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RESUME

Le cloud computing peut étre désigné comme utilisant les capacités de ressources matérielles
et logicielles basées sur Internet; C’est la tendance de la derniére décennie dans le monde
numérique d’aujourd’hui, de plus en plus rapide. Cela a changé le monde qui nous entoure.
L’utilisation du cloud est devenue une norme et les utilisateurs transferent leurs données vers
le cloud a mesure que les données grossissent et qu’il est nécessaire d’accéder aux données a

partir de nombreux appareils.

Des tonnes de données sont créées chaque jour et toutes les organisations, des instituts
scientifiques aux entreprises industrielles, ont pour objectif d’analyser les données et d’en

extraire les schémas afin d’améliorer leurs services ou a d’autres fins.

Dans l'intervalle, les sociétés d’analyse de données utilisent les informations de millions de
personnes et il est de plus en plus nécessaire de garantir la protection de leurs données. Des
techniques d’ingénierie sociale aux attaques techniques malveillantes, les données risquent
toujours de fuir et nous devrions proposer des solutions pour protéger les données des indi-

vidus.

Dans cette these, nous présentons «Parmanix», une plateforme de protection de la confi-
dentialité pour 'analyse de données. Il est basé sur le systeme MapReduce et fournit des
garanties de confidentialité pour les données sensibles dans les calculs distribués sur des don-
nées sensibles. Sur cette plate-forme, les fournisseurs de données définissent la politique de
sécurité de leurs données. Le fournisseur de calcul peut écrire du code Mapper non approuvé
et utiliser I'un des réducteurs de confiance déja définis dans Parmanix. Comme le systeme
garantit une surcharge acceptable, il n’y aura aucune fuite de données individuelles lors des

calculs de la plate-forme.
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ABSTRACT

Cloud computing can be referred to as using the capabilities of hardware and software re-
sources that are based on the Internet; It is the trend of the past decade growing among
today’s digital world at a fast pace. It has changed the world around us. Using the cloud has
become a norm and people are moving their data to the cloud since data is getting bigger and
there is the need to access the data from many devices. Tones of data are creating every day
and all the organizations, from science institutes to industrial companies aim to analyze the

data and extract the patterns within them to improve their services or for other purposes.

In between, information of millions of people is getting used by data analytic companies and
there is an increasing need to guarantee the protection of their data. From social engineering
techniques to malicious technical attacks, the data is always at the risk of leakage and we

should propose solutions to keep an individual’s data protected.

In this thesis, we present “Parmanix”, a privacy preserve module for data analytics. It is based
on the MapReduce system and provides privacy guarantees for sensitive data in distributed
computations on sensitive data. With this module, data providers define the security policy
for their data, and computation provider can write untrusted Mapper code and use one of the
trusted Reducers that we have already defined within Parmanix. As system guarantees with
an acceptable amount of overhead, there would be no leakage of individual’s data through

the platform computations.
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CHAPTER 1 INTRODUCTION

Cloud computing, one of the biggest trends of technology in recent years, has faced rapid
development. Cloud computing today is a mature market that conducted several large com-

panies to build efficient cloud environments.

Data analytics and cloud computing essentially go hand in hand and as clouds become more
inclusive, data analytics in cloud platforms continue to grow as well. New methods and
new platforms of data analytics bring innovative improvements for so many areas such as
e-commerce, healthcare, etc. and adds so many positive possibilities for businesses. However,

there are just as many new privacy concerns being created.

Collecting and managing data creates significant privacy risks that make “security” and
“privacy” of information as a concerning issue. At the time of processing, a trusted privacy
model is required in order to prevent data leakage and defense against outside attacks. Even

in the storage phase, prevention against possible security threats is needed.

Big data privacy can be preserved by different approaches. The main approaches cate-
gorize into three groups [1]; Data encryption, Anonymization techniques and, Noise-based
approaches. The first two help to hide the sensitive data, however, due to the presence of

many re-identification techniques, they cannot guarantee privacy [2].

On the other hand, the noise-based solutions have shown better utility for statistical data

analytics [3].

In this research work, we have studied a noise-based privacy algorithm, “Differential Privacy",
and implemented it in “Hadoop” a data analytic platform. Differential Privacy promises to
overcome the privacy flaws of encryption and anonymization-based solutions. Our privacy
platform, which we call it “Parmanix”, offers a solution where the risks and costs associated

with privacy issues are on the rise.

Differential Privacy is a mathematical definition for the privacy loss and measures how effec-
tive it would be to use random noise insertion as a particular privacy technique at protecting

the privacy of individuals’ information within a dataset [4].

There are privacy parameters to determine the amount of noise or perturbation that should
be applied to the dataset to achieve the desired level of privacy. In this algorithm, privacy
is quantified by how statistically indistinguishable are the privacy-preserved outputs of the
dataset [5].



Hadoop is a powerful parallel data processing model and is widely used due to its ability to
solve many of large-scale computing problems [6]. However, this platform does not provide
any privacy solution and still lacks in this aspect; In fact, the privacy depends on the dataset
itself whether it is anonymized or encrypted. Hadoop’s various modules have been developed
separately over time and eventually, the security and privacy of this platform have not been

under development until recently [7].

“Parmanix” by incorporating the Laplacian Differential Privacy algorithm to the Hadoop
MapReduce platform, guarantees the privacy of individuals’ information in a dataset that is
being used for data analytic purposes while it does not burden extra overhead that other pri-
vacy solutions such as cryptography algorithms impose to the computation. In our proposed
platform, users without security expertise can perform computations on the datasets and no

extra knowledge is required which makes Parmanix a flexible tool.

1.1 Research Objectives

This research work aims at studying privacy solutions in data analytic platforms. Consid-
ering today’s data analytic world demand, we inspect factors such as privacy guarantee in
different scenarios, performance, the complexity of use for both data provider and computa-
tion provider and based on these factors we selected the best privacy approach. Moreover,
we selected Hadoop and implemented Differential Privacy (which is our selected privacy so-
lution) and developed a new platform, Parmanix. We selected Hadoop as it is an open-source

and a well-known data analytic platform used by many businesses and enterprises around
the world [8].

Parmanix makes changes in the regular procedure of Map-Reduce which is a module inside
the Hadoop platform to implement differential privacy which unlike its counterparts -such as

anonymization technique- guarantees the privacy of individuals information in datasets.

To assess the effectiveness of our proposed platform, we conduct a series of experiments
including investigation on the effect of each privacy parameter on the output results, per-
formance and utility of Parmanix and finally assess it with Naive Bayes machine learning

algorithm.

We address the following three research questions:

RQ1: Why is there a need for a privacy solution in Hadoop MapReduce and can

noise-based solutions be practical to provide this privacy?



Hadoop is one of the widely used data analytic platforms all around the world and by big
companies. However its security and privacy has not been developed as rapid as its use
expansion. This has made it a challenge and as a result Hadoop lacks a consistent security

model and there are a lot of privacy threats that need to be worked on.

Three main privacy approaches in data analytics include Data encryption, Anonymization,
and Noise-based techniques [1]. Data encryption is an efficient means of preventing unautho-
rized access to data and helps to avoid exposure of data to breaches such as packet sniffing,
the man in the middle, etc [9].

Encryption technology adds limitations to the application functionality in using data, as it
uses the computational-resources intensively. This limitation gets more challenging when it

has to deal with the volume, velocity, and variety of big data [10].

Using encryption in data analyzing platforms such as Hadoop means putting extra pressure
on the system’s resources and a considerable reduction in performance. The data must be
decrypted in order to be processed in MapReduce, and this not only decreases performance
considerably for large datasets, but it will also put the data in the risk of leakage (in MapRe-
duce phase) especially with the fact that Hadoop spreads data across a large number of
nodes [11]

As a result, while encryption increases the security for Hadoop, it is not necessarily guarantee

it and is not able to provide acceptable performance for huge amounts of data.

The other privacy technique is data anonymization wherein the information that discloses
the identity is removed from datasets; this helps to keep people who are defined by the
information remain unknown [12]. While the anonymization technique increases privacy, it
can not guarantee privacy in every scenario as we show throughout an experiment where the
dataset has been anonymized yet it reveals an individual’s data by some queries. We showed
in the same scenario, with the same dataset and the same queries, differential privacy as a

noise-based approach, keeps the promise of privacy.

As a result, we chose Differential Privacy, which is a noise-base solution and do not impose
the limitations that mentioned for previous solutions. It calculates the proper amount of
noise through the privacy parameters that it receives and by applying it to the available

output data stops the attacker to conclude anything with 100% confidence [13].

RQ2: Can we design and implement a noise-based privacy solution in Hadoop
as a data analytic platform in order to guarantee privacy while imposing an

acceptable overhead?



We selected Differential Privacy as a noise-based solution and implemented it in Hadoop
MapReduce. This new module which we called it Parmanix, has shown privacy guarantee
for the experiments that we designed depending on the privacy parameters that user chose.
We have depicted this with experiments. To evaluate the performance, we tested our module
with three different dataset sizes. The overhead changed from 12% to 17% from smallest to

largest dataset.

RQ3: How Differential Privacy affects the accuracy of the output and how to

make a balance between privacy and accuracy of the output results?

One of our challenges in this research work is a trade-off between the privacy of the result
and accuracy. Parmanix in any situation keeps its promise of privacy; However, in some

scenarios, this privacy comes with the cost of accuracy.

The philosophy of data analytics is to extract meaningful results and patterns from data. So
in order to know how we can keep the balance between privacy and accuracy, we scrutinized
each of the parameters that are used to calculate noise in the Differential Privacy algorithm.

These parameters include Epsilon and sensitivity, which we have described them in chapter 2.

Epsilon must be specified by the computation provider. Sensitivity, on the other hand, will
be perceived by the dataset itself. The higher the epsilon is, the lower is the amount of
noise. While to a dataset with higher sensitivity, more noise will be added. Depending on
the importance of the data in that dataset, what patterns the data owner needs to extract

for analytics, etc, these parameters must be specified to keep the balance.

1.2 Thesis Plan

The rest of this thesis is organized as follows:

In chapter 2 we overview the preliminary concepts and mathematical point of view of the used

methods that are related to our work and are necessary to understand Parmanix architecture.

We reviewed the related literature, in chapter 3 and did extra discussion over our platform
and algorithm. Chapter 4 outlines the methodology and architecture of our privacy preserve

platform.

The results of our case studies that aimed to evaluate the effect of privacy parameters on the
trade-off between privacy and accuracy of Parmanix output, has been discussed in chapter 5.

In this chapter, we also scrutinized the effectiveness of our proposed solution for different



datasets in different scenarios and made a comparison between the performance of Parmanix

and original Hadoop MapReduce.



CHAPTER 2 BACKGROUND

2.1 Hadoop MapReduce

Parmanix is based on Hadoop Map-Reduce. Hadoop is an open-source cloud computing
and big data framework based on Java that supports the processing of large datasets in a
distributed computing environment. Hadoop allows running the applications on systems that
have thousands of nodes and each node processes thousands of terabytes of data. We had

two criteria to choose from Hadoop MapReduce.

Criterion 1: Accessibility

Since Hadoop Map-Reduce is an open-source project, its source code, bugs and patches are
available online. Hadoop is one of the most popular open-source data analytic platforms.

Criterion 2: Extensive Use

Over the last few years, interest in data science has grown tremendously and Hadoop was
one of the main tools used for this purpose. Being widely used increases the importance of
privacy solutions for the mentioned platform and increase the interest over our solution as

many companies are using Hadoop for their data analytic works.//

To understand the architecture of Parmanix, it is necessary to know the architecture of the
platforms it is residing in and the changes we made on their architecture. Hadoop has 4
core components: Hadoop Common, YARN, Hadoop Distributed File System (HDFS) and
Map-Reduce.

Hadoop Common is the set of utilities and libraries that other modules of Hadoop use.
Modules such as Hive, HBase, etc. As an example, if Hive wants to access HDFS it will use

Java archives that have been stored in Hadoop Common.

Hadoop YARN is the resource manager and job scheduler in the Hadoop distributed pro-
cessing framework. YARN’s main responsibility is allocating system resources to the various
applications running in a Hadoop cluster and scheduling tasks to be executed on different
cluster nodes. As an example, at Yahoo company, 80,000 jobs a day were loaded on the most
heavily used Hadoop clusters while with the help of YARN, they increased it to a load of
125,000 jobs a day. This is an approximate 50 percent increase. This means in a certain

amount of time, more jobs have been done.

In Parmanix, Hadoop common and Yarn will work, and we have not made any changes in

their source code.



Hadoop Distributed File System or HDF'S, is the file system specifically designed for
Hadoop. It runs on clusters of commodity hardware. This distributed file system supports
fast data transfer rates among nodes, and it is highly scalable and fault-tolerant. The main
reason that HDFS has shown capable of fault management is that its component creates
several replicas of the data blocks. These data blocks will be distributed across various
clusters for reliable and quick data access. Eventually, if any failure happens, it restarts
failed subtasks and allows the system to continue operating uninterrupted at times of node

failure. Hence, it can manage the data of the MapReduce applications.

NameNode, DataNode and Secondary NameNode are 3 important components of HDFS.
HDFS has a Master/Slave architecture; the NameNode acts as the master node; It keeps track
of the storage cluster, manages the file system namespace operations like opening, closing,
and renaming files and directories, determines the mapping of blocks to the DataNodes and

regulates access to the files by users.

DataNode acts as a slave node and sums up the various systems within a Hadoop cluster. It is
responsible for serving file systems to read and write requests. It also performs block creation,
deletion, and replication upon demand from the Namenode (Master) The architecture of
HDFS has been shown in Figure 2.1.

MetaData Ops
MName Node MetaData

Client Block Ops

Data Modes

Replication

Read
| i
_.:

Client

Rack 2
Rack 1

Figure 2.1 Hadoop Distributed File System Architecture

The fourth main component of Hadoop is MapReduce; It is a programming model within



the Hadoop framework used to access big data stored in the HDFS.

MapReduce allows non-expert users to easily code their queries using Java rather than SQL
and run analytical tasks over big data. So, no background in databases is required and with
Java they can do the work. This independence from databases has increased query processing
efficiency significantly and has made Hadoop MapReduce to be used by a large number of
developers. In this framework the developer does not need to get involved in parallelization
issues; instead, they can only focus on their computation problem and write parallel process-

ing programs.

Parmanix is running as a module on MapReduce. As the name states MapReduce includes

two main data processing functions: Map and Reduce.

The procedure is as input files will be saved on Hadoop distributed file system, input data
will be partitioned into fixed-sized blocks called chunks and a MapReduce computation will

read them. Each chunk will be assigned to a Mapper.

These parallel Map tasks perform the computation on the input chunk and produce interme-
diate output as a collection of <key, value> pairs. These pairs are shuffled across different

reduce tasks based on the <key, value>.

The Map function takes input from the disk as <key, value> pairs, processes them, and
produces an output containing a new set of intermediate <key, value> pairs. For example, a
file has 200 records to be processed, then 200 Mappers can run together while each Mapper
processes one of the records. Or maybe 100 Mappers can run together while each Mapper

process 2 of the records

Based on the size of the data to be processed and the memory block available on each Mapper

server, the Hadoop framework decides how many Mappers should be used.

When all of the Mappers completed processing, the framework shuffles and sorts the results.
Note that a Reducer cannot start its work while a Mapper is still in progress. After the
Mapper finished the work, now it is the Reduce function stage to take these intermediate

<key, value> pairs as their inputs.

All the map output values that have the same key are assigned to a single Reducer, which
then aggregates the values for that key. Each of the Reduce tasks accepts only one key at
a time and process data for that key and outputs the results as <key, value> pairs. In the
final step, the values will be combined with distinct keys in the reduce phase and produce
the final result as an output file. The general steps of a MapReduce task have been depicted
in Figure 2.2



Final Result
‘ <Keyl, Valuel=> ‘ ‘ List <Key3, Value3>

.--__.-" H\.“"x .--__.-" H\.“"x

i 4 I 4
| Map Phase | | Reduce Phase |

Intermediate
List <Key2, Value2=>

Figure 2.2 MapReduce Steps

Same as HDFS which has a Master/Slave architecture, Hadoop’s MapReduce architecture
is based on a Master/Slave communication model too. This architecture consists of one

JobTracker as master and many TaskTrackers as workers or slaves.

JobTracker creates and runs the job. It runs on the NameNode and allocates the job to Task-
Trackers. Tracking resource availability, managing tasks life cycle, tracking tasks progress,

fault tolerance, etc are among the duties of the JobTracker.

TaskTracker runs on DataNode and executes the tasks and report the status of the task to
JobTracker. It has the function of following the orders of the job tracker. Periodically it

updates the job tracker with its progress status.

To get more details about JobTracker and TaskTracker in the MapReduce process, it must
be stated that the jobs submitted by the user will be received by JobTracker as it is the point

of interaction between users and the MapReduce framework.

When a MapReduce job is submitted, Jobtracker breaks it down into Map and Reduce tasks,
puts it in a queue of pending jobs and executes them on a FIFO or First-Come-First-Served
basis. It assigns the tasks to TaskTrackers and permanently monitors TaskTracker progress.
TaskTracker executes tasks upon instruction from the Master (JobTacker) and handle data

motion between the Map and Reduce stages.

Each Task Tracker has a fixed number of Map and Reduce task slots. By completing all the
tasks, JobTracker notifies the user that the job has been completed.

Figure 2.3 shows each MapReduce stage with an input that has been stored n HDFS. As can
be seen the input breaks into chunks (split), and they assigned to each Mapper (Map), the
outputs go into the Combiner (Combine) and produce the final result (Reduce) which will
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be stored in HDFS.

‘ [ Map ] {Commne} {Danmon} [ Shuffle } [Reduce ] [ Output }

Reducer

Partitioner
Output

Data
Stored in
HDFS

Input Split }—)I Record Reader
Input Data, )\ )
Stored in

HDFS
Input Split }—)I Record Reader

Shuffle
‘Combiner &

Sort
Partitioner

|<Key. Value>

< 4 <

Figure 2.3 MapReduce Execution

A real-world example can depict these processes. Imagine Amazon company wants to know
its total sale for each city of Canada in 2018. To do this, they should count the number of
orders submitted for each city. The number of records in the related dataset is significantly
high. If this computation is done by traditional solutions such as SQL, it will take hours and

maybe days! However using the MapReduce technique, will solve this issue.

To go through this computation, the first step is writing the Mapper code by the computation
provider. In the Mapper, he should define “Key” and “Value”. Table 2.1 is one record of this

dataset:

Table 2.1 One Record Of The Dataset

Number| Date City  |Product Name|Price[Number Of Orders|Total Sale Amount
1 |2018/05/10|Vancouver|Adidas T-shirt| 150 2 300

The computation provider will define a key as “City” name and the “Value” as “Total Sale
Amount”. The whole data breaks into chunks. The chunks will be assigned to the Mappers.
Assume we have 12 Mappers and they work on the data in parallel at the same time with
small fractions of data that they have (Figure 2.4). Each Mapper gives out a record of data
containing the name of the city and its sales and writes it on the index card; The same hap-
pens for other Mappers and they give out the records until all the Mappers end up having a

series of blocks as their output. The Mappers job is over.
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Figure 2.4 Data Breaks Into Smaller Chunks And Get Assigned To The Mappers

The partitioner is an intermediate phase between Map and Reduce. It sends intermediate
<key, value> pairs to the Reducer. Partitioner ensures that all <key, value> pairs are
grouped by their key on a single Reducer and results in a roughly balanced load across all
the Reducers. Finally, the Reducers aggregates data according to keys and sends the <key,
value> pairs to the output (Figure 2.5). This output will be translated to file format and we

will have the total sale of Amazon in each Canadian city.

Note that In Parmanix we did not touch the general procedure of MapReduce, however, the

details have been changed and limitations have been applied.
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Figure 2.5 Reducers Receive The Key And Values Produced By Mappers

2.2 Combiner

In the MapReduce process, there are two main stages which are Map and Reduce which previ-
ously described them in detail. Aside from these two main stages, there are two intermediate

stages.

Partition which is the process that gets the produced <key, value> pairs from Mapper and
translates the pairs to another set of <key, value> pairs to feed into the Reducer. It decides

how the data must be presented to the Reducer and assigns it to a particular Reducer.

The second intermediate stage is Combine. combine is not mandatory, and it can be enabled
or disabled according to the choice of user. We can define the combiner as a Reducer that
runs individually on each Mapper server. Combiner reduces the time taken for data transfer
between Mapper and Reducer; in fact, it reduces the data on each Mapper to a simplified
form and passes it downstream; as a result, there would be fewer data to work on which this

makes shuffling and sorting easier.

As an example [14], assume that Hadoop runs three Mappers. Mapper 1, Mapper 2 and
Mapper 3. The input of Mapper contains the value as a record of the log file and the key
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could be a text string such as "file name". The Mapper processes each of these records of the

log file and produces key value pairs. Mapper output has been shown in table 2.2.

Table 2.2 Mapper Outputs In The Combiner Example

Mapperl Mapper2 Mapper3
<Exc A, 1> | <Exc B, 1> | <Exc A, 1>
<Exc B, 1> | <Exc B, 1> | <Exc C, 1>
<Exc A, 1> | <Exc A, 1> | <Exc A, 1>
<Exc C, 1> | <Exc A, 1> | <Exc B, 1>
<Exc A, 1> <Exc A, 1>

For each Mapper a combiner is running: Combiner 1, Combiner 2 and Combiner 3. The
output of the Mappers will be the input of the combiners. Same as the reducer, these

combiners calculate the count of each exception. The input from Mapper 1 to Combiner 1

will be:

<Exception A, 1>, <Exception B, 1>, <Exception A, 1>, <Exception C, 1>,
<Exception A, 1>

The same applies to other Combiners. The output of Combiners has been shown in Table 2.3.

Table 2.3 Combiner Outputs In The Combiner Example

Combinerl Combiner2 Combiner3
<Exc A, 3> | <Exc A, 2> | <Exc A, 3>
<Exc B, 1> | <Exc B, 2> | <Exc B,1>
<Exc C, 1> <Exc C, 1>

In the next step, the partitioner sorts the data and allocates it from the combiners to the

Reducers. Table 2.4 shows the input to the reducers.

Table 2.4 Reducer Inputs (With Combiner)

Reducerl Reducer2 Reducer3
<Exc A> (3,2,3) | <Exc B> (1,2,1) | <Exc C> (1,1)

If there was no combiner involved the input to the reducers would be like Table 2.5.

This is a simple example, however, when there are terabytes of data involved, an enabled
combiner has a significant improvement to the bandwidth. Finally, each of the reducers

calculates the total count of the exceptions and the computation will be completed (Table 2.6)

The function and process of combiner has been shown in figure 2.6 in details.
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Table 2.5 Reducer Inputs (Without Combiner)

Reducerl Reducer2 Reducer3
<Exc A> (1,1,1,1,1,1,1,1) | <Exc B> (1,1,1,1) | <Exc C> (1,1)

Table 2.6 Final Results

Reducerl Reducer2 Reducer3
<Exc A, 9> | <Exc B, 4> | <Exc C, 2>

Input
Mapper 1 Mapper 2
o ."'-- "'H-\\‘ ."F--_ _""\-\.\' o
/____,f' — — i /___J ~—
*>Shuffle & Sort & ------- Combiner Combiner |"=""-- +-Shuffle & Sort &,
. e - | 1 | | 2 | . S -
\"'“-\-\_\_ d_;‘__,-' ""H-__ d_#___)'
T
" Shuffle & Sort <,
A = A

Output

Figure 2.6 Combiner Function in MapReduce

2.3 Differential Privacy

The objective of Parmanix module is to preserve privacy in large scale computations that
include datasets from various resources and include individual’s data. Parmanix is using the

Differential Privacy algorithm to get close to this goal.

A mechanism is differentially private if every output is produced with a similar probability

whether any given input is included or not [15].

Every day, every individual produces data including financial data, health data, data pro-
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duced from web search or social networks and this list goes on. These data can be used
for different purposes, finding a statistical correlation, publishing aggregate statistics or data
mining on customer’s data to improve the company’s strategies. Many sensitive data exists
in these datasets. The question is how we can promise the privacy of these sensitive data?

How can we guarantee the privacy of individuals whom their data is in the datasets?

In this situation, the main concept is to promise that a person by accessing the output of
data computation does not be enabled to learn anything about an individual that could not

be learned without access to that output.

To demonstrate Differential Privacy better, first, we go with an example. We assume a
company wants to know the correlation between smoking and having lung cancer and uses the
health dataset to do this analysis. This dataset contains information about people including

their smoking history and cancer history.

Table 2.7 Records Of A Health Dataset

Name age | Smoker | Lunge Cancer
David Smith 32 Y Y
Samantha Roth 34 N N
Margareth Pena 61 N N
Samuel McGee 45 Y N
Martha Christensen | 28 Y N

Assume the outcome indicate a correlation of 20% chance of having lunge cancer in future for
Samuel, based on his health information. If we want to keep our promise of privacy, instead

of the output 20%, we can think about a randomized output. Formally said:

Having dataset D, the algorithm A probabilistically maps D to an object or event in outcome
space. Or as [15] has defined, A is e-differentially private if for all databases D and D" which
differ in only one individual:

P[A(D) = O] < ¢*.P[A(D') = O]

this must be true for all possible outputs O.This notion has been parametrized by epsilon.
P[A(D) = O] is the probability that when we run the process A on the database D, the
output is O.

e is the exponential function applied to the parameter and € > 0. If € is very close to 0, then
e would be very close to 1, eventually the probabilities would be very similar. On the other

hand, the bigger € is, the more the probabilities can differ.

This definition is symmetrical which means you can replace D by D’ and vice-versa, and the
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two databases will still differ in only one individual. So, we could replace it by:

e=.P[A(D') = 0] < P[A(D) = O] < ¢“.P[A(D') = O]

Back to our example, the real output for each record of dataset, under differential privacy
should be randomized so a mechanism under a particular database will produce a particular

set of distribution over a set of possible outcomes.

Differential privacy says that if we add or remove one of the rows of the dataset, this set of

distributed outputs should be very close to the previous. Figure 2.7 depicts this.

Name age | Smoker | Lunge Cancer
David Smith 32 Y Y
Samantha Roth 34 N N ©
Margareth Pena 61 N N o o @
Samuel McGee 45 Y N
Martha Christensen | 28 Y N @ @

Random Outputs

Name age | Smoker | Lunge Cancer
David Smith 32 Y Y
Samantha Roth 34 N N a
Margareth Pena 61 N N Q o O P-4 @
S‘iin"] L (j“ 4= AYa N
Martha Christensen | 28 Y N @ @

Random Outputs

Figure 2.7 Probabilistic Output With/Without One Individual

Now a person might not participate in this study as she might be worry that this information
sharing might affect her premium insurance cost. Whether she participates or she does not,

the probability of the outcome results would be the same.

In [16] it is noted that differential privacy promises the outcome of a survey will stay the

same, whether you participate in it or not.

Note that differential privacy is a property of a mechanism. It is not possible to take an out-
come and state that it is differentially private. The process that has produced this outcome

is differentially private.
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Figure 2.8 Differential Privacy Mechanism

2.3.1 Sensitivity

As mentioned to have the randomness we should have a set of distribution, so we add noise
with a particular shape. The question is how much noise must be added and what is this

particular shape?

"Sensitivity" is the factor that decides how much noise should be added. So we need to
calculate the sensitivity of a function. By sensitivity, one means if we add or remove data
from the dataset, how much the output would change? It measures how much one person

can affect the output.

The sensitivity of a counting query that counts the number of dataset rows to satisfy a
predicate, is 1. Because if we add or remove one person from a dataset, the maximum

change that will occur would be 1.

The mathematical definition of sensitivity is

f:D— R*

(2.1)
Af =maxp, p, [|[f(D1)) — f(D2))ll,

while the datasets D; and Dy are datasets that are different in only one item that exist in
D1 but not in Dy .

So the first tool in differential privacy is noise addition. Calculating the noise to add, will
come from a probability distribution that is called the Laplace Distribution (Figure 2.9).
In fact “Differential privacy is a strong, mathematical definition of privacy in the context
of statistical and machine learning analysis.” [17] This algorithm provides a mathematically
provable guarantee of privacy against a wide range of privacy attacks such as attempts to

learn individuals private information.
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Figure 2.9 A Laplacian Diagram

In a counting query which is supposed to satisfy the predicate P, the sensitivity is 1 and the
noise that should be added is Lap(1/e).

Differential privacy allows for a deviation between two scenarios that individual X exists in
the dataset and the scenario that X does not exist in the dataset. The privacy parameter
“epsilon” is the parameter in differential privacy that quantifies the extent of this deviation;
Epsilon or € is, in fact, the privacy loss parameter that measures the effect of each individual’s

information on the output of the analysis.

Choosing a value for € expresses the amount of noise that is needed to provide a certain level
of privacy protection. This directly affects the utility or accuracy that will be obtained from
the analysis. The smaller the e gets, the smaller deviation and therefore stronger privacy

protection will be provided but the accuracy will decrease.

2.3.2 Quantifying Adversary’s Knowledge

We consider our privacy scenario from the adversary’s perspective. Assume that mechanism
A is e-differentially private. We run it on database D, and release the output to the adver-
sary. Then, the adversary tries to figure out whether their target person is in D. No matter
how much information the adversary has about the dataset, under Differential Privacy, the
attacker can’t gain a lot of information about their target.

Now assume the adversary knows everything about the dataset except their target person.
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Between the two options he has, he should determine which dataset is the real one; The
dataset with their target in it (D;), or the other dataset without the target in it (D).

In the adversary’s model of the world, the actual database D can be either Dy or D,. They
might have an initial suspicion that their target is in the dataset. We represent the suspicion
that the attacker has about the existence of their target in the dataset with the probability,
P[D = D).

This probability can be anything between 0 and 1. For example 0.01 if they think it’s very
unlikely that the target be in the dataset, or it be 0.9 if the adversary’s suspicion is strong

and 0.5 if they have no idea whether the person information exists in the dataset.

Similarly, P [D = Ds| would be the probability of their suspicion that their target is not in
the dataset; Since there are only two options, P[D = D,] = 1 — P[D = D] Now, after
running the computation, we will have output O. The question is how much information did

the attacker gain by this output?

To answer this, we should look at how much their suspicion changed after seeing this output.
So, we must compare P[D = D;]| with the updated suspicion P[D = D;|A(D) = O]. This is

now the attacker’s updated model of the world after seeing O.

With Differential Privacy, the updated probability is never too far from the initial suspi-
cion which lets us quantify this phenomenon. Whether the adversary has full background
knowledge or has partial knowledge about the dataset the bounds still hold.

2.3.3 Composition

In the previous section, we explained quantify information gain in our Differential Privacy
algorithm that we have implemented in Parmanix. In this section, we will prove that Differ-
ential Privacy and eventually our computations in Parmanix are composable. Composable
means that when two algorithms A and B are e-differentially private then publishing the

result of both is 2e-differentially private.

Assume C the algorithm which combines A and B:
C(D) = (A(D), B(D)) (2.2)
The output of this algorithm should be a pair of outputs:

O = (04,03) (2.3)
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The two algorithms are independent and have their own randomness, hence the result of one

does not have an impact on the result of the other. We can write

PIC(Dy) = O] = P[A(D1) = O4] - P[B(D1) = Og] (2.4)
< 626 P[A(DQ) - OA] P[B(Dg) - OB]
< ¢ . P[C(Dy) = O]

thus, C is 2e-differentially private.
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CHAPTER 3 LITERATURE REVIEW

3.1 Hadoop MapReduce Privacy Approaches

MapReduce is a programming system for the distributed processing of large-scale data. It
provides an efficient and faults tolerant manner on cloud platforms. MapReduce is funda-
mentally different from the classical computation in the cloud environments and due to its
massive parallel processing style, it leads to distinct design challenges for security and privacy

requirements.

There are research works on securing this platform. Owen O’Malley et al. [18] in 2009 and
in 2011 [19], presented an authentication mechanism for Hadoop. They used Kerberos au-
thentication control over SSL and three types of tokens include “namely delegation”, “block
access” and “job” token. The focus of their solution was on communication between the
user and HDFS. As the user accesses Name Node through Hadoop’s remote procedure call
libraries (RPC). RPCs use simple authentication and security layer that uses Kerberos and
a delegation token. On the other hand, they secured a streaming socket by a block access
control so users by using it could access the Data Nodes. Their approach leads to no-built
in security mechanism in Hadoop. Due to the wide usage of Hadoop MapReduce, their work
lead to other projects that tried to add different types of security aspects to Hadoop MapRe-

duce.

Hybrid Execution or HybrEx [20] is an execution model for privacy and confidentiality and
privacy in cloud computing and the first MapReduce framework designed for the hybrid
clouds. HybrEx, has divided into two groups: sensitive and non-sensitive data. It sends the
non-sensitive data into public clouds and the sensitive data would be kept in the private

cloud. In this model, only four types of MapReduce computation execution are allowed.

Map hybrid, Horizontal partitioning, Vertical partitioning, and Hybrid; In the first one,
Mapper is executed at both public and private clouds while the Reducer is executed at a
private cloud. In Horizontal partitioning, the data would be encrypted, and the Mapper is

executed only at public clouds only while the Reducer is executed at a private cloud.

The third type, vertical partitioning, lets both Mapper and Reducer execute on both public
and private clouds, but it will not let data transmission between public and private clouds.
And finally, the hybrid type, is the same as the third model with this difference that data
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transmission among public and private clouds is allowed. The weakness of HybridEx is that

it does not deal with the generated keys in Map phases in both public and private clouds.

Sedic [21] provided a solution to solve the key issue in HybridEx. By using an automatic
analysis and transformation of the Reduce code, Sedic presented a data movement from the
Mapper that executes on a public cloud to the Reducer that executes on a private cloud. The
outputs of the Mapper at the public cloud will be aggregated before they are transmitted to
the private cloud and by this, the communication between public and private cloud would

be decreased.

[22], presented EPiC, a privacy-preserving protocol that evaluates the “Frequency Counting”
in MapReduce which is a fundamental operation on datasets. The aim of this protocol is
using privacy-preserving counting in MapReduce and by this, the users can safely store their

data in public clouds.

The main idea is to transform the pattern search into summation and polynomial evalua-
tions. Through partially homomorphic encryption. Homomorphic encryption is a form of
encryption. It allows the computation on cipher-texts to generate an encrypted result that
after decryption, matches the result of the operations as if they had been executed on a
plain-text [23].

The user encrypts the data and uploads it to the cloud. By this, the cloud provider will not be
able to know anything about the stored data apart from trivial information such as data size.
This is due to the encryption model which is in a way that no identifiable data value generates
a cipher-text. In the next phase, the user specifies a Boolean formula as a searching pattern
and generates Mapper and Reducer code to work on the encrypted data. To protect the data
from the cloud provider, the computation uses partially homomorphic encryption; eventually,
the cloud provider only performs the assigned MapReduce computation and counts the total
number of occurrences of an assigned pattern. He will not be able to learn anything about

the data, not the pattern and will not be able to know how often it occurs.

The weakness of EPiC is that to increase the efficiency of the execution of the assigned
queries, it uses a weaker encryption scheme. It also only EPiC supports the counting opera-

tions, which is a limitation for this protocol.

In many of the proposed security solutions, access control had a bold role. Arindam Khaled

et al.in 2010 [24] proposed an architecture based on access control and enforcement policy
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for Resource Description Framework (RDF) [25]. The amount of RDF data on the web is
growing at a fast pace, while the access controls for RDF data, scale poorly to large data sets.
So, they addressed access control for cloud-resident RDF data. They presented a token-based
access control system where users are granted tokens based on the authorization levels and

their needs.

The overall procedure in this architecture was that the system administrator, based on the
request of users, generates an access token for securely accessing data. The token prevents
access to the entire data. They suggested six types of secure data accesses: Predicate data
access, subject model-level access, subject and object data access with or without predicates.
The challenge was that the RDF format was not suitable for a MapReduce computation, as
a result, they proposed a two-layered system. The first layer which was the data processing
layer converts RDF to N-Triple format and the second layer which was the query processing
layer execute a MapReduce computation. This layer provides outputs regarding an access
token. It rewrites a query that satisfies an access token, and then, based on the rewritten

query performs a MapReduce job.

In the final step, performs more additional MapReduce jobs to remove sensitive data from

outputs according to the access token.

In 2014, Vigiles [26] has been introduced; It is the first system that provides a critical security
component for MapReduce, fine-grained access control (FGAC), that challenges for all types
of data without modifying the source code of MapReduce mechanism. Vigiles that is a
middleware architecture is a layer between untrusted users and MapReduce environment. It
uses FGAC for reading operations in MapReduce without modifying computations. However,
it only supports read operation and the sensitive data should be removed from reading

operation outputs.

Managing Hadoop distributed file system is on system administrator; the administrator also
should define the access control filters which are used to remove sensitive data by executing
a procedure consists of 3 consecutive phases: decompose, fetch, and action. Access control
filters, based on the defined configuration, provide only authorized data to users. In Vigiles,
the computation provider (user) writes down the MapReduce code and the code will be exe-
cuted based on the control policies and it removes the sensitive data from output. However

ad-hoc data types and operations such as append and delete are not allowed in this system.

One year after Vigiles, GuardMR [27] solved the issue and allowed ad-hoc data types and

provided dynamic access to the record. In GuardMR, the focus is on the automatic generation
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of dynamic authorized views of input data resources from the high-level OCL specifications.

The access control module performs administrative functions. These functions allow us to
add new data types and preprocessing functions after a proper security analysis. After con-
sulting the access control module which leads to an authorized view of data, the systems will
reference monitor enforces specified security policies to the underlying MapReduce system.
In GuardMR the generated data views are expressive enough to handle the datasets without

the need to predefine structures.

3.2 Privacy Preserving Methods

Most of the researches on differential privacy focused on the theoretical properties of the

model, and they tried to provide feasibility and infeasibility to the results.

However, Machanavajjhala et al. [28] studied the use of differential privacy in practical ap-
plications. They applied a variant of differential privacy to create synthetic datasets. They
used U.S. Census Bureau data for this purpose. Their goal was to use them for statistical

analysis of commuting patterns in mapping applications.

The challenge was handling datasets with large domains because it is needed that the noise
spread throughout the domain even if the data is sparse. The importance of this is because
if an outlier appears in the synthetic data, it is more likely that a similar outlier was present

in the real data and it is less probable that it was due to random noise.

They used exogenous data and other techniques to help reduce the domain size. Even with
domain size reduction, the data was still sparse, eventually, many outliers were created due to
the addition of noise to all parts of the reduced domain. So that the distribution of commute

distances was reasonable only for the study of not extremely long commutes.

The fundamental question of what it means to preserve the privacy of a computation input
has been the subject of much research. Differential privacy is not the first framework that

tries to answer this question. Many previous efforts have been done.

The concept of privacy-preserving data mining has been proposed with two broad approaches.
The randomization approach which focuses on individual privacy and reveals randomized

information about each record while promises to not reveal the original records to anyone.

For example, in [29], they studied the privacy-preserving data mining. They assumed that
using a randomizing function, will perturb the user’s sensitive data so they can not be
estimated with sufficient precision. They tried to answer this question that with a large

number of users who do this perturbation, is it still possible to construct sufficiently accurate
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predictive models? Later [30] proved that their definitions are not sufficient to provide an

individual’s privacy.

In the secure multi-party computation approach, the goal is that without revealing the indi-
vidual records in each database, build a data mining model across multiple databases. These
privacy concerns can prevent building a centralized warehouse, so in [31], they addressed
such problems relate to computing association rules within such a scenario. They assumed
homogeneous databases in which all sites have the same schema. However, each site has
information on different entities. Their goal was that at the same time which they limit
the information shared about each site, they be able to produce association rules that hold

globally.

Privacy Integrated Queries (PINQ) [32] is an extensible data analysis platform designed
for computations on sensitive data while providing unconditional privacy guarantees for the
records of the underlying data sets. This platform ensures differential privacy for the outputs
of the computation. It provides a restricted programming language with a small number of

trusted primitive data operations in a framework named LINQ.

PINQ uses a request /reply model. This model avoids adding noise to the intermediate results
of the computation; instead, it keeps them on a trusted data server provided by a distributed
system. PINQ’s security is dependent on the security of Microsoft’s common language run-
time (CLR), the Dryad framework, the Cosmos distributed file system, and the operating

system.

The closest work to PINQ is Airavat. Airavat [33] is a system that has implemented differ-
ential privacy and provides mandatory access control for data protection. Airavat is the first
system that provides roughly a complete solution for secure computation and data privacy
in a MapReduce system. Airavat uses a mandatory control system to ensure that untrusted
mappers do not leak data outside the cluster. It does not allow direct access of mappers to the
data and the network. It uses Security-Enhanced Linux (SELinux) to implement access con-
trol. Unlike PINQ which provides language level guarantees, Airavat’s privacy enforcement

mechanisms provide end-to-end guarantees.

This thesis has borrowed the same philosophy of Airavat however the technical part of the
implementation is completely different as it was not possible, we go through the same im-
plementation of Airavat due to fundamental changes that have occurred to the software that
Airavat integrates into. We also added new features to the implementation such as combiner

and we avoided making changes in Hadoop main source code which this latter not only had
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a positive effect on performance due to low overhead but also added flexibility to Parmanix

as with each Hadoop update, we do not need to change Parmanix main code.

3.3 Additional Discussions

In this section, we discuss RQ1 on why Hadoop MapReduce needs a privacy solution and

why noise-based privacy solutions can be a practical solution to achieve this goal.

3.3.1 Need for a Privacy Solution in MapReduce

The question that we try to answer is why we need a privacy solution in data analytics and

why we chose Hadoop MapReduce platform for this purpose?

Hadoop MapReduce is an open-source venture. MapReduce is extensively used around the
world as an efficient distributed computation tool for a large class of problems such as search,
clustering, analysis of social networks, log analysis, etc. We chose the Hadoop platform as it
has been successfully used by many companies such as Amazon, Facebook, Yahoo, and even
the New York Times for running their applications on clusters. Hadoop has several tools

which its main one is MapReduce. In fact, Hadoop has been designed for MapReduce.

Hadoop has various modules that each of them has been separately developed over time in
order to add different types of functionalities to Hadoop. However, the security of Hadoop
was never at the center of attention for development until recently. So, while Hadoop has
been increasingly used, the weakness of the security mechanism has become one of the main
challenges that obstruct its development. Eventually, Hadoop lacks a consistent security
model and there are a lot of security threats that can hamper the operation of MapReduce

and other components of the Hadoop framework components.

According to the reports [34], Hadoop is easily identifiable to hackers all around the world.
They do this by simply sniffing to open instances.

Being open-source and accessed by so many users all around the world and having security
weaknesses in one hand and the ascending growth of data analytics, on the other hand, made

us choose Hadoop MapReduce platform and put the focus on improving its privacy gaps.

Parmanix is a platform for privacy-preserving data analysis. To provide the privacy that
has been promised, it uses the Differential Privacy algorithm and integrates it into Hadoop
MapReduce, in order to aggregate features from input datasets without leaking any informa-

tion about any specific data item.
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We mark a computation on a set of inputs as differentially private if, for any possible input,
the computation output does not depend on the presence of that input in the data set; or
as Cynthia Dwork has defined it: "The outcome of any analysis is essentially equally likely,

independent of whether any individuals join or refrains from joining the dataset." [15]

Note that in Parmanix, we have targeted not only privacy but the security of Hadoop MapRe-
duce. This means that our perception is that the intruder tries to get some information about
an individual, while we block some of the ways he can steal data through data leakage (un-
secure Reducers), we take the certainty of the intruder about existence or non-existence of
an individual’s data in the output of the MapReduce and by this protect the privacy of the

individual.

Experiment

Assume we have a dataset containing information of employees in a company. We assume
this company has 50 employees. 30 of them work in department A and 20 of them work in
the department B. Table 3.1 shows 6 records of this dataset. As can be seen, this dataset
has 6 attributes. Among them is SIN number which is one of the riskiest attributes that its

leakage will cause so many security problems for the person.

Table 3.1 Sample Records of the Dataset

Employee Number | Employee Name | Department | SIN Number | Salary Per Year($) | Gender
12356 David A 262-353-938 90,000 Male
12990 Charlotte A 743-234-278 100,000 Female
21723 Jessica B 346-837-338 100,000 Female
21009 Sophia B 983-363-122 100,000 Female
12005 Charles A 343-384-226 90,000 Male
12843 Olivia A 645-999-393 100,000 Female

Through this dataset, we can query the total income of employees that work in Department
A. David is one of the employees of this company that has left the company in the past
month. We intend to retrieve information about his salary. The background knowledge that
we have in this scenario is that David has left the company in the past month and that the

IT department has access to all datasets related to the company employees.

In the original Hadoop MapReduce, it is possible that simply query for that specific person
and get the information we seek. However, we assume the intruder does not have direct
access to the dataset itself and he can gain the information he wants only through indirect

queries he asks from the I'T department. Note that the I'T department does not share personal
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information of employees.

He can ask the I'T department for a total income of employees of department A of the company
in 2 different months; The month that David was working and the month that David left the

company. Table 3.2 shows the results of the queries.

Table 3.2 Total Income of Employees in Department A

Total Income Before David leaves the Company | 2,500,000%
Total Income After leaves the Company 2,410,000%

The intruder can simply compare the output results and find out David’s salary was 90,000$
per year. As can be seen, MapReduce simply exposes the individual’s data and there is
not any mechanism on the platform itself to protect the data. The output results with and
without that person’s data in the dataset are different and this reveals information about

individuals.

MapReduce is dependent on dataset security itself. This means if the dataset has not been
anonymized, the platform is not providing any privacy solution. Note that in this simple
example we ignored that the intruder can straightly query the data record and we put our
assumption on the disability of the intruder to straight access to the dataset and that he
indirectly and by the help of his background Knowledge - that David left the company last

month - and the intermediaries - which was I'T Department- retrieved the data he wanted.

Parmanix provides privacy at the platform level. So independent from the dataset, whether
it was anonymized or not, Parmanix guarantees privacy for each of the participants in that
dataset.

3.3.2 Differential Privacy Preponderance Over Other Privacy Solutions

In this section, we try to answer why we chose Differential Privacy as our solution? Were

not other solutions enough for providing privacy?

Let’s first review what Differential Privacy does and later make a comparison between Dif-
ferential Privacy and other existing solutions. The definition of Differential Privacy was first
proposed in Cynthia Dwork’s ICALP paper [15]. Since then so many contributions in terms

of both theoretical analysis and practical instantiations have been taken place.

Differential Privacy addresses the case when the data provider wants to release some statistics
and does not want to reveal any information about a particular value itself. Differential

privacy makes it impossible to identify the individual’s records in that dataset.
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It does this by injecting noise into a dataset, or into the output of a machine learning model.
The positive point about this is that it does it without any significant negative effects on
the final output. To get this satisfying output, the differential private platform calibrates
the noise level to the sensitivity of the algorithm. The final result is a differentially private

dataset or model that cannot be reverse-engineered by an intruder.

3.3.2.1 Data Anonymization

To answer the research question we stated, we review one of the most popular privacy so-
lutions that currently is widely used, “Data Anonymization”. It refers to techniques that
are designed to prevent the identification of a particular individual from the dataset that

contains this information.

Same as differential privacy, the goal of data anonymization is to protect the individual’s
privacy and it does it through different methods such as encryption, pseudonymization,

hashing, etc.

There are some special kinds of attributes in a dataset: Identifiers and Quasi-identifiers.
Identifiers allow us to easily identify a person, such as a SIN number or a name. Quasi-
identifiers are a broader term that includes identifiers and other attributes that may appear
in other public databases and may allow identifying the person linked to the data. An

example of this can be gender, postal code, or race.

Data anonymization is the process of either encrypting or removing identifiers which are
the information that is personally identifiable from data sets, so that the people whom the
data describe remain anonymous. It does it through different methods; Such as converting
clear text data into a nonhuman readable and irreversible and by this, it reduces the risk
of unintended disclosure, so this allows the transfer of information across a boundary, such
as between different institutes and companies. Or by removing all identifiers such as Name,
Social Insurance Number, Address, etc. that are unique to a person. [35] has described some

of the anonymization algorithms.
But why anonymization is not enough? Why Differential Privacy can be a better solution?

Even with removing the explicit identifiers, the data is still vulnerable as the intruder uses
the quasi-identifiers to link the dataset with another dataset that can be available publicly
and still contains explicit identifiers. This call “linkage attack”. There are several examples of

anonymization approach failure that costs the individuals, exposer of their very sensitive data.

Failure Example 1
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In the mid-1990s, in Massachusetts, USA, the Group Insurance Commission (GIC) pur-
chased health insurance for state employees. This information included patient-specific data
on 135,000 employees and their families; They decided to release some of this data for re-
search purposes. To answer the concerns regarding personal information that existed in
those datasets, the governor of Massachusetts William Weld claimed the privacy of individ-

uals would be protected as explicit identifiers such as name and address, had been removed.

To prove these claims are incorrect, an MIT student, Latanya Sweeney, bought the voter
registration list for Cambridge, Massachusetts for just 20 dollars. She used that data to link
it to the GIC dataset by using birth date, gender and ZIP code. She retrieved health records
of governor Weld’s health and delivered it to his office.

She stated that according to the Cambridge Voter list she found out there were six people
that had the same birth date as Weld which three of them were men; however, he was the
only one in his 5-digit ZIP code. [36] [37]

Figure 3.1 shows the common quasi-identifiers of GIC and Voter datasets.
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Figure 3.1 Sweeny Linkage Attack to GIC Dataset by Using Voter Dataset

3.3.2.2 K-Anonymity

A popular approach for data anonymization is K-anonymity [38]. k-anonymity transforms

an original dataset containing an individual’s information to make it difficult for an intruder



31

to determine the identity of those individuals in the dataset. If every combination of values
for demographic columns in a dataset appears at least for k different records, we say that

the dataset is k-anonymized.

A k-anonymized dataset has the property that each record is similar to at least another
k-1 other records on the potentially identifying variables. For example, if k = 5 and the
potentially identifying variables are “Postal Code” and “Birth Date”, then a k-anonymized
dataset has minimum 5 records for each value combination of “Postal Code” and “Birth Date”
[39]. Any record in a k-anonymized data set has a maximum re-identification probability of
% [40]

. .

Higher values of k imply a lower probability of re-identification; It also means more distortion
to the data which leads to greater information loss due to k-anonymization. Note that
excessive anonymization will make the data less useful for analytics as some analysis becomes

impossible or produces incorrect results [41].

In fact, Sweeney proposed k-anonymity as a new privacy model after her re-identification
of the GIC dataset to ensures that it is not possible to distinguish each individual’s quasi-
identifiers from at least (k — 1) others.

While it seems that k-anonymity will solve the issue, the flaws have been showed up. Assume
that a group of k records with the same quasi-identifiers have the same sensitive attribute
value; In this case, once again it is possible to re-identify the individual records. There are

many examples of the failure of k-anonymization approach in protecting individual’s data.

Failure Example 2

The biggest example of k-anonymization vulnerability is “Netflix prize competition”.

This competition released movie ratings from subscribers of Netflix which is the world’s
largest online movie rental company. Netflix released a training dataset comprising 100
million ratings from nearly 500,000 subscribers on 18,000 movies in a seven-year time-frame
to aid researchers for training purposes. Rating data included the rating itself (from 1 to
bstars), the date of the rating and the movie. To protect subscribers’ privacy, all personal
information that could lead to their identification was removed. Although the data was
carefully anonymized, however, Narayanan and Shmatikov [42] later “de-anonymized” some

of the private records.

They had access to auxiliary data in the form of a public, un-anonymized dataset from
the IMDB website which is a movie-related website and contained similar ratings. In fact,

they used the IMDB dataset as their source of background knowledge, applied their de-
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anonymization methodology to the dataset and identified the subscribers’ record in the
dataset. It even included uncovering their apparent political preferences and other poten-

tially sensitive information. [43]

Failure Example 3

Culnane et al. [44] have shown re-identification of patients in an anonymized health dataset
published by Australia’s health department. In 2016, pursuing the Australian government’s
policy of open government data, the federal Department of Health published the anonymized
longitudinal medical billing records of nearly 2.9 million people. They showed that without
even de-anonymizing the dataset and only by linking the parts of the record that exists in
the dataset to the known information about the individual, they can reveal the identity of

each person such as the birth year of mothers and their children.

Failure Example 4

The Freedom of Information Law (FOIL) allows public access to the records of governmental
agencies in New York state. In March 2014, the New York City Taxi and Limousine Com-
mission (TLC) tweeted a graph that made blogger Chris Whong [45] use FOIL to obtain
the information of all New York City taxi trips taken in 2013. It happened through reverse-
engineering the anonymized data to find out the driver and the taxi for each trip. The data

had been anonymized by hashing from an anonymous data set of individual trips in the city.

The original data contained information regarding fares and trip including total fare, sur-
charge, toll, date, GPS coordinates, distance traveled, etc. Fare and trip data were in two
tables that linkable by a hashed medallion and hack license identifier. Although the fares
linked to their corresponding trip, but the identity of the taxi driver and the passenger were
unknown till three months after receiving the exposed data, another contributor noticed that
the “hack license” and “medallion numbers” identifiers had been created using the md5 hash

function.

He calculated the md5 hash for all possible “hack license” and “medallion numbers” and
eventually the information of 22 million people re-identified. After this, TLC removed the

“hack license” and “medallion numbers” from the datasets of 2014.

3.3.2.3 General Inference

Now we get back to our original question. Why these solutions are not enough?
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The answer is that these solutions ignore the fact that the intruder can have auxiliary infor-
mation and by using them can reach to individual’s data. This auxiliary information can be
his personal knowledge or be the information that he has retrieved from many public datasets
that exist on the internet. Eventually, he can simply use these datasets and by querying and
comparing the output results, find the information he seeks. Such as what happened in the

Netflix example.

The arbitrary information can be (or become) available to the intruder and as a result
such errors are inevitable to happen as they are hard to prevent. Ignoring the background
knowledge is the biggest weakness of these solutions. While in differential Privacy, even
though the intruder can have any background knowledge, the certainty has been taken from

them and they can never access to individual’s data records.

In the next part of this section, with a theoretical experiment, we show the function of k-

anonymity and Differential Privacy in protecting individual’s data.

Experiment 1

Same as the scenario in section 3.3.1 , the intruder wants to discover David’s salary who was
one of the employees of the company and he has left the company in the previous month. We
assume the previous dataset has been k-anonymized. The £ = 2 and it means there should
be at least two or more than two values in an attribute of the data record that have similar

values. In other words, there should not be any singular value in there.

To show how 2-anonymity applies to dataset records, consider the 6 records in table 3.1. We
try to use suppression method — which replaces individual attributes with a * — on these 6.
Note that these are just 6 records out of a 50-record dataset, so we try just to show how the

concept of k-anonymity works by using these 6 records as a sample.

First, the identifiers should be removed. Table 3.3 shows the identifiers and quasi-identifiers.
We omit the “Name” and “SIN Number” columns and in the next step apply 2-anonymity

to the other quasi-identifiers.
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1

Employee Number | Employes Name | Department | SIN Number | Salary Per Year($) | Gender |
12356 David A 262-353-938 40,000 Male
12990 Charlotte A T43-234-278 100,000 Female
21723 Jessica B | 346-R37-338 100,000 Female |
210049 Sophia B URa-36a-122 L0, 000 Female
12005 Charles A 343-384-226 90,000 Male
125843 (livia A | 645-999-393 L0, 000 Female |

l

Quasi-ldentifiers

Table 3.3 Identifiers and Quasi-identifiers of The Dataset

The “Employee Number” column, has unique values. We remove the last 3 digits of employee

numbers. Now we have at least 2 records that are similar in that column. Table 3.4 shows

the column after suppression.

Table 3.4 After Applying 2-Anonymity To The “Employee Number”

Employee Number | Department | Salary Per Year($) | Gender
127Kk A 90,000 Male
127Kk A 100,000 Female
21 HH* B 100,000 Female
2] KKk B 100,000 Female
1% A 90,000 Male
12Kk A 100,000 Female

Now we look at the Department column. It does not need any changes as each Department,

has been repeated two or more than two times. The next column which is “Salary”, has the

same situation. In the last column, there is no singularity as well and eventually, no change

is needed.

We have a dataset that there is not any unique row. There are at least 2 or more than 2

rows with similar values. In table 3.5 rows with the same color are the same as each other

after applying 1-anonymity.

If through Hadoop, computation provider requests the total salary of department A employ-
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Table 3.5 Anonymised dataset; There are at least 2 or more items that are the same

Employee Number | Department | Salary Per Year($) | Gender

| |
|

123K A 100,000 Female

ees, for two different times, one for when David was still working in the company and one
for when he left the company, the output would be still the same as before. As can be seen,
anonymization can not guarantee the protection of individual’s data as the intruder simply
by knowing that David is not working in the company and a comparison between results can

find out David’s salary.

Experiment 2

This time we assume the same scenario but in Parmanix platform. We write the Mapper and
query the total salary of the employees of department A and use the secure Reducer Sum for
this purpose and define the privacy parameters. The details related to how we write Mapper
and Reduce and what are the privacy parameters and how we define those parameters will
be explained in Chapter 4. We intend to illustrate how Parmanix overcomes the flaw of

k-anonymity:.

We query the total salary of Department A employees and for 2 different dates, one for the
month when David was working at the company and one query for the time that he is not

an employee anymore.

Parmanix is not supposed to give out the exact answer. According to the parameters that
the computation provider declares for it, the output will be a noisy answer that hides the

actual answer. Table 3.6 shows us the output.

Table 3.6 Total Income of Employees in Department A (Parmanix)

Total Income Before David leaves the Company | 2,490,000%
Total Income After leaves the Company 2,460,000%

These answers are not the actual answer and the intruder can not gain any information from
it. Possibly he assumes the salary of David is 30,000%!
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So Parmanix guarantees that while you can use the output for data analytic purposes, but

you can not gain any info from individuals in that dataset.
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CHAPTER 4 METHODOLOGY AND DESIGN

4.1 Context and Problem

Privacy ensures that sensitive data is not exposed to untrusted users such as adversaries,
data providers, computation providers, etc. Generally, the data providers are interested in
allowing computations on the data, however, it is required to preserve breach of sensitive
data.

Parmanix is a module that uses Differential Privacy as a noise-based privacy solution in
Hadoop MapReduce which is a data analytic platform. The goal of this empirical study is to
protect an individual’s information in a dataset while doing the data analytic. Implementa-
tion of Parmanix has been inspired by previous research work, Airavat [33]; Airavat was using
this algorithm in MapReduce, however, they had a different approach in their implementa-
tion as it was combined with an access control mechanism and needed to change Hadoop
Source code and JVM source code through patches. In contrast, we designed Parmanix to
be added to Hadoop like a module without any modification in the source code. Besides,
unlike Airavat that had the limitation to use a combiner, we can use combiner and this has

an impact on the utility.

4.2 Study Definition and Design

Our empirical study aims at implementing the Differential Privacy algorithm through Hadoop
MapReduce and assessing the effectiveness and utility of our proposed approach in different
scenarios. In order to keep the performance acceptable, Parmanix gets added to the platform

like a module without making any changes in Hadoop source code.

In the following, we introduce the answer to research questions 1 and 2 which have been
mentioned in the first chapter; This includes a description of Parmanix architecture and how

this module affects privacy and accuracy.
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Figure 4.1 Parmanix Module Model
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4.3 Parmanix Programming Model

4.3.1 Untrusted Mappers, Trusted Reducers

In the original Hadoop MapReduce, the computation provider writes his own Mapper and
Reducer code and runs it as a jar file through Hadoop. In Parmanix this procedure has been
changed. Figure 4.1 shows this module model. In our approach, by inspiration of Airavat,
the user writes the Mapper code the same as before. We do not impose any restriction in
this part for the user and eventually, we call it the unsecure Mapper. However for Reducers,
the computation provider will not write his own code, instead, he uses the Reducers that we
have already defined. The Reducers are responsible for the privacy enforcement and that is

why they have to be trusted and secure.

4.3.1.1 Writing Mappers

As figure 4.1 shows after setting up the Hadoop platform, in order to use Parmanix module

user has 3 tasks to do.

The first task is to write his Mapper code. In our privacy preservation module, the Mapper
is not allowed to save any <key, value> pairs. This means they cannot use the already pro-
duced <key, value> for a specific record and use it when computing another <key, value>
pair. Mappers cannot merge the information from other records. All the keys they produce
should belong to the same record. If not, estimated sensitivity would be lower than the actual
one which risks the privacy. This means that all invocations of a Mapper in the computation
are independent. To implement this Mapper independence, we restricted Mapper to read

any record during the Mapper initialization.

In the implementation of Parmanix, we have defined 9 main classes. We devoted two classes
“ParmaMapper” and “IdentityMapper” to the computation provider (Parmanix user) so he
can write his Mapper code. We call it the untrusted Mapper as we do not do any privacy

checking or imposing any restriction on this code. Figure 4.2 shows the classes of Parmanix.

There are 6 other classes that the user does not make any changes in them. "MapperWrapper"
and "MapperInterface" are the classes that receive the input data and execute the untrusted

Mapper that the user has written.

"MapReduceConfigured" is the class that we have defined the privacy parameters (We will

describe these parameters in the next section). "ParmaCombiner" is where we have defined
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the combiner and "ReducerWrapper" is the class that we have defined the differential privacy

algorithm. We have defined all of our trusted Reducers in the "TrustedReducer" class.

4.3.1.2 Specifying The Keys

Privacy Parameter N: The Mapper code that computation provider writes might be
buggy or contains malicious codes that try to leak information in the output, but using the
secure, predefined Reducers will block this way of data leakage while letting the data provider
to not need to audit the inspect computation provider source code. In our approach we aim
to block 2 possible ways that can lead to information leakage through the untrusted Mapper

code:

One way can be through either key or value. We know the output of Mapper is <key, value>
pair and computation can have more than one <key, value> pair. We can never know if a
key is encoding sensitive data or not. This can be a method for a malicious Mapper to steal
data because observing a specific key in the output can be an indicator of an individual’s
information. To block this type of data leakage, the computation provider must submit the
list of key(s) and the privacy parameter “N” before the start of computation. Privacy
parameter N indicates the number of output keys and is used when the key numbers are less

or more than the key numbers that have been specified by the computation provider.

In such a case that the number of output keys does not match with declared keys, Parmanix
will add or remove outputs to make it the exact number of declared key numbers. In fact,
N declares that when the computation has been done, how many keys we must see as an
output. Because the Mapper is untrusted, and a malicious code that has been written in
it can try to leak information and as a result, we see more (or less) results than what we

queried.

The adversary can get some information about individuals simply by adding or removing dif-
ferent keys and comparing their outputs and we want to block this way of data leakage. By
declaring the list of keys and the privacy parameter N, even if none of the Mappers produce

the submitted key, Parmanix still will return a value.

The second way for information leakage is through the output values of different keys. The

adversary can emit a certain combination of values related to different keys through mali-
cious Mapper. In Parmanix platform, the probability of producing a combination of output

values related to different keys would be the same, with or without a specific input item.
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Eventually, no data will be leaked through any combination.

Privacy Parameter n: One of the concepts that we have implemented in Parmanix and
it is inspired by Airavat, is “Privacy Groups” This concept targets the datasets that are
different in more than one item and in fact they are different in a group of records. In such
a case, Privacy groups let us extend privacy to not only items but groups. Privacy groups,
in fact, are a collection of records that together can be present or absent in the dataset. In
order to implement them, we used the composability of Differential Privacy. Composability
simply says that: the effect of n input items on the output would be maximum n times the

effect of one item.

To depict this concept, assume a dataset of a company’s sold items. A customer can buy

different items.

Table 4.1 Customer’s purchase

Customer Name | Product Date
Bob T-shirt | 2018/09/01
Bob Pants | 2018/09/01

Table 4.1 shows the customer’s two purchases. Instead of counting each row of this table as a
record, we count them as one group. This group is all of Bob’s purchases and this is the data
provider who should provide the group identifier and the privacy parameter n based
on their dataset so the computation provider can use it for analytic purposes. “n” which is
the maximum number of privacy groups’ keys do the same job as N but in the privacy group

level.

The second task that the user must do is to specify the keys. The computation provider
must declare what are the expected keys and also defines the group identifiers. We previ-
ously explained that this is to block data leakage through Keys and declare the two privacy
parameters, N and n which are respectively the number of expected outputs and the max-
imum number of privacy groups’ keys. He will use the “MapperWrapper” class for this

purpose.

Note that MapReduce operations might execute on different nodes. For the inputs that go to
different nodes, “Key” and “Privacy Group” will be the same. The group identifiers that the
user has defined in the class later will be attached to the <key, value>. By this, Parmanix
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will be able to track the information through intermediate levels to the output level. We also

assume the declared rang by computation provider as the group level.

3

User Classes

Other Classes

Figure 4.2 Parmanix Classes

4.3.1.3 Secure Reducers

The third task that the user must do is to decide the reducer he will use. We have defined
6 trusted Reducers (Table 4.2). The user will not write any Reducer code by himself. He
will use the Reducer name later in the command line to execute the computation. Figure 4.3

shows the sample code of two Reducers, "Sum" and "Count"



. public static Double sumReducer(String group, String key, Iterable<DoubleWritable> values) {

1

2 Double sum = 0.06D;

3. for (DoubleWritable v :
4. sum += v.get();
5 I3

6 return sum;

7 }

values) {

9. public static Double CountReducer(String group, String key, Iterable<DoubleWritable> values) {

10. Double i = 0.0D;

11. for (DoubleWritable v : values) {
12. i++;

13. }

14. return i;

15. }

Figure 4.3 Trusted Reducers: Sum and Count

We also have defined combiner in the "ParmaCombiner" class. Combiner is by default en-

abled. The Mapper outputs go to the combiner first to be processed and in the next step,

combiner output will be transferred to the selected Reducer.

Table 4.2 Parmanix Trusted Reducers

Trusted Reducer | Description
Sum To sum the values
Count To count the values
min To calculate the minimum value
Max To calculate the Maximum value
Mean To calculate the average
Median To calculate the "middle" value in the list

Algorithm 1 shows the simplified MapReduce pseudo-code in the Parmanix module. As can

be seen, the user must select from one of the 6 Reducers or the computation can not continue.
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Algorithm 1 Simplified MapReduce Pseudo-code

Input
List of Keys
List of Group Identifiers
Dataset D
MinRange, MaxRange
Epsilon

Output
Noisy Value L

procedure MAPPER
GetOutputKey (K1, ... K,)
GetInputKey (GroupList)
Computation Provider writes Mapper
if MaxRange > MinRange then return "intermediate < key,value >"
else
"MinRange needs to be smaller than MaxRange"

procedure REDUCE
classTrustedReducer
"User must select the name of trusted Reducer in the execution command line"
if user SELECTED Sum then
Method SumReducer
else if user SELECTED Count then
Method CountReducer
else if user SELECTED Max then
Method MaxReducer
else if user SELECTED Min then
Method MinReducer
else if user SELECTED Mean then
Method MeanReducer
else if user SELECTED Median then
Method MedianReducer
else
"Reducer is not valid. Please choose a reducer from the list: sum, min, max,
mean, median, count'

Return Reducer-Output

procedure DIFFERENTIAL-PRIVACY ENFORCEMENT
Noise calculation based on Epsilon and Min/MaxRange
return Reducer-Output + Laplacian Noise




45

4.3.2 Differential Privacy Enforcement

The first part of our methodology was writing the Mapper code, (includes declaring the keys
and group identifiers), selecting the predefined Reducer and specifying the privacy parameters
“N” and “n”.

After writing the code, compiling it and producing the jar file, the next step would be the
specification of Differential Privacy parameters so Parmanix is able to produce the appropri-
ate amount of noise. We have used a Laplacian Differential Privacy mechanism that adds

Laplacian-distributed noise to a function; we can define it as follows:

f(x) + (Lap(Af/e)) (4.1)

Algorithm 2 shows the pseudo-code of our algorithm. The sensitivity of f(x) function denoted
Af, is a measure of how revealing the function might be and adds Laplace noise with scale

Af/e to preserves e-differential privacy.
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Algorithm 2 Differential Privacy in Parmanix

Input
F(X) < Reducer-Output
€ < Privacy Parameter
MinRange
MaxRange

Output
F(X)+ Laplacian Noise

procedure DIFFERENTIAL-PRIVACY:
//Calculate the sensitivity:
AF = |MaxRange — MinRange|

//Calculate the proper amount of noise:
L = Lap(Af/e)

Inject L into F(X)

Return F(X)+ Laplacian Noise

Based on our Differential Privacy code written in “ReducerWrapper” class, Parmanix needs
2 privacy parameters, “Epsilon (€)” and “Sensitivity” in order to calculate the proper amount
of noise to be added to the result and to guarantee bounds on how much information might

be revealed about someone who is participating in a database.

Privacy Parameter “Epsilon”: As described in chapter 2 Epsilon (€) is one of the main
parameters in Differential Privacy and eventually in Parmanix. In computing the sensitive
data, the statistics that usually get released as the output, pose some privacy risks. The
parameter is used to quantify this privacy because it is a metric of privacy loss at a differen-
tially change in data. Note that epsilon is a relative measure of privacy and not an absolute
measure. As epsilon gets smaller the privacy gets stronger and vise-versa. We have shown

e effects on the computation in the evaluation chapter. The user must specify this parameter.
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Privacy Parameter “Sensitivity”: Another impactful parameter in DP noise calculation
is “Sensitivity”. It is the amount of changes that occur to the output when one of the input
records is omitted. In Parmanix the Reducers add exponentially distributed noise to enforce
the Differential Privacy. Sensitivity is the factor that determines how much noise is sufficient
to be added to the output. Sensitivity mathematical definition has been given in chapter 2.
Based on our definition of sensitivity, the sensitivity of the “Count” function is 1. Because

the count can be changed maximum 1 if an item be added or removed to the dataset
max<|Mmzn| ; |MMam|) - ]-7 (42)

or sensitivity of the “Sum” function depends on the range. For example, in a bound range
of integers from 0 to 100, the sensitivity is 100. Because if 100 be added or removed, the
output will be affected by 100 units.

In Parmanix to calculate the sensitivity, it is required that the data provider specifies the
Range; The computation provider must declare what would be the Minimum and Maximum
of the range. This will be used to calculate the sensitivity as we can derive an estimation of

sensitivity as the sensitivity will be computed based on the declared range.

The range declaration is completely based on the data values in a dataset and the query. So
data provider must evaluate their dataset and define what they need to extract from it and

based on these he decides what would be the minimum and maximum of the range.

For the "Count" function, the minimum and maximum of the range would be between 0 and
1. For the "Sum" function it would be between 0 and the biggest number. By declaring the

range, Af which is the sensitivity will be calculated and the noise will be computed.
noise ~ Lap(Af/e)
As the computation runs, the computed noise will be enforced to the Reducer output.

We can say the higher the sensitivity of a function the more data leaks about the presence
or absence of a specific item in the input dataset. Even one of the indicators of a malicious
function is its high sensitivity because it will leak more information by running the function
and this can be suspicious whether this is a try to steal data or just the nature of that

function.

Figure 4.4 shows the general concept of our module.
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Figure 4.4 Conceptual Architecture of Our proposed module

The calculated noise will be added to the output of Reducer. There is no specific instruction
that how data provider and computation provider should calculate these parameters. It is
up to them that according to the data type, computation purpose, dataset contents, and the

security concerns of data providers, they make a decision and calculate each parameter.

These numbers are the trade-off between the accuracy and privacy of the dataset. We have
fully reviewed the effect of epsilon and sensitivity on the privacy and accuracy of our case

studies in chapter 5.

All the computation providers should do now is to run the Parmanix command or runs the
shell that contains the command. Figure 4.5 shows the command to run the computation in

Parmanix.

We have defined all the values and privacy parameters in the "MapReduceConfiguration”
class. User must specify Parmanix parameters in the correct order: “MapReduceEn-
tryPoint”, “Dataset name”, “UntrustedMapper”, “TrustedReducer”, “Epsilon”,
“MinRange” and “MaxRange”, “MaxKeyPerGroup”, “N” and “n”.

Example 1.

As an example, we use a dataset named “BigShop”. This dataset contains 50000 records of

sold items in a shop. Table 4.3 shows one record of this dataset.(Note that Bigshop is a
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dataset only for practical purposes.)

Table 4.3 A record of BigShop dataset

Product Name Date Day Price
XboxOne 2018-04-23 | Monday | 1.27

We assume the data provider aims to know” how many XboxOne has been sold in the
year 2018”. The computation provider will write his Mapper code and define keys and
identity groups. In the next step, he can compile the source code. The computation provider

specifies Parmanix parameters. Table 4.4 shows all the parameters and runs the computation
(Figure 4.5)

Table 4.4 Bigshop query parameters

Dataset Name Bigshop
UntrustedMappeClassName | BigshopProductCount
TrustedReducer Count
Epsilon 0.5
MinRange
MaxRange
MaxKeyPerGroup

N
n

== O = O

[hadoopl@m4@14—03 MyJarTests]$ hadoop jar parmal.jar parmanix.IdentityMapper /input_bigshop/bigshop.txt /parmanix_outpu

bigshop parmanix.BigshopProductCount sum 0.5 6 1 10000 6 1 1 I

Figure 4.5 Parmanix Command Execution

We set the minimum and maximum of the range between 0 to 1 as for "Count" a product
can be sold or not sold and their existence would make a maximum difference of 1. We have
defined 6 for maxKeyPerGroup, as BigShop dataset contains 6 different products including
“Ipad”, “Laptop’, “XBoxOne”, “Printer”, “Monitor” and “PS4” so we expect 6 keys. As
we expect XBoxOne’s total sale as the output, we expect one key as output, so we chose 1
for N. We assumed that each customer buys only one product so we can set n as 1. The
computation provider also needs to define his input path, which is where the dataset has

been placed, and output path which is the location where results will be saved.

After defining the parameters, the computation provider will be able to retrieve the compu-

tation answer. Without Differential Privacy, the output will be 7152 which is the real answer.
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Through Parmanix due to the noise that has been added we have 7098 as the output. Note
that the parameters that have been set can be different depending on the priority of privacy

and accuracy over each other. This matter will be studied in the next chapter.
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CHAPTER 5 EXPERIMENTAL EVALUATION

In this chapter, we demonstrate the practical scenarios and functioning of Parmanix. We
would also scrutinize how each parameter of the differential privacy algorithm effects on
privacy and accuracy of Parmanix’s output. Our purpose is to show how differential privacy
protects an individual’s data in possible scenarios and also depicts how setting its parameters
can affect the outcome. In the end, we implement Support Vector Machine (SVM), a machine-

learning algorithm to evaluate the effect of Parmanix on the accuracy of the outputs.

5.1 Experiment on a Real-World Scenario

In order to test the functionality of Parmanix and to show how differential privacy impacts
the analysis and protects the individual’s data in practice, we have designed a real-world
scenario. We have a dataset belongs to an international drug company, “PharmaMedicine”,
and it is made of the sales records of January 2009. This dataset consists of 1000 records
that include 12 columns: Transaction date, Product Name, Price, Payment Type, Customer

Name, City, State, Country, Account Created date, Last Login, Latitude and Longitude.

In this scenario, we have a record belongs to a customer, Mr. Smith, that has been diagnosed
with cancer and do his drug purchase from this company. He orders “Paclitaxel” on a monthly
basis. Paclitaxel is a drug-related to cancer that interferes with the ability of cancer cells to
divide. This is not a drug that the company sells an unlimited number to customers but in

a regular timely manner like a monthly basis. So, Mr. Smith orders it each month.

In the dataset, we have 3 products: “Triprolidine”, “Acetaminophen” and “Paclitaxel”. Ex-

cept the latter, the other two are related to cold and can be sold in an unlimited quantity.

Mr. Smith is living in the region Lombardy of Italy. Recently, Mr. Smith has moved from
Lombardy to a new neighborhood. Hence, what we have here is the drug company sale
datasets of various months that include Mr. Smith as a customer in Lombardy who buys
Paclitaxel each month, but on the other hand, on the January sale dataset, he does not exist
as one of the Lombardy customers, because he is not living in Lombardy before. What is
the threat in this scenario? How the information about Mr. Smith can be at the risk of

revealing?

There might be an adversary, who wants to make sure Mr. Smith truly has cancer. This
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adversary can be someone who wants this info for an insurance company that Mr. Smith
in his new region of living wants to register. This person can be from an advertising com-
pany that works with the PharmaMedicine company to do their advertisement. So, to make
business decisions for their ads, they can be in contact with the data analytic company that
works with PharmaMedicine and give them info like how many percents of customers are
from different countries and regions, or which products have fewer sales, etc. As you can see,
violation of privacy can be this complicated and unintentional by companies but like this

scenario, they can lead to revealing information about people.

In the datasets, there are various columns of data that give many options to the adversary
to get to Mr. Smith’s information. The adversary can try to query the number of customers
who bought products belongs to the specific latitude/longitude (Lombardy) that Mr. Smith
was already living. He can do this for months of September, October, November, December

of 2008 and then January 2009.

Paclitaxel is not a drug like the other two cold drugs that so many people and in a high rate
order. As a result, the adversary can compare the results of Paclitaxel sold item numbers
in Mr. Smith old neighborhood before and after he moved from the area and by observing
that there is a difference in the output numbers, get to this conclusion that Mr. Smith is the

customer who does purchase Paclitaxel and have cancer.

A note here is important; In the real world, the adversaries might possess some previous
knowledge from external means that helps them to infer an individual’s secret. Such as Net-
flix example that we mentioned before, which attackers had access to the IMDB dataset and

by using both Netflix and IMDB datasets, succeeded to reveal individuals’ record data.

In Mr. Smith’s scenario, this might be someone who knows that Mr. Smith regularly com-
mutes to the hospital of the city and is a PharmaMedicine customer. This is a sample of
knowledge that an adversary can have and according to that suspects and retrieve more data
from datasets and according to those data, get to this conclusion that Mr. Smith is a cancer

patient and eventually reveal personal information of the customer.

Now we try to implement the same scenario through Parmanix. In the scenario we mentioned
above the adversary can compare datasets belongs to various months. However here, to keep
things simple and as we want to scrutinize the results, we use only January dataset, once

with Mr. Smith in it and another time without him in the dataset.
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We have access to latitude and longitude of Lombardy through the dataset records. So, we
use it and narrow down our query to the number of sold items in the place to Lombardy
which is the place where Mr. Smith was previously living. First, we run the experiment
on regular Hadoop (with no differential Privacy). In the dataset that contains Mr. Smith
records, the true answer is 6 people from the latitude and longitude that Mr. Smith lives,

has bought Paclitaxel.
Our output indicates 6 too.

Now we remove Mr. Smith’s records and try the same experiment with Regular Hadoop.
The query is the same as before and the dataset is the same but minus Mr. Smith record in
it. This time we receive 5 as the output answer. This clearly states that one record does not

exist.

We repeat the same experiment with Parmanix. Same as before, we run the same query
which is the number of sales per geographical location. First, we run the experiment with

Mr. Smith’s record in it. We repeat the experiment 5 times and chose:
e=05,N=1,n=1,0<range < 10

Table 5.1 contains the output Results. In Figure 5.1, we made a Laplacian diagram out of
the outputs. The Laplace diagram helps us to depict the distribution of the outputs. In

order to make this diagram we repeated the query 50 times.

Table 5.1 Total Number of Paclitaxels Sales Per Geographical Location (Mr. Smith Record
In The Dataset)

Execution Number | Total Paclitaxels
1 6
2 5
3 7
4 7
5 5

Now we run the query without Mr. Smith’s record in the dataset. The parameters would be
the same as before and we repeat it 5 times. Table 5.2 and figure 5.1 (the orange diagram)show
the results and the Laplace diagram of this execution. Same as before, to make this diagram

we repeated the query 50 times.

It can be seen that with Differential Privacy, someone cannot find out what the real answer is,
and this is what we expected. However, what differential privacy does, is taking the certainty

from the adversary.
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Table 5.2 Total Number of Paclitaxels Sales Per Geographical Location (Without Mr. Smith
Record In The Dataset)

Execution Number | Total Paclitaxels
1 6
2 4
3 6
4 5
5 4

We make a comparison between the Laplace diagrams of the query outputs, when Mr. Smith
was in the dataset and when he was removed from the dataset. Figure 5.1 shows the aggre-
gation of two diagrams. If you notice the curve of the Laplace diagrams, they roughly are
the same. This says that no matter if we add or remove an individual’s data record from the
dataset (Mr. Smith in this scenario), the output shows the same pattern. In other words,
the existence or non-existence of Mr.Smith does not affect the final result and this is exactly

what we expect from a differentially private platform.

—\With Mr.Smith Without Mr.Smith

0.45
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Figure 5.1 Aggregated Results of Computation Output With And Without Mr. Smith In
The Dataset

The output of this scenario shows the approximate number of customers of each product in
that specific area. This is still enough and helpful for data providers to get to the conclusion
that how much sales they have for their product on that geographical location. Thus, they

are still capable of making their business decisions according to these results.
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The main goal is using data to improve decision making, have a better understanding of the
market, training machine learning algorithms, etc. and at the same time not letting that

people’s data be at risk of exposure and affecting their lives.

Through this scenario, we depicted a simplified real-world scenario and showed how differ-

ential privacy protects an individual’s data.

5.2 Accuracy and Privacy Trade-off

There are parameters that must be considered in differential privacy algorithms. The impor-
tance of these parameters is due to the effect they have on privacy as well as the accuracy
of the output results. There is still no rigorous method to control the trade-off between the
strength of the “privacy guarantee” and the “accuracy” of the output results. Eventually, it
is important to know how they affect the output results and based on that, make the crucial

decision of choosing them.

In this section, we present real-world scenarios and scrutinize the effect of these parameters

on the accuracy and privacy of the output results.

Epsilon

Epsilon () is one of the parameters that affect the privacy of data. It is a metric of privacy
loss at a differentially change in data. In fact, epsilon is the central parameter that controls
the strength of the privacy and eventually the accuracy. In real-world situations, with the
same value of epsilon, the privacy guarantees that are enforced by differential privacy would
be different, as the domain of attribute, sensitivity, and the quarry can be different from one

situation to another situation.

In order to demonstrate the effect of epsilon, we run an experiment with Parmanix. Same as
the previous scenario, we use the sales dataset of PharmaMedicine company. As mentioned
before, this dataset contains records of sales in the month of January of an international drug
company. The products are drug names. We assume the data provider wants to know the

income of selling Paclitaxel.

The computation provider defines keys and values and writes the Mapper. The key here is
“product”. So, the computation provider will define key in the Mapper he is writing. But for
the Reducer, he is allowed to use only the secure reducers of Parmanix. Following this, he

will use the “Sum” which is Parmanix secure reducer.
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We already know that there are 136 Paclitaxels in the dataset and the price of each Paclitaxel
is 3600%. So, the ground truth of this query is 489600% for Paclitaxel. We assume computation

provider chose e= 0.9

The output of the first run is 489600$. As it was expected, the noise that has been added
do not reveal the true number. In the mentioned example, if I had chosen a different €, a
different amount of noise would be added to the final output. To illustrate the effect of €, we
run the experiment for e= 0.1, e=0.5 and €=0.9 . For each epsilon, we repeat the experiment

100 times. As before the query is the income of selling Paclitaxel drugs.

As described in the previous chapters, in Parmanix, the implemented differential privacy
adds Laplace-distributed random noise to the data. We have plotted the results of each € to
depict the Laplace diagram for each query. But what a Laplace diagram actually shows in

this scenario?

Through a Laplace diagram which is known as a double exponential distribution, the dis-
tribution of the output can be shown which is usually denser close to the real answer and
decreases and scatters as it gets away from the real answer. The parameter that effects on

the density or scatteredness of the diagram is epsilon.

Figure 5.2 shows the histogram and figure 5.3 shows the Laplace distributions of our compu-
tation results for e= 0.1, e=0.5 and €¢=0.9 .

As can be seen through the diagrams, by decreasing the epsilon, more noise would be added
to the actual answer(489600) and as a result, the output would be more and more distant
from the actual answer. While when we have higher epsilon, less noise would be added and
as it can be seen in Laplace distribution diagram, the number of outputs in the ranges close

to the true answer is considerably more.

To compare the Laplace diagrams, belong to different epsilons, we have aggregated all 3
Laplace diagrams in figure 5.3. It can be seen, as the epsilon increases, the curves of the
diagram decreases. We can observe a less distribution for outputs of e= 0.9 in comparison
with e= 0.1 ; In lower epsilons, the outputs are less aggregated toward the true answer. As
said, less epsilon means more noise so as epsilon decreases, more noise will be generated and
eventually the output will have more difference with the true answer. This guarantees privacy
however higher amount of noise will decrease the accuracy. Thus, we can say a decrease in €

will add more noise to the actual data which leads to a decrease in the accuracy.
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If the algorithm is O-differential privacy, it protects privacy well, however, it has very low

accuracy, then it would be useless! Because we get nothing other than the noise.

e= 0 is equivalent to absolute privacy. According to the definition of differential privacy, it
is equivalent to Pr[M(D)| = Pr[M(D’)] , which leads to this inference that algorithm M is
independent of the data and thus perfectly protect privacy.

€ controls the crucial trade-off between the strength of the privacy guarantee and the utility
of the output results and in particular, there is no rigorous method for choosing €. The

Epsilon parameter captures how an individual contribution is hidden.

The biggest debate in differential privacy is this question that how to choose the privacy

parameter epsilon? How much noise would be enough?

Setting the proper value of € to protect individuals in the database with some fixed proba-
bility is one of the important challenges as it requires balancing the interests of two parties
that have conflicting objectives: the data analyst, who wishes to learn something about the
data, and the prospective participant, whom his personal data included in the analysis and

has the concern of revealing private data.

Sensitivity

489629
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Epsilon is not the only controversial parameter of differential privacy; Sensitivity is another

factor that affects the privacy and utility of differential privacy output.

We would be able to increase the privacy and protect the data better if we increase the
variance of the added noise, but the truth is that we can not simply add any Laplace noise to
a function. Each function has its own sensitivity and the amount of the noise that we want

to add is dependent on the function’s sensitivity.

As mentioned earlier, the sensitivity of a function can be defined as the largest possible
difference that one row can have on the result of that function and this is true for any
dataset. A real-valued function sensitivity expresses the maximal change that is possible to
happen in its value due to the addition or removal of a single record. But how we determine

what is THIS largest possible difference?

Finding out the sensitivity is not something the data analyzer seeks inside the dataset alone,
but it should be determined according to what the dataset describes. Depending on the
whole scenario, what the analyzer wants to take out from the data, the function that he uses

and also with the help of the dataset content, the sensitivity can be determined.

To see the effect of sensitivity on the output and the way it affects accuracy and privacy, we
have designed another scenario to run with Parmanix. Once again, we use the dataset be-
longs to PharmaMedicine the international drug company. The dataset contains information

regarding the sales in January 2009. In this dataset, we have 3 products.

Table 5.3 List of PharmaMedicine Products And Their Overall Sale

Product Number of Sold Items | Price | Overall Sale

1- Triprolidine 847 1200 | 1,016,400%

2- Paclitaxel 136 3600 489,6009%

3- Acetaminophen 7500 120,000%
I

Table 5.3 shows the actual number of each product in the dataset and the overall sale that
the company had during January. This time, what we want is the overall sale of products 1
to 3 in Canada. Thus, we write the related Mapper and Reducer in Parmanix; we use the
secure reducer “Sum”. For epsilon, we chose ¢ = 0.9 and run the experiment 50 times. Note
that the table 5.4 is the actual numbers for Canada.

We run the experiment with 2 different sensitivity, low and high but we do not make any
changes in epsilon which is 0.9. Parmanix calculates the sensitivity based on range. Eventu-
ally to change the sensitivity we have changed the range manually. We set the range between

<0, 7500> for a low sensitivity experiment. We used <0 , 20,000> as the range for high



60

Table 5.4 List of PharmaMedicine Products And Their Overall Sale In Canada

Product Number of Sold Items | Price | Overall Sale
1- Triprolidine 64 1200 76,8009
2- Paclitaxel 0 3600 0%
3- Acetaminophen 12 7500 90,0009
e e

sensitivity. With the increase in range, the sensitivity increase as well.

We repeated the experiment 100 times; Figure 5.4 and figure 5.5 show respectively the his-
tograms and the aggregated Laplace diagram the experiment. As can be seen, the algorithm
needs to add a lot of noise to cover the high sensitivity of the computation. In fact for the
same epsilon, the amount of added noise is higher. The curves of the Laplace diagrams show

a change in the output pattern. So, the function with higher sensitivity has less curve.
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In a real-world scenario, we could add only one item with a high different price. This would
change the privacy of the sum query even though it was only one item! To keep privacy, adding
or removing one item must not change the pattern, if this happens, the privacy has been
violated. To cover a highly sensitive dataset, we need to add more noise to avoid information
leakage; Therefore, there is a straight relation between the sensitivity of a function and the
amount of noise that should be added; the higher the sensitivity, the more random noise
should be added.

The amount of noise defines the accuracy of the results. Here both of the functions are sum
but the sensitivity for them is different. The first one has lower sensitivity which means less
noise. So, the output has higher accuracy. But for the second one, the situation is different;
Sensitivity is high, and a lot of noise should be added so the accuracy is lower. This function
might keep the promise of privacy and protect an individual’s data, but the output results

are no longer useful.

The truth is that the functions with higher sensitivity require more noise to obtain a fixed
€ of privacy. The experiment results clearly show this truth. The epsilon and sensitivity
have an opposite impact on the results. While the lower epsilon leads to more noise, lower
sensitivity leads to less noise. This is why we talk about the trade-off between the parameters

that affect privacy and accuracy in the algorithm.

One of the weaknesses of differential privacy is the effect that sensitivity has on it. As a

matter of fact, in the real world, sensitivities are usually so high and calculating it for a func-
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tion is not usually easy. so, it is unavoidable to face with sensitivity issues. A considerable
amount of research effort has spent on solutions to estimate the sensitivity [46] improving the
methods to estimate it and even circumventing the calculation of sensitivity [47]. As a con-
clusion, what the data providers and computation providers should consider when it comes
to data analysis, is knowing the effect of these parameters and make a trade-off between the

accuracy and privacy according to what they want to extract from the data.

5.3 Utility and Performance

Parmanix, is a cloud-based module, runs on top of Hadoop. One of the important factors
for us was that while Parmanix is running, it has minimal effect on Hadoop execution which

means creates minimum overhead and eventually it presents an acceptable performance.

To test the utility of Parmanix, we have designed three experiments. We will run each
experiment on the original Hadoop and Hadoop with the Parmanix module. We aim to
compare the average runtime for each platform and calculate how much is the overhead of
Parmanix and how it affects the performance of regular Hadoop. In fact, we want to know

if using Parmanix in data analytics is something that worth the efficiency costs it imposes?

The Hadoop version is 3.2.1 and runs on the Intel Core i7 CPU 2.93 GHz machine with 8 GB
RAM. In general, when running computation in Hadoop, the server needs to be running and
needs restarting on every change in configuration. The data sets are stored on the internal
solid-state drive of the system and the good thing about it is that solid-state drives do not

have idling issues that conventional hard drives have.

In our experiments, we have considered the size of the dataset as well as the function that

we want to run on the dataset.

We have used 3 datasets. They have the same columns, but the difference is in their sizes.
The small one has only 100 records, the medium one has 50,000 records and the third has
500,000 records. The datasets belong to a hypermarket and contain information regarding

the products and sales. Table 5.5 shows all 14 columns of the datasets.

Table 5.5 Dataset Attributes

Region

Country

Item Type

Sales Channel

Order Priority

Order Date

Order ID

Ship Date

Units Sold

Unit Price

Unit Cost

Total Revenue

Total Cost

Total Profit

We want to know the total revenue of the “Office Supplies” in 2014. In this scenario, we as-
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sume e= 0.9. The function which secure Reducer of Parmanix will use is "Sum". To calculate
the execution time, the tests that were executed were pushed to the JobTracker; we made
some changes in the “TaskLog” file to provide the time; no batch scripts or automatically

generated CSV files were involved.

To start, we run the test for the small dataset; We should consider that in this dataset, the
total number of “Office Supplies” that have been sold is 12 and the actual answer for revenue
is 30585380.07%

First, we run the experiment with regular Hadoop. As it was expected, the output is
30585380.07%. We executed it for 5 times and calculated the average runtime. The next
step is to run it on Parmanix. We repeated the experiment 5 times and the same as before,

calculated the average runtime of each execution.

Now, we repeat the experiment with the medium dataset which includes 50,000 records.
Same as the previous experiment, what we want is the total revenue of the “Office Supplies”.

Finally, we run the same experiment on the large dataset of 500,000 records.

Figure 5.6 shows the comparison of the runtimes in Hadoop and Parmanix. As can be seen
for a small dataset with the size of 100 records, the runtime difference is in the scale of
milliseconds which is so fast and as can be seen, there is not much difference (approximately

10% overhead) in the runtime of Hadoop and Parmanix.
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Figure 5.6 RunTime Comparison Between Hadoop And Parmanix with 3 Different Dataset
Size

As can be seen in this figure, with an increase in dataset size, more time is needed to do the
computation, however, Parmanix runtime is close to Hadoop. To show this better figure 5.7

shows the overhead that Parmanix has imposed on the system.
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Figure 5.7 Imposed Overhead to Hadoop By Parmanix

The overhead percentage is almost the same for the small and medium dataset (approximately
12%). This increases to 17% for Large datasets. With contemplating the size of datasets and
run time, it is safe to claim the overhead is still acceptable. Figure 5.8 shows the overhead

percentage comparison between Hadoop and Parmanix.
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Note that when running the tests, although the configuration was set to have more active
nodes for the smaller datasets only 1 node was active at the time. The reason for this behav-
ior appeared to be the block size of the HDFS in which the data files are stored. By default,
this block size was set to 64 MB, so the data sets of 10 and 50 MB could fit into a single
block, eventually allowing only one node to work on it. To change this, we set the block size
of the HDFS to 1 MB. By this change, blocks of 1 MB were created and as a result, the

smaller datasets could be executed by multiple nodes.

In the IT world, any security and privacy solution affects the utility and has its own overheads
that slow down the process. At the same time, it is inevitable to provide security and privacy
for the data; Especially in data analytics that a lot of individuals’ data are at the risk of
exposure and the side effects this has on people’s lives are critical. So, it is important the
security and privacy solutions offer an acceptable utility and performance. In the real world,
the size of datasets is high, and this increases the need for faster platforms. Hadoop Map-
Reduce has been designed to feed the need for faster parallel environments that be able to
answer data analytic demands as the traditional platforms failed to fulfill these demands.
Eventually, the privacy solution that we add to it, should not have a contradiction with the

goal of Hadoop which is a faster analysis of big data.

This is something that we tried to provide in Parmanix as the test results show roughly
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positive feedback regarding achieving this goal. Hadoop Developers during the years have
added functions to improve performance. A possible reason for acceptable performance in

Parmanix is avoiding touching the main source code of Hadoop.

Implementation of Parmanix on Sparks can be another solution to reduce the overhead even
less than this. Sparks is an open-source distributed cluster-computing framework and has

been designed for faster analytics than Hadoop MapReduce.

In some ways, the architecture of Sparks is different that makes it be a faster platform in
comparison with Hadoop. Spark has in-memory processing which means there would be no
time spent on moving data/processes in and out of the disk; Also, Unlike Hadoop, Spark
does not come with its own file system; instead, it can be integrated with many different

types of file systems such as Hadoop’s HDFS, Amazon’s S3 system, MongoDB, etc.

Implementation of Parmanix on Spark can be an interesting topic and we leave it for future

works.

5.4 Classification Algorithm

In order to evaluate Parmanix, we used it to compute a machine learning algorithm, Support

Vector Machine (SVM), to observe its accuracy loss compare to the original Hadoop.

SVM is a supervised machine learning technique. Its main use is for classification and re-
gression and is defined by a separating hyperplane as by finding suitable hyperplanes that
are able to separate the data by the highest margin it attempts to categorize data. Finally

based on the training sets it segregates and analyzes the new values [48].

In other words, given labeled training data (supervised learning), the algorithm outputs
an optimal hyperplane which categorizes new examples. In two dimensional space, this
hyperplane is a line dividing a plane into two parts wherein each class lay on either side. The
goal of the SVM is to design a hyperplane that classifies all training vectors in two classes.
In fact the best choice of hyperplane is the one that leaves the maximum margine from both

classes.

To do this experiment, we used the 20newsgroup dataset !. This dataset is a collection of
approximately 20,000 newsgroup documents, that consists of different articles represented by
words that appear in them and have been partitioned across 20 different newsgroups. The
20 newsgroups dataset is commonly used for experiments in text applications of machine

learning techniques, such as text classification.

Thttp://qwone.com/ jason/20Newsgroups/
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We used this dataset and performed WordCount function in Parmanix. The mapper takes
the labeled data and outputs category and word as <key, value> pair. The Reducer will
sum up all the words of each category and outputs the WordCount pair as <key, value>.
We turned the output of WordCount function into “Tf-Idf” format. Tf-Idf or frequency-
inverse document frequency is a statistical measure and is often used in information retrieval
and text mining. It evaluates the relevance of each word to a document in a collection of
documents by multiplying the times a word appears in a document and also multiplying the

inverse document frequency of the word across the collection of the documents.

We used this data as input to the SVM classifier. Our data is 2-dimensional as it consists of

documents and words. We split the data into a training set and test set.

In our experiment we used a 5-fold cross validation and by this we partitioned the data into
5 subsets and ran the process 5 times, each time one subset was on hold while the rest of
them were used for training. Eventually each time we used 80% of the data for training and
kept 20% for testing. The outcome of this execution on the training set, is a model that will

be evaluated and its performance would be validated on the test dataset.

Note that since we wanted to use multi-class for SVM we used the “one-vs-rest” approach to

create multiple hyperplanes (one for each category).

As mentioned earlier, the goal of this experiment is to evaluate the fluctuations of accuracy
against the privacy parameter epsilon in a machine learning approach. Higher epsilons means
less noise would be added to the output result and we aim to calculate how much this affects
the accuracy of classification. The accuracy of the classifier would be calculated by the

number of misclassified articles.

We have executed the tests 5 times and calculated the average percentage. As figure 5.9
shows, for € = 0.2 the accuracy of classification is 48% while this increases to 72% for € = 1.4.

As a result, the increase in the epsilon will lead to higher accuracy of the classification
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CHAPTER 6 CONCLUSION

6.1 Summary

In this study, we have proposed a distributed computation module based on MapReduce
that guarantees the privacy of an individual’s data. Parmanix integrates differential privacy
algorithm into Hadoop MapReduce and makes sure that for any possible input, the compu-
tation output does not depend on the presence of that input in the data set. This privacy
preserve module, by calculating the proper amount of noise, that keeps the balance between

the privacy and accuracy of the final output, guarantees the privacy-preserving.

The Mapper can be insecure as the platform has been designed to not leak data through
Mapper. For the Reducer phase, secured Reducers have been implemented and the compu-
tation provider must use them instead of writing his own Reducer code. Parmanix confines

the computations and prevents information leakage beyond the data provider’s policy.

Parmanix has been inspired by Airavat, however the source code of Parmanix has been written
from scratch and unlike Airavat, we have not made any changes in the Hadoop source code.
Unfortunately, we did not have access to the main source code of Airavat and eventually, we
were not able to make a comparison between Parmanix and Airavat performance. The results
of the case study show how epsilon and sensitivity, which are the main privacy parameters

in Parmanix can affect the output results.

6.2 Limitations of Our Approach

Data providers usually want an absolute privacy guarantee, independent from the nature
of computations carried out on the data. The fact is such a thing is not possible and un-
fortunately, an absolute privacy guarantee cannot be achieved for meaningful definitions of
privacy. As [49] showed, the entire dataset can be decoded with a linear number of queries.
Parmanix has its limitations too. Limitations that in the future works can be improved but

never can cover every aspect of security and privacy of data.

One of the limitations is that the module can not confine every computation of untrusted
code. One of these computations is key generating. Mapper generates keys however we know
that mappers are untrusted. If the mapper is malicious, it can use the string nature of the
keys and provide a storage channel that later leaks data. Parmanix has no guarantee for

this. That is why the computation provider must provide a key list and leave the rest of the
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work (value-generating for the declared keys) to the platform.

6.3 Future Works

Compromise between security and performance is always a discussion in data security and
privacy. Implementation of the current framework on Apache Spark which does the processes
in memory can considerably increase the performance of this system. In future works, we

will consider migrating Parmanix to spark.

Parmanix guarantees the privacy of individual’s data however adding access control tech-
niques will guarantee data leakage through system resources. Adding access control solutions

to Parmanix can considerably improve MapReduce security and Privacy.
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