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RESUME

La spectroscopie proche infrarouge fonctionnelle (fNIRS) est apparue comme une technique de
neuroimagerie qui permet une surveillance non invasive et a long terme de I'hémodynamique
corticale. Les technologies de neuroimagerie multimodale en milieu clinique permettent d'étudier
les maladies neurologiques aigu€s et chroniques. Dans ce travail, nous nous concentrons sur
'épilepsie - un trouble chronique du systéme nerveux central affectant prés de 50 millions de
personnes dans le monde entier prédisposant les individus affectés a des crises récurrentes. Les
crises sont des aberrations transitoires de l'activité¢ électrique du cerveau qui conduisent a des
symptomes physiques perturbateurs tels que des changements aigus ou chroniques des
compétences cognitives, des hallucinations sensorielles ou des convulsions de tout le corps.
Environ un tiers des patients épileptiques sont récalcitrants au traitement pharmacologique et ces
crises intraitables présentent un risque grave de blessure et diminuent la qualité de vie globale.
Dans ce travail, nous étudions 1. 'utilité¢ des informations hémodynamiques dérivées des signaux
fNIRS dans une tidche de détection des crises et les avantages qu'elles procurent dans un
environnement multimodal par rapport aux signaux €lectroencéphalographiques (EEG) seuls, et 2.
la capacité des signaux neuronaux, dérivé de I'EEG, pour prédire I'hémodynamique dans le cerveau
afin de mieux comprendre le cerveau é€pileptique. Sur la base de données rétrospectives EEG-
fNIRS recueillies auprés de 40 patients épileptiques et utilisant de nouveaux modeles
d'apprentissage en profondeur, la premiére étude de cette these suggere que les signaux fNIRS
offrent une sensibilité et une spécificité accrues pour la détection des crises par rapport a I'EEG
seul. La validation du modele a été effectuée a 1'aide de 1'ensemble de données CHBMIT open
source documenté et bien référencé avant d'utiliser notre ensemble de données EEG-fNIRS
multimodal interne. Les résultats de cette é¢tude ont démontré que fNIRS améliore la détection des
crises par rapport a 'EEG seul et ont motivé les expériences ultérieures qui ont déterminé la
capacité prédictive d'un modele d'apprentissage approfondi développé en interne pour décoder les
signaux d'état de repos hémodynamique a partir du spectre complet et d'une bande de fréquences
neuronale codée spécifique signaux d'état de repos (signaux sans crise). Ces résultats suggeérent
qu'un autoencodeur multimodal peut apprendre des relations multimodales pour prédire les signaux
d'état de repos. Les résultats suggerent en outre que des gammes de fréquences EEG plus ¢élevées
prédisent I'hémodynamique avec une erreur de reconstruction plus faible par rapport aux gammes

de fréquences EEG plus basses. De plus, les connexions fonctionnelles montrent des modeles
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spatiaux similaires entre 1'état de repos expérimental et les prédictions fNIRS du modele. Cela
démontre pour la premiere fois que I'auto-encodage intermodal a partir de signaux neuronaux peut
prédire 'hémodynamique cérébrale dans une certaine mesure. Les résultats de cette thése avancent
le potentiel de 1'utilisation d'EEG-fNIRS pour des taches cliniques pratiques (détection des crises,
prédiction hémodynamique) ainsi que l'examen des relations fondamentales présentes dans le
cerveau a l'aide de modeles d'apprentissage profond. S'il y a une augmentation du nombre
d'ensembles de données disponibles a I'avenir, ces modeles pourraient €tre en mesure de généraliser
les prédictions qui pourraient éventuellement conduire a la technologie EEG-fNIRS a étre utilisée
régulicrement comme un outil clinique viable dans une grande variét¢ de troubles

neuropathologiques.
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ABSTRACT

Functional near-infrared spectroscopy (fNIRS) has emerged as a neuroimaging technique that
allows for non-invasive and long-term monitoring of cortical hemodynamics. Multimodal
neuroimaging technologies in clinical settings allow for the investigation of acute and chronic
neurological diseases. In this work, we focus on epilepsy—a chronic disorder of the central nervous
system affecting almost 50 million people world-wide predisposing affected individuals to
recurrent seizures. Seizures are transient aberrations in the brain's electrical activity that lead to
disruptive physical symptoms such as acute or chronic changes in cognitive skills, sensory
hallucinations, or whole-body convulsions. Approximately a third of epileptic patients are
recalcitrant to pharmacological treatment and these intractable seizures pose a serious risk for
injury and decrease overall quality of life. In this work, we study 1) the utility of hemodynamic
information derived from fNIRS signals in a seizure detection task and the benefit they provide in
a multimodal setting as compared to electroencephalographic (EEG) signals alone, and 2) the
ability of neural signals, derived from EEG, to predict hemodynamics in the brain in an effort to
better understand the epileptic brain. Based on retrospective EEG-fNIRS data collected from 40
epileptic patients and utilizing novel deep learning models, the first study in this thesis suggests
that fNIRS signals offer increased sensitivity and specificity metrics for seizure detection when
compared to EEG alone. Model validation was performed using the documented open source and
well referenced CHBMIT dataset before using our in-house multimodal EEG-fNIRS dataset. The
results from this study demonstrated that fNIRS improves seizure detection as compared to EEG
alone and motivated the subsequent experiments which determined the predictive capacity of an
in-house developed deep learning model to decode hemodynamic resting state signals from full
spectrum and specific frequency band encoded neural resting state signals (seizure free signals).
These results suggest that a multimodal autoencoder can learn multimodal relations to predict
resting state signals. Findings further suggested that higher EEG frequency ranges predict
hemodynamics with lower reconstruction error in comparison to lower EEG frequency ranges.
Furthermore, functional connections show similar spatial patterns between experimental resting
state and model fNIRS predictions. This demonstrates for the first time that intermodal
autoencoding from neural signals can predict cerebral hemodynamics to a certain extent. The
results of this thesis advance the potential of using EEG-fNIRS for practical clinical tasks (seizure

detection, hemodynamic prediction) as well as examining fundamental relationships present in the
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brain using deep learning models. If there is an increase in the number of datasets available in the
future, these models may be able to generalize predictions which would possibly lead to EEG-

fNIRS technology to be routinely used as a viable clinical tool in a wide variety of

neuropathological disorders.
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CHAPTER 1 INTRODUCTION

Following the quantitative derivation of axonal membrane currents by Hodgkin and Huxley in
1952, [1] dynamics between mathematical modeling and physiological systems has evolved to
better understand the inner workings of the human brain. Advances in machine learning,
particularly deep learning are well suited to address many questions in classical and applied
neuroscience. One such central question is: “Can methods be developed to predict interactions
between physiological parameters within networks of neurons?”. Key electrophysiological
mechanisms, including how neurons and their synaptic connections operate have been discerned.
The existing interplay and consequent prediction of the behavior of neuronal populations during
an active and resting brain state is at the forefront of present computational neuroscience research.
In this thesis, questions related to the application of the central question above with respect to
epilepsy, a common neurological disease are explored. More precisely, this thesis focuses on
exploring the utility multimodal neuroimaging technology offers for potential clinical use, as well

as its ability to answer fundamental questions in human brain research.

Among the available multimodal neuroimaging techniques, scalp electroencephalography
(EEG) and functional near infrared spectroscopy (fNIRS) signals are used in this thesis. EEG
signals provide information related to cerebral electrical activity, whereas fNIRS signals help to
elucidate cerebral hemodynamic information. Both are complementary and could be useful in
clinical applications for example in: a) the long-term bedside monitoring of patients who are at risk
for seizures (i.e., in critical care unit settings); and b) basic and/or clinical investigations of resting-
state brain connectivity in normal and pathological populations. In this thesis, machine learning
and in particular deep learning is used to bypass traditional forms of signal processing which may
be too cumbersome and difficult to solve. This chapter provides: 1) a background on epilepsy and
seizures, and rationale for long term brain monitoring, 2) the neurovascular coupling phenomenon
and research in epilepsy, 3) a discussion on multimodal neuroimaging, and 4) a general overview
of deep learning methods. The subsequent chapters give more background on the particular

methods used in the thesis.

1.1 Epilepsy and seizures



Approximately sixty million people world-wide are diagnosed with epilepsy. In North
America alone, epilepsy affects about 3 million people and is the third most common
neurological disorder after Alzheimer's disease and stroke. Medically intractable seizures persist
in almost 1.2 million epileptic patients, characterized by frequent and unpredictable seizures,
despite pharmacological treatment by one or multiple anti-epileptic drugs [2]. Medically
intractable seizures severely limit the independence and mobility of an individual and, as a
consequence, can result in decreased quality of life parameters. Epilepsy’s economic burden in
terms of health care costs and the consequent loss in economic productivity nears 12.5 billion
USD [3]. Thus, automated seizure onset detection systems allow for the engineering of novel
therapeutic and alerting systems that can ease this burden. Eventually, a therapeutic system

capable of detecting and reacting to seizure onset could mitigate frank seizure progression.

The following section briefly describes seizure monitoring using scalp EEG technology as
well as unmet needs in seizure monitoring and detection. Although invasive monitoring methods

can be useful for seizure monitoring, they are outside the scope of this thesis.

1.2 Seizure monitoring

Combined with a careful and thorough clinical examination of an epileptic patient, the scalp
EEG has established itself as the clinical gold standard in seizure monitoring as it offers a
continuous, non-invasive, safe, cost-effective, and reliable method for aiding diagnosis of epilepsy
by determining electrical changes in the brain [4]. The scalp EEG method can be used in a variety
of clinical settings ranging from the emergency room, epilepsy monitoring, critical care and neuro-

intensive care units to name a few [5].

1.2.1 Long term monitoring

Long term monitoring allows for the early detection of electrical and physiological
disturbances indicative of seizure events, so that timely medical intervention can salvage viable
brain tissue and prevent secondary neurological injury [6]. Long term EEG recordings may be
required in comatose patients, those with noted EEG abnormalities [7], and patients in intensive or
neuro-intensive care units [5], [8] as prolonged EEG recordings offer a useful adjunct to other
clinical interventions in these patients [9]. Long term continuous scalp EEG monitoring in

comparison to routine EEG, has been noted to detect seizures in approximately 27% of critically



ill patients within the first 24 hours of admission, as compared to 11% detection in recordings

performed with conventional EEG protocol in the same patient population [10].

While the continuous scalp EEG method offers many advantages, there exists limitations
to its use and implementation. From a practical perspective, a primary limitation is related to the
availability of clinical expertise for real-time interpretation of EEG patterns. Typically, only an
experienced clinician (i.e., neurologist) can analyze the complexity of EEG patterns. Furthermore,
from a technical standpoint, EEG monitoring does not provide information on cerebral
hemodynamic status particularly oxygenation and related parameters. Changes in cerebral blood
flow and oxygenation parameters can help in the assessment of the potential metabolic impact of
seizures. As a result, other seizure monitoring techniques have been increasingly utilized in
conjunction with scalp EEG recordings in vulnerable patient populations to offer increased insight
into their underlying pathologies. Patients requiring such interventions typically have a past
medical history of unexplained altered mental status and/or history of epileptic and non-epileptic
seizures [8], [11], [12]. The following section discusses the neurovascular coupling phenomenon,
which represents the fundamental relationship present between local neural activity and subsequent
changes in cerebral blood flow. Section 1.3.3.1 specifically details the neurovascular coupling

phenomenon in the context of epilepsy.

1.3 Neurovascular coupling

1.3.1 Basics of neurovascular coupling and its clinical significance

In the brain, neural activity is closely related to cerebral blood flow (CBF). When neural
activity occurs within a localized brain region, perfusion follows to meet the increased cerebral
metabolic demand. This phenomenon, known as neurovascular coupling [13], [14] (Figure 1.1) is
controlled via metabolic and cellular signaling pathways. The relationship between neurovascular
components forms the theoretical basis for hemodynamic based imaging of brain activity. This
relationship can be altered in brain disorders, and the resulting homeostatic instability may further
contribute to the primary cerebral pathology or lead to secondary disorders including ischemic
stroke, Alzheimer’s disease, and epilepsy [8], [13]. Basic and clinical research has focused on
understanding the dynamism of the neurovascular coupling phenomenon in epilepsy and secondary

brain pathologies [15]-[19].
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Further investigations within the framework of the neurovascular coupling phenomenon
offers the potential for advancement in drug development for epilepsy, increased precision in the
diagnosis of epilepsy, and adding to the overall understanding of the mechanisms of the

neurovascular system.
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Figure 1.1: The hemodynamic response during increased activation of neurons in the context of

neurovascular coupling.

1.3.2 Models explaining neurovascular coupling

At present there are two competing paradigms related to neurovascular coupling. The
“positive neural feedback™ model in which synaptic activity and the metabolic and clearance needs
of brain tissue (including at resting state) [20]—[25] drives cerebral blood flow. This model further
suggests that the metabolic byproducts of brain state (i.e., vasodilators) to a certain extent initiate
the flow response [26]-[28]. However, support for an opposing hypothesis, a “feed forward
model”, also exists. This model suggests that an increase in cerebral blood flow is not particularly

driven by the brain’s resting metabolic state [13], [20], [29], [30]. Specifically, an excess delivery



of oxygen to brain tissues is tightly correlated with an increase in cerebral blood flow. The feed
forward model suggests that cerebral blood flow changes via neural signaling pathways lead to a
subsequent release of vasoactive products of synaptic activity (i.e. nitric oxide) [13], [20], [31],

[32].

1.3.2.1 fNIRS may detect early vascular changes in epilepsy

Seizure dynamics are complex and the desynchronization of action potentials during seizure
onset, followed by concomitant synchronization as the seizure progresses is occasionally seen [33],
[34]. Desynchronization of action potentials, during seizure onset, has traditionally been seen in
EEG beta and gamma frequency ranges [35], [36]. Provided the existence of strong coupling
between vascular responses and electrical potentials, it has been theorized that pre-ictal activity
may be dependent to some degree on non-synchronized neural action potentials, which are not
always discernable on scalp EEG [13], [23], [37], [38]. This leads to a consumption of cerebral
metabolic resources as described above. However, cerebral hemodynamic signals obtained by
fNIRS recordings might offer insight in this regard. Specifically, cerebral hemodynamics (which
may occur prior to changes seen on EEG), might help in understanding the relationship between

desynchronized neural activity and pre-ictal and/or ictal activity [39], [40].

1.3.3 Neurovascular coupling studies in the human brain

The simultaneous recordings of electroencephalographic and functional magnetic
resonance imaging (EEG-fMRI) or electroencephalographic and functional near infrared
spectroscopy (EEG-fNIRS) provide high spatial and temporal resolution. Multimodal EEG-fMRI
systems are more common as compared to multimodal EEG-fNIRS studies. Resting state studies
mostly focused on the investigation of the relationship between the specific EEG frequency ranges
and hemodynamics seen with fMRI. Research has examined the relationship between resting state
alpha, beta, delta, gamma, and theta EEG frequencies and the hemodynamic response using
simultaneous EEG-fMRI. Results from EEG-fMRI studies [41], [42], suggest that the amplitude
of the EEG alpha rhythm is associated with increased levels of cortical activity. An increase in the
power of the EEG signal over a specific frequency range generally indicates higher level of

synchronized neural firing in those frequencies.

Simultaneous EEG-fNIRS recordings yield similar measurements as compared to EEG-



fMRI recordings [43]-[48]. Previous studies have demonstrated [49] that the EEG alpha power
correlates with the fNIRS measure of HbR in the occipital cortex in EEG-fNIRS resting state
experiments. Koch et al. [45] found that the blood oxygen level dependent (BOLD) signal to a
visual stimulus is more pronounced when the amplitude of the resting EEG alpha frequency is low.
Thus, these results suggested that cerebral hemodynamic changes are related to fluctuations in the
intensity of recorded electrical signals. Utilizing a spatial navigation experimental setup, Eksrtom
et. al., 2009 demonstrated correlation between the fMRI BOLD signal and EEG theta band activity
in the hippocampal areas [50].

Results from experiments focused on the EEG gamma frequency range have suggested that
the gamma band helps to influence communication between neuronal populations and phase
coherence between two or more groups of neurons, thereby allowing for maximal inter-
communication [51]-[53]. A third hypothesis, referred to as “binding by synchrony”, suggests the
EEG gamma band links differing neurons together in the representation of cerebral inputs, (i.e.,
visual sensory input). These notions strongly suggest the idea that the gamma EEG range strongly

influences cerebral spike onset and timing, and thereby affects cortical computation and function.

1.3.3.1 Neurovascular coupling in epilepsy

The assessment of neurovascular coupling in vivo using simultaneous intrinsic optical
signals and voltage-sensitive dye imaging of cerebral blood volume and membrane potential
changes in small animals (e.g., rats), shows that seizures are the sum of multiple membrane
potential changes and local blood volume changes evolves comparatively much slower than
membrane potential changes [54]-[56]. Hence, the mechanism of neurovascular coupling in
epileptic brains demonstrates dynamism since vascular response to electrical changes is secondary

to an ictal event [54]-[57].

1.3.3.1.1 Onset of ictal events and neurovascular coupling

Although the exact mechanism of the cerebrovascular and metabolic changes preceding
seizure onset is currently unknown, cerebral metabolism is thought to drive the cascade of electrical
and vascular changes concomitant with seizure onset. Ictal events are preceded by blood vessel

vasoconstriction in the proximity of the seizure onset zone approximately occurring 1 — 5 seconds



prior to seizure onset [58]-[60], thus shunting oxygenated blood to serve the metabolic needs of

the seizure focus [61], [62].

1.3.3.1.2 Propagation of ictal events and neurovascular coupling

During an ictal event, an increased metabolic demand is placed on the brain [63].
Histological studies have examined similarities between brain damage caused by cerebral ischemia
and metabolic damage secondary to seizures. It has been determined that epilepsy leads to
progressive damage of cerebral autoregulatory mechanisms in part by an increase in venous
oxygenation [64] and not by cerebral anoxia as initially suggested by the so called “hypoxia—
hypoperfusion hypothesis” [65]. Typically, cerebral hypoxic states partly mediated by arteriole

vasoconstriction (via cycloxygenase-2) develop in brain regions post seizure events [56].

Studies by Ma et. al. suggest that in-vivo data (i.e., small animal studies) indicates that
membrane potential change does not spread across the cortex from the seizure onset zone [57].

During seizure propagation, multiple propagating waves of electrical current spread at
approximately 100 % across the cortex. Dynamic changes in cerebral hemodynamic activity, on

the other hand, are characterized by a single slow steady wave.

1.3.3.1.3 Ictal termination and neurovascular coupling

The electrical, vascular, and metabolic etiologies of ictal termination is still not well
understood, but it has been suggested cerebral hypoxia plays a defining role in the seizure
termination process. Metabolic changes leading to changes in pH, the uptake of neurotransmitters,
and electrical changes such as the closing of gap junctions are commonly observed [57], [62], [66].
In-vivo animal studies have suggested that cerebral hemodynamic changes continue on an average

of 10 seconds post termination of dynamic changes in membrane potentials [57].

1.4 Imaging modalities used to measure brain activity

In this section, we focus on common modalities for measuring human brain function in the
context of the epileptic brain. Frequently used methodologies in clinical settings include the scalp
EEG, computed tomography (CT), anatomical magnetic resonance imaging (MRI), and single
photon emission computed tomography (SPECT) methods. Modalities which are currently used in

research settings include magnetoencephalography (MEG), functional magnetic resonance



imaging (fMRI), and the functional near infrared spectroscopy technique (fNIRS). We will begin
with the scalp EEG, CT, MRI, and SPECT methods and then discuss the remaining modalities.

1.4.1 Electroencephalography

1.4.1.1 Introduction to electroencephalography

Electroencephalography (EEQG) is the oldest non-invasive method for studying the brain
and diagnosing brain related pathologies. EEG measures the electrical activity of cortical and
subcortical neurons with temporal resolution in the millisecond range [4]. The scalp EEG signal is
typically obtained using electrodes arranged on the scalp as shown in Figure 1.2 below [67]. Each
EEG channel summarizes activity localized within a region of the brain and is obtained by taking
the potential difference measured at two electrode sites. Generally, neurons that are closer to the
scalp contribute more to the generated signal as opposed to neurons associated with deeper brain
structures. EEG activity can be described in terms of spatial distribution on the scalp in addition to
its associated frequency component. Experimentally, the presence of rhythmic activity oscillations
with frequencies ranging from approximately 1 — 100 Hz during a resting state have been
determined [68], [69]. Information regarding neuronal processing is obtainable from a cerebral
region of interest via these rhythmic oscillations, which have been classified into characteristic

frequency bands [70]-[73].
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Figure 1.2: EEG scalp electrode array placed symmetrically. Pre-frontal (F,), frontal (F), temporal
(T), parietal (P), occipital (0), and central (C) electrodes correspond to their corresponding brain

lobes, (A) auricular. Source: M. R. Nuwer et al. [67].

The following sections discuss the neurophysiological basis of EEG, including the cortical rhythms

derived from electroencephalography, and finally EEG instrumentation.

1.4.1.2 Neurophysiological basis of electroencephalography

EEG activity reflects the summation of neural synchronous activity. Cortical pyramidal
neurons typically are well aligned to produce the strongest fluctuations in voltage field gradients.
EEG oscillations are generated in these neurons by both excitatory and inhibitory postsynaptic
potentials [74]. Scalp EEG oscillatory activity is frequency dependent [75] and represent
synchronized activity over a network of neurons. The constitution of these neuronal networks and
their subcortical contributions to scalp EEG have been reported previously in the literature [73],
[76], whereas cortical macro-columnar neurons are believed to be the major contributing force
behind EEG signals. The amplitude of the electric field secondary to action potential propagation
decreases faster than the amplitude of the fields produced by the postsynaptic potentials; the
duration of action potentials is on the order of 1 millisecond. This is insufficient to obtain an

adequate synchronization of large cortical neuronal populations as the generation of EEG signals
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1s largely based on ionic current flow generated by the neurons in the extracellular space [77]. The
resulting net ionic current is subsequently recorded as the voltage existing through the resistance
of the extracellular space and transmembrane voltage is equal to the product of membrane
resistance. As a result, thousands of simultaneously activated neurons are necessary to generate an
EEG signal strong enough to be detected from the electrodes on the scalp surface, since the
electrical contribution of each cortical neuron is poor and signal must travel through several layers
of non-neural tissues, including the meninges, skull and skin. Synchronous activation of over 100
cortical neurons in an area of at least 6 cm? is required to produce a discernable EEG signal from
the scalp. Therefore, the amplitude of the EEG signal depends to a large extent on the

synchronization of activated neurons.

1.4.1.2.1 Electroencephalography derived cortical rhythms

EEG signals can be classified into frequency bands as mentioned above. The figure below

depicts the typical waveform of these bands and their frequency ranges [78].

Frequency .
Waves bands (Hz) Behavior Trait Signal Waveform
Delta 0.5-3 Hz Deep sleep
Theta 4-7 Hz Deep Meditation
Alpha 8.13 Haz Eyes closed,
awake
Eyes opened,
Beta 14-30 Hz thinking :
Gamma 30-100 Hz Unffymg iy
consciousness L

Figure 1.3: Typical EEG bands and their correlated traits.

Usually, for adult subjects EEG oscillations ranging between 0.1-100 microVolts in
intensity and in the 0.5 — 100 Hz frequency range are typically observed [73]. EEG temporal
resolution (in milliseconds), allows for the discovery of not only changes in EEG activity as a result

of demanding tasks but also differentiation between inhibitory functions and excitatory activity.
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Generally, frequency oscillations in the delta and theta frequency bands display synchronized
amplitudes, whereas higher frequency bands particularly in the beta and gamma ranges, have
smaller desynchronized amplitudes. In order to examine specific EEG frequency ranges, the signal
1s decomposed into functionally distinct frequency bands, commonly achieved through Fast
Fourier Transform (FFT) computations. Briefly, FFT computations return, for each frequency bin,
a complex number from which the amplitude and phase of the signal at a specific frequency can be

ascertained. Spectral analysis of the EEG signal commonly utilizes the magnitude-squared of the

micro V2

— ) of EEG signals.

FFT to obtain an estimate of the power spectral density (

The average band power derived from the spectral density is a scalar that summarizes the
contribution of the given frequency band to the overall power of the signal. This is particularly
useful in a machine learning and deep learning context, allowing for quick feature extraction from
EEG signals. The average band power is also a relevant metric for neurological research as it allows
differentiation between different seizure stages. For instance, the pre-ictal period is characterized
by the predominance of slow waves with a frequency range comprising between 0 — 3 Hz, which
reflects synchronized brain activity. Conversely, the ictal state is characterized in part by reduced
delta activity [79]-[81]. In the following section, we briefly review the various EEG frequency

oscillations.

1.4.1.2.1.1 Delta rhythm; 0.5 — 3 Hz

Low-frequency activity in the normal human brain is characterized in part by the presence
of delta oscillations in the 0.5 — 3 Hz range. These oscillations are usually observed during periods
of deep sleep and are prevalent during infancy. Delta band power is noted to be increased in brain
lesions such as brain tumors as compared to normal brains, as well as during the onset of anesthesia
and periods of deep sleep [82], [83]. The predominance of slow waves in the delta frequency range
reflects synchronized brain activity. Conversely, wakefulness is characterized by increased higher
frequency activity and decreased lower frequency activity in the delta frequency range. In pediatric
brains, the delta frequency range dominates during the first two years of life. Aging leads to a

decrease in delta activity and an increase in faster waves (alpha and beta waves) linearly.

1.4.1.2.1.2 Theta rhythm; 4 — 7 Hz

Theta oscillatory activity observed within the 4 — 7 Hz range is observed during drowsy,
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hypnotic or sleeping states, but typically not during the deepest stages of sleep. Brain related
pathology can give rise to abnormally strong or persistent cortical theta waves. EEG oscillations in
the 4-7 Hz frequency range are obtainable from the hippocampus and neocortex [84].
Hippocampal oscillations are typically short (less than one second) and associated with rapid eye

movement (REM) sleep [85].

1.4.1.2.1.3 Alpha rhythm; 8 — 13 Hz

Alpha oscillations, within the 8 — 13 Hz range, dominate the EEG space during periods of
relaxed wakefulness. Desynchronization in the alpha bands is closely related to processing of
visual, auditory and sensory-motor signals. The alpha rhythm has been linked to a wide variety of
cognitive tasks and is considered to be a multifunctional rhythm. Although the functional relevance
of alpha rhythms is still not fully understood, it has been theorized that thalamocortical feedback
loops as well as strengthened thalamic interconnections are prerequisites for cortically produced
alpha rhythms [86], [87]. The amplitude of the alpha rhythm is proposed to be related to cortical
activation. That is, an increase in alpha-power and the subsequent synchronization is linked to
cortical and behavioral deactivation or inhibition [88]. Findings suggest that alpha rhythms not
only reflect a resting or idle state in the human cortex but also may indicate the presence of several

cognitive processes such as perceptual learning and memory [85], [89].

1.4.1.2.1.4 Betarhythm; 14 — 30 Hz

Beta frequency oscillations occur between the range of 14 — 30 Hz. In adult brains, beta
waves are characterized with amplitudes of 10-20 microvolts, and are typically observed bilaterally
in the frontal lobes during cognitive tasks that require attention and/or cortical processing [74],

[90].

1.4.1.2.1.5 Gamma rhythm; 30 — 100 Hz

The gamma rhythm, between 30 — 100 Hz, is characterized by relatively high frequency
oscillations, and thought to be modulated by sensory input as well as cognitive processes such as
working memory and attention. The contribution of gamma waves to brain function has been linked
to neural encoding of sensory and cognitive information. The origins of these waves are under
much debate. That is, whether they arise from intrinsic membrane properties or from neocortical

excitatory and inhibitory circuits [91]. Gamma oscillations may also occur as a result of cerebral
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network activity, since they can offer a signature of engaged networks, observable in cortical and
subcortical structures. Not surprisingly, irregular gamma activity has been observed in neurological

disorders, particularly Alzheimer’s disease, Parkinson’s disease, schizophrenia, and epilepsy [92].

1.4.1.3 Instrumentation

The typical electrodes used for scalp EEG recordings include bridge electrodes, cup
electrodes and needle electrodes [93]. A bridge or pad electrode is a silver or silver chloride
electrode mounted onto a plastic bridge to which connectors may be attached. These electrodes
allow for reliable signal recordings, are flexible and easily positioned onto the subject’s head.
Signal acquisition from epileptic brains requires securing electrodes to the skin, to maintain contact
during motion and violent spasms typical of seizure. For this purpose, collodion solution is
typically used, followed by a stream of cold air to dry the collodion. Adhesive bentonite paste can
be used in place of collodion solution. However, this lacks consistent adhesive properties and may
cause skin sensitivity. Once all the electrodes are placed, a conductive gel is inserted into the
concave side of the disc, before application onto the skin. Nineteen sensory electrodes are used in
a clinical EEG, which are placed across the scalp surface in a standard formation defined by the

10-20 international placement system [94] as shown in Figure 1.2 above.

1.4.2 Computed tomography

Computed tomography (CT) is an imaging technique that utilizes differential levels of X-
ray attenuation by tissues within the body to produce cross-sectional (i.e., tomographic) images of
a region of interest. Computed tomography is widely available, relatively low cost, offers high
spatial resolution, and strong penetration depth, thereby making it a commonly used brain imaging
modality in clinical settings [95], [96]. The computed tomography method, however, does have
some disadvantages. The high radiation dose is a limiting factor for scanning time and as compared
to images derived from magnetic resonance (described in the next section), CT images offer

relatively low-quality soft tissue contrast [97].

Despite these limitations, computed tomography is considered to be one of the modalities
of choice in clinical neuroimaging. In epileptic patients, CT can accurately detect hemorrhage and

infarcts, brain malformations, and large tumors [98]. However, with respect to epileptogenic
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structural lesions (i.e., mesial temporal sclerosis), the CT scan may fail to detect abnormalities in

up to 50% of these patients [37].

1.4.3 Single photon emission computed tomography

Single photon emission computed tomography (SPECT) is a minimally non-invasive
method that utilizes radioisotopes (i.e., radiopharmaceuticals) to measure regional cerebral blood
flow (rCBF) and indirectly evaluate metabolic activity [99]. Hexa-methyl-propylene-amine
oximine (HMPAO) and ethyl-cysteinate dimer (ECD) are two commonly used
radiopharmaceuticals in SPECT imaging. The SPECT method generates tomographic images of

the three dimensional distribution of the radioisotopes [100].

SPECT system instrumentation often uses multiple detector-rings to achieve reasonably
good spatial resolution and maximize recording brain activity [99]. The temporal resolution
achieved via SPECT is relatively poor as the method is dependent on the hemodynamic response
and sufficient detection of photon emissions. The spatial resolution of SPECT is fairly good, albeit
not quite that of PET. A typical SPECT image will show symmetrical perfusion with the most
intense perfusion in the cerebellum with HMPAO and in the occipital lobes with ECD [101]. Thus,

SPECT image interpretation depends on accurately discerning areas of dynamic cerebral perfusion.

1.4.3.1 Ictal studies using single photon emission tomography

In ictal SPECT studies, the photon-emitting radiotracer is injected intravenously at seizure
onset, allowing it to accumulate. These SPECT ictal studies allow for the localization of the
epileptogenic zone via radiotracers and its subsequent cerebral metabolic and perfusion coupling.
Epileptogenic zone localization using the SPECT method proves to be particularly useful in
magnetic resonance negative partial epilepsy and focal cortical dysplasia [102], [103]. The SPECT
method is similar in many respects to the positron emission tomography method (PET) detailed in

Section 1.4.6. A comparison of these methods is presented in Section 1.4.6.4.

1.4.4 Magnetic resonance imaging

Anatomical magnetic resonance imaging (MRI) provides static anatomical information, as
opposed to functional magnetic resonance imaging (fMRI) methods. Functional imaging can be

regarded as providing dynamic physiological information [104], [105]. The fMRI technique is
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discussed in Section 1.4.7. In MRI images, image quality is dependent upon on image resolution
(i.e., field of view, slice thickness), signal to noise ratio (i.e., bandwidth, signal averaging) and lack
of motion artifacts [104]. Briefly, in-plane resolution is related to the pixel number in the frequency
and phase encoding directions, and through-plane resolution by the slice thickness. Signal to noise
ratio is determined by pixel size, slice thickness, scan time (including the number of phase encoding
steps) and the sequence used [106]. The following describes the use of anatomical MRI in the pre-
surgical evaluation of epileptic patients. A discussion on advancements in the MRI technique is

beyond the scope of this thesis.

1.4.4.1 Evaluating epilepsy using magnetic resonance imaging

Structural neuroimaging plays a central role in the presurgical evaluation of epileptic
patients as it frequently allows detection of epileptogenic lesions and brain MRI scans are typically
performed on newly diagnosed epileptic patients as well as those suffering from refractory epilepsy
[107], [108]. An appropriate MRI investigation deems the use of specific protocols, selected based
on identification of the region of onset by clinical and EEG findings. MRI based epilepsy protocols
that offer increased image spatial resolution and multiplanar reformatting are often required since
routine MRIs may miss subtle epileptic lesions [37], [109] and subsequent findings may be
considered normal [110]. It is generally recommended that MRI epilepsy protocols include a T1-
weighted acquisition to discern discrete structural brain lesions [37]. The table below compares the

brain imaging modalities used in clinical settings.

Table 1.1: Comparison between EEG, MRI, CT, and SPECT modalities used in clinical settings.

Modality EEG MRI CcT SPECT
Hydrogen
atoms X-ray Radioisotopes

Synchronized | genergte
measurements | measure

Technical neural i
. macroscopic .
. Mechanism o P produces regional
details activity in polarization, .
. tomographic cerebral
the brain measurable | .
images blood flow
energy is

emitted




during
relaxation
Cortical Cortical Cortical
Cortical
Measurement | surface surface surface
surface and/or
area and/or whole | and/or and/or whole

whole brain

brain whole brain brain
Quantitatively
Magnetic High-energy measure
Measurement | Postsynaptic
properties of | electromagnetic | physiological
property potentials
tissue radiation processes in
Vivo
Typical time
0.01 seconds | High 200 ms High
resolution
Typical
spatial 20 cm High 0.5 mm 1 cm
resolution
Instrumentation | Size Small Large Large Large
Portability Yes No No No
. 30K-150K 1 Million + | 1 Million + 1 Million +
ost
USD USD USD USD
Non- Minimally Minimally
Other details Invasive Non-invasive
invasive invasive invasive
Currently Currently Currently used | Currently
Clinical
used in used in in clinical used in
application
clinical clinical settings clinical
potential
settings settings settings

16
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Research
application High High High High

potential

1.4.5 Magnetoencephalography

Magnetoencephalography (MEG) is a non-invasive neurophysiological imaging technique
that offers temporal resolution at approximately one millisecond and spatial resolution of
approximately 3.5mm [111]. MEG has seen use primarily in human studies to study brain
function. An advantage of the MEG method over other non-invasive neuroimaging methods is that
it does not require the presence of a reference electrode, thus facilitating network modeling and
functional connectivity analyses. However, MEG is not portable and is constrained by relatively
large instrumentation as compared to EEG or fNIRS technologies. However, recent developments

in portable magnetoencephalography might obviate this restriction [112], [113].

The MEG method is able to identify abnormal neural dynamics at the regional or network
level and can monitor disease progression. Thereby, MEG can help to determine the efficacy of
medical (i.e., pharmacological, medical, surgical, and/or behavioral) interventions. Furthermore,
MEG records can be used to investigate neural markers of disease. As it relates to epilepsy and
seizures, when MEG is combined with structural imaging, it is known as magnetic source imaging

(MSI) [114].

1.4.5.1 Advantages of magnetoencephalography

Advantages of the MEG method over EEG include: the absence of magnetic field distortion
and attenuation by highly variable conductivities between brain and sensor, and the ease of using
high-density sampling [115]. Furthermore, MEG offers accuracy on the order of millimeters when
mapping brain tumors as opposed to EEG methods [116]. MEG has increased sensitivity in
detecting tangential currents to the scalp surface, whereas EEG is sensitive to tangential and radial
neuronal activities. The cross sectional area of synchronized cortical brain activity is typically less
using the MEG method as compared to synchronized cortical epileptic activity when using the EEG
method (3 — 4 ¢m? as opposed to 6 — 20 cm?) [117].
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Furthermore, magnetic fields as used in the MEG method are not distorted by the
conductivity properties of the head and brain (scalp, skull, cerebrospinal fluid) as compared to
electrical fields. Finally, the MEG method offers improved spatial resolution (2 — 3 mm) as

compared to EEG (7 — 10 mm).

1.4.5.2 Limitations of magnetoencephalography

Equipment portability and instrumentation (specifically, the large array of sensors and the
requirement of cooling the sensor array) cost are some limitations of the MEG technique.
Separating brain signals from external environmental noise can pose a challenge as the
superconducting quantum interference devices (SQUID), which are the highly sensitive magnetism
detector arrays. Typically, SQUID arrays are situated as close as possible to the subject's head
(approximately 2 cm) and require cooling to approximately —270 °C before they can provide a
viable signal. Furthermore, the SQUID arrays need to be arranged close to each other in a helmet-
like fashion to probe certain types of brain activity with a penetration depth of only a few
centimeters into the brain. This placement ensures sensitivity to cerebral magnetic field changes as

opposed to other magnetic field changes in the environment.

1.4.5.3 Magnetoencephalography and epilepsy

In some respects, the MEG method is similar to EEG, however, an important difference lies
in the fact that the skull and the tissue surrounding the brain affect the magnetic fields measured
by MEG much less than they affect the electrical impulses measured by EEG. This works to
improve the accuracy of MEG recordings as compared to EEG [118]. Furthermore, epileptic focus

localization is possible when MEG technology is combined with MRI methods.

1.4.5.3.1 Epileptic focus localization and magnetoencephalography

Since the development of multidetector array systems in the early 1990s, MEG has been
studied for possible clinical applications [114]. Epilepsy localization and presurgical brain
mapping using MSI has shown strong promise as it offers high spatial and temporal resolution to
resolve networked areas of brain processing. Recordings with implanted dipoles placed in mesial,
basal, and inferior lateral temporal regions showed that MEG predicted localizations of an epileptic

focus are within 1 — 4 mm of their actual locations [119].
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Multiple studies have shown that localization of seizure focus is best seen in patients with
intrinsically epileptogenic focal lesions [69], [120]-[122]. Results from simultaneous EEG-MEG
studies suggest that MEG signals alone do not necessarily provide a clear advantage in comparison
with EEG signals in detection sensitivity of deep epileptiform sources [118]. Furthermore, MEG
is intrinsically better at focus localization from sources that are adjacent or a few centimeters away

from a MRI-visible lesion [121], [123].

1.4.6 Positron emission tomography

Positron emitting radioisotopes of carbon, nitrogen, oxygen, and fluorine are commonly
used as radioactively labelled molecules (i.e., tracer molecules), and injected intravenously (or
inhaled) to measure regional cerebral blood flow and/or regional cerebral metabolic rate of glucose

(rCMTQG) via the positron emission tomography (PET) imaging technique [100], [124].

1.4.6.1 Instrumentation and image reconstruction

A cyclotron (i.e., positron accelerator) produces a large quantity of protons and accelerates
them along a circular orbit inside a powerful alternating electromagnetic field chamber. The
particles gain energy and are displaced toward a target at approximately the speed of light. This
bombardment leads to radioactive unstable isotopes via a nuclear reaction. Due to the short half-
life of radioisotopes, the cyclotron is typically placed in close proximity to the PET scanner [124],
[125]. The unstable nucleus of these radioisotopes creates gamma rays by interacting with
neighboring electrons and gamma ray energy is used to eventually form three-dimensional (3D)

images of tracer concentrations within the body.

1.4.6.2 Positron emission tomography studies in epilepsy

PET studies focusing on metabolism measurement of cerebral glucose, serotonin and
oxygen, in addition to cerebral blood flow changes are used in determining an epileptic focus [126].
In addition to localizing epileptogenic focus, PET studies provide additional important information
pertaining to the functional status of the brain. PET studies aid in understanding the role
neurotransmitters play in identifying epileptic foci [125]. Particularly, PET receptor imaging
studies have shown reduced concentrations of 11C-flumazenil along with increased concentrations

of mu opiate and delta opiate bindings in epileptic foci [125], [127].
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1.4.6.3 Limitations of the positron emission tomography method

Instrumentation and its portability, cost-effectiveness, maintenance and safety are main
limitations of the PET method. The cyclotron contributes significantly towards the higher
acquisition cost of a PET system. Typically, access to the cyclotron is tightly controlled through a
variety of safeguards. Lab work with radioisotopes takes place in sealed and shielded hot cells
designed to contain spills. Specialized air and waste handling systems guard against accidental

releases of radioisotopes.

1.4.6.4 Comparison of the PET and SPECT methods

In terms of cost comparison, SPECT systems are more affordable as compared to their PET
counterparts since the SPECT method does not require a cyclotron. From a technical standpoint,
the spatial resolution provided by the PET method is better compared to images obtained by the
SPECT method [99], [100]. Furthermore, the radiation dose used in SPECT methods is
considerably higher as compared to PET [103]. However, radioisotopes typically used in SPECT
decay and directly emit gamma rays [127] as compared to the PET method.

1.4.7 Functional magnetic resonance imaging

Functional magnetic resonance imaging (fMRI) of the brain offers a non-invasive
methodology to assess brain function using magnetic resonance signal changes [128].
Hemodynamic and metabolic changes drive neuronal responses resulting from the blood

oxygenation level dependent (BOLD) method [128], [129].

1.4.7.1 Neurovascular coupling and fMRI BOLD signals

The BOLD signal is coupled to brain synaptic activity, thereby allowing for the probing of
functional brain responses using the fMRI signal. The synaptic inputs and neuronal processes
present at the site of activation form the basis of BOLD signal changes [38]. Brain hemodynamic
coupling to synaptic and neuronal processes induce changes in the astrocytic Ca?" concentration

and consequently lead to an increase in blood vessel dilation and cerebral blood flow.
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1.4.7.2 Advantages and disadvantages of the fMRI technique

The fMRI technique is a non-invasive, safe, radiation free, virtually risk-free method to
evaluate brain function. It is relatively easy to use, and the images it produces have a resolution of
approximately 1 millimeter. By utilizing the fMRI method, it is possible to record activation signals
from all brain regions. Yet fMRI also has its disadvantages. It is not cost-effective, and while the
method allows for understanding the blood flow in the brain, observing the activities of individual

neurons is not entirely possible [130].

The fMRI method has relatively poor temporal resolution and the associated functional
BOLD response peaks approximately 5 seconds after the start of neuronal firing [23], thus, making
it difficult to distinguish BOLD responses occurring within a short time window. This can be
mitigated by careful experimental design to a certain extent as well as utilizing multimodal
approaches; specifically, combining the fMRI method (which offers a relatively high spatial
resolution) with the EEG or MEG modalities (which have higher temporal resolution) [131].

1.4.8 Functional near-infrared spectroscopy

1.4.8.1 Introduction

Functional near infrared spectroscopy (fNIRS) is a non-invasive modality that uses optical
measurements to measure blood oxygenation and hemodynamic parameters for both humans and
animals. In a typical fNIRS setup, optodes corresponding to light sources and detectors are placed
on the surface of the subject’s head. Light sources emit near-infrared light into tissue, and light
detectors act to collect the reflected light. Eventually, this detected light can be used to calculate
the blood oxygenation changes associated with cerebral hemodynamic activity [132]. F.F. Jobsis
published the first fNIRS study in humans and reported that near infrared spectroscopy is a feasible
non-invasive method for monitoring the concentration of hemodynamic changes in the brain [133].
Blood level oxygen dependent based functional magnetic resonance measurements were
introduced subsequently and building on these results, shortly after, the hemoglobin concentration

changes during brain activation were first measured with fNIRS [134]-[137].

1.4.8.2 Fundamentals of near infrared spectroscopy

Near infrared spectroscopy technology utilizes light in the near-infrared (NIR) spectral
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range with wavelengths between approximately 650-950 nm within the so called “optical
window” to penetrate several centimeters into biological tissue [138]. When NIR light is
illuminated into tissue, photons can be absorbed or scattered by the tissue structures and molecules,
primarily lipids, water or chromophores. Due to the fact that the human head is a highly scattering
medium, the light path is longer than the source-detector separation. Experimental work and model
based simulations confirm that approximately one out of every 10° photons eventually reach the
brain [139]. Modeling photon propagation via Monte-Carlo simulations offers a flexible and
approach to simulate photon transport through a biological medium [140], [141]. The Monte-Carlo
method is essentially a statistical process that utilizes probability distributions to describe the step
size of photon movement between interested sites of photon-tissue interaction and deflection angles
in a photon's trajectory when a scattering event occurs. Monte Carlo simulations can keep track of
multiple physical quantities simultaneously. To achieve precision, Monte-Carlo simulations
require significant computation time. At the expense of computationally efficiency, Monte Carlo
methods are often considered the standard for simulated measurements of photon transport [142].
This result is achieved in part by multiplying the source-detector separation by a differential
pathlength factor which depends on several factors such as wavelength, age of the subject, and type
of tissue. Of the photons that do eventually reach the target, light attenuation is used to calculate
the hemoglobin concentration changes by using the Beer Lambert Law. Light attenuation is
parametrized partly on the absorption and scattering properties of tissue structures and molecules,
as mentioned earlier. Cerebral chromophores (HbO, HbR and cytochrome aa 3 (Cyt aa3)), have
specific absorption characteristics in the NIR range, and the NIRS method has the capability to
measure changes in these chromophores. The extinction coefficient associated with each
chromophore dictates the absorption of light at a particular wavelength. The relationship between
specific extinction coefficient (€) (M ~cm™1) and the associated absorption coefficient (a) (cm™1)

is related by the following:

a = In(10)€ Equation 1

Extinction coefficients corresponding to HbO, HbR and water are displayed in Figure 1.4
below. Oxygenated hemoglobin (HbO), reduced hemoglobin (HbR) and C. oxidase are the main
types of chromophores and their concentration dynamically changes with time and oxygenation

status. Cytochrome-c oxidase varies with oxygenation status, (driven by metabolism and blood
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flow) but it does not significantly affect the measurement because the signal of Cytochrome c
oxidase (due to high concentrations of Cytochrome-c oxidase) is approximately ten times smaller

in magnitude as compared to hemoglobin.
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Figure 1.4: Specific extinction spectra of HbR, HbO and water. HbO 1is characterized by the

presence of an oxygen molecule binding to the iron atom of the heme group in hemoglobin.

HbO and HbR have different absorption spectra in the NIR window which allow for the
calculation of their respective concentration changes. The isosbestic point, where HbO and HbR
have the same absorption coefficient, occurs around 800 nm. The skin absorbs near infrared light
throughout the epidermal, dermal and hypo-dermal layers since melanin is a strong absorbing
chromophore. Hair’s melanin content absorbs NIR light, thus, to obtain a good signal to noise ratio,

subjects with darker hair require their hair to be displaced [143].

1.4.8.3 The near infrared sampling region

Near infrared light is propagated into the head at one specific position and it subsequently
diffuses in all directions, undergoing random scattering and absorption processes in the tissue
which attenuate the original signal by orders of magnitude. A fraction of NIR light is able to
propagate through tissue on a “banana shaped” path back to the surface where it is then detected
by a photodetector. The banana shape is essentially the probabilistic density function of photons
that were emitted by source “S” and detected by detector “D” as illustrated in Figures 1.5, 1.6

below. Each measurement channel is created by a source and its corresponding detector placed
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over the surface of the head. NIRS signals are assumed to originate from the centered area between
the sources and detectors [144]. The separation between sources and detectors is important since it
defines the depth of penetration in the cortex. The NIRS method is sensitive to subject-motion
induced noise and subsequent optode displacement leading to motion induced artifact. Thus, the
distance between source and detector and subsequently the coupling between source-detector and

scalp contributes to the fidelity of the NIRS signal [145].

If the distance is increased between sources and detectors, the arc of the banana shape will
be larger which will obtain information from deeper structures in the cortex [146]-[148] (Figures
1.5, 1.6 below). While determining the distance between the source and detectors (typically, the
distance between sources and detectors should be at least 2 cm), the spatial resolution of the
measurement and sufficient signal quality, including the signal-to-noise ratio must be considered.
Generally, a distance of 30-35 mm (distance between source and detector) is considered optimal,

and the sensing depth into the adult human head is on the order of 15 — 25 mm [40].

Typically, there are three types of noise in NIRS data: instrumental, physiological and
experiment (i.e., subject induced head motion). A growing number of algorithms are being
developed for NIRS noise reduction and signal improvement. Algorithms developed for noise
reduction in the NIRS signal are generally organized into three categories: (1) reducing noise based
on signal temporal characteristics, (2) reducing noise based on signal spatial characteristics, and
(3) measuring noise independently and then subtracting it from the signal [139]. Reducing signal
noise based on temporal qualities makes use of conventional methods such as band pass filtering
and moving averaging techniques. This effectively eliminates high frequency instrument noise and
low frequency drift. However, this typically does not remove abrupt changes in the signal [149].
Algorithms (i.e., eigenvector-based methods) in the second category rely on the assumption that
the noise in the NIRS signal is spatially distributed. However, these methods often require
subjective decisions regarding the number of components to retain. In the third category, noise can
be measured independently by additional hardware (i.e., accelerometer to measure head motion)
[150] as well as by using a close optode configuration. The resultant signal is deemed to be noise,

which can be subtracted from the signal.

To counteract the typically weak fNIRS signal, signal amplification and signal extraction

techniques can also be applied to increase the fNIRS signal via lock-in amplification methods
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[151]. Additional information on lock-in amplification and subsequent signal recovery, can be

found in Meade et. al., [152].

sample volume

Figure 1.5: Schematic diagram of photons propagating in the curved “banana shape” (yellow
curve).
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White matter

Figure 1.6: Schematic demonstration of the banana shape traveled by photons; S: Source, D1,

D2: Detectors, di, d2 are the distances between the sources and detectors.

1.4.8.4 The modified Beer-Lambert law

The Beer-Lambert Law relates the concentration of tissue chromophores to photon

attenuation and considers the relationship to be linear. The Beer-Lambert law is defined as:

I Equation 2
A =log TO =e&C.d 9
where A is the light attenuation and the logarithmic ratio of two intensities; I, is the intensity of
the incident light, [ is the intensity of the transmitted light, C (M) is the concentration of a absorber,
¢ is the molar extinction coefficient (mM~1cm™1) and d (cm) is the distance that light travels (the
inter-optode distance). If there is more than one absorber present in the medium, the law can be

written as:

A=[g.C; +&.C+...+&,.C,]d Equation 3

with the explicit purpose to determine C;  C, in the above equation. A is experimentally measured;

d is the distance between source and detector, & from the literature has been shown previously for

HbO and HbR.

Scattering is considered to be zero in the Beer-Lambert Law. However, human tissue is
inhomogeneous and by nature is a highly scattering medium, such that the Beer-Lambert law
cannot be used for biological tissue. When a highly scattering medium is considered, the

differential path length factor (DPLF) and the associated scattering losses (G) are important. The
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modified Beer-Lambert Law [153], [154] can be written as:

I E 1
A =log =& d.DPLF + G quation 4
0
If we consider time () and wavelength (L), this can be rewritten as:
I(t,A
A(E ) = log( ) =Y €0).Ci. (0).d-DPLFQ) + GA)  Equation 5

DPLF defines the increase in optical path length due to scattering in the tissue and the light travels
in a longer path due to the scattering phenomenon. During the calculation, it is assumed that G is
not time-dependent and the change in scattering can be neglected when compared with changes in
absorption [155]. As mentioned previously, photons are transported primarily by diffuse scattering,
and their traveled mean pathlength can be expressed by a differential path length factor whose
value is typically greater than the inter optode distance. Therefore, the concentration changes of
hemoglobin can be shown as:

AL = Equation 6
ey = ZieM)-AC (). d.DPLF(Y)

AA(At, A) = log(

Experimentally, the DPLF cannot be measured directly since the tissue properties cannot be
determined absolutely with continuous wave NIRS systems. As a result, an absolute calculation of
chromophore concentration cannot be obtained; only changes in concentration of chromophores

can be measured with NIRS under several assumptions.

The hemodynamic response is typically slow in response to neural stimulation and the
hemodynamic response begins approximately 2 — 3 seconds after the onset of neural stimulation
[146]. Figure 1.7 below shows the typical hemodynamic response measured by fNIRS; the time to
peak is noted to be approximately 4 to 15 seconds after onset of activation [156]. Following neural
activation, local blood flow and volume typically increase leading to an increase in HbO and a

corresponding decrease in HbR albeit of smaller magnitude [147]. Parameters related to the task
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type and its duration impact the magnitude of the hemodynamic response.

Time to peak is ~4-15s after
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Figure 1.7: A typical NIRS activation in response to a stimulus with onset at 2 seconds.

1.4.8.5 Instrumentation used in NIRS systems

During the last twenty years, substantial improvements have been made to NIRS
instrumentation [157]. Currently, the continuous wave (CW) mode of NIRS is extensively used in
research and clinical settings due to its affordability and ease of use in natural settings [132]. NIRS
systems emit laser light onto tissues at a constant intensity. Light detectors effectively measure the
intensity of diffusely reflected light and for CW-NIRS, each source should have at least two distinct
wavelengths to allow for discrimination of the HbO and HbR isoforms. Two wavelengths (760 —
850 nm) will be emitted simultaneously and distinguished by modulation, each at different
frequencies. The sources and detectors should be located a distance of a few centimeters over the
tissue in order to make sure NIR light penetrates deep enough to reach the cortex and reflected light
is collected by the detectors. Details regarding the NIRS instrumentation used in this thesis is

presented in Section 4.4.3.2.

1.4.8.6 Advantages and limitations to the fNIRS method

Compared to fMRI, fNIRS offers advantages of improved temporal resolution, smaller size,
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increased portability, less sensitivity to motion artifacts, cost effectiveness, and is able to obtain
recordings in natural conditions. Furthermore, fNIRS provides information about both HbO and
HbR isoform concentration changes, whereas fMRI measures the BOLD signal which is associated

with the change in HbR concentration.

There are also several disadvantages to fNIRS imaging, namely being the limited
penetration depth (which limits recordings from the cortex only), low signal-to-noise ratio, and the

sensitivity of the superficial tissue impacting the signal-to-noise ratio to name a few [132].

The functional activity of the human brain can be measured with various imaging

techniques including fMRI, fNIRS and EEG; each modality carrying its own advantages and

disadvantages. The strengths and weaknesses of each method are shown in the table below.

Table 1.2: Comparison between fNIRS, fMRI, MEG, and PET modalities.

Modality fNIRS fMRI MEG PET
Measures Measures
brain brain
Magnetic
activity via | activity by
fields
tissue detecting Injected or
produced by
Technical details | Mechanism optical magnetic inhaled tracer
electrical
absorption | changes molecules
activity within
and associated
the brain
scattering with blood
properties. | flow.
Cortical
Cortical
surface Cortical Cortical surface
Measurement | surface
and/or surface and/or | and/or whole
area and/or
whole whole brain brain
whole brain
brain
Synchronized itati
Measurement | HbO/HbR | HbR Quantitatively
neural measure
property changes changes
currents biochemical and
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physiological

processes in vivo

Typical time 2-3 10
1-2 seconds 1-2 min
resolution seconds milliseconds
Typical
spatial 20 cm Scm 2-3 mm 4 mm
resolution
Instrumentation | Size Small Large Large Large
Portability Yes No No No
o 100-400K 1 Million + | 1 Million + 8-10 Million +
ost
USD USD USD USD
Non- Non-
Other details Invasive Non-invasive | Invasive
invasive invasive
Currently Currently Currently not | Currently not
Clinical
not used in | not used in | used in used in clinical
application
clinical clinical clinical settings
potential
settings settings settings
Research
application High High High High
potential

1.4.9 Rationale for using EEG-fNIRS multimodal signals

However useful a scalp EEG recording maybe, it provides only the electrical parameter of

brain function. The neuronal response to the hemodynamic changes associated with seizure events,

initiates a series of events in which the end result is seizure propagation. As mentioned in previous

sections, the continuous assessment of the EEG is useful in seizure monitoring, but it is not always

clear to what extent recorded electrographic activity contributes to clinical impairment or ongoing

neuronal injury [2-5,7,8].
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Individual imaging techniques offer limited information about neurovascular coupling due
to the complexity of the relationship between neural activity and the localized hemodynamic
response. Multimodal approaches are needed which combine the advantages of individual imaging
techniques (e.g., high temporal resolution of EEG) and mitigate their limitations (e.g., volume
conduction). Recently, multimodal imaging has become increasingly important due to the
complexity of neuroscience investigations. Multimodal measurements allow for examining the
neurovascular coupling phenomenon, activity within a resting state brain network and specific
clinical conditions such as epilepsy [158]. Measuring simultaneous electrical and hemodynamic
information from the brain by way of EEG-fNIRS combined recordings offers a unique way to
address in vivo the question of the integrity of the neurovascular coupling in the epileptic brain.
Furthermore, in addition to studying brain mechanisms during the resting state in epileptic brains,
multimodal measurements allow for the exploration of resting state functional connectivity in

epilepsy patients [159]-[161].

fNIRS has powerful features that make it possible to perform functional investigations of
the brain and EEG-fNIRS offer complementary imaging modalities and therefore an important
resource for studying aspects of neurovascular coupling and its relationship with pathological brain
physiology. The figure below shows multimodal resolution in both temporal and spatial domains

[158].
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Figure 1.8: Temporal and spatial resolutions of the EEG, MEG, fNIRS, fMRI, and PET methods.

1.4.9.1 Confounding factors related to multimodal EEG-fNIRS recordings

Confounding factors intrinsic to EEG and fNIRS multimodal data technologies can
potentially impact signal reliability. These confounding factors are generally divided into two

groups (i.e., procedure dependent, and participant dependent) with occasional overlap. Procedural
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factors are related to the experimental setup and data analysis techniques. Participant related factors
are characteristic of the participants themselves; primarily their physical, mental or social state at

the time of the experiment.

Confounding factors related to procedural aspects of data collection must be considered when
making inferences from the collected data. These are inherent to the experimental design and
should be consistent across all participants. With respect to data collection in clinical settings (i.e.,
the intensive care unit) experimental factors are taken into consideration when interstudy or
interpatient comparisons are to be made. Furthermore, differences between individual participant
data may exist in recording procedures devoid of specific instructions (i.e., typical of patient
recordings in intensive care unit settings) owing to spontaneous physiologic and pathologic
cerebral processes [162]. Typically, visual, auditory or other stimuli should be avoided if the goal
of data collection is to obtain resting state brain data and to study resting state networks (RSNs)
[163]. Furthermore, considerations whether the subject is to be instructed to remain at rest with
their eyes open or closed is important as significant differences in RSNs have been reported

between these two states [164].

Furthermore, the existence of instrument noise may become a source of confounding effects
in measurements obtained during resting-state experiments and in the validity of comparisons
obtained from these methods [165]. It has been determined that instrument noise can confound
signals to produce differential activity in specific brain structures particularly the insula, cingulate
gyrus and occipital cortex [166], [167]. The probable effect of noise on resting-state brain data
highlights the possibility of noise attenuation instrumentation when using multimodal
neuroimaging [168] technologies. Procedure based confounding effects can potentially be
mitigated by using a standardized procedure for data collection [169], however this generally is not
possible in the critical care patient population, due to the fact that these patients may be in

compromised brain states (i.e., comatose or sedated statuses).

Participant dependent factors such as age, sex, motion, and sleep stage routinely can
confound multimodal neuroimaging data [170]. The link between BOLD responses and neural
activity may be altered due to age-related changes in the cerebral oxygen metabolic rate—thereby
implying that changes in BOLD properties in older participants may be of physiologic rather than

neuronal origin [171]. Age and specific characteristics of the EEG signal have been studied and



33

generally, the EEG spectral power has shown sensitivity to age differences in younger participants

[172].

Sex has shown to be a possible confounding variable in multimodal measurements as
anatomic differences are mirrored by differences in resting state functional connectivity by sex
[173]. Men typically show greater connectivity than women within the right cuneus cortex and
generally women display stronger functional connectivity metrics as compared to men in the left
inferior temporal gyrus [174]. Furthermore, EEG resting-state sex based differences have also been
reported [175], [176]. In the higher EEG frequency bands, particularly the gamma band, female
brains have reported higher EEG spectral power differences as compared to male brains [176],

[177].

Body motion, particularly head movement can confound measured signals and efforts are
generally made to minimize movement. It has been determined that head motion leads to reduced
inter-regional functional connectivity in the default mode network (DMN) and the frontoparietal
control network [178]. Interestingly, it has been found that head movement introduced spurious
correlation in resting-state results and long-range inter-regional correlations were reduced, while
short-range correlations were increased [179]. Head motion can by itself induce neural activity, as
EEG motion correlates with BOLD responses in the insula and thalamus [180]. Apparent
differences in functional connectivity measures exist during periods of sleep and wakefulness
[181]. Samann et. al, determined that sleep pattern inconsistency reduces the functional

connectivity in the DMN as compared with consistent sleep patterns [181] .

1.5 Deep learning techniques

Deep learning is fundamentally hierarchical or representation learning and is a subset of
machine learning. Deep architectures are different from shallow models principally in their
topology: deep models use several hidden layers to build more complex representations of input
data. Traditionally, employing shallow networks consisting of one or two layers for a task was

preferred mainly due to the absence of computational power to successfully train deeper models.

Recent advances have implemented novel algorithms to train deeper models: unsupervised
pre-training [182] and new regularization functions [183]. These help to mitigate the vanishing

gradient problem that kept deep models from learning proper data representations. Deep models
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learn better representations as each layer specializes in creating an abstraction of the data based on
the previous layers. Thus, low level layers will capture low level information of the data with which
subsequent layers will build more abstract and useful representations. In summary, deep learning
helps create complex and structured abstract representations of the data that embody the necessary
features for solving the task that the model is being trained to solve. In this thesis, we specifically
explore the long short-term memory variant, of recurrent neural networks, sequence to sequence

autoencoders, convolutional neural networks, and finally a combination of these architectures.

1.6 Problem statement

Hemodynamic brain responses attributed to epileptic events are observed with a good
degree of statistical significance and in concordance with clinical presentation. In the context of
epileptic multimodal EEG-fNIRS recordings, the contribution of spectroscopic signals in real
time seizure detection has not been explored. Furthermore, the intertwined relationship between
the electrical and hemodynamic activity of the epileptic brain has not been thoroughly
investigated. Resting state signals have the potential to offer insight into the functioning of the
human brain in health and in disease. Although EEG resting state signals have been explored in
tandem with fMRI in populations with healthy brains, there are limited studies of the resting
epileptic brain using signals derived from EEG-fNIRS multimodal technology. Fundamental
neuroscience relationships constituting the brain’s interdependence on electrical and

hemodynamic activity have not been explored.

The work in this thesis first studies the benefits of using multimodal signal in a seizure
detection task based on deep learning. This first effort could impact monitoring of seizures in the
context of long-term recordings where reading individual EEG recordings is not always practical.
As a second investigation, we investigate how artificially intelligent models can be leveraged to
predict the hemodynamic (fNIRS) correlates of spontaneous neural (EEG) activity in whole-head
resting state EEG-fNIRS epileptic patients. These models could, in the future, be used to
characterize the brain at rest and potentially develop biomarkers associated with silent seizures
or dysfunctional brain networks. An extensive multimodal EEG-fNIRS dataset comprising

signals from 40 epileptic brains was used to investigate these questions.
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1.6.1 Objectives, hypotheses and research work overview

The objectives of this thesis are to: 1) utilize hemodynamic information from EEG-fNIRS
signals obtained from epileptic patients for the task of detecting seizure events using deep
learning models, and 2) develop a deep learning model to determine the underlying relationship
between cerebral electrical and hemodynamic signals (within the context of neurovascular
coupling) in the resting epileptic brain. The resting epileptic brain displays spontaneously
occurring neural activity thought to reflect its functional organization. In addition, both neural
(EEG) and hemodynamic (fNIRS) resting state signals affect local cerebral electrical and
hemodynamic properties via neurovascular coupling. The interdependence of each component
(neural and vascular) of this phenomenon is a topic of great interest to the wider neuroscience
and clinical community due to its relationship with neuropathological conditions including

epilepsy, stroke, subarachnoid hemorrhage, sleep, and traumatic brain injury to name a few.
The individual objectives and their corresponding objectives are stated below:

Objective 1: Based on EEG-fNIRS data collected from 40 epileptic patients, develop a deep

learning model to detect seizure events with high sensitivity and specificity metrics.

Hypothesis 1-1: Hemodynamic information derived from fNIRS recordings provides additional

benefit in seizure detection as compared EEG signals alone.

Hypothesis 1-2: Hyperparameter optimization of the long short-term memory unit variant of
recurrent neural networks bypasses extensive feature extraction, selection, or signal

preprocessing.

Article 1: Sirpal, P., Kassab, A., Pouliot, P., Nguyen, D. K., & Lesage, F. (2019). “fNIRS
improves seizure detection in multimodal EEG-fNIRS recordings.” Journal of Biomedical

Optics, 24(5)., https:/doi.org/10.1117/1.JB0O.24.5.051408.

Objective 2: Develop and implement deep learning methods that process EEG-fNIRS data to

reconstruct resting state fNIRS waveforms from resting state EEG signals.

Hypothesis 2-1: Resting state EEG signals in epileptic patients contain relevant time and

frequency domain information across patients and brain regions.

Hypothesis 2-2: As with full spectrum EEG signals, specific EEG frequency bands can drive

prediction of resting state patient specific hemodynamic signals using sequence to sequence
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learning.

Hypothesis 2-3: Using seed based functional connectivity methods, similar spatial patterns

between experimental fNIRS and convolutional neural network long short-term memory

autoencoder derived fNIRS reconstructions exist.

Article 2: Sirpal, P., Damseh, R., Peng, K., Nguyen, D. K., & Lesage, F. (2020) “Multimodal

autoencoder predicts resting state in EEG-fNIRS signals”, submitted to Neuroinformatics.

This thesis is organized as follows: Chapter 2 reviews the state of the art in terms of seizure
detection in human epilepsy. Chapter 3 describes the deep learning methodology with respect
to data processing and model development, and details regarding the data used in this thesis.
Chapters 4 and 5 contain the manuscripts relevant to the research objectives and finally a

discussion and conclusion are presented in Chapters 6 and 7 respectively.
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CHAPTER 2 LITERATURE REVIEW

2.1 Automated seizure detection

The unpredictable and sporadic nature of seizures imposes a high risk of injury or death. In
recent years, there has been growing research interest regarding seizure detection and prediction
using scalp and invasive EEG recordings [74], [184], particularly the extraction of characteristic
features from EEG signals which correlate with seizure events. Prior to the ictal state, systemic and
local acute physiological changes typically occur. These include an increase in oxygen availability,
changes in cerebral blood flow, changes in regional blood concentrations of oxygenated and

deoxygenated hemoglobin, and acute changes in heart and respiratory rate [185]—[188].

Automatic seizure detection is an important tool in the context of long-term epilepsy
monitoring. Early seizure detection focuses on detecting seizure onset before clinical symptoms
manifest, thereby allowing for timely clinical intervention. Many patients experience seizures sans
aura or other warning signs [11] and it is impractical to have trained personnel continually examine
patients and their respective EEG recordings for seizures. Thus, real-time automated seizure
detection, can help to accurately diagnose and treat seizures. Practically, seizure detection denotes
the automatic recognition of seizures shortly before or after actual onset in a short (few seconds)

time window.

Seizure prediction represents the automatic recognition of seizures in advance of the actual
seizure event where the prediction window can be several seconds to minutes long [189]. One
common distinction between seizure detection and prediction is as follows: 1) the target application
of either seizure detection or prediction and its corresponding treatment strategy, and ii) detection
metrics are generally higher than those reported for prediction. One other important distinction
between seizure detection and prediction concerns the underlying methods utilized. There are two
general approaches in seizure prediction studies with considerable overlap: statistical and
algorithmic. Distinct characteristics of the EEG recording are evaluated in a retrospective manner,
to discriminate between ictal and non-ictal states of the brain. These methods are mainly used for
exploratory analysis of the recording and to mark seizure state [ 189], [190]. However, this approach
can be impractical for a real-time application, where the goal is to identify live EEG data. Work by

Viglione & Walsh 1975 helped to pioneer seizure prediction by determining seizure precursors in
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absence epilepsy using a statistical approach [191]. Notably, Rogowski et al. 1981, Salant et al.
1998 used an autoregressive model of neuronal activity to find changes a few seconds prior to
seizure onset [192], [193]. Siegel et al. 1982 determined changes in signal amplitude within one-
minute epochs prior to the seizure and conducted further analysis on the spike occurrence rates in
the EEG [194]. Thus, determining the inverse relationship between focal spike-rate and bilateral
spikes prior to a seizure event. Le Van Quyen et al. 1999 compared pre-ictal dynamic variations to
those of inter-ictal EEG and discovered the dynamical similarity index decreases in the pre-ictal
state. Interestingly, Litt et al. 2001 conducted a controlled experiment on epileptic patients using
multiple EEG recordings in an effort to show that an increase in the entropy of the EEG signal was

present approximately 40 minutes prior to seizure onset [195], [196].

Other studies used an algorithmic approach on similar multiple EEG recordings. lasemidis
et al. 2005 reported 68% sensitivity and 0.15 false positive rate, for seizure state prediction
approximately 78 minutes in advance using short-term maximum Lyapunov exponents as a single
feature [197]. Chaovalitwongse et al. 2005 attempted to reproduce these results using a larger
patient sample size ((n = 10) as compared to (n = 2)) and reported a sensitivity of 68%,
specificity of 85%, and an average prediction window of 72 minutes [198]. Table 2.1 below

presents a brief summary of research in the field of seizure detection.

Table 2.1: Selected research work in seizure detection.

Number of | Mean detection

Authors Year Features patients time (mins) Sensitivity | Specificity
Liu et al. 1992 Autocorrelation 13 - 42.9 90.2
Correlation
Lehnertz et al.| 1998 dimension 16 12 94 -

Martinerie et

al. 1998 Correlation density 11 3 89 -

Le Van
Quyen et al. 1999 Similarity index 13 6 83 -
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Le Van
Quyen et al. 2000 Similarity index 9 4 94 -
Mormann et Phase
al. 2000 synchronization 2 - 100 100
Cerf et al. 2000 Lerner density 7 - 100 100
lTasemidis et Dynamical
al. 2001 entrainment 5 49 91 -
Litt et al. 2001 | Accumulated energy 5 19 90 88
Le Van Phase
Quyenetal. | 2001 synchronization 8 - 77 -
Correlation
Lehnertz et al.| 2001 dimension 59 19 47 100
Jerger et al. 2001 Multiple measures 4 2 100 -
Navarro et al. | 2002 Similarity index 11 8 83 69
Celka &
Colditz 2002 Signal complexity 13 - 66.1 56
Mormann et Synchronization and
al. 2003 correlation 10 - 86 100
Khan et. al. 2003 | Frequency spectrum 13 - 62.5 64
Mormann et Phase
al. 2003 synchronization 18 4 81 100
Tasemidis et Dynamical
al. 2003 entrainment 5 89 81 83




Multiple wavelet
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Shoeb et al. 2004 decomposition 36 6 - 85
lTasemidis et Dynamical
al. 2005 entrainment 2 78 82 85
Le Van Phase
Quyenetal. | 2005 synchronization 5 7 69 -
Navarro et al. [ 2002 Similarity index 13 7.5 64 -
Chaovalitwongse Dynamlcal
etal. 2005 entrainment 10 72 69 85
Phase
Schelter et al. | 2006 synchronization 4 - 70 95
Costa et al. 2008 Multiple features 2 5 98.5 99.5
Mirowski et
al. 2009 Multiple features 21 Less than 1 minute 71 100
Santaniello et
al. 2011 Multiple features 4 9.6 100 84
Spectral band
Park et al. 2011 features 18 - 97.5 73

2.1.1 Traditional algorithms for seizure detection

In this section, we will discuss prominent algorithms used for seizure detection. Faul,

Boylan, Connolly, Marnane, & Lightbody, 2005 sought to evaluate three common algorithms for

automatic seizure detection in neonatal EEG recordings. Work by Celka & Colditz, 2002; Gotman

et. al, 1997; Liu, Hahn, Heldt, & Coen, 1992 were included and all three approaches utilized one-

minute EEG segments from a sample size of 13 neonates. The Gotman approach [200] uses Fast

Fourier transformation (FFT) computations for determining rhythmic features of epileptic like
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discharges. The rhythmic fluctuations present within a seizure consists of distinct changes in
amplitude present at a specific main frequency, accompanied by possible minor frequencies. EEG
classification via the Gotman approach, is dependent on differences in characteristics of the
frequency domain. The frequency and bandwidth of the main peak in the frequency spectrum are
measured, and these measures are cross checked against a group of threshold values to classify
EEG signals. The power in the main frequency band is compared to the power in the same band of
the frequency spectrum of a non-seizure segment, which typically have a lag of about 60 seconds
from the seizure segment. Examination of the algorithm revealed that seizure detection rates were
greatly influenced by the threshold values used in EEG classification. Using the Gotman approach,
there exists an unintentional overlap of frequency spectrum characteristics of ictal and non-ictal

EEG classes.

The Liu approach [201], aims to automatically detect seizures by searching for periodic,
rhythmic data using autocorrelation, which is simply the cross-correlation of a signal with a delayed
version of itself and can be used for finding repeating patterns within a signal. The approach is
likely to detect seizures with high specificity and low sensitivity but fails to detect rapidly changing

frequency and signal amplitude.

The Celka approach [202] examines the complexity of EEG data to detect seizures. This
approach assumes that ictal EEG segments have differing complexity as compared to non-ictal
EEG segments. The Celka approach detects seizures with high sensitivity and high specificity. The
specificity produced by Celka et al., 2002; Khan et al., 2003; Liu et al., 1992) [201]-[203] are
respectively 64.0%, 90.2% and 56.0%. The sensitivity metric was 62.5%,42.9% and 66.1%
respectively. In summary, Faul et al. 2005 concluded that based on the specificity and sensitivity
rates of these methods, to detect seizures in real time, other techniques must be integrated to avoid

overlap in the signal characteristics between seizure and non-seizure segments [199].

2.1.2 Current seizure detection techniques

In current practice, clinicians depend on a multitude of tools for early detection of seizure
events ranging including primarily using scalp EEG monitoring and pathology specific monitoring
devices [204], [205]. Continuous EEG (CEEG) monitoring refers to the prolonged (hours, days, or
weeks) recording of the brain’s electrical activity using scalp electrodes generally combined with

simultaneous video recording [206], [207]. CEEG offers utility in differentiation of clinical events
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frequently seen in critical ill patients which mimic seizures such as involuntary movements, whole-

body rigidity, tremors/jerking, etc. from true seizure activity.

2.1.2.1 fNIRS for seizure detection

Technical advances in fNIRS technology and instrumentation over the last few decades
have allowed for the continuous non-invasive monitoring of cerebral HbO, HbR and HbT for the
explicit purpose of seizure detection [208], [209]. Over time, NIRS monitors have adapted
technologies to become smaller, more mobile and more cost-effective. Furthermore, by improving
user interfaces and minimizing calibration procedures, the overall ease of NIRS systems has
improved [210]. Commercial NIRS systems are now available from a number of various
companies, including Nonin Medical Inc. (Plymouth, MN, USA), Hutchinson Technology Inc.
(BioMeasurement Division, Hutchinson, MN, USA), Covidien (Dublin, Ireland) and others [209].

In the adult head, the fNIRS signal mainly reflects the absorption at a depth of 1 to 2 cm
below the scalp when the inter-probe distance is set between 3 and 5 cm. Since fNIRS can provide
estimates of brain activity, it can potentially be a worthwhile complement to neuromonitoring. In
spite of its potential, the practical use of fNIRS technology in neurology in particular is limited
[211]. Research indicates that the benefits of clinically using fNIRS to determine changes in
cerebral perfusion are modest at best, and correlate with transcranial doppler and surface EEG
[212]. Results from a prospective study on a cohort of 60 patients post cardiac arrest [213]
provided preliminary indications of the possibility of determining neurological outcomes using
NIRS based regional cerebral oxygen saturation (rSO2). To date, no feasibility studies definitively
indicating benefit of using fNIRS in critical care situations has been demonstrated to recommend
a change in clinical protocol or practice. Most clinical fNIRS systems consist of a patch containing
a few fNIRS channels affixed to the patient’s forehead to avoid hair contamination. Currently, this
technique is mainly used in the perioperative setting [214] as an adjunct to well-established clinical
diagnostic tools. At the moment, widespread use of NIRS technology for seizure detection is not

in use.

2.1.2.2 Limitations of current methods

In spite of the recent technological and instrumentation advances, current methods for

seizure detection have their limitations. The detection of seizures in clinical settings requires expert
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interpretation which may not always be readily available. Furthermore, clinical staff generally
encounter challenges in interpreting CEEG recordings primarily being: a) the presence of motion
induced artifacts, and/or electrode displacement leading to a reduction in signal quality; b) a wide
variety of less obvious ictal patterns seen in the critically ill; and c¢) a large quantity of data to
analyze. For the latter problem, a number of quantitative EEG methods have been developed to

simplify and analyze EEG data.

In fNIRS systems, low frontal cortical oxygenation (rSO2) levels often are mismatched
between cerebral perfusion and regional oxygen requirements [215]. Absolute rSO» values of less
than 50% and/or a relative 20% decrease from individual rSO2 baseline levels are commonly
considered necessary for seizure onset and subsequent detection. However, these findings cannot

be generalized [216], [217].

2.1.2.3 Multimodal monitoring as a potential tool for seizure detection

Multimodal long-term brain monitoring can overcome some of the limitations of the
individual methods described above. Multimodal brain monitoring offers additional information
that could be missed by each modality individually. Utilizing more than one monitoring technique,
the observer in conjunction with algorithms for automated seizure detection, is more likely to
determine whether a genuine change in cerebral physiology and subsequent epilepsy pathology has
occurred and what the most appropriate clinical intervention should be. Multimodal brain
monitoring combined with clinical standard of care has the potential to provide vital information

about seizure activity to improve clinical diagnosis and prognostication [218], [219].

2.2 The resting state and functional connectivity as a biomarker of

the pathological brain

Brain activity is spontaneous and constant, leading to constant fluctuations in cerebral blood
flow and neural firing [220]. Resting state analyses offer insight into the functional organization of
the brain and can help investigate changes in brain physiology in neurological disorders. Functional
connectivity analyses in the resting state has revealed networks of sensorimotor, visual, auditory,
and language systems in resting healthy brains [221]. One such network is the default mode
network (DMN). The DMN is normally active during latent thought, memory, and future planning

[222] and has been shown to exhibit highly correlated activity between interacting brain regions.



44

It has been noted that patients affected by neurological disorders (Alzheimer’s disease and/or
autism primarily) have disrupted connections in the DMN, mainly in the posterior cingulate cortex
[223]. By extension, the resting state in epileptic patients might exhibit perturbations in functional

connectivity.

Multimodal EEG-fMRI investigations by Gotman et al. sought to determine the mechanism
of metabolic changes associated with epileptic burst discharges, and their subsequent effect on
brain function [224]. Results suggest that regional blood oxygenation level-dependent signal
changes are evident in response to epileptic discharges as seen in EEG signal fluctuations. Bilateral
and symmetrical BOLD signal activations were observed in the thalamus, mesial midfrontal region,
and insulae. The anterior frontal and parietal regions and the posterior cingulate gyri were sites of
bilateral and symmetrical deactivations. Notably, thalamic and midfrontal regional activations have

been known to be involved in the generation of generalized epileptic discharges.

Notably, the generation of epileptic like discharges is not believed to be exclusively
dependent upon cerebellar activation. Negative blood oxygenation level-dependent responses (i.e.,
deactivations) in frontal and parietal regions are closely related to patterns seen in the default state
of brain function (i.e., resting state brain activity). Thalamic activation and the subsequent changes
in the brain’s default activity may lead to a state of reduced responsiveness observed in spike-and-
wave discharges; which is due to epileptic discharges and its related effects on normal brain
function [224]. Mapping resting state networks offers great potential for basic and clinical research

and can assist in greater understanding of neurological disorders.

2.2.1 Resting state in the epileptic brain

Epilepsy places large metabolic demands on the brain's autoregulatory mechanisms,
particularly as a result of the acute and sudden change in cerebral blood volume and concomitant
cerebral blood flow required to maintain brain function [225]. Secondary to spontaneous changes
in cerebral hemodynamics at rest in epileptic brains, it is generally believed that cerebral anoxia
initiates cell damage prior to, during, and after a seizure event [226]. Thereby, seizures induce
acute increases in venous oxygenation [64] to maintain the brain’s metabolic demand. At seizure
onset, cerebral blood flow increases in comparison to baseline may be inadequate to meet the
metabolic requirements of the brain during an ictal event. Investigations into the resting epileptic

brain ushers in new insights into the complex networks organizing the brain.
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Hemodynamic correlates of epileptic activity have been used to map epileptic foci with
neuroimaging techniques (e.g., fMRI), however, there are limited studies of neurovascular
coupling in epileptic brains. By examining the relationship (in the context of neurovascular
coupling) between resting state EEG and the local hemodynamic response in the resting state of
epileptic brains, we examine if the brain’s electrical signals can be used as predictors of the brain’s
hemodynamic signals. This makes strides in gaining understanding of the relationships intrinsic to
the epileptic brain (i.e., neural and vascular) as well as offers clinical relevance in understanding

the fundamental organization of the epileptic brain.

2.2.2 EEG resting state analyses

Examining neural signals obtained by EEG recordings to study resting state networks is
more difficult than examining the BOLD signal. EEG signals are typically of low amplitude and
distinguishing underlying neural sources further complicates the task. Examining meta-stable brain
states using electric field topographical analysis allows for estimation of resting state networks
[227]. This method matches temporal patterns between sensors and sources to identify state specific
networks. This sensor-source matching methodology only partly resembles networks determined

by examining the BOLD signal.

2.2.3 fMRI resting state analyses

fMRI based functional connectivity analyses have become popular in resting state
investigations, as the BOLD signal can be readily measured using fMRI technology. Methods used
in studying fMRI resting state networks typically include independent component analysis (ICA),
coherence, correlation, clustering, and graph theory to name a few. Regional correlation using the
seed-based method is relevant to this thesis and is presented in more detail in Chapter 5. Briefly,
correlations are computed using signals from specific voxels indicative of a region, with voxels
from other brain regions [228]. The benefit of this method is that it is able to provide a precise
examination of regional connectivity. Furthermore, connectivity between voxels from a region of
interest (ROI) and all other brain regions can be averaged providing a measure of global brain

connectivity (GBC) specific to the ROI in question [229].
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2.2.4 fNIRS resting state analyses

Recently, interest has developed in determining if resting state functional connectivity
studies can be successfully performed using fNIRS technology [40], [92], [157], [230]. It was
determined that the low frequency fluctuations attributed to the resting state fNIRS signal was
spontaneous and comparable to those of the low frequency fluctuations seen in fMRI [231]. Given
fMRI’s high spatial resolution and full head coverage, fNIRS is unlikely to replace fMRI for basic
research. However, fNIRS offers certain advantages over fMRI in examining resting state
functional networks, which can possibly lead to a more reliable resting state functional connectivity

estimate. We will briefly discuss three such advantages.

First, fNIRS’s practical qualities of being relatively low cost, portable, and allowing for long-
term recordings, helps facilitate fNIRS-based resting state functional connectivity studies in a range
of patient populations, including bed-ridden and comatose statuses; a common situation in critical
care units [230], [232]. Second, fNIRS characterizes changes in both HbO and HbR, providing
more information regarding cerebral metabolic changes as compared to BOLD-fMRI
measurements. Third, fNIRS has a higher temporal sampling rate as compared to fMRI, thereby
preventing aliasing of certain physiological activity (i.e., cardiac (approximately 0.8- 2.5 Hz) or

respiratory (approximately 0.15- 0.3 Hz) activity) into low frequency fluctuations.

An investigation focusing on the relationship between brain electrical and hemodynamic
signals and consequently mapping EEG and fNIRS signals has the potential to offer further insight

into the coupling between neuronal and hemodynamic activity.

2.3 Summary

In this chapter, the current state of the art in clinical seizure detection was discussed and finally,
a brief discussion on the resting state and functional connectivity was discussed. In the next chapter
we will describe data processing and model development techniques particularly artificial

intelligence and deep learning, used in this thesis.
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CHAPTER 3 METHODOLOGY

In this chapter we present the methodology specifically the machine learning, deep learning
and signal processing methods used in this thesis. In the first section, we introduce the terminology
and mathematical notations that will be used throughout. In subsequent sections, we discuss deep
learning strategies used in this work. The datasets used and data processing techniques performed

is presented in detail in Chapters 4 and 5.

3.1 Machine learning terminology and notation

A subset of artificial intelligence, machine learning, is the scientific study of algorithms
and statistical models that computer systems use to perform a specific task relying on inference
and patterns intrinsic to the data without using explicit instructions. The input to a machine learning
algorithm is a training dataset, with (supervised learning) or without (unsupervised learning) labels.
In the case of supervised learning, the algorithm attempts to determine feature maps between
training data and training labels. After this, the next step is to predict the label of the unseen testing
set data and output the target vector. Each unseen data point has a specific target vector. Machine
learning algorithms use a large collection of data points, namely training data to tune the parameters
of a dynamic model. The algorithms used in machine learning are predominantly based on
statistical methods; however, biologically inspired and graphical methods are also used in many
cases. Generalization is the ability of the constructed model to correctly categorize unseen data.
The training-set and test-set are typically pre-processed in order to simplify the pattern recognition

or enhance the performance of the machine learning algorithm.

3.2 Deep learning

In this section, we formally introduce the deep learning models including concepts,
architectures, and techniques used in this thesis. Deep learning, a subset of machine learning,
hierarchically processes information for feature and/or representation learning [233], similar to the
human brain. Typical networks are designed with multiple neuron layers including an input layer,
a hidden layer, and an output layer. Learning algorithms are subcategorized into the following: 1)

Discriminative models, 2) Representative models, 3) Generative models, and 4) Hybrid models.
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Deep Learning
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Figure 3.1: Deep learning models categorization. AE: Autoencoder, RBM: Restricted Boltzmann
Machine, D-AE: Stacked-Autoencoder; Note that the Deep Belief Network (DBN) can be
composed of an AE or RBM, therefore, DBNs can be divided into DBN-AE (stacked AE) and
DBN-RBM (stacked RBM) [234].

We will briefly describe each category. Discriminative deep learning models classify input
data to learn distinctive features by non-linear transformation, and probabilistic prediction. These
models include the multi-layer perceptron (MLP), recurrent neural networks (RNN), convolutional
neural networks (CNN), and their variants. RNN and CNN models used in this work fall under this
category. Representative models learn representative features from input data. Autoencoders and
the sequence-to-sequence variant are within this category and are used in this thesis. Generative
deep learning models learn the joint probability distribution of input data target labels. Hybrid deep
learning models combine two or more deep learning models: one for feature extraction
(representation algorithm) and one for classification (discriminative algorithm). The table below

summarizes the main characteristics of these deep learning models.
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Table 3.1: Summary of deep learning model types.

Model Input QOutput Function Training
method
Discriminative | Vector Label Feature extraction, Supervised
or tensor classification

Representative | Vector | Representation | Feature extraction | Unsupervised

or tensor
Generative Vector New sample Generation, signal | Unsupervised
or tensor reconstruction
Hybrid Vector N/A N/A N/A
or tensor

3.3 Discriminative deep learning models

In order to detect signals during different brain states, discriminative models receive input
data and output the corresponding label. With respect to this thesis, the dataset of brain signal
samples {X, Y} where X denotes the set of brain signal observations and Y denotes the set of sample
ground truth. From our multimodal dataset, we extract sample-label pairing such that {x €
RN,y € RM} where N and M correspond to the dimension of observations and the number of
sample categories, respectively. Discriminative models learn a function with the mapping: X' —
Y. The discriminative models introduced in this section are supervised learning techniques which

require the information of both experimental observations and the ground truth.
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3.3.1 Multi-layer perceptron

The simplest deep learning model is the multilayer perceptron (MLP), with multiple hidden
layers as compared to a shallow neural network [235]. In MLP, nodes are fully connected with the

adjacent layer nodes but lack connection with other nodes in the same layer.

3.3.2 Recurrent neural networks

The recurrent neural network (RNN) is a type of discriminative deep learning model that is
used to explore dependencies temporally. For each time point, £, a node receives a specific input,
I, and hidden state ¢ from the previous time. Thus, for a given time point, the node receives input
I, and the hidden state (node memory) of the previous node c¢;_;. There are many variants to the
RNN and for the purpose of this thesis we will focus on the “long short-term memory” (LSTM)

variant.

3.3.3 Long short-term memory

Introduced by Hochreiter & Schmidhuber in 1997, the long short-term memory network
(LSTM) is a variant of the recurrent neural network and is capable of learning long-term
dependencies present within data [236]. LSTMs are scalable models with application in learning
problems related to sequential data. Traditional methods have either been too specific (i.e., tailored
to a specific problem) or were not able to scale to inherent time dependencies [236]-[238].
However, LSTMs are able to exploit long-term temporal dependencies and typically do not suffer
from the optimization hurdles that are common to vanilla recurrent neural networks [239]. Thus,
they have found application in and have been able to advance the state-of the-art in time series
analysis, financial and weather forecasting, natural language processing, and medical image

analysis [236], [240], [241].

3.3.3.1 Overview

LSTMs are essentially developed with repeating modules and multiple interacting layers,
as opposed to a single layer in vanilla RNNs. The LSTM’s memory cell maintains its state over
time. As mentioned above, gating units control the flow of information into and out of the cell

[183]. The following is a description of the “vanilla” variant of the LSTM network.
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LSTM cells typically have three inputs I O,_;,and c,_, and two outputs c, and O,.
Mathematically, I;, denotes the input value at time t, and O;_; denotes the output at the previous
time, t — 1 and c;_;denotes the hidden state at the previous time. Outputs represent the hidden
state and output. The output O; is not only related to the input I, but also related to information
from the previous time step. Thus, the LSTM retains memory of important temporal information.
The flow of memory in an LSTM occurs within the following gates: the “input” gate, “‘forget”
gate, “output” gate, and “input modulation” gate. Each gate reports a weight value (determined
by the neuron activation function) that controls information flow. For example, if forget gate’s
weight is “0”, the LSTM cell would remember all the information passed from the previous time

t — 1. If the weight is unity, the LSTM remembers nothing.

3.3.3.1.1 The forget gate and peephole connections

The forget gate allows the LSTM to reset its own state, thereby allowing the LSTM to learn
hierarchical information from sequential data [242]. In order to optimize learning and allow gates
to exploit learning from the previous internal state, c;_;, and the previous hidden state, s;_4,
peephole connections are integrated into the LSTM architecture [183], [242]. These connections
are essentially connections from the cell state to the gates. This addition bypasses the requirement
of an open output gate, and the integration of peephole connections allows the LSTM network to

learn precise timings in the data [237], [242].

3.3.3.2 Data flow through the LSTM network

As data points enter the LSTM units, the LSTM cell state decides what data points will be
sent through the LSTM and what information will be discarded from the cell state. This decision
is essentially made by the “forget gate” which examine the input and hidden states x; h;_;
respectively, and outputs a real value between 0, 1, for each number in the cell state C;_;. From
here, the subsequent steps decide what information will be “stored” in the cell state. The “input
gate layer” decides which data points to update and the consequently, the following layer creates a
vector of new candidate values, to be added to the cell state. Following this, the LSTM’s cell state
will be updated, from C;_; to a newer C; state. Computations performed by the forget gate scales

the new candidate values and decides update to each state value by adding and dropping values.

3.3.3.2.1 Notation
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The hidden layer function, ', is an element wise application of a given function. The

hidden layer function, , is implemented by the following composite functions:

ip = c(Wyixe + Wpihe_q + Weice_q + by) Equation 7
fe = oWyexy + Wyphe_y + Wepce_q + by) Equation 8
¢t = fiCr—q +istanh (Wyox, + Wy hi_q + b.) Equation 9

0y = o(Wyoxy + Wyohi—q + Weocr + by) Equation 10

h; = o;tanh (c;) Equation 11

where o is the logistic sigmoid function and i, f, 0, and c are respectively the input gate, forget
gate, output gate and cell activation vectors; all of which are the same size as the hidden vector,
h. Assuming the same hidden layer function is applied to all N layers in the network, the hidden

vector sequence, h™ is computed iteratively fromn = 1to N and t = 1 to T and h® = x:
= HWpn-1nh?t + Wynpnh? | + bJ} Equation 12

Here we describe common weight notation (table below) used with respect to a vanilla
LSTM. Assuming that x, is the input vector at given time, t, N is the number of LSTM blocks,

and M represents the number of inputs. the following weights are calculated:

Table 3.2: Weights for an LSTM layer

Input weights W, W, W, W, € RV*M
Recurrent weights R, R;, R, R, € RNV
Peephole weights Di, Ps, Do € RV

(LSTM variant)
Bias weights b, bi, by, b, € RN

3.3.3.2.2 Data output
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Data output from the LSTM is dependent on the cell state and is multiplied by the output
of the forget gate and its associated activation function (e.g., sigmoid). The figure below shows the
LSTM along with its input, forget and output gates. Input is denoted as x;, C; is the cell state, f; is
the forget gate, h; is the hidden state, and O; is the output gate. The input gate's activation vector

is denoted as i;. The network outputs, y;, are computed as:

ye = W,nyht + b, Equation 13

X

\

xt
@ LSTM 0 Output gate
Unit /

O \ tanh

X — ® ® — |— &

\ Forget gate 6 )

X

Figure 3.2: The long-short term memory variant of the recurrent neural network. Data input

lnpul gate

Sigmoid

is denoted as x;, C; is the cell state, i; is the input gate’s activation vector, O, is the output gate and
the forget gate is denoted as f;. Element wise multiplication between data input and flow
throughout the LSTM module is denoted by the ® symbol. The @ symbol represents the application
of a differentiable function (sigmoid or tanh function) to a weighted sum. Each of these gates are

thought of as neurons which compute network activations.

LSTM configurations with peephole connections are similar to the vanilla LSTM network

without these connections. These peephole LSTM configurations have control gates and output
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activation functions [237] and the output of this LSTM network variant is recurrently connected
back to the LSTM input and corresponding gates [183], [236], [237].

3.3.4 Convolutional neural networks

One of the most popular deep learning models for spatial information investigation is the
convolutional neural network (CNN). In a neuroimaging context, CNNs are popular architectures
which are able to exploit spatial dependencies. In the applications relevant to this thesis, the CNN
attempts to determine such dependencies among EEG-fNIRS signals. The computational unit of
the CNN is the convolutional layer with filters to convolve input data (EEG, fNIRS, or EEG-fNIRS
signals) followed by non-linear transformation for feature extraction. The implementation of the

CNN in this thesis can be found in more detail in Chapter 5 (Article 2).

3.3.5 Representative deep learning models

Representative models take input data and output dense representations. The building
blocks of representative models are autoencoders, and restricted Boltzmann machines. We will

discuss autoencoders and the sequence to sequence variant as it is pertinent to this thesis.

3.3.5.1 Autoencoders

An autoencoder typically has three layers: the input, latent (i.e., hidden) layer, and output

layer as shown in the figure below.

Original input Latent representation Reconstructed output

W /(WA —> © Encoder - —  Decoder — |1

h

Autoencoder architecture

Figure 3.3: Autoencoders reconstruct input by flowing through encoder and decoder layers. The

hidden layer (h) learns representations of the input.
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The encoding layer embeds the observation to a latent representation. Mathematically,
x" = a(T(x)) Equation 14

where x" represents the hidden layer. The decoder (decoding unit) layer decodes the representation
into the original space, y' = o(T(x")) where y'represents the output. Autoencoders calculate
reconstruction error based on the distance between y'and x and can compute the loss function only

by using the input, x, sans the ground truth y:
error =|ly' —x |, Equation 15

Note, this equation uses the input x as the ground truth and therefore does not involve the variable
y. Not surprisingly, Autoencoders can perform unsupervised learning. Naturally, one variant of

autoencoders is the sequence to sequence model (seq-to-seq) as discussed below.

3.3.5.2 Sequence to sequence models

In continuation to the LSTM concepts introduced previously, we provide a foundational
description of the sequence-to-sequence model used in this thesis. Section 5.4.3.3 provides a full
description of the sequence to sequence model used in this thesis. To conclude this section, the

tools used to build the sequences and neural network models are briefly discussed.

3.3.5.2.1 Sequence embeddings

In order to feed sequential data into machine learning models, there is a need for
corresponding numeric representations. There has been multiple methods proposed in the literature
to address this problem [243], such as bag-of-words (BoW) and one-hot representation. However,
embeddings such as Global vectors for word representation (GloVe) [244] and word to vector
(word2vec) [245] are most common. The notion of distributional similarity was introduced by
[246], and stated that “words that occur in similar contexts would have similar meaning”. For
example, the words “sport” and “game” occur in similar contexts in documents and hence, share
similarities in their meanings. This implies similarity in their numeric or vector representations.
The cosine distance metric is typically used to measure similarity between two vectors as shown

in the equation below.
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a-b Equation 16
|a] - |b]

cosf =

where | - | refers to the L2 norm of the corresponding vector. A higher value of cos 8 implies that
the angle between the two vectors is small, and hence they are more similar and vice-versa. This
concept is extendable to EEG and fNIRS signals in that EEG and corresponding fNIRS signals also

occur in a similar context and share similarities in their sequences.

3.3.5.3 Sequence to Sequence long short-term memory

Introduced by Sutskever et al., sequence-to-sequence (Seq2Seq) models have greatly
benefited tasks requiring sequence generation such as question answering, dialog systems and
machine translation. These models take an input sequence and generate an output sequence [247].
This is in contrast to vanilla classification models, which output only a single class label, and not
an entire sequence. Seq2Seq models are typically implemented using two recurrent neural
networks, one which is referred to as the “encoder” and the other is called the “decoder”. The
encoder creates a vector representation of the input sequence that is then fed into the decoder,
which then generates tokens in a sequential manner. This study uses LSTM recurrent neural

networks for encoding and decoding EEG and fNIRS sequences.

More concretely, let x = (x1, X, ... x|,|) be the tokens (i.e., the corresponding sequence
embeddings) from the source sequence (EEG) and y = (1, Y7, ... ¥|y|) be the tokens from the target

sequence (fNIRS). At the end of the encoding process, we will have, the final hidden and cell states

(source)

respectively from the source sequence. We can then set the initial states: h,3, and ¢50¥e®)

| x| ’
of the decoder LSTM to (h$°*"“® and cl(jlource)) . This method known as hidden state initialization

x|

and transfers information from the source to the target sequence. Following which, at each
subsequent time step of the decoding process, we are able to compute h}mr‘g et) using an input

sequence embedding, y;_; (the ground truth during training and the prediction from the previous

timestep during testing). This is given by:
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h}gtarget) — LSTM, (h](ialrget)’ )’j—1) Equation 17

where 6 refers to the weights of the LSTM network. The predicted sequence at timestep j is then

given by a softmax layer as follows:
p(3) = sofmax (W hL00) Equation 13

where W,,,;1s a weight matrix and the softmax function is defined by the equation below:

exp Vi Equation 19

softmax(yjx) = vl
X =1€XD Yjk

where yjirefers to the value of the kt"dimension of the output vector at timestep j. In total the
output vector at each timestep has |V |dimensions, where |V| corresponds to the total sequence
size. The softmax layer normalizes the output layer and computes a vector of probabilities. Among
the |V| dimensions of the output layer, the dimension with the highest calculated probability is

chosen and generates the sequence corresponding to that index.

3.3.6 Deep learning in neurophysiology

In this section, we will discuss using deep learning methods used in neurophysiology

particularly in seizures.

3.3.6.1 Seizures and deep learning

Recently, deep learning models have been developed for the task of seizure detection.
CNNs have been used for the automatic detection of epileptic seizures in adult patients [248].
Ansari et al, 2018 used CNNs to extract spatial features extractor which were subsequently fed into
a random forest classifier for neonatal seizure detection [249]. Supratak et al, 2014 used a deep
autoencoder to extract seizure EEG features and a classifier (logistic regression) for seizure
detection [250]. Hybrid deep learning models have also been used for seizure detection.
Notably, Tsiouris et al., 2018 used a CNN-LSTM architecture to detect seizures on select EEG
channels [251]. Deep learning using fNIRS signals is still in its nascent stages and with respect to

using deep learning architectures for seizure detection using multimodal EEG-fNIRS signals. The
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work presented in this thesis, for the first time showed that multimodal EEG-fNIRS signals

increases metrics as compared to seizure detection with EEG signals alone.

3.3.6.2 Functional connectivity

Functional connectivity derived from resting-state fNIRS signals has recently gained
attention as it is capable of providing valuable insight into the intrinsic networks present within the
human epileptic brain [252]-[254]. Specifically, cerebral hemodynamic signals derived from
fNIRS allow for greater understanding of the human brain. Furthermore, one of the principal
motivations of functional connectivity computations is to better understand, detect and treat
neurological diseases. Here, we employ seed-based correlation analysis to determine functional
connectivity between the resting epileptic brain compare band-specific EEG (gamma band)
connectivity with connectivity in fNIRS. Specifically, we will consider ground truth and
reconstructed fNIRS signals to discover resting-state functional connectivity patterns derived from
the developed LSTM-CNN autoencoder model. The main contribution of the present work is to
emphasize that reconstructed fNIRS signals derived from specific EEG bands compares with the
estimate of the temporal relation among brain networks during resting state. Full details are found

in Article 2 in Chapter 5.

3.3.7 Summary

This chapter presented an introduction to some of the machine learning and signal
processing concepts and algorithms used throughout this thesis. Some of the topics were presented
at a high level of abstraction. There are primarily two reasons for this: 1) the topics presented here
constitute a research domain and a full examination of their details is outside of the scope of this
thesis. 2) Details of specific methods will be presented in future chapters. In this chapter, we
discussed deep learning models as they relate to seizure detection and prediction. The studies using
scalp EEG signals are significantly more than the sum of all the other paradigms including fNIRS.
The next chapter will describe the datasets used in this thesis in detail: 1) The CHBMIT public
EEG data set and 2) An in-house EEG-fNIRS data set; as well as the data processing performed
(Sections 4.4.3.1 and 4.4.3.4 respectively).
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CHAPTER 4 ARTICLE 1: FNIRS IMPROVES SEIZURE DETECTION
IN MULTIMODAL EEG-FNIRS RECORDINGS

4.1 Article details

Sirpal, P., Kassab, A., Pouliot, P., Nguyen, D. K., & Lesage, F. (2019). fNIRS improves seizure
detection in multimodal EEG-fNIRS recordings. Journal of Biomedical Optics, 24(5), 051408
(2019). https://doi.org/10.1117/1.JBO.24.5.051408.

This article addresses the first objective of the thesis, namely the development of a deep
learning model to detect seizures with high sensitivity and specificity based on EEG-fNIRS data.
This work was presented at the Britton Chance Symposium, Perelman School of Medicine,
University of Pennsylvania and subsequently published in the Journal of Biomedical Optics

Special Section on Metabolic Imaging and Spectroscopy.

4.2 Context and rationale

At the time of writing, the state-of-the-art approach for seizure detection was to use
traditional machine learning approaches such as an SVM as a final classifier on scalp and/or
invasive EEG datasets. The preceding steps included extensive data processing, filtering, and
feature extraction followed by tedious training. This motivated the use of deep learning
architectures to automatically learn relevant features so that time consuming and sporadic feature

selection can be avoided while maintaining or exceeding performance metrics.

4.3 Contributions

This work uses fNIRS data from epileptic patients for seizure detection using the LSTM
variant of the RNN. The use of the open source and well referenced CHBMIT dataset provided
validation to our methods. Our architecture performed better than other deep learning methods
evidenced in the literature. The addition of fNIRS was shown to improve detection metrics as
compared to EEG alone. This work was novel in that it was the first-time multimodal EEG-fNIRS

signals were used for seizure detection.
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4.4 Article 1

fNIRS improves seizure detection in multimodal EEG-fNIRS
recordings

Parikshat Sirpal™™’, Ali Kassab®, Philippe Pouliot™, Dang Khoa Nguyen®, Frédéric Lesage™*
2Ecole Polytechnique de Montréal, Université de Montréal, C.P. 6079, succ. Centre-Ville, Montréal, H3C 3A7,
Canada

® Neurology Division, Centre Hospitalier de I’Université de Montréal (CHUM), 1000 Saint-Denis, Montréal,
H2X 0C1, Canada

¢ Research Centre, Montreal Heart Institute, Montreal, Canada

*parikshat.sirpal @polymtl.ca

4.4.1 Abstract

In the context of epilepsy monitoring, electroencephalography (EEG) remains the modality of choice. Functional near-
infrared spectroscopy (fNIRS) is a relatively novel modality that cannot only characterize hemodynamic profiles of
seizures but also allow for long-term recordings. Here, we employ deep learning methods to investigate the benefits
of integrating {NIRS measures for seizure detection. We designed a deep recurrent neural network with long short-
term memory units (RNN-LSTM) and subsequently validated it using the CHBMIT scalp EEG database - a
compendium of 896 hours of surface EEG seizure recordings. After validation using EEG data, fNIRS, and multimodal
data comprising a corpus of 89 seizures from 40 refractory epileptic patients was used as model input to evaluate the
integration of fNIRS measures. Following heuristic hyperparameter optimization, multimodal EEG-fNIRS data
provided superior performance metrics (sensitivity and specificity of 89.7% and 95.5% respectively) in a seizure
detection task, with low generalization errors and loss. False detection rates were generally low, with 11.8% and 5.6%
for EEG and multimodal data respectively. Employing multimodal neuroimaging, particularly EEG-fNIRS, in epileptic
patients, can enhance seizure detection performance. Furthermore, the neural network model proposed and
characterized herein offers a promising framework for future multimodal investigations in seizure detection and
prediction.

Keywords: EEG-fNIRS, functional brain imaging, deep neural networks, epilepsy, seizure detection
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4.4.2 Introduction

Continuous video-EEG surveillance is often used in hospitals to monitor patients at high-risk of epileptic
seizures' particularly patients with drug-resistant chronic epilepsy admitted in epilepsy monitoring units or
critically ill patients admitted to the intensive care unit after an acute brain injury such as stroke, head
trauma, brain hemorrhage, or brain infection. While some seizures are clinically evident, such as generalized
tonic-clonic seizures, others are subtle in terms of clinical manifestations (ex. subtle facial or limb twitches)
for which recognition by EEG is particularly well suited. Moreover, some seizure events are purely electrical
being only detectable on EEG or even completely asymptomatic (from isolated electrical seizures to non-
convulsive status). Non-convulsive status epilepticus (defined as a continuous state of seizures without
convulsions, or multiple nonconvulsive seizures for more than 30 minutes without interictal full recovery)
has been found to account for up to 20% of all cases of status epilepticus in general hospitals, and up to 47%
in the intensive care unit’. Functional near infrared spectroscopy (fNIRS) has emerged as a safe, non-
invasive optical technique that exploits neurovascular coupling to indirectly measure brain activity.
Measured relative changes in both oxygenated and deoxygenated hemoglobin can be used to assess cortical
activation during overt and subtle seizures®. Continual fNIRS cerebral monitoring provides the ability to
track regional oxygenation changes before, during and after these ictal events*”. In recent years, multimodal
approaches have emerged integrating EEG with fNIRS to offer dual hemodynamic and electro-potential

characterization of a seizure event®'°

. Whereas EEG data records the macroscopic temporal change in brain
electrical activity, fNIRS approximates brain hemodynamic changes via spectroscopic measurements of
oxy-and deoxy-hemoglobin. fNIRS depends on the slow dynamics of the hemodynamic response, thereby
yielding lower temporal resolution. According to literature and with the optode spacing used in this work,

"1 Given the different characteristics and

NIRS yields a spatial resolution of approximately 1 cm
physiological information provided by each modality, multimodal EEG-fNIRS data provides
complementary electrical and hemodynamic information, which may be exploited to implement appropriate

diagnostic and treatment strategies.

Seizure detection has traditionally been approached using EEG with quantitative feature signal processing
techniques such as the application of Fourier transform analysis (FFT), wavelet transforms, and spectral
decompositions'* °. Briefly, EEG FFT analysis allows for the convenient processing of lengthy and noisy
recordings in the frequency domain, allowing hidden features within the time series to become apparent.
Wavelet analysis can be thought as an extension of the Fourier transform that works on a multi-scale basis
instead of on a single scale either in time or frequency. This multi-scale feature of the wavelet transform
allows coarse to fine time-frequency signal resolution analysis of the signal. Using the above features as

input, artificial neural networks (ANN), have been used and emerged as better models than traditional
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techniques for seizure detection if appropriate processing of data occurs a-priori'*. Traditionally, researchers
have used ANNSs as a final step to classify hand engineered features'>'”. In contrast to the process of hand
engineering features, deep learning (DL) methodologies learn intrinsic data features to obtain relevant data

1922 in which

abstractions'®. DL models have been used for seizure detection using EEG data streams
impressive metric scores were achieved. This work aims to investigate for the first time the additional benefit
that hemodynamic information derived from fNIRS recordings provides in a seizure detection task in the
context of multimodal EEG-fNIRS recordings. Our work exploits artificial intelligence models, particularly
the long short-term memory unit, on human epilepsy data without performing extensive feature extraction,

selection, or signal preprocessing.
4.4.3 Methods

4.4.3.1 Patient recruitment, characterization and seizure types

Forty patients between the ages of 11-62 years with refractory focal epilepsy admitted to the epilepsy-
monitoring unit to record their seizures (and determine if they could be good candidates for epilepsy surgery)
were recruited for this study. The Ethics Committees of Sainte-Justine and CHUM Notre-Dame Hospitals
approved the study and informed consent was obtained from all subjects. Patient inclusion criteria primarily
consisted of the following: patient (or parental) consent and focal epilepsy confirmed by clinical history,
electroencephalographic and/or imaging findings. Exclusion criteria included the following: subjects with
significant progressive disorders or unstable medical conditions. Patients underwent a full physical exam,
an anatomical magnetic resonance brain image (MRI), positron emission tomography (PET), ictal single
photon computed tomography (SPECT), and a magnetoencephalography study. Subsequently, continuous
EEG-fNIRS recordings were performed at the Optical Imaging Laboratory of Sainte-Justine Hospital in
Montreal, Canada. An epileptologist was available at all times to ensure patient safety and inspected data
for congruency with clinical semiology analysis, the location of scalp EEG findings, and location of the
epileptogenic lesion on MRI if present. The data corpus collected included 266 epileptiform abnormalities
in total. Of these, 89 were seizures, the majority of which were temporal lobe seizures followed by frontal
lobe seizures. The remainder of the data set included interictal epileptiform discharges and periodic
epileptiform discharges. Seizure duration ranged from 5.1-62 seconds with an average of 21.7 seconds.
Details concerning patients, seizure types, MRI findings, and foci seen using EEG and fNIRS modalities

used in this study are detailed in Table 1 below.

Table 4.1: Clinical profiles of refractory epilepsy patients. F: female; M: male; FLE: frontal lobe epilepsy; FPLE:
fronto-parietal lobe epilepsy; OLE: occipital lobe epilepsy; NTLE: neocortical temporal lobe epilepsy; MTLE: mesial
temporal lobe epilepsy; RF: right frontal, LF: left frontal, Bi: bilateral, P: parietal. F: frontal, P: parietal, N: normal, L:



63

left, R: right; HA: hippocampal atrophy, CD: cortical dysplasia, RHA: right hippocampal atrophy, LHA: left
hippocampal atrophy.

Patient | Age, Sex Total Epilepsy MRI findings EEG focus | fNIRS focus
recordings | classification
1 11,M 9 R FLE N RF RF
2 21,M 11 L FLE N LF Bi-F (L > R)
3 13,F 2 R FPLE N LP LP
4 35,F 4 R FLE N RF RF
5 25,F 5 R FLE N LF LF
6 16, M 7 L FLE RF encephalomalacia LF PF
7 63, M 5 L TLE N LT LT
8 47, F 3 R LNTLE N Bi-T LT
9 23, M 5 R FLE N RF RF
10 43, M 8 R FLE RF encephalomalacia RF RF
11 19, F 4 L MBTLE N RT RT
12 45, M 7 R FLE N Bi-F (R > L) Bi-F
13 38, F 1 L LNTLE N LF LFT
14 53,F 11 L LFPLE N LFP Bi-F (L > R)
15 24, M 6 L LNTLE N RT RT
16 31,M 3 Bi-MBTLE R HA Bi-T (R>L) RT
17 31,M 11 R LNTLE N RT RT
18 23, M 6 R FPLE RF CD RF RF




19 27, M 3 R FLE N RF RF
20 21, M 11 R FLE RHA RT RF
21 50, M 6 L MBTLE LHA Bi-F RF
22 38,F 5 R LNTLE N RT RT
23 34, M 10 L LNTLE N LT LT
24 56, M 7 R FLE N RF RF
25 11,M 4 R LNTLE N RT RT
26 43, M 5 L LPTLE N LT LP
27 24, M 3 R FLE N RF RF
28 46, M 7 L FLE N LF LF
29 30, F 5 L LNTLE N LT LT
30 62, F 6 L FLE N LF LF
31 43, M 8 L FLE N LF LF
32 13,M 6 Bi-LNTLE N Bi-T Bi-T
33 22, M 5 R FLE N RF RF
34 25,M 7 R FLE N RF RF
35 28, M 9 L FLE N LF LF
36 44, F 7 R FLE N RF RF
37 49, M 3 R FLE N RF RF
38 32,M 2 R FLE N RF RF
39 19, F 4 R FLE N RF RF

64
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40 19, F 3 R FLE N RF Bi-F (R>L)

4.4.3.2 EEG-fNIRS instrumentation and data acquisition

The EEG-fNIRS instrumentation included the use of custom helmets designed to mount a total of 80 optical
fibers (64 light sources in pairs for both wavelengths, 16 detectors) and 19 carbon EEG electrodes. First,
the EEG data recording system was installed according to the traditional 10-20 system. Following this, we
installed a custom made helmet holding optical fibers. The installation time including hair removal, patient
positioning, adjustment of signal intensity and optode repositioning typically was between 1-2 hours. A
description of our setup, and its near full-head coverage, is provided in previous publications *°. Optode and
electrode positions were co-registered onto 3-D high-resolution anatomical MRI images using neuro-
navigation (Brainsight, Rogue-Research Inc.). The EEG data stream was recorded at 500 Hz with a
Neuroscan Synamps 2TM system (Compumedics, USA). In order to remove instrumental noise, bandpass
filtering between 0.1 Hz and 100 Hz was applied. Simultaneously, the fNIRS data stream was acquired
using a multi-channel frequency domain system at 19.5 Hz (Imagent Tissue Oximeter, ISS Inc., Champaign,
IL, USA) with wavelengths of 690 nm and 830 nm for sensitivity to deoxyhemoglobin (HbR) and
oxyhemoglobin (HbO) respectively. The channel positions were cross-referenced with the MRI and were
adapted to ensure coverage of the epileptic focus, the contralateral homologous region, and as much area as
possible of the other lobes. Data was acquired for two to twelve consecutive sessions of 15 minutes while
the patient was in a resting state. Multiple sessions of data acquisition were performed since during a single
acquisition, seizure events are not sure to occur. Sensitivity of near-infrared light to cortical tissue was
maintained by positioning the optical channels approximately 3-4 cm apart. During installation, we verified

channel quality using signal intensity.

4.4.3.3 Seizure identification

The EEG tracing was analyzed using Analyzer 2.0 (Brain Products GmbH, Germany) by a certified clinical
neurophysiologist and reviewed by an epileptologist to identify interictal epileptiform discharges and
seizures. Seizures were marked in the presence of a transient electrographic rhythmic discharge evolving
in amplitude, frequency and spatial distribution changes associated with stereotypical seizure semiology on

video.

4.4.3.4 Data processing and analysis

As mentioned in 2.1, recordings obtained from known epileptic patients were evaluated for seizure

occurrence, leading to a compendium of 200 recordings totaling 50 hours of recording time and 89 seizure
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events lasting in duration from a few seconds to approximately one minute. An average time offset of 4.5
seconds was used between modalities to feed the neural network corresponding to the average time delay
between neural activity and the hemodynamic response *. Prior to analysis, each channel was further
verified for signal quality (intensity and presence of physiology, ¢.g. heart beat). Channels that did not have
good signal were eliminated from the analysis. For each recording, distinct seizure and non-seizure classes
were partitioned from the data. Entire seizure segments were extracted and non-seizure segments were
subsequently defined as those data points that do not overlap with seizure segments. Post-acquisition, raw
data were processed using the HomER package® (Photon Migration Imaging Lab; Massachusetts General
Hospital, Boston, USA) in order to convert raw fNIRS data into hemodynamic parameters, namely
oxygenated and deoxygenated hemoglobin®. In our analyses, the modified Beer-Lambert law (MBLL) was
used to relate light attenuation to changes in absorption and enable the estimation of changes in oxygenated

and deoxygenated hemoglobin as they vary in space and time.

4.4.3.5 Deep neural networks

To a large extent, human seizure activity is highly unpredictable. Longitudinal analyses suggest temporal
and spatial irregularities to be intrinsic to seizure activity. Recurrent neural networks (RNNs) have become
state of the art for sequence modeling and generation®®. The “Long short-term memory (LSTM) unit” is a
popular variant of RNNs with proven ability to generate sequences in various applications, particularly text
and sequence processing *"**. LSTM models learn important past behaviors due to their innate ability to
learn from and remember previous time steps and their important features. LSTM units hold an advantage
over other methods in modeling long-term dependencies due to automatically learned “input”, “output” and

“forget” gates. The success of RNNs in these domains motivated our work of applying LSTM-RNNs for

human seizure activity detection in multimodal EEG-fNIRS recordings.

4.4.3.6 Model architecture

In this section, we describe the vanilla LSTM model architecture that was used to perform the seizure
detection task. The architecture consists of: (1) input layer, (2) LSTM units, and (3) a dense layer. Figure 1,
illustrates the LSTM unit structure, featuring input, forget, and output gates. We designed our architecture
to use the following activation functions: (1) hyperbolic tangent for the LSTM units and (2) logistic sigmoid
for the gates. Softmax, categorical cross-entropy was used as the loss function, with alpha=0.95, since it is
well suited for categorization problems'®. The hyperparameters, shown in Table 2 below, used to train our

model were heuristically tuned to achieve sufficient performance and we validated our results by comparing

performance with other techniques developed in the literature (Table 3). The hidden state, h¢ is an element
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wise application of the sigmoid function®”*. The output of each block is recurrently connected back to the

input and the gates. Our model generates subsequent data sequences according to the following two steps:
(1) Atevery time step, the LSTM layer receives input, xt. Inputs to the LSTM cell include the previous
hidden state and the previous memory state.
(2) The LSTM layers then produce output, which is used to sample a new set of input variables x¢+1.

The outputs from the LSTM cell are the current hidden state and the current memory state.

Input

Input gate LSTM Output gate
’\ Unit /

Sigmoid O \ tanh

x, —| @ ® ® O —@ — |— &

K Forget gate /

Figure 4.1: LSTM unit structure. The input is fed into LSTM units with 64 hidden units followed by a final
dense layer. The input gate decides which values will be updated and creates a vector of new values to be added
and updated to the state. After data input, the LSTM’s forget gate decides which information to discard. This
gate examines the prior hidden state (%) and current input, yielding a binary output. Subsequently, the LSTM
decides what new information to store in the cell state. Finally, the LSTM unit decides sequential output, which
is based on the current cell state. The sigmoid and hyperbolic activation functions determine which parts of the
cell state to output.

Input data is transformed into a three-dimensional tensor with standard dimensions of an LSTM-RNN'®,
The final gradients are back propagated at each time step with adaptive moment estimation as an optimizer

for stochastic gradient descent. The prediction is a binary output derived from the softmax function'®.

Table 4.2: LSTM-RNN heuristic hyperparameters.

Hyperparameters Value Method




68

Learning rate 1x1073 Adam
Epochs 100 Experimental
Batch size 784 Experimental
LSTM units 10 Experimental

29,30,31

Adaptive moment estimation and dropout on non-recurrent connections was utilized to regularize our

model to avoid over-fitting.

4.4.3.7 Network training and model validation

A feed dictionary was generated, and for each step, mini-batches of training examples were presented to the
network. Input data was binary partitioned into appropriate seizures and non-seizures segments. Using
these newly segmented classes as input, our network was trained to compute scores for seizure and non-
seizure segments. Truncated back propagation through time (TBPTT), a modified form of the conventional
back propagation through time (BPTT) training algorithm for RNNs*? was used for training. Briefly, BPTT
works to unroll the recurrent neural network and backward propagate the error between the expected output
and the seen output for a given input. The weights are then updated with the accumulated gradients. We first
validated our model using k-fold cross-validation (k=10), on the standard CHBMIT scalp EEG dataset'® >
as this dataset is vast, and the seizures contained within are of long duration. Following this, we aimed to
test our hypothesis regarding the relevance of adding fNIRS data for improving the task of seizure detection
using our database. Standalone in-house EEG data, followed by standalone fNIRS data, and finally
multimodal data was used as input for the network. Our models were implemented on two NVIDIA TITAN
X GPUs with 12 GB memory using the Keras platform with Tensorflow backend for a total training time of
10 hours.

4.4.4 Experimental Results
This section describes the model validation results using the standard CHBMIT database and finally

statistical analyses of the model using our in-house datasets are described.

4.4.4.1 Model validation on the CHBMIT database

The CHBMIT dataset includes 198 seizures from 22 patients. To evaluate performance, we defined the

following metrics: Accuracy:
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True positives+True negatives

Accuracy =

(1

Sensitivity, also known as recall, measures the proportion of actual positives that are correctly identified.

Total number of examples

Specificity, also called the true negative rate, measures the model's performance at classifying negative

observations. False positive rate is defined as:

False positives

False positive rate = 2
p Total number of negative examples ( )
Precision is also known as the positive predictive value, and is defined as:
. . True positives
Precision = b 3)

Total number of positive examples
Using this dataset, our model derived performance metrics of accuracy, sensitivity, specificity, and false
positive rate of 98.2%, 95.9%, 92.1%, 2.9% respectively. The validation results of our network using the
CHBMIT corpus are shown in Tables 3,4. Table 4 details our model’s performance on both the CHBMIT
standard data set and our in-house EEG data. It should be noted that accuracy is the most intuitive
performance measure and works best when there is symmetry in the available data. In our experiments, we
assumed the seizure state to be a rare state® and used more representative parameters to evaluate

performance.

Table 4.3: A comparison of selected studies in the automated detection of seizure using EEG signals from the Bonn
and CHBMIT databases. AAN: artificial neural network; CNN: convolutional neural network; SVM: support vector

machine; LSTM-RNN: long-short term memory recurrent neural networks.

Author Year Database Research novelty Neural Network Performance
Architecture
Ghosh-Dastidar | 2007 Bonn Wavelet-chaos ANN Accuracy = 96.7 %
et al.>*
Shoeb et al.’> | 2004 CHBMIT SVM ANN Accuracy =96 %
Chua et al.%¢ 2009 Bonn Entropy feature Gaussian mixture Accuracy = 93.1 %,
determination models Sensitivity = 89.7 %,
Specificity = 94.8 %
Acharya et al’” | 2017 Bonn Ten-fold cross Convolutional Accuracy = 88.7 %,
validation neural network Sensitivity = 95.0 %,
Specificity = 90 %
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Shoeb et al.’® | 2009 CHBMIT Patient specific ANN, SVM Accuracy =96 %
detection
Martis et al®® | 2012 Bonn Empirical mode Decision trees Accuracy = 95.3 %
decomposition Sensitivity = 98.0 %
(Hilbert-Huang Specificity = 97.0 %
transformation)
Guo et al® 2011 Bonn Genetic programming ANN with k- Accuracy = 93.5 %
nearest neighbors

Bhattacharyaa | 2017 Bonn Tunable Q-Factor ANN, SVM Accuracy =99.4 %
et al.?’ wavelet transform Sensitivity = 97.9 %
Specificity = 99.5 %
This work 2018 CHBMIT Validation of LSTM- LSTM-RNN Accuracy =98.2 %
RNN model Sensitivity = 95.9 %
Specificity = 92.1 %

The algorithms were further validated with in-house data. Focusing first on stand-alone EEG data we
observed no significant difference in learning rate when comparing to the CHBMIT dataset. Studying the
integration of measurement type, performance scores steadily increased for each data type: EEG, fNIRS,
and EEG-fNIRS. The performance of the proposed model with respect to each data type is summarized in

Table 4.4 Monitoring cross-entropy loss ensured network generalization.

Table 4.4: Performance results for EEG data derived from the CHBMIT dataset and our in-house EEG data.

Data Epochs Mean Accuracy (%) ROC
CHBMIT EEG 100 98.20 0.94
In-house EEG 100 97.60 0.90

4.4.4.2 Model Evaluation

This section presents the classification results for seizure and non-seizure classes using our in-house
datasets. Our evaluation uses all of the seizure and non-seizure blocks from all subjects and all recordings.

To estimate performance of our model on unseen data, we utilized statistical methods derived from /-fold
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cross-validation. The dataset was randomly shuffled and subsequently split it into “4” groups. The model
was fit on the training set and evaluated on the test set, yielding an evaluation score. Each fold has data
points from a subset of patients, chosen randomly from “k=170" folds. The data was pre-shuffled to allow
for randomization and we sequentially instantiated “k” identical models, and trained each one on “k-1”
partitions while evaluating on the remaining data.

Table 4.5: The overall classification result across all ten folds for each data type. Multimodal data consistently
provided superior results compared to stand-alone EEG or fNIRS data alone. SD: standard deviation

Accuracy Mean value post cross-validation, k=10
EEG 97.6+ 0.4 SD
JNIRS 97.0+0.7 SD
EEG-fNIRS 98.3+0.8 SD

Precision Mean value post cross-validation, k=10
EEG 82.8+0.5SD
JNIRS 80.7+0.6 SD
EEG-fNIRS 87.3+0.8SD

Recall Mean value post cross-validation, k=10
EEG 85.2+0.8SD
JNIRS 81.3+£0.6 SD
EEG-fNIRS 89.7+£0.5SD

Performance metrics on all measures improved in EEG-fNIRS data as compared to either EEG or fNIRS
alone. From our cross validation results, we notice that multimodal data consistently performs better as
compared to either stand-alone EEG or fNIRS data. Mean squared error between EEG and fNIRS recordings
was determined to be 0.61 and between EEG and multimodal recordings 0.79. Likewise, the mean absolute
error between EEG and fNIRS recordings was reported as 0.58 and between EEG and multimodal
recordings as 0.76. Between EEG and multimodal data types, one-way ANOVA testing yielded p=3.2 X 10
3. Tukey post-hoc comparisons indicated that EEG and multimodal data had significant differences, p <
0.05. Multimodal recordings achieved sensitivity and specificity of 89.7% and 95.5% respectively. The
precision-recall curve confirmed this finding with multimodal EEG-fNIRS recordings having the highest

values for both precision and recall.

4.4.4.3 Seizure detection and spatial foci localization

We further investigated our algorithm’s ability to classify signals correctly into seizure and non-seizure
segments and localize classifications corresponding to the epileptogenic zone and relevant ictal processes.

To this end, we performed analyses to determine if our algorithm’s outputs yielded similar cerebral
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localization results as traditional methods, primarily the general linear model (GLM)’. We first analyze the
data on marked events and then performed GLM analysis on positive outputs from the network. In Figure
2, green and orange bars denote true positive and false negative segments respectively. The red and blue
curves correspond to oxygenated and deoxygenated hemoglobin respectively and the hemodynamic curves

from the right (solid lines) and left sides (dashed lines) of the epileptic foci are shown.
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Figure 4.2: Multimodal recordings from patient 10, a 43-year-old male. On the day of the recording, the patient
experienced multiple seizure events ranging from duration of 3 to 10 s, with an average duration of 7 s. The analyzed
EEG recording is shown in (a), with the colored green bars representing seizure events and false positives denoted by

orange horizontal lines. The hemodynamic response to marked events and network events (with false detections) and
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the corresponding cerebral topographic analysis are shown in (b) and (c). Red and blue curves represent oxygenated
(HbO) and deoxygenated (HbR) hemoglobin, respectively. Solid red and blue and dashed red and blue lines correspond
to the right (R- ) and left (L- ) side of the brain, respectively.

4.4.5 Discussion

The recent rapid technical advances in machine learning and particularly deep learning algorithms, have
allowed for automated detection and prediction of anomalies in time series data. Similarly, these approaches
hold promise for automated seizure detection with minimal processing of input data. In particular, input
streams such as EEG, fNIRS, and multimodal EEG-fNIRS are well suited to be used in these algorithms.
The LSTM model developed in this work was proven to be efficient in the task of seizure detection. Our
architecture bypasses laborious hand feature selection, and delivers good performance based on multimodal
data input. LSTM-RNN architectures, like neural networks generally, can be a powerful tool, but they
require long periods for training time, often require more data to train than other models, and can contain a
large number of parameters to tune. The gradient vanishing problem and subsequent gradient exploration
makes training LSTMs difficult. Adaptive learning methods, particularly, adaptive moment estimation
(Adam), root mean square propagation (RMSProp), and adaptive gradient algorithms (AdaGrad), offer
solutions to these gradient problems. Adam, which was used in this work, is an extension of and an
optimization algorithm for stochastic gradient descent. Adam provides an optimization algorithm that can
handle sparse gradients on noisy datasets, which is well suited for our purpose. Another technique used to
handle noisy gradient estimates is to utilize mini-batches, as was done in our model. Smaller batches provide
reduced computation time per update and offer faster model convergence.

Validation of our architecture on the standardized CHBMIT dataset yielded superior accuracy metrics
(98.2%) compared to other studies using convolutional neural networks, support vector machines, and
artificial neural networks on the same dataset '>'°. Compared to other model architectures and related work
in the literature, LSTMs offer a powerful framework for seizure detection. Particularly, the LSTM is well
suited for time series data because it is well designed to extract patterns where the input data spans over
long sequences; a characteristic unique to seizure data. Once our model was validated on the CHBMIT
standard dataset, we extended our model to multimodal data. Our implementation of a multilayered LSTM-
RNN model for automated classification of multimodal EEG-fNIRS signals displays convergence and good
performance metrics. Heuristic parameter tuning, and the requirement of large datasets remain limitations
of our model. We in part solved this problem by collecting data points from multiple recordings allowing
for a relatively large data corpus. This provides enough data variability to increase the power of the detection
algorithm. Our experiments demonstrate that the hemodynamic profiles derived from fNIRS recordings

provide discriminatory power in differentiating between seizure and non-seizure states. Furthermore,
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multimodal EEG-fNIRS data produced globally superior performance metrics when compared to stand-
alone EEG or fNIRS data (Table 5). We obtained an improvement in performance when fNIRS recordings
were stacked with the EEG data stream as compared to EEG data only. Our statistical analyses note
significant differences in precision and recall metrics between EEG and multimodal data. The mean
precision of EEG compared to multimodal data was 82.8, 87.3 respectively. Likewise, the recall values
between these data types was 85.2, 89.7 respectively. Figure 2, suggests that our observations are consistent
with our algorithm’s detections and those from analysis using the GLM. These findings suggest that deep
neural models may eventually be a useful clinical tool in the demarcation of seizure zones for tailored
medical therapy. Our analyses may also be useful in identifying the side of greater seizure susceptibility and
the localization derived from the network may potentially help guide epilepsy surgery and predict outcome
post-surgery. Further, prospective studies with longer follow-up periods are needed to properly assess the
utility of the model in this capacity. These changes might be indicative of pre-ictal changes in the states of
activity in localized neuronal networks and possibly beyond the ictal onset zone. Most patients suffering
from epilepsy experience spikes, pre-and post-seizure. This phenomenon was present in our dataset as well.
Our algorithm has the potential to be extended to utilize interictal spikes as an additional feature (Tanaka et
al. 2010), thereby, producing more comprehensive detection capabilities and providing a more complete
clinical picture. This model can be particularly useful in situations in which a trained epileptologist is not
readily available in which paroxysmal cerebral electrical and hemodynamic changes may signal epileptic
events. Our experimental findings have shown that combining fNIRS with EEG allows for improved seizure
detection ability as compared to EEG alone, which could provide additional information in critically ill
patients admitted in the ICU, thus improving detection of seizure (in addition to the other advantages of

fNIRS in the ICU such as monitoring of brain hypoxia).

4.4.6 Conclusion

This study focused on determining the potential of fNIRS, a cost effective, portable neuroimaging technique
in the detection of seizure events in multimodal EEG-fNIRS recordings. Our primary objective was to
examine the enhanced capabilities that fNIRS signals provide for a seizure detection task, in particular when
combined with EEG data in a multimodal framework, and our secondary objective was to utilize the power
of neural networks for this task. For the present study, we aimed to obtain strong and robust hemodynamic
response signals. Towards this aim, we collected long-term continuous multimodal EEG-fNIRS data from
40 known epileptic patients comprising a total of 50 hours of recordings. We proposed an LSTM-RNN
model that is capable of learning explicit classes from human seizure data. Hyperparameter optimization
and monitoring model validation loss (cross-entropy) to ensure network learning and reduce over-fitting

was a priority. Eventually, a multi layered RNN-LSTM neural network was designed to encode the
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sequential order of features using the rectified linear unit objective function. To examine the generative
power of the LSTM-RNN model, we validated our model on a standard dataset followed by in-house data.
Post validation, our recordings were scored and subsequent classes were formed from which a multi layered
RNN-LSTM neural network was fed standalone EEG, standalone fNIRS data and finally multimodal data.
Our methodological approach proves its ability to automatically learn robust features from information
contained in multimodal signals while conserving intrinsic waveform properties of seizure and non-seizure
activity. Utilizing appropriate model hyperparameters, we performed model training, testing, and validation
on a benchmarked scalp EEG data set, which was followed by in-house EEG, fNIRS, and multimodal data
from 40 epileptic patients. We explored the benefit that cerebral hemodynamic data provides for a seizure
detection task in EEG-fNIRS neuroimaging data and we show that the addition of cerebral hemodynamics
improves model performance when compared to EEG alone. Our model’s ability to learn the general
representation of a seizure is showcased by cross-patient performance indicators as multimodal data reaches
performance metrics detailed in Table 5. Increased data collection including different seizure types can
enhance our model’s performance and lend itself to increase generalizability. Furthermore, the neural
network models proposed and characterized herein offer a promising framework for future investigations in
early seizure detection. Since our proposed model correctly classifies sequences, this suggests automation
of this process can enhance the diagnostic decision-making and treatment planning for epileptic patients.
Our model has the potential to be extended to a real time clinical monitoring system in which trained clinical

personnel are not readily accessible.
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CHAPTER 5 ARTICLE 2: MULTIMODAL AUTOENCODER
PREDICTS FNIRS RESTING STATE FROM EEG SIGNALS

5.1 Article details

Sirpal, P., Damseh, R., Peng, K., Nguyen, D. K., & Lesage, F. (2020) “Multimodal autoencoder
predicts fNIRS resting state from EEG signals”, Submitted to Neuroinformatics

This article addresses the second objective of the thesis—using a deep learning sequence
to sequence autoencoder to predict fNIRS signals given full spectrum and specific frequency

resting state EEG signals.

5.2 Context and rationale

The hemodynamic response obtained from the resting state in the context of epileptic
recordings is of significance as neuronal resting membrane potential allows for low frequency
oscillations to cause rapid electrical and cerebral hemodynamic changes. Furthermore, the resting
state networks in the epileptic brain have differences as compared to resting state networks in
healthy brains [255]. In an effort to further understanding the fundamental relationships at play in
epileptic human brains, it is hypothesized here that hemodynamic brain signals (fNIRS) can be
predicted from resting state scalp EEG signals derived from epileptic patients within the framework

of a sequence to sequence autoencoder.

5.3 Contributions

This article uses full spectrum and frequency filtered EEG (seizure free intervals) signals
to predict resting state fNIRS waveforms using a sequence to sequence convolutional neural
network long short-term memory autoencoder. The second part of this work included a functional
connectivity study to measure temporal correlations between experimental fNIRS and model
fNIRS predictions. Network connectivity was computed by calculating the Pearson correlation
coefficients of the hemodynamic responses between fNIRS channels belonging to experimental

fNIRS and model fNIRS predictions.
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The results from this work suggest that the gamma (30-100 Hz) EEG band is most
predictive of resting state fNIRS waveforms. This is corroborated by a functional connectivity
study between experimental fNIRS and our model fNIRS reconstructions. This work demonstrates
for the first time that intermodal autoencoding from cerebro-electropotential (EEG) signals can
predict cerebral hemodynamics (fNIRS) to a certain extent. Findings from this work suggest that

higher frequency EEG components offer hemodynamic (fNIRS) predictive capacity.
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5.4 Article 2

Multimodal autoencoder predicts fNIRS resting state from EEG
signals

Parikshat Sirpal™™’, Rafat Damseh®, Ke Peng™®, Dang Khoa Nguyen®, Frédéric Lesage™*
2Ecole Polytechnique de Montréal, Université de Montréal, C.P. 6079, succ. Centre-Ville, Montréal,
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5.4.1 Abstract

In this work, we introduce a deep learning model for evaluation on multimodal electroencephalographic
(EEG) and functional near infrared spectroscopy (fNIRS) recordings from 40 epileptic patients. We exploit
a deep learning framework where long-short term memory (LSTM) units and convolutional neural networks
(CNN) are integrated within an intermodal sequence-to-sequence autoencoder. The trained model predicts
resting state fNIRS waveforms from EEG, sans a priori, by hierarchically extracting deep features from
EEG full spectra and specific EEG frequency bands. Results show that higher frequency EEG ranges are
predictive of low frequency fNIRS waveforms with the gamma band inputs dominating fNIRS prediction.
Seed based functional connectivity demonstrates similar spatial patterns between experimental fNIRS and
our model fNIRS reconstructions. This work demonstrates for the first time that intermodal autoencoding

from cerebro-electropotential (EEG) signals can predict cerebral hemodynamics (fNIRS).

Keywords: EEG-fNIRS, functional brain imaging, deep neural networks, epilepsy, resting state

5.4.2 Introduction

The multimodal integration of electro-potential measures via scalp electroencephalography (EEG)
and cerebral hemodynamic information by means of functional near infrared spectroscopy (fNIRS) has
established itself as a non-invasive, portable, and cost-effective tool in characterizing and localizing brain
activation responses (Goldman et al., 2002; Laufs et al., 2003; Martinez-Montes et al., 2004; Salek-Haddadi
et al., 2003). While scalp EEG measures cerebro-electropotential activity, hemodynamic fNIRS signals
result from the dynamic variations in oxy- and deoxyhemoglobin (Chiarelli et al., 2017; Ogawa et al., 1992),

with a spatially dependent delay of approximately 3 seconds following neural activity. Although both
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modalities measure brain activity, they reflect distinct processes linked by neurovascular coupling.
Simultaneous experimental setups recording cerebral electrical activity and fNIRS hemodynamics have
established causality between neuronal firing and changes in oxy-hemoglobin (HbO), deoxy-hemoglobin
(HbR), and total hemoglobin (HbT) (Logothetis et al., 2001; Mukamel et al., 2005; Singh, 2012). Recent
interest has focused on determining spatial hemodynamic correlates from EEG recorded activity,
particularly, from signal modulations in ongoing oscillatory activity measured by EEG, and the blood level
oxygen dependent hemodynamic signal (BOLD) from fMRI (Czisch et al., 2004; Lemieux et al., 2001;
Lovblad et al., 1999). These studies have successfully demonstrated that modulations in certain low
frequency EEG bands, are negatively correlated with modulations in the BOLD signal. Particularly, infra-

low gamma EEG band envelopes have been shown to modulate resting state signals (Jia & Kohn, 2011).

Scalp EEG recordings can be classified within five main ranges of frequencies: alpha, beta, delta,
gamma, and theta (Cho et al., 2014; Freeman et al., 2003; Pedregosa et al., 2011; Zhao et al., 2018). The
delta frequency range encompasses low frequencies near 0.25 Hz up to 3 Hz. Frequencies in this range tend
to have higher amplitude and slower waveforms. Physiological delta frequencies are common as a dominant
rhythm in certain sleep stages and in infants up to one year. Pathological delta activity may appear focally
with focal lesions and more widespread with diffuse lesions, metabolic encephalopathy, hydrocephalus or
deep midline lesions. Theta frequency ranges include frequencies between 4 and 7 Hz. While normal in
children up to 13 years old, they are interpreted as slow activity in awake adults (F. et al., 2015; Mantini et
al., 2007, Sitnikova et al., 2016). As with delta waves, they may be seen regionally in focal lesions or in a
more generalized distribution in diffuse disorders such as metabolic encephalopathy. Alpha frequencies are
between 8 and 13 Hz, representing the posterior-dominant rhythm in awake adults. Beta activity ranges in
frequency between 14-30 Hz and are usually observed in a bilaterally frontal symmetrical distribution,
especially in anxious patients or those taking benzodiazepines (Gross & Gotman, 1999). Gamma wave
oscillations contain frequencies between 30-100 Hz. Gross and Gotman demonstrated that gamma activity
spiked during cognitive tasks (Gross & Gotman, 1999). Research has also demonstrated that gamma

frequency activity is enhanced in rapid eye movement during sleep (Gross & Gotman, 1999).

The characterization of the relationship between the electrophysiology of neuronal systems and
their slower hemodynamics is relevant from a number of perspectives particularly in cerebrovascular
clinical situations (e.g., stroke, subarachnoid hemorrhage). In this study, we develop a sequence-to-sequence
autoencoder model with long short-term memory units and convolutional neural network modules. This
deep learning architecture aims to learn the predictive correlations between EEG (full spectrum and
frequency bands) and fNIRS activity. A full description of the model developed is detailed in section 2.2.
For this purpose, we make use of multimodal EEG-fNIRS recordings collected from a cohort of 40 epileptic
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patients focusing on resting periods (no seizures). We investigate predicted fNIRS hemodynamics from
EEG frequency ranges in the resting state. Subsequently, predictions from our model are used for a
functional connectivity study to determine the connectivity patterns in the resting epileptic brain. Seizures
alter normal functioning of the brain, producing dysfunctional resting state networks within the brain,
making functional connectivity an ideal technique for understanding these complex effects (Tracy &
Doucet, 2015). These results suggest that a multimodal autoencoder can learn multimodal relations to

predict resting state signals.

5.4.3 Methods

5.4.3.1 Subjects and protocol

Forty patients with refractory focal epilepsy were recruited for prolonged EEG-fNIRS recordings.
Epilepsy diagnosis and localization of the epileptic focus for each patient was based on a comprehensive
evaluation which included clinical history, video-EEG recording of interictal spikes and seizures, brain
magnetic resonance imaging (MRI), positron emission computed tomography (PET) and for some patients
ictal single photon emission computed tomography (SPECT) and magnetoencephalography (MEG). Full
details regarding patient profiles including age, gender, EEG and MRI findings are found in table 1 of Peng
et al., 2014 and Sirpal et al., 2019 (Peng et al., 2014; Sirpal et al., 2019). A subset of patients had MRI
evidence of encephalomalacia, cortical dysplasia, and/or hippocampal atrophy, a common finding in
epilepsy, but this was neither an inclusion nor exclusion criterion. Additionally, some of the patients
displayed bilateral pathological changes. The institutional review boards of Sainte-Justine Hospital and

CHUM approved the study. changes.

5.4.3.2 EEG-fNIRS data acquisition and pre-processing

Continuous EEG-fNIRS recordings were performed at the Optical Imaging Laboratory of Sainte-
Justine Hospital in Montreal, Canada. Functional imaging data was collected using the Imagent Tissue
Oximeter system (ISS Inc.), a multi-channel frequency domain system recording at 19.5 Hz with
wavelengths of 690 nm and 830 nm for sensitivity to HbR and HbO respectively. EEG data was recorded
according to the standard 10-20 system using 21 electrodes (in positions Fpl, Fp2, F7, F3, Fz, F4, F8, T7,
C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1, O2) at 500 Hz (Neuroscan Synamps 2TM system). Custom-made
helmets with a total of 64 light sources, 16 light detectors and 19 EEG electrodes were used allowing for
stable optical coupling between cortical regions and the scalp, preventing optode shifts and resulting direct
movement artifacts to a large extent. Sensitivity of near-infrared light to cortical tissue was maintained by

positioning the optical channels approximately 3-4 cm apart.
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Signal fidelity was examined prior to analysis by channel-wise verification of signal intensity. EEG
data was band pass filtered between 0.1-100 Hz to remove instrumental noise and to remove drift related to
physiological activity, particularly, higher frequencies. For fNIRS, channels deemed to have subpar SNR
(less than 30% of the mean SNR of all channels) were eliminated and not included due to poor quality. This
analysis led to an average of 138 channels per patient. Changes in HbO and HbR were calculated via the
MNE software package (Gramfort et al., 2014). The unprocessed raw time series of the HbO and HbR
signals was band-pass filtered to remove specific frequency components attributed to cardiac (~1 Hz) and/or
respiratory activity (~0.2-0.3 Hz) (Gramfort et al., 2014; Lu et al., 2010; Peng et al., 2014). Anatomical
MRI registration of optode and electrode position was done using neuro-navigation (Brainsight, Rogue-
Research Inc.), channel positions being cross-referenced with the MRI and adapted to ensure coverage of
the epileptic focus, the contralateral homologous region, and as much area as possible of other brain regions.
Multiple consecutive sessions for a total of approximately 15 minutes per recording session led to a
compendium of 200 recordings totaling 50 hours of recording time. The resting state is devoid of frank

epileptic activity and is band pass filtered in the 0.01 to 0.1 Hz frequency range.

5.4.3.3 Neural network architecture

To investigate how EEG can predict fNIRS signals, we built a multimodal autoencoder.
Autoencoders are powerful machine learning models trained in self-supervised fashion to reconstruct inputs
by learning their abstract representations (Kocsis et al., 2006; Lindauer et al., 2010; Socher et al., 2011;
Vincent et al., 2010) . Here, we used a deep autoencoder for embedding signals in a low dimensional latent
space, where both the encoder and decoder are formulated as deep neural networks. Our architecture accepts
data sequence that accounted for hemodynamic delays to perform sequence-to-sequence encoding (Luong
et al., 2016; Truong et al., 2018; Vincent et al., 2008; Zhang, 2018). EEG data samples are projected in the
latent space with fixed length vectors that provide more compressed representations, which are then used to

decode and reconstruct the output fNIRS data.

Recurrent neural networks (RNN) have been widely used in time series modeling since they account
for the temporal state within data (Baytas et al., 2017; Chung et al., 2016; Merity et al., 2018; Mikolov et
al., 2010). RNN’s output depends on hidden states and feedback connections present within the hidden units
and allow for previous states to be used as inputs, thereby allowing RNNs to hold historical information in
memory. In our model, we used backpropagation through time, a common gradient descent type training
technique (Sutskever et al., 2014a). The innate problem of RNN gradient based training is that derivatives
propagated via recurrent connections either become exceedingly small or large (Goodfellow et al., 2016;
Luong et al., 2016), causing a vanishing or exploding gradient respectively. LSTM, a special variant of the

vanilla RNN architecture overcomes the vanishing gradient problem (Greff et al., 2017; Gregor et al., 2015;
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Lecun et al., 2015). LSTM units receive external inputs and generate hidden outputs via input, output, and
forget gates and a memory cell. The gates and memory cell are internally connected with weighted links,
and the gates are also connected with external sources, which are current sequential inputs and previous
hidden states. This prevents the LSTM from storing useless or noisy input information (Greff et al., 2017,

Gregor et al., 2015; Lecun et al., 2015).

Multiple LSTM layers were used in building our sequence-to-sequence multimodal autoencoder to
learn sequential inputs and temporal representations. The LSTM autoencoder model (LSTM-AE) as
proposed by Srivastava et al. consists of encoder LSTM units and decoder LSTM units (Srivastava et al.,
2015). The encoder LSTM receives input sequences and encodes them into a feature vector as the LSTM
generates hidden outputs (Lipton et al., 2016; Wang et al., 2016). Likewise, the decoder LSTM receives the
feature vector and decodes it into the original input sequences. LSTM-AEs learn a compressed
representation of sequence data and have been used in the context of video, text, audio, and time series
sequence data (Lipton et al., 2016; Srivastava et al., 2015; Wang et al., 2016). Here, multiple LSTM layers
were integrated to build a sequence-to-sequence multimodal autoencoder to exploit temporal
representations. Our model also encompasses convolutional layers to extract high level spatial percepts from
channel combinations. In summary, our neural network receives EEG time-series sequences, represented as
a single matrix, of resting state (time series devoid of frank epileptic activity) free cerebral fluctuations
during multimodal EEG-fNIRS recordings and is trained to reconstruct the corresponding fNIRS resting

state output.

After testing multiple architectures with exhaustive hyper-parameter optimization, we designed our
model as follows: The encoder is comprised of LSTM layers preceded by convolutional blocks.
Convolutions in each block has a kernel size of (1, 7) and stride size of (1, 2). The decoder is comprised of
LSTM layers which manipulate the vectors in the latent space to provide a final output dimension equal to
that of an fNIRS sample. We evaluated our model in terms of cross-modal reconstruction error (Zhao et al.,
2018), denoted RE. Once trained, the RE was calculated on an independent testing subset (see below) by
computing the sum of the Euclidean distance between the output x; and its corresponding reconstruction, X ,

over all L dimensions, as expressed in Equation 1 below:

< (1)
€= z |Xey — xeql, teT

=1

Model output is denoted as [x,| . EEG data is processed as follows. First, matching EEG and fNIRS data
are found from our data directory, following which the respective data (EEG or fNIRS) is labeled according

to the resting state periods. Feature scaling is performed using the MinMaxScaler class (Pedregosa et al.,
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2011) on EEG input data and sets the range of values between 0 and 1. Input signals are mean centered prior
to being fed into the model. Then, data is fed into the convolutional layers and travels to the LSTM and

deconvolution modules. A detailed schematic view of our model is shown in Fig. 1 below.
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Figure 5.1: Multimodal EEG to fNIRS reconstruction using our patient specific sequence to sequence
LSTM autoencoder model. Given EEG input data into the encoder, the model decodes and reconstructs
fNIRS output. After data collection and resting state segment annotation, data processing and model
development, the data is finalized as a 4-D tensor with shape: (samples per batch, sequence length, time
points, and channels). The model has encoder and decoder compartments, each with 2 LSTM layers,

determined heuristically. Table 1 below provides details of the model.

Table 5.1: Detailed overview of the proposed convolutional neural network long-short term autoencoder
(CNN-LSTM AE) model. Model specifications and hyperparameters were heuristically determined.
Convolutions and deconvolutions have kernels of size (1,2), and thus their effect is along the time
dimension. Convolutions help in generating embeddings with higher level abstraction of the input EEG
sequence. Deconvolutions reconstruct the fNIRS sequence at full resolution based on output embeddings.

The decoder and encoder LSTM units have ReLLU (Rectified linear units) activations.



Layer

Description

Output size

Input

EEG sample sequence

(EEG sequence length,
number of time points is 500,

number of EEG channels is 21)

EEG Sequence Embedding

2D conv+AveragePooling+

Dropout

2D convolution: stride=(1,2); Kernel size = (1,7); ReLU

activation. Dropout: 20%. Average Pooling kernel: (1,2).

(EEG sequence length,

125, number of Features Maps)

2Dconv+AveragePooling+

Dropout

2D convolution: stride=(1,2); kernel size=(1,7); ReLU
activation. Dropout: 20%. Average Pooling kernel: (1,2).

(EEG sequence length,

62, number of Features Maps)

Reshape

Reshape into an elongated tensor.

(EEG sequence length,

62 * number of Features Maps)

Encoder

LSTM1 + Dropout

An LSTM layer with number of cells equal to the number of
EEG sequence length. ReLU activation. Dropout: 20%.

(EEG sequence length, 512)

LSTM2 + Dropout

An LSTM layer with number of cells equal to the number of
EEG sequence length. ReLU activation. Dropout: 20%.

(1,256)

Decoder

Repeat

Create repeated version of the latent vector.

(fNIRS sequence length, 256)

LSTM3 + Dropout

An LSTM layer with number of cells equal to the number of
EEG sequence length. ReLU activation. Dropout: 20%.

(fNIRS sequence length, 312)

89
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LSTM4 + Dropout An LSTM layer with number of cells equal to the number of | (fNIRS sequence length, 695)
EEG sequence length. ReLU activation. Dropout: 20%.

fNIRS Sequence Reconstruction

Reshape Reshape into a 2D tensor. (fNIRS sequence length, 5,

number of Feature Maps 3)

Deconv1+Dropout 2D deconvolution: stride = (1,2); ReLU activation; (fNIRS sequence length, 10,
Kernel size = (1,2). Dropout: 20%. number of Feature Maps 4)

Deconv2+Dropout 2D deconvolution: stride = (1,2); ReLU activation; (fNIRS sequence length, 20,
Kernel size = (1,2). Dropout: 20%. number of fNIRS channels)

5.4.3.4 Training details

The model was designed to use patient specific EEG signals as input to output fNIRS waveforms.
For each patient, data was divided into three subsets: a training set, validation set, and testing set, with a
proportion of 70% training, 20% testing and 10% validation. We experimented with various model depths
and determined deep LSTMs to outperform shallow LSTMs. This is likely due to the larger hidden state

which occurs as a result of increasing layers. Complete training details are given below:

» We initialized the LSTM’s parameters with the uniform distribution between 0 and 1.0. This was done to
counteract the exploding gradients problem intrinsic to LSTMs, thereby enforcing a hard constraint on the
norm of the gradient by scaling it between 0 and 1. Simultaneously, we specified starting node values for
the LSTM computations by preparing a feed dictionary which has input data (EEG) and a target label. It is
important to note that the LSTM is able to learn how to map input sequences (model training is patient

specific) into a fixed dimensional vector representation and can learn temporal dependencies.

* Backpropagation through time was used with a learning rate of 0.05, batch size of 60 and 50 epochs, all

of which were heuristically determined.
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* Each fNIRS waveform generated corresponds to an EEG sequence input. An element in the EEG sequence
corresponds to 1 second of recording with 500 time points (sampling frequency is 500 Hz) for each EEG
channel. Data batches were generated for sequence processing by using the utility class for batch generation
in the Keras framework. Briefly, this class uses as input a sequence of data points to produce batches for
training and validation. Data points outside of the start and end indices of resting state periods (as marked
in our ground truth) are not used in the output sequences. This is useful in that it reserves part of the data
for testing and validation. The final EEG (full spectrum and frequency band) data used as input is two

dimensional, i.e., [data points, channels).

To summarize, the model was trained as follows: (a) we designed LSTM layers with corresponding
LSTM cells (b) model parameters were uniformly initialized in the range between [0,1], (¢) dropout was
applied with value of 0.2, and average pooling was applied to reduce the probability of model overfitting,
(d) we used backpropagation through time with a learning rate of 0.05, €) we used a batch size of 60 and 50

training epochs for each patient.

5.4.3.5 Model validation

After training and saving our model’s weights, we validated the model’s intra-patient predictive
capacity by using as input individual EEG recordings to predict fNIRS signals. This was possible since our
dataset contains multiple recordings from each patient. To diagnose performance, we plotted learning curves
to ensure we did not overfit during training. As an illustrative example, the figure below shows the learning

curves for patients 1,4, and 23.

Patient 1 Patient 4 Patient 23
3.0 \ 4.0 25
2.5 ini 3.5 .. -
e ~ Training Training Training
\ Validation Validation 2.0 Validation
2.0 l 30
2} B ®
g z,. 215
15 o
10 20 10
) . 0 S
05 05 ; 05
0 10 2 30 10 50 10 20 30 10 50 10 20 30 40 50
Epochs Epochs Epochs

Figure 5.2: Learning curves are generated for the training and validation sets. The training and validation
loss decrease to a point of stability with a minimal gap between the two final loss values. We note that the

validation loss decreases to a point of stability and has a small gap with the training loss (mean squared

error (MSE)).



92

5.4.3.6 Model predictions

The model predicts waveforms by appending ‘output state’, and ‘output prediction’ matrices.
Decoder inputs are two-dimensional matrices which are passed into decoder LSTM layers. fNIRS data is
shifted one sequence ahead to hold data in LSTM memory and finally decoder outputs are returned as a
result of the data passing through the deconvolution layers. LSTM cells are connected recurrently to each

other.

5.4.3.7 Functional connectivity analysis

Neural rhythms can be classified by slow cortical oscillation in complex wave sequences. Cortical
areas may be associated by responses to specific neurophysiological conditions including cognition, motor
activity, and resting state (Steriade, 2001), as most tasks recruit large networks of coactivated areas.
Identifying these patterns between functionally coactivated areas is difficult during a particular neurological
state. Resting-state functional connectivity (RSFC), albeit traditionally a functional magnetic resonance
imaging (fMRI) technique claims that absent of any task or specific event, spatially distant cortical regions
experience correlated patterns of blood oxygenation level-dependent (BOLD) activity (Varela et al., 2001).
This activity can be both spatially dependent (Brilla, 2019; Dressler et al., 2004; Tyvaert et al., 2008) and
seen across individuals (Biswal et al., 1995; Fox & Greicius, 2010). Evidence suggests that brain regions
with RSFC correlations are also functionally active (Greicius et al., 2003; Shulman et al., 2004; Steinbrink

et al., 2006) and these correlations are dependent upon structural connections, though indirectly.

Research using fNIRS for exploring functional connectivity has increased recently and provides
similar results obtained using fMRI (Tyvaert et al., 2008) --revealing networks of sensorimotor, visual,
auditory, and language systems in the resting state. Here, our experiments centered on investigating which
EEG frequency band best predicts resting state networks in fNIRS. We defined the seed channel from a
functional region of interest (a region which we were able to have adequate optode coverage confirmed by
our source/detector montage) and had an acceptable level of signal fidelity (high SNR). Subsequently, we
first computed the Pearson product-moment correlation coefficients between the experimental fNIRS
timeseries of the seed channel and the experimental fNIRS timeseries of all other channels, and then between
the experimental seed channel timeseries and our model’s predicted timeseries for all the other channels.
The two sets of correlation coefficients were respectively projected to an MRI head template based on the
3-dimensional coordinates of the corresponding channels with the MATLAB based Atlasviewer (Aasted et
al., 2015). The connectivity value at each voxel of the cortex was obtained from the correlation coefficients
of all channels with a weighted-average method using the reciprocal of the cube of the distance from the

voxel to each fNIRS channel as the weight.
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In order to quantitively evaluate and compare the results of our functional connectivity studies, we
computed the root mean square error (Equation 2) i.e., the standard deviation of the residuals between
functional connectivity values in experimental fNIRS and reconstructed fNIRS time courses derived from

full spectrum EEG and gamma band signals for all patients in our cohort.

2)

. . — £)2
— jzl_c(f? o)

Where “C”is the number of channels per functional connectivity analysis, fc; is the connectivity value of

experimental fNIRS and f is the connectivity value of model fNIRS reconstructions.

5.4.4 Results

This section describes the reconstruction results obtained using: 1.) full spectrum EEG and
subsequently 2.) EEG frequency ranges as model input. Intra-patient reconstructions are also presented; we

explore spatial reconstruction, resting state predictions, and functional connectivity.

5.4.4.1 Full spectrum EEG performance and feature analysis

Resting state scalp full spectrum EEG signals from all channels were input in the model. To decode
fNIRS channels from encoded EEG channels, the model’s decoder layers used the encoder’s latent state as
input as data traveled through LSTM units. Figure 3 below quantifies performance on selected individual
patients with full spectrum EEG signals as input. Figure 4 provides the group estimate of reconstruction

error for all patients given scalp full spectrum EEG recordings.
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Figure 5.3: Decoded predictions of hemodynamic waveforms from cerebral electrical activity. Full
spectrum EEG signals from all channels were used as input. fNIRS HbO reconstructions are shown from 3
patients in channel 10 (Channel 10’s SNR was adequate, located on the left temporal lobe). Black and red
curves correspond to experimental and reconstructed fNIRS waveforms respectively. Data from patient 1
reconstructed with the lowest reconstruction error, RE, while patient 22 had the highest. The data has been
mean centered and baseline is near zero, 250 seconds is shown here to illustrate seizure free, resting state
periods of fNIRS signals that are devoid of seizure and spikes. Note that the model accounts for the delay
between EEG and fNIRS (~few seconds) and the model fNIRS predictions are indicative of this delay.
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Figure 5.4: Full spectrum EEG to fNIRS reconstructions. The group estimate of full spectrum EEG signals

from all channels were used as input in our network architecture, to reconstruct full fNIRS waveforms from

all INIRS channels.

5.4.4.2 Intra-patient reconstructions on separate recording sessions

Here, we report results on intra-patient fNIRS reconstructions provided EEG resting state as input.
Specifically, we hypothesized that our model when trained with a patient’s single recording was able to
reconstruct fNIRS signals from a subsequent recording. To examine our model’s predictive capacity, we
first trained our network on a patient’s single recording. Next, we used our newly trained network and aimed
to reconstruct fNIRS signals from a subsequent recording from the same patient. This can be considered as

cross-validation of our model. Figure 5 displays the reconstructions.
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Figure 5.5: Intra-patient predictions of hemodynamic waveforms from cerebral electrical activity. A full
spectrum resting state EEG single recording (patient 10 all channels) was used to train the model. After
training, we saved the model weights and used as input a subsequent recording from the same patient. fNIRS
reconstructions are shown here from 3 such recordings. Panels A, B, C show the respective reconstruction
of channel 5 from recordings 1,3,4. Black and red curves correspond to experimental and reconstructed

fNIRS waveforms respectively.

5.4.4.3 Spatial variability of reconstructions

We then explored the model’s predictions sensitivity to channel location on the head. Figure 6 below
depicts the network’s spatial predictions. The topographic robustness of the model suggests the predictions
are reasonably invariant across the brain. Channel locations were chosen if they: 1. offered coverage of most
of the brain within the constraints of the source/detector montage and 2. had an acceptable level of signal
fidelity as indicated in section 2.1.1. As an illustrative example, Figure 6 below shows the model’s spatial

predictions for patient 10.
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Figure 5.6: fNIRS spatial reconstructions, patient 10. To illustrate our network’s fNIRS reconstructions
spatially, signals from multiple EEG channels are used as input, for which the locations are shown on the
brain (blue circles). Reconstruction error ranges from 6.41 x 10”'(channel 11) to 7.83 x 10~ (channel 62),
with the mean RE being 6.52 x 107 for all reconstructions. Black and red curves correspond to experimental

and reconstructed fNIRS waveforms respectively.

5.4.4.4 EEG frequency decomposition and resting state predictions

After model training and validation, we computed EEG frequency bands, namely: Delta [0.5-3 Hz],
Theta [4-7 Hz], Alpha [8-13 Hz], Beta [14-30 Hz], and Gamma [30-100 Hz]. As mentioned earlier, these
frequencies are present within the resting state of scalp EEG recordings [256]-[259] and are obtainable via
Fourier decomposition. Spectral power of raw EEG signals was obtained using the Welch’s power spectral
density function. Restricting model input to these frequency ranges and using experimental resting state
fNIRS signals (seizure and spike free intervals filtered in a “resting state band” ~ 0.01-0.1 Hz) (Tong et al.,
2012) as the ground truth, the model was used for cerebral hemodynamic signal prediction provided a

specific EEG frequency range. All computations (Fourier decomposition, Welch’s power spectral density)
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were performed using the MNE software package (Gramfort et al., 2014). Figure 7 below shows the model’s
predictions from EEG frequency ranges input using patient 10 (fNIRS channel 10).
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Figure 5.7: Resting state fNIRS oscillatory predictions given EEG frequency range input, patient 10,
channel 10. We obtained predicted fNIRS reconstructions given filtered EEG input for the following
frequency bands: Delta: 0-3 Hz; Theta: 4-7 Hz; Alpha: 8-13 Hz; Beta: 14-30 Hz; Gamma: 30-100 Hz. Black
and red curves correspond to experimental and reconstructed fNIRS waveforms respectively. We used a
constant experimental fNIRS waveform for comparison. The gamma range, which contains the greatest
number of EEG frequencies reconstructs with more fidelity compared to ranges with less frequency

components.

We calculated decoded fNIRS reconstruction error metrics, as shown in figure 8 below, for each
EEG frequency range and calculated patient wise reconstruction error. The gamma and beta frequency
bands demonstrated the lowest error rates and in the lower EEG frequency ranges, we noticed increased
fNIRS reconstruction error, possibly owing to the fact that our model was possibly not able to learn

appropriate features to reconstruct fNIRS signals.
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Figure 5.8: fNIRS reconstruction error given specific EEG frequency ranges for all patients, all channels.
We obtained predicted reconstructions given filtered EEG input for the following frequency ranges: Delta:
0-3 Hz; Theta: 4-7 Hz; Alpha: 8-13 Hz; Beta: 14-30 Hz; Gamma: 30-100 Hz. The gamma range, which
contains the greatest number of EEG frequencies, reconstructs with more fidelity and lowest reconstruction

error metrics compared to ranges with less frequency components.
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To further determine which EEG frequency band is able to reconstruct fNIRS waveforms with the
lowest reconstruction error on average, we calculated band-wise reconstruction error for all patients, as
shown in figure 9 below. Following, we conducted one-tailed paired t-tests to test whether there is a
statistical difference in reconstruction error between any two of the five bands when compared to gamma in
the following combinations: [delta, gamma], [theta, gamma], [alpha, gamma], and [beta, gamma].
Bonferroni correction was then applied to control the family-wise error rate to be less than 0.05. The gamma
frequency band reconstructs fNIRS waveforms with increased fidelity on average as compared to other

frequency bands.

Mean fNIRS reconstruction error of EEG
frequency bands from all patients

0.5
0.45
g 0.4
w
= 0.35 I
5 0.3
2 025
4
s 0.2
0
g 015
0.1
0.05
0

Delta Theta Alpha Beta Gamma

EEG frequency band

Figure 5.9: Mean fNIRS reconstruction error given specific EEG frequency ranges for all patients. The
gamma range, which contains the greatest number of EEG frequencies, reconstructs with more fidelity and

lowest reconstruction error metrics compared to other ranges with less frequency components.

5.4.4.5 Functional connectivity results

We computed functional connectivity mappings for experimental fNIRS and our model’s fNIRS
reconstructions. We compared experimental fNIRS and fNIRS reconstructions derived from both full
spectrum EEG and the EEG gamma band for all patients. The root mean square error (standard deviation of
the residuals) was used as an estimator of the error in our connectivity studies. In general, we noticed a

lower error in functional connectivity analyses between experimental fNIRS and fNIRS reconstructions
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derived from full spectrum EEG as compared with experimental fNIRS and fNIRS reconstructions derived

from the gamma band. Our group results are shown in Figure 10 below.
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Figure 5.10: Functional connectivity results for all patients. Error for connectivity analyses between
experimental fNIRS and predictions using full spectrum and gamma band EEG signal input. The
connectivity derived from the full spectrum EEG time series consistently has lower error compared to the

connectivity derived from the gamma band.

Figures 11,12 below show an example of the functional connectivity mapping results generated
using the correlations of the timeseries from patient 22. The seed channel was chosen as channel 22. First,
we used full spectrum EEG predictions as input for functional connectivity computations (Figure 11),

followed by analysis using the EEG gamma frequency band as input (Figure 12).
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Figure 5.11. Functional connectivity results between experimental fNIRS and predicted resting state fNIRS
using full spectrum EEG as input for patient 22. We employed seed based functional connectivity analysis
to obtain a surface brain map that describes brain functional connectivity patterns. The seed region of interest
(dark circle) is shown and full spectrum EEG was used as input into the model. Bilateral brain correlations
using experimental fNIRS (A, C) and predicted resting state fNIRS (B, D) are shown. A and B display the
right side of the brain, C and D display the left side of the brain. The connectivity profiles are seen to be

similar between the maps generated using the experimental fNIRS results and the predictions of the model.
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Figure 5.12: Functional connectivity results between experimental fNIRS and predicted fNIRS resting state
using EEG gamma band as input for patient 22. Correlations from experimental fNIRS and predicted resting
state fNIRS using EEG gamma band as input into our model are displayed. Bilateral brain correlations

using experimental fNIRS (A, C) and predicted fNIRS (B, D) are shown.

5.5 Discussion

Deep learning models obviate cumbersome and brittle feature engineering processes replacing them
with hierarchical feature learning. In this work, we developed a deep learning sequence-to-sequence
autoencoder with long short-term units and convolutional modules to predict hemodynamic fNIRS
waveforms from resting state EEG signals. Our model was trained using a 70/20/10 split for training, testing,
and validation, respectively. As resting state EEG signals flow through the convolutional layers, the

resulting vector is encoded and subsequently enters into LSTM layers.

Our results demonstrate that in the context of resting state recordings, fNIRS resting state intervals
are able to be predicted using full spectrum as well as specific frequency range EEG signals to a certain
extent. Our experimental findings can be related to known physiological phenomena being generated at the
frequency of Mayer waves (~ 0.1 Hz), as these oscillations reflect fluctuation in cerebral arterial blood

pressure. The presence of these oscillations persisting after data processing (filtering) can be partly due to
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the fact that they share a common spectral range with typical hemodynamic responses including resting state
fNIRS signals from the brain (Yiicel et al., 2016). On the other hand, these oscillations might be of an extra
neuronal origin corresponding to cerebral vasomotion—which as opposed to Mayer waves, is related to
blood vessel tonal oscillation (Aalkjer et al., 2011; Julien, 2006; Quaresima & Ferrari, 2019; Sassaroli et

al., 2012).

The exact mechanics of physiological signal presence within EEG waveforms has not been
established with certainty. However, experimental results from this work suggest the following: our model
is able to capture subtle hemodynamic dependencies within the EEG resting state signal and its fNIRS
correlate via the neurovascular coupling phenomenon. These nuanced features are encoded and
subsequently decoded by the architectural components of the model particularly the convolutional LSTM
parameters (Greff et al., 2017; Sutskever et al., 2014b). The encoder and decoder components of the model
and model parameters (e.g., the activation function utilized) may have enhanced feature extraction in resting
state EEG data and its corresponding correlate in fNIRS waveforms. In addition, the features computed by
using the outputs or hidden states of the recurrent units and the model may extract long-term dependencies
(electrical and/or physiological) in resting state EEG sequence data from the LSTM modules via the gating
mechanism (Sutskever et al., 2014a). Furthermore, when cerebral blood flow (CBF) varies, changes occur
in both the metabolic and electrical activity of cortical neurons with corresponding EEG changes (Sassaroli

etal., 2012).

Neuronal events responsible for evoking the fNIRS response can be divided into subthreshold
synaptic and suprathreshold spiking activities (Curtin et al., 2019; Sharbrough et al., 1973). Furthermore,
excitatory and inhibitory neurons, which are often located within close proximity in the brain are
simultaneously active and may both contribute to the hemodynamic response (Franaszczuk et al., 2003).
Slower EEG frequencies (primarily delta and theta) are generated by the thalamus and cortical cells in layers
II-VI. Faster frequencies (gamma, typically 30-100 Hz) arise from cells in layers IV and V of the cortex
(Foreman & Claassen, 2012; Merker, 2016). Changes in electrical potential as shown in EEG recordings
are closely tied to cerebral blood flow (CBF) and when normal CBF declines to approximately 25— 35
ml/100 g/min, the EEG first loses faster frequencies, then as the CBF decreases to approximately 17— 18
ml/100 g/min, slower frequencies gradually increase. The interdependent relationship between CBF and
cerebral electro-potential firing is theorized to be captured by the model used in this work. Exploring the
spatial localization of low EEG frequency oscillations can help to determine if the presence of physiological
signals is variable across patients and electrode (channel) sites, thereby possibly lending credence to the

hypothesis that these oscillations are unlikely to be generated by one source.
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We show spatial decoding is possible using our model. Examination of the LSTM memory units
and the latent space architecture in autoencoders can demonstrate correlation between data that were
previously unknown. A point for further investigation is to integrate an attention mechanism in our model.
Since LSTM cells can lead to ambiguous memory activations, attention allows the model to encode input
into a sequence of vectors and choose a subset of these vectors adaptively during decoding. Thus, the model
no longer needs to utilize fixed length vectors which may lead to increased performance metrics at the cost
of computational time. Attention implemented in our model would enable us to inspect the relationship

between encoded and decoded sequences by model weight visualization.

In comparison with lower frequency range EEG signals, our work has established that higher
frequency EEG signals (primarily the gamma and beta bands), reconstruct fNIRS waveforms with more
fidelity as compared to lower frequency EEG signals. Results here corroborate that EEG gamma band based
fNIRS reconstructions show a closer fit between the observed and predicted hemodynamic responses as
opposed to other EEG frequency ranges (Ebisch et al., 2005). This is possibly due to the fact that higher
frequencies engage an increased number of neurons, but it is less apparent if this is due to baseline network
activity or part of a pivotal functional role. Gamma rhythms in the brain provide an indication of engaged
networks and have been observed in a number of cortical and subcortical structures. These rhythms are
typically stronger for some stimuli as compared to others, thereby displaying selectivity to that of nearby
neuronal activity (Jia & Kohn, 2011; Whittingstall & Logothetis, 2009). However, to fully interpret the
impact of this activity warrants an investigation of the cellular mechanisms responsible for their generation.
GABA-ergic inhibitory interneuron activity is considered to be crucial to generate EEG gamma frequency
activity and this may be increased via interactions with excitatory neurons (Jia & Kohn, 2011; Park et al.,

2011; Ray & Maunsell, 2010).

In the second part of our work, we explored functional connectivity in the resting state. fMRI
resting state data has shown distant correlations at low frequency organized as connected networks, and we
hypothesized that our model’s predictions would be able to reveal similar functional connections as
compared with experimental fNIRS. On a group level, predicted fNIRS from full spectrum EEG had higher
connectivity as compared to predictions derived from the EEG gamma band. Experimental resting state
fNIRS data and predicted fNIRS data was correlated to reveal similarly near the set seed but metrics
decreased generally as distance increased from the seed. This can be due to numerous factors: 1. noise
causing a decrease in reconstruction quality, 2. a decrease in gamma activations at the region of interest,
and 3. model parameters unable to completely learn the nuances present within the signal. Furthermore,
systemic artifacts from the scalp and skull behave as dominant noise sources in resting state fNIRS signals,

leading to inaccurate reconstruction. Utilizing an EEG-fNIRS experimental setup with short separation
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channels, measuring approximately 1-2 centimeters in spatial separation between source and detector
(Gagnon et al., 2012; Kohno et al., 2007), could lead to sufficient noise reduction and improved signal
sensitivity. We hypothesize that reconstruction metrics as well as corresponding functional connectivity
network measures stabilize with increased signal quality and increased resting state duration, thereby
decreasing the disparities present between experimental and predicted time series. Our model reconstructed

fNIRS signals for certain patients with decreased error across frequency ranges.

5.6 Conclusion

We designed and implemented a deep learning model to predict resting state hemodynamics given
specific electro-potential frequencies using resting state scalp EEG signals from a cohort of epileptic
patients. We performed a thorough analysis of each EEG frequency range and its complementary fNIRS
prediction; further we analyzed functional connectivity between brain regions using frequency range
predictions. Our model was specifically designed to predict fNIRS waveforms from full spectrum and
frequency specific EEG input. The gamma and beta EEG frequency bands provided hemodynamic
predictions of fNIRS resting state with the highest metrics.
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CHAPTER 6 GENERAL DISCUSSION

This thesis explored EEG-fNIRS brain signals using a multichannel EEG-fNIRS multimodal
system in the context of epileptic recordings in critically ill intensive care unit patients. Two
scientific papers were presented in Chapters 4 and 5, focusing on seizure detection using fNIRS
signals and the prediction of fNIRS signals given specific EEG input, respectively. This chapter
reviews the objectives that were proposed in Chapter 1, validates the corresponding hypotheses,

and discusses the limitations of the proposed techniques.

6.1 Objective 1

The first objective of this thesis addresses the hypothesis that fNIRS offers improved
metrics in a seizure detection task. The long short-term memory deep learning model developed
for achieving this objective proved that utilizing fNIRS along with EEG offers increased sensitivity
and specificity of seizure detection. The results presented in Chapter 4 show that the mean precision
of seizure detection using EEG alone compared to multimodal (EEG-fNIRS) data was 82.8 and
87.3, respectively. Thus, incorporating fNIRS recordings in seizure monitoring might be able to
improve patient-specific seizure detection. These metrics can be increased further if the seizure

onset zone is taken into account.

The delineation of the seizure onset zone (SOZ) via presurgical evaluation of brain neural
activity is commonly carried out in epilepsy patients. The interpretation of seizure on EEG
recordings albeit by technical experts is difficult because of the highly stochastic behavior of
epilepsy. In this work, seizure events labeled in the ground truth by domain experts and the
corroboration of epileptic foci on the brain MRI allowed for the spatial localization of the SOZ.
However, the developed algorithm has the potential to accurately localize the SOZ by using the
high dimensional information available in the data set such as the temporal and spatial information
(channel wise) of neural activity extracted from EEG as well as hemodynamic activity from fNIRS
recordings. Model adaptation by signal encoding requiring additional signal processing steps
particularly: inverse problem solution, and the estimation of the EEG and fNIRS time courses
extracted from spatial regions of interest. Contextually, the inverse problem involves inferring the

anatomical brain localization of a seizure from multimodal recordings and subsequently correlating
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seizure origin and seizure semiology. Following encoding of temporal and spatial dynamics of the
seizure-related neural network, a measure can be used quantify the accuracy of SOZ localization.

The results obtained from this adapted model can be validated by the SOZ on the MRI.

The LSTM model presented in Objective 1 was designed to avoid the common limitations
of vanilla recurrent neural networks, such as the so called “vanishing gradient problem” and the so
called “exploding gradient problem”. Briefly, the vanishing gradient problem considers the
activation of one neuron as input to subsequent neurons, thereby behaving as repetitive input. Thus,
there are neurons with similar (or same) weights, but different inputs linked via activations. The
LSTM network developed here was trained in a supervised fashion to compute the gradients needed
during the optimization process consequently updating each proportionally to the derivative of the
error with respect to corresponding weight. Although the model presented for seizure detection
avoids such problems, training the model by neuroevolution can be advantageous [260] or via
policy gradient methods [261], particularly in an unsupervised situation when there is no "teacher"

(i.e., training labels).

6.1.1 Clinical application

The current clinical state for seizure detection is exclusively dependent on the use of the scalp
EEG. While the fNIRS method is by no means a replacement for current standard of clinical care,
it can serve as an important complement to typical neuromonitoring using scalp EEG methods for
the management of epilepsy. The results from Objective 1 suggest that fNIRS signals add value in
a seizure detection task when combined with conventional scalp EEG recordings. We note that by
using EEG-fNIRS multimodal signals, the developed LSTM algorithm can be extended to a range
of epilepsy types including absence seizures and asymptomatic seizures (‘“‘silent seizures”).
Furthermore, given the fact that fNIRS sequences usually are shifted by a few seconds as compared
to EEG signals, the developed model is robust enough to have a varying baseline difference and

ensure seizure detection.

6.2 Objective 2

The second objective of this thesis addresses the hypothesis that fNIRS resting state periods
obtained from epileptic recordings can be predicted from resting state EEG recordings. This

hypothesis takes into consideration the neurovascular coupling phenomenon (Section 1.3) as a
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contributing factor for this predictive ability. The article presented in Chapter 5 proposes a
sequence-sequence autoencoder model that considers spatial and temporal properties of EEG and
fNIRS sequences via convolutional neural networks and long short-term memory units
respectively. Although, the predictions of the hemodynamic response (fNIRS) from cerebral-
electro-potential sequences (EEG) are patient-specific, intra-patient recordings demonstrate similar
predictive ability as compared to other patients. Furthermore, consistent low reconstruction error
among intra patient recordings lends credence to model parameterization as the model’s training
and validation was noted to decrease steadily with minimal gap between loss values. We confirmed
that our model is spatially sensitive in its reconstruction ability as channel locations with acceptable

SNR have lower reconstruction error.

The resting state fNIRS predictions derived from specific EEG frequency bands suggested
that the higher frequency bands, particularly gamma have increased predictive ability as compared
to lower frequency ranges. This finding suggests that higher frequency bands, particularly the
gamma band, offer more predictive capacity for cerebral hemodynamics possibly due to the fact
that neuronal firing during gamma oscillations and high cellular oxygen consumption have strong
correlation [262]. This observation helps to substantiate the hypothesis that predictive capacity is
improved with bands with higher frequency and cerebral hemodynamics in the resting state [52],
[65], [263]. Furthermore, in this work, fNIRS signals were reconstructed with purely data-driven
methods. Utilizing nonlinear methods to examine EEG signal characteristics includes adopting
useful nonlinear parameters such as the approximate entropy and sample entropy [264] since
nonlinear features are able to provide information regarding complex physiological phenomena
such as abrupt transitions and chaotic behavior within EEG signals. Thereby allowing a correlation
computation between nonlinear resting state EEG dynamic complexity with neuronal activity

obtained by fNIRS.

An explicit goal of the functional connectivity studies was determining correlation between
neuronal activity obtained by EEG rhythms and hemodynamic activity obtained by fNIRS. We
examined the relationships between EEG patterns and brain activation obtained by reconstructions
from our sequence-to-sequence autoencoder model during the resting state condition in 40 epileptic
patients. The results demonstrated a substantial correlation between experimental resting state EEG
(full spectrum and gamma band) and reconstructed resting state fNIRS signals. In our analyses,

connectivity results are dependent on seed location, the region of interest and model output. We
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controlled for seed location and corresponding region of interest and in general, we found that
lower EEG frequencies had no reliable effect on fNIRS signal reconstruction and therefore
connectivity. However, incrementally increasing the range of the EEG bands by possibly
processing the EEG signal to include combination of multiple bands (i.e., [delta, theta], [alpha,
beta], etc..) could offer insight into the EEG dynamic complexity and its corresponding fNIRS
(hemodynamic) correlate as well as the corresponding functional connectivity. Our results indicate
that features of EEG frequency bands are strongly associated with fluctuations of the hemodynamic
signal during the resting state condition. Results from functional connectivity analyses performed
in the context of Hypothesis 2.3, suggested that while full spectrum EEG when input into our model
offered the most functional connections, the gamma band had the most similar connections as
compared to full spectrum EEG. Furthermore, the root mean squared error of functional

connections was shown to be consistently lower in analyses derived from full spectrum EEG input.

Resting state signals have been shown to be able to characterize the brain’s underlying
resting-state networks present in epilepsy [30], [265], [266]. Thus, resting state fNIRS connectivity
measures could identify clinically relevant information in individual patients suffering from
epilepsy. Strengths of this study laid in part in its experimental design, as it involved a relatively
large number of patients with multiple multimodal EEG-fNIRS recordings. Furthermore, a large
number of resting state periods were partitioned from multiple full recordings to be used for each
patient. The results of validating our model on intra-patient resting state records is shown in Figure
5.5 of Article 2. As instrumental and analytical improvements for fNIRS signal processing (i.e.,
artifact removal) occur, the models proposed in this study should be further validated on larger
patient datasets. The reconstruction of fNIRS signals from EEG waveforms highlights an
interesting ability of the developed seq2seq model. A valuable consideration is the fact that the
fNIRS technique is not readily able to obtain subcortical signals, but such signals from subcortical
structures might possibly influence the relationships between neural and hemodynamic signals.
Neurovascular coupling studies in subcortical brain structures discovered strong correlation
between low frequency oscillations (LFO) measured peripherally by the fNIRS technique with the
BOLD signals from fMRI; suggesting a global circulatory origin of LFOs in the human brain [87].
It is purported that resting state networks may to some extent reflect vascular anatomy associated
with systemic LFOs, rather than neuronal connectivity—at approximately 0.1 Hz in BOLD signals,

time delays were found between the precentral gyrus (PCG) and insula. Interestingly, in resting
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state periods, phase coupling between BOLD oscillations at 0.1 Hz and heart rate oscillations in
the mid cingulum were found; one representative of neural and the other of vascular BOLD

oscillations [87].

Changes in electrical potential as shown in EEG recordings are linked closely to cerebral
blood flow (CBF). When CBF declines to approximately 25— 35 ml/100 g/min, the EEG first loses
faster frequencies, then as the CBF decreases to approximately 17— 18 ml/100 g/min, slower
frequencies gradually increase. The interdependent relationship between CBF and cerebral electro-
potential firing is theorized to be captured by the model used in this work. Slower EEG frequencies
are related to CBF with the EEG first losing faster frequencies when normal CBF declines to
approximately 25— 35 ml/100 g/min, and slower frequencies gradually increase as the CBF
decreases to approximately 17— 18 ml/100 g/min, slower frequencies gradually increase. Further
research is needed in determining the possible role brain structures have in Mayer wave (MW)
generation. It is generally accepted that the generation and propagation of the MW in the
cardiovascular and neurovascular systems result from mechanisms of vascular and neural origin
involving several mutually interacting variables and the interdependent relationship between CBF

and cerebral electro-potential firing is theorized to be captured by the model used in this work.

6.2.1 Clinical application

Resting state data from epileptic patients in Objective 2 and the subsequent results derived
from it can be extended to multiple neurovascular conditions (e.g., traumatic brain injury,
subarachnoid hemorrhage, sleep investigations, neurocognitive disorders) in which scalp EEG is
used for diagnosis or treatment paradigms. We will discuss the clinical applications of Objective 2
and its results as it relates to it being used as a tool for epileptic pre-surgical assessment, traumatic

brain injury, and sleep investigations.

6.2.1.1 Epileptic pre-surgical assessment using EEG as a predictor of hemodynamics

Our results study showed cerebral hemodynamics can be predicted from higher EEG
frequency bands in the resting epileptic brain with low reconstruction error. Furthermore, higher
frequency EEG signals show similar resting-state functional connectivity patterns in epileptic
brains. Of interest is the fact that EEG frequencies are generally correlated with cerebral metabolic

processes and our work here suggests that the hemodynamic correlates of these frequencies can be
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predicted to some extent. The network dynamics of the epileptic brain is still not fully understood
as basic and clinical research is underway to comprehend the mechanics, the method presented

here has potential to be developed into a helpful clinical tool.

The results from our functional connectivity studies could serve as a surrogate for cerebral
hemodynamic monitoring in clinical settings in which only scalp EEG technology exists (which is
the case for most clinical settings). Our functional connectivity results suggest that the resting
epileptic brain’s hemodynamics are predictable to a certain degree by higher range EEG frequency
bands (e.g., gamma and theta bands) lending further credence to the hypothesis that cerebral
metabolic factors mediate brain function in epilepsy [161], [215], [225]. Eventually, this could lead
to adding this technique to be part of the clinical repertoire for presurgical assessment of drug-

resistant epilepsies.
6.2.1.2 Clinical applications: traumatic brain injury

Traumatic brain injury (TBI) is sustained brain damage due to sudden trauma to the head—
common causes may include car or motorcycle crashes, falls, sports injuries, and physical
assaults. During a TBI event, self-propagating waves of neuronal depolarization are observed
leading to a phenomenon of spreading depolarizations (SD) [267]. Typically, sudden and
concomitant increase in cerebral blood flow is associated with neuronal depolarizations. TBI may
result in stupor where an individual can be aroused briefly by a strong stimulus (e.g. sharp pain).
TBI patients can possibly enter into damaging brain states as follows: 1) a comatose state,
whereby an individual is totally unconscious, unresponsive, unaware, and un-arousable; 2)
vegetative state, where an individual is unconscious and unaware of his or her surroundings, but
continues to have a sleep-wake cycle with periods of alertness; and 3) a persistent vegetative state,
where an individual remains unresponsive for more than one month. It has been shown that TBI
can lead to inversion of neurovascular communication on both the local and global level and TBI
induced SD leads to a decrease rather than an increase in CBF [268]. At the level of the
neurovascular unit, TBI surprisingly leads to an inversion of NVC from vasodilation to

vasoconstriction and global ischemia may be implicated in severe TBI.

TBI acutely reduces the peak amplitude of both the brain’s electrical and blood flow (CBF)

responses, although recovery to baseline within 30 — 60 minutes typically occurs after insult
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[268]. Interestingly, TBI induces low-frequency oscillatory behavior in CBF, histological
analyses suggest that the alteration in blood flow is not associated with concomitant anatomical
changes. Thus, TBI can be characterized as acute (and possibly chronic) changes in neural and
hemodynamic responses. Clinically, the timely transport to a hospital following acute traumatic
brain injury, can significantly improve the prognosis for recovery as there is a dearth of rapidly
acquired and interpretable quantitative biomarkers for TBI in the field. Determining such a
neurophysiological signature depends on understanding the neural and hemodynamic patterns

evoked during and after TBI and its subsequent clinical sequalae.

The findings from experiments related to Objective 2, suggest that cerebral activity (EEG)
albeit limited (i.e., data derived from specific frequency bands) can influence cerebral blood flow
and thus cerebral hemodynamics. Since, neurovascular coupling is a spontaneous process (present
during resting state or baseline activity of the brain), encompassing coordinated activity of
neurons, astrocytes, and parenchymal arterioles, (i.e. the “neurovascular unit”) and active during
a TBI, a mechanistic understanding of these events should provide novel strategies as a first

diagnostic step.
6.2.1.3 Clinical applications: sleep studies

Sleep can be investigated within the framework of the neurovascular coupling phenomenon,
since this can be used as a foundation to map intrinsic brain activities or synchronizations
commonly present in sleep and sleep related brain patterns [269]. During different stages of sleep,
the human brain undergoes substantial changes in neural transmitters, cerebral electrical potential
and cerebral hemodynamics [270] and NVC dynamically changes across sleep—wake states in
normal and epileptic brains. EEG-fMRI studies have demonstrated that the relationship between
the amplitude of band specific EEG activity and the fMRI based BOLD response exists [271],
[272]. It has been shown recently that spontaneous changes in cerebral electrical (EEG) signals

and the BOLD fMRI signals persist across sleep and wakeful conditions.

Predicting the hemodynamic correlate and effective changes in cerebral hemodynamics
from the theta EEG frequency band (i.e., the active frequency band in the human brain during
sleep) is helpful in understanding the fundamental metabolic and cellular relationships during

sleep. Since sleep can be considered to be a resting brain state, the baseline neuronal activities
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occurring in the brain (as dictated by neurovascular coupling) are related to vasoactive mediators,
such as nitric oxide (NO) and adenosine [273]. It has been noted that there is an acute decrease

in NO in rapid eye movement (REM) and non-REM sleep [274].

Utilizing the results from Objective 2, the relationships between the neural activities and
brain hemodynamics of sleep can be explored since it has been established that the brain
experiences substantial changes in neural transmitters, cerebral electrical potentials, CBF, and
cerebral hemodynamics during the sleep state. On the basis of the aforementioned findings, we
speculate that brain metabolic changes are dependent on electrical potentials as measured by EEG
and the NVC phenomenon is dynamically changing across sleep and wake states in the human
brain. The results from Objective 2 and sleep multimodal EEG-fNIRS data, if collected and
marked can be the first step towards better understanding sleep pathologies as well as in the
development of a neural signature related to sleep pathologies that have a vascular component,
particularly sleep-related breathing disorders: sleep apnea, and hypersomnia of central origin

(narcolepsy).

6.3 Practical limitations

This thesis has offered insight into the potential of fNIRS in seizure detection and prediction
of the resting state. However, the methodology described here has practical limitations. Several
limitations are intrinsic to fNIRS technology that hinders it from being readily used in clinical
settings. From a practical standpoint, the fNIRS technique has limited cerebral penetration depth,
as it can only measure HbO, HbR changes directly under the placed sources/detectors; albeit this
can be mitigated by short channel separation (approximately 3 to 5 cm). Furthermore, fNIRS
infers neural activity via neurovascular coupling. Thus, the relationship between experimentally
derived hemodynamic changes and the underlying neural activity is not always readily
understood—Ieading to sometimes obscure interpretations of fNIRS waveforms. Furthermore,
there are several factors to consider when utilizing the fNIRS technique in practical clinical
experiments; such as: how do factors such as: 1) epilepsy type, 2) the duration of the resting state,

and 3) patient demographics, impact seizure detection and fNIRS resting state prediction metrics?
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CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS

7.1 Summary

Throughout this dissertation, we present results relevant to multimodal neuroimaging
particularly with a focus on human epilepsy data and resting state periods. While the specific
objectives and potential applications of these results are varied, each is centered on a common
premise: the dual activity of multimodal cerebral signals representing neurons and vascular neural
networks. The characteristics of the deep learning models employed here are patient specific and
can be understood well in isolation. The analysis and eventual generalization of such systems is
highly challenging and requires a wide array of techniques including classical signal processing,
and applied machine learning. Generalization of these techniques is best done by collecting more
data and subsequently iterating the developed models. Specifically, if the data corpus increases
and subsequently, the number of recorded seizures increases, the LSTM model developed for
seizure detection has more available training data. In theory, this can improve model performance
metrics and thus lead to a more generalizable model. In this situation, in which more EEG-fNIRS
data is available (i.e., seizure and resting state data) the concern for appropriate model fit is
relevant. By avoiding model overfitting (i.e., essentially learning spurious correlations in the data)
by increasing the size of the training set should reduce these spurious correlations and improve
model performance [275]. However, it should be kept in mind that signal fidelity is paramount to
improving model generalizability. One situation where more data does not categorically improve
model generalizability and may even reduce performance metrics if additional training data is
noisy or has missing values [276], [277]. In addition, splitting the increased data corpus into larger
training, testing and validation sets can lead to counterintuitive results, a phenomenon referred to
as “double-descent” [278]. In this context, the size of the training dataset is set close to the
number of learnable model parameters [279], [280] and as the training set size increases, model
performance worsens. Finally, progressive improvement occurs as the model learns on the
available increased training dataset examples [278], [281]. This phenomenon is not yet totally

understood and is largely of theoretical interest.

In this thesis, extensive processing of these high-dimensional datasets was limited, since

a combination of analytical and deep learning approaches prove to be generally fruitful. Although
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the development of new mathematical models for deep learning is necessary to increase our
understanding of neural network dynamics, combined methods (analytical and deep learning
methods) will continue to lead future advances. However, the results obtained by the LSTM and
sequence-to-sequence autoencoder models used here are largely dependent on the non-linearities
in the seizure and resting state input data, and these so called non-linearities (i.e., features) helped
to determine relationships between EEG and fNIRS signals. In summary, our results suggest that
signal dynamics are not necessarily a general feature of deep networks but are influenced to a
certain degree by the nonlinearities in data used to drive these networks. Examination of the

information bottleneck principle itself may offer important insights into deep networks [282].

This thesis showed that fNIRS adds significance to the task of seizure detection (Article
1) and surmise that seizure free periods in EEG signals can be encoded to predict corresponding
fNIRS resting state signals (Article 2). This has potential application for an improved fundamental
understanding of brain dynamics (i.e., electrical and hemodynamic). We demonstrated how
artificially intelligent methods can be used to achieve these goals. The experimental part of this
thesis was divided into the following categories: 1. seizure detection in a multimodal dataset
(Article 1), and 2. the prediction of resting state in fNIRS signals provided resting state EEG
signals (Article 2). The following highlights the main contributions made across these

experiments.

7.2 Main contributions

This section presents a summary of the main contributions of this thesis and we offer
directions for further research. In Chapter 1, we presented the thesis objectives and subsequently
implemented a deep learning LSTM model to detect seizure events with high sensitivity and
specificity metrics. We demonstrate that statistically validated performance can be achieved with
an appropriate deep learning model and that combined EEG-fNIRS signals improve metrics as
opposed to EEG signals alone. We utilized the well documented CHB-MIT scalp EEG dataset
for model validation, and we showed that by using our LSTM architecture, we are able to obtain
metrics for a seizure detection task using scalp EEG data that rivals other methods. The statistical
significance of our findings was verified across all patients. Following this, we tested our model

using in-house multimodal EEG-fNIRS data. We show that EEG signals combined with fNIRS
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signals improve seizure detection metrics as opposed to scalp EEG signals alone. This was the
first work to our knowledge that utilized multimodal EEG-fNIRS data for a task of seizure
detection. Thereby, results from this work suggest that in the situation in which intensive care
unit patients require long-term continuous brain monitoring, the use of EEG-fNIRS systems will
offer increased benefit in a seizure detection task as compared to the current clinical gold standard
(i.e., scalp EEG signals). Albeit, the improvement in seizure detection metrics (sensitivity,
specificity) of seizure detection is minimal when fNIRS is added to continuous monitoring, fNIRS
signals offers the clinician increased insight into brain functioning and could help in detecting

seizures in vulnerable patients.

In our subsequent experiments we hypothesized that resting state EEG signals derived from
epileptic patients contain relevant time and frequency domain information to drive prediction in
corresponding fNIRS resting state data. The results from our work suggests that as with full
spectrum EEG signals, specific EEG frequency bands, can drive prediction of patient specific
resting state hemodynamic signals using sequence to sequence learning. Neuron synchrony and
associated desynchrony in response to periodic changes in multimodal EEG-fNIRS signals occurs
with respect to the resting state. In general, one might intuitively expect oscillatory data types
such as EEG and fNIRS to entrain to a common input, supported in part by the neurovascular
coupling phenomenon; thus, expecting certain physiological states to encode a common input.
The work here suggests a specific range of EEG input frequencies generate hemodynamic
reconstructions with more fidelity as compared to others. Specifically, higher EEG frequency
envelopes overwhelm other frequencies and drives fNIRS reconstructions with more fidelity as

compared to lower frequency EEG bands.

7.3 Recommendations for future work

Many experiments have been relegated to the future simply due to time constraints. Future
work includes transfer learning for the models proposed and proposals to experiment with new
methodologies (experimental and algorithmic). This thesis has been mainly focused on the use of
either seizure data (Objective 1) or resting state periods obtained in the context of epileptic
recordings (Objective 2). The deep learning algorithms implemented in this research were adapted

from active research and/or literature, leaving fundamental investigations of the algorithmic
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components outside the scope of the thesis. However, given the robust dataset available, several

avenues for future studies come to mind.
7.3.1 Real time detection and prediction

Building on the work put forth in this thesis, exploring the capability of the developed
models to allow for real-time detection and prediction of seizure events is possible. Within the
context of seizure detection, this thesis lays the groundwork for establishing the fact that
hemodynamic fNIRS correlates to EEG signals offer increased metrics for detection of seizure
events. For seizure prediction, the signal processing techniques mentioned in Chapters 4 and 5
can be extended for epileptic spikes, pre and post ictal, and ictal events. This would require expert
marking of every EEG recording for spikes; a painstaking and tedious process. After which, the
model developed in Chapter 4 can be extended to these different events via transfer learning,
wherein information stored after solving one problem (i.e., seizure detection in this case) is used

for solving a different, but related problem.

The results from Objective 2 as presented in Chapter 5 suggest that prediction of
hemodynamics is possible from EEG signals given the developed model. Advancing prediction
of fNIRS seizure waveforms given EEG signals incrementally is of great interest. Fine tuning
(reparameterization of the existing model’s LSTM modules) and retraining the model given the
new dataset (seizure events) would be subsequent steps. In addition to predicting fNIRS seizure
events, the model can be used to determine variability patterns in the hemodynamic response
related to seizure events. Furthermore, if the results of seizure prediction using the sequence to
sequence model is successful, then extending the model to predicting the end of a seizure (i.e.,

seizure cessation) would be a future step.

The objective of predicting seizure cessation would be loosely defined as predicting the
point at which seizure is expected to end, which is validated by the ground truth corresponding
to each recording. This allows for the computation of seizure duration, and the length of the time
interval between pre, post, and future ictal events. These quantities have clinical significance as
it relates to status epilepticus, since ictal events that are longer than ten minutes in duration, or a

seizure cluster, could possibly be indicative of a transition into status epilepticus [207].
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This project would be formatted as a pilot study and would aim to explore the feasibility of
the developed sequence-to-sequence autoencoder model to detect and predict seizures collected
from continuous long-term recorded multimodal EEG-fNIRS signals of a 15 epileptic patient
cohort (and a control group). The inclusion and exclusion criteria would be similar to the one
listed in Section 4.4.3.1. The patients would be recorded with similar multimodal instrumentation
as detailed in Sections 4.4.3.2 and 5.4.3.2, preferably in an intensive care setting. However, given
the higher likelihood of recording seizures in non-acute settings, the epilepsy monitoring unit can
be a viable alternative. Once data is collected, the data must be expertly marked and prepared for
model input. A small set of variables (i.e., latent space variables from an autoencoder model)
inferred from the data can be used to determine a unique signature and predict fNIRS seizures

from their EEG correlate.
7.3.2 Beyond seizures

The research presented here can be tailored towards neuro-prosthetic development. For
example, responsive neurostimulation devices (RNS), are invasive seizure prevention systems
that monitor brain activity. If aberrant brain activity is detected, a RNS system delivers electrical
pulses in an attempt to prevent seizures. RNS devices have delivered promising results in treating
pharmacologically resistant partial onset seizures [283]. The models developed here can be
adapted for practical applications in RNS like systems by integration into their hardware and
could potentially lead to improved and more accurate seizure-prevention systems. Finally,
validation of our results on increased data can help in developing a higher dimensional,

biophysically generalizable and realistic model for real time analysis.

In addition to the real time analyses mentioned in Section 7.3.1, utilizing the techniques
developed in this thesis to investigate other common acute neurological and neurosurgical
conditions, such as subarachnoid hemorrhage, traumatic brain injury, and stroke to name a few is
possible. Developing smart algorithms that take into account multiple acute and chronic conditions

can help in elucidating relationships which can eventually lead to biomarker development.
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