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affiliée à l’Université de Montréal
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RÉSUMÉ

Les arbres et les plantes tirent bénéfice de leur flexibilité en réduisant la charge aérody-

namique à laquelle ils sont confrontés en se pliant et en se déformant. La flexibilité est donc

un avantage, permettant une reconfiguration et une réduction de la trâınée. Cependant, il est

bien connu que la flexibilité est également à l’origine de nombreux phénomènes de vibration

induite par l’écoulement tels que le flottement, qui peuvent être associés à des contraintes

dynamiques élevées. Le but de cette recherche est de savoir si le flottement limite les avan-

tages de la reconfiguration. Dans ce but, nous considérons la reconfiguration d’une plaque

plane sous écoulement d’air pour imiter la reconfiguration complexe de vraies plantes. En

particulier, nous examinons la dynamique d’une plaque plane initialement positionnée per-

pendiculaire à l’écoulement du fluide et fixée à sa ligne médiane. Dans la partie numérique,

nous développons un solveur structural considérant les grands déplacements en supposant

qu’un modèle de poutre d’Euler-Bernoulli représente le mouvement des plaques en deux di-

mensions. Nous utilisons un code CFD pour la simulation du champ d’écoulement. Nous

utilisons une technique itérative partitionnée pour coupler les solveurs structural et fluide afin

d’assurer la convergence des variables de structure et d’écoulement au niveau de l’interface.

De plus, nous étudions les caractéristiques de flottement d’une poutre en reconfiguration en

utilisant la méthode numérique développée. Dans la partie expérimentale, nous effectuons

une série de tests en soufflerie pour observer la limite de stabilité et les différents modes de

flottement et également valider notre méthode numérique avec les données expérimentales.

L’approche numérique-expérimentale combinée révèle que la reconfiguration est bénéfique

jusqu’à la limite de flottement, tandis que la charge due à la dynamique instable du régime

post-flottement dépasse la charge rigide, même légèrement au-delà de la limite de flottement

pour de faibles rapports de masse. De plus, le lâcher de tourbillons en aval de la plaque en-

trâıne des vibrations induites par vortex, ce qui est la cause du changement de la dynamique

de la plaque d’un mode symétrique à un mode antisymétrique.
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ABSTRACT

Trees and plants benefit from flexibility by reducing the aerodynamic loading they face by

bending and deforming. Flexibility is thus an advantage, allowing reconfiguration and drag

reduction. However, it is well-known that flexibility is also at the root of many flow-induced

vibration phenomena such as flutter, which can be associated with high dynamic stresses.

The goal of this research is to find out whether flutter is limiting the benefits that come

from reconfiguration. To this aim, we consider reconfiguration of a flat plate under airflow

to imitate the complex reconfiguration of real plants. In particular, we look at the dynamics

of a flat plate initially positioned normal to fluid flow and clamped at its centerline. In

the numerical part, we develop a large displacement structural solver assuming the Euler-

Bernoulli beam representing the motion of plates in two dimensions. We use an in-house

CFD code for the simulation of the flow field. We employ an iterative partitioned technique

to couple the structural and fluid solvers to ensure convergence of the flow and structure

variables at the interface level. Further, we study flutter characteristics in a reconfiguring

beam using the developed numerical method. In the experimental part, we perform a series of

wind tunnel tests to observe the stability limit and different flutter modes and also to validate

our numerical method with the experimental data. The combined numerical-experimental

approach reveals that the reconfiguration is beneficial up to the flutter limit, while the loading

due to unsteady dynamics of the post-flutter regime exceeds the rigid loading for low mass

ratios. In addition, the vortex shedding downstream of the plate leads to vortex-induced

vibrations, which is the cause of the change in plate dynamics from a symmetrical mode to

an anti-symmetrical mode.
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CHAPTER 1 INTRODUCTION

In practical engineering applications, structures are mostly rigid and do not deform signifi-

cantly under loading. Therefore, engineers use the classical theory of elasticity which assumes

small deformation in the structures. However, large deformation exists in soft structures in

nature. One example of the interaction of fluid and flexible structures in nature is streamlin-

ing of flexible plants under wind or water flow. This mechanism helps plants to reduce the

drag and withstand harsh environments.

While plants resist the loading by large deformation, the interaction of the fluid and

structure might lead to a dynamic instability called flutter, where the structure begins flap-

ping. Flutter is avoided in engineering applications because of the severe consequences to

the system, such as possibly loss of the structural integrity. In plants, the adverse effects can

permanently change their shape and the growth rate.

Complex shapes of the plants prevents fundamental understanding of the plant’s defor-

mation and stability, but simplified geometries allow identifying and weighting the role of

different components. Thus, it is essential to develop accurate and viable models to de-

scribe the large deformations and nonlinear aeroelastic coupling. This is the motivation of

our work. We introduce reconfiguration in the next section. This is followed by presenting

available mathematical and physical models in the literature.
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CHAPTER 2 LITERATURE REVIEW

2.1 Reconfiguration in Plants

Plants are known to deform when a strong wind is blowing in order to reduce the drag force.

This mechanism is termed reconfiguration in the literature (Vogel, 1989). For a rigid body,

one way to show the Drag force D is through using the Drag formula:

D = 1

2
ρU2

∞
CDA, (2.1)

where ρ is the fluid density, U∞ is the flow velocity, CD is the drag force coefficient and A is

the frontal area of the rigid body. However, this formula is not valid for a flexible structure.

For instance, tuliptree leaves tend to reconfigure to reduce the frontal area, therefore lessen

the drag (figure 2.1). To compare the drag force in flexible and rigid structures, Vogel (1984)

introduced an exponent ν to account for the reduction in the drag force and flexibility:

D ∝ U2+ν
∞

. (2.2)

This exponent is a measure of the reconfiguration and mainly negative for plants; the more

negative the value, the more drag reduction of the flexible structure, which indicates that the

drag force increases sub-quadratically for flexible plants.

Figure 2.1 A tuliptree leaf reconfigures in an increasing wind speed (Image from Vogel 1989)
.

Inspired by reconfiguration of plants, we look at studies conducted on the drag reduction

and stability of slender structures as simplified geometries for the complex shape of the leaves



3

and plants.

2.2 Stability of Slender Structures

Slender structures are ubiquitous in nature and in engineering. In general, if one of the

dimensions of the structure is much larger than the other dimensions, then the structure is

considered as a slender structure. Examples are beams, plates and shells.

Traditionally in aeroelasticity, the unstable case is divided into two subcategories: static

instability and dynamic instability (Hodges and Pierce, 2011). In a static instability case

such as divergence, linear theory predicts the amplitude increases to infinity in an exponen-

tial fashion. However, in a dynamic unstable case, the amplitude of oscillation increases

harmonically. Flutter, as a dynamic instability, arises from the competition of destabilizing

aerodynamic forces and stabilizing rigidity of structures. Linear vibration theory can predict

the onset of instability, but only nonlinear vibration theory is able to describe the motion of

the structure after the occurrence of instability (Paidoussis, 2013).

Mainly, we focus on two simple geometry in this project: Axial beam or flag, where the

direction of the fluid flow is parallel with the flag, and normal beam, where the fluid flow

is perpendicular to the structure. The stability of theses two geometries is discussed in the

next two sections.

2.2.1 Axial Beam

Axial beam or conventional flag is a canonical example of fluid structure interactions. It

consists of a rectangular plate where the leading edge is fixed in the space and the rest of

plate is free to vibrate. Figure 2.2 shows the axial beam configuration, where fluid velocity

U is in positive X direction and the plate can vibrate in Y direction. When the flag is

subjected to the fluid flow, at lower fluid velocity it remains parallel to the fluid flow, up to a

certain velocity when it starts flapping. In accordance with the literature on reconfiguration

(de Langre, 2008; Gosselin et al., 2010) and flag fluttering (Michelin et al., 2008b), we define
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Figure 2.2 Axial beam configuration in fluid flow (Image from Eloy et al. 2007)

reduced velocity and mass ratio respectively as

U∗ = U∞L
√
ms

B
, (2.3)

M∗ = ρfL
ms

, (2.4)

where U∞ is the free-stream velocity, ms is the mass per unit length and width of the beam,

ρf represents the density of fluid, and L is the length and B is the flexural rigidity of the

axial beam. Physically, reduced velocity presents the ratio of the time scale of the natural

vibration of the flag to the convective time scale of the flow passing over the flag. The second

normalized parameter, mass ratio, shows the importance of fluid to structure inertia forces.

In addition to these parameters, the Cauchy number CY is also used as the ratio of

bending forces to the stiffness of the structure:

CY = ρfU
2
∞
L3

B
. (2.5)

Eloy et al. (2008) considered the flutter instability of a flexible plate in an axial flow

numerically and experimentally. Figure 2.3 illustrates their experimental setup and numerical

model. They used vortex line theory along with the small displacement Euler-Bernoulli

beam equation to find the critical velocity at which flutter occurs. This linear theory can

predict reasonably well the dependency of the critical velocity to the mass ratio and the
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different modes of vibration, however nonlinear effects are missing in the prediction of the

displacements.

Figure 2.3 (a) The experimental setup and (b) vortex line model used by Eloy et al. 2008 to
study flutter in a plate (Image from Eloy et al. 2008)

A similar approach is employed by Michelin et al. (2008b), whereas they used a point

vortex model instead of line vortices. For the flow model, a two dimensional potential theory

is used. Their model predicts periodic and chaotic regimes depending on the value of the

reduced velocity. Figure 2.4 shows three modes of the oscillation predicted by the model of

Michelin et al. (2008b), where the axial beam is claped at origin. They observed that for

low reduced velocity, the flag goes back to its rest position after the initial perturbation and

the energy is dissipated by the fluid flow. For intermediate values of reduced velocity, the

dynamics converges to a limit cycle oscillation. As the reduced velocity increases, the flag

behaves chaotically, and Michelin et al. (2008b) reports snapping events in which the force

applied to the flagpole is ten times larger than its value in the periodic regime.

Alben and Shelley (2008b) investigated the flapping flag in an inviscid 2D flow with a

vortex sheet model. Above a reduced velocity threshold, the flag goes to a unique unstable

state with limit cycle oscillations while below this threshold it goes back to the rest state.

Figure 2.5 shows the stability boundary as a function of mass ratio, reported by Eloy et al.

(2008), Michelin et al. (2008b) and Alben and Shelley (2008b). The two models of Eloy et al.

(2008) and Michelin et al. (2008b) predict three lobes for the curves, where the transition

of the mode shapes of the vibration occurs. Below mass ratio M∗ ≈ 1, the second mode is



6

unstable and the flag vibrates on its second mode. However above that value the third mode

becomes unstable. The next transition happens at M∗ ≈ 6 form the third to the fourth mode

of vibration. The model of Alben and Shelley (2008b) shows only a horizontal stability curve

where no transition exists.

(a) (b) (c)

Figure 2.4 Flag vibration modes in Vortex shedding model of Michelin et al. (2008b). (a)
Second, (b) third and (c) fourth mode shapes of the flag. (Image from Michelin et al. 2008b)
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Figure 2.5 Critical velocity for the stability of the flag (stability map), vortex shedding model
(Michelin et al., 2008b) (solid), linear stability analysis (Eloy et al., 2008) (dashed), and vortex
sheet approach (Alben and Shelley, 2008b,a) (dotted).

Later, Alben (2015) extended their model to a channel-bounded flapping flag. Their

study suggest that for heavier flags confinement increases the region of the instability. Also
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decreasing the wall spacing changes the flapping to a higher mode. Their model lacks the

effect of viscosity in the fluid flow, which may change the effect of wall boundedness on the

stability map in cases where the flag interacts with the viscous boundary layer.

Kerboua et al. (2008) assessed the impact of fluid on natural frequencies of plates by

developing a hybrid finite element–shell theory model of plates coupled with fluid. The

plates can be totally submerged or floating on the surface. Their model predicts reduction

of the natural frequencies of plates, in good agreement with experimental data.

Abderrahmane et al. (2011) used 2D filaments to observe the dynamics of an axial beam

in soap-film experiments. They show that the flapping is quasi-periodic, where the main

flapping oscillation is altered by small-amplitude, small-frequency components. Interestingly,

they did not capture the periodic flapping. Another important observation was that the flag

continuously switches between straight and flapping states. Tang et al. (2009) analyzed the

energy transfer between the fluid flow and the plate, and introduced the flutter-mill concept

in order to generate electrical power from the flapping motion. Despite the compact size of

the flutter-mill, it showed a promising performance compared to conventional wind turbines.

In the following study, Zhao et al. (2012) used Poincaré maps, phase-planes and time-traces

to characterize the motion of the system. They predicted the flutter boundary numerically

and experimentally, and investigated the effects of the aspect ratio—defined as the ratio of

width to length of the plate. They could observe hysteresis effects on high aspect ratios, but

not low aspect ratio plates.

Eloy et al. (2012) studied the discrepancy between the experimental data and the numer-

ical simulation’s prediction of the flutter velocity in a flag. The experiments showed a larger

gap in flutter velocity observation—the difference between the flag flutter velocity when the

wind velocity was increasing from zero to the case when it was decreasing from high veloci-

ties, known as the hysteresis effect. They argued that the curvature of the plate or planeity

effects are the most probable cause of hysteresis in predicting the critical velocity of the flag

instability in experiments.
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To study the effect of compressibility, Colera and Pérez-Saborid (2018) used a linearized

potential flow with a linear elastic beam equation model for the plate. They argued com-

pressibility effects would cause an over-estimation of the flutter speed at Mach number of

0.1. Because nonlinear effects were not included in their model, their results were limited to

only calculating the critical velocity and no post-critical behavior could be captured.

Another relevant configuration is the inverted flag, which is similar to the axial beam

configuration except for the fact that the leading edge is free to vibrate, and the trailing

edge is fixed. According to Tavallaeinejad et al. (2020), the developed analytical model of

the inverted flag dynamics suggests that the inverted flag turns unstable primarily due to

fluidelastic instability, and not flow-induced instabilities such as vortex-induced vibration,

though the quasi-steady flow assumption of their aerodynamics model limits the study of

vortex shedding impacts.

In the next section, we look at another configuration studied in the literature, where the

flat plate is placed normal to the direction of fluid flow.

2.2.2 Normal Beam

Another configuration which is used by researchers to study drag and reconfiguration is the

normal beam or a flat plate anchored at its center in three dimensional case. Figure 2.6 shows

the normal beam configuration in fluid flow. Normal beam configuration is simple enough

to be tested in a wind tunnel and numerical simulations, yet sufficiently complex to allow us

to use it as a model to study reconfiguration limits and flutter of flexible structures such as

plants.
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Figure 2.6 Normal beam configuration in fluid flow. The initial, straight shape and the
deformed, flapping shape are shown.

Gosselin et al. (2010) looked at the reconfiguration of a normal beam using empirical for-

mulation for the drag force and wind tunnel experiments. They described the reconfiguration

of the normal beam by dimensional analysis. A simple reasoning showed that drag scales

with the flow velocity with a Vogel exponent of −2/3. Also, they stated that a scaled Cauchy

number with drag coefficient allows collapsing all the drag measurements in one single curve

which confirms the dimensional analysis. In addition, they analysed two mechanisms of the

drag reduction in reconfiguring normal beam, and showed that the reduction of the projected

area and the streamlining are the two mechanisms of drag reduction. According to Gosselin

et al. (2010), as long as the free ends of the normal beam are bending toward the downstream,

both mechanisms help drag reduction. However, when the free ends of the normal beam are

parallel to the flow, the drag reduction is solely due to projected area reduction.

A similar arrangements of plates was examined by Schouveiler and Eloy (2009). They

experimentally studied coupled flutter modes of two, three and four plates parallel to the

fluid flow, and compared the outcomes with predictions of linear stability analysis. Figure

2.7 shows two parallel plates flapping in their experimental study. They mentioned that

above a critical value of the flow velocity, the plates begin to flutter symmetrically in a mode

that they referred to as varicose mode (figure 2.7 a). When flow velocity is further increased,
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a second mode is observed in which the plate flapping occurs in-phase. This mode is termed

as sinuous mode (figure 2.7 b). Transition of modes in two parallel plates was discussed by Si-

Ying et al. (2013) as well. Although they report the same in-phase and out-of-phase modes

in their experiments, the mechanism of transition remained as an indeterminate problem.

Recently, Leclercq et al. (2018) used a reduced-order model to understand drag reduction in

flexible beams. Their reduced model consists of adding two external forces as the effect of

the flow on the structure: the added mass force due to the potential component of the flow,

and a drag force due to the flow separation. They could identify three distinct regimes: static

(S), periodic (P) and a non periodic (NP) or chaotic regime (figure 2.8). As wind velocity

increases, the normal beam bends and aligns with the fluid flow. At reduced velocity u ≈ 17,

the static regime ends and a regular, periodic flapping of the flag is observed. Figure 2.8

shows that the period regime ends at u ≈ 64 and the flapping is no longer periodic. Their

study suggests that except for some snapping events, flutter does not limit drag reduction by

reconfiguration. We address this issue in the post-critical flutter regime section.

Figure 2.8 Vertical amplitude of the flag tip (blue) and the standard deviation (orange) versus
reduced velocity. Three regimes of static (S), periodic (P) and a non periodic (NP) flag flutter
exist. (Image from Leclercq et al. 2018)
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Figure 2.7 Visualization of (a) the varicose mode and (b) sinuous mode coupled flutter of
two plates (flow from top). (c) and (d) show the corresponding space-time diagrams. (Image
from Schouveiler and Eloy 2009)
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2.3 Vortex Induced Vibration in Normal Beam Configuration

Study of the fluid-structure interaction of bluff bodies reveals that vibrations can occur due

to the vortices in the wake region. In motionless solids, vortices are shed downstream of the

body due to the shear layer instability in the boundary layer, with vortex shedding frequency

proportional to the flow velocity (De Langre, 2006). If the frequency of the vortex shed-

ding equals the natural frequency of the bluff body, then lock-in occures, which significantly

changes the dynamics of the fluid structure interaction.

In case of non-deformable structures, vortex induced vibration is well studied in the

literature. For example, De Langre (2006) used a linear wake oscillator model to study

lock-in mechanism. This model reproduces the range of lock-in for a cylinder in very good

agreement with experimental data. However, in continuous systems, when several modes

contribute to the motion of the system, the interaction of the frequencies of the motion and

the wake frequency in the lock-in process becomes very complex.

Zhu (2007) performed simulation on a geometry similar to the normal beam to investigate

the influence of Reynolds number (range 30-800), dimensionless flexural rigidity and dimen-

sionless fibre length on vortex shedding using the immersed boundary method. He pointed

out that while all these parameters change the structure of vortices, Reynolds number has

little influence on the frequency of vortex shedding in the given range. He was unable to

investigate the impact of the Reynolds number of higher than 800 due to inaccuracy of the

immersed boundary method.

Miller et al. (2012) used two types of flexible structures , a cone and a flat plate, as

simplified model for leaves to study reconfiguration with a 2D numerical setup and water

tunnel tests. As a result of using flexible tethers to connect the models in their experiments,

they observed larger forces and stronger vortex shedding in the range of their simulations.

We expect that, for the configuration of the normal beam, the interaction of vortex induced

vibrations and flutter to alter the boundary of the stability map. This issue is reported in the

previous work of Sansas (2016) where he had to use a coarse grid to damp out the vortices
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by numerical dissipation to simulate reconfiguration of the normal beam. In addition, the

interplay of theses two phenomena will unveil a very rich dynamics of fluid and structure

motions.

2.4 Post-critical Flutter Regime Dynamics

Drag reduction due to reconfiguration is known to help biomechanical organisms withstand

harsh environments. However, modulation of the drag force due to post-critical kinematics

could be the source of structural failure in flexible structures.

Leclercq et al. (2018) devoted a section of their research to study the post-critical regime

of a half normal beam configuration. They focused on the impact of slenderness and mass

ratio on the kinematics, and variation of drag in the post-critical regime. Solving the full

time-dependent nonlinear equation of motion for the beam with added reduced order fluid

forces, they concluded that slenderness prevents chaotic motion in high flow velocities. Figure

2.9(a) shows tip displacement becomes non-zero when periodic flapping happens at u ≈ 20.

The periodic flapping exist for higher reduced velocity up to u ≈ 60 where the chaotic regime

begins. However, at u ≈ 80, the motion of the structure becomes periodic. In addition, They

stated that reducing the mass ratio (heavier structure) leads to larger amplitude of vibration

and earlier onset of flutter (figure 2.9(b)).
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(a) (b)

Figure 2.9 Normal beam flutter amplitude (blue curve) versus reduced velocity. Orange
curve shows the standard deviation of the amplitude in time. (a) In high reduced velocity,
flapping motion goes back to periodic regime (b) Reducing mass ratio causes larger amplitude
vibration and early flutter (Image from Leclercq et al. 2018).

Following the work of Gosselin et al. (2010), Leclercq et al. (2018) used reconfiguration

number R to measure the ratio of the drag in the deflected structure D compared to the

rigid, straight case Drigid:

R = D

Drigid

. (2.6)

Figure 2.10 shows reconfiguration of a deforming structure, half of the normal beam, as a

function of Cauchy number. When CY ≲ 1, the structure is not deformed considerably and

R remains near one. As Cauchy number increases and structure deforms, R reduces to

below one which implies that the experienced drag by the deformed structure is less than

the rigid structure. Further increase of the Cauchy number leads to flutter instability and

periodic flapping. Although the drag increases once flutter happens in the periodic (P) regime

compared to the static deformation, it still remains less the the rigid case.

They argue that for most cases, the total drag induced by flutter is below the rigid drag,

which means the reconfiguration number is remains below unity. However, for lower mass

ratios, the large-amplitude flapping may increase the total dynamic drag beyond the static
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value. Nevertheless, the study of the impact of mass ratio on flutter-induced drag remains

incomplete. The limitation of their work includes the absence of vortex shedding—due to

using a simple reduced-order model, and experimental validation.

In a closely related work, Leclercq and de Langre (2018) extended their model to an

oscillatory fluid flow. Applying the same model as Leclercq et al. (2018), they identified four

kinematic regimes of rigid, modal, convective and large amplitude in amplitude-frequency

space. In all cases, the reconfiguration number is below one, except for cases where the

frequency of flow matches one of the natural frequency of structure. Their findings are

valid for the cases where the inertia of the structure is negligible (or equivalently high mass

ratios) which permits neglecting the displaced mass by structure. They predicted that the

inclusion of the structural inertia may significantly change the output of their work, and more

complicated dynamical behavior come into play.

2.5 Numerical Methods in Fluid-Structure Interaction

In this section we introduce a brief review of the numerical issues found in fluid-structure

interaction. Textbooks such as Blazek (2015), Bathe (2006) and Versteeg and Malalasekera

(2007) provide detail of the methods in fluid and solid dynamics separately. Here we focus

on the topics appearing in the coupling of the fluid and the structure domains.

2.5.1 Coupling Approaches in Fluid-Structure Interaction

As an example of a multiphysics problem, solving a Fluid-Structure Interaction problem

requires an efficient and robust strategy to find the solution of the coupled domains. Many

questions arise in the coupling of the fluid and solid domains such as stability, consistency

and conservation properties of the coupling method. Mainly, the coupling approaches are

referred as partitioned and monolithic, however, other labels such as strongly/weakly coupled,

fully/loosely coupled and explicit/implicit exist in the literature. We use partitioned and

monolithic to categorize these approaches.
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Figure 2.10 Time averaged (orange) and maximum (blue) reconfiguration number versus
Cauchy number of the half normal beam configuration. The static reconfiguration curve is
shown in black. (Image from Leclercq et al. 2018).

The partitioned method is appealing since it uses existing codes with minimal changes.

However, this advantage comes at a very severe cost: stability. If we define generally nonlinear

operators of f = F (d) and d = S(f) for the fluid and structure solvers, and d and f as

displacements and forces for the inputs and outputs, the simplest partitioned method which

only solves the domains sequentially in time t is shown in figure 2.11:

Algorithm 1: Partitioned method

Initialization;
while t<T do

Fluid solver fn+1 = F (dn);
Structure solver dn+1 = S(fn+1);

end
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Figure 2.11 Simplest partitioned method

Farhat and Lesoinne (2000) reviewed the partitioned methods in coupled fluid-structure

problems. They refer the simple partitioned method as Conventional Serial Staggered (CSS)

procedure. They proved that even by using higher order schemes in time discretization of

both solvers, the CSS is at most first order accurate. So apart from the limitation set by

the desired accuracy on time step, a more restrictive limit is set by the explicit nature of
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the CSS method (CFL condition). Farhat and Lesoinne (2000) proposed a new method

called Improved Serial Staggered (ISS) to remedy the first order accuracy by advancing fluid

and structure solvers with a half time step delay. But explicit treatment of this partitioned

method still retains the stability issue. In addition, satisfying the conservativeness of the

energy is not tested in this approach.

The stability of the partitioned approach is highly dependent on the flexibility of the struc-

ture. Due to the complexity of the full fluid-structure problems, some researchers attempted

to analyze the stability issue by looking at model problems. Piperno et al. (1995) presented

a family of implicit/explicit partitioned procedure and discussed accuracy, stability, hetero-

geneous computing, subcycling and parallel processing for a one dimensional piston model

problem. In the second part, Piperno and Farhat (2001) evaluated the energy that is created

numerically at the fluid/structure interface in the partitioned approach. They validated their

algorithm by solving the two and three dimensional, transonic and supersonic wing and panel

flutter. They introduced nth-order energy accurate partitioned procedure concept, and they

have shown that the simple partitioned approach is at most first-order energy accurate. The

piston model problem is a case that is studied by other researches as well. For examples,

look at (Piperno, 1994), (Blom, 1998) and (Lefrançois and Boufflet, 2010).

2.5.2 Iterative Partitioned Approach

Vierendeels et al. (2011) investigated the stability issue of the partitioned approach with

applications in the biomechanical field. They showed that, in certain conditions depending

on the geometry and the ratio of solid to fluid densities, the simple partitioned method is

unconditionally unstable. In other words, unlike many situations in numerical simulations,

decreasing the timestep cannot make the scheme stable.

In order to solve the stability issue of a simple partitioned method, we can use an iterative

partitioned algorithm. The composition of the solid d = S(f) and fluid f = F (d) operators

in a single operator d = SoF (d) reduces the simple partitioned approach to a fixed-point
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iteration form based on the interface displacement:

dn+1,k+1 = SoF (dn+1,k), (2.7)

where n is the timestep and k is the iteration counter. All the fixed-point iteration methods

such as Gauss-Seidel or Jacobi can be used to find the solution. Furthermore, the partitioned

approach can be written in root finding form:

R(dn+1) = dn+1 − SoF (dn+1) = 0, (2.8)

dn+1,k+1 = dn+1,k − J−1(dn+1,k)R(dn+1,k), (2.9)

where J−1(dn+1,k) is the inverse of the Jacobian matrix. Then a Newton-Raphson method

is applied to the problem. But the computation of the Jacobian matrix for this system is

usually expensive, if possible. Thus another group of methods emerge that approximate the

Jacobian which are called quasi-Newton methods. The superiority of fixed-point iteration

methods or Newton methods is not a priori and is problem dependent; generally fixed-point

iteration methods benefit from less computational time per iteration while they require more

iterations than Newton methods to reach the desired accuracy. In some cases with strong

interaction in the physics of the problem, Newton methods perform better than fixed point

iteration methods. These iterative partitioned approach can achieve the same solution as

monolithic approach with sufficient iterations and accuracy. Degroote et al. (2008) mentions

that for an internal flow in a tube, the number of coupling iterations increases when the

structure becomes more flexible or the timestep is decreased.

The complete iterative partitioned approach consists of a Predictor dk = P (dn, dn−1, ...) to

estimate the initial guess for the next subiteration, and a relaxation factor ω to stabilize the

subiterations is shown in figure 2.12:
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Algorithm 2: Iterative partitioned approach

Initialization;
while t<T do

Predictor dk = P (dn, dn−1, ...);
while k < itermax do

Fluid solver fk+1 = F (dk);
Structure solver dk+1 = S(fk+1);
if ∣dk+1 − dk∣ < tol then

dn+1 = dk+1;
break;

else
k = k + 1;

end
Relaxation dk+1 = wkdk+1 + (1 −wk)dk;

end

end
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Figure 2.12 Iterative partitioned approach

Aitken dynamic relaxation (wk) is proposed by Küttler and Wall (2008) to accelerate the

convergence of the sequence of displacements in the subiterations:

wk =
(dk−1)T (dk − dk−1)

∣∣dk − dk−1∣∣2 . (2.10)

Michler et al. (2004) compared simple partitioned and iterative partitioned approaches

for one-dimensional piston model problem. By defining the ratio of accuracy to the compu-

tational cost as a measure of computational efficiency, they concluded simple and iterative

partitioned approaches have comparable computational efficiency in a simple one-degree-of-

freedom structure model. However, they expected superior efficiency of an iterative parti-

tioned approach in case of multiple mode problems.

Although using an iterative partitioned approach cures the stability problem of a simple

partitioned approach which is due to explicit time integration, the inherent iterative nature of

the iterative partitioned approach introduces another problem. Unfortunately, the iterative
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partitioned approach is not always converging. In an interesting article, Joosten et al. (2009)

analyzed the block Gauss-Seidel procedure in a model problem of mass, springs and dashpots.

Their results demonstrate that the convergence of the block Gauss-Seidel procedure depends

on the mass ratio and stiffness ratio of the two domains. In an asymptotic regime when the

time step tends to zero, the stability solely depends on the mass ratio.

In mathematical terms, the stability of an iterative method depends on the spectral radius

of the iteration matrix, which is the largest eigenvalue of the iteration matrix. The iterative

method can converge if and only if the spectral radius of the iteration matrix is less than

one. The spectral radius depends on the scheme that is used to solve the equations, and also

the parameters of the problem that is solved by the iterative method. Therefore, changing

the parameters of the problem such as mass ratio or flexibility of the structure, may lead to

a spectral radius of greater than one and subsequently divergence of the iterative method.

Von Scheven and Ramm (2011) addressed sensitivity of numerical schemes to the inter-

action of slender structures and incompressible flows. They compared block Gauss-Seidel

iteration and Newton-Krylov techniques in iterative partitioned approach applied to a three

dimensional flexible plate attached to a rigid square cylinder. This problem is basically an

extension of Wall (1998) benchmark to 3D. They argued that using a coarser grid as a pre-

dictor to the fine grid solution of the iterative method would reduce the computational time

by 30%. Additionally, neither of block Gauss-Seidel iteration and Newton-Krylov techniques

are always superior in all the cases in terms of overall computational efficiency.

Joosten et al. (2009) also showed that inclusion of a constraint to one of the subsystems

leads to divergence of the iterative method, which happens in realistic FSI applications. For

instance, in coupling an incompressible flow with a flexible structure, the incompressiblity of

the flow is a constraint which deteriorates the convergence. This phenomena is termed added

mass effect, which was the topic of numerous research on convergence of FSI simulations.
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2.5.3 Added Mass Effect

In aeroelasticity applications, partitioned approach is used frequently without difficulty. In

this case, a rigid wing is interacting with a low density fluid flow. As a result, the fluid to

solid density ratio is low. When the wing vibrates, it accelerates the flow around the wing

which can be interpreted as an additional mass added to the structure. Because the ratio of

the fluid to structure density is low, the added mass will not cause an instability issue in the

partitioned approach (Breuer et al., 2012).

However, added mass effect is known to be a source of difficulty in other cases of numerical

FSI. Causin et al. (2005) provided a mathematical explanation of numerical instabilities in

partitioned approach for a simplified fluid-structure interaction problem of the blood flow in

human arteries. They observed convergence problems in the following two cases, which are

common in interaction of incompressible flows with thin structures:

• when the density of the structure is lower than a threshold;

• when the domain has a slender shape and the length of domain is greater than a

threshold.

In theses cases, partitioned method showed unstable behavior and iterative partitioned method

required a high number of subiterations for convergence. In addition, they showed that using

a relaxation to stabilize the coupling is not always practical because there is a maximum

value for the relaxation depending on the parameters of the problem. When the spatial dis-

cretization is refined (consistent case), the relaxation parameter tends to zero, so the use of

relaxation parameter is not practical.

In another study, Van Brummelen (2009) compared added mass effects in incompressible

and compressible flows. By examining a semi-infinite fluid flow interacting with a flexi-

ble panel, they showed an iterative partitioned approach can be stabilized only for suffi-

ciently small timestep for compressible flows. On the other hand, the iterative partitioned

approach can remain unstable in some cases for the incompressible flows even with using



22

smaller timestep. In other words, using a simple model Van Brummelen (2009) showed an

iterative partitioned approach is unconditionally unstable for an incompressible flow, and it

is conditionally stable for a compressible flow. So still there is a limit on the timestep value

even in a compressible fluid flow model.

2.5.4 Monolithic Approach

In a monolithic approach, both fluid and structure part are solved in a single matrix of solu-

tion variables. This could happen by using different discretization methods for the separate

domains, or using the same discretization. As a result, a new code is necessary to be devel-

oped for the desired problem which is against the modularity rule from industrial software

engineering perspective. However, the problems associated with convergence in partitioned

numerical FSI will disappear.

Hübner et al. (2004) used velocity variables for an incompressible fluid flow interacting

with a geometrically nonlinear structure and applied stabilized space-time finite element

method to the both domains to get a single system of equations. They mentioned that for-

mulating the problem in one system of equation may lead to ill-conditioned system matrices,

and also finding an appropriate preconditioner is not a trivial task. Using a monolithic ap-

proach, they achieved convergence of the system of equations within two to four fixed-point

iterations even in strong interactions with large deformation of the structure.

2.5.5 Conclusion

The existence of many numerical schemes and the dependency of the efficiency and robustness

of the method on the problem make it quite difficult to compare the coupling approaches

in fluid-structure interaction. We present a general overview of the discussed methods in

previous sections in table 2.1. We define efficiency as the ratio of the accuracy to the com-

putational cost where 5 means the best and 1 the worst efficiency. The efficiency is shown in

cases when there is a strong interaction in the physics of the problem. We also compare the
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implementation of theses methods, where 5 is the easiest and the most modular method and

1 is the most difficult and the least modular method.

Table 2.1 A summary of the coupling approaches

Coupling approach Stability issues Efficiency Implementation
Partitioned unconditionally unstable in

some cases
1 5

Iterative Partitioned high number of subiterations
and unstable in strong inter-
actions

2 4

Partitioned with added com-
pressibility

compressible flows still suffer
from stability issues

3 3

quasi-Newton the most robust partitioned
method

4 2

Monolithic can result in ill-conditioned
iteration matrix

5 1
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CHAPTER 3 PROBLEM STATEMENT

3.1 Problem Identification

The studies reviewed in chapter 2 vary in the level of the approximation from modeling linear

elasticity and small displacement for the structure and linearized Euler equation and potential

theory for the flow, to higher fidelity models of the nonlinear elasticity and Reynolds-averaged

Navier–Stokes equations. Although past studies addressed many issues in the fluid-structure

interaction problem of slender structures, the answer to the following questions is missing in

the literature:

• Can flutter limit reconfiguration? How does flutter affect the reconfiguration of beams

and plates that are placed under fluid flow with different configurations?

• Can flutter, vortex-induced vibration and reconfiguration all happen in a single, simple

system of a reconfiguring beam?

• What is the influence of mass ratio on beam reconfiguration?

3.2 Objectives

The general objective of this research project is to analyze the flutter instability in recon-

figuring beam using high-fidelity numerical simulations and wind tunnel tests. The specific

objectives of the proposed research project are:

1. To implement a partitioned FSI approach in order to determine the onset of flutter

instability and drag reduction due to reconfiguration in flapping flags considering non-

linearities in the structure and fluid model;

2. To illustrate the dynamics of flutter and vortex induced vibration, the range of interplay,

and their impact on the boundary of the stability of a reconfiguring beam;
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3. To inspect the post-critical flutter regime, and look at the modulation of the dynamic

drag and reconfiguration in post-critical regime.

Obtaining the onset of flutter possesses several challenges. One of them is to distinguish be-

tween the instability due to the physics of the problem and unwanted oscillation attributed to

poor convergence of the numerical simulations. Using partitioned method reduces the time

required for development of the FSI code, While the consequences are possible numerical

instability, and the accuracy dictated by the lowest accurate module in the portioned simula-

tion, and also the accuracy of data transfer between different modules. Another challenge is

that the allowed timestep is restricted by the solver type, the computational geometry, and

the fluid and solid properties. Generally lighter and less stiff structures need smaller timestep

for the simulation.

Normal beam configuration is similar to a bluff body, and prone to vortex-induced vi-

brations. For instance, one of the issues encountered in the previous work of Sansas (2016)

was interaction of vortices with motion of the structure, which resulted in large vibration of

the structure and divergence of the code. Owing to the fact that Sansas (2016) solvers were

only weakly coupled, Sansas (2016) had to numerically damp out the vortices. Work of Zhu

(2007) showed that theses vortices can only cause small amplitude vibration in the normal

beam configuration. But limited range of the Reynolds number and using a cartesian grid

with immersed boundary method make it difficult to extend their conclusions.

Although the review of the work of Leclercq et al. (2018) in chapter 2 showed that flutter

almost never undermines the ability of reconfiguration to reduce drag, their study is done by

a reduced-order model for fluid flow forces, and they did not validated their model against

experimental data. Moreover, their analysis on the effect of the mass ratio is incomplete.
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CHAPTER 4 METHODOLOGY

4.1 Strategy

In order to investigate the underlying mechanisms of flutter, we combine experimental and

numerical approaches. In the former, we perform wind tunnel tests on slender, highly flexi-

ble structures such as rectangular plates clamped at its center. In the latter, we implement

an in-house coupled fluid-structure interaction code. The code couples a compressible Un-

steady Reynolds-Averaged Navier–Stokes (URANS) solver for the fluid flow with a geometri-

cally nonlinear Euler-Bernoulli beam model. The details of the numerical and experimental

methodologies are described in this chapter.

4.2 Numerical Framework

4.2.1 Fluid Governing Equations

To account for the deformation of the fluid domain by the structure motion, we solve the

URANS equations with a moving grid technique, i.e., we solve an Arbitrary Lagrangian

Eulerian (ALE) formulation of the Navier-Stokes equations. Accordingly, the convective

fluxes are modified with the mesh velocity. For a moving control volume Ω bounded by

the closed surface ∂S with a surface element dS, the time t dependent integral form of the

Navier–Stokes equations are expressed as follows (Blazek, 2015):

∂

∂t ∫Ω
WdΩ + ∫

∂Ω
(Fc

M −Fv) ⋅ dS = 0, (4.1)

where W is the vector of conservative variables: W = [ρ, ρu, ρv, ρE]T , ρ denotes density, u,v

the Cartesian velocity components, E total energy per unit mass. The modified convective
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flux FM
c and viscous flux Fv are written as

FM
c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρVr

ρuVr + nxp

ρvVr + nyp

ρHVr + Vtp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fv =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

nxτxx + nyτxy

nxτyx + nyτyy

nxθx + nyθy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.2)

θx = uτxx + vτxy, (4.3)

θy = uτyx + vτyy, (4.4)

H = E + p
ρ
. (4.5)

where H stands for total enthalpy and p static pressure, nx and ny are outward facing unit

normal vector of the surface ∂Ω, τxx, τyy represent normal stresses in x and y direction

respectively, τxy and τyx are shear stresses, and θx and θy are describing the work of the

viscous stresses. Vr is the contravariant velocity relative to the grid velocity Vt given by

Vt =
∂x

∂t
nx +

∂y

∂t
ny, (4.6)

V = unx + vny, (4.7)

Vr = V −Vt. (4.8)

In cases where the volume of the cells is changing due to deformation, the Geometric Con-

servation Law (GCL) must be satisfied to avoid errors induced by deformation of control

volumes. It relates the change of the control volume to the surface motion as follows

∂

∂t ∫Ω
dΩ + ∫

∂Ω
Vt ⋅ dS = 0. (4.9)
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4.2.2 Flow Solver

In order to solve the URANS equations, we use the finite volume compressible flow solver

NSCODE developed at Polytechnique Montreal. Using an in-house code allows full trans-

parency and access to all variables and processes. This can be difficult with a black box

commercial solver. The NSCODE flow solver has already has been verified and validated

through numerous test cases (Lévesque, 2015). The solver uses the Jameson-Turkel-Schmidt

(JST) scheme for the convective fluxes and a multistage Runge-Kutta method with dual time

stepping for the temporal discretization. For grid generation, we use the structured grid gen-

erator NSGRID, also developed at Polytechnique Montreal, which is able to generate high

quality meshes with elliptic and hyperbolic algorithms (Hasanzadeh Lashkajani et al., 2015).

4.2.3 Structure Governing Equations

The large displacement of the structure is expressed with the 2D nonlinear Euler-Bernoulli

beam equations. Figure 4.1 shows the modelled cantilever beam with the defined curvilinear

coordinates and also the forces acting on the element of the beam.

P

T
M

V

e⃗n
Y

X

δS

V + δV
M + δM

T + δT

θ

S

θ(S)
P (S)

e⃗t

(a) (b)

Figure 4.1 Schematics of the modelled cantilevered beam: (a) the whole beam and its curvi-
linear coordinate; (b) the free-body diagram on a beam element.

The beam is of length L, thickness h, and mass per unit length m. A curvilinear La-

grangian coordinate follows the centre line of the beam from its clamped end at S = 0 to its
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free end at S = L. The bending angle θ(S) measures the local deformation of the beam. The

Lagrangian coordinates are related to the fixed Eulerian coordinates X and Y :

∂X

∂S
= cos θ,

∂Y

∂S
= sin θ. (4.10)

The fluid flow creates a pressure difference P (S) across the thickness of the beam. We

consider an infinitesimal beam element of length δS. Its normal and tangent vectors are e⃗n

and e⃗t, respectively. The summation of forces in these two directions and the summation of

moment on the element lead to:

−m∂2X

∂t2
sin(θ) +m∂2Y

∂t2
cos(θ) = ∂V

∂S
+ T ∂θ

∂S
− P, (4.11)

m
∂2X

∂t2
cos(θ) +m∂2Y

∂t2
sin(θ) = ∂T

∂S
− V ∂θ

∂S
, (4.12)

V = −∂M
∂S

, (4.13)

where V is the shear force, M the bending moment, T the tension along the beam, and t the

time. The bending moment in the beam is assumed proportional to the local curvature,

M =D ∂θ

∂S
, (4.14)

where D is the bending rigidity for a unit width of the beam and assumed to be constant

over the length of the beam. Boundary conditions at the clamped and free ends of the beam

can be written as

X ∣S=0 = 0, Y ∣S=0 = 0, θ∣S=0 = 0, (4.15)

∂θ

∂S
∣
S=L

= 0, (4.16)

∂2θ

∂S2
∣
S=L

= 0. (4.17)

Considering that the loading on the beam arises from the pressure difference across the beam,
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the tension T is neglected. It is assumed to be small compared to the bending moment and

shear force. Therefore, equation 4.12 is superfluous. We integrate equation 4.11 from S to L

and making use of the boundary conditions of equation 4.17, we obtain

D
∂2θ

∂S2
= −m sin(θ)∫

L

S
(∂

2X

∂t2
)dŜ +m cos(θ)∫

L

S
(∂

2Y

∂t2
Ŝ)dŜ − ∫

L

S
PdŜ. (4.18)

To make the system dimensionless, in accordance with the literature on flag flutter (Eloy

et al., 2007; Michelin et al., 2008a), We define the reduced velocity and the mass number,

respectively

U∗ = U∞L
√
ms

D
, (4.19)

M∗ = ρfL
ms

, . (4.20)

where U∞ is the free-stream velocity, L is the length of the axial beam or half-length of the

normal beam, ms is the mass per unit length and width of the beam, and ρf represents the

density of fluid. Dimensionless coordinates, time, and pressure along the beam are as follows,

s = S
L
, x = X

L
, y = Y

L
, τ = tU∞

L
, p = P

1
2ρfU

2
∞

. (4.21)

By substituting these parameters in equation. 4.18, we can rewrite it in the dimensionless

form:

1

U∗2

∂2θ

∂s2
= − sin(θ)∫

1

s
ẍdŝ + cos(θ)∫

1

s
ÿdŝ − 1

2
M∗∫

1

s
pdŝ, (4.22)

where ẍ and ÿ represent the second derivative of x and y with respect to τ .

Similarly to Mansfield and Simmonds (1987), we define the deformation potentials:

ub = ∫
1

s
xdŝ, (4.23)

vb = ∫
1

s
ydŝ. (4.24)
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Upon differentiating these potentials with respect to s twice and using equations 4.10 and

4.21, we get

∂2ub
∂s2

= − cos θ (4.25)

∂2vb
∂s2

= − sin θ. (4.26)

The deformation potentials of equation 4.23 and equation 4.24 are substituted into equation

4.22 to yield

1

U∗2

∂2θ

∂s2
= −üb sin θ + v̈b cos θ − 1

2
M∗∫

1

s
pdŝ. (4.27)

The system of equations 4.25–4.27 governs the beam mechanics for three independent vari-

ables u, v, θ as a function of time τ and space s. Even when omitting the pressure term,

these equations are non-linear. To solve these equations, we adopt the quasi-linearisation

approach of Stolte and Benson (1992). Equations 4.25–4.27 are rewritten as

∂2ub
∂s2

− θ sin θ̃ = − cos θ̃ − θ̃ sin θ̃, (4.28)

∂2vb
∂s2

+ θ cos θ̃ = − sin θ̃ + θ̃ cos θ̃, (4.29)

1

U∗2

∂2θ

∂s2
+ θ ( ¨̃ub cos θ̃ + ¨̃vb sin θ̃) = θ̃ ( ¨̃ub cos θ̃ + ¨̃vb sin θ̃) − üb sin θ̃ + v̈b cos θ̃ − 1

2
M∗∫

1

s
pdŝ.

(4.30)

where quantities with the tilde (̃ ) represent the last known approximation. The tilde quan-

tities were evaluated in the last iteration and the other quantities are to be evaluated. We

assume that the differences between the tilde and the non-tilde quantities are small and tend

to zero as the scheme converges.

4.2.4 Structure Solver

The structure solver developed in this work solves the discretized equations with a second

order central difference method for the spatial terms, and a second order implicit backward

Euler method (BDF2) for the time integration. The discretization renders the equations



32

in the matrix form which are solved using the BiConjugate Gradient STABilized method

(BiCGSTAB) to describe the position of the beam in time.

The system of equations 4.28–4.30 are discretized using the finite difference method. We

assume N points along the beam, which results in elements with length of ∆s = L/(N − 1).

In order to get the discretized from of the system of equations, we substitute the partial

derivative terms in space by the following approximate finite differences

∂2ub
∂s2

= ub
n+1
i+1 − 2ubn+1

i + ubn+1
i−1

∆s2
+O(∆s2), (4.31)

∂2vb
∂s2

= vb
n+1
i+1 − 2vbn+1

i + vbn+1
i−1

∆s2
+O(∆s2), (4.32)

∂2θ

∂s2
= θ

n+1
i+1 − 2θn+1

i + θn+1
i−1

∆s2
+O(∆s2), (4.33)

and the two time derivatives are substituted by following backward Euler finite differences

üb =
∂2ub
∂τ 2

= 2ubn+1
i − 5ubni + 4ubn−1

i − ubn−2
i

∆τ 2
+O(∆τ 2), (4.34)

v̈b =
∂2vb
∂τ 2

= 2vbn+1
i − 5vbni + 4vbn−1

i − vbn−2
i

∆τ 2
+O(∆τ 2). (4.35)

After substitution, equations 4.28–4.30 become

ub
n+1
i+1 − 2ub

n+1
i + ubn+1

i−1 −∆s2θn+1
i sin θ̃n+1

i = ∆s2(− cos θ̃n+1
i − θ̃n+1

i sin θ̃n+1
i ), (4.36)

vb
n+1
i+1 − 2vb

n+1
i + vbn+1

i−1 +∆s2θn+1
i cos θ̃n+1

i = ∆s2(− sin θ̃n+1
i + θ̃n+1

i cos θ̃n+1
i ), (4.37)

1

U∗2
(θn+1
i+1 − 2θn+1

i + θn+1
i−1 ) +∆s2θn+1

i ( ¨̃un+1
bi

cos θ̃n+1
i + ¨̃vn+1

bi
sin θ̃n+1

i )

+ ∆s2

∆τ 2
(2ubin+1 sin θ̃n+1

i − 2vbi
n+1 cos θ̃n+1

i ) = ∆s2θ̃n+1
i ( ¨̃un+1

bi
cos θ̃n+1

i + ¨̃vn+1
bi

sin θ̃n+1
i )

+ ∆s2

∆τ 2
[(5ubni −4ub

n−1
i +ubin−2) sin θ̃n+1

i +(5vbin−4vbi
n−1+vbin−2) cos θ̃n+1

i ]−∆s2 1

2
M∗∫

1

s
pdŝ.

(4.38)
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The boundary conditions of 4.15 and 4.16 are discretized using second order one-sided finite

differences. At the clamped side of the beam we have

x∣s=0 =
∂ub
∂s

∣s=0 =
−1.5ubn+1

1 + 2ubn+1
2 − 0.5ubn+1

3

∆s
= 0, (4.39)

y∣s=0 =
∂vb
∂s

∣s=0 =
−1.5vbn+1

1 + 2vbn+1
2 − 0.5vbn+1

3

∆s
= 0, (4.40)

θ∣s=0 = θn+1
1 = 0. (4.41)

At the free end (s = 1) the ub and vb are zero based on equations 4.23 and 4.24. In addition,

equation 4.16 is the last boundary equation for the free end. Therefore, the discretized

boundary equations are

ub∣s=1 = ubN = 0, (4.42)

vb∣s=1 = vbN = 0, (4.43)

∂θ

∂s
∣
s=1

= 0.5θn+1
N−2 − 2θn+1

N−1 + 1.5θn+1
N

∆s
= 0. (4.44)

The three equations of 4.36–4.38 are linear and can be written in matrix form AX = B to

find the solution vector X at each timestep, where X is

X = [ub1, θ1, vb1, ub2, θ2, vb2, ..., ubN , θN , vbN].

The approximate solution values are estimated by known solution values of the previous

timestep (ũb
n+1
i = ubni , ṽbn+1

i = vbni , θ̃n+1
i = θni ). Then the linear system of equations of 4.36, 4.37

and 4.38 are solved to find the unknown solution vector. The approximate values are com-

pared to the new solution. If the error is acceptable, then the iterative process is terminated.

The difference is calculated using the RMS error given by

Error =
¿
ÁÁÀ 1

N − 1

N

∑
i=1

(Xn+1
i − X̃n+1

i )2. (4.45)
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At the first timestep, the solution of the three previous timesteps are needed to solve the linear

system of equations and advance in time. The mode shapes of a linear beam is assumed to

represent the initial shape of the beam. We consider the shape of the beam at three previous

timesteps to be the same as the mode shape of a linear beam (Xn = Xn−1 = Xn−2). For a

linear beam, the mode shapes can be found analytically using the following equation

y = A[(coshβnx − cosβnx) +
cosβnL + coshβnL

sinβnL + sinhβnL
(sinβnL − sinhβnL)], (4.46)

where A is the amplitude of the vibration, L is the length of the beam and βn values corre-

spond to the natural frequency of the nth mode shape of the beam. The values for the first

three mode shapes are shown in table 4.1.

Table 4.1 Values of βn for the first three mode shapes of a clamped-free beam (from Thomson
and Dahleh 1998)

n βnL wn/w1

1 1.8751 1.0000
2 4.6941 6.2669
3 7.8548 17.5475

To determine the stability of the reconfiguring beam, the dimensionless total energy Eb

is used, given by

Eb =
1

2
U∗2∫

1

0
[(∂x
∂τ

)2 + (∂y
∂τ

)2]2
ds + 1

2 ∫
1

0
(∂

2y

∂x2
)2ds. (4.47)

where the partial differential terms are approximated by second order finite differences,

∂x

∂τ
= 1.5xn+1

i − 2xni + 0.5xn−1
i

∆τ
+O(∆τ 2), (4.48)

∂y

∂τ
= 1.5yn+1

i − 2yni + 0.5yn−1
i

∆τ
+O(∆τ 2), (4.49)

∂2y

∂x2
= ∂θ
∂s

= 0.5θn+1
i+1 − 0.5θn+1

i−1

∆s
+O(∆s2). (4.50)
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4.2.5 Coupling Fluid and Structure Solvers

The decomposition of fluid and the structure domains enforces kinematic and dynamic con-

tinuity for the shared interface Γ:

VΓ = ddΓ

dt
, (4.51)

σS
Γ ⋅ n = σF

Γ ⋅ n, (4.52)

where V is the fluid velocity, d is the structure displacement, n is the normal vector at the

interface and σS and σF are stresses from the structure and the fluid domains, respectively.

In the current project, a nearest neighbor method is implemented for transferring the

pressure forces from the fluid to the structure solver. A linear interpolation of the pressure of

the two nearest fluid nodes is used as the pressure on the structure nodes. Even though the

linear interpolation appears sufficient in our study, we should note that it does not ensure

the conservation of energy at each transfer of the pressure and displacement data between

two solvers. For the temporal coupling of the flow and structure solvers, both partitioned

and iterative partitioned approaches in chapter 2 are implemented.

4.3 Wind Tunnel Experiments

The experiment is performed in the closed-loop wind tunnel (Model 407, ELD. Inc., Lake City,

Minnesota) of the Fluid-Structure Interactions Laboratory. The wind tunnel has a test section

of 60x60 cm2 and can produce a maximum air speed of 90 m/s. The operator manually sets

the frequency of the wind-tunnel compressor and the corresponding flow velocity is measured

by a static Pitot tube placed upstream of the tested specimens.

We adapted the experimental setup from Hassani et al. (2016) (figures 4.2–4.3). A 6-

axis load cell (ATI GAMMA, ATI Industrial Automation, Apex, North Carolina) measures

flow-induced forces on the samples. In the setup, 3 different metallic threaded rods (masts)

can be attached to the load cell with adapted acrylic bases machined with a laser encoder

(SPEEDY 300, Trotec Laser GmbH, Austria) in the Polytechnique FabLab (PolyFab Nor-



36

mand Brais). Plates are clamped to the mast using wires wrapped around the rod (figure 4.4).

(a) (b)

Figure 4.2 (a) side view of the wind tunnel setup. The setup consists of a motor (1), force
balance (2), aluminum frame (3), wooden panel (4), metallic mast (5). (b) Isometric view of
the mast (5) and the sheet specimen (6).

Figure 4.3 The closed-loop wind tunnel of the Fluid-Structure Interaction laboratory. The
test section is shown at the center of the image.
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(a) (b)

Figure 4.4 (a) The specimen and the mast attached to the top surface of the test section.
The Pitot tube is shown in the center-left corner. (b) Three sizes of specimens attached to
three different masts (approx. 2, 5 and 10 mm of diameter)

With the aim of diversifying mechanical properties of the tested specimens, and taking

account materials accessibility, 5 different materials with specific thicknesses t were selected:

1. Retro-projector acetate (Acetate, t = 0.1mm)

2. Polyester (Mylar, t = 0.09mm)

3. Polyester (Mylar, t = 0.184mm)

4. Polypropylene (Yupo, t = 0.16mm)

5. Polytetrafluoroethylene (PTFE, t = 0.23mm), particularly chosen for its high density

and its theoretically low bending rigidity.

First, the densities per area ms (kg/m2) of the sheets are measured by weighting known

number of sheets and sizes in an accurate balance. Then, bending properties of the samples

are obtained by a flexural 3-point test described in the next section. We cut specimens of

different sizes with a laser encoder. Their aspect ratio was all fixed at 2:1 in the experi-

ment to ensure geometrical similarity. Table 4.2 lists detailed information about the flexible

rectangular plates tested.
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Table 4.2 Characteristics of flexible rectangular plate specimens.

Specimen Length Width Flexural Rigidity Area Density
Label L (m) W (m) D (Nmm) ms (kg/m2)

Mylar009 0.024 0.012 0.25 0.112
Mylar009 0.026 0.013 0.25 0.112
Mylar009 0.03 0.015 0.25 0.112
Mylar009 0.04 0.02 0.25 0.112
Mylar009 0.06 0.03 0.25 0.112
Mylar009 0.08 0.04 0.25 0.112
Mylar009 0.1 0.05 0.25 0.112
Mylar009 0.14 0.07 0.25 0.112
Mylar009 0.24 0.12 0.25 0.112
Mylar009 0.27 0.135 0.25 0.112
Acetate01 0.028 0.014 0.43 0.135
Acetate01 0.03 0.015 0.43 0.135
Acetate01 0.04 0.02 0.43 0.135
Acetate01 0.06 0.03 0.43 0.135
Acetate01 0.08 0.04 0.43 0.135
Acetate01 0.1 0.05 0.43 0.135
Acetate01 0.14 0.07 0.43 0.135
Acetate01 0.24 0.12 0.43 0.135
PTFE023 0.036 0.018 0.571 0.41
PTFE023 0.04 0.02 0.571 0.41
PTFE023 0.05 0.025 0.571 0.41
PTFE023 0.06 0.03 0.571 0.41
PTFE023 0.07 0.035 0.571 0.41
PTFE023 0.08 0.04 0.571 0.41
Yupo016 0.04 0.02 1.02 0.151
Yupo016 0.06 0.03 1.02 0.151
Yupo016 0.08 0.04 1.02 0.151
Yupo016 0.1 0.05 1.02 0.151
Yupo016 0.14 0.07 1.02 0.151
Yupo016 0.2 0.1 1.02 0.151
Yupo016 0.24 0.12 1.02 0.151
Yupo016 0.27 0.135 1.02 0.151
Yupo016 0.3 0.15 1.02 0.151
Yupo016 0.4 0.2 1.02 0.151

Mylar0184 0.046 0.023 2.53 0.2476
Mylar0184 0.05 0.025 2.53 0.2476
Mylar0184 0.06 0.03 2.53 0.2476
Mylar0184 0.08 0.04 2.53 0.2476
Mylar0184 0.1 0.05 2.53 0.2476
Mylar0184 0.14 0.07 2.53 0.2476
Mylar0184 0.2 0.1 2.53 0.2476
Mylar0184 0.24 0.12 2.53 0.2476
Mylar0184 0.27 0.135 2.53 0.2476
Mylar0184 0.3 0.15 2.53 0.2476
Mylar0184 0.4 0.2 2.53 0.2476
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4.3.1 Flexural rigidity measurement

To measure the flexural rigidity of each material, we use a 3-point flexural test following

the ASTM D790 standard procedure. A 5N-capacity load cell (MTS Systems Corp., Eden

Prairie, MN) was selected and is fixed on an electromechanical test machine (INSIGHT). The

specimen’s shape and size were selected according to the standard, i.e. rectangular specimen

of 2” (50.8mm) length and 0.5”(12.7mm) width. The specimen are placed on the two inferior

noses. Figure 4.5(a) and 4.5(b) show the 3-point test setup and load-deflection curve for one

example test, respectively.

(a) (b)

Figure 4.5 Flexural rigidity measurement and sample’s bending properties acquisition. (a)
3-point flexural test setup, (b) Slope extraction from load-deflection curve of (Mylar, t =
0.184mm) sample.

During the downward motion, the cell measures the relation between the deflection in

the middle of the sample and the load induced by the specimen bending on the cell. After

removing initial motion data (corresponding to non-linear behavior), the tangent modulus of

elasticity in bending (EB) can be extracted from the supposed elastic behaviour (linear range

of the load-deflection curve) of the material given by

EB = s
3m

4bt3
, (4.53)

where s is the support span (26mm), b is the width of the specimen (12,7mm), t the thickness
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of the sample, and m the slope of the tangent to the elastic straight-line portion of the load-

deflection curve. Then, the flexural rigidity D is computed by

D = EBt3

12(1 − ν2) , (4.54)

where ν is the Poisson’s ratio of the material (set to zero for ease of calculation). We have to

consider the influence of the plate direction in measuring bending rigidity of the materials,

therefore, both length and width bending directions of sheets are tested. Plus, to minimize

the error due to previous folding of the sheets, each direction is tested twice, and the value

of the bending rigidity is computed from the average of these two measurements.
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CHAPTER 5 RESULTS

In the first part of this chapter, we begin with verification of our structural solver where we

present a well-known benchmark in the FSI community—a cantilever beam attached to a

square cylinder subjected to fluid flow. Secondly, we show the flutter instability of a conven-

tional flag configuration, followed by the reconfiguration of the normal beam with an analysis

of its dynamics and post-critical loading. Lastly, we present wind tunnel measurements of

the normal beam reconfiguration and flutter.

5.1 Numerical Results

The following parameter values are used for all simulations unless otherwise stated.

N = 101, e/L = 0.01, M∞ = 0.2, tolf = 10−5, tols = 10−10, (5.1)

where N is the number of elements along the beam, e/L is the ratio of beam thickness to

the length, M∞ is freestream Mach number, and tolf and tols are stopping criteria for fluid

and structure solvers, respectively. The results for the axial beam are derived by a simple

partitioned approach, while the results of the normal beam section is obtained by the iterative

partitioned approach (Algorithm 2), where tol is set to 10−4.

5.1.1 Structural Solver Verification

In order to verify that the structural solver is correctly implemented, we look at the order of

convergence in the space s and time t domains. We test the structural solver by initializing

it with a prescribed displacement and simulating the ensuing free vibration. In this case, the

first mode shape of the beam described by equation 4.46 is selected as the initial condition.

To find the convergence rate in the time domain, we set the initial value of the timestep

∆t = 0.01 and halve this value seven times, so we simulate the free vibration of the beam
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for ∆t = 0.01 to ∆t = 0.01 × 2−7. The number of elements along the beam N is set to 100.

The tip displacement L2 norm is calculated with respect to that computed for the finest time

discretization as the reference to find the error. In the space domain, we also start with 100

elements N and double this value six times to N = 100 × 26. At the end of the simulations,

the L2 norm of the position of the beam is calculated with respect to that found with the

finest element size ∆s as the reference to find the error. The timestep ∆t is fixed to 0.01.

The error is calculated by

Error =
¿
ÁÁÀ∆xi

n

∑
i=1

(Yf i − Yi)2, (5.2)

where ∆x is set to the specified ∆t or ∆s for the time and space domain, and n is the

number of beam elements. Figure 5.1 shows the error versus time and space discretization

levels. Since the slope of the lines are two and the theoretical order of accuracy in time and

space is recovered, we conclude that the code is implemented correctly and is second order

accurate in time and space.
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Figure 5.1 Verification of the structural solver, order of convergence evaluated (a) in time;
and (b) in space. The rate of convergence is 2, since the slope of the lines is 2 in both cases.
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5.1.2 A Cantilever Beam Attached to a Square Cylinder

This benchmark was first presented by Wall (1998) and used by many researchers for verifica-

tion of FSI codes. It consists of a rigid square and a flexible cantilever beam attached to the

square (figure 5.2). The physical properties of the fluid and solid domains are shown in table

5.1. The fluid flow properties corresponds to a Reynolds number of 332 with respect to the

length of the square. At this Reynolds number, vortices are expected to shed downstream of

the square. The cantilever beam is initially positioned horizontally with zero displacement.

The vortices interact with the cantilever beam, and the beam undergoes vortex-induced vi-

brations. The maximum tip displacement in the vertical direction and the frequency of the

vibration are used as the verification criteria.

The Mach number is set to M∞ = 0.2 similarly to Sanchez et al. (2016). Since the

structure solver uses dimensionless numbers, we have to convert the data in table 5.1 to

the appropriate dimensionless form. Therefore mass ratio and reduced velocity are set to

M∗ = 0.79 and U∗ = 2.37, respectively. The grid generated by NSGRID is shown in figure

5.3. Two snapshots of the simulation are presented in figure 5.4. As shown in figure 5.5 the

beam is initially at rest with zero displacement, and gradually starts to oscillate with the

maximum tip displacement of 1.36 cm. The dimensionless frequency of the tip displacements

which is evaluated by Fourier analysis is found to be f = 0.246, or equivalently 3.15 Hz. These

Table 5.1 Fluid and solid properties used in the Wall (1998) benchmark

Fluid
density (ρf ) 1.18 × 10−3 kg ⋅m−3

viscosity (µf ) 1.82 × 10−4 Pa ⋅ s
inlet velocity (U∞) 51.3 m ⋅ s−1

Solid
density (ρf ) 0.1 kg ⋅m−3

Young’s modulus (E) 2.5 × 106 Pa
Poisson’s ratio (ν) 0.35 -
Beam length (L) 4 m
Beam thickness (e) 0.06 m
Square side length (c) 1 m
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Figure 5.2 Geometry of the Wall (1998) benchmark (Image from Hübner et al. 2004)
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Figure 5.3 (a) The grid generated by NSCODE when the cantilever beam is at rest; (b)
simply a close-up of the grid in figure (a).
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(a) (b)

Figure 5.4 Snapshots of the Wall (1998) benchmark in half period of the oscillation from (a)
maximum to (b) minimum Ytip displacement. Colors present vorticity magnitude, from -1
(red) to 1 (blue).

result are in very good agreement with the available result in the literature shown in table

5.2.

Table 5.2 Compilation of literature results for the Wall (1998) benchmark.

Average frequency (Hz) Max tip displacement (cm)
Wall (1998) 3.08 1.31
Matthies and Steindorf (2003) 2.99 1.34
Dettmer and Perić (2006) 2.96 - 3.31 1.1 - 1.4
Wood et al. (2008) 2.78 - 3.125 1.1 - 1.2
Kassiotis et al. (2011) 3.17 1.0
Olivier et al. (2009) 3.12-3.23 0.8 - 1.0
Present Computations 3.15 1.36

5.1.3 Stability of Axial Beam Configuration in Fluid Flow

In this section, we consider the stability of axial beam configuration, a classical 2D can-

tilevered flag with bending rigidity. Figure 5.6 shows the computational domain and a snap-

shot of the flag deformation in the fluid flow. The clamped end of the beam is located at the

center of the circular domain, the radius of which is 50 times the beam length.
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Figure 5.5 Validation simulation of the Wall (1998) benchmark with the parameters of table
5.1: (a) time-trace of the dimensionless tip displacement of the cantilever; (b) its correspond-
ing Fourier transform.
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Figure 5.7 shows the timestep convergence study done by estimating the beam total

energy with the partitioned approach. As the timestep decreases, the difference in total

energy prediction tends to zero, to the extent that the lines correspond to two timesteps of

dτ = 0.01 and dτ = 0.005 are almost indistinguishable. In our flag stability study, we set the

timestep at 0.01.

To determine the critical velocity at which the flag becomes unstable, the total energy Eb

of the flag is monitored. As shown in figure 5.8, for the mass ratio of 0.5, the total energy

decreases for the reduced velocity of 7 and 8.4, whereas for the reduced velocity of 9.7 and

above the total energy increases with time. Therefore, the critical reduced velocity is between

8.4 and 9.7. Using a bisection method, the critical reduced velocity could be determined with

the desired accuracy at each mass ratio.

Figure 5.9(a) maps the performed simulations, marking each one with a circle when the

energy decreases and with a cross when the energy increases with time. Tracing a curve to

separate the circles and crosses, we can establish the axial beam stability boundary. Three

Figure 5.6 Computational domain for the axial beam configuration. A snapshot of the axial
beam deformation is shown, where the leading edge is clamped and the rest of the beam can
freely move in the flow field.
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Figure 5.7 Sensitivity of the beam energy computation with the timestep size (M⋆ = 0.5, U⋆ =
9).
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Figure 5.8 Example of the monitored total energy of the beam in our iterative method in
finding the stability boundary by varying the reduced velocity (M⋆ = 0.5, U⋆ = 9).
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distinct lobes are visible in boundary curve of figure 5.9(a), which correspond to the flutter

instability occurring in the second, third and fourth modes of vibration of the beam.

We redraw our computed stability boundary and compare it with those previously ob-

tained for similar systems by Eloy et al. (2008) and Michelin et al. (2008b) in figure 5.9(b).

The agreement between the stability predictions of our model and those in the literature

confirms our model’s capability to accurately predict the onset of the flutter instability.

Figure 5.10 presents snapshots of the position of the unstable axial beam for three com-

binations of reduced velocity and mass number, which correspond to the three lobes in figure

5.9(b). At a low mass number of M∗ = 0.5, the axial beam loses stability in the second beam

mode (figure 5.10 a), at M∗ = 3 it is the third beam mode which becomes unstable (figure

5.10 b), and at M∗ = 10 the fourth beam dominates the exhibited dynamics (figure 5.10

c). The numerical scheme captures well the limit cycle oscillation of the flag in figures 5.10

(b-c). However, the simple partitioned method diverges for the second mode of vibration

(figure 5.10 a) and limit cycle oscillations cannot be simulated. This indicates stronger fluid

and structure interaction at lower mass numbers. Hence using a strong coupling approach is

essential.

For comparison, the observed dynamics of the fluttering beam simulated with a vortex

shedding model by Michelin et al. (2008b) is shown for the same parameter values in figures

5.10 (d-f). We can see that for the three cases, there is good agreement with our simulations in

terms of mode number and vibration amplitude, although the low mass number case diverges

numerically in our simulations.

Normal beam

In this section, we consider the normal beam configuration, which is an idealised system to

study the reconfiguration of plants subjected to wind (Gosselin et al., 2010). We use the

chimera, a.k.a. the overset, technique in order to have greater flexibility in grid generation

for the normal beam configuration (figure 5.11). The chimera technique allows us to use
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(a)

Unstable

Stable

(b)

Figure 5.9 Stability map of the axial beam configuration: (a) stable (○) and unstable (×)
dynamics, where each point corresponds to one simulation for a set of mass ratio (M∗) and
reduced velocity (U∗); (b) comparison of the critical reduced velocity as obtained with the
present numerical procedure with the vortex shedding model of Michelin et al. (2008b) and
the linear stability analysis of Eloy et al. (2008).

two different overlapping grids where the information is exchanged at the grid’s boundary

via interpolation. The chimera technique was implemented by Guay (2017). We use it to

increase the robustness of the developed FSI framework.

The combined NSCODE and beam solver integrates the system in time. To obtain simu-

lations of the normal beam configuration for various reduced velocities, the solver is always

initialised with a steady solution of the flow over the rigid normal beam. Then the beam

rigidity is gradually decreased with time. This amounts to keeping the Mass M∗ and Mach

M∞ numbers constant, while increasing the reduced velocity U∗, or equivalently the Cauchy

number CY = M∗U∗2. A sudden change in reduced velocity may lead to transient effects

such as vortex-induced vibrations, which are undesirable for static reconfiguration simula-

tions. To avoid these undesired effects and ensure a gradual variation, the reduced velocity
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Figure 5.10 Axial beam snapshots as simulated by our model for: (a) M∗ = 0.5, U∗ = 9; (b)
M∗ = 3, U∗ = 12; (c) M∗ = 10, U∗ = 12; and by Michelin et al. (2008b) with their vortex
shedding model for: (d) M∗ = 0.5, U∗ = 9; (e) M∗ = 3, U∗ = 12; (f) M∗ = 10, U∗ = 12.

is ramped-up following a cosine function of simulated time

U∗ = 1

2
(U∗

f −U∗

0 )[1 − cos(
πτ − πτi
τf

)] +U∗

0 , (5.3)

where, U∗

0 is the initial reduced velocity, U∗

f is the final reduced velocity, τ is the scaled time,

and τi and τf are the initial and the final scaled time by which the bending rigidity is changed

to reach its maximum. Beyond τf , U∗ is maintained constant to study the dynamic response

of the system. If the system starts to flutter, then it means that the critical U∗ has been

reached.

Since we use a time-integration method to investigate the system dynamics, we need to

define a criterion to assess the system’s stability. The stability criteria is defined in figure

5.12 as an example of an unstable case. After the ramp-up in reduced velocity from τi = 10

to τf = 40, a constant reduced velocity of U∗

f = 6 is reached. We can see that after a transient
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Figure 5.11 Computational domain for the normal beam configuration: (a) the full domain
around the underformed beam of length 2; and (b) a close-up of the deformed beam showing
the chimera grids, one of them attached to the structure and conforming when the beam is
deformed, and a secondary cartesian mesh which is fixed in space. The full domain grid is
coarse at four corners, while refined toward the center of the domain where the normal beam
is located.
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period, the total beam energy reaches a limit cycle oscillation. We set the stability criteria

as 10% increase in total energy of the beam Eb compared to the total energy at the end of

the ramp-up period Ebf . Since in this case the total beam energy increases by more than

10% after τ = τf , we consider this case as an unstable case.

5.1.4 Reconfiguration Limit

Figure 5.13 shows the reconfiguration of a normal beam with mass number M∗ = 0.5. For

a Cauchy number smaller than one—the bending rigidity is large compared to dynamic

pressure—the beam is not significantly deformed (figure 5.13 a). As the beam rigidity is

decreased, or Cauchy number is increased, the normal beam bends in the flow direction and

becomes more streamlined. In addition to streamlining, the projected area reduces. Stream-

lining and area reduction are the two basic mechanisms of drag reduction by reconfiguration

(Gosselin et al., 2010). For CY < 15.125 (or equivalently, U∗ < 5.5), the solver finds a stable

stationary solution. Slightly increase of this value leads to flapping due to flutter instability.

Figure 5.13 (d) shows several arrangements of the normal beam in one flapping cycle. Further

increase in Cauchy number makes the normal beam movement completely irregular.

In order to find the critical velocity for the normal beam case, we run the ramping of

the reduced velocity for several integer values of U∗

f , and for a range of mass ratios from 0.1

to 10. Similar to axial beam case, figure 5.14(a) presets the performed simulations, where a

circle represents a stable simulation and a cross represents an unstable case. The stability

boundary line is chosen as the mean value between the stable and unstable case. shows the

obtained critical velocity and compares that to the axial beam case. Figure 5.14(b) present

the same stability boundary with respect to Cauchy number. Since the critical Cauchy

number increases at higher mass ratios, physically, it indicates that lighter normal beams

bend and reconfigure more before flapping. Therefore, reconfiguration is more beneficial at

higher mass ratios. For comparison, we draw the stability boundary of both axial nad normal

beam configurations in figure 5.15. While the axial beam clearly has 3 lobes corresponding
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Figure 5.12 Ramping-up of the reduced velocity following a cosine function of time and
corresponding simulated total energy of the beam. This is an example of an unstable state
(M∗ = 0.5, U∗ = 6) for the normal beam.

(a) (b) (c) (d)

Figure 5.13 Normal beam deformation with increasing Cauchy number. (a) Initial condition
of the plate, CY = 0.0005; (b) CY = 4.5; (c) CY = 12.5; and (d) slightly beyond stable point,
CY = 21.125. M∗ = 0.5 for all cases. The critical Cauchy number for this mass ratio is 15.125
(or U∗ = 5.5).
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to transition to different shape modes, the normal beam shows only one lobe. We discuss

different normal beam regimes and dynamics in the next section.

5.1.5 Plate Dynamics in Different Mass Ratio Regimes

The different types of plate dynamics observed for the normal beam configuration is broadly

classified as the symmetrical and the anti-symmetrical modes. The onset of each regime

depends on the mass ratio of the plate, and we observe that the mass ratio governs not only

the critical Cauchy number, but also the type of vibration mode in the post-critical regime.

Symmetrical mode

Figure 5.16(a) to 5.16(c) show a symmetrical mode for a plate, where M∗ = 0.5. For mass

ratios lower than 1.0, we observe that the plate undergoes a constant amplitude limit cycle

oscillation for a Cauchy number slightly higher than the critical value. Increasing the Cauchy

number leads to a very irregular, chaotic motion of the plate. The figures show that the

fluttering plate releases two symmetric vortices from its tips. Since the plate tips are far from

each other, the vortices do not interact with one another. Thus, we observe a symmetrical

mode.

Anti-symmetrical mode

Figure 5.16(d) to 5.16(f) show an anti-symmetrical mode for a plate, where M∗ = 5. For mass

ratios equal and greater than 1.0, the plate deformation prior to flutter is relatively large.

Thus, the plate tips are close and the shed vortices interact with each other. This leads

to an anti-symmetric regime. Similar to the symmetric regime, the plate shows a constant

amplitude limit cycle oscillation after reaching the critical Cauchy number and chaotic motion

for higher Cauchy numbers.
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Figure 5.14 (a) Critical reduced velocity for the normal beam configuration obtained with
present numerical procedure. Each point correspond to single simulation. (b) critical reduced
velocity is transformed to critical Cauchy number and shown as a function of mass ratio.
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Figure 5.15 The normal beam stability boundary is compared with axial beam case.
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(a) τ = 0 (b) τ = T /2 (c) τ = T

(d) τ = 0 (e) τ = T /2 (f) τ = T

Figure 5.16 (a), (b) and (c) symmetrical mode for M∗ = 0.5 and U∗ = 6.5. (d), (e) and (f)
anti-symmetrical mode for M∗ = 5.0 and U∗ = 5.0. Three snapshots of the normal beam
deformation in one period T is shown. Colors present vorticity magnitude, from -3 (red) to
3 (blue).
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5.1.6 Spectral Analysis

We look at tip displacement of the upper part of the normal beam in this section to identify

the excited modes of the beam, and to see how shedding of vortices change the plate dynamics.

To reach this goal, we select two states of the beam, one of which has a mass ratio of less

than 1.0 (M∗ = 0.5), and the other one has a mass ratio greater than 1.0 (M∗ = 2.0). These

two cases are shown in figures 5.17 and 5.18, respectively. Both cases are slightly beyond the

stable state.

Figure 5.17 (a) exhibits time-trace of the tip displacement and corresponding Fourier

transform. The normal beam is straight in the beginning so Ytip is 1. Then we ramp-up

U∗ so the normal beam bends and the tip displacement reduces to around 0.7. Thereafter

the normal beam begins flapping. Figure 5.17 (b) shows the Fourier transform of the tip

displacement, where the first three natural frequency of the beam is added. The three natural

frequencies are derived from the axial beam free vibration simulations. From figure 5.17 we

can conclude that the dominant excited mode is the second mode of the beam, and the first

mode is not excited. This is in agreement with our observation for the axial beam, where the

first mode was not unstable. The excitation of the second mode is in some way expected,

since at this range of mass ratios, the axial beam is also unstable at its second mode.

Similar procedure is followed to obtain figure 5.18. However, figure 5.18 predicts that

when the mass ratios is greater than one, the normal beam dynamics is quite different. In

this case, none of the beam modes are excited, but the dominant frequency is equal to the

frequency of the vortex shedding behind the plate. which indicates that the plate dynamics

is mostly influenced by vortex shedding.

5.1.7 Modulation of Drag due to Reconfiguration and Flutter

To quantify the drag reduction, we use the reconfiguration number R as the drag of flexible

beam Dflexible to that of a perfectly stiff one Drigid. Figure 5.19 shows the variation of the

reconfiguration number and Cauchy number as a function of the scaled time. We compare
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Figure 5.17 (a) Time history of the tip displacement of the normal beam and (b) the frequen-
cies of the tip displacement curve derived by Fourier transform, M∗ = 0.5, U∗ = 6.5. The first
three natural frequencies of the axial beam are indicated by vertical lines.
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Figure 5.18 (a) Time history of the tip displacement of the normal beam and (b) the fre-
quencies of the tip displacement curve derived by Fourier transform, M∗ = 2, U∗ = 5. The
frequency of vortex shedding downstream of the normal beam and the first three natural
frequencies of the axial beam are indicated by vertical lines.
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drag reduction for two cases where M∗ = 0.5 and M∗ = 1.0. In both cases the Cauchy number

is increased to slightly above the stability limit and not in the the chaotic regime. At low

Cauchy numbers, the beam deformation is not significant and its drag is similar to that of an

equivalent rigid beam, i.e. R ≈ 1. This is shown in figure 5.19(a) and 5.19(b) when τ < 200.

For CY ≳ 1, the flow deforms the beam significantly and the reconfiguration number decreases

monotonically with increasing Cauchy number. While the reconfiguration number remains

below one for M∗ = 1.0, it becomes greater than one for the case of M∗ = 0.5. This is in

contrast to what Leclercq et al. (2018) observed for their normal beam model, where they

asserted that we can spot the drag force of a flexible plate to be greater than the rigid plate

only in rare ”snapping events” in the chaotic regime.

5.2 Experimental Results

We present the experimental data from the wind tunnel tests in this part. We confirm

that the oscillations of the normal beam configuration exist in three regimes of symmetrical,

anti-symmetrical and chaotic vibrations, similar to the numerical observations. Thomas

Raisson from École Polytechnique, France from April 2018 to July 2018 performed the wind

tunnel tests under the supervision of Prof. Laurendeau, Prof. Gosselin, and with help

from Mohammad Tari in the closed-loop wind tunnel at the Laboratory of Fluid-Structure

Interaction in Polytechnique Montreal during his internship.

5.2.1 Normal Beam

To detect the occurrence of flutter, a statistical analysis of drag records is used. For each

wind speed U , the drag force Fx is extracted from the record. In addition, the standard

deviation of the drag signal normalized by the mean value is computed every 0.2 sec and

then averaged during the 30s record to form the coefficient of variation Cv of the drag. A

typical observation of the flutter is shown in figure 5.20.

Figure 5.21(a) shows the drag (diamond) and the coefficient of variation Cv (triangles)
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Figure 5.19 Reconfiguration number R for (a) M∗ = 0.5 and (b) M∗ = 1.0. For heavy plates
corresponding to M∗ = 0.5, the loading due to the drag force on fluttering plate increases
beyond the rigid plate as reconfiguration number R increases to greater than one .

Figure 5.20 Reconfiguration of the normal beam with increasing flow velocity from left to
right (Mylar,t = 0.09mm, 8cmx4cm). The two pictures on the right show post-flutter state
of the normal beam.
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during a step by step increase of the flow velocity U . Although the drag curve is not com-

pletely smooth, no break is noticeable to indicate where flutter starts. However, a sharp

break is observable in Cv curve around a 21 m/s velocity. And this critical velocity matches

with visual observation of flutter.

Subsequently, a criteria based on the Cv slope is retained to evaluate between which tested

two speeds flutter is occurring:

Cv(U+) −Cv(U−)
U+ −U−

≥ 0.05, (5.4)

where U− and U+ are two subsequent flow velocity of the measurements. The critical velocity

is then defined as the lowest velocity at which the condition of equation 5.4 is satisfied. For

example, for the specimen plotted in figure 5.21(a), the critical velocity is U = 20.51 m/s.

In figure 5.21(b) the critical velocity of the normal beam configuration is shown for all five

tested specimens. Experimental results suggest that at lower mass ratios (heavier structures),

flutter occurs at higher flow velocities. A more qualitative description is presented in the next

section.

At this stage, we can compare the data from the experiments to the output of the sim-

ulations to quantify the accuracy of our model. Figure 5.22 shows that the simulation and

the experiment predict the similar values, although it seems that the simulation curve under-

predicts the instability boundary.

5.2.2 Symmetrical, Anti-symmetrical and Chaotic Motion

Once the critical velocity is reached, the plate vibrates which is visible to the naked eye. A

camera with 60 f.p.s. frame rate was also used to capture the fluttering motion of the plate.

We observe three different modes of vibration: the symmetrical mode where the motions

of the both tips were symmetric with respect to horizontal axis, the anti-symmetrical mode

where the two sides were in the opposite positions, and the chaotic mode where where the

shape of the reconfigured plate was flapping randomly. Depending on the mass ratio M∗ of
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(a) (b)

Figure 5.21 (a) The detection of the critical velocity using coefficient of variation of the drag
for (Mylar t=0.184mm) specimen. (b) Stability curves of the normal beam configuration.
Error bars represent the gap between two subsequent speed measurements providing each
critical reduced velocity.

Figure 5.22 The critical reduced velocity of the normal beam configuration in present numer-
ical and experimental setup. Both show the same trend but the experimental result predicts
higher reduced velocities. The deviation becomes more apparent in lower mass ratios.
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the sheet, three different post critical behaviours was noticed:

1. For higher M∗, corresponding to largest plates, the flutter directly appeared anti-

symmetrical.

2. For middle range M∗, the symmetrical mode was observed for low post-critical veloci-

ties, and anti-symmetrical is then observed for higher velocities.

3. For lower M∗, the nature of flutter could not be certainly determined, because of the

high flutter frequencies relative to the resolution of the camera (60 f.p.s.).
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CHAPTER 6 CONCLUSION

6.1 Summary of the Work

In this project an FSI framework is developed using an existing in-house flow solver and a

new nonlinear Euler-Bernoulli beam solver. We used the numerical framework to study the

interplay of reconfiguration and flutter of a flat plate under the fluid flow. In addition, wind

tunnel tests are preformed to validate the output of numerical simulations.

The flow solver NSCODE uses finite volume method to discretize the URANS equation,

and it was provided to the author in the beginning of the project. The nonlinear Euler-

Bernoulli beam solver is developed in this project, and is second order in time and space. An

ALE formulation transfers the motion of the structure to the fluid, while a linear interpolation

transfers the fluid pressure values on the surface to the structure solver.

A canonical example of FSI problems, i.e. stability of a convectional flag, is studied to

verify the numerical framework. The critical flutter velocity obtained using our method is

in agreement with the data in the literature. Later, the same framework is used to analyse

reconfiguration of a plate normal to the fluid flow. Numerical and experimental data show

that the normal plate reconfigures up to a certain limit before it begins to flutter. The

limit of the reconfiguration is described by two dimensionless numbers, Cauchy number and

reduced velocity. Similar to the conventional flag problem, this limit depends on mass ratio.

An increasing trend between critical flutter Cauchy number and mass ratio is observed,

suggesting that reconfiguration is more advantageous for lighter normal beams. Our spectral

analysis of the normal beam tip displacement shows that for a mass ratio of less than unity,

the plate is excited on its second mode, while for mass ratio of equal and greater than one

the nature of the physics is shifted to vortex-induced vibration. Therefore, we observe a

symmetrical mode of vibration for the low mass ratios, whereas the plate vibrate in anti-

symmetrical mode for higher mass ratios.
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6.2 Limitations and Future Works

There are several assumption made in this project that might change the final results. We

look at their limitation and propose possible solutions.

In order to decrease the computational cost and complexity caused by turbulence, we

used an inviscid flow model to analyze axial and normal beam configurations. Including the

viscosity of the fluid would add another dimensionless number to our analysis, i.e. Reynolds

number. Although viscous forces are not the input to the structure solver, varying the fluid

viscosity can change the flow field variables. The impact of Reynolds number is an interesting

path for the future works.

Both simple partitioned and iterative partitioned approach are implemented in this project.

We observed that the iterative partitioned approach is more robust as expected. However,

numerical experiment shows that for a specific grid and input parameters, the timestep is still

limited to a certain value. Additionally, convergence for mass ratios greater than 10 needs

more subiterations. Implementing a monolithic FSI solver might fix this issue.

We discovered that the size of the domain for the normal beam case can change the

dynamics of the plate. The domain size is fixed at 8L × 8L in simulations, where L is the

beam length. Using the domain of 50L shows an strong interaction of the shed vortices and

the plate, and as soon as Cy ≈ 1, we observe a coupled vortex-structure dynamics, which

unlike the wind tunnel experiments, does not allow us to identify the critical flutter speed.

Therefore, all the simulation are presented in the smaller computational domain. We believe

strong vortices exist due to two dimensionality of the simulations. The validation of this

hypothesis requires comparing the 2D simulation’s data with new 3D simulations.
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