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RÉSUMÉ

Cette recherche vise la simulation numérique 3D de l’arc dans un disjoncteur à haute tension
SF6 à courant zéro. Dans le but de capturer et de quantifier les instabilités 3D de l’arc à
courant zéro, la méthode des volumes finis est utilisée pour résoudre des équations Euler
(modifiées pour les gaz réel). La méthode WENO (Weighted Essentially Non-Oscillatory)
est utilisée pour atteindre une précision spatiale du 5e ordre pour une compréhension à
haute résolution des phénomènes complexes impliqués dans la simulation d’arc. Le chauffage
ohmique est obtenu en utilisant une méthode de différence finie compacte du 4ème ordre et
le transfert d’énergie radiative est modélisé via la méthode P1. Une méthode TVD Runge-
Kutta de troisième ordre est implémentée pour l’intégration temporelle. Le domaine de calcul
est un cuboïde, discrétisé en maillage cartésien, à l’intérieur de la buse du disjoncteur qui
comprend l’arc et exclut les parois solides et les deux électrodes. L’arc est allumé via un code
interne à l’intérieur de la buse. Les résultats sont ensuite cartographiés sur le cuboïde et le
courant est réduit à zéro une fois que l’état stationnaire est atteint. Pour étudier les effets
3D de l’arc, une légère asymétrie est imposée à la configuration du problème en déplaçant
le domaine de calcul de sorte que l’axe de l’arc ne coïncide pas avec la ligne de symétrie
du cuboïde. L’effet de ce déplacement est mesuré sur la résistance électrique du milieu
gazeux à l’arc. En comparant le profil numérique de température radiale avec la mesure de
température, il est conclu que le schéma WENO et les résultats du premier ordre tombent
dans une plage de précision acceptable et la méthode WENO prédit un profil de température
plus précis. On observe également que les résultats sont plus précis pour le noyau d’arc
que pour les frontières d’arc, en raison de l’absence des termes visqueux responsables de la
diffusion d’énergie et du mélange turbulent. Il est également conclu que les équations d’Euler
sont capables de capturer les effets 3D de l’arc. Ces effets doivent être pris en compte dans la
conception des disjoncteurs car ils sont directement proportionnels à la résistance du milieu
gazeux qui a un fort impact sur l’efficacité du disjoncteur.
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ABSTRACT

This research aims at 3D numerical simulation of arc inside an SF6 high voltage circuit breaker
at current zero. With the goal of capturing and quantifying the arc 3D instabilities at current
zero, FVM is used to solve real-gas-modified Euler equations. A Weighted Essentially Non-
Oscillatory (WENO) method is employed to reach a 5th order spatial accuracy for a better
understanding of complex phenomena involved in the arc simulation. The ohmic heating is
solved using a 4th order compact finite difference method and the radiative energy transfer is
modelled via P1 method. A 3rd order TVD Runge-Kutta integration method is implemented
to represent the solver evolution in time. The computational domain is a cuboid, discretized
on a Cartesian grid, inside the circuit breaker nozzle which includes the arc and excludes the
nozzle walls and the two electrodes. The arc is ignited via an in-house code inside the nozzle.
The results are then mapped to the cuboid and the current is ramped down to zero once
the steady state is reached. To investigate the arc 3D effects, a slight asymmetry is imposed
to the problem configuration by moving the computational domain so the arc axis does not
coincide the line of symmetry of the cuboid. The effect of this displacement is measured
on the arc gaseous medium resistance. Comparing the numerical radial temperature profile
with temperature measurement, it is concluded that although both the WENO scheme and
the 1st order results fall into an acceptable range of accuracy, the WENO method predicts a
more accurate temperature profile. It is observed that the results are more accurate for the
arc core than the arc boundary, due to the absence of the viscous terms who are responsible
for energy diffusion and turbulent mixing in the arc boundary. It is concluded that the Euler
equations are capable of capturing the arc 3D effects. These effects should be considered in
circuit breakers design since they are directly proportional to the medium resistance which
has a strong impact on the circuit breaker efficiency.
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CHAPTER 1 INTRODUCTION

A circuit breaker is a device that cuts off the current when a fault occurs in an AC power
distribution network. To safely perform this task in a high voltage network, the circuit is
opened by separating two mechanically driven electrodes as shown in Fig. 1.1. Because
of the high voltage, the electric current persists and heats the gas until it is ionized and a
plasma channel (the electric arc) forms between the two electrodes. At the natural passage
to current zero (CZ) in an AC network, the arc is cooled, stabilized and extinguished by a
high pressure cold gas (usually SF6) which is blown into the nozzle containing the electrodes.

Figure 1.1 Section of a high voltage circuit breaker

The operation of a Gas Circuit Breaker (GCB) can be divided into three steps [1]:

1. Back heating phase: at sufficiently high current, the radiative heat emitted from the
arc ablates the surrounding nozzle walls which are generally made of polytetrafluo-
roethylene (PTFE). This increases the pressure which causes back-flow to the heating
volume.

2. Out flow phase: the gas from the back flow mixes with the cold gas inside the heating
volume causing a rise in pressure. The gas mixture then flows into the arc zone.

3. Extinction: when the AC current reaches zero, the colder gas is blown over the arc, the
conductance of the gaseous medium starts to decreases as the hot conductive plasma is
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cooled. At CZ (Fig. 1.2), the applied network voltage starts to recover, which is referred
to as Transient Voltage Recovery (TRV) [2]. This voltage applied on a resistance may
form a post-arc, making the gaseous medium conductive, resulting in an extinction
failure. In such a case, the extinction process is performed at the next CZ. After two
failures, the GCB can be destroyed.

Figure 1.2 Voltage and current variations during current cut-off

1.1 Need for Research

HVCBs should be able to interrupt currents in the range of up to 100 kA, in the order of
ten milliseconds. In this context, the detailed design of this device becomes very important.
Circuit breaker manufacturers are investing large resources to keep this development ongoing.

Due to the extreme operating conditions, the experimental investigation of such devices are
very limited. Numerical simulation, on the other hand, has proven capable of predicting the
gas properties at a low cost. This allows useful design parameters to be considered in the
development of circuit breakers. Despite the numerous explorations conducted in this area,
the arc behaviour needs to be investigated more thoroughly in a 3D context at the time of
CZ since failure or success of the current cut happens at the vicinity of this point.
An in-house code (MC3) has been developed at École Polytechnique de Montréal by Com-
putational Engineering Research Group (GRMIAO) with a specific application to design
HVCBs. This software is capable of grid generation, simulation and post-processing (Fig.
1.3 and Fig. 1.4). The solver uses FVM to solve 2D axisymmetric Euler equations with 1st

order accuracy. The solution includes the dominant physical phenomena for arc simulation
i.e. Ohmic heating, Lorentz force and radiation. Additional transport equations are also
employed to account for multi-species gas flow.
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(a) Circuit closed (electrodes attached)

(b) Circuit open (electrodes detached)

Figure 1.3 MC3 dynamic grid generation

(a) Temperature

(b) Pressure

Figure 1.4 Arc-flow properties for a circuit breaker obtained from MC3

Although for high-current flows an axisymmetric model, as in MC3, responds well to the arc
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simulation requirements, a 3D approach is needed to investigate the arc details when the
current approaches zero. In this phase, the accurate prediction of arc temperature and the
medium resistance are vital for an efficient circuit breaker design.
This project will contribute to the extension of MC3 capabilities towards an accurate arc ex-
tinction simulation. The current research exploits high order schemes for solving the gas flow
equations and for calculating the energy source terms. With many complex physical phenom-
ena involved in an arc-flow, a high order simulation contributes to a better understanding of
the flow and the arc properties.

1.2 Thesis Objectives

At CZ, the resistance of the gaseous medium is highly dependent on the gas properties (i.e
density, temperature and pressure). Under the condition of low resistance during CZ, the
high electric potential may cause the occurrence of post-arcs as the medium may become
conductive again, leading to a failure for the circuit breaker to cut the current. Therefore,
an accurate gas property calculation leads to a better prediction of the arc resistance needed
for the evaluation of circuit breaker failure.

A 3D simulation able to predict the gas properties with sufficient accuracy will contribute
to the design of the next generation of circuit breakers. The general goal of this thesis is
to develop and validate a methodology for the numerical investigation of a 3D arc. The
objectives to accomplish this goal are:

1. Development and verification of a code to predict the gas properties of arc plasma by
solving the flow and the source term equations. Using high order schemes, this code
will be able to handle 3D arc simulations with coarser grids as compared to 1st order
schemes. This is an enabling tool to investigate and understand arc behaviour.

2. Quantification of the 3D features’ impact on important arc characteristics e.g. resis-
tance, voltage, etc. This will be achieved by applying the code to a specific problem
with known initial conditions, boundary conditions and measurements. Once the code
is validated by comparing the results, further measurements will be carried out.

3. Improvement of MC3 for 3D arc simulations near CZ by coupling it with the tool
developed in this research. Being 2D axisymmetric, MC3 can be used to initialize the
arc. The results of the arc initialization can then be mapped to the 3D code where the
current can be ramped down to CZ and 3D effect can be investigated.

Using high order accuracy for solving the flow and source terms equations, this research
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gives an insight into the complex phenomena and their influence during CZ while paving
the way for further developments in MC3.

1.3 Thesis Structure

In Chapter 2, the different phenomena involved in arc simulation are presented as well as their
equations. Each phenomenon is accompanied by literature review for a better understanding
of available models and numerical schemes. Chapter 3 addresses the general methodology
for arc simulation while elaborating on the used models and numerical schemes. Chapter 4
starts with test cases to verify the accuracy of each component of arc simulation, separately,
and ends with a test case which integrates all components. Chapter 5 is dedicated to results
validation. In this chapter, the arc temperature profile obtained from numerical schemes is
compared to the experiment. Once the the simulation is validated, contours and curves of
the flow (temperature, pressure, density, Mach and velocity) are discussed at CZ. The arc’s
global parameters such as resistance and voltage are also presented. This chapter is finalized
with an investigation on arc’s 3D effects. Chapter 6 discusses the conclusions, limitations
and the future research.
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CHAPTER 2 Arc literature review and governing equations

A plasma is a mixture of electrons, ions and neutral particles (Fig. 2.1) such that the
collection is electrically neutral [3]. Due to the presence of free electrons, plasma is electrically
conductive. Ions and neutrals are categorized as heavy particles since their masses are much
higher than electrons (the mass ratio is 1840 in Helium). Such a mixture is frequently referred
to as the fourth state of matter since 99% of the known universe is composed of plasma [4].

Figure 2.1 Schematic of plasma containing electrons, ions and neutrals

2.1 Thermal plasmas and LTE (Local Thermodynamic Equilibrium) state

Plasmas are characterized fundamentally by their temperature, density and magnetic field.
Other properties can be obtained from these fundamental parameters [5]. Fig. 2.2 shows
plasma classification of various occurrences of plasmas.

In order to describe the macroscopic properties of a gas, a distribution function is introduced
since the gas molecules do not travel at the same speed. The Maxwell-Boltzmann function
defines the most probable velocity distribution in a gas at a certain temperature. This
distribution function which forms the basis of the gas kinetic theory can be expressed as
follows.

f(v) = 4√
π

(2kT
m

) 3
2v2 exp(−mv

2

2kT ) (2.1)

where m is the mass of the particle, v is the particle velocity, T represents absolute temper-
ature and k is the Boltzmann constant. The distribution function f(v) is shown in Fig. 2.3
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Figure 2.2 Plasma classification based on density and temperature [4]

which reaches the maximum (the most probable velocity) at vm = (2kT
m

) 1
2 .

Figure 2.3 Maxwell-Boltzmann (M-B) distribution of velocities in a gas at temperature T

From this distribution, the average velocity can be calculated as

v̄ =
∫ ∞

0
vf(v)dv = (8kT

πm
) 1

2 (2.2)

and the mean-square velocity is given by

v̄2 =
∫ ∞

0
v2f(v)dv = 3kT

m
(2.3)
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A plasma that follows the M-B distribution is referred to as a thermal plasma. In such a
plasma, the mixture of ions, electrons and neutrals can be described by a unique temperature.
As shown in Eq. 2.4, this temperature is defined by the average kinetic energy of particles
obtained from Eq. 2.3.

1
2mv̄

2 = 3
2kT (2.4)

Thermal plasmas are by definition in or close to LTE. This state depends strongly on the
frequency of the colliding particles and their energy exchange during a collision. The exchange
of kinetic energy between two particles with masses m and m′ is given by

∆Ekinetic = 2mm′
(m+m′)2 (2.5)

For a collision between particles of the same mass the energy exchange is simply ∆Ekinetic = 1
2 .

In a collision-dominated (hot) plasma any particle that deviates from the M-B distribution is
collided by many particles. Thus, any distortion from the M-B distribution will be quickly (by
less than 10 collisions) damped [4]. In this situation, the plasma will be in kinetic equilibrium
which is one of the basic requirements of LTE existence. In such an equilibrium the heavy
particles’ temperature approaches the electron temperature (Te = Th) hence the plasma is
said to be in kinetic equilibrium. The temperature of thermal (or LTE, equilibrium, hot)
plasmas is usually around 104 K and their electron densities range from 1021 to 1026 m−3.
Typically, the pressure in LTE plasmas exceed 10 kPa. As shown in Fig. 2.4, for pressures
less than 10 kPa the electron and heavy particle temperature curves diverge (Te > Th).

Figure 2.4 Behavior of electron temperature Te and heavy particle temperature Th in an arc
plasma [4]
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2.1.1 LTE in Circuit Breakers

Generally, the plasma produced inside a circuit breaker can be treated as a fluid and described
by one temperature according to LTE assumption [6]. However, all the arc zone can not be
assumed to be in LTE. Thus, departures from LTE have been addressed in researches such
as [7] where the plasma is simulated using a two-temperature model close to electrodes (sheath
region shown in Fig. 2.5).

Figure 2.5 Sheath region near electrodes in arc simulation [7]

It is worth mentioning that due to the variable gas properties such as specific heat (shown in
Fig. 2.6) in constant pressure and volume (CV , CP ) the equation of state can be used locally
(not globally). The gas properties are hence obtained from tabulated data as functions of
temperature, pressure, density and component ratio.

Figure 2.6 Variation of specific heat of SF6 with temperature at 0.1 bar [8]
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2.2 Governing Equations

Supposing to be in LTE, the plasma flow can be treated as a fluid. The macroscopic properties
of the fluid such as pressure, velocity, density and temperature are obtained by the mass,
momentum and energy conservation laws. Hence, the governing equations of an arc inside
a circuit breaker can be stated as a general advection-diffusion equation with inclusion of
source terms as shown in Eq. 2.6.

∂(ρφ)
∂t

+∇.(ρφ−→V )−∇.(Γφ∇φ) = Sφ (2.6)

where φ is the dependent variable, ρ is the gas density, Γ is the diffusion coefficient and S
is the source term. The physical phenomena involved in a GCB are numerous and complex
including the flow of a compressible gas from subsonic to supersonic speeds [14], ablation
(wall evaporation), radiation, ohmic heating and Lorentz force (caused by magnetic field).
Fig. 2.7 shows a schematic overview of physical phenomena included in an electric arc.

Figure 2.7 Physical phenomena included in arc simulation

2.2.1 Ohmic Heating (Joule’s Effect)

As a current passes through a resistance, it produces heat which is known as Joule or Ohmic
heating. Because of the high current in the circuit breaker, Joule heating plays a dominant
role in the energy balance and should be considered as a source term in the energy equation.
By Ohm’s law in a conducting medium, the electric current density is
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J = σE (2.7)

where σ = σ(P, T ) is the electrical conductivity of the fluid and E is the electrical field. From
E = −∇φ and considering the conservation of electric current, the following relation can be
derived,

∇.(σ∇φ) = 0. (2.8)

Solving Eq. 2.8 for φ, the electric field can be calculated by taking the gradient of electric
potential. Finally, according to Joule’s law, ohmic heating will be

Sohm = σE2 (2.9)

2.2.2 Electromagnetic Field (Lorentz Force)

At high currents, the Lorentz force plays an important role in arc behaviour. This is par-
ticularly important near the electrodes where the current density is high [9]. To evaluate
the effect of the magnetic field on the flow properties such as pressure and temperature,
Maxwell’s equations are coupled to the Navier-Stokes equations resulting in magnetohydro-
dynamics (MHD). The Lorentz force is the main source term for the momentum equation
computed as follows

FLORENTZ = −→J ×−→B (2.10)

where −→J is the current density and −→B is the magnetic field. The magnetic field is computed
using simplified Maxwell’s Eqs. [9]

∇.
−→
B = 0 (2.11)

∇.
−→
J = 0 (2.12)

∇×
−→
E = 0 (2.13)

∇×
−→
H = 0 (2.14)

where −→H represents the self-induced magnetic field defined as follows

−→
B = µ0

−→
H (2.15)
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with µ0 being the magnetic permeability of empty space.

Taking the curl of Eq. 2.14, one may write

∇(∇.−→H )−∇2−→H = ∇×−→H (2.16)

from which the magnetic field −→H can be obtained. It is important to mention that in this
research, the effect of magnetic field is neglected since for the range of currents (<1000 A)
used in the simulations, the Lorentz force can be neglected.

2.2.3 Radiation

Radiative heat transfer is one of the dominant energy transport mechanisms in high temper-
ature plasmas, and as such it is the most important cooling mechanism of arc and the reason
of nozzle wall ablation [10]. The available methods to include the radiative heat transfer in
circuit breaker simulations are Net Emission Coefficient (NEC), P1 and Discrete Ordinates
Method (DOM).

Net Emission Coefficient (NEC) Model

NEC is one of the earliest and yet the simplest model [11]. It is basically obtained by replacing
the arc by an isothermal cylinder of radius R for which the net emission coefficient εN at the
center can be found as

εN =
∫ ∞

0
BvKvexp(−KvR)dv (2.17)

where Bv is the black body radiation, Kv is the absorption coefficient and R is the isothermal
cylinder radius. In this equation, light scattering is neglected and the LTE is assumed for
the gas [12]. Investigations have been carried out to calculate NEC and its dependence on
pressure, temperature and arc radius [13]. It has been found that this semi-empirical model
is adequate for the radiative heat transfer in the core of the arc. However, it is not capable
of giving an accurate temperature profile at the edge of the arc [12]. This is due to the fact
that it is based on emission only and the absorption needs to be defined empirically [10].
Due to the low cost and more accurate results in the arc center, this model has been widely
used [14] while improved methods have been developed for temperature profiles away from
the center of the arc.
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P1 Model

The P1 model is derived from the conservation of the radiative energy along a path of
direction ŝ (equation 2.18) [16]

dIv
ds

= ∇Iv|ŝ.ŝ = KvIbv − βvIv + σsv
4π

∫
4π
Iv(ŝi)Φ(ŝi, ŝ)dΩi (2.18)

where Iv is the spectral radiative intensity in a direction ŝ at a frequency v, kv is the coefficient
of absorption and σsv is the coefficient of scattering. βv = Kv+σsv is known as the extinction
coefficient and Φ(ŝi, ŝ) is the phase function [17]. Following some simplifications [18] Eq. 2.18
becomes

dIv
ds

= ∇Iv|ŝ.ŝ = Kv(Ibv − Iv) (2.19)

In this model, it is assumed that the radiative intensity can be expressed as a Fourier series
as,

Iv(r, ŝ) =
∞∑
l=0

l∑
m=−l

Iml (r)Y m
l (ŝ). (2.20)

The two variables Iml (r) and Y m
l (ŝ) correspond to coordinates and direction, respectively. The

model considers the first term of this Fourier series and it can be shown that the intensity
can be related to Gv, the incident radiation as follows [16]

∇.( 1
Kv

∇Gv) = 3Kv(Gv − 4πIbv). (2.21)

While the P1 model provides more detailed information about radiative heat transfer than
the NEC model the most prominent shortcomings can be stated as follows:

1. Lack of realistic boundary conditions

2. Numerical instabilities caused by assumptions and approximation

3. Inherent diffusive behaviour

These drawbacks finally lead to non-physical results in some situations in 2D geometries [16].

Discrete Ordinates Method (DOM)

In this model, the radiative transfer equation is discretized spatially and the integral over the
directions is approximated by a sum over a finite number of directions (ordinates) sweeping
the total solid angle of 4π. This model is computationally expensive since the equations are
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solved for several directions and different frequency bands [10]. Although DOM is considered
to have great accuracy [19] some serious drawbacks prevent its use for the entire domain of arc.
The main disadvantage being that it does not guarantee the conservation of radiant energy. It
also suffers from false scattering caused by spatial discretization and ray effect [20]. Currently,
a combination of P1 and DOM models is recommended for circuit breaker simulations [10] i.e.
P1 is applied to the core of the arc while DOM is used elsewhere. In this way the efficiency
of P1 and accuracy of DOM can be exploited at the same time.

2.3 Ablation

The rate of mass ablation is the evaporation of the nozzle wall (PTFE) caused by the inci-
dental radiative heat transfer. It is important to consider ablation in arc simulation since
it contributes to pressure build up in the heating volume [21]. Ablation is modeled in the
following manner

ṁ = qsurface
hv + hPTFE

(2.22)

where qsurface is the radiative heat transfer emitted to the nozzle walls, hPTFE is the enthalpy
necessary for PTFE to produce gaseous plasma at 1000 K, and hv is the enthalpy to increase
the plasma temperature from 1000 to 3500 K. The PTFE vapor is mixed with the SF6 flow
inside the circuit breaker and forms a multi-species flow. With the change of nozzle wall
geometry its efficiency decreases. That is why efforts have been made to calculate the change
in nozzle geometry and include it in circuit breaker simulation [22].

2.4 Turbulence

Fang et al. [23] investigated the arc extinction considering a laminar flow. The predicted arc
temperature profile was more accurate at the arc core than the arc boundaries. It was inferred
that the absence of turbulence was the reason of the simulation inaccuracy in arc boundaries.
Furthermore, this research led to another article in which the effect of turbulence was included
in the simulation [25]. The final conclusion was that arc boundaries can be predicted more
accurately when turbulence is accounted for in the simulations.

The gas inside a circuit breaker undergoes a large acceleration due to the rapid expansion
caused by the ohmic heating. The mixture of a hot plasma with a cold gas causes high tem-
perature gradients. Large acceleration, high temperature gradients together with the effect
of Lorentz force make the flow unstable and turbulent [19]. As an energy transfer mecha-
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nism, turbulence is considered to impact flow characteristics during the following phases of
HVCBs [1]:

1. In the back heating phase, turbulent mixing of hot gas from the arc zone and the cold
gas takes place in the heating volume.

2. In the out-flow phase, high pressure gas flows into the arc zone to cool the arc. Turbulent
mixing plays a significant role in mixing hot plasma and the cold gas. To account for the
arc physics, particularly at the arc boundaries, a turbulence model should be coupled
with the numerical simulation.

3. After CZ, the dielectric withstand of the gas becomes an important variable which is
determined by flow parameters dependent on turbulence [1].

Delalondre et al. [27] conducted a 2D axisymmetric numerical simulation to investigate arc
turbulence. Three turbulence models were applied to a 5000 A, 20 cm long arc in a 1 bar
air. Assuming the presence of both laminar and turbulent regimes, the standard K − ε, low
Reynolds K − ε and the Reynolds stress models were tested. Comparing the mean tempera-
ture profiles, they noticed that the maximum predicted temperature is highly dependent on
the turbulence model, i.e 50000 K for the Reynolds Stress model, 31000 K for the standard
K − ε model and 46000 K for the low Reynolds K − ε model. Furthermore, the arc radius
was also predicted differently when different models were applied. The turbulence rate curves
suggested a higher turbulence rate in the arc fringe where it is exposed to colder gas than in
the core of the plasma.

In addition, an LES model was applied to a 1000 A transient arc cooled by SF6 with back
pressure of 5 bars [27]. The methodology of this 3D simulation consists in choosing a box
as a computational domain to exclude the electrodes and include a part of the arc. As a
result, turbulent energy transport is plotted radially across the arc and compared to ohmic
heating and radiative heat transfer. It is suggested that the ohmic and radiative energies are
stronger sources to drive the arc compared to turbulent transport energy.

High viscosity variation, various length and time scales and fast transfer of energy source in
terms of short circuits have made turbulence modelling a challenge in HVCBs [24].

The objectives of the present research will be better accomplished if turbulence is not con-
sidered in the simulation. The reason can be elaborated in the three following categories:

1. Focus Divergence
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The application of different turbulence models in arc simulation remains an issue which
needs more investigation. Although some issues are clarified about turbulence (e.g.
pressure inside the heating volume does not depend on turbulence and could be con-
sidered laminar) for the arc zone turbulence modelling, specially near CZ, there is "no
consensus" [10]. The literature is dominated by the K-epsilon family models while this
model is not able to predict the arc-flow interaction accurately. This model assumes
a fully developed flow in its derivation [27] while the rapid interactions in the vicinity
of current-zero, prevent the flow to become fully developed. Another drawback of this
model is that there are four constants involved in the k and ε transport equations to
be determined with the help of experimental data [34] which are absent for the internal
configuration found in HVCB geometries. This model does not yield unique results
when applied to arcs with different currents [26]. Some works [10], suggest LES as an
accurate and suitable turbulence model in which the number of adjustable constants
is significantly reduced. A drawback of LES is the large computational cost since for a
high accuracy, a finer mesh is essentially needed [33].

2. Arc Core VS Arc Boundary

It is inferred from the literature that the turbulent mixing is a dominant transport
mechanism in the arc boundary while the arc core is more influenced by convective
(inviscid) terms. With experimental data and numerical simulations available for arc
core temperature, the numerical simulation of this research can be validated for the arc
core even if the diffusion-dominated part of the arc is neglected.

3. Simplicity

The objective of this thesis is investigating the CZ in a 3D context. This investigation
can be established with less complexities if Euler equations are used. The methodology,
as explained in Section 3, is to apply 1st and 5th order methods to simulate the arc
and compare the results. Including the viscous terms requires a 1st and a 5th order
method of calculation to comply with the global order of accuracy. This adds a drastic
complication to the arc simulation. While the simulation methodology is simplified by
avoiding the walls as well as using Cartesian mesh, using Euler equations instead of
Navier-Stokes equations adds another level of simplicity to this research.

2.5 Current-Zero

One of the earliest investigations on the arc phenomena were carried out by Frind et al. [35].
In this experiment, an arc was initialized with a 2000A current and was decreased toward
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zero at a linear rate. An important parameter studied was the Rate of the Rise of Recovery
Voltage (RRRV) around CZ. The results were compared for air and SF6 for different pressures
and current decay rates. Hermann et al. [36] carried out an experimental study for a 2000A
peak current arc cooled by nitrogen. This included pressure measurements on the wall as
well as axial and radial measurements while the current is held steady at the peak. The
current was ramped down afterwards, with a constant decay rate. The unsteady experiment
is accompanied by axial temperature decay measured in the vicinity of CZ. Both steady and
unsteady measurements are compared to calculations where relatively good agreement was
observed. This work also provides some detailed experimental information on the laminar
and turbulent part of the arc. Using fast scanning technique, the intensity distribution of
arc is captured providing information about the arc structure. It can be inferred from this
research that during CZ, there are instabilities affecting the electric arc. The radius of the arc
is measured from 0.5 to 1mm while the eddies which trigger the instabilities are measured to
be 2mm to 4mm. It is concluded that the eddies are formed as result of cold gas mixing with
hot plasma. The experiment also shows that at high steady current the effect of turbulence is
negligible compared to strong convective energy transfer. Images taken from the arc around
CZ in different axial positions show that the turbulent unstable part of the non-axisymmetric
arc start close to the nozzle throat. In an investigation on the application of CFD in arc
simulation [10], it is pointed out that turbulent structures are 3D according to a superposition
of shadowgraph and light emission image. Accordingly, for proper treatment of geometries
with 3D arcs as in the case of rotating arc circuit breakers, 3D simulation becomes a necessity.
Fang et al. [25] carried out a 2D axisymmetric simulation for SF6 gas-blast arc inside a nozzle
during current-zero. The PML turbulence model was adopted for simplicity and the equation
constant was obtained by trial and error by matching numerical and experimental results.
Generalization of the results to other geometries was recommended “to be done cautiously”.

In 2012, the fluid-plasma interaction in GCBs was investigated using higher order solu-
tion [37]. In this 3D simulation a high order LES is implemented by solving an additional
transport equation with the dynamic Smagorinsky model. Using this method, the transfer of
information between the sub grid and large scale eddies is improved. Another feature of this
simulation is high order (5th) spatial discretization by using WENO (weighted essentially-non
oscillatory) scheme. This is done since LES is considered very sensitive to the spatial dis-
cretization and numerical as well as physical diffusion would occur using low order methods.
Despite the detailed investigation provided on the interaction of fluid-plasma, no validation
was provided to ensure the accuracy of this simulation.
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2.6 Literature Review Conclusion

According to the critical review, certain aspects of arc-flow such as CZ, arc departure from
2D axisymmetric structure and the effect of 3D effects on arc radius and gaseous medium
resistance still needs further elaboration.

CZ Investigation: Despite the numerous studies concerning nearly all phases of the GCBs
operation, few investigations has been carried out on the parameters which can influence the
arc extinction. When the current is at the peak, the arc is relatively stable and most of the
energy transfer is done through the convection mechanism. At CZ, the effect of instabilities
on critical parameters such as RRRV becomes crucial considering that extinction failure
becomes possible at this phase. The role of other source terms such as radiation could also
be in question.

3D simulation: Despite a few 3D arc simulations, the literature is dominated by 2D-
axisymmetric numerical simulations. The reason is simply the fact that arc can be considered
as a cylinder. While this assumption is true for high current (1000A) and steady arcs,
3D effects start to emerge as the current decreases to CZ. That is why 3D simulation is
recommended and required for a better understanding of arc physics [10].

High Order Simulation: Almost all of the arc simulations are carried out with low order
schemes for spatial discretization, temporal discretization, numerical integration and bound-
ary condition implementation. Higher order solutions give better resolution of the details for
complex flow structures compared to a low order simulation on the same grid, because in
high order simulations, a wider spectrum of space and time scales are taken into account.

A methodology, as explained in Section 3, is adopted to fulfil these requirements.
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CHAPTER 3 Methodology

It has been chosen to carry out the arc simulation inside the Aachen nozzle which was
explored experimentally by Leseberg [53]. Sufficient information about the geometry, nozzle
total pressure and more importantly measured temperature profile makes the Aachen nozzle
an informative case for arc numerical simulation. In addition, other numerical simulations
are available for arcs formed in this nozzle [23, 25]. To carry out the simulation, a set of 3D
Euler equations are solved where a part of the Aachen nozzle is discretized with a structured
Cartesian mesh. This methodology is detailed in the following sections.

3.1 Initialization

For the sake of simplicity this research addresses only the arc and the nozzle walls are not
included. This is schematically shown in Fig. 3.1.

Figure 3.1 Computational domain for the 3D simulation

Such an approach makes the schemes easier to implement while rendering the simulation less
computationally expensive. The simplicity of such an approach can be explained as follows:

1. The walls are not considered therefore, ablation equation can be excluded from the
simulation.

2. With a smaller computational domain, the grid can be refined on the arc zone which
keeps the focus on the arc and provides more information on the arc behaviour.
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3. The rectangular computational domain can be discretized to a structured Cartesian
mesh. Solving the arc governing equations on a Cartesian mesh is less complicated
while being less computationally expensive.

4. The research team is currently working on an extension of the present work to include
wall boundaries using an Immersed Boundary Method (IBM). The present methodology
paves the way for such a development.

For this methodology to be carried out, the arc is ignited and stabilized using MC3 and the
results are used to initialize the solution in the 3D code as follows:

1. Using MC3, the arc is ignited in the nozzle between the two electrodes and kept steady
at a specified current (1000A in this research).

2. The results are then mapped from the MC3 2D axisymmetric triangular mesh, to the
3D, structured Cartesian mesh to be used as an initial condition. This is shown in Fig.
3.2.

3. The arc is kept at the specified current (1000A) in the 3D code until the steady state
is reached. At this current, the arc is fully axisymmetric.

4. Once steady, the arc is ramped down in the 3D code to CZ.

3.2 SF6 Flow

The SF6 flow is simulated by solving the following system of Euler equations.

∂U

∂t
+ ∂Fx

∂x
+ ∂Gy

∂y
+ ∂Hz

∂z
= S (3.1)

with

U = (ρ, ρu, ρv, ρw, ρET )t,

Fx = (ρu, ρu2 + P, ρuv, ρuw, (ρET + P )u)t,

Gy = (ρv, ρuv, ρv2 + P, ρvw, (ρET + P )v)t,

Hz = (ρw, ρuw, ρvw, ρw2 + P, (ρET + P )w)t,

(3.2)

where u, v and w are the velocity components, P represents pressure, ρ density and ET the
total energy. The specific internal energy e can be obtained from
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Figure 3.2 Results (pressure contours) from MC3 (2D) are used as the initial conditions for
the 3D code

e = E − 1
2(u2 + v2 + w2). (3.3)

With SF6 being in a real gas state, the system of Eqs. 3.1 cannot be completed by the
equation of state P = ρRT . That is why the gas properties (R, e, P , T , ρ) are obtained from
tabulated values.

As shown in Fig. 3.1, the computational domain is a cuboid (box) inside the nozzle whose
position is chosen to be away from the zone of re-circulation of the flow as shown in Fig. 3.3.

The boundary conditions for the flow comprise one inlet and one outlet. For the other
surrounding boundaries, the face is an inlet or an outlet using the following rule

B.C.

Inlet
−→
V .−→n ≤ 0

Outlet
−→
V .−→n ≥ 0

where −→n is the face normal vector.



22

Figure 3.3 The box position and the type of boundary conditions for SF6 flow

Discretizing the equations using a finite volume scheme, it is obtained

Un+1
(i) = Un

(i) −∆t
(

1
∆xi

[F n
(i+ 1

2 ,j,k) − F
n
(i− 1

2 ,j,k)]−
1

∆yj
[Gn

(i,j+ 1
2 ,k) −G

n
(i,j− 1

2 ,k)]

− 1
∆zk

[Hn
(i,j,k+ 1

2 ) −H
n
(i,j,k− 1

2 )]
) (3.4)

with F,G,H defined in Eq. 3.2.

3.2.1 Roe’s Scheme

The fluxes in Eq. 3.4 are calculated using Roe’s scheme [39] which has been used extensively
in the numerical flux calculation. The objective of Roe’s scheme is to solve Eq. 3.1 at the
interface of the cells based on the left (UL) and right (UR) values as shown in Fig. 3.4.
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Figure 3.4 Left and right cell values used by Roe’s scheme to determine the flux passing the
interface

Roe’s scheme proposes a Jacobian matrix (Ã) to map U to F such that (mapping U to G
and H follows a symmetry)

FR − FL = Ã(UR − UL) (3.5)

where
Ã = A(ũ, ṽ, w̃, H̃) (3.6)

and the Roe average operator defined as

f̃(Φ) =
√
ρLΦL +√ρRΦR√
ρL +√ρR

, Φ = ũ, ṽ, w̃, H̃ (3.7)

ρ̃ = √
ρLρR. (3.8)

Ã = Q̃D̃Q̃−1, (3.9)

where D̃ = diag(λ1, λ2, λ3, λ4, ), with the eigenvalues defined as

λ1 = Ṽ − c̃, λ2 = Ṽ , λ3 = Ṽ + c̃ λ4 = Ṽ . (3.10)
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The corresponding eigenvectors can be then found by

e1 = (ũ− c̃, ṽ − c̃, w̃ − c̃, H̃ − Ṽ c̃)T , (3.11)

e2 = (ũ, ṽ, w̃, 1
2 |Ṽ

2|)T , (3.12)

e3 = (ũ+ c̃, ṽ + c̃, w̃ + c̃, H̃ + Ṽ c̃)T , (3.13)

e4 = (∆ũ−∆Ṽ ,∆ṽ −∆Ṽ ,∆w̃ −∆Ṽ , ũ∆u+ ṽ∆v + w̃∆w − Ṽ∆V )T , (3.14)

(3.15)

with ˜|V |2 = ũ2 + ṽ2 + w̃2 and c2 = (γ − 1)[H − 1
2q

2] and H the total enthalpy. These
eigenvectors have to satisfy the following equation,

∆U =
4∑

k=1
αk ek, (3.16)

where the αk can be found from

α1 = 1
2c̃2 (∆P − ρ̃c̃∆V ), (3.17)

α2 = ∆ρ− ∆P
c̃2 , (3.18)

α3 = 1
2c̃2 (∆P + ρ̃c̃∆V ), (3.19)

α4 = ρ̃. (3.20)

Finally, the components of the flux vector will be obtained as

∆F =
∑

ek λk αk. (3.21)

As shown in [52], |∆F3| can be computed as follows to account for the real gas effect.

|∆F3| = (H̃ + Ṽ c̃)(|Ṽ + c̃|)( 1
2c̃2 (∆P + ρ̃c̃∆u)) (3.22)

+ (H̃ − Ṽ c̃)(|Ṽ − c̃|)( 1
2c̃2 (∆P − ρ̃c̃∆V )) + |X|
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where

X = (ρRVRHR)− (ρLVLHL) (3.23)

− (H̃ + Ṽ c̃)(Ṽ + c̃)( 1
2c̃2 (∆P + ρ̃c̃∆V ))

− (H̃ − Ṽ c̃)(Ṽ − c̃)( 1
2c̃2 (∆P − ρ̃c̃∆V )),

and
|X| = X · sign(Ṽ ), (3.24)

3.3 Ohmic Source term

To calculate the Ohmic heating, the electric potential are obtained from ∇.(σ∇φ) = 0
presented in the following

∇σ∇φ+ σ∇2 = 0 (3.25)

or
σxφx + σyφy + σzφz + σ(φxx + φyy + φzz) = 0. (3.26)

Equation 3.26 is an elliptic PDE with variable coefficients. To solve this equation, a fourth
order compact finite difference method [38] is implemented (φ is stored on the vertices). This
method is capable of keeping the order of accuracy for the wide range of σ appearing in
the arc. Easier implementation of Dirichlet boundary conditions is an advantage of compact
methods. A 19-points stencil is considered around each vertex as shown in Fig. 3.5. Based
on such a discretization the following expression is obtained

18∑
l=0

clφl = F0 (3.27)

where the coefficients c0 − c18 and F0 are presented in APPENDIX A.

To solve Eq. 3.25, potentials on the anode and the cathode (φa, φc) are imposed as shown
in Fig. 3.6.

It is noted that at the initial time φa and φc are not known when the solution initiates. To
solve this problem it is assumed that

φa = 1

φc = 0.
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Figure 3.5 19 point stencil for the 4th order compact finite difference method

Considering e = −∇φ, the electric field E can be obtained by

E = V e

where V is the potential difference between the electrodes and needs to be determined. From
the total power relation,

IV =
∫

Ω
σ|E|2dv = V 2

∫
Ω
σ|e|2dv (3.28)

From Eq. 3.28, the potential difference is given by

V = I∫
Ω σ|e|2dv (3.29)

where I is the arc current. Finally, the Ohmic source term can be calculated according the
Joule’s law

Sohm = σ(E.E) = σ|E|2 (3.30)
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Figure 3.6 Boundary Conditions for calculating the Ohmic source term

3.4 Radiative Source Term

For calculating the radiative source term, the P1 method is used since it has the sufficient
accuracy with less computational cost as compared to the DOM. For this reason, Eq. 2.21
(presented again for simplicity) should be solved to obtain the incident radiation for each
band (Gv).

∇.( 1
Kv

∇Gv) = 3Kv(Gv − 4πIbv). (3.31)

To solve Eq. 2.21, a second order finite difference discretization is implemented. The com-
plex nature of this equation such as the linear term (Gv) and high gradients of absorption
coefficients, prevents the higher order compact methods to converge.

Once the incident radiation is obtained, the next step is to calculate the radiative heat
transfer

SRad =
Nband∑
v=1

Kv(4πIvl −Gl). (3.32)
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The box is chosen so that it spans sufficiently far from the arc core. Therefore, zero incident
radiation (Gv = 0) can be assumed for the boundaries, that lie in the cold flow. For the other
boundaries, a Neumann condition is considered as shown in Fig. 3.7.

Figure 3.7 Boundary conditions for incident radiation determination

3.5 Linear System of Equation Solver

Solving for radiative and Ohmic energy source terms, a system of linear equations in the form
of Ax = b is obtained and should be solved. A is the coefficient matrix which is a very sparse
matrix whose elements depend on the gas properties. While different methods are available
to solve this system of equations, the choice of solver is very important since it must have
the following characteristics:

1. Fast: the solver is applied to large matrices in case of a fine mesh.
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2. Stabilized: based on the gas properties the coefficient matrix A contains a disparate
range of numbers for calculating Ohmic and radiative source terms. A non-stabilized
solver will diverge easily trying to handle such a highly irregular coefficient matrix.

3. Parallelizable: considering a fine mesh the solver should run on multi-core CPUs to
avoid a very long computational time.

Iterative linear solvers have certain advantages over direct solvers when it comes to large
sparse systems. Though in direct methods the round off error is absent, iterative methods
are faster with a controlled order of accuracy. Within the available iterative solvers the
Conjugate Gradient (CG) method is more popular due to the fast converging properties
compared to Gauss Seidel and Jacobi methods. However it sometimes suffers from irregular
convergence problem [40]. This problem is fixed by Stabilized Bi Conjugate Gradient method
developed by H. A. van der Vorst [40] . This method is more efficient and converges faster and
more smoothly than the other variations of CG method i.e. Biconjugate Gradient method
and Conjugate Gradient Squared method. Iterative methods are usually used with pre-
conditioners for a faster convergence. Jacobi (diagonal) pre-conditioner has been chosen for
this simulation since it is simple to implement and compliant with parallel processing.

3.6 WENO Scheme

In order to increase the fidelity of the simulation, use has been made of WENO. This method
is a variation of ENO (Essentially non-Oscillatory) schemes family. It is assumed that com-
plex arc phenomena can be better accounted for when there is a global high order accuracy
scheme for the cold flow, the source terms and time integration.

3.6.1 Idea

Traditional high order schemes use fixed stencils. For example for 3rd order of accuracy for
cell i, information from the adjacent cells (cell i− 1 and i+ 1 in case of a central difference)
should be also used. The more cells are included in the stencil, the higher the order of
accuracy will be. Such traditional methods are necessarily oscillatory near discontinuities.
In addition, refined mesh can not eliminate the oscillations.

ENO schemes were introduced by Harten, Engquist, Osher and Chakravarthy [42] for con-
vection dominated, hyperbolic equations. Instead of choosing a fixed stencil, ENO schemes
choose different stencils based on the calculated smoothness. These schemes have proved
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efficient and accurate when applied to cases in which both discontinuous (shock) and smooth
flow structures are present.

The WENO scheme was first presented by Liu, Osher and Chan [43]. They suggested a
convex combination of all stencils instead of choosing just one. This was further improved
by Jiang and Shu for high order finite difference schemes [44]. They implemented fifth order
WENO for several applications including multidimensional calculations. WENO was further
investigated for finite volume and finite difference schemes by Shu [41].

The initial WENO schemes were developed for a uniform mesh, and extended to non-uniform
mesh [46] and unstructured mesh [47] [48]. WENO has shown to be more efficient, faster and
more accurate than ENO schemes for the same stencils [48].

3.6.2 Implementation

The WENO scheme actually solves a reconstruction problem. Given a piecewise smooth
function u(x) for cells Ii = [xi− 1

2
, xi+ 1

2
], the cell average can be defined as

ui = 1
∆xi

∫ x
i+ 1

2

x
i− 1

2

u(x)dx. (3.33)

With cells sizes ∆xi, an approximation to the function u(x) can be obtained at the desired
location e.g. cell boundary xi+ 1

2
as described in Fig. 3.8.

Figure 3.8 Definition of Reconstruction Problem

Considering the stencil comprising ui−1, ui and ui+1 a second order polynomial p(x) can be
obtained as follows

1
∆xi−1

∫ x
i− 1

2

x
i− 3

2

p(x)dx = ui−1 (3.34)
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1
∆xi

∫ x
i+ 1

2

x
i− 1

2

p(x)dx = ui (3.35)

1
∆xi+1

∫ x
i+ 3

2

x
i+ 1

2

p(x)dx = ui+1 (3.36)

The polynomial p(x) does not need to be determined but its value at the desired point xi+ 1
2

is of interest which yields

Ui+ 1
2

= p(xi+ 1
2
) = −1

6ui−1 + 5
6ui + 1

3ui+1. (3.37)

Equation 3.37 is a third order approximation of p(x) evaluated at xi+ 1
2
. Referring to Fig.

3.8, three stencils are conceivable for the five neighbour cells as shown in Fig. 3.9.

Figure 3.9 Three different stencils within the big (5 cells) stencil

Following the same procedure, the value at xi+ 1
2
can be approximated according to each

stencil (S0, S1 and S2) given by the following expressions,

U0
i+ 1

2
= 1

3ui−2 −
7
6ui−1 + 11

6 ui, (3.38)

U1
i+ 1

2
= −1

6ui−1 + 5
6ui + 1

3ui+1, (3.39)
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U2
i+ 1

2
= 1

3ui + 5
6ui+1 −

1
6ui+2. (3.40)

A combination of US=0,1,2
i+ 1

2
evaluated for different stencils will still be a third order accurate

approximation
Ui+ 1

2
= γ0U

0
i+ 1

2
+ γ1U

1
i+ 1

2
+ γ2U

2
i+ 1

2
(3.41)

As shown in [41], if p(x) is smooth in all candidate stencils the coefficients γ0, γ1, γ2 can be
obtained from

2∑
r=0

γrU
(r)
i+ 1

2
= Ui+ 1

2
(3.42)

such that the obtained Ui+ 1
2
from Eq. 3.41 is fifth order accurate. Solving Eq. 3.42, γ0, γ1, γ2

can be obtained as,

γ0 = 1
10 , γ1 = 3

5 , γ2 = 3
10 (3.43)

As mentioned, the obtained linear weights are obtained with the assumption of p(x) being
smooth. Thus, if there is a discontinuity in one of the stencils, the approximation will be
oscillatory. To overcome this problem, instead of using linear weight, non-linear weights
ωk=0,1,2 are introduced. These weights vary between γk=0,1,2 and 0 depending on the smooth-
ness of p(x). To evaluate the non-linear weights, the smoothness of p(x) should be somehow
calculated. It is measured by minimizing the total variation of the reconstruction polynomial
inside the cells [41]. The smoothness indicator is thus given by,

βk=0,1,2 = ∆xi
∫ x

i+ 1
2

x
i− 1

2

p′(x)2dx+ ∆x3
i

∫ x
i+ 1

2

x
i− 1

2

p′′(x)2dx (3.44)

Equation 3.44 results in the following smoothness indicators,

β0 = 13
12(ui−2 − 2ui−1 + ui)2 + 1

4(ui−2 − 4ui−1 + 3ui)2

β1 = 13
12(ui−1 − 2ui+1 + ui)2 + 1

4(ui−1 − ui+1)2

β2 = 13
12(ui − 2ui+1 + ui+2)2 + 1

4(3ui − 4ui+1 + ui+1)2
(3.45)
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Finally, the non-linear weights can be obtained from,

ωk = ω̃k
ω̃0 + ω̃1 + ω̃2

(3.46)

where
ω̃k = γk

(ε+ βk)2 (3.47)

ε is considered to avoid division by zero and is usually given the value of 10−6. For the flux
calculation using Roe scheme, the variables should be interpolated for both the left and the
right of each face (flux = f(UL

i+ 1
2
, UR

i+ 1
2
)). As shown in Fig.3.10, it is decided to calculate

UL
i+ 1

2
with more attention to left cells and UR

i+ 1
2
with more focus on right cells.

Figure 3.10 Choice of the five cell stencil for calculating UL
i+ 1

2
and UR

i+ 1
2

3.6.3 Extension to multi-dimensions

So far, a 1D stencil using WENO scheme has been presented. In case of finite volume schemes,
the extension of WENO to 2D or 3D requires a high order integration on the faces to deal
with non-linearity of the equations. This is elaborated for a 2D conservation equation as
shown in Eq. 3.48,

ut = f(u)x + g(u)y (3.48)

For a 2D finite volume scheme, integration over x and y directions ([xi− 1
2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
])
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gives

dũij(t)
dt

=− 1
∆xi∆yj

(∫ y
j+ 1

2

y
j− 1

2

f(u(xi+ 1
2
, y, t))dy

−
∫ y

j+ 1
2

y
j− 1

2

f(u(xi− 1
2
, y, t))dy

+
∫ x

i+ 1
2

x
i− 1

2

g(u(x, yj+ 1
2
, t))dx

−
∫ x

i+ 1
2

x
i− 1

2

g(u(x, yj− 1
2
, t))dx

)
(3.49)

where ũ is the cell average

dũij(t) = − 1
∆xi∆yj

∫ y
j+ 1

2

y
j− 1

2

∫ x
i+ 1

2

x
i− 1

2

f(u(x, y, t))dxdy (3.50)

u is the average in the x-direction

uij(t) = − 1
∆xi

∫ x
i+ 1

2

x
i− 1

2

u(x, yj)dx, (3.51)

and ũ is the average in the y-direction

ũij(t) = − 1
∆yj

∫ y
j+ 1

2

y
j− 1

2

u(xi, y)dy. (3.52)

approximating Eq. 3.49 with a finite volume scheme it is obtained

dũij(t)
dt

= − 1
∆xi

(f̂i+ 1
2 ,j
− f̂i− 1

2 ,j
)− 1

∆yj
(ĝi,j+ 1

2
− ĝi,j− 1

2
) (3.53)

with the fluxes defined as

f̂i+ 1
2 ,j

= − 1
∆yj

∫ y
j+ 1

2

y
j− 1

2

f(u(xi+ 1
2
, y, t))dy

ĝi,j+ 1
2

= − 1
∆xi

∫ x
i+ 1

2

x
i− 1

2

g(u(x, yi+ 1
2
, t))dx

(3.54)

if f and g are linear functions, to find ũ, it will be sufficient to perform one interpolation on
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y-direction and interpolate the result in x-direction. But f and g are non-linear so

f(ũ) 6= f̃(u) (3.55)

This will be more clear with an example: assuming that the non-linear function is f(u) =
√
u,

averaging u and taking the root is not equal to taking the root of u and then taking the
average. To solve the problem of non-linearity, an integral on Gaussian quadrature points,
with sufficient order of accuracy, is needed. For the current research 2 quadrature points in
each direction (4 on face) is used. Fig. 3.11 shows the Gaussian quadrature points on faces
of a cell.

Figure 3.11 Gaussian quadrature points for faces on a cell

To perform this integration, the interpolation scheme has to be adapted to Gaussian quadra-
ture points. In this research, the work of Titarev and Toro [49] is followed where they
proposed Gaussian points ξi ± ∆ξ

2
√

3 on each direction. For the Gaussian point ξi − ∆ξ
2
√

3 the
linear weights are

γ0 = 210−
√

3
1080 , γ1 = 11

18 , γ2 = 210 +
√

3
1080 (3.56)

and the approximation function evaluated at the Gaussian point is obtained from

u(ξi −
∆ξ
2
√

3
) = ω0

[
ui + (3ui − 4ui+1 + ui+2)

√
3

12

]
+ ω1

[
ui − (−ui−1 + ui+1)

√
3

12

]

+ ω2

[
ui − (3ui − 4ui−1 + ui−2)

√
3

12

] (3.57)



36

For the Gaussian point ξi + ∆ξ
2
√

3 the linear weights are

γ0 = 210 +
√

3
1080 , γ1 = 11

18 , γ2 = 210−
√

3
1080 (3.58)

and the approximation function evaluated at the Gaussian point is obtained from

u(ξi −
∆ξ
2
√

3
) = ω0

[
ui − (3ui − 4ui+1 + ui+2)

√
3

12

]
+ ω1

[
ui − (ui−1 − ui+1)

√
3

12

]

+ ω2

[
ui − (−3ui + 4ui−1 − ui−2)

√
3

12

] (3.59)

3.7 Temporal Integration

Discretization in time has to be of sufficient order of accuracy to be in accordance with spatial
discretization. For the high order simulation of an arc, a 3rd order TVD (Total Variation
Diminishing) Runge-Kutta time integration scheme has been used (Eqn. 3.60) [51].

u1 = un + ∆tL(un)

u2 = 3
4u

n + 1
4u

1 + 1
4∆tL(u1)

un+1 = 1
3u

n + 2
3u

2 + 2
3∆tL(u2)

(3.60)

where L is the finite volume scheme operator and ∆t is the time step.
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CHAPTER 4 Verification

This chapter is dedicated to the test cases which help different components of the arc simu-
lation to be verified. There are different methods used to verify the numerical simulations of
this research

• Comparison with analytical solutions

• Comparison with numerical solutions

• Method of Manufactured Solutions (MMS)

• Comparison with experiments

It is very important to verify all the different components of the solver before the validation,
where the complete simulation is tested with all components in place and compared to ex-
perimental results. The 3D arc simulation code comprises the following subroutines which
have been verified using different test cases presented in Table 4.1.

Table 4.1 Test cases for 3D arc simulation verification

Test case Equation verified Gas type
Shock tube 1D unsteady Euler equations Perfect gas-air

Rayleigh flow
1D steady Euler equations + heat
transfer

Perfect gas-air

Manufactured solution
inside a cube

Ohmic source term (Helmholtz) NA

Comparison of analytical-
numerical solutions for P1
model

Radiative energy source term NA

Shock tube 1D WENO scheme Perfect gas-air
3D explosion 3D WENO scheme Perfect gas-air
Steady arc All equations Real gas-SF6

Isothermal cylindrical arc Radiative energy source term NA
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4.1 Shocktube

A shocktube test includes a box (tube) in which a diaphragm separates a high pressure from
a low pressure region. At t = 0 s, the diaphragm is removed which causes an expansion wave
to move towards high pressure region and a shock wave to move towards the low pressure
region as depicted in Fig. 4.1.

Figure 4.1 Shocktube problem

The availability of analytical solution for the shocktube makes it a popular test case for
unsteady Euler equations. Fig. 4.2 shows the comparison of the density curves obtained from
the numerical (101 points, CFL=0.5, t=0.007 s) and the exact solution. The importance of
choosing the density curve are the gradients existing for both shock wave and contact regions.
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Figure 4.2 Shocktube density curves compared for the numerical (101 points, CFL=0.5) and
the exact solution

As an inherent characteristic of a first order (as shown in Fig. 4.3) discretization, it is
confirmed that a first order numerical solution yields diffusive results near the shock wave
and the contact region. A discrepancy is also detectable for the expansion area. Being a
1D problem, the shocktube test has been repeated for x, y and z directions which led to the
same results.

It can be concluded that although the numerical solution follows the exact solution trend, a
first order solution is not suitable for an accurate prediction of the shock wave, the contact
region and the expansion region. The solution can be enhanced using a finer mesh or a higher
order discretization.

It will be shown in Section 4.3.2 that how the 5th WENO improves the numerical solution of
shocktube in the expansion region while providing a better capability of predicting the shock
wave and the contact region.
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Figure 4.3 Shocktube grid refinement study

4.2 Rayleigh Flow

Rayleigh flow considers a frictionless flow in a constant area duct with heat transfer as
presented schematically in Fig. 4.4. This test case is suitable for steady, inviscid subsonic and
supersonic flows. Having a source term involved, this case becomes an efficient verification
for 3D arc simulation.

Figure 4.4 Definition of the Rayleigh flow problem

The properties of the gas can be found analytically via the following relations

T02

T01
= 1 + q

CPT01
, (4.1)

P2

P1
= 1 + γM2

1
1 + γM2

2
, (4.2)
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ρ2

ρ1
=
(

1 + γM2
2

1 + γM2
1

)(
M1

M2

)2

, (4.3)

T2

T1
=
(

1 + γM2
1

1 + γM2
2

)2(
M2

M1

)2

, (4.4)

T02

T01
=
(
T2

T1

)2(1 + γ−1
2 M2

2

1 + γ−1
2 M2

1

)
, (4.5)

and

P02

P01
= P2

P1

(
1 + γ−1

2 M2
2

1 + γ−1
2 M2

1

) γ
γ−1

(4.6)

where T0 denotes the total temperature, P0 the total pressure, ρ density, M Mach number,
CP the specific heat capacity, γ the specific heat ratio and q the added heat per unit mass
(J/Kg).

To solve this problem, air is assumed to flow in a channel with known stagnation properties.
Heat is added to the channel at the rate of 11758000 Watt/m3 as shown in Fig. 4.5.

Figure 4.5 Rayleigh flow test case

The numerical and exact results are compared for pressure, temperature and the Mach num-
ber values in Fig. 4.6.
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Figure 4.6 Analytical and numerical outlet results compared for a channel with T0 = 303K,
P0 = 155kPA and a fixed heat rate of 11758 KW/m3

As shown in Fig.4.6, the numerical and the exact solutions are in a good agreement.

In the next step, the Rayleigh flow test case is repeated with a variable source term. The
heat rate is a function of the channel length to make the test case more sophisticated

q(x) = 5000(x+ 1). (4.7)
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Figure 4.7 Analytical and numerical outlet results compared for a channel with T0 = 303K,
P0 = 155kPA and a heat rate dependant on the longitudinal position of the channel (5(x+1)
KW/m3)

Fig. 4.7 shows quite good agreement between the exact and the numerical results.

4.3 Ohmic Source Term solver

To verify the 4th order compact finite difference method used to calculate the Ohmic source
term, the method is used to solve Eqn. 3.25 presented again here for convenience.

∇σ∇φ+ σ∇2 = 0 (4.8)

or
σxφx + σyφy + σzφz + σ(φxx + φyy + φzz) = 0. (4.9)

The analytical form of the manufactured solution is considered to be
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φ̂(x, y, z) = sin(πx)cos(πy)cos(πz). (4.10)

Substituting Eqn. 4.10 in to Eqn. 4.9 and assuming σ̂(x, y, z) = x+ y + z gives

σ̂xφ̂x + σ̂yφ̂y + σ̂zφ̂z + σ̂(φ̂xx + φ̂yy + φ̂zz) = S. (4.11)

where S, the analytical source term is given by

S = (1 + y + z)πcos(πx)cos(πy)cos(πz)− (1 + x+ z)πsin(πx)sin(πy)cos(πz)

−(1 + x+ y)πsin(πx)cos(πy)sin(πz)− (x+ y + z)3π2sin(πx)cos(πy)cos(πz)
(4.12)

Eqn. 4.11 is solved inside a cube (dimensions of 1m, shown in Fig. 4.8) with the following
boundary conditions

φ̂(x = 0) = φ̂(x = 1) = 0

φ̂y=0 = φ̂y=1 = 0

φ̂z=0 = φ̂z=1 = 0

(4.13)

Figure 4.8 Computational domain for the 4th order compact finite difference method

The system of equations were solved with the BiCGSTAB (Bi Conjugate Gradient Stabilized)
method and with a convergence tolerance of ε < 10−6. The solution was repeated 6 times
with the mesh refined at each level. The order of the accuracy can be found by plotting the
error in a loglog format as shown in Fig. 4.10.
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Figure 4.9 Solution of Eqn. 4.11 with the φ̂(x = 0) = φ̂(x = 1) = 0, φ̂y=0 = φ̂y=1 = 0,
φ̂z=0 = φ̂z=1 = 0

Figure 4.10 Order of accuracy calculation for the 4th order compact finite difference method

The error was calculated via the L2 norm

L2 = 1
N

√√√√√ N∑
j=1

(unumericalj − uexactj )2 (4.14)

As shown in Fig. 4.10, the calculated order of accuracy is 3.422.
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4.3.1 P1 Model Solver

Since the P1 model has more complex equations compared to the Ohmic source term equation,
two different verifications are are presented

1. Comparison to an analytical solution

2. Comparison to numerical results

Comparison to an analytical solution

In the second step of the radiative energy solver verification, Eqn. 3.31 is simplified to yield
an ODE with a exact solution.

If the total absorption coefficient is considered as a constant, for one dimension, Eqn. 3.31
reduces to (the subscript v is removed for a better demonstration)

∇.( 1
Kv

∇Gv) = 3Kv(Gv − 4πIbv) =⇒ 1
K
Gxx = 3KG− 12KπIb (4.15)

or
1
K
Gxx − 3KG = S. (4.16)

where S = −12KπIb can be treated as a source term. The Eqn. 4.16 is solved in the same box
introduced in Fig. 4.9 with four Neumann and two Dirichlet boundary conditions expressed
as follows

Gx(x = 0) = Gx(x = L) = 0

Gy(y = 0) = Gy(y = L) = 0

G(z = 0) = G(z = L) = 0

(4.17)



47

(a) Contours of the function
G(x, y, z) (b) the L2 norm of errors

Figure 4.11 Analytical and numerical solution of Eqn. 4.16 with Gx(x = 0) = Gx(x = L) = 0,
Gy(y = 0) = Gy(y = L) = 0, G(z = 0) = G(z = L) = 0

With the mentioned boundary conditions, the function G(x, y, z) has the following exact
solution

G(x) = S

3K2 −
exp(
√

3Kx)(S − Sexp(−
√

3K))
3K2exp(

√
3K)− exp(−

√
3K)

+ exp(−
√

3Kx)(S − Sexp(
√

3K))
3K2exp(

√
3K)− exp(−

√
3K)

(4.18)

Solving the equation using the 2nd order finite difference, the results have been compared to
the exact solution. The contours of the function G(x, y, z) as well as the L2 norm of errors are
shown in Fig. 4.11. As shown, there is an acceptable agreement between the numerical and
the exact solution. The discrepancy between the two results decreases with mesh refinement.
The slope of the trend line in Fig. 4.11b shows that the numerical solution has the accuracy
of 1.96 which is expected due to the 2nd order discretization.

Isothermal Cylindrical Arc

As a second test case, a comparison to NEC method is presented. This test case comprises a
cylindrical Arc (Tarc > 10000K) surrounded by a cold SF6 (TCold = 500K) as shown in Fig.
4.13.



48

Figure 4.12 Isothermal arc in cold SF6

The arc core temperature was varied from 10000K to 30000K and the net radiation was
calculated based on the scheme explained in Section 3.4 using the P1 model (Eqn 3.32). The
result is then compared to the work Liebermann and Lowke [45] as shown in Fig. 4.13.

Figure 4.13 Net radiation obtained by the P1 model for a cylindrical Arc (Tarc > 4000K)
surrounded by a cold SF6 (TCold = 500K) compared to the work of Liebermann and Lowke
[45]

The comparison shows a relatively good agreement between the two curves for the range of
10000K < T < 20000K. For higher temperatures, the discrepancy increases ( it should be
noted that the curves are plotted in log scale).

The difference can be mostly related to the range of the wavelength spectrum covered by the
the two calculations. In this research, 5 bands are considered in the net radiation calculation
which cover wavelengths from 30 to 3000 nm, while Liebermann and Lowke considered a
spectral range of 100 to 15500 nm. Also, the NEC model provides the net emission at the
arc center, while the P1 model provides a radial distribution of the radiant intensity which
also takes into account the cold boundary of the arc.
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4.3.2 WENO Scheme Verification

To verify the implemented WENO scheme two test cases are established.

1D Shocktube

In this test case the shocktube problem described in Section 4.1 is solved using the WENO
method and the results are compared to the exact and the 1st solution. Fig. 4.14 shows the
solution of the WENO scheme applied to a shocktube. A comparison between the 1st order,
the WENO scheme and the reference solution shows that the WENO scheme leads to an
important improvement of the numerical simulation in the expansion, the shock wave and
the discontinuity regions, for a same number of points.

Figure 4.14 A comparison between the 1st order, the WENO scheme and the exact solution
for the shocktube problem, 101 points, CFL=0.5

Despite a smooth solution in the shock wave and the expansion regions, the WENO scheme
demonstrates slight oscillations in the discontinuity region. As shown in Fig. 4.15, these
oscillations can be avoided by increasing the number of the points.
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Figure 4.15 The WENO scheme results in oscillations near the contact region that can be
avoided by the increasing the number of the points

4.3.3 3D explosion

As explained in the work of Titarev and Toro [49], this test case is a 3D explosion (similar
to a shocktube problem in a 3D context) which is used to evaluate WENO scheme. In this
research, the same problem is solved and the results are compared with the reference as well
as the 1st order solutions.

This problem considers a cube in which a discontinuity of pressure and density is initialized
at rest (u = v = w = 0m/s) at the time of t = 0s, as shown in Fig. 4.16. Similar to
the shocktube problem, the contact (a sphere of radius 0.4 m) is removed, letting the high
pressure gas drive the low pressure gas. The flow evolves for a period of 0.25 seconds.
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Figure 4.16 3D explosion problem (initial conditions)

This problem is solved using both the 1st order, and the WENO scheme. Fig. 4.17 shows
the results compared to a reference solution with a very fine mesh (for more details refer to
the Section 17.1 of [50]). The 1st order solution provides a diffusive solution which is not
able to predict the shock waves and the contact region, accurately. Conversely, the WENO
scheme provides a very accurate solution for the shock waves. The same accuracy applies to
the contact regions. Furthermore, the prediction of the maximum density has a considerable
difference using the 1st order and the WENO schemes.

Figure 4.17 radial density profiles for the 3D explosion problem compared for the 1st order
scheme, the WENO scheme and the results on a very fine grid (close to exact solution)
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4.3.4 Steady Arc

Having verified all the components included in the arc simulation (flow solver, Ohmic heat
solver, radiative energy solver and WENO high order scheme) there are still two drawbacks
to this verification strategy

1. A test case with all components involved is missing.

2. All test cases included a perfect gas, whereas in the arc simulation a real gas assumption
is made.

To resolve these drawbacks, a simple test case is proposed: a steady arc is established and
kept at a constant current of 1000 A long enough (1 ms) for the gas properties to converge.
This is done for the computational domain inside the Aachen nozzle as explained in Fig.
3.1 and with boundary conditions detailed in Chapter 3. Dimensions of the computational
domain are 6mm × 6mm × 30mm and the mesh size is ∆x = ∆y = ∆z = 0.176mm. The
simulation CFL number is chosen to be 0.6. In this test case, tables of real gas are used to
determine the properties of SF6.

As shown in Fig. 4.18, arc pressure, density and temperature remain steady after several
oscillations.

Figure 4.18 Convergence of different gas properties in a steady arc of 1 ms

As a characteristic of arc, the voltage behaviour has been investigated with respect to time
as shown in Fig. 4.19. After an overshoot of 450 V all gas properties converged and the arc
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remains steady in the 3D solver with all different solver components coupled.

Fig. 4.18 also suggests that the arc must be kept steady for a reasonable period of time before
the current is ramped down to the CZ. With this approach, overshoots and undershoots can
be avoided leading to more realistic results. In this research, when the arc is initialized with
I=1000 A, for the first 5× 10−5s the current is kept constant.

Figure 4.19 Convergence of arc voltage with respect to time
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CHAPTER 5 Results and Validation

This chapter is structured with the aim of 1) showing the validation of the SF6 arc simulations
and 2) investigating the results regarding the 3D effects and the CZ, separately. All results
are presented for a computational domain with the dimensions 6mm × 6mm × 30mm and
with a mesh size of ∆x = ∆y = ∆z = 0.176mm (5.1). The initial current is, for all cases,
1000 A which does not change for the first 5× 10−5s as detailed in Section 4.3.4. The arc is
decreased to CZ with a rate of dI

dt
= −16Aµs−1. For the sake of robustness, the simulation

CFL number is 0.6 in all cases.

Figure 5.1 Geometry details of the nozzle and the computational domain
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5.1 Validation

Arc experimental data is scarce in the literature and only a few existing arc property mea-
surements can be used to validate this simulation. This research uses the temperature profile
measurement (available for 100 A and 600 A) as presented in the work of [23]. In Fig. 5.3,
the arc temperature profile obtained from the 1st order and the 5th order 3D simulations
has been compared to experimental data for 600 A. The location of the temperature profile
extraction is depicted in Fig. 5.2.

Figure 5.2 Temperature profile extraction details
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Figure 5.3 A comparison of the numerical (1st order and 5th order) and experimental arc
temperature profiles for I=600 A

The discussion regarding this comparison can grouped into the following three categories:

1. Maximum Temperature

The maximum temperature of the arc (arc core) measured by experiment has the
value of 18658 K. This is while the 1st order simulation predicts a core temperature
of 23312 K (24.9 % over-estimation) and the 5th order method gives 17923 K (3.9 %
under-estimation). A considerable improvement is observed in the max temperature
prediction using the WENO 5th order method compared to the 1st order results.

2. Arc Radius

The arc region can be defined as region where the gaseous medium is electrically con-
ductive. When the temperature exceeds 3500 K the electrical conductivity (σ) of SF6
is large enough to make ∇.(σ∇φ) = 0 a meaningful equation. Therefore, it can be
simply stated that the arc is present where T > 3500 K.
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Using this definition, the arc radius predicted by the 1st order simulation is 0.994 mm
while the 5th order scheme predicts a 1.65 mm arc. The experimental data is not
available below 11500 K, however it can be inferred that the arc is larger than 1.4mm
(the arc radius corresponding to 11500 K).

3. Arc Boundary

Arc boundary is the interface of the arc plasma and the cold flow. It is observed that
WENO resolves the arc boundary better than the 1st order scheme, however, neither
follows the expected trend of the arc boundary. The experimental profile shows a
smooth transition from the arc core to the boundaries, whereas both numerical methods
show sharper curves than expected.

The reason of such discrepancy is the lack of viscous fluxes. As confirmed in [23],
the absence of viscosity causes the solver to neglect the turbulent mixing which is the
dominant mechanism in mixing of the hot plasma with the cold flow.

Obtaining the same temperature profile comparison at 100 A, presented in Fig. 5.4, confirms
the validation for a smaller current.

1. Maximum Temperature

The existing measured temperature predicts 14853 K as maximum. The 1st and 5th

order schemes give 17205 K (15.8 % over-estimation) and 13584 k (8.5 % under-
estimation), respectively. This confirms that WENO is still the more accurate scheme.

2. Arc Radius

The value of the arc radius predicted by the 1st order scheme is 0.85 mm while with
WENO method, this amount is increased to 1.05 mm. Based on the last point of the
measured temperature, the arc radius is larger than 0.7 mm.

3. Arc Boundary

As for the 600 A arc, neither methods is capable of predicting an accurate arc boundary
due to the absence of viscous terms.

5.2 Current Zero Investigation

The arc is investigated at the CZ providing a detailed information (contours, curves, pro-
files) regarding the properties such as temperature, pressure, density, the Mach number and
velocity. Furthermore, the variation of the arc voltage and resistance from the initial current
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Figure 5.4 A comparison of the numerical (1st order and 5th order) and experimental arc
temperature profiles for I=100 A

(I = 1000A) to the CZ is presented, as well as the energy balance. At each point, the 1st

order results are compared to their 5th order counterpart. All sections are for Z=30 mm at
the nozzle throat (as shown in Fig. 5.2) unless otherwise stated.

5.2.1 Flow Properties

Temperature

As shown in Fig. 5.5 the arc temperature reaches 14047 K at the section of Z=30 mm while
the arc radius measures 0.50 mm. The smallest arc radius (0.336 mm), where the arc has the
tendency to break, is found at Z=42 mm where the temperature reaches 16081 K as shown
in Fig. 5.5c. The fast transition from the arc core to the arc boundary can be inferred from
the radial temperature profile slope.
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(a) Contours

(b) Along axis (c) Radial

Figure 5.5 Temperature obtained by the 1st order scheme at CZ

Comparison of the arc temperature for 1st and 5th order:

• Arc Radius

Contrary to the 1st order scheme, the radial temperature profile obtained from the 5th

order scheme (Fig. 5.6c) shows a relatively constant arc radius (0.88 mm) in different
sections. The 1st order simulation predicts a smaller radius. This is the same trend as
presented in Section 5.1.

• Max Temperature

As previously concluded in Section 5.1, the WENO scheme predicts a lower temperature
than the 1st order scheme. At CZ, the temperature varies between 9500 K and 10500
K for the WENO scheme, whereas this value varies between 13000 K and 16500 K for
the 1st order scheme.

• Temperature Variation Along the Arc Axis

It can be observed from Fig. 5.6b that the variation of the temperature obtained by
WENO is considerably less than the temperature calculated by the 1st order scheme.
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(a) Contours

(b) Along axis (c) Radial

Figure 5.6 Temperature obtained by the 5th order scheme at CZ

Pressure

The 1st order pressure calculation shows a variation between 6.5 bar and 3.3 bar along the
arc axis as shown in Fig. 5.7. This range is almost the same for the 5th order pressure
results (Fig. 5.8). Both schemes predict a pressure drop in the arc boundaries. While the
1st order pressure contours seems very symmetric, WENO scheme introduces asymmetry to
the pressure distribution.
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(a) Contours

(b) Along axis (c) Radial

Figure 5.7 Pressure obtained by the 1st order scheme at CZ

(a) Contours

(b) Along axis (c) Radial

Figure 5.8 Pressure obtained by the 5th order scheme at CZ
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Density

With a very low density in the arc core and high density gradients at the arc boundaries,
density calculation is very critical in arc simulation and must be treated cautiously particu-
larly in high order simulations. The following characteristics can be found from the density
contours and curves; obtained from different schemes (Fig. 5.9 the 1st order scheme, Fig.
5.10 the 5th order scheme).

(a) Contours

(b) Along axis (c) Radial

Figure 5.9 Density obtained by the 1st order scheme at CZ

• Reduced Mass in the Arc Core

The density varies between 0.02 and 0.15 kg/m3 in the arc core. This means the mass
inside the arc core is relatively small compared to the values away from the arc core.

• High Gradients

Both 1st and 5th order schemes result in high gradient density curves as shown in Fig.
5.9 and 5.10. This exists for both the arc core and the arc boundary.

The density gradient is smaller near the arc core for the WENO scheme. One reason
might be the treatment carried out to prevent negative density. Due to the high gradient
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as well as near-zero values, density can become negative which is not realistic and causes
the code to crash. Negative values of density and pressure usually occur for high order
analysis of low density or low pressure problems. Negative values can be obtained during
spatial reconstructions or temporal integration. For negative values created over time,
different class of positivity preserving methods exist ( [54–56]). The method used in
this research addresses the positivity preserving over the spatial reconstruction. As
explained in Section 3.6.2, a stencil of five cells is used to interpolate the gas properties
on the desired points or

vint = IntFunction(v1, v2, v3, v4, v5) (5.1)

where v is the interpolated variable and IntFunction is the interpolation function. A
negative value can be prevented by using an always positive function e.g. exp such that

vint = exp(IntFunction(log(v1), log(v2), log(v3), log(v4), log(v5))). (5.2)

In this research the solver automatically switches to Eqn. 5.2 if a negative density or
pressure is detected.

(a) Contours

(b) Along axis (c) Radial

Figure 5.10 Density obtained by the 5th order scheme at CZ
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Mach number

Mach contours reveal that both subsonic and supersonic flows exist in the arc as confirmed
in [14]. While for the 1st order simulation, the Mach number is higher at the arc boundary
than at the arc core (Fig. 5.11), the WENO scheme predicts a different behaviour where
the Mach number becomes lower at the arc boundary compared to the arc core (Fig. 5.12).
As mentioned previously, high gradient properties in the arc boundary lead to a different
behaviour in the arc core than at the arc boundary. The contours obtained by both 1st order
and WENO schemes are relatively symmetric which shows that the arc remains symmetric
at the CZ when initialized symmetrically at I=1000 A.

(a) Contours

(b) Along axis (c) Radial

Figure 5.11 Mach number obtained by the 1st order scheme at CZ
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(a) Contours

(b) Along axis (c) Radial

Figure 5.12 Mach number obtained by the 5th order scheme at CZ
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Axial velocity

The calculated velocity by both 1st and 5th order schemes reaches 3400 m/s. The high velocity
makes convection the dominant transport mechanism. Both radial velocity profiles show the
same velocity value (around 2000 m/s) whereas the velocity behaviour along the arc axis
is slightly different. It increases almost constantly in the results predicted by the WENO
scheme (Fig.5.14) while the 1st order velocity calculation (Fig. 5.13) presents two peaks.

(a) Contours

(b) Along axis (c) Radial

Figure 5.13 Velocity obtained by the 1st order scheme at CZ

Although the 5th order velocity follows the same trend at CZ as the initial arc (i.e reaching
the max velocity value at the nozzle exit), it is difficult to determine which is more accurate.
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(a) Contours

(b) Along axis (c) Radial

Figure 5.14 Velocity obtained by the 5th order scheme at CZ

5.2.2 Arc Properties

An investigation of the arc properties such as resistance and voltage gives a global view of
arc behaviour over time. As discussed in chapter 3, the arc voltage can be calculated from
Eqn. 3.29 repeated here for simplicity.

V = I∫
Ω σ|e|2dv (5.3)

therefore, the arc resistance is given by

R = 1∫
Ω σ|e|2dv (5.4)

or

R = 1∑ncell
n=1 σn|en|2∆v

(5.5)

for a discrete domain.



68

Fig. 5.15 shows the variation of arc resistance from the initial point (I=1000 A) to CZ from
which the following characteristics can be extracted

• The Resistance Value

While the resistance obtained from the 1st order scheme reaches 34 Ohm at the CZ,
WENO scheme predicts no more than 5.3 Ohm. Considering Eqn. 5.4, either the elec-
trical conductivity σ or the electrical field e accounts for this difference. Remembering
that the plasma conductivity σ has a strong dependency on the temperature which is
lower for the 5th order scheme (discussed in Section 5.2.1 ), σ values are reduced when
obtained by the WENO and cannot be considered as the reason of reduced resistance.
Therefore, it can be concluded that the value of the electric field has increased when
calculated by the WENO.

• Resistance-Time Curve Trend

The behaviour of the resistance from I=1000 A to CZ is the same for both schemes:
the arc resistance increases as the current decreases. This is expected from the arc
since the decrease of current leads to a decrease in the Ohmic source term. On the
other hand, as time evolves, the cold SF6 has more time to interact with the arc and
make it cooler. Consequently at CZ, the gas medium is less conductive due to a lower
temperature (lower σ) which is an equivalent to the resistance increase.

Figure 5.15 Arc resistance variation with time compared for the 1st order and the 5th order
schemes
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The investigation of arc voltage variation with time is of importance. Particularly at the
CZ, the network voltage starts to influence the circuit breaker instantly and, as discussed in
chapter 1, a restriking post-arc might make the gaseous medium conductive again.

Fig. 5.16 shows the arc voltage variation over time obtained from the 1st order and the
WENO schemes. The following information can be inferred from the two curves:

• Voltage Value

It is observed that the voltage calculated by the 5th order scheme has a lower value
than that from the 1st order scheme. When I=1000 A, the voltage is calculated at
372 V and 296 V by the 1st and the 5th order schemes, respectively. Since the WENO
scheme predicts a lower arc resistance, lower calculation of voltage (compared to the
1st order results for a similar current) is expected. This difference diminishes as the
current approaches CZ.

• Voltage-Time Curve Trend

Both curves shown in Fig. 5.16 demonstrate that the voltage tends to zero at CZ (1.25
V predicted by the 1st order and 8.8 V calculated by the 5th order scheme). As shown
in Fig. 5.17, this trend is confirmed by Leseberg [53] who investigated the same nozzle
as this research.

Figure 5.16 Arc voltage variation with time compared for the 1st order and the 5th order
schemes
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Figure 5.17 Voltage and current curves versus time from the work of Leseberg [53] showing
voltage approaches zero at CZ for the Aachen nozzle

As another arc property, the variation of the arc radius with time is compared for the 1st order
and the WENO schemes in Fig. 5.18. As expected, the arc radius decreases as the current
approaches zero for both schemes. It has been already discussed (Section 5.2.1) that the
predicted arc radius is smaller for the 1st order scheme as compared to the 5th order scheme.
While both schemes result in roughly the same arc radius for I=1000 A, a large discrepancy
is observed between the two schemes for I=700 A. Finally, as discussed in Section 5.2.1, the
smallest arc radius is obtained at the CZ.

Figure 5.18 Arc radius variation with time compared for the 1st order and the 5th order
schemes
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5.2.3 Energy Source Terms Close to CZ

In Figs. 5.19 and 5.20 the Ohmic and the radiative source terms are compared for the 1st

order and the 5th order schemes, respectively. With this analysis on the energy source terms,
the following items can be concluded when the current is very close to zero (0.5-0.1 A),

• General Characteristics

As shown for the energy sources, the heat is generated by the ohmic energy (positive)
in the arc core while radiation cools the arc by transferring the energy from the arc
core (negative) to the arc boundary (positive). Beyond the arc boundaries both energy
sources are zero.

• The Predicted Energy Value

As expected, the value of the Ohmic and the radiative energies are predicted with a
lower amount with the WENO scheme compared to the 1st order scheme. This can be
explained by remembering that the radiative and the Ohmic heating depend strongly
on the temperature, which has lower values when calculated by the WENO scheme.

• Ohmic Energy VS. Radiative Energy

The value of the Ohmic source term is directly proportional to the current. That is
why it is expected (and observed in Fig. 5.19) that the Ohmic source term approaches
zero at CZ. Compared to the radiative energy, the Ohmic energy is negligible. It can
be concluded that radiation remains the dominant energy transfer mechanism from the
initial point (I=1000 A) to CZ.

(a) 1st order

(b) 5th order

Figure 5.19 The contours of the Ohmic energy ( w
mm3 )



72

(a) 1st order

(b) 5th order

Figure 5.20 The contours of the radiative energy ( w
mm3 )

5.3 Arc 3D Effects

One objective of this research is to investigate the capability of the Euler equations to capture
the arc 3D effects. In experiment, the arc does not remain axisymmetric, especially when
the current decreases to zero [10]. However, reviewing the numerical simulation presented
for the arc at CZ (Section 5.2) it is observed that arc remains symmetric.

Since the arc-flow in the circuit breakers is never perfectly symmetric, in this section the
computational domain around the arc is initially displaced slightly from the center as shown
in Fig. 5.21 to introduce a slight asymmetry and to enhance the simulation.

Figure 5.21 Arc center displaced slightly to generate a small asymmetry

The goals of generating this asymmetry are to
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1. Investigate the appearance of arc 3D effects and if these effects can be numerically
simulated.

2. Quantify the impact of such 3D effects on the arc resistance and eventually lead to a
predictive capability of the arc extinction.

Figure 5.22 Iso-surface of T=4000 K showing the arc 3D effects increase with the growth of
computational domain displacement

Using the 1st order scheme, the displacement δ, as shown in Fig. 5.21, is varied from 0
to 0.26mm (this value has been chosen based on mesh size i.e 0.0∆x, 0.5∆x, 1.0∆x, 1.5∆x).
As shown in Fig. 5.22 the iso-surfaces of T=4000 K (representing the arc) suggests an
asymmetry. With the increase of δ, more deviation from the arc axis is observed which
results is more 3D features. Another observation is that the 3D arc has a random shape
which is not symmetric with respect to either ZY or ZX planes. It is worth mentioning that
in all cases shown in Fig. 5.22 the arc is initialized symmetrically at 1000 A.
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The same 3D behaviour can be found for the other arc properties out of which temperature,
axial velocity and the radiative energy have been shown in Fig. 5.23. To simplify the analysis,
only the results for the arc with δ = 0.26mm are presented.

Figure 5.23 The 3D effect observed in the temperature, axial velocity and the radiative energy
for the arc with δ = 0.26mm at CZ

5.3.1 Arc 3D Effects Measurement

Having presented qualitative results illustrating the arc 3D behaviour, this section provides
a more detailed investigation on the arc resistance affected by this 3D effect.

Despite the importance of all the arc properties, the arc resistance is chosen for more inves-
tigations for the two following reasons:

1. The arc resistance represents a global property. This is while other properties such as
temperature, pressure, density and etc. vary from point to point, which makes it less
informative to elaborate on them.

2. At CZ, the arc resistance is a critical parameter on which the extinction or re-ignition
highly depend. Accurate prediction of the resistance is crucial since it has a strong
impact on the circuit breaker performance.

As shown in Fig. 5.24, as the computational domain is more eccentric (more asymmetry),
the arc resistance increases. This clearly conveys the importance of 3D arc simulation at CZ.
The increase in the arc resistance is not linear with respect to the displacement. The value of
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Figure 5.24 Arc 3D behaviour impact on the calculation of the gaseous medium resistance
at cZ

the resistance for δ = 0.26mm is 80% more than the resistance associate with δ = 0.176mm.
This is while for the other δ values the change in resistance is smaller. As a conclusion, for
a more 3D arc, the resistance is larger.
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CHAPTER 6 CONCLUSION

This research was conducted to investigate the arc extinction in a 3D context using high
order of accuracy schemes. The results of this investigation can be categorized as follows

1. The WENO scheme has a considerable effect on the flow properties (pressure, temper-
ature, density) and the arc properties (radius, voltage, resistance). The comparison
of the measurements with numerical temperature profiles suggests more accurate re-
sults are obtained by the WENO compared to the 1st order method. However, more
experimental data is still needed to validate both flow and arc properties.

2. The arc core is predicted more accurately as compared to the arc boundary. While the
arc core is more dominated by the convective terms, in the arc boundary, the diffusive
terms (viscosity related terms) become more important. Turbulence mixing has a major
contribution in the fast transition that occurs from the hot plasma to the cold gas in
the arc boundary.

This research studies the capability of the Euler equations to capture the arc 3D effect
and thus the results are more accurate in predicting the arc core than the arc boundary.
For more accurate arc temperature profile in the boundaries, Navier-Stokes equations
should be applied to the simulations and turbulence should be included, ideally withing
an LES framework.

3. Arc 3D effects can be captured using Euler equations when a slight asymmetry is
imposed on the arc initial conditions.

4. As δ (computational domain eccentricity) is increased, more asymmetry is introduced
to the simulation and therefore, more 3D effects can be observed at CZ. The arc resis-
tance is directly proportional to the 3D effects. This confirms the necessity of 3D arc
simulation particularly at CZ.

5. Radiative energy is not negligible even at CZ when the lowest arc temperature values
are observed. Although the current approaches zero, the plasma is still hot enough to
emit radiative energy.
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6.1 Limitations

The following limitations can be pointed out for the approach used in this research:

1. The computational domain used in this research is away from the walls and the elec-
trodes. Despite the simplicity, the Dirichlet boundary conditions are applied on the
faces of the computational box instead of the electrodes. This modelling error can
be mitigated by considering the boundaries of the computational box as close to the
electrodes as possible.

2. The structured Cartesian mesh used in this research is a pre-requisite for the 4th order
compact finite difference method used to calculate the Ohmic heating. The WENO
scheme is also dependant on a uniform Cartesian mesh in which ∆x = ∆y = ∆z.
This means that this code cannot be applied to complex geometries without further
modifications. Currently, Immersed Boundary Method (IBM) is under investigation by
the research team to use Cartesian grid for more complex geometries.

3. While the 1st order method takes 18 hrs to run, WENO’s computational cost is 50
hrs for the same case (196,520 cells, ∆x = ∆y = ∆z = 0.176mm, CFL=0.6, 20
cores of Intel(R) Core(TM) i9-9820X CPU @ 3.30GHz). This shows the considerable
computational cost required by the WENO scheme which is due to the interpolations in
3 directions, the Gaussian integration on the faces and the high order time integration.

4. This research is based on the coupling with an in-house code (MC3). The arc is ini-
tialized on MC3 and the results are mapped on the 3D code developed in this research,
to be ramped down to the CZ. The arc ignition cannot be simulated by the 3D code.
Therefore, this code cannot be used as an end-to-end solution for the arc simulation.

6.2 Future Research

With this research being an opening to 3D arc extinction simulations, the 3D effects can be
further investigated by carrying out the following improvements in future:

1. It will be helpful to add viscous terms to the Euler equations and study the arc ex-
tinction in a laminar flow context. This will increase the accuracy of arc boundary
prediction and therefore, the radial temperature profile.

2. Turbulence modeling can be added to the 3D code for a better understating of the arc
boundaries. PML model would be a helpful starting point since it has been addressed
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in arc simulation literature. However, a better option would be LES which comes at a
higher computational cost.

3. Regarding WENO, it is suggested that a finite difference approach replaces the finite
volume approach. For finite difference based WENO schemes, the extension to multi-
dimensions is faster and easier since the non-linearity problem does not exist and the
Gaussian integration on the faces is not necessary.

4. Arc foot has been observed to move in this research, however, meaningful interpretation
of this movement needs more investigation.
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APPENDIX A FOURTH ORDER COMPACT FINITE DIFFERENCE
SCHEME

A 3D convection-diffusion equation has the form of the following equation

∆u(x, y, z) + (λ(x, y, z), µ(x, y, z),Φ(x, y, z)).∇u(x, y, z) = f(x, y, z)

the 19 point discretization to find u follows the following formula

18∑
l=0

clul = F0

where c0 − c18 and F0 are given by

c0 = −[24 + h2(λ2
0 + µ2

0 + Φ2
0) + h(λ1 − λ3 + µ2 − µ4 + Φ5 − Φ6)]

c1 = 2− h

4 (2λ0 − 3λ1 − λ2 + λ3 − λ4 − λ5 − λ6)

+ h2

8 [4λ2
0 + λ0(λ1 − λ3) + µ0(λ2 − λ4) + Φ0(λ5 − λ6)]

c2 = 2− h

4 (2µ0 − µ1 − 3µ2 − µ3 + µ4 − µ5 − µ6)

+ h2

8 [4µ2
0 + λ0(µ1 − µ3) + µ0(µ2 − µ4) + Φ0(µ5 − µ6)]

c3 = 2 + h

4 (2λ0 + λ1 − λ2 − 3λ3 − λ4 − λ5 − λ6)

+ h2

8 [4λ2
0 − λ0(λ1 − λ3)− µ0(λ2 − λ4)− Φ0(λ5 − λ6)]
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c4 = 2 + h

4 (2µ0 − µ1 + µ2 − µ3 − 3µ4 − µ5 − µ6)

+ h2

8 [4µ2
0 − λ0(µ1 − µ3)− µ0(µ2 − µ4)− Φ0(µ5 − µ6)]

c5 = 2− h

4 (2Φ0 − Φ1 − Φ2 − Φ3 − Φ4 − 3Φ5 + Φ6)

+ h2

8 [4Φ2
0 + λ0(Φ1 − Φ3) + µ0(Φ2 − Φ4)− Φ0(Φ5 − Φ6)]

c6 = 2 + h

4 (2Φ0 − Φ1 − Φ2 − Φ3 − Φ4 + Φ5 − 3Φ6)

+ h2

8 [4Φ2
0 − λ0(Φ1 − Φ3)− µ0(Φ2 − Φ4)− Φ0(Φ5 − Φ6)]

c7 = 1 + h

2 (λ0 + µ0) + h

8 (λ2 − λ4 + µ1 − µ3) + h2

4 λ0µ0

c8 = 1− h

2 (λ0 − µ0)− h

8 (λ2 − λ4 + µ1 − µ3)− h2

4 λ0µ0

c9 = 1− h

2 (λ0 + µ0)− h

8 (λ2 − λ4 + µ1 − µ3) + h2

4 λ0µ0

c10 = 1 + h

2 (λ0 − µ0)− h

8 (λ2 − λ4 + µ1 − µ3)− h2

4 λ0µ0

c11 = 1 + h

2 (λ0 + Φ0) + h

8 (λ5 − λ6 + Φ1 − Φ3) + h2

4 λ0Φ0
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c12 = 1 + h

2 (µ0 + Φ0) + h

8 (µ5 − µ6 + Φ2 − Φ4) + h2

4 µ0Φ0

c13 = 1− h

2 (λ0 − Φ0)− h

8 (λ5 − λ6 + Φ1 − Φ3)− h2

4 λ0Φ0

c14 = 1− h

2 (µ0 − Φ0)− h

8 (µ5 − µ6 + Φ2 − Φ4)− h2

4 µ0Φ0

c15 = 1 + h

2 (λ0 − Φ0)− h

8 (λ5 − λ6 + Φ1 − Φ3)− h2

4 λ0Φ0

c16 = 1 + h

2 (µ0 − Φ0)− h

8 (µ5 − µ6 + Φ2 − Φ4)− h2

4 µ0Φ0

c17 = 1− h

2 (λ0 + Φ0) + h

8 (λ5 − λ6 + Φ1 − Φ3) + h2

4 λ0Φ0

c18 = 1− h

2 (µ0 + Φ0) + h

8 (µ5 − µ6 + Φ2 − Φ4) + h2

4 µ0Φ0

F0 = h2

2 (6f0 + f1 + f2 + f3 + f4 + f5 + f6)

+ h3

4 [λ0(f1 − f3) + µ0(f2 − f4) + Φ0(f5 − f6)]
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