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RÉSUMÉ 

L'exploitation minière est une industrie importante dans de nombreux pays, comme le Canada, la 

Chine, l'Australie, etc. Dans les méthodes d'extraction souterraine, de grands vides minés (appelés 

chantiers) peuvent être créés après l'extraction du minerai. Entre-temps, de grandes quantités de 

déchets solides comme les résidus et les stériles sont également produites comme produits 

secondaires. Traditionnellement, ces déchets miniers sont entreposés à la surface sous forme 

d'installations de stockage de résidus ou de tas de stériles. Au fil des ans, le remblayage des 

chantiers avec des déchets solides miniers a été de plus en plus utilisé dans les mines souterraines. 

Le remblayage peut améliorer les conditions de stabilité du sol, augmenter la récupération du 

minerai et réduire la dilution du minerai. Il peut également aider à réduire les déchets solides 

entreposés en surface et à minimiser les impacts environnementaux associés. 

L'application réussie du remblai nécessite une bonne compréhension de l'état de contrainte dans les 

chantiers de remblayage, ce qui est nécessaire pour la conception de barricades, de tapis de seuil et 

de remblais exposés latéralement. À cette fin, un certain nombre de solutions analytiques et 

numériques ont été publiées. Dans la plupart des cas, les contraintes verticales et horizontales sont 

surveillées le long de la profondeur du remblai à la fin de l'opération de remblayage. Les courbes 

résultantes sont alors une description de la variation des contraintes en fonction de leurs positions 

pour un remblai donné. Parfois, on ne peut s'intéresser qu'aux contraintes à la base du remblai. 

Dans ce cas, on peut obtenir une courbe qui décrit la variation des contraintes à la base du remblai 

en fonction de l'épaisseur du remblai. On obtient un profil contrainte-profondeur dans le premier 

cas et un profil contrainte-épaisseur dans le second cas. Même si les significations physiques des 

deux types de courbes sont différentes, l'utilisation des solutions analytiques existantes donnera les 

mêmes résultats entre elles. Les contraintes verticales et horizontales augmentent presque 

linéairement avec la profondeur ou l'épaisseur lorsque la profondeur ou l'épaisseur est très faible. 

Lorsque la profondeur ou l'épaisseur devient importante, les contraintes verticales et horizontales 

ont alors tendance à devenir constantes. Cela ne correspond pas aux résultats obtenus par des 

simulations numériques, qui montraient parfois une augmentation soudaine des contraintes près du 

fond sur le profil profondeur-contrainte. Ce phénomène a été appelé effets kink par Sivakugan et 

ses collaborateurs en 2014. Jusqu'à présent, il n'y a pas de solution analytique qui prend en compte 

l'effet kink pour évaluer les contraintes dans les chantiers remblayés. Le mécanisme de l'effet de 
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pli reste également inconnu. Dans cette thèse, le mécanisme de l'effet kink est d'abord analysé. Une 

solution analytique est ensuite proposée après avoir pris en compte le mécanisme de l'effet de pli 

pour estimer les contraintes verticales et horizontales dans les paliers remblayés. Le mécanisme 

d'apparition de l'effet de pli et la solution analytique proposée sont validés par les résultats 

numériques obtenus avec FLAC. Les résultats montrent que l’apparition d’un effet de coude est 

étroitement liée à l’état du remblai, qui est déterminé par la relation entre le coefficient de Poisson 

 et l’angle de frottement interne φ du remblai. Le pli peut se produire lorsque μ > (1-sin φ)/2 alors 

qu'il ne se produit pas lorsque μ ≤ (1-sin φ)/2. 

Un autre problème critique pour la conception d'un chantier remblayé est d'évaluer la stabilité ou 

de déterminer la résistance requise du remblai dans le chantier principal afin que le remblai reste 

stable lors de l'exposition du remblai d'un côté en raison de l'excavation d'un chantier secondaire. 

Au fil des ans, un certain nombre de solutions analytiques ont été proposées pour évaluer la stabilité 

et la résistance requise du remblai exposé latéralement dans les chantiers verticaux. Seules quelques 

études ont été menées pour évaluer la stabilité du remblai exposé latéralement dans les chantiers 

inclinés. Les quelques solutions disponibles contiennent plusieurs limitations. Dans cette thèse, une 

solution analytique améliorée a été développée pour évaluer la stabilité et la cohésion requise du 

remblai exposé latéralement dans les chantiers inclinés. La solution analytique proposée est validée 

par des simulations numériques réalisées avec FLAC3D. Les résultats montrent qu'il existe un 

angle d'inclinaison critique de la paroi du chantier, auquel la cohésion minimale requise du remblai 

exposé latéralement dans les chantiers inclinés atteint une valeur maximale, à partir de laquelle la 

cohésion minimale requise diminue quel que soit l'angle d'inclinaison de la paroi du chantier 

augmente ou diminue. 
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ABSTRACT 

Mining is an important industry in many countries, such as Canada, China, Australia, etc. In 

underground mining methods, large mined-out voids (called stopes) can be created after ore 

extraction. In the meantime, large quantities of solid wastes like tailings and waste rocks are also 

produced as secondary products. Traditionally, these mining wastes are disposed of on the surface 

in forms of tailings storage facilities or waste rock piles. Over the years, stope backfilling with 

mine solid wastes has been increasingly used in underground mines. The backfilling can improve 

the ground stability conditions, increase ore recovery, and reduce ore dilution. It can also help 

reduce surface disposal of mine solid wastes and minimize the associated environmental impacts. 

The successful application of backfill requires a good understanding of the stress state in backfilled 

stopes, which is necessary for the design of barricade, sill mat, and side-exposed backfill. To this 

end, a number of analytical and numerical solutions have been published. In most cases, the vertical 

and horizontal stresses are monitored along the depth of the backfill at the end of the backfilling 

operation. The resulting curves are then a description of the variation of the stresses as a function 

of their positions for a given backfill. Sometimes, one can be only interested in the stresses at the 

base of the backfill. In this case, one can obtain a curve that describes the variation of the stresses 

at the base of the backfill as a function of backfill thickness. One obtains a stress-depth profile in 

the former case and a stress-thickness profile in the latter case. Even though the physical meanings 

of the two types of curves are different, the use of existing analytical solutions will result in the 

same results between them. The vertical and horizontal stresses increase almost linearly with the 

depth or thickness when the depth or thickness is very small. When the depth or thickness becomes 

large, the vertical and horizontal stresses then tend to become constant. This does not correspond 

to the results obtained by numerical simulations, which sometimes showed a sudden increase of 

the stresses near the bottom of the stress-depth profile. This phenomenon was called kink effects 

by Sivakugan and coworkers in 2014. Until now, there is no analytical solution that takes into 

account the kink effect to evaluate the stresses in backfilled stopes. The mechanism of the kink 

effect also remains unknown. In this thesis, the mechanism of kink effects is first analyzed. An 

analytical solution is then proposed after taking into account the mechanism of kink effect to 

estimate the vertical and horizontal stresses in backfilled stopes. The mechanism for the occurrence 

of kink effects and the proposed analytical solution are validated by numerical results obtained 
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with FLAC. The results show that the occurrence of kink effect is closely related to the state of the 

backfill, which is determined by the relationship between the Poisson’s ratio  and internal friction 

angle φ of the backfill. The kink can occur when μ > (1-sin φ)/2 while not occur when μ ≤ (1-sin 

φ)/2. 

Another critical issue for backfilled stope design is to evaluate the stability or determine the 

required strength of the backfill in primary stope in order for the backfill to remain stable upon the 

exposure of the backfill on one side due to the excavation of a secondary stope. Over the years, a 

number of analytical solutions have been proposed to evaluate the stability and required strength 

of side-exposed backfill in vertical stopes. Only a few studies have been conducted to evaluate the 

stability of side-exposed backfill in inclined stopes. The few available solutions contain several 

limitations. In this thesis, an improved analytical solution has been developed to evaluate the 

stability and the required cohesion of side-exposed backfill in inclined stopes. The proposed 

analytical solution is validated by numerical simulations conducted with FLAC3D. The results 

show that a critical stope wall inclination angle exists, at which the minimum required cohesion of 

side-exposed backfill in inclined stopes reaches a peak value, from which the minimum required 

cohesion decreases whatever the stope wall inclination angle increases or decreases. 
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1 

 INTRODUCTION 

1.1 Background and problems 

The mining industry is an important part of the national economy in many countries, such as 

Canada, Australia, China. The mining industry not only produces valuable minerals but also 

generates a high amount of mine wastes (i.e., tailings and waste rocks). Traditionally, the mining 

wastes are disposed of on the surface. For example, the tailings can be deposited and confined in 

tailings ponds while the waste rocks are disposed of as waste rock piles. The surface disposal of 

mining wastes can result in several geotechnical and environmental problems, such as the failure 

of tailings dams and acid mine drainage.  

In recent decades, backfilling has been increasingly used in underground mine stopes as it can help 

to improve ground stability, increase ore recovery, reduce ore dilution and provide a safe workplace 

(Potvin et al. 2005; Darling 2011; Li 2014a, 2014b; Yang et al. 2017a). Using mine wastes to fill 

the underground mine stopes can also reduce the surface disposal of mining wastes and minimize 

the associated environmental impacts (Bussière 2007; Yang et al 2015; Liu et al. 2018). The 

commonly used backfill can be classified as rock fill (RF), hydraulic fill (HF), and paste fill (PF). 

Backfill can be mixed with or without cement to fill mine stopes, depending on the purpose of the 

used backfill and the underground mining methods.  

The use of backfill in underground mines requires a good understanding of the stress distribution 

in backfilled stopes. To this end, a number of analytical and numerical solutions have been 

published. In most cases, the vertical and horizontal stresses are monitored along the depth of the 

backfill at the end of the backfilling operation. The resulting curves are then a description of the 

variation of the stresses as a function of their positions for a given backfill. Sometimes, one can be 

only interested in the stresses at the base of the backfill. In this case, one can obtain a curve that 

describes the variation of the stresses at the base of the backfill as a function of backfill thickness. 

One obtains a stress-depth profile in the former case and a stress-thickness profile in the latter case. 

Even though the physical meanings of the two types of curves are different, the use of existing 

analytical solutions will result in the same results between them. The vertical and horizontal 

stresses increase almost linearly with the depth or thickness when the depth or thickness is very 

small. When the depth or thickness becomes large, the vertical and horizontal stresses then tend to 
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become constant. This does not correspond to the results obtained by numerical simulations, which 

sometimes showed a sudden increase in the stresses near the bottom on the stress-depth profile 

(Sivakugan et al. 2014; Yang 2016). This phenomenon was called kink effects by Sivakugan et al. 

(2014). Until now, there is no analytical solution that takes into account the kink effect to evaluate 

the stresses in backfilled stopes. The mechanism of kink effects also remains unknown. More work 

is necessary to understand the mechanism of kink effects and to develop a solution that can be used 

to evaluate the stresses in backfilled stopes after taking into account the kink effect. 

Another critical concern for backfilled stope design is to evaluate the stability or determine the 

required strength of side-exposed backfill. In open stoping methods, the ore body in the primary 

stope will be first excavated and then filled with cemented backfill. Then, the backfill in the primary 

stope will be exposed on one side during the excavation of the ore body in the secondary stope. 

The backfill in the primary stope must be strong enough to at least remain self-standing during the 

excavation of the secondary stope. The minimum required strength of the side-exposed backfill in 

the primary stope needs to be determined to ensure a safe and economic backfill design. Over the 

years, a number of analytical solutions have been proposed to evaluate the stability and required 

strength of side-exposed backfill in vertical stopes (Mitchell et al. 1982; Li et al. 2014a, 2014b). 

Only a few studies have been conducted to evaluate the stability of side-exposed backfill in inclined 

stopes. The few available solutions contain several limitations. New solutions are necessary to 

better evaluate the stability or required strength of side-exposed backfill in inclined stopes.  

1.2 Objectives and methodology 

The main objective of the thesis is to investigate the stress distribution in backfilled stopes and the 

stability of side-exposed backfill in an inclined stope. This objective can be realized through the 

addressing of the following sub-objectives: 

(1) Investigate the stress distribution in backfilled stopes by considering the kink effect 

⚫ Analyze the mechanism of kink effect; 

⚫ Develop an analytical solution to estimate the stress distribution along the depth of backfilled 

stopes by incorporating the kink effect; 
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⚫ Validate the proposed mechanism and analytical solution by numerical results available in the 

literature and obtained with FLAC. 

(2) Investigate the stability of side-exposed backfill in inclined stopes 

⚫ Develop an analytical solution to evaluate the stability and required cohesion of side-exposed 

backfill in inclined stopes; 

⚫ Conduct numerical simulations with FLAC3D to estimate the minimum required cohesion of 

side-exposed backfill in inclined stopes; 

⚫ Validate the proposed analytical solution with the numerical results obtained with FLAC3D. 

1.3 Contributions 

The realization of the thesis leads to the submission of two articles in peer-reviewed journals: 

Article 1: Chai S., Zheng J., and Li L. (2020). Numerical and analytical investigations of stress 

distribution in backfilled stopes considering the kink effect near the bottom. 

International Journal of Geomechanics. Submitted in January 2020. This article is 

presented in Chapter 3. 

Article 2: Chai S., Wang R., and Li L. (2020). A new solution to evaluate the stability of side-

exposed backfill in inclined stopes. International Journal of Geomechanics. Submitted 

in March 2020. This article is presented in Chapter 4. 

The project contributes to a better understanding of the geotechnical behavior of the backfill placed 

in mine stopes. The analytical and numerical solutions presented in this thesis can be used to 

estimate the stress state in vertical backfilled stopes incorporating the kink effect and evaluate the 

stability of side-exposed backfill in inclined stopes. These analytical solutions can provide simple 

and useful tools for mining engineers in the preliminary design of backfilled stopes. 

1.4 Contents 

The thesis is organized in an article-based format shown as follows: 

Chapter 1 presents a general introduction, including the background and problems, the objectives 

of the thesis, and the contents of the thesis.  
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Chapter 2 gives a detailed literature review of the state of knowledge, including the estimation of 

stress state in backfilled stopes, the lateral pressure coefficients used in the analytical solutions for 

the stress state in underground mine stopes, and investigations of the stability of side-exposed 

backfill. 

Chapter 3 (Article 1) presents a study on the estimation of the stress distribution in backfilled 

stopes. The mechanism of the kink effect is first analyzed. An analytical solution considering the 

kink effect is proposed to evaluate the vertical and horizontal stresses along the backfill depth. The 

proposed analytical solution is also validated by numerical results available in the literature and 

obtained by newly performed numerical modeling with FLAC. 

Chapter 4 (Article 2) presents the development of a new analytical solution to evaluate the stability 

and minimum required strength of side-exposed backfill in inclined stopes. The proposed analytical 

solution is verified by numerical results obtained with FALC3D. 

Chapter 5 discusses the main limitations of the thesis.  

Chapter 6 summarizes the main conclusions of this thesis and gives future recommendations. 

Finally, appendices are given at the end of the thesis. Appendix A presents the validation of the 

numerical software FLAC and FLAC3D against analytical solutions. Appendix B shows the 

sensitivity analyses of the numerical model and additional numerical results pertaining to  Chapter 

3. Appendix C contains the additional results related to Chapter 4, including the sensitivity analyses 

of the numerical model and the minimum required cohesions obtained by the proposed analytical 

solution and numerical simulations. 
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 LITERATURE REVIEW 

In this chapter, a literature review is first given on the stress estimation in backfilled stopes, 

followed by a brief review on the lateral earth pressure coefficient closely associated with stress 

estimation in backfilled stopes. Previous studies for analyzing the stability and required strength of 

side-exposed backfill are presented. 

2.1 Stress state in backfilled stopes 

A good understanding of the stress state in backfilled stopes is critical for the designs of backfill 

and barricades. In the following subsections, the analytical solutions and numerical simulations for 

estimating the stress state in backfilled stopes will first be presented. Stress measurements in 

backfilled stopes are then reviewed.  

2.1.1 Analytical solutions 

Analytical solutions are very useful to provide economical and rapid information, especially during 

the preliminary stage of design. 

2.1.1.1 Backfilled stopes with vertical walls 

2.1.1.1.1 Overburden solution 

In geotechnical engineering, the stresses based on overburden solution (Terzaghi 1943) are given 

as below: 

𝜎𝑣 = 𝛾𝑧 (2-1) 

𝜎ℎ = 𝐾𝜎𝑣 (2-2) 

where σv (kPa) and σh (kPa) are the vertical and horizontal stresses at a depth of z (m) in the backfill; 

γ (kN/m3) is the unit weight of the backfill; K is the lateral earth pressure coefficient. 

2.1.1.1.2 Arching solutions 

When a backfill is placed into a stope, it tends to settle down under the gravity. The surrounding 

rock walls tend to hold the backfill by shear forces, leading to smaller stresses in the backfill than 
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those based on the overburden solution. This stress redistribution in the backfilled stope is a well-

known phenomenon, called the arching effect.  

Janssen (1895) proposed an analytical solution for estimating the vertical and horizontal stresses 

in a square silo filled with corn by considering the arching effect (Sperl 2005). The proposed 

solution is given as follows: 

𝜎𝑣 =
𝛾𝑠

4𝐾𝐽
(1 − 𝑒−4𝐾𝐽

𝑧
𝑠) (2-3) 

where σv (kPa) is the vertical stress at a depth of z (m); γ (kN/m3) is the unit weight of the filling 

material; s (m) is the side length of the square silo; KJ is related to the lateral earth pressure 

coefficient K as follows: 

𝐾𝐽 =
𝜎ℎ𝜇𝑓

𝜎𝑣
=
𝜇𝑓

𝐾
(2-4) 

where σh (kPa) is the horizontal stress at the depth z; μf is the friction coefficient of the interface 

between the backfill and silo wall. 

An important assumption in Janssen’s arching theory is the uniform vertical stress across the width 

of the silo. Nevertheless, Janssen’s analytical solution was proved to provide a good stress 

estimation in backfilled silos compared with experimental results.  

Later, Marston (1930) made use of Janssen’s arching theory to estimate the vertical external loads 

on conduits buried in ditches. The vertical load is expressed as follows: 

𝑊𝑣 =
𝛾𝐵2

2𝐾𝜇
(1 − 𝑒−2𝐾𝜇

𝑧
𝐵) (2-5) 

where Wv (kN) is the vertical load at a depth of z (m); K is the lateral earth pressure coefficient, 

taken as the Rankine’s active earth pressure coefficient Ka; B (m) is the width of the backfilled 

openings; μ is internal friction coefficient of the fill materials. 

Terzaghi (1943) calculated the vertical stress in tunnels and took into consideration the cohesion 

of materials and the surcharge. For tunnels through the sand with a surcharge q (kPa) on the top 

surface, the vertical stress is given as:   

𝜎𝑣 =
𝛾𝐵

2𝐾𝑡𝑎𝑛 𝜑
(1 − 𝑒−2𝐾

𝑧
𝐵
𝑡𝑎𝑛 𝜑) + 𝑞𝑒−2𝐾

𝑧
𝐵
𝑡𝑎𝑛 𝜑 (2-6) 
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where φ (°) is the internal friction angle of the soil. For tunnels going through a cohesive soil, the 

vertical stress is calculated as follows:   

𝜎𝑣 =
𝛾𝐵 − 2𝑐

2𝐾𝑡𝑎𝑛 𝜑
(1 − 𝑒−2𝐾

𝑧
𝐵
𝑡𝑎𝑛 𝜑) (2-7) 

where c (kPa) is the cohesion of the filling material. 

Askew et al. (1978) proposed a solution to calculate the stress in the backfill after exposure based 

on Terzaghi (1943)’s solution (Eq. 2-7). The vertical stress is expressed as: 

𝜎𝑣 =
𝛾𝐵 − 2𝑐𝑖
𝐾𝑡𝑎𝑛 𝜑

(1 − 𝑒−𝐾
𝑧
𝐵
𝑡𝑎𝑛 𝛿) (2-8) 

where ci (kPa) is the fill-wall interface cohesion;  (°) is the internal friction angle of the interface 

between the backfill and rock walls. 

Aubertin et al. (2003) considered the equilibrium of a differential layer element (shown in Figure 

2-1) in a two-dimensional (2D) stope. The vertical and horizontal stresses at the bottom of the 

backfilled stope are given as: 

𝜎𝑣 =
𝛾𝐵

2𝐾𝑡𝑎𝑛 𝛿
(1 − 𝑒−2𝐾

𝐻
𝐵
𝑡𝑎𝑛 𝛿) (2-9) 

𝜎ℎ =
𝛾𝐵

2𝑡𝑎𝑛 𝛿
(1 − 𝑒−2𝐾

𝐻
𝐵
𝑡𝑎𝑛 𝛿) (2-10) 

where H (m) is the total height of the backfill.  

 

Figure 2-1: A schematic presentation of a 2D vertical stope and a layer element with its acting 

forces (taken from Aubertin et al. 2003) 
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Numerical results obtained with PHASE2 were compared with the analytical results. Relatively 

large differences were observed between the numerical and analytical results, due to the closure of 

the rock walls. 

2.1.1.1.3 Three-dimensional (3D) situation 

Li et al. (2005, 2006) extended the arching solution to a three-dimensional (3D) stope with vertical 

walls of different properties (shown in Figure 2-2), and the vertical stress is calculated by: 

 

Figure 2-2: A 3D vertical backfilled stope with acting forces on an isolated layer element (taken 

from Li et al. 2005) 

𝜎𝑣 =
𝛾 − (𝜅13𝐵

−1 + 𝜅24𝐿
−1)

(𝜆13𝐵−1 + 𝜆24𝐿−1)
[1 − 𝑒−𝑧(𝜆13𝐵

−1+𝜆24𝐿
−1)] (2-11) 

with 

𝐾𝑐𝑖 =
𝜎ℎ𝑖
𝜎𝑣

= 𝐾𝑖 +
2𝑐

𝜎𝑣
𝑡𝑎𝑛 𝛼𝑖 (2-12) 

𝜆13 = 𝐾1 tan 𝛿1 + 𝐾3 tan 𝛿3 (2-13) 

𝜆24 = 𝐾2 tan 𝛿2 +𝐾4 tan 𝛿4 (2-14) 

𝜅13 = 𝑐1 + 𝑐3 + 2𝑐(tan𝛼1 tan 𝛿1 + tan𝛼3 tan 𝛿3) (2-15) 

𝜅24 = 𝑐2 + 𝑐4 + 2𝑐(tan𝛼2 tan 𝛿2 + tan𝛼4 tan 𝛿4) (2-16) 

where L (m) is the stope length; Kci and ci (i =1, 2, 3, 4) are the lateral earth pressure coefficient 

and interface cohesion at the sidewalls, respectively; the values of Ki and αi are shown in Table 2-1.  



9 

 

 

The analytical solution was compared with the experimental results conducted by Take and 

Valsangkar (2001). A good agreement was observed, indicating the validity of the analytical 

solution. 

Table 2-1: Definition of Ki and αi (adapted from Li et al. 2005; Li and Aubertin 2009d) 

Fill 

Condition 

Dry backfill Wet backfill Saturated backfill 

Ki αi Kim αim Ki' αi' 

At-rest (K0) 1 − sin𝜑 0° 1 − sin𝜑𝑚 0° 1 − sin𝜑′ 0° 

Active (Ka) 
1 − sin𝜑

1 + sin𝜑
 

𝜑

2
− 45° 

1 − sin𝜑𝑚
1 + sin𝜑𝑚

 
𝜑𝑚
2
− 45° 

1 − sin𝜑′

1 + sin𝜑′
 

𝜑′

2
− 45° 

Passive 

(Kp) 

1 + sin𝜑

1 − sin𝜑
 

𝜑

2
+ 45° 

1 + sin𝜑𝑚
1 − sin𝜑𝑚

 
𝜑𝑚
2
+ 45° 

1 + sin𝜑′

1 − sin𝜑′
 

𝜑′

2
+ 45° 

 

Pirapakaran and Sivakugan (2007a) proposed a similar formula for the vertical stress in a 3D 

vertical backfill as follows: 

𝜎𝑣 =
𝛾𝐵

2𝐾 𝑡𝑎𝑛 𝛿
(

𝐿

𝐿 + 𝐵
) [1 − 𝑒−2(

𝐿+𝐵
𝐿𝐵

)𝐾𝑧 𝑡𝑎𝑛 𝛿] (2-17) 

Good agreements were observed between 2D numerical results for plane strain and axisymmetric 

condition, obtained by numerical simulations with FLAC and analytical results obtained with the 

analytical solution by using δ = 2/3φ and K = K0 (K0 is the at-rest earth pressure coefficient).  

2.1.1.1.4 Considering the pore water pressure 

Li and Aubertin (2009c) took into consideration the pore water pressure in the stress estimation in 

2D vertical stopes. In partly submerged stopes, the effective vertical stress σ'v (kPa) is expressed 

as: 

𝜎𝑣
′ =

{
 
 

 
 

𝛾𝐵

2𝐾𝑡𝑎𝑛 𝜑
(1 − 𝑒−2𝐾𝑡𝑎𝑛 𝜑

𝑧
𝐵) ,                                                                                    𝑧 < 𝑧𝑚

 
𝛾′𝐵

2𝐾𝑡𝑎𝑛 𝜑′
(1 − 𝑒−2𝐾𝑡𝑎𝑛 𝜑

′𝑧−𝑧𝑚
𝐵 ) +

𝛾𝐵

2𝐾𝑡𝑎𝑛 𝜑
(1 − 𝑒−2𝐾𝑡𝑎𝑛 𝜑

𝑧𝑚
𝐵 ) ∙ 𝑒−2𝐾𝑡𝑎𝑛  𝜑

′𝑧−𝑧𝑚
𝐵 ,   𝑧 > 𝑧𝑚

  (2-18) 

where zm is the distance from the water table to the backfill surface; γ' (kN/m3) is the effective unit 

weight of the backfill; φ' (°) is the effective friction angle of the backfill. 

For fully saturated stopes (zm = 0), the effective vertical stress is given as: 
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𝜎𝑣
′ =

𝛾′𝐵

2𝐾𝑡𝑎𝑛 𝜑′
(1 − 𝑒−2𝐾

𝑧
𝐵
tan𝜑′ )                                            (2-19) 

Numerical simulations were also conducted to verify the analytical solutions. Although the 

analytical method seemed to overestimate the stress a little bit near the wall and underestimate the 

stress along the central line, the analytical solutions worked well as a preliminary tool for the stress 

estimation in backfilled stopes.  

Li and Aubertin (2009d) also gave a solution for the stress in a 3D stope by considering the pore 

water pressure and cohesion. For a partly submerged stope shown in Figure 2-3, the vertical stress 

at a point above the water table (z < zm) is calculated as follows:  

𝜎𝑣 = 𝜎𝑣
′ =

𝛾𝑚 − 2𝑐𝑚(𝜆1𝑚𝐵
−1 + 𝜆2𝑚𝐿

−1)

𝑀𝑚

(1 − 𝑒−𝑀𝑚𝑧) + 𝑝0𝑒
−𝑧𝑀𝑚                      (2-20) 

 

Figure 2-3: A schematic view of a partly submerged 3D stope with a layer element and its acting 

forces (taken from Li and Aubertin 2009d) 

The effective and total vertical stresses at a point below the water table (z > zm) are given by: 

𝜎𝑣
′ =

𝛾𝑚 − 2𝑐𝑚(𝜆1𝑚𝐵
−1 + 𝜆2𝑚𝐿

−1)

𝑀𝑚

(1 − 𝑒−𝑀𝑚𝑧𝑚)𝑒−𝑀
′(𝑧𝑚−𝑧) 

+
𝛾′ − 2𝑐′(𝜆1

′𝐵−1 + 𝜆2
′ 𝐿−1)

𝑀′
(1 − 𝑒(𝑧𝑚−𝑧)𝑀

′
) + 𝑝0𝑒

(𝑧𝑚−𝑧)𝑀
′−𝑧𝑚𝑀𝑚                           (2-21) 

𝜎𝑣 = 𝜎𝑣
′ + 𝛾𝑤(𝑧 − 𝑧𝑚)                                                      (2-22) 

with 

𝑀𝑚 = 2(𝐾1𝑚𝐵
−1 + 𝐾2𝑚𝐿

−1) tan 𝛿𝑚 (2-23) 
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𝜆1𝑚 = 1 + 2 tan 𝛼1𝑚 tan 𝛿𝑚 (2-24) 

𝜆2𝑚 = 1 + 2 tan 𝛼2𝑚 tan 𝛿𝑚 (2-25) 

𝑀′ = 2(𝐾1
′𝐵−1 + 𝐾2

′𝐿−1) tan 𝛿′ (2-26) 

𝜆1
′ = 1 + 2 tan𝛼1

′ tan 𝛿′ (2-27) 

𝜆2
′ = 1 + 2 tan𝛼2

′ tan 𝛿′ (2-28) 

where γm (kN/m3) and cm (kPa) are the unit weight and cohesion of the wet backfill; c' (kPa) is the 

effective cohesion of the saturated backfill and the values of Kim, αim, K' and α' are shown in Table 

2-1. 

2.1.1.1.5 Considering the nonuniform distribution of vertical stress across the width 

Li and Aubertin (2008) modified the Marston solution by considering a nonuniform distribution of 

vertical stress across the width of a 2D vertical backfilled stope. The vertical and horizontal stresses 

are then expressed as follows: 

𝜎𝑣𝑥 =
𝛾𝐵

2𝐾𝑡𝑎𝑛 𝛿
[1 − 𝑒

−
2𝐾′𝑡𝑎𝑛 𝛿
𝐵(1−𝐷𝐹)

𝑧
] × [1 − 𝑎 (

|𝑥|

𝐵
)

𝑏

] (2-29) 

𝜎ℎ =
𝛾𝐵

2𝑡𝑎𝑛 𝛿
(1 − 𝑒−2𝐾

𝑧
𝐵
𝑡𝑎𝑛 𝛿) (2-30) 

with  

DF =
𝑎

2𝑏(𝑏 + 1)
=  
2
(1−

𝜆1𝐻
𝐵
)
tan−𝜆2(𝜑0 + 𝜑)

23(3 + 1)
= 2(−4−

0.02𝐻
𝐵

) tan−0.1(50° + 𝜑) (2-31) 

where σvx (kPa) is the vertical stress at a distance of x (m) from the vertical central line; a, b, λ1, λ2, 

φ0 are some intermediate parameters in the distribution factor (DF) and they were obtained by 

calibration with some numerical results obtained with FLAC. The calibrated analytical solution 

was then further validated against additional numerical results. 

Jaouhar et al. (2018) also considered nonuniform vertical stress across the width of a vertical stope 

by considering an arc layer element. The vertical and horizontal stresses are expressed as follows: 

𝜎𝑣 = 𝜎1 [1 − (1 − 𝐾𝑎) (
𝑥

𝜉𝑥𝐵𝜅
)
2

] (2-32) 
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𝜎ℎ = 𝜎1 [𝐾𝑎 − (1 − 𝐾𝑎) (
𝑥

𝜉𝑥𝐵𝜅
)
2

] (2-33) 

With 

𝜎1 =
𝛾𝜉𝑥𝐵𝜅𝜔𝑤 cos𝜔𝑤

tan 𝛿 (sin2𝜔𝑤 + 𝐾𝑎 cos
2𝜔𝑤)

(1 − 𝑒
−
tan𝛿(sin2𝜔𝑤+𝐾𝑎 cos

2𝜔𝑤)
𝜉𝑥𝐵 cos𝜔𝑤

(𝑧−[𝜉𝑥𝐵𝜅−√(𝜉𝑥𝐵𝜅)
2−𝑥2])

) (2-34) 

𝜉𝑥 = {1.5 + 0.25 (
𝐻

𝐵
)
0.25

𝑡𝑎𝑛𝜑 + [0.75 − 0.25 (
𝐻

𝐵
)
0.25

𝑡𝑎𝑛𝜑]√1 − (
𝑥

𝐵
)
2

} tan0.25𝜑 (2-35) 

where ξx is a correction factor for the radius R (= κB, m); ωw (= 45°-φ/2) is the angle between the 

major principal stress σ1 (kPa) along the walls and the vertical axis; κ (= 1/sin ωw) is a parameter 

related to the internal friction angle of the backfill. 

To note that Eq. 2-36 was obtained by calibration against some numerical results. The calibrated 

solution was then further validated with additional numerical results. 

Xu et al. (2018) assumed uniform horizontal stress across the width of the stope. The stress rotation 

was considered in their analytical solution and the trajectory of the minor principal stress σ3 (kPa) 

was regarded as a circular arc, a parabola, and a catenary, respectively in a differential flat element. 

For the case of a circular-arc shape, the vertical stress in the backfilled stope is given by: 

𝜎𝑣𝑥 =
𝐾𝑏
𝐾𝑥

𝛾𝐵

2𝐾𝑏 tan𝜑
(1 − 𝑒−

2𝑧𝐾𝑏tan 𝜑
𝑚𝐵 ) + 𝑞𝑒−

2𝑧𝐾𝑏tan 𝜑
𝑚𝐵 (2-36) 

with  

𝑚 = 𝐾𝑏 [
(1 + 𝐾𝑎) ∙ arctan(cos 𝜃𝑤 √(1 − 𝐾𝑎)/𝐾𝑎 )

cos 𝜃𝑤 √𝐾𝑎(1 − 𝐾𝑎)
− 1] (2-37) 

𝐾𝑥 =
𝜎ℎ
𝜎𝑣𝑥

=
cos2𝜓𝑥 + 𝐾𝑎 sin

2𝜓𝑥
sin2𝜓𝑥 + 𝐾𝑎 cos2𝜓𝑥

 (2-38) 

𝜃𝑤 = arctan [
1 − 𝐾𝑎 +√(1 − 𝐾𝑎)2 − 4 tan2 𝛿 𝐾𝑎

2 tan 𝛿 𝐾𝑎
] (2-39) 

cos𝜓𝑥 =
𝐵 − 𝑥

𝐵
cos 𝜃𝑤  (2-40) 
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where Kx is the earth pressure coefficient at a distance xw (m) from the wall; ψx (°) is the angle 

between the minor principal stress and vertical direction at a distance of x from the vertical central 

line;  Kb is the earth pressure coefficient along the vertical central line of the backfilled stope (xw = 

B/2) and θw is the angle between the minor principal stress and vertical direction at the fill-wall 

interface (x = 0). The solution was compared with numerical simulations conducted by ABAQUS 

and it was proved to predict well the stress distribution in some cases. 

2.1.1.1.6 Considering wall convergence 

Knutsson (1981) proposed an analytical solution to calculate the stress perpendicular to the rock 

wall (or horizontal stress) considering the wall convergence: 

𝜎ℎ = 𝜎𝑗 [𝜂1𝜂2∆𝜀 + (
𝜎0
𝜎𝑗
)

𝜂2

]

1
𝜂2

(2-41) 

where σj (kPa) is relative stress which is usually 100 kPa; η1 and η2 are the modulus number and 

the stress exponent, respectively, which are determined by compressometer tests; ∆ε is the 

compressive strain of the backfill induced by wall convergence; σ0 (kPa) is the initial stress level. 

The solution was compared with the classical silo solution and field experimental results measured 

in the Näsliden mine as shown in Figure 2-4. It is found that, on average, the stress component 

induced by the weight of backfill accounted for 70 ~ 80% of the total value of the stress while the 

wall convergence was responsible for 20 ~ 30% of the total value of the stress.  

           

                                           (a)                                                              (b) 

Figure 2-4: Comparisons between the analytical solutions and field measurements in (a) 3FC4 

stope and (b) 3FF4 stope (taken from Knutsson 1981) 
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2.1.1.1.7 Considering the consolidation effect 

Zheng et al. (2019) considered the consolidation and arching effects and proposed the following 

formulas for the total and effective stresses in backfilled stopes: 

𝜎𝑣
′ = 𝑒−

2𝐾 𝑡𝑎𝑛𝜑′𝑧
𝐵 ∫ (𝛾 +

𝑑𝑝𝑤
𝑑ℎ

) × 𝑒−
2𝐾 𝑡𝑎𝑛𝜑′𝑧

𝐵 𝑑𝑧
𝑧

0

(2-42) 

𝜎ℎ
′ = 𝐾𝑒−

2𝐾 𝑡𝑎𝑛𝜑′𝑧
𝐵 ∫ (𝛾 +

𝑑𝑝𝑤
𝑑ℎ

) × 𝑒−
2𝐾 𝑡𝑎𝑛𝜑′𝑧

𝐵 𝑑𝑧
𝑧

0

(2-43) 

𝜎𝑣 = 𝑒
−
2𝐾 𝑡𝑎𝑛𝜑′𝑧

𝐵 ∫ (𝛾 +
𝑑𝑝𝑤
𝑑ℎ

) × 𝑒−
2𝐾 𝑡𝑎𝑛𝜑′𝑧

𝐵 𝑑𝑧
𝑧

0

+ 𝑝𝑤 (2-44) 

𝜎ℎ = 𝐾𝑒−
2𝐾 𝑡𝑎𝑛𝜑′𝑧

𝐵 ∫ (𝛾 +
𝑑𝑝𝑤
𝑑ℎ

) × 𝑒−
2𝐾 𝑡𝑎𝑛𝜑′𝑧

𝐵 𝑑𝑧
𝑧

0

+ 𝑝𝑤 (2-45) 

with 

𝑑𝑝𝑤
𝑑ℎ

= −(𝛾 +
𝑣𝛾ℎ

𝑐𝑣
) +

𝑣𝛾(𝜋𝑐𝑣𝑡)
−
1
2

2𝑐𝑣
𝑒
−
ℎ2

4𝑐𝑣𝑡

[
 
 
 
 
 −

ℎ

2𝑐𝑣t

h0
2

∑ 8(𝑐𝑣𝑡)
3
2(𝑛0ℎ0)

2 coth (
𝑣𝑛0ℎ0√𝑡

√𝑐𝑣
) sinh (

ℎ𝑛0ℎ0

√𝑐𝑣𝑡
) 𝑒−(𝑛0ℎ0)

2
 

∞

𝑛=−∞

+
h0
2

∑ 8(𝑐𝑣𝑡)
3
2(𝑛0ℎ0)

2 coth (
𝑣𝑛0ℎ0√𝑡

√𝑐𝑣
)
𝑛0ℎ0

√𝑐𝑣𝑡
cosh (

ℎ𝑛0ℎ0

√𝑐𝑣𝑡
) 𝑒−(𝑛0ℎ0)

2
 

∞

𝑛=−∞ ]
 
 
 
 
 

   (2-46) 

where h (m) is the height of the studied point; z (m) is the depth from the top of the stope; v is the 

filling rate (m/h); pw (kPa) is water pressure; h0 is the step length; n0 is the series number in the 

range of -∞ to ∞, t (h) is the filling time and cv (m
2/h) is consolidation coefficient of the backfill. 

 

                                           (a)                                                                   (b) 

Figure 2-5: (a) A schematic diagram of a vertical backfilled stope; (b) Distribution of the 

horizontal and vertical total stresses with different cv (taken from Zheng et al. 2019) 
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The analytical solution was compared with the numerical results obtained by Fahey et al. (2009). 

A good agreement was observed except some small difference which is due to the relatively thick 

layers used in the numerical models. Additional numerical results obtained by numerical 

simulations conducted by Zheng et al. (2019) corresponded well with the analytical results. 

According to their analytical solution, the total stress increases with filling rate and stope width but 

decreases with the consolidation coefficient and effective friction angle. 

2.1.1.1.8 A solution by applying the Pascal’s triangle 

Ting et al. (2012) proposed an analytical solution based on Pascal’s triangle to calculate the vertical 

stress at the base of a 2D vertical column. The granular materials stored in the vertical prism was 

divided into m layers with a thickness of n (m) and a self-weight of V0 (kN) for each layer. The part 

of the vertical load in every layer transferred to the wall Fm (kN) and the bottom of the layer Vm 

(kN) is x and 1-x, respectively, for example, in the layer m, 

𝐹𝑚 = (𝑉0 + 𝑉𝑚−1)𝑥 (2-47) 

𝑉𝑚 = (𝑉0 + 𝑉𝑚−1)(1 − 𝑥) (2-48) 

The equation of Vm can be expanded as 

𝑉𝑚 = 𝑉0(1 − 𝑥)(𝑎1 + 𝑎2𝑥 + 𝑎3𝑥
2 +⋯𝑎𝑚−1𝑥

𝑚−2 + 𝑎𝑚𝑥
𝑚−1) (2-49) 

with 

𝑎𝑖 = (−1)
𝑖+1 (

𝑚

𝑖
) = (−1)𝑖+1

𝑚!

𝑖! (𝑚 − 𝑖)!
(2-50) 

where (𝑚
𝑖
) is the number in the mth line and ith row of Pascal’s triangle. 

 

Figure 2-6: Pascal’s triangle (taken from Ting et al. 2012) 

The equation of Vm can be transferred as 
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𝑉𝑚 = 𝑉0(1 − 𝑥)∑[(−1)𝑖+1 (
𝑚

𝑖
) 𝑥𝑖−1]

𝑚

𝑖=1

=
𝑉0(1 − 𝑥)

𝑥
[1 − (1 − 𝑥)𝑚] (2-51) 

Then the average vertical stress at the bottom of the mth layer is  

𝜎𝑣 =
𝑉𝑚
𝐵
=
𝛾𝐵𝑛

𝐵

(1 − 𝑥)

𝑥
[1 − (1 − 𝑥)𝑚] = 𝛾𝑛

(1 − 𝑥)

𝑥
[1 − (1 − 𝑥)𝑚] (2-52) 

The shear stress τ (kPa) at the wall can be expressed as 

𝜏 = 𝐾𝜎𝑣 tan 𝛿 =
𝐹𝑚
2𝑛
 (2-53) 

Submitting Eqs. 2-47 and 2-52 into Eq. 2-53, the parameter x can be obtained by 

𝑥 =
(2𝐾𝑛 tan 𝛿)/𝐵

1 + (2𝐾𝑛 tan 𝛿)/𝐵
(2-54) 

The stress in the backfill with a given geometry was calculated using Eq. 2-52 for different values 

of m. It was observed that the stress obtained from the proposed method agreed well with the 

Marston solution once m is large sufficiently or n is small enough.  

Actually, when Eq. 2-54 is submitted into Eq. 2-52, the vertical stress at the bottom becomes: 

𝜎𝑣 = 𝛾𝑛
(1 − 𝑥)

𝑥
[1 − (1 − 𝑥)𝑚] =

𝛾𝐵

2𝐾 tan 𝛿
[1 − (

1

1 + (2𝐾𝑛 tan 𝛿)/𝐵
)

𝑧
𝑛
] (2-55) 

Considering n→0, the vertical stress can be calculated as: 

𝜎𝑣 = lim
𝑛→0

𝛾𝐵

2𝐾 tan 𝛿
[1 − (

1

1 + (2𝐾𝑛 tan 𝛿)/𝐵
)

𝑧
𝑛
] =

𝛾𝐵

2𝐾 tan 𝛿
(1 − 𝑒−

2𝐾𝑧 tan𝛿
𝐵 ) (2-56) 

The solution of Ting et al. (2012) reduces to the Marston solution when the layer thickness tends 

to zero. 

2.1.1.1.9 Empirical analytical solutions 

In the experimental results conducted by Sivakugan and Widisinghe (2013), it was found that the 

vertical stress at the bottom increased steadily as the filling heights increased. Then, Rajeev et al. 

(2016) modified the Marston solution by adding several parameters calibrated from the 
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experimental results. However, no general analytical solutions were proposed. It was suggested 

that laboratory tests should be conducted first to determine relevant parameters for a certain 

backfilling material before calculating the stress in the backfill.  

According to the numerical simulations conducted by Singh et al. (2009), the product of earth 

pressure coefficient K and interface friction coefficient tan δ was almost a constant. Hong et al. 

(2016) then performed some laboratory tests to measure the stress in a trench. From their 

experimental data, the value of K·tan δ was constant at around 0.125. Thus, a semi-empirical 

analytical solution for the vertical stress modified from Marston solution is given as follows: 

𝜎𝑣 = 4𝛾𝐵 (1 − 𝑒
−
𝑧
4𝐵) (2-57) 

The analytical equation was compared with the results obtained from two other field experiments 

and it predicated well the measured stress.  

2.1.1.2 Backfilled stopes with inclined walls 

2.1.1.2.1 Modified solutions based on the Marston model 

Caceres (2005) assumed that the stresses at the hanging wall and footwall were identical in a 2D 

inclined stope. Based on the Marston solution, the vertical stress in the backfill was expressed as 

follows (Caceres 2005):  

𝜎𝑣 =
𝛾𝐵sin2𝛽

2𝐾𝐶tan 𝜑
(1 − 𝑒

−
2𝐾𝑧 tan 𝜑 
𝐵sin2𝛽 ) (2-58) 

with 

𝐾𝐶 = 1.4sin
2𝜑 − 2 sin𝜑 + 1 (2-59) 

where β (°) is the inclination angle of the wall and Kc is the pressure coefficient obtained by curve 

fitting with numerical simulations.  

However, some limitations exist in their analytical solution. For example, the shear stress at the 

hanging wall may be less than that at the footwall due to the wall inclination. In the derivation of 

the normal stress σn (kPa) perpendicular to the wall, the expression of σn = σh/sin2β is inaccurate. 
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Besides, the vertical component of the shear force at the walls should be 2σtdy instead of 2σtdy/sinβ 

in their analyses, where σt (kPa) is the shear stress at the walls. 

2.1.1.2.2 Considering cohesion and surcharge 

Ting et al. (2011) used the expression as follows to obtain the normal stress σn at the sidewalls in 

a 2D inclined stope (shown in Figure 2-7): 

𝜎𝑛 =
𝜎𝑣 + 𝜎ℎ
2

+
𝜎𝑣 − 𝜎ℎ
2

cos 2𝛽 + 𝜏𝑣ℎ sin 2𝛽                                         (2-60) 

where τvh (kPa) is shear stress.  

The vertical stress is given by the following equation after taking into account the backfill cohesion 

c and surcharge q: 

𝜎𝑣 =
𝛾𝐵 − 2𝑐(1 + sin 2𝛽 tan 𝛿)

2𝐾𝑇 tan 𝛿
(1 − 𝑒−2𝐾𝑇

𝑧
𝐵
tan𝛿 ) + 𝑞𝑒−2𝐾𝑇

𝑧
𝐵
tan𝛿                 (2-61) 

with  

𝐾𝑇 =
1 + 𝐾0
2

+
1 − 𝐾0
2

cos 2𝛽 + 𝐾0 sin 2𝛽 tan 𝛿                                 (2-62) 

 

Figure 2-7: A schematic view of a 2D inclined stope (taken from Ting et al. 2011) 
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The stress calculated by the proposed analytical solution was found to compare well with that 

obtained from numerical simulations conducted by Li and Aubertin (2009e). However, it is 

unreasonable to calculate both τvh and τ with the Mohr-Coulomb yield criterion at the same time 

because yield should not simultaneously take place at a given point in two directions.  

2.1.1.2.3 Considering nonuniform vertical stress across the width 

By making use of the theory of Harrop-Williams (1989) who assumed that the trajectory of the 

major principal stress σ1 in backfilled stopes was a circle arch, Singh et al. (2011) proposed the 

following equation for the major principal stress σ1: 

𝜎1 =
𝛾𝐵𝛿 sin2 𝛽 cosec 𝛿 − 2𝑐

2(sin2 𝛿 + 𝐾 cos2 𝛿) tan 𝛿
(1 − 𝑒

−
8𝑧(sin2 𝛿+𝐾 cos2 𝛿) tan𝛿 sin𝛿

𝐵(2(1+𝐾)𝛿−(1−𝐾)sin2𝛿 cos2𝛽) sin3𝛽) 

+𝑞𝑒
−

8𝑧(sin2 𝛿+𝐾 cos2 𝛿) tan𝛿 sin𝛿

𝐵(2(1+𝐾)𝛿−(1−𝐾)sin2𝛿 cos2𝛽) sin3𝛽       (2-63)

 

However, it is difficult to apply the equation to calculate the vertical and horizontal stresses in 

inclined backfilled stopes. Nonetheless, Eq. 2-63 can be used to calculate the vertical stress in a 

vertical stope by submitting β = 90° into it.  

Jahanbakhshzadeh et al. (2017, 2018a) compared the previous analytical solutions and proposed a 

2D solution for inclined stopes with a modified coefficient Kβ obtained by curve-fitting with 

numerical simulations. The proposed solution was given as follows for the vertical stress: 

𝜎𝑣 =
𝛾𝐵𝑠𝑖𝑛 𝛽

2𝐾𝛽𝑡𝑎𝑛 𝜑
(1 − 𝑒

−
2𝐾𝛽𝑡𝑎𝑛 𝜑 

𝐵 𝑠𝑖𝑛 𝛽
𝑧
)                                             (2-64) 

with  

𝐾𝛽 = 𝐾𝑎 × 𝑓ℎ × 𝑓𝑤                                                                 (2-65) 

𝑓ℎ = (1 + cos 𝛽) − (
𝑧

𝐻
tan𝜑 cos2𝛽)                                         (2-66) 

𝑓𝑤 = 1 + 3(1 −
𝑥ℎ
𝐵
)
4

tan𝜑 cos(𝛽 − 10°)                                    (2-67) 

where xh (m) is the distance from the hanging wall; fh and fw are the effects of geometrical factors. 

The horizontal stress can be calculated by Kβ multiplying the vertical stress. The variation of the 

earth pressure coefficient across the width and along the height of the backfilled stope was taken 
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into consideration through the coefficient Kβ. The calibrated analytical solution was further 

validated by additional numerical results. It has been shown that the proposed solution captured 

well the effect of inclination angle, stope width, and internal friction angle on the stress distribution 

in inclined stopes. 

2.1.1.2.4 Three-dimensional (3D) situation 

Jahanbakhshzadeh et al. (2018b) extended their 2D arching solution to a 3D situation (shown in 

Figure 2-8) with Kβ: 

𝜎𝑣 =
𝛾𝑠𝑖𝑛 𝛽

2(B−1 + L−1)𝐾𝛽𝑡𝑎𝑛 𝜑
(1 − 𝑒

−
2(B−1+L−1)𝐾𝛽𝑡𝑎𝑛 𝜑 

𝑠𝑖𝑛 𝛽
𝑧
)                        (2-68) 

Similarly, the horizontal stress can be calculated by Kβ multiplying the vertical stress. The 

analytical solution was validated by numerical and experimental results (Ting et al. 2012). 

 

Figure 2-8: A schematic view of a 3D inclined stope and a layer element with forces on it (taken 

from Jahanbakhshzadeh et al. 2018b) 

Yan et al. (2019) proposed a 3D analytical solution for the stress in backfilled stopes by applying 

the stress state at a point in the plane: 

𝜎𝑎𝑣 =
𝛾𝐵 − 2𝑐′

2𝜇′
(1 − 𝑒−

2𝜇′

𝐵
𝑧) + 𝑞𝑒−

2𝜇′

𝐵
𝑧                                        (2-69) 
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𝜎ℎ𝑇 = 𝐾𝑌𝑎𝑛𝜎𝑎𝑣                                                                     (2-70) 

𝜎ℎ𝐿 = 𝐾𝐿𝜎𝑎𝑣                                                                       (2-71) 

with  

𝑐′ =
𝑐 sin 2𝛽

tan 𝛿1 + tan 𝛿2
2 +

𝑐1 + 𝑐2
2 +

𝑐3 + 𝑐4
2

𝐵
𝐿 sin 𝛽 

sin 𝛽 (sin 𝛽 − cos𝛽 tan 𝛿2)
                           (2-72) 

𝜇′ =
𝐾𝑌𝑎𝑛

tan 𝛿1 + tan 𝛿2
2 +

𝐵 sin 𝛽
𝐿

tan 𝛿3 + tan 𝛿4
2 𝐾𝐿 

sin 𝛽 (sin 𝛽 − cos 𝛽 tan 𝛿2)
                              (2-73) 

𝐾𝑌𝑎𝑛 = 𝐾0 𝑠𝑖𝑛
2 𝛽 + 𝑐𝑜𝑠2 𝛽 + 𝐾0 𝑡𝑎𝑛 𝜑 𝑠𝑖𝑛 2𝛽                                         (2-74) 

where σav (kPa) is the average vertical stress across the width; σhL (kPa) and σhT (kPa) are the 

longitude and transversal horizontal stress, respectively; KYan is the backfill pressure coefficient 

used in their solution; KL the ratio between the σhL and σav.  

Their analytical solution was validated against the experimental results obtained by Take and 

Valsangkar (2001). However, the same limitation as the solution of Ting et al. (2011) existed in 

the proposed solution as it is impossible for a given point simultaneously yielding in two directions.  

2.1.1.3 Summary 

Table 2-2 shows a summary of the above-mentioned analytical solutions. Although more and more 

factors have been taken into account in the previous analytical solutions, more improvements can 

be made by accounting for the backfilling sequence, backfill inhomogeneity, and dynamic response 

of the backfill due to blasting.  

Although cohesion is considered in several analytical solutions (Terzaghi 1943; Askew et al. 1978; 

Li et al. 2005, 2006; Ting et al. 2011; Xu et al. 2018), their applicability and reliability remain 

uncertain. When the backfill cohesion reaches a certain value, the stress calculated by these 

equations can become zero and even negative. This does not correspond to the numerical results 

shown by Li and Aubertin (2009e). Besides, these factors are usually considered separately in the 

existing analytical solutions. Further efforts are still needed to overcome these overly simplifying 

assumptions.  
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Table 2-2: Summary of the analytical solutions for the stress state in backfilled stopes 

Analytical solutions β1 δ2 c3 q4 3D5 D-σv
6 W7 cv

8 Others9 

Askew et al. (1978)   √       

Knutsson (1981)         √ 

Aubertin et al. (2003)  √        

Li et al. (2005, 2006)  √ √  √     

Caceres (2005) √         

Pirapakaran and Sivakugan (2007a)  √   √     

Li and Aubertin (2008)  √    √    

Li and Aubertin (2009c)       √   

Li and Aubertin (2009d)  √ √  √  √   

Ting et al. (2011) √ √ √ √      

Singh et al. (2011) √ √    √    

Ting et al. (2012)         √ 

Sivakugan and Widisinghe (2013)  √   √     

Rajeev et al. (2016)  √   √     

Hong et al. (2016)          

Jahanbakhshzadeh et al. (2017) √ √    √    

Jahanbakhshzadeh et al. (2018b) √ √   √ √    

Jaouhar et al. (2018)  √    √    

Xu et al. (2018)  √ √ √  √    

Zheng et al. (2019)        √  

Yan et al. (2019) √ √   √     

Notes: 1. for inclined stopes; 2. interface friction angle considered; 3. cohesion considered; 4. 

surcharge considered; 5. three-dimensional situation; 6. nonuniform distribution of vertical stress 

across the width considered; 7. pore water pressure considered; 8. consolidation effect of the 

backfill considered; 9. other factors, for example, confining stress of the rock and other methods 

used. 
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2.1.2 Numerical simulations 

Compared to analytical solutions, numerical simulations are more efficient to analyze the stress 

state in backfilled stopes as many influencing factors can be considered, including stope geometry, 

inhomogeneity of the backfill and filling sequence, etc. 

2.1.2.1 Backfilled stopes with vertical walls 

2.1.2.1.1 Modeling using TNJTEP and NONSAP 

Barrett et al. (1978) performed numerical modeling using TNJTEP, a 2D finite-element program, 

and later using NONSAP, a 3D finite-element program, to assess the stress state in the backfill of 

primary stopes. Arching effects occurred in all the numerical models. In the 2D numerical models, 

the backfill was firstly considered as linearly elastic and secondly as elastoplastic, respectively. It 

is found the vertical stress was almost the same in the two conditions, while the horizontal stress 

was oscillating when the nonlinearity of backfill is not considered. Compared to the 2D linearly 

elastic models, the numerical simulations with the 3D linearly elastic models showed smaller 

vertical stress.  

2.1.2.1.2 Modeling arching effects using PHASE2 

Aubertin et al. (2003) conducted numerical simulations with PHASE2 (RocScience 2002) to 

evaluate the stress state in backfilled stopes. The arching effect was confirmed in the backfilled 

stope. The numerical results were compared with the analytical solution based on the Marston 

theory using the at-rest, active, and passive earth pressure coefficients, respectively. A relatively 

large difference was observed. Both the vertical and horizontal stresses around the mid-height of 

the backfilled stope were much higher than the overburden stress, which was due to the confining 

effects caused by the inward displacement of the sidewalls in the numerical modeling.  

2.1.2.1.3 Modeling arching effects using FLAC 

Li et al. (2003) applied FLAC to estimate the stresses in delayed backfilled stopes using the same 

geometry and material properties as Aubertin et al. (2003). In the numerical simulations, the stope 

was first excavated instantaneously in one step and then filled in one step after resetting the wall 
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displacement induced by excavation to zero. With this mining sequence, the wall closure will not 

be considered. 

Figures 2-9a and 2-9b show both the vertical and horizontal stresses are higher in the center than 

those near the wall at a given depth, indicating the occurrence of arching effects. Figures 2-9c and 

2-9d show that the Marston theory underestimates the stresses in backfilled stopes. Li et al. (2003) 

also presented that the horizontal stress was uniform across the width while the vertical stress 

distributed nonuniformly. 

 

              (a)                           (b)                                   (c)                                           (d) 

Figure 2-9: Stress contours in the backfill: (a) the vertical stress and (b) the horizontal stress; 

comparisons of the analytical and numerical results: (c) the vertical stress and (d) the horizontal 

stress (taken from Li et al. 2003) 

Pirapakaran and Sivakugan (2007a) investigated the influence of filling layers on the stresses in 

backfilled stopes using FLAC. Their results show that numerical models with several filling layers 

would induce more realistic results compared to the numerical models with one filling layer. Good 

agreements were obtained between the numerical results and the analytical results by considering 

δ = (2/3) φ and K = K0.  

2.1.2.1.4 Three-dimensional models with FLAC3D 

Pirapakaran and Sivakugan (2007b) analyzed by 3D numerical modeling with FLAC3D their 

laboratory tests performed with a square stope model. A good agreement was observed between 

the numerical and experimental results.  

FLAC3D was further applied by Pirapakaran (2008) to model a square stope 10 m wide, 10 m long 

and 60 m high while FLAC was used to model a narrow 2D stope 10 m wide and 60 m high and a 
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circular stope with 10 m in diameter and 60 m in height. As shown in Figure 2-10, the vertical 

stresses of the circle stope obtained by numerical modeling with FLAC and those of the square 

stope obtained by numerical modeling with FLAC3D agree well, but much smaller than the vertical 

stresses of the narrow 2D stope obtained by numerical modeling with FLAC. These results indicate 

the importance of taking into account the 3D geometry of backfilled stopes when the third 

dimension is not significantly larger than the two other dimensions. 

 

Figure 2-10: Vertical stress along the central line of the backfill (taken from Pirapakaran 2008)  

2.1.2.1.5 Plain-strain and axisymmetric models with PLAXIS 2D 

Fahey et al. (2009) used PLAXIS 2D to model a plain-strain stope 20 m wide and 50 m high and 

an axisymmetric stope 20 m in diameter and 50 m in height. Their numerical results show that the 

stresses under plain-strain conditions are much larger than those in axisymmetric conditions, as 

shown in Figure 2-11.  

 

Figure 2-11: Vertical and horizontal stresses for a plain-strain (PS) stope and an axisymmetric 

(AX) stope (taken from Fahey et al. 2009) 
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2.1.2.1.6 Drainage and consolidation  

Fahey et al. (2009) also investigated the stress state in backfilled stopes by considering the drainage 

and consolidation during and after backfilling. According to whether there are drainage and 

consolidation during the filling, three filling types, namely undrained filling, drained filling, and 

partially drained filling, were considered. Figure 2-12a shows that the total horizontal and vertical 

stresses at the end of filling were almost equal to the overburden stress in undrained filling 

conditions. Then the stresses decreased during the consolidation procedure due to the drainage and 

arching effect. In partially drained filling conditions, a larger value of hydraulic conductivity of the 

backfill could cause a decrease in the vertical stress at the base (shown in Figure 2-12b) and a more 

significant decrease in the horizontal stress. Besides, the final stress state of the backfill (after 

drainage and consolidation) was almost the same regardless of the filling type. 

   

                                               (a)                                                         (b) 

Figure 2-12: (a) Total stress at the end of filling (EOF), consolidation (EOC) and drawdown 

(EOD) in undrained filling process and (b) at the end of filling in partially drained filling process 

(taken from Fahey et al. 2009) 

2.1.2.1.7 Pore water pressure 

Li and Aubertin (2009c) performed numerical simulations with FLAC to evaluate the influence of 

hydrostatic water pressure on the effective and total stresses in backfilled stopes. Three conditions, 

namely partly submerged, submerged and overly submerged backfill, were taken into account. The 

numerical results showed that a transition of the stresses occurred at the phreatic surface in partly 
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submerged backfill. In submerged and overly submerged backfill, the effective stresses were found 

to correlate well with those predicted by the Marston solution using effective backfill properties. 

2.1.2.1.8 Kink effects observed with FLAC 

Sivakugan et al. (2014) analyzed by numerical modeling the vertical stresses at the bottom as a 

function of fill thickness (Method 1, stress-thickness profile) and at different positions as a function 

of depth (Method 2, stress-depth profile) along the vertical central line of backfilled stopes. As 

shown in Figure 2-13, their numerical results show that the stress-depth profile (Method 2) is lower 

than the stress-thickness profile (Method 1), except near the top and base where the vertical stresses 

obtained by the two methods are identical. In the stress-depth profile, a sudden increase in the stress 

occurred near the bottom. This phenomenon was called kink effects by Sivakugan et al. (2014), 

which was due to the not fully mobilized friction caused by the fixed boundary condition at the 

bottom in the numerical modeling. 

 

Figure 2-13: Vertical stress along the central line of the backfilled stope with different widths 

(taken from Sivakugan et al. 2014) 

2.1.2.1.9 Fill-wall interface elements 

In numerical modeling of the stresses in backfilled stopes, the use of interface elements between 

backfill and rock walls was subjective. Liu et al. (2017) investigated the influence of interface 

elements on the stress state in backfilled stopes using numerical models with FLAC. Their 

numerical results indicated that the vertical and horizontal stresses decreased with the increase of 

the interface friction angle. Both the vertical and horizontal stresses decreased as the interface 
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cohesion increased from 0 to 25 kPa but became almost constant when the cohesion exceeded 25 

kPa and further increased. In addition, the stress state was found to be more associated with the 

interface properties other than fill properties. When the interface friction angle was equal to the fill 

friction angle, the use of interface elements did not change significantly the stress state in backfilled 

stopes. 

Liu et al. (2016) also investigated the influence of nonplanar interfaces in the form of saw teeth on 

the stress distribution in backfilled stopes, as shown in Figure 2-14a. Figure 2-14b indicated that 

the obtained stresses were lower than those obtained by numerical modeling with planar (θ = 180°) 

interfaces. Besides, their numerical results also showed that it was unnecessary to consider 

interface elements if the nonplanar interfaces were rough enough. 

 

                                        (a)                                                     (b) 

Figure 2-14: (a) A model of the stope with nonplanar interfaces and (b) the stresses along the 

height of the stope with different values of saw-teeth angle (θ = 180° is the condition with a 

planar interface) (taken from Liu et al. 2016)  

2.1.2.1.10 Effects of adjacent excavation and backfilling 

Falaknaz et al. (2015a) conducted numerical simulations with FLAC to investigate the stress state 

in two adjoining stopes sequentially excavated and backfilled. The obtained stress iso-contours are 

shown in Figure 2-15. The numerical results indicated that after the second stope was backfilled, 
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the horizontal stress in the backfill of the first stope was higher than that of a single stope while the 

vertical stress was almost the same. Besides, their results showed that the effects of stope width, 

friction angle, cohesion, and dilation angle on the stress state in the first backfilled stope followed 

the same trend as those in a single stope presented by Li and Aubertin (2009e). As the depth of the 

stopes increased, the horizontal stress in the first stope increased below the midheight of the stope 

while the vertical stress only increased slightly near the bottom of the stope. It was also reported 

that the stresses in the backfill of the second stope were similar to those in the backfill of a single 

stope.  

      

                          (a)                                          (b)                                                      (c) 

Figure 2-15: Numerical simulations of stresses in backfilled stopes by considering adjacent 

stopes: (a) a model with two stopes; numerical results of the (b) horizontal and (c) vertical 

stresses at the end of the filling process of the second stope (taken from Falaknaz et al. 2015a) 

Falaknaz et al. (2015b) also performed numerical simulations by considering the effect of relating 

the internal friction angle and Poisson’s ratio through the at-rest earth pressure coefficient. Their 

numerical results showed that increasing pillar width between the two neighboring stopes led to a 

decrease in the stresses in the first stope during the excavation and backfilling of the second stope. 

The effect was more significant for cohesive backfill material. In addition, when the elastic 

modulus of the rock mass diminished, the stresses in the first stope increased, especially at larger 

depth. The stress path along the vertical central line indicated that the fill material in the first stope 

yielded at some stages due to the loading and unloading process during the excavation and 

backfilling operations of the second stope. 
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By considering the rock mass as elastoplastic, Falaknaz et al. (2015c) further evaluated the 

influence of the rock mass properties on the stress distribution in two sequential-created adjacent 

stopes. Their numerical results indicated that the stresses in the first stope with an elastoplastic rock 

mass were different from those with an elastic model. However, the influences of the stope width 

and depth, the pillar width, and the rock mass modulus on the stresses in the first stope showed the 

same trends as those in the first stope with elastic rock mass. An increase of the natural stress ratio 

resulted in an increase of the stresses in the first stope after the filling of the second stope. 

Newman et al. (2018) conducted numerical simulations with RS2 (RocScience, 2018) to 

investigate the stress distribution in the adjacent rock mass as well as in the fill material. The stopes 

were filled in 5 layers. Their numerical results indicated that both the vertical and horizontal 

stresses in the rock mass after excavation will return to far-field stress at a large distance from the 

stope wall. The distance was dependent on the in-situ stress ratio. It was also seen that tensile stress 

occurred near the walls. They also reported that the increase in vertical stress near the bottom of 

the backfilled stope was induced by the stress continuity in the numerical modeling, which caused 

the stress to transfer from the surrounding rock mass to the fill material.  

Newman and Agioutantis (2018) used RS2 to evaluate the stress distribution in the fill material and 

surrounding rock mass for the case of two adjacent stopes which were sequentially excavated and 

backfilled. After the excavation and backfill processes of the second stope (Stope B), the vertical 

stress along the vertical central line (VCL) of the first stope (Stope A) increased slightly while the 

horizontal stress increased significantly, as shown in Figure 2-16. For the second stope, the stress 

distribution was similar to that in a single backfilled stope. Besides, a nonlinear compressive state 

was found in the stress distribution in the rock pillar, which was induced by the tensile stress 

developed near the pillar back and floor. 
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Figure 2-16: The stress distributions within the backfill of the first stope (Stope A) along the 

VCL due to the excavation and backfilling of the second stope (Stope B) (taken from Newman 

and Agioutantis 2018) 

2.1.2.1.11 Modeling the backfill using DEM program 

Hasan et al. (2017) used a numerical code, called YADE based on the discrete element method 

(DEM) to investigate the stress distribution in backfilled stopes and the influence of wall friction. 

As shown in Figure 2-17a, the vertical stress reached its maximum at about a quarter of the total 

backfill height, which corresponded well with the experimental results of Knutsson (1981). In 

Figure 2-17b, the decrease in contact point ratio is significant (about 6%) at the wall compared 

with that in the center for frictional walls. Besides, their numerical results also showed that the 

change in the shear force direction was more obvious for the backfilled stopes with frictional walls. 

       

                                         (a)                                                                    (b) 

Figure 2-17: (a) Comparisons of the normalized vertical stress between the numerical and the 

experimental results; (b) contact point ratio across the width (taken from Hasan et al. 2017) 



32 

 

 

2.1.2.1.12 Modeling the backfilling procedure with ABAQUS 

Xu et al. (2018) conducted numerical simulations using ABAQUS to verify their proposed 

analytical solution. The arching effect was observed according to the stress state contours. 

Moreover, it is indicated that a relatively good agreement was observed between the stresses 

obtained in numerical simulations and those calculated with Eq. 2-36.  

2.1.2.1.13 Creep behavior of the rock mass 

Qi and Fourie (2019) performed numerical simulations with FLAC by considering the creep 

behavior of rock mass (CBRM) to study the abnormal increase of the stresses in backfilled stopes 

after completion of backfilling. They used the Burger creep visco-plastic model (CVISC) to 

simulate the creep behavior of rock mass and the Mohr-Coulomb elastoplastic model (MC) to 

represent the mechanical behavior of backfill. The variations of the backfill stiffness and cohesion 

were also taken into account based on the curve-fitting expressions proposed by Helinski (2007). 

As shown in Figure 2-18a, both the vertical and horizontal stresses were smaller than the 

overburden stress and the vertical stress is higher than the horizontal stress at half-day after the 

filling process. In this stage, the stresses are mainly dependent on the self-weight of backfill and 

arching effects. Figure 2-18b shows that, at 3 days after the backfilling, both the stresses were much 

higher than the overburden stress and the horizontal stress become larger than the vertical stress. It 

can be attributed to the confining effects caused by rock displacement. 

     

                                         (a)                                                                    (b) 

Figure 2-18: Horizontal and vertical stresses along the VCL with time: (a) half day, and (b) 3 

days (taken from Qi and Fourie 2019) 



33 

 

 

Their proposed modeling framework was applied in Baixiangshan Iron Mine. A good agreement 

was obtained between the field measurement and numerical results. The stresses increased 

significantly with an increase in the backfill stiffness but were relatively insensitive to the variation 

of the backfill cohesion. A gap at the top of the backfill caused a decrease in the stress in the upper 

part of the stope but had an insignificant influence on the stresses near the lower part of the stope. 

The backfill placement delay could result in a larger horizontal displacement of the rock mass and 

lower stress in the backfilled stope. 

2.1.2.2 Backfilled stopes with inclined walls 

2.1.2.2.1 Modeling arching effects 

Aubertin et al. (2003) also conducted some numerical simulations using PHASE2 for stopes with a 

wall inclination angle of 45°. The obtained stress distribution was different from that in vertical 

stopes. The vertical stress was found to vary significantly across the width of the backfilled stope. 

The maximum vertical and horizontal stresses along the depth occurred at the mid-height of the 

backfill. The results were similar to those in vertical stopes they obtained.  

Li et al. (2003) carried out numerical simulations for inclined stopes using FLAC. The results 

showed that the horizontal stress along the central line was predicted well by the Marston (1930) 

solution while the vertical stress was underestimated by the Marston (1930) solution.  

2.1.2.2.2 Investigating the factors of influence using FLAC 

Caceres (2005) evaluated the stress state in inclined backfilled stopes with FLAC. Figure 2-19a 

indicates the occurrence of arching effects in inclined backfilled stopes. It is also seen from Figure 

2-19b that the vertical stress decreases as the wall inclination angle decreases and the maximum 

stress occurs near the footwall of the stope. Their numerical results also illustrated that the vertical 

stress would decrease as the backfill height increased. The vertical stress was found to increase 

proportionally with the increase in the backfill density. A higher internal friction angle could cause 

a decrease in vertical stress. 
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                              (a)                                                                            (b)                          

Figure 2-19: (a) Stress contours for inclined backfill with β = 70° and (b) the stress distribution 

across the width with different inclination angles (taken from Caceres 2005) 

Li and Aubertin (2009e) performed many numerical simulations to investigate the influence of 

stope geometry and fill properties on the stress state along the hanging wall, footwall, and the 

central line. As shown in Figure 2-20, the horizontal stress seems to be insensitive to the variation 

of the wall inclination angle while the vertical stresses along the center line and hanging wall 

decrease as the wall inclination angle decreases from 90° to 60°. Along the footwall, the change of 

stress was irregular.  

 

                            (a)                                               (b)                                                (c) 

Figure 2-20: Stress variation for various inclination angles: (a) along the central line; (b) along 

hanging wall and (c) along footwall (taken from Li et al. 2009b) 
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The numerical results of Li and Aubertin (2009e) also showed that both the vertical and horizontal 

stresses decreased as the stope width decreased. Besides, both the vertical and horizontal stresses 

remained unchanged when the backfill Young’s Modulus E changed, but below a value of about 

300 MPa. The stresses became oscillatory as E increased to 3 GPa. When the Poisson’s ratio μ 

increased, the horizontal stress tended to increase slightly whereas the vertical stress reduced 

significantly. As the internal friction angle φ increased from 10° to 40°, the horizontal stress 

decreased while the vertical stress became insensitive to the variation of the friction angle as long 

as its value exceeded 20°. As the cohesion c was small and increased, the stresses tended to 

decrease. When the cohesion was below 10 kPa, both the vertical and horizontal stresses increased 

linearly with the depth. However, the stresses became wavy when the cohesion was higher than 10 

kPa and less than 50 kPa, indicating a change of mechanical behavior of the backfill from granular 

material to a beam-like material. Their results further showed that an increase of dilatation angle 

resulted in a decrease in both the vertical and horizontal stresses. The stresses became oscillatory 

once the dilatation angle was higher than 5°. 

2.1.2.2.3 Three-dimensional models 

Jahanbakhshzadeh et al. (2018b) applied FLAC3D to verify their proposed analytical solutions by 

considering related υ (Poisson’s ratio) and φ (internal friction angle) through the at-rest earth 

pressure coefficient. The influences of stope width and length were evaluated. They concluded that 

the stress would decrease as the backfill length or width reduced. These results corresponded well 

with those reported by Li and Aubertin (2009e).  

Yan et al. (2019) conducted numerical simulations with FLAC3D to verify their proposed 

analytical solutions. As shown in Figure 2-21a, their numerical results were first compared with 

experimental data of Take and Valsangkar (2001). The numerical simulations were then performed 

to validate their analytical solution for stopes with different wall inclination angles (shown in 

Figures 2-21b and 2-21c). 



36 

 

 

 

                               (a)                                            (b)                                            (c) 

Figure 2-21: Comparisons of numerical results with (a) experimental results of Take and 

Valsangkar (2001) and analytical solution results with (b) β = 80° and (c) β = 70° (B = 184 mm, 

taken from Yan et al. 2019). 

2.1.2.3 Summary 

Table 2-3 shows a summary of the numerical modeling performed by different researchers to 

analyze the stress state in backfilled stopes.  

Table 2-3: Summary of the numerical simulations for the stress state in backfilled stopes 

References Software 
2D/

3D 

Vertical/

Inclined 
Main work 

Barrett et al. (1978)  
TNJTEP/N

ONSAP 

2D/

3D 
Vertical Evaluating the stress state in the backfill 

Aubertin et al. (2003) PHASE2 2D Both 
Estimating the stress state in vertical and inclined 

stopes and comparing with Marston solution 

Li et al. (2003) FLAC 2D Both 
Considering the mining sequence and comparing 

with Marston solution 

Caceres (2005) FLAC 2D Inclined 
Investigating the factors influencing the vertical 

stress 

Pirapakaran and 

Sivakugan (2007b) 
FLAC 2D Vertical Comparing with their experimental data 

Pirapakaran and 

Sivakugan (2007a) 
FLAC 2D Vertical 

Backfilling in layers and comparison with the 

analytical solution they proposed 

Li and Aubertin (2008) FLAC 2D Vertical 
Used to calibrate and verify their analytical 

solution 
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Li and Aubertin (2009c) FLAC 2D Vertical 
Considering pore water pressure and comparing 

with their analytical solution 

Li and Aubertin (2009e) FLAC 2D Inclined 
Investigating factors that influencing the stress 

state in inclined backfilled stopes 

Fahey et al. (2009) 
PLAXIS 

2D 
2D Vertical 

Investigating some aspects of mechanics of 

arching in backfilled stopes, for example, the 

difference between plain-strain and axisymmetric 

conditions and the effect of consolidation 

Falaknaz et al. (2015a) FLAC 2D Vertical 
Investigating the effect of adjacent excavation and 

backfilling on the stress in the backfill 

Falaknaz et al. (2015b) FLAC 2D Vertical 

Investigating the effect of adjacent excavation and 

backfilling considering a dependent relationship 

between the internal friction angle and Poisson’s 

ratio 

Falaknaz et al. (2015c) FLAC 2D Vertical 
Investigating the effect of adjacent excavation and 

backfilling considering elastoplastic rock mass 

Liu et al. (2016a) FLAC3D 3D Vertical 
Investigating the effect of nonplanar interface 

elements on stress state in backfilled stopes 

Liu et al. (2017) FLAC3D 3D Vertical 
Investigating the effect of planar interface 

elements on stress state in backfilled stopes 

Jahanbakhshzadeh et al. 

(2017) 
FLAC 2D Inclined Verifying their analytical solution 

Jahanbakhshzadeh et al. 

(2018b) 
FLAC3D 3D Both 

Verifying their analytical solution for the stress 

state in 3D inclined stopes 

Hasan et al. (2017) YADE 2D Vertical 
Using DEM to model the arching effect in the 

backfill 

Jaouhar et al. (2018) FLAC 2D Vertical Verifying their analytical solution 

Newman and 

Agioutantis (2018)  

RocScience

2D (RS2)  
2D Vertical 

Investigating the effect of adjacent excavation and 

backfilling on the stress in the backfill and rock 

pillar 

Newman et al. (2018)  
RocScience

2D (RS2)  
2D Vertical 

Investigating the effect of adjacent excavation and 

backfilling on the stress in the backfill and rock 

pillar 

Xu et al. (2019) ABAQUS 2D Vertical Verifying their analytical solution 

Qi and Fourie (2019)  FLAC 2D Vertical Considering the creep behavior of rock mass 

Yan et al. (2019) FLAC3D 3D Inclined Verifying their analytical solutions 
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It is worth noting that most previous numerical simulations were conducted mainly to verify some 

analytical solutions or compare them with experimental results. Only a few studies were devoted 

to purely numerical simulations. Although many factors have already been considered in numerical 

simulations, some other factors, such as the more complicated geometries and more realistic 

conditions, should also be considered in the future. 

2.1.3 Relevant experimental tests 

Experiments are usually believed to be the most appropriate way in research. However, 

experiments, especially field measurements in mining engineering can be complicated due to a 

number of uncertainties that can be involved. As existing experiments for investigating the stress 

state in backfilled stopes are quite rare, similar tests including backfilled silos, backfill behind 

retaining walls, backfill on trap doors, and backfilled trenches will also be presented. The reliability 

of the experiments will be discussed. 

2.1.3.1 Backfilled stopes 

2.1.3.1.1 In-situ experiments 

Belem et al. (2004) carried out field experiments in two inclined stopes at Doyon Gold Mine with 

the measurements of the vertical and horizontal stresses in the center and horizontal stress at the 

footwall and the barricade, as shown in Figure 2-22a (see also Harvey 2004). The stope was filled 

in three layers and the measurement lasted for 320 days after the end of backfilling. The evolution 

of stress with the elapsed time and filling heights were assessed. The maximum stress at the base 

of the stope occurred at about the 10th day (shown in Figure 2-22b) during the filling of the second 

layer. The stresses as a function of the filling heights (stress-thickness profile) were also shown to 

below the overburden stress, suggesting the occurrence of arching effects. 

It is worth noting that when placing the pressure cell, the deviation from the ideal position was 

illustrated but neglected in their interpretation. The mentioned mining activities in the vicinity of 

the stope may also influence the measurement. 
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                                            (a)                                                                     (b)                                 

Figure 2-22: (a) Positions of measuring systems in the stope and (b) the stresses in the three 

directions at the base of the stope (taken from Belem et al. 2004) 

Thompson et al. (2012) measured the vertical and horizontal stresses in two stopes (685 stope and 

715 stope) at the Cayeli Mine. Figure 2-23a shows the measuring cages in stope 715. Both the total 

earth pressure (TEP) and the pore pressure (Pore P) were measured for 140 days. The degree of 

cement hydration was illustrated by recording the temperature in the fill material, which 

contributed a large part to the generation of effective stress. Comparisons of the stresses measured 

in the two stopes suggested that a high deposition rate and lower binder content would result in a 

higher pressure on the barricade.  

      

                                      (a)                                                                        (b) 

Figure 2-23: Measurements in the 715 stope: (a) measuring points and (b) long-term total earth 

pressures (TEP), pore pressures (Pore P) and temperature (Temp) for Cages 3 and 4 (taken from 

Thompson et al. 2012) 
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Wang et al. (2019) measured the vertical stress in a backfilled stope 70.91 m high with two stress 

boxes (shown in Figure 2-24a). The influence of the excavation of adjacent stopes was investigated 

and the measured stresses were plotted with time. As shown in Figures 2-24b and 2-24c, AB 

represents the backfill process of the monitoring stope; BC is the curing process of the cemented 

backfill; CD and DE are the excavation and backfilling of the secondary stope near the back wall 

of the primary stope, respectively; EF represents the condition when the cemented backfill was 

exposed in the front wall and pressed by the back wall and FG is the backfilling process of the 

stope excavated in the stage EF. It is found that the maximum stress occurs at point F. 

     

           (a)                                            (b)                                                            (c) 

Figure 2-24: Field experiments: (a) The position of the stress boxes; (b) vertical stress of 1# stress 

box; (c) vertical stress of 2# stress box (adapted from Wang et al. 2019) 

2.1.3.1.2 Laboratory models 

Pirapakaran and Sivakugan (2007b) designed a laboratory apparatus to measure the vertical stress 

at the bottom of the square and circular columns filled with sand. By filling the column in layers, 

the vertical stress at the stope bottom with different filling heights was plotted and the arching 

effect was clearly observed. Besides, the measured stress was also successfully reproduced by 

numerical simulations conduced with FLAC and FLAC3D.  

Ting et al. (2012) improved the apparatus of Pirapakaran and Sivakugan (2007b) to apply it to 

measure the vertical stress at the bottom of an inclined stope (shown in Figure 2-25a). Four strain 

gauges were placed on the outside surface of both sidewalls to analyze the shear stress and it was 

reported that shear stress at the footwall was higher than that at the hanging wall. Besides, it was 
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also indicated that a rougher wall surface led to lower vertical stress. As shown in Figure 2-25b, 

the vertical stress increased to its maximum at an inclination angle of 80°. Numerical simulations 

were also conducted with FLAC to model the experimental tests. It was seen that the numerical 

results agreed well with the measured stress in the column with rough and medium-roughness 

surfaces but underestimated the stress measured in the column with a smooth interface. However, 

it is unreasonable to place the strain gauges on the outside surface of the column. When the stope 

inclination angle changes, the gauges will no longer stay at the same height. Besides, there may be 

sand attached to the footwall especially for the case with a rough interface when filling the column, 

which may influence the measured stress. 

 

                                      (a)                                                                        (b) 

Figure 2-25: Laboratory tests measuring the vertical stress in inclined stopes: (a) a side view of 

the experimental apparatus and (b) the average vertical stress at the base with different inclination 

angles (taken from Ting et al. 2012) 

Sivakugan and Widisinghe (2013) used the apparatus of Pirapakaran and Sivakugan (2007b), 

conducted additional experiments in circular and square stopes, and found the vertical stress 

increase linearly even at larger depth. These experimental results contradicted with those of 

Pirapakaran and Sivakugan (2007b). The possible reason may due to clearance between the stope 

and the balance. If the clearance is too small, the column is likely to contact with the bottom tray, 

and some loads carried by the wall will transform to the bottom. 
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2.1.3.2 Silos 

2.1.3.2.1 Experiments in square silos 

Janssen (1895) conducted experiments in four square silos with different side lengths and measured 

the vertical load on the bottom using corn, wheat, and rye as the filling material. The results showed 

the occurrence of arching effects in backfilled silos and the experimental results corresponded well 

with his proposed analytical solution. The experimental apparatus is simple, flexible, and effective, 

which has been extended for many experiments (Pirapakaran and Sivakugan 2007b; Ting et al. 

2012; Han et al. 2018). 

Jarrett et al. (1995) used pressure cells to measure the vertical and horizontal stresses in a square 

silo with a side length of 2 m and a height of 3 m. The large-scale laboratory tests showed that the 

horizontal stress at the corner of the wall was higher than that in the center of the wall and the 

difference enlarged with the increasing filling height, which could be explained by the variable 

deformation of the flexible walls. The vertical pressure showed a pronounced arching effect. The 

experimental results were compared with Janssen’s analytical solution, and the pressure at the 

center of the wall was observed to be close to Janssen's theory using an active earth pressure 

coefficient. In their experiments, the pressure cells were placed 10 mm from the wall, but the way 

to fix the cells was not illustrated in detail. How to make sure that the pressure cells do not move 

or rotate throughout the experiments is an aspect to be considered.  

2.1.3.2.2 Experiments in circular silos 

Deutsch and Schmidt (1969) performed experiments to investigate the overpressures on the silo 

walls and found the lateral pressure on the walls during discharge could reach four times the static 

pressure within the pipe feed zone. The stress obtained from previous codes of practice were 

compared with the measured results, showing an underestimation of the pressure. Besides, the static 

pressure measured in the silo indicated Janssen’s theory predicted well the stress when using an 

active pressure coefficient.  

Blight (1986) carried out a series of experiments in full-scale silos to measure the horizontal stress 

during the continuously filling and emptying process (shown in Figure 2-26). The results indicated 

Janssen’s theory fitted the measurements reasonably well during the filling and emptying process. 
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It is also seen that a lot of data falling outside the curve and the overburden stress using an at-rest 

earth pressure coefficient was suggested to provide an upper envelope for the horizontal stress in 

the filling process. In addition, the horizontal stress increased moderately at the start of the 

emptying process, but almost all the measurements fell inside the envelope defined by the 

overburden stress. In addition, horizontal stress was observed nonuniform in some cases and no 

significant switch pressure was found when the emptying process began. 

 

Figure 2-26: The horizontal pressure in a coal silo with 20 m in diameter and 54 m high (taken 

from Blight 1986) 

Ramirez et al. (2010a, 2010b) performed large-scale laboratory experiments to measure the 

horizontal stress on the cylindrical silo walls during the filling and discharging process. The stress 

during the filling procedure was shown to be 20 to 30% higher than that based on the Janssen 

(1895) solution at the bottom part of the silo. It was due to the 5 mm recess from the inner surface 

of the silo wall where the pressure cells were mounted. During the discharging process, the 

horizontal stress was much higher than that during the filling stress.  

Li et al. (2014) conducted laboratory tests to measure both the horizontal and vertical stress in the 

silo during backfill by wild pouring (shown in Figure 2-27a). The pressure sensors were calibrated 

before and after the installation. The variation of the fill density in different heights was 

investigated using experimental tests. An expression was proposed by the application of the curve-

fitting technique on test results. Figure 2-27 shows that the vertical stress (measured by Sensor 1) 

was better described by the arching analytical solution with the Rankine’s active earth pressure 

coefficient at large depth. The horizontal stress perpendicular to the pouring plane (measured by 

Sensor 3) was better described by the analytical solution using Jaky’s at-rest earth pressure 



44 

 

 

coefficient while the one parallel to the pouring plane (measured by Sensor 2) was even higher 

than the overburden pressure. It was because of the lack of free face in the horizontal directions, 

limiting the full release of excess stress induced by the transient impact. However, the accuracy of 

the pressure measurements may not be very high due to the very large stiffness and thickness of 

the used cells. Besides, the measured vertical stress and horizontal stresses were not in the same 

heights, the calculation of the lateral earth pressure coefficient might not be accurate. 

         

                    (a)                                            (b)                                                        (c) 

Figure 2-27: (a) Locations of pressure sensors in the backfilled silo; vertical (b) and horizontal (c) 

stresses measured and calculated with the analytical solutions (adapted from Li et al. 2014) 

Han et al. (2018) designed a laboratory model to investigate the distribution of stress in the silo and 

verify Janssen’s model (shown in Figures 2-28a and 2-28b). Earth pressure cells were used to 

measure the horizontal stress at the wall. Force sensors were applied to measure the friction force 

(force sensors 1) along the wall and the vertical load (force sensors 2) at the bottom. The measured 

vertical and horizontal stresses were observed to be slightly underestimated by those calculated by 

applying Janssen’s arching theory. In Figure 2-28b, the ratio μ of the measured shear force to the 

horizontal force along the height was always smaller than tan δ, indicating a not fully mobilized 

shear at the fill-wall interface. The lateral pressure coefficient calculated by the laboratory data was 

also shown to be smaller than the Rankine’s active earth pressure coefficient. 
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                    (a)                                            (b)                                                    (c) 

Figure 2-28: (a) a schematic diagram and (b) a photo of the laboratory model and (c) the variation 

of μ with the ratio z/D (z is the depth and D is the silo diameter) (adapted from Han et al. 2018) 

2.1.3.3 Retaining walls 

Frydman and Keissar (1987) conducted centrifuge tests to measure lateral earth pressure on 

retaining walls. In their model, the aluminum retaining wall could be rotated around its base by a 

disk to simulate an active state. The rockface modeled by wood was coated with a layer of sand on 

its surface to ensure the same friction angle with the fill material. For an at-rest state, the 

experimental results were in a fair agreement with the theoretical predictions. When the backfill 

was in the transition process from an at-rest to an active state, the modified coefficient tended to 

approach Rankine’s active pressure coefficient of the sand. 

Take and Valsangkar (2001) developed a centrifuge model to measure the lateral earth pressures 

on retaining walls. Soil and fluid were used for the calibration of pressure cells. The relationship 

between pressure cell output and the pressure was linear for fluid calibration but nonlinear for soil 

calibration. But it was not specified which one was used in the later calculation. Then the 

experiments were conducted using dense soil and loose soil with different wall roughness. Their 

experimental results demonstrated that Janssen’s arching theory could be applied to describe the 

reduction of lateral earth pressure. In addition, the results showed that Janssen’s theory using an 

average interface friction angle of the two side walls could better represent the stress distribution. 
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Yang and Tang (2017) measured the horizontal stress on the retaining walls at different heights 

using pressure cells (shown in Figure 2-29a). Three moving modes of the retaining wall were 

considered, namely translation mode (T), rotation around top mode (RT), and rotation around 

bottom mode (RB). The continuous and nonlinear failure surface was found related to the moving 

modes of retaining walls and backfill width. Figure 2-29b shows that the failure surfaces are all 

within the Coulomb failure surface with a sliding angle of 45°+φ/2. The measured horizontal 

stresses for all wall movement modes were smaller than those calculated by Coulomb’s solution.  

  

                                         (a)                                                                     (b)                                                                   

Figure 2-29: Experimental model and results: (a) a schematic model and (b) the failure surface of 

the backfill with translation mode (taken from Yang and Tang, 2017) 

2.1.3.4 Trap doors 

Terzaghi (1936) conducted a few trap-door experiments using dry sands and found that the lateral 

earth pressure coefficient was between K0 and Ka. Besides, the pressure in saturated sand measured 

at the bottom of a permeable trap door corresponded well with the theoretical analysis. It was also 

stated that the change of the mass state due to vibrations may have an insignificant influence on 

the mobilization of the friction forces. 

Ladanyi and Hoyaux (1969) measured the vertical stress acting on a vertically moving trap door to 

check the validity of the arching theory. Aluminum rods were used to simulate a granular material 

under a condition closer to 2D plane strain. An experimental apparatus was developed to measure 

the pressure on the trap door during upward and downward movement. The results indicated that 

the analytical solution of Janssen (1895) with the earth pressure coefficient K = cos2φ/(1+sin2φ) 
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predicted well the measured stress during a downward movement of the structure while the 

measured stress during an upward movement of the structure was in good agreement with that 

calculated by their proposed solution using the earth pressure coefficient K = cos2φ.  

2.1.3.5 Trenches 

Hong et al. (2016) developed an apparatus with an adjustable width to measure the vertical stress 

at the bottom of a trench. 12 groups of tests with 6 different widths and two densities were 

conducted. The results were compared with the Marston solution using different lateral earth 

pressure coefficients and interface friction angles. As shown in Figure 2-30a, a good agreement 

was observed when δ = 2/3φ and K = Ka. The average product of K and tan δ of the experimental 

results was 0.125 (shown in Figure 2-30b).  

 

                                           (a)                                                                 (b) 

Figure 2-30: (a) Comparison between Marston solution and experimental results with loose sand 

and (b) variations of K tan δ with the relative height (adapted from Hong et al. 2016) 

2.1.3.6 Summary 

Existing experiments to model backfilled stopes are quite limited, and more experiments are needed 

to validate analytical and numerical solutions, especially with the simultaneous measurements of 

the horizontal and vertical stresses, stress distribution along the depth as well as the stresses under 

saturated or unsaturated conditions.  
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Experimental results can help to better understand the stress state in backfilled stopes, but 

disadvantages are usually combined with advantages. Field measurements can reflect the complex 

geometry of backfilled stopes and real experimental conditions. However, it may be rather difficult 

to interpreter the experimental results because even nearby activities can influence the measured 

stress. Besides, the high cost and long term of in-situ experimental may be another challenge. While 

in laboratory tests, many conditions can be controlled, including the material properties, model 

geometries, and testing methods. It is also easier to conduct a series of tests in a relatively short 

period. Whereas, laboratory models may be less representative of the real conditions. In both the 

laboratory and field experiments, the introduction of measuring systems may also affect the stress 

state. In addition, the disturbance of manual operation should be minimized.  

2.2 Lateral earth pressure coefficient 

The lateral earth pressure coefficient K (= σh′/σv′) is an important parameter in geotechnical and 

mining engineering. Throughout the years, many theories have been developed, among which 

Jaky’s at-rest earth pressure coefficient, Rankine’s active earth pressure coefficient, and passive 

earth pressure coefficient are usually used. The parameter is used in almost all the previous 

analytical solutions to calculate the vertical and horizontal stresses in backfilled stopes. However, 

which value should be used has been a debate for many years. It is important to have a good 

understanding and use of its value to obtain a good estimation of the stress state in the backfilled 

stopes. 

2.2.1 Theory  

2.2.1.1 Theoretical formulas of the earth pressure coefficient 

In this section, only the equations for the lateral earth pressure coefficient will be presented. 

Detailed equations for the stress state using the coefficient can be found in Section 2.1.1. 

2.2.1.1.1 At-rest earth pressure coefficient K0 

If a loose granular soil in a semi-infinite space is under normal consolidation without any horizontal 

strain, the soil is usually regarded as in an at-rest state and the at-rest earth pressure coefficient is 

commonly expressed by Jaky’s semi-empirical equation as follows (Jaky 1948): 
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𝐾0𝜑 = 1 − 𝑠𝑖𝑛𝜑
′ (2-75)  

In addition, for a homogeneous, isotropic, and linear elastic material, a theoretical formula using 

Hooke’s law can also be used to determine the at-rest earth pressure coefficient: 

𝐾0𝜇 =
𝜇

1 − 𝜇
(2-76) 

2.2.1.1.2 Rankine’s earth pressure coefficient  

In geotechnical engineering, the value of the earth pressure coefficient K is usually related to the 

movement of the retaining wall. A wall of infinite stiffness and negligible thickness is placed in an 

initially at-rest soil in a semi-infinite space. Then the soil at one side of the wall is excavated 

without disturbing the soil at the other side. If the wall moves away enough from the remaining 

soil, the soil can yield and reaches an active state. The Rankine’s active pressure coefficient Ka is 

calculated by the following equation (Rankine 1856): 

𝐾𝑎 = 𝑡𝑎𝑛2 (45° −
𝜑′

2
) =

1 − sin𝜑′

1 + sin𝜑′
 (2-77) 

If the wall moves sufficiently towards the soil, the soil can yield and reaches a passive state. The 

Rankine’s passive pressure coefficient Kp is obtained by the following equation (Rankine 1856): 

𝐾𝑝 = 𝑡𝑎𝑛
2 (45° +

𝜑′

2
) =

1 + sin𝜑′

1 − sin𝜑′
 (2-78) 

2.2.1.1.3 Krynine (1945) KK 

Due to stress rotation in the soil, the horizontal and vertical stresses are no longer the principal 

stresses. The principal stress ratio Kps is different from the earth pressure coefficient. Krynine 

(1945) proposed an equation as follows for K at rough walls using the Mohr’s circle: 

𝐾𝐾 =
1 − sin2 𝜑′

1 + sin2 𝜑′
(2-79) 

2.2.1.1.4 Handy (1985) Kh 

Handy (1985) proposed the following equation considering the stress rotation: 
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𝐾𝐻 =
cos2 𝜃 + 𝐾𝑎 sin

2 𝜃

sin2 𝜃 + 𝐾𝑎 cos2 𝜃
                                                     (2-80) 

where θ is the angle between the minor principal stress and vertical direction.  

For ideal smooth walls, the equation can be simplified to Ka with θ = 90°. For rough vertical walls, 

the equation can be simplified to KK with θ = 45°+φ/2. 

2.2.1.1.5 K obtained by curve fitting 

Caceres (2005) obtained the following earth pressure coefficient KC used in inclined stopes by 

curve fitting with numerical results conducted with FLAC (shown in Figure 2-31): 

𝐾𝐶 = 1.4𝑠𝑖𝑛
2𝜑 − 2𝑠𝑖𝑛𝜑 + 1                                                        (2-81) 

 

Figure 2-31: The earth pressure coefficient obtained from FLAC and curve-fitting derived for the 

rock friction angle range (taken from Caceres 2005) 

2.2.1.1.6 Empirical coefficient 

Jahanbakhshzadeh et al. (2017) also proposed a lateral earth pressure coefficient Kβ by considering 

the nonuniform distribution of stress in inclined stopes: 

𝐾𝛽 = 𝐾𝑎 × 𝑓ℎ × 𝑓𝑤 (2-82) 

𝑓ℎ = (1 + cos 𝛽) − (
ℎ

𝐻
tan𝜑 cos2 𝛽) (2-83) 
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𝑓𝑤 = 1 + 3(1 −
𝑥ℎ
𝐵
)
4

tan𝜑 cos(𝛽 − 10°) (2-84) 

2.2.1.1.7 K obtained from theoretical analyses 

Ting et al. (2012) applied the basic concept of soil mechanics to calculate the normal stress on a 

plane, and deduced the lateral earth pressure coefficient KT in inclined stopes: 

𝐾𝑇 =
1 + 𝐾0
2

+
1 − 𝐾0
2

cos 2𝛽 + 𝐾 sin 2𝛽 tan 𝛿  (2-85) 

Sobhi et al. (2017) modified the formula of Ting et al. (2012) and proposed an equation for the 

earth pressure coefficient KS along the central line of inclined stopes as follows: 

𝐾𝑆 =
1 + 𝐾𝑎
2

+
1 − 𝐾𝑎
2

cos 2𝛽                                                   (2-86) 

Jaouhar et al. (2018) assumed a uniform minor principal stress σ3 along the arc layer element and 

deduced a lateral earth pressure coefficient KM in vertical stopes: 

𝐾𝑀 =
𝐾𝑎 − (1 − 𝐾𝑎) (

𝑥
𝜉𝑥𝐵𝜅

)
2

1 − (1 − 𝐾𝑎) (
𝑥

𝜉𝑥𝐵𝜅
)
2                                                  (2-87) 

2.2.1.1.8 K obtained from triaxial strength criteria 

Sun et al. (2018) derived the earth pressure coefficient by considering the intermediate stress effect 

using four triaxial failure criteria. Using the Drucker-Prager (D-P) criterion led to the following 

expression for the earth pressure coefficient KDP:  

𝐾𝐷𝑃 =
3√3 − (6 + √3) sin 𝜑

3√3 + (6 + √3) sin 𝜑
(2-88) 

Using the Matsuoka-Nakai (M-N) criterion, the earth pressure coefficient KMN became:  

𝐾𝑀𝑁 =
8

3
tan2𝜑 + 1 −

4

3
tan𝜑√4 tan2𝜑 + 3 (2-89) 

Using the Lade-Duncan (L-D) criterion led to the following expression for the earth pressure 

coefficient KLD: 
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𝐾𝐿𝐷 = 1 +
4 tan𝜑

27(1 − sin𝜑)
[2 tan𝜑 (9 − 7 sin𝜑) − √(9 − 7 sin𝜑)[27(1 − sin𝜑) + 4 tan2 𝜑 (9 − 7 sin𝜑) ] (2-90) 

Using the unified strength theory (UST), the earth pressure coefficient KUST can be given as follows:  

𝐾𝑈𝑆𝑇 =
(2 + 𝑏)(1 − sin 𝜑)

2 + 𝑏 + (2 + 3𝑏) sin𝜑
(2-91) 

The four analytical formulas were applied to calculate the wall pressures in silos, which were 

compared with previous measurements of wall stress in deep and squat silos. As shown in Figure 

2-32, applying the UST method with b = 0 yielded the maximum pressure and overestimated the 

stress due to the total neglection of the intermediate stress effect. Applying the D-P method yielded 

the minimum pressure and underestimated the stress because of the overestimation of the 

intermediate stress effect. The best agreement was obtained between the measured pressures and 

those calculated by applying the L-D method. 

 

                                          (a)                                                               (b) 

Figure 2-32: Comparisons between measured wall pressures and calculated pressures by applying 

analytical formulas for (a) deep silos and (b) squat silos (taken from Sun et al. 2018) 

2.2.1.2 K used in analytical solutions 

Table 2-4 shows a summary of the lateral earth pressure coefficient used in previous analytical 

solutions. It is seen that there is not a consensus about which value should be used to determine the 

stress state in backfilled stopes. 
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Table 2-4: K used in analytical solutions  

Analytical solutions K used Notes 

Janssen (1895) μ/KJ Obtained from experiments 

Marston (1930) Ka -- 

Aubertin et al. (2003) K0, Ka, Kp Used for comparisons 

Li et al. (2005,2006) K0, Ka, Kp Used for comparisons 

Caceres (2005) KC The fit curve from numerical results 

Pirapakaran and Sivakugan (2007a) K0 δ=2/3φ 

Li and Aubertin (2008) Ka -- 

Li and Aubertin (2009c) Ka δ=φ 

Ting et al. (2011) KT Obtained from theoretical analyses 

Singh et al. (2011) Ka δ=2/3φ 

Sivakugan and Widisinghe (2013) K0 δ=φ 

Rajeev et al. (2016) K0, Ka Dependent on the wall roughness 

Hong et al. (2016) K0, Ka, KK K=Ka, δ=2/3φ; K=K0, KK, δ=1/2φ 

Jahanbakhshzadeh et al. (2017) Kβ The fit curve from numerical results 

Jahanbakhshzadeh et al. (2018b) Kβ The fit curve from numerical results 

Jaouhar et al. (2018) KM Obtained from theoretical analyses 

Xu et al. (2018) KH -- 

Sun et al. (2018) KDP, KMN, KLD, KUST Obtained from triaxial strength criteria 

2.2.2 Numerical simulations 

Li et al. (2003) conducted numerical simulations with FLAC to investigate the arching effect in 

backfilled stopes. They found that the lateral earth pressure coefficient across the width was closer 

to an active state. 

Fahey et al. (2009) investigated the influence of dilation angle and hydraulic conductivity on the 

variation of the earth pressure coefficient. It was found that the earth pressure coefficient along the 

VCL in a fully drained stope was between the value of K0φ and K0υ when the dilation angle was 0. 

Besides, it tended to be closer to Ka with a negative dilation angle while closer to Kp with a positive 

dilation angle (shown in Figure 2-33a). As shown in Figure 2-33b, the lateral earth pressure 
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coefficients in partially drained stopes fluctuated along the height but were similar for different 

hydraulic conductivities. 

          

                                       (a)                                                                     (b) 

Figure 2-33: The earth pressure coefficient for (a) different dilation angles in dry stopes and (b) 

different hydraulic conductivities in partially drained stopes (taken from Fahey et al. 2009) 

Sobhi et al. (2017) conducted a series of numerical simulations with SIGMA/W (GEO-SLOPE 

2010) to investigate the lateral earth pressure coefficient along the central line (CL) of backfilled 

stopes. It was indicated that the lateral earth pressure coefficient in vertical stopes was close to Ka 

except near the top of the stope for different stope widths, Young’s modulus, and friction angles 

(shown in Figure 2-34a). However, in inclined stopes, Ka can be used only for stopes with a large 

inclination angle. Therefore, a new earth pressure coefficient KS (Eq. 2-86) was proposed. In Figure 

2-34b, KS was shown to express well the earth pressure coefficient with various inclination angles. 

             

                                           (a)                                                                   (b) 

Figure 2-34: The lateral earth pressure coefficient along the CL of backfilled stopes with different 

(a) friction angles and (b) inclination angles (taken from Sobhi et al. 2017) 
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Yang et al. (2017b) performed numerical simulations mainly to evaluate the lateral earth pressure 

coefficient and principal stress ratio Kps near the rock walls considering the dependence of φ and 

υ. The influence of the stope width, Young’s modulus, internal friction angle, Poisson’s ration, and 

interface elements were assessed. The numerical results indicated that the principal stress ratio was 

close to Ka, while the lateral earth pressure coefficient was close to K0 for dependent φ and υ and 

was uncertain for independent values of φ and υ. 

Later, Yang et al. (2018) theoretically analyzed the earth pressure coefficient along the VCL of the 

cohesionless backfilled stopes according to the Mohr-Coulomb criterion (shown in Figure 2-35a). 

It was concluded that when μ ≤ (1-sin φ)/2, K = Ka, and when μ > (1-sin φ)/2, K = K0. Numerical 

simulations were conducted with FLAC to verify the theoretical analyses and a good agreement 

was obtained (shown in Figure 2-35b).  

  

                                      (a)                                                                     (b) 

Figure 2-35: (a) The state of the backfill for different relationships between μ and φ and (b) the 

earth pressure coefficient along the VCL as a function of μ (taken from Yang et al. 2018) 

2.2.3 Experiments 

Previous experiments conducted to measure the stress in stopes or similar structures gave some 

evidence of the lateral earth pressure coefficient. The details of those experiments can be found in 

Section 2.1.3 and some conclusions about the earth pressure coefficient are shown as follows. 
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As shown in Figure 2-36a, Jarrett et al. (1995) found the pressure at the center of the wall was close 

to Janssen’s theory using an active earth pressure. Li et al. (2014) concluded that the lateral earth 

coefficient was near an at-rest condition for the stress perpendicular to the pouring direction while 

the stress parallel to the pouring direction was between an at-rest and a passive state (shown in 

Figure 2-36b). In Figure 2-36c, Han et al. (2018) showed the lateral pressure coefficient in the silo 

was smaller than the active earth pressure coefficient. 

       

                           (a)                                                 (b)                                           (c) 

Figure 2-36: K measured in laboratory tests: (a) pressures near the central and corner of the wall 

(taken from Jarrett et al. 1995); (b) K at different fill heights h (taken from Li et al. 2014); (c) K at 

different depths z (D is the silo diameter, taken from Han et al. 2018). 

Thompson et al. (2012) found in the field measurements that the earth pressure coefficient was 

variable with depth and time. 

 

Figure 2-37: K calculated from field measurement at different positions in the 715 stope (adapted 

from Thompson et al. 2012) 
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2.3 The stability of side-exposed backfill 

In open stoping mining, the ore body is usually mined out in the form of primary and secondary 

stopes. Primary stopes are first excavated and then backfilled with a cemented backfill. After a 

certain time of curing when the backfill gains enough strength and is able to support itself under 

gravity, the neighboring secondary stope is excavated. If the backfill in the primary stope is not 

well designed, it can fail during or after the excavation of the adjacent secondary stope, resulting 

in several problems, such as damage of equipment, ore dilution or loss, and even threatening the 

safety of the miners.  

Numerous investigations have been conducted to determine the minimum required cohesion of 

side-exposed backfill. For example, many analytical solutions have been proposed as a preliminary 

tool, among which Mitchell et al. (1982) solution is the most used one in practice. Besides, 

experimental tests and numerical simulations have also been applied to assess the side-exposed 

stability of the mine backfill. 

2.3.1 Analytical solutions 

2.3.1.1 Traditional solution 

Traditionally, the backfill is designed by considering the vertical stress based on the overburden 

solution (Askew et al. 1978; Mitchell et al. 1982). The unconfined uniaxial compressive strength 

(UCS) of backfill should be higher than the vertical overburden stress (γz), which leads to a 

nonuniform backfill along the depth. Another way is to use a uniform backfill with the UCS ≥ γH/2, 

which is determined by the limit equilibrium analyses of a 2D wedge model for cohesionless 

backfill. The solutions result in very conservative design because the shear strengths along the fill-

rock interfaces are ignored. 

2.3.1.2 Mitchell et al. (1982) solution 

Mitchell et al. (1982) analyzed the stability of side-exposed backfill based on a wedge model shown 

in Figure 2-38. The factor of safety (FS) is calculated by considering the equilibrium of the wedge 

as follows: 
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FS =
tan𝜑

tan𝛼
+

2𝑐𝐿

𝐻∗(𝛾𝐿 − 2𝑐𝑏) sin 2𝛼
(2-92) 

where α (= 45°+φ/2) is the sliding angle between the assumed sliding plane and the horizontal; cb 

is the cohesion along the interface between the backfill and the sidewalls and H* (= H - (B tan α)/2, 

m) is the equivalent height of the wedge block.  

 

Figure 2-38: The wedge model of Mitchell et al. (1982) solution (taken from Mitchell et al. 1982) 

By assuming cb = c, H ≫ B, and FS = 1, the minimum required cohesion of the backfill is calculated 

by:  

𝑐 =
𝛾𝐻

2 (
𝐻
𝐿 + tan𝛼)

(2-93) 

By further assuming φ = 0 for the backfill, the minimum required unconfined uniaxial compressive 

strength (UCS) becomes:  

𝑈𝐶𝑆 = 2𝑐 =
𝛾

(
1
𝐿 +

1
𝐻)

=
𝛾𝐻

(
𝐻
𝐿 + 1)

(2-94) 

The Mitchell et al. (1982) solution contains several assumptions, as discussed by Li and Aubertin 

(2012). For example, the sliding surface is assumed as an inclined plane, which should be a curved 

surface according to their experimental results. The solution is not applicable to the backfill in a 

low-aspect-ratio stope because the sliding plane may intersect the top surface of the backfill. 

Moreover, the friction angle of the fill-wall interface, stope inclination, and surcharge on the top 

surface of the backfill are not considered in the Mitchell et al (1982) model.  
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2.3.1.3 Wedge model with different shapes 

Dight and Coulthard (1980) proposed a 3D solution by considering a sliding wedge of different 

shape and confining pressure σc (kPa) applied at the sidewalls (shown in Figure 2-39). FS is 

expressed as follows:  

FS =
𝑐𝐴𝐵 +𝑊 𝑐𝑜𝑠 𝛼 𝑡𝑎𝑛 𝜑 +

2𝑐𝐴𝑆 𝑐𝑜𝑠 𝜔
𝑐𝑜𝑠 𝛼

+ 2𝜎𝑐𝐴𝑆 𝑡𝑎𝑛 𝜑 𝑐𝑜𝑠 𝜁 (
𝑐𝑜𝑠 𝜔 𝑐𝑜𝑠 𝜁
𝑐𝑜𝑠 𝛼

− 𝑠𝑖𝑛 𝜁 𝑠𝑖𝑛 𝛼) 

𝑊 𝑠𝑖𝑛 𝛼 + 𝜎𝑐𝐴𝑆 𝑠𝑖𝑛 2𝜁 𝑐𝑜𝑠 𝛼
  (2-95) 

with  

𝑊 = 𝛾 (
1

6
𝐵 × (3𝐻𝐿 + 3𝐻𝑡𝐿 − 2𝐻𝑙 − 4𝐻𝑡𝑙)) (2-96) 

𝑙 = 𝐵 𝑡𝑎𝑛 𝜁 (2-97) 

𝐴𝐵 =
(𝐿 − 𝑙)(𝐻 − 𝐻𝑡)

sin 𝛼
(2-98) 

𝐴𝑠 =
(𝐻2 − 𝐻𝑡

2)

2 tan𝛼
(2-99) 

tan𝜔 = tan𝛼 𝑐𝑜𝑠 𝜁 (2-100) 

where ζ (°) is the angle between the wedge side plane and the backfill sidewall plane; ω (°) is an 

angle made between the two lines of intersection formed by the wedge side plane, sliding plane 

and the horizontal base shown in Figure 2-39; 2l is the decrease of the wedge length due to the 

angle ζ; AB (m2) and AS (m
2) are the base area and the section area of the sidewalls of the wedge, 

respectively and Ht (m) is the depth of tension crack. 

  

                   (a)                                       (b)                                              (c) 

Figure 2-39: Forces and geometry for 3D wedge analysis: (a) a general view of half of the wedge, 

(b) side view and (c) plan view (taken from Dight and Coulthard 1980) 
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Their parametric studies indicated that the horizontal stress below a certain value exerted on the 

backfill could increase the stability. However, it could be detrimental to the stability of the backfill 

when its value was larger than a certain critical value.  

2.3.1.4 Inclined stopes 

Based on the Mitchell et al. (1982) solution for vertical stopes, Smith et al. (1983) proposed an 

analytical solution for the minimum required cohesion of the backfill at Black Mountain Mine for 

stopes with a wall inclination angle of 55° (shown in Figure 2-40): 

𝑐 =
𝛾𝐻

2 (𝑋 + 0.75
𝐻
𝐿)

(2-101) 

with 

𝑋 =
√(𝐻 − 𝐻𝑡)2 + (𝐻/3)2

0.27(𝐻 + 𝐻𝑡)
(2-102) 

where X is a geometric parameter. It is worth noting that X was taken as 2.21 based on curve-fitting 

with their experimental results.  

Even though the analytical solution agrees well with the experimental results based on curve-

fitting, no further results were illustrated to show if the analytical solution could be used to predict 

the stability of exposed backfill under different situations. In fact, the minimum required cohesion 

obtained by Eq. 2-102 is insensitive to the variation of the inclination angle β. Besides, the solution 

inherits all the drawbacks of the Mitchell et al. (1982) solution, including the neglect of the stope 

width and backfill friction angle. 

 

Figure 2-40: Geometry of the Smith et al. (1983) model for side-exposed backfill in an inclined 

stope (taken from Smith et al. 1983) 



61 

 

 

Mitchell (1989) modified the Mitchell et al. (1982) solution and proposed a solution to evaluate 

the stability of side-exposed backfill in inclined stopes by curve-fitting with experimental data. The 

minimum required cohesion is expressed as follows: 

𝑐 = 0.2
𝛾𝐻 sin 𝛽

1 + 𝐻/𝐿
 (2-103) 

The proposed analytical formula was observed to predict the experimental data reasonably, which 

were however obtained by applying different wall closure stresses, neglected in Eq. 2-103. Further 

validation of the formula is still needed. Besides, the solution inherits the limitations of the Mitchell 

et al. (1982) model. 

Dirige and De Souza (2008) developed analytical solutions to access the stability of side-exposed 

backfill in inclined stopes. Figure 2-41 shows the wedge model for stability analyses. Two different 

wall roughness, namely smooth and rough rock wall surfaces, are considered, respectively.  

 

Figure 2-41: A schematic model for side-exposed backfill in inclined stopes (adapted from Dirige 

and De Souza 2008) 

For rough rock walls with a cohesion c, the factor of safety is given as: 

 𝐹𝑆 =
tan𝜑

tan𝛼
+
cos𝛽 tan𝜑

sin𝛼
+

𝑐

𝐻∗(𝛾𝐿(1 − cos𝛽 tan𝜑) − 𝑐/ sin𝛽 ) sin𝛼
∗ (

𝐿

cos𝛼
+
𝐻∗ 

sin𝛽
) (2-104) 

where H* (= H - (B tan α)/2, m) is the equivalent height of the sliding wedge. The required cohesion 

of the backfill is expressed as: 
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𝑐 =
𝛾𝐿(1 − cos𝛽 tan𝜑)

(

𝐿
𝐻∗ sin𝛼 cos𝛼 +

1
sin 𝛼 sin 𝛽

𝐹𝑆 −
tan𝜑
tan𝛼 −

cos 𝛽 tan𝜑
sin𝛼

) +
1

sin 𝛽

 (2-105)

 

For smooth rock walls, the factor of safety is expressed as: 

𝐹𝑆 =
tan𝜑

tan𝛼
+
cos 𝛽 tan𝜑

sin 𝛼
+

𝑐

𝛾𝐻∗(1 − cos 𝛽 tan𝜑) sin 𝛼 cos 𝛼
(2-106) 

The required cohesion of the backfill is expressed as: 

𝑐 = 𝛾𝐻∗(1 − cos 𝛽 tan𝜑) sin 𝛼 cos𝛼 (𝐹𝑆 −
tan𝜑

tan𝛼
+
cos 𝛽 tan𝜑

sin 𝛼
) (2-107) 

In the Dirige and De Souza (2008) model, the shear stress along the hanging wall was neglected, 

independently on the wall inclination angles. Besides, the normal forces along the hanging wall 

and footwall in inclined stopes are not considered in the equilibrium analysis of the wedge model. 

Besides, the angle of the sliding plane was incorrectly regarded as the angle made between the two 

lines of intersection formed by the side (hanging or foot) wall, sliding plane, and the horizontal 

base. 

2.3.1.5 Surcharge 

Zou and Nadarajah (2006) extended Mitchell et al. (1982) solution by involving a load factor fp 

defined as the ratio of surcharge to the weight of the wedge block. The critical height of the backfill 

is calculated as follows by setting FS = 1:  

𝐻 =

2𝑐𝑏𝐵𝐿
[sin 2𝛼 (𝐹𝑆 − tan𝜑 / tan 𝛼 )]

+
𝐵
2 tan𝛼 [(1 + 𝑓𝑝)𝛾𝐵𝐿 − 2𝑐𝑏𝐵]

(1 + 𝑓𝑝)𝛾𝐵𝐿 − 2𝑐𝑏𝐵
(2-108) 

According to the formula, the critical height of the backfill increases with an increase of the 

cohesion and the friction angle.  

Li and Aubertin (2012) modified the Mitchell et al. (1982) solution by incorporating the surcharge 

on the stope surface of the backfill. The factor of safety and the required cohesion of the backfill 

are calculated as follows: 
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𝐹𝑆 =
tan𝜑

tan𝛼
+

2𝑐

𝑝0 + 𝐻∗(𝛾 − (2𝑟𝑏𝑐)/𝐿) sin 2𝛼
(2-109) 

𝑐 =
(𝑝0 + 𝛾𝐻

∗)/2

((𝐹𝑆 − tan 𝜑/tan 𝛼 ) sin 2𝛼)
−1
+ (𝑟𝑏𝐻∗)/𝐿

(2-110) 

where p0 (kPa) is the surcharge and rb is the adherence ratio of the interface cohesion to the backfill 

cohesion. The modified solution was seen to represent well the experimental results of Mitchell et 

al. (1982). It is noted that the values of the internal friction angle and adherence ratio used in the 

analytical solution were obtained by curve-fitting with the model tests of Mitchell et al. (1982). 

2.3.1.6 Backfill with a low aspect ratio 

Li and Aubertin (2012) also proposed an analytical solution for the stability analyses of side-

exposed backfill with a low aspect ratio (shown in Figure 2-42). The factor of safety and the 

required cohesion of the backfill are calculated as follows: 

𝐹𝑆 =
tan𝜑

tan𝛼
+

2𝑐

𝑝0 + 𝐻(𝛾/2 − (𝑟𝑏𝑐)/𝐿) sin 2𝛼
 (2-111) 

𝑐 =
(𝑝0 + 𝛾𝐻)/2

2((𝐹𝑆 − tan 𝜑/tan 𝛼 ) sin 2𝛼)
−1
+ (𝑟𝑏𝐻)/𝐿

(2-112) 

Then the solution of Li and Aubertin (2012) was compared with the Mitchell et al. (1982) solution 

to assess the influence of the stope geometry, interface property, and surcharge, which suggested 

that the Mitchell et al. (1982) solution was conservative. 

 

Figure 2-42: The backfill with a low aspect ratio (taken from Li and Aubertin 2012) 
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2.3.1.7 Considering the plug pour of backfill 

Li (2014a) developed an analytical solution for estimating the required strength of side-exposed 

backfill by considering the reinforcing effect of the high cemented plug. Two critical positions of 

the sliding plane were considered. As shown in Figure 2-43a, when the sliding plane is within the 

plug, the factor of safety and the required cohesion of the side-exposed backfill are deduced as: 

𝐹𝑆 =
tan𝜑

tan 𝛼
+

2𝑟𝑝

(𝑝0 + (𝛾 −
2𝑟𝑖𝑓𝑐
𝐿
)𝐻𝑓 + (𝛾𝑝 −

2𝑟𝑖𝑝𝑟𝑝𝑐
𝐿

) (𝐻𝑝 − 𝐻𝑠 −
𝐵 tan𝛼
2 ) sin 2𝛼

(2-113)
 

𝑐 =
𝑝0 + 𝛾𝐻𝑓 + 𝛾𝑝 (𝐻𝑝 − 𝐻𝑠 −

𝐵 tan𝛼
2 )

2 (
𝑟𝑝

(𝐹𝑆 − tan 𝜑/tan 𝛼 ) sin 2𝛼
+
𝑟𝑖𝑓𝐻𝑓
𝐿 +

𝑟𝑖𝑝𝑟𝑝
𝐿 (𝐻𝑝 − 𝐻𝑠 −

𝐵 tan𝛼
2 ) )

(2-114) 

where rp is the ratio of the plug pour cohesion cp (kPa) to the final pour cohesion c (kPa); rip is the 

ratio of the interface cohesion between the plug pour and sidewall cip (kPa) to the plug pour 

cohesion cp (kPa); rif is the ratio of the interface cohesion between the final pour and sidewall cif 

(kPa) to the final pour cohesion c (kPa); Hs (m) is the elevation of the intersection line between the 

sliding plane and the front wall.  

 

                                                   (a)                                            (b) 

Figure 2-43: Backfilled containing a plug with the sliding plane (a) in the plug and (b) 

intersecting with the top surface of the plug (taken from Li 2014a) 

For the case of the sliding plane intersecting the plug surface (shown in Figure 2-43b), the factor 

of safety and the required cohesion of the backfill are calculated by: 
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𝐹𝑆 =
tan𝜑

tan𝛼
+

𝑐

sin2 𝛼

tan𝛼 +
(𝑟𝑝 − 1)(𝐻𝑝 −𝐻𝑠)

𝐵

𝑝0 + (𝛾 −
2𝑟𝑖𝑓𝑐
𝐿
) (𝐻𝑓 −

(𝐵 tan𝛼 − 𝐻𝑝 + 𝐻𝑠)
2

2𝐵 tan 𝛼
) + (𝛾𝑝 −

2𝑟𝑖𝑝𝑟𝑝𝑐
𝐿

)
(𝐻𝑝 − 𝐻𝑠)

2

2𝐵 tan𝛼

 (2-115)
 

𝑐 =

𝑝0 + 𝛾 (𝐻𝑓 −
(𝐵 tan𝛼 − 𝐻𝑝 + 𝐻𝑠)

2

2𝐵 tan𝛼
) + 𝛾𝑝

(𝐻𝑝 − 𝐻𝑠)
2

2𝐵 tan𝛼

tan 𝛼 + (𝑟𝑝 − 1)(𝐻𝑝 − 𝐻𝑠)/𝐵
(𝐹𝑆 − tan 𝜑/tan 𝛼 ) sin2 𝛼

+
2
𝐿
(𝑟𝑖𝑓 (𝐻𝑓 −

(𝐵 tan𝛼 − 𝐻𝑝 + 𝐻𝑠)
2

2𝐵 tan𝛼
) + 𝑟𝑖𝑝𝑟𝑝

(𝐻𝑝 − 𝐻𝑠)
2

2𝐵 tan𝛼
)

(2-116) 

Compared to the Mitchell et al. (1982) solution and the modified solution of Li and Aubertin 

(2012), this solution predicted a smaller value of the minimum required cohesion if the cement 

ratio of the plug pour is higher than the final pour. 

2.3.1.8 Shear strength calculated by arching solutions for the stress state 

Li (2014b) proposed a generalized solution for the stability of side-exposed backfilled stopes 

considering the cohesion of fill-rock interfaces and different aspect ratios. The shear strength at the 

fill-rock interface was calculated by a 2D arching solution of Li et al. (2003). For high aspect ratio 

stopes, the factor of safety and required cohesion are shown below:  

𝐹𝑆 =
tan𝜑′

tan𝛼
+

2

sin 2𝛼
(
𝑝′

𝑐
− 𝑟𝑎

𝐻′

𝐵
−
2𝑟𝑠𝐻

∗

𝐿
)

−1

(2-117) 

𝑐 = 𝑝′ [
2

(𝐹𝑆 − tan 𝜑′/tan 𝛼 ) sin 2𝛼
+
𝐻′

𝐵
+ 
2𝑟𝑠𝐻

∗

𝐿
]

−1

(2-118) 

with 

𝑝′ =
𝐿

2𝐾 tan 𝛿
[𝛾 −

1

𝐵 tan𝛼
(

𝛾𝐿

2𝐾 tan 𝛿
− 𝑝0) × (𝑒

−
2𝐾 tan𝛿

𝐿
𝐻′ − 𝑒−

2𝐾 tan𝛿
𝐿

𝐻)] (2-119) 

where H' (= H – B tan δ, m) the height of the wedge model at the back wall. 

For low-aspect-ratio stopes, the factor of safety and required cohesion are described as:  

𝐹𝑆 =
tan𝜑′

tan𝛼
+

2

sin 2𝛼
(
𝑝′′

𝑐
− 𝑟𝑠

𝐻

𝐿
)

−1

(2-120) 

𝑐 = 𝑝′′ [
2

(𝐹𝑆 − tan 𝜑′/tan 𝛼 ) sin 2𝛼
+ 
𝑟𝑠𝐻

𝐿
]
−1

(2-121) 

with 
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𝑝′′ =
𝐿

2𝐾 tan 𝛿
[𝛾 −

1

𝐻
(

𝛾𝐿

2𝐾 tan 𝛿
− 𝑝0) × (1 − 𝑒

−
2𝐾 tan𝛿

𝐿
𝐻)] (2-122) 

Compared to the Mitchell et al. (1982) solution and the Li and Aubertin (2012) solution, the 

application of this solution predicted a relatively smaller required cohesion and larger FS. Through 

parameters calibration, a good agreement was obtained between this solution and the experimental 

results of the Mitchell et al. (1982). However, the normal stress on the wall was obtained by 

applying a 2D arching solution while the stress state should be estimated by taking into account 

the 3D geometry and influence of sidewall exposure. Besides, cohesion was neglected in the 

arching solution. 

Through numerical modeling with FLAC3D, Li and Aubertin (2014) found that the shear resistance 

acted vertically along the upper part of the sliding wedge while nearly parallel to the sliding 

direction in the lower part. So, the wedge block was divided into two parts (shown in Figure 2-44). 

The shear strength at the fill-wall interface was calculated by applying the 3D arching solution of 

Li et al. (2005). The factor of safety is expressed as: 

𝐹𝑆 =
tan𝜑

tan𝛼
+
𝑐 (

1
cos𝛼

+
𝑟𝑏𝑠𝐻𝑤
𝐿

) +
(
𝛾
𝑀 − 𝑝1) (

1 − 𝑒−𝑀𝐻𝑤

𝑀𝐻𝑤
− 1) +

𝛾𝐻𝑤
2

1 + 𝐿/𝐵

(𝑝1 +
𝛾𝐻𝑤
2 ) sin𝛼

(2-123)
 

with 

𝐻𝑤 = 𝐵 tan𝛼 (2-124) 

𝑀 = 2𝐾(𝐵−1 + 𝐿−1) tan 𝛿 (2-125) 

𝑝1 = 𝑝0 −
𝛾(𝐻 − 𝐻𝑤) + (𝑝0 − 𝛾/𝑀)(1 − 𝑒

−(𝐻−𝐻𝑤)𝑀)

1 + 𝐿/𝐵
+ (𝐻 − 𝐻𝑤) [𝛾 − 𝑐 (

2𝑟𝑏𝑠
𝐿

+
𝑟𝑏𝑏
𝐵
)] (2-126) 

where rbs and rbb are the ratios of the interface cohesion of the sidewalls and the back wall to the 

backfill cohesion, respectively; Hw (m) is the height of the lower wedge; K is the lateral earth 

pressure coefficient. 

A good agreement was obtained between the experimental results of Mitchell et al. (1982) and the 

proposed solution using selected internal friction angle and adherence ratio obtained by the curve-

fitting method. 
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                                         (a)                                                          (b) 

Figure 2-44: Forces on the two parts of the model: (a) the upper block and (b) the lower wedge 

(taken from Li and Aubertin 2014) 

2.3.1.9 Tension cracks 

Li and Aubertin (2012) also considered the tension cracks in the side-exposed backfill, and the 

depth of the tension cracks Ht (m) can be estimated by 

𝐻𝑡 =
2𝑐

𝛾 tan(45° − 𝜑/2)
(2-127) 

The equivalent width of the sliding wedge Bt (m) can be obtained by 

𝐵𝑡 = (𝐻 − 𝐻𝑡)/tan 𝛼 (2-128) 

Then the situation can be regarded as a high-aspect-ratio stope using the equivalent width Bt to 

substitute the width B in the modified solution of Li and Aubertin (2012). 

Yang et al. (2017a) performed numerical simulations with FLAC3D to analyze the stability of side-

exposed backfill. Their numerical results showed that the tension crack and wedge sliding may 

occur at the same time. They further developed an analytical solution by considering the tension 

crack (shown in Figure 2-45) as follows: 

𝐹𝑆 =
tan𝜑′

tan𝛼
+

2

sin 2𝛼
(
𝑝

𝑐
−
𝐻𝑡
𝐵𝑡
−
𝑟𝑠(2𝐻 − 𝐵𝑡 tan𝛼)

𝐿
)

−1

(2-129) 

𝑐 = 𝑝 [
2

(𝐹𝑆 − tan𝜑′ /tan 𝛼 ) sin 2𝛼
+
𝐻𝑡
𝐵𝑡
+ 
𝑟𝑠(2𝐻 − 𝐵𝑡 tan𝛼)

𝐿
]

−1

(2-130) 

with 
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𝑝 =
𝐿

2𝐾 tan 𝛿
[𝛾 −

1

𝐵𝑡 tan𝛼
(

𝛾𝐿

2𝐾 tan 𝛿
− 𝑝0) × (𝑒

−
2𝐾 tan𝛿

𝐿
𝐻𝑡 − 𝑒−

2𝐾 tan𝛿
𝐿

𝐻)] (2-131) 

Then numerical simulations with a zero and a nonzero (UCS/10) tension cut-off were conducted. 

A better agreement was obtained between their proposed solution and the numerical results. 

 

Figure 2-45: Side-exposed backfill with tension crack (taken from Yang et al. 2017a) 

Zhao et al. (2019) proposed an analytical solution to evaluate the FS of side-exposed backfill with 

a tension crack by applying the differential slice method. Their analytical solution was not in closed 

form, but the FS can be obtained by calculations in iteration. Eight centrifuge tests for the side-

exposed stability were conducted and all the backfill models were brought to failure. An average 

FS of 0.97 was obtained by applying their analytical solution. The prediction error on the FS by 

using their analytical solution was 0.29, which is smaller than the error of 0.67 calculated by the 

Mitchell et al. (1982) solution. It suggested the validity of their analytical solution.  

2.3.1.10 The pressure at the back wall 

Liu et al. (2018) proposed an analytical solution for the stability analysis of the backfill with the 

front wall exposed and the back wall pressured by uncemented backfill. FS is estimated by the 

following equation: 

𝐹𝑆 =
𝑐𝐿(𝐵/cos 𝛼 ) + [𝑌 − 2𝑆𝑠 sin(𝛼𝑠 − 𝛼)] tan𝜑

𝑍 − 2𝑆𝑠 cos(𝛼𝑠 − 𝛼)
(2-132) 

with 

𝑌 = (𝛾𝐻∗ + 𝑝0)𝐿𝐵 cos 𝛼 −
1

2
𝛾𝑢𝐿(𝐻 − 𝐵 tan𝛼)

2 sin 𝛼 (2-133) 
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𝑍 = (𝛾𝐻∗ + 𝑝0)𝐿𝐵 sin 𝛼 +
1

2
𝛾𝑢𝐿(𝐻 − 𝐵 tan𝛼)

2 cos 𝛼 (2-134) 

𝑆𝑠 = 𝐵𝐻
∗ (𝑟𝑠𝑐 +

𝐿

2
𝛾) + (

𝛾𝐿

2𝐾 tan 𝛿
− 𝑝0) [

𝐿2

4𝐾 tan𝛼 tan 𝛿
(𝑒−

2𝐾 tan𝛿
𝐿

𝐻𝑏 − 𝑒−
2𝐾 tan𝛿

𝐿
𝐻) −

𝐿𝐵

2
] (2-135) 

where αs (°) is the angle between the direction of the shear force at the fill-side wall interface and 

the horizontal. α and αs were assumed as some certain values and four formulas were developed 

and compared with numerical results obtained with FLAC3D. It is indicated that the analytical 

solution predicted better the numerical results when α = 45°+ φ/2 and αs = 45°- φ/2. 

2.3.1.11 Confining pressure induced by the surrounding rock 

Wang et al. (2019) developed an analytical solution for the cemented backfill stability with the 

front wall exposed, the back wall pressed by tailings fills, the side walls confined by the 

surrounding rock, and a surcharge due to the broken rock mass (shown in Figure 2-46). Based on 

the limit equilibrium theory, the required cohesion is calculated as follows: 

𝑐 =
2(𝛾𝐻∗ + 𝑝0)𝐵𝐿 sin 𝛼 (sin 𝛼 − cos𝛼 tan𝜑) + 2𝐹𝑏 cos 𝛼 (cos 𝛼 + sin 𝛼 tan𝜑) tan 𝛼 − 4𝑁𝑠 sin 𝛼 tan𝜑

4𝑟𝑏𝐻
∗𝐵 sin 𝛼 + 2𝐿𝐵 tan𝛼

(2-136) 

with 

𝑁𝑠 =
1

2
𝐵𝐻( 𝛾𝑅𝐻 + 2 𝛾𝐵𝑅b1) tan

2 (
𝜋

4
−
𝜑𝑅
2
) (2-137) 

𝑏1 =
𝐿 + 2𝐻 𝑐𝑜𝑡(45° + 𝜑𝑅/2)

2𝑓
(2-138) 

    

Figure 2-46: Mechanical model of a cemented backfill (taken from Wang et al. 2019)   
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where Fb (kPa) is the pressure on the back wall calculated by considering the densifying effect due 

to gravity; Ns (kPa) is the normal stress applied on the backfill induced by the surrounding rock; γR 

(kN/m3) and φR (°) are the unit weight and friction angle of the surrounding rock; γBR (kN/m3) is 

the unit weight of the broken rock at the top; b1 (m) is the height of the broken rock; f is the 

Peripheral hardness coefficient of the rock.  

When φ varied from 5° to 45°, the values of the two terms [2 sinα (sinα - cosα tanφ)] and [2 cosα 

(cosα + sinα tanφ)] in Eq. 2-136 are both appropriately equals to 1. Then, the required strength can 

be estimated as  

𝑈𝐶𝑆 = 𝑐
2 cos𝜑

1 − sin𝜑
=
(𝛾𝐻∗ + 𝑝0)𝐵𝐿 + 𝐹𝑏 tan𝛼 − 4𝑁𝑠 sin 𝛼 tan𝜑

𝛾𝐻∗𝐵𝐿 × (2𝑟𝑏𝐻∗ sin 𝛼 + 𝐿 tan𝛼)
×

2 cos𝜑

1 − sin𝜑
(2-139) 

The UCS calculated by Eq. 2-139 was then applied as the design strength of the backfill in the 

Dahongshan Mine. The stress variation during the backfilling was measured and shown in Figure 

2-24. The measured stresses were always smaller than the UCS of the backfill, suggesting the 

validity of the proposed analytical solution.  

2.3.2 Numerical simulations 

2.3.2.1 Early research for qualitative analyses of side-exposed stability 

Barrett et al. (1978) assessed the side-exposed stability of the backfill with a 2D finite-element 

code TNJTEP and 3D finite-element code NONSAP, respectively. The influence of the position 

where the exposure starts on the stability of the backfill was investigated. It was revealed that fewer 

failure zones occurred when the exposure position was closer to the backfill top. As the backfill 

width increased, the failure areas and the displacement of the exposure face would increase. In 

addition, the displacements of backfill after exposure obtained by 3D numerical simulations were 

found to be less than those obtained by 2D numerical simulations. 

Cundall et al. (1978) modeled the stability of the backfill in transverse pillar extraction using a 3D 

finite-difference program. Three types of filling materials were used to investigate their failure 

mechanism. The mining sequence was modeled by first removing one-tenth of the pillar 

instantaneously followed by the removal of one quarter, one half, and finally all of the pillar. It was 

found that the stability of cemented hydraulic backfill was mainly governed by gravity while the 
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influence of rock deformation on the backfill stability upon exposure was insignificant. The 

numerical results also showed that the stability of cemented rock backfill was affected by the 

deformation of surrounding rock. 

Dight and Coulthard (1980) employed the 2D program TNJTEPISA based on the Drucker-Prager 

criterion and investigated the influence of the backfill geometry and properties on its stability upon 

side exposure. The effects of the exposure height and depth and the backfill width on the failure 

areas were studied (shown in Figure 2-47). The results corresponded well to those of Barrett et al. 

(1978). Besides, a wedge shape with a tension crack was found to represent well the failure zone 

during the sequential exposure process.  

 

Figure 2-47: Failure zones with an exposure height of 20, 30, 40, 50, 60 and 70 m (taken from 

Dight and Coulthard 1980) 

Pierce (2001) applied FLAC3D (Version 2.00) to roughly evaluate the required cohesion of the 

backfill with a side or base exposure, respectively. For side-exposed conditions, it was 

demonstrated that the required cohesion increased with a growing exposure width. Besides, the 

shear failure dominated in the side-exposed backfill, and a smaller friction angle resulted in a larger 

required cohesion. The overlaying backfill was found to have a small effect on the stability of the 

backfill exposed below due to the occurrence of arching effects in the overlaying backfill.  

2.3.2.2 Inclined stopes 

Dirige and De Souza (2008) applied FLAC3D to model the inclined backfill with side exposure to 

verify their analytical solutions. The backfill was assigned a specific cohesion and the convergence 
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of the displacement was used as a criterion to determine the backfill state. However, only a few 

stable conditions were considered. More numerical simulations are still needed to obtain the 

minimum required cohesion of side-exposed backfill to verify their analytical solution. 

2.3.2.3 Blast vibrations 

Emad et al. (2012) conducted numerical simulations with FLAC3D to investigate the influence of 

blast vibrations on the side-exposed stability of cemented rockfill. As shown in Figure 2-48, tensile 

stress occurred at the top of the backfill under dynamic analyses, indicating the failure of the 

backfill. The blast vibration was proved to decrease the stability and increase ore dilution. Besides, 

the higher the peak compressive stress of the blasting load, the larger influence can be observed.  

Emad et al. (2014) then evaluated the stability of a side-exposed cemented rockfill at northern 

Manitoba with FLAC3D. Their numerical results showed that the backfill remained stable under 

static conditions. After considering the effect of blast vibration, tensile stress developed in the 

backfill and the backfill became unstable.  

 

(a)                                              (b) 

Figure 2-48: Vertical stresses in backfill after the excavation of the secondary stope: (a) static 

analysis; (b) dynamic analysis (taken from Emad et al. 2014) 

2.3.2.4 Critical cohesion 

Falaknaz (2014) carried out numerical simulations with FLAC3D to estimate the minimum 

required cohesion of side-exposed backfill using the trial and error method. The displacement and 

the strength-stress ratio were used to analyze the stability of the side-exposed backfill. It was found 
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that the critical cohesion would increase as the backfill length or height increased but seemed to be 

insensitive to the backfill width. Besides, exposing the backfilling in more steps tended to reduce 

the displacement and increase the factor of safety. 

2.3.2.5 Reproducing experimental tests 

Liu et al. (2016b) conducted a series of numerical modelings with FLAC3D to reproduce the 

experimental results of the physical model tests of Mitchell et al. (1982). The gradual exposure of 

the backfill by removing the timber at the exposed face one by one until the failure of the backfill 

was reproduced by the sequential numerical simulations. The yield state and strength-stress ratio 

of the backfill were used to determine the state of the backfill in the numerical simulations. The 

numerical results (shown in Figure 2-49) indicated that the model tests of Mitchell et al. (1982) 

were performed under undrained conditions. This explained why a good agreement was observed 

between the experimental results and the Mitchell et al. (1982) solution with a backfill friction 

angle φ = 0. 

 

Figure 2-49: Comparisons of the numerical results with the analytical solution and experimental 

date of Mitchell et al. (1982) (taken from Liu et al. 2016b) 

2.3.2.6 Tension crack 

Yang et al. (2017a) conducted a series of numerical simulations with FLAC3D to verify their 

analytical solution proposed by considering the tension crack. The critical cohesion was obtained 

by the trial and error method. The state of the backfill was evaluated by observing the displacement 
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along the VCL of the exposed face and the yielding state of the backfill. The tension crack was 

also observed in their numerical models.  

2.3.2.7 The pressure at the back wall 

Liu et al. (2018) obtained the minimum required cohesion of the backfill with the front wall 

exposed and the back wall pressured from numerical models conducted with FLAC3D. The 

displacement and the strength-stress ratio were used to distinguish if the backfill is stable or 

unstable. 

2.3.3 Experimental tests 

2.3.3.1 Vertical backfill 

Mitchell et al. (1982) performed 26 small-scaled laboratory model tests (shown in Figure 2-50a) to 

measure the critical exposed height of the backfill with different stope geometries and backfill 

properties. Those models had widths of 0.2 m and 0.4 m, lengths of 0.4 m, 0.6 m, and 0.8 m and 

heights varying from 0.6 m to 1.8 m. The backfill in the boxes was kept saturated and cured for 2.5 

to 5 hours before its exposure by removing the 0.1 m-high timber at the front face one by one 

quickly. The maximum exposed height of the backfill was recorded and plotted in Figure 2-50b. It 

was found that the experimental results corresponded well with their proposed analytical solutions. 

 

                                    (a)                                                              (b) 

Figure 2-50: Experimental tests for the side-exposed stability of backfill: (a) model construction 

and (b) comparisons with the analytical solution (taken from Mitchell et al. 1982)   
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Mitchell (1986) conducted eight centrifuge tests with cemented sand to measure the critical failure 

height of the prototype backfill. The tested samples were cast with three different cement ratios 

and cured for 28 days. The experimental results indicated that the critical height calculated by the 

standard upper-bound equation for vertical slope stability (H = 2 UCS/γ) was conservative. Besides, 

Mitchell et al. (1982) solution underestimated the critical height. It was also observed that tension 

crack (shown in Figure 2-51) would occur, accompanied by the failure. The falling mass could 

reach 30 to 50% of the total mass of the backfill, causing unacceptable ore dilution. A similar 

tension crack was also observed in the centrifuge tests conducted by Zhao et al. (2019). 

                     

(a)                                          (b)                                          (c) 

Figure 2-51: Tension crack during the failure of the model: (a) test 1a and (b) test 2a (taken from 

Mitchell 1986) and (c) test No. 1a (taken from Zhao et al. 2019)  

Antonov (2005) performed two laboratory experiments to investigate the stability of side-exposed 

backfill using the retaining wall model shown in Figure 2-52a. In the model, the retaining wall with 

a high cement ratio should be able to support itself and the backfill with a low cement ratio after 

the excavation of the secondary stope. As shown in Figure 2-52b, a wooden box with a geometry 

of 1.24 m high, 1.0 m long, and 0.6 m wide was assembled and the front wall could be lifted to 

simulate the exposing process. The thickness of the retaining wall decreased from 0.1 m at the base 

to 0.05 m at the top. The retaining wall was first constructed with a cement ratio of 2% and cured 

for 7 days before filled with uncemented sand. For the first model, both the outer extremities of the 

retaining wall were fixed horizontally with a 1 cm wide and 1 cm thick wooden stick. After the 

removal of the front wall, the retaining wall remained stable for several days, even with some 

obvious tension cracks. In the second model, the outer extremities of the retaining wall were not 

fixed. The retaining wall finally became unstable and collapsed at an exposure height of 0.99 m. 
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                                           (a)                                                                  (b) 

Figure 2-52: A schematic view of (a) the retaining wall model and (b) laboratory model (taken 

from Antonov 2005) 

Yang et al. (2015) conducted laboratory tests with a scale ratio of 1:170 to investigate the backfill 

stability of a stope in Sijiaying Iron Mine (50 m in length, 25 m in width, and 100 m in height). As 

shown in Figure 2-53a, pressure cells are placed in the pillars and at the roof of the backfill. 

Displacement meters are fixed at the roof of the backfill and the ground surface. A cement-tailing 

ratio of 1:8 was used in the backfill. Figure 2-53b shows the side-exposed backfill after the 

excavation of the left secondary stope. It is indicated that although a few pieces of backfill fell 

down near the top, the backfill remained stable, which suggested the designed cement-tailing ratio 

was effective. 

         

                            (a)                                                                              (b) 

Figure 2-53: (a) The positions of the measuring systems and (b) the side-exposed backfill (taken 

from Yang et al. 2015) 
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2.3.3.2 inclined backfill 

Smith et al. (1983) conducted nine model tests with a height varying from 1.8 m to 4.2 m to 

investigate the side-exposed stability of the backfill in inclined stopes at Black Mountain Mine 

(shown in Figure 2-54a). The testing procedure was similar to that of Mitchell et al. (1982). Tests 

on the samples taken from the model indicated that the uniaxial compressive strength was equal to 

twice the cohesion. The UCS obtained from their experimental results was used to calibrate their 

analytical solution (Eq. 2-101). As shown in Figure 2-54b, X = 2.21 was obtained through curve-

fitting and used in the equation.  

  

                                      (a)                                                                      (b) 

Figure 2-54: Experimental tests for the side-exposed stability of inclined backfill: (a) model 

construction and (b) comparisons with the analytical solution (taken from Smith et al. 1983)  

Mitchell (1989) conducted several centrifuge experiments to investigate the influence of stope wall 

inclination and wall closure stress on the stability of side-exposed backfill. The cemented backfill 

with a cement content of 2.5% was cured for 28 days before exposure. As shown in Figure 2-55a, 

a curved failure surface, intersecting the hanging wall and footwall, was observed. The Mitchell et 

al. (1982) solution was found to largely overestimate the required strength of experimental models. 

Therefore, Eq. 2-103 was proposed by calibrating with the experimental results. As shown in 

Figure 2-55b, the solution predicted well the experimental results.  
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                           (a)                                                                              (b) 

Figure 2-55: (a) Model 3 (with 10% UCS wall closure stress and a wall inclination angle of 75°) 

after failure and (b) comparisons of the analytical solution and experimental data (taken from 

Mitchell 1989)  

Dirige and De Souza (2008) conducted four centrifuge tests to evaluate the stability of the side-

exposed backfill with a stope wall inclination angle of 75°. All the exposed backfill remained stable 

at the designed gravity levels. As shown in Figure 2-56, a few tension cracks have started to develop 

near the top of Model 4. Besides, a potential sliding surface making an angle of about 60° ~ 65° to 

the horizontal was observed. 

 

Figure 2-56: Tension cracks and failure surface development in Model 4 (taken from Dirige and 

De Souza 2008)  
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2.4 Final remarks 

The literature review indicates that many analytical, numerical, and experimental investigations 

have been conducted in the past years on the fill-wall interactions in terms of stress state and 

stability of side-exposed backfill. Based on this literature review, the following remarks can be 

given: 

(1) For the stress state in backfilled stopes, a more generalized analytical solution is desired to 

estimate the stresses in various conditions. It is also interesting to carefully investigate the 

stresses near the bottom of backfilled stopes by taking into account the kink effect because it is 

closely related to the design of barricades, side-exposed backfill, and based-exposed sill mat. 

It is also interesting to correctly take into account the influence of cohesion, wall inclination 

angle, and the stress state after side exposure of the backfill. In terms of experimental works, a 

detailed measurement of the stress distribution along the whole depth is of vital importance. 

(2) For the lateral earth pressure coefficient, more efforts are still needed to fully understand its 

distribution in backfilled stopes. 

(3) For the side-exposed backfill design, more work is needed to investigate the stability of side-

exposed backfill in real conditions even though the Mitchell et al. (1982) solution has been 

widely used in the practice. It is worth noting the existing analytical solutions for the stability 

of side-exposed backfill in inclined stopes contain some limitations and more efforts are 

required. The influence of confining pressures and blasting vibrations should be taken into 

account. Laboratory experiments and field measurements are needed for the verification of the 

proposed analytical solutions and numerical simulations. 
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 ARTICLE 1: NUMERICAL AND ANALYTICAL 

INVESTIGATIONS OF STRESS DISTRIBUTION IN BACKFILLED 

STOPES CONSIDERING THE KINK EFFECT NEAR THE BOTTOM 

 

Shupeng Chai, Jian Zheng, Li Li 

 

This article was submitted to International Journal of Geomechanics in January 2020. 

 

Abstract: Mining backfill is increasingly used in underground mine stopes around the world. A 

good understanding of the stress distribution in backfilled stopes is a critical concern for the design 

of barricades or sill mats and side-exposed backfills. This can be realized by using arching 

analytical solutions or by numerical modelings. The former will give exactly the same distribution 

between the stress and depth and that between the stress at the bottom and thickness of backfill 

while the latter does not always show the same trend. More specifically, a sudden increase of 

vertical stress near the bottom of the stope can be observed on the distribution curves of stress and 

depth. This is called the kink effect. It can significantly affect the stress estimation for the design 

of barricades because their construction is made in access drift at the base of stopes. However, the 

mechanism of the kink effect has never been fully investigated. It has never been considered in 

analytical solutions developed for evaluating the stresses. In this paper, the mechanism of the kink 

effect will first be analyzed. A conceptual analytical solution is then proposed to evaluate the stress 

distribution in backfilled stopes by considering the kink effect near the bottom. The proposed 

solution is further validated by additional numerical modelings performed with FLAC.  

 

Keywords: Backfilled stope; Numerical modeling; Stress at the bottom; Stress along the depth; 

Kink effect; Analytical solutions 
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3.1 Introduction 

Using backfill in underground mine stopes has become a common practice around the world. Stope 

backfilling can bring several advantages, including improved ground stability, increased ore 

recovery, and reduced volume of mine wastes to be disposed of on surface (Aubertin et al. 2003; 

Potvin et al. 2005; Darling 2011; Li 2014a, 2014b).  

The successful application of backfill requires a good understanding of the stress distribution in 

backfilled stopes. This can be important for the design of barricades (Li and Aubertin 2009a, 2009b, 

2011; Yang et al. 2017), sill mats (Mitchell 1991) or side-exposed backfill (Li and Aubertin 2012; 

Li 2014a, 2014b; Yang et al. 2017a).  

Over the years, a number of analytical solutions based on the arching theory (Marston 1930; 

Janssen 1895) have been proposed for evaluating the stresses in backfilled openings. The horizontal 

(σh; kPa) and vertical (σv; kPa) normal stresses in an opening backfilled with cohesionless backfill 

can be estimated as follows (Li et al. 2003):  

𝜎𝑣 =
𝛾𝐵

2𝐾𝑡𝑎𝑛 𝛿
(1 − 𝑒−2𝐾

𝑧
𝐵
𝑡𝑎𝑛 𝛿) (3-1) 

𝜎ℎ =
𝛾𝐵

2𝑡𝑎𝑛 𝛿
(1 − 𝑒−2𝐾

𝑧
𝐵
𝑡𝑎𝑛 𝛿) (3-2) 

where γ (kN/m3) is the unit weight of the backfill; B (m) is the width of the opening; δ (°) is the 

friction angle along the fill-wall interfaces, which is taken as the internal friction angle of the 

backfill φ (°) for rock walls with rough surfaces; K (= σh/σv, the pore water pressure is not considered 

in this study) is the earth pressure coefficient. In Marston (1930), z (m) is the thickness of backfill 

while σh and σv are the horizontal and vertical stresses at the base of the backfilled opening, 

respectively. In backfilled stopes, σh and σv are usually taken as the horizontal and vertical stresses 

at a depth z (m) from the top surface of the backfill for a given thickness of backfill. Even though 

the physical meanings of σh, σv, and z (m) are different in the two cases, the stress-thickness curves 

and stress-depth curves based on Eqs. 3-1 and 3-2 will superpose with each other. This tends to 

indicate that the distinction between the two cases is not necessary. However, these two types of 

stress profiles can be very different in numerical modelings. For instance, the numerical modelings 

conducted by Sivakugan et al. (2014) showed that the vertical stress at bottom increases 
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monotonously and tends to become stable as the thickness increases while the vertical stress also 

monotonously increases with the depth and tends to become stable with depth, but suddenly 

increase with depth near the bottom. This last trend has also been observed in numerical modelings 

conducted by Li et al. (2003), Fahey et al. (2009), and Xu et al. (2018). The sudden increase of the 

stress near the bottom of the backfilled opening was called kink effects by Sivakugan et al. (2014).  

It should be noted that the kink effect near the bottom can significantly influence the pressures on 

barricades. This is because the horizontal pressure on barricades is determined by the horizontal 

stress applied by backfill near the bottom of the stope with the same height range as the access drift 

(barricade). The kink effect has been partly explained by the limited deformation of the backfill 

near the stiff base of openings by Sivakugan et al. (2014) and Liu et al. (2017). This, however, 

cannot explain the absence of kink effects shown in other numerical modelings (Li et al. 2003; 

Pirapakaran and Sivakugan 2007a; Sobhi et al. 2016). The mechanism of the kink effect is not yet 

fully understood. Moreover, an analytical solution is necessary to take into account the kink effect 

for better estimating the stress-depth relationship in backfilled stopes.  

In this paper, the mechanism of the kink effect near the bottom is first investigated.  An analytical 

solution is then proposed to evaluate the stresses in backfilled stopes, after taking into account the 

mechanism of the kink effect. The proposed analytical solution is further validated by additional 

numerical modelings performed with FLAC.  

3.2 Mechanism of kink effects  

The kink effect was observed through numerical modeling performed by Sivakugan et al. (2014), 

who explained it as a result of not fully mobilized fill-wall interface friction near the bottom due 

to the stiff base restriction on the downward movement of backfill. More loads thus transfer to the 

bottom, resulting in higher vertical stress near the bottom compared to the vertical stress based on 

full arching theory. However, this cannot explain the absence of kink effects shown in other 

numerical modelings (Li et al. 2003; Pirapakaran and Sivakugan 2007a; Fahey et al. 2009; Sobhi 

et al. 2016). Here, the occurrence of the kink effect is related to the stress and yield states of backfill.  

Figure 3-1 shows the yield envelop following the Mohr-Coulomb criterion for cohesionless backfill 

and the possible stress states of backfill along the vertical central line (VCL) of a vertical opening, 
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where the vertical σv and horizontal σh stresses correspond to the major σ1 and minor σ3 principal 

stresses, respectively. On the figure, Ka is the Rankine’s active earth pressure coefficient expressed 

as follows:  

𝐾𝑎 = 𝑡𝑎𝑛
2 (45° −

𝜑

2
) =

1 − sin𝜑

1 + sin𝜑
                                                   (3-3) 

and K0 is the at-rest earth pressure coefficient due to the effect of Poisson’s ratio, written as 

follows:   

𝐾0𝜇 =
𝜇

1 − 𝜇
                                                                         (3-4) 

where  is the Poisson’s ratio. 

  

Figure 3-1: Possible stress states in the backfilled stope (adapted from Yang et al. 2018) 

For a given friction angle , when the value of Poisson’s ratio  is larger than a critical value c 

defined by the following equation (Yang et al. 2018): 


𝑐
=
1 − sin𝜑

2
                                                                       (3-5) 

one will have K0μ > Ka. The Mohr circle of stress state is below the yield envelope and the backfill 

is in an at-rest (elastic) state. No large deformation occurs during the beginning of backfill 

placement. The frictional shear strength of the backfill and the fill-wall interfaces is little mobilized. 

The arching effect should not be significant and the stress variation with depth should be close to 
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that based on overburden solution at a given small thickness of backfill. When more backfill is 

placed, large deformation of upper layers can occur due to the gravity and softness of the backfill; 

something like a large number of small deformations can result in large deformation. The large 

deformation and movement of the backfill will lead to a full mobilization of the frictional shear 

strength of the backfill or fill-wall interfaces, resulting in a full development of arching effects and 

a reduction of the stresses along the upper part of the backfill. Near the bottom of the stope, 

however, the stiff base limits the downward movement of the backfill. The frictional shear strength 

of the backfill or fill-wall interfaces, resulting in little arching effect along this part of the backfill 

near the bottom of the opening. A kink effect can be observed in the stress profile along the height 

of a backfilled stope.  

When Poisson’s ratio  is smaller than the critical value of c defined by Eq. 3-5, one will have 

K0μ < Ka. The Mohr circle of stress state tends to exceed the yield envelope, which is impossible. 

The backfill yields and large (plastic) deformation occurs from the beginning to the end of 

placement of any thickness. The friction shear strength of the backfill or fill-wall interfaces is fully 

mobilized along the whole height of the backfill. The arching effect should be fully developed from 

the bottom to the top of the backfill. The absence of kink effects is expected. 

Table 3-1 shows a summarization of previous numerical results of stresses in backfilled openings. 

The backfill is considered as an elastoplastic material obeying the Mohr-Coulomb criterion in all 

the numerical models shown in the table. It is seen again that the kink effect is observed when  is 

larger than the critical value c, but absent when  is smaller than the critical value c. 

3.3 Analytical solution 

The analysis in the previous section indicates that the kink effect is absent on stress distribution 

along the height of backfilled opening when  < c, but observed when  > c. For the former case, 

Eqs. 3-1 and 3-2 can still be used to evaluate the stresses in backfilled openings without any 

modification. The Rankine’s active earth pressure Ka should be used in the solution because the 

backfill is in a yielded and active state. For the latter case, slight modification needs to be 

considered. 
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Table 3-1: A summary of previous numerical results regarding the occurrence of kink effects 

 φ () c  > c? Kink? Literature Software 

0.2 10 0.413 

No No 

Yang (2016) 

FLAC 

0.2 20 0.329 

0.2 30 0.250 Li et al. (2003) 

0.2 30 0.250 
Pirapakaran and Sivakugan (2007a) 

0.2 35 0.213 

0.2 30 0.250 Li and Aubertin (2008) 

0.2 30 0.250 Xu et al. (2018) ABAQUS 

0.2 30 0.250 Sobhi et al. (2017) SIGMA/W 

0.2 30 0.250 
Yang (2016) FLAC 

0.2 35 0.213 

0.3 14 0.379 
Liu et al. (2017) FLAC3D 

0.3 21 0.321 

0.333 0 0.500 
Yang (2016) 

FLAC 

0.333 10 0.413 

0.2 40 0.179 

Yes Yes 

Pirapakaran and Sivakugan (2007a) 
0.2 45 0.146 

0.2 40 0.179 Yang (2016) 

0.2 45 0.146 Fahey et al. (2009) PLAXIS 2D 

0.25 35 0.213 Pirapakaran and Sivakugan (2007b) 
FLAC/FLAC3D 

0.25 36 0.206 Sivakugan (2014) 

0.3 28 0.265 
Liu et al. (2017) FLAC3D 

0.3 35 0.213 

0.3 35 0.213 Falaknaz et al. (2015) 

FLAC 0.333 20 0.329 
Yang (2016) 

0.333 30 0.250 

0.333 45 0.146 

Fahey et al. (2009) PLAXIS 2D 

0.4 45 0.146 

0.49 45 0.146 

0.495 45 0.146 

0.499 45 0.146 
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Figure 3-2 shows a conceptual model of backfilled opening with the possible stress distribution 

along the whole height from the base to the top of the backfill for a given thickness of backfill in 

the opening. On the figure, B (m) is the with of the opening, H (m) is the final thickness or height 

of the backfill at the end of filling operation, z (m) is the depth of calculation point below the top 

surface of the backfill, hkv and hkh are the critical heights from the bottom of the vertical and 

horizontal stresses, respectively.  

   

Figure 3-2: A backfilled stope and possible stress distribution with kink effects 

As stated in Section 3.2, full arching effects develop in the upper part of the backfill even though 

the backfill is in an unyielding and at-rest state. The vertical stress above the critical heights (z ≤ H 

- hkv) can then be estimated with Eqs. 3-1 by using K = K0μ as follows: 

𝜎𝑣 =
𝛾𝐵

2𝐾0𝜇𝑡𝑎𝑛 𝛿
(1 − 𝑒−2𝐾0𝜇

𝑧
𝐵
𝑡𝑎𝑛 𝛿)    for 𝑧 ≤ 𝐻 − ℎ𝑘𝑣  (3-6) 

The vertical stress at the critical height (z = H - hkv) can then become as follows: 

𝜎𝑣𝑘𝑣 =
𝛾𝐵

2𝐾0𝜇𝑡𝑎𝑛 𝛿
(1 − 𝑒−2𝐾0𝜇

𝐻−ℎ𝑘𝑣
𝐵

𝑡𝑎𝑛 𝛿) (3-7) 

It can be considered as surcharge pressure on top of the kink section. Near the bottom below the 

critical height (z > H - hkv), the vertical stress can then be obtained by using the overburden solution 

(without arching effect) as follows: 
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𝜎𝑣 = 𝜎𝑣𝑘𝑣 + 𝛾[𝑧 − (𝐻 − ℎ𝑘𝑣)]    for 𝑧 > 𝐻 − ℎ𝑘𝑣 (3-8) 

Similarly, the horizontal stress above the critical height (z ≤ H - hkh) can be estimated with Eq. 3-2 

by using K = K0μ as follows: 

𝜎ℎ =
𝛾𝐵

2𝑡𝑎𝑛 𝛿
(1 − 𝑒−2𝐾0𝜇

𝑧
𝐵
𝑡𝑎𝑛 𝛿)   for 𝑧 ≤ 𝐻 − ℎ𝑘ℎ (3-9) 

The horizontal stress at the critical height (z = H - hkh) is given as: 

𝜎ℎ𝑘ℎ =
𝛾𝐵

2𝑡𝑎𝑛 𝛿
(1 − 𝑒−2𝐾0𝜇

𝐻−ℎ𝑘ℎ
𝐵

𝑡𝑎𝑛 𝛿) (3-10) 

The horizontal stress below the critical height (z > H - hkh) can then be obtained by: 

𝜎ℎ = 𝜎ℎ𝑘ℎ + 𝐾0𝛾[𝑧 − (𝐻 − ℎ𝑘ℎ)]      for 𝑧 > 𝐻 − ℎ𝑘ℎ (3-11) 

Eqs. 3-6 to 3-11 constitute the proposed solution for estimating the vertical and horizontal stresses 

along the depth of backfilled stope upon the presence of kink effects. The solution contains two 

parameters (hkv and hkh), which need to be determined by numerical modelings. 

3.4 Numerical simulations and comparisons 

In order to test the validity of the proposed solution (Eqs. 3-6 to 3-11), numerical modelings were 

conducted with FLAC. A few numerical models will first be used to obtain the values of parameters 

hkv and hkh through calibration. The predictability of the proposed and calibrated solution (i.e. Eqs. 

3-6 to 3-11 with the calibrated parameters hkv and hkh) will then be tested against addition numerical 

simulations. The proposed mechanism of kink effects will also further be verified.  

3.4.1 Numerical models 

Figure 3-3a schematically shows a typical vertical backfilled stope, having a width of 6 m and 

filled to a final height of 45 m with a space of 0.5 m left between the top surface of the backfill and 

stope roof. The rock mass is considered as isotropic, homogenous, and linearly elastic. Its 

properties are: γR = 27 kN/m3 (unit weight), ER = 30 GPa (Young’s modulus), and R = 0.3 

(Poisson’s ratio). The cohesionless backfill is elastoplastic and obeys the Mohr-Coulomb criterion. 

It is characterized by γ = 18 kN/m3 (unit weight), E = 300 MPa (Young’s modulus), μ = 0.3 

(Poisson’s ratio), φ = 30° (internal friction angle), and ψ = 0° (dilation angle).  
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Figure 3-3b shows a numerical model of the vertical backfilled stope built with FLAC. Interface 

elements are used along the fill-wall contact. The cohesionless interfaces have a friction angle δ = 

φ. The normal (kn) and shear (ks) stiffness of the interfaces are calculated by a formula 

recommended in the FLAC manual (Itasca, 2011). The two vertical outer boundaries of the 

numerical model are fixed in the horizontal direction but can freely move in the vertical direction. 

The upper outer boundary of the numerical model is free in all directions while the lower outer 

boundary is fixed in all directions.  

The mesh of the backfill is determined as 0.25 m × 0.25 m while a radial mesh is used for the rock 

mass. The domain from the stope walls to the rock walls (external boundaries) is chosen as 150 m 

along the four directions. The domain and mesh size were determined after a series of sensitivity 

analyses (shown in Appendix B1). The numerical simulations were conducted by excavating the 

stope instantaneously and filled the backfill in 45 layers (1 m/layer). The displacements induced 

by the excavation are reset to zero before the simulation of backfilling.  

       

(a)                                                                        (b) 

Figure 3-3: (a) A physical model and (b) a numerical model built with FLAC of a vertical 

backfilled stope 

Table 3-2 shows the program of numerical modelings by varying the Poisson’s ratio μ and internal 

friction angle φ to obtain two different relationships between μ and μc. 

0
.5

 

m
 

4
5

 m
 

-250 m 

Backfill 

 
γ = 18 kN/m3 

E = 300 MPa 

μ = 0.3 

φ = 30° 

Rock mass 

 

γR = 27 kN/m3 

ER = 30 GPa 

μR = 0.3 

Void 

6 m 

150 m 

1
5

0
 m

 

Rock mass 

Backfill 

Void 



89 

 

 

Table 3-2: Program of additional numerical simulations 

Case Figure No. φ (°)  B (m) H (m) E (kPa) δ (°) μc μ > μc? Kink expected? 

0 3-4, 3-6a 30 0.3 6 45 300 30 0.25 Yes Yes 

1 

a 

3-5, 3-6b 

15 

0.3 6 45 300 30 

0.371 
No No 

b 20 0.329 

c 35 0.213 Yes Yes 

2 
a 

3-7, 3-8 30 
0.2 

6 45 300 30 0.25 
No No 

b 0.35 Yes Yes 

3 3-9a 30 0.3 12 45 300 30 0.25 Yes Yes 

4 3-9b 30 0.3 6 35 300 30 0.25 Yes Yes 

5 3-9c 30 0.3 6 45 30 30 0.25 Yes Yes 

6 3-9d 30 0.3 6 45 300 20 0.25 Yes Yes 

 

3.4.2 Validation of the proposed mechanism 

Figure 3-4 shows the variation of the vertical (Figure 3-4a) and horizontal (Figure 3-4b) stresses 

along the VCL of the backfilled stope for a given Poisson’s ratio  = 0.3 as the internal friction 

angle φ varies from 15° to 35º (Table 2, Cases 0 and 1). As expected, kink effects clearly occur 

when the internal friction angle is 30° and 35°, respectively while it is absent when φ = 15° or 

unobvious when φ = 20°.  

  

                                               (a)                                                                          (b)      

Figure 3-4: Variation of the vertical (a) and horizontal (b) stresses along the VCL of the 

backfilled stope for a given Poisson’s ratio with different internal friction angles (details given in 

Table 2, Cases 0 and 1) 
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Figure 3-5 shows the variation of the vertical (Figure 3-5a) and horizontal (Figure 3-5b) stresses 

along the VCL of the backfilled stope for a given friction angle φ = 30° as the Poisson’s ratio  

varies from 0.2 to 0.35 (Table 2, Cases 0 and 2). As expected again, kink obviously occurs when 

Poisson’s ratio equals 0.3 or 0.35 while it is not significant when Poisson’s ratio is taken as 0.2.  

    

                                             (a)                                                                          (b)      

Figure 3-5: Variation of the vertical (a) and horizontal (b) stresses along the VCL of the 

backfilled stope for a given internal friction angle with different Poisson’s ratios (details given in 

Table 2, Cases 0 and 2) 

3.4.3 Calibration of the proposed analytical solution 
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stress calculated by the proposed analytical solution agrees well with the numerical results obtained 

with FLAC for all three cases. For the vertical stress, the proposed solution slightly overestimates 

the numerical results in the kink range, but slightly underestimates the numerical results above the 

kink range. Despite the slight difference, the proposed analytical solution can well capture the 

variation of vertical and horizontal stresses due to kink effects. 

Eqs. 3-6 to 3-13 with a = 1/10 and b = 1/20 constitute the proposed and calibrated analytical 

solution for estimating the vertical and horizontal stresses in backfilled stopes with kink effects. 

     

(a)                                                                          (b) 

  

(c) 

Figure 3-6: Vertical and horizontal stresses obtained by numerical modeling and predicted by 

applying the proposed solution (Eqs. 3-6 to 3-13 with a = 1/10 and b = 1/20) for (a) Case 0, (b) 
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3.4.4 Tests of the ability of prediction of the proposed and calibrated analytical 

solution 

Figure 3-7 shows the distribution of vertical and horizontal stresses along the whole depth of the 

backfilled stope at the end of deposition for Cases 3 to 6 with different widths, heights, Young’s 

modulus of the backfill, or internal friction angles of the fill-wall interface, calculated by the 

proposed and calibrated analytical solutions (Eqs. 3-6 to 3-13 with a = 1/10 and b = 1/20) and 

obtained by numerical simulations performed with FLAC. One sees that the vertical and horizontal 

stresses predicted by the proposed solution agree well with those obtained by numerical modelings 

with FLAC.  

    

(a)                                                                   (b) 

 

(c)                                                                   (d) 

Figure 3-7: Vertical and horizontal stresses obtained by numerical modeling and predicted by the 

proposed solution (Eqs. 3-6 to 3-13 with a = 1/10 and b = 1/20) with different parameters for (a) 

Case 3 with B = 12 m, (b) Case 4 with H = 35 m, (c) Case 5 with E = 30 MPa and (d) Case 6 with 

δ = 20° 
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Figure 3-8 shows the vertical and horizontal stresses obtained by numerical modeling and those 

predicted with the proposed and calibrated solution (Eqs. 3-6 to 3-13 with a = 1/10 and b = 1/20). 

It can be seen that the agreements between the numerical and analytical results are quite good. The 

proposed and calibrated solution (Eqs. 3-6 to 3-13 with a = 1/10 and b = 1/20) can be used to 

predict the stresses in backfilled stopes with kink effects.  

   

(a)                                                                    (b) 

  

(c) 

Figure 3-8: Vertical and horizontal stresses obtained by numerical modeling and predicted with 

the proposed solution (Eqs. 3-6 to 3-13 with a = 1/10 and b = 1/20). Comparisons with numerical 

results taken from (a) Sivakugan et al. (2014) with γ = 17.65 kN/m3, E = 50 MPa, μ =0.25, φ = 

36°, δ = 36°, H = 100 or 150 m, B = 25 m; (b) Yang (2016) with γ = 18 kN/m3, E = 300 MPa, μ = 

0.3, φ =30°, δ = 30°, H = 40 m, B = 8 m; (c) Liu et al. (2017) with γ = 18 kN/m3, E = 300 MPa, μ 

= 0.3, φ = 35°, δ = 28°, H = 40 m, B = 10 m 
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3.5 Discussion 

This paper first theoretically investigated the mechanism of the kink effect in vertical backfilled 

stopes. A new conceptual analytical solution was then proposed to estimate the stresses in 

backfilled stopes by considering the kink effect. The proposed mechanism and conceptual 

analytical solution were then validated by numerical modeling results. However, it should be noted 

that the analytical and numerical analyses contain some limitations.  

For instance, the proposed solution is considered for dry backfill without considering the pore water 

pressure. It can be directly used for the stability analyses of side-exposed backfill, as the backfill 

can be considered in the dry condition upon exposure. However, the pore water pressure needs to 

be considered for the design of barricades. In this case, the proposed solution cannot be directly 

used, and more work is required to improve this aspect.  

Another limitation is related to the calibration of the two critical heights hkv and hkh (kink range) 

for the vertical and horizontal stresses, respectively. The calibration of these two critical heights 

was based on the numerical results available in the literature and obtained in this study. The two 

critical heights are found to be proportional to the final backfill heights H, which can be taken as a 

= 1/10 and b = 1/20 of the final height. Although good agreements were obtained between the 

proposed solution and numerical results, more work is required to determine the kink range with 

more physical meanings.  

It should be noted that both the theoretical investigation of the kink effect and the proposed 

analytical solutions need to be verified by experimental data. This validation would require the 

measurement of the backfill properties (e.g., Poisson’s ratio and internal friction angle), and 

vertical and horizontal stresses along the whole depth of the backfill, especially near the bottom. 

However, the measurement of Poisson’s ratio is never an easy task (Suwal and Kuwano 2013). 

Moreover, most of the previous laboratory tests were performed by only measuring the vertical 

or/and horizontal stresses at the bottom of the stope with different thicknesses of backfill 

(Pirapakaran and Sivakugan 2007b; Ting et al. 2007; Han et al. 2018). To the authors’ knowledge, 

there are no laboratory tests existed to measure the stresses along the whole depth at the end of 

backfilling. A few field measurements were conducted to measure the stress distribution along the 

depth during and after the filling operation (Belem et al. 2004; Thompson et al. 2012; Wang et al. 
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2019). However, only a few measuring (at most three) points were monitored along the depth of 

the stope, which cannot capture the stress variation along the depth of the stope (especially near 

the bottom). The laboratory tests need to be considered in the future.  

Finally, this study only investigated the kink effect in a vertical stope backfilled with a cohesionless 

backfill. Additional work is required and ongoing to consider three-dimensional geometry, inclined 

stope, cohesion induced by cement hydration, confining effects caused by the lateral displacements 

of surrounding rock mass. 

3.6 Conclusions 

In this paper, the mechanism of the kink effect was first theoretically investigated. A new analytical 

solution was then proposed to estimate the vertical and horizontal stresses in vertical backfilled 

stopes by incorporating the kink effect near the bottom. The proposed mechanism for the 

occurrence of kink effects and the proposed analytical solution were then validated by the 

numerical modeling results obtained with FLAC. The results show that the occurrence of kink 

effect is closely related to the state of the backfill, which is determined by the relationship between 

the Poisson’s ratio  and internal friction angle φ of the backfill. The kink can occur when μ > (1-

sin φ)/2 while not occur when μ ≤ (1-sin φ)/2. The vertical and horizontal stresses calculated by the 

proposed conceptual analytical solution agree well with the numerical results. The proposed 

solution can well represent the kink effect near the bottom of the stope when kink occurs. The 

presented results in this study constitute a simple tool to evaluate the probability of the occurrence 

of kink effect and then estimate the stresses in backfilled stopes when kink occurs. 
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Abstract: Backfilling is a common practice in underground mines. It helps to maintain ground 

stability, increase ore recovery, reduce ore dilution, and minimize the environmental impact 

associated with surface disposal of mine wastes. Ensuring the stability of the side-exposed 

cemented backfill is a critical issue. Several publications have been devoted to analyzing the 

stability of side-exposed backfill in vertical stopes even though underground stopes are always 

more or less inclined. Only a few studies have been reported to analyze the stability of side-exposed 

backfill in inclined stopes. The resistances along the fill-hanging wall interface were ignored. In 

this study, a new analytical solution is proposed to assess the stability and required cohesion of 

side-exposed backfill in inclined stopes. The proposed analytical solution has been validated by 

numerical modeling conducted with FLAC3D and experimental results available in the literature. 

The results show that a critical stope wall inclination angle exists, at which the minimum required 

cohesion of side-exposed backfill in inclined stopes reaches a peak value, from which the minimum 

required cohesion decreases whatever the stope wall inclination angle increases or decreases. The 

good agreements between the minimum required cohesion obtained by the numerical modeling 

with FLAC3D and predicted by applying the proposed solution indicate that the proposed solution 

can be used to assess the stability or required cohesion of side-exposed backfill in inclined stopes.  

 

Keywords: Inclined stopes; Side-exposed backfill; Stability; Required cohesion; Analytical 

solution; Numerical simulations. 
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4.1 Introduction 

The application of backfill continuously increases in underground mines because it involves several 

advantages such as enhancing ground stability, improving recovery of ore, reduced subsidence due 

to underground mining activities, improved ventilation efficiency (Potvin et al. 2005; Darling 

2011; Li 2014a, 2014b; Yang et al. 2017a). Underground stope backfilling has also the advantage 

to minimize surface deposal of mine waste (Aubertin et al. 2003; Bussière 2007; Yang et al 2015; 

Liu et al. 2018).  

Among the different underground mining methods, open stoping is largely applied when ore and 

surrounding rock are of good quality (Hartman 1992; Darling 2011). To avoid loss of ore pillars, a 

common practice in the open stoping mining method is to divide the stopes into primary and 

secondary stopes as schematically shown in Figure 4-1. The primary stopes must be filled with 

cemented backfill, which should remain self-standing during the secondary stope excavation. It is 

a critical task to determine the minimum required strength of the cemented backfill in the primary 

stopes in order to ensure a safe and economic design of the backfill (Cundall et al. 1978; Dight and 

Coulthard 1980; Mitchell et al. 1982; Li 2014a; Yang et al. 2017a).  

 

Figure 4-1: Open stoping with a primary and a secondary stope: β () is the wall inclination 

angle; B (m), L (m) and H (m) are the width, length, and height of the backfill in the primary 

stope, respectively 
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Over the years, a number of solutions have been developed, mostly based on a wedge model 

proposed by Mitchell et al. (1982) to evaluate the stability of side exposed backfill in a vertical 

stope (Zou and Nadarajah 2006; Li and Aubertin 2012, 2014; Li 2014a, 2014b, Yang et al. 2017a; 

Liu et al. 2018; Zhao et al. 2019).  

However, it is noted that most of the previous studies focus on vertical backfilled stopes. In 

practice, ore veins are usually more or less inclined. A solution that takes into account wall 

inclination angle β () (see Figure 4-1) is necessary to estimate the stability of cemented backfill in 

inclined stopes upon the exposure of the secondary stope.  

Smith et al. (1983) proposed a solution to evaluate the required strength of backfill in inclined 

stopes. The solution was developed for the specific condition with a stope wall inclination angle of 

55°. The minimum (i.e. factor of safety FS = 1) required cohesion c (kPa) is expressed as follows: 

𝑐 =
𝛾𝐻

2(𝑋 + 0.75𝐻/𝐿)
 (4-1) 

where γ (kN/m3) denotes the unit weight of the backfill; L (m) and H (m) are the length and height 

of the backfilled stope, respectively; X is a geometric constant which was recommended to be equal 

to 2.21 based on a calibration with experimental results (Smith et al. 1983). The application of Eq. 

4-1 is limited due to the omission of the stope wall inclination angle. In addition, the solution 

inherits all drawbacks of the Mitchell et al. (1982) model, including the neglect of stope width B 

(m) and backfill friction angle φ (). 

Mitchell (1989) also modified the Mitchell et al. (1982) solution and proposed a new equation to 

calculate the required cohesion of side-exposed backfill in inclined stopes by calibrating with 

experimental results. The required cohesion is expressed as follows: 

𝑐 = 0.2
𝛾𝐻 sin 𝛽

1 + 𝐻/𝐿
 (4-2) 

It is worth noting that the experimental results suggested that wall closure stresses would influence 

the backfill stability, but it was not incorporated in Eq. 4-2. As the curve-fitting technique was used 

to obtain the equation, further validation is still needed. Besides, there are also similar limitations 

in the solution as the Mitchell et al. (1982) solution. 
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Dirige and De Souza (2008) proposed a generalized solution by considering the stope wall 

inclination angle. Figure 4-2 shows a cemented backfill confined in an inclined stope with a face 

exposed along the front wall. In the figure, W (kN) denotes the weight of the wedge part; Ff (kN) 

and Fh (kN) are normal forces on the footwall and hanging wall, respectively; Sf (kN) and Sh (kN) 

are shear forces along the fill-foot wall and fill-hanging wall interfaces, respectively. Along the 

back wall, the backfill tends to be separate from the wall and no forces or resistances are considered. 

The sliding plane of backfill was assumed to extend from the toe of the open face to the back wall 

and make an angle of α = 45°+φ/2 with the horizontal. θ () is an angle made between the two lines 

of intersection formed by the side (hanging or foot) wall, sliding plane, and the horizontal base. Its 

value is related to α and β as follows: 

tan 𝜃 =
tan𝛼

sin 𝛽
 (4-3) 

In Dirige and De Souza (2008), θ was taken as equal to 45°+φ/2 (= α). Eq. 4-3 shows that this can 

be valid only for vertical stopes (β = 90). 

 

Figure 4-2: Wedge model of side-exposed backfill in an inclined stope (adapted from Dirige and 

De Sousa 2008) 

By assuming that the backfill does not have contact with the hanging wall (thus Fh = Sh = 0), Dirige 

and De Souza (2008) proposed the following equation to evaluate the stability of the cemented 

backfill in terms of factor of safety (FS):  
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𝐹𝑆 =
tan𝜑

tan𝜃
+
cos 𝛽 tan𝜑

sin 𝜃
+

𝑐𝐵

(𝐻 −
𝐵 tan𝜑
2 ) (𝛾𝐵𝐿(1 − cos 𝛽 tan𝜑) −

𝑐𝐵
sin 𝛽

) sin 𝛼

           ∗ (
𝐿

cos 𝜃
+
𝐻 − (𝐵 tan 𝜑)/2 

sin 𝛽
)                                                            (4-4)

 

while the required cohesion of the cemented backfill was expressed as by Dirige and De Souza 

(2008): 

𝑐 =
𝛾𝐿(1 − cos𝛽 tan𝜑)

(
𝐿/(cos2 𝜃 (𝐻 − (𝐵 tan𝜑)/2))   + 1/(cos 𝜃 sin 𝛽)

𝐹𝑆 tan𝜃 − tan𝜑 − cos𝛽 tan𝜑 / cos 𝜃
) +

1
sin 𝛽

 (4-5)
 

It should be noted that neglecting the resistances on the hanging wall can be an unrealistic 

assumption when the stope wall inclination angle is larger than the certain critical value (further 

addressed in Appendix I). In addition, the solution of Dirige and De Souza (2008) cannot be 

reduced to the Mitchell et al. (1982) solution for vertical backfilled stopes (β = 90) even though 

the former is a generalized solution of the latter. 

In this paper, a new analytical solution will first be proposed to estimate the stability and required 

strength of side-exposed backfill in inclined stopes. The proposed solution and some previous 

solutions will be further compared with numerical results conducted with FLAC3D in various 

conditions. Experimental results available in the literature will also be used for validation. The 

capability and limitations of the proposed solutions will be illustrated and discussed. 

4.2 Proposed solutions 

Considering the limit equilibrium of the forces along the sliding direction of the wedge model for 

a high-aspect-ratio stope (H > B tan α) shown in Figure 4-2 leads to an equation as follows: 

𝑊𝑛 cos 𝛼 tan𝜑 + 𝑐𝐿𝐵/cos 𝛼 = 𝑊𝑛 sin 𝛼 (4-6) 

where Wn (kN) is the net weight of the sliding wedge. It can be further expressed as follows: 

𝑊𝑛 = 𝛾𝐵𝐿𝐻∗ − (𝑆𝑓 + 𝑆ℎ) sin 𝛽 + (𝐹ℎ − 𝐹𝑓) cos 𝛽  (4-7) 

where H* (m) is an equivalent height of the sliding wedge, calculated by the following equation: 

𝐻∗ = 𝐻 −
𝐵

2
tan𝜃 sin 𝛽 = 𝐻 −

𝐵

2
tan𝛼 (4-8) 
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The normal stresses on the footwall f (kPa) and hanging wall hw (kPa) can be estimated as follows 

by considering the two-dimensional arching solution of the stresses in backfilled stopes (detailed 

formulation shown in Appendix I): 

𝜎𝑓 = 𝛾𝐿𝑚 (1 − 𝑒−
𝑧
𝑅𝐿) (4-9) 

𝜎ℎ𝑤 = 𝛾𝐿𝑛 (1 − 𝑒−
𝑧
𝑅𝐿) (4-10) 

with 

𝑚 =
1

2
sin 2𝛽

tan𝛽 + 𝑟𝛽tan 𝛿ℎ

tan 𝛿𝑓 + 𝑟𝛽 tan 𝛿ℎ
 (4-11) 

𝑛 =
1

2
sin 2𝛽

tan𝛽 − tan 𝛿𝑓

tan 𝛿𝑓 + 𝑟𝛽 tan 𝛿ℎ
 (4-12) 

where δf () and δh () are the interface friction angles along the fill-foot wall and fill-hanging wall, 

respectively; rβ is a coefficient applied to adjust the shear stress along the fill-hanging wall 

interface, defined as follows (detailed given in Appendix I): 

𝑟𝛽 = 〈
2𝛽 − 90 − 

90 − 
〉  (4-13) 

where X = (X + X)/2 is the Macaulay brackets. 

𝑅 =
2 sin2 𝛽 (1 + 𝑟𝛽 tan 𝛿ℎ tan 𝛿𝑓) + cos 2𝛽 tan𝛽 (𝑟𝛽 tan 𝛿ℎ − tan 𝛿𝑓)

2(tan𝛿𝑓 + 𝑟𝛽 tan 𝛿ℎ)
   for 0  𝛽  90 (4-14) 

For vertical stopes (β → 90, rβ →1 and δh → δf), one has 

Lim
𝛽→90,𝛿ℎ → 𝛿𝑓 

tan 𝛽 (𝑟𝛽 tan 𝛿ℎ − tan 𝛿𝑓) = −
360°

(90° − 𝜑)𝜋
tan 𝛿𝑓  (4-15) 

and the coefficient R is expressed as follows: 

𝑅 =
1 + tan2 𝛿𝑓

2 tan 𝛿𝑓
+

90°

(90° − 𝜑)𝜋
      for 𝛽 =  90 (4-16) 

The shear stresses at the footwall τf (kPa) and hanging wall τh (kPa) are calculated by following the 

Coulomb criterion as follows: 

𝜏𝑓 = 𝑐𝑓 + 𝜎𝑓 tan 𝛿𝑓  (4-17) 

𝜏ℎ = 𝑟𝛽(𝑐ℎ + 𝜎ℎ𝑤 tan 𝛿ℎ) (4-18) 
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where cf (kPa) and ch (kPa) are the adherence of the fill-footwall and fill-hanging wall interfaces, 

respectively: 

𝑐𝑓 = 𝑟𝑓𝑐 (4-19) 

𝑐ℎ = 𝑟ℎ𝑐 (4-20) 

where rf (= cf / c; 0 ≤ rf ≤ 1) and rh (= ch / c; 0 ≤ rh ≤ 1) are adherence ratios of the footwall and 

hanging wall, respectively.  

Integrating Eq. 4-9 along the height of the wedge (see Figure 4-2) leads to the following expression 

for the normal force on the footwall Ff: 

𝐹𝑓 = ∫ 𝜎𝑓
𝑑𝑧

sin 𝛽
𝐵

𝐻′

0

+∫ 𝜎𝑓
𝑑𝑧

sin 𝛽

𝐻 − 𝑧

sin 𝛽 tan 𝜃

𝐻

𝐻′
= 𝑎𝑚𝐵𝐿 (4-21) 

with 

𝑎 = 𝛾 [
𝐻∗

sin 𝛽
−

𝑅𝐿

sin 𝛽
−

𝑅2𝐿2

𝐵 sin2 𝛽 tan 𝜃
(𝑒−

𝐻
𝑅𝐿 − 𝑒−

𝐻′

𝑅𝐿)] (4-22) 

where H’ (m) is the height of the sliding wedge at the back wall, expressed as follows: 

𝐻′ = 𝐻 − 𝐵 tan 𝜃 sin 𝛽 = 𝐻 − 𝐵 tan 𝛼 (4-23) 

The shear force along the footwall Sf can then be written as: 

𝑆𝑓 = 𝑐𝑓𝐵𝐻
∗/ sin 𝛽 + 𝐹𝑓 tan 𝛿𝑓 = 𝑐𝑓𝐵𝐻

∗/ sin 𝛽 + 𝑎𝑚𝐵𝐿 tan 𝛿𝑓  (4-24) 

Similarly, the normal (Fh) and shear (Sh) forces on the hanging wall are deduced as follows: 

𝐹ℎ = ∫ 𝜎ℎ𝑤
𝑑𝑧

sin 𝛽
𝐵

𝐻′

0

+∫ 𝜎ℎ𝑤
𝑑𝑧

sin 𝛽

𝐻 − 𝑧

sin 𝛽 tan 𝜃

𝐻

𝐻′
= 𝑎𝑛𝐵𝐿 (4-25) 

𝑆ℎ = 𝑟𝛽(𝑐ℎ𝐵𝐻
∗/ sin 𝛽 + 𝐹ℎ tan 𝛿ℎ) = 𝑟𝛽(𝑐ℎ𝐵𝐻

∗/ sin 𝛽 + 𝑎𝑛𝐵𝐿 tan 𝛿ℎ) (4-26) 

The net weight of the sliding wedge Wn can then be expressed as follows: 

𝑊𝑛 = 𝛾𝐵𝐿𝐻∗ − (𝑆𝑓 + 𝑆ℎ) sin 𝛽 + (𝐹ℎ − 𝐹𝑓) cos 𝛽 = 𝐵𝐿 (𝑝 −
𝑟𝑓 + 𝑟𝛽𝑟ℎ

𝐿
𝑐𝐻∗) (4-27) 

with 

𝑝 = 𝛾 [𝑅𝐿 +
𝑅2𝐿2

𝐵 tan𝛼
(𝑒−

𝐻
𝑅𝐿 − 𝑒−

𝐻′

𝑅𝐿)] (4-28) 
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For a given cemented backfill and cohesion c, the stability of the exposed backfill is evaluated as 

follows in terms of FS: 

𝐹𝑆 =
𝑊𝑛 cos 𝛼 tan𝜑 + 𝑐𝐿𝐵/ cos𝛼

𝑊𝑛 sin 𝛼
=
tan𝜑

tan𝛼
+

2

sin 2𝛼 (
𝑝

𝑐 −
𝑟𝑓 + 𝑟𝛽𝑟ℎ

𝐿 𝐻∗)
 (4-29)

 

Imposing FS = 1 on Eq. 4-29 leads to the following expression for the minimum required cohesion 

c of the side-exposed backfill in an inclined stope: 

𝑐 =
𝑝

2
(𝐹𝑆 − tan 𝜑/tan 𝛼 ) sin 2𝛼

+
𝑟𝑓 + 𝑟𝛽𝑟ℎ

𝐿 𝐻∗
 (4-30)

 

Eqs. 4-29 and 4-30 are the proposed solution for estimating the FS or required cohesion of side-

exposed backfill in inclined stopes. 

4.3 Numerical modeling 

4.3.1 Numerical models 

The proposed analytical solution (Eqs. 4-29 and 4-30) is developed with several simplifying 

assumptions. It should be validated by other means such as experimental models and numerical 

models. The former can further be divided into field tests and laboratory tests. The conditions of 

field tests are more representative than those of laboratory tests, but the tests are too expensive and 

time-consuming. The safety and access to the open stopes and exposed backfill may be a serious 

concern. Many parameters (geometries, rockmass and fill properties, blasting) may remain 

unknown or/and contain a high level of uncertainty. The reliability of the result interpretation can 

be a critical issue. Laboratory tests do not have the mentioned limitations but significantly suffer 

from scale problems (Mitchell et al. 1982; Mitchell 1986). Numerical models have been shown to 

be a cost-effective and efficient way to validate or calibrate analytical solutions. In this study, 

FLAC3D of Itasca (2013) is used to assess the stability of side-exposed backfill in an inclined stope. 

It has been applied to study the backfill behavior in the underground stopes in several publications 

(Li et al. 2003; Sivakugan et al. 2014; Yang et al. 2017a; Liu et al. 2018). Its validation has also 

been shown by Liu et al. (2016), who reproduced with success the physical model tests of Mitchell 

et al. (1982) through numerical modeling with FLAC3D. In addition, Liu et al. (2016) have shown 
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that the exposed backfills of Mitchell et al. (1982) are short-term stability problems and the shear 

strengths were obtained under conditions close to undrained conditions.  

Figure 4-3a shows the geometry of a side-exposed backfill in an inclined stope. This is taken as the 

reference case. The backfill is an elastoplastic material obeying the Mohr-Coulomb criterion. It is 

characterized by a dry unit weight γ = 18 kN/m3, a Young’s modulus E = 300 MPa, a Poisson’s 

ratio μ = 0.2, an internal friction angle φ = 30°, a cohesion c (kPa), and a dilation angle ψ = 0°. The 

tensile strength T0 (kPa) of the backfill is considered as one-tenth of its unconfined uniaxial 

compressive strength (UCS), based on previous studies (Mitchell and Wong 1982; Yang et al. 

2017a). The rock mass is a linearly elastic material with a unit weight γR = 27 kN/m3, a Young’s 

modulus ER = 30 GPa and a Poisson’s ratio μR = 0.3.  

Figure 4-3b presents a numerical model of the side-exposed backfill and surrounding rockmass, 

built with FLAC3D. Mitchell et al. (1982) have shown that the wall closures do not have an 

influence on the stability or required cohesion of exposed backfill. In this study, wall closure is 

neglected, and a small domain is sufficient to represent the rockmass in the numerical model. The 

backfill is modeled by quadrilateral elements with elements of 0.5 m (same size in length, height 

and width) after mesh sensitivity analyses while the rockmass is modeled by a radially graded mesh 

(shown in Appendix C2).  

         

(a)                                                                                    (b) 

Figure 4-3: The geometry of (a) a physical model and (b) the FLAC3D numerical model of a 

side-exposed backfill in an inclined stope 
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The top boundary of the model is free to move in all directions while displacements along the 

bottom boundary are prohibited in the vertical and two horizontal directions. Displacements along 

the four lateral boundaries are prohibited in the X and Y horizontal directions but allowed in the 

vertical direction. The rock walls are considered as rough. Interface elements are introduced in the 

numerical models between the backfill and rock walls by considering their shear strengths 

(cohesion and friction angle) equal to that of the backfill (Liu et al. 2017). The normal and shear 

stiffness of the fill-rock interfaces are determined as ten times the equivalent stiffness of the stiffest 

neighboring zone, as recommended in the FLAC3D manual (Itasca 2013). The response of the 

backfill has been simulated by the four following steps:  

(1) Simulation of the initial equilibrium state; 

(2) Excavation of the primary stope; 

(3) Placement of backfill in the primary stope in layers. Each layer has a thickness of 5 m based on 

sensitivity analyses (shown in Appendix C2). The displacements are reset to zero before any 

backfilling; 

(4) Exposure of the backfill by freeing the boundary restrictions at the open face of the backfill.  

The calculations were performed by applying the large strain mode (Itasca 2013). The largely 

deformed geometry of unstable exposed backfill can then be visualized. But the calculations stop 

when bad geometry associated with excessively large displacements occurs. 

The program of numerical simulations is presented in Table 4-1. 

Table 4-1: Program of numerical simulations (with γR = 27 kN/m3, ER = 30 GPa, and μR = 0.3 for 

the rock mass and γ = 18 kN/m3, E = 300 MPa and μ = 0.2 for the cemented backfill) 

Case Figure β (°) H (m) L (m) B (m) φ (°) 

0 4-3 ~ 4-6 70 40 20 10 30 

1 4-7a, 4-12 Variable 40 20 10 30 

2 4-7b Variable 45 15 6 35 

3 4-8a 70 Variable 20 10 30 

4 4-8b 70 40 Variable 10 30 

5 4-8c 70 40 20 Variable 30 

6 4-9 70 40 20 10 Variable 
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4.3.2 Criterion of instability 

The minimum required strength of the inclined side-exposed backfill is progressively approached 

and obtained by gradually reducing the cohesion c until the occurrence of instability. The instability 

of the exposed backfill can be evaluated by the examining the yield state of the material (Barrett et 

al. 1978; Cundall et al. 1978; Coulthard 1980; Pierce 2001), the convergence of the numerical 

calculations (Dirige and De Souza 2008; Dirige et al. 2009), the displacement of some key locations 

(Yang et al. 2017a; Liu et al. 2018), the strength-stress ratio (Liu et al. 2016, 2018), and the 

development of tension stress (Emad et al. 2014). Combined indicators have also been applied in 

some publications, as shown in Table 4-2. 

Yield state is largely used as an indicator to evaluate the failure of materials. For exposed backfill, 

however, the use of this indicator can lead to subjective assessment because the structure of the 

exposed backfill can remain stable if minor yield appears in limited areas. This is commonly 

observed during the slope stability analysis with an overall FS > 1 while the local FS can be smaller 

than the unity near the base of the slope. In this study, the convergence of numerical calculations, 

displacement, and strength-stress ratio are considered to reduce the subjectivity in the instability 

assessment of the exposed backfill. The total displacement and vertical stress along the central line 

C1C2 of the open face shown in Figure 4-3a are monitored.   

Table 4-2: Combined indicators to evaluate the instability of exposed backfill 

References 
Indicators for assessing the instability 

Displacement Yield state Strength-stress ratio 

Falaknaz (2014) √  √ 

Liu et al. (2016)  √ √ 

Yang et al. (2017a) √ √  

Liu et al. (2018) √  √ 

Pagé et al. (2019) √ √  

 

Figure 4-4 shows the total displacements monitored along the central line C1C2 of the open face in 

Case 0 when the cohesion of the backfill is taken as c = 70 kPa (Figure 4-4a) and c = 69 kPa (Figure 

4-4b), respectively. When c = 70 kPa, the displacements tend to become constant with an increasing 
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number of iteration steps, indicating the achievement of numerical calculation convergence. When 

the cohesion c reduces to 69 kPa, the displacements increase ceaselessly at an accelerated pace 

with an increasing number of iteration steps, indicating a divergence of numerical calculations. The 

side-exposed backfill is then considered as stable at a cohesion of 70 kPa and unstable when the 

cohesion reduces to 69 kPa.  

         

(a)                                                                                    (b) 

Figure 4-4: The variation of the total displacement of the open face as the iteration steps increase 

for Case 0 (Table 4-1) with (a) c = 70 kPa and (b) c = 69 kPa 

Figure 4-5 shows the variation of the total displacements at z = 10 m (10 m from the top surface of 

the backfill) on the central line C1C2 of the open face in Case 0 when the backfill cohesion decrease 

from 96 kPa to 69 kPa. A jump of the total displacement from 0.16 m to 2.44 m is observed when 

the cohesion decreases from 70 kPa to 69 kPa. The minimum required cohesion of the backfill for 

Case 0 is then determined as 70 kPa.  

      

Figure 4-5: Variation of the total displacement at z = 10 m on the central line C1C2 of the open 

face as a function of backfill cohesion for Case 0 (Table 4-1) 
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Figure 4-6 shows the strength-stress ratios of the side-exposed backfill for Case 0 with c equal to 

70 kPa (Figure 4-6a) and 69 kPa (Figure 4-6b), respectively. It is seen that the strength-stress ratio 

is higher than the unity everywhere through the exposed backfill when the backfill cohesion is 

taken as c = 70 kPa. The backfill is considered as stable. When the cohesion c is reduced to 69 kPa, 

a sliding plane appears with the coalescence of strength-stress ratio smaller than the unity. In 

addition, failure zones near the top part of the backfill are also observed, which are due to tension, 

as reported by Yang et al. (2017). This indicates the occurrence of the instability of the side-

exposed backfill. The minimum required cohesion of the side-exposed backfill is determined again 

as 70 kPa.  

    

(a)                                                                                    (b) 

Figure 4-6: Strength-stress ratio iso-contours of the side-exposed backfill for Case 0 (Table 4-1) 

with (a) c = 70 kPa and (b) c = 69 kPa 

The above analysis indicates that the convergence of numerical calculation, the total displacement, 

and the strength-stress ratio can be used to evaluate the occurrence of instability and assess the 

minimum required cohesion of side-exposed backfill. 

4.3.3 Comparison between numerical modeling and analytical solution 

The same procedure of numerical simulations and assessment applied to the reference case has 

been taken to the remaining cases shown in Table 4-1 in order to obtain the minimum required 

cohesions by numerical modeling for different cases.  
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Figure 4-7 illustrates the variation of the minimum required backfill cohesion c as a function of the 

stope wall inclination angle  (Figure 4-7a, Case 1, Table 4-1; Figure 4-7b, Case 2, Table 4-1), 

obtained by the numerical modeling and predicted by applying the proposed analytical solution 

(Eq. 4-30). The results calculated with the analytical solutions of Smith et al. (1983; Eq. 4-1), 

Mitchell (1989; Eq. 4-2), and Dirige and De Souza (2008; Eq. 4-5) are also presented in the figure. 

The numerical results shown in Figure 4-7a indicate that the minimum required cohesion 

moderately increases as  increases form 50 to 70 and then decreases as  further increases from 

70 to 90. This indicates that the most unstable case takes place at a stope wall inclination angle 

of 70. These results can be explained by the absence of effective contacts between the hanging 

wall and backfill when the stope wall inclination angle  is smaller than a critical angle (≈ 45+φ/2). 

When the stope wall inclination angle is higher than this critical angle, the backfill starts to have 

effective contact with the hanging wall and the tightness of fill-hanging wall contact increases as 

 increases. The exposed backfill becomes more stable and the minimum required cohesion is 

reduced.  

        

(a)                                                                                    (b) 

Figure 4-7: Variation of the minimum required cohesion c as a function of stope wall inclination 

angles , obtained by numerical modeling and predicted by applying the proposed solution; 

predictive results obtained by applying existing analytical solutions are also plotted on the figure 

for (a) Case 1 in Table 4-1 and (b) Case 2 in Table 4-1 

Very similar numerical results are obtained for Case 2 (Table 4-1) with different geometries (H = 

45 m, L = 15 m, B = 6 m) and backfill friction angle (φ = 35), as shown in Figure 4-7b. The peak 
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value of the minimum required cohesion is obtained at a wall inclination angle of around 65 in 

this case, probably due to the difference in the backfill friction angle that Case 1.  

In both Cases 4-1 and 4-2, Figure 4-7 shows that an application of the Smith et al. (1983) solution 

largely overestimates the minimum required cohesion while the application of the Mitchell (1989) 

solution and the Dirige and De Souza (2008) solution results in a considerable underestimation of 

the minimum required cohesion. A relatively good agreement is obtained between the minimum 

required cohesions obtained by the numerical modeling and those predicted with the proposed 

solution (Eq. 4-30). The proposed solution (Eq. 4-30) is partly validated by the numerical modeling. 

However, it is worth mentioning that the application of the proposed solution tends to 

underestimate the minimum required cohesion for Case 2, Table 4-1, as indicated by Figure 4-7b. 

This can thus result in a nonconservative design of backfill. Care is necessary in applying the 

proposed solution for backfill design in this case. 

Figure 4-8 shows the variation of the minimum required cohesions of side-exposed backfill as a 

function of backfill height H (Figure 4-8a; Case 3, Table 4-1), stope length L (Figure 4-8b; Case 4, 

Table 4-1) and stope width B (Figure 4-8c; Case 5, Table 4-1), obtained by numerical modeling 

with FLAC3D and predicted by applying the proposed solution (Eq. 4-30) and the existing 

solutions (Eqs. 4-1, 4-2 and 4-5).  

The numerical results show that the minimum required cohesion increases when the backfill height 

H or length L increases but decreases as the backfill width B increases. In all cases, the application 

of the Smith et al. (1983) solution overestimates the minimum required cohesion while the 

application of the Mitchell (1989) solution and the Dirige and De Souza (2008) solution largely 

underestimates the minimum required cohesion, compared to the numerical results. The good 

agreement between the minimum required cohesion obtained by the numerical modeling with 

FLAC3D and those predicted by applying the proposed solution (Eq. 4-30) indicates again the 

validity of the proposed solution. 
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(a)                                                                      (b) 

   
(c) 

Figure 4-8: Variation of the minimum required cohesion c as a function of (a) backfill height H 

(Case 3, Table 4-1), (b) stope length L (Case 4, Table 4-1) and (c) stope width B (Case 5, Table 

4-1), obtained by numerical modeling and predicted by the proposed and existing solutions 

Figure 4-9 shows the variation of the minimum required backfill cohesion as a function of fill 

friction angle φ (Case 6, Table 4-1), obtained by numerical modeling with FLAC3D and predicted 

by applying the existing solutions (Eqs. 4-1, 4-2 and 4-5) and the proposed solution (Eq. 4-30). 

The numerical results show that the minimum required cohesion significantly decreases as the fill 

friction angle φ increases from 20 to 40.  
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Figure 4-9: Variation of the minimum required cohesion c as a function of the backfill internal 

friction angles φ (Case 6 in Table 4-1), obtained by numerical modeling and predicted by the 

proposed and existing solutions. 

Again, the minimum required cohesions are largely overestimated by applying the Smith et al. 

(1983) solution and considered underestimated by applying the Mitchell (1989) solution and the 

Dirige and de Souza (2008) solution, compared to the numerical results. A good agreement between 

the minimum required cohesion obtained by the numerical modeling and those predicted by the 

proposed solution (Eq. 4-30) illustrates again the validity of the proposed solution. 

4.4 Comparison with experimental results 

A few experimental tests have been conducted to evaluate the stability of side-exposed backfill in 

inclined stopes (Smith et al. 1983; Mitchell 1989; Dirige and De Souza 2008). However, some of 

them cannot be applied to verify the proposed analytical solution (Eq. 4-30) due to the different 

conditions or lack of adequate experimental data. Smith et al. (1983) considered a special geometry 

like an inclined funnel and the stope geometry parameters were incomplete. Dirige and De Souza 

(2008) only conducted four tests and all the backfill remained stable upon exposure. Mitchell 

(1989) successfully obtained the minimum required strength of the backfill upon exposure with 

different wall inclination angles. Therefore, the experimental data of Mitchell (1989) are used here 

to illustrate the improvement of the proposed analytical solution for the required cohesion of side-

exposed backfill in inclined stopes. Table 4-3 shows the experimental results for unstable backfill 
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in high-aspect-ratio stopes (H > B tan α). It is noted that two wall closure stresses were applied at 

the hanging wall in the model tests, respectively. 

Figure 4-10 compares the measured cohesion and the required cohesion calculated with the 

Mitchell (1989) solution (Eq. 4-2) and the proposed solution (Eq. 4-30) for the tests with 10% UCS 

wall closure stress (Figure 4-10a) and 50% UCS wall closure stress (Figure 4-10b), and for all the 

tests (Figure 4-10c). When applying the Mitchell (1989) solution for the tests with 10% UCS wall 

closure stress, the error on the prediction of the minimum required cohesion is  

Error = √∑(𝑐𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 − 𝑐𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)𝑖
2

𝑁10

𝑖=1

= 14.787 

where N10 is the number of tests with 10% UCS wall closure stress. 

Table 4-3: Model tests of backfill stability (data taken or calculated from Mitchell 1989) 

Test No. 
Wall closure 

stress (% UCS) 

Prototype H  

(m) 

Prototype B  

(m) 

Prototype L  

(m) 

β  

(°) 

UCS  

(kPa) 

c 

(kPa) 

1 10 32.2 12.5 15.0 60 70 35 

3 10 28.8 9.5 26.2 75 103 51.5 

4 10 25.3 8.6 12.9 75 73 36.5 

5 10 39.4 13.4 10.0 75 76 38 

6 10 20.8 6.9 20.6 90 80 40 

7 10 22.4 7.6 11.4 90 72 36 

8 10 26.8 6.8 9.1 90 76 38 

15 50 23.8 7.8 21.2 60 66 33 

16 50 20.5 6.7 18.3 60 73 36.5 

19 50 23.3 7.7 21.2 75 78 39 

20 50 25.3 8.6 12.9 75 71 35.5 

21 50 36.1 12.3 9.2 75 68 34 

22 50 24.6 8.1 24.4 90 72 36 

23 50 35 11.9 17.9 90 77 38.5 
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                               (a)                                             (b)                                           (c) 

Figure 4-10: Comparison of the required cohesion obtained from experimental results of Mitchell 

(1989) and predicted by the proposed analytical solution (Eq. 4-30) and the Mitchell (1989) 

solution (Eq. 4-2) for tests with (a) 10% UCS wall closure stress and (b) 50% UCS wall closure 

stress, and (c) for all the tests 

When the proposed solution (Eq. 4-30) is used, the curve fitting technique leads to δh = δf ≈ 42.77°, 

φ = 43°, rh = 0.4 and rf = 0.7, with a prediction error 

Error = √∑(𝑐𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 − 𝑐𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)𝑖
2

𝑁10

𝑖=1

= 7.375 

The smaller error of the proposed solution suggests that the proposed analytical solution by 

applying the curve-fitting technique is more representative of the experimental results for the tests 

with 10% UCS wall closure stress. 

Similarly, for analyzing only the tests with 50% UCS wall closure stress and all the tests, the 

parameters used in the proposed analytical solution and the prediction errors of analytical solutions 

are summarized in Table 4-4, respectively. Again, a smaller error can be obtained with the proposed 

solution, indicating an improvement of the solution has been achieved.  

Nonetheless, it is worth noting that the internal friction angle of the backfill and interface are taken 

as around 43° in the proposed analytical solution by the curve-fitting technique. This is different 

from the zero friction angle used in the Mitchell (1989) solution but closer to the physical 

conditions of the experiments. The backfill was placed in the centrifuge after 28 days’ curing, 
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which is different from the undrained conditions upon exposure considered in the model tests of 

Mitchell et al. (1982). Thus, the internal friction angle should never be zero.  

It is observed that the smallest prediction error is obtained by only considering the tests with 10% 

UCS wall closure stress. This is mainly dependent on the parameters used in the analytical 

solutions. The difference in the parameters used in the three conditions shown in Table 4-4 may 

indicate the influence of wall closure stress on backfill stability. More work is still needed to 

analyze the experimental results of Mitchell (1989) as well as the influence of wall closure on the 

stability of side-exposed backfill in inclined stopes. 

Table 4-4: Parameters used in the proposed solution and prediction errors of analytical solutions 

Wall closure stress δh (°) δf (°) φ (°) rh rf 
Error 

Proposed solution Mitchell (1989) 

10% UCS 42.77 42.77 43 0.4 0.7 7.375 14.787 

50% UCS 41 41 41 0.5 1 15.552 18.355 

10% + 50% UCS 43 43 43 0.1 0.9 22.729 23.570 

 

4.5 Discussion 

In this study, a new analytical solution has been proposed to assess the stability or required 

cohesion of side-exposed backfill in inclined stopes. The proposed solution was validated by a 

number of numerical simulations performed with FLAC3D and experimental results available in 

the literature. It can thus be considered as a useful tool to evaluate the stability or minimum required 

cohesion of side-exposed backfill in inclined stopes. However, the proposed analytical solutions 

have been developed by considering several simplifying assumptions, including: 

(1) The proposed model considers high-aspect-ratio stopes (H > B tan α). The sliding plane can 

thus extend from the base of the exposed backfill face to the back wall. More work is necessary 

for low-aspect-ratio stopes (H < B tan α) by taking into account possible tension cracks near 

the upper part of the cemented backfill (Dight and Coulthard 1980; Li 2014b; Yang et al. 

2017a). 
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(2) The proposed solution was developed by considering a plane sliding plane. The numerical 

modeling showed that the sliding plane is more or less curved. In addition, the numerical 

modeling showed that the sliding plane does not pass at the bottom of the backfill but starts 

somewhere above the bottom of the exposed backfill face. These aspects need to be considered 

in the future. 

(3) Previous numerical simulations (Li and Aubertin 2009; Liu et al. 2017) have shown that the 

vertical and horizontal stresses in backfilled stopes decrease as the interface cohesion increases. 

However, they never decrease to zero or become negative, independently on the values of the 

interface cohesion. Rather, they tend to become constant and remain positive when the interface 

cohesion exceeds a certain value. When one applied some existing analytical solutions 

developed for estimating the stresses in backfilled stopes, negative stresses can appear once the 

cohesion is higher than a certain value (Li et al. 2005; Ting et al. 2011; Xu et al. 2018). This is 

a well-known limitation of the limit equilibrium analysis, by which the interface strength is 

always considered as fully mobilized, resulting in an overestimation of the arching effect with 

high shear strength materials. To overcome this problem, Liu et al. (2019) considered that the 

calculated stresses become constant once the cohesion reaches a threshold of 50 kPa. The 

solution was proposed for a specific stope geometry; its validity for general cases has not yet 

been shown. In this study, the stress estimation along the hanging wall and footwall was 

performed by considering cohesionless fill-rock interfaces. More work is necessary to develop 

an analytical solution that can be used to estimate the stress state in stopes backfilled with 

cemented backfill.  

(4) A two-dimensional (strain plane) arching solution was used to estimate the normal stresses 

along the hanging wall and footwall after the exposure of the backfill. However, stress 

redistribution can take place in the backfill upon side exposure of the backfill (Falaknaz 2014; 

Liu et al. 2019). More efforts are needed to obtain a more realistic solution that can be used to 

evaluate the stress state in the side-exposed backfill in inclined stopes. 

(5) In this study, the side-exposed backfill is considered as a homogeneous and isotropic material 

obeying the elastoplastic Mohr-Coulomb criterion. However, backfill placed in underground 

stopes may become non-homogeneous and anisotropic due to segregation (Liu et al. 2017; 

Dalcé et al. 2019) and two stages backfilling (Li 2014a; Thompson et al. 2012). More works 
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are required to take into account the more realistic spatial distribution of material and more 

representative constitutive models in the future. 

(6) The proposed solution was developed by considering stiff rock walls. The influence of rock 

wall closure associated with the excavation of an adjacent secondary stope is neglected. 

However, the closure of rock walls can become non-negligible in deep mines, especially when 

the rockmass exhibits creep feature (Wang et al. 2019; Qi and Fourie 2019). Mitchell et al. 

(1982) have shown that the wall closure has little impact on the stability and required cohesion 

of side-exposed backfill. Their tests were realized by using soft backfill under short-term 

stability conditions (Liu et al. 2016). More work is necessary to analyze the influence of the 

rock wall closure on the required cohesion and stability of dry and hard backfill upon exposure. 

(7) Even though the proposed analytical solution has been partially verified by the experimental 

results of Mitchell (1989), some parameters are obtained by curve-fitting and the experimental 

conditions are not exactly consistent with the conditions of the proposed analytical solution. 

More experimental work is still necessary for further validation of the proposed solution.  

4.6 Conclusions 

A new analytical solution is proposed to assess the stability and required cohesion of side-exposed 

backfill in inclined stopes. Numerical simulations are conducted with FLAC3D to verify the 

minimum required cohesion predicted by applying the proposed analytical solution. The results 

illustrate that the peak value of the minimum required cohesion occurs at a stope wall inclination 

angle of  ≈ 45+φ/2 as  varies from 50 to 90. The minimum required cohesion will then 

decrease from the peak value whatever the stope wall inclination angle further increases or 

decreases from the critical stope wall inclination angle. The good agreements between the 

minimum required cohesion obtained by the numerical modeling with FLAC3D and those 

predicted by applying the proposed analytical solution indicate that the proposed solution can be 

considered as a useful tool to assess the stability or required cohesion of side-exposed backfill in 

inclined stopes. 
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4.7 Appendix I: Formulation for deducing the normal stresses at the 

hanging wall and footwall in an inclined backfilled stope 

In vertical stopes, the normal stresses on the sidewalls can be obtained by directly applying the 

divers arching solutions (Aubertin et al. 2003; Li et al. 2003, 2005). The shear forces along the 

walls can then be estimated without difficulty (Li 2014b; Yang et al. 2017a; Liu et al. 2018). For 

inclined stopes, a few analytical solutions have been proposed for estimating the stresses in inclined 

backfilled stopes (Ting et al. 2011; Jahanbakhshzadeh et al. 2017, 2018b; Yan et al. 2019). These 

solutions, however, focus on the vertical and horizontal stresses, which cannot directly be used to 

obtain the normal and shear forces along the hanging wall and footwall. In addition, the 

determination of the earth pressure coefficient K contained in these arching solutions still remains 

an unsolved issue (Sobhi et al. 2017; Yang et al. 2017b, 2018). In this study, a two-dimensional 

(strain plane) solution is proposed to estimate the normal stresses along the hanging wall and 

footwall in an inclined backfilled stope; the earth pressure coefficient K is not involved.  

Figure 4-11 schematically shows an inclined narrow backfilled stope with a wall inclination angle 

β (0 < β  90). A horizontal isolated layer element with the acting forces is presented on the right 

side. The acting forces include: the weight of the layer element WL (kN); the vertical forces V (kN) 

on the upper face and V + dV (kN) on the lower face, respectively; normal forces on the footwall 

FfL (kN) and hanging wall FhL (kN), respectively; shear forces on the footwall SfL (kN) and hanging 

wall ShL (kN), respectively.  

 

Figure 4-11: An inclined narrow backfilled stope with an isolated differential layer element 
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The weight of the isolated layer element WL is given as: 

𝑊𝐿 = 𝛾𝐿𝑑𝑧 (4-31) 

Considering a uniform distribution of vertical stress σv0 (kPa) along the upper surface of the layer 

element leads to the vertical force V expressed as follows:  

𝑉 = 𝜎𝑣0𝐿 (4-32) 

Similarly, FfL and FhL can be given as: 

𝐹𝑓𝐿 = 𝜎𝑓0
𝑑𝑧

sin 𝛽
 (4-33) 

𝐹ℎ𝐿 = 𝜎ℎ0
𝑑𝑧

sin 𝛽
 (4-34) 

where σf0 (kPa) and σh0 (kPa) are the normal stresses at the footwall and hanging wall, respectively.  

The shear strengths along the footwall τf0 (kPa) and hanging wall τh0 (kPa) are estimated as  

𝜏𝑓0 = 𝑐𝑓 + 𝜎𝑓0 tan 𝛿𝑓  (4-35) 

𝜏ℎ0 = 𝑐ℎ + 𝜎ℎ0 tan 𝛿ℎ  (4-36) 

The shear forces SfL (kN) on the footwall and ShL (kN) on the hanging wall can then be expressed 

as: 

𝑆𝑓𝐿 = 𝜏𝑓0
𝑑𝑧

sin 𝛽
= (𝜎𝑓0 tan 𝛿𝑓)

𝑑𝑧

sin 𝛽
 (4-37) 

𝑆ℎ𝐿 = 𝜏ℎ0
𝑑𝑧

sin 𝛽
= (𝜎ℎ0 tan 𝛿ℎ)

𝑑𝑧

sin 𝛽
 (4-38) 

It is noted that the adherences along the fill-footwall interface cf (kPa) and fill-hanging wall 

interface ch (kPa) are considered as zero to avoid unrealistic stress estimation.  

Considering the static equilibrium of the layer element in the vertical and horizontal directions 

leads to: 

𝑑𝑉 + (𝑆𝑓𝐿 + 𝑆ℎ𝐿) sin 𝛽 + (𝐹𝑓𝐿 − 𝐹ℎ𝐿) cos 𝛽 −𝑊 = 0 (4-39) 

(𝑆𝑓𝐿 + 𝑆ℎ𝐿) cos 𝛽 + (𝐹ℎ𝐿 − 𝐹𝑓𝐿) sin 𝛽 = 0 (4-40) 

The consideration of moment equilibrium of the layer element around the rotation axis A leads to 

the following equation:  
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𝐿

2
(𝑉 + 𝑑𝑉) − 𝑉 (

𝐿

2
+

𝑑𝑧

tan 𝛽
) + 𝑆𝑓𝐿𝐿 sin 𝛽 + 𝐹𝑓𝐿 (

𝑑𝑧

2 sin 𝛽
+ 𝐿 cos 𝛽)

−𝐹ℎ𝐿
𝑑𝑧

2 sin 𝛽
−
𝑊𝐿

2
(
𝑑𝑧

tan 𝛽
+ 𝐿) = 0 (4-41)

 

Submitting Eqs. 4-31~4-38 into Eqs. 4-39 and 4-40 leads to the normal stresses on the walls 

expressed as follows: 

𝜎𝑓0 = 𝐿 (𝛾 −
𝑑𝜎𝑣0
𝑑𝑧

)𝑚0 (4-42) 

𝜎ℎ0 = 𝐿 (𝛾 −
𝑑𝜎𝑣0
𝑑𝑧

) 𝑛0 (4-43) 

with 

𝑚0 = sin𝛽 cos 𝛽
tan𝛽 + tan 𝛿ℎ
tan 𝛿𝑓 + tan 𝛿ℎ

 (4-44) 

𝑛0 = sin𝛽 cos𝛽
tan𝛽 − tan 𝛿𝑓

tan 𝛿𝑓 + tan 𝛿ℎ
 (4-45) 

Introducing Eqs. 4-42 and 4-43 into Eq. 4-41 results in the following equation: 

𝑑𝜎𝑣0
𝑑𝑧

+
𝜎𝑣0
𝑅0𝐿

+
𝑑𝜎𝑣0
2𝑅0𝐿

− 𝛾 = 0 (4-46) 

with 

𝑅0 =
2 sin2 𝛽 (1 + tan 𝛿ℎ tan 𝛿𝑓) + cos 2𝛽 tan 𝛽 (tan𝛿ℎ − tan 𝛿𝑓)

2(tan𝛿𝑓 + tan 𝛿ℎ)
(4-47) 

By neglecting the small term dσv0/(2R0L), Eq. 4-46 can then be simplified as: 

𝑑𝜎𝑣0
𝑑𝑧

+
𝜎𝑣0
𝑅0𝐿

− 𝛾 = 0 (4-48) 

Solving Eq. 4-48 and considering σv0 = 0 at z = 0 lead to the following expression for the vertical 

stress: 

𝜎𝑣0 = 𝛾𝐿𝑅0 (1 − 𝑒
−
𝑧
𝑅0𝐿) (4-49) 

Introducing Eq. 4-49 into Eqs. 4-42and 4-43, the normal stress on sidewalls at a depth of z can be 

expressed as follows: 

𝜎𝑓0 = 𝛾𝐿𝑚0 (1 − 𝑒
−
𝑧
𝑅0𝐿) (4-50) 
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𝜎ℎ0 = 𝛾𝐿𝑛0 (1 − 𝑒
−
𝑧
𝑅0𝐿) (4-51) 

It is worth noting that the full contact has been considered between the backfill and rock walls in 

the above derivation. This has been shown true for vertical and sub-vertical stopes by numerical 

modeling (Li and Aubertin 2009; Jahanbakhshzadeh et al. 2017, 2018b). For inclined stopes with 

small inclination angles, the contact between the backfill and the hanging wall can become 

ineffective, as shown in Figure 4-12. 

 

Figure 4-12: Shear stress iso-contours along fill-rock wall interfaces upon exposure of the 

backfill in a stope with wall inclination angle β = 60° (Case 1 in Table 4-1) 

In this study, it is considered that the contact between the backfill and the hanging wall will become 

ineffective when the stope wall inclination angle β ≤ 45°+/2. The following equation is proposed 

to describe the state of contact between the backfill and hanging wall:  

𝑟𝛽 =
〈𝛽 − (45° +

𝜑
2)
〉

90 − (45° +
𝜑
2)

=
〈2𝛽 − 90 − 𝜑〉

90 − 𝜑
= 〈

2𝛽 − 90 − 𝜑

90 − 𝜑
〉 (4-52) 

where rβ is a coefficient applied to adjust the shear stress along the fill-hanging wall interface, X 

= (X + X)/2 is the Macaulay brackets.  

τh0 in Eq. 4-38 can then be modified as τh (= rβ τh0) and ShL is shown as follows:  

𝑆ℎ𝐿 = 𝜏ℎ
𝑑𝑧

sin 𝛽
= 𝑟𝛽𝜏ℎ0

𝑑𝑧

sin 𝛽
= (𝑟𝛽𝜎ℎ0 tan 𝛿ℎ)

𝑑𝑧

sin 𝛽
(4-53) 
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Repeating the derivation process from Eq. 4-31 to Eq. 4-51 with the modified τh given in Eq. 4-53, 

the normal stresses at the hanging wall σhw and footwall σf are deduced and given as Eqs. 4-9 and 

4-10. 
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 DISCUSSION 

In this thesis, an analytical solution has been proposed for estimating the stress distribution in 

backfilled stopes by considering the kink effect. Another analytical solution is given for evaluating 

the stability and required strength of side-exposed backfill in inclined stopes. The first one is 

validated by numerical results obtained with FLAC while the second one by numerical results 

obtained with FLAC3D. The good agreements between the proposed analytical solutions and the 

numerical results tend to indicate that the first analytical solution can provide a useful estimation 

on the stress distribution in vertically backfilled stopes while the second one on the stability or 

required cohesion of side-exposed backfill in inclined stopes. However, it should be noted that the 

two proposed analytical solutions are developed based on some assumptions, thus contain some 

limitations. 

In Chapter 3, the theoretical analysis has shown that the occurrence of kink effects is closely related 

to the yielding state of backfill. When μ ≤ (1-sin φ)/2, the backfill is a yielding state and arching 

effects are fully mobilized throughout the backfill. The kink effect will be absent. When μ > (1-sin 

φ)/2, the backfill will not yield. Arching will be absent near the bottom due to the fixed boundary 

conditions, and the stresses near the bottom are close to those based on the overburden solution. In 

the upper part, arching takes place due to the large deformation associated with the deformable 

backfill even the backfill remains unyielded. In this condition, kink effects occur in the stress-depth 

profile. This theory has been verified by numerical results obtained by FLAC. An analytical 

solution has also been proposed, based on this mechanism of kink effect, for estimating the stress 

distribution along the depth for a given thickness of backfill. The proposed solution has been 

verified by numerical results obtained with FLAC. However, the application of the proposed 

solution needs the knowledge of an earth pressure coefficient. Based on the mechanism analysis of 

kink effects, Rankine’s active earth pressure coefficient Ka should be used when kink is absent. 

This corresponds to the numerical results shown by several researchers (Li and Aubertin 2008, 

2009c; Singh et al. 2011; Sobhi et al. 2018; Yang et al. 2018a, 2018b). It is further confirmed here 

by the numerical results, as shown in Appendix B3.3. If μ > (1-sin φ)/2 and the kink effect occurs, 

previous numerical studies showed that the at-rest earth pressure coefficient due to Poisson’s effect 

K0μ should be used (Yang 2016; Yang et al. 2018a, 2018b). Again, this is further confirmed here 

by the numerical results shown in Chapter 3. All these results indicate that Poisson’s ratio is a key 
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parameter to evaluate if kink effects occur and whether K0μ or Ka should be taken. Nonetheless, it 

is well known that measuring Poisson’s ratio of soils and backfill is a big issue and very challenging 

(Suwal and Kuwano 2013). In addition, the kink effect has only been shown through numerical 

modeling (Sivakugan et al. 2014; Yang 2016). No experimental data are available to further verify 

these theoretical and numerical results because most of the previous relevant laboratory tests were 

performed by only measuring the vertical stresses at the bottom of the stope with different fill 

heights (Pirapakaran and Sivakugan 2007b; Ting et al. 2012; Han et al. 2018). The resulting curves 

are stress-thickness profiles, instead of stress-depth profiles. One can also find a few field tests 

with the measurements of the stresses at different positions as a function of filling time (and 

subsequently backfill thickness; Belem et al. 2004; Thompson et al. 2012; Wang et al. 2019). The 

very few measurement points do not allow showing the stress distribution along the depth at a 

given time of filling or thickness of backfill. More experimental work is thus necessary to measure 

the horizontal and vertical stresses at different positions for a given backfill. 

When the kink effect occurs, one can observe a slight decrease before the sudden increase in the 

horizontal stress-depth profile. Liu et al. (2017) explained this phenomenon was induced by a 

beam-like behavior of the backfill. More effort is needed to fully understand the mechanism. 

It is also noted that the proposed solution is mainly applied to estimate the vertical and horizontal 

stress along the central line of dry and cohesionless backfill. The solution can be useful to estimate 

the required strength of backfill exposed on one side (Li 2014b; Yang et al. 2017a) or at the base 

(Mitchell 1991) when the wall closure is negligible. It can also be applied to estimate the total 

stresses of hydraulic backfill for barricade design if the presence of pore water pressure is taken 

into account (Li and Aubertin 2009a, 2009b). All these indicate that further improvement is still 

needed for its wider application in engineering. Other influencing factors, such as the stope wall 

inclination, wall closure, backfill cohesion, and three-dimensional geometry should be considered 

in future work. 

In Chapter 4, an improved analytical solution is proposed to assess the side-exposed stability and 

required strength of backfill in inclined stopes. The proposed solution was verified by numerical 

simulations conducted with FLAC3D. Even though the proposed analytical solution agrees quite 

well with numerical results, there are still some notable simplifications and assumptions in both 
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the analytical solution and numerical models due to the complex interactions between the backfill 

and surrounding rock mass. 

To analyze the stability and evaluate the required strength of side-exposed backfill in inclined 

stopes, the normal stresses at the hanging wall and footwall are needed. Several analytical solutions 

exist to evaluate the horizontal and vertical stresses in inclined backfilled stopes (Ting et al. 2011; 

Jahanbakhshzadeh et al. 2017, 2018b; Yan et al. 2019). These solutions cannot be directly used to 

calculate the normal and shear forces at the hanging wall and footwall because all of them were 

developed mainly for the vertical and horizontal stresses. Near the hanging wall and footwall, the 

vertical and horizontal stresses are not normal stresses. The normal stresses along the hanging wall 

and footwall cannot be calculated using the existing solutions. Besides, those previous arching 

solutions need the knowledge of the earth pressure coefficient K. Yang et al. (2017b) have found 

that its value near the walls can neither be represented by the at-rest earth pressure coefficient K0 

nor by the active earth pressure coefficient Ka. Therefore, the normal stresses along the hanging 

wall and footwall are obtained by analyzing the equilibriums of forces and moments of a layer 

element. The resulting solution does not need the knowledge of earth pressure coefficient. However, 

the proposed solution for the normal stress estimation contains a reducing coefficient used to 

consider the contact intensity between the hanging wall and backfill with the variation of the wall 

inclination angle. More work still needs to be done to further understand this aspect. Besides, more 

work is necessary to obtain a solution for estimating the normal stresses on the hanging wall and 

footwall before and after side exposure of the backfill. 

Another limitation for the stress estimation is closely associated with the zero cohesion considered 

in the model. Some analytical solutions considering non-zero cohesion have indeed been proposed 

by different researchers (Li et al. 2005; Ting et al. 2011; Xu et al. 2018). However, the application 

of these solutions may result in negative values of horizontal and vertical stresses as long as the 

cohesion exceeds a certain value. This is mainly due to the limit equilibrium analysis, which 

considers the backfill in a full mobilized condition. The frictional and cohesive shear strengths are 

considered to be fully mobilized along the fill-rock wall interfaces, which results in a large 

overestimation of the arching effect and negative stresses in the backfilled stopes when the 

cohesion of the backfill becomes high enough. In fact, numerical simulations (Liu et al. 2016a, Liu 

et al. 2017) have shown that the stresses first decrease as the interface cohesion increases and 
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finally becomes stable once the cohesion exceeds a threshold value. Recently, Liu et al. (2019) 

proposed an empirical model in which the stresses remain constant once the interface cohesion 

exceeds 50 kPa. The solution was developed for a specific stope geometry and it cannot be used as 

a general solution. Therefore, more efforts are needed to investigate the stress distribution in 

cohesive backfill. 

Besides, the confining effects induced by wall closure was neither considered in the proposed 

analytical solutions nor in the numerical simulations. The validity of the proposed solution can be 

limited to shallow mines with good rock conditions. In deep mines, the confining effects can 

become non-negligible especially when creep occurs in the rock mass (Wang et al. 2019; Qi and 

Fourie 2019). In general, a limited confining effect can contribute to stabilizing the side-exposed 

backfill, but too large confining stress is likely to cause failure to the backfill by crushing. Further 

works are still required to study the effect of confining effects on the stability of side-exposed 

backfill in inclined stopes. 

The proposed solution is developed for the side-exposed stability analyses of backfill with a high 

aspect ratio (H > B tan α). When the backfilled stope is low and large with a low-aspect-ratio, 

tension cracks may occur in the upper part of the backfill upon exposure (Dight and Coulthard 

1980; Li 2014b; Yang et al. 2017a). Additional efforts are still needed to analyze the mechanism 

of tension cracks and incorporate it into the stability analysis of side-exposed backfill in inclined 

stopes. 

The proposed model considers a sliding plane passing through the bottom of the exposed face of 

the backfill. The numerical simulations showed that the sliding plane starts somewhere above the 

bottom of the exposed face. In addition, the sliding face is somehow curved, intersecting the 

hanging wall and footwall at different heights. These aspects need to be taken into account in future 

work. 

Finally, more experimental work for evaluating the stability of side-exposed backfill in inclined 

stopes is necessary to verify the analytical solution and numerical simulations. 
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 CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

The design of backfilled stopes needs the knowledge of stresses and the required strength of 

backfill. In this thesis, the stress distribution along the depth of vertical backfilled stopes has been 

investigated after taking into account the kink effect near the bottom. The stability of side-exposed 

backfill in inclined stopes has also be analyzed. 

The design of barricade and side-exposed backfill requires a good understanding of the stress state 

in backfilled stopes. In Chapter 3, the stress distribution in backfilled stopes considering the kink 

effect is analytically and numerically investigated. The mechanism of the kink effect is first 

theoretically analyzed. An analytical solution is then proposed for the vertical and horizontal 

stresses along the depth of vertical backfilled stopes by considering the kink effect. Numerical 

simulations are then conducted with FLAC to verify the theory of kink effect and the proposed 

analytical solutions developed for estimating the stresses as a function of depth. The main 

conclusions are shown as follows: 

⚫ The occurrence of kink effects is mainly related to the yield state of the backfill, which depends 

on the relationship between μ and φ (or K0μ and Ka). It was found that kink occurs when μ > (1-

sin φ)/2. When μ ≤ (1-sin φ)/2, no kink occurs; 

⚫ The good agreements of the stress distribution obtained by the numerical results with that 

predicted by the proposed analytical solution suggested that the proposed analytical solution 

can be used to estimate the stresses along the depth of the backfill in a vertical stope; 

⚫ Additional results in Appendix B3 also indicate that the stress-depth profile is the same as the 

stress-thickness profile when the kink effect does not occur. In contrast, the two stress profiles 

differ a lot when the kink effect occurs in the stress-depth profile.  

Another critical issue is to evaluate the stability or determine the required strength of the backfill 

in a primary stope in order for the backfill to remain stable upon the exposure of the backfill on 

one side due to the excavation of a secondary stope. In Chapter 4, an improved analytical solution 

is first proposed to evaluate the stability and required strength of side-exposed backfill in inclined 

stopes by incorporating the normal and shear forces at the hanging wall and footwall. Then, 
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numerical simulations are conducted with FLAC3D to verify the proposed analytical solution. The 

main conclusions are presented below: 

⚫ The good agreements between the minimum required cohesion obtained by the numerical 

modeling with FLAC3D and predicted by applying the proposed solution indicate that the 

proposed solution can be used to assess the stability or required cohesion of side-exposed 

backfill in inclined stopes; 

⚫ The instability criterion combining the convergence of numerical calculation, displacement and 

strength-stress ratio can be applied to determine the state of backfill structure in numerical 

modelings; 

⚫ The results illustrate that the peak value of the minimum required cohesion occurs at a critical 

wall inclination angle of  ≈ 45+ φ/2 as  varies from 50 to 90. The minimum required 

cohesion will then decrease from the peak value whatever the stope wall inclination angle 

further increases or decreases from the critical wall inclination angle. This has been attributed 

to the fact that the contact between the backfill and the hanging wall will become ineffective 

when the wall inclination angle is less than the critical value; 

⚫ The minimum required cohesion of side-exposed backfill in inclined stopes is found to increase 

with the increase in the backfill length and height while decrease with the increase in the 

backfill width. In addition, increasing the internal friction angle of the backfill can lead to a 

reduced minimum required cohesion. 

6.2 Recommendations 

More efforts are required to better understand the stress distribution in backfilled stopes and the 

stability of side-exposed backfill in inclined stopes. These can include: 

⚫ The proposed solution for evaluating the stress state in backfilled stopes with the consideration 

of kink effects was developed for dry backfill. More work is required to take into account the 

pore water pressure in the proposed solution, which can be of interest to the barricade design;  

⚫ The kink effect is only evaluated in vertical backfilled stopes, and additional work is still 

needed to assess it in inclined stopes; 
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⚫ The proposed mechanism for the kink effect and the proposed analytical solution incorporating 

the kink effect have not been validated by experimental data. It is very useful to measure the 

Poisson’s ratio and internal friction angle of the backfill as well as the horizontal and vertical 

total stresses along the depth of the backfilled stopes (especially near the bottom) to validate 

the proposed mechanism and analytical solutions; 

⚫ The stress state in the backfill after side exposure needs to be investigated; 

⚫ It is more reasonable to consider a curved sliding surface in the analytical model to evaluate 

the stability of the side-exposed backfill; 

⚫ It is suggested to take into account the influence of the dynamic responses induced by the 

blasting on the stability analysis of the side-exposed backfill; 

⚫ More work is suggested to evaluate the stability of inclined backfill with a low aspect ratio, in 

which the tension crack is more likely to occur during the failure; 

⚫ The backfill can remain unsaturated even after a long curing and consolidation period. It is 

preferable to consider the unsaturated conditions in the stability analysis of backfill upon side 

exposure; 

⚫ It is recommended to conduct centrifuge tests to represent the realistic backfill geometry and 

properties to investigate the stability of side-exposed backfill; 

⚫ Numerical simulations of the side-exposed backfill conducted with FLAC3D in the thesis only 

consider homogeneous and isotropic materials obeying the Mohr-coulomb model. The wall 

closure induced by the excavation of the orebody in the secondary stope is also not considered. 

More work is required to consider more representative mining sequences, stope geometries, 

and backfill properties and more elaborated constitutive models. 
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APPENDIX A   VALIDATION OF USED NUMERICAL CODES  

In this appendix, the validation of FLAC and FLAC3D against the analytical solution for 

cylindrical hole problems will be presented. 

A1 Problem statement 

The stresses and displacements around a cylindrical hole in a linear elastic or Mohr-Coulomb 

elastoplastic medium are evaluated by using analytical solutions and numerical modeling with 

FLAC (Itasca 2011) and FLAC3D (Itasca, 2013).  

Figure A-1 shows a cylindrical hole in an infinite space. a (m) is the radius of the cylindrical hole; 

p1 (MPa) and p2 (MPa) are the vertical and horizontal field stress, respectively; σr (MPa) and σθ 

(MPa) are the radial and tangential induced stress at point (r, θ), respectively; u (m) and v (m) are 

the radial and tangential displacement at point (r, θ), respectively. 

         

Figure A-1: A schematic view of the cylindrical hole problem 

A2 Analytical solutions 

A2.1 Classic Kirsch solution for the cylindrical hole in an elastic medium 

The stresses and displacement around a cylindrical hole in an infinite, isotropic, and elastic medium 

under a plane strain condition can be predicted by the classic Kirsch solution (Jaeger 2009). After 

the excavation of a cylindrical hole with a radius of a (m) (shown in Figure A-1), the radial and 

tangential stress at the point (r, θ) can be obtained by:  
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where G (kPa) and μ are the shear modulus and the Poisson’s ratio, respectively. 

A2.2 Salencon solution for the cylindrical hole in an elastoplastic medium 

Salencon (1969) solution can be used to calculate the stresses and displacements around a 

cylindrical hole in an infinite, isotropic, and elastoplastic medium obeying the Mohr-Coulomb 

yielding criterion. After the excavation of a cylindrical hole with a radius of a (m) (shown in Figure 

A-1), the critical radius R0 separating the plastic zone and the elastic zone is expressed as 

𝑅0 = 𝑎 (
2

𝐾𝑝 + 1
 
𝑃0 + 𝑞/( 𝐾𝑝 − 1)

𝑃𝑖 + 𝑞/( 𝐾𝑝 − 1)
)

1/(𝐾𝑝−1)

                                (A-4) 

The radial stress at the elastic/plastic interface σre is calculated as 

𝜎𝑟𝑒 = −
1

𝐾𝑝 + 1
(2𝑃0 − 𝑞)                                                    (A-5) 

where P0 (=P1 =P2) and Pi are the initial field stress and internal pressure; Kp = (1 + sin φ)/ (1 - sin 

φ); φ is the internal friction angle and q = 2c tan (45°+ φ/2). 

The radial and tangential stress and the radial displacement at a distance r (m) from the hole center 

in the elastic zone can be obtained by 

𝜎𝑟 = −𝑃0 + (𝑃0 − 𝜎𝑟𝑒) ∗ (
𝑅0
𝑟
)
2

                                               (A-6) 

𝜎𝜃 = −𝑃0 − (𝑃0 − 𝜎𝑟𝑒) ∗ (
𝑅0
𝑟
)
2

                                               (A-7) 

𝑢𝑟 = −(𝑃0 −
2𝑃0 − 𝑞

𝐾𝑝 + 1
) (
𝑅0
2𝐺
) (
𝑅0
𝑟
)                                             (A-8) 
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In the plastic zone, the stresses and displacement are  

𝜎𝑟 =
𝑞

𝐾𝑝 − 1
− (𝑃𝑖 +

𝑞

𝐾𝑝 − 1
) ∗ (

𝑟

𝑎
)
𝐾𝑝−1

(A-9) 

𝜎𝜃 =
𝑞

𝐾𝑝 − 1
− 𝐾𝑝 (𝑃𝑖 +

𝑞

𝐾𝑝 − 1
) ∗ (

𝑟

𝑎
)
𝐾𝑝−1

(A-10) 

𝑢 = −
𝑟

2𝐺
(2𝜇 − 1) (𝑃𝑜 +

𝑞

𝐾𝑝 − 1
) + (

(1 − 𝜇)(𝐾𝑃
2 − 1)

𝐾𝑝 + 𝐾𝑝𝑠
)(𝑃𝑖 +

𝑞

𝐾𝑝 − 1
) (

𝑅𝑜

𝑎
)
𝐾𝑝−1

(
𝑅𝑜

𝑟
)
𝐾𝑝𝑠+1

+((1 − 𝜇)
𝐾𝑝𝐾𝑝𝑠 + 1

𝐾𝑝 + 𝐾𝑝𝑠
− 𝜇)(𝑃𝑖 +

𝑞

𝐾𝑝 − 1
) (

𝑟

𝑎
)
𝐾𝑝−1

(A-11)

 

where G and μ are the shear modulus and the Poisson’s ratio, respectively; ψ is the dilation angle 

and Kps = (1 + sin ψ)/ (1 - sin ψ). 

A3 Validation of FLAC 

A3.1 Numerical model 

The boundary conditions and numerical model with mesh in FLAC are shown in Figure A-2. The 

coordinate of the hole center is (0, 0) and the distance from the hole center to the outer boundary 

(or domain size) is R (m). 

       

                                           (a)                                                                   (b) 

Figure A-2: (a) Boundary conditions (adapted from Itasca 2011) and (b) numerical model of the 

cylindrical hole problem in FLAC 
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A3.2 Validation of the elastic model 

The properties used in the elastic model are shown in Table A-1. 

Table A-1: The properties of the elastic model 

density ρ 

(kg/m3) 

shear modulus G 

(MPa)  

bulk modulus K 

(MPa)  

Field stress p1 = p2 

(MPa)  

Radius of the hole 

a (m)  

2500 2800 3900 30 1 

A3.2.1 Sensitivity analyses 

For the sensitivity analyses, the domain and the mesh are considered and two points, (1, 0) and (2, 

0), are selected as a reference. 

(1) Domain 

In the following analysis, the distance from the hole center to the boundary (or domain size) R (m) 

is analyzed to see its influence on stresses and displacement. From Figure A-3, the stresses and the 

displacement become constant at R = 15 m, which is selected for the numerical model. 

  

                           (a)                                         (b)                                           (c) 

Figure A-3: Sensitivity analysis of the domain in an elastic model: (a) the variation of radial 

stress, (b) tangential stress and (c) radial displacement with domain size R 

(2) Mesh 

Different element sizes of the hole boundary are used to observe the variation of the stresses and 

displacement at the two monitoring points (shown in Figure A-4). The stresses and the 

displacement become constant when the mesh size is 0.05 m. 

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

S
tr

es
s 

σ
r

(M
P

a)

Domain size R (m)

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30

S
tr

es
s 

σ
θ

(M
P

a)

Domain size R (m) -0.01

-0.008

-0.006

-0.004

-0.002

0

0 5 10 15 20 25 30

D
is

p
la

ce
m

en
t 

u
(m

)

Domain size R (m) 

 Point (1, 0) 

 Point (2, 0) 



154 

 

 

                           (a)                                         (b)                                           (c) 

Figure A-4. Sensitivity analysis of the mesh size in an elastic model: (a) the variation of radial 

stress, (b) tangential stress and (c) radial displacement with the mesh size 

A3.2.2 Comparisons between analytical results and numerical results 

As shown in Figure A-5, the stresses and displacement obtained from the numerical simulations 

agree well with the analytical solutions (Eqs. A-1 to A-3). 

        

                                           (a)                                                                   (b) 

Figure A-5. Comparisons between analytical results and numerical results in an elastic model: (a) 

the variation of radial and tangential stresses and (b) the variation of radial displacement 
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A3.3 Validation of the Mohr-Coulomb model 

The material properties in an elastoplastic medium are shown in Table A-2. Two dilation angles 

are considered, with one equal to 0 to study the nonassociated flow rule of the Mohr-Coulomb 

criteria and the other equal to the friction angle to study the associated flow rule. 

Table A-2: The properties of the Mohr-Coulomb model 

density 

ρ 

(kg/m3) 

shear 

modulus G 

(MPa) 

bulk modulus 

K (MPa) 

cohesion 

c (MPa) 

friction 

angle φ 

(◦) 

dilation 

angle ψ 

(◦) 

Field stress p0 

= (p1 = p2) 

(MPa)  

Radius of 

the hole a 

(m) 

2500 2800 3900 3.45 30 0 30 1 

2500 2800 3900 3.45 30 30 30 1 

A3.3.1 Sensitivity analyses 

Considering the Mohr-Coulomb Model, the sensitivity analyses of the domain and the mesh are 

conducted and the two points, (1, 0) and (2, 0), are selected as a reference. 

(1) Domain 

The distance from the hole center to the boundary (or domain size) R is analyzed to see its influence 

on stress and displacement. From Figures A-6 and A-7, when the dilation angle is equal to 0° or 

30°, the stresses and the displacement become constant at R = 15 m. 

   

                           (a)                                         (b)                                           (c) 

Figure A-6: Sensitivity analysis of the domain in Mohr-Coulomb model with ψ = 0°: (a) the 

variation of radial stress, (b) tangential stress and (a) radial displacement with Radius 
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                           (a)                                         (b)                                           (c) 

Figure A-7: Sensitivity analysis of the domain in Mohr-Coulomb model with ψ = 30°: (a) 

the variation of radial stress, (b) tangential stress and (a) radial displacement with Radius 

  

(2) Mesh 

The element size of the hole boundary is used to represent the conditions of the mesh size. From 

Figures A-8 and A-9, the stresses and the displacement become constant in the Mohr-Coulomb 

model when the mesh size is 0.05 m.  

    

                           (a)                                         (b)                                           (c) 

Figure A-8. Sensitivity analysis of the mesh size in the Mohr-Coulomb model with ψ = 0°: 

(a) the variation of radial stress, (b) tangential stress and (a) radial displacement with mesh size 
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                           (a)                                         (b)                                           (c) 

Figure A-9. Sensitivity analysis of the mesh size in the Mohr-Coulomb model with ψ = 30°: 

(a) the variation of radial stress, (b) tangential stress and (a) radial displacement with mesh size 

A3.3.2 Comparisons between analytical results and numerical results 

For the numerical models, when ψ = 0°, the distance from the hole center to the boundary is 15 m 

and the element size of the hole boundary is 0.05 m. As shown in Figure A-10, the numerical results 

correspond well with the analytical solutions (Eqs. A-4 to A-11). 

              

(a)                                                                   (b) 

Figure A-10: Comparisons between analytical results and numerical results in the Mohr-Coulomb 

model with ψ = 0°: (a) the variation of radial and tangential stresses and (b) radial displacement 

when ψ = 30°, the distance from the hole center to the boundary is 15 m and the element size of 
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the hole center are shown in Figure A-11, from which we can observe that the numerical results 

agree well with the (Eqs. A-4 to A-11). 

          

 (a)                                                                     (b) 

Figure A-11: Comparisons between analytical results and numerical results in the Mohr-Coulomb 

model with ψ = 30°: (a) the variation of radial and tangential stresses and (b) radial displacement 

A4 Validation of FLAC3D 

A4.1 Numerical model 

The boundary conditions and numerical model with mesh in FLAC3D are shown in Figure A-12. 

The coordinate of the hole center is (0, 0, 0) and the distance from the hole center to the outer 

boundary (or domain size) is R (m). 

                       

                                                  (a)                                                                   (b) 

Figure A-12: (a) Boundary conditions (adapted from Itasca 2013) and (b) numerical model of the 

cylindrical hole problem in FLAC3D 
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A4.2 Validation of the elastic model 

The material properties are shown in Table A-1. 

A4.2.1 Sensitivity analyses 

The stresses and displacements at the point (1, 0, 0), (2, 0, 0) and (3, 0, 0) are monitored (shown in 

Figure C-1b) for the sensitivity analyses of the domain and mesh size. 

(1) Domain 

By changing the distance R from the hole center to the boundary, the stresses and displacement at 

the three monitoring points are plotted in Figure A-13. From Figure A-13, the stresses and the 

displacement become constant at R = 10 m. 

      

                         (a)                                           (b)                                            (c) 

Figure A-13: Sensitivity analysis of the domain in an elastic model: (a) the variation of radial 

stress, (b) tangential stress and (a) radial displacement with domain size R 

(2) Mesh 

Different element sizes of the hole boundary are used to observe the variation of the stresses and 

displacement at the three monitoring points (shown in Figure A-14). It is seen that the stresses and 

the displacement become constant when element size = 0.025 m.  
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                         (a)                                          (b)                                         (c) 

Figure A-14: Sensitivity analysis of the mesh size in an elastic model: (a) the variation of radial 

stress, (b) tangential stress and (a) radial displacement with mesh size 

A4.2.2 Comparisons between analytical results and numerical results 

As shown in Figure A-15, the stresses and displacement obtained from FLAC3D agree well with 

the analytical solutions (Eqs. A-1 to A-3). 

    

                                             (a)                                                                  (b)        

Figure A-15: Comparisons between analytical results and FLAC3D results in an elastic model: 

(a) the variation of radial and tangential stresses; and (b) the variation of radial displacement 

A4.3 Validation of the Mohr-Coulomb model 

The material properties in an elastoplastic medium are shown in Table A-2. 
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A4.3.1 Sensitivity analyses 

For the sensitivity analyses of the Mohr-Coulomb Model, the stresses and displacements at the 

point (1, 0, 0), (2, 0, 0) and (3, 0, 0) are monitored (shown in Figure A-12b). 

(1) Domain 

By changing the distance R from the hole center to the boundary, the stresses and displacement at 

the three monitoring points are plotted. From Figure A-16 and Figure A-17, when the dilation angle 

is equal to 0° or 30°, the stresses and the displacement become constant at R = 10 m. 

   

                         (a)                                             (b)                                             (c) 

Figure A-16: Sensitivity analysis of the domain in Mohr-Coulomb model with ψ = 0°: (a) 

the variation of radial stress, (b) tangential stress and (a) radial displacement with domain size R 

   

                       (a)                                             (b)                                             (c) 

Figure A-17: Sensitivity analysis of the domain in Mohr-Coulomb model with ψ = 30°: (a) 

the variation of radial stress, (b) tangential stress and (a) radial displacement with domain size R 

(2) Mesh 
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The variation of the stresses and displacement at the three monitoring points is plotted in Figures 

A-18 and A-19 with different element sizes of the hole boundary. It is seen that the values become 

stable when element size = 0.025 m for both the two dilation angles. 

    

                        (a)                                             (b)                                           (c) 

Figure A-18: Sensitivity analysis of the mesh size in Mohr-Coulomb model with ψ = 0°: (a) 

the variation of radial stress, (b) tangential stress and (a) radial displacement with mesh size 

    

                       (a)                                             (b)                                             (c) 

Figure A-19: Sensitivity analysis of the mesh size in Mohr-Coulomb model with ψ = 30°: 

(a) the variation of radial stress, (b) tangential stress and (a) radial displacement with mesh size 

A4.3.2 Comparisons between analytical results and numerical results 

When ψ = 0° or 30°, the distance from the hole center to the boundary is selected as 10 m and the 

element size of the hole boundary is 0.025 m in the numerical model. As shown in Figures A-20 

and A-21, the FLAC3D results agree well with the analytical solutions (Eqs. A-4 to A-11). 
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(a)                                                                   (b) 

Figure A-20: Comparisons between analytical results and numerical results in the Mohr-Coulomb 

model with ψ = 0°: (a) the variation of radial and tangential stresses and (b) radial displacement 

 

(a)                                                                   (b) 

Figure A-21: Comparisons between analytical results and numerical results in the Mohr-Coulomb 

model with ψ = 30°: (a) the variation of radial and tangential stresses and (b) radial displacement 
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APPENDIX B   ADDITIONAL RESULTS RELATED TO CHAPTER 3 

In this appendix, the sensitivity analyses of the mesh and domain size for the numerical model used 

in Chapter 3 are conducted. Then, the FLAC code for Case 0 in Chapter 3 is also shown for 

reference. Finally, some additional results regarding the stress at the bottom of the backfill with 

different filling heights are presented. 

B1 Sensitivity analyses of the numerical model 

Figure B-1 shows a schematic view of the backfill with the four monitoring points at the central 

line. The depth of the four points from the top of the backfill is -20 m, -30 m, -40 m, and -44.8 m, 

respectively. In particular, the point at z = -44.8 m is used to represent the bottom of the backfill. 

The model geometry and backfill properties are the same as the reference case (Case 0) in Chapter 

3. 

 

Figure B-1: Positions of the monitoring points for the sensitivity analyses of the backfill model 

As shown in Figure B-2, the optimum mesh size obtained by reducing it from 3 m to 0.2 m. It is 

found that both the vertical and horizontal stress converge when the mesh size is 0.25 m. Figure 

B-3 illustrates the variations of the vertical and horizontal stress when the domain size (the distance 

from the backfill boundary to the rock mass boundary) increases from 50 m to 300 m. It is seen 

that the optimum domain size is 150 m. 
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                                    (a)                                                                    (b) 

Figure B-2: Variation of the (a) vertical and (b) horizontal stresses at the four monitoring points 

with different element sizes 

 

                                    (a)                                                                    (b) 

Figure B-3: Variation of the (a) vertical and (b) horizontal stresses at the four monitoring points 

with different domain sizes 

B2 FLAC code of the reference case 

; FLAC (Version 7.0) code of the reference case 0 

; File: Record_R0.dat 

; Units: SI: meter-kilogram-second 

; Title: Reference case_0 

; Branch 1: initial_R0.sav 
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; Source: Radial grid 

config 

grid 106,262 

gen -153.0,-400.0 -153.0,-54.5 -3.0,-204.5 -3.0,-250.0 ratio 0.89686096,1.0  i=1,41 j=1,183 

gen -153.0,-400.0 -3.0,-250.0 3.0,-250.0 153.0,-400.0 ratio 1.0,0.89686096  i=42,66 j=1,41 

gen 3.0,-250.0 3.0,-204.5 153.0,-54.5 153.0,-400.0 ratio 1.115,1.0 i=67,107  j=1,183 

gen -3.0,-250.0 -3.0,-204.5 3.0,-204.5 3.0,-250.0 i=42,66 j=41,223 

gen -3.0,-204.5 -153.0,-54.5 153.0,-54.5 3.0,-204.5 ratio 1.0,1.115 i=42,66  j=223,263 

model elastic i=1,40 j=1,182 

model elastic i=42,65 j=1,40 

model elastic i=67,106 j=1,182 

model elastic i=42,65 j=41,222 

model elastic i=42,65 j=223,262 

; Attach grids 

attach aside from 42,223 to 42,263 bside from 41,183 to 1,183 

attach aside from 42,41 to 42,1 bside from 41,1 to 1,1 

attach aside from 67,1 to 107,1 bside from 66,41 to 66,1 

attach aside from 66,223 to 66,263 bside from 67,183 to 107,183 

Def Rockproperty 

Erm=3e10       ; Young's modulus of the rock mass (Pa) 

vrm=0.3    ; Poisson's ratio of the rock mass 

Drm=2700       ; Density of the rock mass (kg/m3) 

Krm=Erm/(3*(1-2*vrm))  ; Bulk modulus of the rock mass (Pa) 

Grm=Erm/(2*(1+vrm))  ; Shear modulus of the rock mass (Pa) 

knr=10*(Krm+4*Grm/3)/0.25  ; Normal stiffness of the interface element 

ksr=10*(Krm+4*Grm/3)/0.25  ; Shear stiffness of the interface element 

end 

Rockproperty 

; Interfaces 

interface 1 aside from 41,1 to 41,183 bside from 42,41 to 42,223 

interface 1 kn=knr ks=ksr 

interface 2 aside from 67,1 to 67,183 bside from 66,41 to 66,223 

interface 2 kn=knr ks=ksr 

mark i=41,67 j=41 

mark i=41,67 j=223 

group 'Rock' notnull 

model elastic notnull group 'Rock' 

prop density=Drm bulk=Krm shear=Grm notnull group 'Rock' 

fix x y i 42 66 j 1 
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fix x y i 1 j 1 

fix x y i 107 j 1 

fix x i 1 j 1 183 

fix x i 107 j 1 183 

initial sxx -13243500 

initial syy -6621750.0 

initial szz -13243500 

set gravity=9.81 

history 999 unbalanced 

history sxx i 54 j 42 

history syy i 54 j 42 

solve 

save initial_R0.sav 

 

; Branch 2: excavation_R0.sav 

model null i 42 65 j 41 222 

solve 

save excavation_R0.sav 

 

; Branch 3: fill R0.sav 

; Backfill_R0_Shupeng Chai 

initial xdisp 0 ydisp 0 

initial xvel 0 yvel 0 

def fillproperty 

Ef=3e8       ; Young's modulus of the fill materials (Pa) 

vf=0.3       ; Poisson's ratio of the fill materials 

Df=1800    ; Density of the fill materials (kg/m3) 

Kf=Ef/(3*(1-2*vf))    ; Bulk modulus of the fill materials (Pa) 

Gf=Ef/(2*(1+vf))    ; Shear modulus of the fill materials (Pa) 

ff=30       ; Friction angle of the fill materials (°) 

; interface 

knf=10*(Kf+4*Gf/3)/0.25   ; Normal stiffness of the interface element 

ksf=10*(Kf+4*Gf/3)/0.25   ; Shear stiffness of the interface element 

fi=30        ; Friction angle of the interface (°) 

end 

fillproperty 

def fill 

loop k(2,44) 

k1 = k*4+41 
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k2 = k1+3 

k3 = k*4+1 

k4 = k*4+41 

k5 = k3+4 

k6 = k4+4 

k7 = k*2+3 

k8 = k7+1 

command 

model mohr i 42 65 j k1 k2 

prop density=Df bulk=Kf shear=Gf cohesion=0.0 friction=ff i 42 65 j k1 k2 

interface k7 aside from 41, k3 to 41, k5 bside from 42, k4 to 42, k6 

interface k7 kn=knf ks=ksf cohesion=0.0 dilation=0.0 friction=fi 

interface k8 aside from 67, k3 to 67, k5 bside from 66, k4 to 66, k6 

interface k8 kn=knf ks=ksf cohesion=0.0 dilation=0.0 friction=fi 

solve 

print syy line (0, -249.81) (0, -249.79) 3 

print sxx line (0, -249.81) (0, -249.79) 3 

end_command 

end_loop 

end 

model mohr i 42 65 j 41 44 

prop density=Df bulk=Kf shear=Gf cohesion=0.0 friction=ff i 42 65 j 41 44 

interface 3 aside from 41, 1 to 41, 5 bside from 42, 41 to 42, 45 

interface 3 kn=knf ks=ksf cohesion=0.0 dilation=0.0 friction=fi 

interface 4 aside from 67, 1 to 67, 5 bside from 66, 41 to 66, 45 

interface 4 kn=knf ks=ksf cohesion=0.0 dilation=0.0 friction=fi 

solve 

step 10000 

print syy line (0, -249.81) (0, -249.79) 3 

print sxx line (0, -249.81) (0, -249.79) 3 

model mohr i 42 65 j 45 48 

prop density=Df bulk=Kf shear=Gf cohesion=0.0 friction=ff i 42 65 j 45 48 

interface 5 aside from 41, 5 to 41, 9 bside from 42, 45 to 42, 49 

interface 5 kn=knf ks=ksf cohesion=0.0 dilation=0.0 friction=fi 

interface 6 aside from 67, 5 to 67, 9 bside from 66, 45 to 66, 49 

interface 6 kn=knf ks=ksf cohesion=0.0 dilation=0.0 friction=fi 

solve 

step 10000 

print syy line (0, -249.81) (0, -249.79) 3 
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print sxx line (0, -249.81) (0, -249.79) 3 

fill 

print syy line (0, -205) (0, -250) 91 

print sxx line (0, -205) (0, -250) 91 

save fill_R0.sav 

B3 Additional results for the stress distribution in backfilled stopes 

The stress distribution along the depth of backfill (SD; stress-depth profile) has been well described 

in Chapter 3. In addition, the stress at the bottom of the backfill with different filling heights (SB; 

stress-thickness profile) is also monitored for the cases considered in Table 3-2. In this section, 

additional results for the stress distribution in backfilled stopes are presented. 

B3.1 Comparisons of the SD and SB in FLAC   

Figures B-4 to B-10 present the two kinds of stress under different backfill parameters. In the 

figures, HSD and VSD mean horizontal and vertical stresses along the depth, respectively while 

HSB and VSB mean horizontal and vertical stresses at the bottom, respectively. SB is obtained by 

monitoring the stress at the bottom of a 45 m-high stope by adding backfill in 45 layers (1 m/layer). 

It can be seen that the occurrence of kink is mainly dependent on the internal friction angle and 

Poisson’s ratio of the backfill. If kink occurs, the SD is always below the SB, except near the top 

of the backfill, where the stresses are close to those based on the overburden solution. If no kink 

occurs, the two types of stress profiles are almost the same. 

(1) Reference case (Case 0) 

   

Figure B-4: The variations of (a) VSD, VSB and (b) HSD, HSB for the reference case 
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 (2) Influence of backfill internal friction angle (Case 1) 

                

(a)                                                                                  (b) 

Figure B-5: The variations of (a) VSD, VSB and (b) HSD, HSB with different internal friction 

angles of the backfill  

 

 (3) Influence of the Poisson’s ratio of backfill (Case 2) 

           

(a)                                                                                  (b) 

Figure B-6: The variations of (a) VSD, VSB and (b) HSD, HSB with different Poisson’s ratios of 

the backfill 
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(4) Influence of backfill width (Case 3) 

            

(a)                                                                                  (b) 

Figure B-7: The variations of (a) VSD, VSB and (b) HSD, HSB with different backfill widths  

 

 (5) Influence of backfill height (Case 4) 

               

 (a)                                                                                  (b) 

Figure B-8: The variations of (a) VSD, VSB and (b) HSD, HSB with different backfill heights  
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(6) Influence of Young’s modulus of backfill (Case 5) 

            

 (a)                                                                                  (b) 

Figure B-9: The variations of (a) VSD, VSB and (b) HSD, HSB with different Young’s modulus 

of the backfill  

 

(7) Influence of fill-rock interface friction angle (Case 6) 

            

(a)                                                                                  (b) 

Figure B-10: The variations of (a) VSD, VSB and (b) HSD, HSB with different internal friction 

angles of the fill-rock interface 
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B3.2 Analytical solution for SB   

It is found that when the kink does not occur, the SB is the same as the SD, agreeing well with the 

Marston solution using an active earth pressure coefficient Ka (shown in Figure B-11).  

            

(a)                                                                                  (b) 

Figure B-11: Comparisons between analytical solutions and numerical simulations when no kink 

occurs: (a) Case 1 when φ = 20° and (b) Case 2 when μ = 0.2 

 

If the kink occurs, the VSB is closer to the Marston solution using Ka while the HSB is in 

accordance with the Marston solution using K0φ (shown in Figure B-12). 
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(c)                                                                                  (d) 

Figure B-12: Comparisons between the proposed analytical solutions and numerical simulations 

for different backfill properties when the kink occurs: (a) Case 0; (b) Case 3 when B = 12 m (c) 

Case 4 when H = 35 m and (d) Case 6 when δ=20° 

 

B3.3 Summary of analytical solutions for the two stress profiles in the backfill   

Table B-1 summarizes the analytical solution that can be applied to preliminarily predict the stress 
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APPENDIX C   ADDITIONAL RESULTS RELATED TO CHAPTER 4 

In this appendix, the results for the sensitivity analyses of the numerical model used in Chapter 4 

are presented. Then, the FLAC3D code for Case 0 in Chapter 4 is given in Section C2 for reference. 

Finally, all the data used in the comparisons of analytical and numerical results are shown in 

Section C3. 

C1 Sensitivity analyses of numerical model 

Figure C-1 shows the geometry of the reference case (Case 0) and the position of the monitoring 

lines used to determine the optimum domain and mesh size of the numerical models. C1C2 is the 

central line of the exposed face and H1H2 is a horizontal line from the back wall to the exposed face 

at a height of 5 m above the bottom of the backfill. Other parameters related to the backfill 

properties and stope geometry can be found in Chapter 4. 

 

Figure C-1: A schematic view of the side-exposed backfill in inclined stopes with two monitoring 

lines C1C2 and H1H2 

(1) Domain size 

Although the influence of domain is neglectable in the numerical models, its influence is still 

checked here. The distance from the backfill boundary to the model boundary D is selected based 

on the factor Fd, which is defined as the ratio of D to the backfill height H. Figure C-2 shows the 

total displacement and the stress in the z and x directions along the two monitoring lines C1C2 and 

H1H2. It is demonstrated that the numerical results are almost insensitive to the variation of the 

domain size. So, considering the computing capacity, the Fd is selected as 1 in all the numerical 

simulations conducted in Chapter 4. 
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(a)                                                                   (b) 

 

(c)                                                                   (d) 

 

 (e)                                                                   (f) 

Figure C-2: Results for the sensitivity analyses of the domain size: the total displacement along 

the line (a) C1C2 and (b) H1H2, the stress in the z-direction along the line (c) C1C2 and (d) H1H2 

and the stress in the x-direction along the line (e) C1C2 and (f) H1H2 

 (2) Mesh size 

The influence of mesh size of the backfill is also investigated. Figure C-3 shows the total 

displacement and the stresses in the z and x directions along the two monitoring lines C1C2 and 
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H1H2. It is illustrated that the displacement and stresses become stable when the element size is 

smaller than 0.5 m. Thus, an element size of 0.5 m is used in all the numerical simulations 

performed in Chapter 4. 

    

(a)                                                                   (b) 

 

(c)                                                                   (d) 

 

(e)                                                                   (f) 

Figure C-3: Results for the sensitivity analyses of the mesh size: the total displacement along the 

line (a) C1C2 and (b) H1H2, the stress in the z-direction along the line (c) C1C2 and (d) H1H2 and 

the stress in the x-direction along the line (e) C1C2 and (f) H1H2 
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(3) Thickness of the filling layer 

Figure C-4 shows the total displacement and the stresses in the z and x directions along the two 

monitoring lines C1C2 and H1H2 with the variation of layer thickness from 5 m/layer to 40 m/layer.  

       

(a)                                                                   (b) 

 

(c)                                                                   (d) 

 

(e)                                                                   (f) 

Figure C-4: Results for the sensitivity analyses of the filling layer thickness: the total 

displacement along the line (a) C1C2 and (b) H1H2, the stress in the z-direction along the line (c) 

C1C2 and (d) H1H2 and the stress in the x-direction along the line (e) C1C2 and (f) H1H2 
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It is illustrated that the stresses become stable when the layer thickness is large than 8 m/layer. The 

displacement along the line H1H2 seems insensitive to the variation of the layer thickness while the 

displacement along the line C1C2 can be regarded as unchanged when the layer thickness is large 

than 8 m/layer but with some fluctuation of the values. Finally, the optimum layer thickness is 

selected as 5 m/layer. 

C2 FLAC3D code of the reference case 

; FLAC3D (Version 5.01) code of the reference case 0 

;Parameters.f3dat 

new 

Define parameters 

;Geometry 

;Stope Geometry 

Hs=40.0     ;Stope height (m) 

Ls=20.0     ;Stope length (m) 

Bs=10.0     ;Stope width (m) 

Hv=0.5     ;Height of the void (m) 

Ls2=Ls/2.0    ;Half of the stope length (m) 

Dsb=-Hs     ;Depth of the stope bottom (m) 

Dst=0     ;Depth of the stope top (m) 

;Domain 

Fd=1     ;Factor of the domain 

MS=Max(Hs,Ls,Bs)   ;Maximum value of the stope height, length and width (m) 

Md=Fd*MS    ;Size of the domain (m) 

;Model Geometry 

Beta=70.0     ;Inclination angle (°) 

Hm=Hs+Md    ;Model height(m) 

TB=tan(Beta*Pi/180.0) 

Lml=Ls2+Md+Hs/2.0/TB  ;Left model length (m) 

Lmr=Ls2+Md-Hs/2.0/TB   ;Right model length (m) 

Bm=Bs+Md ;Model Width (m) 

;Coordinate 

;right model 

;xrt=Lmr   ;x-coordinate of the top face of right model (3,5,6,7)(m) 

;xr0=0   ;x-coordinate of P(0,2,9) of right model (m) 

;xr10=Ls2   ;x-coordinate of P(10,12) of right model (m) 

xr8=-Hs/TB  ;x-coordinate of P(8,11) of right model (m) 
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xr11=xr8   ;x-coordinate of P(8,11) of right model (m) 

xr13=xr8+Ls2  ;x-coordinate of P(13,14) of right model (m) 

xr14=xr13   ;x-coordinate of P(13,14) of right model (m) 

xr1=-Hm/TB  ;x-coordinate of P(1,4) of right model (m) 

xr4=xr1   ;x-coordinate of P(1,4) of right model (m) 

;yrf=0   ;y-coordinate of the front face of right model (0,1,3,6,8,10,13)(m) 

;yrb=Bmr   ;y-coordinate of the back face of right model (2,4,5,7)(m) 

;yrs=Bs   ;y-coordinate of the stope width of right model (9,11,12,14)(m) 

zrt=Dst   ;z-coordinate of the bottom face of right model (0,2,3,5,9,10,12)(m) 

zrb=zrt-Hm  ;z-coordinate of the top face of right model (1,4,6,7)(m) 

zrs=Dsb   ;z-coordinate of the stope height of right model (8,11,13,14)(m) 

;left model 

xll=-Lml   ;x-coordinate of the left face of left model (1,4,6,7)(m) 

;xl0=0   ;x-coordinate of P(0,2,9) of left model (m) 

xl8=-Ls2   ;x-coordinate of P(8,11) of left model (m) 

xl11=-Ls2   ;x-coordinate of P(8,11) of left model (m) 

xl10=-Hs/TB  ;x-coordinate of P(10,12) of left model (m) 

xl12=xl10   ;x-coordinate of P(10,12) of left model (m) 

xl13=xl10-Ls2  ;x-coordinate of P(13,14) of left model (m) 

xl14=xl13   ;x-coordinate of P(13,14) of left model (m) 

xl3=-Hm/TB  ;x-coordinate of P(3,5) of left model (m) 

xl5=xl3   ;x-coordinate of P(3,5) of left model (m) 

;ylf=0   ;y-coordinate of the front face of left model (0,1,3,6,8,10,13)(m) 

;ylb=Bm   ;y-coordinate of the back face of left model (2,4,5,7)(m) 

;yls=Bs   ;y-coordinate of the stope width of left model (9,11,12,14)(m) 

zlt=Dst   ;z-coordinate of the top face of left model (0,1,2,4,8,9,11)(m) 

zlb=zlt-Hm  ;z-coordinate of the bottom face of left model (3,5,6,7)(m) 

zls=zlt-Hs   ;z-coordinate of the stope height of left model(10,12,13,14)(m) 

;other 

zmb=zlb   ;z-coordinate of the model bottom (m) 

xml=-Lml   ;x-coordinate of the model left (m) 

xmr=Lmr   ;x-coordinate of the model right (m) 

ymb=Bm   ;y-coordinate of the model back (m) 

ymf=0   ;y-coordinate of the model front (m) 

t=0.001 

;Mesh 

esize=0.5    ;Element size (m) 

Nh=int(Hs/esize)   ;Element number along the bottom half stope height 

Nls=int(Ls2/esize)  ;Element number along the stope length 
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Nbs=int(Bs/esize)   ;Element number along the stope width 

Nd=8    ;Element number of the domain 

Rd=1.5    ;Element ratio of the domain 

;Material Properties 

;Rock mass 

Er= 3e10    ;Young's modulus of the rock mass (Pa) 

vr= 0.3    ;Poisson's ratio of the rock mass (Pa) 

Dr=2700.0    ;Density of the rock mass (kg/m3) 

Kr=Er/(3*(1-2*vr)) ;Bulk modulus of the rock mass (Pa) 

Gr=Er/(2*(1+vr))   ;Shear modulus of the rock mass (Pa) 

Gamma=Dr*9.81   ;Unit weight of the rock mass (N/m3) 

end 

@parameters 

 

;Initial.f3dat 

;Generate grids 

gen zone radbrick size @Nh @Nbs @Nls @Nd ratio 1 1 1 @Rd P0 0 0 @zrt P1 @xr1 0 @zrb & 

P2 0 @Bm @zrt P3 @Lmr 0 @zrt P4 @xr4 @Bm @zrb P5 @Lmr @Bm @zrt &  

P6 @Lmr 0 @zrb P7 @Lmr @Bm @zrb P8 @xr8 0 @zrs P9 0 @Bs @zrt P10 @Ls2 0 @zrt & 

P11 @xr11 @Bs @zrs P12 @Ls2 @Bs @zrt P13 @xr13 0 @zrs P14 @xr14 @Bs @zrs &  

fill group right 

gen zone radbrick size @Nls @Nbs @Nh @Nd ratio 1 1 1 @Rd P0 0 0 @zlt P1 @xll 0 @zlt & 

P2 0 @Bm @zlt P3 @xl3 0 @zlb P4 @xll @Bm @zlt P5 @xl5 @Bm @zlb P6 @xll 0 @zlb & 

P7 @xll @Bm @zlb P8 @xl8 0 @zlt P9 0 @Bs @zlt P10 @xl10 0 @zls P11 @xl11 @Bs @zlt & 

P12 @xl12 @Bs @zls P13 @xl13 0 @zls P14 @xl14 @Bs @zls fill group left 

group rockmass range group Default 

group backfill range group right any group left any  

;Properties of the rockmass 

model mech elastic 

prop density=@Dr bulk=@Kr shear=@Gr 

;Boundary conditions & initial conditions 

fix x y z range z=@zmb 

fix x y range x=@xml 

fix x y range x=@xmr 

fix x y range y=@ymf 

fix x y range y=@ymb 

set gravity 0, 0, -9.81 

;History 

hist unbal 
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set large 

solve  

 

; Excavation.f3dat 

; Excavation 

model null range group backfill 

set large 

solve 

 

; Fillproperty.f3dat 

Define fillproperty 

;Fill materials 

Ef= 3e8      ;Young's modulus of the fill materials (Pa) 

vf= 0.2      ;Poisson's ratio of the fill materials (Pa) 

Df=1800.0     ;Density of the fill materials (kg/m3) 

Kf=Ef/(3*(1-2*vf))     ;Bulk modulus of the fill materials (Pa) 

Gf=Ef/(2*(1+vf))     ;Shear modulus of the fill materials (Pa) 

ff=30.0     ;Friction angle of the fill materials (°) 

UCSf=2*cf*tan((45+ff/2.0)*Pi/180)  ;UCS of the fill materials (Pa) 

tf=UCSf*0.1      ;Tension of the fill materials (Pa) 

;interface 

knf=10*(Kf+4*Gf/3)/esize    ;normal stiffness of the interface element 

ksf=10*(Kf+4*Gf/3)/esize    ;shear stiffness of the interface element 

fi=ff       ;Friction angle of the interface (°) 

ci=cf       ;Cohesion of the interface (Pa) 

fih=ff       ;Friction angle of the hanging wall interface (°) 

cih=cf       ;Cohesion of the hanging wall interface (Pa) 

end  

@fillproperty 

 

; Fill.f3dat 

;Set displacement to zero 

ini xdisp 0 ydisp 0 zdisp 0 

ini xvel 0 yvel 0 zvel 0 

;Interface 

group face Inthw internal range group rockmass group backfill & 

plane orig (@xl8,0,0) dip @Beta dd -90 distance 0.01 

gen separate face orig (@xl8,0,0) range group Inthw 

interface 1 face range group Inthw  

interface 1 prop kn @knf ks @ksf fric @fih c @cih  

group face Intfw internal range group rockmass group backfill & 

plane orig (@Ls2,0,0) dip @Beta dd -90 distance 0.01 
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gen separate face orig (@xmr,0,0) range group Intfw 

interface 2 face range group Intfw  

interface 2 prop kn @knf ks @ksf fric @fi c @ci 

group face Intbw internal range group rockmass group backfill & 

plane orig (0,@Bs,0) dip 90 dd 0 distance 0.01 

gen separate face orig (0,@Bs,0) range group Intbw 

interface 3 face range group Intbw  

interface 3 prop kn @knf ks @ksf fric @fi c @ci  

 

;Backfill 

Define backfill 

;Fill procedure 

TL=5     ;Thichness of each layer (m) 

NL=int(Hs/TL)    ;Number of filling layers 

local k  

loop k(1,NL) 

k1=Dsb+TL*k+t 

k2=Dsb+TL*(k-1)-t 

numfill='fill_'+string(k) 

command 

group @numfill range group backfill plane orig (0,0,@k1) normal (0,0,1) below & 

plane orig (0,0,@k2) normal (0,0,1) above 

model mech mohr range group @numfill 

prop density=@Df bulk=@Kf shear=@Gf friction=@ff cohesion=@cf &  

tension=@tf range group @numfill 

set large 

solve 

step 1000 

end_command 

end_loop 

end 

@backfill 

 

; Expose.f3dat 

;Expose 

group backfill range group fill_1 any  

Define backfillgroup 

local m  

loop m(2,NL) 
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numfill='fill_'+string(m) 

command 

group backfill range group backfill any group @numfill any  

end_command 

end_loop 

end 

@backfillgroup 

 

free x y z range group backfill y=@ymf 

fix x y range group rockmass y=@ymf 

set large 

step 15000 

 

; Master.f3dat 

new  

call Parameters 

call Initial 

save Initial 

call Excavation 

save Excavation 

new 

restore Excavation 

Define fillcohesion 

cf=70e3 ;Cohesion of the backfill (Pa). Change it to 69 kPa, 71 kPa and calculate. 

end  

@fillcohesion 

call Fillproperty 

call Fill 

save Fill_69 

call Expose 

save Expose_69 

step 60000 

save Expose_69_5 

step 105000 

save Expose_69_12  

C3 The minimum required cohesion for the considered cases 

Table C-1 shows the detailed data of the minimum required cohesion obtained by the numerical 

simulations (FLAC3D) and analytical solutions (the proposed solution, the Smith et al. (1983) 

solution, the Mitchell (1989) solution, and the Dirige and Souza (2008) solution) for all the cases 

considered in Chapter 4. 
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Table C-1: The minimum required cohesion for the cases in Table 4-1 

Case 

Unit 

weight γ 

(kN/m3) 

Height 

H (m) 

Length 

L (m) 

Width 

B (m) 

Inclination 

β (°) 

friction 

angle φ 

(°) 

Minimum required cohesion c (kPa) 

FLAC3D 
Proposed 

solution 

Smith et 

al. (1983) 

Mitchell 

(1989) 

Dirige and 

De Souza 

(2008) 

0 18 40 20 10 70 30 61 67.4 97.0 45.1 34.9 

1 18 40 20 10 

50 

30 

61 59.9 97.0 36.8 15.0 

60 67 73.3 97.0 41.6 23.9 

65 69 70.4 97.0 43.5 29.1 

70 70 67.4 97.0 45.1 34.9 

75 68 64.3 97.0 46.4 41.0 

80 66 61.1 97.0 47.3 47.4 

85 60 57.9 97.0 47.8 54.0 

90 56 54.6 97.0 48.0 60.6 

2 18 45 15 6 

50 

35 

50 36.9 90.8 31.0 6.7 

60 59 51.7 90.8 35.1 14.4 

65 62 53.7 90.8 36.7 19.1 

70 62 50.6 90.8 38.1 24.2 

75 59 47.4 90.8 39.1 29.6 

80 53 44.3 90.8 39.9 35.4 

85 50 41.2 90.8 40.3 41.2 

90 50 38.0 90.8 40.5 47.0 

3 18 

30 

20 10 70 30 

58 58.6 81.0 40.6 29.3 

40 70 67.4 97.0 45.1 34.9 

50 79 70.8 110.2 48.3 38.6 

60 87 71.3 121.1 50.7 41.4 

70 95 70.0 130.3 52.6 43.5 

4 18 40 

5 

10 70 30 

21 13.2 43.8 15.0 17.3 

10 40 34.7 69.1 27.1 26.0 

20 70 67.4 97.0 45.1 34.9 

30 95 87.6 112.1 58.0 39.3 

5 18 40 20 

5 

70 30 

77 69.7 97.0 45.1 28.9 

10 70 67.4 97.0 45.1 34.9 

15 62 63.7 97.0 45.1 35.6 

20 63 58.2 97.0 45.1 34.0 

6 18 40 20 10 70 

20 86 79.9 97.0 45.1 48.5 

25 77 73.1 97.0 45.1 41.7 

30 70 67.4 97.0 45.1 34.9 

35 63 62.4 97.0 45.1 27.9 

40 59 57.8 97.0 45.1 20.9 
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