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Abstract

CrossMark

Global materials’ and energy constraints and environmental issues call for a holistic approach to
waste upcycling. We propose a chemically rational, cost-effective and environmentally friendly
recovery of non-leaching gold from e-waste using aqueous chemistry with hydrogen peroxide,
an environmentally benign oxidant, and lactic acid, a food chain byproduct. The oxidation of the
base metals enables the release of gold in its metallic state in the form of flakes subsequently
separated via filtration. Our main byproduct is a precursor of Cu,0O, a relevant metal oxide for
solar energy conversion applications. The recovered gold was characterized by scanning electron
microscopy, energy dispersive spectroscopy and x-ray photoelectron spectroscopy to gain
insight into the morphology of the flakes and their chemical composition. Furthermore,
recovered gold was used to successfully fabricate the source and drain electrodes in organic

field-effect transistors.

Supplementary material for this article is available online

Keywords: gold recovery, e-waste, food waste, upcycling, transistors

(Some figures may appear in colour only in the online journal)

1. Introduction

The increasing demand for electronics along with planned
obsolescence contribute to the dramatic accumulation of
waste electrical and electronic equipment (WEEE or e-waste),
at the global level [1]. E-waste comprises base metals (e.g.
Cu, Ni, Pb, Zn, Fe, Sn, Al), precious metals (e.g. Au, Pd, Pt),
specialty metals (e.g. In, Ga, Se, Sb, Te, Ta, rare Earth ele-
ments), and toxic metals (e.g. Hg, Cr, Cd) [2-8].
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Printed circuit boards (PCBs) are the core of most elec-
tronics. Even if they contribute to only 6% of the weight of
e-waste, they are a key source of valuable metals, [9] whose
concentration can be several times higher than in their primary
ore minerals. The recovery of such valuable metals is needed to
maintain their supply chain and reduce the effect of mining on
human health and the environment [3, 4, 10]. Among valuable
metals, Au plays the role of the ‘paying metal’ [10, 11].

A complex challenge such as precious metals’ recovery
is expected to require a number of different solutions. Among
them are the pyrometalluyrgical and hydrometallurgical ones.
The suitability of a solution over another one is dictated by a
number of factors, such as local specific needs and constraints
[12]. Hydrometallurgy is an important route to recover Au.
Here, an oxidation step is typically used to dissolve Au (and
metals more oxidizable than gold) and a subsequent reduction
step selectively brings Au ions to metallic Au.

© 2022 The Author(s). Published by IOP Publishing Ltd
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Cyanide and aqua regia (HNO5:HCI in a molar ratio 1:3)
are often used in Au oxidation, even if the toxicity of the
former and the corrosiveness of the latter endanger workers
and the environment [13].

The classical hydrometallurgical gold recovery strategy is
not rational from the chemical point of view, for at least three
reasons: (i) it requires harsh chemical treatment of e-waste,
harmful to workers and the environment, to firstly oxidize and
subsequently reduce gold; (ii) it results in large amounts of
wastewater; (iii) it triggers a downcycling of gold whose purity
would be certainly lower after the dissolution and reductive
recovery, compared to the original purity in the e-waste.

Chemical schemes avoiding gold oxidation have been
already reported in the literature: an hydrochloric acid/iron
(IIT) mixture [14], various persulfate solutions [15-18], CuCl,
acidic solutions [19], a methane sulfonic acid/H,O, mixture
[20] brought to the selective oxidation of base metals with Au
release in its original metallic state.

Even if metal ions in their highest oxidation state, such as
Cu** or Fe*™, proved to be effective in base metal oxidation
leading to gold removal, they represent an additional disposal
problem because they remain in the reaction mixture; simi-
larly, persulfate-based oxidation suffers from the sulfate
leftover in the reaction mixture.

H,0, is widely used in hydrometallurgical processes
because it is a safe and effective oxidant [21]. It oxidizes base
metals, e.g. Cu, according to the following reaction:

H,0, + 2H* + Cu — 2H,0 + Cu?*. (1)

The non-toxicity of the reduction product (water) is
noteworthy from the environmental point of view.

The acidification of the reaction medium through upcycling
of waste chemicals would be of the highest interest, here, for
environmental and economic viability considerations.

Lactic acid (LA) is a biobased platform chemical that can
be obtained from food waste upcycling [22]. Commercial LA
is usually produced by the bacterial fermentation of carbo-
hydrates by homofermentative organisms belonging to the
genus Lactobacillus and Bacillus. In order to limit the land
use share for its production, a wide range of high sugar-
containing food waste such as coffee mucilage, corn cobs,
corn stalks, rice bran, barley, wheat bran, brewer’s spent
grains, kitchen waste, pineapple and grape waste, soybean
vinasse, Curcuma longa biomass, and yoghurt waste have
been explored as alternative feedstocks for fermentative LA
production [23]. Whey, whose discharge is a major pollution
problem for the dairy industry, is a potent and suitable raw
material for LA production in a real ‘gutter to gold’
approach [24].

LA is also known to complex metal ions, thereby pro-
viding an extra driving force for base metal leaching [25]. At
the same time, Fenton-like reactions catalyzed by metals such
as Cu®" and Ni*" and leading to the in situ generation of
hydroxyl radical (HO-) capable to oxidize base metals cannot
be excluded [26-28].

Here, we report on an environmentally benign and low-
cost route that makes use of a green oxidant (H,O,) and an
organic acid from food waste upcycling (LA) to achieve base

metals oxidation and peeling of metallic Au from random
access memory (RAM) PCB e-waste. We characterized the
morphology and elemental composition in pristine and peeled
Au by scanning electron microscopy (SEM) and energy dis-
persive spectroscopy (EDS). Afterwards, we used the recovered
Au to fabricate by e-beam evaporation photolithographycally
patterned metal contacts on SiO,/Si substrates. We performed
chemical surface analysis by x-ray photoelectron spectroscopy
(XPS) on peeled gold and e-beam evaporated metal contacts
from peeled gold. Such contacts were succesfully employed as
source and drain elctrodes in field-effect transistors (FETSs)
making use of the well-investigated organic semiconducting
polymer poly(3-hexylthiophene-2,5-diyl) (P3HT) as transistor
channel material. The contacts were characterized for their
morphological properties by atomic force microscopy (AFM),
to shed light onto device performance.

2. Experimental

2.1. Materials and reagents

RAMs were taken from PCBs removed from dismissed PCs.
A guillotine was used to cut RAM. L-LA (2-hydroxy-pro-
pionic acid) 90 w/w% was obtained from Carlo Erba (den-
sity: 1.20 g ml™', 13.318 M). Hydrogen peroxide 35% w/
W% (density: 1.130 g ml~', 11.627 M) was obtained from
Italchimici Group. Ultrapure water (18.2 MQ.cm at 25 °C)
was produced via a Millipore Simplicity® UV system.

The RAM boards used for systematic experiments described
in table 1 were (i) ELIXIR 512 MB DDR-400 MHz-CL3
PC3200U-30330 and (i) S3 + PC3200/DDR400 512 MB.

The RAM boards used in the subsequent massive peeling
of gold for the FET fabrication were (i) ELIXIR 512 MB
DDR-400 MHz-CL3 PC3200U-30330; (ii) S3 + PC3200/
DDR400 512 MB; (iii)) AE 512 MB 1Rx8 PC2-4200U-
444-11 AET660UDO00-370A98Z A1K62517 Pb free; (iv)
NANYA NT 128D64S88A0G-7K, 128 MB, DDR 266 MHz-
CL2, PC2100U-20330, 0206.A1032; (v) 1 HYS64-
T64000HU-3S-A A2E62621 512 MB 1Rx8 PC2-5300U-
555-12-DO0 Pb free; (vi) I HYS64T64000HU-3.7-A 512 MB,
1Rx8 PC2-4200U-444-11-A1 Pb free; (vii) HYNIX 1 GB
2Rx8 PC2-5300U-555-12 HYMP512U64CP8-Y5 AB-C;
(viii) NANYA NT 512D64S5HB1G- 5T 512 MB, DDR 400
MHz-CL3, PC3200U-30330; (ix) TEAM Group Inc.
TVD32048M1333C9 2 GB DDR III 1333 MHz; (x)
RAMAXEL 512 MB 1Rx8 PC2-5300DDU-555 LF. A mass
of 2897.886 g of these RAM waste was guillotined to obtain
149.886 g of RAM edges that were subsequently treated
according to the experimental condition A (table 1).

2.2. Systematic experiments for gold peeling

Experiments to shed light onto the effect of gold peeling
conditions on the effectiveness of the process were carried out
in triplicata in a 100 ml glass reaction vessel, under a fume
hood. Known amounts of waste edges and reagents were
mixed (table 1). Gold peeling was also monitored for different
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Table 1. Systematic experiments with lactic acid (LA) and H,O,
mixtures in the experimental conditions indicated as A, B, C, D. We
specified LA and H,O, concentrations (M) in each mixture, gold
peeling outcome (by eye, figure SM1), base metal amounts leached
per gram of waste RAM (ELIXIR 512 MB DDR-400 MHz-CL3
PC3200U-30330 and S3 + PC3200/DDR400 512 MB) edges

(mg g)fl by ICP OES and the relative standard deviation (RDS) of
three specimens from one samples (%). In each case, the final
volume was 20 ml and RAM edges were 5% (w/v) of the reagent
solution.

Experimental condition

A B C D
Cra M) 6.0 3.0 2.0 1.0
Ch202 M) 6.0 3.0 2.0 1.0
complete peeling in 12 h yes yes yes no
Cu (mg g~ ' RAM 213.949 230.908 236.457 0.316
edges)
Ni (mg g~' RAM edges)  16.405 17.268 17.112  1.251
Zn (mg g~' RAM edges) 0.294 0.340 0.321 0.115
Pb (mg g~' RAM edges) 0.050 0.063 0.072  0.003
Au (mg g~' RAM 0.002 0.002 0.002  0.001
edges)
Cu RSD (%) 0.9 1.6 1.4 1.2
Ni RSD (%) 1.5 1.2 1.1 0.9
Zn RSD (%) 1.3 1.5 1 0.9
Pb RSD (%) 1.2 1.6 1.7 0.9
Au RSD (%) 1.1 1.3 1.7 1.5

reaction times and temperatures (not shown). The Au flakes
recovered were separated from the solution containing base
metal ions via simple filtration, using a Gooch crucible. They
were dried overnight at 180 °C and weighted to calculate the
recovery rate. Filtrates were subsequently analyzed.

2.3. Spot test for gold in solution

The presence (or absence) of Au’" in the base metal solutions
was tested via a spot test, using a 20% (w/v) Sn*" chloride in
15% (w/w) hydrochloric acid, based on the following reac-
tion [29]:

3Sn2+ + 2Au3t — 3Sn** + 2Au. 2)

In presence of Au’", the newly formed metallic gold
coalesces into colloidal dark particles with a wide range of
sizes, resulting in light absorption throughout the whole
optical spectrum [30].

2.4. Inductively Coupled Plasma Optical Emission
Spectroscopy (ICP OES) and UV-vis spectrophotometry of
base metal solutions

The filtrates were assessed in triplicata by ICP OES to
determine the base metal ions concentrations via an optical
emission spectrometer Perkin Elmer ICP Optima 8300. A
blank correction was used. Base metal emission lines were
327.393 nm for Cu, 231.604 nm Ni, 206.200 nm for Zn,
220.353 nm for Pb, and 267.595 nm for Au. The UV-vis
spectrophotometer used (a C-7200 a spectrophotometer, Peak
Instruments Inc.).

2.5. Massive peeling of gold

The experimental condition A in table 1 was selected to peel
gold from a mixture of RAM boards (as indicated in 2.1) for
transistor fabrication.

2.6. SEM and EDS on pristine edges and peeled gold flakes

For SEM studies, we used a FEG JEOL 7600F microscope.
The chemical analyses were carried out using a 80 mm? area
SDD EDS X-Max (Oxford Instruments). Most of the images
were taken at an accelerating voltage of 5 kV with a ET
secondary electron detector. The chemical analyses were also
done at 5 kV. Samples from RAM boards for systematic
experiments (see materials and reagents) were considered for
these studies on pristine cut edges and peeled Au. SEM
observations were first carried out on peeled Au flakes and
their thicknesses were found to be not less than a micron.
Electron trajectories simulations were then made using
CASINO [31] to find the proper accelerating voltages to use
for surface and volume EDS chemical characterization,
respectively 5 kV and 15 kV. The latter was identified as the
highest SEM accelerating voltage for which the electron beam
is entirely contained inside the thickness of the flake. 3 kV
EDS analyses were also made for top surface investigations.
Afterwards, analogous EDS analyses were carried out on the
RAM edges to compare the chemical composition.

2.7. X-ray photoelectron spectroscopy (XPS)

XPS analysis was carried out under vacuum (<10*9 Torr)
conditions using VG ESCALAB 3 MKII, equipped with an
Al K-alpha x-ray source (1486.6 eV). The XPS full survey
spectrum was recorded from O to 1350 eV with a step size of
1 eV, dwell time of 100 ms and pass energy of 100 eV. The
peak position in the XPS spectrum was referenced to C-C at
285.0 eV.

2.8. Microfabrication and transistor characterization

Gold flakes were rinsed with DI water and then collected
using a system including an Erlenmeyer flask, a frit glass and
a vacuum pump. The flakes were then dried in the oven at 60 °C
for 3 h prior e-beam evaporation. Bottom-contact, bottom-gate
transistors were fabricated on doped silicon substrates with a
200 nm thick silicon dioxide (SiO,) gate dielectric. Source and
drain electrodes were made of 5 nm thick Ti adhesion layer and
10 nm thick Au. The electrode width (W) was 2.5 cm and the
interelectrode distance (L) was 10 pum. We measured the
resistance of the recycled and commercial Au electrodes, In the
former case, the average resistance was ca. 4 X 10° ), which
corresponds to a resistivity of 2 x 10~ € m. In the latter case,
the average resistance was ca. 10 {2, which corresponds to a
resistivity of 5 x 107® Q m.

2.9. Atomic force microscopy (AFM)

The morphology of source and drain electrodes from com-
mercial and recycled gold was acquired at ambient conditions
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(relative humidity between 30% and 50%) by AFM in tapping
mode (Bruker AFM FAST SCAN ICON) using an Al-coated
Si cantilever, radius of 10 nm, spring constant ca. 40 N m™".

2.10. Semiconducting film fabrication and transistor
characterization

Thin films of regioregular poly(3-hexylthiophene-2,5-diyl) (RR
P3HT) with molecular weight of 50-70 kDa, purchased from
Rieke Metals, were deposited on pre-patterned source and drain
SiO,/Si substrates by spin coating (1500 rpm, 100 sec) from a
10 mg ml~" solution in chlorobenzene, under N, atmosphere,
after the solution was stirred at 50 °C overnight. Each device
was thermally treated on a hotplate at 110 °C for 10 min.

Transistors were characterized at room temperature, in a
house-made probe station, inside a N, glove box, using an
Agilent B1500A semiconductor parameter analyzer.

3. Results and discussion

To shed light on the effect of reagents’ concentrations, we
performed a series of experiments, indicated as A, B, C, D in
table 1. In each case, the H,O,/LA molar ratio was 1.

Figures 1(a) and (b) show, respectively, the waste RAM
boards used for experiments described in table 1 and the
corresponding cut edges. Lowering the reagent concentrations
below 2.0 M prevents the efficient removal of base metals and
the completeness of the gold peeling process. The ICP-OES
analyses of the filtrates show that the presence of leached base
metals is lower in experiment D (table 1). Be, Cd, Li, Mn,
Mo, Sn, TI concentrations in «all filtrates were never above
their limit of quantitation (not shown). Results in table 1
indicate that the RAM edges mainly contain Cu, Ni and Zn
[11]. Ag, Al, As, B, Ba, Co, Cr, Fe, Sb, Se, Ti were never
above 0.05 mg per g of waste RAM edge (not shown). Au
was not significantly leached, as indicated by the results in
table 1 and the negative spot tests.

Considering the wide range of different RAMs present in
e-waste, to ensure the effectiveness of the process, we selected
condition A for the subsequent massive peeling of gold because
the high concentration of chemicals in A is expected to promote
the advancement of the reaction through the increase of the
reaction rate. Figure 1(c) illustrates the reaction mixture after
12 h, for the experimental condition A, while the recovered
metallic gold can be observed in figure 1(d). Under this condi-
tion, the recovered metallic gold was 0.630 g; considering that
the mass of RAM waste was 2897.886 g and that from this
amount 149.886 g of RAM edges were obtained, the yield of
recovered metallic gold was 0.42% relative to the mass of waste
RAM edges or 0.02% relative to the total mass of waste RAM.
Further, 90% of the RAM edges were completely peeled , (i.e.
10% were partially peeled). Complete peeling could be obtained
via e.g. vigorour stirring.

The reaction mixture where H,O,/LA molar ratio was up
to 1.4 proved to be as efficient as Cyoop/Cra = 1 for gold
peeling in 12 h, such that the Cpy0,/Cra ratio was not

Figure 1. (a) Waste RAM boards used for experiments described in
table 1 (ELIXIR 512 MB DDR-400 MHz-CL3 PC3200U-30330 and
S3 + PC3200/DDR400 512 MB), (b) corresponding cut edges, (c)
reaction mixture after 12 h, treatment for the experimental condition
A in table 1, (d) recovered metallic Au.

increased beyond 1. Further, the decrease of the ratio to 0.6
did not enable complete gold peeling after 12 h.

Cupric lactate was the main constituent of the filtrate
(figure SM2) [25]. This compound could be upcycled to
synthesize Cu,0O-based photocatalysts [32, 33] or conducting
inks based on LA-stabilized copper nanoparticles [34].

3.1. SEM and EDS

We characterized our pristine and peeled samples by SEM
and EDS (figure 2 and figure SM3). In the former case, SEM
images show that the surface of the edges features micro-
metric bumps and EDS indicates the presence of Au, Ni and
Cu (besides C and O). In a small fraction of the investigated
samples, we observed the presence of Zn, Mg and Si (about
10%, not shown). After peeling, samples are made of flakes
with sizes in the millimetric range and the main element
detected by EDS was Au (besides C and O). Ni, Cu and Na
were observed in a small fraction on the investigated samples
(about 10%, not shown).

All in all, EDS spectra indicate the effectiveness of the
proposed H,0,/LA-based room temperature peeling treat-
ment to remove metallic gold from RAM edges.

3.2. X-ray photoelectron spectroscopy (XPS)

Prior e-beam evaporation of peeled gold flakes to fabricate
recycled Au metal contacts for OFETSs, we characterized the
surface chemical composition of the peeled flakes by XPS
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Figure 2. SEM images of (a) pristine RAM edges and (b) and (c)
peeled flakes of Au removed from RAM edges.

(figure 3, table SM1). The chemical species detected was
mainly Au, besides C, O and N, with traces of Cu, Sn and L
Afterwards, an XPS characterization was carried out on
source and drain electrodes e-beam evaporated from flakes of
recovered gold. The chemical species detected was mainly
Au, besides C and O, with traces of Cu and Sn. Ti and Si
originating from the Ti adhesion layer located between Au
and SiO, together with Si from SiO, were also detected.

3.3. Transistor characterization

After the morphological and chemical characterization of
peeled gold, we fabricated field-effect transistors based on
source and drain electrodes from commercial and peeled gold.
The semiconducting channel material was P3HT, a well
investigated organic electronic polymer. The output (drain-
source current, Iy, versus drain-source voltage, Vy,, for
increasing values of the gate-source voltage, V) and transfer

Said.
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1200 1000 800 600 400 200
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Figure 3. XPS survey spectra of (a) Au peeled flakes and (b)
evaporated Au on silicon dioxide with titanium adhesion layer
between silicon dioxide and gold.

0 -10 20 -30 -40 -50 L] -10 -20 -30 40 50
Ve (V)
5 4
© gy (d) 10y
10%1 Jav, -5y, ’
wov e
< <
= 10t =
= — 10°
— 100 -
10 Lo
10" 1017
o -0 -20 -30 -40 -50 0 -0 20 -30 40 -50
Ve (V) Vg (V)

Figure 4. Output (a) and (b) and transfer (c) and (d) characteristics of
P3HT field-effect transistors based on recycled (a) and (c) and
commercial (b) and (d) Au source and drain electrodes. The scheme
of the P3HT field-effect transistors and the molecular structure of the
repeating unit in P3HT are also shown, respectively on top left and
top right of the figure.

({45 versus V,q for increasing values of V) characteristics of
the P3HT transistors show, as expected, that devices are
p-type (holes are the majority carriers) and work in accu-
mulation mode (figure 4) [35]. The hole mobility for tran-
sistors making use of commercial gold, as deduced from
transfer characteristics at saturation was (3.1 £+ 0.3)x107™*
cm?/versus whereas it was (6.3 + 0.8)x 107> cm?/versus for
transistors making use of recycled gold. In linear conditions,
the two values were (1.4 + 0.1)x107* cmz/versus and
(4.9 £+ 1.2)x107° cm? /versus, respectively. A zoomed view
of the outpout characteristics in the low Vys voltage region
shows a linearity which reveals the ohmicity of the contacts
(figure SM4). The threshold voltage is about —8 V for both
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Figure 5. Atomic force microscopy images of e-beam evaporated Au
from (a) commercial and (b) recycled flakes.

types of transistors whereas the ON/OFF ratio (Ion/lorr
calculated from Iy, measured between Vo = —50 V and
Vs = OV at Vg = —50 V) is ca. 10° and 10° for P3HT FET
based on commercial and recycled gold, respectively.

3.4. Morphological characterization of evaporated gold films

AFM images of films evaporated from commercial and recycled
gold showed similar morphologies (figure 5 and SMY), with
grain-like structures. Commercial gold films feature a rougher
topography, with rms roughness of about 0.7 nm. Recycled gold
films are smoother, with rms roughness of about 0.4 nm.

It is worth mentioning that recycled gold films feature
smaller grain-like structures than their commercial counter-
parts. This last observation could explain the higher resistance
measured in recycled gold films as smaller grain-like struc-
tures imply an increased number of grain boundaries acting as
resistances to transport [36—38].

4. Conclusions

Circular economy models encourage closing the loop of mate-
rials used in electronic devices. We have shown that this is
possible for gold from e-waste that we recovered and recycled to
fabricate source and drain electrodes of organic field-effect
transistors. The contact resistance being higher in P3HT tran-
sistors making use of recycled gold with respect to their com-
mercial gold counterparts, we are now optimizing the recovery
process to increase the purity of the recovered gold.

To recover gold, we made use of an environmentally
benign oxidant such as hydrogen peroxide and LA, obtainable
from food waste. We wish to highlight the affordability of the
process that could be adopted by low and medium income
countries, too. We observed a selective removal of metallic
gold with respect to base metals and the main byproduct of
the base metals was copper lactate.

We are currently considering waste-based acids other
than LA. In perspective, we plan to explore the use of copper
lactate to synthesisze Cu,0, a semiconducting photocatalyst
to be applied in solar water splitting.
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