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Abstract

The power consumption of the agitator is a critical variable to consider in the

design of a mixing system. It is generally evaluated through a dimensionless

number known as the power number Np. Multiple empirical equations exist to

calculate the power number based on the Reynolds number Re and dimen-

sionless geometrical variables that characterize the tank, the impeller, and the

height of the fluid. However, correlations perform poorly outside of the condi-

tions in which they were established. We create a rich database of 100 k com-

putational fluid dynamics (CFD) simulations. We simulate paddle and pitched

blade turbines in unbaffled tanks from Re 1 to 100 and use an artificial neural

network (ANN) to create a robust and accurate predictor of the power number.

We perform a mesh sensitivity analysis to verify the precision of the Np values

given by the CFD simulations. To sample the 100 k mixers by their geometrical

and physical properties, we use the Latin hypercube sampling (LHS) method.

We then normalize the data with a MinMax transformation to put all features

in the same scale and thus avoid bias during the ANN’s training. Using a grid

search cross-validation, we find the best architecture of the ANN that prevents

overfitting and underfitting. Finally, we quantify the performance of the ANN

by extracting 30% of the database, predicting the Np using the ANN, and evalu-

ating the mean absolute percentage error. The mean absolute error in the

ANN prediction is 0.5%, and its accuracy surpasses correlations even for

untrained geometries.

KEYWORD S

artificial neural networks, computational fluid dynamics, mixing, pre-processing methods

1 | INTRODUCTION

Mixing is one of the most important unit operations in
chemical engineering. Applications such as homoge-
nization, emulsification, and aeration for fermenta-
tion processes require agitation. To design mixing

systems, important quantities need to be considered,
such as the power consumption of the agitator and the
dimensionless mixing time. The choice of the agitator
is often motivated by the regime of operation (laminar
or turbulent), the kinematic viscosity, and the volume
of the fluid being mixed. Different kinds of impellers
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are used for different operating conditions. For exam-
ple, axial or radial discharge turbines (propellers,
Rushton, hydrofoils, and pitched blades) are used for
fluids with lower viscosity, whereas close-clearance
impellers (helical ribbons and anchors) are used for
viscous fluids.[1]

To characterize the power consumption, engineers
rely extensively on the dimensionless power number Np,
which relates the power consumption of the agitator to
the inertial work in the fluid and characterizes the energy
requirement of an agitated system:

Np ¼ P

ρN3D5 ð1Þ

with ρ representing the fluid’s density, N the impeller
rotational speed, D the impeller diameter, and P the
power consumption.[1–3]

The power number depends on dimensionless geo-
metrical properties that describe a given mixing system
as well as the Reynolds number Re:

Re ¼D2N
ν

ð2Þ

with ν representing the kinematic viscosity.[1–3]

The power number Np can be obtained through two
approaches: empirical correlations and computational
fluid dynamics (CFD) simulations.

Empirical correlations are power curves, where Np is
a logarithm function of Re and geometrical ratios using
the impeller diameter D as the reference length. These
correlations are generally built using experimental data
gathered on mixing systems.[4]

Np ¼ f Re,
T
D
,
H
D
,
C
D
,
l
D
,
w
D

� �
ð3Þ

Here, T is the width of the tank, H is the height of the
fluid inside the tank, C is the clearance of the impeller
from the bottom, l is the length of the blades, and w
is the width of the blades.

Those power curves behave differently for the laminar
regime (at low Reynolds) and for the turbulent regime
(at higher Reynolds). In the laminar regime, Np / Re�1,
meaning that the slope of Np is constant in logarithmic
scale. On the other hand, in the turbulent regime, Np

becomes constant. Usually, the transition between the
laminar regime and the turbulent regime occurs
around Re ¼ 200.[1]

Multiple correlations can be used to estimate the
power consumption of paddle and pitched blade turbine

(PBT) impellers.[5–8] These correlations generally fit on
power numbers obtained experimentally.

CFD is a robust and accurate tool to simulate mixing
systems. With validated software and an appropriate
mesh, velocity field, pressure, and torque can be easily
computed from CFD simulations.[2]

These two approaches present some limitations. On
the one hand, the correlations do not generalize to multi-
ple geometries without requiring new experimental data.
Indeed, the dependency between the power number Np

and the mixer geometry is so complex and non-linear
that an algebraic function cannot adequately represent
all possibilities. Furthermore, only few variations of geo-
metrical characteristics are investigated in the experi-
ments, which leads to undercoverage biases and, thus,
inaccuracies in the calculation of the power number Np.

On the other hand, if we use CFD simulations to pre-
dict the power consumption of a mixing system, a mesh
sensitivity analysis and multiple simulations are needed
to establish a power curve. This requires significant time,
computational resources, and expertise in meshing
and CFD.

Artificial neural networks (ANNs) are statistical
models that can predict continuous values through a
regression technique. By propagating signals through
multiple interconnected nodes that form a deep network,
ANNs take into account non-linear relationships between
inputs and outputs, like empirical correlations.[9] ANNs
have been shown to be able to model accurately multiple
chemical engineering problems such as internal faults
detection in heat exchangers,[10] process control using
model predictive control (MPC),[11] and also kinetic
modelling to optimize fluidized bed reactor perfor-
mance.[12] In mixing applications, it was demonstrated
that ANNs coupled with empirical correlations can pre-
dict the power and head characteristics of pump-mixers
from experimental data.[13] Nonetheless, ANNs have
never been used as an independent model to predict the
power number Np.

To overcome the lack of generality of the traditional
correlations and to avoid gathering an unrealistic amount
of experimental data, we propose the combination of
CFD and machine learning to estimate the power num-
ber of impellers. CFD can simulate mixing systems in
large numbers (e.g., 100 k configurations) in a relatively
short time thanks to high-performance clusters. The
machine learning approach gives a simpler and faster
predictor of the power number than CFD and a more
precise statistical regressor than correlations.

The main objective of this study is to predict power curve
from Re 1 to 100 of paddle and PBT mixers given their
geometrical characteristics and operating conditions.

BIBEAU ET AL. 5993
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First, we present the CFD methods and settings to predict
the power number for a mixing configuration. We then
describe the sampling method used to generate effi-
ciently a hundred thousand (100 k) mixing simulations
for the purpose of feeding a rich and large database to
the ANN. Using a grid search with cross-validation
(CV), we construct the ANN’s architecture by finding its
optimized hyperparameters. Finally, we test and analyze
the performance of the ANN’s training by evaluating
the loss function and by comparing the ANN’s results to
an empirical correlation.

Using an effective sampling method of the CFD
simulations and performing a data pre-processing, the
ANN is able to predict the power number with an
absolute error of 0.5%. It significantly outperforms
the correlation because it is able to generalize its pre-
dictions of the power number to a larger breadth of
geometrical configurations.

2 | MODELS AND METHODS

2.1 | Database generation

This section discusses the strategy employed to generate
the mixer database. We describe the dimensionless
parameterization of the geometry, the meshing proce-
dure, the CFD solver, and the sampling strategy.

2.1.1 | Domain parameterization

The geometry of the mixer is defined by seven different
parameters, some of which are shown in Figure 1. The
tank is unbaffled, has a diameter of T, and the fluid
inside the tank has a height of H. The impeller has a
diameter D. The blades of the impeller have a width of
W , a thickness of E, and can be tilted at an angle θ.
Finally, the impeller has a clearance C from the bottom
of the tank. The geometry is scaled using common ratios
seen in the literature to generate a dimension-independent
problem: T=D, H=T, T=C, D=W , and E=W .[2,4,14–16] The
reference dimension is set to T¼ 1.

2.1.2 | CFD simulations

The open-source software Gmsh is used to generate a
finite element mesh of tetrahedral elements.[17] The
open-source CFD software Lethe is used to solve the
incompressible Navier–Stokes equations using streamline-
upwind/Petrov–Galerkin (SUPG) and pressure-stabilizing/
Petrov–Galerkin (PSPG) formulations.[18] We use P1–P1

interpolation for both velocity and pressure. The mixer
is simulated in steady state regime at a low Reynolds
number (Re� 1,100½ �) where a stable stationary solution
is reached. A single rotating frame (SRF) technique is
used, meaning that the rotational velocity is imposed on
the lateral and bottom walls while the impeller has a zero
velocity condition.[19] The fluid interface at the top has a
slip condition to mimic the liquid’s free surface. Note that
this method is limited to vessels of a single shaft with no
baffle, because the static part of the tank needs to stay
invariant by rotation.[2]

Because of the SRF, the Coriolis and centrifugal forces
are added to the Navier–Stokes equations as follows[2,3]:

r�u¼ 0 ð4Þ

r �ρu�uþ2ρω�uþρω� ω� rð Þ¼�rpþr� τ ð5Þ

where u is the velocity, ρ is the density, ω is the angular
velocity of the SRF, r is the distance to the axis rotation,
p is the pressure, and τ is the deviatoric stress
tensor[2,3,18]:

τ¼ ν ruþ ruð ÞT
� �

ð6Þ

where ν is the kinematic viscosity of the fluid.

FIGURE 1 Scheme of the mixing rig used for the simulations.
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The rotational speed of the reference frame N is set to
one rotation per second (or ωk k¼ 2π rad � s�1), and the
kinematic viscosity is changed in the simulation parame-
ters to satisfy a specified Reynolds number Re described
by Equation (2).

The torque is obtained by integrating the stress tensor
on the impeller. The power consumption P is a function
of the torque Γ and the rotational speed N .[1–3]

P¼ 2πΓN ð7Þ

The power number Np is obtained from the power con-
sumption P following Equation (1).

2.1.3 | Sampling strategy

To generate 100 k samples that are standardized in all
geometrical ratios and Re, Latin hypercube sampling
(LHS) is used. LHS is a sampling method that stratifies
the features to uniformly represent the inputs space.[20]

The open-source library design of experiments for
Python (pyDOE) is used to generate the 100 k combina-
tions of the input variables. Table 1 lists the interval of
the dimensionless geometrical ratios, and the Reynolds
numbers that are used to sample the mixers.

The 100 k simulations are launched on the Narval
computer cluster owned by the Digital Research Alliance
of Canada. Each simulation is launched on a single core
of one CPU and takes approximately 40 min to reach
convergence at a relative tolerance of 10�8. A script is
launched to gather the torque output of all the simula-
tions and the power numbers Np are stored in a data file.

2.2 | Artificial neural network

The architecture of the ANN is a deep structure com-
posed of multiple layers of neurons. Figure 2 represents
an example of a deep neural network with one input
layer of seven neurons, two hidden layers, and an out-
put layer of the variable of interest Np. The input layer
regroups all the variables that characterize agitation: six
geometrical parameters (ratios) and one physical parame-
ter (Re). Giving all dimensionless parameters as inputs
to the ANN allows for more stability to the training.

When training an ANN, the goal is to find the right
weights between the interconnected nodes from a layer
i�1½ � to another layer i½ � and construct the best hypothe-
sis function that links the inputs to the outputs. Each set
of nodes z i½ � is a linear combination of their input neu-
rons a i�1½ � and their respective weights W i½ �. A bias b i½ � is
added as a constant to the linear function.[21]

z i½ � ¼W i½ �a i�1½ � þb i½ � ð8Þ

The number of layers i½ � and the number of neurons in
one layer (size of a i½ �) are hyperparameters that affect the
performance of the ANN. Another hyperparameter to
study is the non-linear activation function σ that trans-
forms a set of nodes z i½ � into neurons a i½ �.

a i½ � ¼ σ z i½ �
� �

ð9Þ

Some activation functions, such as the rectified linear
unit function (ReLU) and the hyperbolic tangent func-
tion (tanh), are more commonly used for deep networks
and will be further investigated in this study. The activa-
tion function for the output layer should differ from the
hidden layers. Given that the problem to be solved is a
linear regression, the output neuron is activated using a
linear function.[9]

The quantification of the ANN’s performance needs
to be consistent with the formulation of the problem. As
the power number is a continuous variable, the loss func-
tion L computed at the output layer that verifies the
ANN’s performance is the squared error between the pre-
dicted output by ið Þ and the known value y ið Þ. In this study,
y ið Þ is the power number (Np) calculated using CFD
simulations.

L by ið Þ,y ið Þ
� �

¼ by ið Þ � y ið Þ
� �2

ð10Þ

The cost function J is the mean squared error (MSE) over
all the outputs.

J ¼ 1
m

Xm
i¼1

L by ið Þ,y ið Þ
� �

¼ 1
m

Xm
i¼1

by ið Þ � y ið Þ
� �2

ð11Þ

The optimization problem of an ANN is to minimize
the cost function J, which means that the derivative of

TABLE 1 Input variables and their interval.

Inputs Minimum Maximum

T=D 2 4

H=T 1 1.5

T=C 2 5

D=W 3 6

E=W 0.1 0.2

θ 0 π=3

Re 1 100

BIBEAU ET AL. 5995
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the cost function with respect to the weights needs
to converge close to zero. Backpropagation allows
the evaluation of the derivatives automatically. The
algorithm that performs the optimization is the
gradient descent technique. It updates the weights
according to a learning rate α and a direction given by
the derivatives.[9]

W i½ � : ¼W i½ � �α
∂J

∂W i½ � ð12Þ

When the algorithm completes one pass of all the dataset
over the neural network, one epoch (iteration) is consid-
ered finished. The number of epochs is also another
important hyperparameter to consider.

The learning may be slow, and the ANN may not
converge to a global minimum. Some strategies are
implemented to optimize the gradient descent algo-
rithm. First, the Adam optimizer uses momentum opti-
mization by keeping track of past gradients to accelerate
the convergence.[9] Second, the weights W are initialized
using the Glorot uniform distribution. This technique
randomly initializes the connection weights depending
on the number of neurons in each layer. The Glorot dis-
tribution has been proven to improve the flow of the sig-
nal through the layers in the forward and backward
directions.[22]

2.2.1 | Pre-processing

Before training the ANN, pre-treatment of the input data
is important to avoid biases. Normalization of data con-
sists of bringing all the features on the same interval.
Indeed, the Reynolds number does not have the same
order of magnitude as the geometrical ratios. The update
of the weights of the ANN in the backward pass can be
affected by the different scales of the features. Training
performed on unnormalized mixers data tended to con-
verge to a high MSE, which indicates poor performance.

The normalization method used for the purpose of
inputs pre-treatment is MinMax scaling. Each feature xi
is normalized into x0i using the minimum xmin and the
maximum xmax of the given feature.

x0i ¼
xi�xmin

xmax � xmin
ð13Þ

When MinMax scaling is applied to the data, each vari-
able is exactly scaled between 0 and 1 and keeps the
covariance structure of the original data.[23] A principal
component analysis (PCA) on the normalized data shows
that there are no dominant directions where the variance
of the features is higher. Therefore, all features will be
used in the training of the ANN, with no dimensionality
reduction being employed.

FIGURE 2 Artificial neural network (ANN) architecture with two hidden layers to predict the power number based on features that

describe the mixer.
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2.2.2 | Training

The architecture of the ANN is set up with an exhaustive
grid search with CV that consists of selecting the most
suitable hyperparameters. The normalized data are
divided into three sets: training, validation, and testing.
70% of the data is used for the training and 30% is used
for testing the performance of the ANN. To validate the
ANN, CV is used to monitor the training in real time and
to verify if the model is over-fitted.[9] The grid search
allows one to train different architectures by changing
the number of hidden layers and neurons. The best ANN
structure is chosen based on the lowest validation MSE
averaged over multiple folds of the data. The cost func-
tion of the validation over each epoch is also checked. If
the cost function increases, the model becomes more
biased on the training set and fails to generalize. Finally,
when the best architecture is found, all the training data
are used to fit the model with the right number of epochs
that prevent overfitting. Predictions are then made with
the testing set to verify the performance of the ANN. The
grid search CV is implemented using the Sklearn library
in Python.[24] All the implementation and the training of
the ANN is done with the Tensorflow and Keras libraries
in Python.[25] All the code programs, scripts, and data
files of the ANN’s implementation are available on a pub-
lic repository.[26]

3 | MESH SENSITIVITY

In CFD, the mesh impacts the quality of the results and
the computation time. The mesh around the impeller
needs to be sufficiently fine to have an adequate predic-
tion of the flow and thus to adequately predict the torque.
Using Gmsh, we locally refine the mesh near the agitator.
The characteristic length Lc (the representative size of a
tetrahedral element), is 10 times smaller near the blades
and the shaft than near the walls. The value of Lc is 0:003
near the agitator and 0:03 near the walls. Figure 3 shows
the velocity in the radial direction while Figure 4 shows
the velocity in the axial direction of the same vessel with
T=D¼ 3, H=T¼ 1, T=C¼ 3, D=W ¼ 4, E=W ¼ 0:1,
θ¼ π=4, and Re ¼ 100. Both figures are in a Eulerian ref-
erence and use a refined mesh, as illustrated in Figure 5.

To evaluate the error on the torque caused by the
CFD simulations, we need to do a mesh sensitivity analy-
sis. We gradually refine the global mesh by reducing the
characteristic length of the elements and evaluate the tor-
que on the impeller. We do a mesh sensitivity using both
an average geometry (medium impeller in a medium
tank) at low Reynolds (Re ¼ 5), defined as the average
case, and a more complex geometry (smaller impeller in

FIGURE 3 Velocity in the radial direction in a mixer at Re ¼ 100

in a top-view perspective.

FIGURE 4 Velocity in the axial direction at Re ¼ 100 in a side-

view perspective.

FIGURE 5 Mesh refinement near the blades and the shaft of

the impeller.

BIBEAU ET AL. 5997
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a larger tank) at higher Reynolds (Re ¼ 100), defined as
the worst case.

Figure 6 shows the torque obtained with a given char-
acteristic length normalized to the torque calculated with
the mesh used in the 100 k CFD simulations (Lc ¼ 0:03).
We observe that the torque is still mesh-dependent, even
with the finer mesh, which contains almost 100M ele-
ments. We use a generalized Richardson extrapolation to
approximate the reference value of the torque and then
to calculate the error caused by the domain
discretization.[27]

bf ¼ f hþ
f h� f rh
rp�1

ð14Þ

Here, bf is the extrapolated value, or the approximation of
the solution of the torque. f h and f rh are the torque evalu-
ated on elements of different characteristic lengths h. r is
the refinement factor between the meshes and p is the
order of convergence of the torque, which is 1.

The extrapolated normalized torque is 1.07 for the
average mixer and 1.14 for the worse mixer. With these
values, it is possible to have an estimation of the relative
error of the torque er .

er ¼ jbf � f 0:03 jbf ð15Þ

Relative errors of 7% for the average mixer and 12% for
the worse mixer are obtained with a mesh with a maxi-
mum characteristic length of 0.03. These errors are not
significant, as they are equivalent to an uncertainty on
the impeller speed of about 2%.

Furthermore, the run time of a simulation using a
mesh of 3 million elements (Lc ¼ 0:03) is 40min on a sin-
gle CPU, while a mesh of 5 million elements (Lc ¼ 0:025)
takes 80min to simulate, which is two times longer. Sim-
ulations with close to 100M cells required a full cluster
node in order to have sufficient memory.

Using a coarser mesh is a good compromise between
computational time and accuracy. Using this characteris-
tic length, the cost of a single simulation was approxi-
mately 1:2 �10�4 core-year. In total, the simulations
carried out in this work consumed 12 core-years.

4 | RESULTS AND DISCUSSION

The grid search CV finds the right balance between the
complexity of the architecture (number of parameters) and
the cycles of training (amount of times the parameters
are updated). An ANN with three layers and 50 neurons
in each layer is the architecture that gives the lowest
averaged MSE over all the CV folds. In this case, the tanh
activation function converges more rapidly than the ReLU
function. A smaller batch size of 200 updates the weights
more frequently during one epoch and stabilizes the varia-
tion of the MSE during training.

FIGURE 6 Normalized torque Γ according to the maximum

characteristic length of the mesh near the agitator for average and

worse geometries.

TABLE 2 Performance metrics on each set.

Set MSE (10�4) MAE (10�2) MAPE (%)

Training 6.10 1.84 0.538

Testing 7.60 1.88 0.540

Abbreviations: MAE, mean absolute error; MAPE, mean absolute
percentage error; MSE, mean squared error.

[7]

FIGURE 7 Predictions using the artificial neural network

(ANN) and the correlation from Hiraoka et al.[7] versus values of

the power number Np from the computational fluid dynamics

(CFD) simulations.
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After CV, the ANN was trained for 5000 epochs with
the optimal architecture on all the training set. Table 2
shows the MSE, the mean absolute error (MAE), and the
mean absolute percentage error (MAPE) of the training
and testing sets with the raw data. The scale of each per-
formance metric is the same for training and testing,
meaning that there is no underfitting or overfitting of the
data. The MAPE of the testing set, which was never seen
by the ANN before, is lower than 1%.

Figure 7 shows the predictions of the ANN and the
estimations of a correlation developed by Hiraoka et al.
for paddle impellers[7,28] using a portion of the testing set.
The correlation is detailed in Table 3. It uses a friction
factor f , a laminar term CL, a turbulent term Ct, a term
that characterizes the transition from laminar to turbu-
lent flow Ctr , an exponent term m, and other coefficients.
It also uses a modified Reynolds number ReG. Note that
np is the number of blades, which is four in this case.

According to Figure 7, the ANN’s predictions are
really close to the true power number values, and the
errors are normally distributed, with no apparent out-
liers. These results show that the ANN performs well.
Normalization of the data plays a major role in obtaining
low error metrics. The correlation of Hiraoka et al.
exceeds mostly the 25% error threshold illustrated in
Figure 7, showing its poor performance. The correlation
severely underpredicts and overpredicts Np.

To further validate the accuracy and the robustness of
the ANN, we consider impeller configurations that were
not included in the database and compare the predictions
that are made with the ANN with new CFD simulations

and the correlation developed by Hiraoka et al. over the
entire range of Reynolds number considered. The results of
the comparison are shown in Figures 8 and 9.

In Figures 8 and 9, predictions agree almost perfectly
with the Lethe simulations of the same mixer geometry,
proving that the ANN performance is related to the
pre-processing of the 100 k runs (LHS sampling,
coherent CFD tolerance, proportional refinement of the
mesh, etc.).

According to Figure 9, even when compared to results
obtained with a finer mesh (smaller element size Lc), the

TABLE 3 Correlation equations for the power number for pitched and paddle impellers in unbaffled condition.

Np ¼ 1:2π4β2
� �

= 8D3= T2Hð Þ½ �� 	
f

f ¼CL=ReGþCt Ctr=ReGð Þþ ReG½ ��1þ f�=Ctð Þ1=m
� �m

ReG ¼ πη ln T=Dð Þ½ �= 4D=βTð Þð ÞRe
CL ¼ 0:215ηnp D=Hð Þ 1� D=Tð Þ2� �þ1:83 Wsinθ=Hð Þ np=2sinθ

� 	1=3
Ct ¼ 1:96X1:19

� 	�7:8þ 0:25ð Þ�7:8
h i�1=7:8

m¼ 0:71X0:373ð Þ�7:8þ 0:333ð Þ�7:8
h i�1=7:8

Ctr ¼ 23:8 D=Tð Þ�3:24 Wsinθ=Tð Þ�1:18X�0:74

f� ¼ 0:0151 D=Tð ÞC0:308
t

X ¼ γn0:7p W sin1:6θ=H

β¼ 2ln T=Dð Þ= T=Dð Þ� D=Tð Þ½ �

γ¼ η ln T=Dð Þ= βT=Dð Þ5� �1=3
η¼ 0:711 0:157þ npln T=Dð Þ� �0:611� �

= n0:52p 1� D=Tð Þ2� �� �

[7]

Re

FIGURE 8 Power number versus Reynolds number for a

specified geometry (T=D¼ 3, H=T¼ 1, T=C¼ 4, D=W ¼ 5,

E=W ¼ 0:1, and θ¼ π=4) using the artificial neural network (ANN),

computational fluid dynamics (CFD) simulations (Lethe), and

Hiraoka et al.[7] correlation.
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ANN predictions are extremely close to the CFD simula-
tions. This shows that the precision of the torque due to
the mesh resolution does not affect the performance of
the ANN. Having a discretization error of 7% on the tor-
que is more than acceptable and allows the ANN to
obtain significantly better results than the correlation of
Hiraoka et al.

Indeed, the correlations do not fit the Np values pre-
dicted by the ANN or calculated by Lethe. In Figure 8,
the correlation deviates close to Re ¼ 100. It is well
known that in this area of the power curve, the transition
between the laminar flow regime and the turbulent
flow regime is difficult to predict.[29,30] In Figure 9, the

correlation completely deviates from the CFD simula-
tions and the ANN predictions. Because correlations
reproduce only a few experimental values, they are ill-
posed to estimate the power number for higher Reyn-
olds, where the transient regime occurs, and for other
specific geometries. Lethe has been verified and vali-
dated for mixing problems, thus it is able to simulate
the flow of complex systems and accurately predict the
power number.

To prove the validation further, we compared the Np

values predicted by the ANN with experimental data.[2]

Figure 10 shows that the ANN’s predictions are within
the error intervals of the experiments. The correlation
deviates more from the experimental values than the
ANN’s predictions and it often lies outside of the error
bounds, especially at higher Reynolds numbers.

In general, the ANN greatly surpasses the correlation
in terms of fitting the CFD data and, consequently, is in
much better agreement with the experimental data.

5 | CONCLUSION

The determination of power consumption is a key step in
designing a mixing system. The power number Np repre-
sents the energy requirement of the agitator, depending
on its geometry and the Reynolds number Re. The power
number can be obtained from correlations. However,
these correlations do not generalize when the mixing sys-
tem under study slightly deviates from those used to
build and verify the correlations.

To overcome this lack of generality, we proposed
in this work to couple CFD simulations with an ANN.
On one hand, CFD simulations provide the database
of 100 k different PBT mixers that are used as an input
of the ANN. On the other hand, the ANN learns non-
linear patterns within the database and ultimately
estimates the power consumption of a PBT mixing
system.

We presented the methodology behind the generation
of the 100 k mixers, such as the domain parameteriza-
tion, the CFD settings, and the LHS method. We also pre-
sented the pre-processing of the data and the grid search
CV that allowed an optimized architecture and an effec-
tive training of the ANN.

Finally, we presented the performance of the ANN by
keeping 30% of the data and making predictions of the
power number Np over the testing set using the ANN cor-
relation. The ANN reached a MAPE of 0.5%, which is an
incredibly low metric error. The key to getting such a low
MAPE is in the pre-processing of the data and the moni-
toring of the training:

Re

m
m

[7]

FIGURE 9 Power number versus Reynolds number for a

specified geometry (T=D¼ 2:5, H=T¼ 1:2, T=C¼ 3, D=W ¼ 3:5,

E=W ¼ 0:15, and θ¼ π=6) using the artificial neural network

(ANN), computational fluid dynamics (CFD) simulations (Lethe) of

two different element sizes Lc, and Hiraoka et al.[7] correlation.

Re

[7]

FIGURE 10 Validation of the artificial neural network’s
(ANN’s) prediction of a power curve for a specified geometry

(T=D¼ 3, H=T¼ 1, T=C¼ 4, D=W ¼ 5, E=W ¼ 0:15, and θ¼ π=4).
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• Features were sampled using a LHS method, so that
all inputs represent faithfully the dimensions of the
problem.

• Mesh generation was standardized and all simulations
converged to the same tolerance.

• Normalization of the data using a MinMax scaling
helped the ANN to overpass inevitable biases.

• Grid search CV was essential to validate the architec-
ture and to monitor the training so that the ANN did
not overfit or underfit the data.

Also, we presented some comparisons between the
ANN predictions and the correlations from Hiraoka et al.
The results showed that the predictions of the power
number Np made by the ANN outperformed the correla-
tion for all cases considered, even for mixers that had
never been trained by the ANN.

With these results, we demonstrated that ANNs,
trained with CFD data, accurately predict the power con-
sumption of paddle and pitched blade impellers. This
approach can be easily generalized to other types of
impellers or to the turbulent regime by enriching the
database with new simulations. It could also be extended
to predict other quantities such as the mixing time, the
pumping number, and so on. We think that this work
demonstrates that simulation-fed ANNs are an ideal
candidate to replace traditional correlations in the design
of unit operations such as agitated tanks.
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