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RESUME

Les turbomoteurs sont constitués de successions de roues aubagées tournant a grande vitesse
et isolées de l'environnement extérieur par le carter. Le jeu entre les aubes et le carter
favorise I'apparition de tourbillons, qui induisent d’importantes pertes aérodynamiques. Les
constructeurs cherchent donc a diminuer ce jeu afin d’améliorer le rendement global des
moteurs. Cependant, la diminution des jeux favorise I’apparition de contacts entre les aubes
et le carter. Les vibrations non-linéaires qui en résultent sont particulierement préjudiciables
au bon fonctionnement du moteur, du fait des vitesses relatives élevées entre les composants.
Ainsi, la compréhension de ces phénomenes non-linéaires constituent un enjeu industriel

majeur.

Par ailleurs, bien que les aubes d’une méme roue aubagée sont congues pour étre identiques,
des variations infimes de propriétés mécaniques sont inévitablement engendrées lors de leur
réalisation ou du fait de I'usure en service. Cette rupture de symétrie, nommeée désaccordage,
induit des modifications du comportement vibratoire de la roue aubagée par rapport a celui
attendu pour une roue accordée, présentant une symétrie cyclique parfaite. Notamment, les
amplitudes de vibrations sont grandement amplifiées, diminuant ainsi la durée de vie du
moteur. La caractérisation des vibrations des roues aubagées désaccordées fait appel a des

approches stochastiques, rendues possibles par I’essor des simulations numériques.

Peu de recherches ont été menées a ce jour sur I’étude conjointe des vibrations non-linéaires,
dues aux frottements ou au contact, et du désaccordage. Or, ces deux aspects modifient
grandement le comportement dynamique des roues aubagées, si bien que leur prise en compte
améliore grandement la prédictivité des simulations. Les recherches les plus récentes proposent
des études déterministes de I'influence du désaccordage sur les non-linéarités de frottement
entre composants d'une méme roue aubagée, pour des vitesses relatives faibles. L’influence du
désaccordage sur les vibrations non-linéaires n’avait pas encore été étudiée stochastiquement,
et les non-linéarités de contact entre les aubes et le carter, qui impliquent des vitesses relatives

élevées, n’avaient pas encore été considérées.

La présente recherche propose ainsi la premiere étude conjointe du désaccordage et des non-
linéarités aubes-carter. Les modélisations numériques sont réalisées en utilisant la méthode
des éléments finis. Les équations du mouvement sont résolues par intégration temporelle et la
gestion du contact est réalisée par la méthode des multiplicateurs de Lagrange. Une premiere
étude stochastique est réalisée sur un modele phénoménologique, permettant de valider la

méthodologie proposée. Il apparalt notamment que les amplifications des vibrations dues au
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désaccordage dans le cadre non-linéaire sont bien supérieures a celles obtenues dans le cadre
linéaire. En outre, les interactions non-linéaires prédites sur base du modele accordé sont

robustes vis-a-vis d’un faible désaccordage.

Une méthode de réduction est ensuite développée pour générer des modeles réduits désaccordés
avec interface de contact, pour un cotit de calcul négligeable. Ce développement rend ainsi
possible des calculs stochastiques sur un modele industriel. Les simulations réalisées en
configuration nominale permettent de mettre en évidence des modifications du comportement
vibratoire des aubes a mesure que le niveau de désaccordage augmente, conduisant a de hauts
niveaux d’amplification des vibrations. L’analyse des champs de contraintes indiquent que les
niveaux de contraintes dans la roue aubagée augmentent sensiblement pour les plus hauts

niveaux de désaccordage considérés.

Enfin, la méthodologie de gestion du contact utilisée, couplée a la méthode de génération de
modeles désaccordés réduits développée, permet de générer des données d’instrumentation de
Blade Tip-Timing. Les résultats obtenus permettent d’entrevoir que la méthodologie peut étre
utilisée dans le cadre de I'étude stochastique de la robustesse des algorithmes de détection
du désaccordage, ou encore pour la mise en place de nouveaux algorithmes d’analyse des

phénomenes non-linéaires.

mots clefs : désaccordage, non-linéarités aubes-carter, simulations stochastiques, méthode

des éléments finis, méthode de réduction, génération de données de BTT.
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ABSTRACT

Aircraft engines are composed of bladed disks rotating at high speed and isolated from
the external environment by the casing. The clearance between the blades and the casing
favors the formation of vortices, resulting in aerodynamic losses. In order to improve overall
engine efficiency, manufacturers are therefore seeking to reduce this clearance. However, the
reduction of clearances favors the occurrence of contacts between the blades and the casing.
The resulting non-linear vibrations are particularly detrimental to the proper operation of the
engine due to the high relative speeds between the components. Thus, understanding these

non-linear phenomena is a major industrial issue.

Although blades are designed to be identical, small variations in mechanical properties are
inevitably generated during manufacturing or due to in-service wear. This symmetry break,
known as mistuning, induces changes in the vibratory behavior of the bladed disk, compared
to that expected for a tuned bladed disk. In particular, the vibration amplitudes are greatly
amplified, thus reducing the engine operating life. Stochastic approaches, made possible by
the development of numerical simulations, are used in order to characterize the vibrations of
mistuned bladed disks.

To date, little research has been conducted on the study of non-linear vibrations — due to
friction or contact — and mistuning. However, these two aspects greatly modify the dynamic
behavior of bladed disks, so that taking them into account greatly improves the predictability
of the simulations. The most recent researches rely on deterministic approaches to study
the influence of mistuning on the non-linearities occurring inside the bladed disk, with low
relative speeds. The influence of mistuning on non-linear vibrations has not been studied
with a stochastic approach so far, nor by considering the contact nonlinearities between the

blades and the casing, which imply high relative speeds.

The present research thus represents the first combined analysis of mistuning and blade/casing
contact non-linearities. Numerical modeling are performed using the finite element method.
The equations of motion are solved by a time integration algorithm and the contact manage-
ment is performed by the Lagrange multiplier method. Firstly, a stochastic study is carried out
on a phenomenological model to validate the proposed methodology. Vibration amplifications
due to mistuning in the non-linear framework are much higher than those obtained in the
linear framework. Moreover, the non-linear interactions predicted on the tuned model are

robust to small mistuning.

A reduced order technique is then developed to generate mistuned models with a contact
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interface, at a negligible calculation cost. This development makes stochastic calculations
possible on an industrial model, studied in a nominal configuration. Changes in the vibratory
behavior of the blades are highlighted as the mistuning level increases, leading to high levels
of vibration amplifications. Stress fields are also analyzed, indicating that the stress levels in

the bladed disk increase significantly for the highest mistuning levels considered.

Finally, the contact management methodology used, coupled with the reduced detuned
model generation method developed, allows to generate Blade Tip-Timing data. The results
obtained show that the methodology can be used to study stochastically the robustness of
the mistuning identification algorithms, and to develop new algorithms for the analysis of

non-linear phenomena.

key words : mistuning, blade/casing contact non-linearities, stochastic simulations, finite

element method, reduced order technique, BT'T data generation.
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CHAPITRE 1 INTRODUCTION

1.1 Considérations générales

Pour pouvoir s’élever et se maintenir dans les airs, un avion doit contrer son poids ainsi que
la trainée engendrée par sa pénétration dans I'air, tel qu’illustré sur la figure 1.1, en générant

une force de portance grace a ses ailes et une force de poussée par l'intermédiaire de ses

— =

Figure 1.1 Principe de vol stationnaire d’un avion : portance des ailes (m ), poids (@ ),
poussée du moteur (= ) et trainée (= ). Adapté de [1].

turbomoteurs.

Les turbomoteurs modernes, dont une représentation en coupe est donnée sur la figure 1.2, sont
composés d’étages successifs. La premiere partie du moteur permet de comprimer 'air jusqu’a
la chambre de combustion : la soufflante (zone @ sur la figure 1.2), puis le compresseur basse
pression (zone @) et haute pression (zone @) L’air est ensuite chauffé dans la chambre de
combustion (zone @) avant d’étre éjecté a haute vitesse par I'intermédiaire des turbines haute
puis basse pression (zone @) Le flux qui parcourt le moteur, du compresseur basse pression
a la turbine basse pression, est appelé flux primaire (ou flux chaud). Un flux secondaire (ou
flux froid) est redirigé par la soufflante directement vers le fluide extérieur. La masse de fluide
éjectée a la fois par le flux primaire et le flux secondaire permet de générer la poussée qui

propulse 'avion.

Les principaux éléments constitutifs des étages de compresseurs et de turbines des turbomoteurs
sont les roues aubagées, composées d’aubes disposées autour d’un disque. Une aube de
compresseur basse pression est représentée sur I'encart de la figure 1.2. Le disque est entrainé
en rotation par I'intermédiaire de ’arbre moteur, afin que les aubes, inclinées par rapport au

flux, communiquent au fluide une vitesse d’avance. La partie du profil de ’aube la plus en



amont du flux est appelée le bord d’attaque, et la partie la plus en aval du flux est appelée le

bord de fuite. L’ensemble des éléments tournants du moteur est nommé rotor.

T ——
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Figure 1.2 Représentation en coupe d'un turbomoteur : flux primaire (= ), flux secondaire (=)
et aubes () du compresseur basse pression.

En plus de la vitesse d’avance, les aubes communiquent également au fluide une vitesse
tangentielle qui n’est pas contributive pour le fonctionnement du moteur. D’autres aubes,
appelées redresseurs et faisant partie du stator, sont fixées sur le carter en aval des aubes du
rotor afin de convertir une partie de la vitesse tangentielle en vitesse d’avance. Cependant,
leur présence perturbe le flux, induisant ainsi des dépressions locales dans leur sillage et donc
une force fluctuante sur les aubes du rotor en aval. Du fait de la vitesse de rotation élevée, les
aubes sont ainsi excitées a haute fréquence et entrent en vibration, ce qui peut induire un

rapprochement entre 'extrémité des aubes et le carter, par déploiement de celles-ci.

Les contacts entre les aubes et le carter peuvent provoquer des ruptures d’aubes en fatigue [17,
18], diminuant grandement la durée de vie des moteurs. Afin de garantir la sécurité en vol, un
jeu est introduit entre le rotor et le stator, mais celui-ci réduit les performances aérodynamiques
de l'ensemble [19]. Pour améliorer le rendement des moteurs tout en garantissant l'intégrité
du moteur, la compréhension, I'analyse et la possibilité de prédire ces contacts sont devenues

des enjeux stratégiques majeurs pour les constructeurs.

Enfin, les vibrations des roues aubagées peuvent en pratique grandement différer de celles



prédites en considérant que chaque aube est identique. En effet, I'imperfection des procédés
de fabrication et d’inévitables inhomogénéités dans les matériaux induisent une variabilité de
propriétés mécaniques entre chaque aube d’une roue aubagée, qui est alors dite désaccordée. La
rupture de symétrie cyclique du fait du désaccordage peut notamment générer des phénomenes
de localisation d’énergie [20,21]. L’énergie de vibration est localisée sur un petit nombre
d’aubes, qui présentent alors des déformations tres supérieures a celles prédites par un modele

parfaitement symétrique, pouvant conduire a des ruptures d’aubes en service [22,23].

1.2 Problématique

Pour pouvoir s’affranchir des cofits et des temps de développement inhérents aux études
expérimentales, de nombreuses méthodes numériques ont été développées pour simuler le
comportement des roues aubagées désaccordées. Les méthodes de réduction modale, qui
permettent de réduire la taille du modele numérique dans le but de diminuer les temps de
calculs, ont été développées a la fin des années 1960 [24] et ont commencé a étre utilisées
pour I’étude des roues aubagées & partir des années 1980 [25]. Ce n’est toutefois que depuis le
début des années 2000 qu’elles ont été adaptées aux structures aubagées désaccordées [26].
Le nombre de méthodes disponibles adaptées aux structures désaccordées a rapidement
progressé [23,27,28]. Les méthodes ont été développées selon le cas d’application recherché :
désaccordage fort [29,30] ou faible [26,29], roue aubagée seule ou multiples étages [27,31].
Le désaccordage faible étant par nature aléatoire, son influence sur les vibrations de la roue

aubagée doit étre étudiée de fagon stochastique, sur un grand nombre de simulations [6,23,32].

En parallele, les vibrations non-linéaires dues aux contacts ou aux frottements entre composants
du rotor ou entre le rotor et le stator ont également fait I'objet de plusieurs travaux de
recherche [17]. En particulier, plusieurs méthodes permettent de modéliser les cas de contact
(méthode de la pénalité [33,34] et multiplicateurs de Lagrange [12,35]) et de frottement
(méthode directe [36], temporelle [37] et fréquentielle [38,39], aussi appelée d’équilibrage

harmonique).

L’influence du désaccordage a donc été analysée dans un contexte linéaire, et les vibrations
non-linéaires ont été étudiées pour des roues aubagées accordées. Les premieres études couplées
de l'influence du désaccordage et celle des non-linéarités de frottement ont été réalisées a
partir de 1985 [40], mais le désaccordage était alors considéré de fagon déterministe. Seules
les études de Joannin et al. [41,42] en 2016 et 2017 proposent une étude de I'influence du
désaccordage sur les vibrations non-linéaires. Dans ce but, les méthodes de réduction utilisées

dans le cadre des roues aubagées ont été adaptées a un cas de contact entre le pied d’aube et



le disque.

Les travaux de recherche cités précédemment ne considerent que les non-linéarités entre
solides du rotor, au niveau du pied d’aube (interface aube-disque) ou au niveau des nageoires
(interface aube-aube). Or les vibrations non-linéaires entre le rotor et le stator, notamment a
I'interface aubes-carter, peuvent étre particulierement destructrices pour le mécanisme du fait

de la vitesse relative importante entre les composants.

1.3 Objectifs de recherche

L’objectif principal de ce travail de recherche est d’étudier I'influence du désaccordage sur
les vibrations non-linéaires des roues aubagées, induites au niveau de l'interface aubes-carter.
Afin de permettre des simulations stochastiques sur des modeles désaccordées industriels, le
modele est réduit grace a une méthode de réduction développée dans le cadre de la présente

recherche et qui constitue une extension d’une méthode pré-existante.

1.4 Organisation du mémoire

Le présent mémoire est composé de cinq chapitres. Un état de l'art sur la modélisation
des vibrations des roues aubagées est présenté dans le chapitre 2. Les différences entre
roues aubagées accordées et désaccordées y sont explicitées, aussi bien du point de vue des
considérations physiques que des techniques de modélisation. Un état de 'art des travaux
réalisés sur la caractérisation des différents types de vibrations forcées en contexte linéaire
et non-linéaire y sont présentés, afin d’expliciter le positionnement de la présente recherche
et de justifier les méthodes choisies. La stratégie de calcul utilisée dans cette recherche est
définie dans le cadre de la formulation des éléments finis, avec une gestion du contact par

multiplicateurs de Lagrange et une résolution par intégration temporelle.

La méthodologie définie est appliquée sur un modele phénoménologique de soufflante dans le
chapitre 3. Ce modele avait précédemment été utilisé pour la modélisation de non-linéarités
de contact aubes-carter dans le cadre de la résolution par multiplicateurs de Lagrange
et intégration temporelle [12]. Tout d’abord, la représentativité du modele pour 1’étude
stochastique des vibrations linéaires de modeles désaccordés est établie. Ensuite, le choix
de la configuration de contact et des parametres numériques est appuyé par I’étude des
convergences temporelle et spatiale. La détection d'un régime permanent est assurée par
une procédure d’auto-corrélation couplée a un calcul de I'erreur de convergence. Les calculs
stochastiques sur des modeles désaccordés en configuration de contact aubes-carter sont alors

présentés et analysés. La convergence stochastique des résultats est soigneusement évaluée, a



la fois qualitativement et quantitativement, & travers des criteres issus d’autres disciplines.
L’amplification des vibrations par rapport au modele accordé est présentée, comparée a
I’amplification obtenue dans un cadre linéaire, et analysée en termes de déplacements et
d’énergie de déformation. Les différences de comportement vibratoire sont soulignées en
utilisant un facteur de localisation, extension aux vibrations forcées d’un critere précédemment

proposé pour les vibrations libres.

Afin de permettre 'application de la méthodologie de résolution du contact a 1’étude de
I'influence du désaccordage sur un modele industriel, une méthode de réduction permettant
d’appliquer le désaccordage dans un espace mixte modal/physique est proposée dans le
chapitre 4. Apres avoir été validée sur un modele académique, la méthode est validée sur un

modele industriel au regard de ses différents parametres, dans un cadre linéaire et non-linéaire.

Le comportement vibratoire d’'une roue aubagée industrielle est caractérisé vis-a-vis du
désaccordage dans le chapitre 5, dans une configuration linéaire et de non-linéarité de contact
aubes-carter. Tout d’abord, la représentativité du modele pour I’étude de l'influence du
désaccordage en configuration linéaire est présentée. La configuration de contact est choisie afin
de correspondre a la configuration nominale de fonctionnement de la roue aubagée modélisée.
L’amplification des vibrations non-linéaires due au désaccordage est ensuite présentée sur base
de résultats stochastiques, dont la convergence est étudiée selon la méme méthodologie que
celle suivie sur le cas phénoménologique au chapitre 3. Le contenu fréquentiel des déplacements,
les facteurs de localisation obtenus, les efforts de contact et 'usure du matériau abradable
sont analysés stochastiquement pour obtenir une analyse supplémentaire du comportement
vibratoire du modele complet. Enfin, la méthode de réduction développée dans le chapitre 4
permet de redéployer les champs de déplacement et de contraintes a I'intérieur du modele.
La précision des champs obtenues rend possible une analyse approfondie de certains motifs

désaccordés.

La méthodologie de gestion du contact utilisée, couplée a la méthode de génération de modeles
désaccordés réduits développée, permet d’accéder a la position des noeuds frontiere en bout
d’aube a chaque instant, dans le cadre de calculs stochastiques sur des modeles désaccordés.
La technique de Blade Tip-Timing (BTT), utilisée dans la caractérisation expérimentale des
vibrations des roues aubagées, repose sur le calcul des temps d’arrivée des sommets d’aubes
pour permettre, entre autres, de calculer le motif de désaccordage et I'amplitude maximale sur
I’ensemble de la roue aubagée. La technique de BTT est actuellement appliquée pour ’analyse
des vibrations linéaires, et les algorithmes sont validés sur des cas de désaccordage déterministe.
Le chapitre 6 présente une preuve de concept de I'applicabilité de la méthodologie de simulation

développée a la génération de données de Blade Tip-Timing (BTT). L’application dans la



littérature de la technique de BTT est tout d’abord présentée. L’intérét que représente la
génération numérique de signaux de BTT pour la validation des algorithmes de traitement y
est en particulier explicité. Une procédure de génération simplifiée des données est proposée
avant d’étre validée sur le cas phénoménologique sur des vibrations linéaires et non-linéaires.

La génération stochastique de données est ensuite appliquée pour le modele industriel.

Les contributions originales majeures de ce travail de recherche sont résumées dans I'encart
suivant.

Contributions originales du travail présenté

(1) premiere étude stochastique sur un modeéle phénoménologique de I'influence du
niveau de désaccordage sur les non-linéarités aubes-carter, sur une plage de

vitesses

(2) développement d’une méthode de réduction permettant de générer a moindre

colt des modeles réduits désaccordés avec interfaces de contact
(3) analyse stochastique d’'une configuration nominale industrielle

(4) outil pour la génération de données de BTT en configuration non-linéaire

La contribution (1) a fait 'objet d’un article présenté lors de la conférence ASME International
Mechanical Engineering Congress and Exposition (ASME-IMECE) en novembre 2019 a Salt
Lake City 1. Une version étendue de cet article a été acceptée en Juin 2020 dans le Journal of
Engineering for Gas Turbines and Power (JEGTP)?2.

1. doi.org/10.1115/IMECE2019-10300
2. numéro : GTP-20-1080


doi.org/10.1115/IMECE2019-10300 

CHAPITRE 2 ETAT DE L’ART SUR LA MODELISATION DES
VIBRATIONS DES ROUES AUBAGEES

Les moteurs d’avion comportent des successions de roues aubagées, constituées d'un disque
continu autour duquel plusieurs aubes sont disposées, comme représenté sur la figure 2.1. Le
mouvement des roues aubagées au sein du moteur en fonctionnement peut étre décomposé en
deux contributions : d’une part, le mouvement induit par la rotation d’ensemble du moteur

et, d’autre part, la vibration de la roue aubagée.

Figure 2.1 Roue aubagée, dont chaque aube (m ) est liée mécaniquement au disque (3 ).
Adapté de [2].

En conditions normales de fonctionnement, les vibrations d’une roue aubagée sont linéaires
et principalement dues a la variation de charge aérodynamique sur les aubes, du fait de la
présence d’aubes statiques (redresseur) en amont de I’écoulement. La fréquence d’excitation
associée est ainsi dépendante du nombre d’aubes du redresseur et de la vitesse de rotation de
la roue aubagée. Le dimensionnement des turbomoteurs fait ainsi appel a des outils d’analyse
modale afin de définir des plages de fonctionnement adéquates. Par ailleurs, les vibrations des
roues aubagées peuvent également étre non-linéaires, du fait de frottements, glissements et

contacts la ou un mouvement relatif est permis entre les composants.

Une hypothese simplificatrice courante consiste a considérer que toutes les aubes d’une roue

aubagée sont identiques, si bien que le systéme présente une symétrie cyclique par rapport a



I’axe de rotation de la roue, qui est alors dite accordée. Or, en réalité, des inhomogénéités
inévitables sont constatées du fait notamment de I'incertitude des procédés de fabrication,
bien que limitée par des tolérances restrictives, ou de I'usure en service. Ces différences de
propriétés d’une aube a ’autre induisent une rupture de la symétrie cyclique. La roue aubagée
est alors dite désaccordée. Ce désaccordage modifie grandement le comportement vibratoire

de la roue aubagée.

Le présent chapitre expose un état de I'art sur la modélisation des vibrations libres et forcées
des roues aubagées dans un contexte linéaire et non-linéaire. Les spécificités des vibrations
des roues aubagées accordées sont présentées avant de développer les différences induites par
le désaccordage. Les méthodes numériques utilisées sont détaillées, comprenant les méthodes
de réduction nécessaires a 1’étude des systemes industriels. Il est ainsi mis en exergue que
si les recherches sur les vibrations linéaires ont été menées sur les roues aubagées accordées
et désaccordées, 'influence du désaccordage sur les vibrations non-linéaires a encore été peu
étudiée. Le besoin pour une telle étude est clairement explicité en fin de chapitre, ainsi que

les apports du présent travail de recherche.

2.1 Analyse modale

La caractérisation des modes de vibration propres des roues aubagées permet aux ingénieurs de
déterminer des conditions de fonctionnement adéquates, en particulier pour les roues aubagées
accordées, comme présenté en premiere partie de cette section. Une telle analyse, appelée
analyse modale, permet également de mettre en évidence des modifications du comportement

vibratoire dues au désaccordage qui seront présentées en seconde partie.

2.1.1 Roues accordées
Considérations physiques

Les premiers modes propres d'une aube encastrée en son pied, a savoir les modes de premiere
et deuxieme flexion (1F, 2F) et de premiére torsion (1T), sont représentés sur la figure 2.2.
Les points qui restent fixes lors de la vibration sont appelés « noeuds » de vibration. Les
modes propres du disque peuvent présenter des lignes de points fixes passant par son centre,
appelées « diametres nodaux » et représentées par des lignes rouges ( — ) sur la figure 2.3,
ou des cercles concentriques de points fixes, appelés « cercles nodaux » et représentés par des
cercles oranges ( ) sur la figure 2.3. Certains modes de vibrations présentent a la fois des
diametres et cercles nodaux [43], comme par exemple le mode représenté en bas et au centre
la figure 2.3.



(a) 1F (b) 2F

Figure 2.2 Modes propres de vibration d’une aube encastrée-libre, avec les déformations
tracées sous forme de gradient (= ).

(a) mode a 1 cercle nodal (b) mode & 1 diametre nodal (c) mode a 1 cercle et 1 dia-
metre nodal

Figure 2.3 Modes de vibration d'un disque, selon des cercles ( — ) et des diameétres (— )
nodaux. Sources : [3] et [4].

Dans le cas d’une roue aubagée, les vibrations du disque et des aubes sont couplées, et la
présence des aubes rigidifie localement le disque, si bien que les cercles nodaux ne sont plus
circulaires, comme représenté a la figure 2.4. Les modes de vibrations des roues aubagées
accordées sont ainsi définis suivant leur nombre de diameétres nodaux, noté ng, qui peuvent
étre calculés a partir du nombre de changements de phases entre les aubes, comme illustré
sur la figure 2.5. Pour une roue aubagée a N aubes, le nombre maximal de diametre nodaux
est de | F].

De nombreuses études se sont focalisées sur I’évolution des fréquences propres en fonction
des diametres nodaux, a commencer par Ewins et Han en 1984 [44] et jusqu’a l'apport de
Bladh et al. en 2002 [6], dont le diagramme « fréquences propres/diametres nodaux » (nommé
en en 1988 « diagramme SAFE » [45], de 'anglais Singh’s Advanced Frequency Evaluation

diagram) est tracé sur la figure 2.6. Ce diagramme permet de mettre en évidence les modes
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/

Figure 2.4 Représentation en 2D d’un mode de roue aubagée : mode 1F des aubes (— ) et
allure modifiée des cercles nodaux ( ) du disque.

Figure 2.5 Représentation schématique des modes d’une roue aubagée accordée : les déforma-
tions positives () et négatives (B ) par rapport a la géométrie initiale (= ) sont alternées
et dessinent ng diametres nodaux (---- ). Adapté de [5].

de vibration pour lesquels I'énergie de vibration de la roue aubagée est majoritairement
concentrée dans les aubes, ou « modes d’aubes », qui se traduisent par des lignes horizontales
sur la figure 2.6 (— ). La ligne horizontale & plus basse fréquence, ou « premiere famille de
modes », correspond pour la roue aubagée considérée aux vibrations des aubes selon leur
premier mode de flexion (1F). Les modes de vibration pour lesquels I’énergie de vibration
est majoritairement concentrée dans le disque, ou « modes de disque », se traduisent par
des lignes obliques sur la figure 2.6 (— ). Pour certains diametres nodaux, la proximité
de modes issus de familles modales distinctes se traduit par I'apparition d’'une « zone de
pincement » (en anglais : veering). La réponse vibratoire des aubes y est importante, du fait
du possible échange d’énergie a travers le disque [6,46]. En raison de la proximité de plusieurs
familles de modes de vibrations dans les zones de pincement, les amplitudes de vibration des

aubes peuvent changer drastiquement pour une petite variation de propriétés matériaux du
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systéme [6]. L’identification des zones de pincement est de fait primordiale pour les motoristes,
afin de les éviter lors des conditions normales de fonctionnement des moteurs. Bien que le
nombre d’aubes et de diametres nodaux est intrinsequement discret, des zones de pincement
supplémentaires peuvent étre identifiées en définissant un angle de phase inter-aubes qui peut
prendre des valeurs continues [6], comme visible sur la figure 2.6.

(W

Fréquence propre [kHz|

Nombre de diameétres nodaux |[-]

Figure 2.6 Diagramme fréquences propres/diametres nodaux pour 28 aubes, ou sont iden-
tifiables les modes du disque (—), les modes d’aubes (—) et les modes mixtes (zones de
pincement) (/). Adapté de [6].

Modélisation

Méthode des éléments finis. Dans l'industrie, une roue aubagée est discrétisée spatia-
lement par la méthode des éléments finis. Cette méthode, reposant mathématiquement sur
la recherche d’une solution a un probleme variationnel par la minimisation d’une fonction-
nelle [47], permet des calculs sur des structures complexes a partir d’éléments simples. Les
matrices symétriques de masse M et de raideur K de la roue aubagée sont construites par
assemblage des matrices associées a chaque élément dont les expressions respectives sont bien
connues dans la littérature [48,49]. Les matrices élémentaires M, et K, sont exprimées en

fonction de la géométrie et des propriétés matériaux, par exemple pour un élément poutre :
M. = M (p,le,b,h)  ; Ke =K (F,l,b,h) (2.1)

avec p la masse volumique et £ le module d’Young du matériau qui constitue ’élément poutre,

l. la longueur de 1’élément, b et h respectivement la largeur et la longueur de la section
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de I’élément. L’expression compléete des matrices élémentaires pour des éléments linéaires,

déterminée sous les hypotheses explicitées dans I'encart ci-dessous, peut étre trouvée dans [48].

Hypothéses, énoncées dans [48]

1. hypothese de Bernoulli : au cours de la déformation, les sections droites restent

perpendiculaires & la courbe moyenne (le cisaillement est négligé) ;
2. petits déplacements et petites déformations;
3. matériau homogene élastique ;

4. moment dynamique de rotation des sections négligeable.

La déformation de la structure globale est calculée selon le déplacement de chaque nceud des
éléments qui la composent. Les déplacements (de translation ou de rotation) autorisés en

chaque noeud sont appelés degrés de liberté.

Calcul des modes et fréquences propres. Les modes propres et fréquences propres sont

calculés par résolution du probléme aux valeurs propres généralisé suivant (7.6 de [50]) :
det (K — w’M) =0 (2.2)

Les modes de déformation recherchés sont ainsi les vecteurs propres ¢, (i € [1,...,d|, avec d
le nombre de degrés de liberté du systéme complet) du couple de matrices (K, M). Les valeurs
propres correspondant & ces vecteurs propres sont ainsi le carré des pulsations w [rad - s71],

directement liées aux fréquences propres (f = 3= [Hz]).

Dans le cadre des systemes a symétrie cyclique, telle une roue aubagée a N aubes, le mode a
0 diametre (ng4) est dit « simple ». Toutes les aubes vibrent alors en phase. Dans le cas ou N
est pair, le mode a % diametres nodaux est également simple et toutes les aubes vibrent alors
en opposition de phase. Pour 0 < ng < L%j, la résolution du probléme aux valeurs propres
renvoie des valeurs propres doubles. Le mode de vibration peut alors étre exprimé comme une
combinaison linéaire des deux vecteurs propres M-orthogonaux obtenus [51]. Le théoréme
de dégénérescence (2.3.2 de [52]) permet alors de définir une base M-orthonormée a partir

des vecteurs propres, appelée base modale et représentée par la matrice ® = [Py, ..., Pq4]. Les
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matrices masse et raideur y sont exprimées (démonstration en annexe. B) :

TMP =1 (2.3)
OKP = w? (2.4)
avec : I = diag(1) la matrice identité dans R?

w = diag (wy, ..., wq)

2.1.2 Roues désaccordées

Comme mentionné précédemment, une roue aubagée réelle est inévitablement désaccordée,
du fait notamment de 'imperfection des matériaux ou des procédés de fabrication. Il est
alors critique pour les concepteurs de moteurs d’avion de pouvoir quantifier 'impact de ce

désaccordage sur la réponse vibratoire de la roue aubagée étudiée.

Considérations physiques

La variation structurelle microscopique inévitable d’une aube a I’autre est appelée désaccordage
faible, et a été évaluée expérimentalement de l'ordre de 2,5 % sur la variation de masse [53]. La
variation macroscopique de la géométrie des aubes est appelée désaccordage fort et peut étre
due a la réparation d’aubes par ajout de matiere [54] ou des choix de conception, telle une aube
avec une géométrie différente [55]. Le désaccordage, qu’il soit faible ou fort, modifie grandement
les vibrations propres de la roue aubagée du fait de : (1) la séparation des fréquences propres
correspondant a des modes doubles de la roue accordée; et (2) de 'apparition de phénomeénes

de localisation [21,56]. Ces deux phénomenes sont détaillés dans ce qui suit.

La ou le modele accordé présente des fréquences propres doubles du fait de sa symétrie cyclique,
les fréquences des roues aubagées désaccordées ne sont plus égales, bien que restant proches [57].
Cette dispersion des fréquences est de I'ordre de 1 % dans le cadre d’un désaccordage faible [53]
et augmente avec le niveau de désaccordage. Or, une roue aubagée sollicitée a une de ses
fréquences propres va entrer en résonance. Les plages de résonance sont de fait a éviter lors du
fonctionnement du moteur. La séparation des modes doubles va ainsi avoir pour conséquence

que les roues aubagées présentent plus de pics de résonance [53,57].

L’allure des modes de vibration est également grandement impactée par le désaccordage.
Comme chaque secteur présente des propriétés matériaux différentes, I’énergie de vibration se
localise alors dans certaines aubes a travers le disque [20], comme illustré sur la figure 2.7.
Ce phénomene va étre accru pour les modes des zones de pincement, qui tendent a étre des

modes mixtes de vibration de aubes et du disque [23]. Un facteur de localisation peut alors
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Figure 2.7 Représentation schématique des modes d’une roue aubagée désaccordée : 1'énergie
est localisée, seules certaines aubes sont déformées suivant de grandes amplitudes. Adapté

de [5].

étre utilisé pour quantifier le niveau de localisation, le niveau le plus bas correspondant a une
roue aubagée accordée et le niveau le plus haut correspondant a des vibrations sur une seule
aube [58]. Sur les vibrations libres, cette localisation induit la disparition des diameétres nodaux
sur les modes propres. L’allure d’'un mode désaccordé comporte de nombreuses harmoniques
spatiales, qui sont des compositions de modes a diametres nodaux, rendant le phénomene de
localisation difficile a éviter dans des conditions de fonctionnement [23]. Différents parametres
influencent la sensibilité au désaccordage, notamment la flexibilité du disque sur lequel les

aubes sont fixées et le couplage inter-aubes [32].

Implémentation numérique

Afin de construire un modele désaccordé, le parametre de désaccordage et le lieu d’application
doivent étre définis de telle sorte que le modele désaccordé soit aussi représentatif que possible
d’un systéme réel, notamment en terme de séparation des fréquences propres, lesquelles
sont déterminées expérimentalement [53]. Dans les premiéres études sur le désaccordage, les
valeurs des parametres étaient fixées sur des aubes choisies, si bien que les approches étaient
intrinséquement déterministes [44,59,60]. Les travaux d’Ottarsson et Pierre [5,32] dans les
années 1990 ont cependant mis en évidence la nécessité de considérer le désaccordage comme
une variable aléatoire, puisqu’il est issu de facteurs incontrolables. Les études récentes se
focalisent ainsi sur des approches stochastiques [23,28]. L’expression du niveau de désaccordage

dépend alors du type de distribution de probabilité utilisé.

Parametre de désaccordage. La séparation des fréquences due au désaccordage peut
étre utilisée pour quantifier le niveau de désaccordage associé [53], comme fait dans les
premiers modeles analytiques masse-ressort pour 1’étude du désaccordage [22,57]. Avec un
modele éléments finis, un faible niveau de désaccordage peut étre appliqué en considérant une

perturbation des fréquences propres de la roue aubagée : dans I'espace modal, les coefficients



15

de la matrice diagonale des pulsations modales w;, voir ’équation (2.4), sont légerement
perturbés en fonction des modes impactés par le désaccordage. Cette fagon d’appliquer un
désaccordage de la structure est particulierement pertinente lorsqu’une comparaison entre des

prédictions numériques et des données expérimentales est recherchée [30,61].

Il existe plusieurs autres fagcons de modéliser un certain niveau de désaccordage, notamment
par une variation sur les propriétés matériaux, faisant ainsi écho a la formulation des tolé-
rances des procédés de fabrication industriels. Les propriétés matériaux couramment utilisées
dans la littérature pour la prise en compte du désaccordage sont le module d’Young ou la
masse volumique [23,28], ce qui impacte directement les matrices structurelles élémentaires
comme définies a ’équation (2.1). Il a également été proposé d’introduire le désaccordage en

considérant une variation de I'amortissement [60, 62, 63].

Lieu d’application. Les propriétés matériaux peuvent étre modifiées pour chaque secteur
élémentaire (aube et portion de disque associée [64]). Toutefois, plusieurs études ont montré
que la variation des propriétés mécaniques dans le disque a un impact faible comparativement
a celle dans les aubes [23,58]. La variabilité des propriétés matériaux est ainsi usuellement

implémentée uniquement au niveau des aubes.

Distribution. Le désaccordage peut étre considéré de facon déterministe, auquel cas les
propriétés matériaux sont fixées, ou stochastique, les propriétés matériaux sont alors considé-
rées comme des variables aléatoires, tirées dans une plage de variation donnée suivant une
fonction de répartition. Cette fonction de répartition peut étre une loi uniforme continue,
représentée en rouge sur la figure 2.8, ou encore une loi de Laplace-Gauss centrée, représentée
en orange sur la figure 2.8. Dans la littérature, la loi utilisée implicitement est généralement la
loi de Laplace-Gauss, car elle retranscrit bien la répartition de propriétés matériaux attendue
du fait des procédés de fabrication [5,23]. L’ensemble des variations sur les aubes d’une roue

aubagée donnée est appelé motif de désaccordage.

Niveau de désaccordage. Dans les premieres études déterministes qui ont été publiées,
la valeur effective du désaccordage est calculée a posteriori par la séparation des fréquences
propres induite [44,59,60]. En considérant des tolérances de fabrication sur une soufflante
industrielle réalisée avec des moyens de production actuels, une dispersion de l'ordre de 1,5 %
a 3,5 % peut étre attendue sur la matrice de masse [65], ou encore de 'ordre de 3% sur les
fréquences propres des premiers modes de vibration [30]. En termes statistiques, le niveau
désaccordage peut également étre défini comme 'écart-type de la distribution considérée [6],

noté o, et qui correspond a la racine carrée de la variance, laquelle est une mesure de la
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Figure 2.8 Illustration de la densité de probabilité sur un intervalle pour la loi uniforme
continue (M ) entre les bornes définies ( --- ) et la loi de Laplace-Gauss centrée (= ).

dispersion de la fonction de répartition autour de la moyenne (2.1.4.2 de [66]). Pour o < 5%,
le désaccordage est généralement considéré faible [23]. Dans le cas d'une fonction de répartition
uniforme continue sur un intervalle de largeur (b — a), b > a, I'écart-type vaut (démonstration
en annexe C) : ¢ = (b —a) /+/12". Dans le cas d'une fonction de répartition de Laplace-Gauss,
90% des valeurs tirées sont comprises dans un intervalle de 1,640 autour de la moyenne, et
99,8% dans un intervalle de £3,090 (2.3.5 de [66]).

2.2 Vibrations forcées en contexte linéaire

Dans un turbomoteur, les aubes d’une roue aubagée du rotor sont inclinées et vrillées afin de
conférer a 'air une vitesse d’avance et de le pousser vers la chambre de combustion (partie
compresseur) puis vers I'extérieur du moteur (partie turbine). Cependant, du fait de la rotation
des roues aubagées, la résultante de la vitesse de ’air comprend également une rotation, non
contributive pour le fonctionnement du moteur. Pour récupérer une partie de ’énergie perdue
par cette rotation de l'air et ainsi améliorer 'efficacité aérodynamique des turbomoteurs, des
redresseurs statiques (stator), également composés d’aubes, sont placés dans 1’écoulement
en amont et en aval des roues aubagées, comme représenté sur la figure 2.9. Cependant, la
présence de ces redresseurs perturbe localement 1’écoulement, ce qui induit une variation de
charge sur les aubes en aval, lesquelles vont vibrer. Dans le référentiel des aubes du rotor,
I’excitation est tournante et dépend du nombre d’aubes du redresseur amont : N, aubes de

redresseurs induisent une excitation sur le rotor a un régime moteur (en anglais engine order)

e, = N,.

La connaissance des vibrations propres du systéme est centrale, puisqu’'une sollicitation a
une fréquence propre de la roue aubagée induirait une résonance, caractérisée par le fait que

de petites sollicitations conduisent a de grandes déformations. Le calcul de la réponse forcée
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Figure 2.9 Rotor et stator : aubes du stator (m ) liées au carter (3 ) a une extrémité et a
une bague commune (= ) a lautre, et aubes du rotor (= ). Adapté de [7].

linéaire d’une roue aubagée accordée est bien connu et a permis le développement d’outils de
conception industrielle, tel le diagramme de Campbell et les fonctions de réponse en fréquence
(FRF). L’étude de l'influence du désaccordage sur la réponse forcée linéaire de la roue aubagée
va dépendre du niveau de désaccordage considéré, telle qu’explicitée en seconde partie de

cette section.

2.2.1 Roues accordées
Considérations physiques

Pour éviter des amplitudes de vibration préjudiciables au bon fonctionnement du moteur, les
vitesses de rotation des roues aubagées doivent étre choisies en dehors des plages correspondant
a de possibles résonances. Le diagramme de Campbell, sur lequel les fréquences propres et les
multiples des régimes moteurs sont tracés, est un outil largement utilisé dans I'industrie afin
d’identifier les zones critiques ou les régimes moteur et les fréquences propres correspondent. En
I'absence d’effets inertiels (gyroscopiques ou centrifuges), les fréquences propres ne dépendent
pas de la vitesse de rotation et sont donc des droites horizontales dans le diagramme de

Campbell, comme illustré sur la figure 2.10.

Le mode de vibration excité par la variation de charge sur les aubes est lié au nombre de
redresseurs en amont de 1’écoulement, si bien que la notion de diametre nodal est généralisée
aux vibrations forcées linéaires : un mode propre a n, diametres sera excité par un forcage

a ng redresseurs. La résonance se produira ainsi a une vitesse de rotation (2, = nid, avec f
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fréquence [Hz]

Q) [Hz|
Figure 2.10 Diagramme de Campbell. Régimes moteur ( — ), fréquences propres de la roue
aubagée (— ) et quelques possibles résonances ( e ).

la fréquence propre du mode excité. Pour chaque vitesse de rotation, I'amplitude maximale
des oscillations forcées de chaque aube peut étre calculée, permettant de tracer la fonction
de réponse en fréquence (FRF) dont un exemple est donné sur la figure 2.11. Dans le cas
d’une roue aubagée accordée, les amplitudes maximales de toutes les aubes se superposent
parfaitement et le pic correspond a la fréquence propre du mode excité par la sollicitation

considérée.

amplitude

Q,
Q

Figure 2.11 FRF pour une roue aubagée accordée ( — ), permettant de mettre en évidence
la résonance ( ® ).
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Modélisation en éléments finis

L’équation du mouvement en notation matricielle (cf. annexe A) permet d’obtenir les vecteurs
de déplacement u, de vitesse u et d’accélération i de '’ensemble des ddl en fonction des
matrices structurelles du systeme et des sollicitations extérieures. Dans le cadre de I’étude
des vibrations forcées linéaires, ’équation du mouvement en notation matricielle permet
d’exprimer les vecteurs de déplacement u, de vitesse u et d’accélération i de I’ensemble des
ddl en fonction des matrices de masse M, de raideur K et d’amortissement C du systeme,

ainsi que du vecteur de forcage linéaire F(t), dépendant du temps ¢, comme suit :

Mii + Cu + Ku = F(#) (2.5)

Une discussion sur les hypotheses liées a cette formulation de I’équation du mouvement peut

étre trouvée en annexe A.

Matrice d’amortissement. L’amortissement est fréquemment défini comme étant pro-
portionnel (amortissement de Rayleigh) ou modal. Lorsque I'amortissement est posé comme
proportionnel aux matrices de masse et de raideur (amortissement de Rayleigh (3.1.2 de [49)),

son expression dans 1’espace modal est :
®TC® = al + fw? , «a et [ des constantes (2.6)

Les hautes fréquences, qui correspondent a des valeurs de w; élevées, sont alors davantage
amorties que les basses fréquences. L’amortissement modal est défini comme une matrice

diagonale dans 'espace modal (4.4.3 de [67]) :

®TCP = 2[wi] (2.7)
avec : & facteur ou taux d’amortissement

w; le i"¢ élément diagonal de w

Les fréquences effectives de résonance du systéeme amorti sont légerement différentes des
valeurs calculées a partir des valeurs propres w issues de la résolution du probleme aux valeurs
propres généralisé donné a ’équation (2.2). Le calcul des fréquences de résonance du systeme
amorti revient a résoudre un probleme polynomial aux valeurs propres, qui peut étre traité
par linéarisation, par exemple selon la méthode de Tisseur et Meerbergen [68]. Cependant,
cette opération pouvant étre cotiteuse en temps de calcul, il est généralement considéré que,

si 'amortissement est assez faible, les fréquences de résonance du systeme amorti sont égales
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a celles du systéme non amortis libre (3.1.2 de [49]). La matrice d’amortissement ainsi définie
respecte la condition de symétrie (hypothese 3 de la démonstration en annexe A) attachée a

I’équation du mouvement.

Résolution par superposition modale. La diagonalisation des matrices par le passage
dans la base modale ® permet de découpler le systeme d’équations (2.5) (5.7 de [69]). Le
vecteur des déplacements u ainsi que le vecteur des efforts linéaires appliqués F peuvent
étre exprimés dans cette base, ce qui permet d’obtenir les amplitudes modales p avec (4.4.3
de [67]) :

u=®p (2.8)

2.2.2 Roues désaccordées
Considérations physiques

Des ruptures d’aubes, pourtant bien dimensionnées dans le cadre d’une structure accordée,
figurent parmi les premieres observations expérimentales associées au désaccordage des roues
aubagées. Les analyses métallurgiques effectuées a la suite des incidents ont mis en évidence
que les aubes défaillantes avaient été soumises a des contraintes anormalement élevées [22].
Deux phénomenes permettent de 'expliquer : d’une part la variation des fréquences propres
d’une aube a I'autre [59]; et d’autre part la flexibilité du disque qui permet la transmission

de I’énergie vibratoire.

D’une part, comme vu lors de I’étude des propriétés modales a la section 2.1.2, la séparation
des fréquences propres dans le cas désaccordé va étendre la plage de fonctionnement critique,
si bien que des vitesses de rotation admissibles sous I’hypothese d’une roue aubagée accordée

peuvent en réalité inclure des fréquences de résonance de la roue aubagée désaccordée.

D’autre part, le couplage structurel des aubes joue également un réle déterminant dans
I'impact du désaccordage sur les vibrations forcées. De grandes amplitudes de vibration
peuvent étre détectées loin de la zone d’excitation, alors que les aubes ne sont connectées
que par le disque flexible [57]. La différenciation des aubes due au désaccordage induit un
confinement de 'onde vibratoire dans certaines aubes [70]. Le couplage a travers le disque
est alors synonyme d’une plus grande facilité de transmission de 1’énergie vers 'aube qui
vibre avec la plus grande amplitude [32] : les vibrations en diamétres nodaux dans le cas
accordé laissent place a des vibrations localisées [21,56]. Cependant les effets du désaccordage
sont amoindris si le couplage est trop faible ou trop fort, & un méme niveau de désaccordage.

Pour un couplage inter-aubes trop faible, chaque aube se comporte comme un oscillateur
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désaccordé isolé et il n’y a pas de transmission de 1’énergie d'une aube a l'autre, ce qui limite
la localisation. A 'inverse, si le couplage est trop fort, I’énergie de vibration est échangée
jusqu’a se répartir sur I’ensemble de la roue aubagée et le confinement s’annule : la réponse

redevient semblable & celle du systéme accordé [32].

L’énergie de vibration n’est pas dissipée par la localisation mais uniquement confinée [23], et
est redirigée vers les aubes qui répondent le plus a I'excitation. Il peut s’agir des aubes sur
lesquelles D'effort est appliqué, ou les plus désaccordées [44]. Dépendant du niveau de couplage
entre les aubes et le disque, une aube peut répondre le plus a ’excitation non pas du fait de
ses parametres intrinseques, mais du fait de sa position dans le motif, a savoir proche d’aubes

susceptibles de transmettre leur énergie vibratoire facilement [5].

Du fait du transfert de I’énergie vibratoire, certaines aubes d'une roue aubagée désaccordée
peuvent présenter une amplitude moyenne inférieure aux aubes de la roue aubagée accordée.
La réponse des autres aubes peut alors largement s’écarter de cette moyenne. Par exemple, sur
un modele a 33 aubes, Ewins et Han ont montré que 'amplitude maximale des oscillations en
résonance par rapport au cas accordé augmente de 24% a 63%, et ce méme si certaines aubes

présentent des amplitudes inférieures de 1,3% a 6,3% par rapport au systeme accordé [44].

L’augmentation de 'amplitude a cause du désaccordage peut alors étre quantifiée par le facteur
de dispersion et le facteur d’amplification. Le facteur de dispersion correspond a la plage
d’amplitude du systeme désaccordé (différence entre 'amplitude maximum et minimum, toutes
aubes confondues) normée par 'amplitude du systeme accordé [71]. Le facteur d’amplification,
plus simplement appelé « amplification », est le plus utilisé dans la littérature sur les roues
aubagées désaccordées [23]. Dans les premieres études sur le désaccordage, il était défini comme
le ratio entre les amplitudes de vibration maximale de la roue désaccordée sur celles de la
roue désaccordée, pour une excitation a la fréquence de résonance de la roue accordée [53,59].
Cependant, 1’essor des recherches stochastiques sur le désaccordage a poussé la considération
de l'amplification selon des principes de statistique des extrémes [32]. Ainsi, depuis les années
1990, 'amplification est définie sur une plage de fréquences et sur la réponse globale de la
structure [72,73]. Le maximum d’amplitude de la roue désaccordée n’est donc a priori pas
rencontré a la méme fréquence que celui de la roue accordée, et 'aube qui connait ce maximum
n’est pas la méme selon le motif de désaccordage considéré. Cette définition de 'amplification
est illustrée sur la figure 2.12, ou la FRF d’un modeéle de roue aubagée désaccordée est
comparée a la FRF du modele accordé correspondant. La séparation des pics de résonance
est bien visible sur la réponse du modele désaccordé, ou chaque aube présente une courbe de

réponse ( — ), résultant en une dispersion des fréquences de § f sur la courbe enveloppe (— ).

La localisation de I’énergie dans le cas désaccordé combinée a la possible augmentation des
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amplitude [m]

Figure 2.12 FRF pour un modele de roue aubagée désaccordée, avec les réponses des
aubes ( ), la courbe enveloppe ( ) et 'amplitude maximale désaccordée ( o ),
comparée a la FRF pour le modeéle accordé correspondant (— ).

amplitudes de vibration induit sur certaines aubes une forte augmentation des contraintes
maximales [74,75] qui explique les cas de rupture rapportés. Pour une fréquence d’excitation
proche de la fréquence de résonance, les premieres études sur le désaccordage rapportent que
le niveau maximum de contraintes sur les aubes peut étre augmenté de 1'ordre de 20 % a
35% par rapport celui du systéme accordé [22,53]. Les résultats different cependant avec le
niveau de désaccordage considéré : pour un désaccordage faible, le maximum d’amplitude sur
I’ensemble des aubes est supérieur dans le cas désaccordé, mais devient presque égal pour un
désaccordage fort [76]. A partir des années 1980, les recherches pour comprendre et quantifier

les conséquences du désaccordage s’articulent alors suivant deux axes majeurs [44] :

(1) la détermination des propriétés modales par I'analyse des fréquences et des déformées
du systeme libre [5,77];

(2) lanalyse de 'amplification de la réponse forcée pour une application pratique sur les
turbomoteurs [22,44,76, 78].

Etude déterministe du désaccordage fort

Une meilleure compréhension de 'impact du désaccordage sur le comportement vibratoire
d’une roue aubagée a conduit aux recherches des années 2000, dans lesquelles 1'utilisation d’un
désaccordage intentionnel est considéré. En effet, le motif de désaccordage peut étre retravaillé
en répartissant les aubes judicieusement [30,79,80]. La localisation peut ainsi étre limitée en
arrangeant les aubes en fonction de leur variation de parametres désaccordés, par exemple la

masse, autour du disque selon un motif & une période angulaire donnée [53]. L’arrangement
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particulier des aubes, pour un méme niveau de désaccordage des aubes, peut étre critique
pour déterminer 'amplitude de la réponse forcée proche de la résonance, avec des amplitudes

de vibrations forcées pouvant varier du simple au double [44].

Lorsque les effets aérodynamiques sont pris en compte, le désaccordage peut méme avoir
un effet stabilisant par rapport a l'instabilité aéroélastique [81]. Il s’agit alors d’éviter la
formation d’ondes tournantes pour limiter les instabilités consécutives des phénomenes auto-
entretenus, comme le flottement [82,83]. Cependant, le bénéfice est tres limité pour un niveau
de désaccordage de plus de 5% [60], rendant ces solutions difficiles & implémenter sur des
systemes réels présentant intrinsequement un désaccordage non contrélé de I'ordre de quelques

pourcents [30,65].

En considérant uniquement des vibrations structurelles, ’ajout d’'un désaccordage volontaire
lors de la conception des roues aubagées peut étre utilisé en vue d’améliorer leurs réponses
vibratoires [79]. En considérant un désaccordage sur la raideur variant jusqu’a 10% par rapport
au cas nominal, le phénomene de localisation et la séparation des fréquences propres peut étre
grandement diminué, alors méme que la raideur moyenne n’a pas été modifiée, comme étudié
par Castanier et Pierre sur une roue académique de 12 aubes avec deux ou quatre type d’aubes
différentes [79]. Petrov et Ewins ont proposé d’appliquer un désaccordage volontaire non plus
sur les aubes, mais sur les amortisseurs en pied d’aube, pour améliorer la dispersion de I'énergie
dans le cadre des vibrations forcées [84]. Pour dissymétriser 1'excitation aérodynamique, un

désaccordage volontaire est également considéré au niveau des redresseurs [85].

(a) disque avec aubes rapportées, adapté de [86]  (b) disque aubagé monobloc, adapté de [87]

Figure 2.13 Types de montage d’aube (m ) sur le disque (=3 ).

L’optimisation du désaccordage intentionnel est un sujet de recherche actif, en témoignent
les plus récentes études de Pohle et al. [88] et Beirow et al. [30]. Cependant les techniques

proposées sont contraignantes en terme de réalisation. Si elles sont envisageables pour les
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disques avec aubes rapportées, pour lesquels les aubes sont liées au disque par des arréts
géométriques (queue d’aronde ou sapin), comme représenté sur la figure 2.13a, elles sont
inadaptées aux disques aubagés monobloc (DAM, en anglais : blisk), comme représenté sur la

figure 2.13b, qui tendent a se développer pour le gain substantiel de masse qu’ils permettent.

Etude stochastique du désaccordage faible

Le désaccordage naturel, inhérent a tout systeme réel, induit une variation de l'ordre de
quelque pourcents sur les propriétés mécaniques et les fréquences propres des aubes de la
roue aubagée [30,65]. La quantification expérimentale précise du désaccordage est cependant
particulierement ardue. Le niveau de couplage entre les aubes via le disque, donnée essentielle
pour expliquer le désaccordage, est souvent associé dans les études analytiques a la raideur d'un
ressort reliant les aubes [32], mais il ne peut pas directement étre mesuré expérimentalement.
En outre, pour les DAM, la caractérisation vibratoire des aubes seules est impossible, puisque
les aubes et le disque sont fabriquées en un seul bloc. Par ailleurs, 1’étude stochastique
de I'influence du désaccordage faible, qui demande de pouvoir tester plusieurs milliers de

structures, n’est possible que numériquement.

En I’'absence d’expression exacte, la distribution statistique de la réponse vibratoire du systeme
désaccordé est approchée de fagon empirique, classiquement par des simulations aléatoire
dites de « Monte-Carlo » [23], ou encore par la méthode du chaos polynomial [89]. Les
méthodes de Monte-Carlo consistent a reproduire numériquement de nombreux échantillons
afin d’en extraire des quantités stochastiques d’intérét (2.1.4.2 de [66]). Dans le cadre des
roues aubagées désaccordées, la quantité d’intérét stochastique la plus usuellement regardée
est 'amplification des vibrations du systeme global en fonction du niveau de désaccordage,

défini comme ’écart-type de sa fonction de répartition [23,32,90].

Les simulations de Monte Carlo peuvent étre utilisées sur une roue aubagée désaccordée libre,
pour s’assurer que le parametre choisi pour le désaccordage est valide [5], mais elles sont plus
généralement appliquées sur des systémes forcés [78]. Apres avoir généré la structure nominale
(accordée), les étapes suivantes sont réalisées a chaque itération [23] :
(1) génération du désaccordage aléatoire selon une fonction de répartition et calcul de son
écart-type effectif;
(2) calcul de 'amplitude maximale des oscillations forcées pour une fréquence (usuellement
la fréquence du mode a diametre accordé excité par le régime moteur considéré [53,78])
ou une plage de fréquence (réponse dans le cas le plus défavorable [5]), toutes aubes

confondues ;

(3) association de 'amplitude (ou de 'amplification) trouvée avec 'écart-type du désaccordage.
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Amplification [—]

o 1 2 3 4 5 6 7 8 9
Ecart-type du désaccordage [%]

Figure 2.14 Graphique de Monte Carlo, avec les 95%™m¢ (— ) 50me (--. ) et 5ieme (-.-.)
centiles. Adapté de : [6].

Ces étapes doivent étre répétées un grand nombre de fois pour pouvoir caractériser la sensibilité
au désaccordage de la roue aubagée. En pratique, plusieurs milliers voire dizaines de milliers
de simulations sont nécessaires pour calculer les distributions les plus critiques. Les résultats
stochastiques obtenus sont alors résumés par la valeur de différents centiles sur les graphiques
de Monte Carlo, dont un exemple est donné sur la figure 2.14. Ainsi, n% des systeémes simulés
présentent une amplification inférieure ou égale aux valeurs délimitées par la courbe du
nieme centile : le 50°™¢ centile est plus communément nommé la médiane. Plus le centile
recherché est éloigné de la médiane, plus le nombre d’échantillons nécessaires pour calculer sa
valeur augmente : pour atteindre le 9™ décile du 99'™¢ centile (parfois nommé « le 99,9%me
centile »), de I'ordre de 50 000 simulations devraient étre effectuées [6]. Les centiles présentés
dans la littérature sont généralement les centiles 1, 50, 99 ou 10, 50, 90 dépendamment du
nombre d’échantillons disponibles. La convergence des centiles est assurée qualitativement

par stabilisation des courbes a mesure que le nombre d’échantillons augmente [23].

Le graphique de Monte Carlo, tel que tracé sur la figure 2.14, permet ainsi de mettre en
évidence I'amplification maximale de la réponse forcée : sur la figure 2.14, adaptée de [6],
Pamplification maximale est de prés de 1,8, soit une augmentation de 80% par rapport aux
amplitudes des vibrations dans la cas accordé, pour un écart-type du désaccordage de 0,8%.

La contrainte dans les aubes s’en trouve quasiment doublée, passant de 527 MPa dans le cas
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accordé a 978 MPa pour l'amplification maximale désaccordée [6].

Si la méthode de Monte Carlo reste tres utilisée pour caractériser la réponse forcée d’un systeme
désaccordé, le cotit important en temps de calcul qu’elle représente a incité les chercheurs a
développer de nouvelles méthodes, dont la « méthode de Monte Carlo accélérée » de Bladh et
al. [6]. Celle-ci utilise la statisque des extrémes, qui permet de déterminer que 'amplification
maximale de 'amplitude des vibrations d’une roue aubagée désaccordée se rapproche dans le
cadre d’une excitation linéaire d’une distribution de Weibull. Les parametres de la fonction
de densité de probabilité de la distribution de Weibull sont déterminés grace a un nombre
restreint de simulations de Monte Carlo (de I'ordre de 50) ainsi qu’a des approximations issues

de la littérature. Les centiles sont ensuite tracés grace a la fonction ainsi définie.

2.3 Reéduction des systémes a grand nombre de degrés de liberté

Les calculs des modes de vibration d’un systeme faisant intervenir des matrices de la taille du
nombre de degrés de liberté (ddl) dans le systéme complet, leur cotit peut devenir prohibitif
dans le cas des roues aubagées industrielles. Le systeme doit étre préalablement réduit par

des méthodes détaillées dans la section qui suit.

2.3.1 Symétrie cyclique

L’utilisation de la symétrie cyclique inhérente aux roues aubagées accordée permet de découpler
la dynamique de la roue aubagée entre chacune de ses harmoniques spatiales. Un gain
considérable de temps de calcul est ainsi possible, avec des dimensions de matrices typiquement
divisées par un facteur égal a la moitié du nombre d’aubes, pour les analyses linéaires de type
réponse forcée ou analyse modale pour 'obtention de diagrammes de Campbell. Les matrices

du modele sont réécrites par harmonique pour obtenir des matrices K et M diagonales par

blocs [91] :

F'YF = Y (2.9)

v (IN/2))

avec F la matrice de Fourier, Y = K ou M et chaque bloc Y, avec ng = 0, ..., |IN/2],

correspond a une harmonique spatiale de la structure.
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2.3.2 Synthése modale

Principe. Afin d’obtenir des modélisations prédictives, la discrétisation spatiale des modeles
industriels requiert un grand nombre d’éléments. L’accroissement consécutif du nombre de ddl
du systeme conduit a des matrices M et K trop grandes pour étre calculées directement sur
le modele complet de roue aubagée. Afin de réduire la taille des modeles, des méthodes dites
de réduction ont été développées depuis les années 1960, permettant d’obtenir des modéles
réduits, ou dans la littérature ROM de I'anglais Reduced Order Models.

Aussi appelées méthodes de condensation, de synthese modale ou CMS pour I'anglais Com-
ponent Mode Synthesis, les méthodes basées sur les modes de vibration composants constituent
la premiere génération de méthodes de réduction. Les méthodes CMS partent de la division
du systéme en sous-structures dont le comportement dynamique est décrit par leur réponse
harmonique en considérant un chargement aux frontieres. Le comportement peut étre décom-
posé dans une base de modes statiques et vibratoires (2.9.3 de [49]). Les modes statiques
comprennent les déformées statiques du systeme lorsqu’un déplacement unitaire est imposé sur
un ddl frontiere, tous les autres ddl étant imposés nuls. Les modes vibratoires correspondent
aux vibrations du systéme avec conditions imposées aux ddl frontiere. Les méthodes CMS
sont alors classées en fonction de leur traitement de 'interface entre les sous-structures. La
notion d’interface est illustrée sur la figure 2.15. Bien qu’elles existent depuis les années 1960,
avec l'article fondateur de Craig-Bampton [24], basé sur des interfaces fixes, les méthodes
CMS n’ont été appliquées a I’étude des vibrations des roues aubagées qu’en 1983 par Irretier,
a partir de la méthode a interfaces libres de Craig et Chang [25]. En reégle générale, les modes

composants sont des vecteurs de Ritz, ou modes supposés [92].

Formalisme. Lors d’une discrétisation en éléments finis, les matrices M et K sont composées
de sous-matrices pour chaque secteur. Dans un cas a symétrie cyclique, une aube et sa portion
de disque associée sont généralement choisies pour constituer un secteur (figure 2.15a). La
sous-structuration revient a réorganiser les ddl en ddl intérieurs i et frontieres f par permutation

des lignes et colonnes, soit pour les matrices de masse M et de raideur K :

Ki K Mz M
K= | & 2 oz (2.10)
Kif Kii Mif Mii

Les déplacements u dans la base physique et les déplacements q dans la base des modes

composants sont reliés par la matrice de passage ¥ (17.1 de [93]) :

u=1¥q (2.11)
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(a) entre secteurs : interface a droite () et (b) interne & un secteur : interface entre
a gauche (3 ) I’élément-disque () et 1’élément-aube (3 )

Figure 2.15 Interfaces utilisées dans une sous-structuration. Adapté de [8].

La matrice ¥ contient alors des modes supposés, qui peuvent étre des modes [92] :

(1)

(2)

propres ou « normaux » (component normal modes [93]) : réponse libre du systeme
élastique, permettant de définir la masse et la raideur généralisées, exprimées en matrices

diagonales.

de corps rigide : réponse du systeme rigide (sans déformation interne) a un déplacement,
unitaire. Ils correspondent aux modes & valeur propre nulle (w? = 0) et apparaissent
lorsque la réponse du systéme n’est pas entierement déterminée par les conditions aux
limites. L’énergie de déformation étant nulle, les modes de corps rigide peuvent étre

déterminés en résolvant (2.7 de [94]) :

1
5uTKu =0 (2.12)

avec : u = 1, vecteur de déplacement unitaire

statiques [24, 28] : définis par des déplacements unitaires imposés sur chacun des ddl
d’un sous-ensemble de ddl du systeme, le déplacement étant nul aux autres ddl de ce

méme sous-ensemble. Ces déplacements peuvent étre exprimés par une matrice identité.
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Les modes statiques sont donc les colonnes de @€, définie par :

Ky, Ky
Kvb KVV

I,
o]

Fy

0. (2.13)

K®°=F° — [

avec : b le nombre de ddl du sous-ensemble contraint

b + v le nombre total de ddl du systeme

(4) d’attache : définis par une force unitaire imposée sur chacun des ddl d'un sous-ensemble,

la force étant nulle aux autres ddl de ce méme sous-ensemble. Les modes d’attache sont

I
= IOW] (2.14)

avec : 1 le nombre de ddl du sous-ensemble statique

donc les colonnes de ®°, définie par :

Kll Klw
le wa

i

K®®=F — [
@,

1 + w le nombre total de ddl du systeme

Afin de réduire la base de modes composants, un certain nombre de modes sont retirés,
généralement par troncature au-dela d’une certaine fréquence propre. La base réduite doit
cependant retranscrire fidelement la déformée de la structure, ce qui peut étre particuliérement
critique au niveau des interfaces entre les sous-structures. Des modes d’interface peuvent

également étre ajoutés a la base réduite [92], permettant ainsi une troncature maximale.
Les modes d’interface peuvent étre calculés a partir de :
(1) modes propres avec une condition d’encastrement a l'interface, dits d’interface fize [24];

(2) modes d’attache, calculés en appliquant successivement une force unitaire a chaque ddl
de l'interface, dits d’interface libre ( [93], 17.1);

(3) modes statiques [92];
(4) modes mixtes [95].

Dans le cadre de I’étude des roue aubagée accordées, la symétrie cyclique inhérente au systeme
est utilisée afin de réduire les modélisations & un secteur [96], ensuite réduit davantage par
synthése modale. Des méthodes numériques particulieres pour étudier les roues aubagées

désaccordées, qui présentent une rupture de symétrie, ont ainsi dues étre développées.

2.3.3 Spécificité des roues désaccordées

Les systemes désaccordés présentent par définition une rupture de symétrie qui nécessite donc

a priori de générer le systeme complet, soit la roue aubagée a 360°, afin de calculer ses modes
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propres et de réduire le systeme par synthése modale en vue de calculs de la réponse forcée
linéaire. Dans le cas de systemes industriels a grands nombres de degrés de liberté, le calcul
de systemes a 360° est prohibitif en terme d’espace mémoire mais aussi de temps de calcul. La
méthode de Monte Carlo accélérée n’étant pas applicable pour de grands modeles construits
selon le formalisme des éléments finis [23], les efforts de recherche ont été concentrés sur la

réduction de la taille du systeme étudié.

Afin de réduire la taille des modeles, des méthodes de réduction particulieres aux systemes
désaccordés sont utilisées. La SNM (de 'anglais Subset of Nominal Modes), proposée par
Yang et Griffin, est la méthode fondatrice des méthodes de réduction basées sur les modes
du systéme et construite pour l'application & une structure désaccordée [26]. Yang et Griffin
partent de ’observation que pour un désaccordage modéré, des modes accordés sélectionnés
peuvent constituer une bonne base pour représenter les vibrations du systeme désaccordé.
Le modele réduit est alors construit avec des fréquences qui incluent une famille de modes
d’aubes, avec un ou deux modes par diametre nodal. Les coordonnées des nceuds sont définies
grace a une base de Fourier et le désaccordage est directement appliqué sur les matrices de
masse et raideur du systéme. Le désaccordage, implémenté comme une composante physique,
peut avantageusement étre directement comparé aux mesures expérimentales de variation de

masse ou de raideur. En outre, la SNM présente deux avantages majeurs :

(1) en augmentant le nombre de fréquences incluses dans la base, le comportement du

modele réduit tend vers celui du modeéle non-réduit en éléments finis;

(2) les zones de pincement des fréquences sont correctement retrouvées avec le modele
réduit.
Feiner et Griffin ont proposé en 2002 une forme simplifiée de la SNM, dans le cas d'une famille
isolée de modes d’aubes, nommée FMM pour anglais Fundamental Model of Mistuning [97].
Les résultats sont cohérents avec le modele éléments finis pour les modes d’aubes isolés,
pour une simulation plus rapide qu’avec la SNM. Cependant les régions de pincement, pour

lesquelles les modes de disque sont plus importants, ne sont plus correctement obtenues.

Une approche alternative d’implémentation du désaccordage, également basée sur les modes
du systeéme, a été développée par Petrov et al. [98]. La matrice de modification a ajouter au
vecteur de la réponse forcée du systeme accordé pour inclure le désaccordage est construite
avec : (1) la FRF du systeme accordé et, (2) la matrice de désaccordage définie comme une
matrice de raideur perturbée K°. Seuls quelques ddl actifs par aube peuvent étre inclus en
introduisant des éléments de désaccordage : masses, ressorts et amortisseurs sont attachés
aux ddl de 'aube pour représenter le désaccordage. La fidélité du modele réduit ne peut donc

pas étre supérieure a celle de la représentation modale du systéeme accordé, mais la méthode
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développée est compatible avec une prise en compte des amortisseurs frottants en pied d’aube.

Par ailleurs, le désaccordage peut étre implémenté directement sur les modes composants du
modele accordé réduit par CMS. Castanier et al. [99] proposent de projeter le désaccordage
sur la matrice de raideur dans I’espace modal du systéme réduit accordé. Bladh et al. [95]
étendent cette méthode, en projetant le désaccordage sur les modes propres de ’aube encastrée
au niveau de l'interface avec le disque, permettant de réduire encore la taille des matrices
impliquées par rapport a celles d'un secteur complet. Les deux méthodes permettent ainsi

une génération peu cofiteuse en temps de calcul du modele réduit désaccordé.

Lim et al. ont proposé une méthode hybride qui combine I’approche des méthodes CMS,
basées sur les modes composants, et la SNM basée sur les modes du systeme [29]. Cette
méthode est nommée CMM de I'anglais Component Mode Mistuning. Le systeme y est divisé
en sous-structures, dont une correspond au disque aubagé nominal (accordé) et les autres aux
aubes ou est concentré le désaccordage, en méme nombre que le nombre d’aubes. La structure
accordée est réduite selon une base de Fourier, comme pour la SNM. Les structures qui
correspondent au désaccordage sont ensuite assemblées suivant 'approche des méthodes CMS.
Le mouvement de ’aube est représenté par des modes d’aube encastrée, avec la possibilité
d’ajouter des modes d’interface comme des modes statiques de Craig-Bampton pour les
degrés de liberté fixes [27]. Lim et al. étendent alors & un disque aubagé caréné désaccordé la
technique de projection du désaccordage développée par Bladh et al. [95], en utilisant des
facteurs de participation modale pour projeter les matrices de désaccordage dans la base
réduite. Le principal avantage de cette méthode est qu’elle permet de prendre en charge de
nombreux types de désaccordage sur la masse et la raideur dans I’espace modal, dont des
variations non uniformes des aubes individuelles qui impliquent des modeles de désaccordage
de modes d’aube isolée [23]; ou encore des variations non proportionnelles (différentes pour

chaque mode), importantes pour I'application a hautes fréquences [27].

De nombreuses autres méthodes ont été développées, comme en attestent les articles de revue
publiés récemment [23,28], et un comparatif de leurs possibilités et limites peut étre trouvé
dans la thése de Nyssen [27]. Le choix de la méthode de réduction va en particulier dépendre

des phénomenes physiques étudiés.

2.4 Vibrations forcées des roues accordées dans un contexte non-linéaire

Les vibrations non-linéaires, dues notamment aux frottements, glissements, contacts ou chocs,
peuvent survenir a tous les endroits ou un mouvement relatif est permis entre les composants

d’un turbomoteur. Ce mouvement relatif peut étre intrinseque a la solution technologique
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choisie pour la réalisation des roues aubagées, comme en pied d’aube dans le cas d’aubes
rapportées sur le disque ou entre les talons ou nageoires inter-aubes, comme représentés
sur la figure 2.16, pour des vitesses relatives faibles. Les vibrations non-linéaires peuvent
également survenir en configuration accidentelle lorsque le jeu prévu dans la conception n’est
pas suffisant pour éviter 'interaction entre les parties fixes (stator) et tournantes (rotor) : les
redresseurs peuvent entrer en contact avec I'arbre moteur, ou les aubes avec le carter fixe,

avec des vitesses relatives tres élevées.

2.4.1 Frottements et contacts dans les turbomachines
Interfaces entre composants du rotor

Entre les composants du rotor, mécaniquement liés, les vitesses relatives sont faibles si bien
que les vibrations non-linéaires associées surviennent a hautes fréquences et les amplitudes de
déplacement restent faibles. Les interfaces de contact peuvent étre classées par rapport aux

composants qui interagissent : aube-aube, ou aube-disque.

Aube/aube. Les non-linéarités aube-aube sont en particulier rencontrées au niveau des
nageoires des aubes de turbines élancées, qui permettent d’augmenter la rigidité de la roue
aubagée pour réduire 'amplitude de leurs vibrations. En opération, les nageoires peuvent
rester en contact et agir comme une bague continue, ou au contraire se désolidariser. Lorsqu'un
mouvement relatif est créé, les forces de frottement et de glissement permettent de dissiper
une partie de 1’énergie vibratoire et ainsi d’amortir le mouvement [100]. En pratique, les

conditions d’utilisation peuvent amener a un cas entre frottement et glissement.

Le couplage aérodynamique et mécanique des aubes va permettre la transmission de I'énergie
de vibration. D’une part, le chargement aérodynamique appliqué sur une aube est modifié par
la présence d’un corps en amont ou en aval de celle-ci. L’étude du couplage aérodynamique
est particulierement critique dans le cas des structures multi-étages [27,31]. D’autre part, la
transmission de I’énergie de vibration d’une aube a I'autre d’une méme roue peut s’effectuer
mécaniquement a travers les talons (figure 2.16a), les nageoires (figure 2.16b) ou le disque.
Pour les aubes sans nageoire, le couplage entre les aubes augmente a mesure que la rigidité
du disque diminue [53]. Les premiéres études vibratoires couplées débutent dans les années
1950, puis sont raffinées pour prendre en compte un grand nombre d’aubes parfaitement
identiques [77], en utilisant des matrices de transfert pour coupler le mouvement du disque
et des aubes. De méme, les modeles multi-étages sont couplés par l'arbre de transmission :

moins ce dernier est rigide, plus le couplage inter-étages est important [27].
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(a) talon (E) en téte d’aube (J) (en anglais : (b) talons intermédiaires ou nageoires (B ) sur
tip shroud), adapté de [101] le corps de I'aube () (en anglais : mid-span
shroud), adapté de [102]

Figure 2.16 Vocabulaire associé aux excroissances géométriques des aubes.

Aube/disque. Les interfaces aube-disque sont spécifiques au cas d’aubes rapportées sur le
disque (figure 2.13a). Le léger jeu au niveau des liaisons mécaniques en sapin ou en queue
d’aronde induit un mouvement relatif des aubes par rapport au disque, et donc des phénomenes
non-linéaires de frottement, glissement et chocs. En particulier, le jeu nécessaire au montage
dans le cas d’une liaison mécanique aube-disque en sapin peut induire plusieurs positions

stables de 1'aube en fonctionnement et donc des problémes de stabilité [103].

Les vibrations induisent des modifications géométriques par rapport a la structure congue,
diminuant le rendement global. Les motoristes cherchent donc a les amortir. Pour ce, des joints
de friction (aussi appelés frotteurs ou amortisseurs frottants) peuvent étre ajoutés au niveau
des zones de contact entre 'aube et le disque, en pied d’aube ou sous la plateforme [104],
comme représenté sur la figure 2.17. Les dispositifs de dissipation non-linéaire permettent en
effet des systemes plus légers et efficaces comparés aux premiers essais effectués dans les années
1960, utilisant des revétements absorbants visco-élastiques linéaires [85]. L’effort de transition
entre adhérence et glissement et la rigidité de ’amortisseur jouent un role déterminant sur
la dynamique de 'aube [105]. En particulier, la réduction des vibrations est d’autant plus
importante que 'amortisseur est rigide, jusqu’a atteindre une asymptote. Comme il a été
montré dans des études expérimentales qu'un amortisseur est autant dans une configuration
d’adhérence que de glissement a chaque cycle, un amortisseur optimal doit présenter un
compromis entre une raideur importante et une bonne adaptabilité aussi bien au frottement

qu’au glissement [105].
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Figure 2.17 Zones de contact entre 'aube (3 ) et le disque (@3 ) : pied d’aube (=) et
plateforme (= ). Adapté de [9].

La modélisation des amortisseurs en pied d’aube reste un domaine de recherche actif [106],
orienté sur le type de modélisation a adopter, entre une approche harmonique [107] ou
modale [108]. Les techniques d’implémentation du frottement sont traitées dans la section 2.4.2.
Outre 'approche numérique, les études expérimentales constituent toujours un défi, notamment
a cause de la difficulté de mesurer les forces de frottement [109,110]. Les efforts de recherche
fournis permettent & ce jour une meilleure compréhension du phénomene physique [111,112],
mais aussi de proposer de nouvelles optimisations tant d'un point de vue matériau que

géométrique des joints [104,113].

Cependant, ces dispositifs propres aux disques avec aubes rapportées (figure 2.13a) tendent
a disparaitre du fait de I'ajout de masse trop important qu’ils imposent [85], au profit des
DAM (figure 2.13b). Un dispositif amortissant pourrait alors étre intégré sous la jante du

disque, comme illustré sur la figure 2.18.

Interfaces entre le rotor et le stator

Les vitesses relatives entre les composants du rotor et du stator sont élevées, si bien que les
vibrations non-linéaires associées surviennent a basses fréquences et sont caractérisées par de
grandes amplitudes de déplacement. Les interactions rotor-stator (figure 2.9) peuvent survenir
en deux endroits : entre les redresseurs et 'arbre moteur ou entre le carter et les aubes de la

roue aubagée. Ces deux cas ont fait I’objet de recherches actives depuis les années 2000 [17].
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Figure 2.18 Solutions d’apport d’amortissement pour les DAM, ou les aubes (3 ) et le
disque (@ ) forment une seule structure : amortisseur frottant (= ) monté sous la jante du
disque. Adapté de [10].

Arbre/redresseur. Les études sur le contact entre les redresseurs et 'arbre du moteur
sont usuellement menées dans les hypotheses de la dynamique des rotors, dans lesquelles les
composants sont considérés rigides. Comme les redresseurs sont liés par une bague commune
(figure 2.9), l'interface arbre-redresseur est continue, et ce sont les déplacements de 'axe de
rotation de Parbre, appelés mouvements de précession [114], qui engendrent des cas de contact.
Ce déplacement de I’axe de rotation est dii a un balourd sur I'arbre, du fait d’'un équilibrage
ou alignement imparfait, ou d’une rupture d’équilibre accidentelle, comme la perte d'une aube

sur une roue aubagée [17].

Le contact arbre-redresseur peut étre étudié analytiquement par des modeles de type Jeffcott
(aussi appelés DeLaval) [115,116]. Les études expérimentales ont permis de mettre en évidence
deux régimes d’interaction : l'un se caractérise par un roulement sans glissement du rotor sur
le stator (en anglais : dry-friction whirl), si bien que le rotor tournoie dans le stator, l'autre a
I'inverse survient lorsque le rotor glisse continiiment sur le stator (en anglais : dry-friction
whip). Ces configurations peuvent étre particulierement dangereuses et ont été identifiées

comme la cause probable d’accidents en service et sur les bancs de test [117,118].

Aube/carter. Afin d’améliorer les performances aérodynamiques, les motoristes cherchent
a diminuer les jeux entre le rotor et le stator, puisque le fluide qui s’infiltre dans ce jeu ne
participe pas a la propulsion, et méme perturbe 1'aérodynamisme de ’ensemble [19]. Au
niveau de la téte d’aube, le flux turbulent induit des vibrations supplémentaires, en plus
d’altérer la force aérodynamique incidente sur I’étage suivant (figure 2.19). Si le jeu est
trop important, un phénomene de pompage, avec une inversion locale de 'avance du flux,
peut méme se produire [104]. La surconsommation des moteurs est alors conséquente. Des
simulations aérodynamiques ont permis de montrer quun jeu de 2,5% de la hauteur de 'aube
induit un flux plus détaché de I'aube et plus étendu en aval de celle-ci par rapport au cas ou

le jeu serait limité & 1% du diametre de 'aube : dans le second cas, le coefficient de pertes
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aérodynamiques en sortie d’aube est diminué de pres de 25% [19]. Il apparait en outre que les
pertes totales qui incombent aux fuites en téte d’aube sont loin d’étre négligeables : 30,3%
dans le cas d'un jeu de 2,5% contre 14,3% si le jeu est limité a 1% [19]. Réduire les jeux

permet aussi d’augmenter efficacité de la combustion [104].

(a) allure du flux en téte d’aube, passant (b) zone turbulente en téte d’aube et tourbillons
entre I’aube et le carter en aval de ’aube

Figure 2.19 Allure des tourbillons (= ) induits par le jeu entre 'aube (3 ) et le carter (=),
en téte d’aube et en aval. Adapté de [11].

Sur les turbomoteurs en fonctionnement, le carter se déforme par rapport au profil circulaire
souhaité, du fait notamment de sa dilatation thermique [119]. Son profil de déformation
présente usuellement des bosses ou lobes, dont le nombre et la position vont dépendre des
points d’ancrage qui augmentent localement sa rigidité, ou des zones de passage des circuits
de refroidissement [104]. Outre la déformation de la roue aubagée et du carter, les aubes
peuvent venir en contact avec le carter lorsque ’arbre décrit des mouvements de précession,

comme étudié par Salvat et al. [120].

Ainsi, diminuer le jeu en téte d’aube permet d’augmenter le rendement global du moteur et donc
d’optimiser sa consommation, mais favorise I’apparition de contact entre le carter et les aubes.
Deux problématiques principales concentrent les efforts de recherche actuels : I'interaction
modale et I'usure. Dans les deux cas, les aubes sont considérées comme flexibles. Le disque
peut étre considéré comme rigide a des fins de simplification, mais il est plus généralement

supposé flexible. Le carter peut étre considéré rigide ou flexible, selon le phénomene étudié.

L’interaction modale est étudiée en considérant un carter flexible. Comme la roue aubagée
se déforme selon des diametres nodaux du fait notamment de ’excitation aérodynamique
(voir la section 2.2), les aubes peuvent entrer en contact périodiquement avec le carter et

le déformer. Le contact peut aussi étre consécutif a 1’élongation de 'aube sous les effets
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centrifuges [121]. La déformation du carter rend les contacts d’autant plus fréquents, si bien
que le carter est excité suivant des modes de méme nombre diametres nodaux que ceux
de la roue aubagée [12], comme montré sur la figure 2.20. Cette interaction des modes de
déformations des aubes avec ceux du carter est appelée interaction modale. En pratique,
seul le premier mode de flexion des aubes peut conduire a une interaction modale [12,122].
L’interaction modale ne se produit que pour des vitesses de rotation coincidant avec les
pulsations naturelles de la roue aubagée d’une part et du carter d’autre part [12,17]. Tout
comme les modes de vibrations des roues aubagées, les modes de déformation du carter sont
tournants et peuvent étre exprimés avec une combinaison linéaire de deux modes orthogonaux.
Les modes de vibration du carter peuvent tourner dans le sens de rotation de la roue ou dans
le sens contraire, alors que les modes de la roue excités par le contact tournent uniquement
en sens contraire a la rotation [12]. L’interaction modale la plus critique se produit lorsque
les modes du carter et de la roue tournent en sens contraire [12]. L’interaction modale est
hautement destructive pour le systeme car I’échange d’énergie est intensifié : elle a notamment

été avancée comme cause probable de désintégration de moteur en vol [18].

(a) déformation du carter en 3 lobes et forme (b) déformation de la roue aubagée
circulaire initiale (== )

Figure 2.20 Interaction modale a 3 diametres nodaux. Déplacements rapprochant (= ) ou
éloignant (m ) du centre de rotation. Adapté de [12].

Dans I’hypotheése d'un carter rigide, le contact entre les aubes et le carter peut conduire
a un arrachement de la matiere de fagon analogue un outil d’usinage, comme représenté
sur la figure 2.21. Une solution technologique retenue par les industriels pour diminuer le

jeu aubes-carter tout en évitant la dégradation du systéme en cas de contact consiste a
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déposer a l'intérieur du carter un revétement pouvant étre détérioré par le contact sans abimer
les aubes, appelé abradable [104]. Le niveau de consommation de jeu, défini par I’épaisseur
d’abradable consommé, et la prédiction des profils d’usure de I'abradable font I'objet de
recherches importantes depuis 2010. Par exemple, des campagnes expérimentales ont permis
de montrer que sous certaines conditions le profil du revétement abradable présente une
usure non uniforme circonférentiellement et axialement, avec un plus grand nombre de lobes
en circonférence face au bord de fuite que face au bord d’attaque [122]. Le comportement
vibratoire de I’aube lors d'un contact avec le carter est complexe, et de multiples parametres
comme le mécanisme d’échauffement [119] et d’usure [13,91] doivent étre pris en compte pour
affiner la compréhension du phénomene. Dans les études numériques, le carter peut étre pris
comme parfaitement circulaire & des fins de simplification [123], ou pré-déformé de fagon a
créer des zones de contact privilégiées [121,124]. Les vibrations des aubes en considérant un

carter rigide permettent bien d’expliquer les motifs d’usures observés expérimentalement [121].

&

(a) aube () et abradable (=) (b) fraiseuse (3 ) et matériau usiné (=)

Figure 2.21 Analogie entre I'usure de I'abradable par 'aube et le fraisage. Adapté de [13].

Enfin, d’autres éléments peuvent étre étudiés pour améliorer le caractere prédictif des simula-
tions : 'influence du contact aube-carter sur la liaison en sapin pour les aubes rapportées [125];
I'influence de I’arbre rotor [126]; et I'influence de la courbure de 'aube sur son comportement
vibratoire au contact [12], avec un cas toujours divergent quand ’aube a une courbure positive
(orientée suivant son sens de rotation). Outre les études sur le phénomene d’interaction, un
travail important est mené sur 'optimisation des profils d’aube pour limiter les cas de contact

avec le carter tout en conservant les propriétés mécaniques et aérodynamiques des aubes [17].
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2.4.2 Traitement numérique en éléments finis
Frottement

Le frottement peut étre rencontré dans toutes les interfaces sus-mentionnées. Il est fortement
non-linéaire du fait de la transition adhérence-glissement, de I'influence de la force normale
générée par le contact et de la variation de la surface de contact. Les effets de ces non-
linéarités peuvent endommager le mécanisme et nécessitent alors d’étre contrdlés et amoindris,
notamment entre les nageoires de turbines ou entre les aubes et le carter. A 'inverse, les non-
linéarités peuvent étre volontairement ajoutées au systéme pour leur action stabilisante [36],
comme dans les amortisseurs en pied d’aubes voire dans certaines nageoires spécialement
concues a cet effet. Les recherches portent notamment sur deux aspects de I’'amortissement
par frottement : sa modélisation d’une part et 'analyse du comportement non-linéaire d’autre
part [71]. Le lecteur intéressé trouvera des informations complémentaires dans la revue de
Fenny et al. [127].

L’implémentation numérique du frottement peut étre réalisée en utilisant la méthode directe,
I'intégration temporelle ou 'équilibrage harmonique (HBM, de I'anglais : Harmonic Balance
Method) [36]. La premicre a été utilisée des les années 1930 pour les études analytiques
et repose sur les approximations de Coulomb. L’intégration temporelle a connu un essor
important entre 1980-1990 grace aux puissances de calcul grandissantes. Cependant le temps
de calcul rapidement prohibitif et 'impossibilité de correctement appréhender les cas de
discontinuités comme 'adhérence [36] explique le grand nombre de recherches utilisant la
HBM. Dans cette derniere, la réponse forcée du systeme est considérée comme harmonique
par une approximation en série de Fourier tronquée. Elle est compatible avec des méthodes a
hystérésis qui prennent en compte la déformation de la surface de contact [38,39]. La HBM a
été raffinée par des techniques incrémentales (IHBM) [128], reprises par Petrov et Ewins [129]

pour 'application aux turbomachines.

Le frottement entre les nageoires de deux aubes disctinctes a été étudié par la procédure
de HBM simple (ou mono-harmonique) expérimentalement [100] et analytiquement [130]
avant d’étre étendue grace a la technique multi-harmoniques sur un cas académique [131].
Plus récemment, les amortisseurs en pied d’aube ont été étudiés avec une approche hybride
fréquentielle-temporelle, qui repose sur la méthode d’alternance entre les deux domaines [132—
134], issue de la méthode de Galerkin accélérée (en anglais : fast Galerkin method) [135]. Les
cas de frottement entre les aubes et le disque, au niveau des liaisons mécaniques en sapin
(figure 2.13a), constituent les développements les plus récents. Ils ont été menés entre autres par

Petrov et Ewins [129], qui couplent la HBM multi-harmoniques avec les éléments finis et une
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réduction du modele par analyse modale, Nacivet [134], qui propose une nouvelle formulation
des Lagrangiens (dite de Lagrangiens dynamiques ou méthode DLFT de l'anglais : Dynamic
Lagrangian mized Frequency-Time method) pour résoudre les équations du mouvement non-
linéaires dans le domaine fréquentiel avec une vérification des lois de frottement dans le
domaine temporel, et Charleux et al. [103] qui ont étendu la méthode de Nacivet a un cas en

trois dimensions forcé réduit par synthése modale.

Contact

Les problemes de contact et d’'impacts sont intrinsequement non-linéaires, puisque la vitesse
des corps qui entrent en contact est discontinue, en norme et en direction, et le contact
induit des forces élevées dans un intervalle de temps tres faible. Du fait de la discontinuité
de la vitesse, le mouvement est dit non-régulier. Le terme forcant de I’équation (2.5) est
alors dépendant du déplacement. L’équation du mouvement devient alors, en négligeant
I’amortissement :

Mii + Ku = F (t,u(t)) (2.15)

De plus, les efforts générés au moment du contact dépendent de la vitesse relative des corps et
leur comportement (vitesse et trajectoire) est complétement modifié apres que le contact ait eu
lieu. Le but d'un algorithme de gestion du contact est d’une part de le détecter et d’autre part
de calculer les forces résultantes. Pour ce second point, une loi de contact est généralement
utilisée [17], méme si certaines études proposent de s’en passer [123]. La loi de contact permet
de traduire I'ajout de contraintes relatives au cas de contact, si bien qu’elle peut avoir un
grand impact sur les résultats [12]. Comme vu dans la section 2.4.1, les phénomeénes de contact
peuvent étre d’autant plus destructeurs lorsque les deux solides considérés ont une grande
vitesse relative et que l'interface est discontinue. Ainsi, la suite de cette partie est centrée sur

le traitement numérique de 'interaction aubes-carter.

Pour résoudre les équations du mouvement associées, une double discrétisation, en temps
et en espace, est nécessaire. La discrétisation en temps peut étre réalisée par une approche
temporelle, telle qu’avec I'algorithme de Carpenter [37]. Une approche fréquentielle peut
également étre utilisée, en particulier pour les systemes oscillants. La discrétisation spatiale
est toujours réalisée par éléments finis : méme si des méthodes multi-corps commencent a faire
leur apparition, telle la méthode SPH (pour 'anglais : Smoothed Particle Hydrodynamics)
développée initialiment pour les fluides, le colit numérique qu’elles induisent ne permettent pas,
pour le moment, une application aux roues aubagées, méme en considérant une configuration

académique.
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Méthode de la pénalité. La méthode de la pénalité (en anglais : penalty method, aussi
appelée contact force approach [34]), revient a considérer que la surface des éléments qui
entrent en contact est constituée de systémes ressorts-amortisseurs (figure 2.22). Les forces de
contact, exprimées comme une fonction de la pénétration, sont ajoutées aux équations du
mouvement lorsqu’il y a contact. Plusieurs modeles peuvent étre utilisés pour exprimer la force
de contact en fonction de la pénétration [34] : un systéme masse-ressort en parallele, le modele
de contact de Hertz (qui considére, au contact, des corps purement élastiques) ou encore
le modele de Lankarani-Nikravesh, qui proposent de séparer la force de contact normale en
composantes élastique et dissipative, basé sur le travail de Hunt et Crossley. La difficulté est
alors de définir des parametres qui traduisent correctement la physique du probleme, comme
la raideur équivalente et le degré de pénétration permis. Une augmentation de la raideur
permet une diminution de la pénétration, mais nuit a la stabilité numérique [34]. Beaucoup de
modifications ont été proposées a la méthode de pénalité vers les années 2000 pour la rendre
plus réaliste, particulierement a ’égard de la pénétration et de la phase de restitution de la

force [33].

Figure 2.22 Principe de la méthode de pénalité : une pénétration du solide tournant (= )
dans le carter (@) est permise. Adapté de [14].

La méthode de la pénalité présente I'avantage d’éviter une discontinuité de la force lors du
contact. En revanche, elle nécessite une calibration numérique minutieuse des coefficients de

pénalité a utiliser.

Méthode des multiplicateurs de Lagrange. La théorie des multiplicateurs de La-
grange fait intervenir des développements avancés d’analyse et de théorie d’optimisation
sous contraintes [35]. Appliquée dans un cas de contact mécanique, elle repose sur un al-

gorithme de prévision/correction des déplacements & chaque itération temporelle [12]. Si le
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déplacement prédit induit une pénétration, la force équivalente de contact qui 'annulerait
est calculée et propagée a ’ensemble de la structure via le vecteur des multiplicateurs de
Lagrange [47,136]. La force de contact comprend a la fois la force normale de contact et la

force tangentielle de glissement.

Le mouvement est ici calculé par intégration temporelle. Classiquement, 1’algorithme de
Carpenter, construit suivant un schéma numérique explicite centré, est utilisé car il a été

développé spécifiquement pour les cas de contact [37] :

Ui+1 — U1
= T 2.16
57 (2.16)
L Wi — 2w+ uig
= —" = (2.17)

avec : u le vecteur des coordonnées physiques généralisées
u; le vecteur des coordonnées au pas de temps courant (i)
u;_; le vecteur des coordonnées au pas de temps précédent (i — 1)
u; 1 le vecteur des coordonnées au pas de temps suivant (i + 1)
u le vecteur des vitesses généralisées
1 le vecteur des accélérations généralisées

h =t;11 —t; le pas de temps numérique

L’équation du mouvement résultant dans le cas linéaire devient alors [124] (la démonstration
de l'inversibilité de [2M + hD)] est disponible en annexe D) :

i1 = [2M + hD] ™" (2h°F + [AM — 217K ] u, + [hD — 2M]u,_, ) (2.18)

Si le pas en espace, noté dx, est défini par la discrétisation en éléments finis, le pas en temps
h doit étre posé pour assurer la convergence du calcul en respectant a la fois la condition CFL

(pour Courant-Friedrichs-Lewy) [137] et la condition de Nyquist-Shannon [138].

2.5 Vibrations forcées des roues désaccordées en contexte non-linéaire

Les recherches présentées précédemment portaient soit sur I’étude des roues aubagées désac-
cordées dans un contexte linéaire (section 2.2.2), soit sur I’étude des vibrations non-linéaires

des roues aubagées accordées (section 2.4). Peu de recherches ont été menées a ce jour sur
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I’étude des vibrations non-linéaires des roues aubagées désaccordées. Or, la prise en compte
de ces deux aspects induit des modifications majeures sur le comportement vibratoire des

roues aubagées, améliorant grandement la prédictivité des simulations.

2.5.1 Interfaces entre composants du rotor

Des 1985, Griffin et Sinha [40] ont réalisé une étude couplée entre I'influence du désaccordage et
celle du frottement sur la réponse forcée d'une aube, calculée par équilibrage mono-harmonique.
Les surfaces de friction étudiées sont situées au niveau des interfaces entre composants du
rotor : dans les amortisseurs entre le disque et les aubes au niveau des arréts géométriques en
sapin et entre les aubes au niveau des nageoires. En 2007, Poudou [71] a développé une méthode
utilisant un domaine hybride fréquentiel-temporel (en anglais : Hybrid Frequency-Time domain
method), appliquée notamment & un modele a trois dimensions avec un désaccordage sur
la raideur de 7%. La méthode hybride fréquentielle-temporelle [133] y a été modifiée par
Poudou pour pouvoir étre appliquée a des systemes industriels a grand nombre de degrés de
liberté. D’autres études ont également traité de I’étude de I'influence du désaccordage sur le
frottement, notamment Chen et Sinha [139] avec une approche probabiliste du frottement
en pied d’aube, et Lin et Mignolet [62] avec I’étude du désaccordage sur I'amortissement

structurelle d’une roue aubagée.

Dans les cas sus-mentionnés, le désaccordage n’était qu’'un parametre du systéme physique
et I’évolution de son influence au regard de son niveau (écart par rapport au cas accordé)
ou de sa distribution sur ’ensemble de la roue aubagée n’était pas étudiée. Les récentes
études de Joannin et al. propose de palier & ce manque [41,42] en étudiant 'influence du
désaccordage sur les vibrations non-linéaires au niveau des amortisseurs en pied d’aube.
Le contact est géré avec la méthode de pénalité, le frottement est implémenté grace a une
approche fréquentielle harmonique, et la synthése modale est réalisée avec I'approche des
méthodes CMS. La méthode ainsi développée est nommée CNCMS, de I'anglais Component
Nonlinear Complex Mode Synthesis. Il en ressort que le désaccordage influe grandement sur
les vibrations non-linéaires, par rapport aux cas critiques prédits dans les modélisations de
roues aubagées accordées, sur les cas de désaccordage déterministe étudiés. Aucune étude
stochastique pour évaluer 'influence du petit désaccordage, telles celles menées sur les cas de

vibrations linéaires (section 2.2.2), n’a encore été menée.
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2.6 Interfaces entre le rotor et le stator - Intérét de recherche

Toutes les recherches abordées, de Griffin et Sinha [40] en 1985 & Joannin et al. [41,42] en 2016
et 2017, considerent les non-linéarités entre solides d’'un méme ensemble. De fait, aucune étude
n’a encore été menée concernant 'influence du désaccordage sur les non-linéarités de contact
entre 'aube et le carter. Pourtant, les motoristes s’intéressent de plus en plus aux roues
aubagées de type monobloc (figure 2.13b), désormais réalisables grace aux progres des procédés
de fabrication. En effet, les DAM permettent une réduction de masse, une augmentation des
performances aérodynamiques et une plus grande durée de vie par rapport aux assemblages
d’aubes rapportées sur le disque [140]. Les développements les plus récents sur les matériaux
permettent méme d’envisager d’affiner le disque pour créer des ANneaux Aubagés Monoblocs
(ANAM) [85] (figure 2.23), qui permettraient un gain de masse de 50% pour une méme
résistance mécanique. Dans ce type de systeme, les aubes et le disque ne constituent qu’'une
seule structure, et les arréts géométriques en sapins ainsi que les amortisseurs en pied d’aubes
disparaissent, si bien que amortissement global de 1’ensemble est plus faible [141]. Comme
en outre le couplage structurel est plus important, le systeme est beaucoup plus sensible a la
localisation de I’énergie de vibration [32]. En somme, les DAM et ANAM sont beaucoup plus
sensibles au désaccordage [58]. D’autre part, du fait de I'absence de jeu et d’amortissement
entre le disque et les aubes, 'énergie communiquée aux tétes d’aubes lors d’un impact avec le

carter se propagera d’autant plus facilement dans I’ensemble de la roue aubagée.

Figure 2.23 Modification de la structure entre un disque classique et un anneau avec renfort
composite (= ). Adapté de [15].

L’étude conjointe du désaccordage et des non-linéarités de contact aube-carter pourrait de
fait étre déterminante pour la compréhension des phénomenes vibratoires des DAM et des

ANAM, qui constituent la prochaine génération de roues aubagées. Or les études se sont
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exclusivement concentrées sur les non-linéarités entre composants du rotor, soit en pied d’aube
(aube rapportée sur le disque) ou entre les nageoires des aubes, et l'influence du désaccordage

sur les non-linéarités aubes-carter n’ont pas a ce jour pas été étudiées.
La présente recherche propose de palier a ce manque, a travers quatre apports :

(1) analyse phénoménologique sur un modele a deux dimensions, permettant des calculs
stochastiques proches de ce qui est usuellement présentés, dans le cadre de I’étude de

I'influence du désaccordage sur les vibrations forcées linéaires

(2) développement et validation d’une méthodologie permettant la prise en compte du

désaccordage sur des modeles réduits industriels avec interface de contact ;

(3) analyse stochastique d’une configuration industrielle, en condition nominale de fonction-

nement ;

(4) utilisation de la méthodologie pour permettre le développement d’algorithmes d’identifi-

cation expérimentale de phénomenes non-linéaires, en prenant en compte le désaccordage.
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CHAPITRE 3 MODELE PHENOMENOLOGIQUE

Ce chapitre constitue une premiere contribution a I’étude des non-linéarités de contact sur
des roues aubagées désaccordées. Cette étude permet tout d’abord d’évaluer la robustesse de
la prédiction des fréquences d’interaction dans un cas de contact lorsque le désaccordage est
introduit. Ensuite, le principal critere utilisé pour quantifier stochastiquement I'influence du
faible désaccordage est 'amplification des déplacements en bout d’aube, par rapport a ceux
calculés pour une roue aubagée accordée. L’amplification, avérée dans un cadre linéaires, est

ainsi étudiée dans un cadre non-linéaire.

Le modele utilisé, construit par éléments finis, est choisi pour sa représentativité déja avérée
des phénomenes de contact aubes/carter dans le cadre de la résolution par multiplicateurs de
Lagrange et intégration temporelle, dont les équations principales sont rappelées en début de
chapitre. Il est alors montré que ce modele, une fois désaccordé, est également représentatif des
vibrations de roues aubagées désaccordées dans le cadre d’un forgage linéaire. Une premiere
étude en configuration de contact aubes/carter pour un motif désaccordé donné permet
ensuite de poser les configurations et variables d’intérét étudiées, tout en démontrant la
robustesse des résultats au regard des parameétres numériques et de simulation. Avant de
présenter les résultats stochastiques montrant I'influence du désaccordage sur les vibrations
de contact, la convergence stochastique des résultats est avérée aussi bien qualitativement que
quantitativement. Les résultats stochastiques pour une configuration de contact sont alors
comparés aux résultats stochastiques pour un forgage linéaire et analysés. Afin de représenter
le passage d’une roue aubagée classique a un disque aubagé monobloc (DAM), des résultats
supplémentaires sont donnés dans le cadre d’'un amortissement amoindri. Enfin, des études
complémentaires sur les non-linéarités et les énergies de déformation permettent de donner

davantage de renseignements sur le comportement vibratoire du modele étudié.

3.1 Modélisation

Le modele utilisé est similaire a celui défini par Legrand et al. [12]. Le disque est constitué de
poutres radiales droites a 3 ddl par nceud, lesquelles sont liées par des poutres courbes a 4
ddl par nceud. Le détail des matrices élémentaires utilisées pour modéliser les poutres courbes
peut étre trouvé a la référence [142] (partie 2 I11.2 et V.2). Les aubes sont représentées par des
poutres droites a 3 ddl par nceud. Le modele éléments finis complet contient ainsi au total
120 neeuds et 420 ddl. Pour une aube donnée, I’angle entre chaque poutre ¢ qui la compose et

le rayon du disque passant par le nceud en son pied dépend du nombre de poutres de 'aube
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et d’un coefficient de courbure, tel que :

i

(3.1)

>coeﬂ de courbure

angle(i) = (

b poutres par aube — 1

Le coefficient de courbure est le méme pour toutes les aubes.

(a) configuration linéaire (ng = 5) : charge- (b) configuration non-linéaire (ng = 5) : dé-
ment circulaire (—) et ddl frontiere (—) formation du carter (3)

Figure 3.1 Modele phénoménologique de roue aubagée, en 2D.

Les dimensions et propriétés du modele sont résumées dans le tableau 3.1. Elles ont été
choisies afin que la premiere famille modale, qui correspond a un premier mode d’aube en
flexion (1F), se trouve a une fréquence proche de 90 Hz, soit du méme ordre de grandeur
que pour les soufflantes de moteurs d’avion. Un modele similaire avait été utilisé dans le cas
de simulations linéaires de contact dans [12] et [120], ou la représentativité du modele par

rapport a une soufflante réelle avait été établie, particulierement en configuration de contact.

3.1.1 Réduction modale
Construction

La méthode de réduction de Craig-Bampton [24] est utilisée afin de réduire les dimensions

du modele et limiter les cotits de calcul. Cette méthode permet de conserver des ddl mixtes
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Tableau 3.1 Propriétés du modele éléments finis.

parametres géométriques propriétés matériau
nombre d’aubes N = 12 | module d’Young nominal FE, = 2,1 - 10 Pa
longueur des aubes 50 cm masse volumique 7800kg - m~
rayon du disque 20cm taux d’amortissement 5- 1073
nombre de poutres par aube 5 coefficient de Poisson 0,3
coefficient de courbure 3/2

modaux et physiques, appelés respectivement « internes » et « frontiere ». En les définissant
comme des ddl frontiere lors de la réduction, les ddl (u, v) en bout d’aube, tels que représentés
sur la figure 3.1a, sont conservés dans le modele réduit afin d’étre utilisés dans les simulations
de contact. Ces 2N = 24 ddl frontiere sont complétés par n ddl modaux afin de garantir
la représentativité du systéme global vis-a-vis du modele éléments finis initial complet. La
matrice de réduction de Craig-Bampton (CB) est définie par (un rappel de sa construction

dans 'annexe E) :

(3.2)

avec : ny le nombre de ddl frontiere
L,, = diag, (1) la matrice identité de dimension ny
®, la matrice des modes statiques, de dimension (n;,ny)
n; le nombre de ddl internes

®. , la matrice des modes encastrés réduits a 7 modes

Le changement de la base physique a la base réduite permet ainsi d’obtenir :

[uf] = Wep [w] = Wcgq, (3.3)

u; Py
avec : u; et uy les déplacements respectivement des ddl internes et frontiere
P, les amplitudes modales des ddl internes (3.4)

q: le vecteur réduit des déplacements dans la base CB

Les matrices du systeme réduit, notées (K,, M,.), sont calculées a partir des matrices du

systéme dans la base physique (K, M) réorganisées en ddl frontiére et internes :

K, =V K¥eg , M, =¥ MPcp (3.5)
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Validation sur le calcul des modes propres

Les valeurs propres et vecteurs propres du systeme réduit sont calculés par la résolution du
probléme aux valeurs propres généralisé du couple de matrices du systeme réduit (K,., M,.).
Le diagramme fréquences/diametres nodaux obtenu pour le systéme est présenté sur la
figure 3.2a. Les résultats obtenus pour le modele réduit, présentés pour n = 60, sont superposés
aux résultats obtenus pour le modele éléments finis complet. Le modeéle réduit retranscrit
donc fidelement les vibrations libres du systeme. Les modes propres de la premiere famille
correspondent & des modes d’aube en flexion simple (1F). Le calcul de la différence entre
chaque mode (figure 3.2b) permet de montrer que cette famille modale se situe dans une plage

de fréquence restreinte.

25004) 939 o
@]
= o ® o O 4F ~
==} o e} 0,88
= © 0 0 O3 =
=] & 0
N D 91 0,39
T 500 - =
O
I o} O ©] O i 2F 0.11 T .
930—0 0 0 0 0 O W[ ?
0 1 2 3 4 5 6 01 2 3 4 5 6
ng [~] ng [~
(a) familles modales, de la 1F a la 4F (b) famille modale 1F et différence de fré-

quence en Hz ().

Figure 3.2 Diagramme fréquences/diametres nodaux pour le modele réduit avec n =60 ( O )
et le modele éléments finis complet (-« ).
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3.1.2 Amortissement

L’amortissement est défini dans I’espace modal (4.4.3 de [67]) :

NI

BTCP, = 2 (A,) (3.6)
avec : ®, les vecteurs propres du systeme réduit

A, la matrice diagonale des valeurs propres du systéme réduit

C la matrice d’amortissement

¢ le taux d’amortissement, identique pour tous les modes

La matrice d’amortissement C ainsi définie respecte la condition de symétrie (hypothese 3

attachée a I’équation du mouvement, voir 'annexe A).

Hypothése de faible amortissement

La fréquence naturelle du systeme est considérée égale a la fréquence des vibrations

libres du systéme non amorti (3.1.2 de [49]).

Afin de se placer dans le cadre de I’hypothese de faible amortissement définie dans I’encart

ci-dessus, le taux d’amortissement est posé a 5 - 1073, comme donné dans le tableau 3.1.

3.1.3 Traitement du contact
Résolution numérique

Dans le cadre des petites perturbations, I’équation du mouvement a été établie dans le domaine
temporel :
M,ia + D,a + K,u = F(t) + Fy(u,t) (3.7)

avec : M,, K, et D, les matrices de masse, amortissement et raideur du systeme réduit

u, u et 1 les vecteurs des déplacements généralisés, vitesses et accélérations

F et F les vecteurs de forgage linéaire et non-linéaire

L’intégration temporelle est réalisée grace au schéma numérique explicite aux différences finies
centrées, proposé par Carpenter et al. [37] et présenté dans la section 2.4.2. L’algorithme de
prédiction/correction des déplacements est similaire a celui décrit dans [12]. Les déplacements
prédits pour 'itération temporelle (i + 1), notés u;41,,, sont calculés avec I’équation (2.18).

La rotation de la roue aubagée et ses vibrations sont prises en compte dans les déplacements
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prédits. Le calcul du vecteur des distances aubes/carter d permet alors de considérer le
possible contact avec le carter. Les distances aubes/carter prédites négatives d~ correspondent
a une pénétration de I'aube dans le carter qui doit donc étre contrée par ’ajout des forces de

contact, calculées via le vecteur des multiplicateurs de Lagrange A :

M, D, -
—l—} (CN+CT)> dipy (3.8)

_ T
g (CN h2 ' 2h

avec : Cy la matrice de contact normal, qui vaut +1 pour les ddl en contact et 0 sinon
Cr la matrice de contact tangentiel, qui vaut £x pour les ddl en contact et 0 sinon

ou p est le coefficient de frottement entre les aubes et le carter

Le vecteur X ainsi défini est de dimension N. Le carter étant considéré rigide, la force de
contact est entierement restituée a l'aube. Le signe des éléments de Cy et Ct dépend du sens
choisi pour l'orientation des ddl, le terme correctif u;;; . sur les déplacement devant ramener

la structure a une configuration ou la pénétration est nulle. Ce terme correctif est calculé par :

M, D,

-1
Uipro = [h2 4 %} (Cx + Co)A (3.9)

Le déplacement effectif de la structure pour l'itération temporelle (i + 1) est alors :

Ui41 = Uig1p + Witlc (3.10)

Scénario de contact

Le contact est initié par la déformation d’un carter rigide entourant la roue aubagée et
présentant des lobes de déformation. Le nombre de zones de contact privilégiées sur le carter
est noté ng. Ces ng lobes sont répartis uniformément sur toute la circonférence du carter,
comme représenté pour ng = 5 sur la figure 3.1b. Le carter, initialement circulaire, est déformé
progressivement sur 0,01 s vers la configuration finale a ny4 lobes. Il est a noter que ce temps de
déformation ne correspond pas a un temps de déformation du fait de contraintes thermiques
sur un carter réel, qui serait beaucoup plus long [119], mais est un parametre numérique qui
permet d’éviter toute pénétration initiale des aubes dans le carter. Un des lobes est représenté
sur la figure 3.3. La variation maximale du rayon du carter du fait de ces lobes est appelée

amplitude maximale des déformations du carter et est notée c.q. La fonction utilisée pour
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obtenir la forme des lobes est :

f(0) = —caexp | — (0.182”> (3.11)

Comme montré sur la figure 3.3, le contact peut se produire lorsque c;q est plus grand que le
jeu aubes/carter initial, défini comme la différence entre le rayon du carter 7. et le rayon de
la roue aubagée r,. Le jeu initial est posé a 0,25 mm. La déformation maximale du carter est

de c;q = 1,25 mm.

Figure 3.3 Lobe de déformation du carter.

3.1.4 Prise en compte du désaccordage
Implémentation

Etant donné I'absence de données expérimentales, le faible désaccordage étudié est considéré
comme une variation au niveau du module d’Young [58] des aubes. Le module d’Young de

chaque aube n est ainsi calculé par :

E,=Ey(1+(6E),) , nell, N] (3.12)

avec : Fg le module d’Young nominal du systeme accordé
E,, le module d’Young de I'aube n

(0E), la variation de module d’Young due au désaccordage, pour 'aube n

Les variations (0 F), pour chaque aube sont déterminées par un tirage aléatoire, définissant
ainsi le motif de désaccordage sur I’ensemble de la roue aubagée. Comme vu dans la section 2.1.2,
(0F) est usuellement tiré selon une fonction de répartition de Laplace-Gauss. D’un point de

vue statistique cependant, une telle distribution conduit généralement a obtenir un grand
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nombre de motifs proches du nominal accordé, puisque la densité de probabilité y est la plus
grande (comme illustré sur la figure 2.8), et a contrario si aucune troncature n’est effectuée
sur les bornes extérieures de la distribution certaines valeurs de (0 F); peuvent sortir du niveau
de désaccordage souhaité. Une distribution uniforme est, elle, intrinsequement bornée, définie
entre [—0F, +JF], ce qui permet un controle accru de la déviation de parameétres effectivement
appliquée sur la roue aubagée. De fait, une distribution uniforme entre [-0E, +JE] est préférée
dans la présente recherche. L’écart-type adimensionné o(JF) d’une telle distribution, utilisé
pour le tracé des résultats de simulations de Monte Carlo [70,90], est alors donné par
(démonstration en Annexe C) :

o(0E) = (3.13)

20F
V12

La variation 0 est posée entre 1% et 4% dans ce chapitre, si bien que o(0F) varie entre
0,58 % to 2,31 %, ce qui correspond a des variations effectives identifiées pour des procédés de
fabrication modernes [65]. Dans ce qui suit, o(JF) est appelé degré de désaccordage et est

noté simplement o.

Afin d’illustrer chaque aspect de la méthologie utilisée dans cette étude, un motif de désaccor-

dage aléatoire est choisi tel que donné tableau 3.2. Son niveau de désaccordage est o = 1,7 %.

Tableau 3.2 Motif de désaccordage sélectionné.

module d’Young par aube (x10' Pa)
B, 20701 | B, 2.0627 | E5 2.0605 | B, 2.1683 | s 2.0800 | B 2.1421
E; 21164 | By 2,0166 | By 2,1256 | Eyy 2,0328 | E1; 2,0391 | Ep 2,1193

Modes propres

Les fréquences propres de la premiere famille (1F) du systéeme désaccordé avec le motif
renseigné dans le tableau 3.2 sont comparées aux fréquences propres du systeme accordé sur
la figure 3.4a. La ou les fréquences sont doubles sur le systéme accordé comme attendu (voir le
calcul des fréquences propres a la section 2.1.1), par exemple sur les modes numéro 2 et 3 qui
correspondent au mode a 5 diametres sur la figure 3.2b, le désaccordage induit une séparation
des fréquences notable. L’allure du mode 11 donnée sur la figure 3.4b, qui correspond pour le
cas accordé au mode a 0 diametre, présente une rupture de symétrie et une localisation a
certaines aubes des déformations sur le cas désaccordé. Ces observations sont en accord avec

la littérature sur les vibrations libres des systeémes désaccordés [5,23,143].
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Figure 3.4 Incidence du désaccordage sur les modes propres, séparation des fréquences, rupture
de symétrie et localisation.

Analyse linéaire

Le forcage linéaire Fj,(6,,t) considéré est une représentation simplifiée du forgage aérody-
namique, di dans les turbomoteurs réels a la variation de charge en amont de I’écoulement
du fait de la présence de redresseurs. Il est défini sinusoidal et tournant, et est appliqué
uniquement aux degrés de liberté frontiere conservés dans le modele réduit, comme représenté
sur la figure 3.1a, afin d’éviter toute erreur due a la procédure réduction modale. Sa norme

est définie en fonction du temps par :

F(0,,t) = Fraxcos ((6, — Qt) X ng) (3.14)

avec : 0, la position angulaire de la n®™® aube
Q) la vitesse angulaire de rotation de la roue aubagée
FL.x 'amplitude du forcage

ng le nombre de redresseurs
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Dans cette étude, F.x = 150N afin que les déformations des aubes soient visibles mais
toujours sous la condition de petites perturbations imposée par 'hypothese 4 (explicitée dans
I'annexe A) de I’équation du mouvement en notation matricielle (2.5). Par analogie avec les
systemes accordés, le parametre ng correspond ainsi au nombre de diametres nodaux excités
par le forcage. Sa notation a été choisie identique a celle utilisée dans ’expression de la forme

des lobes sur le carter, donnée a 1’équation (3.11), afin de faciliter les comparaisons ultérieures.

En considérant n, = 4, les fonctions de réponse en fréquence (FRF) des modeles accordé et
désaccordé selon le motif donné dans le tableau 3.2 sont tracées sur la figure 3.5. La plage de
vitesses considérée correspond a la premiere résonance du modele. La dispersion des fréquences
df due au désaccordage [53] est mise en évidence par la multiplicité des pics sur la réponse
de la roue aubagée désaccordée. Les amplitudes de vibrations maximales sont également
indiquées sur la figure 3.5. L’amplification due au désaccordage est définie comme le ratio
entre 'amplitude maximale dans le cas accordé et celle dans le cas désaccordé. Pour toutes les
roues aubagées désaccordées, 'amplitude retenue pour calculer 'amplification correspond au
maximum a la fois sur toute la plage de fréquence d’intérét, et sur toutes les aubes, en accord
avec les considérations statistiques usuelles pour les systémes désaccordés [32,72]. Dans le cas
présenté sur la figure 3.5, amplification due au désaccordage sur le systéme considéré est
alors de 1,36. Dans le reste de ce travail de recherche, elle sera appelée [amplification linéaire

et notée Ay,.

N |
T
[ ]

ot

amplitude [x 1072 m]
w

Figure 3.5 FRF linéaire pour ng = 4 des modeles accordé (— ) et désaccordé (— ), enveloppe
des amplitudes obtenues pour chaque aube ( ).
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Analyse stochastique

La sensibilité au désaccordage d’une roue aubagée est déterminée par analyse stochastique
sur un grand nombre de modeles désaccordés, ou échantillons dans un vocabulaire statistique.
La convergence stochastique des résultats, définie par la stabilisation des valeurs calculées
pour les centiles a mesure que le nombre d’échantillons simulés augmente, est typiquement
atteinte a partir de plusieurs milliers d’échantillons par niveau de désaccordage o [23]. Pour
le modele phénoménologique utilisé, les résultats des simulations de Monte Carlo pour un
forgage dans la plage de fréquences de la premiére famille modale (1F) sont présentés sur
la figure 3.6 pour ng =1 a6 et o € [0, 2,3] %. La convergence stochastique a été obtenue
pour 10000 échantillons par point (ng, o), si bien que ’ensemble de la nappe a été obtenue
avec 240000 échantillons. Les trois courbes représentées pour chaque valeur de ng (voir pour
ng = 4 sur la figure 3.6b) sont les centiles & 1 %, 50 % et 99 % calculés sur amplification
Ajn. Elles permettent de résumer le comportement statistique de I’ensemble des résultats

stochastiques collectés.

1,6
1,7} 14|
1,6 | i ’
1,5} =
14/ = :
o Y
Z 1,3} 1,2 F
Rl
1,1}
11 1 | | |
: 0 06 1,2 1,7 23
nd 0 o [%] o [%]
(a) amplifications dans le cadre linéaire pour (b) amplifications pour ng =4
ng=1a6

Figure 3.6 Amplifications prédites pour un forcage dans la plage de fréquences de la premiere
famille modale (1F) : centile 1 (-o- ), centile 50 (-8 ) et centile 99 (-2 ).

Les simulations de Monte Carlo pour différentes valeurs de ng, dont les résultats sont présentés
sur la figure 3.6a, permettent de caractériser la sensibilité de Ay, selon ny. Il apparait que
Ajn est maximale pour ng = 6 et minimale pour ng = 3, et ne varie pas de facon monotone
selon ng, en accord avec la littérature [63]. De plus, 'allure générale de la nappe suivie par

Ajin lorsque ng varie présente un bon accord avec de précédents travaux sur des modeles a 12
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aubes [144]. Enfin, 'ordre de grandeur des amplifications en contexte linéaire Ay, est similaire

aux valeurs trouvées dans la littérature [32,90].

Ces résultats permettent de valider la représentativité du modele par rapport au désaccordage
en configuration linéaire. Ce modele phénoménologique est de fait utilisé dans le cadre des

simulations de contact sur des systémes désaccordés, présentées dans ce qui suit.

3.2 Analyse pour une roue aubagée désaccordée

Dans cette section, la méthodologie proposée pour les simulations avec non-linéarités de contact
est appliquée sur le systeme dont le motif de désaccordage est donné dans le tableau 3.2. Les
parametres clefs et les quantités d’intérét pour I’analyse stochastique sont présentés. Comme
les procédures numériques ayant trait aux phénomenes de contact ont déja été validées
dans la littérature sur un modele similaire [121,124, 145], ’emphase est ici mise sur : (1) la
convergence des simulations par rapport au parametre de réduction 1 et au pas de temps h;

(2) la robustesse des résultats obtenus par rapport aux différents parametres du modele.

3.2.1 Simulations de contact

Les simulations de contact sont réalisées a vitesse angulaire constante sur ’ensemble de la
simulation, avec un carter déformé comme indiqué sur la figure 3.1b. Afin de garantir les
résultats en réponse forcée, il convient de s’assurer que le systeme atteint un régime permanent.
Les réponses temporelles sont ainsi analysées par autocorrélation sur le déplacement tangentiel
de 'aube ayant la plus grande amplitude de vibration, selon les étapes suivantes :
(1) lancement des simulations sur 0,5 s
(2) analyse de convergence entre les 3 derniers tours et les 3 tours précédents (figure 3.7), a
travers :
- le coefficient de corrélation c.., sur le déplacement tangentiel de I’aube ayant la
plus grande amplitude de vibration, et
- lerreur relative e entre le maximum d’amplitude calculé sur les deux parties du
signal
(3) siceor <95 % et € <1 % : arrét des simulations
sinon les simulations sont relancées sur 10 tours, retour au point (2)
Le choix de valeurs adéquates pour (ceor, €) a été validé pour tous les diametres nodaux, sur
le systeme accordé et des systémes désaccordés, afin de garantir le meilleur compromis entre
la précision des résultats et le temps de simulations. En moyenne, le régime permanent est

considéré atteint pour ¢ > 0,96 s.
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Figure 3.7 Réponse temporelle obtenue pour €2 = 34,45 Hz et ng = 4.

3.2.2 Cartes d’interaction

Les simulations de contact sont tout d’abord lancées sur une large plage de vitesses de rotation
(de 10 Hz a 80 Hz) sur les modeles accordé et désaccordé, pour ng = 4, afin d’appréhender
au mieux leur comportement vibratoire. Pour chaque simulation, une transformée de Fourier
est effectuée sur le signal périodique, une fois le régime permanent atteint. Les spectres ainsi

obtenus constituent les cartes d’interaction des systémes considérés, tracées sur la figure 3.8.

La carte d’interaction pour le modele accordé tracée sur la figure 3.8a permet de montrer que
I’amplitude maximale de vibration est obtenue autour des vitesses de rotation €2 = 34,45 Hz et
2 = 69 Hz. Ces interactions correspondent respectivement a ’excitation de la premiere famille
modale (1F) de la roue aubagée par les quatriéme (e, = 4) et second (e, = 2) régimes moteur
(e, pour 'anglais engine order). Elles apparaissent cependant a des fréquences supérieures a
celles de la premiere famille modale, comme indiqué par 'écart en fréquence noté Aqp sur la
figure 3.8a, du fait du phénomene de raidissement au contact, ce qui est en accord avec la
littérature [17]. Les fréquences de résonance non-linéaires sont ainsi supérieures de 51,2 % aux
fréquences linéaires correspondantes. Pour comparaison, sur les modeles éléments finis 3D a
haute fidélité, le raidissement au contact augmente usuellement de 10 & 15 % les fréquences
de résonance. Des observations similaires peuvent étre effectuées sur la carte d’interaction de
la roue aubagée désaccordée sur la figure 3.8b. L’influence du désaccordage y est notable :

chaque zone d’interaction y est significativement élargie, comme indiqué par la dispersion des
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Figure 3.8 Cartes d’interaction pour ng = 4, régimes moteur (--- ) et fréquences d’interaction
dans le cas d'un forgage linéaire (- ) et de non-linéarité de contact ( — ).

fréquences notée § f sur la figure 3.8b, du fait de phénomene de séparation des fréquences [53].

Ces cartes permettent de définir les plages de vitesses angulaires d’intérét pour 1’étude
d’interactions entre les familles modales et les régimes moteur. Dans cette recherche, I’emphase
a ¢té mise sur l'interaction entre la famille modale 1F et le quatrieme régime moteur e, = 4.
Les motifs désaccordés étant tous différents, la dispersion des fréquences 0 f s’en trouve
modifiée d’un motif a I'autre. La plage de vitesse d’intérét, permettant de capter 'amplitude
maximale de vibration, a ainsi été déterminée stochastiquement. Pour ngy = 4 par exemple,
une plage Q € [33,5; 35,5] Hz permet de capter le pic de réponse forcée souhaité pour tous les

motifs simulés.

Les vitesses angulaires permettant de traverser l'interaction choisie dépendent également du
nombre de lobes ng4 sur le carter. Les plages de vitesses d’intérét, résumées dans le tableau 3.3,
ont été choisies afin de toujours correspondre a 'interaction entre la premiere famille modale
1F et le quatrieme régime moteur, et d’étre assez larges pour permettre de détecter le pic

souhaité méme pour les plus grandes valeurs de désaccordage.

Tableau 3.3 Plage de vitesse angulaire d’intérét, déterminée stochastiquement sur les roues
aubagées désaccordées

ng 3 4 5 6
plage de vitesse angulaire [Hz] | [44,5 ; 47,5] | [33,5; 35,5] | [26,7 ; 28,2] | [22; 23]
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3.2.3 Fonctions de réponse en fréquence non-linéaire
Définition et quantités d’intérét

Sur base des plages de vitesses angulaires identifiées précédemment, les simulations de contact
sont lancées avec un pas en vitesse 6€2 = 0,05 Hz. Pour chaque vitesse de rotation, 'amplitude
du régime permanent est extraite. Le tracé de ces amplitudes vis-a-vis de la vitesse de rotation
permet de définir la FRF non-linéaire. Les FRF pour le modele de roue aubagée accordée et
pour le modele de roue aubagée désaccordée dont le motif est donné dans le tableau 3.2 sont
tracées sur la figure 3.9. La dispersion des fréquences 0 f due au désaccordage y est clairement
indiquée, augmentant la plage de vitesse sur laquelle de hautes amplitudes de vibration sont

susceptibles d’étre rencontrées.
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Figure 3.9 FRF dans un cas de contact pour ny = 4 des modeles accordée ( — ) et
désaccordée ( ), enveloppe des amplitudes obtenues pour chaque aube ( ).

Pour chaque motif de désaccordage, la quantité d’intérét pour les études stochastiques est
I’amplitude maximale sur I’ensemble de la plage de fréquences, comme défini dans le cadre des
vibrations linéaires [32]. Le ratio entre 'amplitude maximale dans le cas accordé, rencontrée
a = 34.45 Hz, et Vamplitude maximale désaccordée permet de définir [’amplification

non-linéaire, notée par la suite A,;.

Commentaires sur la robustesse de la procédure

La nature intrinséquement non-linéaire des systémes mécaniques étudiés impose de préter
une attention particuliere aux FRF obtenues. En effet, il est possible que les contraintes

imposées par le contact unilatéral induisent un comportement dynamique complexe, présentant
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plusieurs branches stables et bifurcations [146]. La FRF montrée sur la figure 3.9 suggere

en effet de tels comportements, comme indiqué par les changements soudains d’amplitudes

de vibration pour le modele désaccordé (aire rouge) et le modele accordé (aire grise). Une

analyse approfondie de ces sauts pour différents motifs de désaccordage révele qu’ils ne sont

jamais situés au niveau du maximum d’amplitude sur la plage considérée, et n’impactent

donc pas la détection du maximum d’amplitude sur la FRF.
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Figure 3.10 FRF pour différents parametres de simulation.

Finalement, la robustesse des FRF obtenues vis-a-vis de parametres clefs de la simulation,

comme 'amplitude maximale de la déformation du carter ou le jeu initial, a été étudiée. Les

FRF obtenues pour des valeurs proches de ces parametres sont superposées sur la figure 3.10.

Le fait que les FRF sont simplement légerement décalées pour de faibles variations de ces

parametres démontre la robustesse des résultats obtenus.

3.2.4 Convergence temporelle et spatiale

Afin de souligner la convergence des résultats vis-a-vis du pas de temps h de la procédure

d’intégration temporelle, les FRF non-linéaires obtenues pour différents pas de temps (h =

5-107"sah=>5-107"s) sont tracées sur la figure 3.11a. Une portion des réponses temporelles

calculées pour ) = 34,45 Hz est montrée sur la figure 3.11b. Les FRF obtenues pour toutes les

valeurs de h < 5-107% s sont quasiment parfaitement superposées. Cependant, il y a une plage

de vitesses sur laquelle des différences sont notables, a savoir pour Q € [34,2 ; 34,3] Hz. Sur

cette plage restreinte, précédemment identifiée sur la figure 3.9 comme une plage de variation
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soudaine des amplitudes de vibration, la procédure d’intégration temporelle présente deux
types de solutions suivant la valeur de h. Cette observation suggere la co-existence de deux
branches stables de solution. Il est alors probable qu’une petite variation dans la détection du
premier contact aube/carter, due a la variation de h, soit responsable de ce comportement. De
fait, des branches de solutions stables co-existantes ont déja été observées pour des modeles
3D construits par éléments finis dans des configurations de contact similaires [147]. Plus de
détails sur ce point seront donnés dans les analyses complémentaires en fin de chapitre. Pour

la suite, le pas de temps considéré pour les simulations est h = 107%s.
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Figure 3.11 Convergence temporelle pour ng=4:h=5-10"s (— ), h=5-10"%s (— ),
h=1-10%s(— )and h=5-10""s ().

Le parametre de réduction n du modele réduit est un autre parametre numérique clef par
rapport auquel la convergence des résultats doit étre établie. La FRF obtenue pour les
différentes valeurs de n sont tracées sur la figure 3.12a. Ces FRF sont quasiment parfaitement
superposées pour 77 > 36. La réponse temporelle, tracée sur la figure 3.12b, montre que les
résultats correspondent parfaitement pour ces valeurs de n. Par la suite, la valeur n = 60 a
été considérée si bien que le modele réduit contient un total de 84 ddl : 24 ddl de frontiere
physique pour la prise en compte du contact et 60 ddl modaux afin de garantir une description
dynamique fidele de la roue aubagée. Cette valeur de 7 est cohérente avec des valeurs

précédemment considérées pour des modeles phénoménologiques équivalents [148].
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Figure 3.12 Convergence spatiale pour ng =4 :n=12(— ), n=36(— ), n=60 (— ),
n=96 ().

3.3 Analyse de calculs stochastiques

Les résultats stochastiques d’amplifications des vibrations dues au désaccordage dans le cadre
de simulations de contact sont présentés et discutés dans cette section. Les parametres pour
les simulations de contact sont rappelés dans le tableau 3.4. Tout d’abord, la convergence
stochastique des résultats est soigneusement évaluée aussi bien qualitativement que quan-
titativement. Ensuite, les amplifications linéaires et non-linéaires prédites sont comparées
pour différentes valeurs de ny et pour différents niveaux de désaccordage o. En particulier,
une sous-section est dédiée a des résultats approfondis pour la configuration ng = 4, avec
une analyse croisée basée sur tous les motifs de désaccordage utilisés dans les simulations de
contact. Finalement, I'influence de I'amortissement structurel sur les amplifications prédites

est étudiée.

Tableau 3.4 Parametres pour les simulations de contact.

parametres numériques parametres du carter
pas temporel h = 107%sec jeu initial 0,25 mm
parametre de réduction 7 = 60 amplitude maximale des déformations 1,25 mm
coefficient de frottement 0,15
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3.3.1 Convergence

Du fait de la nature non-linéaire de chaque simulation de contact, il n’existe pas de données
empiriques sur le nombre d’échantillons requis afin d’atteindre la convergence stochastique
des simulations de Monte Carlo. D’une part, la convergence stochastique est un pré-requis
afin que les résultats présentés soient considérés pertinents. D’autre part, le calcul d’'une FRF
non-linéaire requise pour chaque échantillon prend de 1'ordre d’une heure de calcul sur un
ordinateur standard équipé d'un processeur i7. Ce cofit en temps de calcul important rend le
nombre d’échantillons habituellement considérés dans le cadre linéaire [23] — pour des calculs
donc bien moins cotiteux — difficilement atteignable. De fait, la convergence des résultats est

ici soigneusement évaluée a la fois qualitativement et quantitativement.

Evaluation qualitative

La convergence qualitative des simulations stochastiques est évaluée a travers la stabilisation
de la moyenne de 'amplification obtenue par rapport au nombre d’échantillons, calculée pour
chaque centile et chaque niveau de désaccordage o, comme tracé sur la figure 3.13. Une échelle
semi-logarithmique est utilisée afin que toute variation soit clairement mise en évidence, ce qui
évite de sur-estimer la convergence des résultats. Qualitativement, les courbes se stabilisent
rapidement, si bien que la convergence est considérée atteinte a partir de 2000 échantillons par
niveau de désaccordage pour ng = 6, 3000 échantillons pour ng = 3 et 5, et 4000 échantillons

pour ng = 4.

Evaluation quantitative

La convergence quantitative est évaluée en appliquant la loi des grands nombres [149] et le
théoreme central limite [149] sur le calcul de l'erreur type sur la moyenne des amplifications.

L’erreur type sur la moyenne est définie par :

V(cs)

(3.15)

avec : ¢, les valeurs des centiles pour les s échantillons

V' la variance
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Figure 3.13 Convergence qualitative sur les centiles 1 ( o ), 50 ( & )et 99 ( 2 ) pour
o=06%(),12%(— ), ;7% (---)et23% (— ).

L’erreur sur la convergence est alors définie comme suit :

(3.16)

avec : Z le coefficient de confiance

Le coefficient de confiance est déterminé selon la probabilité que I’ensemble des échantillons se
situent a l'intérieur d’une loi normale. Plusieurs tables existent, en fonction de la troncature
effectuée sur les bords de la loi normale. Afin d’éviter de tels effets de bord, la table considérée
dans ce qui suit correspond a la surface a droite de la loi normale (right-hand side standard
normal Z-table), soit la probabilité que les échantillons se situent entre la moyenne de la loi
normale et le niveau de confiance voulu. Usuellement, les valeurs de niveaux de confiance
utilisés sont 95 %, 99 % et 99,5 % [149], sur 'ensemble de la loi normale. Dans ce qui suit,
un niveau de confiance de 99.5% est pris pour assurer une haute précision de résultats. Le

coefficient de confiance est alors : Z =2,81'. La variance est estimée & travers son estimateur

1. un niveau de confiance de 0,995 sur l’ensemble de la loi normale correspond & un niveau de
confiance de 0,4975 sur la surface & droite (en anglais, right hand side). La table correspondante peut
étre trouvée sur http://college.cengage.com/mathematics/brase/understanding_basic/3e/students/
appendix/app_andm.pdf


http://college.cengage.com/mathematics/brase/understanding_basic/3e/students/appendix/app_andm.pdf
http://college.cengage.com/mathematics/brase/understanding_basic/3e/students/appendix/app_andm.pdf
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statistique non biaisé (unbiased estimator) [149] :

1 ¢ ,
Vies) = — 2 lei—af (3.17)
=1

avec : ¢; la valeur du centile considéré pour 7 échantillons

¢s la moyenne de ¢4

L’erreur de convergence ainsi définie ne dépend avantageusement pas de la moyenne des
valeurs des échantillons. Les erreurs de convergence en fonction du nombre d’échantillons
pour différents nombres de lobes ng sur le carter sont tracées sur la figure 3.14, avec un pas
de 10 échantillons pour le calcul des centiles. Les résultats sont considérés convergés pour
une e(c;) < 0,5%2. Les simulations de Monte Carlo pour ng = 6 sont les plus rapides a
atteindre ce critere de convergence, soit pour un minimum de 500 échantillons par niveau de
désaccordage. Les simulations a ny = 3 sont les plus lentes a atteindre cette convergence et

requierent un minimum de 2000 échantillons. La convergence est notablement plus rapide sur
le centile 50, ce qui est cohérent avec la littérature [23].
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Figure 3.14 Convergence quantitative sur les centiles 1 ( o ),

c=06% (), 12% (— ), 1,7% (---) et 23% (— ).

2. la valeur de lerreur est indépendante de celui du niveau de confiance choisi : une erreur < 0,5 % aurait
également pu étre considérée pour un niveau de confiance de 95 %.
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Bilan

Les analyses de convergence quantitative et qualitative menées sur les simulations stochastiques
montrent que, en considérant toutes les configurations (ng4, o), 4000 échantillons par niveau de
désaccordage sont nécessaires pour atteindre la convergence des résultats. Or, la littérature sur
I’étude stochastique du désaccordage en configuration linéaire préconise 10 000 échantillons
afin de garantir la convergence des résultats [23], ce qui avait été confirmé sur le modele
phénoménologique étudié et dont les résultats ont été présentés dans la section 3.1.4. Les
contraintes de contact imposées sur le systeme pourraient étre a l'origine de cette convergence
stochastique plus rapide des résultats pour les simulations de contact par rapport aux
simulations linéaires. En effet, la vibration de I’aube est restreinte par la présence du carter
rigide, notamment le déroulement de I'aube est fortement limité, alors que dans le cas linéaire
I’aube peut vibrer sans restriction externe sur ses déplacements en bout d’aube. Afin de
garantir la convergence des résultats pour toutes les configurations (n4, o), 5000 échantillons

ont été considérés par configuration.

3.3.2 Amplification des vibrations
Comparaison avec les résultats dans le cadre linéaire

Les amplifications dues au désaccordage en configurations linéaire et non-linéaire (notées
respectivement Ay, et Ay)) pour différents ny et o sont tracées sur la figure 3.15. Les para-
metres de simulation ng et o ont une influence majeure sur 'amplification, quelle que soit la
configuration considérée. En effet, les amplifications A, sont dans la majorité des cas (ng = 3,
4 et 5) largement supérieures a Ay;,, cependant le constat est inverse pour ny = 6. Par rapport
au niveau de désaccordage o, ’écart entre Ay, et A, est maximal pour les plus petites valeurs
de o pour ng = 3 et 5, alors qu’il croit de fagon monotone avec o pour ng = 4 and 6. Ces

tendances sont identiques pour tous les centiles considérés.

Les amplifications A, en configuration non-linéaires sont maximales pour ny; = 4. Les
amplifications A, et Ay, sont tracées dans cette configuration pour tous les centiles sur la
figure 3.15c. Le centile 50 de A, est quasiment superposé au centile 99 de Ay, allant méme
jusqu’a le dépasser pour o = 2,3 %. En d’autres termes, quel que soit le motif de désaccordage
considéré, il y a stochastiquement environ un risque sur deux que 'amplification en forcage
non-linéaire soit supérieure a 'amplification en forcage linéaire. Ces résultats suggerent une
bien plus grande sensibilité du modele au désaccordage lorsque des contacts aubes/carter
se produisent. Le maximum d’amplification, & 57 % pour le centile 99 dans le cadre linéaire

(Ajn = 1,57), est en effet augmenté significativement dans le cas de contacts structurels pour
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Figure 3.15 Amplifications non-linéaires (3 ) et linéaires (3 ) pour différents ng, avec les

centiles 1 (o), 50 (= )et 99 (=2 ).
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atteindre 75 % pour le centile 99 (A, = 1,75).

Ces résultats montrent également que les prédictions numériques effectuées sur le comportement
vibratoire d’une roue aubagée accordée soumise a des contacts structurels sont robustes
lorsqu’un désaccordage faible est pris en compte. Ainsi, les interactions identifiées pour une
roue accordée restent valables pour des roues désaccordées, avec des amplitudes de vibration

potentiellement bien plus élevées.

Analyse en déplacements

Les variations obtenues sur 'amplification linéaire Ay, par rapport a ng avaient déja été
validées par rapport a la littérature dans la section 3.1.4. Deux explications sont principalement
proposées afin de les expliquer : (1) la fréquence de forgage pourrait correspondre & une zone
de pincement des modes propres accordés correspondants [63,150] ou; (2) la fréquence de
forcage pourrait exciter des modes d’aubes proches en fréquences, identifiés sur le systeme
accordé [144]. Comme mis en évidence sur le diagramme fréquences/diametres nodaux sur
la figure 3.2, le modele proposé ne présente pas de zone de pincement autour des fréquences
de la famille modale 1F, excité par la fréquence de sollicitation. Cependant, cette famille est
bien composée de modes d’aubes dont les fréquences sont dans une plage resserrée, si bien

que la seconde explication est privilégiée pour expliquer 'allure de Ay, par rapport a ng.

L’influence de ny sur les amplifications en contexte non-linéaire A, n’a pas encore été
discutée dans la littérature. Afin d’apporter des explications aux observations de la section
précédente sur les amplifications, les amplitudes de vibration sont tracées sur la figure 3.16. Les
amplitudes données pour les roues aubagées désaccordées a différents niveaux de désaccordage
o correspondent & celles du 99 centile, obtenu sur les résultats stochastiques. Pour tous les
niveaux de désaccordage o, les amplitudes de vibration sont visiblement largement augmentées
par rapport au cas accordé. Cependant, pour les cas ngy = 3 et ng = 6, qui connaissent
I’amplitude maximale accordée la plus grande, les amplitudes de vibration en prenant en
compte le désaccordage sont resserrées dans une plage tres restreinte autour de 65mm.
Inversement, les valeurs de ng pour lesquelles le systeme accordé connait les amplitudes de
vibration les plus faibles (ngy = 4 et ngy = 5) présentent des évolutions similaires, & savoir
que 'augmentation du niveau de désaccordage o conduit a de plus grandes amplitudes de

vibration.

Contrairement a la configuration linéaire ou aucune limite n’est appliquée sur la vibration
du systeme, le carter qui entoure la roue en configuration non-linéaire contraint sa vibration.
Ainsi, les résultats prédits sur une plage restreinte pour ngy = 3 et ng = 6 sont essentiellement

dus a la sur-contrainte sur le domaine de vibrations : 'amplification due au désaccordage A,
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est atténuée par le carter rigide.

Comme les amplifications ne sont calculées que sur les déplacements en bout d’aube, les-
quels sont limités par la présence physique du carter rigide, celles-ci peuvent constituer une

représentation optimiste de ce qui se produit réellement pour ny = 3 et ngy = 6.

Afin d’analyser davantage les niveaux d’amplification rencontrés pour ces deux configurations,
un facteur d’amplification non-linéaire basé sur les énergies de déformation des aubes, utilisant

ainsi les déplacements de tous les ddl des aubes, est proposé dans la section suivante.

Analyse en énergie de déformation

L’énergie de déformation £ d’un systeme éléments finis peut étre exprimée a partir du vecteur
des déplacements et de la matrice de masse. Pour le modele réduit utilisé dans cette étude,
I’énergie de déformation de chaque aube est obtenue en projetant les déplacements calculés
pour le modele réduit sur la base physique. De la méme facon que pour les amplitudes
maximales des déplacements, les énergies de déformation a une vitesse angulaire sont évaluées
sur les trois derniers tours, pour chaque aube. La quantité stochastique d’intérét est appelée
amplification de l’énergie non-linéaire Ay (E), calculée comme le ratio entre le maximum de
I’énergie de déformation du modele désaccordé et le maximum de I'énergie de déformation du

modeéle accordé.

Deux ensembles d’échantillons issus de la section 3.3 sont considérés : (1) les 100 échantillons
avec "amplification des déplacements (A,;) maximale pour les simulations de contact a ng = 4
et (2) les 100 échantillons avec 'amplification des déplacements maximale a ng = 6. Les
niveaux de désaccordage pour ces ensembles sont entre 1,2% et 2,3%. L’amplification de
I'énergie A, (E) est calculée pour ces échantillons dans leur configuration de contact respectives,
ng = 4 et ng = 6. Les résultats sont présentés sur la figure 3.17, ou les courbes noires délimitent

les résultats obtenus pour tous les échantillons.

Sur la figure 3.17a, les échantillons a ngy = 4 présentent une amplification des déplacements
plus élevée que les échantillons a ny = 6, en accord avec les résultats obtenus pour le
centile 99 présenté sur la figure 3.15. Les résultats pour A, (€), tracés sur la figure 3.17b,
montre un écart encore plus important entre les échantillons a ng = 4 et ng = 6, les
échantillons a ngy = 4 présentant toujours 'amplification la plus élevée. Selon ces résultats,
la configuration de contact pour ng = 6 n’induit pas un A, (€) plus important. Cependant,
le faible nombre d’échantillons disponibles pour cette analyse ne permet pas d’assurer des
résultats stochastiquement significatifs, et les échantillons utilisés peuvent présenter un biais

de sélection puisqu’ils ont été sélectionnés selon leur valeur de A,;. Par ailleurs, les résultats
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Figure 3.16 Amplitudes maximales des vibrations pour des roues aubagées accordée (-e- ) et
désaccordées (99'™° centile) pour c =0,6% (o ),0=12% (o ), 0 =17% (o )et
0 =23% (- ) dans le cadre de simulations de contact.
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Figure 3.17 Amplifications calculées pour 100 échantillons, en configurations ng =4 (43) et
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pour ng = 4 présentent une dispersion plus importante que ceux pour ng = 6 pour les
amplifications des déplacements, et sont d’autant plus dispersés sur les amplifications en
énergie. Ceci peut étre dii au fait qu'un plus grand nombre de zones de contact augmente
la fréquence de sollicitation sur les aubes et limite ’espace dans lequel elles peuvent vibrer.
Enfin, il est notable que 'ordre de grandeur des amplifications en déplacements et en énergie

sont tres différents.

Finalement, les résultats obtenus sur A, (€) confirment ceux sur Ay, ou la configuration
de contact a ng = 4 présente les résultats les plus représentatifs de I'effet du désaccordage
sur l'amplification des vibrations dans le contexte non-linéaire. Comme les amplitudes de
vibration sur le systeme accordé y sont les plus faibles, leur augmentation sur des systemes
désaccordés peut étre plus pleinement captée. Ainsi, les analyses suivantes se concentrent sur

la configuration ngy = 4.

3.3.3 Analyse croisée pour n; =4

Les 5000 échantillons testés dans le cadre des simulations de contact avec ngy = 4 et pour
chaque niveau de désaccordage o sont soumis au forgage linéaire défini par 1’équation (3.14).
Leurs amplifications dues au désaccordage sont ainsi obtenues a la fois dans le contexte
linéaire et dans le contexte non-linéaire. Ces valeurs sont tracées dans le plan (A, , Ajy,) sur
la figure 3.18. Les densités cumulées, calculées par ordre décroissant de densité dans chaque
région d’aire 0,01 x 0,01, sont utilisées pour obtenir une vision plus claire de la répartition

des données qu'un graphique en nuage de points ne le permettrait.

Globalement, la majorité des points de données sont localisés au-dessus de la ligne A, = Ay,
si bien que pour la majorité des motifs de désaccordage A, > Aj,. Cette tendance est de plus
en plus marquée a mesure que le niveau de désaccordage o augmente. Plus précisément, pour
o =0,6%, Ay > Ay, pour 82% des échantillons. Ce nombre croit a 96 % pour o = 2,3 %.

Par ailleurs, les motifs de désaccordage qui présentent les valeurs de A, les plus importantes
ont un étalement marqué des valeurs de Aj,. Par exemple, pour o = 1,7%, les motifs de
désaccordage au-dessus du 99°™¢ centile de A, (représenté par un trait pointillé orange sur la
figure 3.18) connaissent des valeurs de Ay, € [1, 1,7]. Ces résultats soulignent clairement qu’il
n’y a pas de corrélation entre les motifs de désaccordage qui présentent de hautes amplifications
dans le contexte linéaire et les motifs de désaccordage ayant de hautes amplifications dans
le contexte non-linéaire. Ainsi, la réduction de I'influence du désaccordage dans un contexte
non-linéaire nécessiterait des stratégies de conception différentes de celles proposées dans la

littérature sur seule base de 'amplification dans un contexte linéaire [30,79,80].
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Figure 3.18 Analyse croisée de I'amplification due au désaccordage, pour ng = 4, sur le 99'me
centile pour des simulations non-linéaires (--- ) et linéaires (--- ).
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3.3.4 Influence de ’amortissement

Les prochaines générations de roues aubagées incluent typiquement des conceptions de type
DAM, pour le gain de masse conséquent qu’elles pourraient permettre. Cependant elles
peuvent également étre plus sujettes a de fortes amplitudes de vibration du fait de leur
amortissement structurel amoindri. Les DAM ont récemment été étudiés numériquement [58]
et expérimentalement [141,151] pour un for¢age linéaire ainsi que pour un flottement aérody-
namique. Dans cette section, 'influence de la baisse de I'amortissement sur les amplifications

dues au désaccordage est étudiée, dans le cadre de simulations de contact.

1,8 1,8
'
f
1,6 1,6 |
£ E 1
< 14 < 14|
1,2} 1,2}
1 | | 1 | | |
0 0,6 1,2 1,7 2,3 0 0,6 1,2 1,7 2,3
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(a) simulations linéaires pour un amortis- (b) simulations de contact, pour un amor-
sement modal de 4-1072 ( @O ) et de tissement modal de 4-1073 ( @O ) et de
5-1073 (---) 5-107% (=)

Figure 3.19 Amplifications & ng = 4 pour un abaissement de 'amortissement modal de 5 - 1073
a 41073 et variations induites (03 )/(—) sur les centiles 1 (o), 50 (-0~ ) et 99 (-2 ).

Des simulations stochastiques ont été effectuées en suivant la méme méthodologie que pour
les résultats précédents, pour un amortissement modal de 4 - 1073, ce qui correspond a une
réduction de 'amortissement structurel de 20 %. Les diagrammes d’amplification pour les
simulations linéaires et de contact sont tracés sur la figure 3.19. L’amplification linéaire
(figure 3.19a) n’est que peu impactée par I'abaissement de I'amortissement structural. Ce
résultat, présenté ici pour ngy = 4 uniquement a des fins de concision, est similaire pour tous
les ng. Tous les centiles dans le cadre de 'amplification dans un contexte non-linéaire A,; sont
significativement augmentés : pour un niveau de désaccordage o = 2,3 %, le 99°™¢ centile
passe de A, = 1,75 a plus de 1,84.

Ces premiers résultats indiquent ainsi que les événements de contact pourraient alors induire
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des amplifications de vibration dues au désaccordage encore plus élevées si la roue aubagée

présente un amortissement structurel plus faible.

3.4 Co-existence de solutions stables

Dans cette section, des détails supplémentaires sont donnés sur la co-existence de solutions pour
Iamplitude des vibrations, identifiée sur la figure 3.11 lors des variations du pas d’intégration
temporelle. L’étude suivante est réalisée sur le méme motif de désaccordage donné dans le
tableau 3.2. Pour ce, une résolution plus fine sur la vitesse de rotation est adoptée, avec
0 = 5- 1072 Hz. Les résultats obtenus sont tracés sur la figure 3.20. En plus des amplitudes
de vibration en régime permanent, un dégradé de gris est utilisé pour représenter un critere
global proposé pour caractériser le comportement vibratoire de la roue aubagée. Dans le
cas de 'analyse des roues aubagées désaccordées, le critere utilisé est basé sur le facteur de
localisation défini par Klauke et al. dans le cadre des vibrations libres [58]. Il est proposé ici

de s’en inspirer pour définir un facteur équivalent dans le cadre des vibrations forcées.

La moyenne quadratique /(U2 ) du maximum d’amplitude en bout d’aube U, est calculée

max

avec .

1
1 & 2 .
(U3.) = JNZ Uaas(@))* i €[1, N] (318)
i=1
ou N est le nombre d’aubes. Le maximum par aube est calculé sur le régime permanent,
soit ici sur les 3 derniers tours. Pour des vibrations forcées non localisées, soit dans un
cas accordé, toutes les aubes connaissent la méme amplitude maximale de vibration, d’ou

(U3

max

) = Upax. Réciproquement, pour un cas extrémement localisé ol une seule aube

vibrerait : /(U2 ) = % Le ratio suivant :

max

C _ ma};[(;;max) (319)

max>
varie ainsi de 1 a v/ N . Le facteur de localisation FL en pourcentage, variant de 0 a 100, est
ainsi défini par :

FL % 100 (3.20)

_ -1
VN —1
Le facteur de localisation est calculé pour chaque point de la FRF non-linéaire, tel que
représenté sur la figure 3.20) par les niveaux de gris (== ), ou le blanc (3 ) correspond a
une localisation des vibrations tendant vers 0% et le noir (m ) & une localisation tendant

vers 100 %. Les solutions trouvées pour €2 € [33,5 ; 35,5] Hz sur la figure 3.20a présentent un
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Figure 3.20 Facteur de localisation pour chaque point de la FRF.

facteur de localisation de 17 % a 65 %. La localisation évolue progressivement avec la vitesse
angulaire, excepté dans la région [34,15 ; 34,30] Hz. Comme montré sur 'agrandissement sur
la figure 3.20b, dans cette région chaque branche de solutions présente des valeurs distinctes
du facteur de localisation, soulignant ainsi un comportement vibratoire différent. Une analyse
plus approfondie requerrait une compréhension plus poussée des liens entre les résonances et
la localisation ou les bifurcations potentielles, mais ces résultats confirment les différences

intrinseéques entre les solutions de chaque branche.
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3.5 Bilan

La méthodologie de simulation de contact aubes-carter sur un modele désaccordé, basée sur
I'intégration temporelle et les multiplicateur de Lagrange, a pu étre appliquée et validée
sur un modele phénoménologique. Il a été montré en particulier que les plages de vitesses
dans lesquelles une interaction est prédite sur le cas accordé sont les mémes que pour
le cas désaccordé. Les résultats stochastiques, pour lesquels la convergence a été validée

qualitativement et quantitativement, ont permis de montrer que :

(1) le désaccordage augmente sensiblement les amplifications des vibrations post-contact

aubes-carter ;

(2) les motifs a plus grande amplification ne sont stochastiquement pas les mémes dans des

cadres linéaire et non-linéaire équivalents;

(3) 'amplification dans le cadre non-linéaire peuvent étre d’autant plus critiques pour le

cas des systemes faiblement amortis, comme les DAM.

La caractérisation de I'influence du désaccordage dans un contexte de non-linéarités de
contact présente ainsi un intérét industriel certain pour I'obtention de stratégies de conception
adaptées aux conditions réelles dans les turbomoteurs. Le chapitre suivant présente une
nouvelle méthode de réduction afin de permettre d’appliquer la méthodologie de simulations

de contact a des modeles industriels de roues aubagées désaccordées.
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CHAPITRE 4 MODELES REDUITS DESACCORDES AVEC INTERFACE
DE CONTACT

Les modeles éléments finis industriels de roues aubagées doivent permettre de représenter le
comportement vibratoire de ces dernieres avec la meilleure résolution possible. En particulier,
pouvoir capter précisément les mouvements de flexion des aubes implique 1'usage d’au moins
deux éléments sur leur épaisseur pourtant tres fine. Ainsi, il est courant d’avoir plusieurs

millions de degrés de liberté dans ce type de modele numérique.

Lorsque la roue aubagée étudiée peut étre supposée parfaitement accordée, 1'utilisation de la
propriété de symétrie cyclique, présentée a la section 2.3.1, permet de réduire significativement
les temps de calculs associés a 1'utilisation de tels modeles. Pour pouvoir mener a bien des
analyses non-linéaires (gestion d’interfaces de frottement ou de contact par exemple) la
dimension des modeles numériques accordés peut étre davantage réduites par 1'utilisation de
méthodes de sous-structuration [24,152,153] ou de réduction modale [24,148]. Cette pratique

est aujourd’hui un standard dans l'industrie.

En revanche, la rupture de symétrie cyclique inhérente a la prise en compte d’un certain degré
de désaccordage empéche tout découplage de la dynamique du systéme et augmente donc le
cotit des analyses. La nécessité de pouvoir générer de fagon stochastique un grand nombre de
modeles désaccordés — requis pour caractériser la réponse d’une roue aubagée désaccordée —
a conduit au développement de techniques de réduction spécifiques. En particulier, la méthode
CMM [29], de 'anglais Component Mode Mistuning, permet d’introduire le désaccordage
directement au niveau des fréquences propres du systéme accordé. Cette méthode rend donc
possible 'implémentation du désaccordage directement sur un modele déja réduit. Cependant,
la méthode CMM ne permet pas de conserver des degrés de liberté physiques requis pour la

gestion du contact, puisque le modele désaccordé est défini dans 1’espace modal.

Dans ce chapitre, une modification de la méthode CMM est proposée pour pouvoir générer
efficacement des modeles réduits désaccordés industriels avec interface de contact. La méthode
de réduction proposée est d’abord validée sur un modele académique vis-a-vis des modes
propres, des modes statiques, puis d'un forcage linéaire harmonique. Par ailleurs, la faible
dimension du modele permet de comparer les réponses en contact d’'un modele éléments
finis désaccordé avec celle d’'un modele réduit désaccordé par la méthode proposée. Enfin, la
convergence numérique des résultats en fonction des parametres de réduction est vérifiée sur

un modele industriel.
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4.1 Meéthodologie

4.1.1 Meéthode CMM initiale

Dans l'espace physique, les matrices éléments finis masse et raideur du systeme sont notées
respectivement K et M. Le calcul des vecteurs propres ® et valeurs propres A permet de
passer dans ’espace modal et ainsi d’obtenir un couple de matrices diagonales. La méthode
CMM de Lim et al. [29] permet d’exprimer les matrices du systeme désaccordé a partir des
matrices modales accordées, en considérant le désaccordage comme une perturbation dans
I’espace modal. Elle repose sur deux méthodes précédemment développées : la SNM de Yang
et Griffin [26] et la projection du désaccordage sur les modes de 1'aube accordée encastrée de
Bladh et al. [95]. Les hypotheses utilisées et les équations permettant d’obtenir le systéme

désaccordé sont détaillées dans ce qui suit.

Sous I’hypothese d'un faible désaccordage, les modes propres désaccordés peuvent étre exprimés
comme une combinaison de modes propres accordés [26]. Ainsi, les modes propres du systeéme
accordé ® peuvent étre tronqués pour ne conserver que N X R modes, avec N le nombre
d’aubes et R le paramétre de restriction, associés aux valeurs propres choisies A|yp. En
considérant un désaccordage sur la matrice de raideur uniquement et en travaillant dans
I’espace modal, la matrice de raideur désaccordée k peut étre exprimée en fonction des valeurs

propres accordées restreintes & R modes et de la déviation due au désaccordage A° :
k= Ay, +A° (4.1)

et la matrice de masse modale désaccordée p est égale a la matrice de masse modale accordée :
p=1I

Dans le cadre d’un désaccordage proportionnel, le module d’Young de 'aube n est : E,, =
Eo(1+6), avec Ey le module d’Young nominal et § la déviation due au désaccordage. Comme
le désaccordage est considéré uniquement sur la matrice de raideur, la déviation sur E est égale
a la déviation sur les valeurs propres A : § = (§F) = (dA). En considérant un désaccordage
uniquement au niveau des aubes, il vient que le désaccordage dans I’espace modal k° est une
matrice diagonale exprimée comme une déviation sur R valeurs propres d'une aube du modele

accordé encastrée a son pied A,, soit sur 'aube n :
5
K, = O Aa‘R (4.2)

La déviation A° peut alors étre calculée par la projection de k% sur les vecteurs propres du
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systeme accordé, par I'intermédiaire des vecteurs de participation Q :

N
A’ = Z ZK’iQn (4'3)

n=1
Comme le désaccordage est faible, les facteurs Q représentent directement la participation

des modes d’aube sur les modes du systeme accordé et sont exprimés pour 'aube n :

Qu = (Aulp) ™ (Pl )" K [®lnal, (4.4)

avec K, la matrice de raideur de l'aube, A,|r et ®,|r ses valeurs propres et vecteurs propres
restreints aux R premiers modes, et [®|yg], les vecteurs propres du systeéme accordé restreints
a N R modes et pour les ddl de I'aube n.

En partant de 1’analyse modale du modele accordé (A, ®) et de 'analyse modale d’une aube
encastrée en son pied (A,, ®,), la méthode CMM permet ainsi de calculer & moindre cofit
les matrices du modele désaccordé dans l’espace modal (u, k). L’ensemble des hypothéses

utilisées est résumé dans 'encart suivant.

Hypotheses utilisées

1. faible désaccordage
2. désaccordage sur la matrice de raideur uniquement
3. désaccordage proportionnel

4. désaccordage sur les aubes uniquement et constant sur le corps de I'aube

4.1.2 Méthode CMM avec interface de contact

La prise en compte de l'interface de contact sur des modeles éléments finis industriels de
grande dimension implique usuellement la création de modeles réduits qui conservent quelques
ddl physiques au niveau de l'interface de contact [37,154], en plus des ddl modaux usuels.
L’espace réduit est alors dit mixte. Il existe plusieurs méthodes de réduction modale permettant
d’obtenir un espace réduit mixte, notamment la méthode de Craig-Bampton [24] qui est
couramment utilisée dans 'industrie [17]. Les développements présentés dans la suite de ce
chapitre sont applicables a toute méthode de réduction permettant ’obtention d’un espace
réduit mixte. A des fins de généralité, la matrice de passage utilisée pour projeter le modele
éléments finis dans I'espace réduit est notée W, dans la suite de ce chapitre. Les matrices
masse et raideur réduites du modele accordé sont respectivement notées M, et K, ; leurs

modes propres sont notés ®,.
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Le calcul des vecteurs de participation de ’équation (4.1) est modifié pour utiliser les vecteurs

propres du modele réduit considéré :

Q. = (Aa|R)71 (‘I)a|R)T K. [‘I’r (I)F|NR}n (4-5)

ou ®,|,, représente les vecteurs propres du systeme réduit accordé restreints aux N x R
premiers modes. Le terme ¥, ®, |, représente donc le redéploiement des modes propres dans
I'espace éléments finis (EF). La restriction de ce terme aux degrés de liberté de I'aube n
permet la multiplication a gauche par la matrice de raideur d’une aube K,. Les matrices A,
et ®, sont respectivement la matrice diagonale des valeurs propres et les vecteurs propres de

l'aube n.

Le systéme accordé réduit contient 7 ddl modaux par harmonique et n; ddl physiques. Ces
ddl sont ordonnés de fagon a ce que la matrice de raideur modale du systeme désaccordé
s’écrive :
A0 0
K=A + (4.6)
0 0

avec A, la matrice diagonale contenant les valeurs propres du systeme réduit, et A? la
perturbation de ces valeurs propres du fait du désaccordage. Afin d’assurer la cohérence des
dimensions, le parametre de réduction 7, le nombre de noeuds frontiere ny et le parametre de
restriction R de la méthode CMM doivent vérifier :

nfg+
r< Tl (4.7)
La matrice de raideur désaccordée peut ainsi étre exprimée dans ’espace réduit :
-1
K= (®") k&, ! (4.8)

La méthode proposée permet ainsi de construire les matrices réduites désaccordées a partir
des matrices réduites accordées et du modele d’une aube encastrée accordée, a 'instar de la
méthode CMM, tout en conservant les ddl physiques présents dans la réduction initiale : elle
est désignée par 'acronyme CM3, de I'anglais Component Mode Mistuning with Mized dof. Le
modele conserve ainsi une interface physique pour les calculs de contact par multiplicateurs
de Lagrange. L’ensemble des étapes permettant de générer le systeme désaccordé réduit est
reporté sur 'algorithme donné sur la figure 4.1. Dans la suite du document, la méthode CM3

est utilisée en combinaison avec la méthode de réduction de Craig-Bampton.
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méthode CM3 (Component Mode Mistuning with Mixted dof).
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4.2 Modele académique

La validation de la méthode CM3 est effectuée sur le modele académique représenté sur la
figure 4.2. Ce modele de taille réduite permet de comparer les résultats de la méthode CM3 a
ceux calculés sur le modele éléments finis complet (EF 360), ce qui ne serait pas possible sur
un modele industriel a grand nombre de ddl par secteur. Les résultats présentés sur le modele

complet EF sont issus du logiciel commercial Samcef [155].

y
Zl—>5c'

(a) roue aubagée complete (b) une aube avec son pied (— ), sa téte ()
et les nceuds frontiére ( ® ) qui sont retenus
dans la méthode CM3

Figure 4.2 Maillage du modele EF académique.

Le modele académique est constitué de N = 12 aubes, au total, il comporte 648 noeuds et
1944 ddl. Chaque aube, telle que représentée sur la figure 4.2b, contient 24 noeuds et 72 ddl.
L’utilisation de la propriété de symétrie cyclique permet de calculer efficacement la base
de réduction de Craig-Bampton (CB) [91] et donc d’obtenir le modéle réduit requis pour
I’application de la méthode CM3. Le parametre de réduction 7 correspond au nombre de
modes conservés pour la réduction de chaque harmonique spatiale. Le modeéle réduit accordé
contient ainsi 178 ddl : 3 nceuds frontiere ou 9 ddl par aube, soit 108 ddl pour ’ensemble de
la roue auxquels s’ajoutent n = 10 ddl modaux par harmonique, soit 70 ddl modaux au total.
Dans ce contexte, en tenant compte de la relation (4.7), la valeur maximale admissible pour

le parametre de restriction de la méthode CMM est donc R = 14.

Le modele EF d’une aube, requis pour la méthode CM3, est obtenu en encastrant le pied de
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la premiere aube seule telle que représenté sur la figure 4.2b. Enfin, le motif de désaccordage
considéré pour la validation est défini par un tirage aléatoire des modules d’Young de
chaque aube selon une distribution uniforme, avec un degré de désaccordage o = 0,58 %. La
variation sur le module d’Young 0 F pour chaque aube, par rapport a la valeur nominale de
1,196 - 10! Pa, est donnée dans le tableau 4.1.

Tableau 4.1 Motif de désaccordage sélectionné pour la validation sur le modele académique,
distribution aléatoire uniforme avec o = 0,58 % (max (0F) = 1 %).

Variation du module d’Young par aube (%)

(OE), 0,092 (6E), 0,301 ] (0E); 0577 | (0E); 0,117 | (6E)s —0,878
(0E)s —0,100 | (6E), 0,828 | (6E)s —0,627 | (60E)y 0,953 | (0E)1, —0,351
(0E)n —0,602 | (6E)1; —0,468

4.2.1 Analyse statique

Un forcage statique de norme 10N est appliqué dans la direction axiale (2) sur les 3 noeuds
frontiere en téte d’aube, sur les aubes numéro 1, 5 et 11. Les résultats présentés pour le
modele EF 360 sont issus du logiciel Samcef. Les résultats présentés pour le modele CM3
sont issus d'un redéploiement dans ’espace physique des déplacements calculés dans la base
réduite. Les champs de déplacements sur I’ensemble du modele sont tracés sur la figure 4.3a.
Les champs de déplacements obtenus par la CM3 sont représentés par un gradient de couleur
sans bordure (== ), tandis que la déformée obtenue avec Samcef est représentée par des
filigranes noirs (— ). La parfaite superposition des champs calculés et de la déformée met en
évidence que les amplitudes sont correctement calculées dans la base réduite. Les amplitudes
de déplacement sont tracées pour tous les nceuds d'une aube chargée sur le ddl z sur la
figure 4.3b. Aucune différence n’est visible entre les amplitudes calculées sur les modeles CM3

et EF 360, malgré la tres faible amplitude de déplacement induite (de I'ordre de 1075 m).

La validation sur les modes propres et la réponse a un forcage statique du modele calculé par
la CM3 vis-a-vis du modele EF 360 montre ainsi que le désaccordage est correctement pris en

compte dans la méthode proposée, tout en conservant bien un acces aux nceuds frontiere.

4.2.2 Analyse modale
Roue accordée

Les modes propres sont tout d’abord calculés sur les modeles accordés, d’une part par Samcef

sur le modele EF 360 et d’autre part par la méthode CM3 avec un motif de désaccordage
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Figure 4.3 Comparaison de la déformation sous chargement statique entre le modele désaccordé
EF, calculé avec Samcef, et le modele désaccordé construit par la CM3.

nul : = 0, afin de caractériser 'erreur introduite dans le modele du fait de la réduction CB

seule. L’erreur relative sur les fréquences propres de chaque mode e, est définie par :

e [%)] = Joms — fsameet % 100 (4.9)
Jsamcef

avec foms la fréquence obtenue sur le systeme réduit calculé par la CM3 et fsameer la fréquence
calculée par Samcef sur le cas EF 360. Le diagramme SAFE tracé sur la figure 4.4a permet
de constater que les résultats se superposent bien pour les premieres familles modales. Plus
précisément, les erreurs obtenues pour les 39 premiers modes sont tracées sur la figure 4.4b :
pour la premiere famille, les erreurs ainsi calculées restent inférieures a 0,02 %, et globalement
inférieures a 0,2 %. Le parametre de réduction 17 = 10 est donc suffisant représenter fidélement

les premieres fréquences propres.

Le déplacement tangentiel du bord d’attaque sur toutes les aubes est présenté pour quelques
modes sur la figure 4.5. Pour le mode double présenté (ny; = 1), un déphasage angulaire
d’environ 110—2“ rad est visible entre la solution calculée par résolution du probleme aux valeurs
propres généralisé sur les matrices réduites (K,, M,.) et la solution calculée par Samcef sur le
modele EF. L’allure des modes et en particulier leur orthogonalité est cependant bien conservée

apres réduction. Pour les modes simples ng = 0 et ng = 6, les déplacements sont bien égaux
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Figure 4.4 Validation de la réduction CB sur le modele accordé.

comme montré par la superposition de courbes entre les deux modeles. Les déplacements
obtenus sur les autres ddl frontiere ont également été vérifiés, pour différentes familles modales,

afin de valider la procédure de réduction CB sur le modele accordé.

Roue désaccordée

Avec le motif de désaccordage donné dans le tableau 4.1, fréquences propres et erreurs associées
sont tracées sur la figure 4.6. Le cas accordé y est reporté pour mettre en évidence le décalage
des fréquences di au désaccordage. Les fréquences calculées par la CM3 et par Samcef se
superposent bien sur la figure 4.6a. Les erreurs tracées sur la figure 4.6b sont plus élevées que
dans le cas accordé, mais elles sont cependant du méme ordre de grandeur, et elles restent

inférieures a 0,05 %.

Les déplacements associés au mode a plus basse fréquence sont calculés sur le modele EF 360
et le modele CM3 et sont comparés sur la figure 4.7. Dans le cas du modele CM3, le champ de
déplacements sur la roue compléte — obtenu par redéploiement des déplacements obtenus dans
la base réduite vers la base éléments finis — est représenté par un gradient de couleur (= )
sur la figure 4.7a. Le champ de déplacements calculé par Samcef est uniquement représenté
par les filigranes noirs (— ). L’allure générale des déplacements sur 'ensemble de la roue est
bien la méme pour les deux méthodes, comme indiqué par la superposition des déformations
sur la figure 4.7a. En particulier, les aubes pour lesquelles le déplacement est le plus important

du fait de la localisation due au désaccordage sont bien les mémes pour les deux modeéles.
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Figure 4.5 Déplacement tangentiel du bord d’attaque sur toutes les aubes, calculé sur le
modele réduit (-O-) et sur le modele EF complet (- ), pour différents vecteurs propres.

La figure 4.7b permet de montrer plus finement la superposition des déplacements pour tous
les noeuds de I'aube 1 sur le ddl selon la direction tangentielle. La parfaite superposition des
quantités issues de Samcef et de la CM3 souligne que les fréquences et les modes propres sont

correctement calculés par la méthode CM3.

4.3 Modéle industriel

Cette section présente une premiere application de la méthode CM3 a une roue aubagée
industrielle, premier étage d’'un compresseur basse pression de moteur d’avion. Afin de
déterminer le couple de parametres de réduction optimaux (7, R), une étude de sensibilité
est conduite dans le cas de calculs linéaires stochastiques, faisant intervenir la superposition
modale, et dans le cas de calculs non-linéaires de contact par intégration temporelle sur un
motif a fort désaccordage. Dans la suite du document, les déplacements, vitesses et fréquences

sont normalisés et adimensionnés.

4.3.1 Description

La roue aubagée étudiée constitue le premier étage d’un compresseur basse pression et
comporte N = 21 aubes. Le maillage éléments finis d’'un secteur, présenté sur la figure 4.8,
est composé d’éléments finis tétraédriques quadratiques a 3 ddl par nceuds. Ce maillage est

constitué de 17487 nceuds incluant 9199 nceuds dans ’aube.
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Figure 4.7 Comparaison du mode propre a plus basse fréquence entre le modele désaccordé
EF, calculé avec Samcef, et le modele désaccordé construit par la CM3.

La frontiere de contact est constituée de cing nceuds frontiere en sommet d’aube répartis entre
le bord d’attaque et le bord de fuite et identifiés par des points rouges ( ® ) sur la figure 4.8.

Il y a ainsi 21 x 15 = 315 ddl frontiere sur l’ensemble de la roue aubagée. De méme que



89

T
:f?!
7

(a) secteur complet, portion du disque (=) (b) aube avec son pied (— ), sa téte () et
et de aube (@) les nceuds frontiere ( ® ) qui seront retenus
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Figure 4.8 Maillage du modele EF d’un secteur du modele industriel.

pour le modele académique, n modes sont retenus pour chacune des 11 harmoniques spatiales
pour la construction du modele réduit accordé. La portion du maillage correspondant a la
restriction du secteur a l’aube, requise pour la mise en place de la méthode CM3, est mise en

évidence sur la figure 4.8.

Le modele réduit utilisé pour les simulations de contact est construit identiquement au
systeme accordé réduit précédemment défini lors de la mise en place de la méthode CM3
dans la section 4.1.2. La quantité d’intérét pour étudier 'influence du désaccordage reste
I’amplification des déplacements, définie dans la section 3.1.4, calculée sur I’ensemble des

vitesses de la FRF et sur I’ensemble des nceuds physiques de frontiere.
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Tableau 4.2 Propriétés du modele éléments finis de la roue aubagée industrielle.

parametres géométriques propriétés matériau
nombre d’aubes N = 21 | masse volumique 7850kg-m™3
longueur des aubes au bord d’attaque 9,4 cm amortissement 5 - 1074
rayon du disque 7,9cm module d’Young Ey = 2,1-10'" Pa
épaisseur maximale en téte d’aube 4cm nominal
nombre d’éléments par aube 9199 coefficient 0,3
nombre d’éléments par secteur 17487 de Poisson

4.3.2 Simulations de contact

Les simulations de contact aube/carter sont effectuées par le biais d’une stratégie numérique
multi-physique dédiée développée au Laboratoire d’Analyse Vibratoire et Acoustique de
Polytechnique Montréal, qui consiste en une extension a des modeles tri-dimensionnels
de la stratégie numérique présentée dans la section 3.1.3. Cette stratégie repose sur une
procédure d’intégration temporelle explicite permettant de prendre en compte les effets
inertiels du rotor [156], les effets thermo-mécaniques [119,157] ainsi que 'usure du revétement

abradable [158] déposé sur le carter.

Pour cette premiere application de la méthode CM3 pour I'analyse du comportement vibratoire
d’une roue aubagée désaccordée subissant des contacts avec le carter, un cadre d’étude simplifié
— restant toutefois cohérent avec les observations expérimentales dans un compresseur basse
pression [159] — est considéré. Le carter est supposé déformé mais infiniment rigide, ce qui
signifie qu’il ne vibre pas du fait des impacts avec 'aube. Enfin, le contact aube/carter est
initié par la déformation du carter et les effets inertiels et thermo-mécaniques sont négligés.

Les parametres matériau du revétement abradable sont donnés dans le tableau 4.3.

Tableau 4.3 Parameétres matériau du revétement abradable.

propriétés matériau parametres numériques
module d’Young 2 -10%Pa | nombre d’éléments 20 000
module plastique 5 - 10% Pa épaisseur initiale 5 mm

limite élastique 1,5Pa
coefficient de frottement 0,1
angle du biseau d’usinage 60°

Hypotheses utilisées pour les simulations de contact ]

1. carter rigide

2. effets centrifuges, gyroscopiques et thermiques négligés
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La déformation du carter est progressive et définie par un nombre de lobes notés ny dans ce
qui suit, de telle sorte que le carter est ovalisé pour ngy = 2. La pénétration équivalente de
0,5mm est atteinte au bout de 10 % de la simulation. Les parameétres de simulation utilisés

dans ce qui suit sont explicités dans le tableau 4.4.

Tableau 4.4 Parametres pour les simulations de contact.

parametres numeériques parametres du carter
pas temporel h =10""s jeu initial 1mm
parametre de réduction 7 pénétration équivalente 0,5 mm
(par harmonique) coefficient de frottement aube/carter 0,15
coefficient de frottement aube/abradable 0,1

La convergence des résultats obtenus en fonction des différents parametres de simulation, tels
que le pas de temps ou la discrétisation spatiale du revétement abradable, est détaillée dans
plusieurs publications [160] et n’est donc pas présentée dans ce chapitre. Avec les modeles
réduits CM3, le meilleur compromis entre précision des résultats et rapidité des calculs
est obtenu pour une valeur du pas de temps de I'intégration temporelle h = 10~"s. Seule
I'influence des parametres relatifs a la construction du modele réduit CM3, contribution de ce
travail de recherche a la stratégie numérique développée au laboratoire, doit étre étudiée en

détails.

4.3.3 Sensibilité aux parametres

Telle que présentée sur la figure 4.1, la construction d’un modele réduit CM3 fait appel a un
seul parametre : le nombre de restriction R. Cependant, la qualité du modele réduit obtenu
par la CM3 est aussi directement liée a la qualité du modele réduit accordé, controlée par
le parameétre de réduction n. L’influence combinée de ces deux parametres sur le colit en
temps de calcul pour 'obtention des modeles réduits ainsi que leur impact sur la précision

des résultats obtenus sont 1'objet de cette section.

A titre indicatif, sur un ordinateur standard muni d’un processeur i7, la génération du systéme
accordé réduit (K, , M) pour n = 10 nécessite pres de 2h de calcul. En comparaison, le
temps requis pour le calcul du modele réduit désaccordé, quelle que soit la valeur de R,
est négligeable puisque le calcul des vecteurs de participation Q,,, voir I’équation (4.5), est
un produit matriciel de quantités pouvant étre pré-calculées. A partir d’un modele réduit,
I'introduction d’un motif de désaccordage par la méthode CM3 demande quelques secondes

de temps de calcul.

La méthodologie proposée permet donc, a partir d'un modele réduit existant, et pour un
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cotit de calcul négligeable, d’introduire un quelconque motif de désaccordage. Toutefois, les
simulations de contact sont, elles, coliteuses en temps de calcul. Pour cette raison, il est
important de réduire au minimum la dimension des modeéles réduits calculés. Dans un contexte
stochastique ou plusieurs milliers de simulations doivent étre effectuées, il devient primordial

de déterminer le meilleur compromis entre précision des résultats et temps de calculs.

L’influence des parametres 7 et R est analysée successivement dans un cadre linéaire puis
non-linéaire : (1) pour les simulations linéaires, 'emphase est mise sur la représentation des
centiles de 'amplification due au désaccordage sur un ensemble de tirages alors que (2) pour
les simulations non-linéaires les quantités d’intérét sont les déplacements et efforts de contact

pour un motif désaccordé donné.

Cadre linéaire

L’excitation appliquée sur la roue aubagée est un chargement tournant, représentant de fagon
simplifiée un chargement aérodynamique de la roue aubagée en fonctionnement nominal. La
norme de l'excitation est définie selon I'équation (3.14). La plage de vitesses de rotation
considérée pour le calcul de la FRF correspond a une largeur de 10 Hz, centrée la premiere
famille de modes propres du modele (1F), avec un pas de 0,01 rad - s71. Le forcage est appliqué
sur le ddl r de chaque noeud frontiere, avec une amplitude de F,.x = 100 N. Le coefficient
d’amortissement modal est £ = 5-107%. La réponse forcée est calculée par superposition

modale.

Sept niveaux de désaccordage o sont considérés, entre 0,14 % et 2,31 % (J F varie entre 0,25 %
et 4%). Pour chaque valeur de o, 1000 motifs désaccordés sont calculés, puis sont utilisés

pour tous les jeux de parametres (1, R).

Afin d’assurer que les modes doubles sont correctement pris en compte dans la réduction,
les parametres de réduction 7 considérés sont tous pairs. Les modeles réduits accordés
sont ainsi construits pour : n = 2,4,6,8, 10, 20,30,50. Les parametres de restriction R
maximaux correspondants, selon la relation (4.7), avec ny = 15 ddl frontiere par aube, sont :

Rmax = 16,17,18,19, 20, 15, 30, 41.

Les résultats obtenus sont présentés sur la figure 4.9, pour deux fréquences spatiales distinctes
ng = 2 et ng = 10. Le parametre R a été pris a sa valeur maximale admissible pour chaque 7
considéré. Les courbes de centiles tracées (centiles 1, 50 et 99) se superposent a mesure que 7
augmente. En particulier, les résultats sont quasiment superposés pour n > 8 pour les deux

valeurs de ny.

Les erreurs maximales pour chaque valeur de 7 ainsi que les erreurs moyennes par centiles
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sont tracées sur la figure 4.10. Pour ngy = 2, 'erreur par rapport au cas n = 50 est tracée sur
la figure 4.10a. Elle est inférieure a 2 % pour n > 10, ce qui est plus restrictif que I'observation
qualitative de la superposition des centiles sur la figure 4.9a. Les erreurs moyennes également
indiquées par centiles sur la figure 4.10 sont inférieures & 2 % et présentent une diminution
monotone a partir de n > 10. Les mémes informations sont tracées pour ngy = 10 sur la
figure 4.10b.

Les temps de calcul par échantillon sont environ de 3s pour n = 8, 5s pour n = 10 et 10s
pour n = 20. Une augmentation de n conduit donc a une augmentation substantielle des
temps de calculs. Afin d’obtenir une précision satisfaisante sur le calcul des centiles pour tous
les ng qui pourront étre étudiés, afin que d’assurer le temps de calcul le plus faible, n = 8
apparalt comme le meilleur compromis dans le cadre linéaire et sera la valeur utilisée pour

étudier la sensibilité des simulations au parametre de restriction R.

Pour n = 8, les différents centiles ont été calculés pour différents parametres de restriction
de la méthode CMM : R = 2,5,10, 15, 25, ils sont tracés sur la figure 4.11. Les courbes de
centiles sur la figure 4.11a sont proches des R = 2, et I’évolution des erreurs tracées sur la
figur 4.11b confirme la convergence rapide des résultats, méme pour de faibles valeurs de R.
Ceci est en accord avec la préconisation de Lim et al. [29] : seuls un ou deux modes encastrés
sont suffisants pour permettre de projeter le désaccordage, si ces modes correspondent aux
modes excités par le forcage linéaire. Le forcage défini sollicite essentiellement la famille des
modes 1F ce qui explique que conserver les deux premiers modes d’aubes (R = 2) suffit a

obtenir des résultats satisfaisants.

Comme mentionné précédemment, les temps de calcul ne sont pas impactés par la variation
du parametre R puisque celui-ci ne modifie pas la dimension du modele réduit. Par ailleurs,
comme il n’est pas possible de déterminer a priori le contenu fréquentiel d'une excitation
de l'aube par contact, la valeur de R considérée est la valeur maximale autorisée par la
relation (4.7), soit :

R= {”fN“L”J (4.10)

Cadre non-linéaire

Le scénario de contact considéré est le suivant : le carter est ovalisé pour présenter 2 zones
de contact privilégiées diamétralement opposées, et la vitesse de rotation €2 est la vitesse
nominale de la roue aubagée considérée, normalisée telle que 2 = 1. La convergence des
résultats est étudiée en fonction du parametre de réduction n auquel est associée la valeur

maximale du parametre R, voir I’équation (4.11).
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Figure 4.11 Evolution des centiles 1 ( o ),50 ( @ )et 99 ( & ) de 'amplification linéaire
Ay, pour différents parametres de restriction R, par rapport au cas de référence R = 19.

L’influence de n est évaluée sur les déplacements et les efforts de contact sur 10 tours
de simulation. Le motif accordé ainsi que des motifs désaccordés a différents niveaux de
désaccordage (0 = 0,29% a o = 2,31 %) sont considérés. Par soucis de concision, seuls les
résultats sur le motif qui converge le plus difficilement avec 'augmentation de n sont présentés
dans ce qui suit. Les variations de module d’Young par aube du-dit motif sont données dans
le tableau 4.5.

Tableau 4.5 Motif de désaccordage sélectionné pour la validation sur le modele industriel,
avec 0 = 2,31% (max (0F) =4%).

Variation du module d’Young par aube (%)

(0E);, 3,32 | (0F), 2,93 | (6E)3 3,18 (6E)s —2,05 | (0E)s 2,17
(0E)s —0,96 | (0F); 3,22 | (6E)s 2,08 | (0E)g —1,67 | (0F);p —2,62
(6E)11 397 | (0E)12 269 | (0E)1s —2,35| (0E)u —047 | (6E);s —1,33
(0E)s 3,98 | (0E)1; —1,10 | (6E)s 044 | (0E)1y 2,18 | (6E)y% 1,85
(5E)21 2,49

Les amplitudes de déplacement du bord de fuite (nceud présentant le plus grand déplacement
sur l'ensemble de la simulation) calculées pour n = 6, 8, 10, 50 sont tracées sur la figure 4.12.
Le signal complet selon les trois directions (7 t. Z) tracé sur les figures 4.12a, 4.12b et 4.12¢

permet de mettre en évidence une bonne superposition des courbes des n = 6.

Le déplacement selon la direction radiale 7, tracé sur la figure 4.12a présente notamment des
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pics nets, qui coincident avec le passage de ’aube sur les bosses. En particulier, I'augmentation
de 'amplitude de ces pics en début de signal correspond bien a la déformation progressive du
carter. Le déplacement selon 7 a l'initialisation du contact, tracé sur la figure 4.12d, suit bien
des variations similaires pour toutes les valeurs de 1, démontrant la bonne convergence des
résultats méme pour des amplitudes tres faibles (de I'ordre de 10™7 aprés adimensionnement).
Apres 10 tours, tel que présenté sur la figure 4.12e, les déplacements calculés restent cohérents,
en dépit de leur tres faible ordre de grandeur, avec le dernier passage de bosse bien visible a
t = 0,205s.

La convergence des résultats est également analysée relativement aux efforts de contact
calculés au bord de fuite, tracés sur la figure 4.13. Les efforts selon les trois directions (7, £, )
tracés sur les figures 4.13a, 4.13b et 4.13c présentent des allures similaires des n = 6. Les
pics correspondant au passage d’une bosse, en particulier lors de la déformation progressive
du carter en début de signal, sont bien visibles et correspondent a ceux identifiés sur les
déplacements radiaux sur la figure 4.12a. Les ordres de grandeur relatifs entre les efforts sont
bien conservés, avec des efforts selon 7 prépondérants, de 'ordre de 10 fois plus importants
que les efforts selon ¢ et 100 fois plus importants que les efforts selon Z. Les écarts absolus
entre les efforts aux différents niveaux de réduction et le cas de référence a n = 50 sont tracés
sur les figures 4.13d, 4.13e et 4.13f afin de mettre en évidence un bon accord sur les normes
des efforts selon les différentes directions, et ce malgré la différence de leurs ordres de grandeur.
Les écarts selon les différentes directions suivent les mémes ordres de grandeur relatifs que
les efforts et sont équivalents pour les différentes valeurs de 7 considérées, avec des erreurs

correspondantes lors des contact de Pordre de 4% selon 7 et t et de I'ordre de 5% selon Z.

Les temps de calcul des simulations de contact sont grandement impactés par la valeur de 7,

passant d’environ 5s pour n = 6 a 17s pour 1 = 50, pour un motif de désaccordage.

Conclusion

L’étude de la convergence de 'amplification des déplacements en bout d’aube due au désaccor-
dage dans un cadre linéaire, en fonction de n et R et pour différents nombres de lobes ng sur
le carter, révele une bonne convergence des résultats a partir de n = 8, avec une erreur sur les
centiles 1, 50 et 99 de moins de 2 %. Conformément & la littérature, il est mis en évidence que
le coefficient de restriction R a peu d’incidence sur la convergence dans le cas d'une excitation
sur les premiers modes d’aubes. Comme il a également peu d’incidence sur les temps de calcul,

celui-ci est pris le plus grand possible.

Les temps de calculs obtenus pour chaque type de simulation et pour un motif donné en

fonction de n sont reportés dans le tableau 4.6. Il apparait que les temps de calcul par
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Figure 4.13 Convergence des efforts de contact calculés sur le noeud présentant les déplacements
maximaux sur l’ensemble de la simulation (bord de fuite de I’aube 12), en fonction du parametre
de réduction CB:np=6 (- ), n=8(—),n=10(— ), n=50 (— ).

Tableau 4.6 Temps de calcul par échantillon pour différents 7.

1 simulation linéaire simulation de contact

6 5,38 50 min
8 5,88 55 min
10 6,9s 65 min
50 16,9s 150 min
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échantillon, aussi bien pour les simulations linéaires que de contact, sont majorés de 10 %
pour 1 = 8 par rapport a n = 6, et de plus de 18 % pour n = 8 par rapport a n = 10. Comme
I’analyse de convergence des centiles dans le cadre linéaire excluait n = 6 des valeurs d’intérét,
il apparait alors que 1 = 8 est le meilleur compromis dans les deux cadres de simulations. Le
couple de valeurs n = 8 et R = 19 est donc considéré par la suite. Le temps nécessaire au

calcul du modele réduit désaccordé par la CM3 est ainsi de l'ordre de 0,1s par échantillon.

4.4 Bilan

Une nouvelle méthode de réduction, nommée CM3, a été développée afin de permettre de
générer des modeles réduits désaccordés dans un espace mixte modal/physique. Dans la
présente recherche, les ddl physiques conservés sont ceux de l'interface aubes-carter, afin de
permettre 'application de la stratégie définie pour les simulations de contact au chapitre 3.
La méthode de réduction a été appliquée sur un cas académique a trois dimensions, puis sur
un maillage industriel, afin de valider les calculs des modes propres, de vibrations linéaires et

de contact.

Le cotit final de création des modeles désaccordés ainsi obtenus est négligeable, permettant
d’envisager des calculs stochastiques pour quantifier I'influence du désaccordage sur les

non-linéarités de type contact sur un modele industriel.



100

CHAPITRE 5 CARACTERISATION DU COMPORTEMENT
VIBRATOIRE D’UNE ROUE AUBAGEE INDUSTRIELLE DESACCORDEE

Dans ce chapitre, les résultats de simulations stochastiques linéaires et de contact sur le
modele de roue aubagée présenté dans la section 4.3 sont détaillés et analysés. L’ensemble
des vitesses présentées sont normées par rapport a la vitesse de rotation nominale de la roue
aubagée étudiée, qui correspond donc a 2 = 1. Le modele est réduit par la méthode CM3
présentée et validée au chapitre 4. Le scénario de contact est défini selon la configuration de
fonctionnement nominale du modele de roue aubagée présenté dans la section 4.3. Des analyses
supplémentaires sur le comportement vibratoire du modele en configuration non-linéaire sont
alors proposées en seconde moitié du chapitre. L’ensemble des résultats et analyses sont
finalement résumés et permettent d’aboutir a une proposition de plage de variation admissible

du module d"Young.

5.1 Configuration linéaire

Les parametres du modele utilisé sont ceux donnés a la section 4.3.3. Les simulations linéaires
sont effectuées telles que définies a la section 4.3.3, avec le nombre de lobes ng qui varie
de 1 a 10. Les parametres de réduction CM3 sont repris tels qu’établis lors de 1'étude de
convergence (voir la section 4.3.3) : n = 8 et R = 19. La quantité d’intérét stochastique
étudiée est 'amplification des déplacements due au désaccordage, notée Ay, comme dans
la section 3.1.4, et calculée sur ’ensemble des nceuds frontiere et sur la plage de vitesses
correspondant aux fréquences propres de la famille de modes 1F des aubes. La séparation
des fréquences propres due au désaccordage étant globalement accentuée a mesure que le
niveau de désaccordage o augmente, la plage utilisée pour déterminer I’amplitude maximale
des vibrations est élargie pour les grandes valeurs de o. Les temps de calcul moyens par

échantillon en fonction de n sont indiqués dans le tableau 5.1.

Les résultats sont obtenus sur 10000 itérations par niveau de désaccordage afin d’assurer

la convergence stochastique, conformément a la littérature sur I’étude du désaccordage en

Tableau 5.1 Temps de calcul moyen par échantillon pour différents o, sur une machine donnée.

SE (%) [025] 05 [0 T | 2 | 3 | 4
o (%) [0,14 0,29 | 0,43 | 0,58 | 1,15 | 1,73 | 2,31
temps de calcul (s) | 2,09 | 2,21 | 2,35 | 2,52 | 3,34 | 4,32 | 5,36
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contexte linéaire [23]. L’information relative aux amplifications Ay, est résumée par les valeurs
des centiles 1, 50 et 99 sur la figure 5.1. En accord avec la littérature [63], amplification
Ay, ne varie pas de facon monotone selon ng : pour o = 0,14 %, le centile 99 est maximal
pour ng = 4 et 6, tandis que pour o = 1,7%, il est maximal a faible ny puis diminue avant
d’augmenter a nouveau a partir de ny = 8. Les deux types d’allure des centiles, comme tracé
pour ng = 2 sur la figure 5.1b et ngy = 4 sur la figure 5.1c, sont cohérents avec des évolutions
et les niveaux d’amplification trouvées sur des modeles industriels de turbines [6,23]. En
particulier, pour ng = 4, le pic net a faible o se rapproche des distributions de Weibull étudiées
pour la technique de Monte Carlo accélérée [6], et 'augmentation des valeurs du centile 1 aux

plus forts niveaux de o est également en accord avec la littérature [23].

La méthode de réduction CM3 proposée permet ainsi de bien rendre compte de la sensibilité
au désaccordage telle qu’attendue sur un modele industriel, avec des cofits de création du
modele largement réduits tout en conservant les degrés de liberté physiques a la frontiere

nécessaire a la gestion du contact.

5.2 Configuration non-linéaire

5.2.1 Scénario de contact

Contrairement au modele phénoménologique introduit dans le chapitre 3, il n’est pas envisa-
geable de calculer la réponse vibratoire du modele industriel en contact sur toute une plage
de vitesses, car ceci conduirait a des temps de calculs prohibitifs. Le cadre d’étude est donc
ici volontairement restreint a un point de fonctionnement unique a la vitesse nominale de la

roue aubagée 2 = 1. En revanche, le niveau de désaccordage o est variable.

Le scénario de contact considéré repose sur un carter ovalisé (ng = 2), configuration habi-
tuellement utilisée dans la littérature pour représenter la déformation d’un carter subissant
un chargement thermique en fonctionnement [119]. Sauf mention contraire, les parametres
de simulation sont identiques a ceux considérés sur I’étude de convergence en fonction du
parametre de réduction a la section 4.3, résumés pour la roue aubagée dans le tableau 4.2,
pour la couche abradable dans le tableau 4.3 et pour le carter dans le tableau 4.4. Cette

section a pour objectif de justifier le choix de Q et ny.

Etude préliminaire sur une plage de vitesse

Dans cette section, une étude préliminaire sur 'interaction de contact pour le modele accordé

et un modele désaccordé a o = 2,3 %, dont le motif est donné dans le tableau 4.5, est présentée
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| | |
10 0,58 1,15 1,73 2,31 10 0,58 1,15 1,73 2,31
o [%] o %]
(b) pour ng =2 (c) pour ng =4

Figure 5.1 Amplifications Ay, en fonction du niveau de désaccordage o et du nombre de lobes
sur le carter ng : centile 1 (-o-), centile 50 (-& ) et centile 99 (-4 ).
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sur une plage de vitesse allant de 2 = 0,5 a Q = 1,17.

Les réponses forcées des modeles accordé et désaccordé obtenues sont tracées sur la figure 5.2.
L’amplitude calculée est la norme des déplacements selon les directions radiale r (orientée vers
le carter), tangentielle ¢ et axiale z. La dispersion des fréquences est clairement visible pour le
modele désaccordé. Les amplitudes a €2 = 1 sont indiquées : le motif désaccordé présente a

cette vitesse fixe une amplification des vibrations de 3,35.

— 1y
L
ey
g
£ 05}
g
g
3
0,50 0,67 0,84 1 1,17
Q
Figure 5.2 FRF sur le modele accordé ( — ) et désaccordé ( — ), avec les amplitudes de

déplacement respectives ( ® ) et ( © ) obtenues a la vitesse nominale Q2 = 1.

Les cartes d’interaction obtenues par traitement de ces déplacements sont tracées sur la
figure 5.3a pour le modele accordé et sur la figure 5.3b pour le modele désaccordé. La carte
d’interaction sur la figure 5.3a pour le cas accordé permet de mettre en évidence le décalage
en fréquence propre du fait de la rigidification due au contact. Par ailleurs, la vitesse de
rotation nominale est tres éloignée de l'intersection entre la premiere famille modale (1F) et
le régime moteur 2, qui se trouverait environ a ) = 34, mais est proche de 'intersection entre
la premiere famille modale (1F) et le régime moteur e, = 14, a 2 = 0,98. La carte pour le
modele désaccordé sur la figure 5.3b permet de mettre en évidence le décalage des fréquences

di au désaccordage.

Configuration nominale

Dans les moteurs en fonctionnement, la dilatation thermique du carter couplée a la localisation
de ses points d’attache induit une ovalisation du carter [119]. La configuration de contact
a ng = 2 est donc définie dans le cadre de cette recherche. Les parameétres du carter et de

I’abradable sont tels que définis dans la section 4.3.2. Les parametres de la CM3 sont tels que
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Figure 5.3 Cartes d’interaction pour ng = 2 tracées pour un pas en vitesse de 6,7 - 1073,
régimes moteur ( ---) et fréquences d’interaction dans le cas d'un forgage linéaire (- ) et
de non-linéarité de contact ( — ).

déterminés dans la section 4.3.3, soit : n =8 et R = 19.

Le nombre de tours de simulation est le résultat d’'un compromis entre stabilisation des
signaux temporels et temps de calcul. Contrairement au cas phénoménologique présenté dans
le chapitre 3, 'implémentation d’une procédure de vérification de la convergence au sein de
la boucle d’intégration temporelle serait trop cotiteuse en temps de calcul. Un nombre de
tours identique est donc fixé pour toutes les simulations. Les signaux temporels obtenus au
bout de 50 tours de simulation pour le modele accordé et pour un modele désaccordé dont le
motif est donné dans le tableau 4.5, sont tracés respectivement sur les figures 5.4a et 5.4b.
L’augmentation rapide des amplitudes de déplacements correspond a l'initialisation du contact
du fait de la déformation du carter progressive, qui atteint son amplitude maximale au bout
de 10 tours, soit au temps indiqué 9. Les oscillations régulieres visibles sur les crétes de la
courbe enveloppe du signal obtenu sur le modele accordé sur la figure 5.4a correspondent aux
passages de lobes. L’ajout du désaccordage provoque une perte de régularité dans le signal,
comme visible sur la figure 5.4b. Le maximum des amplitudes de vibrations atteint cependant
un plateau si bien que le maximum calculé sur un tel signal permettra bien d’obtenir une
tendance sur 'amplification des vibrations due au désaccordage. Afin de s’assurer qu’elle est
bien stochastiquement viable, deux méthodes de calcul de 'amplitude maximale des vibrations
au bout de 50 tours seront comparées : (1) une moyenne des maximums par tour sur les 10

derniers tours (donc a partir du 40°™¢ tour, au temps t49 indiqué sur la figure 5.4) et (2) un
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maximum sur les 3 derniers tours, soit la partie du signal en rouge clair (=) sur la figure 5.4.

1

\)

amplitude [x1074]
e
(@]
amplitude [x1073]
T

o

=}

o

t1o 0.5 tyo 1 t1o 0.5 tap 1

temps [s] temps [s]

)

(a) modele accordé (b) modele désaccordé a o = 2,3%

Figure 5.4 Amplitudes des déplacements sur les 50 tours simulés. Enveloppe pour tous les
neeuds frontiere (23 ) et signal pour le nceud présentant I'amplitude maximale ( ), calculée
sur les 3 derniers tours (=3 ).

5.2.2 Amplification des vibrations

L’amplification des vibrations est définie comme le ratio entre 'amplitude des déplacements
maximale sur I'ensemble des noeuds frontiere (indiqués sur la figure 4.8b) pour le modele
désaccordé sur 'amplitude maximale des déplacements pour le modele accordé. Six niveaux
de désaccordage sont considérés : ¢ = 0,3%, 0,6%, 1,2%, 1,7%, 2,3% et 2,9%, afin de
correspondre aux variations classiquement définies par les tolérances de fabrication des roues

aubagées [65].

Les quantités stochastiques d’intérét sont étudiées a travers la valeur des centiles 10, 50 et 90.
Les convergences stochastiques qualitative et quantitative sont présentées dans ce qui suit sur
lamplification des déplacements en fin de simulation, notée Asg et calculée sur les 3 derniers
tours de simulation de facon analogue a ce qui avait été fait sur le modele phénoménologique
dans la chapitre 3. Les résultats obtenus pour des calculs de I'amplification a différents temps

de simulation sont ensuite présentés et analysés.

Convergence

La stabilisation et la convergence des résultats obtenus est étudiée dans cette section, a travers
les convergences qualitative et quantitative puis I’étude a posteriori de la stabilisation des

signaux temporels.
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Stochastique. La convergence stochastique des résultats est étudiée a la fois qualitativement
et quantitativement, avec les mémes méthodes que celles proposées dans la section 3.3.1. La
convergence quantitative est calculée pour un niveau de confiance de 95 %, donc Z = 1,96.
Les courbes obtenues pour les centiles 10, 50 et 90 sur tous les niveaux de désaccordage
sont tracées sur la figure 5.5. Le convergence qualitative est étudiée a travers la stabilisation
des centiles tracés sur la figure 5.5a. Les centiles étudiés sont stabilisés assez rapidement,
la convergence la plus lente est observée pour o = 2,9 %. Pour 'ensemble des o considérés,
la convergence qualitative peut étre considérée atteinte a partir de s = 800 échantillons
par niveau de désaccordage. Les valeurs obtenues pour la convergence quantitative sont
tracées sur la figure 5.5b. L’erreur de convergence (notée e (c,)) décroit rapidement avec
laugmentation du nombre d’échantillons s avant de se stabiliser. Le centile 90 de o = 2,9 %
est également celui qui présente la convergence la plus lente. Pour I’ensemble des centiles et
des o considérés, e (c;) < 5% a partir de s = 700 échantillons. Pour les 1000 échantillons
considérés, I'erreur finale de convergence quantitative sur le centile 90 de o = 2,9% est de
3,0%, et pour I'ensemble des autres centiles e (c;) < 0,64 %. En raison de la stabilisation
de e (cs) avec 'augmentation de s, un abaissement de 'erreur de convergence qualitative

requerrait une augmentation significative de s.

(a) convergence qualitative (b) convergence quantitative

Figure 5.5 Convergence qualitative sur les centiles 10 (o ), 50 ( 8 )et 90 ( 4 ) pour

02073%( )7076%< )7 172%< )7 177%( )7273%(__-)et279%(_>'

Les études de convergence stochastique qualitative et quantitative indiquent qu’une conver-

gence avec un niveau de confiance de 95 % et une erreur de convergence de 3,0 % est atteinte
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pour 1000 échantillons par niveau de désaccordage, tous niveaux confondus. Le temps de calcul
moyen étant de 7h15 par échantillon, pour 2 = 1, le temps de calcul nécessaire pour ’ensemble
de la campagne est ainsi de 43 200 h. La puissance de calcul disponible au laboratoire a permis
de répartir les calculs sur 40 processeurs de calcul, pour un temps brut de calcul équivalent

de 45 jours par processeur pour l’ensemble de la campagne.

Temporelle. Le nombre de tours étant fixé en début de simulations, la stabilisation des
signaux temporels est étudiée a posteriori, en utilisant les criteres d’erreur sur le maximum
des amplitudes de déplacements sur les 3 derniers tours, €, et de coefficient d’auto-corrélation
des déplacements sur les 6 derniers tours, c.or, tels que définis dans la section 3.2.1. Les
centiles 10, 50 et 90 pour ces deux criteres de convergence sont tracés sur la figure 5.6, et
les valeurs numériques des extremums sont reportées dans le tableau 5.2. Il apparait que
Ceorr tend a diminuer et € a augmenter, donc la stabilisation des signaux au bout de 50 tours
tend a se détériorer a mesure que le niveau de désaccordage o augmente. Il est a noter que
la stabilisation se détériore rapidement a mesure que o augmente, avec max(|le||) < 6%
pour o < 1,7%, et des valeurs beaucoup plus importantes pour les plus grandes valeurs de
désaccordage considérées, avec max(]|¢||) = 33,62 % pour o = 2,9 %. Cependant, le tracé des
centiles de € sur la figure 5.6a permet de déterminer que pour 80 % des cas simulés, ¢ < 7%.
Par ailleurs, les coefficients de corrélation sont toujours ceorr > 90 %, si bien que 'allure des
signaux est relativement stable au bout de 50 tours. A titre de comparaison, les valeurs sur
ces criteres de convergence obtenus sur les signaux temporels présentés sur la figure 5.4 sont
de e = —0,18% et ceorr = 98,8 % sur le cas accordé, et de € = —1.5% et ceorr = 97,9% sur

I’échantillon désaccordé avec o = 2,3 %.

Les informations calculées sur la stabilisation des signaux temporels appuient donc le fait que
les résultats obtenus stochastiquement sur 50 tours de simulation permettent de dégager des
tendances qualitativement proches de ce que donneraient des résultats sur ’amplification en

régime permanent, avec un coiit de calcul raisonnable.

Tableau 5.2 Criteres de convergence temporelle pour différents niveaux de désaccordage, au
bout de 50 tours de simulation.

o [%] ] 029 [ 058 | 12 | 17 2.3 2,9
min(Ceorr) %] | 98,73 | 98,67 | 98,51 | 97,72 | 96,66 | 92,91
max(Ceorr) [%)] | 98,78 | 98,78 | 98,79 | 93,88 | 99,18 | 99,52

min(e) [%] | —0,52 | —0,34 | —1,18 | —5,68 | —10,62 | —33,62
max(e) [%] | 0,22 | 022 | 028 | 253 | 944 | 15,76
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Figure 5.6 Stabilisation des signaux temporels sur 50 tours de simulation, centiles 10, 50 et
90.

Bilan. D’une part, I’étude de la convergence qualitative et quantitative met en évidence la
fiabilité stochastique des résultats des 1000 échantillons par o, par compromis entre niveau
de confiance et temps de calcul par niveau de désaccordage. D’autre part, ’étude de la
stabilisation des signaux temporels indique que les résultats stochastiques obtenus sur 50 tours
de simulation présentent qualitativement la méme tendance sur I'amplification des vibrations

que des résultats qui seraient obtenus avec identification du régime permanent.

Résultats

La section suivante présente les résultats stochastiques obtenus sur les simulations en confi-
guration nominale industrielle (2 = 1 et ngy = 2), pour tous les niveaux de désaccordage
considérés (o = 0,3% a 2,9%). L’amplification des vibrations due au désaccordage y est

présentée, calculée au bout de 50 tours et au bout de 10 tours de simulation.

Au bout de 50 tours.

Méthode de calcul. L’amplification des vibrations due au désaccordage, calculée au bout
de 50 tours de simulation, est notée Asy. Afin de s’assurer de la robustesse des résultats

obtenus, deux types de calculs sont comparés :

(1) la moyenne des maximums par tour sur les 10 derniers tours (20 % en fin de simulation)
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(2) le maximum sur les 3 derniers tours.

Le premier calcul permet de lisser les résultats obtenus, alors que le second calcul est cohérent
avec le critere proposé dans I'étude phénoménologique dans le chapitre 3. Les résultats obtenus
pour ces deux criteres sont présentés pour les centiles 10, 50 et 90 sur la figure 5.7. Les deux
calculs d’amplification renvoient des valeurs de centiles trés proches, comme le montre la
superposition des courbes pleines et en pointillés : si la convergence temporelle n’est pas
atteinte pour certains motifs, comme les critéres € et c.or I'indiquent (section 5.2.2), le nombre
d’échantillons considérés permet d’assurer la robustesse du calcul des centiles, avec un calcul
de 'amplification similaire au cas phénoménologique. Pour ce qui suit, As5q désigne les résultats

obtenus par le calcul du maximum sur les 3 derniers tours.

Evolution en fonction de o. Pour tous les niveaux de désaccordage considérés, Asy > 1
et croit de facon monotone : les vibrations post-contact sont amplifiées par le désaccordage,
ce qui tend a empirer avec 'augmentation de o. Les centiles 10, 50 et 90 de A5y évoluent a

mesure que o augmente suivant trois phases :

(1) 0 <1,2% (figure 5.7b), Aso progresse moins rapidement que o, les centiles présentent

une allure logarithmique;

(2) 1,2% < 0 <2,3% (figure 5.7¢), Aso progresse plus rapidement que o, avec une inflexion
nette a 0 = 1,2%;

(3) 2,3% < o (figure 5.7a), le centile 90 progresse exponentiellement avec le niveau de
désaccordage, passant de 2,33 pour o = 2,3% a 6,44 pour o = 2,9 %, et I’écart entre les
centiles 10 et 90 passe de 0,76 a 4,43.

Le calcul de 'amplification sur une vitesse fixée a déja été utilisé dans un contexte linéaire,
notamment par Ewins [53] et Whitehead [78]. Dans ces deux études, la vitesse d’intérét pour le
calcul de 'amplification correspond a la résonance de la roue aubagée accordée. L’amplification
maximale obtenue est typiquement de 'ordre de 20 %, pour une variation de 'ordre de 3%
sur le module d’Young des aubes, soit ¢ = 1,7 pour une distribution uniforme. Dans le cadre
non-linéaire défini, le centile 50 indique une amplification de 32 %, qui est dans les mémes
ordres de grandeur. En revanche, de plus hauts niveaux de désaccordage conduisent a des
amplifications tres élevées. Une explication sera proposée dans la section d’analyse. Enfin,
il est tout de méme a noter que les amplitudes sont tres faibles dans le cas accordé pour le
cas de contact choisi (voir la figure 5.4a), si bien que méme pour I’échantillon présentant
I'amplification maximale (soit Az = 11,7), les amplitudes maximales de déplacement sont
de 1,1 mm et restent dans le cadre de ’hypothese des petites déformations de ’équation du

mouvement utilisée.
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Figure 5.7 Amplifications non-linéaires (3 ) au bout de 50 tours en configuration nominale
industrielle, calculée avec le maximum sur les 3 derniers tours ( — ) et la moyenne des
maximums sur les 10 derniers tours ( --- ), avec les centiles 10 (-o-), 50 (-0~ )et 90 (-2 ).
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Au bout de 10 tours. L’étude de 'amplification des déplacements du fait du désaccordage
lors du régime transitoire de vibration est une problématique de recherche récente, en réponse
a l'intérét industriel qu’elle présente [161,162]. I1 a été montré que dans le cadre des vibrations
linéaires, 'amplification transitoire des déplacements, avec une vitesse variant progressivement,
peut étre du méme ordre de grandeur — voire 20 % supérieure — que l'amplification en
régime permanent [161]. Dans ce qui suit, 'amplification des déplacements sur les 10 premiers

tours de simulation, notée Aj;g, est étudiée pour le scénario de contact défini.

Les résultats stochastiques obtenus sur les centiles 10, 50 et 90 sont tracés sur la figure 5.8.
Les centiles obtenus sur Asg v sont également rappelés. Pour tous les o considérés, A;q > 1 et
croit de facon monotone. Peu apres l'initialisation du contact, le désaccordage induit donc une
amplification des vibrations. Les centiles de A évoluent a mesure que o augmente suivant

deux phases :
(1) 0 <0,6% (figure 5.8b), Ajo progresse moins rapidement que o ;
(2) 0,6% < o (figure 5.8a), Ajo progresse plus rapidement que o, sur tous les centiles.

Contrairement a ce qui avait été constaté pour Asg, il n’y a donc pas de phase ou le centile 90
présente une évolution plus forte que les autres centiles, si bien que I’élargissement de la zone
entre les centiles reste progressive. Les autres phases sont assez similaires, avec cependant
un décalage des bornes de o vers les plus petit désaccordage. Pour o < 0,6 % (figure 5.8b),
le centile 90 de A;q suit quasiment le centile 10 de Asg : stochastiquement, pour 90 % des
cas, 'amplification des vibrations pourrait étre amoindrie si le temps de contact était plus
court. A noter cependant que les amplifications considérées sont treés faibles dans les deux
cas, passant d’environ 4,6 % sur le centile 50 de Asy & moins de 1,7%. Pour o = 1,2 %, les
courbes de centile de A présentent une inflexion, si bien que 50 % des résultats transitoires
sont désormais au-dessus de 90 % des résultats a 50 tours. De plus les résultats présentent
une grande dispersion, si bien qu'une faible variation des parameétres sur un motif choisi peut
conduire & des amplifications bien plus importantes que souhaitées. Enfin, pour 1,2% < o
(figure 5.8a et 5.8¢c), le centile 10 de Ao passe du centile 10 au centile 50 de Asg, puis continue
de le suivre : les amplifications les plus faibles A;¢ sont au niveau de la médiane de Asg, ce qui
suggere stochastiquement des déplacements importants peu apres le contact qui se stabilisent

vers des amplitudes plus faibles.

Enfin, les niveaux d’amplification sont globalement du méme ordre de grandeur : des amplifi-

cations tres élevées sont constatées méme peu apres l'initialisation du contact.
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Figure 5.8 Amplifications non-linéaires (3 ), calculées avec le maximum sur les 10 premiers
tours (20 % de la simulation), comparées aux amplifications au bout de 50 tours (3 ), avec
les centiles 10 (- ), 50 (-5 ) et 90 (-2 ).
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Analyse

Les niveaux d’amplification constatés sont tres élevés, aussi bien au bout de 50 tours que de
10 tours de simulation. Ceci peut étre dii au calcul a une vitesse de rotation fixe, si la vitesse
de rotation se est peu éloignée d’'une vitesse critique. En effet, sur les FRF désaccordées, la
multiplication des pics de résonance et 1'élargissement de la plage critique (voir les cartes
d’interaction a la figure 5.3) peut amener a ce qu’un pic soit constaté & une vitesse non

critique pour le cas accordé.

Les diagrammes de Campbell de la roue aubagée et de l'aube encastrée, établis sur les
fréquences propres, sont tracés afin d’identifier les possibles fréquences critiques d’interaction.
Utilisés conjointement, ces deux diagrammes permettent d’estimer le comportement du
systeme non-linéaire. En effet, les fréquences propres de la roue aubagée sont inférieures
aux fréquences propres du systeme non-linéaire, du fait de la rigidification due au contact,
tandis que les fréquences propres de I'aube encastrée sont supérieures aux fréquences propres
du systeme non-linéaire, puisque la condition d’encastrement sur la base de I’aube est plus

contraignante que la liaison avec le disque.

Le diagramme de Campbell de la roue aubagée est présenté sur la figure 5.9a. Les fréquences y
sont normalisées par rapport a la premiere fréquence propre de la roue aubagée accordée. Les
trois premieres familles de modes de la roue accordée sont tracées, correspondant aux modes
d’aubes suivants : premiere flexion (1F), pour des fréquences entre 1 et 1,01, seconde flexion
(2F) entre 2,67 et 3,05 et premiere torsion (1T) entre 3,25 et 3,51. Pour la famille de modes
1F, les extremums de fréquences propres désaccordées sont indiqués pour les échantillons
simulés, par niveau de désaccordage, sur la figure 5.9b. Les fréquences propres s’éloignent du
cas accordé a mesure que o augmente. Il apparait qu’'une possible interaction entre le régime
moteur e, = 14 et la vitesse nominale ) = 1 pourrait se produire a une fréquence propre de
1,04 dans le cas linéaire, ce qui est 2,6 % au-dessus de la fréquence propre maximale de la roue
accordée. A mesure que le désaccordage augmente, les fréquences maximales se rapprochent

de cette possible interaction mais ne l'atteignent pas.

Par ailleurs, le diagramme de Campbell de 'aube encastrée est présenté sur la figure 5.10a.
Les premiers modes sont également classées dans 'ordre : 1F, 2F et 1T. Les fréquences propres
sont tracées pour une aube de la roue aubagée accordée, au module d’Young Ejy, ainsi que
pour un module d’Young de +5% et de —5% de E,. La fréquence correspondant au mode 1F
pour I'aube & F = FEj est de 1,03, bien supérieure a la plage de fréquences correspondante
pour la roue aubagée, mais toujours inférieure a la fréquence d’interaction possible entre la
vitesse nominale et le régime moteur e, = 14. La fréquence propre du mode 1F pour une

aube & F = Ey(1 —5%) est davantage éloignée de la fréquence de possible interaction. En



IT F--c----d-cooocoo- =77 7-T 1,06 |-
2F .
S 234 g
g & S 1,02 —
5 =
@ 1,56 | NS
1F7 0.97 | °
[ | | | |
0 209 167 2,51 0,94 0,97 1
Q 0

(a) pour la 1F, 2F et 1T

114

(b) pour la 1F

Figure 5.9 Diagramme de Campbell pour la roue aubagée, avec les fréquences propres
accordées pour les premiers modes de flexion ( — ) et de torsion ( --- ) et la plage de
variation des fréquences propres désaccordées pour tous les échantillons simulés, en fonction
du désaccordage : 0 =0,3% (O ) a0 =2,9% (m). Les possibles interactions avec e, = 14
sont indiquées (e ).

revanche, la fréquence propre du mode 1F pour une aube & E = Ey(1 +5%) est a 1,05, soit
au-dessus de la fréquence de possible interaction. En somme, le désaccordage combiné a la
rigidification au contact peut amener la plage de fréquences critiques au niveau de la vitesse

de rotation nominale, et donc a un régime critique.

L’analyse du contenu fréquentiel des déplacements tangentiels du nceud au bord de fuite
sur les 3 derniers tours, réalisé par transformée de Fourier rapide (FFT, de I'anglais Fast
Fourier Transform), permet de valider ce cas d’interaction. Les résultats sont présentés sur
la figure 5.11, pour les échantillons a o = 2,9 %, ot un échantillon sur 20 est représenté par
soucis de lisibilité. L’allure du signal est similaire pour tous les o. Des pics sont régulierement
espacés pour les plus basses fréquences, qui correspondent aux différents régimes moteurs.
Le pic le plus important pour tous les échantillons se situe a une fréquence de 1,04, qui est
bien la fréquence d’interaction possible entre la famille de modes 1F et e, = 14 identifiée sur
le diagramme de Campbell. Enfin, du contenu fréquentiel est également visible a plus haute
fréquence, autour de 3,12, ce qui suggere une contribution des modes de déformation 2F et

1T qui sera détaillée lors de I'analyse du comportement vibratoire.

Le désaccordage, du fait du décalage en fréquences qu’il induit, décale donc le régime critique,
qui est alors capté a la vitesse de rotation nominale, d’ou les amplifications Asg tres importantes

constatées aux plus hauts désaccordages.
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Figure 5.10 Diagramme de Campbell pour 'aube encastrée, avec les fréquences propres pour
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Figure 5.11 Contenu fréquentiel du déplacement sur les 3 derniers tours pour des échantillons
a o =2,9%, obtenu par FFT. Fréquences des modes 1F, 2F (— ) et 1T (--- ).
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5.2.3 Comportement vibratoire

L’amplification permet de quantifier stochastiquement 'influence du désaccordage sur les
amplitudes de vibrations post-contact. Cependant, elle ne permet pas d’obtenir quelque
information sur la modification du comportement dynamique que le désaccordage pourrait
engendrer. Or, le fait de passer d’'un mode de vibration a un autre peut étre néfaste au regard
des contraintes engendrées sur les aubes [23,26], ce pourquoi en dimensionnement linéaire,
les zones de pincement doivent étre évitées par exemple. La section suivante propose des
indicateurs pour permettre d’analyser davantage le comportement dynamique de la roue

aubagée et de I'aube pour laquelle la réponse vibratoire et maximale.

Roue aubagée

Le facteur de localisation FL, défini dans le cadre de 'analyse du cas phénoménologique a la
section 3.4, est calculé pour tous les échantillons simulés sur les déplacements de 3 derniers
tours simulés. L’amplification Asq est tracée par rapport a FL sur la figure 5.12 pour les
différents o, en densités cumulées avec un calcul similaire a celui réalisé dans la section 3.3.3.
Pour o < 2,3%, FL augmente quasi linéairement avec Asg. La dispersion des résultats devient
plus importante pour o = 2,9 % pour atteindre des valeurs tres élevées. Pour un cas ot k aubes
vibrent & la méme amplitude, correspondant & I'amplitude maximale des déplacements sur
I’ensemble des aubes, les autres aubes ne vibrant pas, 'expression du facteur de localisation

FL = VN - VE x 100 (5.1)

VE (VN =1)

Pour N = 21 aubes, FL = 36,0 % dans le cas de k = 4 aubes vibrant seules, FL = 45,9 %
pour k = 3 et FL = 62,5 % pour k = 2. Ces valeurs sont reportées par des droites (--- ) sur la

est :

figure 5.12, 1a ou ’échelle le permet. Il apparait que FL > 36,0 % uniquement pour o = 2,9 %.
La valeur maximale est FL. = 89,7 %, qui se rapproche fortement du cas ot une seule aube
vibre. A partir de FL = 77 %, les échantillons pour o = 2,9 % montrent une augmentation
d’autant plus forte de Asg, ce qui pourrait indiquer que la roue aubagé présente des modes de

vibration d’aube.

Cependant, FL tel que défini peut prendre une méme valeur pour des roues aubagées aux
comportements tres différents. Les déplacements sont représentés pour quelques échantillons
sur la figure 5.13, ou chaque segment correspond a une aube et la longueur du segment dépend
du déplacement maximum de ’aube pour les nceuds physiques conservés, sur les 3 derniers
tours. Les différences sur Asy sont clairement visibles, avec les plus grandes amplifications sur

les échantillons présentés aux figure 5.13b et 5.13d. L’échantillon au plus grand FL, représenté
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Figure 5.12 Evolution de Ajsy par rapport au facteur de localisation FL pour les différents o,
tracée a travers les densités cumulées & 60 % et 100 %, et FL correspondant a 4, 3 et 2 aubes
vibrant seules (---).
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sur la figure 5.13e, présente bien visuellement une seule aube qui vibre. En revanche, sur les
échantillons représentés aux figure 5.13a et 5.13c, seule une aube vibre a 'amplitude maximale
pour I’ensemble de la roue, les autres aubes vibrant peu. En effet, si 'amplitude sur 'aube qui
vibre le plus est assez faible, de petites amplitudes sur les autres aubes vont plus fortement

abaisser la valeur de FL, ce qui explique les valeurs trouvées.

evO0E

) FL = 59,17% (b) FL = 59,09 % ) FL = 84,48% (d) FL = 84,47% ) FL = 89,73 %
et .A50 = 3,06 et Asg = 8,33 et Aso = 5,54 et Asg = 11,72 et A50 = 6,88

Figure 5.13 Visualisation des déplacements maximaux des échantillons a différents FL et Asxy.

En somme, des comportements vibratoires tres différents peuvent présenter le méme FL, si
bien qu’il convient d’étre prudents sur les conclusions tirées du fait de ce facteur. Il apparait
cependant que de fortes amplifications sur ’ensemble de la roue aubagée sont corrélées a de

hauts facteurs de localisation.

Aube a amplitude maximale

Pour chaque échantillon, les déplacements sur les nceuds frontiere sont étudiées dans ce qui

suit, pour 'aube qui présente 'amplitude des oscillations maximale.

La position de la déformation maximale parmi les 5 nceuds frontiere conservés en téte d’aube
(tel qu’indiqués sur la figure 4.8b) est donnée pour tous les ¢ sur la figure 5.14, ou l'indice 1
correspond au bord de fuite (BF) et I'indice 5 au bord d’attaque (BA). Il apparait nettement
que les amplitudes maximales sont rencontrées sur le BA ou le BF, mais jamais sur les noeuds

centraux. La position de 'amplitude maximale change a mesure que ¢ augmente :
— sur le BF pour ¢ < 0,6%;
— répartis a 46,6 % sur le BF et 53,4 % sur le BA pour 0 = 1,2%.
— sur le BA pour 1,7% < 0

Ces résultats suggerent une modification nette du comportement vibratoire de 'aube aux

plus fortes amplitudes a mesure que o augmente.
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Figure 5.14 Position de 'amplitude maximale des déplacements sur les ddl physiques en bout
d’aube, I'indice 1 désignant le bord de fuite (BF) et I'indice 5 le bord d’attaque (BA), pour
tous les échantillons de 0 = 0,3% (O ) a0 =29% (m).

L’analyse du contenu fréquentiel des déplacements tangentiels du noeud au BF a chaque o
montre une contribution nette au niveau des fréquences correspondant a l'interaction entre
€, = 14 et la famille 1F, comme vu pour o = 2,9% sur la figure 5.11. Le contenu fréquentiel
obtenu plus spécifiquement proche de fréquences correspondant aux familles 2F et 1T de la
roue aubagée accordée, précédemment indiquées sur la figure 5.9a, est tracé pour tous les o sur
la figure 5.15. Seul un motif sur 20 est tracé par soucis de lisibilité. Tous les graphiques sont
tracés avec la méme échelle en amplitude. Les amplitudes pour o < 0,6 % sont tres faibles, si
bien que la contribution des familles 2F et 1T est négligeable, mais elles augmentent avec
o. Pour o = 1,7 %, 'augmentation de amplification As, est corrélée avec 'augmentation des
amplitudes aux fréquences proches de la famille 1T, avec des amplitudes non significatives au
niveau des fréquences proches de la famille 2F. La contribution de la famille 1T est ensuite
maximale pour ¢ = 2,3%, alors que la contribution de la famille 2F est maximale pour
o =2,9%. Comme les échantillons pour lesquels 2,3% < o présentent des amplifications As
en forte augmentation par rapport aux o plus faibles (figure 5.7a), ces résultats semblent
indiquer que la forte augmentation des amplitudes proviendrait de la composition des différents
modes de vibration (1F, 2F et 1T).

5.2.4 Efforts de contact et usure

La norme maximale des efforts de contact sur les nceuds frontiere est calculée pour I’ensemble
des échantillons sur les 3 derniers tours, de facon analogue a I’amplitude des déplacements
pour obtenir Asq. L’amplification des efforts, notée Ap, est le ratio entre la norme maximale

de I’échantillon désaccordé et celle du systeme accordé. Les centiles 10, 50 et 90 obtenus sont
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Figure 5.15 Contenu fréquentiel des déplacements de ’aube connaissant la plus grande
amplitude de déplacement, de 0 = 0,3% ( yao=29% ( ), focalisées autour des
fréquences des familles 2F (— ) et 1T (---) de la roue accordée. Les fréquences correspondant
aux pics prépondérants sont indiquées ( =— )
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tracés sur la figure 5.16. Les centiles de Ap évoluent en deux phases :
(1) 0 <0,6% (figure 5.16b), Ap progresse moins rapidement que o ;
(2) 0,6% < o (figure 5.16a), Ao progresse plus rapidement que o, sur tous les centiles.

L’allure des centiles de Ap est donc similaire a celle des centiles sur 'amplification de
l'amplitude Asq (figure 5.7). Les niveaux d’amplification sont cependant bien plus faibles sur

les efforts de contact, avec un centile 90 pour o =2,9% a 1,16.

Le fait que des efforts de contact faibles menent a une augmentation substantielle des
déplacements est cohérent avec une possible résonance captée a plus hauts o, identifiée dans
I’analyse des déplacements a la section 5.2.2. Du fait de la présence physique du carter qui
contraint la vibration de l’aube, celle-ci tend a se replier. Par ailleurs, Le profil d’usure
présente 2 lobes pour tous les échantillons, correspondant aux lobes sur le carter. La plage
angulaire de 'usure évolue peu : elle augmente seulement de 6,5% entre le cas accordé et
sa valeur maximale sur l’ensemble des échantillons désaccordés. La pénétration n’augmente
que de 15%, pour atteindre une valeur maximale de 0,45 mm, soit légerement inférieure
a la déformation imposée sur le carter de 0,5mm et moins de 10% de 1’épaisseur totale
de I'abradable (tableau 4.3 et 4.4). L’analyse de 'usure de ’abradable corrobore ainsi une

déformation de ’aube en repliement.

Enfin, la position de I'effort de contact maximal parmi les 5 noceuds frontiere conservés en téte
d’aube est donnée pour tous les o sur la figure 5.17. Les efforts maximaux sont rencontrés
sur les nceuds centraux, mais jamais sur le BA ou le BF. Le nceud qui présente les efforts

maximaux change a mesure que o augmente :
— sur le nceud 4, plus proche du BA, pour 0 < 12%;
— répartis a 54,1 % sur le nceud 4 et 39,7 % sur le noeud 3, en milieu de corde, o = 1,7 %.
— majoritairement sur le nceud 2, plus proche du BF, pour 2.3% < o;

Ces résultats corroborent la modification du comportement vibratoire a mesure que o augmente,
avancée lors de l'analyse de la position de 'amplitude maximale a la section 5.2.3. Enfin,
les nceuds sur lesquels l'effort de contact est maximal ne sont pas ceux sur lesquels les
déplacements sont maximaux (figure 5.14), ce qui confirme également que I'aube se déforme

davantage en repliement.

5.2.5 Contraintes

Dans les sections précédentes, les résultats stochastiques sont calculés sur les déplacements et
efforts obtenus en bout d’aube, soit aux nceuds frontiere conservés dans le modele CM3. Afin

d’obtenir une vision plus globale, une expansion des ddl de la base mixte vers la base physique
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Figure 5.16 Amplification des efforts en fin de simulation (&3 ), avec les centiles 10 (o),
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Figure 5.17 Position de la norme maximale des effort de contact sur les ddl physiques en
bout d’aube, l'indice 1 désignant le BF et l'indice 5 le BA, pour tous les échantillons de
c0=03%(O0)ac=29% (m).
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est effectuée. Les déplacements et les contraintes a l'intérieur de I’ensemble de la roue aubagée

puis d’aubes sélectionnées peuvent ainsi étre étudiés pour différents pas de temps.

La présente section s’appuie sur I’étude du modeéle accordé (référé dans la suite par mye.)
et de trois motifs désaccordés issus des simulations stochastiques : le motif qui présente
I'amplification 4, maximale (mamp), le motif qui présente le facteur de localisation FL
maximal (my) et un motif faiblement désaccordé pour lequel I'effort maximal est localisé
sur le bord de fuite (my), contrairement aux autres motifs désaccordés sélectionnés pour
lesquels I'effort maximal est sur le bord d’attaque. Certains résultats issus de ’analyse des
simulations stochastiques sont donnés pour les quatre motifs considérés dans le tableau 5.3. Les
motifs désaccordés sont renseignés dans les tableaux 5.4, 5.5 et 5.6. Les valeurs de contraintes
présentées sont normées par rapport a la limite d’élasticité oy du matériau, qui correspond
donc a o = 1. Les déformations sont normées par rapport a la déformation maximale sur la

roue accordée.

Pour l’instant d’amplitude maximale

Les champs de déplacements et de contraintes sont reconstitués sur I’ensemble de la roue
aubagée, pour l'itération temporelle correspondant au maximum de 'amplitude des dépla-
cements sur les 3 derniers tours de chaque motif, et sont représentés sur la figure 5.18 pour
les quatre motifs sélectionnés. Afin de mieux visualiser les différences sur chaque aube d’un
méme motif, les échelles de déplacement, représentées par un gradient de couleurs (),
dépendent du motif considéré. Les mailles dont les déplacements sont supérieurs ou égaux a
la valeur maximale imposée par le gradient sont ainsi en noir (m ). Ce maximum est de 1

pour Myee et mye, de 1,6 pour myqe, et de 2 pour maump.

Pour les motifs m,e. et mys, les déplacements maximaux sont visibles sur des groupes d’aubes
correspondant aux aubes en contact a 'instant considéré, indiquées sur les figures 5.18a et
5.18b par des triangles ( v ). Des déplacements importants en téte d’aube sont visibles sur
les aubes en contact et sur les deux aubes les plus proches de la zone de contact entre deux

aubes. Les déplacements sont répartis sur ’ensemble de la roue, ce qui est en accord avec les

Tableau 5.3 Caractéristiques des motifs sélectionnés.

type de motif o (%) A, FL noeud d’amplitude maximale

Mace 0 1 0 BF de l'aube 6
Mg 0,6 | 1,02 | 1,05 BF de l'aube 8
Mamp 2,9 | 11,7 | 84,5 BA de l'aube 9
Mioe 29 |6,88 89,73 BA de l'aube 2
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Tableau 5.4 Motif de désaccordage muyy.

Variation du module d’Young par aube (%)

0,66 | (0E); —029] (0E); 058 (0E); 0,80 ] (0E); 0,46
—0,03 | (6E); —0,17 | (0E)s 0,65 | (0E)g —0,03 | (6E)1p —0,58
0,37 | (0E)12 0,02 | 0E);3 0,19 | (0E)s —021 | (0E)15 —0,52
—0,22 | (6E)1» —0,09 | (6E)1s —0,11 | (0E)1g —0,04 | (6E)s —0,25
—0,07

Tableau 5.5 Motif de désaccordage mamp.

Variation du module d’Young par aube (%)

1,87 [ (6E); —0,89 [ (0E)s 1,57 | (0E), —149[ (0E)s —1,42
—121 | (6E); 0,55 | (0E)s —3,86| (0E)y —098[ (0E)1p —2,95
—3,78 | (0E)12 —0,02 | (6E)13 —2,32 | (6E)1s 4,98 | (0E)15 3,73
245 | (6E)y; 1,15 | (6E)1s 1,78 | (0E)1y 2,94 | (0E)y —2,24
—3,28

Tableau 5.6 Motif de désaccordage a myqc.

Variation du module d’Young par aube (%)

058 | (6E); 2,07 | 0E); —059] (0E); 3,08] (E); 0,30

0,99 | (0E); —1,14 | (6E)s 0,70 | 0E)y 0,96 | 0E)1o 0,20
. —024 | 0E)s —432| (0E)13 1,39 | (0E)iu 0,75 | (0E);; —1,95
6 —2,92 (5E)17 —1,96 (5E)18 —4,56 (5E)19 3,09 (5E>20 0,46
1 4,99
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faibles valeurs de FL calculées avec les déplacements en bout d’aube, telles que données dans
le tableau 5.3.

Les champs de déplacements des motifs my,,, et mio sont tracés aux figures 5.18c et 5.18d, a
I'instant pour lequel le déplacement calculé sur les 3 derniers tours est maximal. Les aubes
en contact ne sont plus celles qui présentent les plus grands déplacements. La localisation
dans des aubes éloignées de l'excitation peut étre due, comme dans un cadre linéaire (voir la
section 2.2.2), a une transmission de 1'énergie de vibration du fait des conséquences conjointes
du désaccordage et du couplage des aubes a travers le disque. Par ailleurs, le nombre restreint
d’aubes a forts déplacements est en accord avec les valeurs de FL élevées, calculées sur base

des déplacements en bout d’aube.

Pour tous les motifs, la reconstitution des déplacements sur I’ensemble du modele permet de
montrer que les déplacements maximaux au niveau de la téte d’aube, ce qui confirme d’une part
la prépondérance de la composante de flexion et d’autre part que le calcul de I'amplification
sur les déplacements en téte d’aube effectué dans 1’étude stochastique retranscrit bien un

maximum global des déplacements.

Les contraintes sur ’ensemble du modele de roue aubagée sont tracées pour les différents motifs
sur la figure 5.19. L’échelle du gradient de couleurs (= ) est la méme pour tous les motifs,
avec un maximum du gradient de 0,08, au-dessus duquel les mailles aux contraintes supérieures
ou égales sont en rouge (M ). Les contraintes calculées pour m,e. et mys sont similaires, avec
les valeurs les plus importantes sur I’aube au niveau du plus grand déplacement du carter, et
une zone secondaire de contraintes sur les aubes diamétralement opposées, identifiées comme
un groupe d’aubes en contact sur les déplacements tracés aux figures 5.18a et 5.18b. Sur les
motifs a plus fort désaccordage, les contraintes sur les aubes en contact sont également plus
importantes en téte d’aube, alors que les contraintes sur les aubes a plus forts déplacements sont
localisées dans la partie inférieure de I’aube, ce qui suggere une modification du comportement

vibratoire.

Enfin, comme il apparait sur les motifs considérés que les contraintes les plus importantes sont
situées dans les aubes aux plus grands déplacements, il est probable que may,, présente les
niveaux de contraintes les plus importants de I’ensemble des motifs simulés dans la campagne
stochastique. Le niveau maximal de contrainte pour man,;, étant de 0,12, les ordres de grandeur
obtenus restent bien dans le cadre de 'hypothese des petites déformations définie dans cette

étude.
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(a) Mace, maximum du gradient a 1

(c) Mamp, maximum du gradient a 2 (d) myec, maximum du gradient a 1,6

Figure 5.18 Déplacements pour l'itération de plus grande amplitude des déplacements, avec
une échelle du gradient de couleurs (= ) dont la valeur maximale dépend du motif. Les
aubes en contact sont indiquées par un triangle ( v ).



127

Figure 5.19 Contraintes pour l'itération de plus grand amplitude des déplacements, avec une
échelle du gradient de couleur (== ) dont la valeur maximale est de 0,08 pour tous les motifs.
Les aubes en contact sont indiquées par un triangle ( v ).
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Sur une oscillation

L’évolution des contraintes pour macc, Mamp €t Mioe €5t regardée sur 8 itérations uniformément
réparties sur la derniére oscillation. Pour chaque motif considéré, les contraintes sont tracées
sur 'aube qui présente 'amplitude de déplacement maximale sur le dernier tour. L’échelle du
gradient de couleur (= ) est commune a tous les motifs, avec un maximum (m ) de 0,08
comme sur les visualisations a un instant donné sur les roues aubagées, a la figure 5.19. Le

pas de temps entre les itérations présentées est de 3,15 - 10~*s pour tous les motifs.

L’évolution des contraintes pour m.,.. est tracée a la figure 5.20. L’évolution des déplacements
selon t est tracée pour le dernier demi-tour a la figure 5.20a et pour la derniére oscillation,
sur le nceud au déplacement maximal, a la figure 5.20b. Sur cette derniere, I’évolution de la
norme des efforts de contact est également tracée et les itérations temporelles considérées,
de t; a tg, sont indiquées. La position de 'aube est telle qu’elle entre en contact avec la
bosse au temps tg, si bien que la norme des efforts de contact n’est plus nulle et augmente
progressivement au passage de la bosse. En dehors des instants ot I’aube est en contact, les
niveaux de contraintes sont faibles et plutét localisés dans la partie inférieure de I'aube. Lors
du contact, les contraintes sont localisées sur le tiers supérieur de ’aube. L’alternance de
couleurs en téte d’aube, avec une concentration de contraintes importante aux nceuds frontiere,
est une concentration numérique due a la gestion du contact. L’évolution des contraintes pour
Mamp €st tracée a la figure 5.21. La position de I'aube est telle qu’elle n’est pas en contact sur
la derniere oscillation considérée, comme visible sur le tracé de la norme des efforts de contact
a la figure 5.21b. Les contraintes sont localisées dans le corps de I’aube lorsque le déplacement
tangentiel n’est pas nul, avec des niveaux plus importants dans le tiers inférieur de 1’aube,
vers le centre de I'aube. Les contraintes sont les plus importantes au niveau des extremums
de déplacement tangentiel. L’évolution des contraintes pour my. est tracée a la figure 5.22.
Comme pour le motif & mump, 'aube étudiée n’est pas en contact sur la derniere oscillation
considérée, comme visible sur le tracé de la norme des efforts de contact a la figure 5.22b, et
les contraintes dans I’aube sont minimales lorsque son déplacement tangentiel est nul. Les
valeurs maximales des contraintes sont également situées dans le tiers inférieur de ’aube et
plutot centrées par rapport a la corde de son profil. Les contraintes sont les plus importantes

dans I'aube au déplacement maximal pour mump.

Comme le désaccordage est appliqué uniformément sur toute 'aube, il est cohérent que I’allure
des champs de contraintes soit similaire d’'un motif a I'autre, en-dehors des itérations de
contact. Si pour m,.. ’évolution des contraintes doit étre sensiblement la méme d’une aube a
lautre, elle differe pour les motifs a plus haut désaccordage. En effet, les aubes présentant le

plus grand déplacement, ce qui se traduit ici par la contrainte la plus importante, ne sont pas
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en contact. Ceci peut étre expliqué par I’action conjointe du désaccordage et du couplage des

aubes a travers le disque, ce qui induit une localisation des contraintes.

5.3 Bilan

Des simulations stochastiques de contact aubes-carter sur des modeles désaccordés ont été
menées sur un modele industriel en configuration nominale. Les analyses réalisées sur les
amplifications, efforts de contact et contraintes permettent de dégager des tendances qui
pourraient aider a la conception des turbomoteurs. L’amortissement du modele étant posé a
la valeur de I'amortissement structurel, les résultats présentés sont proches de ce qui pourrait

étre obtenu pour un DAM.

Tout d’abord, il a été montré que le désaccordage induit de trés hautes amplifications des
vibrations post-contact, avec une modification du comportement vibratoire a mesure que
le désaccordage augmente. L’analyse fréquentielle des déplacements a permis de mettre en
évidence la participation de différents modes de vibration (1F, 2F et 1T), qui explique
ces modifications. Le cas de contact considéré induit une pénétration faible par rapport a
I’épaisseur de I'abradable, si bien que ce dernier présente peu d’usure. Enfin, les amplifications
trouvées sont également dues a une interaction avec le régime moteur 14, identifiée pour la

vitesse étudiée a mesure que le désaccordage augmente.

Par ailleurs, 1’évolution de 'amplification due au désaccordage reste modérée pour o < 1,7 %.
Un tel niveau de désaccordage, associé aux tolérances de fabrication, serait ainsi acceptable
en termes de conception. Il est cependant a noter que les facteurs de localisation pour les
niveaux de désaccordage plus élevés se rapprochent de ceux qui sont obtenus si une seule
aube de la roue aubagée vibre. Ainsi, il est possible que des valeurs plus importantes de
désaccordage conduisent a une réduction des amplifications, comme reporté dans la littérature
dans le cadre de I’étude des vibrations linéaires [23]. Des stratégies de conception utilisant un
grand désaccordage pourraient ainsi étre envisagées. Comme ’analyse des motifs a montré une
absence de corrélation entre le désaccordage de ’aube qui connait la plus grande amplitude
des vibrations et 'amplification sur I’ensemble de la roue aubagée, ces stratégies de conception

devraient étre pensées en considérant la dynamique de la roue désaccordée complete.

Enfin, une analyse des champs de déplacement et de contraintes a été menée sur des motifs
d’intérét sélectionnés sur base de la campagne stochastique. D’une part, la performance de
la méthode de CM3 a pu étre avérée pour le redéploiement et le calcul de champs de bonne
qualité sur les nceuds internes de la roue aubagée. D’autre part, les niveaux de contraintes

sont plus élevés pour les motifs a plus grande amplification. Pour les plus hauts niveaux de
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désaccordage, ’aube qui présente les contraintes les plus importantes est aussi 'aube dont
I’amplitude des vibrations est la plus importante, et ce sans qu’elle soit en contact a l'instant

ou elle connait ce maximum.
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CHAPITRE 6 GENERATION DE DONNEES DE BLADE TIP-TIMING

Les vibrations des roues aubagées sont classiquement caractérisées expérimentalement en
utilisant des jauges de contraintes directement apposées sur des aubes choisies. Ces jauges pré-
sentent cependant 'inconvénient d’étre intrusives d’un point de vue dynamique. En particulier,
I’ajout de masse qu’elles représentent peut devenir prépondérant devant le désaccordage, si
bien que l'influence de ce dernier ne peut pas étre étudiée. De plus, les mesures par jauges de
contraintes sont assez complexes en termes d’instrumentation, les rendant peu envisageables
dans le cadre du controle rapide des moteurs, ou encore de I'instrumentation en vol pour la

création de doubles numériques (digital twins).

Des techniques non intrusives ont ainsi été développées, dont la mesure du temps de passage
des sommets d’aubes, appelée la technique de BTT de V'anglais Blade Tip-Timing [163].
Le comportement vibratoire de la structure est alors obtenu a partir du temps de passage
des aubes, noté TOA de I'anglais Time Of Arrival, mesuré par des capteurs situés sur la
circonférence du carter, comme représenté sur la figure 6.1. Différentes configurations de
chalnes d’acquisition et de nombreux algorithmes de traitement des données ont été développés
selon le type de vibrations étudié (synchrones, asynchrones) [164]. Les principaux défis que
pose le traitement des données de BT'T sont le sous-échantillonnage (undersampling) et le
repliement de spectre (aliasing) qui en résulte [165], ainsi que des difficultés inhérentes a
toute approche expérimentale, telles le bruit de mesures et des défauts de positionnement des
capteurs [166]. Afin de tester les algorithmes définis et leur robustesse, des recherches récentes
proposent de générer numériquement des signaux de BTT, ce qui permet de découpler les
différents effets physiques présents [166]. Actuellement, la génération de signaux de BTT est

proposée uniquement en configuration linéaire.

La méthodologie de gestion du contact présentée au chapitre 3 et la méthode de réduction CM3
développée dans le chapitre 4 permettent de simuler le comportement dynamique de modeles
de roues aubagées désaccordées dans un contexte de non-linéarité de contact aubes-carter en
conservant les ddl physiques en téte d’aube. Comme la méthodologie repose sur une technique
d’intégration temporelle, les déplacements en sommet d’aubes ainsi obtenus peuvent étre

utilisés pour le calcul du TOA et donc la génération numérique de signaux de BTT.

Le présent chapitre constitue ainsi une premiere étude de la génération de signaux de BTT
dans un contexte non-linéaire. Les concepts et les différentes recherches sur la technique de
BTT sont exposés, afin de définir un cadre d’étude simplifié. La génération de signaux est

ensuite présentée et validée dans un cadre linéaire sur le modele phénoménologique étudié dans
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traitement
du signal

]

données de
BTT

l

traitement et
analyse

Figure 6.1 Principe de I’étude des vibrations d’une roue aubagée (= ) par BTT, grace a des
capteurs situés sur la circonférence du carter (M ) et sur 'arbre (= ). Adapté de : [16].

le chapitre 3. La méthode proposée est ensuite étendue a une configuration de non-linéarités
de contact, sur le modele phénoménologique puis sur le modele industriel présenté dans
le chapitre 4. Enfin, les résultats stochastiques de simulations non-linéaires présentés au
chapitre 5 sont utilisés pour étudier I'influence du désaccordage sur les signaux générés. Des
pistes pour 'identification de phénomenes de contacts a partir de signaux de BTT sont ainsi

proposées.

6.1 Concept et application dans la littérature

La technique de BTT permet de caractériser expérimentalement le comportement vibratoire
des roues aubagées de facon non intrusive. Des capteurs sont disposés sur la circonférence du
carter, comme illustré sur la figure 6.1. Chaque capteur délivre un signal a chaque passage
d’aube, qui dépend du type de capteur utilisé comme il sera détaillé plus tard dans cette
section. Le signal du capteur est ensuite traité afin d’obtenir le temps d’arrivée (TOA) mesuré
de chaque aube. Un autre capteur, installé sur I’arbre de rotation, délivre un signal a chaque
révolution qui est traité pour obtenir la vitesse de rotation de la roue aubagée. Par ailleurs,
le TOA qui serait obtenu pour les aubes d’une roue rigide est calculé théoriquement. La
différence entre le TOA mesuré et le TOA rigide permet d’obtenir le déplacement de 1’aube
pour le point de mesure considéré. Enfin, ces données sont traitées par des algorithmes avancés

pour obtenir les fréquences et amplitudes de vibrations de la roue aubagée [167].
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Les efforts de recherche se sont en particulier concentrés sur les étapes d’acquisition du TOA et
de traitement des signaux, comme détaillé dans ce qui suit. Des études plus récentes proposent
la prise en compte du désaccordage et la génération numérique de signaux pour enrichir
les informations obtenues sur la roue aubagée et améliorer la robustesse des algorithmes de

traitement développés [55,166].

6.1.1 Chaine d’acquisition

Dans le cadre d’un systeme d’acquisition par BTT classique, le carter et ’arbre sont tous
deux instrumentés. Le capteur li¢ a ’arbre, de type OPR pour Once Per Revolution, permet
de connaitre la vitesse de rotation réelle du rotor, puisque celle-ci présente expérimentalement
une certaine variabilité par rapport a la vitesse voulue [168]. Les capteurs, liés au carter,
délivrent un signal brut généralement analogique qui est ensuite traduit en une impulsion
correspondant au passage d'une aube [169]. Les capteurs optiques, de type laser, sont les plus
couramment utilisés dans la littérature [163,167,169,170]. Ils présentent notamment ’avantage
d’étre tres précis mais sont difficiles a utiliser hors des conditions de laboratoire, comme
par exemple dans le cadre du controle des moteurs, du fait de leur sensibilité aux débris et
contaminants [171]. Afin de s’affranchir de ces limitations, I'acquisition par des capteurs a
courant de Foucault (eddy current sensors) [171,172], capacitifs ou inductifs [173,174] a fait
I'objet de développements récents [175]. Par ailleurs, 'usage du capteur OPR classique peut
étre également limitant pour une installation sur un moteur en fonctionnement, si bien que

certaines recherches proposent de s’en passer en évaluant la vitesse de rotation a partir du
TOA des aubes [176].

Le type, le positionnement et le nombre de capteurs a installer sur le carter dépendent de la
nature des vibrations étudiées, synchrones ou asynchrones. L’étude des vibrations asynchrones
nécessite typiquement de 'ordre 2 & 4 capteurs sur la circonférence du carter [164]. L’étude
des vibrations synchrones nécessite davantage de capteurs, en fonction de I'ordre moteur des
vibrations recherchées [169,177] : par exemple, I’étude des vibrations au régime moteur 10
nécessite l'installation de 8 capteurs [168,178]. Les capteurs sont généralement placés sur
une plage angulaire restreinte, sur la moitié voire le quart de la circonférence du carter. Leur
répartition et leur position axiale (en milieu de corde, sur le bord d’attaque ou sur le bord de
fuite) sont étudiées dans de nombreuses recherches [173,179] car elles conditionnent les modes
de vibrations qui pourront étre étudiés [164]. Plusieurs capteurs peuvent étre placés a une
méme position axiale afin de suivre les déplacements des bords d’attaque et de fuite et de

capter des modes de torsion [169].
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6.1.2 Traitement des signaux

Les vibrations des aubes présentent des fréquences de vibration bien supérieures a la fréquence
d’échantillonnage de 'acquisition de BTT, qui dépend du nombre de capteurs utilisé et
de la vitesse de rotation. Les signaux obtenus sont donc fortement sous-échantillonnés, ce
qui conduit a un repliement de spectre et donc des erreurs importantes dans 1’évaluation
des signaux réels (plus de détails sont fournis en annexe F). De nombreuses techniques de
traitement des signaux de BTT ont ainsi été développées pour obtenir les fréquences de
vibration recherchées et les amplitudes associées, basées notamment sur des transformées de

Fourier, des estimations de variance ou des techniques interpolations [163,164].

En outre, les signaux de BTT acquis expérimentalement sont inévitablement bruités, du fait de
l’acquisition par des capteurs qui présentent une sensibilité et un seuil de détection donnés, ou
encore de 'incertitude dans leur placement [166]. Les algorithmes de traitement des signaux de
BTT doivent ainsi étre robustes vis-a-vis de ces perturbations. Ils sont généralement distingués
selon le type de vibrations qu’ils permettent de traiter, synchrones ou asynchrones, bien que
certaines méthodes telles que la transformée de Fourier discréte non uniforme (NUDFT pour
Non-Uniform Discrete Fourier Transform) et 1’estimation de spectre par le minimum de
variance (MVE pour Minimum variance spectrum estimate) soient applicables dans ces deux
cas [164].

L’acquisition par BTT spécifique aux vibrations synchrones permet soit d’étudier les vibrations
en condition de résonance, soit de reconstituer la réponse forcée linéaire de la roue aubagée
ou de chaque aube indépendamment [16,177,180,181]. Les méthodes d’analyse peuvent alors
étre classées en deux groupes [180] : indirectes et directes. Les méthodes indirectes reposent
sur des mesures lors de phases d’accélération et de décélération de type rampe dans une plage
de vitesses dans laquelle au moins une fréquence de résonance sera excitée. La confrontation
des signaux obtenus sur seulement deux capteurs pour les accélérations et décélération, via
la méthode 2PP (Two Parameter Plot), permet alors d’identifier I'ordre moteur excité [182].
Les méthodes directes reposent sur 1'utilisation de signaux générés a une vitesse de rotation
fixe afin d’extraire 'amplitude de vibration de chaque aube [167], par des méthodes reposant
sur des méthodes des moindres carrés (LSFM, pour Least square Sine Fitting Method), telles
la méthode du déterminant [173] ou la méthode auto-régressive [173,180]. Des recherches
récentes proposent enfin de généraliser les méthodes directes a un cas de vitesse de rotation

de larbre variable afin d’étudier les vibrations transitoires de la roue aubagée [183].

Les signaux générés par BTT peuvent permettre d’étudier des vibrations asynchrones de type
décrochage ou ballottement par I’analyse du signal d’une aube avec un ou deux capteurs [164].

Les efforts de recherche ont cependant été davantage concentrés sur I'identification d’usure et
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de fissures sur les aubes, dans le cadre d’une application au controle des moteurs [184]. La
validation des algorithmes de traitement sur des données expérimentales constitue une part
importante des travaux sur le sujet [165,185]. Des méthodes reposant sur les transformations
de Fourier (FFT) et des méthodes des moindres carrés permettent ainsi d’identifier & partir

du signal quelles aubes présentent une usure et doivent étre changées [186].

6.1.3 Prise en compte du désaccordage

Du fait de la disposition des capteurs sur la circonférence du carter, et non directement sur
les aubes comme dans le cas des jauges de contrainte, l'acquisition par BTT permet un suivi
non intrusif de toutes les aubes a moindre cotit. L’analyse des signaux obtenus par BTT est
ainsi utilisée pour 1’étude des systémes désaccordés dans le cadre des vibrations synchrones,
comme en témoignent les nombreuses études réalisées depuis 2010 [167], en particulier pour
les DAM dont les aubes ne peuvent pas étre prises indépendamment pour en mesurer les

fréquences propres [187,188].

Les données obtenues par BTT peuvent étre traitées d’'une part pour obtenir 'amplitude
maximale sur I’ensemble de la roue aubagée [189] et identifier 'aube correspondante [188], et
d’autre part pour I'identifier le motif de désaccordage [177]. La validation de 'identification
de motifs de désaccordage est effectuée sur des cas déterministes. De plus, les valeurs de
contraintes dans les aubes peuvent étre obtenues par méthode indirecte lors d’acquisitions
BTT au passage d'une résonance, en utilisant par exemple le NSMS (Nonintrusive stress

measurement system) [55, 187].

Enfin, une approche alternative consiste a considérer le faible désaccordage comme une
perturbation vis-a-vis de laquelle la robustesse des algorithmes de BTT doit étre vérifiée [181],

de fagon analogue au bruit de mesure dans la chaine d’acquisition.

6.1.4 Génération numérique de signaux

Afin de pouvoir étudier la robustesse des algorithmes de traitement des données de BTT
vis-a-vis des perturbations ou de certains comportements vibratoires complexes tels les effets
centrifuges, les signaux de BTT peuvent étre générés numériquement. En effet, la génération
numérique permet avantageusement de perturber progressivement un signal de TOA parfait —
en ajoutant la prise en compte de phénomenes dynamiques comme les effets centrifuges ou
gyroscopiques, d’incertitudes de mesure venant bruiter le signal des capteurs, ou encore du
désaccordage — afin de s’assurer de la robustesse des algorithmes a chaque étape [166]. En

particulier, il a été montré que si de nombreux algorithmes sont robustes par rapport a chaque
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phénomene pris indépendamment, la génération d’algorithmes robustes a tous les phénomenes
couplés est un enjeu important [173]. Les développements les plus récents proposent des
techniques de génération de données de BT'T en prenant en compte de nombreux phénomenes
physiques afin que les données générées soient au plus proche de données qui pourraient étre

obtenues expérimentalement [166].

La validation avancée des algorithmes de traitement des signaux obtenus par BTT requiert
des modeles industriels, a grand nombre de ddl, pour générer des signaux qui se rapprochent
de ceux qui seraient obtenus sur des roues aubagées testées expérimentalement [168]. Afin de
réduire la taille des modeles, des techniques de réduction telles la SNM [26] et la FMM [97]
peuvent alors étre utilisées pour générer des modeles utilisables dans le cadre de la génération
numérique de signaux obtenus par BTT [55,166]. Les informations issues des données BTT,
en particulier le motif de désaccordage, peuvent également étre utilisées pour mettre a jour
les parametres éléments finis d’'un modele numérique qui pourra étre utilisé pour la validation
des algorithmes [188].

Une fois le modele généré, les équations du mouvement peuvent étre résolues par des méthodes
harmoniques de type HBM [174, 190] ou par analyse modale couplée a une intégration
temporelle locale [166], lorsque aube est située dans la plage angulaire correspondant a la

position des capteurs, afin de calculer le TOA souhaité.

6.2 Extension a un cadre de non-linéarités de contact

Comme vu dans la section 6.1, la génération numérique de données de BT'T est un enjeu
de recherche important pour améliorer et valider les algorithmes de traitement des données
obtenues expérimentalement, rendant accessibles des informations sur le comportement
dynamique de la roue aubagée pour une instrumentation modérée. Ces considérations sont
d’un intérét industriel grandissant, notamment dans le cadre du contrdle des moteurs [174].
Actuellement la génération numérique de données de BTT est réalisée dans un cadre linéaire.
Or l'acces a des données de BTT dans un cadre non-linéaire rendrait possible la mise au
point d’algorithmes de traitement spécifiques, permettant par exemple d’identifier 'occurrence
de contacts, ou encore de caractériser les vibrations non-linéaires notamment a travers les

phénomenes de frottement.

La présente étude se place dans le cadre de la génération numérique de signaux de BTT,
afin de démontrer que des modeles désaccordés générés par la méthode CM3, développée
dans le chapitre 4, peuvent étre utilisés pour la génération de données de BTT aussi bien

dans un cadre linéaire, comme fait dans la littérature, que dans un cadre de non-linéarités
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de contact. La méthode de génération des données de BTT est explicitée et validée sur les
données obtenues sur le modele phénoménologique présenté au chapitre 3, en configuration
linéaire puis non-linéaire. Les données de BTT sont ensuite générées sur base des signaux de
vibrations non-linéaires calculées sur le modele industriel présenté dans la section 4.3, sur des
motifs sélectionnés puis sur les données stochastiques qui avaient été présentées et analysées

au chapitre 5.

6.2.1 Méthode et validation

Cadre et hypothéses. Comme vu dans la section 6.1, différents types de capteurs peuvent
étre utilisés, qui vont conditionner le traitement a effectuer sur la quantité physique brute
pour obtenir le TOA. Afin d’éviter toute perte de généralité quant a la solution technologique
choisie pour 'acquisition, et en I'absence de données expérimentales, le traitement du signal
du capteur est considéré effectué en amont [174,190]. Ainsi, les données de BTT d’intérét
générées dans la présente étude sont les TOA de corps rigide, notée t!, et avec vibrations,
notée t?, afin d’obtenir la différence de TOA, notée At, =2 —t., qui peut étre utilisée pour

reconstituer les vibrations de la roue aubagée.

Algorithme. Le signal d’entrée de I'algorithme BTT est obtenu comme suit :
(1) génération du modele réduit désaccordé par CM3;

(2) application du for¢age en bout d’aube : forgage linéaire sinusoidal ou de non-linéarité

de contact ;

(3) calcul de la réponse a une sollicitation linéaire ou de non-linéarité de contact par

intégration temporelle ;

Validation sur un modeéle phénoménologique en configuration linéaire. Deux mo-
deles accordé et désaccordé sont générés pour permettre le calcul des données de BTT a
une vitesse de rotation constante, correspondant a la fréquence de résonance définie du
modele accordé. Le motif désaccordé utilisé pour la validation, a o = 1,7 %, est donné dans le
tableau 6.1.

Tableau 6.1 Motif de désaccordage sélectionné.

Module d’Young par aube (x10'! Pa)
Ey 21051 | By 2,1495 | E5 20765 | By  2,0726 | E5  2,1318 | By 2,0827
E7 20968 | By 2,1126 | By 2,1432 | Eyy 2,0603 | ;. 2,0578 | Ep 2,0713
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L’intégration temporelle est initiée sur base du régime permanent calculé par résolution
modale. Les coordonnées angulaires des nceuds frontiere pour les aubes avec vibrations ainsi
que du cas théorique rigide sont présentées sur le dernier tour a la figure 6.2a. La position
angulaire du capteur est représentée par une ligne horizontale rouge (— ), a 5 rad. Comme la
simulation est réalisée sur le régime permanent, chaque aube est soumise a la méme excitation
sur une révolution. Le modele étant en outre accordé, toutes les courbes ont bien la méme
amplitude a une position angulaire donnée. De plus, il apparait que les aubes rigides atteignent
la position angulaire du capteur avant les aubes avec vibrations. Ceci est bien retranscrit
par le signal du capteur simulé, représenté par des impulsions sur la figure 6.2b, ou le ¢! est
inférieur a t¢. La différence entre les deux, At,, tracée a la figure 6.2c, est égale pour toutes
les aubes, & 107%s prés, ce qui est conforme & ce qui est attendu. Ce faible écart est dii a

I'interpolation linéaire réalisée entre deux pas de temps afin de déterminer les t] et t!.

Pour le modele désaccordé, les amplitudes obtenues en régime permanent different d’une aube
a l'autre du fait de la localisation, ce qui est correctement retranscrit sur la figure 6.3a, ou
chaque aube présente une position angulaire différente au moment du passage du capteur.
Le signal de capteur obtenu, tracé a la figure 6.3b, est bien cohérent avec ces positions
angulaires. En particulier, il est nettement visible que certaines aubes avec vibration passent
la position du capteur avant ’aube rigide correspondante, et le At, tracé sur la figure 6.3c est
bien différent d’une aube a 'autre, du fait du désaccordage. L’écart sur les At,, défini sur
I'ensemble des aubes par max(At,) — min(At,), est ainsi sur le dernier tour de 2,1-107*s, ce
qui est bien supérieur a la différence obtenue dans le cas accordé. Les At, sont cependant
constants sur I’ensemble des révolutions considérées, ce qui est en accord avec le fait que les
déplacements sont calculés par intégration temporelle sur base des amplitudes obtenues en

régime permanent.

L’algorithme défini permet bien de calculer des ¢!, t? et At, conformes a ce qui est attendu

sur le signal d’un seul capteur, pour une configuration linéaire.

6.2.2 Application a un modele phénoménologique
Vibrations non-linéaires

L’algorithme utilisé pour obtenir les résultats de At, est appliqué sur des données de simula-
tions non-linéaires, sur base du modele phénoménologique du chapitre 3. Les parametres de
simulation utilisés sont tels que donnés dans la section 3.3.2. La vitesse de rotation considérée
est de 34,45 Hz, qui correspond a la vitesse de résonance du modele accordé, définie sur

la FRF non-linéaire précédemment présentée sur la figure 3.9. La procédure pour obtenir
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Figure 6.2 Signaux en entrée et en sortie de 'algorithme de BTT, sur un cas accordé linéaire.
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(b) signal du capteur sur le dernier demi-tour, (c) différence de TOA entre le cas avec vibra-

avec vibrations (— ) et modéle rigide (—)

tions et le cas rigide, pour chaque aube

Figure 6.3 Signaux en entrée et en sortie de l'algorithme de BTT, sur un cas désaccordé

linéaire.
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At, est utilisée sur I'’ensemble de la simulation, la convergence étant atteinte en 20 tours,
telle qu’évaluée par auto-corrélation sur I'amplitude des déplacements, présentée dans la
section 3.2.1. Les lobes du carter atteignent leur amplitude de déformation maximale des
le premier tour de simulation. Les résultats sont présentés sur le modele accordé et sur le

modeéle désaccordé dont le motif est donné dans le tableau 6.1.

Les At, calculés pour les modeles accordé et désaccordé sont tracés respectivement sur les
figures 6.4a et 6.4b. Pour le cas accordé, la progression de At, en fonction du nombre de
tours est similaire pour toutes les aubes, avec un écart sur I’ensemble des aubes de 107°s
sur le dernier tour. Cet écart est plus important que dans le cadre linéaire du fait de la
stabilisation imparfaite des signaux non-linéaires. Pour le cas désaccordé, les aubes présentent
des valeurs de At, similaires sur les 3 premiers tours avant de se différencier nettement. Ainsi,
les inflexions de courbes visibles sur certaines aubes & partir du 3™ tour apres l'initiation
du contact pourraient permettre de détecter ’'occurrence d’un contact dans les données issues
de mesures expérimentales par BTT. Par ailleurs, en fin de simulation I’ensemble des aubes
présentent un écart de 1,6 - 10~*s, du méme ordre de grandeur que celui trouvé sur le méme
motif dans un contexte linéaire. Ce résultat suggere que les algorithmes d’analyse de données
de BTT qui sont robustes au désaccordage dans un contexte linéaire pourraient également
I’étre dans un contexte non-linéaire. De plus, les algorithmes de détermination du niveau de
désaccordage a partir de données BTT pourraient potentiellement étre adaptés pour étre

robustes a l'introduction d’une non-linéarité de contact.

Influence de la position du capteur

Comme vu dans la section 6.1.1, la position angulaire des capteurs pour 'acquisition par BTT
doit étre soigneusement choisie afin de permettre le traitement des données avec un nombre
restreint de capteurs. L’évolution des valeurs de At, par aube sur le dernier tour avec une
position du capteur évoluant entre 0 et 27 est tracée sur la figure 6.5 pour le modele accordé,
et sur la figure 6.6 pour le modele désaccordé. Les positions des extremums d’excitation, a
savoir les positions équivalentes des redresseurs pour le forcage linéaire ou la position des
lobes de déformation du carter dans le cadre non-linéaire (figure 3.1), sont indiquées par des

traits verticaux (---).

Pour le modele accordé, la variation de At, est similaire sur toutes les aubes, comme le montre
la superposition des courbes obtenues pour chaque aube sur les figures 6.5a et 6.5b. Les
courbes obtenues dans le cadre linéaire sont centrées autour de leur valeur moyenne At, = 0s,
égale pour chaque aube. Ainsi, At, ~ 0s lorsque le capteur est situé a la méme position

angulaire que les redresseurs. Comme les algorithmes d’analyse des données BTT se basent
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Figure 6.4 Génération de données de BTT dans un cadre non-linéaire, pour toutes les aubes
de modeles accordé et désaccordé.

sur At, pour identifier 'amplitude et la fréquence des vibrations, cette position de capteur
serait ainsi particulierement inadaptée, de méme qu’'un capteur situé a équidistance de deux
redresseurs. Dans le cadre non-linéaire, les courbes obtenues sont quasiment centrées autour
de At, =~ —4-107°s, correspondant & un capteur positionné au niveau d’un lobe du carter.
La position du capteur a éviter, correspondant a At, =~ 0s, est ainsi décalée par rapport a la
position de la bosse. Ainsi, une position de capteur choisie dans un cadre linéaire pourrait
ne plus étre adaptée au traitement des données dans le cas de non-linéarités de contact. Par
ailleurs, une légere dispersion des At, est visible pour un capteur situé peu apres un lobe du
fait de la non-linéarité, ce qui perturberait potentiellement davantage les signaux obtenus lors
de I'acquisition par BTT. En somme, et méme en considérant un cas accordé, I'optimisation
de la position du capteur pour obtenir par BTT des données exploitables pourrait étre plus
complexe dans le cadre de non-linéarités de contact, et un traitement supplémentaire du

signal pourrait ainsi étre nécessaire par rapport au cadre linéaire.

Pour le modele désaccordé, une grande variabilité de At, en fonction de la position du capteur
est visible d’'une aube a I'autre, aussi bien dans le cadre linéaire sur la figure 6.6a que dans le
cadre non-linéaire sur la figure 6.6b. Dans un cadre linéaire, les courbes pour chaque aube sont
également centrées autour de leur moyenne, a At, ~ 0s. Cependant, comme il n’y a plus de
position du capteur correspondant a un At, &~ 0s pour toutes les aubes, les signaux obtenus
par BTT pourraient potentiellement étre utilisés dans des algorithmes d’identification du

niveau de désaccordage, pour toutes les positions de capteurs. En outre, un capteur positionné
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Figure 6.5 Evolution de At, sur le dernier tour pour le modeéle accordé, en fonction de la
position angulaire du capteur, avec les positions des extremums d’excitation indiquées (--- ).

juste apres ou juste avant les redresseurs permettrait de maximiser les écarts de At, entre les
aubes. Dans un cadre de non-linéarité de contact, les écarts en les At, des différentes aubes
sont également maximisé pour un capteur placé juste apres le lobe, mais minimisés pour un
capteur positionné juste avant le lobe. Ce dernier cas pourrait ainsi rendre l'identification du
désaccordage sur des signaux générés par BTT plus difficile. Par ailleurs, contrairement au
cas linéaire, les valeurs de At, sont treés différentes d’une aube & P'autre. Ceci pourrait étre

exploité pour 'identification du désaccordage couplé a des non-linéarités de contact.

6.2.3 Application a un modele industriel

L’algorithme de génération de données de BTT, qui permet d’obtenir le At,, est appliqué sur
le modele industriel, dans la méme configuration de contact qu’étudiée dans le chapitre 5, soit
au point de fonctionnement nominal de la roue aubagée modélisée. Les lobes sur le carter
sont situés en ag = 0,24rad et en ag + w. Le calcul et ’évolution de At, sont étudiés sur les
motifs d'intérét déja sélectionnés pour I'analyse des champs de déplacements et de contraintes
de la section 5.2.5. Pour rappel, les modeles désaccordés associés connaissent respectivement
Iamplification A, et la localisation FL les plus élevées lors des simulations de contact, sur
I’ensemble des échantillons simulés. Ainsi, I’évolution de At, a partir de ces modeles pourraient
donner des pistes pour I'identification des motifs potentiellement problématiques d’un point
de la durée de vie des moteurs. Une étude stochastique est ensuite réalisée sur I’ensemble des

échantillons analysés dans la section 5.2.2.
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Figure 6.6 Evolution de At, sur le dernier tour pour le modéle désaccordé, en fonction de la
position angulaire du capteur, avec les positions des extremums d’excitation indiquées (--- ).

Etude déterministe

Les motifs d’intérét sont sélectionnés sur base des résultats de la campagne de simulation du
chapitre 5, a savoir : le cas accordé, le motif désaccordé a I'amplification maximale, donné
dans le tableau 5.5, et le motif au facteur de localisation maximal, donné dans le tableau 5.6.

Les signaux de BTT sont générés sur les 50 tours simulés.

L’allure des vibrations sur le dernier demi-tour a été précédemment donnée pour chaque motif,
respectivement sur les figures 5.20a, 5.21 et 5.22. Les résultats de At, issus de I'algorithme de
génération de données BT'T sont présentés sur la figure 6.7, pour un capteur positionné en % et
pointant vers le bord d’attaque (BA) de l'aube. Apres le passage du transitoire, le At, calculé
sur le modele accordé, tracé a la figure 6.7a, tend a se stabiliser vers une méme valeur pour
toutes les aubes, avec un écart sur le 50°™° tour de : max (At,) — min (At,) = 9,8 - 1079s.
Pour les deux modeles désaccordés, une des aubes présente un At, a 1’évolution distincte
de celle obtenue pour les autres aubes, et ce des les 5 premiers tours de simulation. Cette
aube isolée est indiquée en rouge ( — ) sur les figures 6.7b et 6.7c. Pour les deux motifs
désaccordés étudiés, I'aube dont la courbe de At, est nettement isolée est celle a 'amplitude
des déplacements maximale. Ces résultats suggerent une corrélation entre la valeur de At, et
I’amplitude des vibrations, qui est étudiée sur base des résultats stochastiques dans la section

suivante.

Pour le modele désaccordé a localisation maximale, la courbe de At, isolée devient décroissante

a partir du 18°™€ tour, ce qui suggere des vibrations asynchrones. Le déplacement selon 6 de
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Figure 6.7 Evolution de At, sur 'ensemble de la simulation, pour le modeéle industriel.

I’aube considérée est tracée sur les 5 derniers tours sur la figure 6.8. Comme vu grace au point
rouge ( ® ) quiindique le temps de passage de tour, les valeurs de déplacements obtenues
sont de plus en plus faibles a chaque fin de tour, ce qui confirme que les vibrations de 'aube

considérée sont asynchrones.

4
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i ®
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LT Hanuni
1 1,62 1.0
temps [s]
Figure 6.8 Déplacement selon # pour 'aube dont la courbe At, est en rouge (— ) sur la

figure 6.7c. Passage de tour aux instants indiqués ( ® ).

L’évolution de At, sur le 50°™ tour en fonction de la position angulaire du capteur est tracée
pour les trois motifs considérés sur la figure 6.9. La position des bosses y est indiquée en
pointillés (--- ). Les valeurs obtenues sur le cas accordée sont bien superposées sur ’ensemble

des aubes. De plus, un capteur situé au niveau d’une bosse retourne une valeur minimale de
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At,. Pour les cas désaccordés, les aubes dont le At, était distinct sur les figures 6.7b et 6.7c
sont reportées par un trait rouge ( — ). Ces aubes correspondent également aux valeurs
extrémes de At,, calculées sur I’ensemble des positions du capteur sur le carter. Contrairement
au cas accordé, ces extremums ne sont pas rencontrés pour un capteur situé au niveau de la
bosse. Ceci est qui est en accord avec le résultat obtenu lors de la visualisation des champs
de déformations et de contraintes a la section 5.2.5, a savoir que I'aube qui présente le plus

grand déplacement en bout d’aube n’est pas nécessairement celle qui est en contact.

Si pour des signaux obtenus sur I’ensemble de la circonférence du carter, les extremums sont
bien identifiés sur les aubes qui présentent les plus grands déplacements en bout d’aube, les
résultats obtenus pour une position de capteur donnée peuvent fortement varier. En effet,
un capteur mal situé fausse l'identification de I'aube a la plus grande amplification : par
exemple, sur la figure 6.9b, un capteur placé a 27 rad retournerait un At, faible pour 'aube
qui a la plus grande amplitude des vibrations (— ). Ainsi, en configuration de non-linéarité
de contact, les résultats obtenus vont également étre fortement dépendants de la position

angulaire du capteur.

Etude stochastique

La quantité stochastique d’intérét est le maximum sur ’ensemble des aubes de la valeur
absolue de At,, calculé sur le dernier tour de simulation, et est notée max (|At,|). Les motifs
générés pour tous les niveaux de désaccordage o de la campagne stochastique sont étudiés.
En tout, 24 positions de capteur sont considérées, soit a 3 positions sur la corde de I'aube —
au bord d’attaque (BA), au milieu de corde et au bord de fuite (BF) — pour chacune des
8 positions angulaires suivantes : au niveau des deux lobes de déformation du carter, des
deux creux, et des quatre positions intermédiaires a équidistance des précédentes, si bien les
capteurs sont positionnés en ag 4k x § avec k € [0,7]. L’intervalle angulaire dans lequel les

capteurs sont placés est noté [ag, ag + 27].

Les résultats stochastiques de 1’évolution de max (|At,|) en fonction du niveau de désaccordage
sont tracés a la figure 6.10a, pour un capteur situé a différentes positions angulaires et pointant
vers le bord de fuite (BF). La valeur de max (|]At,|) augmente avec le niveau de désaccordage
o, avec une allure similaire a ’amplification A, présentée dans la section 5.2.2. Pour rappel,
I’analyse de la campagne stochastique avait montré qu’une résonance pouvait étre captée
a la vitesse nominale étudiée, du fait du décalage en fréquences induit le désaccordage a
o =2,9%. Pour un capteur a la position axiale correspondant au BF de I'aube, la position
angulaire correspondant au lobe semble exacerber 1'écart de At, lors du passage d’un niveau

de désaccordage a un autre. A I'inverse, les variations d’un ¢ a un autre sont peu visibles si
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Figure 6.9 Evolution de At, sur le 50°™ tour pour une position de capteur variable, pour le
modele industriel. La position des bosses sont renseignées ( --- ).
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le capteur est situé au niveau des creux, si bien que les différents niveaux de désaccordage
ne pourraient pas étre distingués les uns des autres. Les résultats sur les quatre capteurs
en [ag, ap + 7[ sont similaires a ceux obtenus sur les quatre capteurs en [ag + 7, ag + 27|,
ce qui est cohérent avec la symétrie du chargement induite par la déformation du carter.
A Tintérieur de ces intervalles, les valeurs de max (|At,|) varient fortement. Ces résultats
stochastiques viennent ainsi confirmer d’une part ce qui est soulevé dans la littérature dans le

cadre d'un forgage linéaire, et d’autre part ce qui avait été constaté lors de 1’étude déterministe

précédente.

8

v  8f

= S

X, X,

= 4] =

4 a4

vl 1

% <

g g
O | | | | 0 | T | |
0 0,6 1,2 1,7 23 2.9 0 0,6 1,2 1,7 23 29

)

o [%] o [%]

(a) variation de la position angulaire : sur le (b) variation de la position axiale : orienté
lobe en ag (3 ), sur le creux en ag +§ () vers le BF (3 ), orienté vers le BA (3) et
et a équidistance des deux en ag + 7 ( ) en milieu de corde ( )

Figure 6.10 Centiles 10, 50 et 90 de max (]At,|) pour des positions de capteur variables.

Les résultats stochastiques pour un capteur situé a I’angle ag+ %’r sont tracés sur la figure 6.10b
pour différentes positions axiales. Si 'allure des courbes enveloppes de max (|At,|) varie peu,
les échelles différent entre les positions axiales : les valeurs de max (|At,|) sont maximales
pour un capteur pointant vers le BA. Ce résultat est cohérent avec I'analyse de la campagne
stochastique a la section 5.2.3, ou le nceud d’amplification maximale avait été identifié comme
passant du BA au BF lorsque ¢ augmente. Il apparait en outre que les valeurs de max (|At,|)
sont plus importantes pour un capteur placé en amont du lobe, du fait que I’aube est localement
ralentie lors de son premier contact avec le lobe. Ceci suggere que I'évolution du max (|At,|)

pourrait étre utilisée pour identifier I'occurrence de contacts aubes-carter.

Les valeurs de max (]At,|) sont tracées sur la figure 6.11 vis-a-vis du facteur de localisation

FL, tel que défini dans la section 3.4, pour chaque échantillon simulé. Le capteur est orienté
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vers le BA, aux positions angulaires correspondant a la premiere bosse en ag et a la position
intermédiaire en ag + 7. Les résultats obtenus pour un capteur au niveau de la bosse en ag et
du creux en ag + 3 sont similaires, de méme pour les résultats obtenus pour les deux positions
intermédiaires. Les résultats obtenus sur I’ensemble des échantillons sont situés autour d’une
droite et présentent une dispersion modérée, en particulier pour FL < 50 %. La régression
linéaire sur ces données, représentée par la droite en rouge ( — ) sur les graphiques, présente
un meilleur coefficient de corrélation et une pente plus forte sur la figure 6.11a. En effet,
pour un capteur situé sur la bosse en ag, le coefficient directeur de la droite de régression est
d’environ 1078, pour un coefficient de corrélation R? = 0,89, contre un coefficient directeur
d’environ 4 - 107 et un coefficient R? = 0,52 pour un capteur situé en agy + 7 (figure 6.11b).
Ces résultats indiquent que pour un capteur situé en ag, le At, obtenu par BTT pourrait étre
relié directement aux valeurs de FL. La localisation de I’ensemble de la roue pourrait ainsi
étre obtenue avec un nombre restreint de capteurs, et sans avoir besoin de passer par le calcul

de 'amplitude de chacune des aubes.

2 2
o o
— —
RaY RaY
—~ 1+ —~ 1}
+ +
< <
W W
3 <

0 : 0 :

0 50 100 0 50 100
FL [%)] FL [%)]
(a) capteur en ag (b) capteur en ag + §

Figure 6.11 Evolution de max (]At,|) en fonction de FL pour un capteur orienté vers le BA,
et droite de régression linéaire associée pour FL < 50 (— ).

Les valeurs obtenues pour max (|At,|) sont tracées vis-a-vis de I'amplification Ay, pour
chaque échantillon simulé, sur la figure 6.11. Le capteur est positionné axialement vers le
BA, pour les positions angulaires ag et ap + 7. Les résultats obtenus pour un capteur en
ap + 5 et en ap + 7 sont également similaires. Une régression linéaire sur les échantillons pour
lesquels A, < 7 permet d’obtenir des droites avec un coefficient directeur proche quelque soit

le placement angulaire du capteur, soit respectivement de 1,7 - 10~ pour la droite tracée a la
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figure 6.12a et 1,2 - 10~7 pour la droite tracée a la figure 6.12b. Ces résultats sont cohérents
avec ce qui peut étre attendu sachant que A, est calculé sur les déplacements en sommet
d’aube, ou le déplacement est le plus important comme vu dans la section 5.2.5. En revanche,
il est intéressant de noter que les données sont peu dispersées pour un capteur placé en
ag, avec une valeur de R? = 0.92, contre R? = 0.76 pour un capteur placé en ag + 7. Ces
résultats permettent de mettre en évidence qu'un capteur placé en ag fournit des max (|At,|)
variant quasiment linéairement avec A, et de fagon assez robuste par rapport au niveau de
désaccordage. De telles données pourraient ainsi étre exploitées pour le développement et la
validation d’algorithmes de traitement du At, en vue d’obtenir directement I'amplification
sur I’ensemble de la roue, dans un contexte de contact aubes-carter, sans avoir a calculer

I’amplitude de toutes les aubes.

2 2
i) n’
S S
— —
RaS RaY
—~ 1F —~ 11
<5 +
4 <
¥ W
3 >
& g
O | | O | |
1 ) 10 1 5 10
(a) capteur en ag (b) capteur en ag +

Figure 6.12 Evolution de max (|At,|) en fonction de 'amplification maximale A, pour un
capteur orienté vers le BA et droite de régression linéaire associée pour A, <7 (— ).

6.3 Bilan

Les modeles réduits par la technique CM3 ont été utilisés pour la génération de données de
BTT, avec un algorithme de BTT simplifié. Les signaux obtenus pour un capteur ont été
validés dans un cadre linéaire. Des signaux ont ensuite été générés dans une configuration
de non-linéarités de contact, sur des motifs sélectionnés puis sur tous les motifs étudiés dans

I’analyse stochastique du chapitre 5.

Il apparait que la position du capteur est critique pour 'obtention de données de BTT
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exploitables par les algorithmes de traitement, comme référencé dans le cas linéaire [179].
Les résultats obtenus en faisant varier la position du capteur et la faible dispersion des
données obtenues stochastiquement suggere cependant qu’il serait possible avec un nombre
restreint de capteurs de définir des algorithmes de traitement des données de BTT pour étudier
la dynamique de roues aubagées dans un contexte de non-linéarités de contact, robustes
vis-a-vis du niveau de désaccordage. De tels algorithmes pourraient permettre de détecter
I'occurrence du contact ou d’étudier des phénomenes plus complexes de frottement. Par
ailleurs, la localisation de la roue aubagée pourrait étre calculée en configuration non-linéaire
directement a partir du TOA, sans avoir traiter les données de BTT pour obtenir 'amplitude

de chaque aube.

Les modeles réduits par la technique CM3 couplés a des algorithmes de génération de données
de BTT permettent également d’envisager une validation stochastique d’algorithmes de
traitement de BTT. Ceci pourrait en particulier étre appliqué a des algorithmes d’identification
du motif de désaccordage, ou de calcul de 'amplitude maximale sur la roue aubagée. Les
modeles générés par CM3 pourraient ainsi étre directement utilisés dans des algorithmes de

génération BTT plus complets, qui pourraient faire 'objet de recherches futures.
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CHAPITRE 7 CONCLUSION

Synthese des travaux

La présente recherche constitue la premiere étude conjointe des non-linéarités de contact
aubes-carter et du désaccordage. La méthodologie de gestion du contact, basée sur I'intégration
temporelle et le calcul des multiplicateurs de Lagrange, a été couplée a une prise en compte
stochastique du désaccordage. L utilisation d’'un modele phénoménologique a rendu possible
une étude comparative des amplifications dans un contexte linéaire et non-linéaire. Tout
d’abord, il a été montré que les interactions prédites sur des modeles accordés sont robustes
vis-a-vis du désaccordage. Ensuite, les niveaux d’amplification atteints dans le cadre non-
linéaire sont sensiblement supérieurs a ceux obtenus dans le cadre linéaire. Les motifs a
plus grande amplification n’étant stochastiquement pas les mémes dans des cadres linéaire
et non-linéaire équivalents, la robustesse des stratégies de conception appliquées aux roues

aubagées dans un cadre linéaire devrait étre analysée dans un cadre non-linéaire.

Le caractere stochastique du faible désaccordage a dirigé les développements vers une méthode
réduite permettant la génération de modeles industriels désaccordés avec interface de contact
a moindre cofit. La technique développée, nommée CM3, s’appuie sur des techniques pré-
existantes. Elle a été validée sur un cas académique a trois dimensions, puis sur un maillage
industriel. Les temps de création du modele désaccordé ont été évalués négligeables, avec
une bonne précision numérique, comparativement au temps nécessaire pour l'intégration

temporelle.

[’étude stochastique d’'un modele industriel a sa configuration nominale a ainsi été rendue
possible grace aux méthodes développées. Les résultats ont permis de montrer que I'introduc-
tion du désaccordage induisait des amplifications conséquentes, du fait qu'une résonance est
captée a la vitesse de rotation étudiée. L’analyse des résultats stochastiques et ’étude des
champs de déplacements et de contraintes ont permis de dégager des tendances de conception,

notamment un niveau de désaccordage critique maximal.

Enfin, la méthodologie précédemment développée a pu étre appliquée a la génération simplifiée
de signaux de BTT. La génération de signaux a pu étre validée dans un cadre linéaire, avant
d’étre étendue a un cadre de non-linéarités de contact. Le positionnement des capteurs et la

robustesse des signaux obtenus stochastiquement a ainsi pu étre étudiée.
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Limitations et améliorations futures

Les contraintes liées aux temps de calcul ont imposé de définir une vitesse fixe pour 1’étude
stochastique du désaccordage sur le modele industriel. Utiliser une méthode statistique
nécessitant moins d’échantillons que les calculs de Monte Carlo, par exemple les chaines de

Markov ou le chaos polynomial, permettrait de lever cette limitation.

Par ailleurs, des phénomenes physiques ont été négligés afin d’alléger les calculs, tels les effets
centrifuges et gyroscopiques. La prise en compte de ces phénomenes modifierait les fréquences
de résonance du systeme et impacterait ainsi les résultats obtenus, qui seraient plus proches

de ceux attendus sur un moteur réel.

La technique CM3 est formulée dans I’hypothese d'un faible désaccordage. Une méthode
alternative devrait étre développée afin d’étudier des motifs de désaccordage intentionnel dans

un cadre non-linéaire, ce qui permettrait de dégager des tendances de conception.

Enfin, les développements proposés pour la génération de données de BTT sont ceux qui
ouvrent la voie au champ de recherche le plus large. Le caractere stochastique des simulations
accessibles grace a la méthodologie développée pourrait également étre utilisé pour la validation
de la robustesse des algorithmes de détection des motifs de désaccordage, aussi bien dans
un cadre linéaire que non-linéaire. Par ailleurs, les modeles réduits par CM3 pourraient étre
utilisés pour générer des données plus réalistes et ainsi permettre la mise en place d’algorithmes
d’étude des non-linéarités de contact. L’occurrence des contacts pourrait étre détectée ainsi que
des phénomenes de frottement, qui pourraient étre utilisés dans le cadre d’une instrumentation

en condition de fonctionnement.
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ANNEXE A EQUATION DU MOUVEMENT EN ELEMENTS FINIS

La présente annexe présente des considérations théoriques de mécanique des vibrations.
La démonstration de ’équation du mouvement au centre de ce travail de recherche y est
explicitée, avec comme point de départ le principe de moindre action, pour en préciser de
facon exhaustive les différents termes et hypotheses associés. Pour faciliter leur identification
et la compréhension de leur origine, les hypotheses utilisées seront écrites en gras au fur et a
mesure du développement. Le principe de base modale obtenue par résolution des vibrations

libres non amorties est ensuite explicité.

L’écriture usuelle de I’équation du mouvement démontrée est :
Mu+Du+Ku=F (A.1)

ou u et F sont des vecteurs, respectivement des coordonnées généralisées et des forces
non conservatives extérieures; et M, D et K sont des matrices, respectivement de masse,
d’amortissement et de raideur.

Résumé des étapes de la démonstration

1. Principe fondamental de la dynamique de Newton reformulé avec le principe de
moindre action d’Hamilton : équation du mouvement de Lagrange sur les dérivées

partielles et totales du lagrangien d’un systeme discret.

2. Décomposition de I'énergie cinétique en termes Ty de degré uf, k € [0,2] et
des forces non conservatives internes (dissipation) et extérieures : équations du
mouvement de Lagrange dans le cas général sur les dérivées partielles et totales

des énergies et des forces.

3. Linéarisation autour d’une position d’équilibre et développement de Taylor a
I’ordre 2.

4. Dérivation matricielle et distinction suivant les vecteurs d’équilibre et de pertur-
bation : équations du mouvement de Lagrange dans le cas général sous forme

matricielle.

5. Simplification pour un systeme naturel dont les forces circulantes sont négligées.

La convention d’Einstein sera utilisée par la suite. Pour rappel, elle rend implicite les sommes

sur les indices répétés : 3, a;b;; = a;b;j. De plus, pour pouvoir distinguer les tenseurs d’ordres
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différents, les scalaires (tenseurs d’ordre 0) seront notés en italique (a ou A), les vecteurs
(tenseurs d’ordre 1) seront des lettres minuscules en gras et les matrices (tenseurs d’ordre
2) seront des lettres majuscules en gras. Une exception sera faite pour le vecteur des forces
extérieures, noté avec une majuscule F, par soucis de cohérence avec la littérature. Les vecteurs
et les matrices pourront également étre représentés par leurs termes ou leurs vecteurs colonnes
entre crochets : [a;] = a et [a;;] = A = [ay].

Enfin, le terme « systéme » désigne I’ensemble physique discrétisé dont le mouvement est

étudié. Il peut donc s’agir indifféremment d’un point ou d’un ensemble de points.

A.1 Des principes de Newton et d’Hamilton a I’équation du mouvement de

Lagrange

A.1.1 Equation du mouvement de Lagrange pour un systéme discret

Le principe fondamental de la dynamique, ou seconde loi de Newton, permet de modéliser
(i.e. exprimer sous forme d’équations) le mouvement d’un corps par une équivalence entre
la variation de quantité de mouvement dans le temps et la somme des forces appliquées
sur le systéme étudié dans un référentiel supposé galiléen. En mécanique lagrangienne,
ce principe est reformulé pour donner celui de moindre action, ou principe d’Hamilton : la
trajectoire physique obtenue minimise I’action, définie par I'intégrale temporelle du Lagrangien.
Autrement dit, Le principe de moindre action, par la recherche de 'extrémum de 'action,

peut donc étre écrit sous la forme (1.2 de [191]) :

5S =6 : Llu,a,t)dt =0 <= /tt (giéq + %5@) dt =0 (A.2)
avec : ¢ I'opérateur de variation
S Taction
[t1,12] Vintervalle de temps du mouvement étudié
L le lagrangien, différence entre 1'énergie cinétique V' et potentielle T’
L=T-V (11.6 de [191])
u les coordonnées généralisées qui définissent la position du systeme

1 les vitesses généralisées

t le temps

Une intégration par parties permet alors de retrouver les équations de Lagrange en 1’absence de
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sollicitation extérieure, pour un systeme a N degrés de liberté (ou coordonnées généralisées) :

d [OL 0L ,

Si une sollicitation extérieure est appliquée au systeme, les forces généralisées F; peuvent étre

séparées en forces conservatives F; et non conservatives £ . Pour les forces conservatives

ine-
(comme les forces gravitationnelles ou les forces de rappel élastique), le travail virtuel associé
est récupérable car il dépend uniquement de I’état initial et final, et non de 1’évolution entre
ces deux états. Le théoreme de Stokes permet d’exprimer 'intégrale entre 1’état final et
initial des forces conservatives comme dérivées d'un champ potentiel, homogene a une énergie.
En d’autres termes, les forces conservatives peuvent étre directement dérivées de 1’énergie
potentielle V' (1.5 de [192]) :
ov

F, =- e (1, N A4
=G o i€LA] (4.4

Seules restent hors du lagrangien les forces non conservatives, qui dépendent du chemin suivi
)

pour arriver de I’état initial a I’état final (comme les forces de frottement). Les équations du

mouvement de Lagrange pour un systéme discret soumis a une sollicitation extérieure dans

un repere galiléen s’écrivent donc (2.11 de [193]) :

d (0L oL .
T (8%) T 0w F,., , t1€][l,N] (A.5)

A.1.2 Distinction des énergies cinétiques

L’énergie cinétique peut étre décomposée en termes T;, homogenes de degré k par rapport

aux vitesses généralisées 1;, c’est-a-dire que Ty est une fonction de 4% (1.3.1 de [52]) :

T('U/i, T:Lz', t) = TO + Tl + T2 (A6)
avec : Ty ’énergie cinétique d’entrainement
Ty I'énergie cinétique mutuelle

T, I'énergie cinétique relative

T, a la nature des forces de Coriolis ou gyroscopiques et Ty celle des forces centrifuges

(2.12 de [193]). Lorsque les liaisons cinématiques sont indépendantes du temps (liaisons
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scléronomes), les composantes Ty et T; sont nulles. L’énergie cinétique se réduit alors au terme
homogene quadratique (de degré 2) des vitesses généralisées (1.3.2 de [52]) : le systeme est dit
naturel (2.12 de [193]).

Dans le cas général (aucun terme n’est nul), les opérateurs de I’équation de Lagrange (A.5)

appliqués a I'énergie cinétique donnent (7j est a ordre 4, donc indépendante de ;) :

Comme T} dépend de t et des g;, sa différentielle totale est la somme de toutes ses différentielles

on\ _ 0 (01} 0 (T | o )
‘ ((‘%Li) ot (aa,) di du; <8uj> duj , [i,5] € [1,N] (A.8)

Finalement les opérateurs de 1’équation du mouvement de Lagrange appliqués a 1’énergie

partielles :

cinétique donnent :

d (oT\ or o (o1 T, . d (9L\ 0 - )
& ((9111-)_8%; ~ o (au)*auiauj“ﬁdt ((‘M)_@ui To+ i+ T) - figl (LN
(A.9)

Les forces d’inertie d’entrainement, associées a Tj, correspondent aux termes non nuls lorsque
1; = 0; les forces d’inertie relatives sont obtenues dans I’hypothese de liaisons scléronomes
((To,T1) = (0,0)); et les forces d’inertie complémentaires sont constituées des termes non

inclus dans les forces d’inertie précédentes et notées I, (1.3.1 de [52]) :

o on

o = AU T+
e 8u18u3 I auz ’

[i,7] € [1, N]? (A.10)

A.1.3 Expression des forces non conservatives et fonctions de dissipation

Les forces non conservatives des équations du mouvement de Lagrange ();,. comprennent
des forces d’amortissement visqueux et des forces circulantes en plus des forces extérieures
appliquées sur le systeme (4.1 de [193]). Les premieres, qui dérivent d’'une fonction de
dissipation, s’expriment :
oD
=— i€[l,N] (A.11)

lvisc auz ?
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1
avec : D = §Cijaiuj la fonction de dissipation de Rayleigh ([4,] € [1, N]?)

ou les coefficients d’amortissement sont symétriques : ¢;; = c;;

Les forces circulantes sont consécutives a la transmission d’énergie, comme dans les arbres
moteurs, et dérivent d’une fonction qui peut étre exprimée par la superposition de coefficients
symétriques ¢, facteurs des vitesses généralisées quadratiques, et de coefficients antisymétriques
h (hi; = —h;;), facteurs des vitesses et des déplacements généralisés. Les forces d’amortissement
visqueux et circulantes peuvent étre traitées par une seule fonction D*, appelée fonction de
dissipation de Rayleigh modifiée (4.1 de [193]) :

oD*
Evisc + Ecirc = - a ) Z S [17N] (A12)
U;
1
avec . D>)< = 50:}%1’&] =+ hZ]UZU] , [l,j] & [1,N]2
ol : ¢j; = cij + c;j

Les forces non conservatives extérieures restantes sont notées F;.

A.1.4 Equations de Lagrange : cas général et simplification des systémes natu-

rels

Pour un systéme non conservatif a liaisons cinématiques holonomes rhéonomes (donc (7o, 1) #
(0,0)), en développant dans 1’équation de Lagrange (A.5) les expressions de I’énergie ciné-

tique (A.9) et des forces non conservatives (A), il reste (1.4 de [52]) :

o

dt \ ou, 90 ) T on " ow, T ow, ~ FW)* Fiy €L N] (A.13)

gyr

d <8TQ> 0 <0T1> oD* 0T, 0V~

avec : u; les coordonnées généralisées
T, 'énergie cinétique relative
T, I'énergie cinétique mutuelle (gyroscopique)
V* =V — Ty le potentiel dynamique (4.4 de [193])
(V T’énergie potentielle et Ty 1'énergie cinétique d’entrainement ou centrifuge)
D* la fonction de dissipation de Rayleigh modifiée (amortissement et forces circulantes)
F; les forces extérieures généralisées non conservatives
F;

o 168 forces d’inertie complémentaires ou forces gyroscopiques généralisées
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Cette formulation développée, bien que peu rencontrée, peut étre utile pour déterminer
rapidement 1’équation du mouvement dans le cas de conditions aux limites particulieres. Pour

les liaisons scléronomes (i.e. pour un systéme naturel), T et 7} étant nulles, il reste :

d <8T2> o av—ﬂ(t) ie[1,N] (A.14)

_ _|_ —
A.2 Linéarisation au second ordre autour d’une position d’équilibre

A.2.1 Energie potentielle pour un systéme conservatif

Par définition de la stabilité au sens Lagrange-Dirichlet, la position d’équilibre d'un systeme

conservatif est solution de :

ov
=0 , i€[l,N A5
o i€ LN (A15)
avec : V I'énergie potentielle (A.16)
Soient u; = u les écarts de position par rapport a une configuration d’équilibre. Sous

I'hypothese V' € C?(R) (i.e. V est deux fois continument dérivable), le développement en

série de Taylor de I’énergie potentielle en 0 (ou série de MacLaurin) est :

ov

N . 1 9*V
8ui Y

iy +o(uw?)  [i,j] € [1,N]? (A.17)

u=0 u=0

Avec o(u?) qui représente une fonction négligeable devant u?, suivant la notation de Landau.
Par convention, la constante Vj est prise nulle et en injectant la condition de stabilité il reste

une approximation du second ordre (2.1.1 de [52]) :

Viw) = ghyag . i) € [LNP (A18)

avec : V(u) > 0 pour u # 0

2
kij = 07‘/ les coefficients de raideur
8ui8uj u=0

kij = kj; puisque les indices sont muets

A.2.2 Cas général et dérivations

Le systeme est considéré non naturel pour éviter toute perte de généralité : (Tp, 1) # (0,0).

Soit le vecteur des déplacements généralisés autour d’une position d’équilibre : u(t) =
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up +uy (t), avec le vecteur constant ug, qui représente la configuration d’équilibre, et le vecteur

des perturbations u; (donc a(t) = w;(t)).

Les énergies cinétiques mutuelle 77 et relative T; ne dépendent respectivement que de 1; et
u2. Leur développement en série de Taylor a ’ordre 2 donne :
B T, 1 82T2

- . _ - _— .9 . 2
. u+o(a) et T 2781'@12]»%% —l—o(u) . [i,7] € [1,N] (A.19)

T

Soit, en négligeant les termes d’ordre supérieur et en introduisant les notations feor, et m;;

1
T = feor,ti et To= Emijuiﬂj , lig) € [1,NP? (A.20)
avec : feor; de la méme nature que la force de Coriolis (2.12 de [193]),

mi; les coefficients d’inertie (2.1.1.b de [52]).
Par rapport au vecteur de perturbations wuy, 77 et T s’expriment donc (4.4 de [193]) :

. . 1. )
T1 = ulecor() + u-lercorql et TQ = QUIMul (A21)

afcori

avec : Facor = [fcori,j] - [ O
J

] et M = [m;;] = M (uy)

u=ug

Le potentiel dynamique V* =V — Ty peut également étre développé en séries de Taylor pour

donner, apres avoir négligé les termes d’ordre supérieur :

ov* 1
u=ug
O*V*
K== L
avec [ l]] aulauy -

Cette fois-ci, les coefficients de raideur k* comprennent les coefficients de raideur élastique
issus de V, et les coefficients de raideur géométrique issus de Ty (4.4 de [193]). Comme

précédemment, la constante V* (ug) sera négligée par la suite.

Enfin, la fonction de dissipation de Rayleigh modifiée exprimée en fonction du vecteur des

déplacements généralisés donne :

1 1
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Donc, en fonction de la configuration d’équilibre et du vecteur de perturbations :

1
D* = 5ulTD*u1 + 1) Hug + v Huy (A.24)

avec : D" = [cj;] et H = [hy]

Les différents termes doivent alors étre dérivés, comme dans 1’équation de Lagrange suivante :

d (0L oL 0D
— — =F A.25
dt <8111> 8111 + aul ( )
avec : L=T,+ T, -V~
1 ov* 1
L= qucoro + uIchorul + *l'lIMl'll — ulT —_— — fulTKul
2 oa | .. 2

Propriétés de dérivation matricielle

() _9(w)

Soient v et w deux vecteurs a coefficients réels : = =W
ov ov
0 (VTMV)
Soient v un vecteur et M une matrice carrée, tous deux a coefficients réels : — v -
Y
(M+MT)v
0 (VTMV>
Cas particulier : si M est symétrique : v 2Mv
v

D’autre part, par propriété de la transposée (2.1 de [69]) : (AB)T = BTAT. Dot :

0 ((4TFsur)m) 2 (o] (#TFur) )

= (uf T — T T\T _ T.
8111 o aul = (U1 chor) = chor (ul) = chor u; (A26)

Ce qui permet d’obtenir (M, K sont carrées symétriques) :

oL
A — lcoro + chorul + Mul
aul
d (0L
— | =F cor ; My
dt <5’f11) teorth T A.27
O oy OV . (A.27)
— = u; — — K*u
ouy deor T ou _— !

= D*u1 -+ HU.(] -+ HLI1
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A.2.3 Equations de Lagrange

En injectant les résultats (A.27) dans I’équation perturbée (A.25), les termes selon qo donnent
I'équation d’équilibre (i.e. de stabilité) pour un systéme non conservatif :

ov*

u=ug

D’autre part, les termes selon le vecteur de perturbation u; permettent d’exprimer 1’équation
de Lagrange linéarisée (4.4 de [193]) :

Mii + (D" + G)a + (K* + Hju = F (A.29)

avec : u le vecteur des coordonnées généralisées

du

ot

2

T o

u= le vecteur des vitesses généralisées

a le vecteur des accélérations généralisées

2
. 0°T,
M la matrice de masse, de composantes m;; = m;; = S
Buiau]— _
u=ug
D" la matrice d’amortissement, de composantes c;; = cj;

G la matrice gyroscopique, G = Fgeor — F!

dcor
oT;
avec les composantes fqcor;; = [ fcor”} et feor, = a—l
: s
H la matrice circulante, de composantes h;; = —hj;
o2V

K” la matrice de raideur, de composantes k;; = k, =
8ui8uj sl

ou le potentiel dynamique V* =V —Tj

F le vecteur des forces non conservatives extérieures
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A.3 Equation du mouvement pour un systéme naturel discrétisé, sans forces

circulantes

Par la suite, les liaisons seront prises scléronomes (systéme naturel) :

T:TQ — GZO
Vi=V = K'=K

(A.30)

De plus, les forces circulantes seront négligées devant les autres forces non conservatives :
D* = D et H = 0. L’équation du mouvement (A.29) obtenue dans le cas général devient

donc :

Mii + Du+Ku=F (A.31)

avec : u le vecteur des coordonnées généralisées

2
: 0Ty
M la matrice de masse, de composantes m;; = mj; =
u=ug

01,01,
D la matrice d’amortissement, de composantes ¢;; = c;;

0?V
K la matrice de raideur, de composantes k;; = kj; = ((’98)
U; Uj Ty

F le vecteur des forces non conservatives extérieures

A noter que, contrairement a D, les matrices M et K sont symétriques définies positives par
définition de leurs composantes (qui sont des doubles dérivations sur des indices muets), et

non par hypothese.
cqfd.

A.4 Discussion sur les hypothéses dans le cadre de la présente recherche

Les hypotheses utilisées pour obtenir I’équation du mouvement (A.31) sont :

1. référentiel supposé galiléen, i.e. inertiel; autrement dit l’espace est isotrope (donc

homogene) et le temps est homogene (mais pas isotrope) (1.3 de [191})

2. systeme discret
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3. matrice d’amortissement D symétrique définie positive, i.e. inversible et ses valeurs

propres sont réelles strictement positives, et a coefficients constants dans le temps

4. petits déplacements et petites perturbations a partir d’une position d’équilibre (linéari-
sation a 'ordre 2)

5. systéme naturel (liaisons scléronomes) : I’énergie cinétique se réduit au terme homogene
quadratique des vitesses généralisées (1.3.2 de [52])

6. forces circulantes sont négligées devant les autres forces non conservatives

Elles peuvent étre classées en trois catégories :

Toujours valables par définition du probleme physique : hypotheses 1, 2 et 3
Nécessaires mais potentiellement limitantes pour une généralisation : hypothese 4

Qui pourraient étre relaxées en enrichissant le modele mais qui sont posées dans

un premier temps a des fins de simplification : hypotheses 5, 6

Physiquement, deux hypotheses ont des implications directes sur les simulations de vibrations
d’une aube avec les équations du mouvement définies. Elles définissent le contexte de travail

et la validité des résultats :

Plages de vitesses de rotation élevées : négliger les forces centrifuges (hypothese
6) revient a travailler avec des géométries d’aubes & chaud, i.e prédéformées par le

chargement statique

Déplacement calculé limité : le déplacement calculé en bout d’aube ne devra pas

excéder 10% du rayon de 'aube pour étre admissible (hypothese 4)

Le but de I’étude étant d’étudier les configurations qui induisent des interactions vibratoires,
et non de donner des valeurs d’amplitudes du mouvement, I’hypothése 4 ne sera donc pas
limitante dans ce cadre. En revanche il conviendra de s’assurer que les résultats exposés

restent dans le cadre qu’elle définit.
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ANNEXE B MATRICES DE MASSE ET DE RAIDEUR DANS LA BASE
MODALE

Afin d’obtenir ’expression des matrices masses et raideur dans la base modale, le probleme aux
valeurs propres généralisé peut étre reformulé en un probleme aux valeurs propres classique, a

partir duquel la diagonalisation est effectuée par un changement de base classique.

M étant symétrique définie positive, elle peut étre écrite sous la forme de la factorisation de
Cholesky (7.2 de [69] et 4.6 de [193]) :

M=TT" (B.1)
avec : T une matrice triangulaire supérieure dont les termes diagonaux sont positifs

TT sa transposée, triangulaire inférieure

Les matrices triangulaires T et TT sont inversibles (non singulieres) puisque M l'est (3.18

de [194]).

1
En posant le vecteur v = TTU <<= U = (TT) v, le probléme aux valeurs propres

devient :

KU - wMU=0 < K(T7) ' v-oT.T7 (T7) 'v=0 (B.2)
<~ T 'K (TT)i1 v =wv (B.3)

—1
Soit la matrice A = T™'K (TT> , le probleme aux valeurs propres généralisées a bien été

reformulé en un probléme aux valeurs propres simple par rapport a cette matrice, puisque :

Ku — w’MU =0 <= Av =w’v (B.4)

La matrice A étant un produit de matrices réelles diagonalisables, elle I'est également (7.42
de [194]). La résolution du probléme aux valeurs propres donne sa base de diagonalisation

orthonormée formée par ses vecteurs propres v; ainsi que ses valeurs propres w? pour ¢ € [1, N].

Pour retrouver une expression dans cette base des matrices M et K, les vecteurs U; sont posés
Z1
tels que : U; = (TT) U;. Sa transposée s’exprime alors : U;' = v;TT~!; par les propriétés

de la transposée par rapport a la multiplication matricielle (3.17 de [194]).

En reprenant I’écriture de M par la factorisation de Cholesky (B.1), elle peut étre exprimée
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en fonction des Uj :

—~
oS
ot

~—

U™™MU; =v,"T"' (TT") (TT)_l Vi

= ViTVi

—~
w0
D

~—

Puisque les vj, en tant que vecteurs propres d’un probleme aux valeurs propres classique
7 ?

forment une base orthonormale (6.2 de [69)]) :

ViTVi = 52‘]’ (B7)

D’ou finalement :
U;"MU; = 6 (B.8)

Puis, en utilisant cette expression pour reformuler K dans le probléme aux valeurs propres, il

vient :

KU; = w’MU; < U;'KU; = w’U;"MU; (B.9)
— U;"KU; = wl§; (B.10)

La résolution du probleme aux valeurs propres généralisé passe donc par le calcul des vecteurs

U;. Ceux-ci ne sont pas orthonormaux, contrairement aux v;. En revanche, comme ils sont
, . —1 . .7 N J A . s

définis tels que (MU;)"" = Uj, la notion d’orthogonalité peut étre généralisée et les vecteurs

U; sont dits M-orthonormauz.

Finalement, en définissant la base modale M-orthonormée ® = [Uy, ..., U], les expressions
de M et K deviennent :

"M =1 (B.11)
OKP = w? (B.12)
avec : I = diag(1) la matrice identité dans RY

w = diag (wy, ..., wN)

cqfd.
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ANNEXE C ECART-TYPE D’UNE DISTRIBUTION DE PROBABILITE
UNIFORME

L’expression de I’écart-type pour une distribution uniforme sur un segment [a, b] peut étre
trouvée par généralisation de celle obtenue pour une distribution uniforme standard, sur [0, a
(2.3.1 de [66]).

La densité de probabilité d’une loi continue uniforme sur un segment [a, b] est donnée par :

1
Fo) = {b — sur [a, b], 1)

0 ailleurs

L’écart-type o(X) est relié a la densité de probabilité par I'espérance E(X), selon (2.1.4.2
de [66]) :
o*(X) =V(X) = E(X?) - (BE(X))’ (C.2)

Pour une loi de probabilité continue, I’espérance peut étre calculée avec (2.1.4.1 de [66]) :

Bx) = [ T e f(@)dX (C.3)

—00

Dans le cas de la loi continue uniforme sur [a, b], il vient donc :

boX x21" 1 —a?\ 1  (b—a)b+a) 1
E<X)_/ab—adx_[2]ab—a_< 2 )b—a_ 2 b—a (C4)
b+ a
= (C.5)
et :
boX? 23] 1 B—a* 1 (b—a)(a®+b*+ab) 1
2 — — - — —
E(X7) = ab—adx_[B]ab—a ( 3 )b—a 3 b—a
(C.6)
_a2—|—62—|—ab (.7)

3



ainsi :

@’ + b0 +ab  (b+a)®* (a+b)>—ab (b+a)?

V) == ' 3 1
= = (a4~ dab) = - (a® + 87 — 200)
(a—b)?
12
Comme a < b :
(a—b)2 =b—a

ce qui permet d’obtenir I'expression de I’écart-type :

Dans le cas du désaccordage, le segment pour le tirage aléatoire est défini :

[a,b] = [Eo(1 — dE), Eo(1 + dE)]

Il vient ainsi :

2FydE
o(dE) = v}
Soit, adimentionné par la valeur nominale Fj :
2dFE
Uadim(dE) = ﬁ

187

(C.8)
(C.9)

(C.10)

(C.11)

(C.12)

(C.13)

(C.14)

(C.15)

cqfd.
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ANNEXE D INVERSIBILITE DE 2M + hD

La matrice de masse M est symétrique définie positive par définition (voir la démonstration
en annexe A). En outre, la matrice d’amortissement est symétrique définie positive dans
I'espace physique, par définition du probléme physique (hypotheése 3). Le pas de temps h
étant un scalaire, il vient que la matrice [2M + hD] est symétrique définie positive. Elle peut
donc étre écrite sous la forme de la factorisation de Cholesky (7.2 de [69] et 4.6 de [193)) :

[2M + hD] = T.T" (D.1)
avec : T une matrice triangulaire supérieure dont les termes diagonaux sont positifs

TT sa transposée, triangulaire inférieure

Une matrice est inversible si et seulement si son déterminant est non nul (3.2 de [69]). Or :

det (T.TT) = (det T) (det TT) (D.2)
(par propriété de morphisme du déterminant (3.2 de [69]))

= (det T)? (D.3)

(car det TT = det T (3.2 de [69]))

=TI (73) (D.4)

=1
(car T est triangulaire (3.1 de [69]))

Comme les éléments diagonaux des matrices de masse et d’amortissement sont strictement

positifs (i.e. non nuls), ceux de T le sont également a fortiori. Finalement :
N
[1(73) #0 et det(T.TT) =det[2M + hD] | <= [2M + hD] inversible (D.5)
=1

cqfd.
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ANNEXE E MATRICE DE REDUCTION DE CRAIG-BAMPTON

La méthode de Craig-Bampton repose sur 'utilisation de modes propres a interface fixe et de
modes statiques afin de construire un modele réduit représentatif du modele complet initial.
Cette méthode permet de conserver tous les ddl physiques dits « frontieres » et d’appliquer
une réduction sur les ddl modaux restants. La construction de la matrice de réduction ¥¢cp

est détaillée dans ce qui suit.

E.1 Modes propres a interface fixe

En réorganisant les matrices suivants les ddl internes et frontiere, il vient :

U Vg W
£l _ ff fi| |Pf (E.1)
U; Wi Wil |Pi
avec f qui désigne les ddl frontiere, et i les ddl internes. En notation systeme :
Us = Wgpr + Yaps (£.2)
U; = Wiepr + Wiipi
comme les ddl frontiére doivent étre conservés par le changement de base, il vient :
U = Pt <— \Ilﬁ = Onf,ni et ‘I’ﬁ' = Inf (E?))

avec : 0y, »,la matrice nulle de dimension (ny, n;)

I,,,la matrice carrée identité de dimension (ny,ny)

Il reste donc a déterminer les expressions de Wy et Wye. Les ddl frontieres restant accessibles
dans la base modale, les modes tels que ps = Ug = 0,1 permettent de déterminer Wy, ce qui
revient a encastrer les ddl frontiere. D’ou I'appellation de « modes a interface fixe » (17.6.1
de [93]). Le vecteur des amplitudes U, pour les modes a frontiere encastrée, ou « modes

encastrés », vérifient alors :

(K- w’M)U, =0 (E.4)
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soit, en distinguant les ddl internes et frontiere :

Ke Ks e Mg Mg On, 1 _
K¢ Kj M;e M U,

Kﬁ‘ — wQMff Kﬁ — (,u2Mﬁ Onf,l _ Onf,l (E 6)
K¢ — WQMif K — WQMii Oni,l '

[0”f"1] (E.5)

Oni,l

La derniere équation du systeme équivalent est alors :

(Kii — W2Mii> Ue, = 0,1 (E.7)
qui revient a un probleme aux valeurs propres généralisé :

det (Ky — w”Mj;) = 0y, (E.8)

Une base modale Mj;-orthonormée des vecteurs propres du couple de matrices (Kj;, Mj;) peut

étre exprimée :

(I)e = [Uei:l? LS Ueini] = \Ilii (Eg)
avec : @, M;; P, = L,

. . ) (E.10)
®, ' K;®. = w” = (diag (w1, ..., wn,))

En remplagant les expressions définies dans 1’équation de changement de base (E.1), il reste :

Uf o Inf Onf,ni
Uil | @

Pour obtenir une base modale, il faut ajouter une équation supplémentaire afin de déterminer

pf] (E.11)
Pi

W;r. Comme pr = Uy et en utilisant la premiére équation du systeme (E.2), il s’agit alors de

trouver une relation entre U; et Uy.

E.2 Enrichissement de la base avec les modes statiques

La méthode de Craig-Bampton revient a enrichir la base modale avec les modes statiques
du systeme. Lorsque le systéme est statique, sa vitesse et son accélération généralisées u et
u sont nulles. De plus, comme un mode propre est recherché, le systéme est considéré non

amorti. L’équation du mouvement se simplifie donc pour obtenir le probleme statique suivant
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sur le vecteur des amplitudes Ug, avec les matrices organisées en ddl internes et frontiere :

Ke Ka| |Us|
Ki Kil |Ug|

avec : Fy¢ les forces appliquée par 'extérieur sur les frontieres du systeme (F; = 0,,, 1
y i

F¢

E.12
0., (E.12)

La seconde équation du systeme équivalent revient a une condensation statique (6.9.2 de [49]) :

KiiUs, + KifUs, = Op,; 1 (E.13)
U, = —K;i 'K U, (E.14)

(K est carrée inversibles)

Or les coordonnées modales ont été construites afin de conserver les ddl frontiere physiques

(Us, = pr). Finalement :

Usi = @Spf (E15)
avec : (bs = —KiiilKif

La matrice de passage de Craig-Bampton non réduite permet ainsi de passer de la base
physique une base hybride, a la fois physique et modale :

Uf Inf Onf M
U;

P, P,

Uf] (E.16)
Pi

avec : Uj et Uy les amplitudes physiques respectivement des ddl internes et frontiere
pi les amplitudes modales des ddl internes
dim (U;) = dim (p;) = (n;,1) ;  dim (Ug) = dim (pg) = (ny, 1)
®, base des modes encastrés, My;-orthonormée et calculée avec (E.8)
avec dim (®e) = (ny, n;)
&, = —K;; 'Kj¢ les modes statiques, avec dim (®5) = (n;, ny)
01, la matrice nulle de ny lignes et n; colonnes

L,, = diag, (1) la matrice identité de dimension ny
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E.3 Réduction sur les modes encastrés

Dans I’équation de changement de base (E.16), il apparait que la base des modes encastrés ®,
est carrée de dimension n, alors que celle des modes statiques ®¢ ne contient que ny colonnes.
Le nombre de ddl aux frontieres étant bien inférieurs au nombre de ddl internes (ny < n;) la
matrice de passage des coordonnées physiques aux coordonnées modales pourrait étre réduite
en ne conservant que certains modes statiques. La matrice @, correspond alors aux 7 modes
statiques (ou colonnes) retenus de ®.. La matrice de réduction Wcp est ainsi définie :

0

ng,n

(E.17)

permettant de passer d’'une matrice de passage de dimension (n; + ng,n; +ny) = (n,n) dans
I'équation (E.16) a une matrice réduite de dimension (n; +ng,n+ns) = (n,n+nys). Le
changement de la base physique a la base réduite (en partie physique et en partie modale)

donne ainsi :

U U
| =%cp| | =P, (E.18)
Ui Pn

avec : U, le vecteur réduit

cqfd.

Remarque. Wy n’étant pas carrée, elle n’est pas inversible. Elle permet donc de

passer de la base réduite a la base physique, mais pas inversement.
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ANNEXE F SOUS-ECHANTILLONNAGE DES SIGNAUX DE BTT

Dans le cadre d'une acquisition de BT'T, le déplacement d’une aube donnée est relevé n,. fois

pour chaque rotation, avec n. le nombre de capteurs sur la circonférence du carter. Comme le

théoreme d’échantillonnage de Nyquist-Shannon stipule que la fréquence d’échantillonnage

doit étre supérieure au double de la fréquence maximale présente dans le signal pour permettre

une représentation discréte de celui-ci [138], il faudrait que la condition suivante soit respectée :
fr

nc? > fmax

avec f,. la fréquence de rotation et f.x la fréquence maximale qui compose le signal de
déplacement en sommet d’aube. La fréquence de rotation nominale d’une roue aubagée de
compresseur étant de 'ordre de 50 Hz, et les fréquences qui composent le signal f,.« > 1000 Hz,
40 capteurs répartis sur toute la circonférence du carter seraient nécessaires afin d’obtenir
toute I'information contenue dans le signal. Les signaux obtenus par la technique de BTT,
usuellement sur 2 a 4 capteurs, sont donc fortement sous-échantillonnés, ce qui induit un
repliement de spectre, comme illustré sur la figure F.1, et vient fausser ’évaluation de la

fréquence de vibration des aubes [165].

} }

Figure F.1 Concept de repliement de spectre : le signal souhaité ( ) est capté & un nombre
d’instants limité (--- ), faussant son approximation ( — ).



	DÉDICACE
	REMERCIEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE DES MATIÈRES
	LISTE DES TABLEAUX
	LISTE DES FIGURES
	LISTE DES SIGLES ET ABRÉVIATIONS
	LISTE DES ANNEXES
	1 INTRODUCTION
	1.1 Considérations générales
	1.2 Problématique
	1.3 Objectifs de recherche
	1.4 Organisation du mémoire

	2 ÉTAT DE L'ART SUR LA MODÉLISATION DES VIBRATIONS DES ROUES AUBAGÉES
	2.1 Analyse modale
	2.1.1 Roues accordées
	2.1.2 Roues désaccordées

	2.2 Vibrations forcées en contexte linéaire
	2.2.1 Roues accordées
	2.2.2 Roues désaccordées

	2.3 Réduction des systèmes à grand nombre de degrés de liberté
	2.3.1 Symétrie cyclique
	2.3.2 Synthèse modale
	2.3.3 Spécificité des roues désaccordées

	2.4 Vibrations forcées des roues accordées dans un contexte non-linéaire
	2.4.1 Frottements et contacts dans les turbomachines
	2.4.2 Traitement numérique en éléments finis

	2.5 Vibrations forcées des roues désaccordées en contexte non-linéaire
	2.5.1 Interfaces entre composants du rotor

	2.6 Interfaces entre le rotor et le stator - Intérêt de recherche

	3 MODÈLE PHÉNOMÉNOLOGIQUE
	3.1 Modélisation
	3.1.1 Réduction modale
	3.1.2 Amortissement
	3.1.3 Traitement du contact
	3.1.4 Prise en compte du désaccordage

	3.2 Analyse pour une roue aubagée désaccordée
	3.2.1 Simulations de contact
	3.2.2 Cartes d'interaction
	3.2.3 Fonctions de réponse en fréquence non-linéaire
	3.2.4 Convergence temporelle et spatiale

	3.3 Analyse de calculs stochastiques
	3.3.1 Convergence
	3.3.2 Amplification des vibrations
	3.3.3 Analyse croisée pour nd=4
	3.3.4 Influence de l'amortissement

	3.4 Co-existence de solutions stables
	3.5 Bilan

	4 MODÈLES RÉDUITS DÉSACCORDÉS AVEC INTERFACE DE CONTACT
	4.1 Méthodologie
	4.1.1 Méthode CMM initiale
	4.1.2 Méthode CMM avec interface de contact

	4.2 Modèle académique
	4.2.1 Analyse statique
	4.2.2 Analyse modale

	4.3 Modèle industriel
	4.3.1 Description
	4.3.2 Simulations de contact
	4.3.3 Sensibilité aux paramètres

	4.4 Bilan

	5 CARACTÉRISATION DU COMPORTEMENT VIBRATOIRE D'UNE ROUE AUBAGÉE INDUSTRIELLE DÉSACCORDÉE
	5.1 Configuration linéaire
	5.2 Configuration non-linéaire
	5.2.1 Scénario de contact
	5.2.2 Amplification des vibrations
	5.2.3 Comportement vibratoire
	5.2.4 Efforts de contact et usure
	5.2.5 Contraintes

	5.3 Bilan

	6 GÉNÉRATION DE DONNÉES DE BLADE TIP-TIMING
	6.1 Concept et application dans la littérature
	6.1.1 Chaîne d'acquisition
	6.1.2 Traitement des signaux
	6.1.3 Prise en compte du désaccordage
	6.1.4 Génération numérique de signaux

	6.2 Extension à un cadre de non-linéarités de contact
	6.2.1 Méthode et validation
	6.2.2 Application à un modèle phénoménologique
	6.2.3 Application à un modèle industriel

	6.3 Bilan

	7 CONCLUSION
	RÉFÉRENCES
	ANNEXES

