshold
acceptance (Dueck and Scheuer [30]) and greedy acceptance are all tested for the ruined and

re-created solutions acceptance strategy.

The destroy and repair operators are the main factors affecting the LNS behavior. They

are responsible for each iteration new solution quality. Destroying parts of the solution that

14

should not be changed will lead to poor or no improvement. Weak repair operators can miss

better solutions. Next we introduce the destroy and repair operators used in the literature

within different problem contexts.

Destroy heuristics

Three types of destroy strategies are found repeatedly in the literature: the random destroy,

worst destroy and related destroy strategies. Next we present them along with other strategies

from the literature.

(i)

(ii)

Random destroy

Random choice of variables (or problem elements) to be destroyed is the simplest destroy
operator. Also considered as a diversification of the search and used as one of several
destroy operators in the adaptive LNS (ALNS). The ALNS uses several destroy /repair
operators interchangeably in an adaptive way, as the solution process progresses, the
operators that have yielded the best solution improvements have higher chances to be
selected at each iteration. Random destroy operators have been used in various LNS al-
gorithms, including those proposed by Pisinger and Ropke [61] and Schrimpf et al. [68]
for the vehicle routing problem, Sacramento et al. [66] for the vehicle routing problem
with drones, Pisinger and Ropke [60], Ropke and Pisinger [64] and Ropke and Pisinger
[63] for the pickup and delivery problem with time windows, Wen et al. [75] for the
electric vehicle scheduling problem, Laborie and Godard [47] for the activity schedul-
ing problem, Muller [56] for the resource constrained project scheduling problem, and

Godard et al. [37] for the cumulative scheduling problem.

The randomization process can be incorporated within other systematic destroy pro-
cesses, where a part of the removal process follows a well-defined algorithm and the
other part is randomized. Pisinger and Ropke [60] and Ropke and Pisinger [64] use a
random coefficient controlling the randomness degree incorporated within the system-
atic destroy procedure. In Cordeau et al. [15], a last-random destroy is used for the
technician and task scheduling problem, where a task causing high cost is removed,
then another set of random tasks are removed. Also the whole-team destroy selects a

day randomly, then two technician teams working this day are randomly removed.

Worst /Critical destroy
This destroy operator is considered as an intensification of the search (Pisinger and

Ropke [61] and Pisinger and Ropke [60]). Destroying the expensive variables within a

(iii)

15

solution and keeping the low-cost variables gives a chance to get a lower overall cost
while repairing the solution. Ropke and Pisinger [63] and Pisinger and Ropke [60]
use a worst removal for the pickup and delivery problem with time windows. A cost
function is defined for each request (pickup/delivery) node and the top ¢ most expensive
requests are removed from the solution. Muller [56] uses a critical-path removal as one
of the ALNS removals for the resource constrained project scheduling problem. Activity
paths consuming a lot of time are removed. Dahmen and Rekik [20] use a worst destroy

operator for the multi-activity employee scheduling problem.

Related destroy

Also known as Shaw-destroy, as related destroy was first introduced by Shaw [69].
A relatedness measure is defined depending on the nature of the problem and how
variables are considered related. The idea behind the related destroy is that it is easy
to do an exchange between related variables. For the routing problems, the relatedness
is the distance between nodes (Ropke and Pisinger [64] and Pisinger and Ropke [61]).
For the pickup and delivery problem in Shaw [69], a related coefficient between nodes
considers whether or not two nodes are served by the same vehicle within the current
route. For an electric vehicle scheduling problem, Wen et al. [75] devised a neighboring
vehicle-schedule based removal operator that relies on the average distance between
two scheduled trips. For the technician and task scheduling problem in Cordeau et al.
[15], the relatedness between tasks depends on the common skill requirements between
them. For the high school timetabling problem, Demirovi¢ and Musliu [28] consider
the relatedness between the problem resources: rooms, teachers and students, in the

destroy operator.

Several variations based on the related removal principle are found in the literature:

e Space removal:
If the problem can be modeled on a plan, like the traveling salesman problem or
the vehicle routing problem (Schrimpf et al. [68]), space removal looks for all the

variables inside a disk (or any shape borders) within the plan and destroy them.

o Cluster destroy:
The cluster destroy operator is similar to the related destroy. Related destroy
defines a relatedness coefficient, then a set of related elements are destroyed. In
cluster removal, a set of variables are grouped together with a clustering algorithm
then destroyed. In the vehicle routing problem (Ropke and Pisinger [64], Pisinger
and Ropke [60] and Kovacs et al. [45]) a route is chosen and its nodes are divided

into two clusters, one of them is destroyed randomly.

16

e Time oriented destroy:
Variables with approximate time dimension are supposed to be related. For the
pickup and delivery problem with time windows, requests with close pickup time
are considered related (Pisinger and Ropke [60]). Laborie and Godard [47] use
the so called time WindowNHood for the activity scheduling problem, all activities
starting within a given time interval are removed from the current schedule. Muller
[56] introduces a removal strategy for the resource constrained project scheduling
problem called non-peak. A non-peak time unit has few running activities, activ-
ities running during non-peak time periods are removed. For the electric vehicle
scheduling problem in Wen et al. [75], trips are considered related if they share

the same start or end time.

(iv) Historical destroy
Historical removal is based on keeping track of variable values observed in good-quality
solutions, then trying to remove variables that are not frequently found in these so-
lutions. Pisinger and Ropke [60] and Ropke and Pisinger [64] present two historical
destroy operators for the vehicle routing problem. The first assigns a weight, initially
equal to infinity, for each couple of nodes. When a new best solution is found, the
weight for all directly connected pair of nodes is updated to this best solution cost.
The historical destroy operator removes connected nodes with high weight. The second
historical destroy operator assigns a weight for each couple of requests in the problem, a
request is a pair of pick-up and delivery nodes, this weight is increased each time these
two requests are served by the same vehicle within a new best solution. These weights

are used as a historical-relatedness coefficient while applying the destroy operator.

(v) Most-mobile destroy
For the resource constrained project scheduling problem presented in Muller [56], the
most-mobile destroy operator selects activities with high freedom to relocate. In the
paper context, a relocation means an activity can start before its current starting time,
or end after its current ending time. When the most-mobile activities are destroyed,

the repair operator has multiple ways for rescheduling the activities.

Repair heuristics

The repair operator is a construction heuristic for the partially destroyed solution. While
repair operators highly depend on the problem context, some repeated guidelines are found

in the literature. Next we highlight some of the most common repair operators.

(i)

(if)

(i)

17

Greedy repair

For every problem type there exists a greedy algorithm to construct a solution. Greedy
algorithms are common because they are simple and easy to implement. Depending
on the problem type, a more intelligent repair operator would be necessary. Pisinger
and Ropke [60], Ropke and Pisinger [63] and Ropke and Pisinger [64] use a simple
greedy repair algorithm for the pickup and delivery routing problem, where iteratively
a pickup and delivery request is inserted in its cheapest route. Schrimpf et al. [68] use a
greedy best insertion for the vehicle routing problem. Sacramento et al. [66] present four
greedy problem-oriented repair heuristics for the vehicle routing problem with drones,
where the routing problem involves trucks and aircrafts. For the technician and task
scheduling problem in Cordeau et al. [15], a score for each unassigned task is formulated
out of several parameters. The repair operator assigns a technician team for the task

with the highest score.

Regret repair

In a greedy algorithm, to assign a value for a variable we first try all possible values
then choose the variable value which gives the best gain (or the least increase) in the
objective function. Once this variable is assigned a value it can not be changed. Such
method leads to less possible values for the last variables. In the regret repair, the
difference between the objective function costs when assigning a variable its best and
second-best values is calculated and called the regret value. The variable with the
highest regret is assigned its best value first. Regret repair is parameterized by the
level [of the regret. The regret value represents the loss in the objective function if a

[""-best value instead of its best value. The previously stated

variable is assigned its
algorithm is a regret-2, and a greedy algorithm can be seen as regret-1.

Ropke and Pisinger [63], Ropke and Pisinger [64] and Pisinger and Ropke [60] use the
regret repair operator with several levels for the pickup and delivery problem. Also
Wen et al. [75] use the regret-2, regret-3 and regret-4 repair operators for the electric
vehicle scheduling problem. For the resource-constrained project scheduling problem
in Cordeau et al. [15], a wasted skills coefficient is calculated before assigning a team

to perform a task.

Operational research tools

Mathematical optimization can be used to re-optimize the destroyed sub-problem achiev-
ing the optimal neighbor solution. Constraint programming is widely used as a repair
operator for its ability to find good solutions and is quite fast for small sub-problems.

The repair operator presented by Shaw [69] for the vehicle routing problem uses con-

18

straint programming. For the activity scheduling problem, Laborie and Godard [47]
and Godard et al. [37] use constraint programming to repair destroyed schedules.
Della Croce and Salassa [26] present variable neighborhood search with large neigh-
borhoods evaluated by an integer program for the nurse rostering problem. Dahmen
and Rekik [20] use the tabu search for the employee scheduling problem, with large
neighborhoods where a subset of the schedules is destroyed, then reconstructed using
integer programming. For the high-school timetabling problem, Demirovi¢ and Mus-
liu [28] repair the destroyed solution, using an exhaustive search based on a partial

weighted satisfiability problem (maxSAT) formulation.

2.3.3 Parallel metaheuristic

Parallel metaheuristic exploits the computer multi-core and multi-processor capabilities by
dividing a process into several disjoint sub-processes and distribute them over the several
available processors. Parallelism is famous for its faster execution property. If the problem
can be divided into several sub-problems, these sub-problems can be solved in parallel, and
their execution is finished in a fraction of the time needed for the sequential execution.
Another important property for parallelism is robustness. Especially for approximate solution
methods like metaheuristics, parallelism proves to get higher quality solutions over their

sequential versions (Crainic [17]).

Two common classifications for parallel metaheuristics are found in the literature. The first
one proposed by Alba et al. [2] divides the trajectory-based parallel metaheuristic into three

models: parallel moves model, parallel multistart model and move acceleration model:

(i) Parallel moves model
The parallel moves model is the simplest way to use parallelism. For each metaheuristic

iteration, the different neighbor solutions are evaluated in parallel.

(i) Parallel multistart model
Several metaheuristic runs are executed in parallel. Each run is parameterized by the
initial solution, the used neighborhoods and even the used metaheuristic algorithm.
After the parallel executions are finished, the best solution out of the different runs is

chosen as the parallel metaheuristic final solution.

(iii) Move acceleration model
First presented by Kravitz and Rutenbar [46], the move acceleration model is used when
the evaluation of the objective function is time consuming and can be decomposed into

independent parts. Thus, all parts are evaluated in parallel to accelerate the evaluation

19

of the move. The move acceleration model does not introduce the parallelism into the
metaheuristic search technique or the neighborhood exploration, parallelism is only

used for the solution cost evaluation.

The second classification is from Crainic and Toulouse [19] and Crainic [17], where the parallel

metaheuristics are classified into four categories: Low-level parallelization, Data decomposi-

tion, Independent multi-search, and Cooperative multi-search:

(i)

(if)

(iii)

(iv)

Low-level parallelization

Low-level parallelization or the functional-parallelism strategy as per Crainic [17], in-
cludes the parallel heuristics which do not change neither the sequential algorithm logic,
nor the problem domain. Only independent low-level processes of the metaheuristic are

being parallelized in order to reduce the overall computational time.

Data decomposition
Data, domain, or search-space decomposition arises when the problem domain is divided
into sub-domains, and each sub-domain is optimized separately on parallel threads. The

final solution is obtained by merging the several thread solutions.

Independent multi-search

Several versions of the metaheuristics are run on several independent threads. Af-
ter all thread executions are finished, the best solution among the threads is chosen.
This methodology benefits from the computer parallel capabilities for the search space

exploration without adding any intelligence to the search.

Cooperative multi-search

Cooperation empowers the parallel metaheuristic strategies. Whenever a searching
thread reaches a significantly enhanced solution, it notifies the other threads about it,
the notified threads can benefit from this enhanced solutions in several ways. This step
intensify and diversify the search simultaneously. The intensification process happens
when all parallel threads search around the same enhanced solution, and the diver-
sification is obtained because each thread has its own neighborhood definition so the

search is diversified in several directions.

Beside the mentioned parallel metaheuristic rigid classifications, Crainic and Hail [18] present

a wider taxonomy to classify the parallel metaheuristics. The presented taxonomy is com-

posed of three dimensions: search control cardinality, search control and communication, and

search differentiation. To classify a parallel metaheuristic one category value for each di-

mension is selected. This classification is general enough to cover both the trajectory-based

20

metaheuristics as well as the population-based metaheuristics. The taxonomy categories are

as follows:

(i)

(if)

(iii)

Search control cardinality

Parallel metaheuristic search control cardinality means the number of controllers in the
search. If each thread has its own controller, which decides when to stop, when to
change any parameter value, when to diversify or intensify and when to cooperate with
other threads, then it is a multi-controller parallel metaheuristic or p-control "pC". If
all threads of the metaheuristic are governed by one controller, then it is a 1-control or

"1C" parallel metaheuristic.

Search control and communication

The communication between threads is either synchronous or asynchronous. In the
synchronous communication all threads must stop in order to communicate. In the
asynchronous communication each thread decides when it can receive or share infor-
mation. There exist four categories in the control and communication dimension: rigid
synchronous " RS", knowledge synchronous "KS", asynchronous collegial ' C'", and asyn-
chronous knowledge collegial "KC'". The expression collegial is inspired from the word
colleague, where all threads are considered like colleagues working together (Crainic
17)).

Search differentiation

The search differentiation dimension indicates whether the thread metaheuristic uses
different or similar initial solution (starting point) and search strategy. SP: same start-
ing point. DP: different starting point. SS: same search strategy. DS: different search
strategy. Summing up, we have four categories in the search differentiation dimension:
SPSS, SPDS, DPSS and DPDS.

Next we point to some parallel metaheuristic works in the literature for optimization prob-

lems. Saviniec et al. [67] present a parallel local search for solving the school timetabling

scheduling problem. The authors develop a parallel multistart trajectory-based algorithm.

Four metaheuristics are tested: iterated local search, tabu search, simulated annealing and

late acceptance strategy. Jin et al. [40] solve the capacitated vehicle routing problem using

parallel multi-neighborhood tabu search. Perron et al. [59] present a parallel large neighbor-

hood search for the network design problem. The large neighborhood search destroy operator

freezes random parts of the problem, the remaining parts are then optimized using constraint

programming as the repair operator. Munguia et al. [58] present a parallel large neighbor-

hood search for mixed integer programs. Several threads optimize overlapping sub-problems.

21

Thread final solutions are merged, if the merged solution is infeasible, an extra step ensuring
the solution feasibility is accomplished. Fiechter [35] solves the travel salesman problem using
parallel tabu metaheuristic. The current solution tour is divided into a number of sub-tours,
called slices, each sub-tour is optimized in a parallel thread. After a number of iterations,
slices are shifted (boundaries are changed) then reoptimized, to give a chance to discover so-
lutions prohibited during the previous slice optimizations. Lahrichi et al. [48] present a new
parallel search framework for multi-attribute combinatorial optimization problems called the

Integrative Cooperative Search.

2.4 Employee scheduling with inter-department transfers

In this section, we discuss some works dealing with similar employee scheduling problem
characteristics as the ones we cover in our study. The multi-job scheduling problem and the
employee scheduling problem with inter-department transfers are not covered widely in the
literature, but many variation of the problem can be found, like the nurse allocation to dif-
ferent units in a hospital during a shift, and the multi-task or the multi-activity assignment
problem, where each employee is qualified for a set of tasks/activities, and the daily shift of

an employee usually involves different tasks and activities.

Bard and Purnomo [7] provide an integer program for solving a daily nursing shift assign-
ment problem in a hospital, taking into consideration the possibility of the nurse transfers
between different units. If no nurses are available for transfer, on-call nurses shall fulfill the
extra demand. The integer program uses only five shift types per day: three 8-hour shifts
(Day, Night and evening) and two 12-hour shifts (from 7 a.m. to 7 p.m., and from 7 p.m.
to 7 a.m.). This model, with 5 shifts per day, is relatively small compared to problems in

other application areas, thus the resolution of the mathematical model is not time consuming.

A heuristic merging constraint programming and integer programming for solving the shift
creation and task assignment problem is presented in Demassey et al. [27]. Constraint pro-
gramming is used for the shifts generation step, then an integer program optimizes the task

assignment problem.

Bard and Wan [8] tackle the task assignment problem. Employees have to be assigned to
tasks for the week days, requirements must be fulfilled, and employee transitions between dif-

ferent workstation groups must be minimized. The authors start by modeling their problem

22

as a multi-commodity network flow problem, then present three different solution approaches.
The first is a greedy algorithm for the task assignment problem. In the second approach, the
problem is decomposed into seven daily problems. A tabu search is presented in the third
approach. The main reason for providing three different approaches is to finally combine
them into one heuristic. Results show that the daily decomposition heuristic is able to pro-
vide nearly optimal solutions, while the tabu search needs a good starting solution in order
to provide competitive results. Running the tabu search with the decomposition heuristic

result as the starting solution gives the best final results.

A couple of years later, Bard and Wan [9] investigate the same problem with one extra re-
striction: some transitions between departments are prohibited. Two solution procedures are
presented: a sequential procedure and an iterative procedure. In the sequential procedure,
the workstation groups are clustered, within each cluster (set of workstation groups), the
employee transitions are allowed. First, a simplified tour-scheduling problem for each cluster
employees is solved, then a task assignment problem is solved for the resulted shifts. In the
iterative procedure, they start by solving a minimized version of the tour-scheduling problem:
without including the task assignment and the workstation group transition restriction. If
the workstation group transition constraints are violated in the resulted solution, the demand
is modified and the tour-scheduling problem is resolved again. Shifts are finally assigned to
the employees. The iterative procedure shows better results, where nearly optimal solutions
are achieved for instances with hundreds of employees and about five workstation groups, in

around thirty minutes.

Sabar et al. [65] present a formal mathematical programming model for the employee task
assignment in a multi-product sequential assembly line center. The model respects the em-
ployee task preferences and aims at minimizing the employee transitions between tasks. The

model is validated using a small dataset and a commercial solver.

Hojati and Patil [38] present a linear programming based heuristic for scheduling tasks and
shifts to part-time employees. The problem is decomposed into two main sub-problems: de-
termining shifts and assigning shifts to employees. For the first part, a daily anonymous
scheduling problem is solved for each task. For the shift assignment sub-problem, solving
an integer program was not efficient in terms of computation time, thus an integer program-

ming based heuristic is developed. The heuristic iteratively optimizes each employee schedule.

23

Lequy et al. [50] provides three integer programming models for assigning interruptible ac-
tivities to the employee shifts. A mathematical programming based heuristic is presented
to solve these models. Jin [41] studies the same problem but with both interruptible and
uninterruptible tasks. A two-phase approach is developed. In the first phase, uninterruptible
tasks are assigned to shifts, then the interruptible tasks are assigned to shifts at the second

phase.

Munezero [57] deals with the same problem we are solving, the employee scheduling problem
with inter-department transfers, with minor differences within some constraints. In the
thesis, a two-phase heuristic is presented. For the first phase, a department decomposition
is applied, then each department employee schedules are optimized using an integer linear
program. In the second phase, under-covered time periods within all departments are fulfilled
by transferring any available and qualified employee from another departments. A greedy
algorithm and a formal integer program are presented for the second phase. The integer

program showed better results than the greedy algorithm

2.4.1 Large neighborhood search for the employee scheduling problem

Dahmen and Rekik [20] solve the multi-activity, multi-day employee scheduling problem us-
ing a hybrid heuristic. They present a tabu search with large neighborhoods. The large
neighborhoods are evaluated with a branch-and-bound procedure. The tabu search neigh-
borhood is defined as follows: for the current solution, the day and the activity with the
largest under-coverage are identified, all possible employee shifts for this activity during this
day are enumerated. For the remaining days and activities, only shifts already existing in
the current solution are enumerated, this is a worst destroy operator. Branch-and-bound
solves a restricted set covering model for the employee scheduling problem using only these
enumerated shifts, resulting in an optimal solution serving as the best neighbor for the cur-
rent solution. Intensification and diversification are further used to escape from local optima.
Good solutions are obtained using this hybrid heuristic. While the presented computational
time seems to be high, the authors point to the heuristic ability to achieve good solutions for

large instances.

Quimper and Rousseau [62] present a large neighborhood search for the multi-activity multi-
skill employee scheduling problem. Formal language is used to model the problem: a grammar
graph representing the problem constraints is created, a path in the graph represents a fea-

sible sequence and a schedule is a set of feasible sequences. The large neighborhood search

24

destroy operator destroys a sequence from the current schedule and the repair operator re-
places it by another sequence with lower cost. The heuristic achieves near optimal solutions

with fast computational times compared to the exact mixed integer program solution.

2.4.2 Parallel metaheuristic for the employee scheduling problem

Martin et al. [53] solve the fair nurse roster problem using a parallel metaheuristic. Three
metaheuristics are implemented: tabu, simulated annealing and variable neighborhood search.
Each metaheuristic is called an agent and optimizes a variant of the objective function. Dif-
ferent neighborhood structures are used. A launcher first reads the problem, creates an initial
solution and sends it to the different agents. Agents use an iterative cooperation protocol as
follows: they start optimizing their current solution for a number of iterations. An initiator
agent is chosen, it sends its best solution to all agents. Each agent captures good patterns
from this solution and rebuilds a new starting solution before restarting the optimization for
another set of iterations. The authors use the parallelism not only to accelerate the search or
to seek better local optima, but they use parallelism to discover the best objective function
that better models fairness within soft constraints violation. Results show that the use of
the cooperative agents gives better results than using a standalone metaheuristic search, and

the use of different objective functions helped the model to produce the fairest nurse roster.

25

CHAPTER 3 GENERAL ORGANIZATION OF THE THESIS

This thesis focuses on two variants of the heterogeneous employee scheduling problem, namely,
the employee scheduling problem with inter-department transfers and the multi-job employee
scheduling problem. While the literature is rich with works optimizing the ESP, no scalable
solution method for the ESP-IDT has been proposed, and a matheuristic has never been
applied and tested for the MJ-ESP. Furthermore, parallelism has not been exploited for both
problems. This thesis addresses these research gaps by developing decomposition heuristics

which use parallelism to solve the large-scale ESP-IDT and a parallel matheuristic for the

MJ-ESP.

In general, this research project integrates decomposition heuristics and exact solution meth-
ods for optimizing the ESP variants, meanwhile, parallelization is maintained for all heuris-
tics. Parallel computation helped to reduce the computation time, maintained heuristics
scalability and robustness. The thesis is divided into three main parts. The first part in
Chapter 4 corresponds to the article "A decomposition-based heuristic for large employee
scheduling problems with inter-department transfers'. The proposed decomposition heuris-
tic transforms the intractable large problem instances into manageable ones, by introducing a
novel parallel mono-department employee scheduling problem with derived inter-department
transfers. This ESP-DIDT computational time is further reduced in Chapter 5, where a hy-
brid heuristic controlling the algorithms computation time is proposed. Chapter 6 addresses
the MJ-ESP with a domain decomposition parallel large neighborhood search heuristic. The
LNS iteratively destroys disjoint sub-schedules and repairs them in parallel with the com-

mercial solver WFC, until the stopping criterion is met.

Chapter 7 generally discusses the research objectives and results, where solution methods
from the literature along with research gaps are detailed. Chapter 8 is divided into three
sections, the first starts by summarizing the presented work. Then a limitation analysis
for every part of the thesis is presented in the second section. Finally, in the last section,

interesting future work are suggested.

26

CHAPTER 4 ARTICLE 1: A DECOMPOSITION-BASED HEURISTIC
FOR LARGE EMPLOYEE SCHEDULING PROBLEMS WITH
INTER-DEPARTMENT TRANSFERS

Dalia Attia®‘, Reinhard Biirgy”¢, Guy Desaulniers ¢, Francois Soumis **

EURO Journal on Computational Optimization volume 7, pages325-357(2019)

@ Département de Mathématiques et de Génie Industriel, Polytechnique Montréal, Montréal

(Québec), Canada

b Département d’Informatique, Université de Fribourg, Fribourg, Switzerland

¢ GERAD, Montréal (Québec), Canada

Abstract: We consider a personalized employee scheduling problem with characteristics
present in retail stores consisting of multiple departments. In the setting under study, each
department generally covers its demand in employees over the planning horizon of a week
by assigning shifts to its own staff. However, the employees can also be transferred to other
departments under certain conditions for executing entire shifts or parts of shifts there. The
transfer feature enables to improve the overall schedule quality considerably when compared
to the non-transfer case. Given the complexity of the problem, we propose a three-phased
decomposition-based heuristic. In the first phase, we consider each department separately
and solve a simplified version of the mono-department scheduling problems. From the ob-
tained solutions, we deduce inter-department shifts that could potentially reduce the overall
cost. This is examined in the second phase by re-solving the scheduling problem of the first
phase where the deduced inter-department shifts are included. In this phase, however, we
decompose the scheduling problem by time, looking at each day separately. From the ob-
tained schedules, we then devise inter-department demand curves, which specify the number
of transfers between departments over time. In the third phase, we decompose the initial
scheduling problem into mono-department problems using these inter-department demand
curves. Consequently, our approach makes it possible to solve mono-department optimiza-
tion problems to get an overall schedule while still benefiting from the employee transfer
feature. In all three phases, the scheduling problems are formulated as mixed-integer linear

programs. We show through extensive computational experiments on instances with up to

27

25 departments and 1000 employees that the method provides high-quality solutions within

reasonable computation times.

Keywords: Employees scheduling, shift scheduling, multi-department, retail industry,

heterogeneous workforce, mixed-integer linear programming, decomposition

Acknowledgments: This work was funded by Kronos Canadian Systems and the Natural
Sciences and Engineering Research Council (NSERC) of Canada under grant RDCPJ 468716
- 14. The financial support is greatly appreciated.

4.1 Introduction

Personnel scheduling consists of assigning employees to activities over time. As explained in
Thompson [72], managers of all types of organizations should care about this recurrent task
for the following three primary reasons. First, personnel scheduling has a direct consequence
on the profitability. An under-supply of employees presumably leads to poor customer service
which translates into lost business, while an over-supply is related to an excess of salary costs.
Second, employees have specific work preferences, for example, with respect to the assigned
activities, the time of day they work, the length of their shifts, and with whom they work.
Meeting these preferences generally translates to better work satisfaction and performance.
Third, managers usually dedicate a significant amount of time and effort for developing
employee schedules as it is no easy task to construct admissible, high-quality solutions. A
(semi-) automated scheduling process frees up precious time, so that the managers can spend

more time for other important tasks.

Researchers in management science and operations research have established a valuable body
of knowledge over the last decades helping the managers to better handle the labor scheduling
task. In particular, scientists have introduced mathematical models capturing the underlying
decision-making problems, developed methods for solving these inherently difficult optimiza-
tion models; and studied applications of the developed models and methods in industry
underpinning the value of the developments. An important aspect of this research field is
that no generally applicable employee scheduling model and method exists. On the contrary,
the specific characteristics on the industry and company levels make it necessary to estab-
lish specialized solutions [33]. As a consequence, employee scheduling problems have been
studied extensively in various domains, including hospitals [76, 49], air transport [29, 43],
factories [11, 34], restaurants [52, 39], and retail stores [42, 12]. We refer the reader to the

28

survey papers of Ernst et al. [33], Van den Bergh et al. [73], and De Bruecker et al. [24] for

a complete overview of the employee scheduling research field.

In this paper, we address a scheduling problem typically arising in the retail industry and call
it the employee scheduling problem with inter-department transfers (ESP-IDT). It consists of
scheduling the employees of a store during a multi-day time horizon. While we only consider
weekly problems, (slightly) longer time horizons can be considered without major changes.
The given time horizon is split into small consecutive time periods of a fixed duration, for
example 15 minutes. We assume that the store is partitioned into departments, which are
units within the store with some degrees of independence. Each department has its own
(internal) employees, of which some are qualified to work in other (external) departments,
too. To cover its demand in employees, a department can use its own staff or can borrow
qualified employees from other departments as required. The transfer of employees between
departments is, however, regulated as these transfers may lead to some inconvenience on the
employees’ side, and to higher managerial complexity and some loss of productivity on the
employer’s side. More specifically, the employees work in shifts, and a shift is either fully
executed in the home department of the assigned employee or in one of the other departments
he/she is qualified for. In addition, we also consider shifts where, after a certain time, the
employee is transferred from one department to another. In this case, both work blocks must
not be too short and one of the two involved departments must be the employee’s home

department.

We also consider the following standard characteristics of personalized employee scheduling
problems. We assume that the days-off planning has been established telling on which days
each employee can be assigned to work a shift. Shift profiles can be specified to limit the
possible start periods and lengths of the shifts, and the rest period between two consecutive
shifts of an employee must not be too short. We assume that breaks within shifts are
assigned in real-time depending on the observed demand and do not model them explicitly.
The demand forecasts may be increased in certain time periods to account for the breaks
in the scheduling problem. To measure the quality of the schedules, we capture demand
under- and over-coverage costs, salary costs, and transfer costs, which is a penalty for the
time employees spend in external departments. We seek to find an employee schedule with

minimum total cost.

The specific features of ESP-IDT are the simultaneous consideration of multiple depart-
ments, each having its own employees, and the possibility to transfer employees between
departments. Multi-department problems occur, for example, in large department stores,

in furniture retailers, and in supermarkets. In these working environments, employees are

29

typically assigned to one department but have the knowledge and qualifications to work in
other departments, too. This flexibility is valuable for the employee scheduling task as it
enables to better match supply and demand in employees. Motivated by current practice, we
only consider specific transfer shifts and assign some costs to the time executed in external
departments to handle the negative consequences of transfers mentioned before. From an
optimization perspective, it is not easy to make use of the transfers as, first, there is a large
number of possible inter-department shifts to consider, and second, there exists no natural
decomposition into mono-department problems when considering inter-department transfers.

Hence, the overall optimization problem tends to be extremely large and difficult to solve.

In this paper, we contribute to the employee scheduling research field by proposing a three-
phased decomposition-based heuristic for solving ESP-IDT. In the first phase, we consider
each department separately and solve a simpler version of the initial problem obtained by
omitting individual features of the employees. From the obtained schedules, we deduce inter-
department shifts that potentially lead to schedule improvements. In the second phase,
we include these inter-department shifts to the optimization problem of the first phase.
This time, we decompose the problem not by department but by time and solve the so-
obtained daily scheduling problems. From the obtained schedules, we then devise inter-
department demand curves, specifying the number of transfers between departments for each
time period. In the third phase, we decompose the initial scheduling problem into mono-
department problems using these inter-department demand curves. In all three phases, the
optimization problems are formulated as mixed-integer linear programs (MILPs) and solved

with a commercial MILP solver.

The remaining part of this paper is organized as follows. The next section provides a brief
literature review pointing to some related works. Section 4.3 describes ESP-IDT formally,
provides a MILP formulation, and introduces an illustrative example. In Section 4.4, we
propose a three-phase solution method for ESP-IDT and illustrate it with our example.
Section 4.5 describes the extensive computational experiments that are executed to evaluate
the method developed in the previous section. A conclusion is provided in Section 4.6, and

the appendix contains the detailed numerical results of the experiments.

4.2 Literature

As one can see in the survey papers listed in the previous section, employee scheduling
problems or related questions are addressed in a huge number of scientific works. In this
section, we only point to the articles that are, in our view, the most relevant with respect to

our study.

30

A number of articles, including Loucks and Jacobs [51], Sabar et al. [657], Coté et al.
[16], Dahmen and Rekik [20], consider personnel scheduling problems with multiple activities
and multi-activity shifts. In this setting, the goal is not only to specify the work and rest
hours for each employee, but also to define the activities assigned to the work periods,
where typically qualifications and possibly preferences of the employees must be respected.
These problems are closely related to our study since a department can be seen as a specific
activity. Similar as in our work, the transition from one activity to another within a shift
is usually regulated by, for example, imposing minimum work durations before switching
to another activity. However, the notion of main activity, which would reflect the home
department in our study, is usually not present. This is an important difference as we
penalize the time spent in external departments, reflecting the wish to assign employees to
their home department and only using the transfers as needed. This also limits the possible
downside effects of transfers, which are, for example, increased managerial complexity, higher
dissatisfaction of the employees, and some loss of productivity. We also remark that the
number of employees is typically much larger in multi-department scheduling problems than
in multi-activity environments. It is, for instance, not unusual that up to 1000 employees work

in multi-department stores while a single department may consist of about 100 employees.

The home department feature is, to a certain extent, considered in Bard and Wan [9]. Their
goal is to select an optimal size and composition of full-time and part-time employees when
the demand in employees is specified by workstation group (WSG), which is a department
in our terminology. The employees must be assigned to a home WSG but can also work for
other WSGs under some pre-defined conditions. They highlight that the transfer feature is
necessary to avoid excess idle time. However, the number of transfers between WSGs are to
be kept small due to layout restrictions, union agreements, and supervisory preferences. The
authors develop two versions of a multi-stage approach to solve their problem, and test them
on data provided by a U.S. Postal Service mail processing and distribution center. This work
clearly confirms the value and difficulty of including employee transfers between departments.
Their context is, however, structurally different from ours. We consider a setting where the
workforce is given and employees have individual preferences and qualifications, while Bard
and Wan’s goal is to optimize the workforce. Furthermore, ESP-IDT specifies less restrictive

shift profile rules, which leads to a substantially larger set of feasible shifts.

Departments are also considered in the study of Bard and Purnomo [7], where hospital-wide
reactive scheduling of nurses is considered. More specifically, each unit, which corresponds
to a department in our terminology, establishes a midterm schedule independently. The
units try to cover their estimated demand with their own nurses in the best possible way.

Bard and Purnomo consider these schedules as input, and address the problem of reactively

31

adjusting the nurses” work schedules of the next 24 hours to account for the daily fluctuations
in the supply and demand of nurses. One of the alternatives for improving the schedule is
the transfer of nurses from their home unit to other units as needed. The authors develop a
specialized branch-and-price algorithm that solves instances with up to 200 nurses within ten
minutes to optimality. While the notion of home department is also important in this study,
the general setting is clearly different from ESP-IDT. First of all, they consider a reactive
scheduling problem while ESP-IDT considers the initial schedule generation process, and
second, in contrast to the retail industry, where the shifts start and end at many different

time points each day, there are only few alternatives when looking at nurse shifts.

The most closely related work to our study is Dahmen et al. [22]. They consider ESP-IDT
except that they enforce the assignment of a shift during a non-day-off. Indeed, the authors
consider a multi-department employee scheduling problem with a weekly time horizon, the
employees have a home department and qualifications to work in other departments, and
costs are assigned for over-coverage and under-coverage of the department demands and for
transfers and work times. Structurally, a main difference is that a shift must be executed
during a non-day-off of an employee in their study, while we only state that the given days-off
of the employees must be respected and a shift may or may not be assigned to an employee
for all other days. Having this choice is particularly important with part-time employees. For
those, one typically specifies the days during which they are not available, and all other days
can be chosen as workdays. Dahmen et al. propose a two-stage decomposition heuristic for
solving their scheduling problem. In the first stage, they solve a smaller optimization problem
where the data is aggregated and transfers are somewhat approximated. In the second stage,
they generate optimized schedules by solving a MILP, in which a subset of promising shifts,
derived from the outputs of the first stage, is present. While the "days-oft" difference between
their and our study has some effects on the structure of feasible schedules, we show that the
method we propose for ESP-IDT can also be applied to the setting of Dahmen et al. [22]

with minor changes.

4.3 The employee scheduling problem with inter-department transfers

In this section, we first define ESP-IDT formally, then formulate it as a mixed-integer pro-

gram, and finally introduce an illustrative example that will be used throughout Section 4.4.

32

4.3.1 Problem statement

We consider a planning horizon of one week given by days J; to J;. The time horizon
is divided into consecutive short time periods of some predefined length (for example, 15
minutes). Let P = {pi,...,pp|} be an ordered set comprising the resulting time periods,
where p, refers to the rth period of the week. We typically use p (without an index) for
a generic period in P. Each period p € P starts and ends on a specific day of the week
DAY (p) € {Ji,...,J7}. In the sequel, time lengths will generally be specified as units of

time periods.

ESP-IDT involves a set D of departments. A target demand b,; in employees needs to be
satisfied for each department d € D at each time period p € P. We consider the complete
planning horizon, so that a possible closing time of all departments simply results in zero
demand for all departments in all the corresponding time periods. We allow for under- and
over-coverage of this demand but penalize both deviations in the objective function with
costs linear in the size of the deviation. Denote by cj" and ¢’ the unit penalty cost paid for
under- and over-coverage, respectively, in department d € D. We abstain from establishing

unit penalty costs that depend on the time period to keep the notation slightly simpler.

The demands can be covered by a set E of employees. Each employee e has a specific home
department d" € D and is qualified to work in a given set of departments D, C D. Clearly,
d® € D, holds. For each department d € D, denote by E; C E the set of employees with
d as home department. To capture the employees’ work time costs, a unit cost of ¢ is
charged for each period an employee is working, and additionally, a unit transfer cost of c'*
is charged for each period an employee is working in another department than his/her home

department.

We assume that the days-off planning has already been established, so that each employee
e € E has a predefined set of work days, say J(e), and rest days over the planning horizon.
The employees work in shifts. A shift s is defined by an employee EMP(s), a start period
STA(s) € P, an end period END(s) € P as well as the department to which the employee is
assigned in each period covered by this shift. A shift may start at one day and finish at the
next, in which case the shift is considered to be assigned on the day of the starting period.
Let P(s,d) be the set of periods employee EMP(s) works in department d during shift s and
denote by P(s) = Ugep P(s,d) the complete set of periods covered in shift s. A shift is called
internal or external if it is completely executed in the assigned employee’s home department
or in an external department, respectively. If more than one department is associated with
a shift, then it is called a transfer shift. The cost ¢, to execute shift s can be inferred from
the work time and transfer costs, i.e., cs = ¢"*|P(s)| 4+ (| P(s)| — |P(s,d)|). Shift profiles

33

can be specified to restrict both the start periods and the total lengths of the shifts. For
example, one can state in shift profiles that each shift must start at a full hour and its length
must be a multiple of an hour. Shift profile definitions are common in practice. They enable,

for example, to reduce the managerial complexity:.

We only consider shifts fulfilling the following constraints. A shift s is either fully executed
in one of the departments D, the assigned employee e = EMP(s) is qualified for, or after
executing a first work block in one of the departments in D,., the employee e is transferred
to another department in D, to execute the second work block. In this case, however, one
of the assigned departments must be the home department d", and both work block lengths
must be at least of a given minimum duration. Furthermore, shift s must start during a work
day of e, i.e., DAY(STA(s)) € J(e), and must satisfy the shift profile rules mentioned before.

Denote by S the complete set of feasible shifts. For each employee e € E, let S, = {e € S :
e = EMP(s)} be the set of feasible shifts s of employee e. An employee schedule is obtained
by selecting a set of shifts from & that must be executed. We call a schedule S C S feasible
if each employee e € E is assigned to at most one shift per day in J(e), works at most
1% periods over the planning horizon, and a minimum number of rest periods 7™ between

consecutive shifts of e in schedule S is respected.

For any schedule S C S, define COV(S,p,d) = |[{s € S : p € P(s,d)}| as the number of
employees present in department d € D during period p € P. The cost ¢(S) of a schedule
S C § is given by the sum of its work time and transfer costs captured by the shift costs and

its demand under-coverage and over-coverage costs:

o) = X s+ 0 Y [(bpa — COV(S, p.d))* + e (COV(S,p.d) = b)] (a1

s€8 pEP deD

where notation (z)" is a shortcut for max(0, z).

ESP-IDT consists of finding a feasible schedule S C S with minimum cost ¢(S).

4.3.2 A mixed-integer programming formulation

We now develop a MILP for ESP-IDT. For each shift s € S, introduce a binary variable z,
taking value 1 if s is selected and 0, otherwise. To capture the over- and under-coverage

of the demand, introduce two non-negative variables y, and y;d for each period p € P and

34

department d € D. Then, the following MILP describes ESP-IDT:

Minimize Y cszs+ Y Y (i g + €5 U) (4.2a)
s€S peP deD
subject to
Z Ty — y;“d + Ypq = bpa forallpe Pand d € D, (4.2b)
peslg(i:d)
> s <1 for all e € E and j € J(e), (4.2¢)
DAY(SS%%(:s)):j
> |P(s)|zs <t forall e € E, (4.2d)
SES.
> ry <1 foralle € E and k € {1,...,|P| — r™"}, (4.2¢)
(Pt fm‘fj}mp(s)ﬂ
zs € {0,1} forall s € S, (4.2f)
Ypa» Ypa = 0 forallpe P and d € D. (4.2g)

The objective function (4.2a) minimizes the total cost as defined in (4.1). Constraints (4.2b)
link the variables y , and y;“d to the variables x¢ according to their meaning. Constraints (4.2¢)
limit the number of shifts assigned to an employee for each of his/her potential workdays.
Constraints (4.2d) ensure that the employees’ maximum weekly work time limits are re-
spected. Constraints (4.2e) model the minimum rest time of 7™ periods between two shifts
for each employee e by imposing that for each set of 7™ 4-1 consecutive periods, at most one
selected shift of e must intersect with them. This ensures that, after the end of a shift of e,
the next must start at least r™™ periods later. Finally, constraints (4.2f) and (4.2g) specify
the domains of the decision variables. Note that using constraints (4.2c), one can eliminate
some of the constraints (4.2e). Indeed, if for some k, the set of time periods {py, . .., Pgypmin }

all belong to the same day, then the corresponding constraint in (4.2e) can be dropped.

The number of variables in (4.2) and the difficulty to solve it mainly depends on the number
of shifts. This, in turn, depends on various factors such as the number of departments, the
number of employees and their qualifications, the work block length constraints and the shift
profiles. The number of shifts is typically in the order of multiple millions even in instances for
medium-sized organizations with, for example, five departments, 200 employees working five
days a week in shifts with a length between five to eight hours. In particular, the possibility

to transfer employees between departments drastically increases the scheduling flexibility and

35

the number of shifts to be considered. We refer the reader to Section 4.5 for some specific
sizes of shift sets. Solving (4.2) for larger instances is simply impractical with state-of-the-art
MILP solvers. Indeed, not only the optimization process but already the task of generating

and loading the input data may pose some major problems.

4.3.3 An example

We introduce a small example to be used in Section 4.4 for illustrating our method. In this
example, the time horizon is divided in periods with a length of two hours (which would
typically be too long in practice), so that there are 84 periods in total. Figure 4.1 describes
the two departments of the example by showing their demand curves and providing data
about the employees. Each employee is listed in his/her home department. The name of an
employee is surrounded by a rectangle if he/she can work in the other department, too. The
days-off are indicated by a black line at the vertical position of the corresponding periods.
The shift profiles specify that the minimum work block length is one period, the shift length
must be between 2 and 4 periods, and there is no restriction with respect to the start period.
The maximum total work time of each employee is 20 periods. The unit under- and over-
coverage cost (per employee and period) is 18.8 and 9.4, respectively, the unit work time cost

is 0.3, and the unit transfer cost is 0.2.

4.4 A three-phase solution method for ESP-IDT

When dealing with large multi-department employee scheduling problems, a typical approach
is to decompose the overall problem into mono-department problems that are then solved
separately. For ESP-IDT, the decomposition into mono-department problems is not obvious.
When neglecting the chance to transfer employees to other departments, this decomposition
is naturally obtained. However, as shown in the literature and by our computational results in
Section 4.5, including the transfer possibility leads to substantially improved schedules. We
will therefore present a method that makes it possible to solve mono-department optimization

problems to get an overall schedule while still benefiting from the employee transfer feature.

As depicted in Figure 4.2, our method, called multi-phase decomposition heuristic (MP-
DH), is composed of three phases, which can briefly be described as follows. In the first
phase, we look at each department separately and find an optimized schedule using only
internal shifts. To reduce the computational effort, a simplified version of model (4.2) is used
for this purpose in which employees are not considered individually resulting in a so-called

anonymous employee scheduling problem. Based on the obtained schedules, we then generate

Department D
Degncmd

2

U | LT

4 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84
Employeesy
FE,
by
L3

Department D,
Demand

o e L e e e e e O

12 16, 20 24 28 32 36 40 44 48 52 56_60 64 68 72 76 80 _84

Employegs y 1 day 2 day 3 y 4 day 5 day 6 day 7
Ey
L5
L

Figure 4.1 The two departments of our illustrative example.

37

external and transfer shifts that can possibly improve these schedules. In the second phase,
the anonymous employee scheduling problem used in the first phase is re-solved using the
external and transfer shifts generated in the first phase. This time, we do not decompose the
problem into mono-department problems as we aim to evaluate the impact of the employee
transfers. However, to keep the computational burden reasonable, we decompose the problem
by time, looking at each day separately. The solutions of these daily, anonymous employee
scheduling problems give rise to inter-department demand curves, i.e., for each time period,
we decide how many employees of one department must be serving in another department
either within external or transfer shifts. Based on these demand curves, we then solve a
version of the global model (4.2) in the third phase. The inter-department demand curves
make it possible to decompose the problem into mono-department problems and to reasonably
limit the number of shifts that are considered. The next sections describe the three phases

in detail.

4.4.1 First phase: Generate promising external and transfer shifts

In this phase of MP-DH, we generate promising external and transfer shifts using the following
three steps. In a first step, we determine periods where the departments will possibly not
be able to match their demands perfectly with internal shifts. Periods with demand under-
coverage are formidable candidates to be covered by external employees. Similarly, periods
that indirectly caused demand over-coverage in other periods are also good candidates for a
coverage by external employees. We extract these critical periods in a second step and use

them to create a set of external and transfer shifts in a third step.

Determine under- and over-coverage curves

The periods with possible demand under- and over-coverage are determined with a simplified
MILP of (4.2). We not only consider each department separately, but also deal with an
anonymous version of the scheduling problem, i.e., the employees are not considered individ-

ually.

Phase 2
Derive inter-
department demands

Figure 4.2 The three phases of MP-DH.

Solve mono-
department
problems
with transfers

Generate
promising
external and
transfer shifts

38

More formally, for each department d € D, we derive the following model from (4.2). First,
we only consider internal shifts and do not associate specific employees with a shift. Hence,
for a given department d, a shift s is fully specified by its start and end periods. Note that
the cost ¢, of such an anonymous shift is still well-defined. Denote by Ssep the complete
set of shifts for department d. The size of this set is small. Indeed, suppose that the shift
starting periods are restricted to full hours, then at most 24 - 7 = 168 starting periods per
week exist. If five possible shift lengths, for example four, five, six, seven, and eight hours,
are considered, then no more than 840 shifts are obtained. When considering anonymous
shifts, some employee specific constraints cannot be modeled in the same manner, such as
the employees’” maximum of one shift per workday, maximum work time per week, and the

minimum rest periods. We replace some of these constraints by more aggregated versions.

Specifically, introduce a non-negative integer variable z, for each shift s & Ssep indicating
how many employees work shift s and two non-negative variables y,, and y]fd for each period
p € P capturing the under- and over-coverage of the demand. Then, solve the following
MILP for department d € D:

Minimize Y s+ Y (ciypg + 3 yl) (4.3a)
sesier peP
subject to
Yo w =yl 4 vy = bpa for all p € P, (4.3b)
SGSgep:
pEP(s)
> zs < |{e€ Eq: J. € J(e)} for all r € {1,...,7}, (4.3c)
SGSjep:
DAY (STA(s))=J;
> |P(s)]|xs < B, (4.3d)
sGSSep
zs € L>o for all s € S5, (4.3e)
Ypds Ypa > O for all p € P. (4.3f)

The objective function (4.3a) captures the shift costs and the demand under- and over-
coverage costs of department d as in (4.2a). Constraints (4.3b) link the variables y,, and y,;
to the variables x5 as in (4.2b). For each day, a constraint in (4.3c) limits the total number
of shifts starting at this day to the number of employees available at day J, in department
d. These constraints represent the restriction given in (4.2c). Observing that the right-hand

39

side of constraint (4.3d) is an upper bound on the total time available of all employees of
department d over the planning horizon, (4.3d) ensures that this upper bound is respected,
reflecting constraints (4.2d). Finally, constraints (4.3e) and (4.3f) specify the domains of the
decision variables.

For our example, Figure 4.3 shows the 30 shifts selected by solving model (4.3) and the re-
sulting available capacity in employees (gray area under the demand curves). For department
Dy, we observe that there is an under-coverage of one employee in periods 5, 10, 28, 45 to
48, 64, and 69, and an over-coverage of one employee in period 59. For department Ds, there

is an under-coverage of one employee in periods 18 to 19.

Department D;
Degmnd

T [

12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84

day 1
Selected anonymous shzfts
S14
515

Department D,
Demand

R s R e e e e e Y

12 16 20 24 28 32 _36 40 44 48 52 56 60 64 68 72 T6_ 80 _84

day 1 day 2 day 3 day 4 day 6 day 7
Selected anonymous shifts
519
520 524
530

Figure 4.3 An optimal solution of model (4.3) for each department of our example.

Select critical time intervals

Periods with demand under-coverage and those implying demand over-coverage in other
periods are considered as critical and are, in our view, good candidates to be covered with
external and transfer shifts. We are especially interested in extracting critical time intervals
given by consecutive critical periods. Denote a time interval i = [STA(i), END(7)] by its start
period STA(4) and its end period END(7).

40

For each department d € D, we extract a set IS of critical time intervals from demand

under-coverage and over-coverage of the solution of model (4.3) as follows.

For the demand under-coverage y,,,p € P, we use the simple scanning procedure described
in Algorithm 1 to extract critical time intervals. By scanning through all periods, it finds
maximal intervals with under-coverage and stores them in the set of critical time intervals.
Then, the under-coverage is reduced by one in all periods and the previous scanning step
is repeated. In our example, this procedure generates the critical intervals [ps, ps], [p10, P10],

[Das, Pas], [Pas, Das), [Pea, Pea), and [peg, peo] for department Dy and [pis, p1o] for department D,
from the solution depicted in Figure 4.3.

As demand over-coverage is typically less costly (per unit) than is under-coverage, we are
only interested in over-coverage intervals containing at least a given number of consecutive
periods v (for example, the number of periods that corresponds to one hour). With this
parameter, we then apply Algorithm 2 to generate additional critical time intervals for set
I, The reasoning behind this algorithm is the following. As shift s was chosen to be
executed, it seems not to be promising to remove s from the schedule because a (costlier)
under-coverage would occur in the periods between the start of s and the start of ¢ or between
the end of ¢+ and the end of s. Both situations are reflected in the created critical intervals
i’ and 7”. These intervals allow us then to transfer some of the demand in these intervals to
employees from other departments. In our example, there is an over-coverage in department
D1 in period psg. This over-coverage is caused by the shift starting in period psg and ending

in psg. We therefore add the critical interval [pss, pss] for department D;.

The solution provided by model (4.3) is one of typically many optimal solutions, and other
optimal solutions may possess different demand under- and over-coverage curves, which would
result in different critical time intervals. To partially cope with this ambiguity, we try to first
generate other optimal solutions by pre- or postponing single shifts (without changing the
shift lengths) and then extract critical intervals with the steps described above. Algorithm 3
describes the version with preponing a single shift in detail. The version with postponing
a shift is simply obtained from Algorithm 3 by increasing the start and end of the shift by
one period in line 6 of Algorithm 3. Looking at our example in Figure 4.3, we get another
optimal solution by starting shift s, one period earlier. With this solution, we generate a
new critical interval [pg, pg] caused by an under-coverage. Note that we refrain from listing

all generated intervals in the example.

Finally, for any pair ¢ and i’ of time intervals in I§"®, if ¢/ directly starts after the end of i,
we add the concatenated interval i* with STA(i*) = STA(7) and END(:*) = END(¢') to set

I§, The reasoning is that it could be beneficial to simultaneously consider the two critical

41

Algorithm 1: Extraction of critical time intervals from under-coverage.

1

B I~ NNS) SR NE VLI S

03]

9
10

11
12

while there exists some period p with Ypa > 0 do

Start with r = 0.
while » < |P|+1 do
Increase r by 1 until finding a period p, with Yp,.a > 0o0rr= |P| + 1.
if < |P|+ 1 then
Create an interval i and set STA(7) to py.
Continue to increase r by 1 until finding a period p, with Yp,.a =0 or
r=|P|+ 1
Set END(i) to p,—1, and add interval i to set IS
end
Decrease the under-coverage by one in all periods, i.e., set Ypa tO max(y;d —1,0) for all
peP.
end
Note: Some intervals may be generated multiple times. However, an interval is only added

to set I§® if it is not yet present in this set.

Algorithm 2: Extraction of critical time intervals from over-coverage.

© W N O A W N

10

11
12
13
14
15
16
17
18
19

// First, extract a set of over-coverage intervals [°°.
Start with » = 0.
while r < |P| +1 do
Increase r by 1 until finding a period p, with y;,d >0orr=|P|+1
if » <|P|+1 then
Create an interval ¢ and set STA(7) to p,.
Continue to increase r by 1 until finding a period p, with y;d =0orr=|P|+1.
Set END(i) to pr—1
if length of i is at least v then
‘ Add interval i to set I1°°.

end
// Then, generate critical intervals from the over-coverage time intervals.
foreach i = [STA(i), END(i)] € I°° do
foreach selected shift s, i.e., with xs = 1, intersecting with interval i do
if shift s starts before interval i then
‘ Add i = [STA(s),p'] to set IS, where p’ is the period preceding STA(3).
if shift s ends after interval i then
‘ Add " = [p/, END(s)] to set IS, where p’ is the period succeeding END().
end

end
Note: An interval is only added to set I§rit if it is not yet present in this set.

42

Algorithm 3: Generate alternative optimal solutions and derive critical intervals.

1 foreach department d € D do

2 foreach selected shift s, i.e., with x5 = 1, in department d do
// Variable altSol stores the generated alternative optimal solution.
3 altSol < null
4 stopWhile < false
5 while STA(s) # p1 and stop While = false do
6 decrease STA(s) and END(s) by one period;
7 if shift profile rules are fullfilled by s then
8 if solution of department d with updated s is optimal then
9 ‘ altSol < solution with updated s.
10 else
11 ‘ stopWhile < true
12 end
13 end
14 if altSol is not null then
15 ‘ Apply Algorithms 1 and 2 with solution altSol.
16 end
17 end

time intervals. In our example, department D; has the critical intervals [pg, po] and [p1o, p10]-

Hence, we also add the concatenated interval [pg, piol.

Create transfer and external shifts

In the last step of this phase, we create the anonymous transfer and external shifts that are
considered in the next phase. For this purpose, we will characterize an external shift s by its
start period STA(s) € P, its end period STA(s) € P, the department D(s) € D providing
an employee to execute shift s, and the department where s is executed. For any anonymous
transfer shift, we further specify a transfer period, after which the work place is changed and
an indication whether the work block before or after the transfer period is executed in the

external department.

For each department d € D, we sequentially consider each of its critical intervals 7 in I
to generate the following shifts. We create all feasible (with respect to the pre-defined shift
profile constraints, see Section 4.3.1) anonymous external shifts starting no more than ¢§ time
periods before STA(7) and ending no more than ¢ time periods after END(7). We do not
impose that the start and end times of the created shifts coincide with interval 7 as it is then
typically impossible to fulfill the shift profile constraints. The parameter ¢ should be set
with this in mind. Similarly, we create all feasible transfer shifts whose first work block is in

department d. In this case, we set the transfer period to END(7). In the same manner, we

43

create all feasible transfer shifts whose second work block is in department d. In this case, we
set the transfer period to the period preceding STA (7). The described external and transfer
shifts are generated for each department of origin d’ that has at least one employee qualified
to work in (the external) department d. Denote by S;’X/ " the set of external and transfer

shifts generated for department d.

Consider the critical interval [pss, psg] of department D; in our example and let § be one
period. We create all external shifts of length between two and four periods starting at or
after pyy and ending at or before py9. Then, we generate the transfer shifts with a first work
block in D; starting either at p4g, psa7, or psg and ending at pys and a second work block in
D, starting at py9 and ending either at py9, pso, or ps;. Clearly, the total shift length must
be at most four periods as specified in the shift profiles. Similarly, we create the transfer
shifts with a first work block in D, starting either at pys, ps3, or py and ending at pyy and
a second work block in D; starting at ps; and ending either at pys, psg, or psr. Again, both

work blocks together must contain at most four periods.

We finally remark that the number of generated external and transfer shifts can become very
large, particularly for instances where the demand in employees cannot be matched well only
with internal shifts, which often occurs when the demand highly fluctuates over time. This
is a problem since each generated shift will be a variable in one of the MILPs of the daily
scheduling problems addressed in the next phase (see Section 4.4.2). Hence, to keep these
MILPs reasonably small, we set a restriction for the total number of shifts (internal, external
and transfer) starting at a same day. More specifically, if the number of shifts in S5 USSX/ tr
starting at some day d is larger than 3, we delete all transfer and external shifts that were
generated (fully or partially) due to demand over-coverage. Parameter 5 should be chosen

so as the MILPs of the next phase can be solved within reasonable computation time.

4.4.2 Second phase: Derive inter-department demands

In the second phase of MP-DH, we first solve a daily, anonymous employee scheduling problem
to determine how to best use the created anonymous external and transfer shifts to reduce
the demand over- and under-coverage obtained in the first phase, in which the departments
were considered separately. The outcomes are then used to specify inter-department demand
curves for each pair of departments, specifying for each period how many employees of the

first department must be serving in the second department.

More specifically, for each day J,.,r = {1,..., 7}, the optimization problem considered here is
constructed as follows. The set S of anonymous shifts is given by ¥ = {s € Uyep(S5PU
Ssx/tr) : DAY(STA(s)) = J,}, which are all shifts starting at day .J,. Introduce a non-

44

negative integer variable z, for each shift s € 8% indicating how many employees work
shift s and two non-negative variables y,, and y;“d for each period p € P with DAY (p) = J,
capturing the under- and over-coverage of the demand. Then solve the following MILP for
day J.,r={1,...,7}:

Minimize Y cors+ Y, > (Mg + iyl (4.4a)
sesday peP: deD
DAY (p)=J-
subject to

Z Ts — y;l + Ypa = bpa for all p € P with DAY (p) = J, and d € D,

sesday,

pEP(s,d)
4.4b)
> rs<|{e€ Eq:J. € J(e)}| forallde D, (4.4¢)

s€83%:D(s)=d

Ts € Z>o for all s € S, (4.4d)
Ypds y;d >0 forallp e Pand d € D. (4.4e)

The objective (4.4a) captures the shift costs and the demand under- and over-coverage costs.
Constraints (4.4b) link the variables y,; and y;d to the variables z,. For each department
d, a constraint in (4.4c) limits the total number of shifts covered by employees of d to the
number of employees available at day J,. in d. Finally, constraints (4.4d) and (4.4e) specify

the domains of the decision variables.

Note that the partitioning into daily problems introduces some imprecision. Shifts may, for
example, start at one day and finish at the next. In the above model, such shifts are only
attached to the day at which they start. Hence, a potential coverage for periods of the next

day are not captured by the model. The partitioning is, however, needed to get manageable
MILPs.

Figure 4.4 depicts the solutions obtained by model (4.4) for our example. We observe that
the demands of both departments are perfectly covered. Among the 29 selected shifts, there

are five transfer and one external shifts.

Given the solutions of model (4.4) for all days J.,r = {1,...,7}, let 8! be the set of all

selected transfer and external shifts. We derive inter-department demands from set S*' as

45

Department D,
Degmnd

2

1
Period
4 8 12 16, 20 24 28 32 36 40 44 48 52 56_60 64 68 72 76 80 _84
day 1 day 2 day 3 day 4 day 5 day 6 day 7

Selected anonymous shifts

[s1] [s7] [so] fid [s11] [513]
[s2] [ss] (s8] [s12] [514]
[53] [s¢]
Department D,
Demand

3

WL o o g

4 8 12 16, 20 24 28 32 36 40 44 48 52 56_60 64 68 72 76 80_84
day 1 day 2 day 3 day 4 day 5 day 6 day 7

Selected anonymous shifts

[521]

Figure 4.4 An optimal solution of model (4.4) for each day of our example. The external
and transfer shifts are depicted in the department providing the employees. The colors of
the shifts indicate where the employee is working: dark gray for department D;, light gray

for D2.

46

follows. Each department d € D is assigned to cover a demand of
bpaar = |{s € S*, D(s) =d and p € P(s,d)}| (4.5)

for any other department d'(# d) in period p, i.e., it is required to transfer b,y of its
employees to department d’ in period p. The right-hand side of equation (4.5) counts how
many shifts with department of origin d are selected to cover some demand of department
d' in period p. Finally, the intra-department demand bpqq, i.e., the demand of department d

that must be covered by its internal employees, is given by

bpdd == bpd - Z bpd’d; (46)
d'eD\{d}
which is the total demand minus the demand transferred to the other departments via the

inter-department demands b,qzq4,d € D \ {d}.

Consider the solution of our example given in Figure 4.4. A demand of one employee is
transferred from department D; to Dy in the periods 9, 10, 28, 45 to 48, 58, 70, and 71, and

vice versa, a demand of one employee is transferred from D, to D; in the periods 18 and 19.

4.4.3 Third phase: Department-per-department optimization

In the third and final phase of MP-DH, we decompose the initial employee scheduling problem
into (personalized) mono-department scheduling problems where the possibility to transfer
employees between departments is reflected by the inter-department demands derived in the

previous phase.

Specifically, for each department d € D, the following optimization problem is addressed.
First, generate all feasible (personalized) internal shifts that cover at least one period of the
internal demand b,4q. Then, create all feasible external and transfer shifts that cover at
least one period of the external demand b,qs in a different department d’. Let S be the
so-obtained set of shifts, and define S§.° C S§* to be the subset of shifts of employee e € E.
For each shift s € S}™", introduce a binary variable x, taking value 1 if s is selected and
0, otherwise. To capture the over- and under-coverage of the inter- and intra-department

demands, introduce two non-negative variables y,;, and y;,fid, for each period p € P and

47

department d’ € D. Finally, solve the following MILP for department d € D:

Minimize Y ¢+ > Y (€ Ypua + 3 Yinar) (4.7a)
seSh” peP d'eD
subject to
> ow— y;id, + Ypaar = Dpdar forallp e Pand d € D, (4.7Db)
EISS A
pEP(s,d)
> xs <1 for all e € Ey and j € J(e), (4.7¢)
s€SYT:
DAY (STA (s))=j
S |P(s)|zs <t for all e € Ey, (4.7d)
sesh
> rs <1 foralle € Egand k € {1,...,|P| —r™"}, (4.7e)
3655?5:
{Pksss pk+rmin}mP(S)§£@
zs €{0,1} for all s € S;, (4.71)
Ypad'» y;,rdd, >0 forallp € Pand d € D. (4.7g)

Model (4.7) is structurally similar to (4.2) and we therefore only point to the differences.
Constraints (4.7b) model the demand balance constraint not only for the internal demand of
d but also for the demand that must be fulfilled by employees of d for any other department
d'. Further note that constraints (4.7c) to (4.7e) must only be added for the employees
belonging to department d.

Given a feasible solution of (4.7) for each department d € D, a feasible solution of the entire
problem (4.2) can easily be derived. Indeed, the shifts selected in models (4.7) are all feasible,
hence they also belong to set §. Let S be the union of the shifts selected in the provided
solutions. Then, the corresponding variables z, s € S, take value 1 in (4.2). For each period
p € P and department d € D, the value of the under- and over-coverage variables can be
set according to their meaning so that (4.2b) is fulfilled. As the provided solutions satisfy
constraints (4.7¢) to (4.7e), the corresponding constraints (4.2¢) to (4.2¢) are fulfilled, too.
As a result, the so-obtained schedule S of ESP-IDT is feasible. Note that the cost of schedule
S is at most the sum of the costs of the feasible solutions of (4.7). Indeed, it can happen
that some over-coverage and under-coverage of demands transferred to different departments

cancel out in the overall cost calculations.

In our example, we get the final solution depicted in Figure 4.5 by solving model (4.7) for both

48

departments. We observe that the demand is perfectly covered in both departments and the
inter-department transfer feature is used with one external and five transfer shifts. The total
cost of this schedule is 35.7. It is an optimal solution for this instance as proven by solving
model (4.2). Note that without the inter-department transfer feature, the optimal value is

247.1 with 22 employee-hours of under-coverage and 2 employee-hours of over-coverage.

4.5 Computational experiments

Extensive numerical tests were executed to assess the validity of MP-DH. This section de-

scribes the experimental setting and discusses the obtained results.

4.5.1 Experimental setting

We use and slightly tailor the benchmark instances introduced in Dahmen et al. [22] for our
numerical experiments. For completeness, we briefly describe the structure of the instances
and refer to their article for further details. In all instances, a time period consists of 15 min-
utes. The unit penalty cost (per period and employee) for under- and over-coverage is 2.35
and 1.175, respectively, the unit work time cost is 0.0375, and the unit transfer cost is 0.025.
The minimum duration of a work block is four time periods, the maximum work time per
week and employee is 160 periods, i.e., 40 h, and we set the minimum number of rest periods
to 48 periods, which is slightly shorter than the 56 periods applied by Dahmen et al. [22].

On average, an employee is qualified to work for about 38% of all departments.

The instances can be grouped according to their size. The small instances (group 1 of Dahmen
et al. [22]) involve 20 employees and up to 5 departments. The shift profiles specify three
pre-defined time periods each day at which a shift can start (i.e., at 2a.m., 10a.m., and
6 p.m.) and restrict the length of a shift to three alternatives (i.e., 7h, 8 h, and 9h). While
the restrictive shift profiles do not resemble actual practice in retail stores, these instances are
useful for a comparison with proven optimal solutions. The medium-sized instances (groups 2
and 3 of Dahmen et al. [22]) contain between 50 and 400 employees and 5 to 10 departments.
We specify that the shift length must be either 7h, 7h30min, 8 h, 8 h30 min, or 9h, and
valid shift start times are all full hours between 12a.m. and 8p.m. These definitions are
slightly more restrictive than in Dahmen et al. [22]. The large instances (groups 4 and 5 of
Dahmen et al. [22]) have up to 1000 employees and 25 departments, and their shift profile

constraints are the same as for the medium-sized instances.

For each combination of number of departments and number of employees, four instances are

created with the four demand profiles proposed by Dahmen et al. [22]. In profile 1, 2, 3, and

49

Department D,

Demand

3

2

1

Period
48 12 1620 24 28 32_36 40 44 48 52 56_60 64 68 72 76 80 _84

Employegqay 1 day 2 day 3 day 4 day 5 day 6 day 7
£ ER (2] fig 512 Em)
Es [s2] [6] (s8] (591
Es| EH Cs7] [511] En

Department D,
Demand

R e R e e e et e Y

16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84

Employeéis y 1

Ey B 519
Es [s21]
L 520 529

Figure 4.5 The final solution of our example obtained by solving model (4.7) for both de-
partments.

20

4, the demand can only change approximately every eight, four, two, and one hour(s). Hence,
the higher the demand profile number is, the more variability occurs in the demand. Finally,
the name of an instance is given by Dz Ey Pz, where x is the number of departments, y

the number of employees, and z the number of the demand profile.

For each instance, we execute the following four runs. First, we send the (global) model (4.2)
without generating external and transfer shifts to the mathematical optimization software
XPRESS and solve this version, called global-noTrans for short, with XPRESS’ standard
branch-and-cut method. This test can be used to assess the value of the inter-department
transfer feature. Second, as before, we use model (4.2) and the solver XPRESS, but this
time we generate all feasible (internal, transfer, and external) shifts. This run potentially
provides a proven optimal solution for the problem under study, and shows how hard it is to
directly attack larger instances with model (4.2). Third, we use MP-DH to solve the instance.
And fourth, we re-run MP-DH but replace the first phase by simply generating all possible
anonymous external and transfer shifts as input for the second phase. We call this version of

our method MP-DH-noP1. These tests make it possible to assess the importance and impact
of the first phase in MP-DH.

The parameters of MP-DH are set to the same values for all instances. Specifically, (5 is set to
15000 000. The MILPs of the second phase are still manageable with this value. Parameter
v is set to 4, which is a reasonable value looking at the given under- and over-coverage costs,

and 0 is set to 4, which is adequate given the shift profiles.

All tests are executed on a computer with two Intel Xeon 3.50 GHz CPUs and 128 GB RAM.
MP-DH is implemented in Java and the branch-and-cut method of XPRESS 8.1.0 solves the
mixed-integer linear programs. As in Dahmen et al. [22], we restrict the computation time
to two hours for each run. However, when determining the computation time, we exploit
the parallelization possibility of MP-DH and assume that the MILPs appearing in all three
phases are solved simultaneously. Consequently, the computation time of each phase is
determined by the slowest task executed in parallel. Our standpoint is that organizations
typically have enough parallel computation power when solving large employee scheduling
problems so that what counts at the end is the wall-clock time for computing a schedule. The
detailed results are given in Table 4.3 of the appendix, and the following sections provide an

in-depth discussion of them.

4.5.2 Computation times and MILP sizes in MP-DH

We first address the computation times of MP-DH. They are mainly determined by the time

it takes to solve the corresponding MILP models as the other operations are executed within

51

a few milliseconds. We therefore analyze the size of the MILP models (in terms of number
of variables) and the computation time needed to solve them. Figure 4.6 illustrates these
numbers in box plots. The first phase of MP-DH is not presented as the MILPs of this phase
are solved to optimality within a second even for the largest instances. This is not surprising
as the number of variables is at most about 2000 even for the largest instances, which is a
low number for this type of MILP.

Considering the second phase, in which daily, anonymous employee scheduling problems are
solved, we observe that it is executed within a few seconds for all small and medium-sized
instances. Even the MILPs of the largest instances are solved within two minutes. This
is interesting since the number of variables can be quite large for those instances. Indeed,
the largest MILP of this phase has about 1.5 million variables. We wish to emphasis that
the computation times could be reduced further by stopping the MILP search after some
pre-defined time or by reducing the anonymous transfer and external shifts generated in the
first phase. When applied carefully, this should only marginally affect the solution quality
of MP-DH. For example, one may decide to delete some or all critical time periods derived
in the first phase from over-coverage periods if the MILP in the second phase is too large to
be solved in a reasonable amount of time. We therefore conclude that the second phase is
reasonably simple to solve or can easily be adjusted if the solution process takes too much

time.

When looking at the third phase, in which personalized, mono-department scheduling prob-
lems are solved, we first observe that the small instances are simple. Indeed, all instances
are solved within a second. In good part, this can be explained by the small number of vari-
ables, which is at most about 3000. Larger instances, however, need a substantially larger
effort to be solved. Indeed, the computation times for medium-sized instances are typically
about one hour, and large instances usually take about 1.5 hours of computation time. For
these instances, the number of variables is mostly between 10000 and 30000. This number
can, however, be substantially higher, particularly when large amount of inter-department
demands are determined in the second phase. Similarly as in the second phase, the number
of variables, and thus the computation time, can be reduced by carefully restricting the set of
personalized transfer and external shifts generated in the beginning of the third phase. For
example, for each interval with an external demand, one may only create the corresponding

personalized shifts for a small subset of the (qualified) employees.

Looking at all three phases of MP-DH together, we conclude that the computation times
substantially depend on the size of the instances. They are low for small instances, moderate

for medium-sized instances, and quite high for large instances. However, MP-DH can easily

52

Second phase Third phase
Computation times Number of variables Computation times Number of variables
T T T T T T T 1 T T
100s |- | 800k |- N 6000s |- | 80k [~ *
- _| 600k |- N 60k - *
s 4000's |- |
50s |- -| 400k - N 40k - -
2000s |- B
255 |- | 200k | | i 20k | |
‘ — | 1 | . — —0
smallmedium large smallmedium large small medium large small medium large

Figure 4.6 Box plots of the computation times and the number of variables of the MILPs
solved during the second phase (left) and the third phase (right) of MP-DH. Some box plots
are cropped for readability purposes.

be customized and tailored so that solutions are found within reasonable computation times
even for large instances. This is an interesting feature of our approach, particularly with

respect to an application in practice.

4.5.3 Value of the inter-department transfer feature

When excluding the possibility of inter-department transfers, all benchmark instances can be
solved to optimality within two hours of computation time, see columns 2 and 3 of Table 4.3.
These results support our view that including the inter-department transfer feature drastically
increases the problem complexity. However, the feature also makes it possible to reduce the
overall costs substantially. This can be seen in Figure 4.7, which shows a box plot of the
absolute difference between the solution values obtained with MP-DH and those of global-

noTrans for the small, medium, and large instances.

We first observe that all values of MP-DH are lower than those of global-noTrans, although

large 4| | |—| |
medium |- |—| | |_| |
small [~ H]H N

| | | | | | |
—10000 —8000 —6000 —4000 —2000 0 2000

Figure 4.7 Box plots of the absolute differences between the solution values of MP-DH (col-
umn 6 in Table 4.3, here res for short) and those of model (4.2) without including external
and transfer shifts (column 2 in Table 4.3, here bench for short). The differences are computed
by res — bench. Hence, MP-DH is better if this difference is negative.

93

MP-DH may not be able to find an optimal solution for some instances. Thus, the comparison
does not necessarily show the full potential of the transfer feature. Second, as the size of
the instances increases, the potential for cost reductions typically increases. But, clearly,
not only the size determines the value of the transfer feature. For example, it is obvious
that there is not much improvement potential available if one can cover the demand well
with internal shifts only, and vice versa, the transfer feature is certainly more valuable if the

demands cannot be covered well by the own employees.

To analyze how the inter-department transfers are used, we record the number of internal,
external, and transfer shifts present in the solution provided by MP-DH. Figure 4.8 shows
the obtained results in box plots. We see that the majority are internal shifts and almost no
external shifts are present in the solutions. This can be explained in part by our approach,
in which all internal shifts are available in the MILP of the third phase, and by the cost
structure. A non-negligible unit transfer cost is charged for each period an employee is
working in a non-home department. With these costs, a preference is given to internal shifts
while external shifts get quite expensive. The value of the inter-department transfer feature
mainly comes from a good use of the transfer shifts, which are used extensively. Indeed,
there are up to 20, 700, and 2000 transfer shifts present in the solutions of small, medium

and large instances, respectively.

4.5.4 Comparison of MP-DH with proven optimal solutions

An assessment of the solution quality obtained with MP-DH by comparing it with the proven
optimum is only possible in the small instances, see columns 4 and 5 of Table 4.3. Indeed,

most of the larger instances are actually too big to be read into the MILP solver.

Instance size

small medium large
T T 2000 F T 5 5000 ——— T =
100 N -
4000 -
75 % | 1500 - |
3000 [~ -
50 |- | 1000 |- B
- 2000 [~ -
— 1
internal external transfer internal external transfer internal external transfer

Figure 4.8 Box plots of the number of internal, external, and transfer shifts present in the
solutions obtained by MP-DH.

o4

Table 4.1 Relative optimality gaps (in %) of MP-DH for the instances with 20 employees
grouped by the number of departments.

Instance gap Instance gap Instance gap

D2 E20 P1 s 3.9 D3 E20 P1 s 6.2 D5 _E20 P1 s 10.3
D2 E20_P2 s 9.1 D3_E20_P2_s 10.1 D5 _E20_P2_s 14.7
D2 E20 P3_ s 6.2 D3 _E20 P3_ s 10.2 D5 _E20 P3 s 11.8
D2 _E20_P4 s 114 D3_E20_P4 s 104 D5_E20_P4 s 2.8
average 7.7 9.2 9.9

Table 4.1 displays the relative optimality gaps of MP-DH (in %, computed as (res—opt)/opt,
where res refers to the value obtained with MP-DH and opt to the optimal value) for the
small instances. It can be seen that the optimality gaps are quite large. Indeed, for the
instances with 2, 3, and 5 departments, the average gap is 7.7%, 9.2%, and 9.9% respectively.
Hence, for small instances, it is certainly preferable to directly use model (4.2) with a state-
of-the-art MILP solver. However, when looking at the computation times, we see that it takes
a good amount of time (up to 1317s) for solving these instances to optimality while MP-DH
finishes within one second. Hence, if the computation time is critical, one may still prefer
to use MP-DH. Furthermore, one may try to increase the quality of the solutions provided
by MP-DH with an additional local search that takes the solution of MP-DH for its start.
We conducted some preliminary tests with this idea. Using the simple local search proposed
by [70], we could decrease the optimality gaps of MP-DH from about 9% to 7%, on average,
within few seconds of computation time. In our view, the development of a high-quality local

search scheme for the problem under study is an interesting future research project.

We finally emphasis that problems in practice are typically much larger than the small
instances of our benchmark set. We introduce them only for the computational tests. Solving

practical instances directly with model (4.2) is rarely possible.

4.5.5 Importance of the first phase in MP-DH

To evaluate the impact of the first phase in MP-DH, we compare MP-DH with MP-DH-
noP1, in which the first phase is replaced by simply generating all anonymous external and
transfer shifts. A remark concerning the computation times is in order. First, we keep a time
limit of two hours for solving the MILPs of both remaining phases. We do not subtract the
time needed to generate all shifts from this limit. We, however, include these times in the
results. Consequently, computation times can be higher than two hours for MP-DH-noP1

in Table 4.3. For one instance, namely D10 _E400_P3, no feasible solution is found with

95

MP-DH-noP1 in two hours. We therefore re-run this instance without computation time

limit and report the corresponding results in Table 4.3.

For the comparison of MP-DH with MP-DH-noP1, we compute the absolute difference of the
solution values obtained by the two methods and illustrate them in a box plot in Figure 4.9.
The following can be observed. Looking at the small instances, no substantial difference
between MP-DH and MP-DH-noP1 can be detected. The corresponding computation times,
see Table 4.3, are similar, too. When considering the medium-sized instances, we observe that
there are larger differences between the results of the two methods. No method is, however,
consistently better than the other, and the median value is almost 0. The computation times
are also similar, except for instance D10 __E400 P3 where MP-DH-noP1 needs about 26 hours
to find a first feasible solution in the third phase. This exception is somewhat interesting
to analyze further. As in most instances, the computation times in the third phase vary
substantially among the departments. Indeed, for all departments except one, the third
phase is solved within seven minutes while for the exceptionally difficult department it takes
26 hours to find a first feasible solution. This department is the largest with 91 employees,
but it has only two employees more than the second largest department. Also, the number
of variables in the MILPs of these two departments are similar (about 55000 for the largest
department and 52 000 for the second largest). Hence, the difficulty cannot be fully explained
by the number of employees nor by the size of the MILPs. We further observed that the
XPRESS solver consistently uses 26 h for the largest department even with different random
seed values. Hence, randomness seems to play a minor role. We suspect that the solver’s

main difficulties lie in the primal heuristics and in the branching strategies.

For the large instances, MP-DH-noP1 is substantially better than MP-DH. Indeed, it gives
lower values in more than 75% of the instances, and in 50% of the instances, the costs are at
least lower by 600 than in the solutions obtained by MP-DH. We therefore conclude that MP-
DH-noP1 is a valid version of MP-DH, and that the second phase of MP-DH could benefit

e[p——— [| |
small |~ |—| |—| N
! I ! ! !

—1000 0 1000 2000 3000

Figure 4.9 Box plots of the absolute differences between the solution values of MP-DH (col-
umn 6 in Table 4.3, here res for short) and those of MP-DH without the first phase (column 8
in Table 4.3, here bench for short). The differences are computed by res — bench. Hence,
MP-DH is better if the difference is negative.

o6

from a larger set of anonymous transfer and external shifts generated in the first phase.

However, there is also a substantial drawback as seen when comparing the computation times
of MP-DH and MP-DH-noP1 for the large instances. They are, on average, about 4800 and
7400 seconds with MP-DH and MP-DH-noP1, respectively. This increase is substantial, and
as we see when comparing our results with values from the literature in the next section, MP-
DH-noP1 does not scale so well with increasing instance size, showing that it is important

to have the first phase in MP-DH when tackling very large instances.

We finally emphasis that a valid option is to combine MP-DH-noP1 with MP-DH as follows.
In parallel, we compute the transfer and external shifts with MP-DH and MP-DH-noP1. If
the total number of shifts (internal, transfer, and external) of MP-DH-noP1 is below a given
threshold —we could use (for this purpose—, we continue with this set in the second phase,
and, otherwise, we take the set from MP-DH.

4.5.6 Comparison of MP-DH with literature results

To compare MP-DH with an approach from the literature, we slightly adjust MP-DH so
that it exactly addresses the same problem as Dahmen et al. [22]. More specifically, for each
employee, we declare that exactly one shift must be executed during a workday, we introduce
a constraint restricting the portion of the work time spent in external departments, and we
specify department-dependent transfer costs. Introducing these changes in MP-DH is quite
straightforward and we therefore omit the details here. Although MP-DH is not tailored to
the optimization problem given in Dahmen et al. [22], this comparison helps to assess the
quality of MP-DH and shows that our method is quite flexible with respect to the specific

problem setting.

We use the medium and large instances of Dahmen et al. [22] for the numerical experiments.
We execute one run with MP-DH and MP-DH-noP1 using the same experimental environ-
ment as for the other tests. Note that the smallest instances are excluded as they are of
little practical relevance and serve in Dahmen et al. [22] mainly for a comparison with proven

optimal values.

The detailed results of our experiments are given in Table 4.4 of the Appendix. This table
also lists the results of the integrated heuristic (IH) and the time decomposition heuristic

(TDH) from Dahmen et al. [22], with which we compare our results.

We first look at the results of MP-DH-noP1. We see that, for the medium-sized instances,
they are often better than the results of MP-DH. However, we also observe that MP-DH-

noP1 cannot provide a solution for the large instances. There is a simple reason. The number

o7

of transfer and external shifts is simply too large to be handled in the MILP of the second
phase. This is due to the quite unrestrictive shift profile rules of Dahmen et al. [22]. The
shift profiles are, for example, more restrictive in our main test setting as mentioned in
Section 4.5.1. We conclude that the first phase in MP-DH is absolutely necessary for large

instances with somewhat unrestrictive shift profiles.

We then look at the results of MP-DH. For comparison purpose, we compute the relative gaps
(in %) between the solution values of MP-DH and those of IH and TDH. The obtained values
are listed in Table 4.2, grouped by instance size and demand profile type. For example, the
relative gaps for the instance D5 70 P2 are given in the line named D5 E70 and columns
P2.

We observe that IH and TDH are generally better than MP-DH for medium-sized instances.
Particularly in instances with low demand volatility, i.e., with demand profiles 1 and 2, the
two methods of Dahmen et al. are at an advantage. The performance difference is quite high.
For example, MP-DH provides solutions with 76.8% higher costs than IH averaged over the
medium-sized instances with demand profile 1. However, the performance difference between
MP-DH and IH/TDH decreases as the demand volatility and the instance size increase. With
more than 300 employees and demand profiles 3 and 4, MP-DH matches or outperforms IH
and TDH in all instances and is substantially better than IH and TDH in most of these
instances. For example, MP-DH decreases the costs by 30.0% on average when compared

with TDH for large instances with demand profile 3.

Based on Table 4.4, we determine that the computation times are 2599s, 5763 s, and 4000s
for MP-DH, TH, and TDH respectively, averaged over the medium-sized instances and 3651 s,
6900, 5360 s averaged over the large instances. Also, MP-DH, IH, and TDH are the fastest
among the three methods in 37, 0, and 11 instances, respectively. Hence, we conclude that

MP-DH has an edge over IH and TDH when considering the computation time.

These results are no surprise. The methods of Dahmen et al. [22] reduce the computational
burden by aggregating consecutive periods of the planning horizon. By construction, this
aggregation works better if the demand is quite stable, which could be seen in our comparison.
Second, their methods do not decompose the overall problem by department unlike MP-DH,
which applies this in its first and third phase. Hence, when the number of departments
and employees increase, MP-DH can keep the computation times at reasonable levels by
benefiting from the decomposition and parallelization possibilities, while the approaches of
Dahmen et al. [22] start having difficulties with the computational burden. For example,
TDH could not produce a solution for instance D20_800_P1 within a computation time of

two hours.

o8

Table 4.2 Relative gaps (in %) between the results of MP-DH and those of IH and TDH,
given by 100(res — bench)/bench, where res and bench refer to the values obtained with
MP-DH and TH/TDH, respectively. No solution was given for D20_800 P1 with TDH. We

exclude this instance in the average value computations.

medium
D5__E50
D5 _E70
D5 E200
D10 E200
D10_E300
D10 E400

average

large
D20__E400
D20__E600
D20__E800
D20_E1000
D25__E800
D25_E1000

average

MP-DH versus TH

MP-DH versus TDH

P1 P2 P3 P4 P1 P2 P3 P4
64.2 39.6 56.4 7.5 494 314 46.5 3.0
87.6 444 46.7 26.3 81.5 399 39.1 19.0
785 52.9 25.6 28.7 78.3 45.7 20.8 24.9
70.3 26.2 214 19.4 63.4 219 18.3 17.0
41.0 40.2 20.6 16.9 38.8 56.1 24.8 15.6

119.0 22.7 -8.2 0.0 113.2 31.9 -8.7 0.9
76.8 37.7 27.1 16.5 70.8 37.8 23.5 134
24.8 5.9 -244 -8.7 21.1 4.6 -24.7 -8.5
226 23.2 -6.6 -18.0 26.3 36.7 -0.8 -9.6
25.8 -31.0 -38.0 -20.9 - =772 2298 -12.6
-10.0 -36.5 -36.9 -27.7 28 -276 -31.0 -16.8
-64.0 1.5 -23.7 -178 -63.9 4.8 -21.5 -104
-55.3 44 -728 -24.5 -54.5 83 -72.0 -19.5
-94 -54 -33.7 -19.6 -13.7 -84 -30.0 -12.9

29

We conclude that MP-DH can successfully be applied in the setting of Dahmen et al. [22],
thus proving its flexibility. Typically, retail stores have quite a large number of employees
and a substantial volatility in the demands. Hence, we are convinced that MP-DH is a valid

alternative to the methods IH and TDH in practically relevant instances.

4.6 Concluding remarks

MP-DH enables to find good solutions for large ESP-IDT instances within reasonable compu-
tation times. The method scales well with the size of instances since it benefits in each of its
three phases from problem decompositions and simplifications. MP-DH proved to be valu-
able especially for large instances with highly variable demands, which are settings occurring

frequently in retail stores in practice.

A specific feature of MP-DH is its adaptability. On the one hand, if MP-DH struggles with
solving its second phase, one can adjust the anonymous external and transfer shifts generated
in the first phase and select a manageable subset of those. For example, one may simply
exclude all shifts generated due to an over-coverage of the demand. On the other hand, if
MP-DH solves the second phase rapidly, one may increase the number of shifts considered in
this phase. In the extreme case, one may simply omit the first phase and generate all feasible
external and transfer shifts as second phase input. The third phase, which is the most critical
with respect to the computation time, is also adaptive. One can, for example, try to reduce
the size of the MILPs of this phase and so the computational burden by omitting a selected
subset of external and transfer shifts. This should, however, be carefully applied as it may

deteriorate the quality of the solutions.

MP-DH is also flexible with respect to the addressed employee scheduling problem as shown
by our computational results with the problem setting of Dahmen et al. [22]. We think that,
independent of the specific restrictions and rules, MP-DH performs well for multi-department
employee scheduling problems in which internal shifts are favored over inter-department
shifts.

In future work, one may try to study and improve some specific steps of MP-DH. First, MP-
DH-noP1 has an edge over MP-DH in some larger instances. This points to improvement
potential in the generation of the anonymous external and transfer shifts in the first phase
of MP-DH. Second, as said before, MP-DH is adaptive. Hence, one may study how to adapt
it to the characteristics of specific instances. Another interesting avenue of research consists
of developing a local search method for ESP-IDT. As discussed in the computational results,

preliminary tests have shown that such an approach can improve the solutions of MP-DH

60

within seconds. However, further research is needed to establish local search methods that

are both effective and efficient for large ESP-IDT instances.

Appendix

The detailed computational results are presented in Tables 4.3 and 4.4. The former gives
the results obtained with our main experimental setting and is structured as follows. The
instance names are given in the first column. For each instance, the solution value and the
total computation time is specified for each of the four runs (global-noTrans, global, MP-DH,
and MP-DH-noP1). The instances are grouped and sorted according to their size. Table 4.4
present the results obtained in the setting of Dahmen et al. [22] using a similar structure as
in Table 4.3. It shows the solution values and computation times of our runs with MP-DH
and MP-DH-noP1 as well as the benchmark values of Dahmen et al. [22] obtained with their
integrated heuristic (IH) and the time decomposition heuristic (TDH).

Table 4.3: Detailed results for our main experimental setting. Solution values rounded to one decimal
place, computation times given in seconds and rounded to the nearest integer. The best values among
MP-DH and MP-DH-noP1 are highlighted in boldface. Average solution values and computation times
are given for the groups of small, medium and large instances.

instance global-noTrans global MP-DH MP-DH-noP1
value time value time wvalue time wvalue time
small
D2_E20_P1 1613.8 0 1509.2 4 1568.5 0 1560.8 0
D2_E20_P2 2030.7 1 1652.6 146 1802.7 1 1829.7 1
D2_E20_P3 1434.5 0 1081.6 156 1148.6 1 1224.5 1
D2_E20_ P4 1290.0 0 998.5 38 1112.5 0 1108.0 O
D3_E20_P1 1757.3 0 1609.7 48 1710.0 0 1611.7 O
D3_E20_P2 2137.0 1 1727.1 139 1901.8 0 1962.1 1
D3_E20_P3 1838.8 0 1373.5 85 1514.1 0 1451.2 O
D3 _E20 P4 1765.7 0 1352.0 34 14924 0 1469.1 O
D5 _E20_P1 1870.2 0 1547.1 24 1707.1 0 1612.5 1
D5 _E20 P2 1933.7 0 15179 1317 1741.1 O 1809.5 1
D5 _E20 P3 1737.3 0 1250.3 471 1398.0 O 1522.2 1
D5 _E20 P4 1909.6 0 1698.4 191 1746.5 O 1792.2 1
average 1776.6 0 1443.1 221 1570.5 0 1579.5 1

Continued on next page

61

Table 4.3: Detailed results for our main experimental setting. Solution values rounded to one decimal
place, computation times given in seconds and rounded to the nearest integer. The best values among
MP-DH and MP-DH-noP1 are highlighted in boldface. Average solution values and computation times
are given for the groups of small, medium and large instances. (continued)

instance global-noTrans global MP-DH MP-DH-noP1
value time value time wvalue time wvalue time
medium
D5 E50_P1 1282.0 7 - - 972.9 3 1395.6 65
D5_E50__P2 2316.5 1 - - 12741 9 1389.3 46
D5 _E50_P3 2094.0 1 - - 1228.1 17 1440.0 3391
D5_E50_P4 2075.3 2 - - 1220.7 11 1445.6 45
D5 _E70_P1 1708.4 7 - - 1345.7 11 1608.7 90
D5_E70_P2 2938.5 7 - - 2040.8 3188 1998.1 79
D5_E70_P3 2790.7 6 - - 1698.2 23 1948.5 80
D5_E70_P4 2276.1 7 - - 1649.9 955 1547.8 473
D5_E200_P1 5002.7 3619 - - 3327.1 3582 4359.2 4650
D5_E200_P2 6350.0 41 - - 3682.5 3582 3969.1 4068
D5_E200_P3 6616.5 156 - - 3580.7 3618 4663.7 3916
D5_E200_P4 5991.6 126 - - 4276.4 2837 4197.2 3719
D10_E200_P1 5012.1 29 - - 2645.2 37 2345.6 148
D10_E200_P2 6539.1 3497 - - 3874.8 3558 3382.8 193
D10_E200_P3 7081.6 80 - - 4489.8 3546 4092.3 471
D10_E200_P4 6642.8 9 - - 4589.6 254 4113.2 228
D10_E300 _P1 8250.3 3508 - - 5008.5 3550 4398.9 3078
D10_E300_P2 11314.2 3439 - - 4921.6 3671 3801.7 3775
D10 _E300_P3 11412.1 11 - - 5334.7 3668 4591.7 1935
D10_E300_P4 110289 8 - - 5378.8 3532 5100.1 430
D10_E400_P1 11881.3 2895 - - 6546.9 3919 4625.0 3825
D10_E400_P2 10076.0 343 - - 4961.7 6897 5368.6 4130
D10_E400_P3 12517.2 221 - - 6553.8 6349 4791.5 95438
D10_E400_P4 12405.2 816 - - 5886.0 5926 6491.3 3599
average 6483.4 785 3603.7 2614 3461.1 5745
large
D20_E400_P1 5727.5 5766 - - 4359.4 60 4608.5 7037
D20__E400_ P2 4135.7 5139 - - 4026.1 799 3593.8 8030

Continued on next page

62

Table 4.3: Detailed results for our main experimental setting. Solution values rounded to one decimal
place, computation times given in seconds and rounded to the nearest integer. The best values among
MP-DH and MP-DH-noP1 are highlighted in boldface. Average solution values and computation times
are given for the groups of small, medium and large instances. (continued)

instance global-noTrans global MP-DH MP-DH-noP1

value time value time wvalue time wvalue time
D20_E400_P3 7366.1 69 - - 5502.3 5837 5184.4 7101
D20 _E400 P4 6968.0 5368 - - 5788.6 5160 4931.5 6114
D20 E600_P1 12719.7 4857 - - 7654.6 5372 7208.3 7615
D20 E600_ P2 14988.5 170 - - 9514.1 4575 7519.7 3801
D20_E600_P3 16312.7 6409 - - 8304.7 5757 7627.5 7209
D20_E600_P4 15284.7 5120 - - 9888.4 736 7985.5 3235
D20_E800_P1 18023.5 1784 - - 10448.3 6358 9332.6 8014
D20_E800_P2 22349.7 1072 - - 9698.7 6727 8583.3 8640
D20_E800_P3 22707.1 5433 - - 10693.8 4834 10116.2 6165
D20_E800_P4 21105.7 5054 - - 11023.0 184 9740.1 3201
D20__E1000_P1 18299.2 5685 - - 10509.9 5906 11200.2 7815
D20__E1000_P2 28380.6 1386 - - 11461.1 6851 10946.0 7750
D20__E1000_P3 26565.5 4325 - - 12505.0 6319 12819.9 6595
D20_E1000_P4 22859.5 5683 - - 12154.3 5023 12240.8 7559
D25 E800_P1 9728.2 3268 - - 8787.4 6054 9320.4 8664
D25 E800_ P2 8110.7 424 - - 7930.6 5652 7351.0 8172
D25 E800_P3 15089.1 6930 - - 10644.9 6365 9470.1 8485
D25 E800 P4 131326 5704 - - 11367.8 5511 9674.8 9517
D25 E1000_P1 15718.3 6506 - - 12108.8 6470 12050.5 9174
D25 E1000_P2 10109.5 4287 - - 10055.8 6481 9107.7 9029
D25 E1000_P3 18291.0 6573 - - 13951.3 3957 10822.9 9225
D25 E1000_P4 16480.4 5996 - - 13148.0 3543 11344.0 9981

average 15435.5 4292 9646.9 4772 8865.8 7422

63

Table 4.4: Detailed results for the setting of Dahmen et al. [22]. Solution values rounded to one
decimal place. Computation times given in seconds and rounded to the nearest integer. The best values
among MP-DH, MP-DH-noP1, IH, and TDH are highlighted in boldface. Average solution values and
computation times are given for the groups of medium and large instances.

Instance MP-DH MP-DH-noP1 IH TDH

value time wvalue time value time walue time

medium

D5_E50_P1 951.2 74 924.4 173 579.3 3947 636.6 3627
D5_E50_P2 1345.3 46 1121.5 143 963.9 618 1023.7 612
D5_E50_P3 1453.3 90 1392.6 219 929.0 3689 992.0 3625
D5_E50_P4 1137.5 43 1231.2 159 1058.3 1246 1104.2 1217
D5_E70_P1 1235.4 96 1018.8 236 658.5 3851 680.6 3758
D5_E70_P2 1980.8 122 1617.8 307 1371.4 3649 14164 3628
D5_E70_P3 1821.0 152 1832.0 561 1241.6 3824 1309.2 3638
D5_E70_P4 1393.2 247 1295.7 401 1103.1 3891 1171.1 3657
D5_E200_P1 2851.5 6320 1999.0 4154 1597.7 7202 1599.0 4497
D5_E200_P2 3727.7 5761 2893.2 1459 2438.5 7202 2558.0 4055
D5_E200_P3 3603.0 4832 3154.0 1659 2868.1 7085 2982.1 4233
D5_E200_P4 4052.1 6615 3867.5 9443 3148.9 7169 3243.0 3948
D10_E200_P1 2307.9 421 1716.7 2199 1355.1 7204 1412.5 3929
D10_E200_P2 3575.5 1001 3377.8 2095 2834.0 7205 2934.3 4523
D10_E200_P3 4088.0 644 3935.9 2687 3368.0 7206 3455.0 3994
D10_E200_P4 4368.5 638 3940.2 2081 3659.5 7206 3732.7 3965
D10_E300_P1 4419.0 4043 4070.7 3139 3134.0 6747 3183.0 4448
D10_E300_P2 4312.1 4947 3583.2 3481 3074.8 7210 2762.0 5531
D10_E300_P3 5199.5 4338 5133.7 4687 4310.4 7211 4165.0 4962
D10_E300_P4 5517.6 888 5500.2 3497 4720.4 6110 4771.1 4174
D10_E400_P1 6047.0 5453 3618.4 4613 2761.0 7210 2836.4 4633
D10_E400_P2 4755.3 4903 4605.3 5615 3874.9 7211 3605.8 5633
D10_E400_P3 5494.1 6891 5204.2 9223 5987.5 7212 6016.8 5681
D10_E400_P4 5900.8 3808 5689.0 12199 5900.5 7212 5846.3 5278

average 4665.4 3165 4198.0 4626 3748.3 7079 3726.7 4729
large

D20_E400_P1 3174.2 1247 - - 2543.7 4948 2621.6 1670
D20_E400_P2 2963.3 1151 - - 2799.2 5369 2833.1 4167

Continued on next page

64

Table 4.4: Detailed results for the setting of Dahmen et al. [22]. Solution values rounded to one
decimal place. Computation times given in seconds and rounded to the nearest integer. The best values
among MP-DH, MP-DH-noP1, IH, and TDH are highlighted in boldface. Average solution values and
computation times are given for the groups of medium and large instances. (continued)

Instance MP-DH MP-DH-noP1 IH TDH

value time value time value time value time
D20_E400_P3 4667.3 1241 - - 6171.4 6100 6197.3 4592
D20_E400_P4 4946.0 871 - - 5417.2 5491 5404.7 4194
D20_E600_P1 5764.6 2346 - - 4701.0 7204 4563.4 6699
D20_E600_P2 9028.9 4288 - - 7326.9 7204 6602.9 5424
D20_E600_P3 9042.8 6279 - - 9685.2 7205 9118.0 6039
D20_E600_P4 8694.9 1522 - - 10608.6 7204 9622.4 5445
D20_E800_P1 9081.5 3258 - - 7220.1 7205 - -
D20_E800_P2 8153.6 4419 - - 11810.8 7205 35688.3 6830
D20_E800_P3 10256.9 5820 - - 16551.0 7206 14613.7 5851
D20_E800_P4 10727.9 6006 - - 13557.5 7207 12279.5 5833
D20_E1000_P1 8346.4 4568 - - 9271.9 7206 8120.6 5712
D20_E1000_P2 9319.0 2783 - - 14670.1 7206 12880.4 6086
D20 _E1000_P3 12557.3 4218 - - 19900.5 7206 18208.9 5751
D20 _E1000_P4 12672.3 6420 - - 17533.7 7207 15231.7 6055
D25_E800_P1 6582.2 2447 - - 18300.5 6999 18243.0 4091
D25_E800_P2 5870.1 5607 - - 5785.4 7208 5603.2 5429
D25_E800_P3 9362.2 2096 - - 12270.5 7208 11926.4 6032
D25_E800_P4 9293.1 2038 - - 11308.5 7204 10374.4 5862
D25_E1000_P1 11015.3 4169 - - 24659.0 6999 24232.9 5660
D25_E1000_ P2 7510.6 4598 - - 7193.4 7208 6935.5 4657
D25_E1000_P3 11048.4 6567 - - 40578.3 7208 39499.6 4727
D25_E1000_P4 11888.0 3659 - - 15738.0 7204 14758.6 6475

average 9622.1 4097 16434.2 7172 15501.8 5545

65

CHAPTER 5 A HYBRID HEURISTIC FOR THE EMPLOYEE
SCHEDULING PROBLEM WITH DERIVED INTER-DEPARTMENT
TRANSFERS

The MP-DH heuristic presented in the previous chapter starts by pre-processing the ESP-
IDT data in the first two phases, resulting in an updated set of inter-department and intra-
department requirements for each of the problem departments. The third phase solves for
each department an employee scheduling problem with derived inter-department transfers
(ESP-DIDT), where only transfers for the derived inter-department requirements are con-
sidered. The inter-department requirements creation gives the possibility to decompose the
multi-department problem into several smaller mono-department problems maintaining the
transfer feature of the global problem. This decomposition reduced the size of the optimized
problems,; transforming the intractable ESP-IDT into several manageable sub-problems. Af-
ter the decomposition, the single ESP-DIDT remains a large problem, which optimization

may need more than one hour to reach optimality for large instances (Table 4.3).

In this chapter, we present an iterative decomposition-based heuristic accelerating the ESP-
DIDT computation time, namely, the Hybrid heuristic (HH). HH solves, whenever it is pos-
sible, the ESP-DIDT without decomposition, i.e., using Model (4.7) which we will refer to as
the basic model. Only if the basic model execution exceeds a given time limit, the problem
employee set is decomposed and schedules for subsets of employees are optimized iteratively

using a semi-anonymous employee scheduling problem with derived inter-department trans-
fers (SA-ESP-DIDT).

5.1 Problem statement

We refer to Section 4.4.3 for the formal presentation of the ESP-DIDT as well as the math-
ematical model. The decomposition heuristic presented in this chapter splits the depart-
ment employee set into several subsets of size numEmp, where numEmp is a user-defined
parameter. The heuristic optimizes every subset employee schedules iteratively using the

semi-anonymous employee scheduling problem with derived inter-department transfers (SA-
ESP-DIDT). Next we formally present the SA-ESP-DIDT model.

66

5.2 The SA-ESP-DIDT mixed-integer programming formulation

For each department d € D, we define two sets of employees: EL® and E$™. EY’ is a set
of size numEmp or less depending on the number of the department employees remaining to
schedule. All feasible personalized shifts for the employees in E}“ are enumerated within
the SA-ESP-DIDT MILP forming the set S}“*. Feasible personalized shifts include all in-
ternal shifts covering at least one period of intra-department requirement b,qq (see Equation
4.6), and all external and transfer shifts covering at least one period of the inter-department

pers

requirement b4y for all departments d' € D,d" # d (see Equation 4.5). Let S}." be a set

containing all feasible personalized shifts for an employee e € E}*, where Sh; C S;™.

Eq" contains the employees for whom the schedules are not optimized in the current MILP.
All feasible anonymous shifts, aggregating all possible shifts for all employees in E{"’, are
enumerated forming the set §3"°. Feasible anonymous shifts include all internal anonymous
shifts covering at least one period of the intra-department requirements b,44, and all external
and transfer anonymous shifts covering at least one period of the inter-department require-
ments byge. The set Eg'® C Eg" contains the remaining employees who can work during

day 7.

A semi-anonymous schedule S consists of a set of assigned personalized shifts for employees
in £ and a list of chosen anonymous shifts, where a single anonymous shift can be chosen
multiple times. The semi-anonymous schedule cost ¢(S) equals the sum of the schedule shift
costs and any under-coverage or over-coverage penalties. cj" and ¢ are the unit penalty
cost for one under-covered and over-covered period unit, respectively, for the department d
requirement. Let the number of periods in a shift s be ng, with ng, transferred periods.
Shift s cost is ¢ = V" * ng, + " x ngy, where ¢ is the unit working cost per period, and ¢*

is the transfer penalty cost per transferred period.

For each shift s € S}, we enumerate a binary variable x; which takes value 1 if the shift s
is considered, 0 otherwise. For each shift s € §7"°, let z, be a non negative integer variable
which indicates the number of times shift s is used. We use the two non-negative integer
variables y,,, and y;rdd, for each period p € P and department d’ € D to capture the under-

and over-coverage of the inter- and intra-department demands.

Using the above notation and that of Chapter 4, we formally introduce the SA-ESP-DIDT

MILP for department d as follows.

Minimize Y cas+ Y szt D O (P Ypuar + 3 Y

Sescpl)crs sesgno

subject to

+ —
YTt D Z = Ypar + Ypar
EISS A seSgne:
peP(s,d") pEP(s,d")

>
s€SHT:
DAY (STA (s))=j

>
seSH"e:
DAY (STA(s))=j

> |P(s)]s

pers
SES,,

> 1P(s)]a

sESge

> T
sesTer.
{pk7"'7pk+Tmin }mP(S)?é@

Ts
Zs

- +
Ypdd'» Ypdd'

peEP d €D

= bpdd/

<1

< |EG"

< tmax
— e
< 1 [B4,

<1

c {0,1}
c ZZU
>0

forall pe P and d' € D,

67

(5.1a)

(5.1b)

for all e € EY*™® and j € J(e), (5.1¢)

for all j € J,

for all e € E5°™,

foralle € Ejand k € {1,...

pers

for all s € S,
for all s € §3™°,

forall pe P and d' € D.

(5.1d)

(5.1e)

(5.1f)

[P

o Tmin}
)

The objective function (5.1a) minimizes the cost resulting from the use of the personalized

shifts as well as the anonymous shifts, along with any under and over-coverage. The anony-

mous shift cost is an approximation of the cost of assigning the corresponding shift to a real

employee. Constraints (5.1b) link the under/over-coverage variables y,;, and ¥, to the

zs and zg shift variables. Constraints (5.1c¢) limit employees in EY“® to work a maximum

of one shift per day, and constraints (5.1d) limit the sum of the selected anonymous shifts

per day to be less than or equal the the cardinality of set Eg'*. Constraints (5.1e) protect

the employees in E}°"® from working more than the maximum allowed time ¢2**. Similarly,

constraint (5.1f) maintains the sum of the durations of all anonymous shifts in a solution to

be lower than the ¢2*** multiplied by the cardinality of set E3"°. Constraints (5.1g) ensure

a minimum rest duration of r™ for each employee in EY*"* between each pair of successive

68

shifts. Constraints (5.1h), (5.1i) and (5.1j) specify the domains of the variables.

- 250 «
I
O
£
~
= 2007 °
Q
~
VA
3
§ 150
g,
g o o
=
=100 g8 o .
® o9 8
8
o3 o O
50u:'qg?6)o o o ° g
i3 o
: o

@

> Time(seconds)
1000 2000 3000 4000 5000 6000 7000

Figure 5.1 Graph showing, for each department within an instance, the basic MILP model
computational time vs. the number of employees working for the department.

The development of the semi-anonymous model main purpose is minimizing the size of the
basic model MILP (4.7) in order to decrease its optimization computation time. This is done
by reducing the number of personalized employees, and iteratively running model (5.1) sev-
eral times. The choice of the number of personalized employees is crucial, the less employees
considered at once, the faster the computational times, but the weaker the solution quality.

Sensitivity analysis for the number of personalized employees is conducted in Section 5.4.2.

The graph presented in Figure 5.1 shows the computational times achieved by the basic MILP
model (4.7) for each department in the medium and large benchmark instances (used for the
previous chapter and current chapter computational experiments), with respect to the num-
ber of employees per department. A maximum time limit of 2 hours is imposed for the MILP
optimization. There are 529 MILPs terminating their computation within 100 seconds (blue
circles), 27 MILPs requiring between 100 and 150 seconds (red circles), and 144 MILPs with
a computational time exceeding 150 seconds (black circle). From these results, we observe

that a high percentage of MILPs involving a large number of employees can be optimized in

69

short computational time, while departments with a small number of employees can consume
hours for being optimized. The graph shows that departments with more than 200 employees
are optimized in less than 100 seconds and departments with dozens of employees can reach

the time limit of two hours without reaching an optimal solution.

Figure 5.1 suggests that the department ESP-DIDT basic model MILP computational time
does not depend only on the number of employees. Thus imposing an employee decomposi-

tion for departments with a large number of employees can be unnecessary in most cases.

Also, for an instance with multiple departments, the employees are often unevenly distributed
over the departments. During the different department ESP-DIDT parallel optimization, only
a small percentage of the departments takes too long and the majority terminates quickly.

Thus decomposition is encouraged for only the time consuming departments.

This motivated us to develop a heuristic with a high flexibility on the choice of the numEmp
parameter value in the SA-ESP-DIDT model. Indeed, this parameter value controls when
to decompose the problem: if numEmp < |E,|, decomposition is activated; otherwise

(numEmp = |Ey|), no decomposition is used. This gives rise to the hybrid heuristic (HH).

5.3 The hybrid heuristic

The hybrid heuristic (HH) uses model (5.1) but changes, on run-time, the parameter numEmp
value for the SA-ESP-DIDT optimization. HH tries first to solve model (5.1) with all avail-
able employees, i.e. numEmp equals the number of available employees and zero anonymous
shifts. If the produced MILP computational time exceeds a given time limit ¢;, the MILP
solution process is canceled, then restarted with fewer personalized employees along with

more employees in the anonymous employee set E{"°.

HH introduces the parameter empPercent, which is used to calculate the numEmp value
at each iteration. More precisely, numEmp = empPercent % n., where n, is the number of

available employees.

Algorithm 4 presents HH, it takes as a parameter the empPercent value. A new set of em-

ployees E™ is introduced, which contains all employees whose schedules are not optimized

70

Algorithm 4: hybridHeuristic(Department d, EmpPercent)

1 Begin

2 Sg;mal +— empty;

3 E™ « Ey;

4 numEmp « |E™;

5 while E;“™ not empty do

6 ET"® < choose numEmp employees from E}™;

7 solution + solve SA-ESP-DIDT for E}*";

8 wait(t; seconds);

9 gap = current SA-ESP-DIDT MILP optimality gap;
10 if gap < A% then

11 wait(f; seconds) or untill the SA-ESP-DIDT MILP is solved, whichever first;
12 solution <—current SA-ESP-DIDT MILP solution;
13 Ssemi < personalized shifts from solution;

14 Scjl%'nal . Scjl%'nal U Ssemi;

15 Enem « Enem\ BV,

16 numEmp « |E"|;

17 Any covered requirement in Rg g by Ssemi is decremented;
18 else

19 Cancel the SA-ESP-DIDT MILP optimization;

20 numEmp < empPercent x |E§em|;

21 end
22 end
23 | Sfinal oy g

deD

24 end

vet. At each iteration E" = E7¢™\ EL*"®. The heuristic starts by solving the SA-ESP-DIDT
model (5.1) with the full employee set EL® = Ei*™ = E,, which is identical to solve the
basic model (4.7). The MILP optimality gap is checked after a predetermined computational
time limit of ¢, seconds: if the gap is less than a given percentage A (line 10), the MILP
continues its computation for another ¢; seconds, or until the solver finishes its execution,
whichever first. Then, the optimized personalized shifts are preserved in the final schedule
shift set Sj;mal (line 14). The employees for whom the schedule is successfully optimized are
removed from the remaining employee set E7°™ (line 15). On line 16, numEmp is set to the
cardinality of the full remaining employee set |E}"|, so the next iteration starts by trying
to optimize the whole remaining employee schedules. Finally, the department requirement is
updated by removing any requirement covered by a personalized shift (line 17), and a new

iteration of HH is ready to start.

If the condition at line 10 fails, i.e. the optimality gap is greater than or equal to A% after

71

t; seconds, the HH cancels the current MILP execution (line 19). This iteration is called a
failed iteration. Then the number of personalized employees is decreased: the current value
of numEmp is multiplied by empPercent resulting in a smaller numEmp value (line 20).
Consequently, the next iteration optimizes a SA-ESP-DIDT with fewer number of personal-

ized employees. In a failed iteration, the employee set E“™ is not updated, as no employee

schedule is fixed.

When HH optimizes department d employee schedules, let D/, be the set of departments for
which department d has inter-department transfer requirements during at least one period
p € P:

bpdd’ >0 vd e DZZ

For an employee e with home department d” = d, and qualified departments D, let D’ be the
set of departments for which employee e is qualified and department d has inter-department

transfer requirements, i.e.

D.=D.ND),

After a failed iteration, when numEmp < |E}*™|, the choice of the set E}” employees, at
line 6 of Algorithm 4, is done as follows. The remaining employees in set E}*" are ordered
decreasingly by the cardinality of each employee department set D’. Then the first numEmp
employees are chosen. This order gives priority to the transfer requirements to be covered at

the early iterations of HH.

When the set E“™ becomes empty, the department d ESP-DIDT is fully solved and Sg{m“’

contains the schedules of the current department employees FE;.

Each iteration of HH, regardless whether it is optimizing the whole employee set schedules
or only a subset, checks the MILP optimality gap after t; seconds and decides whether to
continue and accept the solution, or decrease the number of employees and re-optimize. Note
that, whenever it is possible to solve the model (5.1) with all remaining employees quickly
(quickly is relative, the choice of t; value is discussed in Section 5.4.3), HH abstains from

decreasing the number of personalized employees and losing some of the solution quality.

72

After employee schedules for all departments have been optimized in parallel, all schedules

are gathered and the ESP-IDT cost function is calculated as defined in equation (4.1).

5.4 Computational experiments

All tests were executed on a computer having two Intel Xeon 3.50 GHz CPUs and 128 GB
RAM. HH was implemented in Java and the XPRESS 8.1.0 MILP solver is used to solve the
mixed-integer linear programs. The basic model MILP optimization is forced to stop after
two hours or when the optimality gap reaches 0.5%, whichever first. This is not applied for

HH, as the heuristic is capable to finish quickly.

We benefit from the parallelization nature of the SA-ESP-DIDT between the different prob-
lem departments. Thus an instance computational time denotes the computational time for
the department with the highest time consumption. We present results for the medium and
large instances introduced in Section 4.5.1. Smaller instances are not of interest in this chap-

ter as they do not introduce any computational challenge.

This section is organized as follows. Section 5.4.1 introduces the tests experiment settings.
Section 5.4.2 presents results for the standalone SA heuristic, which applies model (5.1) with
a fixed numEmp parameter value. Results of this section helps emphasizing the benefit of
the dynamic assignment value of the numEmp parameter in HH. Section 5.4.3 presents a

sensitivity analysis for the HH parameters. Results are finally discussed in Section 5.4.4.

5.4.1 Experimental setting

The MP-DH parameter values are set as follows: 5 = 15000000 (maximum number of enu-
merated shifts in the second phase), ¥ = 4 (minimum number of consecutive over-covered
periods in order to consider it a critical interval) and § = 8 (number of periods used in the
transfer shift enumeration before and after the critical interval). HH is controlled by three
parameters: empPercent, t; and A\. A sensitivity analysis is conducted and presented next
for the first two parameters. For the optimality gap tolerance A, a value of 0.5% is chosen in

order to preserve the solution quality as good as possible.

For the cost function, we use the same costs and penalties as in the previous chapter. A
unit working period cost is 0.0375 and a transfer working period gets a penalty of 0.025.

Under-coverage and over-coverage unit costs are 2.35 and 1.175, respectively.

73

To emphasize the strength of HH, we compare the HH results with the basic model solved
with XPRESS and stopping whenever the MILP optimality gap reaches 0.5%. This is done
in order to prove that the fast execution of HH is not caused by an early termination due to

the optimality gap parameter A = 0.5%.

5.4.2 SA heuristic

To analyze the impact of using a fixed value of the numEmp parameter throughout the
solution process, we first ran experiments with the SA heuristic. Their results are reported
in Tables 5.1 and 5.2 for numEmp equal to 10, 20, 30 and 40. For each dataset, the best
results are highlighted in bold.

The SA heuristic is a powerful tool for decreasing the ESP-DIDT size, but it has two draw-
backs. The first drawback is that despite the decrease in the size of the MILP solved for each
iteration, it consumes large computational times. The SA heuristic is not capable to guar-
antee fast computation for the ESP-DIDT even for departments with few employees. The
second drawback is that even if a department basic model would have been solved quickly
(before ¢; seconds), the SA heuristic imposes the employee decomposition, which implies a
deterioration in the solution quality without a meaningful gain in the computation time.
For example, instance D10 FE200_P1 computational time for the MP-DH using the basic
model is 19 seconds (Tables 5.4 and 5.5), while the SA heuristic optimizing 40 employees per
iteration spent 21 seconds, and the solution cost went from 2630 to 2778. Thus the loss in

the solution quality is not justified by a significant gain in the computation time.

It is clear that for large instances the computation time is large and can exceed the two-hours
limit with numEmp = 40. This happens when several iterations achieve the time limit of
two hours. In general, larger values for numEmp give better solutions, while smaller values
for numEmp has better computational time. Thus, we choose numEmp = 40 employees per

iteration for the SA heuristic to compare with HH in the next section.

5.4.3 Sensitivity analysis of the HH parameters

HH is tested using different employee percentages empPercent (25%,50% and 75%) and

different computational time limits ¢; (50,100 and 150 seconds) for the medium and large

74

Table 5.1 Cost and computation time in seconds for the semi-anonymous model with different
number of employees per iteration (numEmp) for the medium datasets

Number of employees per iteration

10 20 30 40
Instance value time value time value time value time
D5 E50 P1 1084 4844 973 4 973 4 973 4
D5 E50 P2 1382 7 1274 11 1274 11 1274 11
D5_E50_P3 1343 8 1218 44 1218 44 1218 44
D5 E50 P4 1276 8 1221 9 1221 9 1221 9
average 1271 1217 1171 17 1171 17 1171 17
D5 E70_P1 1572 4866 1383 8 1317 8 1317 8
D5_E70_P2 2178 8 2080 4912 2010 4766 2010 4144
D5 _E70_P3 1875 4550 1690 29 1607 34 1607 35
D5 E70 P4 1694 5239 1524 427 1466 637 1466 519
average 18530 3666 1669 1844 1600 1361 1600 1176

D5_E200_P1 4250 151 4159 1319 3884 10457 3601 30
D5 E200_ P2 4307 333 4199 7458 4123 5169 3974 285

D5 E200 P3 4503 18 3939 4656 3943 10932 3737 5281
D5 E200 P4 4682 8983 4468 12386 4629 6240 4679 3929
average 4456 2872 J191 6455 4145 8199 3998 2382
D10 _E200 P1 3467 6 2960 9 2777 13 2778 21

D10 FE200 P2 4459 6763 4138 4963 3743 169 3800 223
D10 _E200 P3 4957 44 4402 4941 4343 5137 4329 5652
D10 _E200 P4 5001 19 4504 3804 4392 5809 4363 6035
average 471 1708 4001 8429 8814 2782 3820 2983
D10 E300 P1 6244 9 5878 4507 5547 165 5240 4801

D10 _E300_P2 6031 4987 5339 5194 4879 5161 4909 4293
D10_E300_P3 6594 5609 5679 4785 5571 5578 5695 5548

D10 _E300_P4 6172 23 5866 4799 9535 6437 5460 5659
average 6260 2657 5691 4821 5388 4335 5326 5075
D10_E400 P1 8314 22 8086 5555 8016 74 7674 6102

D10_E400_P2 6769 5142 6124 5189 5632 10415 6186 6961
D10_E400_P3 7377 8824 6682 12637 6656 6435 6629 4438
D10_E400_P4 7216 54 7220 4826 6497 10291 7040 6085
average 7419 3510 7028 7052 6700 6804 6882 5897

average 4281 2522 3959 3853 3802 3917 3799 2922

75

Table 5.2 Cost and computation time in seconds for the semi-anonymous model with different
number of employees per iteration (numEmp) for the large datasets

Number of employees per iteration

10 20 30 40
Instance value time value time value time value time
D20_E400_P1 6510 10 5605 5317 5412 21 4812 6239
D20 E400_ P2 6260 7 4852 64 4833 65 4343 65
D20 E400 P3 9011 174 8080 5129 7794 108 7561 118
D20_E400_P4 7431 5314 6557 5H888 6242 5352 6008 5266
average 78083 1376 6273 4100 6070 1386 5681 2922
D20 D600 P1 11610 121 10759 4894 9663 1485 9881 1396
D20_D600_P2 12073 28 10710 5158 10324 5381 10467 5155
D20_D600_P3 11060 74 10020 5641 9456 5906 9678 4651
D20_D600_P4 12909 276 10959 5704 10554 10230 10517 10221
average 11918 125 10612 5349 9999 5751 10136 5356

D20_ES800_P1 14715 5271 14436 5451 14006 5809 13318 6319
D20__E800_P2 13102 227 12359 4876 11489 11089 11514 6091

D20_E800_P3 14529 86 13329 5853 12463 511 12160 6057
D20 _E800_P4 15057 108 13652 5150 12798 6654 12530 5893
average 14351 1423 13444 5332 12689 6016 12380 6090

D20_E1000_P1 14883 5194 15029 303 14262 5222 14218 5338
D20_E1000_P2 17679 60 15266 5230 14521 9939 15215 10175
D20_E1000_P3 16797 112 15921 5432 15465 5744 14692 6214
D20_E1000_P4 16194 123 15103 8416 14848 5644 14141 10702
average 16388 1372 158329 4845 14774 6637 14566 8107

D25__E800_P1 12603 90 11707 2843 10989 5344 10584 6362
D25_ES800_P2 12527 156 10169 4375 10601 3618 9988 6329

D25_E800_P3 13949 63 12821 4700 12344 9929 11599 5801
D25_E800_P4 14155 107 12825 4785 12785 5667 12149 6100
average 153309 104 11880 4176 11680 6139 11080 6148

D25 E1000 P1 15994 12 15641 5537 15168 930 14503 4763
D25 E1000 P2 14924 15 14132 4885 12534 4529 12718 5076
D25 E1000 P3 17790 4642 15804 6104 15314 6027 16077 10358
D25 E1000 P4 20725 692 19605 5444 18740 4902 18441 5561
average 17358 1840 16318 5493 15439 4097 15435 6439

average 13437 957 12310 7882 11775 5004 11546 5844

76

datasets. Table 5.3 presents the average cost and computation time in seconds over all

datasets for the different parameter values.

We observe that the smaller the employee percentage, the better HH performs, i.e., it yields
better solutions. The reason behind this behavior is the loss of information coupled with the
anonymous shift usage. When anonymous shifts are used as an aggregation to a set of em-

ano

ployee shifts (E$"°), the constraints associated with the employee shift maximum durations
and with the maximum number of possible shifts per horizon are aggregated (Constraints
(5.1f) and (5.1d)). Ome constraint is not considered: the minimum rest duration between
each pair of an employee shifts, as there exist no way to link a couple of anonymous shifts
to a single employee. Consequently, when a large employee percentage is optimized during
the first iteration, the minimum rest duration constraint would prevent the remaining small
number of employees from being assigned some shifts in the next iteration, resulting in costly

under-coverage.

For the simplified example of Figure 5.2, department d has 4 employees and the 2-day horizon
is discretized in 2-hour periods. Let the minimum rest duration between a pair of succes-
sive shifts be 10 hours. The left graph shows the solution of the first HH iteration when
empPercent = 75%, optimizing schedules for employees ey, e, and e3. For the next iteration
optimizing the remaining employee (e4) schedule, the shifts with the same start and end
periods as those of the anonymous shifts anol and ano2 cannot be used, as the difference
between the end of shift anol and the beginning of shift ano2 is 8 hours. A shift starting
after 10 hours of shift anol end can be assigned to employee e4 but the solution will always

have under-coverage.

The right graph shows the result for the first iteration using empPercent = 25%. During
the next iteration, the remaining requirements can be covered by several shift combinations
of the remaining employees, namely es, e3 and e4. One possible shift assignment combina-
tion is: employee ey assigned to shift ano3, employee es assigned to shift ano4, employee
e4 assigned to shift anob, employee ez assigned to shift ano6, employee e, assigned to shift
ano7 and employee e4 assigned to shift ano8. Note that such a direct assignment of these
selected anonymous shifts is not performed directly in our algorithm. Instead, a MILP needs
to be solved. This assignment just shows that there exists one possible solution without

under-coverage.

77

Department d Department d
Requzrement Requzrement
|*J_[___w_1 I — Period |*J_[___w_1 I — Period
12 16 20 24 12 16 20 24
day 1 day 2 day 1 day 2

Selected Selected pnof
shifts with shifts with
empPercent = 75% empPercent = 25%

Figure 5.2 Simplified example: EmpPercent analysis

Imposing the shortest time limit value ¢; = 50 seconds does not perform as good as using the
100 or 150 seconds, while it achieves faster computation. There is always a tradeoff between
solution quality and computational time. For the results with empPercent = 25%, the
average solution cost for ¢; = 100 seconds is 0.8% higher than the average cost with ¢; = 150,
but it is 34% faster. For the next section, we present the HH results using empPercent = 25%
and ¢; = 100 seconds.

Table 5.3 Average cost and time in seconds for different employee percentages empPercent,
and time limits ¢; for the HH.

empPercent
0.25% 0.5% 0.75%
t; (seconds) cost time cost time cost time
50 7017 282 7276 229 7396 270
100 6886 441 7138 345 7229 365
150 6826 592 7011 457 7222 523

5.4.4 Discussion

Tables 5.4 and 5.5 compare the results obtained by the SA heuristic with numEmp = 40,
and HH, with empPercent = 25% and t; = 100, to the basic model results, for the medium
and large datasets, respectively. The flexibility in the numEmp parameter value choice, as
well as monitoring the MILP convergence on run-time by HH, outperforms the standalone
SA heuristic. The best results are highlighted in bold for each dataset.

78

The average cost achieved by HH is 1.9% worse than the basic model for the medium datasets,
and 3.1% for the large datasets. With respect to the computational time, HH is 86.7% faster
than the average basic model computation for the medium datasets and 87.4% for the large

datasets.

From Tables 5.4 and 5.5, we see that the HH computational time is often very close to a
multiple of 100 seconds, as t; = 100. The maximum HH computation duration is of 1261
seconds (=~ 21 minutes) for dataset D10__E300__P3, which means one department had at
most 12 SA-ESP-DIDT optimizations. The same dataset needed 6244 seconds (= 2 hours)

to be optimized with the basic model.

The HH shows its success not only with the computation acceleration, but also with main-

taining the solution quality within 3% of the basic model solution quality on average.

79

Table 5.4 Comparing the basic model to the SA and HH heuristics cost and duration for the
medium datasets.

Basic SA HH
Instance value time value time value time
D5 E50 P1 973 4 973 4 973 3
D5 E50 P2 1275 11 1274 11 1274 14
D5 E50 P3 1220 12 1218 44 1218 51
D5 E50 P4 1223 11 1221 9 1221 16
average 1172.75 9.5 1171.5 17 1171.5 21
D5 E70 P1 1318 11 1317 8 1317 9
D5 E70 P2 2015 611 2010 4144 2068 256
D5 E70_P3 1609 13 1607 35 1607 45
D5 E70 P4 1467 26 1466 519 1467 202
average 1602.25 165.25 1600 1176.5 1614.75 128
D5 E200 P1 3332 5042 3601 30 3596 359
D5 E200 P2 3615 1753 3974 285 3798 709
D5 E200 P3 3425 4236 3737 5281 3680 434
D5 E200 P4 3922 4437 4679 3929 4380 703
average 3573.5 3867 399775 2381.25 3863.5 551.25
D10 E200 P1 2630 19 2778 21 2642 19
D10 E200 P2 3698 129 3809 223 3702 162
D10 E200 P3 4236 574 4329 5652 4224 245
D10 E200 P4 4249 121 4363 6035 4378 107
average 3703.25 210.75 8819.75 2982.75 3736.5 133.25
D10 E300 P1 4660 4825 5240 4801 4958 201
D10_E300_P2 4656 5173 4909 4293 5007 1028
D10 E300 P3 5066 6244 5695 5548 5297 1261
D10 E300 P4 5186 4945 5460 5659 5255 358
average 4892 5296.75 5326 5075.25 5129.25 712
D10 E400 P1 6519 6435 7674 6102 6860 410
D10_E400_ P2 5546 4547 6186 6961 5327 698
D10 E400 P3 6554 6349 6629 4438 5759 528
D10_E400_ P4 5868 5763 7040 6085 5867 338
average 6121.75 5773.5 6882.25 5896.5 5953.25 493.5

average 3511 2554 3799 2922 3578 340

80

Table 5.5 Comparing the basic model to the SA and HH heuristics cost and duration for the

large datasets.

Basic SA HH
D20_E400_P1 4359 127 4812 6239 4839 223
D20__E400_P2 4028 547 4343 65 4549 310
D20 _E400_P3 7377 118 7561 118 7377 218
D20__E400_P4 5777 77 6008 5266 5891 327
average 5385.25 217.25 5681 2922 5664 269.5
D20 _D600_P1 7699 6617 9881 1396 8551 327
D20_D600__P2 9539 4782 10467 5155 9635 664
D20_D600_P3 8260 6156 9678 4651 8468 482
D20_D600__P4 9775 4757 10517 10221 9891 492
average 8818.25 5578 10135.75 5355.75 91586.25 491.25
D20_E800_P1 10433 4125 13318 6319 10861 807
D20__E800_P2 9466 5406 11514 6091 10506 710
D20 _E800_P3 10509 4979 12160 6057 10617 450
D20__E800_P4 11009 562 12530 5893 11075 469
average 10354.25 3768 12380.5 6090 10764.75 609
D20_E1000_P1 10506 5957 14218 5338 11662 315
D20__E1000__P2 12268 6445 15215 10175 12102 689
D20_E1000_P3 12705 6235 14692 6214 12539 908
D20_E1000_P4 12144 3883 14141 10702 12311 578
average 11905.75 5630 14566.5 8107.25 12153.5 622.5
D25_E800_P1 8795 5402 10584 6362 9593 1000
D25 _E800_P2 7848 4466 9988 6329 8517 602
D25__E800_P3 10637 5598 11599 5801 11363 633
D25__E800_P4 11317 4846 12149 6100 11531 318
average 9649.25 5078 11080 6148 10251 638.25
D25_E1000_P1 12122 1669 14503 4763 12175 218
D25 _E1000__P2 10491 6507 12718 5076 10498 703
D25_E1000_P3 13705 6626 16077 10358 13175 970
D25 _E1000_P4 16491 6192 18441 5561 16947 600
average 13202.25 5248.5 15484.75 6439.5 13198.75 622.75
average 9886 4253 11546 5844 10195 542

81

CHAPTER 6 PARALLEL LARGE NEIGHBORHOOD SEARCH FOR
MULTI-JOB EMPLOYEE SCHEDULING PROBLEM

The multi-job employee scheduling problem (MJ-ESP) is slightly different from the multi-
department employee scheduling problem tackled in the previous chapters. First, shifts con-
tain a single job, no transfers are allowed. Second, each employee has his own shift profile,
i.e., there are no fixed rules for all (shift starting periods and lengths, maximum and mini-

mum working hours per week, ...).

The common aspect between the two problems is that when an instance size increases, its
optimization using exact methods becomes impractical. In this chapter we use the large
neighborhood search (LNS) metaheuristic to solve large instances of the MJ-ESP. LNS de-
stroys part of a solution, then repairs it again. For the repair procedure we use the WFC
commercial MJ-ESP MILP solver developed at Kronos Inc., which makes our heuristic a
matheuristic, combining mathematical programming and metaheuristic. Repairing the de-
stroyed part of the solution using mathematical programming is a powerful tool because it
results directly with the best possible repaired solution, meanwhile it is not time consuming

for small destroyed parts.

The MJ-ESP is presented in Section 6.1, then formally defined in Section 6.2. The LNS
heuristic is elaborated in Section 6.3, and its parallel version in Section 6.4. Finally the

computational results are presented in Section 6.5.

6.1 The multi-job employee scheduling problem

The MJ-ESP is formally defined by a set of jobs J,, a set of employees E, and a set of days
D, containing the days from the beginning to the end of the problem time horizon. The

subscript , denotes global, used to distinguish from other sets described later in this chapter.

The problem time horizon is specified by its start day/hour and its end day/hour. The
horizon is discretized into 15-minute periods. Let the ordered set P, contains all the horizon

periods. Any period p € P, starts and ends at the same day: day(p) € D,.

A job requirement 7;, is the number of employees needed to work on job j € J, during the

82

period p € P,. Each job j requirement for the whole horizon is presented in the ordered set R;.

Each employee e € E, is qualified for a subset of jobs J. C J,. For each job j € J., the
employee e is qualified to work on this job only during his job availability days D.; C D,.

Each employee has his own employee profile which specifies the rules governing the employee
shifts. An employee profile contains the maximum and minimum hours per week worked by
the employee. The maximum working hours is a hard constraint, while the minimum weekly
working hours is set as a soft constraint, penalized in the objective function. Minimum and
maximum shift duration, working day /hour availability for the whole problem horizon, where
days off are set as unavailable days, eligible shift starting periods, and minimum rest duration

between successive shifts are also included in each employee profile.

For a given schedule, over-coverage exists during period p for job j if the number of employees
assigned to job j during period p is greater than r;,. Over-coverage is allowed but penalized
in the objective function. On the other hand, under-coverage is not allowed. In case of
unavoidable under-coverage, e.g. employee maximum working hours are already consumed,
or no qualified employee for the current job and period exists, open shifts are used. Open
shifts are anonymous shifts, having their own shift profile as well. Open shifts are used to

highlight shifts that can be assigned to additional part-time or on-demand employees.

A shift s, whether assigned to an employee emp(s) € E,, or anonymous emp(s) = ¢, where
¢ represents an anonymous employee, has a starting period start(s) € P,, an ending period
end(s) € P,, and is serving exactly one job job(s) € J,. We define a shift by the quadruplet
(emp(s), job(s), start(s),end(s)). A feasible shift is a shift respecting its associated employee
profile. All feasible shifts for each employee e € E; are enumerated in a set S.. Similarly, all
possible open shifts are enumerated in the set S,,. Let the set of all feasible employee shifts

of the problem be S = |J S.. All employee shifts s having job(s) = j € J, are grouped in a
eckEy

set S; C S. Similarly, all open shifts s assigned to job j are grouped in the set S, ;. For each
shift s € SUS,,, let the set Periods(s) C P, be the set containing all time periods covered
by the shift s. A shift s belongs to the day of the first period of the shift, i.e. day(start(s));

for simplicity, we will use day(s) directly.

A MJ-ESP solution is called a schedule. A schedule § is the set of personalized shifts and

83

open shifts that must be executed, S C SUS,,. A schedule is feasible if all employee shifts
respect their employee shift profile, and all open shifts respect the open shift profile. The
quality of a schedule is evaluated by its cost. Several components form the cost ¢(S) of a
schedule S:

« The shift cost convex function f : Ry — Rs¢ adds a non-negative cost f(A.) to the

objective function, for each employee e total working hours ..

« The convex open shift cost function f,, : R>g = R>¢ adds a non-negative penalty of

fop(Agp) for a total of A, hours of open shifts in the schedule.

e The convex function A : R>g — R>(maps the difference between an employee e € E,
actual total working hours and his preferred minimum working hours 6. to the non-

negative penalty value h(d.), only in case of positive o, values. h(5) =0,V d <O0.

 The over-coverage convex function © : Ry — R incurs a penalty of ©(o;,), for each

job j and period p having an over-coverage of o;, units.

The convex functions help distributing the violations across the problem horizon, in contrast
with a linear cost function. The convex function f()\.) fairly balances the working hours
among employees. Also the violation of employee minimum working hours is distributed
over all employees instead of being satisfied for almost all employees except one who does
not work at all, using the convex function h(d.). Finally, O(c;,) favors several periods
with one unit of over-coverage over several units of over-coverage for one period. Piecewise
linear representations of these convex functions are used in the mixed-integer linear program

described in the next section.

The final cost of schedule § is:

C(S> = Z f(>\e) +fop(/\0p) + Z h(ée) + Z Z G(Ujp)' (61)

ecky ecky, Jj€Jg pEP,

Given the set of jobs J; and their requirements for the whole horizon, along with the employee
set I/, and their shift profiles, the MJ-ESP consists of finding the schedule S with the lowest
cost ¢(S).

6.2 A mixed-integer program formulation

Next we model the formal MJ-ESP as a mixed-integer program. We first introduce the used

variables.

84

For each shift s € S, a binary variable z, equals 1 if the shift is selected within the final
schedule S, 0 otherwise. For each open shift s € S,, an integer variable y, takes the value
of the number of times the open shift is used within the final schedule §. The value of the
over-coverage units for job j € J, during period p € P, is captured by the integer variable
0jp- Let trine and 00 be the desired minimum and maximum employee e working hours,
respectively. For each employee e € £, let his minimum rest duration between any two
successive shifts be rm.. Also we denote the length of a shift s by |s|. The proposed

mathematical formulation is:

Minimize Z f(z xs *|s]) + fop(Z Ys * |s])

ecEy, seS. s€Sop
+ D hltmine — D ws*lsl)+ > > O(op) (6:2a)
eckEy SESe Jj€Jy pEPy
subject to
Z T+ Z Ys — Z Ojp = Tjp Vj e Jyand p € P, (6.2b)
sES: SESop:
j=job(s) j=job(s)
pEPeriods(s) p€E Periods(s)
Z Ts * || < tmaze Ve e E, (6.2¢)
SESe
Yoo oa, <1 Vee Eyand d € D, (6.2d)
SGSE
day(s)=d
> rs <1 Ve € E;and k € {1,...,|P)|— Tmine} (6.2¢)
SESe:
{pk7"'7pl€+7‘min7e}
NPeriods(s)#0
zs € {0,1} Vs e S (6.2f)
Ys € Lxg Vs € S, (6.2g)
Ojp € ZZO VJ € Jg and pE Pg (62h)

The objective function (6.2a) minimizes the sum of the schedule costs. Constraints (6.2b) en-
sure that the demand in employees is covered for each job and each period, and also compute
the values of the over-coverage variables. Constraints (6.2c) impose the maximum working

hours for each employee. Constraints (6.2d) restrict each employee to work a maximum of

85

one shift per day. Constraints (6.2e) ensure that the minimum rest time between each pair
of consecutive shifts for each employee is respected. This is accomplished by restricting the
assignment of two successive shifts, for a given employee e € £, where the difference between
the ending time of the first shift and the starting time of the second shift is less than the
minimum rest time 7,,;, .. Because an employee can work a maximum of one shift per day,
this constraint is only concerned with shifts ending within the last hours of a day and shifts
starting within the first hours of the next day. Finally, constraints (6.2f), (6.2g) and (6.2h)

indicate the domain of each decision variable.

Other constraints like the employee maximum and minimum shift durations, or the employee
job-day availability, are handled during the shift enumeration process, i.e., shifts with a du-
ration out of the valid duration range or associated with an employee unavailability period

are not enumerated.

This mixed integer linear program is the core model of Kronos Workforce Central (WFC) sys-
tem. But the WFC software uses some heuristics during shift enumeration and decomposes
the program in order to accelerate the solution process while preserving solution quality as
much as possible. We cannot present any further details about WFC exact solution process
because of confidentiality reasons. WFC will be used twice in our project. First, for each test
instance, it will be run to find the best solution it can achieve in its usually allocated compu-
tational time. These solutions and computational times will serve as the basic comparative
results for testing the proposed matheuristic. Furthermore, WFC will be integrated in our

matheuristic for solving the subproblems arising in the large neighborhood search framework.

6.3 Large neighborhood search

Large neighborhood search (LNS) [69] is characterized by the large number of possible neigh-
bor solutions explored in each iteration. In order to overcome the challenge of exploring
every single neighbor solution, comparing the costs of all neighbor solutions and choosing
the best among them, the neighborhood exploration is replaced by a repair operator in LNS.
The repair operator is an algorithm for rebuilding a partially destroyed solution in order to
create a higher quality (lower cost) new neighbor solution. Before repairing a solution, part
of it must be destroyed first. A destroy operator is an algorithm that chooses part of the
current solution to be removed or destroyed. The choice of the destroyed part of the current

solution is crucial as the quality of the new repaired solution depends, both equally, on the

86

destroy operator as on the repair operator. LNS consists of running sequentially a destroy

operator then a repair operator, until a stopping criterion is met.

LNS, with its destroy and repair operators, is best suited for the type of problems that
can be decomposed into sub-problems having mutually exclusive constraint sets, meanwhile
all sub-problems respect the master problem constraints, (Pisinger and Ropke [61]). This
decomposition can be found in our MJ-ESP where a sub-problem is the problem of creating
the sub-schedule S, for a subset of the employees E,;, C E, for a subset of jobs Je, C Jg
over a subset of the problem horizon period Py, C F,, while maintaining the problem global

constraints.

6.3.1 Destroy operator
Sub-scope

A sub-scope is the ordered couple [JobDays, Employees], where JobDays is a set of ordered
couples [job, day], where job € J,, day € D,, and Employees C E, is a subset of employees.
Let JD, be the set of all JobDays in the problem.

Given a current solution schedule S, ent, Our destroy operator returns a list of destroyed
sub-scopes: a list of [JDgest, Egest]. A sub-scope [J Dgest, Egest], within a destroyed sub-scope
list, implies that all shifts s € Seyprent assigned to any employee emp(s) € Eges for a JobDay
[j0b(s), day(s)] € JDgest are removed from the schedule Seyrrent-

Table 6.1 Employee availability per day for both jobs

Employee day, day, days dayy days days days;

e1 v v v v v
e v v v v v

es v v v v v
e4 v v v v v
es v v v v v

An example

Figure 6.1 presents a non-optimized solution for an instance with two jobs and five employ-

ees, J, = {j1,J2}, E, = {e1,€2,€3,€4,e5}. This instance is used through the chapter for

Job j1

Requzrement

iy g

87

o,

12 16 20 24 28 32 36 40 44 48 52 56_60 64 68 72 76, 80 _84

day 1 day 2 day 3 day 5 day 6 day 7
Selected
shifts S1 €1 s3 (€3] Se [€ll ssEEEl So €8 s [El s11 (€1
s: (€ s« [Ed s7 (€5l 084 Joss] 0s7[] 0s10[]
osi[] ss[El oss[_] 0s6[] 05]
0S2[] 0S9[_]
Job j2
Requirement

3
2

Ll

M o o,

12 16, 20 24 28 32 36 40 44 48 52 56_60 64 68 72 76 80_84

4 8
day 1 day 2 day 3 day 4
Selected

shifts S12€8] s3] s14[€3 S15[0€30
0s11[] 0s13_] osua[] 0S15[]
0812:| 0815:|

day 5 day 6 day 7

sic[€3 sisfes Sio €5
S17 [éajosi_| 0S19[|
0818D

Figure 6.1 Current schedule for the illustrative example.

illustrating the different steps and concepts of our matheuristic.

The time horizon is one week, discretized into 2 hours periods. The shift profile for all em-

ployees and for open shifts is as follows: possible shift lengths are 4, 6, 8 and 10 hours. Shifts

can start at the beginning of any time period. The minimum rest duration is 10 hours. The

maximum employee working hours per week is 40 hours. All employees are qualified for both

jobs. The employee time availability is presented in Table 6.1.

In Figure 6.1 each job graph consists of the job requirement curve with the job schedule shifts

plotted underneath. Fulfilled requirement by personalized shifts is shaded in dark gray, while

fulfilled requirement by open shifts is shaded in light gray.

The current schedule of Figure 6.1 contains 19 personalized shifts and 19 open shifts. The

88

global JobDay set contains the following elements:

JDg = {[j1, day], [j1. days], [j1, days], [j1, daya], [j1, days), [j1, days], [j1, day],
[ja, dain), [J2, days], [J2, days], (72, dayal, [ja, days), [J2, days), [J2, dayq]}.

An example of a destroyed sub-scope list is: {[{[j1, day1]}, {e1, e2}], [{[J2, day4]}, {es}]}. De-
stroying these sub-scopes leads to the removal of the shifts s, ss and s;5 from the current

solution.

Destroyed sub-scope choice

At each LNS iteration, the destroyed sub-scopes are the ones that will be repaired. The
repair operation, (Section 6.3.2) re-optimizes the destroyed sub-scope schedules. Thus the
choice of the sub-scopes to be destroyed must focus on parts of the current schedule causing

high costs or penalties.

Three main costs in the objective function map to a weak schedule: cost due to over-coverage,
cost of using open shifts, as an open shift can be seen as an under-coverage for low-quality
schedules that do not exploit all employees available working hours, and finally penalties
for the employee minimum working hours violation. While any employee shift has its own

mandatory cost, normal shifts should not interfere with the destroyed sub-scope choice.

Five types of sub-scopes are used in our heuristic.

o Max-Under-Coverage: A sub-scope, where its set of JobDays contains exactly one ele-

ment. This JobDay has the maximum number of period units covered with open shifts

within the current solution.

o Random-Under-Coverage: A sub-scope, with a single element JobDay set, where the

associated JobDay is randomly chosen from the set of all JobDays containing periods
covered with open shifts. While Max-Under-Coverage helps in the quick convergence of
the heuristic, it happens that it may choose a JobDay for which under-coverage cannot
be reduced anymore, i.e. an optimal solution will always contain such open shits. The
random choice is important because first it identifies important under-covered JobDay
requirement, which does not have the highest under-coverage, but meanwhile causes

unnecessary cost. Second it helps diversifying the search.

89

o Maz-Over-Coverage: A sub-scope with a single element JobDays set, containing the

JobDay with the largest over-coverage in the current solution.

o Random-Over-Coverage: A sub-scope with a single randomly selected JobDay contain-

ing over-covered periods. The random choice in the over-coverage case has the same

reasons and effects as the ones previously discussed for the under-coverage case.

o Min-Hours-Violation: A list of sub-scopes with employees working less than their pre-

ferred minimum working hours per week.

In the first four sub-scopes, the single JobDay is chosen first, then the associated employees
are chosen. On the contrary, for the fifth sub-scope construction, the employees for whom
the minimum working duration per week is violated are chosen first, then the corresponding
JobDays. More details about the size and the construction of the sub-scopes are presented

next.

Destroyed neighborhood size

The destroyed neighborhood size has two components: the number of included JobDays and
the number of included employees. The destroyed neighborhood size is proportional with
the size of the problem, and can be chosen at run time. The problem parameter dp (or
destroyPercent) indicates the percentage of JobDays, and employees, to be destroyed from

the global set JD,, and from the global employee set E,, respectively.

Consider a problem instance with n; jobs, n. employees over a horizon of n, days with a
destroy percentage dp. Such instance contains a total of (n;*n,) JobDays. Thus the number
of destroyed JobDays is [dp * n; * ng] and the number of selected employees is [dp * n.],

yielding a number of selected employees per JobDay equals to

(dpenc]

Nemp/ JobDay = ’V [dp+n;*nq]

These limits are for controlling the selected neighborhood size and may be violated. This is
due to the way the sub-scopes are selected, as described next. For example, if a JobDay is
added to the destroyed sub-scope list because it contains under-coverage, it can be selected
again because it also contains over-coverage. Also the sub-scope employee selection sometimes
includes all employees working on a given JobDay which can violate the expected number
of selected employees. On the other hand, our computational experiments show that the

neighborhood sizes are typically very close to the targeted ones.

90

Destroyed sub-scope list construction

Algorithm 5 presents the sub-scope list construction procedure. All included functions are
described in details later in the chapter. During each LNS iteration, the destroyed sub-scope

list is constructed in two steps

o The first chooses sub-scopes with under-coverage and over-coverage cost.

e The second chooses sub-scopes with employees violating their minimum working hours

per week.

Depending on the state of the current solution, one of the two steps’ sub-scope can be empty.
If both are empty, then the search terminates.

For each of the two steps, the number of JobDays in the constructed sub-scope is limited to
[dp*n;j*ng] JobDays, and the number of employees per JobDay is always nemy/jobpay Where

applicable.

For the first sub-scope construction step, four sub-scopes, one for each of the four types
related to either under-coverage or over-coverage, are selected, forming a sub-scope block
(lines 7 to 14 in Algorithm 5). Sub-scope blocks are constructed iteratively until the total
number of selected JobDays reaches the [dp % n; * ng| limit. We define the sub-scope block

by a sub-scope list constructed following the next sub-scope type order:

1. Max-Under-Coverage.
2. Max-Over-coverage.
3. Random-Under-Coverage.

4. Random-Over-Coverage.

Each of these four sub-scope types mainly consists of one JobDay thus the needed number
of selected sub-scope blocks is
dp*n j*n
Npjock = | ——4].
The idea behind the sub-scope block is to iteratively choose sub-scopes of different types until

the maximum number of sub-scopes is reached. If we start to choose sub-scopes of one type,

until there exists no more of it, the maximum number of sub-scopes can be reached without

91

Algorithm 5: getMonoThreadSubScopes(schedule, related)
1 Begin

2 List subscopes < new List;

3 List subscopesy < global subscope;

4 Map underCovM ap < intialize the underCovMap for schedule;

5 Map overCovMap < intialize the overCovMap for schedule;

6 for i = 1, <oy Nplock do

7 551 < SUBSCOPE__ UNDERCOVERAGE(underCovMap, false, related, subscopesg);
8 add ssl to subscopes;

9 552 <= SUBSCOPE__ OVERCOVERAGE(overCovMap, false, related, subscopesg);
10 add ss2 to subscopes;

11 553 <= SUBSCOPE_ UNDERCOVERAGE(underCovMap, true, false, subscopesy);
12 add ss3 to subscopes;

13 554 <= SUBSCOPE__ OVERCOVERAGE(overCovMap, true, false, subscopesg);

14 add ss4 to subscopes;

15 end

16 MERGEEMPLOYEES(subscopes);

17 if schedule contains Employee Min-working hours violation then

18 555 <~ GETMINWORKINGHOURSVIOLATIONSUBSCOPES(subscopes);

19 add ssb to subscopes;

20 end

21 return subscopes;
22 end

creating sub-scopes of different types. Then we will have less interchange opportunities dur-

ing the sub-scope re-optimization.

After the creation of the sub-scope blocks, if the current solution cost contains a penalty
caused by the violation of employee minimum working hours, then an extra sub-scope list
of type Min-Hours-Violation is constructed (line 18 in Algorithm 5). While the size of this
sub-scope is limited by the number of affected employees, the maximum number of added

JobDays is [dp % nj % ng].

Sub-scope for under-coverage

The choice of a sub-scope of type Max-Under-Coverage or Random-Under-Coverage starts
by evaluating the number of missing employees per period for every job that is called, for
simplicity, the number of under-covered periods. Under-covered periods are time periods,
during which the job requirement is (partially) fulfilled by open shifts. Time periods covered
with open shifts but causing over-coverage are not considered as under-covered periods. In

Figure 6.1, the number of under-covered periods for job j; during period 69 is 2. The number

92

of under-covered periods for the JobDay [j1, days] is 7: 1 under-covered period at period 64, 1
at period 66, 1 at period 68, 2 at period 69, 1 at period 70, and 1 at period 71. Period 63 does
not contain any under-coverage. For an LNS iteration, the number of under-covered peri-

ods per job per day for the current solution are computed and stored in a map: underCovMap.

Two types of sub-scopes with under-coverage can be chosen. Either Max-Under-Coverage,
where the chosen [job, day] contains the highest number of under-covered periods, or Random-
Under-Coverage, where the chosen [job, day] is randomly picked from the underCovMap.
The choice of a [job, day] with the highest number of under-covered periods is a greedy
choice, where we hope to achieve the highest enhancement after repairing such sub-scope.
But sometimes, such under-coverage is unavoidable and appears in an optimal schedule. Thus
choosing a random [job, day] containing any number of under-covered periods is mandatory

for the search to avoid stagnation.

Under-covered JobDay employee selection

The employee selection for under-coverage sub-scopes looks for employees qualified to work,
but not already working, within the current solution for the selected job during the selected
day: Equaifiea- We randomly select nemp/jobpay €mployees from Egyqifieq to be added to the

JobDay forming one complete sub-scope.

The employee selection does not consider whether the selected employees already work their
maximum working hours within the current schedule or not. This is because we do not want
to limit the repair operator within narrow sub-scopes, while the nature of the large sub-scope
selection gives the chance for interchanging shifts between employees. So even if an employee

already works full time, a shift swap can be beneficial.

Algorithm 6 presents the creation of a sub-scope based on under-coverage. Three parameters
are passed to this function: The UnderCovMap, a boolean variable random indicating
whether the selected JobDay should be randomly chosen or should be the one with the
maximum number of under-covered periods, and finally the boolean variable related. If
related is true, then a related sub-scope is added to the Max-Under-Coverage sub-scope as
presented next. On lines 8 and 10, the main sub-scope JobDay is selected, and then removed

from the UnderCovMap on line 12. The associated employees are selected on line 13.

93

Algorithm 6: subScope__underCoverage(underCovMap, random, related, subscopes,)

1 Begin
2 List subscopes < empty;
3 if underCovMap is empty then
4 ‘ return subscopes;
5 end
6 JobDay jd < empty;
7 if random then
8 ‘ jd < random JobDay from underCovMap N subscopesy.JobDays;
9 else
10 ‘ jd < highest under-covered JobDay from underCovMap N subscopesy.JobDays;
11 end
12 remove jd from underCovMap;
13 chosen Emps <= Nemp) jobDay qualified employees from subscopesg.employees, not
already working on jd within Scyrrent;
14 subscopes + add [[jd], chosen Emps];
15 if lrandom && related then // Add related subscope
16 subscopes.lastEntry.employees < add 4 employees from subscopesy.employees
qualified to work at jd;
17 List emps < all employees within subscopes;
18 for count = 0, ..., 3 do
19 for each employee e € emps do
20 jd <= JobDay from subscopesy.JobDays where e is assigned a shift within
Scurrent;
21 subscopes < add [[jd], e];
22 end
23 end
24 end
25 return subscopes;
26 end

Example continued: For the current solution in Figure 6.1, the underCovMap has the

following entries:

{[ls1, day:], 5]; [[71, days], 5]; [[71, daya], 1]; [[41, days), 5]; [[71, daye], 7); [[71, dayq], 2];
[[72, day1], 5]; [[J2, days], 4]; (72, days], 5]; [[J2, daya], 2]; [[j2, days], 2]; [[j2, days], 3; [[j2, dayz], 2] }.

When constructing the Max-Under-Coverage sub-scope, the JobDay [j1, days] is selected,
then deleted from the underCovMap. The employees qualified to work for [j;, days] are

{e1,e2,e5}. As eq already works for [j1, days], then one employee (Remp/jobDay = (%1 =1)

94

from {ey, €5} is randomly chosen, let it be eq, forming the sub-scope
[{ [, days] }, {e2}]
which serves as the first entry in the destroyed sub-scope list subscopeList.

Max-Under-coverage related sub-scope

Destroying large part of a solution enhances the chance of improving the solution using the
repair operator. When the number of under- and over-covered periods decreases in the cur-
rent solution, which means the current solution is getting closer to an optimal one, the size
of the destroyed sub-scope is not large enough for enhancements to be quickly achieved.
Thus, whenever the LNS metaheuristic stops enhancing the solution, an intensification step
is added by adding a "Related sub-scope" to the Max-Under-Coverage, or the Max-Over-
Coverage described later, sub-scope for all subsequent iterations. The algorithm is said to
stop enhancing the current solution when a repaired solution has the same cost as before

being destroyed and repaired.

When the boolean variable related is true and the boolean variable random is false when
calling Algorithm 6, related sub-scopes are added to the current selected sub-scope (line 15).
For a Max-Under-Coverage sub-scope [{jd}, E], related employees are added first as follows.
Four qualified employees, who are not already working for the JobDay jd are added to the
employee set E (line 16). Then for each employee e € E, four random JobDays [j.,, d.,], for
1 =1,2,3, and 4, where the employee e is assigned a shift in the current solution, are added
to the sub-scope (line 21). Adding extra JobDays where the already selected employees are

qualified to work gives better opportunities for shifts swapping between employees.

While it seems that the size of the sub-scope list is highly increased after this step, tech-
nically, the neighborhood size remains within the chosen destroy percentage range. This is
because the related sub-scope is only added after the number of existing under-covered period
units is minimized, and the size of the created Max-Under-Coverage sub-scope is small. Also
a related sub-scope is only added for the Max-Under-Coverage sub-scope type, not for the

random-Under-Coverage sub-scopes.

Example continued: Next we apply these steps to the Max-Under-Coverage sub-scope

[{ [j1,days] },{e2}] previously created for the illustrative example. The qualified employees

95

for [j1, days] are only three {ej, es, €5}, but e; already works for [, days], thus only the two
employees {es, e5} are selected and added to the sub-scope employee set {e3}. The sub-scope

becomes

{ [J1, days] }, {e2, e5}].

Given the size of this example we only add one JobDay instead of four for each employee
in {es,e5}. The employee ey works for the JobDays { [ji,dayi], [j2,days], [j2,days] },
[72, days] is randomly selected. The employee e; works for the JobDays { [j1, days], [j2, days],
[72, daye], [j2,day;]}, the JobDay [j1, days] is randomly selected. Finally the sub-scope list

subscopeList equals

{[{ 1. daye]}, {e2, €5},
[{ [j27day3]}7{€2>65}]a
[{ [jladay3]}>{€2>e5}]}’

which is equivalent to the one entry sub-scope list
{1, daye), [2, days], [j1, days]}, { ez, e5}]}-

Sub-scope for over-coverage

In order to evaluate the over-coverage existing in a current solution, the number of extra
employees working for each period is calculated and stored in a map: overCovMap. We
use the term the number of over-covered periods for the total number of extra employees per
period for given time frame. In Figure 6.1, job j; has 2 over-covered periods at period 21,

and a total of 3 over-covered periods for days.

Algorithm 7 presents the construction of the sub-scope to be destroyed because of over-
coverage. Two types of sub-scopes can be defined using the overCovMap, namely, the Max-
Over-Coverage and the Random-Over-Coverage sub-scopes. Sub-scope construction starts by
either choosing the JobDay with maximum (line 10) or random (line 8) over-coverage from
the overCovMap. Then the associated employees are chosen after removing the selected
JobDay from the OverCovMap.

96

Algorithm 7: subScope__overCoverage(overCovMap, random, related, subscopes,)

1 Begin
2 List subscopes < empty;
3 if overCovMap is empty then
4 ‘ return subscopes;
5 end
6 JobDay jd < empty;
7 if random then
8 ‘ jd < random JobDay from overCovMap N subscopesy.JobDays;
9 else
10 ‘ jd < highest over-covered JobDay from overCovMap N subscopesgy.JobDays;
11 end
12 remove jd from overCovM ap;
13 chosenEmps < All employees from subscopey.employees working on jd within Seyrrent;
14 subscopes < add [[jd], chosen Emps];
15 if lrandom && related then // Add related subscope
16 subscopes.lastEntry.employees < add one employee from subscopes,.employees
qualified to work at jd;
17 List emps < all employees within subscopes;
18 for each employee e € emps do
19 jd < JobDay from subscopes,.JobDays where e is assigned a shift within
Scurrent;
20 subscopes < add [[jd], e];
21 end
22 end
23 return subscopes;
24 end

Over-covered JobDay employee selection

After choosing a [job, day] with over-coverage, we start to choose the employee set to com-
plete the sub-scope. The choice of the employees for an over-coverage sub-scope is simple:
all employees already working within the chosen JobDay in the current solution are selected
(line 13). The employee selection paradigm helps in reducing the number of over-covered pe-
riods, if possible, during the repair operation by eliminating, or at least reducing the length,
of some shifts. It also helps in better positioning the remaining shifts within the JobDay.
We do not restrict the number of chosen employees to the one calculated with the destroy
percentage, or choose to destroy only the employees working on shifts that cause the over-
coverage, because over-coverage is sometime caused by a wrong position of a shift that does

not cause any over-coverage.

Example continued: For the current solution in Figure 6.1, the overCovMap has the

97

following entries:

{llg1, day], 1]; [[J1, dayo), 3] [[j1, days], 1]; (1, dayr], 2];
[[72; day:], 1]; [[j2, days], 4]; [[2, dayal, 2]; [[j2, days], 2] }

When constructing the Max-Over-Coverage sub-scope, the JobDay [j2, days| is chosen, then

removed from overCovMap. Employee e5 is then selected forming the sub-scope

[{ [z, daya] }, {es}].

Adding this sub-scope to the previous sub-scope list subscopeList we get

{1, days), 72, days], [j1, days]}, {e2, e5}],
[{ [j2, daya] },{es}]}

Max-Over-Coverage related sub-scope

The Max-Over-Coverage sub-scope construction is enriched with a related sub-scope, as an

intensification step, once the metaheuristic has stopped enhancing the solution.

For a chosen Max-Over-Coverage sub-scope [{ [jd] }, E], a related sub-scope is constructed
as follows: One employee e € E who is qualified to work for the JobDay jd is chosen. Em-
ployees with a shift profile enabling them to work short shifts are prioritized in this step.
This priority is applied because shorter shifts fit better with short job requirement whereas
longer shifts always result in over-coverage. The chosen employee is added to the current
sub-scope employee set E (line 16 in Algorithm 7). Furthermore, several JobDays related to
the [{ [7d] }, E] sub-scope are added: for each employee e € E, one random JobDay where
the employee e is assigned a shift in the current solution is selected (line 19). The updated

sub-scope is then added to the sub-scope list.

Example continued: The previously created Max-Over-Coverage sub-scope [{ [j2, days] }, {es}]
is updated as follows. One employee e € {e5} who is qualified to work for [j, days] is chosen.
Employees {e1, e3, 4, e5} are qualified to work for [js, days], thus one employee from the set

{e1, 3,4} is randomly selected, say e;. The updated sub-scope equals

[{ 2, daya] },{e1, es}].

98

Then, for the related JobDays selection: for employee ey, [j1, dayg] is randomly selected, and

for es, [j2, days] is randomly selected. The Max-Over-Coverage sub-scope now looks like

{ 2, daya], [j1, days), [j2, daye]}, {e1, es}].

Updating the subscopeList:

subscopeList = { [{ [j1, days], [j2, days], [71, days]}, {e2, e5}],
[{ [z, days], 1, daye|, [j2, days]}, {e1, es}] }-

The related sub-scope is not used at the beginning of the metaheuristic because, during
the early iterations, it is preferred to concentrate on the reduction of any over or under-
covered periods, while the related sub-scopes help enhancing the quality of the schedule by
re-arranging the employee shifts. Related sub-scopes are applied after the first time the
metaheuristic stops enhancing the solution, until the end of the metaheuristic runs.

While both the Max-Over-Coverage and Random-Over-Coverage sub-scopes are constructed
at each iteration, only the Max-Over-Coverage sub-scope can have its related sub-scope

constructed. This is done to avoid expanding the constructed sub-scope too much.

Employee merge

After the creation of all sub-scope blocks, a post-processing step is accomplished. Employees
of the several created sub-scopes are merged to form one set of employees F,,;, which replaces
all sets of employees in the whole sub-scope list. This step aims to maximize the possible
shift interchange among the several chosen sub-scopes. Algorithm 8 presents the employee

merge process, and is called in line 16 of Algorithm 5 after the creation of all sub-scope blocks.

Algorithm 8: mergeEmployees(subscopes)

1 Begin

2 Set all Employees < new Set;

3 for each subscope € subscopes do

4 ‘ add subscope.employees to all Employees;
5 end

6 for each subscope € subscopes do

7 ‘ subscope.employees < all Employees;

8 end

9

end

99

Example continued: Let us assume that the previous sub-scope list subscopelList is the
one obtained after all sub-scope blocks are created. Applying the employee merge process to

the sub-scope list subscopelList, we get the updated sub-scope list:

{[{[]17 dayG]’ [j27 day3]> [jla day?)]}v {61’ €2, 65}]7
[{ U2, days], [j1, daye], [, daye] }, {e1, €2, €5} },

which is identical to the one entry sub-scope list:
{ [[, days), [j2, days], [j1, days], [j2, daya], [j2, daye] }, {e1, e2, es5}] }.

Kronos WFC solver is the tool optimizing the final created mathematical problem for the
destroyed sub-scopes. It is important to know that the solver has a maximum number of
enumerated shifts per employee. Consequently, merging the different created sub-scope em-
ployees does not affect the computational time enormously but gives the opportunity for

effective shift swaps.

Sub-scope for violated employee minimum working hours

Violating the minimum weekly employee working hours is, in general, very costly. In each
LNS iteration, if the current solution incurs a minimum employee working hours violation
penalty, a Min-Hours-Violation sub-scope is constructed and added to the destroyed sub-
scope list. The purpose of this sub-scope is to give to the affected employees the chance to
be assigned to more shifts, either by covering an under-coverage, replacing another employee,

or simply working on a new shift.

Algorithm 9 presents the selection procedure for the sub-scope targeting employee minimum
hours violation. The sub-scope selection starts by identifying employees whose minimum
working hours is not met emps (line 5). Each employee e € emps qualified jobs J. are fetched.
For each job j € J. one random day d € D, j is selected. D, ; is the set of days where employee
e can work for job j. One sub-scope [{ [j,d] }, chosenEmps| is constructed and added to the
final sub-scope list, where chosen Emps consists of the set of all employees working for the
job j during day d in the current schedule, as well as the employee e. Sub-scope construction
stops when the number of created sub-scopes achieves the maximum limit indicated on line 2

of Algorithm 9, which is the number of all JobDays in the problem multiplied by the problem

100

parameter dp. This limit seems high, but it is mandatory, as in the last iterations when the
LNS algorithm starts to converge, the sub-scopes with under-coverage or over-coverage can
be empty, thus the size of the minimum hours violation sub-scope must be large enough to

improve the solution.

Algorithm 9: getMinWorkingHoursViolationSubscopes(subscopes,)

1 Begin
2 mazSubscopeCount < [dp * nj * ng;
3 subscopeCount < 0;
4 subscopes < new List;
5 emps < employees from subscopesy.employees working less than min hours in the
current schedule; ordered by the number of violated hours;
6 for each employee e € emps do
7 for each job j € J. do
8 Day d < random day from D, ;;
9 JobDay jd « [j,d];
10 if jd ¢ subscopesy.JobDays then // when using the parallelism
11 ‘ continue; // skip this JobDay
12 end
13 List subscopeE'mps < all employees from subscopes,.employees working at jd
within Scyrrent;
14 subscope Emps < add e;
15 subscopes < add [[jd], subscopeEmp];
16 increment subscopeCount;
17 if subscopeCount > maxSubscopeCount then
18 ‘ return subscopes;
19 end
20 end
21 if subscopeCount > maxSubscopeCount then
22 ‘ return subscopes;
23 end
24 end
25 return subscopes;
26 end

Example continued: Let us assume that the employee e4 is working less than his minimum
working hours. Constructing the min-hour-violation sub-scope starts by choosing employee
es. Employee e, is qualified to work for both jobs j; and js. For the job j;, randomly day
dayg is chosen, forming the new sub-scope [{[j1, days] }, {es, e1}]. We opt for skipping the

next sub-scope associated with job js for simplicity. Adding the created sub-scope to the

101

sub-scope list subscopeList, the final sub-scope list becomes:

{71, days), [52, days], [j1, days], [j2, days], [j2, daye] }, {e1, €2, e5}],

[{1, daye] }, {es, ex}]}-

The final destroyed solution is presented in Figure 6.2. Any shift worked by one of the em-
ployees {e1, es, e5} for any JobDay from { [j1, days], 2, days], [j1, days], [je, days], [ja, days]},

is removed from the schedule. Similarly, any shift worked by one of the employees {e4, €1}
for the JobDay [j1, days] is also removed from the schedule. Open shifts are always removed

in the destroyed solution.

Job jl
Requirement
3

f I Y e Y m

48 12162024283236404448525660646872768084
day 1 day 2

Fized and
destroyed S1 (€1 s3 €3l se A ssfedl So [€3 S0 [Ef] s11 ey
shifts solegd] s4[ed st EF]

Sy -

Job j2
Requirement
3

2

1 —— w1

12 16, 20 24 28 32 36 40 44 48 52 56_60 64 68 72 76 80 _84
day 1 day 2 day 3 day 4 day 5 day 6 day 7

Fized and
destroyed S12[€31 si388 s sise3l Siwe ez Sis BE S19 [€5]
shifts S17 (€]

Figure 6.2 The destroyed solution. Destroyed shifts are crossed out. Fixed shifts and their
requirement coverage are kept unchanged.

The presented destroy operator is a hybrid operator. It gathers worst-destroy, related de-
stroy and random destroy paradigms. This hybrid nature aims at maximizing each iteration

improvement.

The destroyed sub-scope choice procedure terminates by generating the list of sub-scopes to

102

be destroyed from the current solution, and sending it to the repair operator described next.

6.3.2 Repair operator

A destroyed sub-scope [JDgest, Egest] means that all shifts s € Seyprent assigned to any em-
ployee emp(s) € Eges for a JobDay [job(s), day(s)] € JDgest are removed from the schedule
Scurrent- The remaining set of shifts belonging to S.yurrent are preserved in the set of fized
shifts Stiged. A set of fixed shifts means that the repair operator is not allowed to change or
remove any shift assignment from the fixed set Syizea-

For the destroyed solution of Figure 6.2:
Sfimed = {81, S2, 83, S4, S5, S8, 59, S11, 512, 15, 516, 517, 519}-

Once a solution is destroyed, it is ready for repair. Our repair operator re-optimizes the de-
stroyed solution through model (6.2) and the Kronos WFC solver, after fixing the x4 variable

associated with any shift s € Sfizeq to one:

Ts=1 Vs € Stized (6.3)

Furthermore, only shifts associated with the destroyed sub-scopes are enumerated.

6.3.3 Algorithm pseudo-code

Algorithm 10 presents the LNS metaheuristic. The destroyed solution is re-optimized at
line 9. Then the new solution cost is compared with the current solution cost (line 10). If
an improvement is realized, the new solution is accepted and serves as the current solution
for the next iteration. Otherwise, the new solution is not accepted, and we have a failed
iteration. The counter numO f Failures is incremented (line 12), and the related flag if set
to true (line 11), in order to add the related sub-scope to all subsequent iterations.

The metaheuristic stopping criterion is reaching a total of ny failed iterations.

103

Algorithm 10: LINS()
1 Begin

2 Boolean related + false;

3 Int numO f Failures < 0;

4 Schedule currentSchedule < GETINITIALSOLUTION();

5 Schedule newSchedule;

6 List destroyedSubscopes;

7 while numO f Failures < n; do

8 destroyedSubscopes < GETMONOTHREADSUBSCOPES(currentSchedule, related);
9 newSchedule < REOPTIMIZE(destroyedSubscopes, currentSchedule);
10 if newSchedule.cost > currentSchedule.cost then

11 related < true;

12 increment numO f Failures;

13 else

14 ‘ currentSchedule < newSchedule;

15 end

16 end

17 return currentSchedule;
18 end

6.4 Parallel large neighborhood search

Algorithms 6, 7 and 9, for creating the sub-scopes related to under-coverage, over-coverage,
and minimum working hour violations, respectively, are the building blocks of our LNS.
Algorithms 10 and 5 are the controllers for the one-thread version of the metaheuristic. Next
we present how we use Algorithms 6, 7 and 9 in the parallel version of the LNS metaheuristic
for solving the MJ-ESP.

6.4.1 Domain decomposition

Our parallel LNS algorithm is categorized as a "Domain decomposition" parallel metaheuris-
tic, and follows the "IC/RS/SPSS" taxonomy category of Crainic [17], i.e. the parallel meta-
heuristic has 7-Controller, with Rigid Synchronous communication, uses Same starting Point

(initial solution) and Same Search strategy (see section 2.3.3 for more details).

The feasible domain of the MJ-ESP is the global sub-scope. In the parallel LNS with ¢
threads, the destroy operator returns a list of ¢ mutually exclusive sub-scope lists. Then, in
each thread, one sub-scope list is repaired with the thread repair operator. Consequently, in
each iteration, there is a single destroy operator instance and t repair operator instances, one

for each thread.

104

Algorithm 11: parallelLNS(numThreads)
1 Begin

2 Boolean related < false;

3 Int numO f Failures < 0;

4 Schedule currentSchedule < GETINITIALSOLUTION();

5 List<Schedule> newSchedulesList;

6 List<Subscopes> destroyedSubscopesList;

7 List<Thread> threads <+ initialize numT hreads new threads;

8 while numO f Failures < ny do

9 destroyedSubscopesList <

GETMULTITHREADSSUBSCOPES(currentSchedule, numThreads, related);
10 Check thread sub-scope sizes, merge sub-scopes and update numT hreads if
necessary;
11 for i =0, ...,numThreads — 1 do
12 newSchedulesList; +
REOPTIMIZE(destroyedSubscopesList;, currentSchedule) on thread;;

13 end

14 threads.join(); // wait until all threads return
15 reset numT hreads if it has been changed on line 10;

16 newSchedule + MERGE(newSchedulesList);

17 if newSchedule.cost > currentSchedule.cost then

18 related < true;

19 increment numO f Failures;

20 numT hreads < 1;

21 else

22 currentSchedule < newSchedule;

23 reset numT hreads;

24 end

25 end

26 return currentSchedule;
27 end

Algorithm 11 presents the parallel LNS metaheuristic. The metaheuristic starts in the main
thread. Then for each iteration, when the destroy operator returns the ¢ disjoint sub-scope
lists (line 9), the ¢ sub-scope lists are distributed over the t parallel threads, where each sub-
scope list is repaired (line 12). When all threads finish their sub-scope repair, the execution
is then returned to the main thread, where the ¢ repaired solutions are merged, forming the
new solution (line 16). The new solution cost is compared with the current solution cost,
and is chosen as the next iteration current solution if an improvement is achieved. Otherwise

the number of failed iterations is incremented and the related flag is set to true.

105

Parallel LNS Algorithm 11 is analogous to the one-thread LNS Algorithm 10. Line 8 creates
one sub-scope for the one-thread version Algorithm 10, which is replaced by the line 9 in the
parallel Algorithm 11, where several sub-scopes are returned, one for each thread. Then the
repair operation is directly executed on the main thread for the one-thread version (line 9),
while this is replaced by lines 11-16 in the parallel LNS, where all threads optimize their sub-
scopes and return their new local solutions which are then merged to form a new complete

solution (line 16). Next each new parallel component is presented.

6.4.2 Multi-thread destroy operator

First, it is important to note that the multi-thread destroy operator runs on the main thread,
but creates t disjoint sub-scopes to be next optimized in parallel. The different thread de-
stroyed sub-scopes must be mutually exclusive so when they are re-optimized and merged,

the final solution is always feasible. The feasibility of the merged solution is maintained.

The main idea behind the multi-thread destroyed sub-scope selection is to forbid the choice
of either a JobDay or an employee already selected within another thread sub-scope. This
is done by maintaining a different domain for each thread, acting as the thread global sub-
scope. All thread domains are initialized to the problem global sub-scope, and updated every
time a destroyed thread sub-scope is updated. Each time a sub-scope subscopes; is added
for thread t; destroyed sub-scope list, all JobDays € subscopes; are removed from the thread
domain of all other threads in order to forbid these other threads from choosing any of these
JobDays in the future. Similarly, all employees € subscopes; are removed from the thread
domain of all other threads in order to disallow the choice of any of these employees for

another thread sub-scope.

We illustrate this procedure for a 2-thread LNS iteration using the current solution in Figure
6.1. The thread domains threadDomain, and threadDomains are initialized to the global

sub-scope, which we formulate as follows:

{lAlr, dawr], [, days), 31, days), [j1, daysl, [j1,days], [j1, days), [j1,dayz],

[j?ada’yl]a [j27daf92], [j?)dayi‘]]? [j?ada'y4]7 [j?aday5]7 [j27day6]a [j27day7]}7 {61762763764765}]}

106

Let the first thread created sub-scope be:

[{[j1, day1] },{e1, ea}].

The thread Domain, remains unchanged, while the thread Domains becomes:

{{ s daysl, 1, days], [j1, dayal, [j1.days], [j1, dayel, [j1, dayz],
[j27day1]a [j27day2]7 [anda?JB]; [j?aday4]a [j?)day5]7 [jQ;day6]7 [jQ,da?J?]}; {63764765}]}

Afterward, any sub-scope created for the second thread is guaranteed to be disjoint from the

first thread sub-scope.

While the parallel thread domains are maintained disjoint with the previously mentioned
procedure, the thread sub-scopes are chosen in the same way as the one-thread version (Al-
gorithm 5), but each step is repeated ¢ times, where ¢ is the number of threads. Algorithm
12 presents the multi-thread sub-scope selection process. The algorithm starts by initializing
all thread domains to the problem global domain (line 6). Then, for nyees times, each of the
four sub-scope types (Maz-Under-Coverage, Maz-Over-Coverage, Random-Under-Coverage,
and Random-Quver-Coverage) is created for the ¢ threads. Algorithm 13, which is called in
lines 12 and 16, creates the Maz-Under-Coverage and Random-Under-Coverage sub-scopes
for t threads. Algorithm 14, which is called in lines 14 and 18, creates the Maz-Over-Coverage
and Random-QOver-Coverage sub-scopes for t threads.

In the one-thread sub-scope creation algorithm (Algorithm 5, line 16), all sub-scope employ-
ees are merged after the ny,.s sub-scope blocks are created. Similarly, in the multi-thread
version (Algorithm 12, line 22), for every thread sub-scope, all employees are merged. Fi-
nally, Algorithm 15 which is called in line 25, creates the Min-Hours- Violation sub-scope for

t threads if the current solution cost contains a minimum working hours violation penalty.

All the algorithms (Algorithm 13 which creates the under-coverage sub-scopes for all the
threads, Algorithm 14 which creates the over-coverage sub-scopes for all the threads, and
Algorithm 15 which creates the minimum hours violation sub-scope for all the threads) take
care of maintaining the disjoint property of all thread sub-scopes. The three algorithms follow
the same pattern: The algorithms iterate over the multiple threads (line 3). Then, in line 4
the sub-scope creation algorithms - 6, 7 or 9 - are called like in the one-thread version, but
the thread domain is sent as a parameter serving as the thread global sub-scope. After each

thread sub-scope creation, the JobDays and employees appearing in the created sub-scope

107

Algorithm 12: getMultiThreadSubScopes(schedule, related, numThreads)

1
2
3
4
5
6

EN|

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Begin

List<subscopes> threadsSubscopes <— new List;
List subscopesy < global subscope;
List<subscopes> threadsDomains <— new List;
for i =0, ...,numThreads — 1 do
threadsDomains; < subscopesg;
// each thread domain is initialized to the global domain
threadsSubscopes; < new List;
end
Map underCovM ap <+ intialize the underCovMap for schedule;
Map overCovMap < intialize the overCovMap for schedule;
for npjocrs times do
$81 ¢~ THREADSSUBSCOPES__UNDERCOVERAGE(numT hreads, false, related);
update threadsSubscopes with ssq;
SS9 <~ THREADSSUBSCOPES__OVERCOVERAGE(numT hreads, false, related);
update threadsSubscopes with sso;
$83 <~ THREADSSUBSCOPES__UNDERCOVERAGE(numT hreads, true, false);
update threadsSubscopes with sss;
$84 <~ THREADSSUBSCOPES__OVERCOVERAGE(numT hreads, true, false);
update threadsSubscopes with ssy;
end
for i =0, ...,numThreads — 1 do
\ MERGEEMPLOYEES(threadsSubscopes;);
end

if schedule contains employee minimum working hours violation then
$85 ¢~ THREADSSUBSCOPES__ MINHOURSVIOLATION (numT hreads);
update threadsSubscopes with sss;

end

return threadsSubscopes;

end

108

are removed from the other thread domains (lines 7 and 8).

Algorithm 13: threadsSubscopes__underCoverage(numT hreads, random, related)

1 Begin
2 List<subscopes> threadsSubscopes <+ new List;
3 for i =0, ..., numThreads — 1 do
4 threadsSubscopes; < SUBSCOPE__ UNDERCOVERAGE (underCovM ap,
random, related, threadsDomains;);
5 for j «+ 0,..., numThreads — 1 do
6 if j ! =i then
7 remove all JobDay € subscopes from threadsDomains;;
8 remove all employee € subscopes from threadsDomains;;
9 end
10 end
11 end
12 return threadsSubscopes;
13 end

Algorithm 14: threadsSubscopes_ overCoverage(numT hreads, random, related)

1 Begin
2 List<subscopes> threadsSubscopes <+ new List;
3 for i =0, ..., numThreads — 1 do
4 threadsSubscopes; < SUBSCOPE_ OVERCOVERAGE(overCovMap,
random, related, threadsDomains;);
5 for j «+ 0,..., numThreads — 1 do
6 if j | =i then
7 remove all JobDay € subscopes from threadsDomains;;
8 remove all employee € subscopes from threadsDomains;;
9 end
10 end
11 end
12 return threadsSubscopes;
13 end

Sub-scope creation order

Sub-scope blocks are created one by one for all threads as follows:

e One sub-scope with Max-Under-Coverage is created for each thread.
e One sub-scope with Max-Over-Coverage is created for each thread.

e One sub-scope with Random-Under-Coverage is created for each thread.

109

Algorithm 15: threadsSubscopes__minHoursViolation(numThreads)

1 Begin
2 List<subscopes> threadsSubscopes < new List;
3 for i =0,...,numThreads — 1 do
4 threadsSubscopes < GETMINWORKINGHOURSVIOLATIONSUBSCOPES(
threadsDomains;);
5 for j «+ 0,...,numThreads — 1 do
6 if j ! =i then
7 remove all JobDay € subscopes from threadsDomains;;
8 remove all employee € subscopes from threadsDomains;;
9 end
10 end
11 end
12 return threadsSubscopes;
13 end

e One sub-scope with Random-Over-Coverage is created for each thread.

This order allows the JobDays containing the highest amount of under/over-covered periods
to be distributed over the several threads and ensures that every thread gets a significant

number of employees.

Intensification and diversification

The number of used threads t is a parameter set at the beginning of the metaheuris-
tic (Algorithm 11). When no improved solution is found in an iteration, an intensifica-
tion/diversification step is taken, by swapping the number of used threads between one and
t. The intensification occurs when the number of threads is switched from ¢ to one (Algo-
rithm 11, line 20), giving the opportunity to create larger sub-scopes for the single-thread.

On the other hand, diversification arises when the number of threads is set back to ¢ (line 23).

Another intensification step is taken after the first iteration without improvement, where
the related sub-scope is allowed for the Max-Under-Coverage or the Max-Over-Coverage

sub-scopes for subsequent iterations (Algorithm 11, line 18).

Number of threads and neighborhood size

As the number of under/over-covered periods and the violated employee minimum working
hours are minimized, the sizes of each thread neighborhood is also minimized. When a

thread neighborhood is too small, the repair operation can lead to poor or no improvement.

110

In order to always maintain a large neighborhood size for each thread, a post-processing is
accomplished after creating the thread neighborhood as follows. The thread neighborhoods
are increasingly ordered by the number of JobDays in each thread neighborhood. Then we
iterate over each thread neighborhood, if the number of a thread neighborhood JobDays is
less than 10% of the size of the global JobDays set JD,, this thread neighborhood is merged
with the next thread neighborhood, forming a wider new neighborhood, and decreasing the
number of threads by one. This is repeated until the number of JobDays in all thread
neighborhoods is at least 10% of the total problem JobDays or only one thread is remaining
(Algorithm 11, line 10).

While this post-processing minimizes the number of parallel threads for the current iteration,

it maintains the remaining threads useful and powerful.

6.5 Computational experiments

We validate the parallel LNS algorithm for the MJ-ESP by running it for several datasets
with several initial solutions. Both single-thread and multi-thread versions are tested and
compared. This section presents the test environment and analyzes the results. The section
is organized as follows. Section 6.5.1 introduces the used datasets and their different initial
solutions. Section 6.5.2 presents the experiment parameter settings. We conduct a sensitivity
analysis for the LNS destroy percentage in Section 6.5.3, followed by an initial solution
analysis in Section 6.5.4. Then the results for the single-thread and the multi-thread LNS

algorithms are discussed in Section 6.5.5.

6.5.1 Datasets and initial solutions

We have tested the LNS algorithm on seven datasets provided by our industrial partner. Each
dataset is characterized by its number of jobs and number of employees. The seven datasets
are: 7J 37E, 8] 94E, 5] 25E, 5J 50E, 7J 74E, 10J 50E and 14J 74E. A dataset name
xJ__yE refers to a dataset with x jobs and y employees. For all datasets, the planning horizon
is one week, divided into 15-minute periods. Note also that the employees in each dataset
have different shift profiles. For each dataset, Table 6.2 reports the cost of the best solution
found by the WFC solver using a standard configuration, as well as the total computational
time. These costs and times serve as base values for comparison purposes with the results

obtained by the proposed LNS metaheuristic.

Kronos WFC solver incorporates an initial solution builder. The builder creates, in general,

111

Table 6.2 Best solution cost and computational time (in seconds) using the WFC solver.

Dataset Costyyrc Timewrc

5J_25E 41655 97
5J 50E 83420 504
7J_37TE 50475 16
7J _74E 101130 170
8J_94E 130860 47
10J_50E 83170 814
14J 74E 100830 486

low-quality solution significantly fast. These initial solutions will be referred to by I.S—W FC
in the following result presentation. Any test computational time presented next includes

the creation time of the initial solution.

In order to test the metaheuristic performance on different scenarios for each dataset, four
other initial solutions are created and saved. These solutions have different properties: dif-
ferent number of under-covered hours, over-covered hours and violated employee minimum
working hours. The initial solutions creation algorithm is a sequential optimization of dif-
ferent disjoint sub-scopes of the dataset. The size of the sub-scopes is manually adjusted

depending on each dataset size. For each dataset, the four created initial solution names are
1S—1,15—-2,IS—3and IS —4.

Table 6.3 presents some statistics for the different initial solutions for each dataset. The last

four columns in this table provide:

Cost: The initial solution cost.

U/C hours: The number of hours in the initial solution, where the employee demand

is covered by open shifts, which is considered as under-coverage.
O/C hours: the number of over-covered hours.

VEM hours: the number of violated employee minimum working hours.

6.5.2 Experimental setting

Experiments were executed on a computer with 4 Intel Core 3.40 GHz CPUs and 32 GB
RAM. The Kronos WFC solver uses Xpress 8.4. MILP solver.

Table 6.3 Statistics of the initial solutions.

Initial Cost U/C O/C VEM
Dataset .
solution hours hours hours
IS-1 802304 263.3 205.8 126.9
IS-2 984753 345.3 206.0 165.6
5J 25E IS-3 516566 21.3 269.3 0.2
IS-4 899992 214.0 276.3 59.0
IS-WFEC 41815 0.0 0.0 145
IS-1 3242489 511.5 435.5 284.9
IS-2 2196011 30.0 535.5 0.0
5J 50E IS-3 2665373 T72.5 372.8 439.8
IS-4 2124083 554.0 351.0 349.8
IS-WFC 1020900 0.0 0.0 3404
IS-1 1233935 316.8 118.0 214.3
IS-2 168301 2.0 226.0 4.3
7J 3TE IS-3 684269 280.0 157.3 114.3
[S-4 840879 234.8 154.0 160.0
IS-WFC 1195357 349.3 0.0 260.0
IS-1 2119840 562.8 236.0 367.3
IS-2 601989 50.5 435.8 23.3
7) T4E IS-3 2181746 593.8 300.5 457.0
IS-4 2112337 511.5 259.8 445.0
IS-WFC 2884834 608.8 50.5 686.3
IS-1 3620141 935.5 53.0 760.0
IS-2 894538 54.5 689.8 0.0
8J 94E IS-3 599809 19.8 581.8 0.0
[S-4 2846552 951.3 162.5 593.3
IS-WFC 3552375 1174.0 0.0 795.5
IS-1 3762348 639.0 256.8 593.5
IS-2 1404462 42.8 668.3 0.0
10J 50E IS-3 2428716 676.3 259.8 495.7
IS-4 1824477 553.8 361.8 342.7
IS-WFC 999070 0.0 0.0 3404
IS-1 2709570 460.3 47.8 611.0
IS-2 321165 0.0 4473 118
14) 74E IS-3 1803348 565.8 315.5 309.0
IS-4 2125781 562.8 192.5 477.3
IS-WFC 2964876 626.0 0.0 701.8

112

113

In all tests, the metaheuristic stopping criteria is having six iterations without enhancement,
ng = 6. While this number of failed iterations before termination is small compared to other
metaheuristics, which can reach hundreds of iterations, our LNS iterations are time con-
suming with substantial improvements observed in most of them. Thus six non-improving
iterations indicate that improvements become hard to achieve, and it is better to stop the
metaheuristic in order to save considerable computational time. Other datasets with different

characteristics may need to calibrate the parameter ny.

For each dataset and each initial solution, we conducted ten different runs with the LNS
algorithm. Each of the ten runs has a different seed for the random number generator used
for the sub-scope construction. The final result is presented as the average cost gain and
computational time gain compared to the results obtained by the standard WFC solver.
Denote by Costyys and Timepys (resp. Costwre and Timewpce) the cost of the best
solution found by the LNS algorithm (resp. WFC solver) and its total computational time.

The cost gain is calculated as:

COStWFC — COStLNS

Gaing,s = 100 % %
cost COStWFC 0
whereas the time gain:
, Time — Time
Gaingme = 100 * WrC LNS .
Timew pc

Table 6.4 Average cost gain (%) and time gain (%) for different destroy percentages, using
one thread.

Destroy percentage
10% 20% 30% 40% 50%
Dataset Cost Time Cost Time Cost Time Cost Time Cost Time

5J_25E 21 924 22 843 23 824 22 824 22 821
5J_50E 0.2 91.6 1.6 86.6 1.5 80.3 1.4 79.2 1.5 788
7J_37E 1.9 543 1.9 488 2.1 48.0 21 492 22 420
7J_T4E 0.0 90.0 1.8 89.2 22 84 23 8.0 22 874
8J_94E -0.6 135 -03 161 -04 197 01 21.0 -0.3 209
10J_50E 1.2 948 1.0 88 0.8 8.2 08 79.0 0.7 &80.1
14 74E 23 946 24 924 25 922 25 916 25 90.2
Average 1.0 75,9 1.5 72.2 1.5 70.8 1.6 70.1 1.6 68.8

114

6.5.3 Destroy percent analysis

In this section, we perform a sensitivity analysis on the value of the destroy percentage
used in the destroy operator of the single-thread LNS metaheuristic. Table 6.4 displays
the average cost and time gains for several destroy percentages (10%, 20%, 30%, 40%, and
50%). For each dataset, the average is over 10 runs for each of the five initial solutions
(IS—1,1S—2,1S—3,1S —4, and IS —WFC). The last line in the table presents the cost

and time gain averages over all instances.

Low destroy percentage value creates smaller neighborhoods to be optimized, thus less im-
provement per iteration. Consequently, more iterations are needed before the LNS heuristic
convergence. This is observed in Table 6.5, which shows the average number of iterations for

the LNS heuristic with each destroy percentage.

In Table 6.4, the results for the 10% destroy percentage are the worst among the other re-
sults, but with an average of only 0.6% or less degradation on the cost gain with respect to
the higher destroy percentage results, and with an average of 4% or more computation time
gain than the other destroy percentage results. For higher destroy percentages, we remark a
stabilization on the average cost gain. This is explained by the way the sub-scope selection
algorithms use the destroy percentage parameter: the destroy percentage is only used as an
upper bound for the selected sub-scopes. Smaller sub-scopes are created when there is no
more possible sub-scopes to choose from. For example, if within a solution only one JobDay
contains over-coverage, then the function constructing the Max-Over-Coverage sub-scope will
return a sub-scope list of size one, and the Random-Over-Coverage sub-scope function will

return an empty list, even if larger lists are expected.

Table 6.5 Average number of iterations for different destroy percentages, using one thread.

Destroy percentage

Dataset 10% 20% 30% 40% 50%

5J_25E 20.0 15.0 13.2 134 124
5J_50E 232 158 14.8 13.0 13.2
7J_37E 154 12,6 11.0 10.6 10.0
7J_T74E 20.0 164 144 134 128
8J_94E 31.6 25.8 22.0 19.8 19.8
10J_50E 23.2 158 13.8 13.8 13.2
14J_74E 20.0 156 13.0 124 11.0

115

Results in Table 6.4 proves that the LNS heuristic with different destroy percentage converges
in a timely manner. Smaller destroy percentages give faster lower quality solutions while
higher ones give better solution costs but slightly slower. This gives the opportunity to
the user to choose the best destroy percentage depending on the used dataset size. Smaller
destroy percentages are preferred with very large datasets, higher destroy percentages are
better for medium size datasets. For the remaining computational experiment sections, we
use the LNS heuristic with 40% destroy percentage, as it shows the best average cost and

computational time gains with respect to the other percentages.

6.5.4 Initial solution analysis

The initial solution analysis tests the LNS heuristic behavior when starting with different
solution qualities. Table 6.6 displays the LNS heuristic results for the different initial solu-
tions. The 2"¢ and 3"¢ columns show the dataset best solution and computational time using
the WFC solver. The 5 column presents the initial solution cost. The 6! and 7% columns
display the average optimized solution and computational time, respectively, over 10 runs,
using the single-thread LNS heuristic with 40% destroy percentage. Finally the cost and
computational time gains are listed in the 8 and 9 columns. For each dataset, the best
results are highlighted in bold.

Table 6.6 shows that the LNS heuristic converges similarly with different starting solution
qualities for most datasets. Negative gains are obtained only for dataset 8J 94E and the
initial solution (IS — 1). Initial solution /.S — 1 cost is very high, but the .S — W FC initial
solution for the same dataset has approximately the same cost as I.S — 1, which shows the
independence between the I.S — 1 negative gain (or gap) and the starting solution cost. In-
stead, it was remarked that during the last iterations for the IS — 1 optimization, a special
sub-scope combination would have been needed to allow some shift swaps and reduce the

schedule cost, which was not accomplished before achieving the stopping criterion.

From these results, we observe that the quality of the initial solution is not correlated with
the obtained results. Indeed, in certain cases, low-quality initial solutions yield the best
average cost gains: For dataset 7J 37E, the best average cost is obtained from the worst
initial solution I.S — W F'C'. Consequently, for the next LNS heuristic result analysis, we will
present results for the initial solution IS — W FC. While I.S — W FC' did not show the best

average gains with respect to other initial solutions, we prefer to use it as it is calculated on

Table 6.6 Initial solutions analysis.

116

Dataset Costwrpc Timewrpc IS-name IS-Cost Average Average Gaincost: GainTime
Costrys Timepns (%) (%)

IS-1 766319 40745 17.3 2.2 82.1

IS-2 953673 40751 22.5 2.2 76.7

5J_25E 41655 96.5 I1S-3 462251 40714 14.5 2.3 84.9
1S4 856822 40711 16.2 2.3 83.2

IS-WFC 41815 40719 14.6 2.2 84.8

IS-1 3168179 82432 124.9 1.2 75.2

1S-2 2086811 81946 160.7 1.8 68.1

5J_50E 83420 503.9 IS-3 2610488 82154 82.4 1.5 83.6
1S4 2057393 82156 73.0 1.5 85.5

IS-WFC 1020900 82417 82.3 1.2 83.7

IS-1 1191964 49365 7.4 2.2 52.5

IS-2 100965 49347 5.5 2.2 64.4

7J_37TE 50475 15.6 1S-3 636388 49344 8.5 2.2 45.6
1S4 791378 49818 8.8 1.3 43.4

IS-WFC 1195357 49284 94 2.4 39.8

IS-1 2044225 98271 18.7 2.8 89.0

IS-2 483654 100564.5 13.7 0.6 91.9

7J_74E 101130 170.4 1S-3 2104121 98547 25.8 2.6 84.9
1S4 2032222 98458.5 21.4 2.6 87.5

IS-WFC 2884834 98304 22.9 2.8 86.6

IS-1 3545831 134355 54.7 -2.7 -17.1

1S-2 729163 128619 19.9 1.7 57.5

8J_94E 130860 46.7 IS-3 438829 128718 16.7 1.6 64.2
1S4 2766617 130152 43.9 0.5 6.1

IS-WFC 3552375 130621.5 43.6 0.2 6.6

IS-1 3706413 82458 307.2 0.9 62.3

1S-2 1288062 82511 130.2 0.8 84.0

10J_50E 83170 814.0 IS-3 2374836 82413 164.0 0.9 79.9
1S4 1757127 82440 115.6 0.9 85.8

ISS-WFC 999070 82763 138.6 0.5 83.0

IS-1 2636070 98268 46.2 2.5 90.5

IS-2 196080 98448 25.1 2.4 94.8

14J_74E 100830 485.7 IS-3 1720113 98298 46.6 2.5 90.4
1S4 2049746 98400 43.3 2.4 91.1

IS-WFC 2964876 98310 44.2 2.5 90.9

117

run time with the LNS execution.

6.5.5 Single-thread and multi-thread LNS results

Using a destroy percentage of 40% and the IS — W F'C initial solution, both single-thread
and parallel LNS heuristics with up to 6 parallel threads have been tested. Relative cost and

time gains are given in Table 6.7, where the last line reports averages over all datasets.

Table 6.7 Average cost gain (%) and time gain (%) for single-thread execution and different
number of parallel thread execution. Average cost and time is over 10 runs using the IS —
W FC initial solution and 40% destroy percentage.

1 Thread 2 Threads 3 Threads 4 Threads 5 Threads 6 Threads

Dataset Cost Time Cost Time Cost Time Cost Time Cost Time Cost

Time

5J_25E 22 848 1.8 7.0 21 731 20 747 2.0 73.0 1.9
5J_50E 1.2 83.7 1.8 86.1 1.9 870 1.5 86.5 1.2 783 1.7
7J_37E 24 399 24 647 24 583 22 701 21 68.0 23
7J_T4E 2.8 86.6 1.5 916 -2.0 925 2.5 933 25 935 26
8J 94E 0.2 6.7 1.2 277 09 465 08 518 -04 409 0.6
10J_50E 0.5 830 0.8 824 1.1 88.2 1.0 90.1 0.9 884 1.3
14J_74E 25 909 24 925 24 964 24 94 22 962 23
Average 1.7 679 1.7 1.2 1.8 774 1.8 80.5 1.5 769 1.8

75.5
83.8
74.9
93.5
49.5
89.6
96.4
80.4

Compared to the single-thread behavior, the parallel metaheuristic succeeds to maintain a
high-level performance for the different levels of parallelism. For the cost gain, the best gain
is achieved by both the four-thread and six-thread versions. Tables 6.8 and 6.9 report the
average number of re-optimized JobDays and employees, respectively, on each thread over all
iterations. These tables show that the size of the neighborhoods decrease with the increase
on the number of parallel threads, which is expected. This decrease in the re-optimized
neighborhood size enhances the computational time. The six-thread LNS version is 18%

faster than the single-thread version.

These results show that for very large instances, when the single-thread execution starts to be
challenging, multi-threading becomes a safe alternative, guaranteeing a high solution quality.
Both parameters t and dp can be changed by the user before launching our proposed parallel
LNS heuristic, giving the user the control over the number of parallel threads and the used
destroy percentage, respectively. This helps the user choose the best values depending on

the used dataset size.

118

Table 6.8 Average number of JobDays optimized per iteration and thread, for different number
of threads using 40% destroy percentage and I.S — W F'C' initial solution.

Dataset 1 thread 2 threads 3 threads 4 threads b5 threads 6 threads
5J 25E 8.3 8.2 7.7 8.0 7.8 7.9
5J 50E 10.3 9.7 9.1 8.6 8.5 8.3
7J 37E 11.0 11.5 10.0 8.4 7.3 6.4
7)) T4E 13.6 13.7 10.9 9.6 8.7 7.6
J 94E 13.1 14.5 11.9 10.7 10.7 9.1
10J_50E 20.7 17.0 15.7 14.8 15.3 14.9
14J 74E 16.8 25.0 21.6 19.4 16.5 15.0
Average 13.4 14.2 12.4 11.4 10.7 9.9

Table 6.9 Average number of employees optimized per iteration and thread, for different
number of threads using 40% destroy percentage and I.S — W F'C initial solution.

Dataset 1 thread 2 threads 3 threads 4 threads b5 threads 6 threads
5J 25E 16.7 14.8 15.0 14.8 14.8 14.6
5J 50E 25.4 20.9 18.5 17.1 15.6 15.5
7J 3TE 13.4 11.1 9.3 9.3 7.4 7.0
7 74E 21.6 14.9 13.4 12.0 10.7 9.8
8J 94E 25.8 23.1 19.9 17.2 16.9 15.1
10J 50E 21.1 18.7 17.1 17.6 15.4 16.6
14J 74E 21.8 19.4 16.6 14.4 14.3 12.2
Average 20.8 17.6 15.7 14.6 13.6 13.0

119

CHAPTER 7 GENERAL DISCUSSION

In this thesis, we dealt with the challenge of creating employee schedules for large problem
instances. Even if personnel scheduling problems have been widely studied in the literature,
most solution methods can be classified in two categories. The first are the algorithms ad-
dressing the problems involving only the five, or less, shift types per day: Day, Evening,
Night, 12-hour a.m. and 12-hour p.m.. In this case, the resulting problems are relatively
small when compared with our problems where each employee shift profile contains dozens
of different shift types (several shift starting times and several shift lengths). The second
category includes the algorithms solving the problem in two steps: a shift allocation step
where anonymous shifts fulfilling the demand are created, followed by an employee shift as-
signment step. We tested this "shift allocation-shift assignment" approach at the beginning
of our research, but it was not suitable for the special problem properties we deal with. Thus

we did not present it as it did not yield interesting results.

Consequently we needed to explore and study new, out of the box, solution methods. For the
ESP-IDT we first studied the two-phase heuristic proposed by Munezero [57]. The first phase
optimizes each department employee schedules separately. The second phase uses remain-
ing employee hours to perform any possible transfers. Phase-one department decomposition
leads to a loss in the needed inter-department transfer information. To overcome this loss
of needed transfer information, we developed a three-phase heuristic MP-DH that starts
by analyzing the instance data and building for each department its own inter- and intra-
department requirement curves. To reduce computational times, the second phase identifies
which departments can provide employees to cover these transfer requirements. Finally, the
third phase optimizes each department employee schedules, covering both the department
internal and transfer requirement. MP-DH rendered the very large instances solvable in a

timely manner, and in shorter computational times compared to Dahmen et al. [22].

The MP-DH third phase solves a ESP-DIDT MILP. Controlling the MILP computational
time is a challenge especially for departments with a large number of employees. The semi-
anonymous heuristic, presented in Chapter 5, reduces the optimized MILP size but does not
reduce the computational time while maintaining accepted solution quality. The main draw-
back of the SA heuristic is forcing the employee decomposition even when it is not needed.

Thus an intelligent heuristic, controlling when to decompose the problem to avoid long com-

120

putational times, and when not to decompose it in order to maintain solution quality, is
mandatory. In this regard, we developed the hybrid heuristic which dynamically decides
when to decompose the department employee set and when to optimize all employee sched-
ules. HH is able to reduce up to 87.4% of the MILP computational time while maintaining
an acceptable solution quality degradation of 3.1%.

The development of parallel metaheuristics is a rapidly evolving area of research, showing
success for diverse applications. Multi-start parallel metaheuristic is the most used paral-
lelization method. The multi-start metaheuristic, whether cooperative or not, runs in parallel
several metaheuristic instances and at the end chooses the best solution among the several
parallel runs. Alternatively, domain decomposition parallel metaheuristics proceed by first
decomposing the domain of a problem before optimizing different sub-parts of the problem
in parallel. This helps in reducing the overall computation time beside maintaining the
metaheuristic robustness. As per our knowledge, we are the first to introduce the domain-
decomposition parallel LNS for the multi-job employee scheduling problem. Furthermore, the
presented LNS repair operator solves a minimized MJ-ESP MILP, which produces the best
possible solution for the destroyed sub-problem. This transforms the metaheuristic into a
matheuristic which benefits from the power of both the mathematical programming solution
methods and the heuristics. Our PLNS outperform the commercial tool WFC, by accelerat-
ing the computational time by an average of 80.7% and enhancing the solution quality by an

average of 1.7%.

From the results reported for the three presented algorithms, we believe they are an enriching
addition to employee scheduling in the industry. Exploiting the parallelization in each of the

algorithm steps makes them all suitable for nowadays computational trend.

121

CHAPTER 8 CONCLUSION AND RECOMMENDATION

We have presented three algorithms for solving employee scheduling problems. The first two
deal with the multi-department employee scheduling problem with inter-department trans-
fers. The second is a continuation of the first, where the proposed heuristic computational
time is further enhanced. Finally we attack the multi-job employee scheduling problem. In
this chapter we revise the three developed heuristics along with their limitations, and we

conclude with proposed future research.

8.1 Summary of works

The first developed heuristic is the MP-DH, a multi-phase decomposition heuristic for the
employee scheduling problem with inter-department transfers. The first phase solves a mono-
department anonymous employee scheduling problem for each department. The solved MILP
size is constant for all datasets guaranteeing quick computation for large instances. The first
phase gives a good idea about the possible requirement covered only with the department
internal employees. Any uncovered time periods are considered as critical intervals, i.e.,
need transferred employees to fulfill them. The second phase solves a one-day anonymous
multi-department employee scheduling problem with derived inter-department transfers, for
each of the problem horizon days. The word derived denotes that not all possible transfers
are considered but only the critical interval transfers are. The resulting daily anonymous
schedules indicate which department is responsible for fulfilling each of the critical intervals.
Using this phase result, we migrate the transfer requirement to the department possessing
the to-be-transferred employees. At the end of this phase, every department has a processed
internal requirement and a list of transfer requirements, one for each department. The third
phase solves the final mono-department employee scheduling problem with derived inter-

department transfers. All department schedules are then merged to form the final schedule.

All phases exploit the parallelism possibility between its different MILPs, the first and third
phases optimize all departments in parallel, and the second phase optimizes every day-
problem in parallel. MP-DH was further tuned to solve the exact problem presented by
Dahmen et al. [22]. The experimental results show that MP-DH outperforms the heuristics
in Dahmen et al. [22] with respect to the computational time, and for large datasets with

respect to the solution quality as well.

122

Next, the MP-DH computational time is further reduced by up to 87% on average for large
instances, using HH, a hybrid heuristic. HH uses two models interchangeably for the third
phase of MP-DH. The first model is the basic model already presented in MP-DH. The second
model is a semi-anonymous model for the same problem, where only the schedules of a subset
of the department employees are of interest. HH can then solve a sequence of such models to
yield a complete schedule. HH chooses when the basic model or the semi-anonymous model
is used. Every department employee schedule optimization process starts by applying the
basic model. When the computational time exceeds a given time threshold and the MILP
optimality gap is greater than a given value, the solution of the basic model is stopped and
a semi-anonymous model is executed. HH maintains high solution quality, with a cost gap
of only 3.1% with respect to the MP-DH.

In the last part of the thesis we present a parallel LNS metaheuristic for the multi-job
employee scheduling problem. The LNS destroy operator chooses, from the current solution,
sub-scopes yielding high cost. High cost is caused by over-coverage, open-shift usage, or
the employee minimum working hours violation. When a sub-scope is destroyed, any shift
belonging to such sub-scope is deleted. The repair operator then re-constructs the destroyed
solution. We use the multi-job employee scheduling problem MILP of the WFC tool as the
repair operator for the destroyed parts. The parallel version of the destroy operator creates
several disjoint sub-scopes to be destroyed: each is destroyed in a separate parallel thread and
repaired with a standalone version of the repair operator. After all threads have repaired their
own destroyed part of the solution, a new solution is created by merging the repaired part
of each thread. The parallel LNS algorithm succeeded in improving both the computational
time and the solution quality with respect to the WFC tool solution.

8.2 Limitations

The ESP-IDT studied in Chapters 4 and 5 does not consider some important practical fea-
tures such as the travel times between the departments during employee transfers, employee
preferences and the positioning of breaks within the shifts. However, our experimental tests
have shown that MP-DH is highly flexible as it was easily transformed to respect the prob-
lem setting of Dahmen et al. [22]. We believe that considering a new problem setting can be
easily adapted to the heuristic. Furthermore, even if we have developed and tested a variety
of ways to expect transfer needs at the first phase, the explicit enumeration of all possible
transfers in MP-DH-noP1 outperforms the MP-DH on average. This strategy was, however,

deemed unfavorable due to its high time consumption. Nevertheless, it shows that better

123

transfer requirements can be identified.

One limitation faced by the hybrid heuristic is the existence of several parameters: t;, emp-
Percent and A. The values of these parameters may significantly affect the final solution
quality and the computational time. Thus good calibration is needed when new problem

settings are used.

After destroying a solution in the LNS matheuristic for the multi-job employee scheduling
problem, the repair operator re-optimizes the full problem, while maintaining the fixed shift
(Sfizea) variables to one in order to preserve these shifts. Faster execution could be achieved
by only enumerating the needed shifts, those belonging to the destroyed sub-scopes, and
adjusting the problem constraints. In our research scope, this was not easy to implement in
the WFC solver.

8.3 Future research

The MP-DH first phase is responsible for critical intervals extraction. An equivalent pro-
cedure is the explicit enumeration of all possible critical intervals, like in MP-DH-noP1,
which induces large computational times in the second phase, because all transfer shifts are
enumerated from all departments to each critical interval. Enhancing the critical intervals ex-

traction without reaching an excessive enumeration is an interesting future research objective.

For the second phase of MP-DH, local search can be tested to replace the daily anonymous
scheduling MILP. Eventually, local search can be further used to enhance the MP-DH final

solution by adjusting or adding transfer shifts.

Regarding the MJ-ESP parallel LNS heuristic, several of its components can be investigated
in future works. First, collaborative parallel local search can be exploited, which shows
good success in the literature. Where several parallel threads optimize the problem and
share the features of the good computed solutions or the solutions themselves among each
other. Second, the adaptive LNS heuristic, where several neighborhoods (destroy/repair
operators) are used in an adaptive way. Adaptive LNS updates a score for each destroy/repair
operator after each iteration, depending on the level of achieved improvement. At each
iteration, a destroy/repair operator is chosen depending on its score. Thus sufficient number

of iterations is needed in order to frequently update these scores. In our LNS, we had

124

small number of iterations due to the repair operator long computational time. Reduction
in the computational time can be done by reducing the destroy percentage for the first set
of iterations of the metaheuristic, then increasing it when LNS stops improving the current
solution. In our tests, using a small destroy percentage is equivalent to a large one during
the early iterations, but could not converge at the end of the metaheuristic compared to the

large destroy percentage. An adaptive LNS strategy may avoid this drawback.

1]

[10]

[11]

[12]

125

REFERENCES

U. Aickelin, E. K. Burke, and J. Li, “An evolutionary squeaky wheel optimization
approach to personnel scheduling,” IEEE Transactions on Evolutionary Computation,
vol. 13, no. 2, pp. 433443, 2009.

E. Alba, G. Luque, and S. Nesmachnow, “Parallel metaheuristics: recent advances and

new trends,” International Transactions in Operational Research, vol. 20, no. 1, pp.

1-48, 2013.

T. Aykin, “Optimal shift scheduling with multiple break windows,” Management Sci-
ence, vol. 42, no. 4, pp. 591-602, 1996.

——, “A comparative evaluation of modeling approaches to the labor shift scheduling

problem,” European Journal of Operational Research, vol. 125, no. 2, pp. 381-397, 2000.

K. R. Baker, “Workforce allocation in cyclical scheduling problems: A survey,” Opera-
tional Research Quarterly, pp. 155-167, 1976.

K. R. Baker and M. J. Magazine, “Workforce scheduling with cyclic demands and day-off
constraints,” Management Science, vol. 24, no. 2, pp. 161-167, 1977.

J. F. Bard and H. W. Purnomo, “Hospital-wide reactive scheduling of nurses with pref-

erence considerations,” IIE Transactions, vol. 37, no. 7, pp. 589-608, 2005.

J. F. Bard and L. Wan, “The task assignment problem for unrestricted movement be-

tween workstation groups,” Journal of Scheduling, vol. 9, no. 4, pp. 315-341, 2006.

——, “Workforce design with movement restrictions between workstation groups,” Man-

ufacturing € Service Operations Management, vol. 10, no. 1, pp. 24-42, 2008.

S. E. Bechtold and L. W. Jacobs, “Implicit modeling of flexible break assignments in
optimal shift scheduling,” Management Science, vol. 36, no. 11, pp. 1339-1351, 1990.

O. Berman, R. C. Larson, and E. Pinker, “Scheduling workforce and workflow in a high
volume factory,” Management Science, vol. 43, no. 2, pp. 158-172, 1997.

R. Biirgy, H. Michon-Lacaze, and G. Desaulniers, “Employee scheduling with short
demand perturbations and extensible shifts,” Omega, vol. 89, pp. 177-192, 2019.

[13]

[14]

[21]

[22]

[23]

[24]

[25]

[26]

126

E. K. Burke et al., “A scatter search methodology for the nurse rostering problem,”
Journal of the Operational Research Society, pp. 1667-1679, 2010.

C. Canon, “Personnel scheduling in the call center industry,” Ph.D. dissertation, Uni-

versité Frangois-Rabelais de Tours, 2007.

J.-F. Cordeau et al., “Scheduling technicians and tasks in a telecommunications com-
pany,” Journal of Scheduling, vol. 13, no. 4, pp. 393-409, 2010.

M.-C. Cété, B. Gendron, and L.-M. Rousseau, “Grammar-based column generation for
personalized multi-activity shift scheduling,” INFORMS Journal on Computing, vol. 25,
no. 3, pp. 461-474, 2013.

T. G. Crainic, Parallel Metaheuristic Search. Springer, 2018.

T. G. Crainic and N. Hail, “Parallel metaheuristics applications,” Parallel Metaheuris-
tics: A New Class of Algorithms, pp. 447-494, 2005.

T. G. Crainic and M. Toulouse, “Parallel meta-heuristics,” in Handbook of Metaheuris-
tics, M. Gendreau and J.-Y. Potvin, Eds. Springer, 2010, pp. 497-541.

S. Dahmen and M. Rekik, “Solving multi-activity multi-day shift scheduling problems
with a hybrid heuristic,” Journal of Scheduling, vol. 18, no. 2, pp. 207-223, 2015.

S. Dahmen, M. Rekik, and F. Soumis, “An implicit model for multi-activity shift schedul-
ing problems,” Journal of Scheduling, vol. 21, no. 3, pp. 285-304, 2018.

S. Dahmen et al., “A two-stage solution approach for personalized multi-department
multi-day shift scheduling,” European Journal of Operational Research, vol. 280, no. 3,
pp- 1051-1063, 2020.

G. B. Dantzig, “Letter to the editor-a comment on edie’s “traffic delays at toll booths”,”
Journal of the Operations Research Society of America, vol. 2, no. 3, pp. 339-341, 1954.

P. De Bruecker et al., “Workforce planning incorporating skills: State of the art,” Fu-
ropean Journal of Operational Research, vol. 243, no. 1, pp. 1-16, 2015.

M. Defraeye and I. Van Nieuwenhuyse, “Staffing and scheduling under nonstationary

demand for service: A literature review,” Omega, vol. 58, pp. 4-25, 2016.

F. Della Croce and F. Salassa, “A variable neighborhood search based matheuristic for

nurse rostering problems,” Annals of Operations Research, vol. 218, no. 1, pp. 185-199,
2014.

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[38]

127

S. Demassey, G. Pesant, and L.-M. Rousseau, “Constraint programming based column
generation for employee timetabling,” in Integration of AI and OR Techniques in Con-

straint Programming for Combinatorial Optimization Problems, R. Bartdk and M. Mi-
lano, Eds.

E. Demirovi¢ and N. Musliu, “Maxsat-based large neighborhood search for high school
timetabling,” Computers & Operations Research, vol. 78, pp. 172-180, 2017.

G. Desaulniers et al., “Crew scheduling in air transportation,” in Fleet Management and
Logistics, T. G. Crainic and G. Laporte, Eds. Springer, 1998, ch. 8, pp. 169-185.

G. Dueck and T. Scheuer, “Threshold accepting: a general purpose optimization algo-
rithm appearing superior to simulated annealing,” Journal of Computational Physics,
vol. 90, no. 1, pp. 161-175, 1990.

F. F. Easton and D. F. Rossin, “A stochastic goal program for employee scheduling,”
Decision Sciences, vol. 27, no. 3, pp. 541-568, 1996.

L. C. Edie, “Traffic delays at toll booths,” Journal of the Operations Research Society
of America, vol. 2, no. 2, pp. 107-138, 1954.

A. T. Ernst et al., “Staff scheduling and rostering: A review of applications, methods

and models,” Furopean Journal of Operational Research, vol. 153, no. 1, pp. 3-27, 2004.

B. Faaland and T. Schmitt, “Cost-based scheduling of workers and equipment in a

fabrication and assembly shop,” Operations Research, vol. 41, no. 2, pp. 253268, 1993.

C.-N. Fiechter, “A parallel tabu search algorithm for large traveling salesman problems,”
Discrete Applied Mathematics, vol. 51, no. 3, pp. 243 — 267, 1994.

F. Glover, “Future paths for integer programming and links to artificial intelligence,”
Computers € Operations Research, vol. 13, no. 5, pp. 533-549, 1986.

D. Godard, P. Laborie, and W. Nuijten, “Randomized large neighborhood search for cu-
mulative scheduling.” in Proceedings of the 15th International Conference on Automated
Planning and Scheduling, vol. 5, 2005, pp. 81-89.

M. Hojati and A. S. Patil, “An integer linear programming-based heuristic for scheduling
heterogeneous, part-time service employees,” European Journal of Operational Research,
vol. 209, no. 1, pp. 37-50, 2011.

[39]

[40]

[41]

[47]

[49]

[50]

128

D. Hur, V. A. Mabert, and K. M. Bretthauer, “Real-time work schedule adjustment
decisions: An investigation and evaluation.” Production and Operations Management,

vol. 13, no. 4, pp. 322-339, 2004.

J. Jin, T. G. Crainic, and A. Lgkketangen, “A parallel multi-neighborhood cooperative
tabu search for capacitated vehicle routing problems,” Furopean Journal of Operational
Research, vol. 222, no. 3, pp. 441 — 451, 2012.

J. Jin, “Pré-affectation des taches aux employés effectuant des taches non-interruptibles
et des activités interruptibles,” Ph.D. dissertation, Ecole Polytechnique de Montréal,
2009.

O. Kabak et al., “Efficient shift scheduling in the retail sector through two-stage opti-
mization,” European Journal of Operational Research, vol. 184, no. 1, pp. 76-90, 2008.

A. Kasirzadeh, M. Saddoune, and F. Soumis, “Airline crew scheduling: Models, algo-
rithms, and data sets,” EURO Journal on Transportation and Logistics, vol. 6, no. 2,

pp. 111-137, 2017.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,”
Science, vol. 220, no. 4598, pp. 671-680, 1983.

A. A. Kovacs et al., “Adaptive large neighborhood search for service technician routing
and scheduling problems,” Journal of Scheduling, vol. 15, no. 5, pp. 579-600, 2012.

S. A. Kravitz and R. A. Rutenbar, “Placement by simulated annealing on a multiproces-
sor,” IEEFE Transactions on Computer-aided Design of Integrated Circuits and Systems,
vol. 6, no. 4, pp. 534-549, 1987.

P. Laborie and D. Godard, “Self-adapting large neighborhood search: Application to
single-mode scheduling problems,” Proceedings of the 3rd Multi-disciplinary Interna-

tional Scheduling Conference: Theory and Applications., vol. 8, 2007.

N. Lahrichi et al., “An integrative cooperative search framework for multi-decision-
attribute combinatorial optimization: Application to the md p vr p,” European Journal
of Operational Research, vol. 246, no. 2, pp. 400-412, 2015.

A. Legrain, H. Bouarab, and N. Lahrichi, “The nurse scheduling problem in real-life,”
Journal of Medical Systems, vol. 39, no. 1, p. 160, 2015.

Q. Lequy et al., “Assigning multiple activities to work shifts,” Journal of Scheduling,
vol. 15, no. 2, pp. 239251, 2012.

[51]

[52]

[54]

[55]

[57]

[58]

[63]

129

J. S. Loucks and F. R. Jacobs, “Tour scheduling and task assignment of a heterogeneous

work force: A heuristic approach,” Decision Sciences, vol. 22, no. 4, pp. 719-738, 1991.

R. R. Love Jr. and J. M. Hoey, “Management science improves fast-food operations,”
Interfaces, vol. 20, no. 2, pp. 21-29, 1990.

S. Martin et al., “Cooperative search for fair nurse rosters,” Fxpert Systems with Appli-
cations, vol. 40, no. 16, pp. 6674-6683, 2013.

H. Michon-Lacaze, “Elaboration de quarts de travail robustes aux perturbations de

courtes durée,” Master’s thesis, Ecole Polytechnique de Montréal, 2016.

H. H. Millar and M. Kiragu, “Cyclic and non-cyclic scheduling of 12 h shift nurses by
network programming,” European Journal of Operational Research, vol. 104, no. 3, pp.
582-592, 1998.

L. F. Muller, “An adaptive large neighborhood search algorithm for the resource-
constrained project scheduling problem,” in MIC 2009: The VIII Metaheuristics In-

ternational Conference, 20009.

E. Munezero, “Une heuristique en deux phases pour la confection d’horaires de personnel
avec transferts inter-départementaux d’employés,” Master’s thesis, Ecole Polytechnique
de Montréal, 2014.

L.-M. Munguia et al., “Alternating criteria search: a parallel large neighborhood search
algorithm for mixed integer programs,” Computational Optimization and Applications,
vol. 69, no. 1, pp. 1-24, Jan 2018.

L. Perron, P. Shaw, and 1. Sa, “Parallel large neighborhood search,” 2003.

D. Pisinger and S. Ropke, “A general heuristic for vehicle routing problems,” Computers

& Operations Research, vol. 34, no. 8, pp. 24032435, 2007.

——, “Large neighborhood search,” in Handbook of Metaheuristics, M. Gendreau and
J.-Y. Potvin, Eds. Springer, 2010, pp. 399-419.

C.-G. Quimper and L.-M. Rousseau, “A large neighbourhood search approach to the
multi-activity shift scheduling problem,” Journal of Heuristics, vol. 16, no. 3, pp. 373—
392, 2010.

S. Ropke and D. Pisinger, “An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows,” Transportation Science, vol. 40, no. 4,
pp. 455-472, 2006.

[64]

[65]

[67]

[68]

[69]

[70]

[71]

130

——, “A unified heuristic for a large class of vehicle routing problems with backhauls,”

FEuropean Journal of Operational Research, vol. 171, no. 3, pp. 750-775, 2006.

M. Sabar, B. Montreuil, and J.-M. Frayret, “Competency and preference based person-
nel scheduling in large assembly lines,” International Journal of Computer Integrated
Manufacturing, vol. 21, no. 4, pp. 468-479, 2008.

D. Sacramento, D. Pisinger, and S. Ropke, “An adaptive large neighborhood search

b

metaheuristic for the vehicle routing problem with drones,” Transportation Research

Part C: Emerging Technologies, vol. 102, pp. 289-315, 2019.

L. Saviniec, M. O. Santos, and A. M. Costa, “Parallel local search algorithms for high
school timetabling problems,” Furopean Journal of Operational Research, vol. 265, no. 1,
pp- 81-98, 2018.

G. Schrimpf et al., “Record breaking optimization results using the ruin and recreate

principle,” Journal of Computational Physics, vol. 159, no. 2, pp. 139-171, 2000.

P. Shaw, “Using constraint programming and local search methods to solve vehicle
routing problems,” in International Conference on Principles and Practice of Constraint

Programming. Springer, 1998, pp. 417-431.

S. Souissi, “Ré-optimisation d’horaires de personnel en ajoutant des transferts entre

départements,” Master’s thesis, Ecole Polytechnique de Montréal, 2016.

L. Talarico and P. A. M. Duque, “An optimization algorithm for the workforce man-
agement in a retail chain,” Computers € Industrial Engineering, vol. 82, pp. 65-77,
2015.

G. M. Thompson, “Labor scheduling: A commentary,” Cornell Hotel and Restaurant
Administration Quarterly, vol. 44, no. 5-6, pp. 149-155, 2003.

J. Van den Bergh et al., “Personnel scheduling: A literature review.” Furopean Journal

of Operational Research, vol. 226, no. 3, pp. 367-385, 2013.

A. Volgenant, “A note on the assignment problem with seniority and job priority con-

straints,” European Journal of Operational Research, vol. 154, no. 1, pp. 330-335, 2004.

M. Wen et al., “An adaptive large neighborhood search heuristic for the electric vehicle

scheduling problem,” Computers & Operations Research, vol. 76, pp. 73-83, 2016.

131

[76] P. D. Wright and S. Mahar, “Centralized nurse scheduling to simultaneously improve
schedule cost and nurse satisfaction,” Omega, vol. 41, no. 6, pp. 1042-1052, 2013.

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	LIST OF SYMBOLS AND ACRONYMS
	1 INTRODUCTION
	1.1 Problem and motivation
	1.1.1 Multi-job employee scheduling problem
	1.1.2 Employee scheduling problem with inter-department transfers

	1.2 Research objectives
	1.3 Thesis outline

	2 LITERATURE REVIEW
	2.1 Employee scheduling problem specifications
	2.1.1 Shift, days-off and tour scheduling
	2.1.2 Cost
	2.1.3 Problem constraints
	2.1.4 Demand modeling
	2.1.5 Application areas

	2.2 Mathematical optimization
	2.2.1 Set Covering Model
	2.2.2 Implicit programming

	2.3 Metaheuristics
	2.3.1 Neighborhood search
	2.3.2 Large neighborhood search
	2.3.3 Parallel metaheuristic

	2.4 Employee scheduling with inter-department transfers
	2.4.1 Large neighborhood search for the employee scheduling problem
	2.4.2 Parallel metaheuristic for the employee scheduling problem

	3 GENERAL ORGANIZATION OF THE THESIS
	4 ARTICLE 1 : A DECOMPOSITION-BASED HEURISTIC FOR LARGE EMPLOYEE SCHEDULING PROBLEMS WITH INTER-DEPARTMENT TRANSFERS
	4.1 Introduction
	4.2 Literature
	4.3 The employee scheduling problem with inter-department transfers
	4.3.1 Problem statement
	4.3.2 A mixed-integer programming formulation
	4.3.3 An example

	4.4 A three-phase solution method for ESP-IDT
	4.4.1 First phase: Generate promising external and transfer shifts
	4.4.2 Second phase: Derive inter-department demands
	4.4.3 Third phase: Department-per-department optimization

	4.5 Computational experiments
	4.5.1 Experimental setting
	4.5.2 Computation times and MILP sizes in MP-DH
	4.5.3 Value of the inter-department transfer feature
	4.5.4 Comparison of MP-DH with proven optimal solutions
	4.5.5 Importance of the first phase in MP-DH
	4.5.6 Comparison of MP-DH with literature results

	4.6 Concluding remarks

	5 A HYBRID HEURISTIC FOR THE EMPLOYEE SCHEDULING PROBLEM WITH DERIVED INTER-DEPARTMENT TRANSFERS
	5.1 Problem statement
	5.2 The SA-ESP-DIDT mixed-integer programming formulation
	5.3 The hybrid heuristic
	5.4 Computational experiments
	5.4.1 Experimental setting
	5.4.2 SA heuristic
	5.4.3 Sensitivity analysis of the HH parameters
	5.4.4 Discussion

	6 PARALLEL LARGE NEIGHBORHOOD SEARCH FOR MULTI-JOB EMPLOYEE SCHEDULING PROBLEM
	6.1 The multi-job employee scheduling problem
	6.2 A mixed-integer program formulation
	6.3 Large neighborhood search
	6.3.1 Destroy operator
	6.3.2 Repair operator
	6.3.3 Algorithm pseudo-code

	6.4 Parallel large neighborhood search
	6.4.1 Domain decomposition
	6.4.2 Multi-thread destroy operator

	6.5 Computational experiments
	6.5.1 Datasets and initial solutions
	6.5.2 Experimental setting
	6.5.3 Destroy percent analysis
	6.5.4 Initial solution analysis
	6.5.5 Single-thread and multi-thread LNS results

	7 GENERAL DISCUSSION
	8 CONCLUSION AND RECOMMENDATION
	8.1 Summary of works
	8.2 Limitations
	8.3 Future research

	REFERENCES

