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RÉSUMÉ 

 

L’étude de la simulation de l’écoulement du celluloïd en profilé est un domaine très peu 

étudié actuellement, car il implique de fortes compétences en rhéologie, mathématique et 

informatique. De fait, il fait partie de ces champs d’études nécessitant une formation éclectique. 

Cette étude présentera ainsi les outils propres à chacun des domaines précédemment évoqués afin 

de simuler ce genre d’écoulement. Ce mémoire aura donc pour but de mieux comprendre et prédire 

l’écoulement du celluloïd dans un profilé afin de limiter les essais en laboratoire qui sont à la fois 

risqués et coûteux. 

A cette fin, compte tenu de l’impossibilité de résoudre analytiquement les équations du 

champ de contraintes couplées à celle de Cauchy dans le cas général, il a été nécessaire d’utiliser 

des méthodes numériques pour y parvenir. Dans ce but, il a été décidé d’utiliser les logiciels 

Comsol et Foam-Extend impliquant respectivement la méthode des éléments finis et celle des 

volumes finis, qui sont les deux méthodes les plus utilisées dans ce contexte. 

Dans le cas de la méthode des éléments finis implantée dans Comsol Multiphysics 5.4, il 

n’existait aucun modèle viscoélastique disponible par défaut dans le logiciel et il a donc fallu les 

implantées. Cependant, après plusieurs essais, ce logiciel s’est avéré assez limité dans le domaine 

du viscoélastique et n’a permis de simuler que des écoulements en 2 dimensions. Ceci peut 

expliquer le nombre limité de publications utilisant le logiciel Comsol en 3 dimensions dans la 

littérature scientifique. Il a donc fallu se tourner vers un autre logiciel et une autre méthode plus 

utile pour pouvoir effectuer le passage de la 2D à la 3D.  

Pour pouvoir réaliser une étude en 3 dimensions, les possibilités de la méthode des volumes 

finis ont été testées à l’aide du logiciel Foam-Extend (variante d’OpenFoam). Cet outil possède 

une large bibliothèque permettant la simulation d’écoulements viscoélastiques en 3 dimensions. 

Grâce à ce programme, il a été possible de simuler l’écoulement du celluloïd  dans un profilé 

contenant une contraction 1:20. En outre, à l’aide de données rhéologiques expérimentales, les 

paramètres des modèles (PTT, Giesekus, White-Metzner) ont été étudiés pour prédire le 

comportement du celluloïd dans différentes géométries (p.ex. contraction 2D, contraction 3D, 

conduite rectangulaire, profilé réel). Selon une analyse de convergence sur le modèle de White-
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Metzner, il apparaît que l’algorithme numérique implanté dans Foam-Extend converge à l’ordre 

1.68, ce qui est consistant avec les schémas de discrétisation utilisés. Il a ainsi été possible de mettre 

en évidence le fait que la simulation était très impactée par le type de maillage (structuré ou non), 

et qu’il était toujours préférable d’utiliser un maillage structuré afin d’obtenir des résultats moins 

bruités. Ainsi, il est prédit qu'un excès de celluloïd sera généré au centre des feuilles mises en forme 

dans la configuration actuelle du profilé.  

Pour finir, une analyse  de l’impact de l’hypothèse d’un fluide isotherme a été effectuée. Il 

en ressort que cette hypothèse ne semble pas totalement adéquate étant donnée la forte dissipation 

visqueuse pouvant être générée par un polymère tel que le celluloïd. Cependant, les valeurs 

obtenues restent une première approximation utile des phénomènes observables à l'intérieur du 

profilé.  
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ABSTRACT 

The study of the simulation of celluloid flow in die is a very rarely studied field at present 

because it involves strong skills in rheology, mathematics, and computer science. It is one of those 

fields of study that requires eclectic training. This study will present the tools specific to each of 

the areas mentioned above to simulate this type of flow. The aim of this thesis will therefore be to 

better understand and predict the flow of celluloid in a profile in order to limit laboratory tests, 

which are both risky and costly. 

Given the impossibility of analytically solving the stress field equations coupled with 

Cauchy equations, it was necessary to use numerical methods to achieve this. It was therefore 

decided to use the Comsol and Foam-Extend software packages involving the finite element 

method and the finite volume method respectively, which are the two most commonly used 

methods in this context. 

In the case of the finite element method implemented in Comsol Multiphysics 5.4, there 

was no viscoelastic model available by default in the software, so they had to be implemented. 

However, after several tests, this software proved to be quite limited in the field of viscoelastic and 

only allowed to simulate flows in 2 dimensions. This may explain the limited number of 

publications using the Comsol software in 3 dimensions in the scientific literature. It was therefore 

necessary to turn to another software and another more useful method to be able to make the 

transition from 2D to 3D.  

In order to be able to carry out a 3-dimensional study, the possibilities of the finite volume 

method were tested using the Foam-Extend software (a variant of OpenFoam). This tool has an 

extensive library for the simulation of viscoelastic flows in 3 dimensions. With this program it was 

possible to simulate the celluloid flow in a profile containing a 1:20 contraction. In addition, using 

experimental rheological data, model parameters (PTT, Giesekus, White-Metzner) were studied to 

predict the celluloid behaviour in different geometries (e.g. 2D contraction, 3D contraction, 

rectangular pipe, real profile). According to a convergence analysis on the White-Metzner model, 

it appears that the numerical algorithm implemented in Foam-Extend converges to the order 1.68, 

which is consistent with the discretization schemes used. It was thus possible to highlight the fact 

that the simulation was highly impacted by the type of mesh (structured or unstructured), and that 
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it was always preferable to use a structured mesh in order to obtain less noisy results. Thus, it is 

predicted that an excess of celluloid will be generated in the center of the extruded sheets with the 

current profile configuration. 

Finally, an impact analysis of the hypothesis of an isothermal fluid was carried out. It 

appears that this hypothesis does not seem to be totally adequate given the high viscous dissipation 

that can be generated by a polymer such as celluloid. However, the values obtained remain a useful 

first approximation of the phenomena observable inside the profile. 
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CHAPITRE 1 INTRODUCTION 

1.1 Mise en contexte  

Depuis plusieurs dizaines d’années, la production mondiale de matière plastique n’a cessé 

de croître à travers le monde. En 2011, par exemple, il avait été ainsi produit près de 280 Mt de 

matière plastique contre 1.5 t en 1950 [94]. Cette augmentation peut être expliquée, en partie, par 

le fait que les matières plastiques peuvent combiner un grand nombre de propriétés physico-

chimiques les rendant très utiles et relativement faciles à mettre en forme [95]. Les 

thermoplastiques, par exemple, peuvent dans certains cas être refondus à plusieurs reprises ce qui 

facilite leur recyclage. De manière très générale, il est possible de résumer la plupart des étapes de 

mise en forme des thermoplastiques par la Figure 1.1. 

 

Figure 1.1  Vue d'ensemble du procédé de mise en forme des thermoplastiques 

[96]. 

L’étape majeure divergeant d’un procédé de mise en forme à l’autre se trouvera 

communément juste après l’extrusion. Cette étape peut être, entre autres,  du moulage par injection, 

du moulage par soufflage, de l’extrusion-gonflage ou encore de l’extrusion en profilés. Tout 

dépendra du produit désiré et des contraintes imposées par le thermoplastique utilisé [96]. 

Toutefois, l’une des techniques les plus simples à mettre en œuvre reste l’extrusion en profilé. 
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Figure 1.2  Exemple de profilé non trivial pour de l’aluminium [97]. 

Ce procédé consiste comme cela est illustré à la Figure 1.2 à injecter directement dans un 

profilé le matériau fondu (polymère ou métal) puis de le laisser se refroidir à l’air libre. C’est un 

procédé continu qui ne nécessite pas de grosses infrastructures et qui permet d’obtenir, sous 

certaines conditions, des produits d’assez bonne qualité [96]. Il ne permet certes pas d’obtenir 

toutes les formes désirées, mais il peut s’avérer très intéressant d’un point de vue industriel s’il est 

appliqué à un polymère thermoplastique tel que le celluloïd.  

Le celluloïd est un nom commun désignant un mélange de camphre et de nitrocellulose dont 

les propriétés varient en fonction de la proportion des deux constituants. Il a été utilisé dans diverses 

applications allant de la production de pellicules à la fabrication d’explosifs [1]. Son utilisation à 

causé de nombreux problèmes étant donné sa grande inflammabilité. Il est d’ailleurs intéressant de 

noter que son transport a été interdit dans les transports publics [2]. Sa production a, par 

conséquent, fortement diminué avec l’avènement de la photographie numérique et des 

polyoléfines. Il reste, tout de même, employé dans des domaines tels que l’industrie de l’armement 

ou celle de la fabrication des balles de tennis de table.  

Ce polymère, à l’état fondu, a comme originalité d’appartenir à une classe bien particulière 

de fluide. Ainsi, il appartient à la famille des polymères viscoélastiques énergétiques. Ces 

matériaux, sous forme liquide, réagissent de la même manière que les autres polymères communs 

et peuvent montrer des effets viscoélastiques. Ces effets se caractérisent en extrusion par 
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l’apparition de défauts, débutant par le gonflement en sortie de filière (die swell) sous certaines 

conditions1 et pouvant, dans le pire des cas, se manifester par un écoulement chaotique dû à une 

fracture de fusion (Gross Melt Fracture) [3].  

 

Figure 1.3  Exemple de défauts d'extrusion classés par ordre 

d'apparition en fonction du débit [108]. 

Dans tous les cas, le résultat est loin d’être satisfaisant et ne peut être utilisé pour une 

quelconque application. Ces problèmes sont étudiés depuis près de soixante ans et plusieurs 

solutions ont été mises en place afin d’éliminer ces différents défauts d’extrusion [4]. Par exemple, 

l’une d’entre elles, implique des pinces qui resserrent le profilé en sortie à certains endroits afin de 

minimiser la quantité de matière sortante dans ces zones (voir Annexe H). Cependant, la plupart 

du temps, ces solutions ont été découvertes de manière empirique puisque la complexité des 

équations à résoudre est telle qu’il est nécessaire d’utiliser un simulateur, ou de se placer dans des 

cas simplifiés pour obtenir une solution approchée. Dans des situations telles que les écoulements 

                                                 

1 A partir d’une certaine valeur du nombre de Weissenberg qui sera défini un peu plus tard. 
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convergents (sortie de filière), il n’est pas possible de résoudre les équations régissant la mécanique 

des fluides (p.ex. Cauchy, Navier-Stokes, Euler-Lagrange,…) de manière analytique2.  

Dans le cas des fluides viscoélastiques, tels que certains polymères énergétiques, il est 

nécessaire de modifier la définition du tenseur des extra-contraintes3, ce qui complexifie 

grandement le système pour plusieurs raisons : 

- premièrement, cela augmente le nombre d’équations différentielles à résoudre passant de 

quatre (pour un fluide newtonien non isotherme en deux dimensions) à sept équations.  

- deuxièmement, il n’existe pas de modèle universel qui conviendrait à n’importe quel fluide 

viscoélastique. Plusieurs modèles ont été ainsi développés au cours des décennies passées; 

chacun avec sa spécificité nécessite de réaliser de nombreux tests rhéologiques sur le 

polymère étudié de manière à vérifier quel modèle lui conviendrait. 

Toutefois, ce problème d’équations aux dérivées partielles (EDP) peut être résolu à l’aide 

de méthodes d’approximation numériques telles que les éléments finis ou encore les volumes finis. 

Dans le cas des écoulements convergents, tels que les écoulements en profilé, ces méthodes 

numériques ont déjà été utilisées afin de prédire et d’optimiser la forme de profilés pour en réduire 

les défauts [98-100].En revanche, dans le cas des polymères énergétiques, peu d'études ont été 

réalisées à ce jour [98] et il n’en existe aucune concernant le matériel d’intérêt dans cette étude. 

1.2 Objectif général 

Étant donnée la nature complexe du domaine des écoulements viscoélastiques, et vu la 

complexité de la dynamique et des mécanismes impliqués dans des géométries non triviales telles 

que les profilés, il reste encore aujourd’hui très difficile de prévoir les écoulements de fluides 

viscoélastiques à travers un profilé. Ce mémoire aura donc pour objectif général de mieux 

comprendre et prédire l’écoulement du celluloïd dans une filière plate afin de limiter les essais en 

                                                 

2 Il est d’ailleurs intéressant de noter que leur résolution, dans le cas d’un fluide newtonien, fait l’objet d’un des prix du 

millénaire rapportant un million de dollars pour quiconque prouvera l’unicité de la solution dans le cas général [5].  

3 Qui sera défini un peu plus tard. 
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laboratoire qui sont à la fois risqués et coûteux. Ce travail s’inscrit dans une optique d’optimisation 

future des filières d’extrusion du celluloïd. 
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CHAPITRE 2 REVUE DE LA LITTÉRATURE 

Cette revue de la littérature commencera par un aperçu des équations et des modèles 

mathématiques permettant de prédire le comportement du fluide en écoulement. Ceci permettra 

d’introduire certains concepts fondamentaux utilisés dans le domaine de la rhéologie afin de mieux 

appréhender la manière dont apparaissent les défauts de mise en forme courants dans le domaine 

des écoulements viscoélastiques. Par la suite, suivra l’exposition des contraintes imposées par le 

celluloïd qui empêchent le recours à certaines méthodes pour éliminer les défauts de mise en forme. 

Ces contraintes seront un handicap limitant le nombre d’expérimentations réalisables. Pour 

contourner ce problème, il sera ainsi présenté des méthodes numériques permettant de simuler 

l’écoulement du celluloïd ainsi que certains logiciels existants pour arriver à ce but. 

2.1 Dynamique des écoulements viscoélastiques 

L’écoulement des polymères énergétiques de haute masse molaire en profilé est l’un des 

problèmes les plus complexes à étudier dans le domaine de la simulation numérique. Cela tient en 

partie au fait qu’il n’existe pas de modèle viscoélastique universel décrivant tous les 

comportements des écoulements de polymères. Afin d’être plus précis sur ce point, il semble 

important de commencer d’abord par poser le problème en partant d’un cas newtonien classique 

et, ensuite, de voir comment il serait possible d’atteindre le niveau de complexité qui sera étudié 

par la suite. 

Pour ce faire, il est possible de commencer en introduisant l’équation de continuité 

permettant de formaliser mathématiquement la conservation de la masse [6] : 

 
𝜕𝜌

𝜕𝑡
+ (𝛁 ∙ ρ𝑣⃗) = 0 (1) 

dans laquelle 𝑡 est le temps, 𝜌 la masse volumique du fluide concerné et 𝑣⃗ le champ de vitesse  

vectoriel. D’un point de vue physique l’Éq. (1) signifie que, quel que soit l’élément de volume 

considéré, la totalité des flux massiques entrants est exactement égale aux flux massiques sortants 

plus un terme d’accumulation.  Généralement, cette équation est utilisée en combinaison d’une 

équation d’état reliant la masse volumique à la pression. Cependant dans le cas du celluloïd, il est 
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envisageable, moyennant une hypothèse, d’obtenir une forme simplifiée de cette équation 

s’écrivant sous la forme [10] : 

𝛁 ∙ 𝑣⃗ = 0 (2) 

L’hypothèse à poser pour y arriver est que le celluloïd est un fluide incompressible. Pour le 

cas de ce fluide viscoélastique, cette affirmation restera valide, étant donné qu’il a déjà été 

démontré à plusieurs reprises que les polymères sont très peu compressibles [10]. Ce résultat est 

illustré à la Figure 2.1 pour un copolymère cyclique d'oléfines (TOPAS 5013L-10) avec des 

variations de masse volumique valant en moyenne 7% pour des variations de pression allant jusqu’à 

200 MPa [7]. 

 

Figure 2.1  Effets de la pression sur le volume spécifique en fonction de la 

température (d’après [7]). 
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2.1.1 Équation de la quantité de mouvement appliquée à un fluide 

viscoélastique 

Une fois l'équation de continuité posée, il est maintenant temps de décrire l’écoulement du 

fluide. Pour ce faire, il est nécessaire d’utiliser l’équation de Cauchy qui, dans un cas général, peut 

être écrite comme suit [6]: 

𝜌 ((𝑣⃗ ∙ 𝛁)𝑣⃗ +
𝜕𝑣⃗

𝜕𝑡
) = −𝛁𝑝 − 𝛁 ∙ 𝛕 + 𝜌𝑔⃗  (3) 

où 𝑝 représente la pression, 𝛕 représente le tenseur des extra-contraintes et 𝑔⃗ le champs 

gravitationnelle. L’Éq. (3) permet de décrire à peu près tout type d’écoulement pour peu que le 

terme 𝛕 soit correctement défini. Or, c’est à ce point que la difficulté apparaît pour les fluides 

viscoélastiques. Pour le comprendre, il faut prendre la définition de 𝜏  pour un cas newtonien : 

𝛕𝑛𝑒𝑤𝑡 = −𝜇(𝛁𝑣⃗ + (𝛁𝑣⃗)𝑇)   (4) 

Avec 𝜇 représentant la viscosité newtonienne. Ici, la contrainte est proportionnelle au taux de 

cisaillement et les seules équations différentielles nécessaires dans le cas d’un fluide newtonien se 

ramènent donc aux équations de Navier-Stokes. Dans un cas plus général, il faudrait aussi y ajouter 

l’équation de la chaleur de façon à prendre en compte les variations des propriétés physiques avec 

la température. Ainsi, le problème en trois dimensions nécessiterait de résoudre 5 équations ce qui 

est impossible à réaliser analytiquement dans le cas général; mais relativement aisé à faire 

numériquement, pour peu que le problème soit correctement posé. 

Toutefois, dans un cas non newtonien viscoélastique comme cela est le cas pour le celluloïd, 

le problème devient bien plus difficile à résoudre. La définition du tenseur des extra-contraintes 

doit pouvoir prendre en compte le caractère visqueux du polymère et l'élasticité de ce dernier. Cette 

élasticité engendre des effets mémoires qui se manifestent par l’apparition de contraintes normales 

en cisaillement n’existant pas dans un cas newtonien. Pour décrire ce phénomène, il n’y a pas de 

loi unique qui fonctionne quel que soit le polymère utilisé, ce qui augmente d’un cran la difficulté 

du problème. 
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2.1.2 Modèles rhéologiques définissant le tenseur des extra-contraintes  

Le premier modèle a été proposé par James Clerk Maxwell. Il peut être représenté par un 

ressort couplé en série à un amortisseur afin que la contrainte qui en résulte soit à la fois visqueuse 

et élastique. Ce modèle, excessivement simple, a pour mérite de prédire certains phénomènes, dont 

l’effet mémoire. Cependant, il a comme inconvénient majeur d’être dépendant du référentiel dans 

lequel l’observateur se place, ce qui le rend inutile dans le cas d’un écoulement généralisé [8].  

Fort heureusement, en modifiant le modèle de manière à le rendre indépendant du 

référentiel, il est possible de corriger tous ses défauts et d’obtenir le modèle dit de Maxwell 

convecté. Toutefois, même si ce dernier corrige certaines des limitations du modèle initial, il n’est 

pas encore suffisamment réaliste pour rendre compte de toute la complexité des écoulements 

viscoélastiques.  

Par conséquent, il a fallu attendre 1950 pour que James Gardner Oldroyd introduise la 

notion de retard dans les modèles viscoélastiques afin d’obtenir des prédictions représentant 

fidèlement certains polymères. Ce modèle dit d’Oldroyd-B est toujours utilisé actuellement et peut 

s’écrire comme suit [8]:  

𝛕 + 𝜆1 (
𝐷𝛕

𝐷𝑡
− 𝛕 ∙ (𝛁𝑣⃗) − (𝛁𝑣⃗)𝑇 ∙ 𝛕) = 𝜂 (𝐴 + 𝜆2 (

𝐷𝐴

𝐷𝑡
− 𝐴 ∙ (𝛁𝑣⃗) − (𝛁𝑣⃗)𝑇 ∙ 𝐴)) (5) 

 

avec : 

𝐴 = 𝛁𝑣⃗ + (𝛁𝑣⃗)𝑇 

où 𝜆1 représente le temps de relaxation, 𝜂 la viscosité et 𝜆2 un temps de retard. En somme, l’Éq. 

(5) présente ainsi la forme générale de quasiment tous les modèles différentiels représentant des 

fluides viscoélastiques. Les termes de l’équation en 𝜆 représentent donc des temps de relaxation 

caractéristiques pouvant être assimilés à la partie élastique du polymère. Les termes en 𝜂 sont la 

partie visqueuse du polymère. Dans le cas du modèle d’Oldroyd-B, ce sont des paramètres 

constants indépendants du taux de cisaillement. Cependant, il n’est pas toujours raisonnable de les 
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considérer comme constants; notamment, si le fluide est un polymère rhéofluidifiant subissant de 

forts taux de cisaillements.  

En fait, c’est le cas d’un écoulement en profilé où les taux de cisaillements peuvent 

rapidement dépasser les 100 𝑠−1, ce qui est suffisant pour diviser la viscosité par 10 par rapport à 

sa viscosité plateaux pour certains fluides énergétiques comme le montre le Figure 2.2.  

 

Figure 2.2  Évolution de la viscosité caractéristique des fluides énergétiques [9] 

Dans le cas du celluloïd, la viscosité est, elle aussi, très fortement corrélée au taux de 

cisaillement ce qui implique que le modèle Oldroyd-B ne sera pas une bonne approximation de la 

réalité physique. Pour obtenir un modèle plus représentatif de ce polymère, il faut considérer des 

modèles pouvant tenir compte de ce comportement rhéofluidifiant.  

Le modèle de White-Metzner est l’un des premiers qu’il est possible de trouver dans la 

littérature. Il reprend l’équation de Maxwell convecté en affectant le paramètre de viscosité de 

manière à ce qu’il soit une fonction du taux de cisaillement. Celle-ci peut correspondre, entre 

autres, à un modèle de Carreau ce qui donnerait l’équation suivante : 

𝛕 + 𝜆 (
𝐷𝛕

𝐷𝑡
− 𝛕 ∙ (𝛁𝑣⃗) − (𝛁𝑣⃗)𝑇 ∙ 𝛕) = 𝜂(𝛾̇)(𝛁𝑣⃗ + (𝛁𝑣⃗)𝑇) (6) 
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avec : 

𝜂(𝛾̇) =  𝜂0(1 + (𝑙|𝛾̇|)2 )
𝑛−1
2   (7) 

où 𝜂0 représente la viscosité à taux de cisaillement nul, l un temps caractéristique du polymère et 

n un indice de loi de puissance. Il est à remarquer que si le temps de relaxation est nul dans l’Eq. 

(6), la définition du tenseur 𝛕 devient celle d’un fluide rhéofluidifiant si l’Eq. (7) est utilisée pour 

définir la viscosité. L’équation de White-Metzner a donc comme avantage d’introduire très 

simplement la dépendance à la rhéofluidité. Elle permet ainsi de prédire, dans une certaine limite, 

le comportement de polymère couramment utilisé dans l’industrie [74]. Cette limite vient du fait 

que le modèle peut dans le cas d’un écoulement élongationnelle prédire une viscosité 

élongationnelle infinie ce qui est physiquement impossible. Pour rappel, les viscosités 

élongationnelles sont définies ainsi [10] : 

𝜂𝑒𝑙1 =
τ33 − τ11

𝜖̇
  𝑒𝑡 𝜂𝑒𝑙2 =

τ22 − τ11

𝜖̇
    (8) 

Cela peut être très handicapant dans des procédés d’extrusion-gonflage où ce type 

d’écoulement est très important. Mais, dans le cas d’un écoulement convergent confiné comme 

celui d’un profilé, cet inconvénient reste mineur [4].Il est important de signaler que pour certains 

types d’écoulement (par exemple un écoulement de type Couette à taux de cisaillement constant), 

il est possible d’obtenir des solutions analytiques comme cela sera vu plus tard [10]. 

Un second modèle, couramment utilisé dans le domaine de la simulation des écoulements 

polymériques est le modèle de Giesekus. Ce modèle part encore une fois de l’équation de Maxwell 

convecté en considérant que les macromolécules orientées créent une force de trainée 

anisotropique  [75]. L’équation incluant le terme de « trainée anisotropique » est définie comme 

suit [76] :  

𝛕 + 𝜆
𝛼

𝜂
 𝛕 ∙ 𝛕 + 𝜆 (

𝐷𝛕

𝐷𝑡
− 𝛕 ∙ (𝛁𝑣⃗) − (𝛁𝑣⃗)𝑇 ∙ 𝛕) = 𝜂(𝛁𝑣⃗ + (𝛁𝑣⃗)𝑇) (9) 

dans laquelle le terme de « traînée anisotropique » est défini mathématiquement par tenseur des 

extra-contraintes au carré. Le caractère rhéofluidifiant du polymère est contrôlé par un nouveau 
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paramètre noté 𝛼 qui peut varier entre 0 et 1 [76]. Plus la valeur de ce paramètre augmentera, plus 

le fluide sera rhéofluidifiant. Ce phénomène est illustré à la Figure 2.3. 

 

Figure 2.3  Profil de vitesse dans un écoulement Couette-Poiseuille 

pour différentes valeurs du paramètre 𝛼 [77]. 

Il est à noter que, si le paramètre  𝛼 est égal à 0, l’équation ne prédit plus de comportement 

rhéofluidifiant. Par ailleurs, l’ajout de ce terme de « traînée anisotropique » permet de régler 

plusieurs défauts du modèle de White-Metzner. L’un des plus flagrants étant que ce modèle ne 

prédit pas une viscosité élongationnelle infinie à partir d’un certain taux d’élongation. Cette valeur 

est, cependant, bornée lorsqu’un fort taux d’élongation est atteint. L’inconvénient majeur de ce 

modèle reste qu’il est moins précis en élongation que d’autres [78].Cependant, comme expliqué 

précédemment, cela n’est pas réellement impactant dans cette étude. Par ailleurs, le modèle possède 

des solutions analytiques permettant d’évaluer le paramètre 𝛼 [79].  

Le troisième et dernier modèle rhéofluidifiant qui sera utilisé dans cette étude est le modèle 

de Phan-Thien-Tanner. Créé en 1977, celui-ci se base sur la théorie des réseaux où les chaînes 

polymériques enchevêtrées sont considérées comme un réseau dans lequel les nœuds ne sont pas 

censés se déplacer par translation. Ils peuvent néanmoins glisser les uns sur les autres ou encore se 

disloquer en fonction de la contrainte subie [80]. Ce comportement peut être modélisé par 

l’équation suivante : 



13 

 

 

𝛕 ∙ 𝑒
𝜆𝜀
𝜂

𝑡𝑟(𝛕)
+ 𝜆 (

𝐷𝛕

𝐷𝑡
− 𝛕 ∙ (𝛁𝑣⃗) − (𝛁𝑣⃗)𝑇 ∙ 𝛕) = 𝜂(𝛁𝑣⃗ + (𝛁𝑣⃗)𝑇) (10) 

dans laquelle 𝜂 représente la viscosité à cisaillement nul. L’Éq. (10) possède ainsi la même forme 

que les autres modèles à l’exception d’un terme. Ce dernier introduit l’exponentielle de la trace du 

tenseur des extra-contraintes ce qui donne un caractère non linéaire à cette équation. Le paramètre 𝜀 

, quant à lui, viendra affecter l’exponentielle de manière à ce que le terme soit plus ou moins 

dominant, ce qui se caractérise par une variation des effets rhéofluidifiants. Tout cela est illustré 

sur la Figure 2.4. 

 

Figure 2.4  Évolution de la viscosité adimensionnelle normalisé en 

fonction du taux de cisaillement adimensionnelle [81].  

 Par conséquent, plus le paramètre 𝜀 sera proche de 1, plus l’effet rhéofluidifiant sera fort 

et apparaitra à faible taux de cisaillement [81]. Si jamais le paramètre 𝜀 est nul l’équation revient à 

celle d’un modèle de Maxwell convecté. Il s’avère que la courbe de viscosité en cisaillement 

obtenue grâce à l’Éq. (10) est très similaire à celle prédite par un modèle de Carreau. La valeur des 

paramètres de l’Éq. (10) est donc corrélée aux valeurs des paramètres du modèle de Carreau [82].  

Ce modèle a l’avantage, comme pour le modèle de Giesekus, de ne pas prédire une viscosité 

élongationnelle infinie à partir d’un certain taux d’élongation. Cependant, sa non-linéarité est un 
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handicap qui empêche l’obtention de solutions analytiques même dans des cas très simples. Il est 

donc courant, dans la littérature, de linéariser le terme exponentiel afin d’obtenir un modèle plus 

simple pour lequel des solutions analytiques existent. Cette linéarisation se fait en général à l’aide 

d’une expansion de Taylor d’ordre 1 tel que [57]: 

𝑒
𝜆𝜀
𝜂

𝑡𝑟(𝛕)
≈ 1 +

𝜆𝜀

𝜂
𝑡𝑟(𝛕) (11) 

Il existe encore beaucoup d’équations constitutives définissant le tenseur des extra-

contraintes pour un fluide viscoélastique. Néanmoins, les trois modèles présentés précédemment 

sont suffisants pour prédire des écoulements viscoélastiques dans un profilé. Les autres modèles 

tels que PomPom et FENE étant plus utile pour des écoulements élongationnelles [83], ils ne seront 

donc pas utilisés dans cette étude qui se limitera aux trois modèles rhéologiques présentés 

précédemment. 

2.1.3 Nombre adimensionnel et définition rhéologique 

Avant de présenter les différents nombres adimensionnels et les fonctions rhéologiques, 

utilisées couramment dans les articles décrivant ce type d’écoulement, il est important d’introduire 

un certain formalisme permettant de s’affranchir des notions d’espaces tridimensionnelles 

cartésiens x, y et z. Dans le domaine rhéologique, la notation de ces dimensions est remplacée par 

les chiffres 1,2 et 3, représentant chacun une dimension avec une définition bien particulière [10]. 

Ici, la dimension 1 représente la dimension dans laquelle l’écoulement a lieu. Par exemple, dans le 

cas d’un écoulement dans un cylindre ouvert aux extrémités, cela représenterait la composante z 

en coordonnées cylindriques. La dimension 2 représente l’espace dans lequel s’établit le plus fort 

gradient de contrainte en cisaillement. Dans l’exemple du cylindre, cela reviendrait à considérer 

que 2 équivaut à la composante r en coordonnées cylindriques. La dimension 3, quant à elle, 

représente la dernière dimension caractérisant les contraintes secondaires ayant le moins d’effets 

sur l’écoulement. Pour le cas du cylindre, cela équivaut à la dimension thêta ou quasiment aucune 

contrainte n’est engendrée. Pour un écoulement quelconque (viscoélastique ou classique), il est 

possible de définir un nombre adimensionnel caractérisant les forces visqueuses et les forces 

d’inertie. Celui-ci est le nombre de Reynolds (𝑅𝑒) et il peut être écrit sous la forme suivante [6] : 
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𝑅𝑒 =
𝜌𝑣𝐷𝑐

𝜂
 (12) 

Ici, 𝐷𝑐 représente une longueur caractéristique de l’écoulement qui peut être approximée par un 

rayon hydraulique. De fait, la valeur de ce nombre permet de dire si l’écoulement est en régime de 

laminaire, transitoire ou turbulent. Plus il sera grand, plus l’écoulement du fluide se rapprochera 

d’un écoulement turbulent. En revanche, plus il sera faible, plus le fluide aura tendance à s'écouler 

en régime laminaire. Dans la plupart des publications, il est admis que, si Re<<1, le fluide s’écoule 

en régime rampant (ou Stokes) [87]. La différence entre le régime laminaire et rampant est le terme 

d’inertie de l’Éq. (3) qui sera négligé pour un écoulement rampant [31]. Par ailleurs, étant donné 

les vitesses qu’il est possible d’atteindre lors de la mise en forme des polymères en fusion et le fait 

que leurs viscosités dépassent régulièrement le kPa.s, il est d’usage de considérer un écoulement 

rampant ou laminaire, dépendamment de l’importance à donner au terme d’inertie. Les deux autres 

régimes ne seront donc pas étudiés dans ce cette analyse puisqu’il est physiquement improbable 

d’atteindre un Reynolds suffisamment grand dans le cas de l’écoulement d’un celluloïd [11].  

Les deux nombres adimensionnels qu’il est nécessaire de définir après le nombre de 

Reynolds sont le nombre de Deborah et le nombre de Weissenberg [10]. Le premier représente le 

temps de relaxation caractéristique d’un polymère par rapport au temps caractéristique d’un 

écoulement : 

𝐷𝑒 =
𝑡𝑝𝑜𝑙𝑦𝑚è𝑟𝑒

𝑡é𝑐𝑜𝑢𝑙𝑒𝑚𝑒𝑛𝑡
 (13) 

Le second représente le rapport entre les forces élastiques et les forces visqueuses :   

𝑊𝑒 =
τ11 − τ22

τ12
 (14) 

Il est à noter que, dès lors que le modèle utilisé est de forme Oldroyd_B, le nombre de 

Weissenberg est strictement égal au taux de cisaillement multiplié par le temps de relaxation λ du 

polymère. Dans la plupart des études réalisées, le temps caractéristique de l’écoulement est égal à 

l’inverse du taux de cisaillement multiplié par le temps de relaxation du polymère. Ce qui engendre 

une confusion entre ces deux nombres puisqu’ils ont la même expression. Il est donc assez commun 
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d’approximer le nombre de Deborah par celui de Weissenberg même si cela est au sens strict faux. 

Toutefois, il est excessivement difficile de définir les forces normales caractéristiques d’un 

écoulement quelconque. Cela étant grandement dû au fait que les forces normales sont des variables 

difficilement mesurables dans certaines géométries. C’est donc aussi pour cette raison que, dans la 

majorité des études, le nombre de Weissenberg et celui de Deborah seront considérés comme 

identiques. 

Pour finir, il est nécessaire de définir deux fonctions rhéologiques indispensables à l’étude 

de l’écoulement d’un polymère. Celles-ci sont la viscosité et le premier coefficient de contrainte 

normal. La viscosité notée η représente la résistance à l’écoulement et est définie comme : 

𝜂 =
τ12

𝛾̇
 (15) 

Dans le cas d’un écoulement à viscosité constante, cette valeur sera invariante puisque la 

contrainte en cisaillement est proportionnelle au taux de cisaillement. En revanche, dans le cas d’un 

écoulement polymérique, la viscosité dépend du taux de cisaillement. Cela s’explique par le fait 

que les macromolécules enchevêtrées auront tendance à se mouvoir les unes par rapport aux autres 

dès lors que le fluide se met en mouvement. Cette théorie est connue sous le nom de théorie de la 

reptation. Elle prévoit qu'un écoulement se produisant à haut taux de cisaillement verra ses 

macromolécules serpenter plus rapidement. Ceci engendrant une relaxation plus rapide des 

contraintes internes dans la macromolécule et conséquemment une diminution de la viscosité lors 

d’une augmentation du taux de cisaillement [12].  

En ce qui concerne le premier coefficient de contraintes normales, il caractérise les forces 

normales que génère un fluide en écoulement. Il s’écrit comme suit: 

𝜓1 =
τ11 − τ22

𝛾̇2
 (16) 

Il est à noter que ce coefficient est souvent utilisé pour vérifier la validité des résultats obtenus par 

une simulation numérique étant donné que, pour certains cas et modèles, il existe une solution 

analytique connue pour cette variable.   
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2.1.4 Équation de la chaleur appliquée à un fluide viscoélastique  

Du point de vue de la thermodynamique certaines propriétés physiques décrivant un fluide 

quelconque devraient être fonction de la température [4]. Cela est le cas de la viscosité, du temps 

de relaxation et de la masse volumique qui sont inversement proportionnels à la température dans 

le cas d’un liquide [6]. Dans le cas des polymères en fusion il est possible d’établir un lien direct 

entre la viscosité et la température à l’aide de la relation suivante en considérant que la masse 

volumique du fluide est constante [10]: 

𝑎𝑇 =
𝜂𝑇

𝜂𝑇𝑟𝑒𝑓

𝑇𝑟𝑒𝑓

𝑇
 (17) 

Cette relation fait intervenir un facteur de glissement noté 𝑎𝑇 permettant de superposer les courbes 

de viscosité sur une courbe maîtresse de référence grâce au principe de superposition temps-

température [84]. Il suffit donc de trouver une relation entre la température et le facteur de 

glissement et d’utiliser une viscosité de référence pour connaître la viscosité à une température 

donnée. Cette relation peut prendre plusieurs formes en fonction de la nature amorphe ou cristalline 

du polymère entre autres. Cependant, cette étude s’intéresse à la simulation numérique de 

l’écoulement du celluloïd en profilé et non à la caractérisation exacte de toutes les facettes de la 

rhéologie du celluloïd. Un modèle simple est donc ici présenté afin de faire le lien entre viscosité 

et température. Or,  l’une des relations les plus simples (faisant intervenir le moins de paramètres)  

qu’il est possible de trouver est celle d’Arrhenius. Elle s’exprime mathématiquement comme suit 

[10]:   

𝑎𝑇 = 𝑒
𝐸

𝑅𝑇0
−

𝐸
𝑅𝑇  (18) 

dans laquelle R et E représentent respectivement la constante des gaz parfaits et l’énergie 

d’activation apparente du processus de relaxation [85]. En replaçant 𝑎𝑇 dans l’Éq. (17), le lien entre 

viscosité et température apparaît. Ce lien permet de dire que si l’écoulement n’est pas isotherme 

alors l’équation de la chaleur devrait être prise en compte étant donné que le terme de viscosité est 

prépondérant dans les équations de la quantité de mouvement et dans les modèles rhéologiques.  
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L’équation de la chaleur est une équation aux dérivées partielles initialement développée 

par Joseph Fourier en 1807 [6]. Elle permet de prédire, entre autres, comment évoluent les champs 

de température ainsi que les flux qui leur sont associés. En considérant que la conductivité 

thermique 𝑘 est constante et que la masse volumique varie peu avec la température (ce qui est le 

cas pour la plupart des polymères) [86], elle s’écrie de la manière suivante [6] :  

𝜌𝐶𝑝
𝐷𝑇

𝐷𝑡
− 𝑘𝛁2𝑇 =  𝛕: 𝛁𝑣⃗ (19) 

L’Éq. (19) peut être ainsi séparée en deux parties distinctes. Une partie à gauche du signe 

égal contenant (respectivement de gauche à droite) un terme de convection et un terme de 

conduction. Une partie à droite du signe égal symbolisant la dissipation visqueuse. Ce terme de 

dissipation visqueuse noté 𝛕: 𝛁𝑣⃗ est induit par la résistance à l’écoulement du fluide et peut être vu 

comme une source de chaleur potentielle. Il n’est cependant pas rare de le négliger pour des fluides 

peu visqueux [6]. Dans le cas des polymères tels que le celluloïd, la viscosité à taux de cisaillement 

nul peut facilement dépasser 10 kPa·s  [31]. Il n’est donc pas forcément raisonnable de négliger ce 

terme. Dans le cas de l’écoulement du HDPE dans une conduite cylindrique, par exemple, il est 

possible de démontrer que la dissipation visqueuse peut engendrer une augmentation de 

température de 50 K [88]. En somme, l’effet de la dissipation visqueuse devrait donc fortement 

impacter l’écoulement du fluide ce qui augmente d’un cran la complexité du problème à résoudre.  

2.2 Mise en forme du celluloïd et défaut d’extrusion  

Le celluloïd est un composé qu’il est possible de mettre en forme par des techniques 

utilisées couramment dans le domaine de la plasturgie sous certaines conditions [68]. L’application 

de ces techniques au celluloïd dépendra  grandement du produit final souhaité. Dans cette section, 

l’accent sera mis sur les possibilités de mise en forme existantes ainsi que les problèmes qu’il est 

possible de rencontrer dans le cas d’un écoulement viscoélastique.  

2.2.1 Technique de mise en forme des polymères  

Le polymère sortant des unités de polymérisation courantes se présente souvent sous la 

forme d’un solide très peu malléable à température ambiante. Il est donc d’usage de le faire fondre 
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à l’intérieur d’une extrudeuse en augmentant progressivement la température du polymère. Dans 

le cas du celluloïd, un solvant est ajouté au mélange afin de diminuer la viscosité du composé.  

 

Figure 2.5  Schéma général d’une extrudeuse bi-vis [13]. 

 

Cette machine, utilisée pour la mise en forme des thermoplastiques, se compose de trois 

éléments majeurs : 

- une trémie, qui recevra le polymère en petit morceau ayant souvent la forme de granulés, 

et qui permettra de convoyer ce polymère solide à la vis d’Archimède; 

- une vis d’Archimède couplée à un élément chauffant permettant de faire fondre le polymère 

tout en l’acheminant vers l’alimentation; 

- une alimentation qui recevra le polymère fondu et l’enverra vers le procédé de mise en 

forme. 

Le choix des deux premières parties est d’ordinaire très important, car ce sont celles-ci qui 

permettront de transformer le polymère solide en un fluide malléable qui pourra être structuré à 

l’aide d’un procédé mis en forme. Toutefois, dans cette étude, ce sujet ne sera pas abordé étant 

donné que le domaine d’intérêt présenté concerne la mise en forme dans un profilé.  

De manière générale, cette technique consiste à connecter la sortie de l’extrudeuse à une 

géométrie ouverte à ces extrémités, permettant ainsi l’écoulement continue d’un flux de matière 
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ayant la forme de la sortie de cette géométrie. Cette technique est la plus simple à mettre en place 

puisqu’elle consiste à simplement connecter le profilé et à laisser la matière s’écouler 

continuellement vers la sortie. Elle offre, comme avantages majeurs, de pouvoir fonctionner en 

régime permanent avec une simplicité de mise en œuvre inégalée dans ce domaine. Toutefois, elle 

n’est pas exempte d’inconvénients, le plus contraignant étant celui des formes usinables [14].  

En effet, certaines formes, trop complexes, ne peuvent tout simplement pas être générées 

par cette méthode. Les briques de Lego, par exemple, avec une forme alternant plusieurs aspérités 

ne peuvent être obtenues grâce à cette technique, puisqu’il est impossible de générer un profilé 

pouvant expulser le fluide de manière ponctuellement discontinue [14]. Il sera donc préférable, 

dans ces cas particuliers, d’utiliser une technique appelée moulage par injection. Celle-ci fait 

intervenir un moule préalablement usiné. La mise en forme en profilé sera donc plus indiquée dans 

le cas où les géométries des produits finis sont simples, notamment pour une feuille. 

La contraction est d’ailleurs un des cas les plus couramment étudiés à l’aide des simulations 

numériques lorsque ces dernières ont besoin d’un cas test pour vérifier leur résultat. Ceci est 

majoritairement dû au fait que cette géométrie possède des solutions analytiques validées 

expérimentalement dans certains cas [15].  Pour finir, cette forme est la géométrie la plus simple 

qui permet de générer un gonflement en sortie de filière. Ce gonflement est le premier défaut de 

mise en forme qu’il est possible d'observer à faible nombre de Weissenberg. Il est à noter que, dans 

ce cas précis, les nombres de Deborah et de Weissenberg ont strictement la même définition que 

celle présentée précédemment c’est-à-dire :  

𝑊𝑒 = 𝐷𝑒 = 𝛾̇𝜆 (20) 

2.2.2 Défauts classiques d’extrusion 

Les défauts d’extrusion apparaissent très régulièrement lors de la mise en forme des 

polymères en profilé. Il se manifeste généralement à faible Weissenberg par un gonflement en 

sortie de géométrie et s’aggrave jusqu’à générer ce qui est communément appelé en anglais un 

Gross Melt Fracture (fracture de fusion) [16]. Cette aggravation est due jusqu’à un certain point, à 

l’augmentation de la vitesse du fluide qui accroit les forces de contraintes normales générées par 

la partie élastique du fluide. Puisque de très faibles vitesses sont suffisantes pour générer des 
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défauts, il est important de signaler que ces phénomènes sont complètement déconnectés du 

nombre de Reynolds, car ils se produisent, la plupart du temps, à des Reynolds très faibles [10]. 

Par conséquent, il est difficile d’imputer ces phénomènes à une turbulence quelconque. Ce point 

étant clarifié, il est maintenant temps d’étudier chacun de ces défauts par ordre croissant de 

Weissenberg.  

2.2.2.1 Gonflement en sortie de filière  

Le gonflement en sortie de filière est le premier défaut qu’il est possible de rencontrer lors 

de la mise en forme en profilé. Il n’est pas entièrement dû aux contraintes normales, mais celles-ci 

contribuent significativement à son ampleur. En effet, le gonflement s’observe même dans le cas 

d’un fluide newtonien comme l’eau. Il s’explique d’abord par le fait que dans la filière l’écoulement 

est contraint aux parois ce qui engendre le profil parabolique caractéristique d’un écoulement 

laminaire. Lors de sa sortie, aux frontières du fluide, l’air n’exerce pas de contraintes sur le fluide. 

Ceci engendre un réarrangement du profil de vitesse de sorte que l’écoulement passe d’un profil 

parabolique à plat, ce qui explique pourquoi tout fluide newtonien ou non newtonien, en régime 

laminaire, sortant d’une filière, aura toujours tendance à gonfler en sortie [18].  

Cependant, tel que cité précédemment, cela ne suffit pas à expliquer l’ampleur du 

phénomène dans le cas d’un fluide viscoélastique. Par conséquent, il est impératif de reprendre 

l’analogie du ressort pour illustrer la deuxième partie du phénomène. Dans un écoulement contraint 

quelconque, le fluide en écoulement subit un cisaillement se caractérisant par une contrainte sur 

deux plans orthogonaux. Si le polymère est représenté par une bande élastique, cela revient à 

considérer que ce dernier est étiré dans le sens de l’écoulement et comprimé dans la direction 

orthogonale à l’écoulement. Dès lors qu’il est exposé à l’air libre, il ne subit plus aucune contrainte 

puisque l’air ambiant ne le permet pas. Il apparaît donc clairement que le ressort reprendra sa forme 

initiale ce qui forcera le fluide à gonfler dans le sens transverse de l’écoulement [17]. La Figure 

2.6 permet de l’illustrer. 
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Figure 2.6  Représentation d’un gonflement en sortie de filière [19]. 

 

D’un point de vue analytique, il n’existe qu’une manière de prévoir le gonflement en sortie 

de filière. Il s’agit de l’utilisation de la formule analytique suivante démontrée par Tanner en 1970 

[17]: 

𝐷𝑔𝑜𝑛𝑓𝑙𝑒𝑚𝑒𝑛𝑡

𝑑𝑠𝑜𝑟𝑡𝑖𝑒
= [1 +

1

2
(

𝑁1

2τ12
)
2

]

1
6

+ 0.13 (21) 

dans laquelle 𝐷𝑔𝑜𝑛𝑓𝑙𝑒𝑚𝑒𝑛𝑡est le diamètre du gonflement, 𝑑𝑠𝑜𝑟𝑡𝑖𝑒 est le diamètre de sortie de la 

filière, 𝑁1 représente la différence de contraintes normales et τ12 représente la contrainte en 

cisaillement. 

L’Eq. (21) (nommée loi de Tanner) implique que le ratio de gonflement (D/d) entre l’entrée 

et la sortie est une fonction des forces de cisaillement ainsi que des forces normales. Il est possible 

de remarquer que le gonflement en sortie de filière sera d’autant plus grand que la différence de 

contraintes normales sera supérieure aux contraintes en cisaillement. Conséquemment, cette 

formule a pour avantage de donner un lien direct, entre le gonflement et les contraintes, qu’il est 

possible d’obtenir analytiquement ou par simulation numérique. Cependant, tel qu’il est précisé 

dans l’article de Tanner, cette approximation est limitée par plusieurs hypothèses permettant de 

simplifier suffisamment l’équation afin d’obtenir une solution analytique. Si jamais une des 

hypothèses était fausse, il serait nécessaire d’utiliser la forme non simplifiée des équations 

viscoélastiques. Celle-ci implique l’utilisation d’une technique de simulation numérique dans le 
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but de résoudre les équations de manière approchée. Par contre, elle reste beaucoup plus complexe 

à mettre en place et implique de grandes connaissances tant dans le domaine de la rhéologie que 

dans celui de la simulation numérique. Ce point sera, d’ailleurs, développé dans la section dédiée 

à la simulation numérique. 

2.2.2.2 Défauts « peau de requin » et « adhérence-glissement » 

Les deux prochains défauts présentés se produisent juste après le gonflement en sortie de 

filière. Ce sont tous deux des défauts de surface induits par une augmentation ponctuelle 

significative de la contrainte normale en sortie de l’écoulement. Ils sont donc illustrés dans la 

Figure 2.7 en fonction du taux de cisaillement auquel ils se produisent. 

 

Figure 2.7  Évolution des défauts d’extrusion en fonction du taux de cisaillement  (GMF signifie 

Gross Melt Fracture ou fracture de fusion en français) [20] 
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Il est possible de remarquer que le défaut « peau de requin » apparaît juste avant le défaut 

« adhérence-glissement ». Le défaut « peau de requin » tire son nom de sa forme très similaire à 

celle de la peau des requins. Cet effet est, en partie, dû au bord de sortie très écharpée des profilés 

qui engendre une augmentation ponctuelle de la contrainte normale en sortie. Cette augmentation 

très soudaine est accompagnée d’une diminution périodique de la contrainte normale due, en 

majeure partie, à la nature élastique du fluide [20]. Cette variation de contrainte normale se traduit 

par des augmentations et diminutions de gonflement très régulières. Il est d’ailleurs possible de le 

constater grâce à la formule de Tanner. Si la contrainte normale est une fonction périodique, alors 

le gonflement devient lui aussi une fonction périodique.  

En ce qui concerne le défaut « adhérence-glissement », cela devient un peu plus complexe, 

car ce phénomène est à mi-chemin entre les défauts GMF et « peau de requin ». En effet, ce 

phénomène apparaît dès lors que les contraintes normales sont suffisamment fortes pour faire 

basculer le fluide d’un écoulement en régime permanent à un écoulement transitoire systématique. 

Pour reprendre l’analogie du ressort, cela reviendrait à mêler plusieurs milliers de ressorts entre 

eux de manière à ce que certains comprimés forcent les autres ressorts à être tendus. Cette 

configuration engendre une situation telle qu’à partir d’un certain taux de cisaillement, le fluide 

redevient périodiquement stable sans le moindre défaut en surface [21].  

Ceci est un paradoxe puisqu’une augmentation du taux de cisaillement devrait normalement 

entraîner plus de contraintes normales et donc plus de défauts. Toutefois, cette situation étrange ne 

se produit que sous certaines conditions bien précises pouvant ne jamais apparaître; ce qui explique 

la zone de transition discontinue du diagramme précédent. 

2.2.2.3 Fracture de fusion (Gross Melt Fracture) 

Le dernier défaut qu’il est possible de croiser dans le cas d’un écoulement en profilé est la 

fracture de fusion plus communément appelée GMF (Gross Melt Fracture). Ce défaut apparaît pour 

de très hauts nombres de Weissenberg (>1000) et se caractérise par un écoulement complètement 

erratique. Ce comportement s’explique par le fait que les contraintes normales deviennent si 

grandes que l’écoulement passe d’un régime permanent à un régime pulsé. Les forces 

viscoélastiques faisant que les contraintes normales s’accumulent à l’intérieur du fluide (et non 

plus en surface comme c’est le cas pour le défaut « peau de requin »), cela entraîne une déformation 
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volumique du fluide dès qu’il se retrouve en surface libre [22]. Ce défaut ne sera pas étudié ici 

parce que la très grande viscosité du celluloïd et sa sensibilité aux variations de température, due à 

la friction, rendent la génération d’un GMF hautement improbable.   

2.2.3 Contraintes de mise en forme dues à l’utilisation du mélange 

nitrocellulose/camphre 

Au vu des défauts et modèles exposés précédemment, il sera présenté dans cette section le 

comportement du celluloïd lors de sa mise en forme. Or, les matériaux énergétiques tels que le 

celluloïd sont des composés thermosensibles difficiles à mettre en forme. Cette difficulté vient du 

fait que les polymères en fusion ont tendance à générer de la dissipation visqueuse qui engendre 

une élévation de la température au fur et à mesure que le fluide s’écoule le long du profilé. Dans le 

cas d’un polymère énergétique, cette génération peut s’avérer critique puisque la température de 

thermoplasticité peut même dépasser celle de décomposition thermique [23]. Ce phénomène 

s’applique parfaitement au mélange nitrocellulose/camphre plus communément appelé celluloïd.   

La nitrocellulose est un polymère énergétique fibreux de la famille des thermoplastiques. 

Découvert par le Docteur Friedrich Schönbein en 1846, elle est produite par immersion de cellulose 

(coton, bois,…) dans un bain composé d’acide nitrique et sulfurique. Cette cellulose est un 

polymère composé de cycle glucose contenant chacun trois groupements OH. Ces groupements 

OH réagiront avec l’acide nitrique par estérification pour former des groupements NO2 qui 

viendront remplacer les groupements OH de la cellulose [1]. Cette réaction produisant de la 

nitrocellulose et de l’eau est illustrée sur la Figure 2.8. 

 

Figure 2.8  Schéma de nitration de la cellulose [28]. 
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À première vue, l’utilisation d’une solution composée essentiellement d’acide nitrique 

semble plus intéressante étant donné que cela permettrait d’avoir un réactif en excès qui 

engendrerait la réaction de tous les groupements OH. Néanmoins, il apparaît qu’à forte 

concentration d’acide nitrique (>90%), la nitrocellulose se dilue localement avec l’eau formée lors 

de la réaction et se répand dans le reste des fibres non nitrées, engendrant ainsi une dissolution qui 

conduit à une gélatinisation des fibres empêchant donc toute nitration de cette zone.  Le mélange 

durcit, par endroits, de manière à ce que les zones touchées deviennent complètement insolubles. 

Pour contrer ce problème, la solution qui a été trouvée consiste à ajouter de l’acide sulfurique. De 

fait, cet ajout permettra une réaction avec les molécules d’eau formées lors de la nitration de la 

cellulose. Ceci empêche les molécules d’acides nitriques de former les zones de durcissement 

insoluble et permet d’atteindre un taux d’azote théorique maximal de 14.1%. Celui-ci correspond 

à une cellulose dont tous les groupements OH ont été remplacés par des groupements NO2. Dans 

la réalité, le taux d’azote maximal atteint est de 13.9%, car plusieurs facteurs rendent certains 

groupements OH plus difficiles d’accès. Ce taux d’azote sera ainsi la principale caractéristique 

différenciant les nitrocelluloses les unes des autres [1]. 

Il existe différentes classifications de la nitrocellulose dépendamment de son taux de 

nitration. Cette classification se fait comme suit : 

- mono-nitratée (si le taux d’azote est inférieur à 6.76%) où statistiquement la majorité des 

cycles glucoses ne contiennent que 1 groupement NO2; 

- bi nitratée (si le taux d’azote est proche de 11.12%) où statistiquement la majorité des cycles 

glucoses contiennent 2 groupements NO2; 

- tri nitratée (si le taux d’azote est de 14.12%) où la quasi-totalité des cycles glucoses 

contiennent 3 groupements NO2. 

En conséquence, cette catégorisation de la nitrocellulose permet ainsi de déterminer le 

niveau de réactivité de la nitrocellulose. Une nitrocellulose, avec un taux de nitration supérieur à 

12%, sera classée CP (CP = coton poudre), ce qui correspond à un grade militaire et servira 

d’explosif. En revanche, une nitrocellulose avec un taux de nitration inférieur à 12% sera classée 

CA2 ou CA4 (CA= coton azoté), ce qui est un grade dit « industriel » et elle sera utilisée dans la 

production de laques, produits cosmétiques, balles de ping-pong, etc.  
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Une fois fabriquée, séchée et stabilisée, la nitrocellulose se présente comme un solide qui 

peut être amorphe ou semi cristallin dépendamment de plusieurs facteurs dont le taux d’azote. 

Cependant, cette structure semi cristalline ne commence à apparaitre sur un cliché de diffraction 

qu’à partir de 10% d’azote. Une étude de l’Université Cranfield a d’ailleurs montré que pour de la 

nitrocellulose fabriquée récemment et possédant un taux d’azote de 13,55%, son niveau cristallinité 

peut alors atteindre 29 [25].  La nitrocellulose ainsi formée, si elle n’est pas plastifiée, donnera un 

solide très rigide. Cette rigidité n’est pas pratique lors de la mise en forme de cette dernière. Il 

faudra donc la mélanger à un plastifiant afin de l’assouplir et de la rendre ainsi plus malléable. Pour 

ce faire, il est nécessaire de la solvater dans un mélange qui peut être constitué d’un alcool, d’une 

cétone ou d’éther. Dans le cas du celluloïd, il est possible d’utiliser un mélange composé d’alcool 

éthylique et d’acétone dans un ratio 1:2, ce qui forme un gel auquel on incorpore le camphre qui 

est le plastifiant utilisé dans la composition du celluloïd [26] : 

Au vue de la très grande viscosité du mélange, il est d’usage d’utiliser un malaxeur sigma 

afin d’obtenir une pâte malléable contenant la nitrocellulose et le plastifiant. Toutefois, cette 

opération n’est pas sans risque puisque le mélange alcool/acétone est assez volatile : il se peut que 

la pâte s’échauffe par friction et qu’il y ait une grande perte de solvant. Cette dernière engendrerait 

une augmentation de la température du mélange et causerait son ignition. Il faut donc être 

particulièrement précautionneux lors de ce mélange et toujours s’assurer qu’il y ait suffisamment 

de solvant [27]. La concentration de plastifiant, ainsi utilisée, affectera les propriétés mécaniques 

pour rendre le solide plus ou moins malléable dépendamment des propriétés souhaitées. 

Dans le cas du celluloïd, la concentration de camphre souhaitable pour cette étude serait 

située à environ 20 % puisqu’à ce pourcentage, la contrainte à la rupture est maximale comme le 

montre la Figure 2.9 [29]. 
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Figure 2.9  Test d’élongation du celluloïd [29]. 

Pour finir, il faut noter qu’il est nécessaire d’utiliser un stabilisant à cause de la tendance 

qu’a la nitrocellulose à se dégrader au cours du temps. Cette dégradation est auto catalytique, car 

la nitrocellulose produit un acide qui catalysera sa réaction et engendrera une réaction 

exothermique en chaîne. Pour éviter cela, de la centralite sera ajoutée au mélange afin de neutraliser 

l’acide produit lors de la dégradation du composé ce qui permettra d’augmenter la durée de vie de 

notre polymère.  

L’étude de ce celluloïd sera donc complexe parcequ’elle nécessitera de manipuler un 

mélange sensible à la chaleur. Or, cela nécessiterait  également de coupler les équations précédentes 

à l’équation de la chaleur, car un fluide en mouvement génère de l’énergie par dissipation 

visqueuse. Une étude de 1987, de Carter et Warren, présente d’ailleurs des résultats montrant la 

manière dont la température impacte la rhéologie du fluide. Il est ainsi possible de voir qu’un 

mélange double base nitrocellulose/nitroglycérine, utilisant de l’acétone comme solvant, possède 

une contrainte et des paramètres seuils d’Herschel -Bulkley diminuant avec la température. Pour 

rappel, la contrainte τ issue de l’équation d’Herschel- Bulkley s’écrit sous la forme suivante [10] :  
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𝜏 = τ0 + 𝑘(𝛾̇)𝑛 (22) 

où τ0 représente la contrainte seuil alors que k et n représentent des paramètres du modèle. Il est 

toutefois important de noter que si n<1 l’écoulement est rhéofluidifiant, ce qui est toujours le cas 

pour tous les mélanges utilisés par Warren et Carter [30]. L’article de ces chercheurs étudie l’effet 

d’une contraction instantanée sur l’écoulement du polymère énergétique. Ainsi, ils versent dans 

une extrudeuse le mélange NC/NG afin de voir comment un angle d’entrée de 90° peut affecter le 

gonflement en sortie de filière. Ils montrent ainsi que celui-ci, pour ce genre de mélange, peut 

atteindre jusqu’à 1.5 fois la taille de sortie de la filière.  

Toutefois, ces résultats ne sont que des tests rhéologiques utilisant, certes le modèle 

Herschel-Bukley, mais ne permettant pas vraiment de prédire avec exactitude le gonflement en 

sortie de filière ou tout autre problème courant dans l’industrie polymérique.  Pour cela, il faudra 

attendre 1992 pour que Tanner et Beverly reprennent les travaux de Warren et Carter afin de 

simuler l’écoulement avec des modèles plus riches et plus complexes [102]. Dans cette étude, les 

auteurs confrontent les résultats obtenus via la simulation par des modèles HB (Herschel-Bukley) 

et MPTT (Modified Phan Thien Tanner) afin de voir comment cela affecterait le résultat.  

À ce niveau, le modèle HB est incapable de prédire un gonflement en sortie de filière 

quelconque puisqu’en cisaillement, pour ce modèle, les contraintes normales sont nulles en tout 

temps. Or, le gonflement en sortie de filière est en grande partie dû aux contraintes normales non 

nulles en cisaillement. Le seul modèle pouvant donc prédire l’évolution du gonflement en sortie de 

filière dans cette étude sera donc le modèle MPTT.  

En effet, le modèle MPTT utilisé dans cet article est une version améliorée du modèle PTT 

présenté par Phan Thien et Tanner et a deux avantages majeurs. D’une part, il permet de prédire 

avec une certaine exactitude la contrainte normale; d’autre part, il fait intervenir la trace du tenseur 

des extra-contraintes, ce qui permet de prédire un écoulement rhéofluidifiant. Warren et Carter 

ayant déjà démontré que le fluide est un rhéofluidifiant, toutes ces preuves tendent à dire que le 

modèle MPTT est une alternative qui permet de prédire l’écoulement du celluloïd. Cela est appuyé 

par les résultats à la Figure 2.10, qui montre que le modèle MPTT prédit assez précisément le 

gonflement en sortie filière pour différents taux de cisaillement .   
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Figure 2.10  Gonflement en sortie de filière pour un mélange NC/ 

NG [102]. 

Ces résultats sont obtenus à faible temps de relaxation : ils ne représentent pas toute la 

complexité du système. Par ailleurs, il est  possible de voir sur la Figure 2.10 que le modèle MPTT, 

tout comme le modèle HB, diverge clairement des résultats expérimentaux à haut taux de 

cisaillement apparent. 

 

Figure 2.11  Évolution de la contrainte en cisaillement pour un 

mélange NC/NG [102]. 
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Les contraintes imposées par l’écoulement dans une filière d’un celluloïd composé de 

nitrocellulose sont donc : 

- la stabilité thermique, qui rend complexe la manipulation du fluide et nécessite l’ajout de 

stabilisant et de solvant afin de minimiser les risques d’inflammation voire d’explosion; 

- la dissipation visqueuse due au fait que le fluide est extrêmement visqueux (5 kPa.s à 60°C 

[102]) ce qui pourrait engendrer une grande libération de chaleur. Tel qu’expliqué 

précédemment, le fluide est sensible à la chaleur. Il faudrait donc ajouter l’équation de la 

chaleur aux équations déjà définies afin de tenir compte de cette génération thermique et 

donc de contrôler la température du fluide;  

- les contraintes seuils dues à la NC nécessiteront donc de déterminer le moment critique en 

dessous duquel le fluide n’est pas en mouvement. Ceci complexifie la simulation, car, en 

dessous de cette contrainte seuil, la viscosité est supposée tendre vers l’infini ce que les 

simulations par ordinateur ne sont pas réellement capables de représenter; 

- la rhéofluidité du composé, provenant de la nature polymérique de la nitrocellulose qui 

engendre un profil très différent d’un écoulement en cisaillement pour un régime laminaire 

classique, nécessite donc d’utiliser un modèle tenant compte de la dépendance au 

cisaillement de la viscosité; 

- les contraintes normales, étant dues encore une fois à la nature polymérique de la NC et 

engendrant les phénomènes gonflement en sortie de filière, « peau de requin », « adhérence-

glissement », imposent l’utilisation d’un modèle viscoélastique tenant compte du taux de 

cisaillement et du temps de relaxation pour obtenir des résultats de simulations proches de 

ce qui peut être obtenu expérimentalement.  

Maintenant que nous avons abordé toutes les contraintes…. , il convient donc maintenant 

d’examiner la question de la simulation. 

2.3 Simulation numérique des écoulements viscoélastiques 

Tel que souligné précédemment, il peut s’avérer particulièrement dangereux de manipuler 

du celluloïd lors de sa mise en forme. Pour limiter ce risque ainsi que les coûts liés à 
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l’expérimentation du procédé, il semble intéressant de simuler numériquement l’écoulement du 

fluide dans une filière à l’aide d’une méthode d’approximation numérique. Au vu de toutes les 

techniques présentes dans la littérature, il est possible de construire un graphe de répartition des 

techniques utilisées couramment dans le domaine des écoulements viscoélastiques.  

 

Figure 2.12  Répartition des publications dans le domaine du 

viscoélastique pour différentes méthodes numériques (sur la base d’une 

revue de la littérature à partir de plusieurs bases de données). 

Tel que montré à la Figure 2.12, il ressort que les méthodes numériques les plus employées 

sont les éléments finis (FEM), les volumes finis (FVM), la méthode de Boltzmann sur réseau, et 

celle des éléments spectraux. En ce qui concerne la SPH, bien qu’elle soit présente sur le graphique, 

vu le nombre limité de références dans le domaine, elle ne sera pas présentée dans cette étude.  

Par ailleurs, la technique des différences finies ne sera pas abordée ici, car  il est précisé 

dans le livre « Computation Rheology » que, pour des géométries complexes à plus d’une 

dimension, cette technique présente des lacunes dues en partie à la discrétisation du maillage. Il lui 

sera préféré la méthode des éléments finis qui est moins rigide dans le domaine du viscoélastique 

[31]. Il est, cependant, possible de noter des évolutions de cette technique grâce à la méthode MAC 

(Marker and Cell) et FVM qui utilise, dans une certaine mesure, quelques-unes de ces 

approximations [31].  

En ce qui concerne la méthode de Boltzmann sur réseau,  bien que Malaspinas ait démontré 

qu’il est possible de simuler des écoulements complexes tels que l’écoulement convergent d’un 
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fluide viscoélastique obéissant à un modèle FENE-P [70], aucun code commercial ou en libre accès 

simulant ce type d’écoulement n’a été trouvé. Il aurait donc fallu partir d’une page blanche et coder 

toute la méthode ce qui aurait fait complètement dévier la recherche de son but initial. Par 

conséquent, il a été décidé d’écarter cette méthode de celles qui seront utilisées dans ce projet de 

maîtrise. Pour ce qui est de la méthode des éléments spectraux, elle ne sera pas non plus étudiée 

dans ce document. La raison est qu’elle est très similaire, sur le principe, à la méthode des éléments 

finis. En somme, il a donc été décidé de se cantonner dans cette étude aux méthodes les plus 

couramment utilisées dans la littérature scientifique, c’est-à-dire les méthodes FEM et FVM.  

2.3.1 Méthode des éléments finis 

La méthode des éléments finis est une méthode de résolution numérique datant du début du 

XXe siècle. Elle a pour but de résoudre les équations différentielles de manière numérique. Cette 

approche nécessite, comme la plupart des méhodes de CFD, de mailler le domaine étudié de 

manière à calculer en chaque nœud du maillage les valeurs que peuvent prendre les variables du 

système.  

Dans le cas des éléments finis, le problème est considéré comme une résolution d’un 

système variationnel s’écrivant sous la forme [32] : 

𝑎(𝑢, 𝑤) = 𝑙(𝑤) ∀ 𝑤 ∈ 𝑉 𝑒𝑡 𝑢 ∈ 𝑉 (23) 

où V représente un sous espace vectoriel de Sobolev, où évoluent les fonctions u et les fonctions 

test w, 𝑎 représente une forme bilinéaire continue sur 𝑉 × 𝑉 et enfin 𝑙 représente une application 

linéaire continue sur V [32].  

Le passage de la forme forte à la formulation variationnelle se fait à l’aide des fonctions 

tests. Cet « affaiblissement » de la forme forte permet, entre autres, d’utiliser des espaces 

fonctionnels généralisés afin de résoudre les EDP de manière à ce que la solution appartienne au 

même espace que les approximations [32]. Le théorème de Lax-Milgram dit ainsi que si 𝑎 de l’Éq. 

(23) est coercive ou elliptique, alors il existe une unique solution u pour l’Éq. (23) [32].  

La première étape de la résolution d’un problème par la méthode des éléments finit sera 

donc d’écrire le système d’équations différentiels en y incorporant les fonctions tests [89]. Cela 
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permettra notamment d’affaiblir la forme forte et de générer le système d’équation à résoudre lors 

de la discrétisation du problème. Une des techniques employées à cet effet a été mise au point par 

Boris Galerkin et consiste à multiplier chaque EDP par une fonction test différente, ce qui crée 

autant de fonctions tests que d’équations différentielles. Cette formulation dite de Galerkin sera 

dans le cas d’un fluide viscoélastique type Oldroyd-B [31]: 

∫ (𝛽𝛁𝑣⃗: 𝑢⃗⃗  − 𝑝 ∙ 𝛁𝑢⃗⃗ + 𝝉:𝛁𝑢⃗⃗ )𝑑Ω = 0 
 

Ω

 (24) 

∫ ((𝛁 ∙ 𝑣⃗): 𝑞 )𝑑Ω = 0 
 

Ω

 (25) 

∫ (𝝉 + 𝑊𝑒 ∗ 𝝉̌): 𝑺 𝑑Ω = ∫(1 − 𝛽)(𝛁𝑣⃗ + (𝛁𝑣⃗)𝑻): 𝑺 𝑑𝛺
 

𝛺

 

Ω

 (26) 

À noter que les fonctions S, 𝑢⃗⃗ et q représentent ici les fonctions tests de la méthode Galerkin 

continue. Une fois le domaine discrétiser, dans un cas en une dimension, la fonction test peut 

prendre la forme d’un polynôme, interpolant les valeurs entre les différents nœuds, et s’écrivant 

dans le cas d’un polynôme linéaire sous la forme [31] :  

𝜑1,𝑗 =
𝑥𝑗−𝑥

𝑥𝑗−𝑥𝑗−1
 𝑒𝑡 𝜑2,𝑗 =

𝑥−𝑥𝑗−1

𝑥𝑗−𝑥𝑗−1
 (27) 

Avec pour chaque nœud intérieur du domaine [31]: 

𝜑𝑗 = {

𝜑2,𝑗, 𝑥𝑗−1 < 𝑥 < 𝑥𝑗

𝜑1,𝑗, 𝑥𝑗 < 𝑥 < 𝑥𝑗+1

0, 𝑎𝑢𝑡𝑟𝑒𝑚𝑒𝑛𝑡,   
 (28) 

 En ce qui concerne les fonctions solutions u à déterminer, il est possible de les approximer 

en chaque nœud du domaine par [31]: 

𝑣⃗ℎ = ∑𝑣⃗𝑗𝜑𝑗

𝑁

𝑗=0

 (29) 
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Grâce à cela, le problème devient un système matriciel linéaire sous la forme AX=B. Il 

suffira dès lors  de le résoudre pour obtenir la solution en chaque nœud du domaine.  

En deux dimensions, il suffit de transformer les éléments du domaine discrétiser en un 

élément de référence à l’aide de la matrice Jacobienne tel qu’illustré à la Figure 2.13 [31].  

 

Figure 2.13  Transformation d'un quadrilatère quelconque en un rectangle de référence [34]. 

Ceci permet ainsi d’éviter de stocker en mémoire chaque élément et de pouvoir faire les 

opérations nécessaires sans trop de difficultés [89].  

Avant d’aller plus loin, il est important de signaler que les points présentés précédemment 

ne sont qu’un rapide survol de certains principes de la méthode des éléments finis. Plusieurs détails 

ont été ainsi passés sous silence pour simplifier le propos et aller directement vers la simulation 

des écoulements viscoélastiques. Pour plus de détails le lecteur est encouragé à consulter l’ouvrage 

« Numerical solution of partial differential equations by the finite element method » de Clae 

Johnson [106]. 

Ainsi, dans le cas des systèmes viscoélastiques, la méthode Galerkin continue, présentée 

précédemment, ne fonctionne que pour des nombres de Weissenberg très faibles (de l’ordre de 

0.01). Ceci s’explique, en partie, par le fait que les équations différentielles décrivant le tenseur des 

extra-contraintes sont à dominance convective, ce qui rend le problème très hyperbolique [31]. 

Cette particularité crée ainsi une grande instabilité de la méthode de Galerkin qui se traduit par des 

problèmes de convergence au-delà d’un nombre de Weissenberg critique [31]. Pour résoudre ce 

problème, différentes approches ont été développées au cours des 50 dernières années. Celle qui 

est la plus couramment rencontrée dans la littérature est la technique Discrete Elastic Viscous Split 
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Stress (DEVSS). Cette technique crée par Rajagopalan consiste à ajouter une équation différentielle 

ainsi qu’une fonction test aux autres équations différentielles afin de redéfinir le tenseur de taux de 

déformation noté D [11].  De cette manière, le tenseur des extra-contraintes sera redéfini et il sera 

ainsi possible d’aller vers de plus hauts nombres de Weissenberg sans trop de difficultés. Guenette 

et Fortin ont par ailleurs démontré que l’utilisation de cette technique permettait de retrouver la 

condition Ladyzhenskaya–Babuška–Brezzi (LBB) d’unicité qui était perdue sans cela [35].  Le 

seul bémol à cette technique est qu’elle impose de choisir des conditions frontières sur le taux de 

déformation. Ceci est très complexe, car la variable en question fait intervenir le gradient de la 

vitesse et sa transposée. Or, si dans la situation d’un no slip classique les conditions frontières sont 

telles que toutes les composantes de la vitesse sont nulles aux parois, ce n’est absolument pas le 

cas pour le taux de déformation. Il est, toutefois, possible de contourner ce problème en utilisant 

une condition de Neumann aux frontières. Ce qui revient à dire qu’il n’y a pas de transfert 

d’informations aux frontières. Une autre possibilité très présente, elle aussi, dans la littérature, est 

la technique Streamline Upwind Petrov Galerkin ou SUPG [36]. Elle consiste à modifier la 

fonction test des équations différentielles de manière à ce qu’il n’y ait plus un seul et unique terme 

par équation; mais plutôt une expression qui permettra de créer un terme de diffusion artificielle. 

Cela permettra d’éviter les problèmes de divergence inhérents à la méthode de Galerkin résultante 

du terme convectif.  Cette nouvelle fonction test prendra la forme [31] : 

𝑺𝑠𝑢𝑝𝑔 = 𝑺𝑔𝑎𝑙𝑒𝑟𝑘𝑖𝑛 +
h

U
𝑣⃗ ∙ 𝛁𝑺𝑔𝑎𝑙𝑒𝑟𝑘𝑖𝑛  (30) 

où h est un facteur de transport relié à la taille de l’élément, U est une vitesse caractéristique et 

𝑺𝑔𝑎𝑙𝑒𝑟𝑘𝑖𝑛 représente la fonction test d’une méthode de galerkin. Le terme gradient de 𝑺𝑔𝑎𝑙𝑒𝑟𝑘𝑖𝑛 

multiplié par les champs de vitesse permet de limiter l’impact des termes convectés en créant une 

diffusion artificielle additionnelle qui tient compte du champ de vitesse local. En contrepartie 

l’ordre de convergence ne sera que de premier ordre [31].  Ceci signifie qu’il faudrait raffiner le 

maillage en augmentant le nombre de nœuds aux carrés pour obtenir une  erreur similaire au cas 

précédent. De plus, cette technique ne permet pas d’assurer que l’unicité de la solution existe bien. 

Pour assurer l’unicité, cette technique devrait être couplée à la méthode DEVSS [35].   
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Il existe encore beaucoup de techniques de stabilisation telles que la méthode Galerkin 

Least Square (GLS) où l’ajout de termes artificiels, fonctions du résidu des équations d’Euler –

Lagrange, permet d’augmenter la stabilité du problème [90]. Cependant, ces méthodes doivent être 

couplées au minimum à une technique telle que DEVSS pour permettre de s’assurer de l’unicité de 

la solution et éprouver la précision [90]. Fan, Tanner et Phan-Thien ont d’ailleurs prouvé qu’il était 

possible de venir modifier la formulation DEVSS classique en la reformulant de manière à y inclure 

le terme de la méthode GLS afin d’atteindre de plus haut nombre de Weissenberg avec une bonne 

précision [90]. Cependant, en Galerkin continu cette technique à ses limites en fonction du modèle  

utilisé et il n’est pas possible de simuler à n’importe quelle nombre de Weissenberg. Ce nombre de 

Weissenberg critique dépend de la géométrie, du modèle et de la technique de stabilisation utilisée 

pour simuler l’écoulement [31].   

Durant le courant des années 80, les évolutions dans le domaine ont stagné et l’engouement 

pour la méthode DEVSS, dans ce domaine de recherche, a diminué. Fort heureusement, deux 

techniques développées dans des champs n’ayant a priori aucun rapport avec les écoulements 

viscoélastiques ont relancé la recherche dans ce domaine. Ces deux techniques sont la méthode de 

Galerkin discontinue et la méthode du logarithme de tenseur de conformation.  

Développée initialement pour résoudre l’équation du transport de neutron [91], la méthode 

Galerkin discontinue s’avère particulièrement puissante dès lors qu’il s’agit d’étudier des équations 

fortement hyperboliques.  En ce qui concerne la méthode du logarithme de tenseur de 

conformation, il s’agit d’approcher le problème en utilisant le tenseur de conformation à la place 

du tenseur de contrainte. Il faut, par conséquent, résoudre une forme alternative de l’équation d’état 

du tenseur de contrainte, faisant intervenir le logarithme du tenseur de conformation [38]. Le 

problème devient ainsi : 

((𝛁 ∙ 𝑣⃗), 𝑞) = 0  (31) 

𝝉 =
𝜂

𝜆
(𝐂 − 𝐈)  (32) 

(𝐄, (𝛁𝑣⃗ + (𝛁𝑣⃗)𝑻) − 𝐃̅) = 0 (33) 
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((𝛁𝑢⃗⃗)𝑇, (2𝜂((𝛁𝑣⃗ + (𝛁𝑣⃗)𝑻) − 𝐃̅) + 𝜏) − (𝛁𝑢⃗⃗, 𝑝)) = 0 
(34) 

((𝐒 +
ℎ

𝑈
𝑣⃗ ⋅ 𝛁𝐒) ,

1

𝜆
(𝐂 − 𝐈) +

𝐷𝐂

𝐷𝑡
− [𝐂 ⋅ 𝛁𝑣⃗ + (𝛁𝑣⃗)𝑇 ⋅ 𝐂]) = 0 

(35) 

Il est à noter que (.,.) correspond au produit intérieur défini dans l’espace L2 et que le tenseur 

de conformation sera remplacé par :  

𝐂 = exp(𝛙) (36) 

où 𝐂  repesent le tenseur de conformation et 𝛙 le logarithme du tenseur de confromation. 

L’avantage de cette technique est qu’il est possible de démontrer qu’en deux dimensions, les deux 

valeurs propres du système sont strictement positives, ce qui engendre une matrice définie positive. 

Cette propriété fait que la technique devient donc particulièrement intéressante en 2D [38]. 

Cependant, en 3D, cette propriété n’est pas vérifiée en tout temps. Cette dernière rend la technique 

complexe pour une application 3D. Heureusement, la méthode GD (Galerkin discontinue) n'a pas 

ce problème et permet de réaliser ce genre de simulation en 3D. Elle consiste à considérer des 

termes de flux aux bornes des éléments, brisant ainsi la continuité qu’il est nécessaire d’avoir pour 

Galerkin discontinue [39]. Cette technique ne sera pas plus développée, car son principe ressemble 

grandement à la méthode des volumes finis qui sera présentée à la prochaine section. Les 

techniques DEVSS, SUPG et logarithme du tenseur de conformation sont les plus répandues. Elles 

seront donc utilisées pour résoudre les équations différentielles afin de simuler l’écoulement du 

celluloïd en profilé.  

Pour conclure cette partie, il est à noter que certaines études concernant l’optimisation du 

gonflement en sortie de filière dans un profilé ont déjà été réalisées, à l’aide de la méthode des 

éléments finis, pour des polymères tels que le polypropylène [4]. En plus de prédire l’écoulement 

dans une filière, il a été ainsi démontré qu'en utilisant un algorithme d’optimisation topologique tel 
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que l’algorithme BOBYQA4, il est possible d’optimiser la géométrie du profilé pour diminuer le 

gonflement en sortie de profilé [105]. 

2.3.2 Méthode des volumes finis   

Cette méthode est sur le principe plus simple à comprendre que la méthode des éléments 

finis. Tout comme cette dernière, elle nécessite de mailler le domaine afin d’obtenir une forme 

discrète de la géométrie. Par contre, contrairement à la MEF, il n’est plus question d’affaiblir la 

forme forte via une fonction test quelconque. Le problème sera plutôt de convertir les équations en 

un problème de flux autour des éléments du maillage et de modifier la valeur des variables calculée 

aux centroïdes via le transfert d’informations induit par ces flux. Cette technique repose 

majoritairement sur le théorème de Gauss-Ostrogradski qui stipule que la somme des flux 

surfaciques d’un élément donné est égale au gradient du flux à l’intérieur de cet élément. Cela peut 

s’interpréter d’un point de vue purement mathématique ainsi [42]: 

∭ 𝛁 ⋅ 𝐹⃗𝑑Ωe

 

Ωe

= ∬ 𝐹⃗ ∙ 𝑛⃗⃗𝑑Γe

 

Γ𝑒

 
(37) 

où 𝐹⃗ est un vecteur quelconque, Ωe est le volume de l’élément, 𝑛⃗⃗ est le vecteur normal aux faces 

de l’élément et Γe représente la surface de l’élément. 

Grâce à ce théorème, il est maintenant possible de transformer les termes volumiques des 

équations définissant le gradient de contrainte en flux de surface ce qui simplifie grandement le 

système de PDE et permet une résolution plus facile des équations.  

                                                 

4 L’algorithme BOBYQA est un algorithme d’optimisation à régions de confiance. 
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Figure 2.14  Représentation des flux de transport pour la méthode des volumes finis [43]. 

Toutefois, ceci n’est que la première étape permettant l’implémentation d’une technique de 

volume fini.  Pour continuer, il faudra trouver une définition à chaque nouveau terme en prenant 

en compte plusieurs subtilités qui pourraient engendrer des problèmes de convergence. 

Premièrement, les termes de diffusion (tel que les laplaciens) qui sont d’ordre 2 peuvent 

être  approximés à l’aide d’une différence finie qui dépendra de l’ordre de convergence souhaité. 

Pour comprendre cela, il suffit de partir, par exemple, de l’équation de la chaleur purement 

diffusive sur un élément. En utilisant le théorème de Gauss-Ostrogradski cette équation 

devient [44]: 

∫ 𝑘 (𝛁 ⋅ (𝛁T))dΩe

 

Ωe

= ∫ 𝑘𝛁T ∙ 𝑛⃗⃗ dΓe

 

Γ𝑒

 
(38) 

 En intégrant autour des surfaces, à l’aide d’une méthode d’intégration numérique (trapèze, 

Gauss,Simpson,…), il est possible de transformer l’intégrale en somme. Dans le cas l’Éq. (38), si 

la règle du point milieu est appliquée (pour l’intégration), cela donne  [92] : 

∫ 𝑘𝛁T ∙ 𝑛⃗⃗ dΓe

 

Γ𝑒

 = 𝑘 ∑𝛁Ti−j ⋅ 𝑠i−j 

 

𝒋

 
(39) 
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avec 𝑠i−j représentant le vecteur normal entre les surfaces des éléments i et j et Ti−j représentant la 

température à l’interface entre les élément i et j.  

 Il ne reste plus qu’à définir le terme 𝛁Ti−j. C’est à ce moment qu’interviennent les 

différences finies étant donné qu’il est possible de définir cet opérateur par une différence finie 

centrée. Ce qui donnerait pour une différence finie linéaire en une dimension : 

𝛁Ti−j =
𝑇𝑗 − 𝑇𝑖

𝑥𝑗 − 𝑥𝑖
  

(39) 

Cette façon de procéder permet de converger à l’ordre 2. Ce qui peut être modifié en utilisant 

d’autres différences finies possédant un plus grand ordre de convergence.    

 Deuxièmement, tous les termes convectifs devraient être traitées différemment des termes 

diffusifs et ce afin de prendre en considération leur caractère dépendant du champ de vitesse. Cela 

se traduit mathématiquement par de nouveaux schémas d’interpolation qui tiennent compte du 

champ de vitesse. Pour reprendre l’exemple de l’équation de la chaleur, il suffit de considérer un 

problème sans diffusion ce qui donnerait (si la partie temporelle de l’équation n’est pas considérée) 

[44]: 

∫  𝛁 ⋅ (T𝑣⃗)dΩe

 

Ωe

= ∫  (T𝑣⃗) ∙ 𝑛⃗⃗ dΓe

 

Γe

 
(40) 

Ce qui donne après l’application de la règle du point milieu : 

∫  (T𝑣⃗) ∙ 𝑛⃗⃗ dΓe = ∑(Ti−j𝑣⃗𝑖−𝑗) ⋅ 𝑠i−j 

 

𝒋

 

Γe

 
(41) 

avec 𝑣⃗𝑖−𝑗 représentant le vecteur vitesse à l’interface des élément i et j. Si jamais un schéma 

d’interpolation linéaire centré était appliqué au terme T,  comme précédemment, des oscillations 

commenceront à apparaitre. Cela étant dû au fait que le schéma linéaire centré n’est pas borné et 

ne respecte pas le sens de propagation. Ceci est critique pour des problèmes hyperboliques tels que 

celui de la simulation du celluloïd. Pour corriger cela, il est possible d’utiliser un schéma upwind 
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qui s’écrit de la manière suivante, en une dimension,  considérant une propagation de i vers j [92] 

: 

𝑇𝑖−𝑗 = {
𝑇𝑖 𝑠𝑖 𝑣 > 0 
𝑇𝑗 𝑠𝑖 𝑣 < 0  

(42) 

 Ici l’information aux faces provient intégralement du centroïde se trouvant dans le sens du 

champ de vitesse. Cela crée des sortes de fonctions escalier ou la valeur de la fonction d’intérêt 

saute d'un coup [44]. Ce schéma est, par conséquent, borné et prend en compte le sens de 

propagation. Il ne converge, cependant, qu’à l’ordre 1 mais il corrige les défauts du schéma linéaire 

centré [92]. Il est possible de trouver d’autres schémas plus performants tels que les schémas 

QUICK (Quadratic upwind interpolation) qui peuvent converger à de plus grands ordres de 

grandeur [92]. Cependant, ils ne seront pas utilisés dans cette étude, leur fonctionnement ne sera 

donc pas détaillé. Pour approfondir ce sujet, le lecteur est encouragé à consulter l’ouvrage « An 

Introduction to Computational Fluid Dynamics: The Finite Volume Method » de H. Versteeg [107]. 

Dans le cas des écoulements viscoélastiques, il est nécessaire d’incorporer aux techniques vues 

précédemment, la méthode DEVSS pour s’assurer de l’unicité de la solution [45].  

 Une fois les schémas d’interpolations des termes de convection et de diffusion établis, il ne 

restera plus qu’à choisir (dans le cas d’un problème instationnaire) entre un schéma explicite ou 

implicite en temps.  

 Si le schéma est explicite en temps, la stabilité dépendra majoritairement du pas de temps 

choisi et ne nécessitera pas de résolution d’un système matriciel supplémentaire [46]. En reprenant 

le cas de l’équation de la chaleur, et en utilisant un schéma d’Euler « avant » cela donnerait pour 

le terme temporel [92] : 

𝜕𝑇𝑖

𝜕𝑡
=

𝑇𝑖
𝑡+∆𝑡 − 𝑇𝑖

𝑡

∆t
 

(43) 

En revanche si la résolution est implicite en temps, le problème impliquera de résoudre un système 

sous la forme AX=b. Cela engendre un coût de calcul supplémentaire non négligeable, qui peut 

être contrebalancé par le fait que les schémas d’Euler implicites sont inconditionnellement stables. 
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Dans le cas du terme temporel de l’équation de la chaleur, cela reviendrait à utiliser, par exemple, 

le schéma d’Euler « arrière », ce qui donnerait [92]:    

𝜕𝑇𝑖

𝜕𝑡
=

𝑇𝑖
𝑡 − 𝑇𝑖

𝑡−∆𝑡

∆t
 

(44) 

 Il est par ailleurs important de noter que, dans le cas d’une simulation d’un système en 

régime permanent, il faudra aussi résoudre un problème d’équation linéaire de la forme AX=b[44].  

 L’avantage majeur de la méthode des volumes finis est que, contrairement à la formulation 

classique des éléments finis, elle est complètement discontinue. Il n’y a théoriquement rien qui 

implique une quelconque continuité entre les éléments. Si les données brutes sont représentées sans 

lissage, il apparaîtra que les valeurs du champ sautent d’un élément à l’autre sans la moindre 

continuité apparente. Cette particularité est puissante puisqu’elle autorise la discontinuité entre les 

éléments, ce qui n’était pas le cas avec la méthode MEF « classique ». Conséquemment, dès lors 

que le problème est à dominante convective, comme cela est souvent le cas dans les problèmes 

d’ondes de choc, la technique des volumes finis devient un atout majeur. Or, tel que stipulé 

précédemment, le problème des écoulements viscoélastiques est à dominante convective : la 

méthode des volumes finis semble donc tout indiquée pour résoudre ce problème [31].  

 Il existe plusieurs algorithmes dans le cas de la méthode des volumes finis permettant de 

résoudre à peu près n’importe quel problème de mécanique des fluides. L’un des plus utilisés, en 

régime stationnaire, se nomme semi-Implicit Method for Pressure Linked Equations ou SIMPLE.  

Il a été développé par Patankar : un des pionniers de la recherche en volumes finis [69]. Il permet 

non seulement de résoudre l’équation de quantité de mouvement et de la continuité de manière 

classique, mais aussi de les coupler à n’importe quelle autre équation constitutive. Cet algorithme 

est employé la plupart du temps pour simuler les écoulements viscoélastiques, car il est très robuste 

et permet de prédire un certain nombre de phénomènes rhéologiques [93]. Toutefois, certains 

phénomènes physiques (« peau de requin », GMF,…) sont purement transitoires, il paraît donc 

assez peu judicieux de simuler ce type d’écoulement à l’aide d’un algorithme créé pour le régime 

permanent. Heureusement, plusieurs chercheurs, dont Patankar, ont créé l’algorithme PISO 

présenté ci-après pour les écoulements newtoniens [44].  
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Figure 2.15  Algorithme PISO [44]. 

 Pour ce qui est des écoulements viscoélastiques, il suffit de venir rajouter une étape où le 

système d’équation définissant le champ de contrainte viscoélastique est résolu de manière 

découplée [44]. En incluant un pas de temps modifiable, il en résulte l’un des algorithmes les plus 

utilisés dans la simulation des écoulements viscoélastiques en filière. Il est à noter que cette 

technique n’a, cependant, jamais été utilisée dans le cas d’un quelconque polymère énergétique. 

Toutefois, puisqu’elle fonctionne parfaitement avec des polymères classiques tels que le HDPE ou 

le PP, il semble raisonnable de penser qu’elle puisse fonctionner pour n’importe quel type de 

polymère. Pour finir à propos de la méthode des volumes finis, il faut ajouter que celle-ci, même 

si elle n’est pas aussi répandue que celle des éléments finis, reste une alternative plus facile d’accès 

que la méthode des éléments finis et permet de simuler autant de phénomènes que cette dernière. 

Finalement, c’est donc une des méthodes qui sera employée dans cette étude.  



45 

 

 

2.4 Logiciel de simulation  

Toutes les techniques présentées auparavant sont déjà implémentées dans des logiciels 

commerciaux ou « open-source » mis à jour continuellement. Il a donc été choisi, pour gagner du 

temps, que l’utilisation d’un logiciel de simulation déjà codé serait préférable. Présentement, dans 

le cas des simulations viscoélastiques, seuls trois logiciels sont couramment utilisés et ont fait leurs 

preuves dans ce domaine. Les logiciels concernés sont: OpenFoam/FoamExtend (utilisant la 

méthode des volumes finis), Comsol et Polyflow (utilisant la méthode des éléments finis). 

 

Figure 2.16  Publication en fonction du logiciel utilisé. 

La Figure 2.16 ci-dessus présente l’utilisation des différents logiciels dans le domaine des 

écoulements viscoélastiques. Toutefois, ces valeurs sont à prendre avec précaution, car, même s’il 

semble que le logiciel le plus utilisé soit Polyflow d’ANSYS, il a été créé en 1970 soit 16 ans avant 

le logiciel Comsol et 34 ans avant OpenFoam. Il a donc plus mature et possède une plus grande 

communauté active.   

2.4.1 Polyflow (ANSYS) 

Polyflow est un logiciel commercial de simulation d’écoulement utilisant la méthode des 

éléments finis qui a été racheté par la société ANSYS. Il a été initialement conçu pour simuler les 

écoulements polymériques viscoélastiques, mais il est utilisé, aujourd’hui, pour plusieurs types 

d’écoulements. Il a donc comme avantage de permettre l’utilisation d’une large bibliothèque de 

modèles viscoélastiques déjà implémentés et régulièrement mise à jour par la société ANSYS. Il a, 

de plus, une interface utilisateur assez claire et possède une documentation conséquente facilitant 
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l’utilisation de fonctionnalités complexes déjà implantées. Une des simulations les plus 

intéressantes utilisant ce logiciel a d’ailleurs permis de simuler un gonflement en sortie de filière 

dont le ratio D/d allait jusqu’à 5 pour des taux de cisaillements dépassant les 100 s-1 pour divers 

modèles rhéologiques [49]. 

 

Figure 2.17  Gonflement en sortie de filière prédit par ANSYS [49]. 

Il faut signaler que, dans le cas étudié ici, ce taux de cisaillement est représentatif de ce 

qu’il est possible de rencontrer dans un écoulement en profilé. Les nombres de Weissenberg 

peuvent, dans certains cas, dépasser les 100 ce qui est le cas pour l’écoulement en filière plate d’un 

film de celluloïd. Cependant, les licences du logiciel Polyflow ont un certain coût non négligeable 

(de l’ordre de la dizaine de milliers de dollars US pour une licence) qui rend difficile l’acquisition 

de ce logiciel. Contrairement, au logiciel Comsol ci-après, il n’est pas possible de concevoir des 

applications simplifiées autonomes qui permettraient de faire un transfert facile des modèles 

développés à d’éventuels partenaires industriels. Ainsi, pour toutes ces raisons, il est peu probable 

que ce logiciel soit utilisé, mais il reste une alternative possible, déjà très exploitée dans la 

littérature. 
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2.4.2 Comsol multiphysics  

Comsol est un logiciel commercial à licence payante de simulation en éléments finis codés 

originellement sous Matlab, en 1986, sous le nom de FEMLAB. Ce logiciel a comme avantage de 

permettre de coupler très facilement plusieurs physiques, ce qui est une chose particulièrement 

importante lors de l’étude des écoulements viscoélastiques. En outre, il est possible de trouver une 

large combinaison d’outils permettant de créer des physiques qui n’existaient pas initialement dans 

les modules implémentés sous Comsol. En ce qui concerne les écoulements viscoélastiques, il 

n’existe pas de modèle préfabriqué sous Comsol contrairement à Polyflow [50]. Cependant, il est 

possible de trouver plusieurs exemples, sur le site web de cette compagnie, qui expliquent comment 

créer ces modèles et la façon de les stabiliser. De surcroît, un des gros avantages de Comsol par 

rapport à Polyflow est qu’il est possible de téléverser les modèles créés sur le logiciel Comsol vers 

un site web permettant la simulation sur des clusters de la compagnie Comsol, ce qui limite le 

recours à des clusters personnels coûteux. Il est, par la suite, permis de convertir ces modèles en de 

petites applications plus simples donnant lieu à un transfert technologique plus rapide et 

n’obligeant pas l’utilisateur à comprendre parfaitement le fonctionnement du logiciel. Depuis 2018 

et l’avènement de la version 5.4., il est envisageable de créer des applications Standalone 

supportant l’utilisation de ces applications sans avoir Comsol installé sur son ordinateur.  

En ce qui concerne les simulations viscoélastiques déjà réalisées sur ce logiciel, un article 

de 2013 montre la simulation, à l’aide d’un modèle PTT classique, des écoulements « peau de 

requin », gonflement en sortie de filière et GMF, et ce, grâce â une technique de level set couplée 

à une stabilisation. Celle-ci implique le logarithme du tenseur de conformation, pour des nombres 

de Deborah allant jusqu’à 60 comme cela est illustré à la Figure 2.18 [51]. 
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Figure 2.18  Gonflement en sortie de filière simulé sous Comsol [51].  

Il est, par ailleurs, facile d’utiliser sous Comsol des systèmes multi-physiques ou encore 

d’optimiser des formes géométriques afin de minimiser les défauts d’écoulement. Par conséquent, 

le logiciel Comsol est très intéressant pour un projet où on désirerait tenter de faire des simulations 

multiphysiques. Il ne faut, cependant, pas oublier que tout comme Polyflow, ce logiciel est payant. 

De plus, l’implantation d’un modèle viscoélastique en 3D est une chose très difficile. Ceci étant 

principalement dû au fait que pour permettre le passage de la 2D à la 3D, il est impératif d’utiliser 

une méthode de Galerkin discontinue [50].  Or, présentement, bien que ces techniques soient 

présentes pour d’autres applications (acoustique, électromagnétisme…), il est techniquement trop 

complexe de l’implanter dans la physique CFD (computational fluid dynamics). Par ailleurs, une 

fois en 3D il n’est plus possible d’utiliser une méthode LU directe,  car le système d’équations peut 

allégrement dépasser les 106. Il est donc obligatoire d’utiliser une méthode de Krylov puisque le 

système n’est pas du tout symétrique [50].  L’unique méthode de Krylov existante sur Comsol étant 

la méthode GMRES. Le seul choix éventuel concernera la sélection du préconditionneur et, même 

à ce niveau, les possibilités sont limitées. Sur Comsol, il n’est pas possible d’implanter ses propres 

préconditionneurs numériques ou son propre solveur. 

2.4.3 OpenFoam/Foam-Extend  

Le dernier logiciel, le plus couramment utilisé dans ce domaine, est le logiciel OpenFoam 

qui, contrairement aux deux logiciels précédents, est open source et disponible gratuitement en 

ligne. OpenFoam utilise la méthode des volumes finis pour simuler à peu près n’importe quelle 
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équation différentielle partielle. La première version d’OpenFoam est sortie en 2004 [52] et ne 

contenait aucun modèle pour des écoulements viscoélastiques déjà implantés. Il faudra attendre la 

scission d’OpenFoam en deux versions; OpenFoam et Foam-Extend, pour voir apparaître les 

premiers modèles impliquant du viscoélastique. Par la suite, en 2009, Foam-Extend inclut ainsi 

officiellement dans sa version 3.1 une bibliothèque viscoélastique qui s’est depuis largement 

étoffée. Cette prouesse est en grande partie due aux efforts du professeur Jovanni L. Favro qui a 

créé un véritable arsenal de modèles viscoélastiques utilisables en 2D et en 3D [53]. Le logiciel 

Foam-extend a toutefois une contrainte, par rapport à ses deux autres concurrents, qui réside dans 

la manière de l’utiliser. Contrairement aux deux autres logiciels, il ne possède pas d’interface 

graphique facilitant sa prise en main. Il est donc impératif de l’utiliser à l’aide de ligne de 

commande Bash ce qui nécessite un minimum de connaissance dans ce langage.  

Cependant, une fois ce prérequis complété, Foam-Extend devient un outil efficace facilitant 

la manipulation des équations différentielles hyperboliques complexes et la génération des codes 

procéduraux afin de tester plusieurs cas simultanément, sous différentes conditions, dans le but de 

trouver des optimums. Dans le cas des écoulements viscoélastiques, la Figure 2.19 présente des 

résultats allant jusqu’à un des nombres de Deborah de 10000.  

 

Figure 2.19  Vortex de contraction prédit grâce à OpenFoam [55]. 
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En somme, ce logiciel est donc une excellente alternative gratuite très prometteuse même 

s’il nécessite des connaissances en Bash. Il embarque d’ailleurs un nombre impressionnant de 

fonctionnalités autorisant ainsi la parallélisassions du code à un niveau très avancé.  En outre, il 

existe tout un éventail de solveurs numériques en tout genre couplés à un grand nombre de 

préconditionneurs. Finalement, il est à noter que si l’équation différentielle n’existe pas ou que les 

solveurs ne conviennent pas, il est tout à fait possible de les programmer sans forcément avoir des 

connaissances très pointues sur OpenFoam. Il faudra cependant avoir des notions de C++ pour 

programmer et compiler le solveur afin de l’utiliser dans Foam-extend.  

Pour conclure cette section, il est important de rappeler que, la manipulation du mélange, 

NC/Camphre  requiert beaucoup de précautions. Or, à l’exception de quelques rares études sur le 

comportement de ce genre de mélange, il n’existe que peu de données sur la manière de simuler ce 

genre d’écoulement de fluide énergétique en surface libre. Ce mélange n’a ainsi jamais été encore 

étudié dans le cadre d’une simulation d’écoulement. Ce mémoire présentera donc un outil 

développé spécifiquement pour simuler l’écoulement du celluloïd dans un profilé. Grâce à cet outil, 

il sera possible de simuler pour la première fois le comportement du celluloïd en écoulement.  

2.5 Objectifs spécifiques  

Pour conclure, au terme de cette revue de la littérature, il a été permis d’identifier plusieurs 

points clefs permettant de définir les objectifs spécifiques qui devront être accomplis dans ce 

mémoire. Ceux-ci sont : 

1. établir une régression non-linéaire à partir de données rhéologiques en cisaillement 

existantes afin d’obtenir les paramètres du modèle rhéologique caractérisant le celluloïd 

étudié, puis injecter ce modèle dans les modèles viscoélastiques étudiés (PTT, Giesekus, 

White-Metzner) de manière à ce qu’ils respectent les données expérimentales en 

cisaillement; 

2. implanter des modèles de fluides viscoélastiques à l’aide de la méthode des éléments finis 

et du logiciel Comsol, étant donné qu’il n’existe aucun module par défaut dans Comsol 

contenant des modèles viscoélastiques du moins jusqu’à la version 5.4;  
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3. simuler l’écoulement du celluloïd dans la gamme de nombres de Weissenberg d’opération 

du profilé, à l’aide de la méthode des éléments finis implantée dans Comsol ou à l’aide de 

la méthode des volumes finis implantée dans Foam-Extend;    

4. tester la faisabilité de la simulation de l’écoulement du celluloïd dans la géométrie réelle 

du profilé toujours à l’aide du logiciel Foam-Extend.    
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CHAPITRE 3 MÉTHODOLOGIE  

Dans ce chapitre, la démarche utilisée sera présentée afin de répondre aux objectifs 

spécifiques de la recherche énoncée précédemment. Ce cheminement commencera par une 

définition du cadre et des hypothèses qui seront posés afin de simplifier le problème étudié.  Par la 

suite, suivra une section expliquant comment seront construites les simulations sous les deux 

logiciels. Celle-ci contiendra en plus des détails techniques concernant les deux logiciels, un 

résumé des conditions frontières utilisées ainsi que de leurs définitions. Cette partie sera suivie de 

deux autres qui expliqueront le modus operandi utilisé pour vérifier si les simulations prédisent 

bien des résultats cohérents avec les solutions analytiques et avec les données expérimentales. Il 

est cependant important de signaler que, malheureusement, aucune expérience n’a pu être réalisée 

au cours  de cette recherche. Les données utilisées, lors de cette étude, étant celles obtenues par le 

professeur Charles Dubois durant ses expérimentations.  

3.1 Hypothèses et cadre de la recherche  

Pour commencer correctement le cycle de la modélisation, il est important de partir du 

phénomène physique qui sera modélisé et de se débarrasser des variables superflues qui 

complexifieraient inutilement le problème. Les principales hypothèses de notre modèle sont les 

suivantes :   

1. le fluide s’écoule en régime rampant (Re<<1); 

2. le fluide est incompressible; 

3. le fluide est isotherme; 

4. il n’y a pas de contrainte seuil ; 

Nous allons maintenant les analyser en détails.  

 Dans le cas présent, si l’équation de quantité de mouvement  est analysée terme par terme, 

il apparaît assez rapidement que la composante convective du problème est inutile. Cette dernière 

décrit principalement les phénomènes d’accélération du fluide et serait très utile pour des fluides 

très peu visqueux comme l’air. Cependant, dans le cas d’un fluide tel que le celluloïd, la viscosité 

est des milliards de fois plus grandes que celle de l’air. Les termes d’accélération n’auront donc 
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qu’une très faible contribution dans le phénomène qu’il est nécessaire de modéliser. Les équations 

de la quantité de mouvement deviennent donc : 

𝜌(
𝜕𝑣⃗

𝜕𝑡
) = −𝜵𝑝 − 𝜵 ∙ 𝝉 + 𝜌𝑔⃗  

(45) 

En ce qui concerne la pression, elle sera définie à l’aide de l’équation de continuité, parce  

que le fluide est considéré incompressible. En revanche, le terme de dissipation visqueuse sera 

négligé ce qui éliminera la seule source de chaleur. De plus, si l’on considère que le système est 

thermiquement isolé, cela revient à dire que le problème est isotherme, ce qui rend inutile la 

résolution de l’équation de la chaleur. Cette hypothèse simplificatrice est une hypothèse 

couramment utilisée dans les études essayant de modéliser le comportement viscoélastique en 

première approximation [53]. Cette dernière sera étudiée dans la partie discussion et résultat afin 

de voir quels impacts elle peut avoir sur les résultats de simulation qui seront présentés. 

En ce qui concerne la "contrainte seuil" du fluide, cela revient à dire qu’en dessous d’une 

certaine contrainte le fluide exhibe une viscosité infinie. D’un point de vue numérique, ce fait peut 

être approximé par une viscosité très grande, mais finit en dessous d’une certaine contrainte. 

Cependant, ceci rajoute un degré de complexité inutile étant donné qu’il n’est pas sûr que le 

celluloïd utilisé ici exhibe ce comportement. L’étude de Beverly et Tanner parlant de ce phénomène 

utilise d’ailleurs un mélange de nitrocellulose et nitroglycérine, ce qui est très différent du celluloïd 

[102]. Il a donc été décidé de négliger cette particularité du fluide en l’absence de données 

suffisantes sur ce phénomène.  

Ce point étant expliqué,  il ne reste plus qu’à trouver une définition pour le tenseur des 

extra-contraintes. Cette définition sera, dans un premier temps, celle d’un fluide de type Maxwell 

convecté. Ce choix a été fait, car la forme de ce modèle est celle que devrait avoir tous les autres 

modèles présentés à la section 2.1.2 à une modification près. S’il est correctement implanté, il sera 

facile de le transformer en un autre modèle plus évolué prenant en compte le caractère 

rhéofluidifiant du matériau. Ces modèles seront, dans le cadre de cette étude, Ceux de Giesekus, 

PTT et White-Metzner. Enfin, il faudra par ailleurs déterminer les paramètres nécessaires à leur 

utilisation ce qui sera expliqué dans la section vérification expérimentale.   
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3.2 Construction de la simulation viscoélastique 

Étant donné que l'Éq. (19) ne sera pas considérée, pour des raisons de simplification du 

problème déjà fort complexe, les paramètres de viscosité utilisés dans cette étude seront  obtenus 

à basse température. En faisant ce choix, il est assuré que les contraintes normales prédites seront 

maximales, car elles sont proportionnelles à la viscosité. Cette simplification donnera donc une 

borne supérieure qu’il sera théoriquement difficile de dépasser puisque l’augmentation de la 

température (induite par la dissipation visqueuse) fera mécaniquement diminuer la viscosité [60]. 

Les données de gonflement en sortie de filière  (die swell) ainsi obtenues ne devraient donc ne 

jamais être dépassées ce qui permet de prédire le pire des cas qui pourrait arriver. 

3.2.1 Conditions frontières et conditions initiales 

Le choix des conditions frontières dans tout problème de simulation numérique est un des 

points les plus critiques à définir. De fait, il conditionne toute la stabilité du problème et engendre 

une quantité de questions quant au bien-fondé de leur définition. Dans le cadre de l’étude ici 

présentée, les conditions frontières devront être imposées sur trois ensembles de variables. Celles-

ci sont la vitesse, la pression et les extra-contraintes. Globalement, elles auront toujours la même 

définition dépendamment du type de frontière pris. Trois types de conditions frontières seront 

utilisés et sont dénommées respectivement parois fixe, entrée et sortie. Ces dernières représenteront 

physiquement [61]: 

1. une condition de non-glissement aux parois pour la frontière dénommée parois fixes. Cette 

condition représente le fait qu’au niveau de la paroi, le fluide est stagnant ce qui se 

caractérise par un profil de vitesse nul. Autrement dit, à la paroi, la condition frontière pour 

la vitesse est une condition de Dirichlet. Pour ce qui est de la pression, du champ des extra-

contraintes et du tenseur 𝐃̅ de la méthode DEVSS, il faudra utiliser une condition de 

Neumann qui permet de poser une absence d’échange d’informations. Ainsi, à chaque fois 

que la condition parois fixe sera évoquée cela reviendra  à poser :  

𝑣⃗ = 0⃗⃗; 𝛁𝝉 ∙ 𝑛⃗⃗ = 0⃗⃗ ; 𝛁𝑝 ∙ 𝑛⃗⃗ = 0; 𝛁𝐃̅ ∙ 𝑛⃗⃗ = 0⃗⃗ 

2. une condition d’entrée uniforme pour la frontière dénommée entrée. Elle se caractérise par 

le fait que le fluide est considéré comme entrant avec une vitesse uniforme dans le profilé. 
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Physiquement, cela est assez proche de ce qui se passe dans la réalité étant donné que, bien 

souvent, l’écoulement provient d’une extrudeuse qui possède un diamètre plus grand que 

celui observé dans les faits. Cette contraction créant ainsi un profil d’entrée plat, il devient 

possible d’approximer le champ de vitesse par une condition de Dirichlet constante. Pour 

ce qui est de la pression, du champ des extra-contraintes et du tenseur 𝐃̅ de la méthode 

DEVSS, ils sont définis de la même manière que précédemment puisqu’en entrée il est 

d’usage de déduire ces variables du champ de vitesse imposée : 

𝑣⃗ ⋅ 𝑛⃗⃗ = 𝑐; 𝛁𝝉 ∙ 𝑛⃗⃗ = 0⃗⃗; 𝛁𝑝 ∙ 𝑛⃗⃗ = 0; 𝛁𝐃̅ ∙ 𝑛⃗⃗ = 0⃗⃗ 

3. une condition de frontière ouverte pour la frontière dénomme sortie de filière. Cette 

condition consiste à considérer qu’il n’y a pas de variation de vitesse en sortie  lorsque le 

fluide est en contact avec le milieu extérieur. Le point crucial de cette condition est que 

cette fois-ci la condition de Dirichlet sera imposée sur la pression et non sur le champ de 

vitesse. Ici, la pression est considérée comme nulle sur toute la frontière. Étant donné qu’il 

est question de pression relative, cela signifie que le fluide est à pression ambiante dès lors 

qu’il est en contact avec l’air ambiant. Ceci est une approximation physiquement réaliste  

puisqu’en sortie, le fluide n’est plus du tout contraint par une quelconque force exceptée 

celle induite par la pression atmosphérique. En ce qui concerne le tenseur de contrainte, le 

tenseur 𝐃̅ de la méthode DEVSS et le champ de vitesse, ils seront définis à l’aide d’une 

condition de Neumann, car il n’y a théoriquement aucune accélération du fluide qui pourrait 

créer un transfert d’information :     

𝑝 = 0; 𝛁𝝉 ⋅ 𝑛⃗⃗ = 0⃗⃗ ; 𝛁𝑣⃗ ∙ 𝑛⃗⃗ = 0⃗⃗; 𝛁𝐃̅ ∙ 𝑛⃗⃗ = 0⃗⃗ 

Le tableau suivant résume les définitions qui seront utilisées dès lors qu’une référence sera 

faite à l’une de ces trois conditions frontières. 
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Tableau 1  Récapitulatif des variables et des conditions frontières qui leur sont associées. 

 Entrée Parois Fixe Sortie t=0 s 

Tenseur  des 

extra-

contraintes 𝜎 

Condition de 

Neumann 

𝛁𝝉 ⋅ 𝑛⃗⃗ = 0⃗⃗ 

Condition de 

Neumann 

𝛁𝝉 ⋅ 𝑛⃗⃗ = 0⃗⃗ 

Condition de 

Neumann 

𝛁𝝉 ⋅ 𝑛⃗⃗ = 0⃗⃗ 

Fluide au 

repos 

τij = 0 

Champs de 

vitesse 

𝑣 

Condition de 

Dirichlet 

𝑣⃗ ∙ 𝑛⃗⃗ = 𝑐 

Condition de 

Dirichlet 

𝑣⃗ ∙ 𝑛⃗⃗ = 0 

Condition de 

Neumann 

𝛁𝑣⃗ ∙ 𝑛⃗⃗ = 0⃗⃗ 

Fluide au 

repos 

𝑣⃗ = 0⃗⃗ 

Pression 𝑝 Condition de 

Neumann 

𝛁𝑝 ⋅ 𝑛⃗⃗ = 0 

Condition de 

Neumann 

𝛁𝑝 ⋅ 𝑛⃗⃗ = 0 

Condition de 

Dirichlet 

𝑝 = 0 

Fluide au 

repos 

𝑝 = 0 

Tenseur  𝐃̅ de 

la méthode 

DEVSS 

Condition de 

Neumann 

𝛁𝑫̅ ⋅ 𝑛⃗⃗ = 0 

Condition de 

Neumann 

𝛁𝑫̅ ⋅ 𝑛⃗⃗ = 0 

Condition de 

Neumann 

𝛁𝑫̅ ⋅ 𝑛⃗⃗ = 0 

Fluide au 

repos 

D̅𝑖𝑗 = 0 

 

Il apparaît de manière assez évidente que la condition concernant le tenseur des extra-

contraintes sera toujours la même. Ceci s’explique majoritairement par le fait qu’imposer une 

condition frontière autre que celle de Neumann est quasiment impossible, car il s’agit d’une 

variable  dépendante du gradient du champ de vitesse. Il faudrait connaître le gradient, ce qui 

détruirait tout l’intérêt d’une simulation numérique visant à déterminer comment la contrainte 

influence le gradient de vitesse et réciproquement.   

En somme, il est important de signaler qu’à cause de l’utilisation de la méthode DEVSS, le 

problème doit être étudié en régime transitoire. En effet, cela est dû au fait qu’il est  peu raisonnable 

d'utiliser une condition autre que celle de Neumann a 𝑫̅ en tout point. Comme précédemment, il 

faudrait connaître le gradient du champ de vitesse ce qui rendrait la méthode peu intéressante. Or, 

en faisant le choix d’utiliser cette condition frontière pour ce genre de problème, cela reviendrait 
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par analogie à étudier un problème de transfert thermique possédant un terme source où toutes les 

parois sont isolées. Le problème est un problème de Neumann avec termes sources pour lequel  une 

solution en régime permanent ne peut être garantie dans le cas général; il faut absolument utilisée 

le régime transitoire. Ce qui signifie qu’il est impératif de définir des conditions initiales telles 

qu’elles soient représentatives de ce qui pourrait se passer au démarrage d’une mise en profilé.  

Étant donné que le fluide est censé être au repos dans la filière, si elle n’est pas en fonction, 

il paraît légitime de supposer qu’initialement le fluide est immobile et que la pression entre l’entrée 

et la sortie est équilibrée. Ceci signifie qu’initialement (t=0) : 

𝑣⃗ = 0⃗⃗; 𝑝 = 0; τij 
= 0; D̅𝑖𝑗 = 0 

3.2.2 Implantation sous Comsol 

 Maintenant que les équations à utiliser sont connues et que toutes les conditions frontières 

sont posées. Voyons comment implanter tout ce qui a été présenté précédemment. Il existe 

essentiellement trois manières de procéder sous Comsol si les équations de base n’existent pas.  

 La première consiste à utiliser une formulation forte de l’équation et d'y ajouter des termes 

stabilisant (SUPG, GLS,…) à l’aide d’une fonction particulière dans Comsol. Cette technique est 

de loin la plus utilisée, car elle permet d’entrer les équations sans se soucier des termes de la 

formulation. C’est aussi la technique la plus opaque compte tenu du fait qu’il n’y a aucun moyen 

d’être sûr que la formulation faible finale que Comsol utilisera est bien celle formulée. La seconde 

est une variante de la première et se nomme formulation par coefficient. Ici, une version générale 

de toutes les équations est écrite et les seules choses modifiables sont les coefficients affichés dans 

cette équation. Cette méthode est encore plus opaque que la précédente puisqu’elle limite la liberté 

de la forme des équations à celle proposée par Comsol. La dernière méthode, nommée formulation 

faible, est celle qui sera utilisée dans cette étude. Il s’agit de rentrer de manière brute la forme faible 

des équations présentés précédemment. Cette méthode a été choisie, car elle est la plus transparente 

des trois techniques vu que les termes de stabilisation sont introduits explicitement dans Comsol.  

Une fois ce choix fait, il a été décidé de ne pas utiliser le module CFD de Comsol 

considérant qu’il pourrait y avoir une incompatibilité fondamentale entre les techniques de stabilité 

utilisées et celle équipant le module CFD. La forme faible des équations de Cauchy est recréée, 
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puis testée dans un premier temps. Dans un second temps, une fois que la méthode a convergé pour 

des fluides newtoniens simples, dont les solutions sont connues, l’équation d’Oldroyd_B a été créée 

et couplée à celle de Cauchy déjà implantée. La première version de cette équation était dénuée de  

tout terme stabilisant et utilisait une formulation de Galerkin  avec des éléments P2. Il est important 

de signaler que les éléments utilisés dans l’équation de Cauchy sont des éléments P1 pour la 

pression et P2 pour le champ de vitesse. Lorsqu’une convergence était obtenue à très faible nombre 

de Weissenberg (environ 0.01), une technique de stabilisation était ajoutée par-dessus afin de 

monter en nombre de Weissenberg. Pour s’assurer que Comsol implantait correctement les 

méthodes de stabilisations (SUPG et DEVSS), plusieurs cas tests ont été utilisés.  

Ces cas tests consistent, par exemple, dans le cas de SUPG, à simuler une onde de choc.  

Dans ce cas précis, la méthode Galerkin classique oscille assez violemment, car elle ne supporte 

pas des variations rapides induites par une convection forcée. La méthode SUPG, quant à elle, n’est 

pas supposée osciller ce qui indiquerait que l’implantation a correctement été réalisée. La dernière 

étape consistera à prédire une rhéofluidifiance en fonction du taux de cisaillement. Pour ce faire, il 

a été ajouté le terme exponentiel de PTT manquant à l’équation d'Oldroy-B. Il a suffi, par la suite, 

de vérifier que les données obtenues étaient bien conformes au cas analytique avant d’aller plus 

loin et de prédire le phénomène en trois dimensions. Ceci a été impossible sous Comsol pour les 

raisons qui seront évoquées dans la présentation des résultats.  

3.2.3 Implantation sous Foam-Extend 

Contrairement à Comsol, ici il ne sera pas question de construire la simulation en partant 

d’une page vierge. Grâce au travail du professeur Jovanni L. Favro, qui a déjà implanté une dizaine 

de modèles dont les trois présentés précédemment, cela consistera en une manipulation du logiciel 

qui ne possède aucune interface graphique à utiliser [71]. En outre, Foam-Extend, contrairement à 

Comsol, n’a pas de logiciel de CAO avancé qui générerait des géométries complexes ainsi que  leur 

maillage associé. Il faudra donc aussi trouver un autre logiciel pour remplacer le constructeur de 

maillage de base (BlockMesh) fourni avec Foam-Extend.  

Pour utiliser Foam-extend en viscoélastique, il est nécessaire de créer trois fichiers 

indispensables. Le premier est appelé 0 et contiendra les conditions initiales ainsi que les conditions 

frontières de chaque variable. Le second, dénommé constant, aura à la fois les données du maillage, 
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de la géométrie et les propriétés du fluide. Le dernier fichier, intitulé system, comprendra toutes 

les méthodes relatives à la FVM ainsi qu’à la décomposition du domaine en vue de sa 

parallélisation. Par la suite, à chaque fois, qu’il faudra exécuter OpenFoam, il sera important 

d’exécuter une suite d’instruction dont la première est la génération du  maillage. Tel que stipulé 

précédemment, cette étape ne sera pas réalisée à l’aide du logiciel de base fournie dans Foam-

Extend. À la place, il a été décidé d’utiliser le logiciel GMSH beaucoup plus versatile et puissant 

que blockMesh. Il s’exécute normalement en écrivant un code détaillant toutes les spécificités du 

maillage. Cependant, il existe une interface graphique, dénommée OpenCascade, aidant à 

manipuler les géométries et à obtenir des prévisualisations du maillage fort utile. Une fois que les 

données de maillage sont générées par GMSH, il ne suffira plus que de décomposer le maillage à 

l'aide de l’algorithme metis puis de lancer la simulation en parallèle, en utilisant les commandes de 

la bibliothèque MPI. Une fois les résultats bruts obtenus, le post traitement des données se fera 

grâce au logiciel ParaView. Il suffira, pour finir, de comparer ces  données à celles obtenues 

analytiquement pour vérifier leur  prédiction théorique. Puis, de confronter la simulation à des cas 

réels pour voir si les données obtenues sont bien celles observées expérimentalement. Pour ce qui 

est de la convergence à proprement parler, elle sera vérifiée en traçant graphiquement le résidu 

initial en fonction du temps. Ce point sera expliqué plus en détails dans la partie résultats à la 

section dédiée à Foam-Extend. Pour finir, il est à noter que le solveur utilisé dans Foam-Extend est 

un solveur Bi-gradient conjugué stabilisé (BiCGStab) combiné à un préconditionneur ILU0. 

3.3  Vérification des simulations numériques 

Les modèles présentés antérieurement sont censés prédire un certain nombre de 

comportements non newtonien. Considérant la forte teneur en terme hyperbolique de ces équations, 

il n’est absolument pas évident de trouver des solutions analytiques à ce problème. Fort 

heureusement, dans certains cas  bien spécifiques, le problème se simplifie énormément et permet 

d’obtenir certaines solutions comparables à celles prédites. L’une de ces situations consiste à 

considérer un cisaillement linéaire tel que:   

|𝛾̇| = 𝑎𝑥 + 𝑏 

Ici, a et b représentent des constantes et x représente la composante orthogonale à l’écoulement où 

s’établit le champ de contrainte(en cisaillement et normale). Pour obtenir ce phénomène, il suffit 
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de simuler un écoulement établi dans une conduite (cylindrique ou rectangulaire) qui peut être 

représentée par la forme suivante (en 2 Dimensions).  

 

Figure 3.1  Profil de vitesse dans une fente. 

Sur cette figure, le profil de vitesse est représenté par des flèches orientées dans le sens de 

l’écoulement. Cette forme et le fait que l’écoulement soit bidimensionnel forcent le profil de vitesse 

à prendre une configuration parabolique classique. Grâce à cela, il est possible de simplifier les 

équations définissant le tenseur des extra-contraintes  afin d’en extraire des équations du coefficient 

de la première différence des extra-contraintes et de la viscosité. Il suffira, ensuite, de comparer 

ces valeurs à celles obtenues par simulation et d’en tirer les conclusions qui s’imposent quant à la 

validité de ces résultats. À titre d’exemple, voici quelle serait analytiquement la forme de l’équation 

définissant  la viscosité en fonction du temps pour un modèle de Maxwell convecté [10]: 

𝜂𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑞𝑢𝑒 =
𝜎12

𝛾̇
= 𝜂0 (1 − 𝑒

𝜆
𝑡)   

(46) 
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En supposant qu’ici la définition de l’erreur est celle prise au sens de la norme L2. C’est-à-

dire :  

𝑒𝑟𝑟𝑒𝑢𝑟 = ( ∫ (
𝜂𝑖𝑠𝑖𝑚𝑢𝑙é𝑒

− 𝜂𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑞𝑢𝑒

𝜂𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑞𝑢𝑒
)

2 

Ω

𝑑Ω)

1
2

  

(47) 

La vérification consistera à obtenir une erreur avoisinant les 1% ce qui permettra de 

considérer que la  simulation est suffisamment fiable pour être utilisée dans des prédictions.  

Dans les cas où il est impossible d’avoir des solutions analytiques, il est possible de mettre 

à profit la méthode d’extrapolation généralisée de Richardson qui consiste à lancer plusieurs 

simulations pour des maillages de plus en plus fins, et qui dans la limite de la convergence 

asymptotique permet d’estimer la solution qui serait obtenue pour un maillage infiniment petit 

[101]. Cette solution peut alors servir comme solution de référence à la place de la solution 

analytique. Toutefois, ceci n’est qu’une première partie du problème puisqu’il faudra confronter 

ces prédictions à la réalité expérimentale. Ceci est abordé à la section suivante. 

3.4  Précision relative à la validation expérimentale du projet 

Après l’étape de vérification de la bonne implantation du modèle numérique, il est d’usage 

de réaliser la validation du modèle numérique par comparaison des prédictions du modèle  à des 

données expérimentales. Dans ce contexte-ci, une des possibilités aurait été de réaliser des tests sur 

le profilé en faisant varier la pression d’entrée puis en mesurant le débit de sortie et l’épaisseur des 

films produits. De cette manière, il aurait été possible d’estimer si les simulations permettent bien 

de prédire le même comportement observé expérimentalement. Toutefois, la  validation n’a pu être 

menée à terme pour trois raisons:  

1.  le manque de disponibilité de l’extrudeuse et de son profilé, et du celluloïd lui-même; 

2. la dangerosité du celluloïd qui empêche de réaliser les mesures rhéologiques 

(p.ex. contrainte seuil, module de perte, module stockage…) requise comme donnée 

d’entrée du modèle numérique; 

3. les contraintes de temps reliées au projet.   
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CHAPITRE 4 RÉSULTATS ET ANALYSE   

Après cette brève explication de la méthodologie qui a été employée afin de répondre aux 

objectifs spécifique de cette recherche, il est maintenant temps de voir quels résultats ont pu être 

obtenus. Dans cette partie, il sera présenté, dans un premier temps, les données rhéologiques 

utilisées ainsi que la manière dont ont été obtenus les paramètres des modèles viscoélastiques. Dans 

un second temps, les données obtenues seront examinées à l’aide de la méthode des éléments finis 

implantés dans le logiciel Comsol ainsi que les limitations du logiciel. Pour finir, les données qu’il 

a pu être possible d’obtenir par la méthode des volumes finis implantée dans le logiciel Foam-

Extend seront exposées. Il  faut porter à l’attention du lecteur que le développement de la partie 

éléments finis  (Comsol) du projet a pris près de deux ans de développement. Tandis que la méthode 

des volumes finis (Foam-Extend) n’a été étudiée que durant les 6 derniers mois de la recherche. 

4.1 Données rhéologiques et choix des paramètres des modèles  

À l’aide des données de viscosité apparente en fonction du taux de cisaillement apparent 

obtenue en rhéomètre capillaire (C. Dubois, M. Massart, communication privée, aout 2018), il est 

permis de construire une courbe de viscosité en fonction du taux de cisaillement à une température 

donnée. Rappelons que le but de cette étude est de prédire les plus fortes contraintes normales qu’il 

serait théoriquement possible d’observer.  

Tableau 2  Viscosité en fonction du taux de cisaillement, pour un écoulement de celluloïd dans un 

profilé à 70 °C. 

Taux de 

cisaillement, 1/s 

Viscosité en 

cisaillement Pa.s 

Logarithme 

du 

cisaillement 

Logarithme 

en base 10 

d’êta  

33.2 1497.8 1.52 3.18 

62.7 898.0 1.80 2.95 

120.4 535.4 2.08 2.73 

321.1 243.0 2.50 2.38 

781.0 113.8 2.89 2.06 

1750.9 56.0 3.24 1.75 

4995.1 21.9 3.70 1.34 

9990.2 11.7 3.99 1.07 

13048.4 10.2 4.11 1.01 
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Le Tableau 3 présente les données obtenues en rhéologie capillaire. Ces données ont été 

récoltées à la plus basse température d’opération possible c’est-à-dire 70 °C. Il est à signaler qu’il 

n’existe aucun appareil capable de mesurer directement  la viscosité d’un fluide en écoulement. 

Ces données ont été obtenues en mesurant la pression et le débit de sortie, puis en appliquant une 

formule qui permet de déduire  le cisaillement aux parois et la viscosité.  

  En représentant ces données sur un graphique logarithmique et en essayant de faire passer 

une courbe à travers les points, il est possible de construire la courbe suivante. 

 

 

Figure 4.1  Loi de Carreau vs données expérimentales à 70 °C. 

La Figure 4.1 présente la régression non linéaire (obtenue par Matlab « fitnlm »)  du modèle 

de Carreau sur les données rhéologiques. La viscosité plateau à faible taux de cisaillement 𝜂0 

n’étant pas disponible à partir des données expérimentales, le paramètre 𝜂0 a été 

approximativement estimé à 10 kPa.s à partir des travaux de Beverly et Tanner pour des mélanges 

NC/NG [102] pour des températures similaires. Après régression, les paramètres n et l du modèle 

de Carreau ont été estimés respectivement à 0.19 et 0.31 s (avec des p-valeurs de 1.6E-11 et 3.2E-

10). 

Pour ce qui est du temps de relaxation 𝜆, puisqu’il n’a pas été possible de le déterminer par 

une quelconque expérimentation, il a été décidé de le poser plus ou moins arbitrairement à 0.264 
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s, valeur choisie par Beverly et Tanner pour un mélange5 à forte teneur (supérieure à 60%) en NC 

similaire au celluloïd [102]. Les résultats de simulations ainsi obtenus à partir de ces valeurs, 

régressées et choisis, seront donc à prendre que comme une preuve de concept et non comme des 

valeurs physiquement réalistes. 

Pour résumer, les paramètres des modèles viscoélastiques censés représenter le celluloïd 

seront les suivants : 

Tableau 3  Résumé des paramètres utilisés. 

 White-Metzner PTT Giesekus   

𝜂0 10 𝑘𝑃𝑎. 𝑠 n.a. n.a. 

𝑛 0.19 n.a. n.a. 

𝑙 0.31 𝑠 n.a. n.a. 

𝜆 0.264 s 0.264 s 0.264 s 

𝜂 n.a. 10 𝑘𝑃𝑎. 𝑠 10 𝑘𝑃𝑎. 𝑠 

𝜀 n.a. 0.196 n.a 

𝛼 n.a. n.a 0.224 

n.a.  : Non applicable. 

Il est à noter que, pour la partie impliquant le logiciel Comsol, un modèle type Maxwell a été 

implanté avec des valeurs de paramètres plus faibles dans un premier temps. Ce choix a été fait, 

                                                 

5 Il ne faut cependant pas oublier que le mélange de Beverly et Tanner est plastifié avec de la nitroglycérine ce qui 

n’est pas le cas pour du celluloïd. 

6 Ces valeurs ont été obtenues par calibration de sorte que la courbe de viscosité en fonction du taux de cisaillement 

générée par simulation dans une conduite à section rectangulaire concorde à la courbe rhéologique de la  Figure 4.1. 
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parce que, pour des valeurs de temps de relaxation réelles, la simulation n'arrivait pas à converger. 

Ceci sera expliqué plus en détail dans la section suivante.      

4.2 Implémentation sous Comsol  

4.2.1 Test de la Méthode de Galerkin continue  

Telle que précisée dans la partie méthodologie, la technique employée pour implanter le 

modèle viscoélastique  dans Comsol sera, grâce à la formulation faible, disponible sous Comsol. 

L’idée de départ est de simuler de manière « naïve » l’équation d’état du fluide sans utiliser de 

terme de stabilisation. Pour ce faire, la première étape a été  de construire l’équation en 2 

dimensions et de la coupler à l’équation de Cauchy. Puisque le tenseur des extra-contraintes est un 

tenseur d’ordre 2 de dimension 2*2 et qu’il est symétrique, cela signifie qu’il faut rajouter 3 

équations différentielles aux 3 de base  définissant les deux composantes(en 2 dimensions) de la 

vitesse ainsi que la pression. Par conséquent, il est impératif d’ajouter 3 fonctions tests qui 

permettront d’affaiblir ces équations. Cette première version simplifiée donne donc un total de 6 

équations auxquelles sont associées 6 fonctions tests. À noter que, sous Comsol, lors de la 

déclaration des variables tests affaiblissant la formulation forte, cela se fera via une commande 

nommée test. Par exemple, dans le cas simplifié présenté, cela signifie que les variables et leur 

fonction test associée seront nommés : 

𝜎11; 𝜎12; 𝜎22 𝑒𝑡 𝑡𝑒𝑠𝑡(𝜎11); 𝑡𝑒𝑠𝑡(𝜎12); 𝑡𝑒𝑠𝑡(𝜎22)  

Cette définition de test revient à utiliser la formulation de Galerkin classique. Dans le cas 

présent, la discrétisation de ces fonctions tests se fera grâce à des éléments de Lagrange P2. Ce 

choix a été fait pour diminuer la quantité d’éléments à générer compte tenu des techniques de 

stabilisation qui seront utilisées plus tard. Une fois tous ces paramètres  et équations implantés, il 

est nécessaire de vérifier si l’équation de Maxwell convecté a été correctement implantée sur 

Comsol. Pour y arriver, il a donc été décidé de simuler un écoulement en régime transitoire dans la 

géométrie présentée dans la partie méthodologie. Comme condition d’entrée, il a été décidé 

d’appliquer un profil de vitesse parabolique avec une vitesse maximale au centre de 0.1 m/s en 

entrée. Ce choix a été fait pour des raisons de stabilité et afin de comparer directement le profil de 

vitesse en entrée à celui obtenu à un point quelconque de la simulation.  
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Figure 4.2  Profil de vitesse à faible nombre de Weissenberg. 

Le résultat présenté à la figure précédente montre que le profil de vitesse obtenu par 

simulation (point en bleu sur la figure) correspond parfaitement au profil de vitesse parabolique 

classique (trait continue vert). Théoriquement, c’est ce que prédit le modèle de Maxwell convecté. 

Il est, par ailleurs,  important de signaler que ce profil est celui obtenu lorsque le système a atteint 

son régime permanent. Toutefois, ce résultat ne montre en rien qu’il y a bien un effet viscoélastique. 

Pour le faire apparaitre, il faut regarder la première différence de  contraintes normales aux parois. 

Pour un fluide newtonien commun, dans un cas comme celui-ci, il ne devrait pas y avoir de 

contrainte normale quelle que soit la position où l’observation est réalisée. Or, dans cette 

simulation, il est possible de prédire une différence de contrainte non nulle (excepté  au centre) 

significative.  
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Figure 4.3  Premier coefficient de contraintes simulé à faible nombre de Weissenberg (modèle 

non stabilisé). 

Comme il est possible de le constater à la lecture de la figure ci-dessus, la  valeur du premier 

coefficient de contrainte normale est supposée être théoriquement constante et vaut: 

𝜓1 = 2𝜂𝑝𝑜𝑙𝜆 = 20
𝑘𝑔

𝑚
 (16) 

(48) 

Numériquement, la valeur obtenue est quasiment constante mis à part de très légères 

variations imputables essentiellement au fait que proche du centre de la géométrie le cisaillement 

et la première différence de contrainte (τ11 − τ22) tendent vers 0.  Cependant, cette variation crée, 

au maximum, une  erreur de l’ordre de 0.075% ce qui est largement en-dessous du seuil de 1% fixé 

dans la partie méthodologie.   

 

 

 

 



68 

 

 

Tableau 4  Erreurs obtenues à faible nombre de Weissenberg (modèle non stabilisé). 

 𝜎12

|𝛾̇|
 Vitesse 𝜓1 

Erreur 

selon la 

norme L2 

 

0.00005% 

 

0.00005% 

 

0.1% 

Les erreurs ainsi obtenues sur les variables d’intérêt et  sont très largement en dessous de 

1% ce qui respecte le critère fixé et permet de dire que la simulation est valide d’un point de vue 

théorique. Néanmoins, cette simulation ne fonctionne que pour un nombre de Weissenberg 

inférieur ou égal à  0.1. Au-delà  de cette faible  valeur, il s’avère que la simulation ne converge 

pas quel que soit le maillage employé. Pour arriver à dépasser cette trop faible valeur du nombre 

de Weissenberg, il est impératif d’utiliser des techniques  de stabilisation présentées dans la revue 

de la littérature. 

4.2.2 Test de la stabilisation couplée SUPG/ DEVSS 

Il a été impossible de dépasser un Weissenberg de 0.1 quel que soit le maillage par la 

méthode de Galerkin non stabilisée, ce qui est cohérent puisque l’équation d’état est à dominante 

convective. La stabilisation du système d’équations a dû être faite en en ajoutant des termes aux 

fonctions  test de base. Toutefois, pour que cela soit réellement efficace, il est nécessaire 

d’appliquer toutes ces modifications à une forme alternative de l’équation d’état. Cette dernière est 

celle du tenseur de conformation qui est relié au tenseur de contrainte par la formule présentée dans 

la revue de la littérature. En raisonnant de cette manière, il est possible de grandement stabiliser le 

problème et de multiplier le nombre de Weissenberg maximal atteint par un facteur 8 ce qui est 

assez bon.  

L’inconvénient d’utiliser cette technique est que raisonner sur le tenseur de conformation  

nécessite de renoncer à chercher une quelconque interprétation physique aux valeurs de la variable 

obtenue.  Cela est dû au fait que cette variable est reliée à la conformation que peut prendre la 

molécule dans l’espace qui lui est allouée. Puisque raisonnée sur le sens physique que représente 

le tenseur des extra-contraintes est une chose déjà ardue, il semble encore plus improbable 
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d’obtenir une interprétation physique sur une variable encore plus abstraite.  De plus, la technique 

DEVSS impose d’ajouter 3 nouvelles équations  en 2D pour définir les composantes du tenseur de 

taux de cisaillement. Ceci augmente le nombre d’équations différentielles (ainsi que le nombre de 

fonctions test associées) le faisant passer de 6 à 9.  Les résultats restent, cependant, appréciable et 

il est assez aisé de remarquer qu’une fois les problèmes d’implémentation passés les simulations 

en 2 dimensions sont assez rapides.  

 

Figure 4.4  Premier coefficient de contraintes normales prédit à l’aide d’un modéle oldroyd-B 

stabilisé [72]. 

Il est donc permis de constater, sur la courbe précédente, que les résultats simulés suivent 

ce que prédisent les solutions analytiques. Cette courbe présente, ainsi, les résultats en régime 

transitoire d’un test appelé shear stress step. L’idée derrière ce test est d’appliquer à t0 un taux de 

cisaillement constant en tout point du système et de mesurer l’évolution des fonctions rhéologiques 

présentées précédemment. Dans un cas newtonien incompressible, la réponse au test est instantanée 

puisqu’à cause de l’équation de continuité, le transport de l’information est instantané. Or, dans un 

cas viscoélastique, la transmission de l’information est freinée proportionnellement au temps de 

relaxation qui limite le transport de l’information. Ceci se caractérise sur la courbe par un délai 

entre le  moment où le test est démarré(t=0) et le moment ou le régime permanent est atteint. Dans 

ce cas, le temps auquel la courbe atteint le régime permanent, représenté graphiquement par un 

plateau ce situe à 5 s. Ce phénomène est prédictible analytiquement par l’équation suivante [10] : 
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2𝜂0𝜆 (1 − 𝑒−
𝑡
𝜆 (1 +

𝑡

𝜆
))  

(49) 

C’est les résultats de cette équation qui ont été représentés sur la courbe par la ligne 

continue. En les comparant au point bleu obtenu par simulation numérique, il apparait que les deux 

courbes se superposent quasi parfaitement. L’erreur par la norme L2 n’est d’ailleurs que de  0.5%, 

ce qui est en dessous du seuil de 1 % fixé. Les résultats sont donc suffisamment précis pour être 

utilisés dans la simulation numérique de l’écoulement pour une géométrie un peu plus complexe. 

La géométrie qui a été choisie pour réaliser cette expérience est une contraction 4 :1en 2 dimensions 

représentée à la Figure 4.5.  

 

Figure 4.5  Simulation d’une contraction sous Comsol. 

Ici, l’entrée et la sortie se situent respectivement à y=0 et y=0.2; le reste des conditions 

frontières sont des parois. Sur la figure précédente, le code couleur représente le profil de vitesse 

en tout point de la géométrie. Il apparait de façon très évidente que le fluide est accéléré une fois 

la contraction dépassée. Ceci est cohérent avec ce qu’il est possible d’observer physiquement 

puisque le débit volumétrique est constant (fluide incompressible) le profil de vitesse doit 

augmenter pour pallier la réduction de section. Il est, par contre, impossible de prédire 
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analytiquement si le profil de vitesse est le même que celui obtenu analytiquement. En effet, il 

n’existe aucune solution analytique à ce problème. La seule manière de savoir si cette solution 

numérique est juste est de vérifier si elle prédit les comportements observables expérimentalement.  

L’un de ces comportements est le fait qu’après une contraction la quantité de contraintes normales 

augmente brutalement. Puis, elle se dissipe au fur et à mesure que le fluide avance dans la conduite. 

Cela est dû à l’effet mémoire induit par la partie élastique du fluide et à la déformation que subit la 

macromolécule une fois qu’elle entre dans la contraction. Elles sont ainsi distordues comme un 

élastique qui se ferait tendre d’un seul coup. Cet excès de contrainte sera, par la suite, atténué par 

le réarrangement des molécules dans le nouvel espace qu’elles occupent. Il suffit donc d’observer 

la différence de contraintes normales pour se rendre assez vite compte de cet effet ce qui est 

représenté à la Figure 4.6. 

 

Figure 4.6  Évolution de la première différence de contrainte au centre d’une contraction. 

Cette courbe représente l’évolution de la différence de contraintes normales le long de la 

filière juste après la contraction. Les données ont été normalisées afin de voir l’évolution de  cet 

excès de contrainte. Le choix du centre de la filière n’est pas anodin puisqu’en théorie la contrainte 

est nulle s’il n’y a pas de contraction. Il est donc légitime de s’attendre à ce qu’elle vaille zéro dès 

lors que le fluide a fini son réarrangement, ce qui arrive à 50% de la contraction. Le comportement 

obtenu correspond ainsi, assez fidèlement, à ce qui a été décrit dans le paragraphe précédent. Le 

modèle est donc assez cohérent physiquement ce qui rend ces prédictions pertinentes. Au vu de ces 

résultats, il est possible d’affirmer que pour un fluide viscoélastique; si l’écoulement se fait à un 
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nombre de Weissenberg égal à 1.2 dans une contraction similaire à celle présentée précédemment, 

il faudrait laisser 5 cm de canal en plus, après la contraction, pour éviter un excès de contrainte 

normale qui conduirait à une augmentation du gonflement en sortie de filière. Cette analyse n’est 

valide que si le fluide obéit à une équation de Maxwell convecté ce qui est loin d’être le cas pour 

la plupart des polymères. Cette  divergence est due au fait que la loi de Maxwell convecté, telle 

qu’elle a été présentée, ne tient pas compte du fait que les  propriétés sont dépendantes du taux de 

cisaillement. Tel que déjà montré dans la revue de la littérature, les polymères tels que le celluloïd 

ont tendance à voir leur viscosité diminuée dès lors que le taux de cisaillement augmente. Cette 

diminution peut être suffisamment forte pour transformer un profil parabolique commun en un 

profil quasi plat. Ceci fausse complètement les résultats et conclusions présentés précédemment, 

car ils se basent sur le fait que les propriétés du fluide étaient constantes. Fort heureusement, il est 

possible de corriger ce problème en ajoutant une constante et en modifiant légèrement la forme 

finale de l’équation du tenseur des extra-contraintes. Sous Comsol, cela a été réalisé  en 

implémentant le modèle E-PTT présentée dans la partie méthodologie. De cette manière, le profil 

de vitesse suivant a été obtenu: 

 

Figure 4.7  Profil de vitesse d’un fluide rhéofluidifiant simulé sous Comsol. 

Sur cette courbe, apparaît le profil d’entrée normalisée appliquée ainsi que le profil établi 

normalisé après une certaine distance parcourue par le fluide. Il est quasi plat puisque la viscosité 

a tendance à chuter assez rapidement en fonction du taux de cisaillement. La géométrie utilisée, 

ici, est la même que celle employée pour valider le modèle de Maxwell convecté (c’est-à-dire  un 
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rectangle). Dans cette configuration, le taux de cisaillement sera toujours plus fort aux parois, car 

le fluide à une vitesse nulle aux parois. A contrario, le fluide aura un taux de cisaillement quasiment 

nul, proche du centre, puisque le profil de vitesse dans cette zone est plat. Ces deux affirmations 

impliquent que la viscosité du fluide devrait être plus grande au centre  et plus faible  proche des 

parois puisque le fluide est rhéofluidifiant.  Pour vérifier si cette affirmation est validée dans notre 

modèle, il suffit de considérer un fluide ayant une viscosité à taux de cisaillement nul de 1000 Pa.s  

et de voir comment évolue la fonction de viscosité 𝜂 qui a été définie dans la revue de la littérature 

comme étant le ratio contrainte en cisaillement sur taux de cisaillement.  

 

Figure 4.8  Évolution de la viscosité pour un modèle PTT sous Comsol [72]. 

La figure ci-dessus montre ainsi clairement que la viscosité prédite numériquement  est 

dépendante du taux de cisaillement. En outre, il apparaît que cette viscosité est inversement 

proportionnelle au taux de cisaillement. Tout ceci tend à prouver que les prédictions faites par la 

simulation restent cohérentes par rapport au phénomène et donc que le modèle est valide.   

Toutefois, si les résultats sont comparés à ceux obtenus  par un modèle de Carreau avec 𝜀 = 𝑛 et 

m=𝜂0 , les deux courbes suivent la même tendance, mais ne se chevauchent pas en tout point. Vu 

que les prédictions du modèle de Carreau sont supposément les solutions analytiques du modèle 

E-PTT, en ce qui concerne la viscosité en régime permanent établie, la norme L2 de l’erreur 

calculée grâce aux deux courbes approche les 5%.  Bien que cela soit faible, cette valeur est au-

dessus des 1% de seuil fixé dans cette étude. Plusieurs tests ont été réalisés pour raffiner le maillage 
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afin de diminuer cette erreur, mais ils furent tous un échec. Aucun des maillages raffinés n’a permis 

d’atteindre une forme de convergence quelconque,  ce qui tend à prouver que, malgré tous les 

efforts mis en œuvre, des instabilités dans la méthode d’implantation choisie subsistent. 

4.2.3 Limite de l’implémentation sous Comsol 

L’utilisation de Comsol comme outil de simulation numérique découle d’un intérêt de 

l’industriel partenaire pour la simulation des écoulements viscoélastique par des logiciels 

commerciaux simples d’utilisation. Comsol a en effet pour avantages de faciliter le couplage de 

physiques et le transfert rapide de technologie. La version 5.4 permet même de créer des 

applications autonomes qu’il est possible d’utiliser sans posséder le logiciel Comsol. Il a donc été 

décidé de voir quel nombre de Weissenberg était possible d’atteindre, malgré les limitations 

inhérentes aux méthodes Galerkin continues. Après deux ans de développement, il s’est avéré 

qu’au-delà d’un nombre de Weissenberg de 1, la plupart des simulations n’ont pas convergé. Ce 

problème est récurrent dans la littérature et il fallait s’y attendre  au vu des méthodes employées. 

Depuis le début de cette étude, il a été précisé qu’il n’existe aucun terme diffusif dans l’équation 

des extra-contraintes. Cette équation est à dominante convective ce qui est un problème dès lors 

que  des discrétisations de Galerkin commune sont utilisées. Dans la littérature, il est précisé que, 

pour atteindre des nombres de Weissenberg supérieur à la dizaine, il est obligatoire d’utiliser des 

techniques discontinues. En élément fini, cela revient à utiliser une technique dite de Galerkin 

discontinue. Cette technique autorise la discontinuité d’un élément à un autre, ce qui est 

particulièrement utile dans des cas comme celui étudié ici. Le problème de cette implémentation 

est qu’elle est très dure, voire même impossible, à réaliser dans Comsol avec les outils fournis par 

le logiciel. Par surcroît, il faut aborder le problème des solveurs dans Comsol. Depuis le début cela 

n’a pas été précisé, mais pour résoudre les systèmes d’équations linéaires générées, la technique 

employée est celle de la décomposition LU. Elle est utilisée à l’aide de l’algorithme Paradiso qui 

permet de fortement paralléliser les calculs. Toutefois, comme cela est stipulé dans plusieurs livres 

d’algèbre linéaire, cette technique nécessite un temps de calcul qui évolue en O(n3). Cela signifie 

que, si le nombre de  mailles est triplé le temps de calcul sera multiplié par 27. Autant en deux 

dimensions ce n’est pas un problème, car les calculs restent assez rapides, autant en 3 dimensions 

cela devient inacceptable. Les calculs devraient donc se faire en 3 dimensions par une méthode 
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itérative munie du préconditionneur adéquat. C'est donc là que Comsol perd tout son intérêt puisque 

la seule technique itérative intéressante implantée est la méthode GMRES. Cette dernière permet 

certes de résoudre les problèmes en un temps  de l’ordre de  O(n2), mais elle nécessite de trouver 

le bon pré conditionneur. Sous Comsol 5.3 ce choix est très limité et il n’est pas possible d’importer 

un autre pré conditionneur d’une source externe. Ceci expliquant pourquoi la plupart des 

publications utilisant Comsol se concentrent sur la 2D. Le logiciel reste un bon outil pour apprendre 

les bases, mais il ne permet pas encore de réaliser des projets en viscoélastique à la hauteur de ses 

concurrents. Pour conclure sur les résultats obtenus à l’aide de ce logiciel, il apparaît que pour des 

applications à faible nombre de Weissenberg en 2 dimensions, le logiciel est utilisable. En 

revanche, pour des projets en 3 dimensions d’envergure, il n’est pas encore assez mature. Il faudrait 

attendre de voir si, dans les futures versions, il existera un moyen d’utiliser la méthode de Galerkin 

discontinue pour simuler ce genre d’écoulement. 

4.3 Implémentation sous Foam-Extend 

Sous Foam-Extend, l’implantation de la technique de stabilisation et des modèles 

viscoélastiques est déjà réalisée pour 10 modèles différents. La véritable difficulté de ce logiciel 

est que l’environnement de travail est contrôlé par  ligne de commande. Il faut donc créer un dossier 

contenant les éléments de base; c’est-à-dire, maillage, propriété du fluide, propriété du solveur, 

type de discrétisation et condition frontière pour chaque variable. 

Dans tous les cas qui seront présentés sous Foam-Extend, il est à noter que les schémas 

utilisés sont les suivants : 

1. pour les gradients de pression, de vitesse et tous les laplaciens, un schéma 

d’interpolation linéaire (ou linéaire corrigé) sera utilisé;  

2. les divergences sont interpolées à l’aide d’un  schéma upwind; 

3. un schéma d’Euler implicite en temps sera utilisé avec un pas de temps adaptatif, pour 

ce qui est des dérivées temporelles. Ce pas de temps sera limité par un nombre de 
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Courants7 maximal de 0.1 et ne devra  pas dépasser un pas de temps maximal de 0.01s; 

tel que suggéré par Jovanni L. Favro pour éviter d’éventuelles instabilités de la 

procédure adaptative [53].   

De plus, deux correcteurs seront utilisés dans l’algorithme PISO ainsi qu’un correcteur pour 

la non-orthogonalité. Il est à signaler que le résidu au début de chaque itération diminue au cours 

du temps jusqu’à se stabiliser vers une valeur fixée par la tolérance imposée au solveur qui devrait 

indiquer que le régime permanent est atteint. Ainsi, les tolérances utilisées par le solveur sont : 

pour la pression de 10-7; pour le tenseur des extra-contraintes de 10-6; pour le champ de vitesse de 

10-6.  

Puisque la plupart de ces fichiers ne changent pas de forme d’une simulation à l’autre, le 

véritable problème proviendra de la géométrie et du maillage. Tel que  mentionné dans la partie 

méthodologie, le constructeur par défaut BlockMesh est limité. Il a donc été décidé d’utiliser le 

constructeur de maillage GMSH qui, lui aussi, fonctionne en ligne de code. L’avantage de ce 

constructeur par rapport à BlockMesh est qu’il possède une interface graphique facilitant les 

opérations de CAO. 

Cette section présente les résultats de simulations d’écoulement du celluloïd obtenu pour 

diverses géométries tests en deux et trois dimensions, découlant à l’aide de la méthode de 

stabilisation DEVSS. Des tests de vérification et de convergence ont été réalisés sur des géométries 

de plus en plus complexes allant de la simple contraction 2D au cas réel du profilé et seront analysés 

dans la suite de cette section. 

4.3.1 Vérification sur une contraction en deux dimensions  

Dans un premier temps, il a été décidé de créer une contraction en 2D afin de simuler un 

écoulement viscoélastique via différents modèles. Cette géométrie a été choisie, car elle permet 

d’obtenir certaines données comparables à des prédictions analytiques. La Figure 4.9 présente la 

                                                 

7 Le nombre de Courants étant définis par 𝐶𝑜 =
𝑣𝑖∆𝑡

∆𝑥
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géométrie ainsi que le profil de pression obtenu pour un fluide obéissant à une loi de White-

Metzner. 

 

Figure 4.9  Contraction simple en 2 dimensions sous Foam-Extend. 

Sur cette figure, l’entrée se trouve au niveau où la pression est la plus forte (surface rouge) 

et la sortie se trouve du côté où la pression est la plus faible (surface bleue). Le fluide entre ainsi  à 

une vitesse uniforme, ce qui est assez représentatif de ce qui peut être observé à l’entrée d’une 

filière classique. Il est à noter que les données de pression sous FOAM-EXTEND sont rapportées 

par rapport à la masse volumique du fluide.  

Dans le cas du celluloïd, cette variable a été fixée à 850 kg/m3, ce qui est la valeur la plus 

plausible trouvée dans la littérature pour un mélange  (faute de données expérimentales suffisantes 

pour confirmer cette hypothèse) [73]. Comme pour ce qui avait été fait sous Comsol, il faut 

comparer les résultats produits à ceux obtenus analytiquement. Vu que les modèles les plus 

intéressants sont déjà implémentés dans le logiciel, il a été décidé de ne pas simuler les équations 

ne prédisant pas de rhéofluidifiant et de s’attaquer directement à des modèles plus complexes. La 

Figure 4.10 montre ainsi l’évolution de la viscosité en fonction du taux de cisaillement pour : un 

modèle de White-Metzner; un modèle exponentiel Phan-Thien-Tanner (E-PTT) ainsi qu’un modèle 

Giesekus. La vitesse d’entrée imposée est de 0.01 m/s. Les données de viscosité et de temps de 
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relaxation utilisées sont celles présentées dans la partie « Données rhéologiques et choix des 

paramètres des modèles ». 

 

 

Figure 4.10  Évolution de la viscosité pour différents modèles implantés sous Foam-

Extend. 

La Figure 4.10 présente les différentes courbes de viscosité générées en traçant une ligne 

de coupe sur la géométrie présentée à la Figure 4.9  à 0.4 m (c.-à-d. proche de la sortie). Ces 

données de viscosité sont tracées en fonction du taux de cisaillement afin de mettre en évidence le 

caractère rhéofluidifiant des modèles. La courbe en rouge représente, à titre indicatif, les données 

obtenues par la régression de la  loi de Carreau à la Section 4.1. Ces résultats montrent que les 

paramètres choisis par calibration, pour les modèles E-PTT et Giesekus, permettent bien de 

retrouver la forme générale de la courbe rhéologique. Par ailleurs, les données de viscosité 

découlant des modèles de White Metzner concordent bien avec celles venant du modèle de Carreau 

introduit en donnée d’entrée. Ceci est une forme de vérification de la bonne implantation du dit 

modèle.  
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Il est évident que le modèle de White-Metzner permet de capturer toute la complexité de la 

courbe (en comparaison aux deux autres modèles) étant donné qu’il utilise deux paramètres de plus 

et qu’il utilise en entrée le modèle de Carreau. Les deux autres modèles, quant à eux, n’utilisent 

qu’un seul paramètre calibré (Cf. Tableau 3). Par ailleurs, ce faible nombre de degrés de liberté  ne 

permet pas un rendu aussi bon de la courbe rhéologique. 

Pour ce qui est de la vérification des résultats précédents du point de vue de la convergence 

de la simulation, la Figure 4.11 présente l’évolution du résidu initial  en fonction du temps pour un 

modèle White-Metzner. Les courbes sont très similaires pour les deux autres modèles 

viscoélastiques. 

 

Figure 4.11  Évolution du résidu initial dans une contraction 2D en fonction du 

temps pour : la pression; la norme de la vitesse; la norme de Frobenius du 

tenseur des extra-contraintes. 

Il apparaît ainsi sur la Figure 4.11 que, pour le champ de vitesse et le tenseur des extra-

contraintes, la valeur du résidu initial converge bien vers la valeur de tolérance fixée. Cependant, 

pour la pression, cette valeur n’est pas atteinte même au-delà de 60 secondes. Après plusieurs tests  

il semble que cela puisse être réglé en fixant le champ de pression en entrée à la place du champ 

de vitesse. Ce résultat sera illustré à la section suivante en trois dimensions ou la condition frontière 
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a été effectivement modifiée. Toutefois, il est possible de dire que, pour l’instant, les résultats 

semblent cohérents avec la physique et que le résidu initial est relativement assez faible pour 

poursuivre les tests. 

4.3.2 Effet du maillage dans une conduite rectangulaire en trois dimensions 

Sous Foam-extend, l’ajout d’une dimension est assez simple puisque le modèle 2D est en 

réalité un modèle 3D ne possédant qu’un seul élément dans la dimension z.  Il faut donc raffiner le 

maillage dans cette direction et spécifier les bonnes conditions frontières. Comme expliqué 

précédemment, après plusieurs essaies la meilleure condition d’entrée semble être un profil de 

pression constant à la place d’un champ de vitesse constant. Pour visualiser ce phénomène une 

conduite rectangulaire a été construite en trois dimensions sous Foam-Extend. 

 

Figure 4.12  Présentation du champ de pression dans une conduite rectangulaire. 

Tel que  démontré auparavant, sur la Figure 4.12, la couleur rouge représente une forte 

pression (associée à l’entrée) et  la couleur bleue représente une basse pression (associée à la sortie). 

Il est à noter que la résolution de la conduite n’est réalisée que sur ¼ du domaine par l’utilisation 

d’axe de symétrie pour un modèle de White-Metzner. Lors de la simulation de l’écoulement dans 

cette conduite, les tolérances des solveurs ont été abaissée à 10-8 afin de voir s’il était possible 

d’atteindre des résidus initiaux plus faibles en changeant de condition frontière. 
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 La Figure 4.13 présente l’évolution de ces résidus initiaux et il apparaît que le résidu initial 

pour la pression passe en dessous de la barre des 10-6 autour de 40 secondes. Ceci montre que le 

changement de la condition frontière a bien eu un effet bénéfique sur la convergence et améliore 

grandement les résidus initiaux.  

    

 

Figure 4.13  Évolution du résidu initial dans une conduite rectangulaire 3D 

en fonction du temps pour : la pression; la norme de la vitesse; la norme de 

Frobenius du tenseur des extra-contraintes. 

Cependant, la Figure 4.13 n’indique rien concernant la qualité des résultats et il s’avère que 

le choix du type de maillage joue aussi un rôle très important. Ce résultat est illustré à la Figure 

4.14. 
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Figure 4.14  Magnitude de la contrainte dans une conduite rectangulaire pour un 

maillage non structuré (à gauche) et un maillage structuré (à droite). 

Il apparait ainsi à la Figure 4.14 qu’un maillage non structuré donnera des résultats plus 

bruités qu’un maillage structuré. Cela signifie que l’outil de simulation utilisé est très sensible aux 

types de maillage. Un maillage structuré serait donc préférable à un maillage non structuré quand 

cela est possible. Dans le cas contraire, il sera toujours possible de produire des résultats; cependant 

ces résultats seront assez bruités ce qui rendra leur exploitation plus complexe. Ceci sera montré 

dans les sections suivantes. 

4.3.3 Convergence dans un canal de répartition simple en 3 dimensions 

Avant de simuler des géométries de profilés existants, il a été décidé de simuler 

l’écoulement dans une géométrie représentant un canal de répartition simplifiée au maximum ce 

qui permet de produire des feuilles d’une épaisseur arbitraire fixé à 1 cm. Ce choix a été fait afin 

d’étudier, d’abord, le profil de vitesse obtenue pour une simplification du profilé réel (qui sera 

présentée dans la dernière partie de cette section). La géométrie ainsi utilisée est celle présentée à 

la Figure 4.15. 
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Figure 4.15  Géométrie d’un canal de répartition approximer par une 

succession de deux hexaèdres réguliers.  

Sur la  Figure 4.15 la pression d’entrée a été fixée à 289 kPa. Cette valeur a été choisie, car 

elle permet de reproduire un  phénomène de non-uniformité de l’écoulement en sortie observable 

expérimentalement. Ce phénomène est illustré à la Figure 4.16, se caractérise par un excès de 

matière en sortie là où le profil de vitesse est le  plus grand. Il est à noter que, comme 

précédemment, la résolution de la géométrie n’est réalisée que sur ¼ du domaine par l’utilisation 

d’axe de symétrie pour un modèle de White-Metzner.  

La Figure 4.16 présente donc les champs de vitesse obtenus en sortie pour deux maillages 

non structurés, un grossier et un plus fin, ainsi que pour un maillage structuré de même longueur 

caractéristique que le maillage non structuré le plus fin. Dans tous les  cas, il est possible d’observer 

que le champ de vitesse est plus grand au centre du profilé (x=0) ce qui est signe que le débit de 

matière est plus grand à ce niveau. Un bruit notable sur le maillage non structuré le plus fin peut 

aussi être observé à la Figure 4.16. Par ailleurs, dans le cas du maillage structuré de taille similaire, 

aucun bruit notable n’est apparent ce qui laisse suggérer que le bruit est dû au type de maillage 

employé. Une des causes éventuelles de ce bruit serait reliée à une erreur d’interpolation engendrée 

par la structure non uniforme du maillage. Toutefois, du fait de la forte hyperbolicité des équations, 

il se peut que le transfert d’information sur des volumes non alignés puisse causer des erreurs 

numériques supplémentaires. Ceci reste une hypothèse à vérifier.    
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Figure 4.16  Profil de vitesse à y=0 et z=0.06 pour deux maillages non 

structurés de longueur caractéristique (LC) égale à 5.10-4 et 2.10-3 m,  

et un maillage structuré de longueur caractéristique égale à 5.10-4 m 

(NS=non structuré, S=structuré). 

Étant donné qu’il n’existe pas vraiment de solution analytique pour cette géométrie et que 

le champ de vitesse est assez bruité dans le cas non structuré le plus fin, il a été décidé d’utiliser le 

procédé d'extrapolation de Richardson afin de trouver la valeur numérique de l’asymptote. 

Pour réaliser ce procédé, il a été nécessaire de simuler l’écoulement pour différentes tailles 

de mailles afin d’obtenir à chaque fois des valeurs du champ de vitesse à y=0 et z=0.06. L’erreur 

utilisée dans le procédé d'extrapolation de Richardson a été calculée point par point selon la norme 

L2. La Figure 4.17 présente les erreurs de simulations en fonction de la longueur caractéristique 

des éléments et de la courbe de convergence obtenue à l’aide du procédé d'extrapolation de 

Richardson. Ainsi, grâce au procédé d'extrapolation de Richardson, il apparaît que l’ordre de 

convergence de la méthode des volumes finis employée pour résoudre ce problème est de 1.68. Cet 

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0,004

0 0,02 0,04 0,06 0,08 0,1 0,12

V
it

es
se

(m
/s

)

Position (m)

LC-NS=5E-4 LC-NS=2E-3 LC-S=5E-4



85 

 

 

ordre se situe entre 1 et 2, ce qui est cohérent puisque que les discrétisations employées mélangent 

des schémas d’ordre 1 et 2.  

 

 

Figure 4.17  Erreur selon la norme L2 en fonction de la longueur 

caractéristique des éléments pour différente simulation. 

Globalement, les résultats présentés dans cette section montrent qu’il est possible d’obtenir 

une convergence dans un profilé en 3 dimensions même avec un maillage non structuré. Toutefois, 

un maillage structuré reste préférable puisque que dans le cas d’un maillage non structuré, du bruit 

est observable même après raffinement. Il a, de plus, été possible de constater que dans un canal 

de répartition, un profil de vitesse non uniforme peut apparaître, ce qui cause un excès de matière 

dans une partie de la sortie du profilé. Il est maintenant temps de voir ce qui se passerait si une 

simulation était lancée sur un profilé proche de celui disponible en laboratoire.    

4.3.4 Simulations dans une filière simplifiée et la filière actuelle 

Considérant que la filière réel (présenté à l’annexe A) a été difficile à mailler correctement 

(ce qui sera vu un peu plus bas), des tests ont été lancés sur une version simplifiée ne faisant appel 

qu’à des formes géométriques simples. Cependant, même en simplifiant la géométrie de manière à 

ce qu’elle reste plus ou moins fidèle à la géométrie du véritable profilé, il a fallu utiliser un maillage 
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non structuré, car la génération d’un maillage structurée sur GMSH dans ce genre de géométrie est 

longue et complexe. Il faudra donc s’attendre à voir apparaître un bruit dans les simulations qui 

seront réalisées. De plus, à cause de l’incertitude sur les paramètres utilisés dans les modèles, il 

faudra prendre les données présentées ci-après avec beaucoup de précautions. Ces données   

pourraient ne pas représenter les valeurs physiques observables expérimentalement. Elles 

donneront, néanmoins, des prédictions de phénomènes physiques observables dans ce type de 

profilé. 

 

Figure 4.18  Géométrie simplifiée de profilé existant. 

La Figure 4.18 présente le profilé simplifié utilisé pour effectuer les simulations du 

Celluloïd. Ce profilé est donc une simplification du profilé sur lequel les expérimentations ont été 

réalisées. Cette simplification a été faite, car les premières implémentations fidèles de la géométrie 

ne permettaient pas d’avoir des données valables. Ceci était dû au maillage généré par GMSH qui 

était très mal répartie dans la géométrie. Dans celle qui est représentée à l’annexe A, la génération 

du maillage construit des éléments fortement asymétriques avec une non-orthogonalité pouvant 

dépasser les 89°. Or, dans la littérature, il est précisé  que ce genre de maillage converge très 

rarement, ce qui est exactement ce que l’on observe dans le cas présent [65]. Le seul moment où 

cette non-orthogonalité a baissé en dessous des 70° a été le moment où le nombre d’éléments a 

dépassé les 20 Millions. À raison de 50000 éléments par processeur, il en aurait donc fallu 400 

tournant en parallèle pendant une semaine  pour obtenir une seule simulation complète. Grâce à  la 
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simplification de la géométrie comme présenté à la Figure 4.18, le nombre d’éléments nécessaires 

pour obtenir un résultat acceptable sera plus de l’ordre du million. Sur cette figure, le seul gros 

défaut est  qu’avec 1.3 million d’éléments il n’y aura que 6 éléments sur la tranche transversale en 

sortie. Cela est dû à une contrainte forte qui est telle que le ratio épaisseur sur longueur du rectangle 

de sortie est très inférieur à 1. Ceci signifiant que si le nombre d’éléments sur cette longueur 

transverse devait être doublé, il faudrait multiplier par 8 le nombre d’éléments dans tout le 

rectangle. Or, sur les 1.3 million d’éléments, près de 1 million d’entre eux sont répartis dans ce 

rectangle de sortie. Une première approximation a donc été réalisée afin d’observer les tendances 

bien plus que les résultats. Ainsi, en appliquant un champ de vitesse de 0.01 m/s en entrée, il a été 

prédit par le modèle de White-Metzner qu’en sortie, le profil de vitesse ressemblerait à celui 

présenté à la Figure 4.18.  

 

Figure 4.19  Champs de vitesse en sortie de profilé pour un maillage non structuré. 

Sur cette courbe, il apparaît que le champ de vitesse est quasi plat partout sauf au centre. 

Étant donné qu’il n’a pas été possible d’avoir une solution analytique ou de raffiner le maillage 

(faute de temps et de ressources de calcul) pour utiliser le procédé d'extrapolation de Richardson, 

il est difficile vu le fort bruit de considérer ce résultat comme acceptable même si le résidu initial 

était de l’ordre de 10-5. Au vu des simulations présentées à la section 4.3.2 et 4.3.3, ce fort bruit 
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provient très probablement du maillage non structuré. Il faudrait donc simuler une nouvelle fois  

avec un maillage structuré afin d’éliminer ce bruit ce qui n’a pas pu être fait faute de temps.   

Cependant, dans la Section 4.3.3 le phénomène de non-uniformité du champ de vitesse a 

déjà pu être observé pour des géométries très simplifiées. De plus, ceci est cohérent avec ce qu’il 

est possible d’observer physiquement.  

Expérimentalement, il a d’ailleurs été observé que le débit de matière sortant est plus grand 

au centre du profilé que sur les côtés. Puisque ce débit est directement relié aux champs de vitesse 

par une double intégration sur la surface orthogonale à ce vecteur, plus la vitesse sera grande, plus 

le débit sera élevé, ce qui est exactement ce qui est observé. D’un point de vue pratique, ce 

phénomène pourrait s’expliquer par un problème de distribution du liquide dans le profilé. En ce 

qui a trait à la pression, le profil obtenu dans le profilé est le suivant. 

 

Figure 4.20  Champ de pression le long de la filière. 

La courbe de pression présentée à la Figure 4.20 montre que, pour les paramètres entrés et 

une vitesse d’entrée uniforme de 0.01m/s, la perte de charge totale sera d’environ 7.6 MPa. Sur 

cette même courbe, il est possible de distinguer trois zones où la pression chute selon différentes 

pentes. Elles correspondent aux trois contractions qui ont lieu respectivement à 1,4 et 8 cm. En 
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rhéologie plus une contraction est forte plus la perte de charge qui lui est associée sera grande. Sur 

la courbe la contraction à 8 cm est une contraction 1:20 tandis que celle à 4 cm n’est que de 1:6. 

La courbe respecte donc bien cette prédiction rhéologique et ajoute un degré de confiance au 

modèle. La dernière chose à vérifier sera la différence de contrainte normale qui ne peut être prédite 

que pour des modèles viscoélastiques.  

 

Figure 4.21  Évolution de la première différence de contraintes (B) le long du plan de coupe du 

profilé (A). 

Sur la Figure 4.21 (B), la première différence de contrainte a été obtenue en traçant une 

ligne de coupe en x=0 et y=0. L’allure générale de la courbe s’explique par les différentes 

contractions qui ont lieu successivement au fur et à mesure que le fluide avance dans le profilé 

(B) 

(A) 
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(Figure 4.21 (A)). En effet, lorsque le fluide s’écoule les molécules polymériques sont contraintes 

à changer de conformation à chaque contraction dans la géométrie (présentée à la Figure 4.18). 

Cela engendre  des pics de contrainte normale comme présentée à la Figure 4.21 (B) [31].Par 

exemple, la première contraction a lieu vers 0.003 m. Ceci devrait se caractériser par un pic dans 

cette région ce qui est bien ce qu’il est possible d’observer sur la Figure 4.21 (B). Les deux pics 

situés à 0.04 et 0.074 m sont suivis d’une ligne quasi constante, ce qui est significatif d’une région 

plate car les macromolécules ont eu le temps de se réarranger [31].  Pour ce qui est des oscillations 

se situant au-delà de 0.08 m, elles sont dues au faible nombre de mailles du maillage non structuré. 

Le seul point difficilement explicable vient de la région située entre 0.025 et 0.04 m puisque la 

courbe donne une différence de contrainte négative. Étant donné la forme bombée de la géométrie  

à cet endroit, l’hypothèse la plus probable  serait que cette détente engendre une différence de 

contrainte négative [4].  

Il est à noter que si le modèle avait été uniquement rhéofluidifiant, il aurait été impossible 

de prédire la moindre différence de contrainte  normale significative. Dans le cas présenté à la 

Figure 4.21, cette contrainte normale monte jusqu’à 85 kPa. Globalement, cela représente un 

nombre de Weissenberg de 140. Pour donner une idée plus tangible de ce que cela représente 

précisons que : si la sortie était fixée à ce niveau, sachant qu’aux parois la contrainte en cisaillement 

vaut 65kpa, il est possible de dire par la loi de Tanner (Éq. (21)) que le gonflement serait de 16%. 

La valeur du gonflement en sortie est, toutefois, beaucoup plus faible et tourne autour des 13%.Il 

est permis de venir modifier le profil du champ de vitesse et le taux de gonflement en sortie de 

filière en modifiant la géométrie d’entrée ce qui viendrait affecter la répartition du liquide dans le 

profilé. Cela a été réalisé en essayant de reconstruire et paramétrer complètement la vraie géométrie 

sous GMSH. En procédant de cette manière, sans importer la géométrie d’un fichier STEP, il a pu 

être obtenu une géométrie très fidèle à la vraie géométrie présentée à l’annexe A. Dans cette 

dernière, (présentée à l’annexe  G) le profil de vitesse obtenu pour un champ de vitesse d’entrée de 

0.6 mm/s  sera le suivant.  
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Figure 4.22  Profil de vitesse en sortie pour la géométrie réelle. 

 

Sur la Figure 4.23, le profil de vitesse présentée est pris à la moitié de la géométrie. Le bruit 

sur la courbe vient du fait qu’un maillage non structuré a été utilisé afin de gagner du temps. Il 

apparait ainsi, sur cette figure, que le profil est quasi plat pour les conditions imposées. Ceci 

signifierait, d’un point de vue expérimental, qu’en sortie la répartition de la quantité de matière est 

uniforme pour une vitesse d’entrée inférieure à 1 mm/s. Toutefois, cela ne serait vrai que si le profil 

de contrainte normale est uniforme, ce qui est difficile à prédire étant donné que le maillage utilisé 

reste assez grossier. Il est important de signaler que, n’ayant pas de données expérimentales 

concernant les champs de pressions, les débits et les gonflements en sortie de filière, il est 

impossible de confronter les prédictions à la réalité. Pour conclure ce chapitre, il est nécessaire de 

signaler que tous les résultats présentés sont plutôt des preuves de concept. Il est donc envisageable  

de prédire quasiment tous les phénomènes physiques observables. Il faudrait, cependant, calibrer 

les modèles à l’aide de valeurs expérimentales et vérifier la robustesse des prédictions évoquées 

précédemment.  
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CHAPITRE 5 DISCUSSION GÉNÉRALE 

Après cette présentation des résultats de simulation obtenue sous Foam-Extend et Comsol, 

il est maintenant temps d’aborder les limites de ces simulations. Il sera donc d’abord discuté de 

l’utilisation de la version 5.4 du logiciel Comsol dans le cas des écoulements viscoélastiques et des 

limitations que cela engendre. Ensuite, il sera discuté de l’intérêt du logiciel Foam-Extend dans le 

cas des écoulements viscoélastiques et de la manière dont il serait possible de l’améliorer.  Pour 

finir, certaines hypothèses seront discutées afin de voir quel pourrait être leur impact sur les 

différentes simulations. 

5.1 Utilisation de Comsol et des éléments finis en  viscoélastique 

Tel que mentionnée à plusieurs reprises dans ce mémoire, la version 5.4 de Comsol reste 

un outil limité pour étudier des fluides  viscoélastiques. Contrairement à ANSYS, en élément fini, 

il n’y a pas de modèle viscoélastique préexistant. Bien que Comsol permette d’implémenter tous 

les modèles, il n’est pas forcément possible de les stabiliser. En élément fini, les techniques 

d’implantation et de stabilisation classiques ne permettent pas de simuler à n’importe quel nombre 

de Weissenberg. Très souvent, elles n’arrivent même pas à dépasser 1. De façon générale, la seule 

manière efficace d’implanter un modèle viscoélastique, plus ou moins stable, en élément fini, est 

d’utiliser soit une technique Galerkin discontinue ou  une méthode log-tensor. Or Comsol ne 

permet pas réellement d’utiliser la technique GD. Il devient alors obligatoire de se rabattre sur une 

méthode log-tensor. Des travaux impliquant la méthode log-tenson en 3 dimensions existent [103],  

ils n'ont cependant jamais été implantés dans Comsol en 3 dimensions vu les limitations du logiciel. 

Ceci empêche donc Comsol de posséder une quelconque utilité pour des cas réels non symétriques.  

Il serait difficile d’accélérer les simulations en changeant de solveur puisqu’il n’est pas 

possible d’importer un autre solveur dans Comsol. Même dans le cas où la méthode GD était 

implantée sur Comsol 5.4, les solveurs qui existent sous Comsol 5.4 ne permettent pas une 

combinaison solveur/préconditionneur satisfaisante pour accélérer la résolution. Par exemple, de 

tous les solveurs de Krylov existants, le seul ayant été implantée sous Comsol 5.4 a été GMRES. 

Il serait préférable, dans le cas des fluides viscoélastiques, d’utiliser un solveur Bi-gradient 
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conjugué stabilisé (BiCGStab), car il est plus rapide que GMRES pour un même préconditionneur 

ILU0 (décomposition incomplète LU0) [104].   

D’un point de vue plus pragmatique, Comsol reste un outil intéressant pour des applications 

académiques. Il aide à comprendre le fonctionnement des méthodes de stabilisation, mais ne permet 

pas d’utiliser les plus sophistiquées. Le problème des fluides, tel que le celluloïd en solution, est 

qu’il nécessite d’utiliser des équations fortement hyperbolique. Or, dans ce genre de cas, l’une des 

méthodes les plus adaptées reste la méthode GD [31]. Comsol 5.4 n’est donc pas le bon outil pour 

ce genre d’application. Pour finir, la méthode des éléments finis reste une technique fondamentale 

mal adaptée au problème du viscoélastique. Le nombre d’articles publiés dans le domaine  évolue 

en dents de scie. D’une évolution à l’autre de la méthode, il peut arriver que des dizaines de 

publications paraissent une année, puis qu’une seule se présente l’année suivante. Le graphique 

suivant montrant d’ailleurs cette évolution. 

 

Figure 5.1  Nombre de publications dans le domaine du viscoélastique 

par FEM sur compendex. 
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L’engouement dans ce domaine est excessivement dépendant de la dernière méthode à la 

mode.  Il faudra attendre et voir si de nouvelles méthodes dans le domaine verront le jour et si ces 

nouvelles techniques seront compatibles avec Comsol.  

5.2 Valorisation de la méthode des volumes finis en viscoélastique  

La méthode des volumes finis est une méthode jeune en comparaison à celle des éléments 

finis. Elle a été créée dans les années 80 et n’a connu son essor que dans les années 2000. Pourtant, 

sa structure discrète lui confère un avantage colossal par rapport aux éléments finis dès qu’il est 

question d’étudier des problèmes à dominante convective [92].  

Cette technique a été construite pour ce genre de problème et cela se voit dans les résultats 

obtenus grâce à Foam-Extend. Là où avec Comsol il était ardu  d’atteindre un nombre de 

Weissenberg de 1, le nombre de Weissenberg peut, grâce à Foam-Extend, facilement dépasser les 

1000 [55]. Son vrai défaut est qu’il est peu courant de la voir implanter dans des logiciels 

commerciaux. Par surcroît, l’implémentation réalisée sous Foam-Extend reste très difficile d’accès 

à des personnes ayant peu de connaissance en informatique et en mathématiques. Comsol, en 

comparaison, possède une interface graphique qui aide énormément les non-initiés à la simulation.  

En ce qui concerne les simulations réalisées, elles ont nécessité un temps d’adaptation au 

logiciel. Le point le plus critique est la génération du maillage. En effet, il a été démontré dans la 

Section 4.3 qu’un maillage structuré était préférable à un maillage non structuré pour avoir des 

résultats moins bruités entre autres.  

Au début de cette étude, le constructeur de maillage blockMesh a été utilisé. Ce choix a 

ralenti considérablement le projet  puisque ce constructeur était beaucoup trop rudimentaire. Une 

personne désirant travailler dans ce domaine ne devrait pas utiliser ce logiciel et devrait se tourner 

directement vers GMSH. Il existe aussi une autre application appelée snapyHexMesh, mais elle ne 

vaut pas GMSH [64]. Le logiciel vient avec une interface graphique et permet de générer de très 

bons maillages. Cependant, si une géométrie est importée en step sur GMSH pour être maillée, il 

se peut que le maillage obtenu ne soit pas du tout utilisable en simulation. Cela a été le cas pour la 

véritable géométrie qui a dû être simplifiée  afin de faire converger les simulations. Il est d’ailleurs 

recommandé de créer la géométrie directement dans GMSH afin de faciliter la génération du 
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maillage. Évidemment, GMSH n’est pas un constructeur de maillages parfait et certains 

constructeurs de maillage commerciaux pourraient mieux convenir. A ce sujet, il semble que le 

logiciel de maillage commercial le plus intéressant soit le logiciel PointWise, mais cela reste à 

vérifier.     

Pour ce qui est de la partie modèle implantée dans Foam-Extend, le seul  des 3 ayant donné 

des résultats satisfaisants a été le modèle de White Metzner. Comme précisé dans la revue de la 

littérature, il existe 10 modèles implantés sous Foam-Extend. Il serait donc intéressant de tester les 

autres modes et de voir les prédictions qu’il en ressort.  

En outre, Foam-Extend permet d’utiliser du multimode, ce qui est très utile pour raffiner les 

résultats. Le multimode vient, cependant, avec un défaut de taille qui est l’over fitting. Pour 

expliquer cela, il suffit de reprendre le modèle de White Metzner.  Dans sa forme simple, il possède 

6 paramètres si une loi de Carreau est considérée. Lors de l’utilisation du multimode, ce nombre 

de paramètres passe de 6 à 6*n où n représente le nombre de modes. Autant dire qu’à partir de 4 

modes le problème de l’éléphant de Neumann pointe le bout de sa trompe. L’utilisation du 

multimode ne devrait donc se faire que si le nombre de points expérimentaux dépasse de très loin 

le nombre de paramètres. Pour finir, puisque les résultats d’erreur sur les cas tests en 2D et en 3D 

(en simple mode) sont tous proches de 0.5%, Foam-Extend peut être retenu comme l’outil le plus 

adapté pour ce genre de simulation. 

5.3 Résultats expérimentaux et prédictions par simulation 

Mis à part les résultats obtenus concernant la viscosité, il reste un abîme colossal à traverser. 

Les prédictions faites à l’aide du modèle restent beaucoup plus nombreuses que les données 

expérimentales comparables. Sur ce point, cette étude peut être vue plus comme une preuve de 

concept que comme une réelle prédiction comparable à ce qui est physiquement observable. Bien 

que les prédictions de la courbe de viscosité cadrent avec les données expérimentales, il est 

impossible de dire si le champ de pression prédictible sera celui observé. Il est d’ailleurs impératif 

de noter que les données de temps de relaxation n’ont pas été calibrées. Il faudrait des données de 

pression/débit pour justement venir calibrer ce paramètre.  
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De plus, la masse volumique du celluloïd a été posée à l’aide de ce qui a été trouvé dans la 

littérature [102]. Il faudrait donc faire des mesures de masse volumique pour venir le confirmer. 

Ce n’est qu’à ce prix que cette hypothèse pourra être vérifiée. Une fois toutes ces calibrations faites, 

le modèle pourra ensuite être  comparé aux données d’épaisseur des feuilles de celluloïd obtenues. 

Dans la partie résultat, il a été montré que l’épaisseur du film varie à cause de la distribution. Si la 

simulation numérique était exacte, alors cela reviendrait à générer un excès de matière dans 

certaines zones. Cet excès de matière se traduisant par une variation de l’épaisseur de la feuille 

produite, il suffira de simplement mesurer cette variation et de la comparer à celle obtenue pour 

différents champs de vitesse. Pour aller plus loin, il faudrait aussi augmenter le nombre de mailles 

en sortie afin d’obtenir des résultats plus précis. Ceux-ci permettraient de prédire un gonflement 

en sortie de filière qui pourrait être comparé à ce qui est obtenu expérimentalement. 

Il est maintenant temps d’évaluer l’hypothèse d’un écoulement isotherme. Depuis le début, 

le fluide est considéré à température constante. Dans des cas comme le HDPE, il s’avère que la 

dissipation visqueuse fait augmenter la température du fluide de plusieurs degrés [88]. Dans le cas 

du celluloïd, il est possible de calculer un ordre de grandeur du terme de dissipation visqueuse, et 

pour ce faire un écoulement de Poiseuille dans une fente en 2 dimensions  (plan xz par exemple) 

est considéré, ainsi que les hypothèses suivantes : 

1. le fluide est newtonien incompressible 

2. l’écoulement est en régime rampant (Re<<1) 

3. il n’y a pas d’effet de bord 

4. la viscosité est constante (fixée à 10 kPa.s) 

5. l’écoulement est en régime permanent établi. 

Tout ceci permet de simplifier le terme de dissipation visqueuse de l’Éq. (19) qui devient : 

𝛕:𝛁𝑣⃗ = 𝜇 (
𝜕𝑣𝑧

𝜕𝑥
)
2

 (50) 
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Avec pour un écoulement de Poiseuille dans une fente8 : 

𝜕𝑣𝑧

𝜕𝑥
= 𝑣𝑧𝑚𝑎𝑥(

4

𝑒
−

8𝑥

𝑒2
) (51) 

Si maintenant la vitesse maximale de l’écoulement est de 6 mm/s (ce qui est la valeur 

observée à la Figure 4.20) alors, dans une fente où les dimensions sont semblables à l’hexaèdre de 

sortie représentée à la Figure 4.189, la dissipation visqueuse générerait 157 kW/m3 (ce qui 

représenterait un nombre de Brinkman10 de l’ordre de la centaine), ce qui n’est absolument pas 

négligeable. Il faudrait donc coupler toutes les équations précédentes à l’équation de la chaleur, ce 

qui n’est pas, pour le moment, une chose triviale à faire sous Foam-Extend.  

Théoriquement, il faudrait aussi utiliser un facteur de glissement pour tenir compte de 

l’effet des variations de température sur les différents paramètres. D’un point de vue pragmatique, 

cela revient à prévoir de refaire toutes les expériences et simulations précédentes à différentes 

températures. Dans le cadre de cette étude, le problème a été contourné puisqu’à basse température 

les contraintes normales et de cisaillement sont les plus fortes.  

   Les données présentées sont une borne supérieure théoriquement infranchissable par un 

fluide correspondant aux prédictions du modèle. Cette manière de procéder est donc assez valable 

s’il fallait se cantonner à étudier des fluides thermiquement stables. Le celluloïd est potentiellement 

un explosif de grade militaire pouvant détruire l’extrudeuse à la moindre variation de température 

trop prononcée. Conséquemment, il semble impératif d’ajouter l’équation de la chaleur aux 

précédentes équations. 

  

                                                 

8 En considérant qu’à x=0 et x=e la vitesse est nulle, et que e représente l’épaisseur de la fente [6].  

9 C.-à-d. épaisseur=0.35mm, longueur=20mm et largueur=10cm. 

10 Le nombre de Brinkman est défini comme le rapport entre l’énergie produite par les forces visqueuses et l’énergie 

transféré par conduction.  
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CHAPITRE 6 CONCLUSION ET RECOMMANDATIONS 

À la lumière de ce qui précède, ce projet a donc permis de simuler un écoulement de 

celluloïd dans un profilé. Il en résulte que le logiciel Comsol n’est pas actuellement utilisable pour 

des simulations viscoélastiques en 3 dimensions. Le seul logiciel ayant donné des résultats 

intéressants est Foam-Extend. En conséquence, il devrait être le logiciel à utiliser par toute 

personne désirant simuler ce genre d’écoulement gratuitement. En outre, il a pu être prédit, grâce 

à ce logiciel, que l’écoulement du celluloïd dans un profilé, notamment, celui présenté à la Figure 

4.14,  engendrerait un profil de vitesse en sortie non homogène. 

  Par ailleurs, ce profil de vitesse permet de prédire que les feuilles de celluloïd produites ne 

seront pas uniformes. Selon ce qui a pu être calculé, leur centre devrait être plus chargé en polymère 

que le reste de la feuille. De fait, certaines observations expérimentales semblent ainsi corroborer 

le modèle. Cependant, ces prédictions restent  purement qualitatives. Pour s’assurer de leur validité, 

il faudrait dans un premier temps calibrer le modèle à l’aide d’autres données expérimentales, et 

dans un second temps, confirmer les prédictions à l’aide d’autres données expérimentales. Cette 

simulation n’est, bien entendu, qu’un premier pas vers d’autres évolutions. 

De surcroît, pour étoffer le simulateur, il faudrait coupler ce dernier avec un module 

thermique qui prendrait en compte les variations de température induites par la dissipation 

visqueuse. Ce paramètre reste un point critique, car, dans le cas du celluloïd, une variation trop 

grande de température pourrait engendrer une explosion. Un couplage écoulement/température 

serait donc nécessaire pour s’assurer de la stabilité du procédé.  

Cela n’est, toutefois, pas suffisant puisque, même en ayant un modèle  calibré à tous les 

niveaux (thermique ou viscoélastique), il reste l’équation de Tanner qui pose problème. Cette 

équation a été construite à partir d'une quantité non négligeable d’hypothèses. Elle permet certes 

de donner un bon ordre de grandeur des valeurs que peut prendre le gonflement. Par contre,  elle 

ne pourra pas prédire avec exactitude ce que peut valoir réellement le gonflement en tout point. 

Par conséquent, pour obtenir des valeurs précises, il faudrait coupler le modèle fonctionnel 

à une technique de simulation en surface libre. C’est un exercice bien difficile impliquant une 

grande connaissance mathématique des techniques à maillage mobile. Heureusement, de 

nombreuses équipes se sont penchées sur ce problème et il en est ressorti plusieurs techniques 
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viables. Celle déjà implantée sous Foam-Extend se nomme « Volume of fluid » et permet de prédire 

avec précision l’évolution du gonflement en sortie de filaire.  

Pour conclure, il est possible de constater que, par sa complexité, la simulation d’un 

écoulement  de celluloïd reste un exercice laborieux. Il est donc assez difficile de trouver des outils 

de simulation d’écoulement polymérique. Pourtant au cours de cette décennie, de nombreux 

chercheurs ont commencé à créer des codes en libre accès permettant de simuler ce genre 

d’écoulement. C’est donc un pas qui a été fait dans la bonne direction, mais ce pas reste insuffisant. 

En effet, la raison majeure découle du fait que la plupart des industriels qui pourraient être 

intéressés n’ont pas forcément la formation nécessaire pour utiliser ce genre d’outil.  

Tel que cela a déjà été montré, les équations régissant l’écoulement d’un fluide viscoélastique 

sont à la fois complexes et variées.  Une personne non initiée aurait donc beaucoup de mal à savoir 

par où commencer. La plupart du temps, si une personne non experte désire simuler ce genre 

d’écoulement, elle se tournera vers un logiciel avec une documentation fournie  tel que PolyFlow. 

Ce genre de logiciel dit «facile à utiliser» permettra à son utilisateur de manipuler des fluides non 

newtoniens sans comprendre les mécanismes en arrière. Pourtant, des solutions telles que Foam-

Extend possèdent de nombreux avantages sur ces logiciels commerciaux. Il  faudra donc attendre 

et voir si ce logiciel permettra de créer un nouvel engouement pour ce  domaine. 
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ANNEXE A  GÉOMÉTRIE RÉELLE DE LA FILIÈRE  

 

Figure A.1  Géométrie réelle de la filière. 
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ANNEXE B  TABLEAU RÉCAPITULATIF DES AVANTAGES ET 

INCONVÉNIENTS DES DIFFÉRENTS OUTILS DE SIMULATION 
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ANNEXE C RÉSULTAT DE SIMULATION POUR UN MODÈLE PTT 

GÉOMÉTRIE FENTE/ SPHÈRE POSITION APRÈS LA SPHÈRE  

 

Figure B.2  Évolution de la force normale au cours du temps dans une géométrie de fente avec un 

obstacle sphérique.  
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ANNEXE D ALGORITHME SIMPLE  

 

Figure C.3  Diagramme simplifié de l'algorithme SIMPLE [44]. 
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ANNEXE E SCRIPT VISCOÉLASTIQUE FOAM-EXTEND/GMSH  

Ce script permet de lancer et paralléliser les simulations viscoélastiques sous Foam-Extend pour 

des géométries codées en GMSH  

 

#!/bin/bash 

# please execute fe41 or other source code before launching this script 

# don't use multiple .geo file inside the same directory files 

# for symmetry please use in your gmsh program the flag simetry 

 

# this part clean the case 

. $WM_PROJECT_DIR/bin/tools/CleanFunctions 

cleanCase 

echo "done!" 

 

 

nopr=4; #define number of processor >=2 

rm -r processor* # supress old processor file 

gmsh *.geo -3 # execute gmsh and create .msh file 

gmshToFoam *.msh # convert .msh to Foam mesh 

 

 

cd  constant/polyMesh/ 

grep simetry boundary 

 

ligne=`grep -n simetry boundary | awk '{print $1}' | sed -e "s/:/ /"` 

ligne=`expr $ligne + 2` 

sed -e "${ligne}s/patch/symmetryPlane/" boundary > tempo;mv tempo boundary 

cd - 

cd system 

sed -e ':a;N;$!ba;s/numberOfSubdomains.*metis/numberOfSubdomains '"$nopr"'; \n \n   method   

metis/g' decomposeParDict> tempo;mv tempo decomposeParDict 

cd - 

 

decomposePar #decompose for parallel computing using mpi 

mpirun -np $nopr viscoelasticFluidFoam –parallel #launch the computation in parallel 

reconstructPar # reconstruct the solution 

 

paraFoam -nativeReader # display the result on paraview 

 

echo 

echo Done Work 
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ANNEXE F SCRIPT POUR GÉNÉRER UNE GÉOMETRIE SIMPLIFIÉE À 

L’AIDE DE GMSH 

 

Ce script permet de construire la géométrie du profilé  sous GMSH.  

//+ 

SetFactory("OpenCASCADE"); 

ec=0.0030988; 

ec2=0.0030988+0.03; 

//+ 

Cylinder(1) = {0, 0, 0, 0, 0, ec, 0.0150114, Pi/2}; 

Cylinder(2) = {0, 0, ec, 0, 0, 0.03, 0.0150114-0.0055114, Pi/2}; 

Cylinder(3) = {0, 0, ec2, 0.1, 0, 0, 0.0150114-0.0055114, Pi}; 

//+ 

Box(4) = {0,0, ec2+0.0150114-0.0066, 0.1, 0.002381249996, 0.02741869782 }; 

Box(6) = {0,0, ec2+0.0150114-0.0066+0.02741869782+0.00762, 0.1, 3.75E-4, 0.02741869782 }; 

//+ 

Symmetry {0, 1, 0, 0} { 

  Volume{3};  

} 

//+ 

Line(61) = {19, 28}; 

//+ 

Line(62) = {30, 21}; 

//+ 

Line Loop(33) = {62, -29, 61, 43}; 

//+ 

Plane Surface(33) = {33}; 

//+ 

Extrude {0.1, 0, 0} { 

  Surface{33}; Line{62}; Line{43}; Line{61}; Line{29};  

} 

Mesh.CharacteristicLengthFromCurvature=1; 

Mesh.CharacteristicLengthMax=0.002; 

BooleanUnion{ Volume{4}; Delete; }{ Volume{3}; Volume{2}; Volume{1}; Volume{7}; 

Volume{6}; Delete; } 

Physical Surface("outlet") = {30}; 

Physical Surface("simetry") = {29, 26, 21, 18, 14, 10, 7, 3, 5, 8, 11, 16, 13, 23, 22, 27, 31}; 

Physical Surface("inlet") = {4}; 

Physical Surface("fixedWalls") = {1,2, 6, 9, 15, 20, 25, 12, 17, 19, 24, 28}; 

Characteristic Length {32, 34, 31, 35, 28, 30, 27, 33, 22, 23, 26, 29} = 0.0005; 

Physical Volume("vol") = {1};  



116 

 

ANNEXE G  GÉOMÉTRIE OBTENUE SOUS GMSH FIDÈLE AU 

PROFILÉ RÉEL  

 

Figure G.4 Évolution de la pression dans une géométrie fidèle au profilé réel. 
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ANNEXE H  PROFILÉ AVEC PINCES   

 

 

Figure H.5 Schéma d’un profilé avec pince [66]. 

 


