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RÉSUMÉ

Les turbomoteurs sont constitués de successions de roues aubagées tournant à grande vitesse
et isolées de l’environnement extérieur par le carter. Le jeu entre les aubes et le carter
favorise l’apparition de tourbillons, qui induisent d’importantes pertes aérodynamiques. Les
constructeurs cherchent donc à diminuer ce jeu afin d’améliorer le rendement global des
moteurs. Cependant, la diminution des jeux favorise l’apparition de contacts entre les aubes
et le carter. Les vibrations non-linéaires qui en résultent sont particulièrement préjudiciables
au bon fonctionnement du moteur, du fait des vitesses relatives élevées entre les composants.
Ainsi, la compréhension de ces phénomènes non-linéaires constituent un enjeu industriel
majeur.

Par ailleurs, bien que les aubes d’une même roue aubagée sont conçues pour être identiques,
des variations infimes de propriétés mécaniques sont inévitablement engendrées lors de leur
réalisation ou du fait de l’usure en service. Cette rupture de symétrie, nommée désaccordage,
induit des modifications du comportement vibratoire de la roue aubagée par rapport à celui
attendu pour une roue accordée, présentant une symétrie cyclique parfaite. Notamment, les
amplitudes de vibrations sont grandement amplifiées, diminuant ainsi la durée de vie du
moteur. La caractérisation des vibrations des roues aubagées désaccordées fait appel à des
approches stochastiques, rendues possibles par l’essor des simulations numériques.

Peu de recherches ont été menées à ce jour sur l’étude conjointe des vibrations non-linéaires,
dues aux frottements ou au contact, et du désaccordage. Or, ces deux aspects modifient
grandement le comportement dynamique des roues aubagées, si bien que leur prise en compte
améliore grandement la prédictivité des simulations. Les recherches les plus récentes proposent
des études déterministes de l’influence du désaccordage sur les non-linéarités de frottement
entre composants d’une même roue aubagée, pour des vitesses relatives faibles. L’influence du
désaccordage sur les vibrations non-linéaires n’avait pas encore été étudiée stochastiquement,
et les non-linéarités de contact entre les aubes et le carter, qui impliquent des vitesses relatives
élevées, n’avaient pas encore été considérées.

La présente recherche propose ainsi la première étude conjointe du désaccordage et des non-
linéarités aubes-carter. Les modélisations numériques sont réalisées en utilisant la méthode
des éléments finis. Les équations du mouvement sont résolues par intégration temporelle et la
gestion du contact est réalisée par la méthode des multiplicateurs de Lagrange. Une première
étude stochastique est réalisée sur un modèle phénoménologique, permettant de valider la
méthodologie proposée. Il apparaît notamment que les amplifications des vibrations dues au
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désaccordage dans le cadre non-linéaire sont bien supérieures à celles obtenues dans le cadre
linéaire. En outre, les interactions non-linéaires prédites sur base du modèle accordé sont
robustes vis-à-vis d’un faible désaccordage.

Une méthode de réduction est ensuite développée pour générer des modèles réduits désaccordés
avec interface de contact, pour un coût de calcul négligeable. Ce développement rend ainsi
possible des calculs stochastiques sur un modèle industriel. Les simulations réalisées en
configuration nominale permettent de mettre en évidence des modifications du comportement
vibratoire des aubes à mesure que le niveau de désaccordage augmente, conduisant à de hauts
niveaux d’amplification des vibrations. L’analyse des champs de contraintes indiquent que les
niveaux de contraintes dans la roue aubagée augmentent sensiblement pour les plus hauts
niveaux de désaccordage considérés.

Enfin, la méthodologie de gestion du contact utilisée, couplée à la méthode de génération de
modèles désaccordés réduits développée, permet de générer des données d’instrumentation de
Blade Tip-Timing. Les résultats obtenus permettent d’entrevoir que la méthodologie peut être
utilisée dans le cadre de l’étude stochastique de la robustesse des algorithmes de détection
du désaccordage, ou encore pour la mise en place de nouveaux algorithmes d’analyse des
phénomènes non-linéaires.

mots clefs : désaccordage, non-linéarités aubes-carter, simulations stochastiques, méthode
des éléments finis, méthode de réduction, génération de données de BTT.
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ABSTRACT

Aircraft engines are composed of bladed disks rotating at high speed and isolated from
the external environment by the casing. The clearance between the blades and the casing
favors the formation of vortices, resulting in aerodynamic losses. In order to improve overall
engine efficiency, manufacturers are therefore seeking to reduce this clearance. However, the
reduction of clearances favors the occurrence of contacts between the blades and the casing.
The resulting non-linear vibrations are particularly detrimental to the proper operation of the
engine due to the high relative speeds between the components. Thus, understanding these
non-linear phenomena is a major industrial issue.

Although blades are designed to be identical, small variations in mechanical properties are
inevitably generated during manufacturing or due to in-service wear. This symmetry break,
known as mistuning, induces changes in the vibratory behavior of the bladed disk, compared
to that expected for a tuned bladed disk. In particular, the vibration amplitudes are greatly
amplified, thus reducing the engine operating life. Stochastic approaches, made possible by
the development of numerical simulations, are used in order to characterize the vibrations of
mistuned bladed disks.

To date, little research has been conducted on the study of non-linear vibrations — due to
friction or contact — and mistuning. However, these two aspects greatly modify the dynamic
behavior of bladed disks, so that taking them into account greatly improves the predictability
of the simulations. The most recent researches rely on deterministic approaches to study
the influence of mistuning on the non-linearities occurring inside the bladed disk, with low
relative speeds. The influence of mistuning on non-linear vibrations has not been studied
with a stochastic approach so far, nor by considering the contact nonlinearities between the
blades and the casing, which imply high relative speeds.

The present research thus represents the first combined analysis of mistuning and blade/casing
contact non-linearities. Numerical modeling are performed using the finite element method.
The equations of motion are solved by a time integration algorithm and the contact manage-
ment is performed by the Lagrange multiplier method. Firstly, a stochastic study is carried out
on a phenomenological model to validate the proposed methodology. Vibration amplifications
due to mistuning in the non-linear framework are much higher than those obtained in the
linear framework. Moreover, the non-linear interactions predicted on the tuned model are
robust to small mistuning.

A reduced order technique is then developed to generate mistuned models with a contact
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interface, at a negligible calculation cost. This development makes stochastic calculations
possible on an industrial model, studied in a nominal configuration. Changes in the vibratory
behavior of the blades are highlighted as the mistuning level increases, leading to high levels
of vibration amplifications. Stress fields are also analyzed, indicating that the stress levels in
the bladed disk increase significantly for the highest mistuning levels considered.

Finally, the contact management methodology used, coupled with the reduced detuned
model generation method developed, allows to generate Blade Tip-Timing data. The results
obtained show that the methodology can be used to study stochastically the robustness of
the mistuning identification algorithms, and to develop new algorithms for the analysis of
non-linear phenomena.

key words : mistuning, blade/casing contact non-linearities, stochastic simulations, finite
element method, reduced order technique, BTT data generation.
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1

CHAPITRE 1 INTRODUCTION

1.1 Considérations générales

Pour pouvoir s’élever et se maintenir dans les airs, un avion doit contrer son poids ainsi que
la traînée engendrée par sa pénétration dans l’air, tel qu’illustré sur la figure 1.1, en générant
une force de portance grâce à ses ailes et une force de poussée par l’intermédiaire de ses
turbomoteurs.

Figure 1.1 Principe de vol stationnaire d’un avion : portance des ailes ( ), poids ( ),
poussée du moteur ( ) et traînée ( ). Adapté de [1].

Les turbomoteurs modernes, dont une représentation en coupe est donnée sur la figure 1.2, sont
composés d’étages successifs. La première partie du moteur permet de comprimer l’air jusqu’à
la chambre de combustion : la soufflante (zone 1 sur la figure 1.2), puis le compresseur basse
pression (zone 2 ) et haute pression (zone 3 ). L’air est ensuite chauffé dans la chambre de
combustion (zone 4 ) avant d’être éjecté à haute vitesse par l’intermédiaire des turbines haute
puis basse pression (zone 5 ). Le flux qui parcourt le moteur, du compresseur basse pression
à la turbine basse pression, est appelé flux primaire (ou flux chaud). Un flux secondaire (ou
flux froid) est redirigé par la soufflante directement vers le fluide extérieur. La masse de fluide
éjectée à la fois par le flux primaire et le flux secondaire permet de générer la poussée qui
propulse l’avion.

Les principaux éléments constitutifs des étages de compresseurs et de turbines des turbomoteurs
sont les roues aubagées, composées d’aubes disposées autour d’un disque. Une aube de
compresseur basse pression est représentée sur l’encart de la figure 1.2. Le disque est entraîné
en rotation par l’intermédiaire de l’arbre moteur, afin que les aubes, inclinées par rapport au
flux, communiquent au fluide une vitesse d’avance. La partie du profil de l’aube la plus en
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amont du flux est appelée le bord d’attaque, et la partie la plus en aval du flux est appelée le
bord de fuite. L’ensemble des éléments tournants du moteur est nommé rotor.

Figure 1.2 Représentation en coupe d’un turbomoteur : flux primaire ( ), flux secondaire ( )
et aubes ( ) du compresseur basse pression.

En plus de la vitesse d’avance, les aubes communiquent également au fluide une vitesse
tangentielle qui n’est pas contributive pour le fonctionnement du moteur. D’autres aubes,
appelées redresseurs et faisant partie du stator, sont fixées sur le carter en aval des aubes du
rotor afin de convertir une partie de la vitesse tangentielle en vitesse d’avance. Cependant,
leur présence perturbe le flux, induisant ainsi des dépressions locales dans leur sillage et donc
une force fluctuante sur les aubes du rotor en aval. Du fait de la vitesse de rotation élevée, les
aubes sont ainsi excitées à haute fréquence et entrent en vibration, ce qui peut induire un
rapprochement entre l’extrémité des aubes et le carter, par déploiement de celles-ci.

Les contacts entre les aubes et le carter peuvent provoquer des ruptures d’aubes en fatigue [17,
18], diminuant grandement la durée de vie des moteurs. Afin de garantir la sécurité en vol, un
jeu est introduit entre le rotor et le stator, mais celui-ci réduit les performances aérodynamiques
de l’ensemble [19]. Pour améliorer le rendement des moteurs tout en garantissant l’intégrité
du moteur, la compréhension, l’analyse et la possibilité de prédire ces contacts sont devenues
des enjeux stratégiques majeurs pour les constructeurs.

Enfin, les vibrations des roues aubagées peuvent en pratique grandement différer de celles
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prédites en considérant que chaque aube est identique. En effet, l’imperfection des procédés
de fabrication et d’inévitables inhomogénéités dans les matériaux induisent une variabilité de
propriétés mécaniques entre chaque aube d’une roue aubagée, qui est alors dite désaccordée. La
rupture de symétrie cyclique du fait du désaccordage peut notamment générer des phénomènes
de localisation d’énergie [20, 21]. L’énergie de vibration est localisée sur un petit nombre
d’aubes, qui présentent alors des déformations très supérieures à celles prédites par un modèle
parfaitement symétrique, pouvant conduire à des ruptures d’aubes en service [22,23].

1.2 Problématique

Pour pouvoir s’affranchir des coûts et des temps de développement inhérents aux études
expérimentales, de nombreuses méthodes numériques ont été développées pour simuler le
comportement des roues aubagées désaccordées. Les méthodes de réduction modale, qui
permettent de réduire la taille du modèle numérique dans le but de diminuer les temps de
calculs, ont été développées à la fin des années 1960 [24] et ont commencé à être utilisées
pour l’étude des roues aubagées à partir des années 1980 [25]. Ce n’est toutefois que depuis le
début des années 2000 qu’elles ont été adaptées aux structures aubagées désaccordées [26].
Le nombre de méthodes disponibles adaptées aux structures désaccordées a rapidement
progressé [23, 27,28]. Les méthodes ont été développées selon le cas d’application recherché :
désaccordage fort [29, 30] ou faible [26, 29], roue aubagée seule ou multiples étages [27, 31].
Le désaccordage faible étant par nature aléatoire, son influence sur les vibrations de la roue
aubagée doit être étudiée de façon stochastique, sur un grand nombre de simulations [6,23,32].

En parallèle, les vibrations non-linéaires dues aux contacts ou aux frottements entre composants
du rotor ou entre le rotor et le stator ont également fait l’objet de plusieurs travaux de
recherche [17]. En particulier, plusieurs méthodes permettent de modéliser les cas de contact
(méthode de la pénalité [33, 34] et multiplicateurs de Lagrange [12, 35]) et de frottement
(méthode directe [36], temporelle [37] et fréquentielle [38, 39], aussi appelée d’équilibrage
harmonique).

L’influence du désaccordage a donc été analysée dans un contexte linéaire, et les vibrations
non-linéaires ont été étudiées pour des roues aubagées accordées. Les premières études couplées
de l’influence du désaccordage et celle des non-linéarités de frottement ont été réalisées à
partir de 1985 [40], mais le désaccordage était alors considéré de façon déterministe. Seules
les études de Joannin et al. [41, 42] en 2016 et 2017 proposent une étude de l’influence du
désaccordage sur les vibrations non-linéaires. Dans ce but, les méthodes de réduction utilisées
dans le cadre des roues aubagées ont été adaptées à un cas de contact entre le pied d’aube et
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le disque.

Les travaux de recherche cités précédemment ne considèrent que les non-linéarités entre
solides du rotor, au niveau du pied d’aube (interface aube-disque) ou au niveau des nageoires
(interface aube-aube). Or les vibrations non-linéaires entre le rotor et le stator, notamment à
l’interface aubes-carter, peuvent être particulièrement destructrices pour le mécanisme du fait
de la vitesse relative importante entre les composants.

1.3 Objectifs de recherche

L’objectif principal de ce travail de recherche est d’étudier l’influence du désaccordage sur
les vibrations non-linéaires des roues aubagées, induites au niveau de l’interface aubes-carter.
Afin de permettre des simulations stochastiques sur des modèles désaccordées industriels, le
modèle est réduit grâce à une méthode de réduction développée dans le cadre de la présente
recherche et qui constitue une extension d’une méthode pré-existante.

1.4 Organisation du mémoire

Le présent mémoire est composé de cinq chapitres. Un état de l’art sur la modélisation
des vibrations des roues aubagées est présenté dans le chapitre 2. Les différences entre
roues aubagées accordées et désaccordées y sont explicitées, aussi bien du point de vue des
considérations physiques que des techniques de modélisation. Un état de l’art des travaux
réalisés sur la caractérisation des différents types de vibrations forcées en contexte linéaire
et non-linéaire y sont présentés, afin d’expliciter le positionnement de la présente recherche
et de justifier les méthodes choisies. La stratégie de calcul utilisée dans cette recherche est
définie dans le cadre de la formulation des éléments finis, avec une gestion du contact par
multiplicateurs de Lagrange et une résolution par intégration temporelle.

La méthodologie définie est appliquée sur un modèle phénoménologique de soufflante dans le
chapitre 3. Ce modèle avait précédemment été utilisé pour la modélisation de non-linéarités
de contact aubes-carter dans le cadre de la résolution par multiplicateurs de Lagrange
et intégration temporelle [12]. Tout d’abord, la représentativité du modèle pour l’étude
stochastique des vibrations linéaires de modèles désaccordés est établie. Ensuite, le choix
de la configuration de contact et des paramètres numériques est appuyé par l’étude des
convergences temporelle et spatiale. La détection d’un régime permanent est assurée par
une procédure d’auto-corrélation couplée à un calcul de l’erreur de convergence. Les calculs
stochastiques sur des modèles désaccordés en configuration de contact aubes-carter sont alors
présentés et analysés. La convergence stochastique des résultats est soigneusement évaluée, à
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la fois qualitativement et quantitativement, à travers des critères issus d’autres disciplines.
L’amplification des vibrations par rapport au modèle accordé est présentée, comparée à
l’amplification obtenue dans un cadre linéaire, et analysée en termes de déplacements et
d’énergie de déformation. Les différences de comportement vibratoire sont soulignées en
utilisant un facteur de localisation, extension aux vibrations forcées d’un critère précédemment
proposé pour les vibrations libres.

Afin de permettre l’application de la méthodologie de résolution du contact à l’étude de
l’influence du désaccordage sur un modèle industriel, une méthode de réduction permettant
d’appliquer le désaccordage dans un espace mixte modal/physique est proposée dans le
chapitre 4. Après avoir été validée sur un modèle académique, la méthode est validée sur un
modèle industriel au regard de ses différents paramètres, dans un cadre linéaire et non-linéaire.

Le comportement vibratoire d’une roue aubagée industrielle est caractérisé vis-à-vis du
désaccordage dans le chapitre 5, dans une configuration linéaire et de non-linéarité de contact
aubes-carter. Tout d’abord, la représentativité du modèle pour l’étude de l’influence du
désaccordage en configuration linéaire est présentée. La configuration de contact est choisie afin
de correspondre à la configuration nominale de fonctionnement de la roue aubagée modélisée.
L’amplification des vibrations non-linéaires due au désaccordage est ensuite présentée sur base
de résultats stochastiques, dont la convergence est étudiée selon la même méthodologie que
celle suivie sur le cas phénoménologique au chapitre 3. Le contenu fréquentiel des déplacements,
les facteurs de localisation obtenus, les efforts de contact et l’usure du matériau abradable
sont analysés stochastiquement pour obtenir une analyse supplémentaire du comportement
vibratoire du modèle complet. Enfin, la méthode de réduction développée dans le chapitre 4
permet de redéployer les champs de déplacement et de contraintes à l’intérieur du modèle.
La précision des champs obtenues rend possible une analyse approfondie de certains motifs
désaccordés.

La méthodologie de gestion du contact utilisée, couplée à la méthode de génération de modèles
désaccordés réduits développée, permet d’accéder à la position des nœuds frontière en bout
d’aube à chaque instant, dans le cadre de calculs stochastiques sur des modèles désaccordés.
La technique de Blade Tip-Timing (BTT), utilisée dans la caractérisation expérimentale des
vibrations des roues aubagées, repose sur le calcul des temps d’arrivée des sommets d’aubes
pour permettre, entre autres, de calculer le motif de désaccordage et l’amplitude maximale sur
l’ensemble de la roue aubagée. La technique de BTT est actuellement appliquée pour l’analyse
des vibrations linéaires, et les algorithmes sont validés sur des cas de désaccordage déterministe.
Le chapitre 6 présente une preuve de concept de l’applicabilité de la méthodologie de simulation
développée à la génération de données de Blade Tip-Timing (BTT). L’application dans la
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littérature de la technique de BTT est tout d’abord présentée. L’intérêt que représente la
génération numérique de signaux de BTT pour la validation des algorithmes de traitement y
est en particulier explicité. Une procédure de génération simplifiée des données est proposée
avant d’être validée sur le cas phénoménologique sur des vibrations linéaires et non-linéaires.
La génération stochastique de données est ensuite appliquée pour le modèle industriel.

Les contributions originales majeures de ce travail de recherche sont résumées dans l’encart
suivant.

Contributions originales du travail présenté

(1) première étude stochastique sur un modèle phénoménologique de l’influence du
niveau de désaccordage sur les non-linéarités aubes-carter, sur une plage de
vitesses

(2) développement d’une méthode de réduction permettant de générer à moindre
coût des modèles réduits désaccordés avec interfaces de contact

(3) analyse stochastique d’une configuration nominale industrielle

(4) outil pour la génération de données de BTT en configuration non-linéaire

La contribution (1) a fait l’objet d’un article présenté lors de la conférence ASME International
Mechanical Engineering Congress and Exposition (ASME-IMECE) en novembre 2019 à Salt
Lake City 1. Une version étendue de cet article a été acceptée en Juin 2020 dans le Journal of
Engineering for Gas Turbines and Power (JEGTP) 2.

1. doi.org/10.1115/IMECE2019-10300
2. numéro : GTP-20-1080

doi.org/10.1115/IMECE2019-10300 


7

CHAPITRE 2 ÉTAT DE L’ART SUR LA MODÉLISATION DES
VIBRATIONS DES ROUES AUBAGÉES

Les moteurs d’avion comportent des successions de roues aubagées, constituées d’un disque
continu autour duquel plusieurs aubes sont disposées, comme représenté sur la figure 2.1. Le
mouvement des roues aubagées au sein du moteur en fonctionnement peut être décomposé en
deux contributions : d’une part, le mouvement induit par la rotation d’ensemble du moteur
et, d’autre part, la vibration de la roue aubagée.

Figure 2.1 Roue aubagée, dont chaque aube ( ) est liée mécaniquement au disque ( ).
Adapté de [2].

En conditions normales de fonctionnement, les vibrations d’une roue aubagée sont linéaires
et principalement dues à la variation de charge aérodynamique sur les aubes, du fait de la
présence d’aubes statiques (redresseur) en amont de l’écoulement. La fréquence d’excitation
associée est ainsi dépendante du nombre d’aubes du redresseur et de la vitesse de rotation de
la roue aubagée. Le dimensionnement des turbomoteurs fait ainsi appel à des outils d’analyse
modale afin de définir des plages de fonctionnement adéquates. Par ailleurs, les vibrations des
roues aubagées peuvent également être non-linéaires, du fait de frottements, glissements et
contacts là où un mouvement relatif est permis entre les composants.

Une hypothèse simplificatrice courante consiste à considérer que toutes les aubes d’une roue
aubagée sont identiques, si bien que le système présente une symétrie cyclique par rapport à
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l’axe de rotation de la roue, qui est alors dite accordée. Or, en réalité, des inhomogénéités
inévitables sont constatées du fait notamment de l’incertitude des procédés de fabrication,
bien que limitée par des tolérances restrictives, ou de l’usure en service. Ces différences de
propriétés d’une aube à l’autre induisent une rupture de la symétrie cyclique. La roue aubagée
est alors dite désaccordée. Ce désaccordage modifie grandement le comportement vibratoire
de la roue aubagée.

Le présent chapitre expose un état de l’art sur la modélisation des vibrations libres et forcées
des roues aubagées dans un contexte linéaire et non-linéaire. Les spécificités des vibrations
des roues aubagées accordées sont présentées avant de développer les différences induites par
le désaccordage. Les méthodes numériques utilisées sont détaillées, comprenant les méthodes
de réduction nécessaires à l’étude des systèmes industriels. Il est ainsi mis en exergue que
si les recherches sur les vibrations linéaires ont été menées sur les roues aubagées accordées
et désaccordées, l’influence du désaccordage sur les vibrations non-linéaires a encore été peu
étudiée. Le besoin pour une telle étude est clairement explicité en fin de chapitre, ainsi que
les apports du présent travail de recherche.

2.1 Analyse modale

La caractérisation des modes de vibration propres des roues aubagées permet aux ingénieurs de
déterminer des conditions de fonctionnement adéquates, en particulier pour les roues aubagées
accordées, comme présenté en première partie de cette section. Une telle analyse, appelée
analyse modale, permet également de mettre en évidence des modifications du comportement
vibratoire dues au désaccordage qui seront présentées en seconde partie.

2.1.1 Roues accordées

Considérations physiques

Les premiers modes propres d’une aube encastrée en son pied, à savoir les modes de première
et deuxième flexion (1F, 2F) et de première torsion (1T), sont représentés sur la figure 2.2.
Les points qui restent fixes lors de la vibration sont appelés « nœuds » de vibration. Les
modes propres du disque peuvent présenter des lignes de points fixes passant par son centre,
appelées « diamètres nodaux » et représentées par des lignes rouges ( ) sur la figure 2.3,
ou des cercles concentriques de points fixes, appelés « cercles nodaux » et représentés par des
cercles oranges ( ) sur la figure 2.3. Certains modes de vibrations présentent à la fois des
diamètres et cercles nodaux [43], comme par exemple le mode représenté en bas et au centre
la figure 2.3.
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(a) 1F (b) 2F (c) 1T

Figure 2.2 Modes propres de vibration d’une aube encastrée-libre, avec les déformations
tracées sous forme de gradient ( ).

(a) mode à 1 cercle nodal (b) mode à 1 diamètre nodal (c) mode à 1 cercle et 1 dia-
mètre nodal

Figure 2.3 Modes de vibration d’un disque, selon des cercles ( ) et des diamètres ( )
nodaux. Sources : [3] et [4].

Dans le cas d’une roue aubagée, les vibrations du disque et des aubes sont couplées, et la
présence des aubes rigidifie localement le disque, si bien que les cercles nodaux ne sont plus
circulaires, comme représenté à la figure 2.4. Les modes de vibrations des roues aubagées
accordées sont ainsi définis suivant leur nombre de diamètres nodaux, noté nd, qui peuvent
être calculés à partir du nombre de changements de phases entre les aubes, comme illustré
sur la figure 2.5. Pour une roue aubagée à N aubes, le nombre maximal de diamètre nodaux
est de bN2 c.
De nombreuses études se sont focalisées sur l’évolution des fréquences propres en fonction
des diamètres nodaux, à commencer par Ewins et Han en 1984 [44] et jusqu’à l’apport de
Bladh et al. en 2002 [6], dont le diagramme « fréquences propres/diamètres nodaux » (nommé
en en 1988 « diagramme SAFE » [45], de l’anglais Singh’s Advanced Frequency Evaluation
diagram) est tracé sur la figure 2.6. Ce diagramme permet de mettre en évidence les modes
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Figure 2.4 Représentation en 2D d’un mode de roue aubagée : mode 1F des aubes ( ) et
allure modifiée des cercles nodaux ( ) du disque.

(a) nd = 0 (b) nd = 1 (c) nd = 3 (d) nd = 5

Figure 2.5 Représentation schématique des modes d’une roue aubagée accordée : les déforma-
tions positives ( ) et négatives ( ) par rapport à la géométrie initiale ( ) sont alternées
et dessinent nd diamètres nodaux ( ). Adapté de [5].

de vibration pour lesquels l’énergie de vibration de la roue aubagée est majoritairement
concentrée dans les aubes, ou « modes d’aubes », qui se traduisent par des lignes horizontales
sur la figure 2.6 ( ). La ligne horizontale à plus basse fréquence, ou « première famille de
modes », correspond pour la roue aubagée considérée aux vibrations des aubes selon leur
premier mode de flexion (1F). Les modes de vibration pour lesquels l’énergie de vibration
est majoritairement concentrée dans le disque, ou « modes de disque », se traduisent par
des lignes obliques sur la figure 2.6 ( ). Pour certains diamètres nodaux, la proximité
de modes issus de familles modales distinctes se traduit par l’apparition d’une « zone de
pincement » (en anglais : veering). La réponse vibratoire des aubes y est importante, du fait
du possible échange d’énergie à travers le disque [6,46]. En raison de la proximité de plusieurs
familles de modes de vibrations dans les zones de pincement, les amplitudes de vibration des
aubes peuvent changer drastiquement pour une petite variation de propriétés matériaux du
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système [6]. L’identification des zones de pincement est de fait primordiale pour les motoristes,
afin de les éviter lors des conditions normales de fonctionnement des moteurs. Bien que le
nombre d’aubes et de diamètres nodaux est intrinsèquement discret, des zones de pincement
supplémentaires peuvent être identifiées en définissant un angle de phase inter-aubes qui peut
prendre des valeurs continues [6], comme visible sur la figure 2.6.
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Figure 2.6 Diagramme fréquences propres/diamètres nodaux pour 28 aubes, où sont iden-
tifiables les modes du disque ( ), les modes d’aubes ( ) et les modes mixtes (zones de
pincement) ( ). Adapté de [6].

Modélisation

Méthode des éléments finis. Dans l’industrie, une roue aubagée est discrétisée spatia-
lement par la méthode des éléments finis. Cette méthode, reposant mathématiquement sur
la recherche d’une solution à un problème variationnel par la minimisation d’une fonction-
nelle [47], permet des calculs sur des structures complexes à partir d’éléments simples. Les
matrices symétriques de masse M et de raideur K de la roue aubagée sont construites par
assemblage des matrices associées à chaque élément dont les expressions respectives sont bien
connues dans la littérature [48,49]. Les matrices élémentaires Me et Ke sont exprimées en
fonction de la géométrie et des propriétés matériaux, par exemple pour un élément poutre :

Me = Me (ρ, le, b, h) ; Ke = Ke (E, le, b, h) (2.1)

avec ρ la masse volumique et E le module d’Young du matériau qui constitue l’élément poutre,
le la longueur de l’élément, b et h respectivement la largeur et la longueur de la section
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de l’élément. L’expression complète des matrices élémentaires pour des éléments linéaires,
déterminée sous les hypothèses explicitées dans l’encart ci-dessous, peut être trouvée dans [48].

Hypothèses, énoncées dans [48]

1. hypothèse de Bernoulli : au cours de la déformation, les sections droites restent
perpendiculaires à la courbe moyenne (le cisaillement est négligé) ;

2. petits déplacements et petites déformations ;

3. matériau homogène élastique ;

4. moment dynamique de rotation des sections négligeable.

La déformation de la structure globale est calculée selon le déplacement de chaque nœud des
éléments qui la composent. Les déplacements (de translation ou de rotation) autorisés en
chaque nœud sont appelés degrés de liberté.

Calcul des modes et fréquences propres. Les modes propres et fréquences propres sont
calculés par résolution du problème aux valeurs propres généralisé suivant (7.6 de [50]) :

det
(
K− ω2M

)
= 0 (2.2)

Les modes de déformation recherchés sont ainsi les vecteurs propres φi (i ∈ [1 , ... , d], avec d
le nombre de degrés de liberté du système complet) du couple de matrices (K,M). Les valeurs
propres correspondant à ces vecteurs propres sont ainsi le carré des pulsations ω [rad · s−1],
directement liées aux fréquences propres (f = ω

2π [Hz]).

Dans le cadre des systèmes à symétrie cyclique, telle une roue aubagée à N aubes, le mode à
0 diamètre (nd) est dit « simple ». Toutes les aubes vibrent alors en phase. Dans le cas où N
est pair, le mode à N

2 diamètres nodaux est également simple et toutes les aubes vibrent alors
en opposition de phase. Pour 0 < nd < bN2 c, la résolution du problème aux valeurs propres
renvoie des valeurs propres doubles. Le mode de vibration peut alors être exprimé comme une
combinaison linéaire des deux vecteurs propres M-orthogonaux obtenus [51]. Le théorème
de dégénérescence (2.3.2 de [52]) permet alors de définir une base M-orthonormée à partir
des vecteurs propres, appelée base modale et représentée par la matrice Φ = [φ1, ...,φd]. Les
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matrices masse et raideur y sont exprimées (démonstration en annexe. B) :

ΦTMΦ = I (2.3)
ΦTKΦ = ω2 (2.4)

avec : I = diag(1) la matrice identité dans Rd

ω = diag (ω1, . . . , ωd)

2.1.2 Roues désaccordées

Comme mentionné précédemment, une roue aubagée réelle est inévitablement désaccordée,
du fait notamment de l’imperfection des matériaux ou des procédés de fabrication. Il est
alors critique pour les concepteurs de moteurs d’avion de pouvoir quantifier l’impact de ce
désaccordage sur la réponse vibratoire de la roue aubagée étudiée.

Considérations physiques

La variation structurelle microscopique inévitable d’une aube à l’autre est appelée désaccordage
faible, et a été évaluée expérimentalement de l’ordre de 2,5% sur la variation de masse [53]. La
variation macroscopique de la géométrie des aubes est appelée désaccordage fort et peut être
due à la réparation d’aubes par ajout de matière [54] ou des choix de conception, telle une aube
avec une géométrie différente [55]. Le désaccordage, qu’il soit faible ou fort, modifie grandement
les vibrations propres de la roue aubagée du fait de : (1) la séparation des fréquences propres
correspondant à des modes doubles de la roue accordée ; et (2) de l’apparition de phénomènes
de localisation [21,56]. Ces deux phénomènes sont détaillés dans ce qui suit.

Là où le modèle accordé présente des fréquences propres doubles du fait de sa symétrie cyclique,
les fréquences des roues aubagées désaccordées ne sont plus égales, bien que restant proches [57].
Cette dispersion des fréquences est de l’ordre de 1% dans le cadre d’un désaccordage faible [53]
et augmente avec le niveau de désaccordage. Or, une roue aubagée sollicitée à une de ses
fréquences propres va entrer en résonance. Les plages de résonance sont de fait à éviter lors du
fonctionnement du moteur. La séparation des modes doubles va ainsi avoir pour conséquence
que les roues aubagées présentent plus de pics de résonance [53,57].

L’allure des modes de vibration est également grandement impactée par le désaccordage.
Comme chaque secteur présente des propriétés matériaux différentes, l’énergie de vibration se
localise alors dans certaines aubes à travers le disque [20], comme illustré sur la figure 2.7.
Ce phénomène va être accru pour les modes des zones de pincement, qui tendent à être des
modes mixtes de vibration de aubes et du disque [23]. Un facteur de localisation peut alors
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Figure 2.7 Représentation schématique des modes d’une roue aubagée désaccordée : l’énergie
est localisée, seules certaines aubes sont déformées suivant de grandes amplitudes. Adapté
de [5].

être utilisé pour quantifier le niveau de localisation, le niveau le plus bas correspondant à une
roue aubagée accordée et le niveau le plus haut correspondant à des vibrations sur une seule
aube [58]. Sur les vibrations libres, cette localisation induit la disparition des diamètres nodaux
sur les modes propres. L’allure d’un mode désaccordé comporte de nombreuses harmoniques
spatiales, qui sont des compositions de modes à diamètres nodaux, rendant le phénomène de
localisation difficile à éviter dans des conditions de fonctionnement [23]. Différents paramètres
influencent la sensibilité au désaccordage, notamment la flexibilité du disque sur lequel les
aubes sont fixées et le couplage inter-aubes [32].

Implémentation numérique

Afin de construire un modèle désaccordé, le paramètre de désaccordage et le lieu d’application
doivent être définis de telle sorte que le modèle désaccordé soit aussi représentatif que possible
d’un système réel, notamment en terme de séparation des fréquences propres, lesquelles
sont déterminées expérimentalement [53]. Dans les premières études sur le désaccordage, les
valeurs des paramètres étaient fixées sur des aubes choisies, si bien que les approches étaient
intrinsèquement déterministes [44,59,60]. Les travaux d’Óttarsson et Pierre [5,32] dans les
années 1990 ont cependant mis en évidence la nécessité de considérer le désaccordage comme
une variable aléatoire, puisqu’il est issu de facteurs incontrôlables. Les études récentes se
focalisent ainsi sur des approches stochastiques [23,28]. L’expression du niveau de désaccordage
dépend alors du type de distribution de probabilité utilisé.

Paramètre de désaccordage. La séparation des fréquences due au désaccordage peut
être utilisée pour quantifier le niveau de désaccordage associé [53], comme fait dans les
premiers modèles analytiques masse-ressort pour l’étude du désaccordage [22,57]. Avec un
modèle éléments finis, un faible niveau de désaccordage peut être appliqué en considérant une
perturbation des fréquences propres de la roue aubagée : dans l’espace modal, les coefficients



15

de la matrice diagonale des pulsations modales ωi, voir l’équation (2.4), sont légèrement
perturbés en fonction des modes impactés par le désaccordage. Cette façon d’appliquer un
désaccordage de la structure est particulièrement pertinente lorsqu’une comparaison entre des
prédictions numériques et des données expérimentales est recherchée [30,61].

Il existe plusieurs autres façons de modéliser un certain niveau de désaccordage, notamment
par une variation sur les propriétés matériaux, faisant ainsi écho à la formulation des tolé-
rances des procédés de fabrication industriels. Les propriétés matériaux couramment utilisées
dans la littérature pour la prise en compte du désaccordage sont le module d’Young ou la
masse volumique [23,28], ce qui impacte directement les matrices structurelles élémentaires
comme définies à l’équation (2.1). Il a également été proposé d’introduire le désaccordage en
considérant une variation de l’amortissement [60,62,63].

Lieu d’application. Les propriétés matériaux peuvent être modifiées pour chaque secteur
élémentaire (aube et portion de disque associée [64]). Toutefois, plusieurs études ont montré
que la variation des propriétés mécaniques dans le disque a un impact faible comparativement
à celle dans les aubes [23,58]. La variabilité des propriétés matériaux est ainsi usuellement
implémentée uniquement au niveau des aubes.

Distribution. Le désaccordage peut être considéré de façon déterministe, auquel cas les
propriétés matériaux sont fixées, ou stochastique, les propriétés matériaux sont alors considé-
rées comme des variables aléatoires, tirées dans une plage de variation donnée suivant une
fonction de répartition. Cette fonction de répartition peut être une loi uniforme continue,
représentée en rouge sur la figure 2.8, ou encore une loi de Laplace-Gauss centrée, représentée
en orange sur la figure 2.8. Dans la littérature, la loi utilisée implicitement est généralement la
loi de Laplace-Gauss, car elle retranscrit bien la répartition de propriétés matériaux attendue
du fait des procédés de fabrication [5, 23]. L’ensemble des variations sur les aubes d’une roue
aubagée donnée est appelé motif de désaccordage.

Niveau de désaccordage. Dans les premières études déterministes qui ont été publiées,
la valeur effective du désaccordage est calculée a posteriori par la séparation des fréquences
propres induite [44, 59, 60]. En considérant des tolérances de fabrication sur une soufflante
industrielle réalisée avec des moyens de production actuels, une dispersion de l’ordre de 1,5%
à 3,5% peut être attendue sur la matrice de masse [65], ou encore de l’ordre de 3% sur les
fréquences propres des premiers modes de vibration [30]. En termes statistiques, le niveau
désaccordage peut également être défini comme l’écart-type de la distribution considérée [6],
noté σ, et qui correspond à la racine carrée de la variance, laquelle est une mesure de la
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Figure 2.8 Illustration de la densité de probabilité sur un intervalle pour la loi uniforme
continue ( ) entre les bornes définies ( ) et la loi de Laplace-Gauss centrée ( ).

dispersion de la fonction de répartition autour de la moyenne (2.1.4.2 de [66]). Pour σ < 5 %,
le désaccordage est généralement considéré faible [23]. Dans le cas d’une fonction de répartition
uniforme continue sur un intervalle de largeur (b− a), b > a, l’écart-type vaut (démonstration
en annexe C) : σ = (b− a) /

√
12 . Dans le cas d’une fonction de répartition de Laplace-Gauss,

90% des valeurs tirées sont comprises dans un intervalle de ±1,64σ autour de la moyenne, et
99,8% dans un intervalle de ±3,09σ (2.3.5 de [66]).

2.2 Vibrations forcées en contexte linéaire

Dans un turbomoteur, les aubes d’une roue aubagée du rotor sont inclinées et vrillées afin de
conférer à l’air une vitesse d’avance et de le pousser vers la chambre de combustion (partie
compresseur) puis vers l’extérieur du moteur (partie turbine). Cependant, du fait de la rotation
des roues aubagées, la résultante de la vitesse de l’air comprend également une rotation, non
contributive pour le fonctionnement du moteur. Pour récupérer une partie de l’énergie perdue
par cette rotation de l’air et ainsi améliorer l’efficacité aérodynamique des turbomoteurs, des
redresseurs statiques (stator), également composés d’aubes, sont placés dans l’écoulement
en amont et en aval des roues aubagées, comme représenté sur la figure 2.9. Cependant, la
présence de ces redresseurs perturbe localement l’écoulement, ce qui induit une variation de
charge sur les aubes en aval, lesquelles vont vibrer. Dans le référentiel des aubes du rotor,
l’excitation est tournante et dépend du nombre d’aubes du redresseur amont : Nr aubes de
redresseurs induisent une excitation sur le rotor à un régime moteur (en anglais engine order)
eo = Nr.

La connaissance des vibrations propres du système est centrale, puisqu’une sollicitation à
une fréquence propre de la roue aubagée induirait une résonance, caractérisée par le fait que
de petites sollicitations conduisent à de grandes déformations. Le calcul de la réponse forcée
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Figure 2.9 Rotor et stator : aubes du stator ( ) liées au carter ( ) à une extrémité et à
une bague commune ( ) à l’autre, et aubes du rotor ( ). Adapté de [7].

linéaire d’une roue aubagée accordée est bien connu et a permis le développement d’outils de
conception industrielle, tel le diagramme de Campbell et les fonctions de réponse en fréquence
(FRF). L’étude de l’influence du désaccordage sur la réponse forcée linéaire de la roue aubagée
va dépendre du niveau de désaccordage considéré, telle qu’explicitée en seconde partie de
cette section.

2.2.1 Roues accordées

Considérations physiques

Pour éviter des amplitudes de vibration préjudiciables au bon fonctionnement du moteur, les
vitesses de rotation des roues aubagées doivent être choisies en dehors des plages correspondant
à de possibles résonances. Le diagramme de Campbell, sur lequel les fréquences propres et les
multiples des régimes moteurs sont tracés, est un outil largement utilisé dans l’industrie afin
d’identifier les zones critiques où les régimes moteur et les fréquences propres correspondent. En
l’absence d’effets inertiels (gyroscopiques ou centrifuges), les fréquences propres ne dépendent
pas de la vitesse de rotation et sont donc des droites horizontales dans le diagramme de
Campbell, comme illustré sur la figure 2.10.

Le mode de vibration excité par la variation de charge sur les aubes est lié au nombre de
redresseurs en amont de l’écoulement, si bien que la notion de diamètre nodal est généralisée
aux vibrations forcées linéaires : un mode propre à nd diamètres sera excité par un forçage
à nd redresseurs. La résonance se produira ainsi à une vitesse de rotation Ωr = f

nd
, avec f
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Figure 2.10 Diagramme de Campbell. Régimes moteur ( ), fréquences propres de la roue
aubagée ( ) et quelques possibles résonances ( ).

la fréquence propre du mode excité. Pour chaque vitesse de rotation, l’amplitude maximale
des oscillations forcées de chaque aube peut être calculée, permettant de tracer la fonction
de réponse en fréquence (FRF) dont un exemple est donné sur la figure 2.11. Dans le cas
d’une roue aubagée accordée, les amplitudes maximales de toutes les aubes se superposent
parfaitement et le pic correspond à la fréquence propre du mode excité par la sollicitation
considérée.

Ωr

Ω

am
pl

itu
de

Figure 2.11 FRF pour une roue aubagée accordée ( ), permettant de mettre en évidence
la résonance ( ).
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Modélisation en éléments finis

L’équation du mouvement en notation matricielle (cf. annexe A) permet d’obtenir les vecteurs
de déplacement u, de vitesse u̇ et d’accélération ü de l’ensemble des ddl en fonction des
matrices structurelles du système et des sollicitations extérieures. Dans le cadre de l’étude
des vibrations forcées linéaires, l’équation du mouvement en notation matricielle permet
d’exprimer les vecteurs de déplacement u, de vitesse u̇ et d’accélération ü de l’ensemble des
ddl en fonction des matrices de masse M, de raideur K et d’amortissement C du système,
ainsi que du vecteur de forçage linéaire F(t), dépendant du temps t, comme suit :

Mü + Cu̇ + Ku = F(t) (2.5)

Une discussion sur les hypothèses liées à cette formulation de l’équation du mouvement peut
être trouvée en annexe A.

Matrice d’amortissement. L’amortissement est fréquemment défini comme étant pro-
portionnel (amortissement de Rayleigh) ou modal. Lorsque l’amortissement est posé comme
proportionnel aux matrices de masse et de raideur (amortissement de Rayleigh (3.1.2 de [49]),
son expression dans l’espace modal est :

ΦTCΦ = αI + βω2 , α et β des constantes (2.6)

Les hautes fréquences, qui correspondent à des valeurs de ωi élevées, sont alors davantage
amorties que les basses fréquences. L’amortissement modal est défini comme une matrice
diagonale dans l’espace modal (4.4.3 de [67]) :

ΦTCΦ = 2 [ξiωi] (2.7)

avec : ξi facteur ou taux d’amortissement
ωi le ième élément diagonal de ω

Les fréquences effectives de résonance du système amorti sont légèrement différentes des
valeurs calculées à partir des valeurs propres ω issues de la résolution du problème aux valeurs
propres généralisé donné à l’équation (2.2). Le calcul des fréquences de résonance du système
amorti revient à résoudre un problème polynomial aux valeurs propres, qui peut être traité
par linéarisation, par exemple selon la méthode de Tisseur et Meerbergen [68]. Cependant,
cette opération pouvant être coûteuse en temps de calcul, il est généralement considéré que,
si l’amortissement est assez faible, les fréquences de résonance du système amorti sont égales
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à celles du système non amortis libre (3.1.2 de [49]). La matrice d’amortissement ainsi définie
respecte la condition de symétrie (hypothèse 3 de la démonstration en annexe A) attachée à
l’équation du mouvement.

Résolution par superposition modale. La diagonalisation des matrices par le passage
dans la base modale Φ permet de découpler le système d’équations (2.5) (5.7 de [69]). Le
vecteur des déplacements u ainsi que le vecteur des efforts linéaires appliqués F peuvent
être exprimés dans cette base, ce qui permet d’obtenir les amplitudes modales p avec (4.4.3
de [67]) :

u = Φp (2.8)

2.2.2 Roues désaccordées

Considérations physiques

Des ruptures d’aubes, pourtant bien dimensionnées dans le cadre d’une structure accordée,
figurent parmi les premières observations expérimentales associées au désaccordage des roues
aubagées. Les analyses métallurgiques effectuées à la suite des incidents ont mis en évidence
que les aubes défaillantes avaient été soumises à des contraintes anormalement élevées [22].
Deux phénomènes permettent de l’expliquer : d’une part la variation des fréquences propres
d’une aube à l’autre [59] ; et d’autre part la flexibilité du disque qui permet la transmission
de l’énergie vibratoire.

D’une part, comme vu lors de l’étude des propriétés modales à la section 2.1.2, la séparation
des fréquences propres dans le cas désaccordé va étendre la plage de fonctionnement critique,
si bien que des vitesses de rotation admissibles sous l’hypothèse d’une roue aubagée accordée
peuvent en réalité inclure des fréquences de résonance de la roue aubagée désaccordée.

D’autre part, le couplage structurel des aubes joue également un rôle déterminant dans
l’impact du désaccordage sur les vibrations forcées. De grandes amplitudes de vibration
peuvent être détectées loin de la zone d’excitation, alors que les aubes ne sont connectées
que par le disque flexible [57]. La différenciation des aubes due au désaccordage induit un
confinement de l’onde vibratoire dans certaines aubes [70]. Le couplage à travers le disque
est alors synonyme d’une plus grande facilité de transmission de l’énergie vers l’aube qui
vibre avec la plus grande amplitude [32] : les vibrations en diamètres nodaux dans le cas
accordé laissent place à des vibrations localisées [21,56]. Cependant les effets du désaccordage
sont amoindris si le couplage est trop faible ou trop fort, à un même niveau de désaccordage.
Pour un couplage inter-aubes trop faible, chaque aube se comporte comme un oscillateur
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désaccordé isolé et il n’y a pas de transmission de l’énergie d’une aube à l’autre, ce qui limite
la localisation. A l’inverse, si le couplage est trop fort, l’énergie de vibration est échangée
jusqu’à se répartir sur l’ensemble de la roue aubagée et le confinement s’annule : la réponse
redevient semblable à celle du système accordé [32].

L’énergie de vibration n’est pas dissipée par la localisation mais uniquement confinée [23], et
est redirigée vers les aubes qui répondent le plus à l’excitation. Il peut s’agir des aubes sur
lesquelles l’effort est appliqué, ou les plus désaccordées [44]. Dépendant du niveau de couplage
entre les aubes et le disque, une aube peut répondre le plus à l’excitation non pas du fait de
ses paramètres intrinsèques, mais du fait de sa position dans le motif, à savoir proche d’aubes
susceptibles de transmettre leur énergie vibratoire facilement [5].

Du fait du transfert de l’énergie vibratoire, certaines aubes d’une roue aubagée désaccordée
peuvent présenter une amplitude moyenne inférieure aux aubes de la roue aubagée accordée.
La réponse des autres aubes peut alors largement s’écarter de cette moyenne. Par exemple, sur
un modèle à 33 aubes, Ewins et Han ont montré que l’amplitude maximale des oscillations en
résonance par rapport au cas accordé augmente de 24% à 63%, et ce même si certaines aubes
présentent des amplitudes inférieures de 1, 3% à 6, 3% par rapport au système accordé [44].

L’augmentation de l’amplitude à cause du désaccordage peut alors être quantifiée par le facteur
de dispersion et le facteur d’amplification. Le facteur de dispersion correspond à la plage
d’amplitude du système désaccordé (différence entre l’amplitude maximum et minimum, toutes
aubes confondues) normée par l’amplitude du système accordé [71]. Le facteur d’amplification,
plus simplement appelé « amplification », est le plus utilisé dans la littérature sur les roues
aubagées désaccordées [23]. Dans les premières études sur le désaccordage, il était défini comme
le ratio entre les amplitudes de vibration maximale de la roue désaccordée sur celles de la
roue désaccordée, pour une excitation à la fréquence de résonance de la roue accordée [53, 59].
Cependant, l’essor des recherches stochastiques sur le désaccordage a poussé la considération
de l’amplification selon des principes de statistique des extrêmes [32]. Ainsi, depuis les années
1990, l’amplification est définie sur une plage de fréquences et sur la réponse globale de la
structure [72,73]. Le maximum d’amplitude de la roue désaccordée n’est donc a priori pas
rencontré à la même fréquence que celui de la roue accordée, et l’aube qui connaît ce maximum
n’est pas la même selon le motif de désaccordage considéré. Cette définition de l’amplification
est illustrée sur la figure 2.12, où la FRF d’un modèle de roue aubagée désaccordée est
comparée à la FRF du modèle accordé correspondant. La séparation des pics de résonance
est bien visible sur la réponse du modèle désaccordé, où chaque aube présente une courbe de
réponse ( ), résultant en une dispersion des fréquences de δf sur la courbe enveloppe ( ).

La localisation de l’énergie dans le cas désaccordé combinée à la possible augmentation des
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Figure 2.12 FRF pour un modèle de roue aubagée désaccordée, avec les réponses des
aubes ( ), la courbe enveloppe ( ) et l’amplitude maximale désaccordée ( ),
comparée à la FRF pour le modèle accordé correspondant ( ).

amplitudes de vibration induit sur certaines aubes une forte augmentation des contraintes
maximales [74, 75] qui explique les cas de rupture rapportés. Pour une fréquence d’excitation
proche de la fréquence de résonance, les premières études sur le désaccordage rapportent que
le niveau maximum de contraintes sur les aubes peut être augmenté de l’ordre de 20% à
35% par rapport celui du système accordé [22,53]. Les résultats diffèrent cependant avec le
niveau de désaccordage considéré : pour un désaccordage faible, le maximum d’amplitude sur
l’ensemble des aubes est supérieur dans le cas désaccordé, mais devient presque égal pour un
désaccordage fort [76]. À partir des années 1980, les recherches pour comprendre et quantifier
les conséquences du désaccordage s’articulent alors suivant deux axes majeurs [44] :

la détermination des propriétés modales par l’analyse des fréquences et des déformées
du système libre [5, 77] ;

(1)

l’analyse de l’amplification de la réponse forcée pour une application pratique sur les
turbomoteurs [22, 44,76,78].

(2)

Étude déterministe du désaccordage fort

Une meilleure compréhension de l’impact du désaccordage sur le comportement vibratoire
d’une roue aubagée a conduit aux recherches des années 2000, dans lesquelles l’utilisation d’un
désaccordage intentionnel est considéré. En effet, le motif de désaccordage peut être retravaillé
en répartissant les aubes judicieusement [30,79,80]. La localisation peut ainsi être limitée en
arrangeant les aubes en fonction de leur variation de paramètres désaccordés, par exemple la
masse, autour du disque selon un motif à une période angulaire donnée [53]. L’arrangement
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particulier des aubes, pour un même niveau de désaccordage des aubes, peut être critique
pour déterminer l’amplitude de la réponse forcée proche de la résonance, avec des amplitudes
de vibrations forcées pouvant varier du simple au double [44].

Lorsque les effets aérodynamiques sont pris en compte, le désaccordage peut même avoir
un effet stabilisant par rapport à l’instabilité aéroélastique [81]. Il s’agit alors d’éviter la
formation d’ondes tournantes pour limiter les instabilités consécutives des phénomènes auto-
entretenus, comme le flottement [82,83]. Cependant, le bénéfice est très limité pour un niveau
de désaccordage de plus de 5% [60], rendant ces solutions difficiles à implémenter sur des
systèmes réels présentant intrinsèquement un désaccordage non contrôlé de l’ordre de quelques
pourcents [30, 65].

En considérant uniquement des vibrations structurelles, l’ajout d’un désaccordage volontaire
lors de la conception des roues aubagées peut être utilisé en vue d’améliorer leurs réponses
vibratoires [79]. En considérant un désaccordage sur la raideur variant jusqu’à 10% par rapport
au cas nominal, le phénomène de localisation et la séparation des fréquences propres peut être
grandement diminué, alors même que la raideur moyenne n’a pas été modifiée, comme étudié
par Castanier et Pierre sur une roue académique de 12 aubes avec deux ou quatre type d’aubes
différentes [79]. Petrov et Ewins ont proposé d’appliquer un désaccordage volontaire non plus
sur les aubes, mais sur les amortisseurs en pied d’aube, pour améliorer la dispersion de l’énergie
dans le cadre des vibrations forcées [84]. Pour dissymétriser l’excitation aérodynamique, un
désaccordage volontaire est également considéré au niveau des redresseurs [85].

(a) disque avec aubes rapportées, adapté de [86] (b) disque aubagé monobloc, adapté de [87]

Figure 2.13 Types de montage d’aube ( ) sur le disque ( ).

L’optimisation du désaccordage intentionnel est un sujet de recherche actif, en témoignent
les plus récentes études de Pohle et al. [88] et Beirow et al. [30]. Cependant les techniques
proposées sont contraignantes en terme de réalisation. Si elles sont envisageables pour les



24

disques avec aubes rapportées, pour lesquels les aubes sont liées au disque par des arrêts
géométriques (queue d’aronde ou sapin), comme représenté sur la figure 2.13a, elles sont
inadaptées aux disques aubagés monobloc (DAM, en anglais : blisk), comme représenté sur la
figure 2.13b, qui tendent à se développer pour le gain substantiel de masse qu’ils permettent.

Étude stochastique du désaccordage faible

Le désaccordage naturel, inhérent à tout système réel, induit une variation de l’ordre de
quelque pourcents sur les propriétés mécaniques et les fréquences propres des aubes de la
roue aubagée [30,65]. La quantification expérimentale précise du désaccordage est cependant
particulièrement ardue. Le niveau de couplage entre les aubes via le disque, donnée essentielle
pour expliquer le désaccordage, est souvent associé dans les études analytiques à la raideur d’un
ressort reliant les aubes [32], mais il ne peut pas directement être mesuré expérimentalement.
En outre, pour les DAM, la caractérisation vibratoire des aubes seules est impossible, puisque
les aubes et le disque sont fabriquées en un seul bloc. Par ailleurs, l’étude stochastique
de l’influence du désaccordage faible, qui demande de pouvoir tester plusieurs milliers de
structures, n’est possible que numériquement.

En l’absence d’expression exacte, la distribution statistique de la réponse vibratoire du système
désaccordé est approchée de façon empirique, classiquement par des simulations aléatoire
dites de « Monte-Carlo » [23], ou encore par la méthode du chaos polynomial [89]. Les
méthodes de Monte-Carlo consistent à reproduire numériquement de nombreux échantillons
afin d’en extraire des quantités stochastiques d’intérêt (2.1.4.2 de [66]). Dans le cadre des
roues aubagées désaccordées, la quantité d’intérêt stochastique la plus usuellement regardée
est l’amplification des vibrations du système global en fonction du niveau de désaccordage,
défini comme l’écart-type de sa fonction de répartition [23,32,90].

Les simulations de Monte Carlo peuvent être utilisées sur une roue aubagée désaccordée libre,
pour s’assurer que le paramètre choisi pour le désaccordage est valide [5], mais elles sont plus
généralement appliquées sur des systèmes forcés [78]. Après avoir généré la structure nominale
(accordée), les étapes suivantes sont réalisées à chaque itération [23] :

génération du désaccordage aléatoire selon une fonction de répartition et calcul de son
écart-type effectif ;

(1)

calcul de l’amplitude maximale des oscillations forcées pour une fréquence (usuellement
la fréquence du mode à diamètre accordé excité par le régime moteur considéré [53, 78])
ou une plage de fréquence (réponse dans le cas le plus défavorable [5]), toutes aubes
confondues ;

(2)

association de l’amplitude (ou de l’amplification) trouvée avec l’écart-type du désaccordage.(3)
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Figure 2.14 Graphique de Monte Carlo, avec les 95ième ( ), 50ième ( ) et 5ième ( )
centiles. Adapté de : [6].

Ces étapes doivent être répétées un grand nombre de fois pour pouvoir caractériser la sensibilité
au désaccordage de la roue aubagée. En pratique, plusieurs milliers voire dizaines de milliers
de simulations sont nécessaires pour calculer les distributions les plus critiques. Les résultats
stochastiques obtenus sont alors résumés par la valeur de différents centiles sur les graphiques
de Monte Carlo, dont un exemple est donné sur la figure 2.14. Ainsi, n% des systèmes simulés
présentent une amplification inférieure ou égale aux valeurs délimitées par la courbe du
nième centile : le 50ième centile est plus communément nommé la médiane. Plus le centile
recherché est éloigné de la médiane, plus le nombre d’échantillons nécessaires pour calculer sa
valeur augmente : pour atteindre le 9ième décile du 99ième centile (parfois nommé « le 99,9ième

centile »), de l’ordre de 50 000 simulations devraient être effectuées [6]. Les centiles présentés
dans la littérature sont généralement les centiles 1, 50, 99 ou 10, 50, 90 dépendamment du
nombre d’échantillons disponibles. La convergence des centiles est assurée qualitativement
par stabilisation des courbes à mesure que le nombre d’échantillons augmente [23].

Le graphique de Monte Carlo, tel que tracé sur la figure 2.14, permet ainsi de mettre en
évidence l’amplification maximale de la réponse forcée : sur la figure 2.14, adaptée de [6],
l’amplification maximale est de près de 1,8, soit une augmentation de 80% par rapport aux
amplitudes des vibrations dans la cas accordé, pour un écart-type du désaccordage de 0,8%.
La contrainte dans les aubes s’en trouve quasiment doublée, passant de 527MPa dans le cas
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accordé à 978MPa pour l’amplification maximale désaccordée [6].

Si la méthode de Monte Carlo reste très utilisée pour caractériser la réponse forcée d’un système
désaccordé, le coût important en temps de calcul qu’elle représente a incité les chercheurs à
développer de nouvelles méthodes, dont la « méthode de Monte Carlo accélérée » de Bladh et
al. [6]. Celle-ci utilise la statisque des extrêmes, qui permet de déterminer que l’amplification
maximale de l’amplitude des vibrations d’une roue aubagée désaccordée se rapproche dans le
cadre d’une excitation linéaire d’une distribution de Weibull. Les paramètres de la fonction
de densité de probabilité de la distribution de Weibull sont déterminés grâce à un nombre
restreint de simulations de Monte Carlo (de l’ordre de 50) ainsi qu’à des approximations issues
de la littérature. Les centiles sont ensuite tracés grâce à la fonction ainsi définie.

2.3 Réduction des systèmes à grand nombre de degrés de liberté

Les calculs des modes de vibration d’un système faisant intervenir des matrices de la taille du
nombre de degrés de liberté (ddl) dans le système complet, leur coût peut devenir prohibitif
dans le cas des roues aubagées industrielles. Le système doit être préalablement réduit par
des méthodes détaillées dans la section qui suit.

2.3.1 Symétrie cyclique

L’utilisation de la symétrie cyclique inhérente aux roues aubagées accordée permet de découpler
la dynamique de la roue aubagée entre chacune de ses harmoniques spatiales. Un gain
considérable de temps de calcul est ainsi possible, avec des dimensions de matrices typiquement
divisées par un facteur égal à la moitié du nombre d’aubes, pour les analyses linéaires de type
réponse forcée ou analyse modale pour l’obtention de diagrammes de Campbell. Les matrices
du modèle sont réécrites par harmonique pour obtenir des matrices K et M diagonales par
blocs [91] :

FTYF =




Ŷ(0)

Ŷ(1) 0
Ŷ(2)

0 . . .
Ŷ(bN/2c)




(2.9)

avec F la matrice de Fourier, Y = K ou M et chaque bloc Ŷ(nd), avec nd = 0, ..., bN/2c,
correspond à une harmonique spatiale de la structure.
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2.3.2 Synthèse modale

Principe. Afin d’obtenir des modélisations prédictives, la discrétisation spatiale des modèles
industriels requiert un grand nombre d’éléments. L’accroissement consécutif du nombre de ddl
du système conduit à des matrices M et K trop grandes pour être calculées directement sur
le modèle complet de roue aubagée. Afin de réduire la taille des modèles, des méthodes dites
de réduction ont été développées depuis les années 1960, permettant d’obtenir des modèles
réduits, ou dans la littérature ROM de l’anglais Reduced Order Models.

Aussi appelées méthodes de condensation, de synthèse modale ou CMS pour l’anglais Com-
ponent Mode Synthesis, les méthodes basées sur les modes de vibration composants constituent
la première génération de méthodes de réduction. Les méthodes CMS partent de la division
du système en sous-structures dont le comportement dynamique est décrit par leur réponse
harmonique en considérant un chargement aux frontières. Le comportement peut être décom-
posé dans une base de modes statiques et vibratoires (2.9.3 de [49]). Les modes statiques
comprennent les déformées statiques du système lorsqu’un déplacement unitaire est imposé sur
un ddl frontière, tous les autres ddl étant imposés nuls. Les modes vibratoires correspondent
aux vibrations du système avec conditions imposées aux ddl frontière. Les méthodes CMS
sont alors classées en fonction de leur traitement de l’interface entre les sous-structures. La
notion d’interface est illustrée sur la figure 2.15. Bien qu’elles existent depuis les années 1960,
avec l’article fondateur de Craig-Bampton [24], basé sur des interfaces fixes, les méthodes
CMS n’ont été appliquées à l’étude des vibrations des roues aubagées qu’en 1983 par Irretier,
à partir de la méthode à interfaces libres de Craig et Chang [25]. En règle générale, les modes
composants sont des vecteurs de Ritz, ou modes supposés [92].

Formalisme. Lors d’une discrétisation en éléments finis, les matrices M et K sont composées
de sous-matrices pour chaque secteur. Dans un cas à symétrie cyclique, une aube et sa portion
de disque associée sont généralement choisies pour constituer un secteur (figure 2.15a). La
sous-structuration revient à réorganiser les ddl en ddl intérieurs i et frontières f par permutation
des lignes et colonnes, soit pour les matrices de masse M et de raideur K :

K =

Kff Kfi

Kif Kii


 ; M =


Mff Mfi

Mif Mii


 (2.10)

Les déplacements u dans la base physique et les déplacements q dans la base des modes
composants sont reliés par la matrice de passage Ψ (17.1 de [93]) :

u = Ψq (2.11)
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(a) entre secteurs : interface à droite ( ) et
à gauche ( )

(b) interne à un secteur : interface entre
l’élément-disque ( ) et l’élément-aube ( )

Figure 2.15 Interfaces utilisées dans une sous-structuration. Adapté de [8].

La matrice Ψ contient alors des modes supposés, qui peuvent être des modes [92] :

(1) propres ou « normaux » (component normal modes [93]) : réponse libre du système
élastique, permettant de définir la masse et la raideur généralisées, exprimées en matrices
diagonales.

(2) de corps rigide : réponse du système rigide (sans déformation interne) à un déplacement
unitaire. Ils correspondent aux modes à valeur propre nulle (ω2 = 0) et apparaissent
lorsque la réponse du système n’est pas entièrement déterminée par les conditions aux
limites. L’énergie de déformation étant nulle, les modes de corps rigide peuvent être
déterminés en résolvant (2.7 de [94]) :

1
2uTKu = 0 (2.12)

avec : u = 1, vecteur de déplacement unitaire

(3) statiques [24, 28] : définis par des déplacements unitaires imposés sur chacun des ddl
d’un sous-ensemble de ddl du système, le déplacement étant nul aux autres ddl de ce
même sous-ensemble. Ces déplacements peuvent être exprimés par une matrice identité.
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Les modes statiques sont donc les colonnes de Φc, définie par :

KΦc = Fc =⇒

Kbb Kbv

Kvb Kvv




 Ib
Φc

v


 =


Fb

0v


 (2.13)

avec : b le nombre de ddl du sous-ensemble contraint
b + v le nombre total de ddl du système

(4) d’attache : définis par une force unitaire imposée sur chacun des ddl d’un sous-ensemble,
la force étant nulle aux autres ddl de ce même sous-ensemble. Les modes d’attache sont
donc les colonnes de Φs, définie par :

KΦs = Fs =⇒

Kll Klw

Kwl Kww




Φs

l

Φs
w


 =


 Il
0w


 (2.14)

avec : l le nombre de ddl du sous-ensemble statique
l + w le nombre total de ddl du système

Afin de réduire la base de modes composants, un certain nombre de modes sont retirés,
généralement par troncature au-delà d’une certaine fréquence propre. La base réduite doit
cependant retranscrire fidèlement la déformée de la structure, ce qui peut être particulièrement
critique au niveau des interfaces entre les sous-structures. Des modes d’interface peuvent
également être ajoutés à la base réduite [92], permettant ainsi une troncature maximale.

Les modes d’interface peuvent être calculés à partir de :

(1) modes propres avec une condition d’encastrement à l’interface, dits d’interface fixe [24] ;

(2) modes d’attache, calculés en appliquant successivement une force unitaire à chaque ddl
de l’interface, dits d’interface libre ( [93], 17.1) ;

(3) modes statiques [92] ;

(4) modes mixtes [95].

Dans le cadre de l’étude des roue aubagée accordées, la symétrie cyclique inhérente au système
est utilisée afin de réduire les modélisations à un secteur [96], ensuite réduit davantage par
synthèse modale. Des méthodes numériques particulières pour étudier les roues aubagées
désaccordées, qui présentent une rupture de symétrie, ont ainsi dues être développées.

2.3.3 Spécificité des roues désaccordées

Les systèmes désaccordés présentent par définition une rupture de symétrie qui nécessite donc
a priori de générer le système complet, soit la roue aubagée à 360°, afin de calculer ses modes
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propres et de réduire le système par synthèse modale en vue de calculs de la réponse forcée
linéaire. Dans le cas de systèmes industriels à grands nombres de degrés de liberté, le calcul
de systèmes à 360° est prohibitif en terme d’espace mémoire mais aussi de temps de calcul. La
méthode de Monte Carlo accélérée n’étant pas applicable pour de grands modèles construits
selon le formalisme des éléments finis [23], les efforts de recherche ont été concentrés sur la
réduction de la taille du système étudié.

Afin de réduire la taille des modèles, des méthodes de réduction particulières aux systèmes
désaccordés sont utilisées. La SNM (de l’anglais Subset of Nominal Modes), proposée par
Yang et Griffin, est la méthode fondatrice des méthodes de réduction basées sur les modes
du système et construite pour l’application à une structure désaccordée [26]. Yang et Griffin
partent de l’observation que pour un désaccordage modéré, des modes accordés sélectionnés
peuvent constituer une bonne base pour représenter les vibrations du système désaccordé.
Le modèle réduit est alors construit avec des fréquences qui incluent une famille de modes
d’aubes, avec un ou deux modes par diamètre nodal. Les coordonnées des nœuds sont définies
grâce à une base de Fourier et le désaccordage est directement appliqué sur les matrices de
masse et raideur du système. Le désaccordage, implémenté comme une composante physique,
peut avantageusement être directement comparé aux mesures expérimentales de variation de
masse ou de raideur. En outre, la SNM présente deux avantages majeurs :

en augmentant le nombre de fréquences incluses dans la base, le comportement du
modèle réduit tend vers celui du modèle non-réduit en éléments finis ;

(1)

les zones de pincement des fréquences sont correctement retrouvées avec le modèle
réduit.

(2)

Feiner et Griffin ont proposé en 2002 une forme simplifiée de la SNM, dans le cas d’une famille
isolée de modes d’aubes, nommée FMM pour l’anglais Fundamental Model of Mistuning [97].
Les résultats sont cohérents avec le modèle éléments finis pour les modes d’aubes isolés,
pour une simulation plus rapide qu’avec la SNM. Cependant les régions de pincement, pour
lesquelles les modes de disque sont plus importants, ne sont plus correctement obtenues.

Une approche alternative d’implémentation du désaccordage, également basée sur les modes
du système, a été développée par Petrov et al. [98]. La matrice de modification à ajouter au
vecteur de la réponse forcée du système accordé pour inclure le désaccordage est construite
avec : (1) la FRF du système accordé et, (2) la matrice de désaccordage définie comme une
matrice de raideur perturbée Kδ. Seuls quelques ddl actifs par aube peuvent être inclus en
introduisant des éléments de désaccordage : masses, ressorts et amortisseurs sont attachés
aux ddl de l’aube pour représenter le désaccordage. La fidélité du modèle réduit ne peut donc
pas être supérieure à celle de la représentation modale du système accordé, mais la méthode
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développée est compatible avec une prise en compte des amortisseurs frottants en pied d’aube.

Par ailleurs, le désaccordage peut être implémenté directement sur les modes composants du
modèle accordé réduit par CMS. Castanier et al. [99] proposent de projeter le désaccordage
sur la matrice de raideur dans l’espace modal du système réduit accordé. Bladh et al. [95]
étendent cette méthode, en projetant le désaccordage sur les modes propres de l’aube encastrée
au niveau de l’interface avec le disque, permettant de réduire encore la taille des matrices
impliquées par rapport à celles d’un secteur complet. Les deux méthodes permettent ainsi
une génération peu coûteuse en temps de calcul du modèle réduit désaccordé.

Lim et al. ont proposé une méthode hybride qui combine l’approche des méthodes CMS,
basées sur les modes composants, et la SNM basée sur les modes du système [29]. Cette
méthode est nommée CMM de l’anglais Component Mode Mistuning. Le système y est divisé
en sous-structures, dont une correspond au disque aubagé nominal (accordé) et les autres aux
aubes où est concentré le désaccordage, en même nombre que le nombre d’aubes. La structure
accordée est réduite selon une base de Fourier, comme pour la SNM. Les structures qui
correspondent au désaccordage sont ensuite assemblées suivant l’approche des méthodes CMS.
Le mouvement de l’aube est représenté par des modes d’aube encastrée, avec la possibilité
d’ajouter des modes d’interface comme des modes statiques de Craig-Bampton pour les
degrés de liberté fixes [27]. Lim et al. étendent alors à un disque aubagé caréné désaccordé la
technique de projection du désaccordage développée par Bladh et al. [95], en utilisant des
facteurs de participation modale pour projeter les matrices de désaccordage dans la base
réduite. Le principal avantage de cette méthode est qu’elle permet de prendre en charge de
nombreux types de désaccordage sur la masse et la raideur dans l’espace modal, dont des
variations non uniformes des aubes individuelles qui impliquent des modèles de désaccordage
de modes d’aube isolée [23] ; ou encore des variations non proportionnelles (différentes pour
chaque mode), importantes pour l’application à hautes fréquences [27].

De nombreuses autres méthodes ont été développées, comme en attestent les articles de revue
publiés récemment [23,28], et un comparatif de leurs possibilités et limites peut être trouvé
dans la thèse de Nyssen [27]. Le choix de la méthode de réduction va en particulier dépendre
des phénomènes physiques étudiés.

2.4 Vibrations forcées des roues accordées dans un contexte non-linéaire

Les vibrations non-linéaires, dues notamment aux frottements, glissements, contacts ou chocs,
peuvent survenir à tous les endroits où un mouvement relatif est permis entre les composants
d’un turbomoteur. Ce mouvement relatif peut être intrinsèque à la solution technologique
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choisie pour la réalisation des roues aubagées, comme en pied d’aube dans le cas d’aubes
rapportées sur le disque ou entre les talons ou nageoires inter-aubes, comme représentés
sur la figure 2.16, pour des vitesses relatives faibles. Les vibrations non-linéaires peuvent
également survenir en configuration accidentelle lorsque le jeu prévu dans la conception n’est
pas suffisant pour éviter l’interaction entre les parties fixes (stator) et tournantes (rotor) : les
redresseurs peuvent entrer en contact avec l’arbre moteur, ou les aubes avec le carter fixe,
avec des vitesses relatives très élevées.

2.4.1 Frottements et contacts dans les turbomachines

Interfaces entre composants du rotor

Entre les composants du rotor, mécaniquement liés, les vitesses relatives sont faibles si bien
que les vibrations non-linéaires associées surviennent à hautes fréquences et les amplitudes de
déplacement restent faibles. Les interfaces de contact peuvent être classées par rapport aux
composants qui interagissent : aube-aube, ou aube-disque.

Aube/aube. Les non-linéarités aube-aube sont en particulier rencontrées au niveau des
nageoires des aubes de turbines élancées, qui permettent d’augmenter la rigidité de la roue
aubagée pour réduire l’amplitude de leurs vibrations. En opération, les nageoires peuvent
rester en contact et agir comme une bague continue, ou au contraire se désolidariser. Lorsqu’un
mouvement relatif est créé, les forces de frottement et de glissement permettent de dissiper
une partie de l’énergie vibratoire et ainsi d’amortir le mouvement [100]. En pratique, les
conditions d’utilisation peuvent amener à un cas entre frottement et glissement.

Le couplage aérodynamique et mécanique des aubes va permettre la transmission de l’énergie
de vibration. D’une part, le chargement aérodynamique appliqué sur une aube est modifié par
la présence d’un corps en amont ou en aval de celle-ci. L’étude du couplage aérodynamique
est particulièrement critique dans le cas des structures multi-étages [27, 31]. D’autre part, la
transmission de l’énergie de vibration d’une aube à l’autre d’une même roue peut s’effectuer
mécaniquement à travers les talons (figure 2.16a), les nageoires (figure 2.16b) ou le disque.
Pour les aubes sans nageoire, le couplage entre les aubes augmente à mesure que la rigidité
du disque diminue [53]. Les premières études vibratoires couplées débutent dans les années
1950, puis sont raffinées pour prendre en compte un grand nombre d’aubes parfaitement
identiques [77], en utilisant des matrices de transfert pour coupler le mouvement du disque
et des aubes. De même, les modèles multi-étages sont couplés par l’arbre de transmission :
moins ce dernier est rigide, plus le couplage inter-étages est important [27].
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(a) talon ( ) en tête d’aube ( ) (en anglais :
tip shroud), adapté de [101]

(b) talons intermédiaires ou nageoires ( ) sur
le corps de l’aube ( ) (en anglais : mid-span
shroud), adapté de [102]

Figure 2.16 Vocabulaire associé aux excroissances géométriques des aubes.

Aube/disque. Les interfaces aube-disque sont spécifiques au cas d’aubes rapportées sur le
disque (figure 2.13a). Le léger jeu au niveau des liaisons mécaniques en sapin ou en queue
d’aronde induit un mouvement relatif des aubes par rapport au disque, et donc des phénomènes
non-linéaires de frottement, glissement et chocs. En particulier, le jeu nécessaire au montage
dans le cas d’une liaison mécanique aube-disque en sapin peut induire plusieurs positions
stables de l’aube en fonctionnement et donc des problèmes de stabilité [103].

Les vibrations induisent des modifications géométriques par rapport à la structure conçue,
diminuant le rendement global. Les motoristes cherchent donc à les amortir. Pour ce, des joints
de friction (aussi appelés frotteurs ou amortisseurs frottants) peuvent être ajoutés au niveau
des zones de contact entre l’aube et le disque, en pied d’aube ou sous la plateforme [104],
comme représenté sur la figure 2.17. Les dispositifs de dissipation non-linéaire permettent en
effet des systèmes plus légers et efficaces comparés aux premiers essais effectués dans les années
1960, utilisant des revêtements absorbants visco-élastiques linéaires [85]. L’effort de transition
entre adhérence et glissement et la rigidité de l’amortisseur jouent un rôle déterminant sur
la dynamique de l’aube [105]. En particulier, la réduction des vibrations est d’autant plus
importante que l’amortisseur est rigide, jusqu’à atteindre une asymptote. Comme il a été
montré dans des études expérimentales qu’un amortisseur est autant dans une configuration
d’adhérence que de glissement à chaque cycle, un amortisseur optimal doit présenter un
compromis entre une raideur importante et une bonne adaptabilité aussi bien au frottement
qu’au glissement [105].
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Figure 2.17 Zones de contact entre l’aube ( ) et le disque ( ) : pied d’aube ( ) et
plateforme ( ). Adapté de [9].

La modélisation des amortisseurs en pied d’aube reste un domaine de recherche actif [106],
orienté sur le type de modélisation à adopter, entre une approche harmonique [107] ou
modale [108]. Les techniques d’implémentation du frottement sont traitées dans la section 2.4.2.
Outre l’approche numérique, les études expérimentales constituent toujours un défi, notamment
à cause de la difficulté de mesurer les forces de frottement [109, 110]. Les efforts de recherche
fournis permettent à ce jour une meilleure compréhension du phénomène physique [111,112],
mais aussi de proposer de nouvelles optimisations tant d’un point de vue matériau que
géométrique des joints [104,113].

Cependant, ces dispositifs propres aux disques avec aubes rapportées (figure 2.13a) tendent
à disparaître du fait de l’ajout de masse trop important qu’ils imposent [85], au profit des
DAM (figure 2.13b). Un dispositif amortissant pourrait alors être intégré sous la jante du
disque, comme illustré sur la figure 2.18.

Interfaces entre le rotor et le stator

Les vitesses relatives entre les composants du rotor et du stator sont élevées, si bien que les
vibrations non-linéaires associées surviennent à basses fréquences et sont caractérisées par de
grandes amplitudes de déplacement. Les interactions rotor-stator (figure 2.9) peuvent survenir
en deux endroits : entre les redresseurs et l’arbre moteur ou entre le carter et les aubes de la
roue aubagée. Ces deux cas ont fait l’objet de recherches actives depuis les années 2000 [17].
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Figure 2.18 Solutions d’apport d’amortissement pour les DAM, où les aubes ( ) et le
disque ( ) forment une seule structure : amortisseur frottant ( ) monté sous la jante du
disque. Adapté de [10].

Arbre/redresseur. Les études sur le contact entre les redresseurs et l’arbre du moteur
sont usuellement menées dans les hypothèses de la dynamique des rotors, dans lesquelles les
composants sont considérés rigides. Comme les redresseurs sont liés par une bague commune
(figure 2.9), l’interface arbre-redresseur est continue, et ce sont les déplacements de l’axe de
rotation de l’arbre, appelés mouvements de précession [114], qui engendrent des cas de contact.
Ce déplacement de l’axe de rotation est dû à un balourd sur l’arbre, du fait d’un équilibrage
ou alignement imparfait, ou d’une rupture d’équilibre accidentelle, comme la perte d’une aube
sur une roue aubagée [17].

Le contact arbre-redresseur peut être étudié analytiquement par des modèles de type Jeffcott
(aussi appelés DeLaval) [115,116]. Les études expérimentales ont permis de mettre en évidence
deux régimes d’interaction : l’un se caractérise par un roulement sans glissement du rotor sur
le stator (en anglais : dry-friction whirl), si bien que le rotor tournoie dans le stator, l’autre à
l’inverse survient lorsque le rotor glisse continûment sur le stator (en anglais : dry-friction
whip). Ces configurations peuvent être particulièrement dangereuses et ont été identifiées
comme la cause probable d’accidents en service et sur les bancs de test [117,118].

Aube/carter. Afin d’améliorer les performances aérodynamiques, les motoristes cherchent
à diminuer les jeux entre le rotor et le stator, puisque le fluide qui s’infiltre dans ce jeu ne
participe pas à la propulsion, et même perturbe l’aérodynamisme de l’ensemble [19]. Au
niveau de la tête d’aube, le flux turbulent induit des vibrations supplémentaires, en plus
d’altérer la force aérodynamique incidente sur l’étage suivant (figure 2.19). Si le jeu est
trop important, un phénomène de pompage, avec une inversion locale de l’avance du flux,
peut même se produire [104]. La surconsommation des moteurs est alors conséquente. Des
simulations aérodynamiques ont permis de montrer qu’un jeu de 2,5% de la hauteur de l’aube
induit un flux plus détaché de l’aube et plus étendu en aval de celle-ci par rapport au cas où
le jeu serait limité à 1% du diamètre de l’aube : dans le second cas, le coefficient de pertes



36

aérodynamiques en sortie d’aube est diminué de près de 25% [19]. Il apparaît en outre que les
pertes totales qui incombent aux fuites en tête d’aube sont loin d’être négligeables : 30,3%
dans le cas d’un jeu de 2,5% contre 14,3% si le jeu est limité à 1% [19]. Réduire les jeux
permet aussi d’augmenter l’efficacité de la combustion [104].

(a) allure du flux en tête d’aube, passant
entre l’aube et le carter

(b) zone turbulente en tête d’aube et tourbillons
en aval de l’aube

Figure 2.19 Allure des tourbillons ( ) induits par le jeu entre l’aube ( ) et le carter ( ),
en tête d’aube et en aval. Adapté de [11].

Sur les turbomoteurs en fonctionnement, le carter se déforme par rapport au profil circulaire
souhaité, du fait notamment de sa dilatation thermique [119]. Son profil de déformation
présente usuellement des bosses ou lobes, dont le nombre et la position vont dépendre des
points d’ancrage qui augmentent localement sa rigidité, ou des zones de passage des circuits
de refroidissement [104]. Outre la déformation de la roue aubagée et du carter, les aubes
peuvent venir en contact avec le carter lorsque l’arbre décrit des mouvements de précession,
comme étudié par Salvat et al. [120].

Ainsi, diminuer le jeu en tête d’aube permet d’augmenter le rendement global du moteur et donc
d’optimiser sa consommation, mais favorise l’apparition de contact entre le carter et les aubes.
Deux problématiques principales concentrent les efforts de recherche actuels : l’interaction
modale et l’usure. Dans les deux cas, les aubes sont considérées comme flexibles. Le disque
peut être considéré comme rigide à des fins de simplification, mais il est plus généralement
supposé flexible. Le carter peut être considéré rigide ou flexible, selon le phénomène étudié.

L’interaction modale est étudiée en considérant un carter flexible. Comme la roue aubagée
se déforme selon des diamètres nodaux du fait notamment de l’excitation aérodynamique
(voir la section 2.2), les aubes peuvent entrer en contact périodiquement avec le carter et
le déformer. Le contact peut aussi être consécutif à l’élongation de l’aube sous les effets
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centrifuges [121]. La déformation du carter rend les contacts d’autant plus fréquents, si bien
que le carter est excité suivant des modes de même nombre diamètres nodaux que ceux
de la roue aubagée [12], comme montré sur la figure 2.20. Cette interaction des modes de
déformations des aubes avec ceux du carter est appelée interaction modale. En pratique,
seul le premier mode de flexion des aubes peut conduire à une interaction modale [12,122].
L’interaction modale ne se produit que pour des vitesses de rotation coïncidant avec les
pulsations naturelles de la roue aubagée d’une part et du carter d’autre part [12,17]. Tout
comme les modes de vibrations des roues aubagées, les modes de déformation du carter sont
tournants et peuvent être exprimés avec une combinaison linéaire de deux modes orthogonaux.
Les modes de vibration du carter peuvent tourner dans le sens de rotation de la roue ou dans
le sens contraire, alors que les modes de la roue excités par le contact tournent uniquement
en sens contraire à la rotation [12]. L’interaction modale la plus critique se produit lorsque
les modes du carter et de la roue tournent en sens contraire [12]. L’interaction modale est
hautement destructive pour le système car l’échange d’énergie est intensifié : elle a notamment
été avancée comme cause probable de désintégration de moteur en vol [18].

(a) déformation du carter en 3 lobes et forme
circulaire initiale ( )

(b) déformation de la roue aubagée

Figure 2.20 Interaction modale à 3 diamètres nodaux. Déplacements rapprochant ( ) ou
éloignant ( ) du centre de rotation. Adapté de [12].

Dans l’hypothèse d’un carter rigide, le contact entre les aubes et le carter peut conduire
à un arrachement de la matière de façon analogue un outil d’usinage, comme représenté
sur la figure 2.21. Une solution technologique retenue par les industriels pour diminuer le
jeu aubes-carter tout en évitant la dégradation du système en cas de contact consiste à
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déposer à l’intérieur du carter un revêtement pouvant être détérioré par le contact sans abîmer
les aubes, appelé abradable [104]. Le niveau de consommation de jeu, défini par l’épaisseur
d’abradable consommé, et la prédiction des profils d’usure de l’abradable font l’objet de
recherches importantes depuis 2010. Par exemple, des campagnes expérimentales ont permis
de montrer que sous certaines conditions le profil du revêtement abradable présente une
usure non uniforme circonférentiellement et axialement, avec un plus grand nombre de lobes
en circonférence face au bord de fuite que face au bord d’attaque [122]. Le comportement
vibratoire de l’aube lors d’un contact avec le carter est complexe, et de multiples paramètres
comme le mécanisme d’échauffement [119] et d’usure [13,91] doivent être pris en compte pour
affiner la compréhension du phénomène. Dans les études numériques, le carter peut être pris
comme parfaitement circulaire à des fins de simplification [123], ou pré-déformé de façon à
créer des zones de contact privilégiées [121,124]. Les vibrations des aubes en considérant un
carter rigide permettent bien d’expliquer les motifs d’usures observés expérimentalement [121].

(a) aube ( ) et abradable ( ) (b) fraiseuse ( ) et matériau usiné ( )

Figure 2.21 Analogie entre l’usure de l’abradable par l’aube et le fraisage. Adapté de [13].

Enfin, d’autres éléments peuvent être étudiés pour améliorer le caractère prédictif des simula-
tions : l’influence du contact aube-carter sur la liaison en sapin pour les aubes rapportées [125] ;
l’influence de l’arbre rotor [126] ; et l’influence de la courbure de l’aube sur son comportement
vibratoire au contact [12], avec un cas toujours divergent quand l’aube a une courbure positive
(orientée suivant son sens de rotation). Outre les études sur le phénomène d’interaction, un
travail important est mené sur l’optimisation des profils d’aube pour limiter les cas de contact
avec le carter tout en conservant les propriétés mécaniques et aérodynamiques des aubes [17].
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2.4.2 Traitement numérique en éléments finis

Frottement

Le frottement peut être rencontré dans toutes les interfaces sus-mentionnées. Il est fortement
non-linéaire du fait de la transition adhérence-glissement, de l’influence de la force normale
générée par le contact et de la variation de la surface de contact. Les effets de ces non-
linéarités peuvent endommager le mécanisme et nécessitent alors d’être contrôlés et amoindris,
notamment entre les nageoires de turbines ou entre les aubes et le carter. A l’inverse, les non-
linéarités peuvent être volontairement ajoutées au système pour leur action stabilisante [36],
comme dans les amortisseurs en pied d’aubes voire dans certaines nageoires spécialement
conçues à cet effet. Les recherches portent notamment sur deux aspects de l’amortissement
par frottement : sa modélisation d’une part et l’analyse du comportement non-linéaire d’autre
part [71]. Le lecteur intéressé trouvera des informations complémentaires dans la revue de
Fenny et al. [127].

L’implémentation numérique du frottement peut être réalisée en utilisant la méthode directe,
l’intégration temporelle ou l’équilibrage harmonique (HBM, de l’anglais : Harmonic Balance
Method) [36]. La première a été utilisée dès les années 1930 pour les études analytiques
et repose sur les approximations de Coulomb. L’intégration temporelle a connu un essor
important entre 1980-1990 grâce aux puissances de calcul grandissantes. Cependant le temps
de calcul rapidement prohibitif et l’impossibilité de correctement appréhender les cas de
discontinuités comme l’adhérence [36] explique le grand nombre de recherches utilisant la
HBM. Dans cette dernière, la réponse forcée du système est considérée comme harmonique
par une approximation en série de Fourier tronquée. Elle est compatible avec des méthodes à
hystérésis qui prennent en compte la déformation de la surface de contact [38, 39]. La HBM a
été raffinée par des techniques incrémentales (IHBM) [128], reprises par Petrov et Ewins [129]
pour l’application aux turbomachines.

Le frottement entre les nageoires de deux aubes disctinctes a été étudié par la procédure
de HBM simple (ou mono-harmonique) expérimentalement [100] et analytiquement [130]
avant d’être étendue grâce à la technique multi-harmoniques sur un cas académique [131].
Plus récemment, les amortisseurs en pied d’aube ont été étudiés avec une approche hybride
fréquentielle-temporelle, qui repose sur la méthode d’alternance entre les deux domaines [132–
134], issue de la méthode de Galerkin accélérée (en anglais : fast Galerkin method) [135]. Les
cas de frottement entre les aubes et le disque, au niveau des liaisons mécaniques en sapin
(figure 2.13a), constituent les développements les plus récents. Ils ont été menés entre autres par
Petrov et Ewins [129], qui couplent la HBM multi-harmoniques avec les éléments finis et une
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réduction du modèle par analyse modale, Nacivet [134], qui propose une nouvelle formulation
des Lagrangiens (dite de Lagrangiens dynamiques ou méthode DLFT de l’anglais : Dynamic
Lagrangian mixed Frequency-Time method) pour résoudre les équations du mouvement non-
linéaires dans le domaine fréquentiel avec une vérification des lois de frottement dans le
domaine temporel, et Charleux et al. [103] qui ont étendu la méthode de Nacivet à un cas en
trois dimensions forcé réduit par synthèse modale.

Contact

Les problèmes de contact et d’impacts sont intrinsèquement non-linéaires, puisque la vitesse
des corps qui entrent en contact est discontinue, en norme et en direction, et le contact
induit des forces élevées dans un intervalle de temps très faible. Du fait de la discontinuité
de la vitesse, le mouvement est dit non-régulier. Le terme forçant de l’équation (2.5) est
alors dépendant du déplacement. L’équation du mouvement devient alors, en négligeant
l’amortissement :

Mü + Ku = F (t,u(t)) (2.15)

De plus, les efforts générés au moment du contact dépendent de la vitesse relative des corps et
leur comportement (vitesse et trajectoire) est complètement modifié après que le contact ait eu
lieu. Le but d’un algorithme de gestion du contact est d’une part de le détecter et d’autre part
de calculer les forces résultantes. Pour ce second point, une loi de contact est généralement
utilisée [17], même si certaines études proposent de s’en passer [123]. La loi de contact permet
de traduire l’ajout de contraintes relatives au cas de contact, si bien qu’elle peut avoir un
grand impact sur les résultats [12]. Comme vu dans la section 2.4.1, les phénomènes de contact
peuvent être d’autant plus destructeurs lorsque les deux solides considérés ont une grande
vitesse relative et que l’interface est discontinue. Ainsi, la suite de cette partie est centrée sur
le traitement numérique de l’interaction aubes-carter.

Pour résoudre les équations du mouvement associées, une double discrétisation, en temps
et en espace, est nécessaire. La discrétisation en temps peut être réalisée par une approche
temporelle, telle qu’avec l’algorithme de Carpenter [37]. Une approche fréquentielle peut
également être utilisée, en particulier pour les systèmes oscillants. La discrétisation spatiale
est toujours réalisée par éléments finis : même si des méthodes multi-corps commencent à faire
leur apparition, telle la méthode SPH (pour l’anglais : Smoothed Particle Hydrodynamics)
développée initialiment pour les fluides, le coût numérique qu’elles induisent ne permettent pas,
pour le moment, une application aux roues aubagées, même en considérant une configuration
académique.
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Méthode de la pénalité. La méthode de la pénalité (en anglais : penalty method, aussi
appelée contact force approach [34]), revient à considérer que la surface des éléments qui
entrent en contact est constituée de systèmes ressorts-amortisseurs (figure 2.22). Les forces de
contact, exprimées comme une fonction de la pénétration, sont ajoutées aux équations du
mouvement lorsqu’il y a contact. Plusieurs modèles peuvent être utilisés pour exprimer la force
de contact en fonction de la pénétration [34] : un système masse-ressort en parallèle, le modèle
de contact de Hertz (qui considère, au contact, des corps purement élastiques) ou encore
le modèle de Lankarani-Nikravesh, qui proposent de séparer la force de contact normale en
composantes élastique et dissipative, basé sur le travail de Hunt et Crossley. La difficulté est
alors de définir des paramètres qui traduisent correctement la physique du problème, comme
la raideur équivalente et le degré de pénétration permis. Une augmentation de la raideur
permet une diminution de la pénétration, mais nuit à la stabilité numérique [34]. Beaucoup de
modifications ont été proposées à la méthode de pénalité vers les années 2000 pour la rendre
plus réaliste, particulièrement à l’égard de la pénétration et de la phase de restitution de la
force [33].

Figure 2.22 Principe de la méthode de pénalité : une pénétration du solide tournant ( )
dans le carter ( ) est permise. Adapté de [14].

La méthode de la pénalité présente l’avantage d’éviter une discontinuité de la force lors du
contact. En revanche, elle nécessite une calibration numérique minutieuse des coefficients de
pénalité à utiliser.

Méthode des multiplicateurs de Lagrange. La théorie des multiplicateurs de La-
grange fait intervenir des développements avancés d’analyse et de théorie d’optimisation
sous contraintes [35]. Appliquée dans un cas de contact mécanique, elle repose sur un al-
gorithme de prévision/correction des déplacements à chaque itération temporelle [12]. Si le



42

déplacement prédit induit une pénétration, la force équivalente de contact qui l’annulerait
est calculée et propagée à l’ensemble de la structure via le vecteur des multiplicateurs de
Lagrange [47,136]. La force de contact comprend à la fois la force normale de contact et la
force tangentielle de glissement.

Le mouvement est ici calculé par intégration temporelle. Classiquement, l’algorithme de
Carpenter, construit suivant un schéma numérique explicite centré, est utilisé car il a été
développé spécifiquement pour les cas de contact [37] :

u̇ = ui+1 − ui−1

2h (2.16)

ü = ui+1 − 2ui + ui−1

h2 (2.17)

avec : u le vecteur des coordonnées physiques généralisées




ui le vecteur des coordonnées au pas de temps courant (i)
ui−1 le vecteur des coordonnées au pas de temps précédent (i− 1)
ui+1 le vecteur des coordonnées au pas de temps suivant (i+ 1)

u̇ le vecteur des vitesses généralisées
ü le vecteur des accélérations généralisées
h = ti+1 − ti le pas de temps numérique

L’équation du mouvement résultant dans le cas linéaire devient alors [124] (la démonstration
de l’inversibilité de [2M + hD] est disponible en annexe D) :

ui+1 = [2M + hD]−1
(
2h2F +

[
4M− 2h2K

]
un + [hD− 2M] un−1

)
(2.18)

Si le pas en espace, noté dx, est défini par la discrétisation en éléments finis, le pas en temps
h doit être posé pour assurer la convergence du calcul en respectant à la fois la condition CFL
(pour Courant-Friedrichs-Lewy) [137] et la condition de Nyquist-Shannon [138].

2.5 Vibrations forcées des roues désaccordées en contexte non-linéaire

Les recherches présentées précédemment portaient soit sur l’étude des roues aubagées désac-
cordées dans un contexte linéaire (section 2.2.2), soit sur l’étude des vibrations non-linéaires
des roues aubagées accordées (section 2.4). Peu de recherches ont été menées à ce jour sur
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l’étude des vibrations non-linéaires des roues aubagées désaccordées. Or, la prise en compte
de ces deux aspects induit des modifications majeures sur le comportement vibratoire des
roues aubagées, améliorant grandement la prédictivité des simulations.

2.5.1 Interfaces entre composants du rotor

Dès 1985, Griffin et Sinha [40] ont réalisé une étude couplée entre l’influence du désaccordage et
celle du frottement sur la réponse forcée d’une aube, calculée par équilibrage mono-harmonique.
Les surfaces de friction étudiées sont situées au niveau des interfaces entre composants du
rotor : dans les amortisseurs entre le disque et les aubes au niveau des arrêts géométriques en
sapin et entre les aubes au niveau des nageoires. En 2007, Poudou [71] a développé une méthode
utilisant un domaine hybride fréquentiel-temporel (en anglais : Hybrid Frequency-Time domain
method), appliquée notamment à un modèle à trois dimensions avec un désaccordage sur
la raideur de 7%. La méthode hybride fréquentielle-temporelle [133] y a été modifiée par
Poudou pour pouvoir être appliquée à des systèmes industriels à grand nombre de degrés de
liberté. D’autres études ont également traité de l’étude de l’influence du désaccordage sur le
frottement, notamment Chen et Sinha [139] avec une approche probabiliste du frottement
en pied d’aube, et Lin et Mignolet [62] avec l’étude du désaccordage sur l’amortissement
structurelle d’une roue aubagée.

Dans les cas sus-mentionnés, le désaccordage n’était qu’un paramètre du système physique
et l’évolution de son influence au regard de son niveau (écart par rapport au cas accordé)
ou de sa distribution sur l’ensemble de la roue aubagée n’était pas étudiée. Les récentes
études de Joannin et al. propose de palier à ce manque [41, 42] en étudiant l’influence du
désaccordage sur les vibrations non-linéaires au niveau des amortisseurs en pied d’aube.
Le contact est géré avec la méthode de pénalité, le frottement est implémenté grâce à une
approche fréquentielle harmonique, et la synthèse modale est réalisée avec l’approche des
méthodes CMS. La méthode ainsi développée est nommée CNCMS, de l’anglais Component
Nonlinear Complex Mode Synthesis. Il en ressort que le désaccordage influe grandement sur
les vibrations non-linéaires, par rapport aux cas critiques prédits dans les modélisations de
roues aubagées accordées, sur les cas de désaccordage déterministe étudiés. Aucune étude
stochastique pour évaluer l’influence du petit désaccordage, telles celles menées sur les cas de
vibrations linéaires (section 2.2.2), n’a encore été menée.
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2.6 Interfaces entre le rotor et le stator - Intérêt de recherche

Toutes les recherches abordées, de Griffin et Sinha [40] en 1985 à Joannin et al. [41,42] en 2016
et 2017, considèrent les non-linéarités entre solides d’un même ensemble. De fait, aucune étude
n’a encore été menée concernant l’influence du désaccordage sur les non-linéarités de contact
entre l’aube et le carter. Pourtant, les motoristes s’intéressent de plus en plus aux roues
aubagées de type monobloc (figure 2.13b), désormais réalisables grâce aux progrès des procédés
de fabrication. En effet, les DAM permettent une réduction de masse, une augmentation des
performances aérodynamiques et une plus grande durée de vie par rapport aux assemblages
d’aubes rapportées sur le disque [140]. Les développements les plus récents sur les matériaux
permettent même d’envisager d’affiner le disque pour créer des ANneaux Aubagés Monoblocs
(ANAM) [85] (figure 2.23), qui permettraient un gain de masse de 50% pour une même
résistance mécanique. Dans ce type de système, les aubes et le disque ne constituent qu’une
seule structure, et les arrêts géométriques en sapins ainsi que les amortisseurs en pied d’aubes
disparaissent, si bien que l’amortissement global de l’ensemble est plus faible [141]. Comme
en outre le couplage structurel est plus important, le système est beaucoup plus sensible à la
localisation de l’énergie de vibration [32]. En somme, les DAM et ANAM sont beaucoup plus
sensibles au désaccordage [58]. D’autre part, du fait de l’absence de jeu et d’amortissement
entre le disque et les aubes, l’énergie communiquée aux têtes d’aubes lors d’un impact avec le
carter se propagera d’autant plus facilement dans l’ensemble de la roue aubagée.

Figure 2.23 Modification de la structure entre un disque classique et un anneau avec renfort
composite ( ). Adapté de [15].

L’étude conjointe du désaccordage et des non-linéarités de contact aube-carter pourrait de
fait être déterminante pour la compréhension des phénomènes vibratoires des DAM et des
ANAM, qui constituent la prochaine génération de roues aubagées. Or les études se sont
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exclusivement concentrées sur les non-linéarités entre composants du rotor, soit en pied d’aube
(aube rapportée sur le disque) ou entre les nageoires des aubes, et l’influence du désaccordage
sur les non-linéarités aubes-carter n’ont pas à ce jour pas été étudiées.

La présente recherche propose de palier à ce manque, à travers quatre apports :

(1) analyse phénoménologique sur un modèle à deux dimensions, permettant des calculs
stochastiques proches de ce qui est usuellement présentés, dans le cadre de l’étude de
l’influence du désaccordage sur les vibrations forcées linéaires ;

(2) développement et validation d’une méthodologie permettant la prise en compte du
désaccordage sur des modèles réduits industriels avec interface de contact ;

(3) analyse stochastique d’une configuration industrielle, en condition nominale de fonction-
nement ;

(4) utilisation de la méthodologie pour permettre le développement d’algorithmes d’identifi-
cation expérimentale de phénomènes non-linéaires, en prenant en compte le désaccordage.
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CHAPITRE 3 MODÈLE PHÉNOMÉNOLOGIQUE

Ce chapitre constitue une première contribution à l’étude des non-linéarités de contact sur
des roues aubagées désaccordées. Cette étude permet tout d’abord d’évaluer la robustesse de
la prédiction des fréquences d’interaction dans un cas de contact lorsque le désaccordage est
introduit. Ensuite, le principal critère utilisé pour quantifier stochastiquement l’influence du
faible désaccordage est l’amplification des déplacements en bout d’aube, par rapport à ceux
calculés pour une roue aubagée accordée. L’amplification, avérée dans un cadre linéaires, est
ainsi étudiée dans un cadre non-linéaire.

Le modèle utilisé, construit par éléments finis, est choisi pour sa représentativité déjà avérée
des phénomènes de contact aubes/carter dans le cadre de la résolution par multiplicateurs de
Lagrange et intégration temporelle, dont les équations principales sont rappelées en début de
chapitre. Il est alors montré que ce modèle, une fois désaccordé, est également représentatif des
vibrations de roues aubagées désaccordées dans le cadre d’un forçage linéaire. Une première
étude en configuration de contact aubes/carter pour un motif désaccordé donné permet
ensuite de poser les configurations et variables d’intérêt étudiées, tout en démontrant la
robustesse des résultats au regard des paramètres numériques et de simulation. Avant de
présenter les résultats stochastiques montrant l’influence du désaccordage sur les vibrations
de contact, la convergence stochastique des résultats est avérée aussi bien qualitativement que
quantitativement. Les résultats stochastiques pour une configuration de contact sont alors
comparés aux résultats stochastiques pour un forçage linéaire et analysés. Afin de représenter
le passage d’une roue aubagée classique à un disque aubagé monobloc (DAM), des résultats
supplémentaires sont donnés dans le cadre d’un amortissement amoindri. Enfin, des études
complémentaires sur les non-linéarités et les énergies de déformation permettent de donner
davantage de renseignements sur le comportement vibratoire du modèle étudié.

3.1 Modélisation

Le modèle utilisé est similaire à celui défini par Legrand et al. [12]. Le disque est constitué de
poutres radiales droites à 3 ddl par nœud, lesquelles sont liées par des poutres courbes à 4
ddl par nœud. Le détail des matrices élémentaires utilisées pour modéliser les poutres courbes
peut être trouvé à la référence [142] (partie 2 II.2 et V.2). Les aubes sont représentées par des
poutres droites à 3 ddl par nœud. Le modèle éléments finis complet contient ainsi au total
120 nœuds et 420 ddl. Pour une aube donnée, l’angle entre chaque poutre i qui la compose et
le rayon du disque passant par le nœud en son pied dépend du nombre de poutres de l’aube
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et d’un coefficient de courbure, tel que :

angle(i) =
(
− i

nb poutres par aube− 1

)coeff de courbure

(3.1)

Le coefficient de courbure est le même pour toutes les aubes.

(a) configuration linéaire (nd = 5) : charge-
ment circulaire ( ) et ddl frontière ( )

(b) configuration non-linéaire (nd = 5) : dé-
formation du carter ( )

Figure 3.1 Modèle phénoménologique de roue aubagée, en 2D.

Les dimensions et propriétés du modèle sont résumées dans le tableau 3.1. Elles ont été
choisies afin que la première famille modale, qui correspond à un premier mode d’aube en
flexion (1F), se trouve à une fréquence proche de 90 Hz, soit du même ordre de grandeur
que pour les soufflantes de moteurs d’avion. Un modèle similaire avait été utilisé dans le cas
de simulations linéaires de contact dans [12] et [120], où la représentativité du modèle par
rapport à une soufflante réelle avait été établie, particulièrement en configuration de contact.

3.1.1 Réduction modale

Construction

La méthode de réduction de Craig-Bampton [24] est utilisée afin de réduire les dimensions
du modèle et limiter les coûts de calcul. Cette méthode permet de conserver des ddl mixtes
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Tableau 3.1 Propriétés du modèle éléments finis.

paramètres géométriques propriétés matériau
nombre d’aubes N = 12 module d’Young nominal E0 = 2,1 · 1011 Pa

longueur des aubes 50 cm masse volumique 7800 kg ·m−3

rayon du disque 20 cm taux d’amortissement 5 · 10−3

nombre de poutres par aube 5 coefficient de Poisson 0,3
coefficient de courbure 3/2

modaux et physiques, appelés respectivement « internes » et « frontière ». En les définissant
comme des ddl frontière lors de la réduction, les ddl (u, v) en bout d’aube, tels que représentés
sur la figure 3.1a, sont conservés dans le modèle réduit afin d’être utilisés dans les simulations
de contact. Ces 2N = 24 ddl frontière sont complétés par η ddl modaux afin de garantir
la représentativité du système global vis-à-vis du modèle éléments finis initial complet. La
matrice de réduction de Craig-Bampton (CB) est définie par (un rappel de sa construction
dans l’annexe E) :

ΨCB =

Inf

0nf ,η

Φs Φe,η


 (3.2)

avec : nf le nombre de ddl frontière
Inf

= diagnf
(1) la matrice identité de dimension nf

Φs la matrice des modes statiques, de dimension (ni, nf )
ni le nombre de ddl internes
Φe,η la matrice des modes encastrés réduits à η modes

Le changement de la base physique à la base réduite permet ainsi d’obtenir :

uf

ui


 = ΨCB


uf

pη


 = ΨCBqr (3.3)

avec : ui et uf les déplacements respectivement des ddl internes et frontière
pη les amplitudes modales des ddl internes
qr le vecteur réduit des déplacements dans la base CB

(3.4)

Les matrices du système réduit, notées (Kr,Mr), sont calculées à partir des matrices du
système dans la base physique (K,M) réorganisées en ddl frontière et internes :

Kr = ΨCB
TKΨCB , Mr = ΨCB

TMΨCB (3.5)
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Validation sur le calcul des modes propres

Les valeurs propres et vecteurs propres du système réduit sont calculés par la résolution du
problème aux valeurs propres généralisé du couple de matrices du système réduit (Kr,Mr).
Le diagramme fréquences/diamètres nodaux obtenu pour le système est présenté sur la
figure 3.2a. Les résultats obtenus pour le modèle réduit, présentés pour η = 60, sont superposés
aux résultats obtenus pour le modèle éléments finis complet. Le modèle réduit retranscrit
donc fidèlement les vibrations libres du système. Les modes propres de la première famille
correspondent à des modes d’aube en flexion simple (1F). Le calcul de la différence entre
chaque mode (figure 3.2b) permet de montrer que cette famille modale se situe dans une plage
de fréquence restreinte.
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qu

en
ce

[H
z]

1F

2F

3F

4F

(a) familles modales, de la 1F à la 4F

0,11

0,39

0,70

0,88
0,75

0,29

0 1 2 3 4 5 6
90

91

92

93

nd [ – ]

fré
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Figure 3.2 Diagramme fréquences/diamètres nodaux pour le modèle réduit avec η = 60 ( )
et le modèle éléments finis complet ( ).
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3.1.2 Amortissement

L’amortissement est défini dans l’espace modal (4.4.3 de [67]) :

ΦT
r CΦr = 2ξ (Λr)

1
2 (3.6)

avec : Φr les vecteurs propres du système réduit
Λr la matrice diagonale des valeurs propres du système réduit
C la matrice d’amortissement
ξ le taux d’amortissement, identique pour tous les modes

La matrice d’amortissement C ainsi définie respecte la condition de symétrie (hypothèse 3
attachée à l’équation du mouvement, voir l’annexe A).

Hypothèse de faible amortissement

La fréquence naturelle du système est considérée égale à la fréquence des vibrations
libres du système non amorti (3.1.2 de [49]).

Afin de se placer dans le cadre de l’hypothèse de faible amortissement définie dans l’encart
ci-dessus, le taux d’amortissement est posé à 5 · 10−3, comme donné dans le tableau 3.1.

3.1.3 Traitement du contact

Résolution numérique

Dans le cadre des petites perturbations, l’équation du mouvement a été établie dans le domaine
temporel :

Mrü + Dru̇ + Kru = F(t) + Fnl(u, t) (3.7)

avec : Mr, Kr et Dr les matrices de masse, amortissement et raideur du système réduit
u, u̇ et ü les vecteurs des déplacements généralisés, vitesses et accélérations
F et Fnl les vecteurs de forçage linéaire et non-linéaire

L’intégration temporelle est réalisée grâce au schéma numérique explicite aux différences finies
centrées, proposé par Carpenter et al. [37] et présenté dans la section 2.4.2. L’algorithme de
prédiction/correction des déplacements est similaire à celui décrit dans [12]. Les déplacements
prédits pour l’itération temporelle (i+ 1), notés ui+1,p, sont calculés avec l’équation (2.18).
La rotation de la roue aubagée et ses vibrations sont prises en compte dans les déplacements
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prédits. Le calcul du vecteur des distances aubes/carter d permet alors de considérer le
possible contact avec le carter. Les distances aubes/carter prédites négatives d− correspondent
à une pénétration de l’aube dans le carter qui doit donc être contrée par l’ajout des forces de
contact, calculées via le vecteur des multiplicateurs de Lagrange λ :

λ =
(

CT
N

[Mr

h2 + Dr

2h

]−1
(CN + CT)

)−1

d−i+1 (3.8)

avec : CN la matrice de contact normal, qui vaut ±1 pour les ddl en contact et 0 sinon
CT la matrice de contact tangentiel, qui vaut ±µ pour les ddl en contact et 0 sinon

où µ est le coefficient de frottement entre les aubes et le carter

Le vecteur λ ainsi défini est de dimension N . Le carter étant considéré rigide, la force de
contact est entièrement restituée à l’aube. Le signe des éléments de CN et CT dépend du sens
choisi pour l’orientation des ddl, le terme correctif ui+1,c sur les déplacement devant ramener
la structure à une configuration où la pénétration est nulle. Ce terme correctif est calculé par :

ui+1,c =
[Mr

h2 + Dr

2h

]−1
(CN + CT)λ (3.9)

Le déplacement effectif de la structure pour l’itération temporelle (i+ 1) est alors :

ui+1 = ui+1,p + ui+1,c (3.10)

Scénario de contact

Le contact est initié par la déformation d’un carter rigide entourant la roue aubagée et
présentant des lobes de déformation. Le nombre de zones de contact privilégiées sur le carter
est noté nd. Ces nd lobes sont répartis uniformément sur toute la circonférence du carter,
comme représenté pour nd = 5 sur la figure 3.1b. Le carter, initialement circulaire, est déformé
progressivement sur 0,01 s vers la configuration finale à nd lobes. Il est à noter que ce temps de
déformation ne correspond pas à un temps de déformation du fait de contraintes thermiques
sur un carter réel, qui serait beaucoup plus long [119], mais est un paramètre numérique qui
permet d’éviter toute pénétration initiale des aubes dans le carter. Un des lobes est représenté
sur la figure 3.3. La variation maximale du rayon du carter du fait de ces lobes est appelée
amplitude maximale des déformations du carter et est notée crd. La fonction utilisée pour
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obtenir la forme des lobes est :

f(θ) = −crd exp


−


 θ

0.12π
nd




2

 (3.11)

Comme montré sur la figure 3.3, le contact peut se produire lorsque crd est plus grand que le
jeu aubes/carter initial, défini comme la différence entre le rayon du carter rc et le rayon de
la roue aubagée ra. Le jeu initial est posé à 0,25mm. La déformation maximale du carter est
de crd = 1,25 mm.

jeu

θ rc
ra crd

f(θ)

Figure 3.3 Lobe de déformation du carter.

3.1.4 Prise en compte du désaccordage

Implémentation

Étant donné l’absence de données expérimentales, le faible désaccordage étudié est considéré
comme une variation au niveau du module d’Young [58] des aubes. Le module d’Young de
chaque aube n est ainsi calculé par :

En = E0 (1 + (δE)n) , n ∈ [1, N ] (3.12)

avec : E0 le module d’Young nominal du système accordé
En le module d’Young de l’aube n
(δE)n la variation de module d’Young due au désaccordage, pour l’aube n

Les variations (δE)n pour chaque aube sont déterminées par un tirage aléatoire, définissant
ainsi le motif de désaccordage sur l’ensemble de la roue aubagée. Comme vu dans la section 2.1.2,
(δE) est usuellement tiré selon une fonction de répartition de Laplace-Gauss. D’un point de
vue statistique cependant, une telle distribution conduit généralement à obtenir un grand
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nombre de motifs proches du nominal accordé, puisque la densité de probabilité y est la plus
grande (comme illustré sur la figure 2.8), et a contrario si aucune troncature n’est effectuée
sur les bornes extérieures de la distribution certaines valeurs de (δE)i peuvent sortir du niveau
de désaccordage souhaité. Une distribution uniforme est, elle, intrinsèquement bornée, définie
entre [−δE, +δE], ce qui permet un contrôle accru de la déviation de paramètres effectivement
appliquée sur la roue aubagée. De fait, une distribution uniforme entre [−δE, +δE] est préférée
dans la présente recherche. L’écart-type adimensionné σ(δE) d’une telle distribution, utilisé
pour le tracé des résultats de simulations de Monte Carlo [70, 90], est alors donné par
(démonstration en Annexe C) :

σ(δE) = 2δE√
12

(3.13)

La variation δE est posée entre 1% et 4% dans ce chapitre, si bien que σ(δE) varie entre
0,58% to 2,31%, ce qui correspond à des variations effectives identifiées pour des procédés de
fabrication modernes [65]. Dans ce qui suit, σ(δE) est appelé degré de désaccordage et est
noté simplement σ.

Afin d’illustrer chaque aspect de la méthologie utilisée dans cette étude, un motif de désaccor-
dage aléatoire est choisi tel que donné tableau 3.2. Son niveau de désaccordage est σ = 1,7 %.

Tableau 3.2 Motif de désaccordage sélectionné.

module d’Young par aube (×1011 Pa)
E1 2,0701 E2 2,0627 E3 2,0695 E4 2,1683 E5 2,0809 E6 2,1421
E7 2,1164 E8 2,0166 E9 2,1256 E10 2,0328 E11 2,0391 E12 2,1193

Modes propres

Les fréquences propres de la première famille (1F) du système désaccordé avec le motif
renseigné dans le tableau 3.2 sont comparées aux fréquences propres du système accordé sur
la figure 3.4a. Là où les fréquences sont doubles sur le système accordé comme attendu (voir le
calcul des fréquences propres à la section 2.1.1), par exemple sur les modes numéro 2 et 3 qui
correspondent au mode à 5 diamètres sur la figure 3.2b, le désaccordage induit une séparation
des fréquences notable. L’allure du mode 11 donnée sur la figure 3.4b, qui correspond pour le
cas accordé au mode à 0 diamètre, présente une rupture de symétrie et une localisation à
certaines aubes des déformations sur le cas désaccordé. Ces observations sont en accord avec
la littérature sur les vibrations libres des systèmes désaccordés [5, 23,143].
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Figure 3.4 Incidence du désaccordage sur les modes propres, séparation des fréquences, rupture
de symétrie et localisation.

Analyse linéaire

Le forçage linéaire Flin(θn, t) considéré est une représentation simplifiée du forçage aérody-
namique, dû dans les turbomoteurs réels à la variation de charge en amont de l’écoulement
du fait de la présence de redresseurs. Il est défini sinusoïdal et tournant, et est appliqué
uniquement aux degrés de liberté frontière conservés dans le modèle réduit, comme représenté
sur la figure 3.1a, afin d’éviter toute erreur due à la procédure réduction modale. Sa norme
est définie en fonction du temps par :

F (θn, t) = Fmax cos ((θn − Ωt)× nd) (3.14)

avec : θn la position angulaire de la nième aube
Ω la vitesse angulaire de rotation de la roue aubagée
Fmax l’amplitude du forçage
nd le nombre de redresseurs
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Dans cette étude, Fmax = 150 N afin que les déformations des aubes soient visibles mais
toujours sous la condition de petites perturbations imposée par l’hypothèse 4 (explicitée dans
l’annexe A) de l’équation du mouvement en notation matricielle (2.5). Par analogie avec les
systèmes accordés, le paramètre nd correspond ainsi au nombre de diamètres nodaux excités
par le forçage. Sa notation a été choisie identique à celle utilisée dans l’expression de la forme
des lobes sur le carter, donnée à l’équation (3.11), afin de faciliter les comparaisons ultérieures.

En considérant nd = 4, les fonctions de réponse en fréquence (FRF) des modèles accordé et
désaccordé selon le motif donné dans le tableau 3.2 sont tracées sur la figure 3.5. La plage de
vitesses considérée correspond à la première résonance du modèle. La dispersion des fréquences
δf due au désaccordage [53] est mise en évidence par la multiplicité des pics sur la réponse
de la roue aubagée désaccordée. Les amplitudes de vibrations maximales sont également
indiquées sur la figure 3.5. L’amplification due au désaccordage est définie comme le ratio
entre l’amplitude maximale dans le cas accordé et celle dans le cas désaccordé. Pour toutes les
roues aubagées désaccordées, l’amplitude retenue pour calculer l’amplification correspond au
maximum à la fois sur toute la plage de fréquence d’intérêt, et sur toutes les aubes, en accord
avec les considérations statistiques usuelles pour les systèmes désaccordés [32,72]. Dans le cas
présenté sur la figure 3.5, l’amplification due au désaccordage sur le système considéré est
alors de 1,36. Dans le reste de ce travail de recherche, elle sera appelée l’amplification linéaire
et notée Alin.
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Figure 3.5 FRF linéaire pour nd = 4 des modèles accordé ( ) et désaccordé ( ), enveloppe
des amplitudes obtenues pour chaque aube ( ).
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Analyse stochastique

La sensibilité au désaccordage d’une roue aubagée est déterminée par analyse stochastique
sur un grand nombre de modèles désaccordés, ou échantillons dans un vocabulaire statistique.
La convergence stochastique des résultats, définie par la stabilisation des valeurs calculées
pour les centiles à mesure que le nombre d’échantillons simulés augmente, est typiquement
atteinte à partir de plusieurs milliers d’échantillons par niveau de désaccordage σ [23]. Pour
le modèle phénoménologique utilisé, les résultats des simulations de Monte Carlo pour un
forçage dans la plage de fréquences de la première famille modale (1F) sont présentés sur
la figure 3.6 pour nd = 1 à 6 et σ ∈ [0, 2,3] %. La convergence stochastique a été obtenue
pour 10 000 échantillons par point (nd, σ), si bien que l’ensemble de la nappe a été obtenue
avec 240 000 échantillons. Les trois courbes représentées pour chaque valeur de nd (voir pour
nd = 4 sur la figure 3.6b) sont les centiles à 1 %, 50 % et 99 % calculés sur l’amplification
Alin. Elles permettent de résumer le comportement statistique de l’ensemble des résultats
stochastiques collectés.
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(b) amplifications pour nd = 4

Figure 3.6 Amplifications prédites pour un forçage dans la plage de fréquences de la première
famille modale (1F) : centile 1 ( ), centile 50 ( ) et centile 99 ( ).

Les simulations de Monte Carlo pour différentes valeurs de nd, dont les résultats sont présentés
sur la figure 3.6a, permettent de caractériser la sensibilité de Alin selon nd. Il apparaît que
Alin est maximale pour nd = 6 et minimale pour nd = 3, et ne varie pas de façon monotone
selon nd, en accord avec la littérature [63]. De plus, l’allure générale de la nappe suivie par
Alin lorsque nd varie présente un bon accord avec de précédents travaux sur des modèles à 12
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aubes [144]. Enfin, l’ordre de grandeur des amplifications en contexte linéaire Alin est similaire
aux valeurs trouvées dans la littérature [32, 90].

Ces résultats permettent de valider la représentativité du modèle par rapport au désaccordage
en configuration linéaire. Ce modèle phénoménologique est de fait utilisé dans le cadre des
simulations de contact sur des systèmes désaccordés, présentées dans ce qui suit.

3.2 Analyse pour une roue aubagée désaccordée

Dans cette section, la méthodologie proposée pour les simulations avec non-linéarités de contact
est appliquée sur le système dont le motif de désaccordage est donné dans le tableau 3.2. Les
paramètres clefs et les quantités d’intérêt pour l’analyse stochastique sont présentés. Comme
les procédures numériques ayant trait aux phénomènes de contact ont déjà été validées
dans la littérature sur un modèle similaire [121,124,145], l’emphase est ici mise sur : (1) la
convergence des simulations par rapport au paramètre de réduction η et au pas de temps h ;
(2) la robustesse des résultats obtenus par rapport aux différents paramètres du modèle.

3.2.1 Simulations de contact

Les simulations de contact sont réalisées à vitesse angulaire constante sur l’ensemble de la
simulation, avec un carter déformé comme indiqué sur la figure 3.1b. Afin de garantir les
résultats en réponse forcée, il convient de s’assurer que le système atteint un régime permanent.
Les réponses temporelles sont ainsi analysées par autocorrélation sur le déplacement tangentiel
de l’aube ayant la plus grande amplitude de vibration, selon les étapes suivantes :
(1) lancement des simulations sur 0,5 s
(2) analyse de convergence entre les 3 derniers tours et les 3 tours précédents (figure 3.7), à

travers :
- le coefficient de corrélation ccor sur le déplacement tangentiel de l’aube ayant la
plus grande amplitude de vibration, et

- l’erreur relative ε entre le maximum d’amplitude calculé sur les deux parties du
signal

(3) si ccor < 95 % et ε < 1 % : arrêt des simulations
sinon les simulations sont relancées sur 10 tours, retour au point (2)

Le choix de valeurs adéquates pour (ccor, ε) a été validé pour tous les diamètres nodaux, sur
le système accordé et des systèmes désaccordés, afin de garantir le meilleur compromis entre
la précision des résultats et le temps de simulations. En moyenne, le régime permanent est
considéré atteint pour t ≥ 0,96 s.
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Figure 3.7 Réponse temporelle obtenue pour Ω = 34,45 Hz et nd = 4.

3.2.2 Cartes d’interaction

Les simulations de contact sont tout d’abord lancées sur une large plage de vitesses de rotation
(de 10 Hz à 80 Hz) sur les modèles accordé et désaccordé, pour nd = 4, afin d’appréhender
au mieux leur comportement vibratoire. Pour chaque simulation, une transformée de Fourier
est effectuée sur le signal périodique, une fois le régime permanent atteint. Les spectres ainsi
obtenus constituent les cartes d’interaction des systèmes considérés, tracées sur la figure 3.8.

La carte d’interaction pour le modèle accordé tracée sur la figure 3.8a permet de montrer que
l’amplitude maximale de vibration est obtenue autour des vitesses de rotation Ω = 34,45 Hz et
Ω = 69 Hz. Ces interactions correspondent respectivement à l’excitation de la première famille
modale (1F) de la roue aubagée par les quatrième (eo = 4) et second (eo = 2) régimes moteur
(eo pour l’anglais engine order). Elles apparaissent cependant à des fréquences supérieures à
celles de la première famille modale, comme indiqué par l’écart en fréquence noté ∆1F sur la
figure 3.8a, du fait du phénomène de raidissement au contact, ce qui est en accord avec la
littérature [17]. Les fréquences de résonance non-linéaires sont ainsi supérieures de 51,2% aux
fréquences linéaires correspondantes. Pour comparaison, sur les modèles éléments finis 3D à
haute fidélité, le raidissement au contact augmente usuellement de 10 à 15 % les fréquences
de résonance. Des observations similaires peuvent être effectuées sur la carte d’interaction de
la roue aubagée désaccordée sur la figure 3.8b. L’influence du désaccordage y est notable :
chaque zone d’interaction y est significativement élargie, comme indiqué par la dispersion des
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Figure 3.8 Cartes d’interaction pour nd = 4, régimes moteur ( ) et fréquences d’interaction
dans le cas d’un forçage linéaire ( ) et de non-linéarité de contact ( ).

fréquences notée δf sur la figure 3.8b, du fait de phénomène de séparation des fréquences [53].

Ces cartes permettent de définir les plages de vitesses angulaires d’intérêt pour l’étude
d’interactions entre les familles modales et les régimes moteur. Dans cette recherche, l’emphase
a été mise sur l’interaction entre la famille modale 1F et le quatrième régime moteur eo = 4.
Les motifs désaccordés étant tous différents, la dispersion des fréquences δf s’en trouve
modifiée d’un motif à l’autre. La plage de vitesse d’intérêt, permettant de capter l’amplitude
maximale de vibration, a ainsi été déterminée stochastiquement. Pour nd = 4 par exemple,
une plage Ω ∈ [33,5; 35,5] Hz permet de capter le pic de réponse forcée souhaité pour tous les
motifs simulés.

Les vitesses angulaires permettant de traverser l’interaction choisie dépendent également du
nombre de lobes nd sur le carter. Les plages de vitesses d’intérêt, résumées dans le tableau 3.3,
ont été choisies afin de toujours correspondre à l’interaction entre la première famille modale
1F et le quatrième régime moteur, et d’être assez larges pour permettre de détecter le pic
souhaité même pour les plus grandes valeurs de désaccordage.

Tableau 3.3 Plage de vitesse angulaire d’intérêt, déterminée stochastiquement sur les roues
aubagées désaccordées

nd 3 4 5 6
plage de vitesse angulaire [Hz] [44,5 ; 47,5] [33,5 ; 35,5] [26,7 ; 28,2] [22 ; 23]
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3.2.3 Fonctions de réponse en fréquence non-linéaire

Définition et quantités d’intérêt

Sur base des plages de vitesses angulaires identifiées précédemment, les simulations de contact
sont lancées avec un pas en vitesse δΩ = 0,05 Hz. Pour chaque vitesse de rotation, l’amplitude
du régime permanent est extraite. Le tracé de ces amplitudes vis-à-vis de la vitesse de rotation
permet de définir la FRF non-linéaire. Les FRF pour le modèle de roue aubagée accordée et
pour le modèle de roue aubagée désaccordée dont le motif est donné dans le tableau 3.2 sont
tracées sur la figure 3.9. La dispersion des fréquences δf due au désaccordage y est clairement
indiquée, augmentant la plage de vitesse sur laquelle de hautes amplitudes de vibration sont
susceptibles d’être rencontrées.
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Figure 3.9 FRF dans un cas de contact pour nd = 4 des modèles accordée ( ) et
désaccordée ( ), enveloppe des amplitudes obtenues pour chaque aube ( ).

Pour chaque motif de désaccordage, la quantité d’intérêt pour les études stochastiques est
l’amplitude maximale sur l’ensemble de la plage de fréquences, comme défini dans le cadre des
vibrations linéaires [32]. Le ratio entre l’amplitude maximale dans le cas accordé, rencontrée
à Ω = 34.45 Hz, et l’amplitude maximale désaccordée permet de définir l’amplification
non-linéaire, notée par la suite Anl.

Commentaires sur la robustesse de la procédure

La nature intrinsèquement non-linéaire des systèmes mécaniques étudiés impose de prêter
une attention particulière aux FRF obtenues. En effet, il est possible que les contraintes
imposées par le contact unilatéral induisent un comportement dynamique complexe, présentant
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plusieurs branches stables et bifurcations [146]. La FRF montrée sur la figure 3.9 suggère
en effet de tels comportements, comme indiqué par les changements soudains d’amplitudes
de vibration pour le modèle désaccordé (aire rouge) et le modèle accordé (aire grise). Une
analyse approfondie de ces sauts pour différents motifs de désaccordage révèle qu’ils ne sont
jamais situés au niveau du maximum d’amplitude sur la plage considérée, et n’impactent
donc pas la détection du maximum d’amplitude sur la FRF.
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Figure 3.10 FRF pour différents paramètres de simulation.

Finalement, la robustesse des FRF obtenues vis-à-vis de paramètres clefs de la simulation,
comme l’amplitude maximale de la déformation du carter ou le jeu initial, a été étudiée. Les
FRF obtenues pour des valeurs proches de ces paramètres sont superposées sur la figure 3.10.
Le fait que les FRF sont simplement légèrement décalées pour de faibles variations de ces
paramètres démontre la robustesse des résultats obtenus.

3.2.4 Convergence temporelle et spatiale

Afin de souligner la convergence des résultats vis-à-vis du pas de temps h de la procédure
d’intégration temporelle, les FRF non-linéaires obtenues pour différents pas de temps (h =
5 · 10−7 s à h = 5 · 10−5 s) sont tracées sur la figure 3.11a. Une portion des réponses temporelles
calculées pour Ω = 34,45 Hz est montrée sur la figure 3.11b. Les FRF obtenues pour toutes les
valeurs de h < 5 · 10−5 s sont quasiment parfaitement superposées. Cependant, il y a une plage
de vitesses sur laquelle des différences sont notables, à savoir pour Ω ∈ [34,2 ; 34,3] Hz. Sur
cette plage restreinte, précédemment identifiée sur la figure 3.9 comme une plage de variation
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soudaine des amplitudes de vibration, la procédure d’intégration temporelle présente deux
types de solutions suivant la valeur de h. Cette observation suggère la co-existence de deux
branches stables de solution. Il est alors probable qu’une petite variation dans la détection du
premier contact aube/carter, due à la variation de h, soit responsable de ce comportement. De
fait, des branches de solutions stables co-existantes ont déjà été observées pour des modèles
3D construits par éléments finis dans des configurations de contact similaires [147]. Plus de
détails sur ce point seront donnés dans les analyses complémentaires en fin de chapitre. Pour
la suite, le pas de temps considéré pour les simulations est h = 10−6 s.
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Figure 3.11 Convergence temporelle pour nd = 4 : h = 5 · 10−5 s ( ), h = 5 · 10−6 s ( ),
h = 1 · 10−6 s ( ) and h = 5 · 10−7 s ( ).

Le paramètre de réduction η du modèle réduit est un autre paramètre numérique clef par
rapport auquel la convergence des résultats doit être établie. La FRF obtenue pour les
différentes valeurs de η sont tracées sur la figure 3.12a. Ces FRF sont quasiment parfaitement
superposées pour η ≥ 36. La réponse temporelle, tracée sur la figure 3.12b, montre que les
résultats correspondent parfaitement pour ces valeurs de η. Par la suite, la valeur η = 60 a
été considérée si bien que le modèle réduit contient un total de 84 ddl : 24 ddl de frontière
physique pour la prise en compte du contact et 60 ddl modaux afin de garantir une description
dynamique fidèle de la roue aubagée. Cette valeur de η est cohérente avec des valeurs
précédemment considérées pour des modèles phénoménologiques équivalents [148].
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Figure 3.12 Convergence spatiale pour nd = 4 : η = 12 ( ), η = 36 ( ), η = 60 ( ),
η = 96 ( ).

3.3 Analyse de calculs stochastiques

Les résultats stochastiques d’amplifications des vibrations dues au désaccordage dans le cadre
de simulations de contact sont présentés et discutés dans cette section. Les paramètres pour
les simulations de contact sont rappelés dans le tableau 3.4. Tout d’abord, la convergence
stochastique des résultats est soigneusement évaluée aussi bien qualitativement que quan-
titativement. Ensuite, les amplifications linéaires et non-linéaires prédites sont comparées
pour différentes valeurs de nd et pour différents niveaux de désaccordage σ. En particulier,
une sous-section est dédiée à des résultats approfondis pour la configuration nd = 4, avec
une analyse croisée basée sur tous les motifs de désaccordage utilisés dans les simulations de
contact. Finalement, l’influence de l’amortissement structurel sur les amplifications prédites
est étudiée.

Tableau 3.4 Paramètres pour les simulations de contact.

paramètres numériques paramètres du carter
pas temporel h = 10−6 sec jeu initial 0,25mm

paramètre de réduction η = 60 amplitude maximale des déformations 1,25mm
coefficient de frottement 0,15
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3.3.1 Convergence

Du fait de la nature non-linéaire de chaque simulation de contact, il n’existe pas de données
empiriques sur le nombre d’échantillons requis afin d’atteindre la convergence stochastique
des simulations de Monte Carlo. D’une part, la convergence stochastique est un pré-requis
afin que les résultats présentés soient considérés pertinents. D’autre part, le calcul d’une FRF
non-linéaire requise pour chaque échantillon prend de l’ordre d’une heure de calcul sur un
ordinateur standard équipé d’un processeur i7. Ce coût en temps de calcul important rend le
nombre d’échantillons habituellement considérés dans le cadre linéaire [23] — pour des calculs
donc bien moins coûteux — difficilement atteignable. De fait, la convergence des résultats est
ici soigneusement évaluée à la fois qualitativement et quantitativement.

Évaluation qualitative

La convergence qualitative des simulations stochastiques est évaluée à travers la stabilisation
de la moyenne de l’amplification obtenue par rapport au nombre d’échantillons, calculée pour
chaque centile et chaque niveau de désaccordage σ, comme tracé sur la figure 3.13. Une échelle
semi-logarithmique est utilisée afin que toute variation soit clairement mise en évidence, ce qui
évite de sur-estimer la convergence des résultats. Qualitativement, les courbes se stabilisent
rapidement, si bien que la convergence est considérée atteinte à partir de 2000 échantillons par
niveau de désaccordage pour nd = 6, 3000 échantillons pour nd = 3 et 5, et 4000 échantillons
pour nd = 4.

Évaluation quantitative

La convergence quantitative est évaluée en appliquant la loi des grands nombres [149] et le
théorème central limite [149] sur le calcul de l’erreur type sur la moyenne des amplifications.
L’erreur type sur la moyenne est définie par :

√
V (cs)
s

(3.15)

avec : cs les valeurs des centiles pour les s échantillons
V la variance
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Figure 3.13 Convergence qualitative sur les centiles 1 ( ), 50 ( ) et 99 ( ) pour
σ = 0,6 % ( ), 1,2% ( ), 1,7% ( ) et 2,3% ( ).

L’erreur sur la convergence est alors définie comme suit :

e(cs) = Z

√
V (cs)
s

(3.16)

avec : Z le coefficient de confiance

Le coefficient de confiance est déterminé selon la probabilité que l’ensemble des échantillons se
situent à l’intérieur d’une loi normale. Plusieurs tables existent, en fonction de la troncature
effectuée sur les bords de la loi normale. Afin d’éviter de tels effets de bord, la table considérée
dans ce qui suit correspond à la surface à droite de la loi normale (right-hand side standard
normal Z-table), soit la probabilité que les échantillons se situent entre la moyenne de la loi
normale et le niveau de confiance voulu. Usuellement, les valeurs de niveaux de confiance
utilisés sont 95%, 99% et 99,5% [149], sur l’ensemble de la loi normale. Dans ce qui suit,
un niveau de confiance de 99,5% est pris pour assurer une haute précision de résultats. Le
coefficient de confiance est alors : Z =2,81 1. La variance est estimée à travers son estimateur

1. un niveau de confiance de 0,995 sur l’ensemble de la loi normale correspond à un niveau de
confiance de 0,4975 sur la surface à droite (en anglais, right hand side). La table correspondante peut
être trouvée sur http://college.cengage.com/mathematics/brase/understanding_basic/3e/students/
appendix/app_andm.pdf

http://college.cengage.com/mathematics/brase/understanding_basic/3e/students/appendix/app_andm.pdf
http://college.cengage.com/mathematics/brase/understanding_basic/3e/students/appendix/app_andm.pdf
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statistique non biaisé (unbiased estimator) [149] :

V (cs) = 1
s− 1

s∑

i=1
|ci − c̄s|2 (3.17)

avec : ci la valeur du centile considéré pour i échantillons
c̄s la moyenne de cs

L’erreur de convergence ainsi définie ne dépend avantageusement pas de la moyenne des
valeurs des échantillons. Les erreurs de convergence en fonction du nombre d’échantillons
pour différents nombres de lobes nd sur le carter sont tracées sur la figure 3.14, avec un pas
de 10 échantillons pour le calcul des centiles. Les résultats sont considérés convergés pour
une e(cs) < 0,5 % 2. Les simulations de Monte Carlo pour nd = 6 sont les plus rapides à
atteindre ce critère de convergence, soit pour un minimum de 500 échantillons par niveau de
désaccordage. Les simulations à nd = 3 sont les plus lentes à atteindre cette convergence et
requièrent un minimum de 2000 échantillons. La convergence est notablement plus rapide sur
le centile 50, ce qui est cohérent avec la littérature [23].
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Figure 3.14 Convergence quantitative sur les centiles 1 ( ), 50 ( ) et 99 ( ) pour
σ = 0,6 % ( ), 1,2% ( ), 1,7% ( ) et 2,3% ( ).

2. la valeur de l’erreur est indépendante de celui du niveau de confiance choisi : une erreur < 0,5 % aurait
également pu être considérée pour un niveau de confiance de 95%.
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Les analyses de convergence quantitative et qualitative menées sur les simulations stochastiques
montrent que, en considérant toutes les configurations (nd, σ), 4000 échantillons par niveau de
désaccordage sont nécessaires pour atteindre la convergence des résultats. Or, la littérature sur
l’étude stochastique du désaccordage en configuration linéaire préconise 10 000 échantillons
afin de garantir la convergence des résultats [23], ce qui avait été confirmé sur le modèle
phénoménologique étudié et dont les résultats ont été présentés dans la section 3.1.4. Les
contraintes de contact imposées sur le système pourraient être à l’origine de cette convergence
stochastique plus rapide des résultats pour les simulations de contact par rapport aux
simulations linéaires. En effet, la vibration de l’aube est restreinte par la présence du carter
rigide, notamment le déroulement de l’aube est fortement limité, alors que dans le cas linéaire
l’aube peut vibrer sans restriction externe sur ses déplacements en bout d’aube. Afin de
garantir la convergence des résultats pour toutes les configurations (nd, σ), 5000 échantillons
ont été considérés par configuration.

3.3.2 Amplification des vibrations

Comparaison avec les résultats dans le cadre linéaire

Les amplifications dues au désaccordage en configurations linéaire et non-linéaire (notées
respectivement Alin et Anl) pour différents nd et σ sont tracées sur la figure 3.15. Les para-
mètres de simulation nd et σ ont une influence majeure sur l’amplification, quelle que soit la
configuration considérée. En effet, les amplifications Anl sont dans la majorité des cas (nd = 3,
4 et 5) largement supérieures à Alin, cependant le constat est inverse pour nd = 6. Par rapport
au niveau de désaccordage σ, l’écart entre Alin et Anl est maximal pour les plus petites valeurs
de σ pour nd = 3 et 5, alors qu’il croît de façon monotone avec σ pour nd = 4 and 6. Ces
tendances sont identiques pour tous les centiles considérés.

Les amplifications Anl en configuration non-linéaires sont maximales pour nd = 4. Les
amplifications Anl et Alin sont tracées dans cette configuration pour tous les centiles sur la
figure 3.15c. Le centile 50 de Anl est quasiment superposé au centile 99 de Alin, allant même
jusqu’à le dépasser pour σ = 2,3 %. En d’autres termes, quel que soit le motif de désaccordage
considéré, il y a stochastiquement environ un risque sur deux que l’amplification en forçage
non-linéaire soit supérieure à l’amplification en forçage linéaire. Ces résultats suggèrent une
bien plus grande sensibilité du modèle au désaccordage lorsque des contacts aubes/carter
se produisent. Le maximum d’amplification, à 57% pour le centile 99 dans le cadre linéaire
(Alin = 1,57), est en effet augmenté significativement dans le cas de contacts structurels pour
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atteindre 75% pour le centile 99 (Anl = 1,75).

Ces résultats montrent également que les prédictions numériques effectuées sur le comportement
vibratoire d’une roue aubagée accordée soumise à des contacts structurels sont robustes
lorsqu’un désaccordage faible est pris en compte. Ainsi, les interactions identifiées pour une
roue accordée restent valables pour des roues désaccordées, avec des amplitudes de vibration
potentiellement bien plus élevées.

Analyse en déplacements

Les variations obtenues sur l’amplification linéaire Alin par rapport à nd avaient déjà été
validées par rapport à la littérature dans la section 3.1.4. Deux explications sont principalement
proposées afin de les expliquer : (1) la fréquence de forçage pourrait correspondre à une zone
de pincement des modes propres accordés correspondants [63, 150] ou ; (2) la fréquence de
forçage pourrait exciter des modes d’aubes proches en fréquences, identifiés sur le système
accordé [144]. Comme mis en évidence sur le diagramme fréquences/diamètres nodaux sur
la figure 3.2, le modèle proposé ne présente pas de zone de pincement autour des fréquences
de la famille modale 1F, excité par la fréquence de sollicitation. Cependant, cette famille est
bien composée de modes d’aubes dont les fréquences sont dans une plage resserrée, si bien
que la seconde explication est privilégiée pour expliquer l’allure de Alin par rapport à nd.

L’influence de nd sur les amplifications en contexte non-linéaire Anl n’a pas encore été
discutée dans la littérature. Afin d’apporter des explications aux observations de la section
précédente sur les amplifications, les amplitudes de vibration sont tracées sur la figure 3.16. Les
amplitudes données pour les roues aubagées désaccordées à différents niveaux de désaccordage
σ correspondent à celles du 99ième centile, obtenu sur les résultats stochastiques. Pour tous les
niveaux de désaccordage σ, les amplitudes de vibration sont visiblement largement augmentées
par rapport au cas accordé. Cependant, pour les cas nd = 3 et nd = 6, qui connaissent
l’amplitude maximale accordée la plus grande, les amplitudes de vibration en prenant en
compte le désaccordage sont resserrées dans une plage très restreinte autour de 65mm.
Inversement, les valeurs de nd pour lesquelles le système accordé connaît les amplitudes de
vibration les plus faibles (nd = 4 et nd = 5) présentent des évolutions similaires, à savoir
que l’augmentation du niveau de désaccordage σ conduit à de plus grandes amplitudes de
vibration.

Contrairement à la configuration linéaire où aucune limite n’est appliquée sur la vibration
du système, le carter qui entoure la roue en configuration non-linéaire contraint sa vibration.
Ainsi, les résultats prédits sur une plage restreinte pour nd = 3 et nd = 6 sont essentiellement
dus à la sur-contrainte sur le domaine de vibrations : l’amplification due au désaccordage Anl
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est atténuée par le carter rigide.

Comme les amplifications ne sont calculées que sur les déplacements en bout d’aube, les-
quels sont limités par la présence physique du carter rigide, celles-ci peuvent constituer une
représentation optimiste de ce qui se produit réellement pour nd = 3 et nd = 6.

Afin d’analyser davantage les niveaux d’amplification rencontrés pour ces deux configurations,
un facteur d’amplification non-linéaire basé sur les énergies de déformation des aubes, utilisant
ainsi les déplacements de tous les ddl des aubes, est proposé dans la section suivante.

Analyse en énergie de déformation

L’énergie de déformation E d’un système éléments finis peut être exprimée à partir du vecteur
des déplacements et de la matrice de masse. Pour le modèle réduit utilisé dans cette étude,
l’énergie de déformation de chaque aube est obtenue en projetant les déplacements calculés
pour le modèle réduit sur la base physique. De la même façon que pour les amplitudes
maximales des déplacements, les énergies de déformation à une vitesse angulaire sont évaluées
sur les trois derniers tours, pour chaque aube. La quantité stochastique d’intérêt est appelée
amplification de l’énergie non-linéaire Anl(E), calculée comme le ratio entre le maximum de
l’énergie de déformation du modèle désaccordé et le maximum de l’énergie de déformation du
modèle accordé.

Deux ensembles d’échantillons issus de la section 3.3 sont considérés : (1) les 100 échantillons
avec l’amplification des déplacements (Anl) maximale pour les simulations de contact à nd = 4
et (2) les 100 échantillons avec l’amplification des déplacements maximale à nd = 6. Les
niveaux de désaccordage pour ces ensembles sont entre 1,2% et 2,3%. L’amplification de
l’énergie Anl(E) est calculée pour ces échantillons dans leur configuration de contact respectives,
nd = 4 et nd = 6. Les résultats sont présentés sur la figure 3.17, où les courbes noires délimitent
les résultats obtenus pour tous les échantillons.

Sur la figure 3.17a, les échantillons à nd = 4 présentent une amplification des déplacements
plus élevée que les échantillons à nd = 6, en accord avec les résultats obtenus pour le
centile 99 présenté sur la figure 3.15. Les résultats pour Anl(E), tracés sur la figure 3.17b,
montre un écart encore plus important entre les échantillons à nd = 4 et nd = 6, les
échantillons à nd = 4 présentant toujours l’amplification la plus élevée. Selon ces résultats,
la configuration de contact pour nd = 6 n’induit pas un Anl(E) plus important. Cependant,
le faible nombre d’échantillons disponibles pour cette analyse ne permet pas d’assurer des
résultats stochastiquement significatifs, et les échantillons utilisés peuvent présenter un biais
de sélection puisqu’ils ont été sélectionnés selon leur valeur de Anl. Par ailleurs, les résultats
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pour nd = 4 présentent une dispersion plus importante que ceux pour nd = 6 pour les
amplifications des déplacements, et sont d’autant plus dispersés sur les amplifications en
énergie. Ceci peut être dû au fait qu’un plus grand nombre de zones de contact augmente
la fréquence de sollicitation sur les aubes et limite l’espace dans lequel elles peuvent vibrer.
Enfin, il est notable que l’ordre de grandeur des amplifications en déplacements et en énergie
sont très différents.

Finalement, les résultats obtenus sur Anl(E) confirment ceux sur Anl, où la configuration
de contact à nd = 4 présente les résultats les plus représentatifs de l’effet du désaccordage
sur l’amplification des vibrations dans le contexte non-linéaire. Comme les amplitudes de
vibration sur le système accordé y sont les plus faibles, leur augmentation sur des systèmes
désaccordés peut être plus pleinement captée. Ainsi, les analyses suivantes se concentrent sur
la configuration nd = 4.

3.3.3 Analyse croisée pour nd = 4

Les 5000 échantillons testés dans le cadre des simulations de contact avec nd = 4 et pour
chaque niveau de désaccordage σ sont soumis au forçage linéaire défini par l’équation (3.14).
Leurs amplifications dues au désaccordage sont ainsi obtenues à la fois dans le contexte
linéaire et dans le contexte non-linéaire. Ces valeurs sont tracées dans le plan (Anl , Alin) sur
la figure 3.18. Les densités cumulées, calculées par ordre décroissant de densité dans chaque
région d’aire 0,01× 0,01, sont utilisées pour obtenir une vision plus claire de la répartition
des données qu’un graphique en nuage de points ne le permettrait.

Globalement, la majorité des points de données sont localisés au-dessus de la ligne Anl = Alin,
si bien que pour la majorité des motifs de désaccordage Anl > Alin. Cette tendance est de plus
en plus marquée à mesure que le niveau de désaccordage σ augmente. Plus précisément, pour
σ = 0,6 %, Anl > Alin pour 82% des échantillons. Ce nombre croît à 96% pour σ = 2,3 %.

Par ailleurs, les motifs de désaccordage qui présentent les valeurs de Anl les plus importantes
ont un étalement marqué des valeurs de Alin. Par exemple, pour σ = 1,7 %, les motifs de
désaccordage au-dessus du 99ième centile de Anl (représenté par un trait pointillé orange sur la
figure 3.18) connaissent des valeurs de Alin ∈ [1, 1,7]. Ces résultats soulignent clairement qu’il
n’y a pas de corrélation entre les motifs de désaccordage qui présentent de hautes amplifications
dans le contexte linéaire et les motifs de désaccordage ayant de hautes amplifications dans
le contexte non-linéaire. Ainsi, la réduction de l’influence du désaccordage dans un contexte
non-linéaire nécessiterait des stratégies de conception différentes de celles proposées dans la
littérature sur seule base de l’amplification dans un contexte linéaire [30,79,80].
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3.3.4 Influence de l’amortissement

Les prochaines générations de roues aubagées incluent typiquement des conceptions de type
DAM, pour le gain de masse conséquent qu’elles pourraient permettre. Cependant elles
peuvent également être plus sujettes à de fortes amplitudes de vibration du fait de leur
amortissement structurel amoindri. Les DAM ont récemment été étudiés numériquement [58]
et expérimentalement [141,151] pour un forçage linéaire ainsi que pour un flottement aérody-
namique. Dans cette section, l’influence de la baisse de l’amortissement sur les amplifications
dues au désaccordage est étudiée, dans le cadre de simulations de contact.
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Figure 3.19 Amplifications à nd = 4 pour un abaissement de l’amortissement modal de 5 · 10−3

à 4 · 10−3 et variations induites ( )/( ) sur les centiles 1 ( ), 50 ( ) et 99 ( ).

Des simulations stochastiques ont été effectuées en suivant la même méthodologie que pour
les résultats précédents, pour un amortissement modal de 4 · 10−3, ce qui correspond à une
réduction de l’amortissement structurel de 20%. Les diagrammes d’amplification pour les
simulations linéaires et de contact sont tracés sur la figure 3.19. L’amplification linéaire
(figure 3.19a) n’est que peu impactée par l’abaissement de l’amortissement structural. Ce
résultat, présenté ici pour nd = 4 uniquement à des fins de concision, est similaire pour tous
les nd. Tous les centiles dans le cadre de l’amplification dans un contexte non-linéaire Anl sont
significativement augmentés : pour un niveau de désaccordage σ = 2,3 %, le 99ième centile
passe de Anl = 1,75 à plus de 1,84.

Ces premiers résultats indiquent ainsi que les événements de contact pourraient alors induire
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des amplifications de vibration dues au désaccordage encore plus élevées si la roue aubagée
présente un amortissement structurel plus faible.

3.4 Co-existence de solutions stables

Dans cette section, des détails supplémentaires sont donnés sur la co-existence de solutions pour
l’amplitude des vibrations, identifiée sur la figure 3.11 lors des variations du pas d’intégration
temporelle. L’étude suivante est réalisée sur le même motif de désaccordage donné dans le
tableau 3.2. Pour ce, une résolution plus fine sur la vitesse de rotation est adoptée, avec
δΩ = 5 · 10−3 Hz. Les résultats obtenus sont tracés sur la figure 3.20. En plus des amplitudes
de vibration en régime permanent, un dégradé de gris est utilisé pour représenter un critère
global proposé pour caractériser le comportement vibratoire de la roue aubagée. Dans le
cas de l’analyse des roues aubagées désaccordées, le critère utilisé est basé sur le facteur de
localisation défini par Klauke et al. dans le cadre des vibrations libres [58]. Il est proposé ici
de s’en inspirer pour définir un facteur équivalent dans le cadre des vibrations forcées.

La moyenne quadratique
√
〈U2

max〉 du maximum d’amplitude en bout d’aube Umax est calculée
avec :

√
〈U2

max〉 =

√√√√ 1
N

N∑

i=1
(Umax(i))2 , i ∈ [1, N ] (3.18)

où N est le nombre d’aubes. Le maximum par aube est calculé sur le régime permanent,
soit ici sur les 3 derniers tours. Pour des vibrations forcées non localisées, soit dans un
cas accordé, toutes les aubes connaissent la même amplitude maximale de vibration, d’où√
〈U2

max〉 = Umax. Réciproquement, pour un cas extrêmement localisé où une seule aube
vibrerait :

√
〈U2

max〉 = Umax√
N

. Le ratio suivant :

ζ = max (Umax)√
〈U2

max〉
(3.19)

varie ainsi de 1 à
√
N . Le facteur de localisation FL en pourcentage, variant de 0 à 100, est

ainsi défini par :
FL = ζ − 1√

N − 1
× 100 (3.20)

Le facteur de localisation est calculé pour chaque point de la FRF non-linéaire, tel que
représenté sur la figure 3.20) par les niveaux de gris ( ), où le blanc ( ) correspond à
une localisation des vibrations tendant vers 0% et le noir ( ) à une localisation tendant
vers 100%. Les solutions trouvées pour Ω ∈ [33,5 ; 35,5] Hz sur la figure 3.20a présentent un
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Figure 3.20 Facteur de localisation pour chaque point de la FRF.

facteur de localisation de 17% à 65%. La localisation évolue progressivement avec la vitesse
angulaire, excepté dans la région [34,15 ; 34,30] Hz. Comme montré sur l’agrandissement sur
la figure 3.20b, dans cette région chaque branche de solutions présente des valeurs distinctes
du facteur de localisation, soulignant ainsi un comportement vibratoire différent. Une analyse
plus approfondie requerrait une compréhension plus poussée des liens entre les résonances et
la localisation ou les bifurcations potentielles, mais ces résultats confirment les différences
intrinsèques entre les solutions de chaque branche.
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3.5 Bilan

La méthodologie de simulation de contact aubes-carter sur un modèle désaccordé, basée sur
l’intégration temporelle et les multiplicateur de Lagrange, a pu être appliquée et validée
sur un modèle phénoménologique. Il a été montré en particulier que les plages de vitesses
dans lesquelles une interaction est prédite sur le cas accordé sont les mêmes que pour
le cas désaccordé. Les résultats stochastiques, pour lesquels la convergence a été validée
qualitativement et quantitativement, ont permis de montrer que :

(1) le désaccordage augmente sensiblement les amplifications des vibrations post-contact
aubes-carter ;

(2) les motifs à plus grande amplification ne sont stochastiquement pas les mêmes dans des
cadres linéaire et non-linéaire équivalents ;

(3) l’amplification dans le cadre non-linéaire peuvent être d’autant plus critiques pour le
cas des systèmes faiblement amortis, comme les DAM.

La caractérisation de l’influence du désaccordage dans un contexte de non-linéarités de
contact présente ainsi un intérêt industriel certain pour l’obtention de stratégies de conception
adaptées aux conditions réelles dans les turbomoteurs. Le chapitre suivant présente une
nouvelle méthode de réduction afin de permettre d’appliquer la méthodologie de simulations
de contact à des modèles industriels de roues aubagées désaccordées.
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CHAPITRE 4 MODÈLES RÉDUITS DÉSACCORDÉS AVEC INTERFACE
DE CONTACT

Les modèles éléments finis industriels de roues aubagées doivent permettre de représenter le
comportement vibratoire de ces dernières avec la meilleure résolution possible. En particulier,
pouvoir capter précisément les mouvements de flexion des aubes implique l’usage d’au moins
deux éléments sur leur épaisseur pourtant très fine. Ainsi, il est courant d’avoir plusieurs
millions de degrés de liberté dans ce type de modèle numérique.

Lorsque la roue aubagée étudiée peut être supposée parfaitement accordée, l’utilisation de la
propriété de symétrie cyclique, présentée à la section 2.3.1, permet de réduire significativement
les temps de calculs associés à l’utilisation de tels modèles. Pour pouvoir mener à bien des
analyses non-linéaires (gestion d’interfaces de frottement ou de contact par exemple) la
dimension des modèles numériques accordés peut être davantage réduites par l’utilisation de
méthodes de sous-structuration [24, 152, 153] ou de réduction modale [24, 148]. Cette pratique
est aujourd’hui un standard dans l’industrie.

En revanche, la rupture de symétrie cyclique inhérente à la prise en compte d’un certain degré
de désaccordage empêche tout découplage de la dynamique du système et augmente donc le
coût des analyses. La nécessité de pouvoir générer de façon stochastique un grand nombre de
modèles désaccordés — requis pour caractériser la réponse d’une roue aubagée désaccordée —
a conduit au développement de techniques de réduction spécifiques. En particulier, la méthode
CMM [29], de l’anglais Component Mode Mistuning, permet d’introduire le désaccordage
directement au niveau des fréquences propres du système accordé. Cette méthode rend donc
possible l’implémentation du désaccordage directement sur un modèle déjà réduit. Cependant,
la méthode CMM ne permet pas de conserver des degrés de liberté physiques requis pour la
gestion du contact, puisque le modèle désaccordé est défini dans l’espace modal.

Dans ce chapitre, une modification de la méthode CMM est proposée pour pouvoir générer
efficacement des modèles réduits désaccordés industriels avec interface de contact. La méthode
de réduction proposée est d’abord validée sur un modèle académique vis-à-vis des modes
propres, des modes statiques, puis d’un forçage linéaire harmonique. Par ailleurs, la faible
dimension du modèle permet de comparer les réponses en contact d’un modèle éléments
finis désaccordé avec celle d’un modèle réduit désaccordé par la méthode proposée. Enfin, la
convergence numérique des résultats en fonction des paramètres de réduction est vérifiée sur
un modèle industriel.
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4.1 Méthodologie

4.1.1 Méthode CMM initiale

Dans l’espace physique, les matrices éléments finis masse et raideur du système sont notées
respectivement K et M. Le calcul des vecteurs propres Φ et valeurs propres Λ permet de
passer dans l’espace modal et ainsi d’obtenir un couple de matrices diagonales. La méthode
CMM de Lim et al. [29] permet d’exprimer les matrices du système désaccordé à partir des
matrices modales accordées, en considérant le désaccordage comme une perturbation dans
l’espace modal. Elle repose sur deux méthodes précédemment développées : la SNM de Yang
et Griffin [26] et la projection du désaccordage sur les modes de l’aube accordée encastrée de
Bladh et al. [95]. Les hypothèses utilisées et les équations permettant d’obtenir le système
désaccordé sont détaillées dans ce qui suit.

Sous l’hypothèse d’un faible désaccordage, les modes propres désaccordés peuvent être exprimés
comme une combinaison de modes propres accordés [26]. Ainsi, les modes propres du système
accordé Φ peuvent être tronqués pour ne conserver que N × R modes, avec N le nombre
d’aubes et R le paramètre de restriction, associés aux valeurs propres choisies Λ|NR. En
considérant un désaccordage sur la matrice de raideur uniquement et en travaillant dans
l’espace modal, la matrice de raideur désaccordée κ peut être exprimée en fonction des valeurs
propres accordées restreintes à R modes et de la déviation due au désaccordage Λδ :

κ = Λ|NR + Λδ (4.1)

et la matrice de masse modale désaccordée µ est égale à la matrice de masse modale accordée :
µ = I.

Dans le cadre d’un désaccordage proportionnel, le module d’Young de l’aube n est : En =
E0(1 + δ), avec E0 le module d’Young nominal et δ la déviation due au désaccordage. Comme
le désaccordage est considéré uniquement sur la matrice de raideur, la déviation sur E est égale
à la déviation sur les valeurs propres λ : δ = (δE) = (δλ). En considérant un désaccordage
uniquement au niveau des aubes, il vient que le désaccordage dans l’espace modal κδ est une
matrice diagonale exprimée comme une déviation sur R valeurs propres d’une aube du modèle
accordé encastrée à son pied Λa, soit sur l’aube n :

κδn = δn Λa|R (4.2)

La déviation Λδ peut alors être calculée par la projection de κδ sur les vecteurs propres du
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système accordé, par l’intermédiaire des vecteurs de participation Q :

Λδ =
N∑

n=1
QT
nκ

δ
nQn (4.3)

Comme le désaccordage est faible, les facteurs Q représentent directement la participation
des modes d’aube sur les modes du système accordé et sont exprimés pour l’aube n :

Qn = (Λa|R)−1 (Φa|R)T Ka [Φ|NR]n (4.4)

avec Ka la matrice de raideur de l’aube, Λa|R et Φa|R ses valeurs propres et vecteurs propres
restreints aux R premiers modes, et [Φ|NR]n les vecteurs propres du système accordé restreints
à NR modes et pour les ddl de l’aube n.

En partant de l’analyse modale du modèle accordé (Λ,Φ) et de l’analyse modale d’une aube
encastrée en son pied (Λa,Φa), la méthode CMM permet ainsi de calculer à moindre coût
les matrices du modèle désaccordé dans l’espace modal (µ,κ). L’ensemble des hypothèses
utilisées est résumé dans l’encart suivant.

Hypothèses utilisées

1. faible désaccordage

2. désaccordage sur la matrice de raideur uniquement

3. désaccordage proportionnel

4. désaccordage sur les aubes uniquement et constant sur le corps de l’aube

4.1.2 Méthode CMM avec interface de contact

La prise en compte de l’interface de contact sur des modèles éléments finis industriels de
grande dimension implique usuellement la création de modèles réduits qui conservent quelques
ddl physiques au niveau de l’interface de contact [37, 154], en plus des ddl modaux usuels.
L’espace réduit est alors dit mixte. Il existe plusieurs méthodes de réduction modale permettant
d’obtenir un espace réduit mixte, notamment la méthode de Craig-Bampton [24] qui est
couramment utilisée dans l’industrie [17]. Les développements présentés dans la suite de ce
chapitre sont applicables à toute méthode de réduction permettant l’obtention d’un espace
réduit mixte. À des fins de généralité, la matrice de passage utilisée pour projeter le modèle
éléments finis dans l’espace réduit est notée Ψr dans la suite de ce chapitre. Les matrices
masse et raideur réduites du modèle accordé sont respectivement notées Mr et Kr ; leurs
modes propres sont notés Φr.
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Le calcul des vecteurs de participation de l’équation (4.1) est modifié pour utiliser les vecteurs
propres du modèle réduit considéré :

Qn = (Λa|R)−1 (Φa|R)T Ka [Ψr Φr|NR]n (4.5)

où Φr|NR représente les vecteurs propres du système réduit accordé restreints aux N × R
premiers modes. Le terme Ψr Φr|NR représente donc le redéploiement des modes propres dans
l’espace éléments finis (EF). La restriction de ce terme aux degrés de liberté de l’aube n
permet la multiplication à gauche par la matrice de raideur d’une aube Ka. Les matrices Λa

et Φa sont respectivement la matrice diagonale des valeurs propres et les vecteurs propres de
l’aube n.

Le système accordé réduit contient η ddl modaux par harmonique et nf ddl physiques. Ces
ddl sont ordonnés de façon à ce que la matrice de raideur modale du système désaccordé
s’écrive :

κ = Λr +




Λδ 0

0 0


 (4.6)

avec Λr la matrice diagonale contenant les valeurs propres du système réduit, et Λδ la
perturbation de ces valeurs propres du fait du désaccordage. Afin d’assurer la cohérence des
dimensions, le paramètre de réduction η, le nombre de nœuds frontière nf et le paramètre de
restriction R de la méthode CMM doivent vérifier :

R ≤ nf + η

N
(4.7)

La matrice de raideur désaccordée peut ainsi être exprimée dans l’espace réduit :

Kδ
r =

(
Φr

T
)−1

κΦr
−1 (4.8)

La méthode proposée permet ainsi de construire les matrices réduites désaccordées à partir
des matrices réduites accordées et du modèle d’une aube encastrée accordée, à l’instar de la
méthode CMM, tout en conservant les ddl physiques présents dans la réduction initiale : elle
est désignée par l’acronyme CM3, de l’anglais Component Mode Mistuning with Mixed dof. Le
modèle conserve ainsi une interface physique pour les calculs de contact par multiplicateurs
de Lagrange. L’ensemble des étapes permettant de générer le système désaccordé réduit est
reporté sur l’algorithme donné sur la figure 4.1. Dans la suite du document, la méthode CM3
est utilisée en combinaison avec la méthode de réduction de Craig-Bampton.
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système désaccordé réduit

systèmes en entrée

système en sortie

Figure 4.1 Algorithme de création du système désaccordé avec interface de contact, par la
méthode CM3 (Component Mode Mistuning with Mixted dof).
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4.2 Modèle académique

La validation de la méthode CM3 est effectuée sur le modèle académique représenté sur la
figure 4.2. Ce modèle de taille réduite permet de comparer les résultats de la méthode CM3 à
ceux calculés sur le modèle éléments finis complet (EF 360), ce qui ne serait pas possible sur
un modèle industriel à grand nombre de ddl par secteur. Les résultats présentés sur le modèle
complet EF sont issus du logiciel commercial Samcef [155].

~x

~y

~z

(a) roue aubagée complète

~x
~y

~z

(b) une aube avec son pied ( ), sa tête ( )
et les nœuds frontière ( ) qui sont retenus
dans la méthode CM3

Figure 4.2 Maillage du modèle EF académique.

Le modèle académique est constitué de N = 12 aubes, au total, il comporte 648 nœuds et
1944 ddl. Chaque aube, telle que représentée sur la figure 4.2b, contient 24 nœuds et 72 ddl.
L’utilisation de la propriété de symétrie cyclique permet de calculer efficacement la base
de réduction de Craig-Bampton (CB) [91] et donc d’obtenir le modèle réduit requis pour
l’application de la méthode CM3. Le paramètre de réduction η correspond au nombre de
modes conservés pour la réduction de chaque harmonique spatiale. Le modèle réduit accordé
contient ainsi 178 ddl : 3 nœuds frontière ou 9 ddl par aube, soit 108 ddl pour l’ensemble de
la roue auxquels s’ajoutent η = 10 ddl modaux par harmonique, soit 70 ddl modaux au total.
Dans ce contexte, en tenant compte de la relation (4.7), la valeur maximale admissible pour
le paramètre de restriction de la méthode CMM est donc R = 14.

Le modèle EF d’une aube, requis pour la méthode CM3, est obtenu en encastrant le pied de
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la première aube seule telle que représenté sur la figure 4.2b. Enfin, le motif de désaccordage
considéré pour la validation est défini par un tirage aléatoire des modules d’Young de
chaque aube selon une distribution uniforme, avec un degré de désaccordage σ = 0,58 %. La
variation sur le module d’Young δE pour chaque aube, par rapport à la valeur nominale de
1,196 · 1011 Pa, est donnée dans le tableau 4.1.

Tableau 4.1 Motif de désaccordage sélectionné pour la validation sur le modèle académique,
distribution aléatoire uniforme avec σ = 0,58 % (max (δE) = 1 %).

Variation du module d’Young par aube (%)
(δE)1 0,092 (δE)2 0,301 (δE)3 0,577 (δE)4 0,117 (δE)5 −0,878
(δE)6 −0,100 (δE)7 0,828 (δE)8 −0,627 (δE)9 0,953 (δE)10 −0,351
(δE)11 −0,602 (δE)12 −0,468

4.2.1 Analyse statique

Un forçage statique de norme 10N est appliqué dans la direction axiale (~z) sur les 3 nœuds
frontière en tête d’aube, sur les aubes numéro 1, 5 et 11. Les résultats présentés pour le
modèle EF 360 sont issus du logiciel Samcef. Les résultats présentés pour le modèle CM3
sont issus d’un redéploiement dans l’espace physique des déplacements calculés dans la base
réduite. Les champs de déplacements sur l’ensemble du modèle sont tracés sur la figure 4.3a.
Les champs de déplacements obtenus par la CM3 sont représentés par un gradient de couleur
sans bordure ( ), tandis que la déformée obtenue avec Samcef est représentée par des
filigranes noirs ( ). La parfaite superposition des champs calculés et de la déformée met en
évidence que les amplitudes sont correctement calculées dans la base réduite. Les amplitudes
de déplacement sont tracées pour tous les nœuds d’une aube chargée sur le ddl z sur la
figure 4.3b. Aucune différence n’est visible entre les amplitudes calculées sur les modèles CM3
et EF 360, malgré la très faible amplitude de déplacement induite (de l’ordre de 10−6m).

La validation sur les modes propres et la réponse à un forçage statique du modèle calculé par
la CM3 vis-à-vis du modèle EF 360 montre ainsi que le désaccordage est correctement pris en
compte dans la méthode proposée, tout en conservant bien un accès aux nœuds frontière.

4.2.2 Analyse modale

Roue accordée

Les modes propres sont tout d’abord calculés sur les modèles accordés, d’une part par Samcef
sur le modèle EF 360 et d’autre part par la méthode CM3 avec un motif de désaccordage
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Figure 4.3 Comparaison de la déformation sous chargement statique entre le modèle désaccordé
EF, calculé avec Samcef, et le modèle désaccordé construit par la CM3.

nul : δ = 0, afin de caractériser l’erreur introduite dans le modèle du fait de la réduction CB
seule. L’erreur relative sur les fréquences propres de chaque mode er est définie par :

er[%] = fCM3 − fSamcef

fSamcef
× 100 (4.9)

avec fCM3 la fréquence obtenue sur le système réduit calculé par la CM3 et fSamcef la fréquence
calculée par Samcef sur le cas EF 360. Le diagramme SAFE tracé sur la figure 4.4a permet
de constater que les résultats se superposent bien pour les premières familles modales. Plus
précisément, les erreurs obtenues pour les 39 premiers modes sont tracées sur la figure 4.4b :
pour la première famille, les erreurs ainsi calculées restent inférieures à 0,02%, et globalement
inférieures à 0,2%. Le paramètre de réduction η = 10 est donc suffisant représenter fidèlement
les premières fréquences propres.

Le déplacement tangentiel du bord d’attaque sur toutes les aubes est présenté pour quelques
modes sur la figure 4.5. Pour le mode double présenté (nd = 1), un déphasage angulaire
d’environ 10π

12 rad est visible entre la solution calculée par résolution du problème aux valeurs
propres généralisé sur les matrices réduites (Kr, Mr) et la solution calculée par Samcef sur le
modèle EF. L’allure des modes et en particulier leur orthogonalité est cependant bien conservée
après réduction. Pour les modes simples nd = 0 et nd = 6, les déplacements sont bien égaux
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qu

en
ce

[H
z]

(a) diagramme SAFE pour le modèle ré-
duit ( ) et EF complet calculé par Sam-
cef ( )

10 20 300

0,05

0,1
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Figure 4.4 Validation de la réduction CB sur le modèle accordé.

comme montré par la superposition de courbes entre les deux modèles. Les déplacements
obtenus sur les autres ddl frontière ont également été vérifiés, pour différentes familles modales,
afin de valider la procédure de réduction CB sur le modèle accordé.

Roue désaccordée

Avec le motif de désaccordage donné dans le tableau 4.1, fréquences propres et erreurs associées
sont tracées sur la figure 4.6. Le cas accordé y est reporté pour mettre en évidence le décalage
des fréquences dû au désaccordage. Les fréquences calculées par la CM3 et par Samcef se
superposent bien sur la figure 4.6a. Les erreurs tracées sur la figure 4.6b sont plus élevées que
dans le cas accordé, mais elles sont cependant du même ordre de grandeur, et elles restent
inférieures à 0,05%.

Les déplacements associés au mode à plus basse fréquence sont calculés sur le modèle EF 360
et le modèle CM3 et sont comparés sur la figure 4.7. Dans le cas du modèle CM3, le champ de
déplacements sur la roue complète — obtenu par redéploiement des déplacements obtenus dans
la base réduite vers la base éléments finis — est représenté par un gradient de couleur ( )
sur la figure 4.7a. Le champ de déplacements calculé par Samcef est uniquement représenté
par les filigranes noirs ( ). L’allure générale des déplacements sur l’ensemble de la roue est
bien la même pour les deux méthodes, comme indiqué par la superposition des déformations
sur la figure 4.7a. En particulier, les aubes pour lesquelles le déplacement est le plus important
du fait de la localisation due au désaccordage sont bien les mêmes pour les deux modèles.
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Figure 4.5 Déplacement tangentiel du bord d’attaque sur toutes les aubes, calculé sur le
modèle réduit ( ) et sur le modèle EF complet ( ), pour différents vecteurs propres.

La figure 4.7b permet de montrer plus finement la superposition des déplacements pour tous
les nœuds de l’aube 1 sur le ddl selon la direction tangentielle. La parfaite superposition des
quantités issues de Samcef et de la CM3 souligne que les fréquences et les modes propres sont
correctement calculés par la méthode CM3.

4.3 Modèle industriel

Cette section présente une première application de la méthode CM3 à une roue aubagée
industrielle, premier étage d’un compresseur basse pression de moteur d’avion. Afin de
déterminer le couple de paramètres de réduction optimaux (η,R), une étude de sensibilité
est conduite dans le cas de calculs linéaires stochastiques, faisant intervenir la superposition
modale, et dans le cas de calculs non-linéaires de contact par intégration temporelle sur un
motif à fort désaccordage. Dans la suite du document, les déplacements, vitesses et fréquences
sont normalisés et adimensionnés.

4.3.1 Description

La roue aubagée étudiée constitue le premier étage d’un compresseur basse pression et
comporte N = 21 aubes. Le maillage éléments finis d’un secteur, présenté sur la figure 4.8,
est composé d’éléments finis tétraédriques quadratiques à 3 ddl par nœuds. Ce maillage est
constitué de 17 487 nœuds incluant 9199 nœuds dans l’aube.
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numéro de mode

e r
[%

]

(b) erreur sur les fréquences propres de la
première famille
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Figure 4.7 Comparaison du mode propre à plus basse fréquence entre le modèle désaccordé
EF, calculé avec Samcef, et le modèle désaccordé construit par la CM3.

La frontière de contact est constituée de cinq nœuds frontière en sommet d’aube répartis entre
le bord d’attaque et le bord de fuite et identifiés par des points rouges ( ) sur la figure 4.8.
Il y a ainsi 21 × 15 = 315 ddl frontière sur l’ensemble de la roue aubagée. De même que
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(a) secteur complet, portion du disque ( )
et de l’aube ( )

(b) aube avec son pied ( ), sa tête ( ) et
les nœuds frontière ( ) qui seront retenus
dans la méthode CM3

Figure 4.8 Maillage du modèle EF d’un secteur du modèle industriel.

pour le modèle académique, η modes sont retenus pour chacune des 11 harmoniques spatiales
pour la construction du modèle réduit accordé. La portion du maillage correspondant à la
restriction du secteur à l’aube, requise pour la mise en place de la méthode CM3, est mise en
évidence sur la figure 4.8.

Le modèle réduit utilisé pour les simulations de contact est construit identiquement au
système accordé réduit précédemment défini lors de la mise en place de la méthode CM3
dans la section 4.1.2. La quantité d’intérêt pour étudier l’influence du désaccordage reste
l’amplification des déplacements, définie dans la section 3.1.4, calculée sur l’ensemble des
vitesses de la FRF et sur l’ensemble des nœuds physiques de frontière.
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Tableau 4.2 Propriétés du modèle éléments finis de la roue aubagée industrielle.

paramètres géométriques propriétés matériau
nombre d’aubes N = 21 masse volumique 7850 kg ·m−3

longueur des aubes au bord d’attaque 9,4 cm amortissement 5 · 10−4

rayon du disque 7,9 cm module d’Young E0 = 2,1 · 1011 Pa
épaisseur maximale en tête d’aube 4 cm nominal

nombre d’éléments par aube 9199 coefficient 0,3
nombre d’éléments par secteur 17 487 de Poisson

4.3.2 Simulations de contact

Les simulations de contact aube/carter sont effectuées par le biais d’une stratégie numérique
multi-physique dédiée développée au Laboratoire d’Analyse Vibratoire et Acoustique de
Polytechnique Montréal, qui consiste en une extension à des modèles tri-dimensionnels
de la stratégie numérique présentée dans la section 3.1.3. Cette stratégie repose sur une
procédure d’intégration temporelle explicite permettant de prendre en compte les effets
inertiels du rotor [156], les effets thermo-mécaniques [119,157] ainsi que l’usure du revêtement
abradable [158] déposé sur le carter.

Pour cette première application de la méthode CM3 pour l’analyse du comportement vibratoire
d’une roue aubagée désaccordée subissant des contacts avec le carter, un cadre d’étude simplifié
— restant toutefois cohérent avec les observations expérimentales dans un compresseur basse
pression [159] — est considéré. Le carter est supposé déformé mais infiniment rigide, ce qui
signifie qu’il ne vibre pas du fait des impacts avec l’aube. Enfin, le contact aube/carter est
initié par la déformation du carter et les effets inertiels et thermo-mécaniques sont négligés.
Les paramètres matériau du revêtement abradable sont donnés dans le tableau 4.3.

Tableau 4.3 Paramètres matériau du revêtement abradable.

propriétés matériau paramètres numériques
module d’Young 2 · 109 Pa nombre d’éléments 20 000
module plastique 5 · 108 Pa épaisseur initiale 5mm
limite élastique 1,5Pa

coefficient de frottement 0,1
angle du biseau d’usinage 60°

Hypothèses utilisées pour les simulations de contact

1. carter rigide

2. effets centrifuges, gyroscopiques et thermiques négligés
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La déformation du carter est progressive et définie par un nombre de lobes notés nd dans ce
qui suit, de telle sorte que le carter est ovalisé pour nd = 2. La pénétration équivalente de
0,5mm est atteinte au bout de 10% de la simulation. Les paramètres de simulation utilisés
dans ce qui suit sont explicités dans le tableau 4.4.

Tableau 4.4 Paramètres pour les simulations de contact.

paramètres numériques paramètres du carter
pas temporel h = 10−7 s jeu initial 1mm

paramètre de réduction η pénétration équivalente 0,5mm
(par harmonique) coefficient de frottement aube/carter 0,15

coefficient de frottement aube/abradable 0,1

La convergence des résultats obtenus en fonction des différents paramètres de simulation, tels
que le pas de temps ou la discrétisation spatiale du revêtement abradable, est détaillée dans
plusieurs publications [160] et n’est donc pas présentée dans ce chapitre. Avec les modèles
réduits CM3, le meilleur compromis entre précision des résultats et rapidité des calculs
est obtenu pour une valeur du pas de temps de l’intégration temporelle h = 10−7 s. Seule
l’influence des paramètres relatifs à la construction du modèle réduit CM3, contribution de ce
travail de recherche à la stratégie numérique développée au laboratoire, doit être étudiée en
détails.

4.3.3 Sensibilité aux paramètres

Telle que présentée sur la figure 4.1, la construction d’un modèle réduit CM3 fait appel à un
seul paramètre : le nombre de restriction R. Cependant, la qualité du modèle réduit obtenu
par la CM3 est aussi directement liée à la qualité du modèle réduit accordé, contrôlée par
le paramètre de réduction η. L’influence combinée de ces deux paramètres sur le coût en
temps de calcul pour l’obtention des modèles réduits ainsi que leur impact sur la précision
des résultats obtenus sont l’objet de cette section.

À titre indicatif, sur un ordinateur standard muni d’un processeur i7, la génération du système
accordé réduit (Kr , Mr) pour η = 10 nécessite près de 2 h de calcul. En comparaison, le
temps requis pour le calcul du modèle réduit désaccordé, quelle que soit la valeur de R,
est négligeable puisque le calcul des vecteurs de participation Qn, voir l’équation (4.5), est
un produit matriciel de quantités pouvant être pré-calculées. À partir d’un modèle réduit,
l’introduction d’un motif de désaccordage par la méthode CM3 demande quelques secondes
de temps de calcul.

La méthodologie proposée permet donc, à partir d’un modèle réduit existant, et pour un
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coût de calcul négligeable, d’introduire un quelconque motif de désaccordage. Toutefois, les
simulations de contact sont, elles, coûteuses en temps de calcul. Pour cette raison, il est
important de réduire au minimum la dimension des modèles réduits calculés. Dans un contexte
stochastique où plusieurs milliers de simulations doivent être effectuées, il devient primordial
de déterminer le meilleur compromis entre précision des résultats et temps de calculs.

L’influence des paramètres η et R est analysée successivement dans un cadre linéaire puis
non-linéaire : (1) pour les simulations linéaires, l’emphase est mise sur la représentation des
centiles de l’amplification due au désaccordage sur un ensemble de tirages alors que (2) pour
les simulations non-linéaires les quantités d’intérêt sont les déplacements et efforts de contact
pour un motif désaccordé donné.

Cadre linéaire

L’excitation appliquée sur la roue aubagée est un chargement tournant, représentant de façon
simplifiée un chargement aérodynamique de la roue aubagée en fonctionnement nominal. La
norme de l’excitation est définie selon l’équation (3.14). La plage de vitesses de rotation
considérée pour le calcul de la FRF correspond à une largeur de 10Hz, centrée la première
famille de modes propres du modèle (1F), avec un pas de 0,01 rad · s−1. Le forçage est appliqué
sur le ddl r de chaque nœud frontière, avec une amplitude de Fmax = 100 N. Le coefficient
d’amortissement modal est ξ = 5 · 10−4. La réponse forcée est calculée par superposition
modale.

Sept niveaux de désaccordage σ sont considérés, entre 0,14% et 2,31% (δE varie entre 0,25%
et 4%). Pour chaque valeur de σ, 1000 motifs désaccordés sont calculés, puis sont utilisés
pour tous les jeux de paramètres (η,R).

Afin d’assurer que les modes doubles sont correctement pris en compte dans la réduction,
les paramètres de réduction η considérés sont tous pairs. Les modèles réduits accordés
sont ainsi construits pour : η = 2, 4, 6, 8, 10, 20, 30, 50. Les paramètres de restriction R

maximaux correspondants, selon la relation (4.7), avec nf = 15 ddl frontière par aube, sont :
Rmax = 16, 17, 18, 19, 20, 15, 30, 41.

Les résultats obtenus sont présentés sur la figure 4.9, pour deux fréquences spatiales distinctes
nd = 2 et nd = 10. Le paramètre R a été pris à sa valeur maximale admissible pour chaque η
considéré. Les courbes de centiles tracées (centiles 1, 50 et 99) se superposent à mesure que η
augmente. En particulier, les résultats sont quasiment superposés pour η ≥ 8 pour les deux
valeurs de nd.

Les erreurs maximales pour chaque valeur de η ainsi que les erreurs moyennes par centiles
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1 ( ), 50 ( ) et 99 ( ) de l’amplification linéaire Alin pour différents η, par rapport
au cas de référence η = 50.
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sont tracées sur la figure 4.10. Pour nd = 2, l’erreur par rapport au cas η = 50 est tracée sur
la figure 4.10a. Elle est inférieure à 2% pour η ≥ 10, ce qui est plus restrictif que l’observation
qualitative de la superposition des centiles sur la figure 4.9a. Les erreurs moyennes également
indiquées par centiles sur la figure 4.10 sont inférieures à 2 % et présentent une diminution
monotone à partir de η ≥ 10. Les mêmes informations sont tracées pour nd = 10 sur la
figure 4.10b.

Les temps de calcul par échantillon sont environ de 3 s pour η = 8, 5 s pour η = 10 et 10 s
pour η = 20. Une augmentation de η conduit donc à une augmentation substantielle des
temps de calculs. Afin d’obtenir une précision satisfaisante sur le calcul des centiles pour tous
les nd qui pourront être étudiés, afin que d’assurer le temps de calcul le plus faible, η = 8
apparaît comme le meilleur compromis dans le cadre linéaire et sera la valeur utilisée pour
étudier la sensibilité des simulations au paramètre de restriction R.

Pour η = 8, les différents centiles ont été calculés pour différents paramètres de restriction
de la méthode CMM : R = 2, 5, 10, 15, 25, ils sont tracés sur la figure 4.11. Les courbes de
centiles sur la figure 4.11a sont proches dès R = 2, et l’évolution des erreurs tracées sur la
figur 4.11b confirme la convergence rapide des résultats, même pour de faibles valeurs de R.
Ceci est en accord avec la préconisation de Lim et al. [29] : seuls un ou deux modes encastrés
sont suffisants pour permettre de projeter le désaccordage, si ces modes correspondent aux
modes excités par le forçage linéaire. Le forçage défini sollicite essentiellement la famille des
modes 1F ce qui explique que conserver les deux premiers modes d’aubes (R = 2) suffit à
obtenir des résultats satisfaisants.

Comme mentionné précédemment, les temps de calcul ne sont pas impactés par la variation
du paramètre R puisque celui-ci ne modifie pas la dimension du modèle réduit. Par ailleurs,
comme il n’est pas possible de déterminer a priori le contenu fréquentiel d’une excitation
de l’aube par contact, la valeur de R considérée est la valeur maximale autorisée par la
relation (4.7), soit :

R =
⌊
nf + η

N

⌋
(4.10)

Cadre non-linéaire

Le scénario de contact considéré est le suivant : le carter est ovalisé pour présenter 2 zones
de contact privilégiées diamétralement opposées, et la vitesse de rotation Ω est la vitesse
nominale de la roue aubagée considérée, normalisée telle que Ω = 1. La convergence des
résultats est étudiée en fonction du paramètre de réduction η auquel est associée la valeur
maximale du paramètre R, voir l’équation (4.11).
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Figure 4.11 Évolution des centiles 1 ( ), 50 ( ) et 99 ( ) de l’amplification linéaire
Alin pour différents paramètres de restriction R, par rapport au cas de référence R = 19.

L’influence de η est évaluée sur les déplacements et les efforts de contact sur 10 tours
de simulation. Le motif accordé ainsi que des motifs désaccordés à différents niveaux de
désaccordage (σ = 0,29 % à σ = 2,31 %) sont considérés. Par soucis de concision, seuls les
résultats sur le motif qui converge le plus difficilement avec l’augmentation de η sont présentés
dans ce qui suit. Les variations de module d’Young par aube du-dit motif sont données dans
le tableau 4.5.

Tableau 4.5 Motif de désaccordage sélectionné pour la validation sur le modèle industriel,
avec σ = 2,31 % (max (δE) = 4 %).

Variation du module d’Young par aube (%)
(δE)1 −3,32 (δE)2 2,93 (δE)3 3,18 (δE)4 −2,05 (δE)5 2,17
(δE)6 −0,96 (δE)7 3,22 (δE)8 2,08 (δE)9 −1,67 (δE)10 −2,62
(δE)11 3,97 (δE)12 2,69 (δE)13 −2,35 (δE)14 −0,47 (δE)15 −1,33
(δE)16 3,98 (δE)17 −1,10 (δE)18 0,44 (δE)19 2,18 (δE)20 1,85
(δE)21 2,49

Les amplitudes de déplacement du bord de fuite (nœud présentant le plus grand déplacement
sur l’ensemble de la simulation) calculées pour η = 6, 8, 10, 50 sont tracées sur la figure 4.12.
Le signal complet selon les trois directions (~r,~t, ~z) tracé sur les figures 4.12a, 4.12b et 4.12c
permet de mettre en évidence une bonne superposition des courbes dès η = 6.

Le déplacement selon la direction radiale ~r, tracé sur la figure 4.12a présente notamment des
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Figure 4.12 Convergence des déplacements calculés en configuration de contact sur le nœud
présentant les déplacements maximaux sur l’ensemble de la simulation (bord de fuite de l’aube
12), en fonction du paramètre de réduction CB : η = 6 ( ), η = 8 ( ), η = 10 ( ),
η = 50 ( ).
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pics nets, qui coïncident avec le passage de l’aube sur les bosses. En particulier, l’augmentation
de l’amplitude de ces pics en début de signal correspond bien à la déformation progressive du
carter. Le déplacement selon ~r à l’initialisation du contact, tracé sur la figure 4.12d, suit bien
des variations similaires pour toutes les valeurs de η, démontrant la bonne convergence des
résultats même pour des amplitudes très faibles (de l’ordre de 10−7 après adimensionnement).
Après 10 tours, tel que présenté sur la figure 4.12e, les déplacements calculés restent cohérents,
en dépit de leur très faible ordre de grandeur, avec le dernier passage de bosse bien visible à
t = 0,205 s.

La convergence des résultats est également analysée relativement aux efforts de contact
calculés au bord de fuite, tracés sur la figure 4.13. Les efforts selon les trois directions (~r,~t, ~z)
tracés sur les figures 4.13a, 4.13b et 4.13c présentent des allures similaires dès η = 6. Les
pics correspondant au passage d’une bosse, en particulier lors de la déformation progressive
du carter en début de signal, sont bien visibles et correspondent à ceux identifiés sur les
déplacements radiaux sur la figure 4.12a. Les ordres de grandeur relatifs entre les efforts sont
bien conservés, avec des efforts selon ~r prépondérants, de l’ordre de 10 fois plus importants
que les efforts selon ~t et 100 fois plus importants que les efforts selon ~z. Les écarts absolus
entre les efforts aux différents niveaux de réduction et le cas de référence à η = 50 sont tracés
sur les figures 4.13d, 4.13e et 4.13f afin de mettre en évidence un bon accord sur les normes
des efforts selon les différentes directions, et ce malgré la différence de leurs ordres de grandeur.
Les écarts selon les différentes directions suivent les mêmes ordres de grandeur relatifs que
les efforts et sont équivalents pour les différentes valeurs de η considérées, avec des erreurs
correspondantes lors des contact de l’ordre de 4% selon ~r et ~t et de l’ordre de 5% selon ~z.

Les temps de calcul des simulations de contact sont grandement impactés par la valeur de η,
passant d’environ 5 s pour η = 6 à 17 s pour η = 50, pour un motif de désaccordage.

Conclusion

L’étude de la convergence de l’amplification des déplacements en bout d’aube due au désaccor-
dage dans un cadre linéaire, en fonction de η et R et pour différents nombres de lobes nd sur
le carter, révèle une bonne convergence des résultats à partir de η = 8, avec une erreur sur les
centiles 1, 50 et 99 de moins de 2%. Conformément à la littérature, il est mis en évidence que
le coefficient de restriction R a peu d’incidence sur la convergence dans le cas d’une excitation
sur les premiers modes d’aubes. Comme il a également peu d’incidence sur les temps de calcul,
celui-ci est pris le plus grand possible.

Les temps de calculs obtenus pour chaque type de simulation et pour un motif donné en
fonction de η sont reportés dans le tableau 4.6. Il apparaît que les temps de calcul par
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Figure 4.13 Convergence des efforts de contact calculés sur le nœud présentant les déplacements
maximaux sur l’ensemble de la simulation (bord de fuite de l’aube 12), en fonction du paramètre
de réduction CB : η = 6 ( ), η = 8 ( ), η = 10 ( ), η = 50 ( ).

Tableau 4.6 Temps de calcul par échantillon pour différents η.

η simulation linéaire simulation de contact
6 5,3 s 50min
8 5,8 s 55min
10 6,9 s 65min
50 16,9 s 150min
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échantillon, aussi bien pour les simulations linéaires que de contact, sont majorés de 10%
pour η = 8 par rapport à η = 6, et de plus de 18% pour η = 8 par rapport à η = 10. Comme
l’analyse de convergence des centiles dans le cadre linéaire excluait η = 6 des valeurs d’intérêt,
il apparaît alors que η = 8 est le meilleur compromis dans les deux cadres de simulations. Le
couple de valeurs η = 8 et R = 19 est donc considéré par la suite. Le temps nécessaire au
calcul du modèle réduit désaccordé par la CM3 est ainsi de l’ordre de 0,1 s par échantillon.

4.4 Bilan

Une nouvelle méthode de réduction, nommée CM3, a été développée afin de permettre de
générer des modèles réduits désaccordés dans un espace mixte modal/physique. Dans la
présente recherche, les ddl physiques conservés sont ceux de l’interface aubes-carter, afin de
permettre l’application de la stratégie définie pour les simulations de contact au chapitre 3.
La méthode de réduction a été appliquée sur un cas académique à trois dimensions, puis sur
un maillage industriel, afin de valider les calculs des modes propres, de vibrations linéaires et
de contact.

Le coût final de création des modèles désaccordés ainsi obtenus est négligeable, permettant
d’envisager des calculs stochastiques pour quantifier l’influence du désaccordage sur les
non-linéarités de type contact sur un modèle industriel.
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CHAPITRE 5 CARACTÉRISATION DU COMPORTEMENT
VIBRATOIRE D’UNE ROUE AUBAGÉE INDUSTRIELLE DÉSACCORDÉE

Dans ce chapitre, les résultats de simulations stochastiques linéaires et de contact sur le
modèle de roue aubagée présenté dans la section 4.3 sont détaillés et analysés. L’ensemble
des vitesses présentées sont normées par rapport à la vitesse de rotation nominale de la roue
aubagée étudiée, qui correspond donc à Ω = 1. Le modèle est réduit par la méthode CM3
présentée et validée au chapitre 4. Le scénario de contact est défini selon la configuration de
fonctionnement nominale du modèle de roue aubagée présenté dans la section 4.3. Des analyses
supplémentaires sur le comportement vibratoire du modèle en configuration non-linéaire sont
alors proposées en seconde moitié du chapitre. L’ensemble des résultats et analyses sont
finalement résumés et permettent d’aboutir à une proposition de plage de variation admissible
du module d’Young.

5.1 Configuration linéaire

Les paramètres du modèle utilisé sont ceux donnés à la section 4.3.3. Les simulations linéaires
sont effectuées telles que définies à la section 4.3.3, avec le nombre de lobes nd qui varie
de 1 à 10. Les paramètres de réduction CM3 sont repris tels qu’établis lors de l’étude de
convergence (voir la section 4.3.3) : η = 8 et R = 19. La quantité d’intérêt stochastique
étudiée est l’amplification des déplacements due au désaccordage, notée Alin comme dans
la section 3.1.4, et calculée sur l’ensemble des nœuds frontière et sur la plage de vitesses
correspondant aux fréquences propres de la famille de modes 1F des aubes. La séparation
des fréquences propres due au désaccordage étant globalement accentuée à mesure que le
niveau de désaccordage σ augmente, la plage utilisée pour déterminer l’amplitude maximale
des vibrations est élargie pour les grandes valeurs de σ. Les temps de calcul moyens par
échantillon en fonction de η sont indiqués dans le tableau 5.1.

Les résultats sont obtenus sur 10 000 itérations par niveau de désaccordage afin d’assurer
la convergence stochastique, conformément à la littérature sur l’étude du désaccordage en

Tableau 5.1 Temps de calcul moyen par échantillon pour différents σ, sur une machine donnée.

δE (%) 0,25 0,5 0,75 1 2 3 4
σ (%) 0,14 0,29 0,43 0,58 1,15 1,73 2,31

temps de calcul (s) 2,09 2,21 2,35 2,52 3,34 4,32 5,36
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contexte linéaire [23]. L’information relative aux amplifications Alin est résumée par les valeurs
des centiles 1, 50 et 99 sur la figure 5.1. En accord avec la littérature [63], l’amplification
Alin ne varie pas de façon monotone selon nd : pour σ = 0,14 %, le centile 99 est maximal
pour nd = 4 et 6, tandis que pour σ = 1,7 %, il est maximal à faible nd puis diminue avant
d’augmenter à nouveau à partir de nd = 8. Les deux types d’allure des centiles, comme tracé
pour nd = 2 sur la figure 5.1b et nd = 4 sur la figure 5.1c, sont cohérents avec des évolutions
et les niveaux d’amplification trouvées sur des modèles industriels de turbines [6, 23]. En
particulier, pour nd = 4, le pic net à faible σ se rapproche des distributions de Weibull étudiées
pour la technique de Monte Carlo accélérée [6], et l’augmentation des valeurs du centile 1 aux
plus forts niveaux de σ est également en accord avec la littérature [23].

La méthode de réduction CM3 proposée permet ainsi de bien rendre compte de la sensibilité
au désaccordage telle qu’attendue sur un modèle industriel, avec des coûts de création du
modèle largement réduits tout en conservant les degrés de liberté physiques à la frontière
nécessaire à la gestion du contact.

5.2 Configuration non-linéaire

5.2.1 Scénario de contact

Contrairement au modèle phénoménologique introduit dans le chapitre 3, il n’est pas envisa-
geable de calculer la réponse vibratoire du modèle industriel en contact sur toute une plage
de vitesses, car ceci conduirait à des temps de calculs prohibitifs. Le cadre d’étude est donc
ici volontairement restreint à un point de fonctionnement unique à la vitesse nominale de la
roue aubagée Ω = 1. En revanche, le niveau de désaccordage σ est variable.

Le scénario de contact considéré repose sur un carter ovalisé (nd = 2), configuration habi-
tuellement utilisée dans la littérature pour représenter la déformation d’un carter subissant
un chargement thermique en fonctionnement [119]. Sauf mention contraire, les paramètres
de simulation sont identiques à ceux considérés sur l’étude de convergence en fonction du
paramètre de réduction à la section 4.3, résumés pour la roue aubagée dans le tableau 4.2,
pour la couche abradable dans le tableau 4.3 et pour le carter dans le tableau 4.4. Cette
section a pour objectif de justifier le choix de Ω et nd.

Étude préliminaire sur une plage de vitesse

Dans cette section, une étude préliminaire sur l’interaction de contact pour le modèle accordé
et un modèle désaccordé à σ = 2,3 %, dont le motif est donné dans le tableau 4.5, est présentée
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Figure 5.1 Amplifications Alin en fonction du niveau de désaccordage σ et du nombre de lobes
sur le carter nd : centile 1 ( ), centile 50 ( ) et centile 99 ( ).
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sur une plage de vitesse allant de Ω = 0,5 à Ω = 1,17.

Les réponses forcées des modèles accordé et désaccordé obtenues sont tracées sur la figure 5.2.
L’amplitude calculée est la norme des déplacements selon les directions radiale r (orientée vers
le carter), tangentielle t et axiale z. La dispersion des fréquences est clairement visible pour le
modèle désaccordé. Les amplitudes à Ω = 1 sont indiquées : le motif désaccordé présente à
cette vitesse fixe une amplification des vibrations de 3,35.

0,50 0,67 0,84 1 1,17

0,5

1

Ω

am
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itu
de

[×
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−
4 ]

Figure 5.2 FRF sur le modèle accordé ( ) et désaccordé ( ), avec les amplitudes de
déplacement respectives ( ) et ( ) obtenues à la vitesse nominale Ω = 1.

Les cartes d’interaction obtenues par traitement de ces déplacements sont tracées sur la
figure 5.3a pour le modèle accordé et sur la figure 5.3b pour le modèle désaccordé. La carte
d’interaction sur la figure 5.3a pour le cas accordé permet de mettre en évidence le décalage
en fréquence propre du fait de la rigidification due au contact. Par ailleurs, la vitesse de
rotation nominale est très éloignée de l’intersection entre la première famille modale (1F) et
le régime moteur 2, qui se trouverait environ à Ω = 34, mais est proche de l’intersection entre
la première famille modale (1F) et le régime moteur eo = 14, à Ω = 0,98. La carte pour le
modèle désaccordé sur la figure 5.3b permet de mettre en évidence le décalage des fréquences
dû au désaccordage.

Configuration nominale

Dans les moteurs en fonctionnement, la dilatation thermique du carter couplée à la localisation
de ses points d’attache induit une ovalisation du carter [119]. La configuration de contact
à nd = 2 est donc définie dans le cadre de cette recherche. Les paramètres du carter et de
l’abradable sont tels que définis dans la section 4.3.2. Les paramètres de la CM3 sont tels que
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Figure 5.3 Cartes d’interaction pour nd = 2 tracées pour un pas en vitesse de 6,7 · 10−3,
régimes moteur ( ) et fréquences d’interaction dans le cas d’un forçage linéaire ( ) et
de non-linéarité de contact ( ).

déterminés dans la section 4.3.3, soit : η = 8 et R = 19.

Le nombre de tours de simulation est le résultat d’un compromis entre stabilisation des
signaux temporels et temps de calcul. Contrairement au cas phénoménologique présenté dans
le chapitre 3, l’implémentation d’une procédure de vérification de la convergence au sein de
la boucle d’intégration temporelle serait trop coûteuse en temps de calcul. Un nombre de
tours identique est donc fixé pour toutes les simulations. Les signaux temporels obtenus au
bout de 50 tours de simulation pour le modèle accordé et pour un modèle désaccordé dont le
motif est donné dans le tableau 4.5, sont tracés respectivement sur les figures 5.4a et 5.4b.
L’augmentation rapide des amplitudes de déplacements correspond à l’initialisation du contact
du fait de la déformation du carter progressive, qui atteint son amplitude maximale au bout
de 10 tours, soit au temps indiqué t10. Les oscillations régulières visibles sur les crêtes de la
courbe enveloppe du signal obtenu sur le modèle accordé sur la figure 5.4a correspondent aux
passages de lobes. L’ajout du désaccordage provoque une perte de régularité dans le signal,
comme visible sur la figure 5.4b. Le maximum des amplitudes de vibrations atteint cependant
un plateau si bien que le maximum calculé sur un tel signal permettra bien d’obtenir une
tendance sur l’amplification des vibrations due au désaccordage. Afin de s’assurer qu’elle est
bien stochastiquement viable, deux méthodes de calcul de l’amplitude maximale des vibrations
au bout de 50 tours seront comparées : (1) une moyenne des maximums par tour sur les 10
derniers tours (donc à partir du 40ième tour, au temps t40 indiqué sur la figure 5.4) et (2) un
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maximum sur les 3 derniers tours, soit la partie du signal en rouge clair ( ) sur la figure 5.4.

0 t10 0.5 t40 1
0

0.5

1

temps [s]

am
pl

itu
de

[×
10

−
4 ]

(a) modèle accordé

0 t10 0.5 t40 1
0

1

2

temps [s]

am
pl

itu
de

[×
10

−
3 ]

(b) modèle désaccordé à σ = 2,3 %

Figure 5.4 Amplitudes des déplacements sur les 50 tours simulés. Enveloppe pour tous les
nœuds frontière ( ) et signal pour le nœud présentant l’amplitude maximale ( ), calculée
sur les 3 derniers tours ( ).

5.2.2 Amplification des vibrations

L’amplification des vibrations est définie comme le ratio entre l’amplitude des déplacements
maximale sur l’ensemble des nœuds frontière (indiqués sur la figure 4.8b) pour le modèle
désaccordé sur l’amplitude maximale des déplacements pour le modèle accordé. Six niveaux
de désaccordage sont considérés : σ = 0,3 %, 0,6%, 1,2%, 1,7%, 2,3% et 2,9%, afin de
correspondre aux variations classiquement définies par les tolérances de fabrication des roues
aubagées [65].

Les quantités stochastiques d’intérêt sont étudiées à travers la valeur des centiles 10, 50 et 90.
Les convergences stochastiques qualitative et quantitative sont présentées dans ce qui suit sur
l’amplification des déplacements en fin de simulation, notée A50 et calculée sur les 3 derniers
tours de simulation de façon analogue à ce qui avait été fait sur le modèle phénoménologique
dans la chapitre 3. Les résultats obtenus pour des calculs de l’amplification à différents temps
de simulation sont ensuite présentés et analysés.

Convergence

La stabilisation et la convergence des résultats obtenus est étudiée dans cette section, à travers
les convergences qualitative et quantitative puis l’étude a posteriori de la stabilisation des
signaux temporels.
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Stochastique. La convergence stochastique des résultats est étudiée à la fois qualitativement
et quantitativement, avec les mêmes méthodes que celles proposées dans la section 3.3.1. La
convergence quantitative est calculée pour un niveau de confiance de 95%, donc Z = 1,96.
Les courbes obtenues pour les centiles 10, 50 et 90 sur tous les niveaux de désaccordage
sont tracées sur la figure 5.5. Le convergence qualitative est étudiée à travers la stabilisation
des centiles tracés sur la figure 5.5a. Les centiles étudiés sont stabilisés assez rapidement,
la convergence la plus lente est observée pour σ = 2,9 %. Pour l’ensemble des σ considérés,
la convergence qualitative peut être considérée atteinte à partir de s = 800 échantillons
par niveau de désaccordage. Les valeurs obtenues pour la convergence quantitative sont
tracées sur la figure 5.5b. L’erreur de convergence (notée e (cs)) décroît rapidement avec
l’augmentation du nombre d’échantillons s avant de se stabiliser. Le centile 90 de σ = 2,9 %
est également celui qui présente la convergence la plus lente. Pour l’ensemble des centiles et
des σ considérés, e (cs) < 5 % à partir de s = 700 échantillons. Pour les 1000 échantillons
considérés, l’erreur finale de convergence quantitative sur le centile 90 de σ = 2,9 % est de
3,0%, et pour l’ensemble des autres centiles e (cs) < 0,64 %. En raison de la stabilisation
de e (cs) avec l’augmentation de s, un abaissement de l’erreur de convergence qualitative
requerrait une augmentation significative de s.
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Figure 5.5 Convergence qualitative sur les centiles 10 ( ), 50 ( ) et 90 ( ) pour
σ = 0,3 % ( ), 0,6% ( ), 1,2% ( ), 1,7% ( ), 2,3% ( ) et 2,9% ( ).

Les études de convergence stochastique qualitative et quantitative indiquent qu’une conver-
gence avec un niveau de confiance de 95% et une erreur de convergence de 3,0% est atteinte
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pour 1000 échantillons par niveau de désaccordage, tous niveaux confondus. Le temps de calcul
moyen étant de 7h15 par échantillon, pour Ω = 1, le temps de calcul nécessaire pour l’ensemble
de la campagne est ainsi de 43 200 h. La puissance de calcul disponible au laboratoire a permis
de répartir les calculs sur 40 processeurs de calcul, pour un temps brut de calcul équivalent
de 45 jours par processeur pour l’ensemble de la campagne.

Temporelle. Le nombre de tours étant fixé en début de simulations, la stabilisation des
signaux temporels est étudiée a posteriori, en utilisant les critères d’erreur sur le maximum
des amplitudes de déplacements sur les 3 derniers tours, ε, et de coefficient d’auto-corrélation
des déplacements sur les 6 derniers tours, ccorr, tels que définis dans la section 3.2.1. Les
centiles 10, 50 et 90 pour ces deux critères de convergence sont tracés sur la figure 5.6, et
les valeurs numériques des extremums sont reportées dans le tableau 5.2. Il apparaît que
ccorr tend à diminuer et ε à augmenter, donc la stabilisation des signaux au bout de 50 tours
tend à se détériorer à mesure que le niveau de désaccordage σ augmente. Il est à noter que
la stabilisation se détériore rapidement à mesure que σ augmente, avec max(‖ε‖) ≤ 6 %
pour σ ≤ 1,7 %, et des valeurs beaucoup plus importantes pour les plus grandes valeurs de
désaccordage considérées, avec max(‖ε‖) = 33,62 % pour σ = 2,9 %. Cependant, le tracé des
centiles de ε sur la figure 5.6a permet de déterminer que pour 80% des cas simulés, ε ≤ 7 %.
Par ailleurs, les coefficients de corrélation sont toujours ccorr ≥ 90 %, si bien que l’allure des
signaux est relativement stable au bout de 50 tours. À titre de comparaison, les valeurs sur
ces critères de convergence obtenus sur les signaux temporels présentés sur la figure 5.4 sont
de ε = −0,18 % et ccorr = 98,8 % sur le cas accordé, et de ε = −1,5 % et ccorr = 97,9 % sur
l’échantillon désaccordé avec σ = 2,3 %.

Les informations calculées sur la stabilisation des signaux temporels appuient donc le fait que
les résultats obtenus stochastiquement sur 50 tours de simulation permettent de dégager des
tendances qualitativement proches de ce que donneraient des résultats sur l’amplification en
régime permanent, avec un coût de calcul raisonnable.

Tableau 5.2 Critères de convergence temporelle pour différents niveaux de désaccordage, au
bout de 50 tours de simulation.

σ [%] 0,29 0,58 1,2 1,7 2,3 2,9
min(ccorr) [%] 98,73 98,67 98,51 97,72 96,66 92,91
max(ccorr) [%] 98,78 98,78 98,79 98,88 99,18 99,52

min(ε) [%] −0,52 −0,34 −1,18 −5,68 −10,62 −33,62
max(ε) [%] 0,22 0,22 0,28 2,53 9,44 15,76
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Figure 5.6 Stabilisation des signaux temporels sur 50 tours de simulation, centiles 10, 50 et
90.

Bilan. D’une part, l’étude de la convergence qualitative et quantitative met en évidence la
fiabilité stochastique des résultats dès 1000 échantillons par σ, par compromis entre niveau
de confiance et temps de calcul par niveau de désaccordage. D’autre part, l’étude de la
stabilisation des signaux temporels indique que les résultats stochastiques obtenus sur 50 tours
de simulation présentent qualitativement la même tendance sur l’amplification des vibrations
que des résultats qui seraient obtenus avec identification du régime permanent.

Résultats

La section suivante présente les résultats stochastiques obtenus sur les simulations en confi-
guration nominale industrielle (Ω = 1 et nd = 2), pour tous les niveaux de désaccordage
considérés (σ = 0,3 % à 2,9 %). L’amplification des vibrations due au désaccordage y est
présentée, calculée au bout de 50 tours et au bout de 10 tours de simulation.

Au bout de 50 tours.

Méthode de calcul. L’amplification des vibrations due au désaccordage, calculée au bout
de 50 tours de simulation, est notée A50. Afin de s’assurer de la robustesse des résultats
obtenus, deux types de calculs sont comparés :

(1) la moyenne des maximums par tour sur les 10 derniers tours (20% en fin de simulation)
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(2) le maximum sur les 3 derniers tours.

Le premier calcul permet de lisser les résultats obtenus, alors que le second calcul est cohérent
avec le critère proposé dans l’étude phénoménologique dans le chapitre 3. Les résultats obtenus
pour ces deux critères sont présentés pour les centiles 10, 50 et 90 sur la figure 5.7. Les deux
calculs d’amplification renvoient des valeurs de centiles très proches, comme le montre la
superposition des courbes pleines et en pointillés : si la convergence temporelle n’est pas
atteinte pour certains motifs, comme les critères ε et ccor l’indiquent (section 5.2.2), le nombre
d’échantillons considérés permet d’assurer la robustesse du calcul des centiles, avec un calcul
de l’amplification similaire au cas phénoménologique. Pour ce qui suit, A50 désigne les résultats
obtenus par le calcul du maximum sur les 3 derniers tours.

Évolution en fonction de σ. Pour tous les niveaux de désaccordage considérés, A50 > 1
et croît de façon monotone : les vibrations post-contact sont amplifiées par le désaccordage,
ce qui tend à empirer avec l’augmentation de σ. Les centiles 10, 50 et 90 de A50 évoluent à
mesure que σ augmente suivant trois phases :

(1) σ ≤ 1,2 % (figure 5.7b), A50 progresse moins rapidement que σ, les centiles présentent
une allure logarithmique ;

(2) 1,2 % ≤ σ ≤ 2,3 % (figure 5.7c), A50 progresse plus rapidement que σ, avec une inflexion
nette à σ = 1,2 % ;

(3) 2,3 % ≤ σ (figure 5.7a), le centile 90 progresse exponentiellement avec le niveau de
désaccordage, passant de 2,33 pour σ = 2,3 % à 6,44 pour σ = 2,9 %, et l’écart entre les
centiles 10 et 90 passe de 0,76 à 4,43.

Le calcul de l’amplification sur une vitesse fixée a déjà été utilisé dans un contexte linéaire,
notamment par Ewins [53] et Whitehead [78]. Dans ces deux études, la vitesse d’intérêt pour le
calcul de l’amplification correspond à la résonance de la roue aubagée accordée. L’amplification
maximale obtenue est typiquement de l’ordre de 20%, pour une variation de l’ordre de 3%
sur le module d’Young des aubes, soit σ = 1,7 pour une distribution uniforme. Dans le cadre
non-linéaire défini, le centile 50 indique une amplification de 32%, qui est dans les mêmes
ordres de grandeur. En revanche, de plus hauts niveaux de désaccordage conduisent à des
amplifications très élevées. Une explication sera proposée dans la section d’analyse. Enfin,
il est tout de même à noter que les amplitudes sont très faibles dans le cas accordé pour le
cas de contact choisi (voir la figure 5.4a), si bien que même pour l’échantillon présentant
l’amplification maximale (soit A50 = 11,7), les amplitudes maximales de déplacement sont
de 1,1mm et restent dans le cadre de l’hypothèse des petites déformations de l’équation du
mouvement utilisée.
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Figure 5.7 Amplifications non-linéaires ( ) au bout de 50 tours en configuration nominale
industrielle, calculée avec le maximum sur les 3 derniers tours ( ) et la moyenne des
maximums sur les 10 derniers tours ( ), avec les centiles 10 ( ), 50 ( ) et 90 ( ).
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Au bout de 10 tours. L’étude de l’amplification des déplacements du fait du désaccordage
lors du régime transitoire de vibration est une problématique de recherche récente, en réponse
à l’intérêt industriel qu’elle présente [161,162]. Il a été montré que dans le cadre des vibrations
linéaires, l’amplification transitoire des déplacements, avec une vitesse variant progressivement,
peut être du même ordre de grandeur — voire 20% supérieure — que l’amplification en
régime permanent [161]. Dans ce qui suit, l’amplification des déplacements sur les 10 premiers
tours de simulation, notée A10, est étudiée pour le scénario de contact défini.

Les résultats stochastiques obtenus sur les centiles 10, 50 et 90 sont tracés sur la figure 5.8.
Les centiles obtenus sur A50 y sont également rappelés. Pour tous les σ considérés, A10 > 1 et
croît de façon monotone. Peu après l’initialisation du contact, le désaccordage induit donc une
amplification des vibrations. Les centiles de A10 évoluent à mesure que σ augmente suivant
deux phases :

(1) σ ≤ 0,6 % (figure 5.8b), A10 progresse moins rapidement que σ ;

(2) 0,6 % ≤ σ (figure 5.8a), A10 progresse plus rapidement que σ, sur tous les centiles.

Contrairement à ce qui avait été constaté pour A50, il n’y a donc pas de phase où le centile 90
présente une évolution plus forte que les autres centiles, si bien que l’élargissement de la zone
entre les centiles reste progressive. Les autres phases sont assez similaires, avec cependant
un décalage des bornes de σ vers les plus petit désaccordage. Pour σ ≤ 0,6 % (figure 5.8b),
le centile 90 de A10 suit quasiment le centile 10 de A50 : stochastiquement, pour 90% des
cas, l’amplification des vibrations pourrait être amoindrie si le temps de contact était plus
court. À noter cependant que les amplifications considérées sont très faibles dans les deux
cas, passant d’environ 4,6% sur le centile 50 de A50 à moins de 1,7%. Pour σ = 1,2 %, les
courbes de centile de A10 présentent une inflexion, si bien que 50% des résultats transitoires
sont désormais au-dessus de 90% des résultats à 50 tours. De plus les résultats présentent
une grande dispersion, si bien qu’une faible variation des paramètres sur un motif choisi peut
conduire à des amplifications bien plus importantes que souhaitées. Enfin, pour 1,2 % < σ

(figure 5.8a et 5.8c), le centile 10 de A10 passe du centile 10 au centile 50 de A50, puis continue
de le suivre : les amplifications les plus faibles A10 sont au niveau de la médiane de A50, ce qui
suggère stochastiquement des déplacements importants peu après le contact qui se stabilisent
vers des amplitudes plus faibles.

Enfin, les niveaux d’amplification sont globalement du même ordre de grandeur : des amplifi-
cations très élevées sont constatées même peu après l’initialisation du contact.
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Figure 5.8 Amplifications non-linéaires ( ), calculées avec le maximum sur les 10 premiers
tours (20% de la simulation), comparées aux amplifications au bout de 50 tours ( ), avec
les centiles 10 ( ), 50 ( ) et 90 ( ).
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Analyse

Les niveaux d’amplification constatés sont très élevés, aussi bien au bout de 50 tours que de
10 tours de simulation. Ceci peut être dû au calcul à une vitesse de rotation fixe, si la vitesse
de rotation se est peu éloignée d’une vitesse critique. En effet, sur les FRF désaccordées, la
multiplication des pics de résonance et l’élargissement de la plage critique (voir les cartes
d’interaction à la figure 5.3) peut amener à ce qu’un pic soit constaté à une vitesse non
critique pour le cas accordé.

Les diagrammes de Campbell de la roue aubagée et de l’aube encastrée, établis sur les
fréquences propres, sont tracés afin d’identifier les possibles fréquences critiques d’interaction.
Utilisés conjointement, ces deux diagrammes permettent d’estimer le comportement du
système non-linéaire. En effet, les fréquences propres de la roue aubagée sont inférieures
aux fréquences propres du système non-linéaire, du fait de la rigidification due au contact,
tandis que les fréquences propres de l’aube encastrée sont supérieures aux fréquences propres
du système non-linéaire, puisque la condition d’encastrement sur la base de l’aube est plus
contraignante que la liaison avec le disque.

Le diagramme de Campbell de la roue aubagée est présenté sur la figure 5.9a. Les fréquences y
sont normalisées par rapport à la première fréquence propre de la roue aubagée accordée. Les
trois premières familles de modes de la roue accordée sont tracées, correspondant aux modes
d’aubes suivants : première flexion (1F), pour des fréquences entre 1 et 1,01, seconde flexion
(2F) entre 2,67 et 3,05 et première torsion (1T) entre 3,25 et 3,51. Pour la famille de modes
1F, les extremums de fréquences propres désaccordées sont indiqués pour les échantillons
simulés, par niveau de désaccordage, sur la figure 5.9b. Les fréquences propres s’éloignent du
cas accordé à mesure que σ augmente. Il apparaît qu’une possible interaction entre le régime
moteur eo = 14 et la vitesse nominale Ω = 1 pourrait se produire à une fréquence propre de
1,04 dans le cas linéaire, ce qui est 2,6% au-dessus de la fréquence propre maximale de la roue
accordée. À mesure que le désaccordage augmente, les fréquences maximales se rapprochent
de cette possible interaction mais ne l’atteignent pas.

Par ailleurs, le diagramme de Campbell de l’aube encastrée est présenté sur la figure 5.10a.
Les premiers modes sont également classées dans l’ordre : 1F, 2F et 1T. Les fréquences propres
sont tracées pour une aube de la roue aubagée accordée, au module d’Young E0, ainsi que
pour un module d’Young de +5% et de −5% de E0. La fréquence correspondant au mode 1F
pour l’aube à E = E0 est de 1,03, bien supérieure à la plage de fréquences correspondante
pour la roue aubagée, mais toujours inférieure à la fréquence d’interaction possible entre la
vitesse nominale et le régime moteur eo = 14. La fréquence propre du mode 1F pour une
aube à E = E0(1− 5 %) est davantage éloignée de la fréquence de possible interaction. En
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Figure 5.9 Diagramme de Campbell pour la roue aubagée, avec les fréquences propres
accordées pour les premiers modes de flexion ( ) et de torsion ( ) et la plage de
variation des fréquences propres désaccordées pour tous les échantillons simulés, en fonction
du désaccordage : σ = 0,3 % ( ) à σ = 2,9 % ( ). Les possibles interactions avec eo = 14
sont indiquées ( ).

revanche, la fréquence propre du mode 1F pour une aube à E = E0(1 + 5 %) est à 1,05, soit
au-dessus de la fréquence de possible interaction. En somme, le désaccordage combiné à la
rigidification au contact peut amener la plage de fréquences critiques au niveau de la vitesse
de rotation nominale, et donc à un régime critique.

L’analyse du contenu fréquentiel des déplacements tangentiels du nœud au bord de fuite
sur les 3 derniers tours, réalisé par transformée de Fourier rapide (FFT, de l’anglais Fast
Fourier Transform), permet de valider ce cas d’interaction. Les résultats sont présentés sur
la figure 5.11, pour les échantillons à σ = 2,9 %, où un échantillon sur 20 est représenté par
soucis de lisibilité. L’allure du signal est similaire pour tous les σ. Des pics sont régulièrement
espacés pour les plus basses fréquences, qui correspondent aux différents régimes moteurs.
Le pic le plus important pour tous les échantillons se situe à une fréquence de 1,04, qui est
bien la fréquence d’interaction possible entre la famille de modes 1F et eo = 14 identifiée sur
le diagramme de Campbell. Enfin, du contenu fréquentiel est également visible à plus haute
fréquence, autour de 3,12, ce qui suggère une contribution des modes de déformation 2F et
1T qui sera détaillée lors de l’analyse du comportement vibratoire.

Le désaccordage, du fait du décalage en fréquences qu’il induit, décale donc le régime critique,
qui est alors capté à la vitesse de rotation nominale, d’où les amplificationsA50 très importantes
constatées aux plus hauts désaccordages.
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Figure 5.10 Diagramme de Campbell pour l’aube encastrée, avec les fréquences propres pour
E = E0 ( ), E = E0(1− 5 %) ( ) et E = E0(1 + 5 %) ( ).
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Figure 5.11 Contenu fréquentiel du déplacement sur les 3 derniers tours pour des échantillons
à σ = 2,9 %, obtenu par FFT. Fréquences des modes 1F, 2F ( ) et 1T ( ).
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5.2.3 Comportement vibratoire

L’amplification permet de quantifier stochastiquement l’influence du désaccordage sur les
amplitudes de vibrations post-contact. Cependant, elle ne permet pas d’obtenir quelque
information sur la modification du comportement dynamique que le désaccordage pourrait
engendrer. Or, le fait de passer d’un mode de vibration à un autre peut être néfaste au regard
des contraintes engendrées sur les aubes [23,26], ce pourquoi en dimensionnement linéaire,
les zones de pincement doivent être évitées par exemple. La section suivante propose des
indicateurs pour permettre d’analyser davantage le comportement dynamique de la roue
aubagée et de l’aube pour laquelle la réponse vibratoire et maximale.

Roue aubagée

Le facteur de localisation FL, défini dans le cadre de l’analyse du cas phénoménologique à la
section 3.4, est calculé pour tous les échantillons simulés sur les déplacements de 3 derniers
tours simulés. L’amplification A50 est tracée par rapport à FL sur la figure 5.12 pour les
différents σ, en densités cumulées avec un calcul similaire à celui réalisé dans la section 3.3.3.
Pour σ ≤ 2,3 %, FL augmente quasi linéairement avec A50. La dispersion des résultats devient
plus importante pour σ = 2,9 % pour atteindre des valeurs très élevées. Pour un cas où k aubes
vibrent à la même amplitude, correspondant à l’amplitude maximale des déplacements sur
l’ensemble des aubes, les autres aubes ne vibrant pas, l’expression du facteur de localisation
est :

FL =
√
N −

√
k√

k
(√

N − 1
) × 100 (5.1)

Pour N = 21 aubes, FL = 36,0 % dans le cas de k = 4 aubes vibrant seules, FL = 45,9 %
pour k = 3 et FL = 62,5 % pour k = 2. Ces valeurs sont reportées par des droites ( ) sur la
figure 5.12, là où l’échelle le permet. Il apparaît que FL ≥ 36,0 % uniquement pour σ = 2,9 %.
La valeur maximale est FL = 89,7 %, qui se rapproche fortement du cas où une seule aube
vibre. À partir de FL = 77 %, les échantillons pour σ = 2,9 % montrent une augmentation
d’autant plus forte de A50, ce qui pourrait indiquer que la roue aubagé présente des modes de
vibration d’aube.

Cependant, FL tel que défini peut prendre une même valeur pour des roues aubagées aux
comportements très différents. Les déplacements sont représentés pour quelques échantillons
sur la figure 5.13, où chaque segment correspond à une aube et la longueur du segment dépend
du déplacement maximum de l’aube pour les nœuds physiques conservés, sur les 3 derniers
tours. Les différences sur A50 sont clairement visibles, avec les plus grandes amplifications sur
les échantillons présentés aux figure 5.13b et 5.13d. L’échantillon au plus grand FL, représenté
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Figure 5.12 Évolution de A50 par rapport au facteur de localisation FL pour les différents σ,
tracée à travers les densités cumulées à 60% et 100%, et FL correspondant à 4, 3 et 2 aubes
vibrant seules ( ).
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sur la figure 5.13e, présente bien visuellement une seule aube qui vibre. En revanche, sur les
échantillons représentés aux figure 5.13a et 5.13c, seule une aube vibre à l’amplitude maximale
pour l’ensemble de la roue, les autres aubes vibrant peu. En effet, si l’amplitude sur l’aube qui
vibre le plus est assez faible, de petites amplitudes sur les autres aubes vont plus fortement
abaisser la valeur de FL, ce qui explique les valeurs trouvées.

(a) FL = 59,17 %
et A50 = 3,06

(b) FL = 59,09 %
et A50 = 8,33

(c) FL = 84,48 %
et A50 = 5,54

(d) FL = 84,47 %
et A50 = 11,72

(e) FL = 89,73 %
et A50 = 6,88

Figure 5.13 Visualisation des déplacements maximaux des échantillons à différents FL et A50.

En somme, des comportements vibratoires très différents peuvent présenter le même FL, si
bien qu’il convient d’être prudents sur les conclusions tirées du fait de ce facteur. Il apparaît
cependant que de fortes amplifications sur l’ensemble de la roue aubagée sont corrélées à de
hauts facteurs de localisation.

Aube à amplitude maximale

Pour chaque échantillon, les déplacements sur les nœuds frontière sont étudiées dans ce qui
suit, pour l’aube qui présente l’amplitude des oscillations maximale.

La position de la déformation maximale parmi les 5 nœuds frontière conservés en tête d’aube
(tel qu’indiqués sur la figure 4.8b) est donnée pour tous les σ sur la figure 5.14, où l’indice 1
correspond au bord de fuite (BF) et l’indice 5 au bord d’attaque (BA). Il apparaît nettement
que les amplitudes maximales sont rencontrées sur le BA ou le BF, mais jamais sur les nœuds
centraux. La position de l’amplitude maximale change à mesure que σ augmente :

– sur le BF pour σ ≤ 0,6 % ;

– répartis à 46,6% sur le BF et 53,4% sur le BA pour σ = 1,2 %.

– sur le BA pour 1,7 % ≤ σ ;

Ces résultats suggèrent une modification nette du comportement vibratoire de l’aube aux
plus fortes amplitudes à mesure que σ augmente.
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Figure 5.14 Position de l’amplitude maximale des déplacements sur les ddl physiques en bout
d’aube, l’indice 1 désignant le bord de fuite (BF) et l’indice 5 le bord d’attaque (BA), pour
tous les échantillons de σ = 0,3 % ( ) à σ = 2,9 % ( ).

L’analyse du contenu fréquentiel des déplacements tangentiels du nœud au BF à chaque σ
montre une contribution nette au niveau des fréquences correspondant à l’interaction entre
eo = 14 et la famille 1F, comme vu pour σ = 2,9 % sur la figure 5.11. Le contenu fréquentiel
obtenu plus spécifiquement proche de fréquences correspondant aux familles 2F et 1T de la
roue aubagée accordée, précédemment indiquées sur la figure 5.9a, est tracé pour tous les σ sur
la figure 5.15. Seul un motif sur 20 est tracé par soucis de lisibilité. Tous les graphiques sont
tracés avec la même échelle en amplitude. Les amplitudes pour σ ≤ 0,6 % sont très faibles, si
bien que la contribution des familles 2F et 1T est négligeable, mais elles augmentent avec
σ. Pour σ = 1,7 %, l’augmentation de amplification A50 est corrélée avec l’augmentation des
amplitudes aux fréquences proches de la famille 1T, avec des amplitudes non significatives au
niveau des fréquences proches de la famille 2F. La contribution de la famille 1T est ensuite
maximale pour σ = 2,3 %, alors que la contribution de la famille 2F est maximale pour
σ = 2,9 %. Comme les échantillons pour lesquels 2,3 % ≤ σ présentent des amplifications A50

en forte augmentation par rapport aux σ plus faibles (figure 5.7a), ces résultats semblent
indiquer que la forte augmentation des amplitudes proviendrait de la composition des différents
modes de vibration (1F, 2F et 1T).

5.2.4 Efforts de contact et usure

La norme maximale des efforts de contact sur les nœuds frontière est calculée pour l’ensemble
des échantillons sur les 3 derniers tours, de façon analogue à l’amplitude des déplacements
pour obtenir A50. L’amplification des efforts, notée AF , est le ratio entre la norme maximale
de l’échantillon désaccordé et celle du système accordé. Les centiles 10, 50 et 90 obtenus sont
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Figure 5.15 Contenu fréquentiel des déplacements de l’aube connaissant la plus grande
amplitude de déplacement, de σ = 0,3 % ( ) à σ = 2,9 % ( ), focalisées autour des
fréquences des familles 2F ( ) et 1T ( ) de la roue accordée. Les fréquences correspondant
aux pics prépondérants sont indiquées ( )
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tracés sur la figure 5.16. Les centiles de AF évoluent en deux phases :

(1) σ ≤ 0,6 % (figure 5.16b), AF progresse moins rapidement que σ ;

(2) 0,6 % ≤ σ (figure 5.16a), A10 progresse plus rapidement que σ, sur tous les centiles.

L’allure des centiles de AF est donc similaire à celle des centiles sur l’amplification de
l’amplitude A50 (figure 5.7). Les niveaux d’amplification sont cependant bien plus faibles sur
les efforts de contact, avec un centile 90 pour σ = 2,9 % à 1,16.

Le fait que des efforts de contact faibles mènent à une augmentation substantielle des
déplacements est cohérent avec une possible résonance captée à plus hauts σ, identifiée dans
l’analyse des déplacements à la section 5.2.2. Du fait de la présence physique du carter qui
contraint la vibration de l’aube, celle-ci tend à se replier. Par ailleurs, Le profil d’usure
présente 2 lobes pour tous les échantillons, correspondant aux lobes sur le carter. La plage
angulaire de l’usure évolue peu : elle augmente seulement de 6,5% entre le cas accordé et
sa valeur maximale sur l’ensemble des échantillons désaccordés. La pénétration n’augmente
que de 15%, pour atteindre une valeur maximale de 0,45mm, soit légèrement inférieure
à la déformation imposée sur le carter de 0,5mm et moins de 10% de l’épaisseur totale
de l’abradable (tableau 4.3 et 4.4). L’analyse de l’usure de l’abradable corrobore ainsi une
déformation de l’aube en repliement.

Enfin, la position de l’effort de contact maximal parmi les 5 nœuds frontière conservés en tête
d’aube est donnée pour tous les σ sur la figure 5.17. Les efforts maximaux sont rencontrés
sur les nœuds centraux, mais jamais sur le BA ou le BF. Le nœud qui présente les efforts
maximaux change à mesure que σ augmente :

– sur le nœud 4, plus proche du BA, pour σ ≤ 1,2 % ;

– répartis à 54,1% sur le nœud 4 et 39,7% sur le nœud 3, en milieu de corde, σ = 1,7 %.

– majoritairement sur le nœud 2, plus proche du BF, pour 2,3 % ≤ σ ;

Ces résultats corroborent la modification du comportement vibratoire à mesure que σ augmente,
avancée lors de l’analyse de la position de l’amplitude maximale à la section 5.2.3. Enfin,
les nœuds sur lesquels l’effort de contact est maximal ne sont pas ceux sur lesquels les
déplacements sont maximaux (figure 5.14), ce qui confirme également que l’aube se déforme
davantage en repliement.

5.2.5 Contraintes

Dans les sections précédentes, les résultats stochastiques sont calculés sur les déplacements et
efforts obtenus en bout d’aube, soit aux nœuds frontière conservés dans le modèle CM3. Afin
d’obtenir une vision plus globale, une expansion des ddl de la base mixte vers la base physique
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Figure 5.16 Amplification des efforts en fin de simulation ( ), avec les centiles 10 ( ),
50 ( ) et 90 ( ).
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Figure 5.17 Position de la norme maximale des effort de contact sur les ddl physiques en
bout d’aube, l’indice 1 désignant le BF et l’indice 5 le BA, pour tous les échantillons de
σ = 0,3 % ( ) à σ = 2,9 % ( ).
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est effectuée. Les déplacements et les contraintes à l’intérieur de l’ensemble de la roue aubagée
puis d’aubes sélectionnées peuvent ainsi être étudiés pour différents pas de temps.

La présente section s’appuie sur l’étude du modèle accordé (référé dans la suite par macc)
et de trois motifs désaccordés issus des simulations stochastiques : le motif qui présente
l’amplification Anl maximale (mamp), le motif qui présente le facteur de localisation FL
maximal (mloc) et un motif faiblement désaccordé pour lequel l’effort maximal est localisé
sur le bord de fuite (mbf), contrairement aux autres motifs désaccordés sélectionnés pour
lesquels l’effort maximal est sur le bord d’attaque. Certains résultats issus de l’analyse des
simulations stochastiques sont donnés pour les quatre motifs considérés dans le tableau 5.3. Les
motifs désaccordés sont renseignés dans les tableaux 5.4, 5.5 et 5.6. Les valeurs de contraintes
présentées sont normées par rapport à la limite d’élasticité σY du matériau, qui correspond
donc à σ = 1. Les déformations sont normées par rapport à la déformation maximale sur la
roue accordée.

Pour l’instant d’amplitude maximale

Les champs de déplacements et de contraintes sont reconstitués sur l’ensemble de la roue
aubagée, pour l’itération temporelle correspondant au maximum de l’amplitude des dépla-
cements sur les 3 derniers tours de chaque motif, et sont représentés sur la figure 5.18 pour
les quatre motifs sélectionnés. Afin de mieux visualiser les différences sur chaque aube d’un
même motif, les échelles de déplacement, représentées par un gradient de couleurs ( ),
dépendent du motif considéré. Les mailles dont les déplacements sont supérieurs ou égaux à
la valeur maximale imposée par le gradient sont ainsi en noir ( ). Ce maximum est de 1
pour macc et mbf, de 1,6 pour mloc, et de 2 pour mamp.

Pour les motifs macc et mbf, les déplacements maximaux sont visibles sur des groupes d’aubes
correspondant aux aubes en contact à l’instant considéré, indiquées sur les figures 5.18a et
5.18b par des triangles ( ). Des déplacements importants en tête d’aube sont visibles sur
les aubes en contact et sur les deux aubes les plus proches de la zone de contact entre deux
aubes. Les déplacements sont répartis sur l’ensemble de la roue, ce qui est en accord avec les

Tableau 5.3 Caractéristiques des motifs sélectionnés.

type de motif σ (%) Anl FL nœud d’amplitude maximale
macc 0 1 0 BF de l’aube 6
mbf 0,6 1,02 1,05 BF de l’aube 8
mamp 2,9 11,7 84,5 BA de l’aube 9
mloc 2,9 6,88 89,73 BA de l’aube 2
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Tableau 5.4 Motif de désaccordage mbf.

Variation du module d’Young par aube (%)
(δE)1 0,66 (δE)2 −0,29 (δE)3 0,58 (δE)4 0,80 (δE)5 0,46
(δE)6 −0,03 (δE)7 −0,17 (δE)8 0,65 (δE)9 −0,03 (δE)10 −0,58
(δE)11 0,37 (δE)12 0,02 (δE)13 0,19 (δE)14 −0,21 (δE)15 −0,52
(δE)16 −0,22 (δE)17 −0,09 (δE)18 −0,11 (δE)19 −0,04 (δE)20 −0,25
(δE)21 −0,07

Tableau 5.5 Motif de désaccordage mamp.

Variation du module d’Young par aube (%)
(δE)1 1,87 (δE)2 −0,89 (δE)3 1,57 (δE)4 −1,49 (δE)5 −1,42
(δE)6 −1,21 (δE)7 0,55 (δE)8 −3,86 (δE)9 −0,98 (δE)10 −2,95
(δE)11 −3,78 (δE)12 −0,02 (δE)13 −2,32 (δE)14 4,98 (δE)15 3,73
(δE)16 2,45 (δE)17 1,15 (δE)18 1,78 (δE)19 2,94 (δE)20 −2,24
(δE)21 −3,28

Tableau 5.6 Motif de désaccordage à mloc.

Variation du module d’Young par aube (%)
(δE)1 −0,58 (δE)2 2,07 (δE)3 −0,59 (δE)4 3,08 (δE)5 0,30
(δE)6 0,99 (δE)7 −1,14 (δE)8 0,70 (δE)9 0,96 (δE)10 0,20
(δE)11 −0,24 (δE)12 −4,32 (δE)13 1,39 (δE)14 0,75 (δE)15 −1,95
(δE)16 −2,92 (δE)17 −1,96 (δE)18 −4,56 (δE)19 3,09 (δE)20 0,46
(δE)21 4,99



125

faibles valeurs de FL calculées avec les déplacements en bout d’aube, telles que données dans
le tableau 5.3.

Les champs de déplacements des motifs mamp et mloc sont tracés aux figures 5.18c et 5.18d, à
l’instant pour lequel le déplacement calculé sur les 3 derniers tours est maximal. Les aubes
en contact ne sont plus celles qui présentent les plus grands déplacements. La localisation
dans des aubes éloignées de l’excitation peut être due, comme dans un cadre linéaire (voir la
section 2.2.2), à une transmission de l’énergie de vibration du fait des conséquences conjointes
du désaccordage et du couplage des aubes à travers le disque. Par ailleurs, le nombre restreint
d’aubes à forts déplacements est en accord avec les valeurs de FL élevées, calculées sur base
des déplacements en bout d’aube.

Pour tous les motifs, la reconstitution des déplacements sur l’ensemble du modèle permet de
montrer que les déplacements maximaux au niveau de la tête d’aube, ce qui confirme d’une part
la prépondérance de la composante de flexion et d’autre part que le calcul de l’amplification
sur les déplacements en tête d’aube effectué dans l’étude stochastique retranscrit bien un
maximum global des déplacements.

Les contraintes sur l’ensemble du modèle de roue aubagée sont tracées pour les différents motifs
sur la figure 5.19. L’échelle du gradient de couleurs ( ) est la même pour tous les motifs,
avec un maximum du gradient de 0,08, au-dessus duquel les mailles aux contraintes supérieures
ou égales sont en rouge ( ). Les contraintes calculées pour macc et mbf sont similaires, avec
les valeurs les plus importantes sur l’aube au niveau du plus grand déplacement du carter, et
une zone secondaire de contraintes sur les aubes diamétralement opposées, identifiées comme
un groupe d’aubes en contact sur les déplacements tracés aux figures 5.18a et 5.18b. Sur les
motifs à plus fort désaccordage, les contraintes sur les aubes en contact sont également plus
importantes en tête d’aube, alors que les contraintes sur les aubes à plus forts déplacements sont
localisées dans la partie inférieure de l’aube, ce qui suggère une modification du comportement
vibratoire.

Enfin, comme il apparaît sur les motifs considérés que les contraintes les plus importantes sont
situées dans les aubes aux plus grands déplacements, il est probable que mamp présente les
niveaux de contraintes les plus importants de l’ensemble des motifs simulés dans la campagne
stochastique. Le niveau maximal de contrainte pour mamp étant de 0,12, les ordres de grandeur
obtenus restent bien dans le cadre de l’hypothèse des petites déformations définie dans cette
étude.
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(a) macc, maximum du gradient à 1 (b) mbf, maximum du gradient à 1

(c) mamp, maximum du gradient à 2 (d) mloc, maximum du gradient à 1,6

Figure 5.18 Déplacements pour l’itération de plus grande amplitude des déplacements, avec
une échelle du gradient de couleurs ( ) dont la valeur maximale dépend du motif. Les
aubes en contact sont indiquées par un triangle ( ).



127

(a) macc (b) mbf

(c) mamp (d) mloc

Figure 5.19 Contraintes pour l’itération de plus grand amplitude des déplacements, avec une
échelle du gradient de couleur ( ) dont la valeur maximale est de 0,08 pour tous les motifs.
Les aubes en contact sont indiquées par un triangle ( ).
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Sur une oscillation

L’évolution des contraintes pour macc, mamp et mloc est regardée sur 8 itérations uniformément
réparties sur la dernière oscillation. Pour chaque motif considéré, les contraintes sont tracées
sur l’aube qui présente l’amplitude de déplacement maximale sur le dernier tour. L’échelle du
gradient de couleur ( ) est commune à tous les motifs, avec un maximum ( ) de 0,08
comme sur les visualisations à un instant donné sur les roues aubagées, à la figure 5.19. Le
pas de temps entre les itérations présentées est de 3,15 · 10−4 s pour tous les motifs.

L’évolution des contraintes pour macc est tracée à la figure 5.20. L’évolution des déplacements
selon ~t est tracée pour le dernier demi-tour à la figure 5.20a et pour la dernière oscillation,
sur le nœud au déplacement maximal, à la figure 5.20b. Sur cette dernière, l’évolution de la
norme des efforts de contact est également tracée et les itérations temporelles considérées,
de t1 à t8, sont indiquées. La position de l’aube est telle qu’elle entre en contact avec la
bosse au temps t6, si bien que la norme des efforts de contact n’est plus nulle et augmente
progressivement au passage de la bosse. En dehors des instants où l’aube est en contact, les
niveaux de contraintes sont faibles et plutôt localisés dans la partie inférieure de l’aube. Lors
du contact, les contraintes sont localisées sur le tiers supérieur de l’aube. L’alternance de
couleurs en tête d’aube, avec une concentration de contraintes importante aux nœuds frontière,
est une concentration numérique due à la gestion du contact. L’évolution des contraintes pour
mamp est tracée à la figure 5.21. La position de l’aube est telle qu’elle n’est pas en contact sur
la dernière oscillation considérée, comme visible sur le tracé de la norme des efforts de contact
à la figure 5.21b. Les contraintes sont localisées dans le corps de l’aube lorsque le déplacement
tangentiel n’est pas nul, avec des niveaux plus importants dans le tiers inférieur de l’aube,
vers le centre de l’aube. Les contraintes sont les plus importantes au niveau des extremums
de déplacement tangentiel. L’évolution des contraintes pour mloc est tracée à la figure 5.22.
Comme pour le motif à mamp, l’aube étudiée n’est pas en contact sur la dernière oscillation
considérée, comme visible sur le tracé de la norme des efforts de contact à la figure 5.22b, et
les contraintes dans l’aube sont minimales lorsque son déplacement tangentiel est nul. Les
valeurs maximales des contraintes sont également situées dans le tiers inférieur de l’aube et
plutôt centrées par rapport à la corde de son profil. Les contraintes sont les plus importantes
dans l’aube au déplacement maximal pour mamp.

Comme le désaccordage est appliqué uniformément sur toute l’aube, il est cohérent que l’allure
des champs de contraintes soit similaire d’un motif à l’autre, en-dehors des itérations de
contact. Si pour macc l’évolution des contraintes doit être sensiblement la même d’une aube à
l’autre, elle diffère pour les motifs à plus haut désaccordage. En effet, les aubes présentant le
plus grand déplacement, ce qui se traduit ici par la contrainte la plus importante, ne sont pas
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en contact. Ceci peut être expliqué par l’action conjointe du désaccordage et du couplage des
aubes à travers le disque, ce qui induit une localisation des contraintes.

5.3 Bilan

Des simulations stochastiques de contact aubes-carter sur des modèles désaccordés ont été
menées sur un modèle industriel en configuration nominale. Les analyses réalisées sur les
amplifications, efforts de contact et contraintes permettent de dégager des tendances qui
pourraient aider à la conception des turbomoteurs. L’amortissement du modèle étant posé à
la valeur de l’amortissement structurel, les résultats présentés sont proches de ce qui pourrait
être obtenu pour un DAM.

Tout d’abord, il a été montré que le désaccordage induit de très hautes amplifications des
vibrations post-contact, avec une modification du comportement vibratoire à mesure que
le désaccordage augmente. L’analyse fréquentielle des déplacements a permis de mettre en
évidence la participation de différents modes de vibration (1F, 2F et 1T), qui explique
ces modifications. Le cas de contact considéré induit une pénétration faible par rapport à
l’épaisseur de l’abradable, si bien que ce dernier présente peu d’usure. Enfin, les amplifications
trouvées sont également dues à une interaction avec le régime moteur 14, identifiée pour la
vitesse étudiée à mesure que le désaccordage augmente.

Par ailleurs, l’évolution de l’amplification due au désaccordage reste modérée pour σ ≤ 1,7 %.
Un tel niveau de désaccordage, associé aux tolérances de fabrication, serait ainsi acceptable
en termes de conception. Il est cependant à noter que les facteurs de localisation pour les
niveaux de désaccordage plus élevés se rapprochent de ceux qui sont obtenus si une seule
aube de la roue aubagée vibre. Ainsi, il est possible que des valeurs plus importantes de
désaccordage conduisent à une réduction des amplifications, comme reporté dans la littérature
dans le cadre de l’étude des vibrations linéaires [23]. Des stratégies de conception utilisant un
grand désaccordage pourraient ainsi être envisagées. Comme l’analyse des motifs a montré une
absence de corrélation entre le désaccordage de l’aube qui connaît la plus grande amplitude
des vibrations et l’amplification sur l’ensemble de la roue aubagée, ces stratégies de conception
devraient être pensées en considérant la dynamique de la roue désaccordée complète.

Enfin, une analyse des champs de déplacement et de contraintes a été menée sur des motifs
d’intérêt sélectionnés sur base de la campagne stochastique. D’une part, la performance de
la méthode de CM3 a pu être avérée pour le redéploiement et le calcul de champs de bonne
qualité sur les nœuds internes de la roue aubagée. D’autre part, les niveaux de contraintes
sont plus élevés pour les motifs à plus grande amplification. Pour les plus hauts niveaux de
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Figure 5.20 Évolution des contraintes sur l’aube 6 de macc.
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dé
pl

ac
em

en
t

[×
10

−
4 ]

(b) déplacement maximum selon ~t ( ),
efforts ( ) et itérations sélectionnées ( )
sur la dernière oscillation

(c) à t1 (d) à t2 (e) à t3 (f) à t4

(g) à t5 (h) à t6 (i) à t7 (j) à t8

Figure 5.22 Évolution des contraintes sur l’aube 2 de mloc.



133

désaccordage, l’aube qui présente les contraintes les plus importantes est aussi l’aube dont
l’amplitude des vibrations est la plus importante, et ce sans qu’elle soit en contact à l’instant
où elle connaît ce maximum.
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CHAPITRE 6 GÉNÉRATION DE DONNÉES DE BLADE TIP-TIMING

Les vibrations des roues aubagées sont classiquement caractérisées expérimentalement en
utilisant des jauges de contraintes directement apposées sur des aubes choisies. Ces jauges pré-
sentent cependant l’inconvénient d’être intrusives d’un point de vue dynamique. En particulier,
l’ajout de masse qu’elles représentent peut devenir prépondérant devant le désaccordage, si
bien que l’influence de ce dernier ne peut pas être étudiée. De plus, les mesures par jauges de
contraintes sont assez complexes en termes d’instrumentation, les rendant peu envisageables
dans le cadre du contrôle rapide des moteurs, ou encore de l’instrumentation en vol pour la
création de doubles numériques (digital twins).

Des techniques non intrusives ont ainsi été développées, dont la mesure du temps de passage
des sommets d’aubes, appelée la technique de BTT de l’anglais Blade Tip-Timing [163].
Le comportement vibratoire de la structure est alors obtenu à partir du temps de passage
des aubes, noté TOA de l’anglais Time Of Arrival, mesuré par des capteurs situés sur la
circonférence du carter, comme représenté sur la figure 6.1. Différentes configurations de
chaînes d’acquisition et de nombreux algorithmes de traitement des données ont été développés
selon le type de vibrations étudié (synchrones, asynchrones) [164]. Les principaux défis que
pose le traitement des données de BTT sont le sous-échantillonnage (undersampling) et le
repliement de spectre (aliasing) qui en résulte [165], ainsi que des difficultés inhérentes à
toute approche expérimentale, telles le bruit de mesures et des défauts de positionnement des
capteurs [166]. Afin de tester les algorithmes définis et leur robustesse, des recherches récentes
proposent de générer numériquement des signaux de BTT, ce qui permet de découpler les
différents effets physiques présents [166]. Actuellement, la génération de signaux de BTT est
proposée uniquement en configuration linéaire.

La méthodologie de gestion du contact présentée au chapitre 3 et la méthode de réduction CM3
développée dans le chapitre 4 permettent de simuler le comportement dynamique de modèles
de roues aubagées désaccordées dans un contexte de non-linéarité de contact aubes-carter en
conservant les ddl physiques en tête d’aube. Comme la méthodologie repose sur une technique
d’intégration temporelle, les déplacements en sommet d’aubes ainsi obtenus peuvent être
utilisés pour le calcul du TOA et donc la génération numérique de signaux de BTT.

Le présent chapitre constitue ainsi une première étude de la génération de signaux de BTT
dans un contexte non-linéaire. Les concepts et les différentes recherches sur la technique de
BTT sont exposés, afin de définir un cadre d’étude simplifié. La génération de signaux est
ensuite présentée et validée dans un cadre linéaire sur le modèle phénoménologique étudié dans
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Figure 6.1 Principe de l’étude des vibrations d’une roue aubagée ( ) par BTT, grâce à des
capteurs situés sur la circonférence du carter ( ) et sur l’arbre ( ). Adapté de : [16].

le chapitre 3. La méthode proposée est ensuite étendue à une configuration de non-linéarités
de contact, sur le modèle phénoménologique puis sur le modèle industriel présenté dans
le chapitre 4. Enfin, les résultats stochastiques de simulations non-linéaires présentés au
chapitre 5 sont utilisés pour étudier l’influence du désaccordage sur les signaux générés. Des
pistes pour l’identification de phénomènes de contacts à partir de signaux de BTT sont ainsi
proposées.

6.1 Concept et application dans la littérature

La technique de BTT permet de caractériser expérimentalement le comportement vibratoire
des roues aubagées de façon non intrusive. Des capteurs sont disposés sur la circonférence du
carter, comme illustré sur la figure 6.1. Chaque capteur délivre un signal à chaque passage
d’aube, qui dépend du type de capteur utilisé comme il sera détaillé plus tard dans cette
section. Le signal du capteur est ensuite traité afin d’obtenir le temps d’arrivée (TOA) mesuré
de chaque aube. Un autre capteur, installé sur l’arbre de rotation, délivre un signal à chaque
révolution qui est traité pour obtenir la vitesse de rotation de la roue aubagée. Par ailleurs,
le TOA qui serait obtenu pour les aubes d’une roue rigide est calculé théoriquement. La
différence entre le TOA mesuré et le TOA rigide permet d’obtenir le déplacement de l’aube
pour le point de mesure considéré. Enfin, ces données sont traitées par des algorithmes avancés
pour obtenir les fréquences et amplitudes de vibrations de la roue aubagée [167].
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Les efforts de recherche se sont en particulier concentrés sur les étapes d’acquisition du TOA et
de traitement des signaux, comme détaillé dans ce qui suit. Des études plus récentes proposent
la prise en compte du désaccordage et la génération numérique de signaux pour enrichir
les informations obtenues sur la roue aubagée et améliorer la robustesse des algorithmes de
traitement développés [55, 166].

6.1.1 Chaîne d’acquisition

Dans le cadre d’un système d’acquisition par BTT classique, le carter et l’arbre sont tous
deux instrumentés. Le capteur lié à l’arbre, de type OPR pour Once Per Revolution, permet
de connaître la vitesse de rotation réelle du rotor, puisque celle-ci présente expérimentalement
une certaine variabilité par rapport à la vitesse voulue [168]. Les capteurs, liés au carter,
délivrent un signal brut généralement analogique qui est ensuite traduit en une impulsion
correspondant au passage d’une aube [169]. Les capteurs optiques, de type laser, sont les plus
couramment utilisés dans la littérature [163,167,169,170]. Ils présentent notamment l’avantage
d’être très précis mais sont difficiles à utiliser hors des conditions de laboratoire, comme
par exemple dans le cadre du contrôle des moteurs, du fait de leur sensibilité aux débris et
contaminants [171]. Afin de s’affranchir de ces limitations, l’acquisition par des capteurs à
courant de Foucault (eddy current sensors) [171,172], capacitifs ou inductifs [173,174] a fait
l’objet de développements récents [175]. Par ailleurs, l’usage du capteur OPR classique peut
être également limitant pour une installation sur un moteur en fonctionnement, si bien que
certaines recherches proposent de s’en passer en évaluant la vitesse de rotation à partir du
TOA des aubes [176].

Le type, le positionnement et le nombre de capteurs à installer sur le carter dépendent de la
nature des vibrations étudiées, synchrones ou asynchrones. L’étude des vibrations asynchrones
nécessite typiquement de l’ordre 2 à 4 capteurs sur la circonférence du carter [164]. L’étude
des vibrations synchrones nécessite davantage de capteurs, en fonction de l’ordre moteur des
vibrations recherchées [169,177] : par exemple, l’étude des vibrations au régime moteur 10
nécessite l’installation de 8 capteurs [168, 178]. Les capteurs sont généralement placés sur
une plage angulaire restreinte, sur la moitié voire le quart de la circonférence du carter. Leur
répartition et leur position axiale (en milieu de corde, sur le bord d’attaque ou sur le bord de
fuite) sont étudiées dans de nombreuses recherches [173,179] car elles conditionnent les modes
de vibrations qui pourront être étudiés [164]. Plusieurs capteurs peuvent être placés à une
même position axiale afin de suivre les déplacements des bords d’attaque et de fuite et de
capter des modes de torsion [169].
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6.1.2 Traitement des signaux

Les vibrations des aubes présentent des fréquences de vibration bien supérieures à la fréquence
d’échantillonnage de l’acquisition de BTT, qui dépend du nombre de capteurs utilisé et
de la vitesse de rotation. Les signaux obtenus sont donc fortement sous-échantillonnés, ce
qui conduit à un repliement de spectre et donc des erreurs importantes dans l’évaluation
des signaux réels (plus de détails sont fournis en annexe F). De nombreuses techniques de
traitement des signaux de BTT ont ainsi été développées pour obtenir les fréquences de
vibration recherchées et les amplitudes associées, basées notamment sur des transformées de
Fourier, des estimations de variance ou des techniques interpolations [163,164].

En outre, les signaux de BTT acquis expérimentalement sont inévitablement bruités, du fait de
l’acquisition par des capteurs qui présentent une sensibilité et un seuil de détection donnés, ou
encore de l’incertitude dans leur placement [166]. Les algorithmes de traitement des signaux de
BTT doivent ainsi être robustes vis-à-vis de ces perturbations. Ils sont généralement distingués
selon le type de vibrations qu’ils permettent de traiter, synchrones ou asynchrones, bien que
certaines méthodes telles que la transformée de Fourier discrète non uniforme (NUDFT pour
Non-Uniform Discrete Fourier Transform) et l’estimation de spectre par le minimum de
variance (MVE pour Minimum variance spectrum estimate) soient applicables dans ces deux
cas [164].

L’acquisition par BTT spécifique aux vibrations synchrones permet soit d’étudier les vibrations
en condition de résonance, soit de reconstituer la réponse forcée linéaire de la roue aubagée
ou de chaque aube indépendamment [16, 177, 180, 181]. Les méthodes d’analyse peuvent alors
être classées en deux groupes [180] : indirectes et directes. Les méthodes indirectes reposent
sur des mesures lors de phases d’accélération et de décélération de type rampe dans une plage
de vitesses dans laquelle au moins une fréquence de résonance sera excitée. La confrontation
des signaux obtenus sur seulement deux capteurs pour les accélérations et décélération, via
la méthode 2PP (Two Parameter Plot), permet alors d’identifier l’ordre moteur excité [182].
Les méthodes directes reposent sur l’utilisation de signaux générés à une vitesse de rotation
fixe afin d’extraire l’amplitude de vibration de chaque aube [167], par des méthodes reposant
sur des méthodes des moindres carrés (LSFM, pour Least square Sine Fitting Method), telles
la méthode du déterminant [173] ou la méthode auto-régressive [173, 180]. Des recherches
récentes proposent enfin de généraliser les méthodes directes à un cas de vitesse de rotation
de l’arbre variable afin d’étudier les vibrations transitoires de la roue aubagée [183].

Les signaux générés par BTT peuvent permettre d’étudier des vibrations asynchrones de type
décrochage ou ballottement par l’analyse du signal d’une aube avec un ou deux capteurs [164].
Les efforts de recherche ont cependant été davantage concentrés sur l’identification d’usure et
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de fissures sur les aubes, dans le cadre d’une application au contrôle des moteurs [184]. La
validation des algorithmes de traitement sur des données expérimentales constitue une part
importante des travaux sur le sujet [165,185]. Des méthodes reposant sur les transformations
de Fourier (FFT) et des méthodes des moindres carrés permettent ainsi d’identifier à partir
du signal quelles aubes présentent une usure et doivent être changées [186].

6.1.3 Prise en compte du désaccordage

Du fait de la disposition des capteurs sur la circonférence du carter, et non directement sur
les aubes comme dans le cas des jauges de contrainte, l’acquisition par BTT permet un suivi
non intrusif de toutes les aubes à moindre coût. L’analyse des signaux obtenus par BTT est
ainsi utilisée pour l’étude des systèmes désaccordés dans le cadre des vibrations synchrones,
comme en témoignent les nombreuses études réalisées depuis 2010 [167], en particulier pour
les DAM dont les aubes ne peuvent pas être prises indépendamment pour en mesurer les
fréquences propres [187,188].

Les données obtenues par BTT peuvent être traitées d’une part pour obtenir l’amplitude
maximale sur l’ensemble de la roue aubagée [189] et identifier l’aube correspondante [188], et
d’autre part pour l’identifier le motif de désaccordage [177]. La validation de l’identification
de motifs de désaccordage est effectuée sur des cas déterministes. De plus, les valeurs de
contraintes dans les aubes peuvent être obtenues par méthode indirecte lors d’acquisitions
BTT au passage d’une résonance, en utilisant par exemple le NSMS (Nonintrusive stress
measurement system) [55, 187].

Enfin, une approche alternative consiste à considérer le faible désaccordage comme une
perturbation vis-à-vis de laquelle la robustesse des algorithmes de BTT doit être vérifiée [181],
de façon analogue au bruit de mesure dans la chaîne d’acquisition.

6.1.4 Génération numérique de signaux

Afin de pouvoir étudier la robustesse des algorithmes de traitement des données de BTT
vis-à-vis des perturbations ou de certains comportements vibratoires complexes tels les effets
centrifuges, les signaux de BTT peuvent être générés numériquement. En effet, la génération
numérique permet avantageusement de perturber progressivement un signal de TOA parfait —
en ajoutant la prise en compte de phénomènes dynamiques comme les effets centrifuges ou
gyroscopiques, d’incertitudes de mesure venant bruiter le signal des capteurs, ou encore du
désaccordage — afin de s’assurer de la robustesse des algorithmes à chaque étape [166]. En
particulier, il a été montré que si de nombreux algorithmes sont robustes par rapport à chaque
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phénomène pris indépendamment, la génération d’algorithmes robustes à tous les phénomènes
couplés est un enjeu important [173]. Les développements les plus récents proposent des
techniques de génération de données de BTT en prenant en compte de nombreux phénomènes
physiques afin que les données générées soient au plus proche de données qui pourraient être
obtenues expérimentalement [166].

La validation avancée des algorithmes de traitement des signaux obtenus par BTT requiert
des modèles industriels, à grand nombre de ddl, pour générer des signaux qui se rapprochent
de ceux qui seraient obtenus sur des roues aubagées testées expérimentalement [168]. Afin de
réduire la taille des modèles, des techniques de réduction telles la SNM [26] et la FMM [97]
peuvent alors être utilisées pour générer des modèles utilisables dans le cadre de la génération
numérique de signaux obtenus par BTT [55,166]. Les informations issues des données BTT,
en particulier le motif de désaccordage, peuvent également être utilisées pour mettre à jour
les paramètres éléments finis d’un modèle numérique qui pourra être utilisé pour la validation
des algorithmes [188].

Une fois le modèle généré, les équations du mouvement peuvent être résolues par des méthodes
harmoniques de type HBM [174, 190] ou par analyse modale couplée à une intégration
temporelle locale [166], lorsque l’aube est située dans la plage angulaire correspondant à la
position des capteurs, afin de calculer le TOA souhaité.

6.2 Extension à un cadre de non-linéarités de contact

Comme vu dans la section 6.1, la génération numérique de données de BTT est un enjeu
de recherche important pour améliorer et valider les algorithmes de traitement des données
obtenues expérimentalement, rendant accessibles des informations sur le comportement
dynamique de la roue aubagée pour une instrumentation modérée. Ces considérations sont
d’un intérêt industriel grandissant, notamment dans le cadre du contrôle des moteurs [174].
Actuellement la génération numérique de données de BTT est réalisée dans un cadre linéaire.
Or l’accès à des données de BTT dans un cadre non-linéaire rendrait possible la mise au
point d’algorithmes de traitement spécifiques, permettant par exemple d’identifier l’occurrence
de contacts, ou encore de caractériser les vibrations non-linéaires notamment à travers les
phénomènes de frottement.

La présente étude se place dans le cadre de la génération numérique de signaux de BTT,
afin de démontrer que des modèles désaccordés générés par la méthode CM3, développée
dans le chapitre 4, peuvent être utilisés pour la génération de données de BTT aussi bien
dans un cadre linéaire, comme fait dans la littérature, que dans un cadre de non-linéarités
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de contact. La méthode de génération des données de BTT est explicitée et validée sur les
données obtenues sur le modèle phénoménologique présenté au chapitre 3, en configuration
linéaire puis non-linéaire. Les données de BTT sont ensuite générées sur base des signaux de
vibrations non-linéaires calculées sur le modèle industriel présenté dans la section 4.3, sur des
motifs sélectionnés puis sur les données stochastiques qui avaient été présentées et analysées
au chapitre 5.

6.2.1 Méthode et validation

Cadre et hypothèses. Comme vu dans la section 6.1, différents types de capteurs peuvent
être utilisés, qui vont conditionner le traitement à effectuer sur la quantité physique brute
pour obtenir le TOA. Afin d’éviter toute perte de généralité quant à la solution technologique
choisie pour l’acquisition, et en l’absence de données expérimentales, le traitement du signal
du capteur est considéré effectué en amont [174, 190]. Ainsi, les données de BTT d’intérêt
générées dans la présente étude sont les TOA de corps rigide, notée tra, et avec vibrations,
notée tva, afin d’obtenir la différence de TOA, notée ∆ta = tva − tra, qui peut être utilisée pour
reconstituer les vibrations de la roue aubagée.

Algorithme. Le signal d’entrée de l’algorithme BTT est obtenu comme suit :

(1) génération du modèle réduit désaccordé par CM3 ;

(2) application du forçage en bout d’aube : forçage linéaire sinusoïdal ou de non-linéarité
de contact ;

(3) calcul de la réponse à une sollicitation linéaire ou de non-linéarité de contact par
intégration temporelle ;

Validation sur un modèle phénoménologique en configuration linéaire. Deux mo-
dèles accordé et désaccordé sont générés pour permettre le calcul des données de BTT à
une vitesse de rotation constante, correspondant à la fréquence de résonance définie du
modèle accordé. Le motif désaccordé utilisé pour la validation, à σ = 1,7 %, est donné dans le
tableau 6.1.

Tableau 6.1 Motif de désaccordage sélectionné.

Module d’Young par aube (×1011 Pa)
E1 2,1051 E2 2,1495 E3 2,0765 E4 2,0726 E5 2,1318 E6 2,0827
E7 2,0968 E8 2,1126 E9 2,1432 E10 2,0603 E11 2,0578 E12 2,0713
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L’intégration temporelle est initiée sur base du régime permanent calculé par résolution
modale. Les coordonnées angulaires des nœuds frontière pour les aubes avec vibrations ainsi
que du cas théorique rigide sont présentées sur le dernier tour à la figure 6.2a. La position
angulaire du capteur est représentée par une ligne horizontale rouge ( ), à π

3 rad. Comme la
simulation est réalisée sur le régime permanent, chaque aube est soumise à la même excitation
sur une révolution. Le modèle étant en outre accordé, toutes les courbes ont bien la même
amplitude à une position angulaire donnée. De plus, il apparaît que les aubes rigides atteignent
la position angulaire du capteur avant les aubes avec vibrations. Ceci est bien retranscrit
par le signal du capteur simulé, représenté par des impulsions sur la figure 6.2b, où le tra est
inférieur à tva. La différence entre les deux, ∆ta, tracée à la figure 6.2c, est égale pour toutes
les aubes, à 10−6 s près, ce qui est conforme à ce qui est attendu. Ce faible écart est dû à
l’interpolation linéaire réalisée entre deux pas de temps afin de déterminer les tra et tva.

Pour le modèle désaccordé, les amplitudes obtenues en régime permanent diffèrent d’une aube
à l’autre du fait de la localisation, ce qui est correctement retranscrit sur la figure 6.3a, où
chaque aube présente une position angulaire différente au moment du passage du capteur.
Le signal de capteur obtenu, tracé à la figure 6.3b, est bien cohérent avec ces positions
angulaires. En particulier, il est nettement visible que certaines aubes avec vibration passent
la position du capteur avant l’aube rigide correspondante, et le ∆ta tracé sur la figure 6.3c est
bien différent d’une aube à l’autre, du fait du désaccordage. L’écart sur les ∆ta, défini sur
l’ensemble des aubes par max(∆ta)−min(∆ta), est ainsi sur le dernier tour de 2,1 · 10−4 s, ce
qui est bien supérieur à la différence obtenue dans le cas accordé. Les ∆ta sont cependant
constants sur l’ensemble des révolutions considérées, ce qui est en accord avec le fait que les
déplacements sont calculés par intégration temporelle sur base des amplitudes obtenues en
régime permanent.

L’algorithme défini permet bien de calculer des tra, tva et ∆ta conformes à ce qui est attendu
sur le signal d’un seul capteur, pour une configuration linéaire.

6.2.2 Application à un modèle phénoménologique

Vibrations non-linéaires

L’algorithme utilisé pour obtenir les résultats de ∆ta est appliqué sur des données de simula-
tions non-linéaires, sur base du modèle phénoménologique du chapitre 3. Les paramètres de
simulation utilisés sont tels que donnés dans la section 3.3.2. La vitesse de rotation considérée
est de 34,45Hz, qui correspond à la vitesse de résonance du modèle accordé, définie sur
la FRF non-linéaire précédemment présentée sur la figure 3.9. La procédure pour obtenir
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Figure 6.2 Signaux en entrée et en sortie de l’algorithme de BTT, sur un cas accordé linéaire.
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∆ta est utilisée sur l’ensemble de la simulation, la convergence étant atteinte en 20 tours,
telle qu’évaluée par auto-corrélation sur l’amplitude des déplacements, présentée dans la
section 3.2.1. Les lobes du carter atteignent leur amplitude de déformation maximale dès
le premier tour de simulation. Les résultats sont présentés sur le modèle accordé et sur le
modèle désaccordé dont le motif est donné dans le tableau 6.1.

Les ∆ta calculés pour les modèles accordé et désaccordé sont tracés respectivement sur les
figures 6.4a et 6.4b. Pour le cas accordé, la progression de ∆ta en fonction du nombre de
tours est similaire pour toutes les aubes, avec un écart sur l’ensemble des aubes de 10−5 s
sur le dernier tour. Cet écart est plus important que dans le cadre linéaire du fait de la
stabilisation imparfaite des signaux non-linéaires. Pour le cas désaccordé, les aubes présentent
des valeurs de ∆ta similaires sur les 3 premiers tours avant de se différencier nettement. Ainsi,
les inflexions de courbes visibles sur certaines aubes à partir du 3ième tour après l’initiation
du contact pourraient permettre de détecter l’occurrence d’un contact dans les données issues
de mesures expérimentales par BTT. Par ailleurs, en fin de simulation l’ensemble des aubes
présentent un écart de 1,6 · 10−4 s, du même ordre de grandeur que celui trouvé sur le même
motif dans un contexte linéaire. Ce résultat suggère que les algorithmes d’analyse de données
de BTT qui sont robustes au désaccordage dans un contexte linéaire pourraient également
l’être dans un contexte non-linéaire. De plus, les algorithmes de détermination du niveau de
désaccordage à partir de données BTT pourraient potentiellement être adaptés pour être
robustes à l’introduction d’une non-linéarité de contact.

Influence de la position du capteur

Comme vu dans la section 6.1.1, la position angulaire des capteurs pour l’acquisition par BTT
doit être soigneusement choisie afin de permettre le traitement des données avec un nombre
restreint de capteurs. L’évolution des valeurs de ∆ta par aube sur le dernier tour avec une
position du capteur évoluant entre 0 et 2π est tracée sur la figure 6.5 pour le modèle accordé,
et sur la figure 6.6 pour le modèle désaccordé. Les positions des extremums d’excitation, à
savoir les positions équivalentes des redresseurs pour le forçage linéaire ou la position des
lobes de déformation du carter dans le cadre non-linéaire (figure 3.1), sont indiquées par des
traits verticaux ( ).

Pour le modèle accordé, la variation de ∆ta est similaire sur toutes les aubes, comme le montre
la superposition des courbes obtenues pour chaque aube sur les figures 6.5a et 6.5b. Les
courbes obtenues dans le cadre linéaire sont centrées autour de leur valeur moyenne ∆ta ≈ 0 s,
égale pour chaque aube. Ainsi, ∆ta ≈ 0 s lorsque le capteur est situé à la même position
angulaire que les redresseurs. Comme les algorithmes d’analyse des données BTT se basent
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numéro de passage

∆
t a

[×
10

−
4 s

]

(a) modèle accordé

2 4 6 8 10
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Figure 6.4 Génération de données de BTT dans un cadre non-linéaire, pour toutes les aubes
de modèles accordé et désaccordé.

sur ∆ta pour identifier l’amplitude et la fréquence des vibrations, cette position de capteur
serait ainsi particulièrement inadaptée, de même qu’un capteur situé à équidistance de deux
redresseurs. Dans le cadre non-linéaire, les courbes obtenues sont quasiment centrées autour
de ∆ta ≈ −4 · 10−5 s, correspondant à un capteur positionné au niveau d’un lobe du carter.
La position du capteur à éviter, correspondant à ∆ta ≈ 0 s, est ainsi décalée par rapport à la
position de la bosse. Ainsi, une position de capteur choisie dans un cadre linéaire pourrait
ne plus être adaptée au traitement des données dans le cas de non-linéarités de contact. Par
ailleurs, une légère dispersion des ∆ta est visible pour un capteur situé peu après un lobe du
fait de la non-linéarité, ce qui perturberait potentiellement davantage les signaux obtenus lors
de l’acquisition par BTT. En somme, et même en considérant un cas accordé, l’optimisation
de la position du capteur pour obtenir par BTT des données exploitables pourrait être plus
complexe dans le cadre de non-linéarités de contact, et un traitement supplémentaire du
signal pourrait ainsi être nécessaire par rapport au cadre linéaire.

Pour le modèle désaccordé, une grande variabilité de ∆ta en fonction de la position du capteur
est visible d’une aube à l’autre, aussi bien dans le cadre linéaire sur la figure 6.6a que dans le
cadre non-linéaire sur la figure 6.6b. Dans un cadre linéaire, les courbes pour chaque aube sont
également centrées autour de leur moyenne, à ∆ta ≈ 0 s. Cependant, comme il n’y a plus de
position du capteur correspondant à un ∆ta ≈ 0 s pour toutes les aubes, les signaux obtenus
par BTT pourraient potentiellement être utilisés dans des algorithmes d’identification du
niveau de désaccordage, pour toutes les positions de capteurs. En outre, un capteur positionné
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Figure 6.5 Évolution de ∆ta sur le dernier tour pour le modèle accordé, en fonction de la
position angulaire du capteur, avec les positions des extremums d’excitation indiquées ( ).

juste après ou juste avant les redresseurs permettrait de maximiser les écarts de ∆ta entre les
aubes. Dans un cadre de non-linéarité de contact, les écarts en les ∆ta des différentes aubes
sont également maximisé pour un capteur placé juste après le lobe, mais minimisés pour un
capteur positionné juste avant le lobe. Ce dernier cas pourrait ainsi rendre l’identification du
désaccordage sur des signaux générés par BTT plus difficile. Par ailleurs, contrairement au
cas linéaire, les valeurs de ∆ta sont très différentes d’une aube à l’autre. Ceci pourrait être
exploité pour l’identification du désaccordage couplé à des non-linéarités de contact.

6.2.3 Application à un modèle industriel

L’algorithme de génération de données de BTT, qui permet d’obtenir le ∆ta, est appliqué sur
le modèle industriel, dans la même configuration de contact qu’étudiée dans le chapitre 5, soit
au point de fonctionnement nominal de la roue aubagée modélisée. Les lobes sur le carter
sont situés en a0 = 0,24 rad et en a0 + π. Le calcul et l’évolution de ∆ta sont étudiés sur les
motifs d’intérêt déjà sélectionnés pour l’analyse des champs de déplacements et de contraintes
de la section 5.2.5. Pour rappel, les modèles désaccordés associés connaissent respectivement
l’amplification Anl et la localisation FL les plus élevées lors des simulations de contact, sur
l’ensemble des échantillons simulés. Ainsi, l’évolution de ∆ta à partir de ces modèles pourraient
donner des pistes pour l’identification des motifs potentiellement problématiques d’un point
de la durée de vie des moteurs. Une étude stochastique est ensuite réalisée sur l’ensemble des
échantillons analysés dans la section 5.2.2.
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Figure 6.6 Évolution de ∆ta sur le dernier tour pour le modèle désaccordé, en fonction de la
position angulaire du capteur, avec les positions des extremums d’excitation indiquées ( ).

Étude déterministe

Les motifs d’intérêt sont sélectionnés sur base des résultats de la campagne de simulation du
chapitre 5, à savoir : le cas accordé, le motif désaccordé à l’amplification maximale, donné
dans le tableau 5.5, et le motif au facteur de localisation maximal, donné dans le tableau 5.6.
Les signaux de BTT sont générés sur les 50 tours simulés.

L’allure des vibrations sur le dernier demi-tour a été précédemment donnée pour chaque motif,
respectivement sur les figures 5.20a, 5.21 et 5.22. Les résultats de ∆ta issus de l’algorithme de
génération de données BTT sont présentés sur la figure 6.7, pour un capteur positionné en π

3 et
pointant vers le bord d’attaque (BA) de l’aube. Après le passage du transitoire, le ∆ta calculé
sur le modèle accordé, tracé à la figure 6.7a, tend à se stabiliser vers une même valeur pour
toutes les aubes, avec un écart sur le 50ième tour de : max (∆ta) −min (∆ta) = 9,8 · 10−9 s.
Pour les deux modèles désaccordés, une des aubes présente un ∆ta à l’évolution distincte
de celle obtenue pour les autres aubes, et ce dès les 5 premiers tours de simulation. Cette
aube isolée est indiquée en rouge ( ) sur les figures 6.7b et 6.7c. Pour les deux motifs
désaccordés étudiés, l’aube dont la courbe de ∆ta est nettement isolée est celle à l’amplitude
des déplacements maximale. Ces résultats suggèrent une corrélation entre la valeur de ∆ta et
l’amplitude des vibrations, qui est étudiée sur base des résultats stochastiques dans la section
suivante.

Pour le modèle désaccordé à localisation maximale, la courbe de ∆ta isolée devient décroissante
à partir du 18ième tour, ce qui suggère des vibrations asynchrones. Le déplacement selon θ de
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numéro de passage

∆
t a

[×
10

−
6 s

]

(a) modèle accordé

20 40
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Figure 6.7 Évolution de ∆ta sur l’ensemble de la simulation, pour le modèle industriel.

l’aube considérée est tracée sur les 5 derniers tours sur la figure 6.8. Comme vu grâce au point
rouge ( ) qui indique le temps de passage de tour, les valeurs de déplacements obtenues
sont de plus en plus faibles à chaque fin de tour, ce qui confirme que les vibrations de l’aube
considérée sont asynchrones.
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Figure 6.8 Déplacement selon θ pour l’aube dont la courbe ∆ta est en rouge ( ) sur la
figure 6.7c. Passage de tour aux instants indiqués ( ).

L’évolution de ∆ta sur le 50ième tour en fonction de la position angulaire du capteur est tracée
pour les trois motifs considérés sur la figure 6.9. La position des bosses y est indiquée en
pointillés ( ). Les valeurs obtenues sur le cas accordée sont bien superposées sur l’ensemble
des aubes. De plus, un capteur situé au niveau d’une bosse retourne une valeur minimale de
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∆ta. Pour les cas désaccordés, les aubes dont le ∆ta était distinct sur les figures 6.7b et 6.7c
sont reportées par un trait rouge ( ). Ces aubes correspondent également aux valeurs
extrêmes de ∆ta, calculées sur l’ensemble des positions du capteur sur le carter. Contrairement
au cas accordé, ces extremums ne sont pas rencontrés pour un capteur situé au niveau de la
bosse. Ceci est qui est en accord avec le résultat obtenu lors de la visualisation des champs
de déformations et de contraintes à la section 5.2.5, à savoir que l’aube qui présente le plus
grand déplacement en bout d’aube n’est pas nécessairement celle qui est en contact.

Si pour des signaux obtenus sur l’ensemble de la circonférence du carter, les extremums sont
bien identifiés sur les aubes qui présentent les plus grands déplacements en bout d’aube, les
résultats obtenus pour une position de capteur donnée peuvent fortement varier. En effet,
un capteur mal situé fausse l’identification de l’aube à la plus grande amplification : par
exemple, sur la figure 6.9b, un capteur placé à 2π rad retournerait un ∆ta faible pour l’aube
qui a la plus grande amplitude des vibrations ( ). Ainsi, en configuration de non-linéarité
de contact, les résultats obtenus vont également être fortement dépendants de la position
angulaire du capteur.

Étude stochastique

La quantité stochastique d’intérêt est le maximum sur l’ensemble des aubes de la valeur
absolue de ∆ta, calculé sur le dernier tour de simulation, et est notée max (|∆ta|). Les motifs
générés pour tous les niveaux de désaccordage σ de la campagne stochastique sont étudiés.
En tout, 24 positions de capteur sont considérées, soit à 3 positions sur la corde de l’aube —
au bord d’attaque (BA), au milieu de corde et au bord de fuite (BF) — pour chacune des
8 positions angulaires suivantes : au niveau des deux lobes de déformation du carter, des
deux creux, et des quatre positions intermédiaires à équidistance des précédentes, si bien les
capteurs sont positionnés en a0 + k × π

4 avec k ∈ [0, 7]. L’intervalle angulaire dans lequel les
capteurs sont placés est noté [a0, a0 + 2π[.

Les résultats stochastiques de l’évolution de max (|∆ta|) en fonction du niveau de désaccordage
sont tracés à la figure 6.10a, pour un capteur situé à différentes positions angulaires et pointant
vers le bord de fuite (BF). La valeur de max (|∆ta|) augmente avec le niveau de désaccordage
σ, avec une allure similaire à l’amplification Anl présentée dans la section 5.2.2. Pour rappel,
l’analyse de la campagne stochastique avait montré qu’une résonance pouvait être captée
à la vitesse nominale étudiée, du fait du décalage en fréquences induit le désaccordage à
σ = 2,9 %. Pour un capteur à la position axiale correspondant au BF de l’aube, la position
angulaire correspondant au lobe semble exacerber l’écart de ∆ta lors du passage d’un niveau
de désaccordage à un autre. À l’inverse, les variations d’un σ à un autre sont peu visibles si
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Figure 6.9 Évolution de ∆ta sur le 50ième tour pour une position de capteur variable, pour le
modèle industriel. La position des bosses sont renseignées ( ).
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le capteur est situé au niveau des creux, si bien que les différents niveaux de désaccordage
ne pourraient pas être distingués les uns des autres. Les résultats sur les quatre capteurs
en [a0, a0 + π[ sont similaires à ceux obtenus sur les quatre capteurs en [a0 + π, a0 + 2π[,
ce qui est cohérent avec la symétrie du chargement induite par la déformation du carter.
À l’intérieur de ces intervalles, les valeurs de max (|∆ta|) varient fortement. Ces résultats
stochastiques viennent ainsi confirmer d’une part ce qui est soulevé dans la littérature dans le
cadre d’un forçage linéaire, et d’autre part ce qui avait été constaté lors de l’étude déterministe
précédente.
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Figure 6.10 Centiles 10, 50 et 90 de max (|∆ta|) pour des positions de capteur variables.

Les résultats stochastiques pour un capteur situé à l’angle a0 + 3π
4 sont tracés sur la figure 6.10b

pour différentes positions axiales. Si l’allure des courbes enveloppes de max (|∆ta|) varie peu,
les échelles diffèrent entre les positions axiales : les valeurs de max (|∆ta|) sont maximales
pour un capteur pointant vers le BA. Ce résultat est cohérent avec l’analyse de la campagne
stochastique à la section 5.2.3, où le nœud d’amplification maximale avait été identifié comme
passant du BA au BF lorsque σ augmente. Il apparaît en outre que les valeurs de max (|∆ta|)
sont plus importantes pour un capteur placé en amont du lobe, du fait que l’aube est localement
ralentie lors de son premier contact avec le lobe. Ceci suggère que l’évolution du max (|∆ta|)
pourrait être utilisée pour identifier l’occurrence de contacts aubes-carter.

Les valeurs de max (|∆ta|) sont tracées sur la figure 6.11 vis-à-vis du facteur de localisation
FL, tel que défini dans la section 3.4, pour chaque échantillon simulé. Le capteur est orienté
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vers le BA, aux positions angulaires correspondant à la première bosse en a0 et à la position
intermédiaire en a0 + π

4 . Les résultats obtenus pour un capteur au niveau de la bosse en a0 et
du creux en a0 + π

2 sont similaires, de même pour les résultats obtenus pour les deux positions
intermédiaires. Les résultats obtenus sur l’ensemble des échantillons sont situés autour d’une
droite et présentent une dispersion modérée, en particulier pour FL < 50 %. La régression
linéaire sur ces données, représentée par la droite en rouge ( ) sur les graphiques, présente
un meilleur coefficient de corrélation et une pente plus forte sur la figure 6.11a. En effet,
pour un capteur situé sur la bosse en a0, le coefficient directeur de la droite de régression est
d’environ 10−8, pour un coefficient de corrélation R2 = 0,89, contre un coefficient directeur
d’environ 4 · 10−9 et un coefficient R2 = 0,52 pour un capteur situé en a0 + π

4 (figure 6.11b).
Ces résultats indiquent que pour un capteur situé en a0, le ∆ta obtenu par BTT pourrait être
relié directement aux valeurs de FL. La localisation de l’ensemble de la roue pourrait ainsi
être obtenue avec un nombre restreint de capteurs, et sans avoir besoin de passer par le calcul
de l’amplitude de chacune des aubes.
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Figure 6.11 Évolution de max (|∆ta|) en fonction de FL pour un capteur orienté vers le BA,
et droite de régression linéaire associée pour FL < 50 ( ).

Les valeurs obtenues pour max (|∆ta|) sont tracées vis-à-vis de l’amplification Anl, pour
chaque échantillon simulé, sur la figure 6.11. Le capteur est positionné axialement vers le
BA, pour les positions angulaires a0 et a0 + π

4 . Les résultats obtenus pour un capteur en
a0 + π

2 et en a0 + π
4 sont également similaires. Une régression linéaire sur les échantillons pour

lesquels Anl ≤ 7 permet d’obtenir des droites avec un coefficient directeur proche quelque soit
le placement angulaire du capteur, soit respectivement de 1,7 · 10−7 pour la droite tracée à la
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figure 6.12a et 1,2 · 10−7 pour la droite tracée à la figure 6.12b. Ces résultats sont cohérents
avec ce qui peut être attendu sachant que Anl est calculé sur les déplacements en sommet
d’aube, où le déplacement est le plus important comme vu dans la section 5.2.5. En revanche,
il est intéressant de noter que les données sont peu dispersées pour un capteur placé en
a0, avec une valeur de R2 = 0.92, contre R2 = 0.76 pour un capteur placé en a0 + π

4 . Ces
résultats permettent de mettre en évidence qu’un capteur placé en a0 fournit des max (|∆ta|)
variant quasiment linéairement avec Anl, et de façon assez robuste par rapport au niveau de
désaccordage. De telles données pourraient ainsi être exploitées pour le développement et la
validation d’algorithmes de traitement du ∆ta en vue d’obtenir directement l’amplification
sur l’ensemble de la roue, dans un contexte de contact aubes-carter, sans avoir à calculer
l’amplitude de toutes les aubes.
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Figure 6.12 Évolution de max (|∆ta|) en fonction de l’amplification maximale Anl pour un
capteur orienté vers le BA, et droite de régression linéaire associée pour Anl < 7 ( ).

6.3 Bilan

Les modèles réduits par la technique CM3 ont été utilisés pour la génération de données de
BTT, avec un algorithme de BTT simplifié. Les signaux obtenus pour un capteur ont été
validés dans un cadre linéaire. Des signaux ont ensuite été générés dans une configuration
de non-linéarités de contact, sur des motifs sélectionnés puis sur tous les motifs étudiés dans
l’analyse stochastique du chapitre 5.

Il apparaît que la position du capteur est critique pour l’obtention de données de BTT
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exploitables par les algorithmes de traitement, comme référencé dans le cas linéaire [179].
Les résultats obtenus en faisant varier la position du capteur et la faible dispersion des
données obtenues stochastiquement suggère cependant qu’il serait possible avec un nombre
restreint de capteurs de définir des algorithmes de traitement des données de BTT pour étudier
la dynamique de roues aubagées dans un contexte de non-linéarités de contact, robustes
vis-à-vis du niveau de désaccordage. De tels algorithmes pourraient permettre de détecter
l’occurrence du contact ou d’étudier des phénomènes plus complexes de frottement. Par
ailleurs, la localisation de la roue aubagée pourrait être calculée en configuration non-linéaire
directement à partir du TOA, sans avoir traiter les données de BTT pour obtenir l’amplitude
de chaque aube.

Les modèles réduits par la technique CM3 couplés à des algorithmes de génération de données
de BTT permettent également d’envisager une validation stochastique d’algorithmes de
traitement de BTT. Ceci pourrait en particulier être appliqué à des algorithmes d’identification
du motif de désaccordage, ou de calcul de l’amplitude maximale sur la roue aubagée. Les
modèles générés par CM3 pourraient ainsi être directement utilisés dans des algorithmes de
génération BTT plus complets, qui pourraient faire l’objet de recherches futures.
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CHAPITRE 7 CONCLUSION

Synthèse des travaux

La présente recherche constitue la première étude conjointe des non-linéarités de contact
aubes-carter et du désaccordage. La méthodologie de gestion du contact, basée sur l’intégration
temporelle et le calcul des multiplicateurs de Lagrange, a été couplée à une prise en compte
stochastique du désaccordage. L’utilisation d’un modèle phénoménologique a rendu possible
une étude comparative des amplifications dans un contexte linéaire et non-linéaire. Tout
d’abord, il a été montré que les interactions prédites sur des modèles accordés sont robustes
vis-à-vis du désaccordage. Ensuite, les niveaux d’amplification atteints dans le cadre non-
linéaire sont sensiblement supérieurs à ceux obtenus dans le cadre linéaire. Les motifs à
plus grande amplification n’étant stochastiquement pas les mêmes dans des cadres linéaire
et non-linéaire équivalents, la robustesse des stratégies de conception appliquées aux roues
aubagées dans un cadre linéaire devrait être analysée dans un cadre non-linéaire.

Le caractère stochastique du faible désaccordage a dirigé les développements vers une méthode
réduite permettant la génération de modèles industriels désaccordés avec interface de contact
à moindre coût. La technique développée, nommée CM3, s’appuie sur des techniques pré-
existantes. Elle a été validée sur un cas académique à trois dimensions, puis sur un maillage
industriel. Les temps de création du modèle désaccordé ont été évalués négligeables, avec
une bonne précision numérique, comparativement au temps nécessaire pour l’intégration
temporelle.

L’étude stochastique d’un modèle industriel à sa configuration nominale a ainsi été rendue
possible grâce aux méthodes développées. Les résultats ont permis de montrer que l’introduc-
tion du désaccordage induisait des amplifications conséquentes, du fait qu’une résonance est
captée à la vitesse de rotation étudiée. L’analyse des résultats stochastiques et l’étude des
champs de déplacements et de contraintes ont permis de dégager des tendances de conception,
notamment un niveau de désaccordage critique maximal.

Enfin, la méthodologie précédemment développée a pu être appliquée à la génération simplifiée
de signaux de BTT. La génération de signaux a pu être validée dans un cadre linéaire, avant
d’être étendue à un cadre de non-linéarités de contact. Le positionnement des capteurs et la
robustesse des signaux obtenus stochastiquement a ainsi pu être étudiée.
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Limitations et améliorations futures

Les contraintes liées aux temps de calcul ont imposé de définir une vitesse fixe pour l’étude
stochastique du désaccordage sur le modèle industriel. Utiliser une méthode statistique
nécessitant moins d’échantillons que les calculs de Monte Carlo, par exemple les chaînes de
Markov ou le chaos polynomial, permettrait de lever cette limitation.

Par ailleurs, des phénomènes physiques ont été négligés afin d’alléger les calculs, tels les effets
centrifuges et gyroscopiques. La prise en compte de ces phénomènes modifierait les fréquences
de résonance du système et impacterait ainsi les résultats obtenus, qui seraient plus proches
de ceux attendus sur un moteur réel.

La technique CM3 est formulée dans l’hypothèse d’un faible désaccordage. Une méthode
alternative devrait être développée afin d’étudier des motifs de désaccordage intentionnel dans
un cadre non-linéaire, ce qui permettrait de dégager des tendances de conception.

Enfin, les développements proposés pour la génération de données de BTT sont ceux qui
ouvrent la voie au champ de recherche le plus large. Le caractère stochastique des simulations
accessibles grâce à la méthodologie développée pourrait également être utilisé pour la validation
de la robustesse des algorithmes de détection des motifs de désaccordage, aussi bien dans
un cadre linéaire que non-linéaire. Par ailleurs, les modèles réduits par CM3 pourraient être
utilisés pour générer des données plus réalistes et ainsi permettre la mise en place d’algorithmes
d’étude des non-linéarités de contact. L’occurrence des contacts pourrait être détectée ainsi que
des phénomènes de frottement, qui pourraient être utilisés dans le cadre d’une instrumentation
en condition de fonctionnement.
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ANNEXE A ÉQUATION DU MOUVEMENT EN ÉLÉMENTS FINIS

La présente annexe présente des considérations théoriques de mécanique des vibrations.
La démonstration de l’équation du mouvement au centre de ce travail de recherche y est
explicitée, avec comme point de départ le principe de moindre action, pour en préciser de
façon exhaustive les différents termes et hypothèses associés. Pour faciliter leur identification
et la compréhension de leur origine, les hypothèses utilisées seront écrites en gras au fur et à
mesure du développement. Le principe de base modale obtenue par résolution des vibrations
libres non amorties est ensuite explicité.

L’écriture usuelle de l’équation du mouvement démontrée est :

Mü + Du̇ + Ku = F (A.1)

où u et F sont des vecteurs, respectivement des coordonnées généralisées et des forces
non conservatives extérieures ; et M, D et K sont des matrices, respectivement de masse,
d’amortissement et de raideur.

Résumé des étapes de la démonstration

1. Principe fondamental de la dynamique de Newton reformulé avec le principe de
moindre action d’Hamilton : équation du mouvement de Lagrange sur les dérivées
partielles et totales du lagrangien d’un système discret.

2. Décomposition de l’énergie cinétique en termes Tk de degré u̇ki , k ∈ [0, 2] et
des forces non conservatives internes (dissipation) et extérieures : équations du
mouvement de Lagrange dans le cas général sur les dérivées partielles et totales
des énergies et des forces.

3. Linéarisation autour d’une position d’équilibre et développement de Taylor à
l’ordre 2.

4. Dérivation matricielle et distinction suivant les vecteurs d’équilibre et de pertur-
bation : équations du mouvement de Lagrange dans le cas général sous forme
matricielle.

5. Simplification pour un système naturel dont les forces circulantes sont négligées.

La convention d’Einstein sera utilisée par la suite. Pour rappel, elle rend implicite les sommes
sur les indices répétés : ∑i aibij = aibij . De plus, pour pouvoir distinguer les tenseurs d’ordres
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différents, les scalaires (tenseurs d’ordre 0) seront notés en italique (a ou A), les vecteurs
(tenseurs d’ordre 1) seront des lettres minuscules en gras et les matrices (tenseurs d’ordre
2) seront des lettres majuscules en gras. Une exception sera faite pour le vecteur des forces
extérieures, noté avec une majuscule F, par soucis de cohérence avec la littérature. Les vecteurs
et les matrices pourront également être représentés par leurs termes ou leurs vecteurs colonnes
entre crochets : [ai] = a et [aij] = A = [ai].

Enfin, le terme « système » désigne l’ensemble physique discrétisé dont le mouvement est
étudié. Il peut donc s’agir indifféremment d’un point ou d’un ensemble de points.

A.1 Des principes de Newton et d’Hamilton à l’équation du mouvement de
Lagrange

A.1.1 Équation du mouvement de Lagrange pour un système discret

Le principe fondamental de la dynamique, ou seconde loi de Newton, permet de modéliser
(i.e. exprimer sous forme d’équations) le mouvement d’un corps par une équivalence entre
la variation de quantité de mouvement dans le temps et la somme des forces appliquées
sur le système étudié dans un référentiel supposé galiléen. En mécanique lagrangienne,
ce principe est reformulé pour donner celui de moindre action, ou principe d’Hamilton : la
trajectoire physique obtenue minimise l’action, définie par l’intégrale temporelle du Lagrangien.
Autrement dit, Le principe de moindre action, par la recherche de l’extrémum de l’action,
peut donc être écrit sous la forme (I.2 de [191]) :

δS = δ
∫ t2

t1
L(u, u̇, t) dt = 0 ⇐⇒

∫ t2

t1

(
∂L

∂u
δq + ∂L

∂u̇
δu̇

)
dt = 0 (A.2)

avec : δ l’opérateur de variation
S l’action
[t1, t2] l’intervalle de temps du mouvement étudié
L le lagrangien, différence entre l’énergie cinétique V et potentielle T
L = T − V (II.6 de [191])

u les coordonnées généralisées qui définissent la position du système
u̇ les vitesses généralisées
t le temps

Une intégration par parties permet alors de retrouver les équations de Lagrange en l’absence de
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sollicitation extérieure, pour un système à N degrés de liberté (ou coordonnées généralisées) :

d
dt

(
∂L

∂u̇i

)
− ∂L

∂ui
= 0 , i ∈ [1, N ] (A.3)

Si une sollicitation extérieure est appliquée au système, les forces généralisées Fi peuvent être
séparées en forces conservatives Fic et non conservatives Finc . Pour les forces conservatives
(comme les forces gravitationnelles ou les forces de rappel élastique), le travail virtuel associé
est récupérable car il dépend uniquement de l’état initial et final, et non de l’évolution entre
ces deux états. Le théorème de Stokes permet d’exprimer l’intégrale entre l’état final et
initial des forces conservatives comme dérivées d’un champ potentiel, homogène à une énergie.
En d’autres termes, les forces conservatives peuvent être directement dérivées de l’énergie
potentielle V (1.5 de [192]) :

Fic = −∂V
∂ui

, i ∈ [1, N ] (A.4)

Seules restent hors du lagrangien les forces non conservatives, qui dépendent du chemin suivi
pour arriver de l’état initial à l’état final (comme les forces de frottement). Les équations du
mouvement de Lagrange pour un système discret soumis à une sollicitation extérieure dans
un repère galiléen s’écrivent donc (2.11 de [193]) :

d
dt

(
∂L

∂u̇i

)
− ∂L

∂ui
= Finc , i ∈ [1, N ] (A.5)

A.1.2 Distinction des énergies cinétiques

L’énergie cinétique peut être décomposée en termes Tk homogènes de degré k par rapport
aux vitesses généralisées u̇i, c’est-à-dire que Tk est une fonction de u̇ki (1.3.1 de [52]) :

T (ui, u̇i, t) = T0 + T1 + T2 (A.6)

avec : T0 l’énergie cinétique d’entraînement
T1 l’énergie cinétique mutuelle
T2 l’énergie cinétique relative

T1 a la nature des forces de Coriolis ou gyroscopiques et T0 celle des forces centrifuges
(2.12 de [193]). Lorsque les liaisons cinématiques sont indépendantes du temps (liaisons
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scléronomes), les composantes T0 et T1 sont nulles. L’énergie cinétique se réduit alors au terme
homogène quadratique (de degré 2) des vitesses généralisées (1.3.2 de [52]) : le système est dit
naturel (2.12 de [193]).

Dans le cas général (aucun terme n’est nul), les opérateurs de l’équation de Lagrange (A.5)
appliqués à l’énergie cinétique donnent (T0 est à l’ordre u̇0

i , donc indépendante de u̇i) :

d
dt

(
∂T

∂u̇i

)
− ∂T

∂ui
= d

dt

(
∂T1

∂u̇i
+ ∂T2

∂u̇i

)
− ∂

∂ui
(T0 + T1 + T2) (A.7)

Comme T1 dépend de t et des qi, sa différentielle totale est la somme de toutes ses différentielles
partielles :

d
(
∂T1

∂u̇i

)
= ∂

∂t

(
∂T1

∂u̇i

)
dt+ ∂

∂uj

(
∂T1

∂u̇j

)
duj , [i, j] ∈ [1, N ]2 (A.8)

Finalement les opérateurs de l’équation du mouvement de Lagrange appliqués à l’énergie
cinétique donnent :

d
dt

(
∂T

∂u̇i

)
− ∂T
∂ui

= ∂

∂t

(
∂T1

∂u̇i

)
+ ∂2T1

∂u̇i∂uj
u̇j+

d
dt

(
∂T2

∂u̇i

)
− ∂

∂ui
(T0 + T1 + T2) , [i, j] ∈ [1, N ]2

(A.9)

Les forces d’inertie d’entraînement, associées à T0, correspondent aux termes non nuls lorsque
u̇i = 0 ; les forces d’inertie relatives sont obtenues dans l’hypothèse de liaisons scléronomes
((T0, T1) = (0, 0)) ; et les forces d’inertie complémentaires sont constituées des termes non
inclus dans les forces d’inertie précédentes et notées Figyr (1.3.1 de [52]) :

Figyr = − ∂2T1

∂u̇i∂uj
u̇j + ∂T1

∂ui
, [i, j] ∈ [1, N ]2 (A.10)

A.1.3 Expression des forces non conservatives et fonctions de dissipation

Les forces non conservatives des équations du mouvement de Lagrange Qinc comprennent
des forces d’amortissement visqueux et des forces circulantes en plus des forces extérieures
appliquées sur le système (4.1 de [193]). Les premières, qui dérivent d’une fonction de
dissipation, s’expriment :

Fivisc = −∂D
∂u̇i

, i ∈ [1, N ] (A.11)
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avec : D = 1
2ciju̇iu̇j la fonction de dissipation de Rayleigh ([i, j] ∈ [1, N ]2)

où les coefficients d’amortissement sont symétriques : cij = cji

Les forces circulantes sont consécutives à la transmission d’énergie, comme dans les arbres
moteurs, et dérivent d’une fonction qui peut être exprimée par la superposition de coefficients
symétriques c′, facteurs des vitesses généralisées quadratiques, et de coefficients antisymétriques
h (hij = −hji), facteurs des vitesses et des déplacements généralisés. Les forces d’amortissement
visqueux et circulantes peuvent être traitées par une seule fonction D∗, appelée fonction de
dissipation de Rayleigh modifiée (4.1 de [193]) :

Fivisc + Ficirc = −∂D
∗

∂u̇i
, i ∈ [1, N ] (A.12)

avec : D∗ = 1
2c
∗
iju̇iu̇j + hiju̇iuj , [i, j] ∈ [1, N ]2

où : c∗ij = cij + c′ij

Les forces non conservatives extérieures restantes sont notées Fi.

A.1.4 Equations de Lagrange : cas général et simplification des systèmes natu-
rels

Pour un système non conservatif à liaisons cinématiques holonomes rhéonomes (donc (T0, T1) 6=
(0, 0)), en développant dans l’équation de Lagrange (A.5) les expressions de l’énergie ciné-
tique (A.9) et des forces non conservatives (A), il reste (1.4 de [52]) :

d
dt

(
∂T2

∂u̇i

)
+ ∂

∂t

(
∂T1

∂u̇i

)
+ ∂D∗

∂u̇i
− ∂T2

∂ui
+ ∂V ∗

∂ui
= Fi(t) + Figyr i ∈ [1, N ] (A.13)

avec : ui les coordonnées généralisées
T2 l’énergie cinétique relative
T1 l’énergie cinétique mutuelle (gyroscopique)
V ∗ = V − T0 le potentiel dynamique (4.4 de [193])
(V l’énergie potentielle et T0 l’énergie cinétique d’entraînement ou centrifuge)

D∗ la fonction de dissipation de Rayleigh modifiée (amortissement et forces circulantes)
Fi les forces extérieures généralisées non conservatives
Figyr les forces d’inertie complémentaires ou forces gyroscopiques généralisées
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Cette formulation développée, bien que peu rencontrée, peut être utile pour déterminer
rapidement l’équation du mouvement dans le cas de conditions aux limites particulières. Pour
les liaisons scléronomes (i.e. pour un système naturel), T0 et T1 étant nulles, il reste :

d
dt

(
∂T2

∂u̇i

)
+ ∂D∗

∂u̇i
+ ∂V

∂ui
= Fi(t) i ∈ [1, N ] (A.14)

A.2 Linéarisation au second ordre autour d’une position d’équilibre

A.2.1 Energie potentielle pour un système conservatif

Par définition de la stabilité au sens Lagrange-Dirichlet, la position d’équilibre d’un système
conservatif est solution de :

∂V

∂ui
= 0 , i ∈ [1, N ] (A.15)

avec : V l’énergie potentielle (A.16)

Soient ui = u les écarts de position par rapport à une configuration d’équilibre. Sous
l’hypothèse V ∈ C2(R) (i.e. V est deux fois continument dérivable), le développement en
série de Taylor de l’énergie potentielle en 0 (ou série de MacLaurin) est :

V (u) = V (0) + ∂V

∂ui

∣∣∣∣∣
u=0

ui + 1
2
∂2V

∂uiuj

∣∣∣∣∣
u=0

uiuj + O
(
u2
)

, [i, j] ∈ [1, N ]2 (A.17)

Avec O(u2) qui représente une fonction négligeable devant u2, suivant la notation de Landau.
Par convention, la constante V0 est prise nulle et en injectant la condition de stabilité il reste
une approximation du second ordre (2.1.1 de [52]) :

V (u) = 1
2kijqiqj , [i, j] ∈ [1, N ]2 (A.18)

avec : V (u) > 0 pour u 6= 0

kij =
(

∂2V

∂ui∂uj

)

u=0
les coefficients de raideur

kij = kji puisque les indices sont muets

A.2.2 Cas général et dérivations

Le système est considéré non naturel pour éviter toute perte de généralité : (T0, T1) 6= (0, 0).
Soit le vecteur des déplacements généralisés autour d’une position d’équilibre : u(t) =
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u0 +u1(t), avec le vecteur constant u0, qui représente la configuration d’équilibre, et le vecteur
des perturbations u1 (donc u̇(t) = u̇1(t)).

Les énergies cinétiques mutuelle T1 et relative T2 ne dépendent respectivement que de u̇i et
u̇2
i . Leur développement en série de Taylor à l’ordre 2 donne :

T1 = ∂T1

∂u̇i
u̇i + O(u̇) et T2 = 1

2
∂2T2

∂u̇iu̇j
u̇iu̇j + O

(
u̇2
)

, [i, j] ∈ [1, N ]2 (A.19)

Soit, en négligeant les termes d’ordre supérieur et en introduisant les notations fcori
et mij :

T1 = fcori
u̇i et T2 = 1

2miju̇iu̇j , [i, j] ∈ [1, N ]2 (A.20)

avec : fcori
de la même nature que la force de Coriolis (2.12 de [193]),

mij les coefficients d’inertie (2.1.1.b de [52]).

Par rapport au vecteur de perturbations u̇1, T1 et T2 s’expriment donc (4.4 de [193]) :

T1 = u̇1
Tfcor0 + u̇T

1 Fdcorq1 et T2 = 1
2 u̇T

1 Mu̇1 (A.21)

avec : Fdcor =
[
fcori,j

]
=
[
∂fcori

∂uj

∣∣∣∣∣
u=u0

]
et M = [mij] = M (u0)

Le potentiel dynamique V ∗ = V − T0 peut également être développé en séries de Taylor pour
donner, après avoir négligé les termes d’ordre supérieur :

V ∗ = V ∗ (u0) + uT
1
∂V ∗

∂u

∣∣∣∣∣
u=u0

+ 1
2uT

1 K∗u1 (A.22)

avec : K∗ = [k∗ij] = ∂2V ∗

∂ui∂uj

∣∣∣∣∣
u=u0

Cette fois-ci, les coefficients de raideur k∗ comprennent les coefficients de raideur élastique
issus de V , et les coefficients de raideur géométrique issus de T0 (4.4 de [193]). Comme
précédemment, la constante V ∗ (u0) sera négligée par la suite.

Enfin, la fonction de dissipation de Rayleigh modifiée exprimée en fonction du vecteur des
déplacements généralisés donne :

D∗ = 1
2c
∗
iju̇iu̇j + hiju̇iuj ⇐⇒ D∗ = 1

2 u̇TD∗u̇ + u̇THu (A.23)
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Donc, en fonction de la configuration d’équilibre et du vecteur de perturbations :

D∗ = 1
2 u̇T

1 D∗u̇1 + u̇T
1 Hu0 + u̇T

1 Hu1 (A.24)

avec : D∗ = [c∗ij] et H = [hij]

Les différents termes doivent alors être dérivés, comme dans l’équation de Lagrange suivante :

d
dt

(
∂L

∂u̇1

)
− ∂L

∂u1
+ ∂D∗

∂u̇1
= F (A.25)

avec : L = T1 + T2 − V ∗

L = u̇T
1 fcor0 + u̇T

1 Fdcoru1 + 1
2 u̇T

1 Mu̇1 − uT
1
∂V ∗

∂u

∣∣∣∣∣
u=u0

− 1
2uT

1 Ku1

Propriétés de dérivation matricielle

Soient v et w deux vecteurs à coefficients réels :
∂
(
vTw

)

∂v =
∂
(
wTv

)

∂v = w

Soient v un vecteur et M une matrice carrée, tous deux à coefficients réels :
∂
(
vTMv

)

∂v =
(
M + MT

)
v

Cas particulier : si M est symétrique :
∂
(
vTMv

)

∂v = 2Mv

D’autre part, par propriété de la transposée (2.1 de [69]) : (AB)T = BTAT. D’où :

∂
((

u̇T
1 Fdcor

)
u1
)

∂u1
=
∂
(
uT

1

(
u̇T

1 Fdcor
)T)

∂u1
=
(
u̇T

1 Fdcor
)T

= Fdcor
T(u̇T

1 )T = Fdcor
Tu̇1 (A.26)

Ce qui permet d’obtenir (M, K sont carrées symétriques) :

∂L

∂u̇1
= fcor0 + Fdcoru1 + Mu̇1

d
dt

(
∂L

∂u̇1

)
= Fdcoru̇1 + Mü1

∂L

∂u1
= FT

dcoru̇1 −
∂V ∗

∂u

∣∣∣∣∣
u=u0

−K∗u1

∂D∗

∂u̇1
= D∗u̇1 + Hu0 + Hu1

(A.27)
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A.2.3 Equations de Lagrange

En injectant les résultats (A.27) dans l’équation perturbée (A.25), les termes selon q0 donnent
l’équation d’équilibre (i.e. de stabilité) pour un système non conservatif :

∂V ∗

∂u

∣∣∣∣∣
u=u0

+ Hu0 = 0 (A.28)

D’autre part, les termes selon le vecteur de perturbation u1 permettent d’exprimer l’équation
de Lagrange linéarisée (4.4 de [193]) :

Mü + (D∗ + G)u̇ + (K∗ + H)u = F (A.29)

avec : u le vecteur des coordonnées généralisées

u̇ = ∂u

∂t
le vecteur des vitesses généralisées

ü = ∂2u

∂t2
le vecteur des accélérations généralisées

M la matrice de masse, de composantes mij = mji =
(
∂2T2

∂u̇i∂u̇j

)

u=u0

D∗ la matrice d’amortissement, de composantes c∗ij = c∗ji

G la matrice gyroscopique, G = Fdcor − FT
dcor

avec les composantes fdcorij
=
[
fcori,j

]
et fcori

= ∂T1

∂u̇i

H la matrice circulante, de composantes hij = −hji

K∗ la matrice de raideur, de composantes k∗ij = k∗ji = ∂2V ∗

∂ui∂uj

∣∣∣∣∣
q=q0

où le potentiel dynamique V ∗ = V − T0

F le vecteur des forces non conservatives extérieures
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A.3 Équation du mouvement pour un système naturel discrétisé, sans forces
circulantes

Par la suite, les liaisons seront prises scléronomes (système naturel) :



T = T2 =⇒ G = 0

V ∗ = V =⇒ K∗ = K
(A.30)

De plus, les forces circulantes seront négligées devant les autres forces non conservatives :
D∗ = D et H = 0. L’équation du mouvement (A.29) obtenue dans le cas général devient
donc :

Mü + Du̇ + Ku = F (A.31)

avec : u le vecteur des coordonnées généralisées

M la matrice de masse, de composantes mij = mji =
(
∂2T2

∂u̇i∂u̇j

)

u=u0

D la matrice d’amortissement, de composantes cij = cji

K la matrice de raideur, de composantes kij = kji =
(

∂2V

∂ui∂uj

)

u=u0

F le vecteur des forces non conservatives extérieures

A noter que, contrairement à D, les matrices M et K sont symétriques définies positives par
définition de leurs composantes (qui sont des doubles dérivations sur des indices muets), et
non par hypothèse.

cqfd.

A.4 Discussion sur les hypothèses dans le cadre de la présente recherche

Les hypothèses utilisées pour obtenir l’équation du mouvement (A.31) sont :

1. référentiel supposé galiléen, i.e. inertiel ; autrement dit l’espace est isotrope (donc
homogène) et le temps est homogène (mais pas isotrope) (I.3 de [191])

2. système discret
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3. matrice d’amortissement D symétrique définie positive, i.e. inversible et ses valeurs
propres sont réelles strictement positives, et à coefficients constants dans le temps

4. petits déplacements et petites perturbations à partir d’une position d’équilibre (linéari-
sation à l’ordre 2)

5. système naturel (liaisons scléronomes) : l’énergie cinétique se réduit au terme homogène
quadratique des vitesses généralisées (1.3.2 de [52])

6. forces circulantes sont négligées devant les autres forces non conservatives

Elles peuvent être classées en trois catégories :

Toujours valables par définition du problème physique : hypothèses 1, 2 et 3

Nécessaires mais potentiellement limitantes pour une généralisation : hypothèse 4

Qui pourraient être relaxées en enrichissant le modèle mais qui sont posées dans
un premier temps à des fins de simplification : hypothèses 5, 6

Physiquement, deux hypothèses ont des implications directes sur les simulations de vibrations
d’une aube avec les équations du mouvement définies. Elles définissent le contexte de travail
et la validité des résultats :

Plages de vitesses de rotation élevées : négliger les forces centrifuges (hypothèse
6) revient à travailler avec des géométries d’aubes à chaud, i.e prédéformées par le
chargement statique

Déplacement calculé limité : le déplacement calculé en bout d’aube ne devra pas
excéder 10% du rayon de l’aube pour être admissible (hypothèse 4)

Le but de l’étude étant d’étudier les configurations qui induisent des interactions vibratoires,
et non de donner des valeurs d’amplitudes du mouvement, l’hypothèse 4 ne sera donc pas
limitante dans ce cadre. En revanche il conviendra de s’assurer que les résultats exposés
restent dans le cadre qu’elle définit.
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ANNEXE B MATRICES DE MASSE ET DE RAIDEUR DANS LA BASE
MODALE

Afin d’obtenir l’expression des matrices masses et raideur dans la base modale, le problème aux
valeurs propres généralisé peut être reformulé en un problème aux valeurs propres classique, à
partir duquel la diagonalisation est effectuée par un changement de base classique.

M étant symétrique définie positive, elle peut être écrite sous la forme de la factorisation de
Cholesky (7.2 de [69] et 4.6 de [193]) :

M = T.TT (B.1)

avec : T une matrice triangulaire supérieure dont les termes diagonaux sont positifs
TT sa transposée, triangulaire inférieure

Les matrices triangulaires T et TT sont inversibles (non singulières) puisque M l’est (3.18
de [194]).

En posant le vecteur v = TTU ⇐⇒ U =
(
TT
)−1

v, le problème aux valeurs propres
devient :

KU− ω2MU = 0 ⇐⇒ K
(
TT
)−1

v− ω2T.TT
(
TT
)−1

v = 0 (B.2)

⇐⇒ T−1K
(
TT
)−1

v = ω2v (B.3)

Soit la matrice A = T−1K
(
TT
)−1

, le problème aux valeurs propres généralisées a bien été
reformulé en un problème aux valeurs propres simple par rapport à cette matrice, puisque :

Ku− ω2MU = 0 ⇐⇒ Av = ω2v (B.4)

La matrice A étant un produit de matrices réelles diagonalisables, elle l’est également (7.42
de [194]). La résolution du problème aux valeurs propres donne sa base de diagonalisation
orthonormée formée par ses vecteurs propres vi ainsi que ses valeurs propres ω2

i pour i ∈ [1, N ].

Pour retrouver une expression dans cette base des matrices M et K, les vecteurs Ui sont posés
tels que : Ui =

(
TT
)−1

Ui. Sa transposée s’exprime alors : Ui
T = vi

TT−1 ; par les propriétés
de la transposée par rapport à la multiplication matricielle (3.17 de [194]).

En reprenant l’écriture de M par la factorisation de Cholesky (B.1), elle peut être exprimée
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en fonction des Ui :

Ui
TMUi = vi

TT−1
(
TTT

) (
TT
)−1

vi (B.5)

= vi
Tvi (B.6)

Puisque les vi, en tant que vecteurs propres d’un problème aux valeurs propres classique,
forment une base orthonormale (6.2 de [69]) :

vi
Tvi = δij (B.7)

D’où finalement :
Ui

TMUi = δij (B.8)

Puis, en utilisant cette expression pour reformuler K dans le problème aux valeurs propres, il
vient :

KUi = ω2
iMUi ⇐⇒ Ui

TKUi = ω2
iUi

TMUi (B.9)
⇐⇒ Ui

TKUi = ω2
i δij (B.10)

La résolution du problème aux valeurs propres généralisé passe donc par le calcul des vecteurs
Ui. Ceux-ci ne sont pas orthonormaux, contrairement aux vi. En revanche, comme ils sont
définis tels que (MUi)−1 = Ui, la notion d’orthogonalité peut être généralisée et les vecteurs
Ui sont dits M-orthonormaux.

Finalement, en définissant la base modale M-orthonormée Φ = [U1, . . . ,UN], les expressions
de M et K deviennent :

ΦTMΦ = I (B.11)
ΦTKΦ = ω2 (B.12)

avec : I = diag(1) la matrice identité dans RN

ω = diag (ω1, . . . , ωN)

cqfd.



186

ANNEXE C ÉCART-TYPE D’UNE DISTRIBUTION DE PROBABILITÉ
UNIFORME

L’expression de l’écart-type pour une distribution uniforme sur un segment [a, b] peut être
trouvée par généralisation de celle obtenue pour une distribution uniforme standard, sur [0, a]
(2.3.1 de [66]).

La densité de probabilité d’une loi continue uniforme sur un segment [a, b] est donnée par :

f(x) =





1
b− a sur [a, b],

0 ailleurs
(C.1)

L’écart-type σ(X) est relié à la densité de probabilité par l’espérance E(X), selon (2.1.4.2
de [66]) :

σ2(X) = V (X) = E
(
X2
)
− (E(X))2 (C.2)

Pour une loi de probabilité continue, l’espérance peut être calculée avec (2.1.4.1 de [66]) :

E(X) =
∫ +∞

−∞
xf(x)dX (C.3)

Dans le cas de la loi continue uniforme sur [a, b], il vient donc :

E(X) =
∫ b

a

X

b− adx =
[
X2

2

]b

a

1
b− a =

(
b2 − a2

2

)
1

b− a = (b− a)(b+ a)
2

1
b− a (C.4)

= b+ a

2 (C.5)

et :

E(X2) =
∫ b

a

X2

b− adx =
[
x3

3

]b

a

1
b− a =

(
b3 − a3

3

)
1

b− a = (b− a)(a2 + b2 + ab)
3

1
b− a

(C.6)

= a2 + b2 + ab

3 (C.7)
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ainsi :

V (X) = a2 + b2 + ab

3 − (b+ a)2

4 = (a+ b)2 − ab
3 − (b+ a)2

4 (C.8)

= 1
12
(
(a+ b)2 − 4ab

)
= 1

12
(
a2 + b2 − 2ab

)
(C.9)

= (a− b)2

12 (C.10)

Comme a ≤ b : √
(a− b)2 = b− a (C.11)

ce qui permet d’obtenir l’expression de l’écart-type :

σ(X) =
√
V (X) = b− a

12 (C.12)

Dans le cas du désaccordage, le segment pour le tirage aléatoire est défini :

[a, b]→ [E0(1− dE), E0(1 + dE)] (C.13)

Il vient ainsi :
σ(dE) = 2E0dE√

12
(C.14)

Soit, adimentionné par la valeur nominale E0 :

σadim(dE) = 2dE√
12

(C.15)

cqfd.
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ANNEXE D INVERSIBILITÉ DE 2M + hD

La matrice de masse M est symétrique définie positive par définition (voir la démonstration
en annexe A). En outre, la matrice d’amortissement est symétrique définie positive dans
l’espace physique, par définition du problème physique (hypothèse 3). Le pas de temps h
étant un scalaire, il vient que la matrice [2M + hD] est symétrique définie positive. Elle peut
donc être écrite sous la forme de la factorisation de Cholesky (7.2 de [69] et 4.6 de [193]) :

[2M + hD] = T.TT (D.1)

avec : T une matrice triangulaire supérieure dont les termes diagonaux sont positifs
TT sa transposée, triangulaire inférieure

Une matrice est inversible si et seulement si son déterminant est non nul (3.2 de [69]). Or :

det
(
T.TT

)
= (det T)

(
det TT

)
(D.2)

(par propriété de morphisme du déterminant (3.2 de [69]))
= (det T)2 (D.3)

(car det TT = det T (3.2 de [69]))

=
N∏

l=1

(
T 2
ll

)
(D.4)

(car T est triangulaire (3.1 de [69]))

Comme les éléments diagonaux des matrices de masse et d’amortissement sont strictement
positifs (i.e. non nuls), ceux de T le sont également a fortiori. Finalement :



N∏

l=1

(
T 2
ll

)
6= 0 et det

(
T.TT

)
= det [2M + hD]


 ⇐⇒ [2M + hD] inversible (D.5)

cqfd.
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ANNEXE E MATRICE DE RÉDUCTION DE CRAIG-BAMPTON

La méthode de Craig-Bampton repose sur l’utilisation de modes propres à interface fixe et de
modes statiques afin de construire un modèle réduit représentatif du modèle complet initial.
Cette méthode permet de conserver tous les ddl physiques dits « frontières » et d’appliquer
une réduction sur les ddl modaux restants. La construction de la matrice de réduction ΨCB

est détaillée dans ce qui suit.

E.1 Modes propres à interface fixe

En réorganisant les matrices suivants les ddl internes et frontière, il vient :

Uf

Ui


 =


Ψff Ψfi

Ψif Ψii




pf

pi


 (E.1)

avec f qui désigne les ddl frontière, et i les ddl internes. En notation système :




Uf = Ψffpf + Ψfipi

Ui = Ψifpf + Ψiipi

(E.2)

comme les ddl frontière doivent être conservés par le changement de base, il vient :

Uf = pf ⇐⇒ Ψfi = 0nf ,ni
et Ψff = Inf

(E.3)

avec : 0nf ,ni
la matrice nulle de dimension (nf , ni)

Inf
la matrice carrée identité de dimension (nf , nf )

Il reste donc à déterminer les expressions de Ψii et Ψif . Les ddl frontières restant accessibles
dans la base modale, les modes tels que pf = Uf = 0nf ,1 permettent de déterminer Ψii, ce qui
revient à encastrer les ddl frontière. D’où l’appellation de « modes à interface fixe » (17.6.1
de [93]). Le vecteur des amplitudes Ue pour les modes à frontière encastrée, ou « modes
encastrés », vérifient alors : (

K− ω2M
)

Ue = 0 (E.4)
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soit, en distinguant les ddl internes et frontière :



Kff Kfi

Kif Kii


− ω2


Mff Mfi

Mif Mii






0nf ,1

Uei


 =


0nf ,1

0ni,1


 (E.5)


Kff − ω2Mff Kfi − ω2Mfi

Kif − ω2Mif Kii − ω2Mii




0nf ,1

Uei


 =


0nf ,1

0ni,1


 (E.6)

La dernière équation du système équivalent est alors :

(
Kii − ω2Mii

)
Uei = 0ni,1 (E.7)

qui revient à un problème aux valeurs propres généralisé :

det
(
Kii − ω2Mii

)
= 0ni,1 (E.8)

Une base modale Mii-orthonormée des vecteurs propres du couple de matrices (Kii,Mii) peut
être exprimée :

Φe = [Uei1, ...,Ueini ] = Ψii (E.9)

avec : Φe
TMiiΦe = Ini

Φe
TKiiΦe = ω2 = (diag (ω1, ..., ωni

))2 (E.10)

En remplaçant les expressions définies dans l’équation de changement de base (E.1), il reste :

Uf

Ui


 =


Inf

0nf ,ni

Ψif Φe




pf

pi


 (E.11)

Pour obtenir une base modale, il faut ajouter une équation supplémentaire afin de déterminer
Ψif . Comme pf = Uf et en utilisant la première équation du système (E.2), il s’agit alors de
trouver une relation entre Ui et Uf .

E.2 Enrichissement de la base avec les modes statiques

La méthode de Craig-Bampton revient à enrichir la base modale avec les modes statiques
du système. Lorsque le système est statique, sa vitesse et son accélération généralisées u̇ et
ü sont nulles. De plus, comme un mode propre est recherché, le système est considéré non
amorti. L’équation du mouvement se simplifie donc pour obtenir le problème statique suivant



191

sur le vecteur des amplitudes Us, avec les matrices organisées en ddl internes et frontière :

Kff Kfi

Kif Kii




Usf

Usi


 =


 Ff

0ni,1


 (E.12)

avec : Ff les forces appliquée par l’extérieur sur les frontières du système (Fi = 0ni,1)

La seconde équation du système équivalent revient à une condensation statique (6.9.2 de [49]) :

KiiUsi + KifUsf = 0ni,1 (E.13)
Usi = −Kii

−1KifUsf (E.14)
(Kii est carrée inversibles)

Or les coordonnées modales ont été construites afin de conserver les ddl frontière physiques
(Usf = pf ). Finalement :

Usi = Φspf (E.15)
avec : Φs = −Kii

−1Kif

La matrice de passage de Craig-Bampton non réduite permet ainsi de passer de la base
physique une base hybride, à la fois physique et modale :


Uf

Ui


 =


Inf

0nf ,ni

Φs Φe




Uf

pi


 (E.16)

avec : Ui et Uf les amplitudes physiques respectivement des ddl internes et frontière
pi les amplitudes modales des ddl internes

dim (Ui) = dim (pi) = (ni, 1) ; dim (Uf ) = dim (pf ) = (nf , 1)
Φe base des modes encastrés, Mii-orthonormée et calculée avec (E.8)
avec dim (Φe) = (ni, ni)

Φs = −Kii
−1Kif les modes statiques, avec dim (Φs) = (ni, nf )

0nf ,ni
la matrice nulle de nf lignes et ni colonnes

Inf
= diagnf

(1) la matrice identité de dimension nf
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E.3 Réduction sur les modes encastrés

Dans l’équation de changement de base (E.16), il apparaît que la base des modes encastrés Φe

est carrée de dimension ni alors que celle des modes statiques Φs ne contient que nf colonnes.
Le nombre de ddl aux frontières étant bien inférieurs au nombre de ddl internes (nf < ni) la
matrice de passage des coordonnées physiques aux coordonnées modales pourrait être réduite
en ne conservant que certains modes statiques. La matrice Φe,η correspond alors aux η modes
statiques (ou colonnes) retenus de Φe. La matrice de réduction ΨCB est ainsi définie :

ΨCB =

Inf

0nf ,η

Φs Φe,η


 (E.17)

permettant de passer d’une matrice de passage de dimension (ni + nf , ni + nf ) = (n, n) dans
l’équation (E.16) à une matrice réduite de dimension (ni + nf , η + nf ) = (n, η + nf ). Le
changement de la base physique à la base réduite (en partie physique et en partie modale)
donne ainsi :


Uf

Ui


 = ΨCB


Uf

pη


 = ΨCBUr (E.18)

avec : Ur le vecteur réduit

cqfd.

Remarque. ΨCB n’étant pas carrée, elle n’est pas inversible. Elle permet donc de
passer de la base réduite à la base physique, mais pas inversement.
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ANNEXE F SOUS-ÉCHANTILLONNAGE DES SIGNAUX DE BTT

Dans le cadre d’une acquisition de BTT, le déplacement d’une aube donnée est relevé nc fois
pour chaque rotation, avec nc le nombre de capteurs sur la circonférence du carter. Comme le
théorème d’échantillonnage de Nyquist-Shannon stipule que la fréquence d’échantillonnage
doit être supérieure au double de la fréquence maximale présente dans le signal pour permettre
une représentation discrète de celui-ci [138], il faudrait que la condition suivante soit respectée :

nc
fr
2 > fmax

avec fr la fréquence de rotation et fmax la fréquence maximale qui compose le signal de
déplacement en sommet d’aube. La fréquence de rotation nominale d’une roue aubagée de
compresseur étant de l’ordre de 50Hz, et les fréquences qui composent le signal fmax > 1000 Hz,
40 capteurs répartis sur toute la circonférence du carter seraient nécessaires afin d’obtenir
toute l’information contenue dans le signal. Les signaux obtenus par la technique de BTT,
usuellement sur 2 à 4 capteurs, sont donc fortement sous-échantillonnés, ce qui induit un
repliement de spectre, comme illustré sur la figure F.1, et vient fausser l’évaluation de la
fréquence de vibration des aubes [165].

Figure F.1 Concept de repliement de spectre : le signal souhaité ( ) est capté à un nombre
d’instants limité ( ), faussant son approximation ( ).
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