POLYTECHNIQUE

PCLYPUBLIE

A [
UNIVERSITE o

PO'YtGChnique Montréal D'INGENIERIE
Titre: .. . , . . .
Title: Simulation de I'extrusion du celluloid en filiere plate
Auteur: Asher Amos Benchimol
Author:

Date: 2019
Type: Mémoire ou thése / Dissertation or Thesis

LEL . 'Benchimol, A. A. (2019). Simulation de I'extrusion du celluloid en filiere plate
Refergn;e.. [Master's thesis, Polytechnique Montréal]. PolyPublie.
Citation: 'https://publications.polymtl.ca/5201/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie: ) S
PolyPublie URL: https://publications.polymtl.ca/5201/

Directeurs de
recherche: Charles Dubois, & Francois Bertrand
Advisors:

Programme

*|Génie chimique
Program:

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal


https://publications.polymtl.ca/
https://publications.polymtl.ca/5201/
https://publications.polymtl.ca/5201/

POLYTECHNIQUE MONTREAL

affiliée a I’Université de Montréal

Simulation de I’extrusion du celluloid en filiére plate

ASHER AMOS BENCHIMOL

Département de génie chimique

Mémoire présenté en vue de 1’obtention du diplome de Maitrise es sciences appliquées
Génie chimique

Décembre 2019

© Asher Amos Benchimol, 2019.



POLYTECHNIQUE MONTREAL

affiliée a I’Université de Montréal

Ce mémoire intitulé :

Simulation de I’extrusion du celluloid en filiére plate

présenté par Asher Amos BENCHIMOL
en vue de I’obtention du diplome de Maitrise és sciences appliquées

a été diment accepté par le jury d’examen constitué de :

Marie-Claude HEUZEY, présidente

Charles DUBOIS, membre et directeur de recherche
Francois BERTRAND, membre et codirecteur de recherche
Bruno BLAIS, membre



DEDICACE

A la mémoire de mes grands-peres, Prosper et Maklouf, et ma grand-mére Raquel qui nous ont

quittés.



REMERCIEMENTS
A'la grace de D’.

Un grand merci a David Vidal pour son implication et son soutien tout au long de mon cursus, ainsi
qu’a mes professeurs Charles Dubois et Frangois Bertrand sans qui ce projet n’aurait jamais pu
voir le jour. Merci a mes collégues (lgor, Bastien, Christine et Jean-Michel) et a Bruno Blais qui
m’ont épaulé. Je remercie mes parents Patrick et Thérése qui m’ont toujours soutenu et
accompagné. Je remercie mon frére Ruben et ma sceur Hannah qui par leur présence m’ont donné

envie de me surpasser. Je remercie ma grand-mere Esther pour ses encouragements quotidiens.



RESUME

L’¢étude de la simulation de 1’écoulement du celluloid en profilé est un domaine trés peu
étudié actuellement, car il implique de fortes compétences en rhéologie, mathématique et
informatique. De fait, il fait partie de ces champs d’études nécessitant une formation éclectique.
Cette étude présentera ainsi les outils propres a chacun des domaines précédemment évoqués afin
de simuler ce genre d’écoulement. Ce mémoire aura donc pour but de mieux comprendre et prédire
I’écoulement du celluloid dans un profilé afin de limiter les essais en laboratoire qui sont a la fois

risqués et colteux.

A cette fin, compte tenu de I'impossibilité de résoudre analytiquement les équations du
champ de contraintes couplées a celle de Cauchy dans le cas général, il a été nécessaire d’utiliser
des méthodes numériques pour y parvenir. Dans ce but, il a ét¢ décidé d’utiliser les logiciels
Comsol et Foam-Extend impliquant respectivement la méthode des éléments finis et celle des

volumes finis, qui sont les deux méthodes les plus utilisées dans ce contexte.

Dans le cas de la méthode des éléments finis implantée dans Comsol Multiphysics 5.4, il
n’existait aucun modele viscoélastique disponible par défaut dans le logiciel et il a donc fallu les
implantées. Cependant, apres plusieurs essais, ce logiciel s’est avéré assez limité dans le domaine
du viscoélastique et n’a permis de simuler que des écoulements en 2 dimensions. Ceci peut
expliquer le nombre limité de publications utilisant le logiciel Comsol en 3 dimensions dans la
littérature scientifique. Il a donc fallu se tourner vers un autre logiciel et une autre méthode plus

utile pour pouvoir effectuer le passage de la 2D a la 3D.

Pour pouvoir réaliser une étude en 3 dimensions, les possibilités de la méthode des volumes
finis ont été testées a 1’aide du logiciel Foam-Extend (variante d’OpenFoam). Cet outil possede
une large bibliothéque permettant la simulation d’écoulements viscoélastiques en 3 dimensions.
Grace a ce programme, il a été possible de simuler I’écoulement du celluloid dans un profilé
contenant une contraction 1:20. En outre, a 1’aide de données rhéologiques expérimentales, les
parametres des modéles (PTT, Giesekus, White-Metzner) ont été étudiés pour prédire le
comportement du celluloid dans différentes géométries (p.ex. contraction 2D, contraction 3D,

conduite rectangulaire, profilé réel). Selon une analyse de convergence sur le modele de White-
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Metzner, il apparait que ’algorithme numérique implanté dans Foam-Extend converge a 1’ordre
1.68, ce qui est consistant avec les schémas de discrétisation utilisés. 1l a ainsi été possible de mettre
en évidence le fait que la simulation était trés impactée par le type de maillage (structuré ou non),
et qu’il était toujours préférable d utiliser un maillage structuré afin d’obtenir des résultats moins
bruités. Ainsi, il est prédit qu'un exces de celluloid sera généré au centre des feuilles mises en forme

dans la configuration actuelle du profilé.

Pour finir, une analyse de I’impact de I’hypothése d’un fluide isotherme a été effectuée. Il
en ressort que cette hypothese ne semble pas totalement adéquate étant donnée la forte dissipation
visqueuse pouvant étre genérée par un polymere tel que le celluloid. Cependant, les valeurs
obtenues restent une premiére approximation utile des phénomenes observables a l'intérieur du

profilé.
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ABSTRACT

The study of the simulation of celluloid flow in die is a very rarely studied field at present
because it involves strong skills in rheology, mathematics, and computer science. It is one of those
fields of study that requires eclectic training. This study will present the tools specific to each of
the areas mentioned above to simulate this type of flow. The aim of this thesis will therefore be to
better understand and predict the flow of celluloid in a profile in order to limit laboratory tests,

which are both risky and costly.

Given the impossibility of analytically solving the stress field equations coupled with
Cauchy equations, it was necessary to use numerical methods to achieve this. It was therefore
decided to use the Comsol and Foam-Extend software packages involving the finite element
method and the finite volume method respectively, which are the two most commonly used

methods in this context.

In the case of the finite element method implemented in Comsol Multiphysics 5.4, there
was no viscoelastic model available by default in the software, so they had to be implemented.
However, after several tests, this software proved to be quite limited in the field of viscoelastic and
only allowed to simulate flows in 2 dimensions. This may explain the limited number of
publications using the Comsol software in 3 dimensions in the scientific literature. It was therefore
necessary to turn to another software and another more useful method to be able to make the
transition from 2D to 3D.

In order to be able to carry out a 3-dimensional study, the possibilities of the finite volume
method were tested using the Foam-Extend software (a variant of OpenFoam). This tool has an
extensive library for the simulation of viscoelastic flows in 3 dimensions. With this program it was
possible to simulate the celluloid flow in a profile containing a 1:20 contraction. In addition, using
experimental rheological data, model parameters (PTT, Giesekus, White-Metzner) were studied to
predict the celluloid behaviour in different geometries (e.g. 2D contraction, 3D contraction,
rectangular pipe, real profile). According to a convergence analysis on the White-Metzner model,
it appears that the numerical algorithm implemented in Foam-Extend converges to the order 1.68,
which is consistent with the discretization schemes used. It was thus possible to highlight the fact

that the simulation was highly impacted by the type of mesh (structured or unstructured), and that



viii

it was always preferable to use a structured mesh in order to obtain less noisy results. Thus, it is
predicted that an excess of celluloid will be generated in the center of the extruded sheets with the

current profile configuration.

Finally, an impact analysis of the hypothesis of an isothermal fluid was carried out. It
appears that this hypothesis does not seem to be totally adequate given the high viscous dissipation
that can be generated by a polymer such as celluloid. However, the values obtained remain a useful

first approximation of the phenomena observable inside the profile.
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CHAPITRE1 INTRODUCTION

1.1 Mise en contexte

Depuis plusieurs dizaines d’années, la production mondiale de matiére plastique n’a cessé
de croitre a travers le monde. En 2011, par exemple, il avait été ainsi produit pres de 280 Mt de
matiere plastique contre 1.5 t en 1950 [94]. Cette augmentation peut étre expliquée, en partie, par
le fait que les matieres plastiques peuvent combiner un grand nombre de propriétés physico-
chimiques les rendant tres utiles et relativement faciles a mettre en forme [95]. Les
thermoplastiques, par exemple, peuvent dans certains cas étre refondus a plusieurs reprises ce qui
facilite leur recyclage. De maniere trés générale, il est possible de résumer la plupart des étapes de
mise en forme des thermoplastiques par la Figure 1.1.

Polymer
rohymies Material -> dr‘i{ed
received, blended Polymer fed
stored, and ' o ?_ to extruder
with additives
inspected ) o
iE At Puller—
Extrusion Shaped and Sohdlﬁcapon .} dimensional
drawn and cooling control
Secondary
operation— Inspect Package Ship
decorate

Figure 1.1 Vue d'ensemble du procédé de mise en forme des thermoplastiques
[96].

L’étape majeure divergeant d’un procédé de mise en forme a 1’autre se trouvera
communément juste aprés 1’extrusion. Cette étape peut étre, entre autres, du moulage par injection,
du moulage par soufflage, de 1’extrusion-gonflage ou encore de I’extrusion en profilés. Tout
dépendra du produit désiré et des contraintes imposées par le thermoplastique utilisé [96].

Toutefois, 1’une des techniques les plus simples a mettre en ceuvre reste 1’extrusion en profilé.



Figure 1.2 Exemple de profilé non trivial pour de I’aluminium [97].

Ce procédé consiste comme cela est illustré a la Figure 1.2 a injecter directement dans un
profilé le matériau fondu (polymére ou métal) puis de le laisser se refroidir & I’air libre. C’est un
procédé continu qui ne nécessite pas de grosses infrastructures et qui permet d’obtenir, sous
certaines conditions, des produits d’assez bonne qualité [96]. Il ne permet certes pas d’obtenir
toutes les formes désirées, mais il peut s’avérer trés intéressant d’un point de vue industriel s’il est

appliqué a un polymere thermoplastique tel que le celluloid.

Le celluloid est un nom commun désignant un mélange de camphre et de nitrocellulose dont
les propriétés varient en fonction de la proportion des deux constituants. Il a été utilisé dans diverses
applications allant de la production de pellicules a la fabrication d’explosifs [1]. Son utilisation a
causé de nombreux problémes étant donné sa grande inflammabilité. Il est d’ailleurs intéressant de
noter que son transport a été interdit dans les transports publics [2]. Sa production a, par
conséquent, fortement diminué avec 1’avéenement de la photographie numérique et des
polyoléfines. Il reste, tout de méme, employé dans des domaines tels que 1’industrie de I’armement

ou celle de la fabrication des balles de tennis de table.

Ce polymere, a I’état fondu, a comme originalité d’appartenir a une classe bien particuliére
de fluide. Ainsi, il appartient a la famille des polymeéres viscoélastiques énergétiques. Ces
matériaux, sous forme liquide, réagissent de la méme maniere que les autres polyméres communs

et peuvent montrer des effets viscoélastiques. Ces effets se caractérisent en extrusion par



I’apparition de défauts, débutant par le gonflement en sortie de filiere (die swell) sous certaines
conditions! et pouvant, dans le pire des cas, se manifester par un écoulement chaotique dii & une

fracture de fusion (Gross Melt Fracture) [3].
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Figure 1.3 Exemple de défauts d'extrusion classés par ordre
d'apparition en fonction du débit [108].

Dans tous les cas, le résultat est loin d’étre satisfaisant et ne peut étre utilisé pour une
quelconque application. Ces problemes sont étudiés depuis prés de soixante ans et plusieurs
solutions ont été mises en place afin d’éliminer ces différents défauts d’extrusion [4]. Par exemple,
I’une d’entre elles, implique des pinces qui resserrent le profilé en sortie a certains endroits afin de
minimiser la quantité de matiére sortante dans ces zones (voir Annexe H). Cependant, la plupart
du temps, ces solutions ont été découvertes de maniere empirique puisque la complexité des
équations a résoudre est telle qu’il est nécessaire d’utiliser un simulateur, ou de se placer dans des

cas simplifiés pour obtenir une solution approchée. Dans des situations telles que les écoulements

L A partir d’une certaine valeur du nombre de Weissenberg qui sera défini un peu plus tard.



convergents (sortie de filiére), il n’est pas possible de résoudre les équations régissant la mécanique

des fluides (p.ex. Cauchy, Navier-Stokes, Euler-Lagrange,...) de maniére analytique?.

Dans le cas des fluides viscoélastiques, tels que certains polymeéres énergétiques, il est
nécessaire de modifier la définition du tenseur des extra-contraintes®, ce qui complexifie

grandement le systeme pour plusieurs raisons :

- premicrement, cela augmente le nombre d’équations différentielles a résoudre passant de

quatre (pour un fluide newtonien non isotherme en deux dimensions) a sept équations.

- deuxiemement, il n’existe pas de modele universel qui conviendrait a n’importe quel fluide
viscoélastique. Plusieurs modéles ont été ainsi développés au cours des décennies passées;
chacun avec sa spécificité nécessite de réaliser de nombreux tests rhéologiques sur le

polymere étudié de maniére a vérifier quel modele lui conviendrait.

Toutefois, ce probleme d’équations aux dérivées partielles (EDP) peut étre résolu a 1’aide
de méthodes d’approximation numériques telles que les éléments finis ou encore les volumes finis.
Dans le cas des écoulements convergents, tels que les écoulements en profilé, ces méthodes
numeriques ont déja été utilisées afin de prédire et d’optimiser la forme de profilés pour en réduire
les défauts [98-100].En revanche, dans le cas des polymeres énergétiques, peu d'études ont été

réalisées a ce jour [98] et il n’en existe aucune concernant le matériel d’intérét dans cette étude.

1.2 Objectif général

Etant donnée la nature complexe du domaine des écoulements viscoélastiques, et vu la
complexité de la dynamique et des mécanismes impliqués dans des géométries non triviales telles
que les profilés, il reste encore aujourd’hui tres difficile de prévoir les écoulements de fluides
viscoélastiques a travers un profilé. Ce mémoire aura donc pour objectif général de mieux

comprendre et prédire 1’écoulement du celluloid dans une filiere plate afin de limiter les essais en

2 1l est d’ailleurs intéressant de noter que leur résolution, dans le cas d’un fluide newtonien, fait I’objet d’un des prix du

millénaire rapportant un million de dollars pour quiconque prouvera ’unicité de la solution dans le cas général [5].

3 Qui sera défini un peu plus tard.
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CHAPITRE2 REVUE DE LA LITTERATURE

Cette revue de la littérature commencera par un apercu des équations et des modeles
mathématiques permettant de prédire le comportement du fluide en écoulement. Ceci permettra
d’introduire certains concepts fondamentaux utilisés dans le domaine de la rhéologie afin de mieux
appréhender la maniére dont apparaissent les défauts de mise en forme courants dans le domaine
des écoulements viscoélastiques. Par la suite, suivra I’exposition des contraintes imposées par le
celluloid qui empéchent le recours a certaines méthodes pour éliminer les défauts de mise en forme.
Ces contraintes seront un handicap limitant le nombre d’expérimentations réalisables. Pour
contourner ce probleme, il sera ainsi présenté des méthodes numériques permettant de simuler

I’écoulement du celluloid ainsi que certains logiciels existants pour arriver a ce but.

2.1 Dynamique des écoulements viscoélastiques

L’écoulement des polyméres énergéetiques de haute masse molaire en profilé est I’'un des
problemes les plus complexes a étudier dans le domaine de la simulation numérique. Cela tient en
partie au fait qu’il n’existe pas de modé¢le viscoélastique universel décrivant tous les
comportements des écoulements de polymeéres. Afin d’étre plus précis sur ce point, il semble
important de commencer d’abord par poser le probléme en partant d’un cas newtonien classique
et, ensuite, de voir comment il serait possible d’atteindre le niveau de complexité qui sera étudié

par la suite.

Pour ce faire, il est possible de commencer en introduisant 1’équation de continuité

permettant de formaliser mathématiquement la conservation de la masse [6] :

dp

at+(V-p17)=O (1)

dans laquelle t est le temps, p la masse volumique du fluide concerné et v le champ de vitesse
vectoriel. D’un point de vue physique I’Eq. (1) signifie que, quel que soit 1’élément de volume
considéré, la totalité des flux massiques entrants est exactement égale aux flux massiques sortants
plus un terme d’accumulation. Généralement, cette équation est utilisée en combinaison d’une

équation d’état reliant la masse volumique a la pression. Cependant dans le cas du celluloid, il est



envisageable, moyennant une hypothése, d’obtenir une forme simplifiée de cette équation

s’écrivant sous la forme [10] :
V-5=0 )

L’hypothese a poser pour y arriver est que le celluloid est un fluide incompressible. Pour le
cas de ce fluide viscoélastique, cette affirmation restera valide, étant donné qu’il a déja été
démontré a plusieurs reprises que les polymeéres sont trés peu compressibles [10]. Ce résultat est
illustré & la Figure 2.1 pour un copolymére cyclique d'oléfines (TOPAS 5013L-10) avec des
variations de masse volumique valant en moyenne 7% pour des variations de pression allant jusqu’a
200 MPa [7].
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Figure 2.1 Effets de la pression sur le volume spécifique en fonction de la

température (d’apres [7]).



2.1.1 Equation de la quantit¢ de mouvement appliquée a un fluide

viscoélastique

Une fois I'équation de continuité posée, il est maintenant temps de décrire 1’écoulement du
fluide. Pour ce faire, il est nécessaire d’utiliser 1’équation de Cauchy qui, dans un cas genéral, peut

étre écrite comme suit [6]:

ov
p((ﬁ-V)ﬁ+E>=—Vp—V-t+p§ (3)
ol p représente la pression, t représente le tenseur des extra-contraintes et g le champs
gravitationnelle. L’Eq. (3) permet de décrire a peu prés tout type d’écoulement pour peu que le
terme T soit correctement défini. Or, c’est a ce point que la difficulté apparait pour les fluides

viscoélastiques. Pour le comprendre, il faut prendre la définition de T pour un cas newtonien :
Thewt = _H(Vﬁ + (Vﬁ)T) (4)

Avec u représentant la viscosité newtonienne. Ici, la contrainte est proportionnelle au taux de
cisaillement et les seules équations différentielles nécessaires dans le cas d’un fluide newtonien Se
ramenent donc aux équations de Navier-Stokes. Dans un cas plus général, il faudrait aussi y ajouter
I’équation de la chaleur de fagcon a prendre en compte les variations des propriétés physiques avec
la température. Ainsi, le probléme en trois dimensions nécessiterait de résoudre 5 équations ce qui
est impossible a réaliser analytiquement dans le cas général;, mais relativement aisé a faire

numériquement, pour peu que le probléme soit correctement posé.

Toutefois, dans un cas non newtonien viscoélastiqgue comme cela est le cas pour le celluloid,
le probléme devient bien plus difficile a résoudre. La définition du tenseur des extra-contraintes
doit pouvoir prendre en compte le caractere visqueux du polymeére et I'élasticité de ce dernier. Cette
élasticité engendre des effets mémoires qui se manifestent par I’apparition de contraintes normales
en cisaillement n’existant pas dans un cas newtonien. Pour décrire ce phénomene, il n’y a pas de
loi unique qui fonctionne quel que soit le polymeére utilisé, ce qui augmente d’un cran la difficulté

du probleme.



2.1.2 Modeles rhéologiques définissant le tenseur des extra-contraintes

Le premier modele a été proposé par James Clerk Maxwell. Il peut étre représenté par un
ressort couplé en série a un amortisseur afin que la contrainte qui en résulte soit a la fois visqueuse
et élastique. Ce modele, excessivement simple, a pour mérite de prédire certains phénoménes, dont
I’effet mémoire. Cependant, il a comme inconvénient majeur d’étre dépendant du référentiel dans

lequel I’observateur se place, ce qui le rend inutile dans le cas d’un écoulement généralisé [8].

Fort heureusement, en modifiant le modele de maniére a le rendre indépendant du
référentiel, il est possible de corriger tous ses défauts et d’obtenir le modéle dit de Maxwell
convecté. Toutefois, méme si ce dernier corrige certaines des limitations du mod¢le initial, il n’est
pas encore suffisamment réaliste pour rendre compte de toute la complexité des écoulements

viscoélastiques.

Par conséquent, il a fallu attendre 1950 pour que James Gardner Oldroyd introduise la
notion de retard dans les modeles viscoélastiques afin d’obtenir des prédictions représentant
fidelement certains polymeéres. Ce modéle dit d’Oldroyd-B est toujours utilisé actuellement et peut

s’écrire comme suit [8]:

t+Al<g—I—r-(Vﬁ)—(Vﬁ)T-t) =n(A+AZ<%—A-(Vﬁ)—(Vﬁ)T-A)> (5)

avec :
A=Vi+ (Vo)T

ol A, représente le temps de relaxation, n la viscosité et A, un temps de retard. En somme, 1’Eq.
(5) présente ainsi la forme générale de quasiment tous les modeles différentiels représentant des
fluides viscoélastiques. Les termes de 1’équation en A représentent donc des temps de relaxation
caractéristiques pouvant étre assimilés a la partie élastique du polymere. Les termes en n sont la
partie visqueuse du polymeére. Dans le cas du modéele d’Oldroyd-B, ce sont des parameétres

constants indépendants du taux de cisaillement. Cependant, il n’est pas toujours raisonnable de les
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considérer comme constants; notamment, si le fluide est un polymeére rhéofluidifiant subissant de

forts taux de cisaillements.

En fait, ¢’est le cas d’un écoulement en profilé ou les taux de cisaillements peuvent
rapidement dépasser les 100 s~1, ce qui est suffisant pour diviser la viscosité par 10 par rapport a
sa viscosité plateaux pour certains fluides énergétiques comme le montre le Figure 2.2.
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Figure 2.2 Evolution de la viscosité caractéristique des fluides énergétiques [9]

Dans le cas du celluloid, la viscosité est, elle aussi, trés fortement corrélée au taux de
cisaillement ce qui implique que le modéle Oldroyd-B ne sera pas une bonne approximation de la
réalité physique. Pour obtenir un modele plus représentatif de ce polymere, il faut considérer des

modeles pouvant tenir compte de ce comportement rhéofluidifiant.

Le modéle de White-Metzner est 1’un des premiers qu’il est possible de trouver dans la
littérature. Il reprend 1’équation de Maxwell convecté en affectant le paramétre de viscosité de
maniére a ce qu’il soit une fonction du taux de cisaillement. Celle-ci peut correspondre, entre

autres, a un modele de Carreau ce qui donnerait 1’équation suivante :

T4 (g_: — - (VD) — (VD)7 T) =) (V3 + (VB)T) (6)
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avec .

nG) = no(L+ WD) T @)

ou n, représente la viscosité a taux de cisaillement nul, | un temps caractéristique du polymere et
n un indice de loi de puissance. Il est a remarquer que si le temps de relaxation est nul dans I’Eq.
(6), la définition du tenseur T devient celle d’un fluide rhéofluidifiant si I’Eq. (7) est utilisée pour
définir la viscosité. L’équation de White-Metzner a donc comme avantage d’introduire trés
simplement la dépendance a la rhéofluidité. Elle permet ainsi de prédire, dans une certaine limite,
le comportement de polymeére couramment utilisé dans 1’industrie [74]. Cette limite vient du fait
que le modéle peut dans le cas d’un écoulement élongationnelle prédire une viscosité
élongationnelle infinie ce qui est physiquement impossible. Pour rappel, les viscosités
élongationnelles sont définies ainsi [10] :

T33 — T11 T2 — T11

e = 2 ety = 21 ®)

Cela peut étre tres handicapant dans des procédés d’extrusion-gonflage ou ce type
d’écoulement est trés important. Mais, dans le cas d’un écoulement convergent confiné comme
celui d’un profilé, cet inconvénient reste mineur [4].11 est important de signaler que pour certains
types d’écoulement (par exemple un écoulement de type Couette a taux de cisaillement constant),

il est possible d’obtenir des solutions analytiques comme cela sera vu plus tard [10].

Un second modele, couramment utilisé dans le domaine de la simulation des écoulements
polymeériques est le modéle de Giesekus. Ce modéle part encore une fois de 1’équation de Maxwell
convecté en considérant que les macromolécules orientées créent une force de trainée
anisotropique [75]. L’équation incluant le terme de « trainée anisotropique » est définie comme
suit [76] :

‘[+/1%‘["[+/1(%—T'(Vﬁ)—(Vﬁ))T"[)=7](V1_7)+(V1_7))T) 9)

dans laquelle le terme de « trainée anisotropique » est défini mathématiquement par tenseur des

extra-contraintes au carré. Le caractére rhéofluidifiant du polymeére est contr6lé par un nouveau
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parameétre noté a qui peut varier entre 0 et 1 [76]. Plus la valeur de ce parametre augmentera, plus
le fluide sera rhéofluidifiant. Ce phénomene est illustré a la Figure 2.3.
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Figure 2.3 Profil de vitesse dans un écoulement Couette-Poiseuille

pour différentes valeurs du parameétre a [77].

Il est & noter que, si le parametre « est egal a 0, 1’équation ne prédit plus de comportement
rhéofluidifiant. Par ailleurs, I’ajout de ce terme de « trainée anisotropique » permet de régler
plusieurs défauts du modéle de White-Metzner. L’un des plus flagrants étant que ce modele ne
prédit pas une viscosité élongationnelle infinie a partir d’un certain taux d’élongation. Cette valeur
est, cependant, bornée lorsqu’un fort taux d’élongation est atteint. L’inconvénient majeur de ce
modele reste qu’il est moins précis en élongation que d’autres [78].Cependant, comme expliqué
précédemment, cela n’est pas réellement impactant dans cette étude. Par ailleurs, le modéle possede

des solutions analytiques permettant d’évaluer le paramétre a [79].

Le troisieme et dernier modele rhéofluidifiant qui sera utilisé dans cette étude est le modéle
de Phan-Thien-Tanner. Créé en 1977, celui-ci se base sur la théorie des réseaux ou les chaines
polymériques enchevétrées sont considérées comme un réseau dans lequel les nceuds ne sont pas
censeés se déplacer par translation. Ils peuvent néanmoins glisser les uns sur les autres ou encore se
disloquer en fonction de la contrainte subie [80]. Ce comportement peut étre modélisé par

I’équation suivante :
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) Dt R R S S
e 4 (=2 — v (VB) - (V) 1) = (¥ + (VE)") (10)
dans laquelle 7 représente la viscosité & cisaillement nul. L’Eq. (10) posséde ainsi la méme forme
que les autres modéles a I’exception d’un terme. Ce dernier introduit I’exponentielle de la trace du
tenseur des extra-contraintes ce qui donne un caractére non linéaire a cette équation. Le paramétre ¢
, quant & lui, viendra affecter I’exponentielle de maniére a ce que le terme soit plus ou moins
dominant, ce qui se caractérise par une variation des effets rhéofluidifiants. Tout cela est illustré

sur la Figure 2.4.
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Figure 2.4 Evolution de la viscosité adimensionnelle normalisé en

fonction du taux de cisaillement adimensionnelle [81].

Par consequent, plus le parametre € sera proche de 1, plus I’effet rhéofluidifiant sera fort
et apparaitra a faible taux de cisaillement [81]. Si jamais le parametre € est nul 1’équation revient a
celle d’un modéle de Maxwell convecté. 1l s’avere que la courbe de viscosité en cisaillement
obtenue grace a I’Eq. (10) est trés similaire & celle prédite par un modéle de Carreau. La valeur des

paramétres de 1’Eq. (10) est donc corrélée aux valeurs des paramétres du modéle de Carreau [82].

Ce modéle a I’avantage, comme pour le modeéle de Giesekus, de ne pas prédire une viscosité

élongationnelle infinie a partir d’un certain taux d’élongation. Cependant, sa non-linéarité est un
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handicap qui empéche 1’obtention de solutions analytiques méme dans des cas trés simples. 1l est
donc courant, dans la littérature, de linéariser le terme exponentiel afin d’obtenir un modéle plus
simple pour lequel des solutions analytiques existent. Cette linéarisation se fait en général a I’aide
d’une expansion de Taylor d’ordre 1 tel que [57]:

Ae Ae
e s 14 o tr(t) (11)

Il existe encore beaucoup d’équations constitutives définissant le tenseur des extra-
contraintes pour un fluide viscoélastique. Néanmoins, les trois modéles présentés précédemment
sont suffisants pour prédire des ecoulements viscoélastiques dans un profilé. Les autres modeles
tels que PomPom et FENE étant plus utile pour des écoulements élongationnelles [83], ils ne seront
donc pas utilisés dans cette étude qui se limitera aux trois modéles rhéologiques présentés

précédemment.

2.1.3 Nombre adimensionnel et définition rhéologique

Avant de présenter les différents nombres adimensionnels et les fonctions rhéologiques,
utilisées couramment dans les articles décrivant ce type d’écoulement, il est important d’introduire
un certain formalisme permettant de s’affranchir des notions d’espaces tridimensionnelles
cartésiens X, y et z. Dans le domaine rhéologique, la notation de ces dimensions est remplacée par
les chiffres 1,2 et 3, représentant chacun une dimension avec une définition bien particuliére [10].
Ici, la dimension 1 représente la dimension dans laquelle 1’écoulement a lieu. Par exemple, dans le
cas d’un écoulement dans un cylindre ouvert aux extrémités, cela représenterait la composante z
en coordonnées cylindriques. La dimension 2 représente 1’espace dans lequel s’établit le plus fort
gradient de contrainte en cisaillement. Dans 1’exemple du cylindre, cela reviendrait a considérer
que 2 équivaut a la composante r en coordonnées cylindriques. La dimension 3, quant a elle,
représente la derniére dimension caractérisant les contraintes secondaires ayant le moins d’effets
sur I’écoulement. Pour le cas du cylindre, cela équivaut a la dimension théta ou quasiment aucune
contrainte n’est engendrée. Pour un écoulement quelconque (viscoélastique ou classique), il est
possible de définir un nombre adimensionnel caractérisant les forces visqueuses et les forces

d’inertie. Celui-ci est le nombre de Reynolds (Re) et il peut étre écrit sous la forme suivante [6] :
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_ pvD,
n

Re

(12)

Ici, D, représente une longueur caractéristique de 1’écoulement qui peut étre approximée par un
rayon hydraulique. De fait, la valeur de ce nombre permet de dire si 1I’écoulement est en régime de
laminaire, transitoire ou turbulent. Plus il sera grand, plus I’écoulement du fluide se rapprochera
d’un écoulement turbulent. En revanche, plus il sera faible, plus le fluide aura tendance a s'écouler
en régime laminaire. Dans la plupart des publications, il est admis que, si Re<<1, le fluide s’écoule
en régime rampant (ou Stokes) [87]. La différence entre le régime laminaire et rampant est le terme
d’inertie de I’Eq. (3) qui sera négligé pour un écoulement rampant [31]. Par ailleurs, étant donné
les vitesses qu’il est possible d’atteindre lors de la mise en forme des polymeéres en fusion et le fait
que leurs viscosités depassent régulierement le kPa.s, il est d’usage de considérer un écoulement
rampant ou laminaire, dépendamment de I’'importance a donner au terme d’inertie. Les deux autres
régimes ne seront donc pas etudiés dans ce cette analyse puisqu’il est physiquement improbable

d’atteindre un Reynolds suffisamment grand dans le cas de I’écoulement d’un celluloid [11].

Les deux nombres adimensionnels qu’il est nécessaire de définir apres le nombre de
Reynolds sont le nombre de Deborah et le nombre de Weissenberg [10]. Le premier représente le
temps de relaxation caractéristique d’un polymere par rapport au temps caractéristique d’un
écoulement :

tpolymére

De = —PoMETe. (13)

Lécoulement
Le second représente le rapport entre les forces élastiques et les forces visqueuses :

T11— T
We = 11 22 (14)
T12
Il est & noter que, dés lors que le modéle utilisé est de forme Oldroyd_B, le nombre de
Weissenberg est strictement égal au taux de cisaillement multiplie par le temps de relaxation A du
polymere. Dans la plupart des études réalisées, le temps caractéristique de 1’écoulement est égal a

I’inverse du taux de cisaillement multiplié par le temps de relaxation du polymeére. Ce qui engendre

une confusion entre ces deux nombres puisqu’ils ont la méme expression. Il est donc assez commun
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d’approximer le nombre de Deborah par celui de Weissenberg méme si cela est au sens strict faux.
Toutefois, il est excessivement difficile de définir les forces normales caractéristiques d’un
écoulement quelconque. Cela étant grandement dd au fait que les forces normales sont des variables
difficilement mesurables dans certaines géométries. C’est donc aussi pour cette raison que, dans la
majorité des études, le nombre de Weissenberg et celui de Deborah seront considérés comme

identiques.

Pour finir, il est nécessaire de définir deux fonctions rhéologiques indispensables a 1’étude
de I’écoulement d’un polymeére. Celles-ci sont la viscosité et le premier coefficient de contrainte

normal. La viscosité notée n représente la résistance a 1’écoulement et est définie comme :

n=-— (15)

Dans le cas d’un écoulement a viscosité constante, cette valeur sera invariante puisque la
contrainte en cisaillement est proportionnelle au taux de cisaillement. En revanche, dans le cas d’un
écoulement polymérique, la viscosité dépend du taux de cisaillement. Cela s’explique par le fait
que les macromolécules enchevétrées auront tendance a se mouvoir les unes par rapport aux autres
des lors que le fluide se met en mouvement. Cette théorie est connue sous le nom de théorie de la
reptation. Elle prévoit qu'un écoulement se produisant a haut taux de cisaillement verra ses
macromolécules serpenter plus rapidement. Ceci engendrant une relaxation plus rapide des
contraintes internes dans la macromolécule et conséquemment une diminution de la viscosité lors

d’une augmentation du taux de cisaillement [12].

En ce qui concerne le premier coefficient de contraintes normales, il caractérise les forces
normales que génére un fluide en écoulement. Il s’écrit comme Suit:
T11 — T2
Yr=—75— (16)
14
Il est & noter que ce coefficient est souvent utilisé pour vérifier la validité des résultats obtenus par
une simulation numérique étant donné que, pour certains cas et modéles, il existe une solution

analytique connue pour cette variable.
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2.1.4 Equation de la chaleur appliquée & un fluide viscoélastique

Du point de vue de la thermodynamique certaines propriétés physiques décrivant un fluide
quelconque devraient étre fonction de la température [4]. Cela est le cas de la viscosité, du temps
de relaxation et de la masse volumique qui sont inversement proportionnels a la température dans
le cas d’un liquide [6]. Dans le cas des polyméres en fusion il est possible d’établir un lien direct
entre la viscosité et la température a I’aide de la relation suivante en considérant que la masse

volumique du fluide est constante [10]:

_ nr Tref

= 17
- (17)

ar
Cette relation fait intervenir un facteur de glissement noté a; permettant de superposer les courbes
de viscosité sur une courbe maitresse de référence grace au principe de superposition temps-
température [84]. Il suffit donc de trouver une relation entre la température et le facteur de
glissement et d’utiliser une viscosité de référence pour connaitre la viscosité a une température
donnée. Cette relation peut prendre plusieurs formes en fonction de la nature amorphe ou cristalline
du polymere entre autres. Cependant, cette étude s’intéresse a la simulation numérique de
I’écoulement du celluloid en profilé et non a la caractérisation exacte de toutes les facettes de la
rhéologie du celluloid. Un modéle simple est donc ici présente afin de faire le lien entre viscosité
et température. Or, 1’une des relations les plus simples (faisant intervenir le moins de parametres)
qu’il est possible de trouver est celle d’Arrhenius. Elle s’exprime mathématiquement comme suit
[10]:

E_E
ar = eRTo RT (18)

dans laquelle R et E représentent respectivement la constante des gaz parfaits et 1’énergie
d’activation apparente du processus de relaxation [85]. En replacant a; dans 1’Eq. (17), le lien entre
viscosité et température apparait. Ce lien permet de dire que si I’écoulement n’est pas isotherme

alors I’équation de la chaleur devrait étre prise en compte étant donné que le terme de viscosité est

prépondérant dans les équations de la quantité de mouvement et dans les modeles rhéologiques.
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L’équation de la chaleur est une équation aux dérivées partielles initialement développée
par Joseph Fourier en 1807 [6]. Elle permet de prédire, entre autres, comment évoluent les champs
de température ainsi que les flux qui leur sont associés. En considérant que la conductivité
thermique k est constante et que la masse volumique varie peu avec la température (ce qui est le

cas pour la plupart des polymeres) [86], elle s’écrie de la maniére suivante [6] :

DT
pCpD—t — kV2T = V¥ (19)

L’Eq. (19) peut étre ainsi séparée en deux parties distinctes. Une partie & gauche du signe
égal contenant (respectivement de gauche a droite) un terme de convection et un terme de
conduction. Une partie a droite du signe égal symbolisant la dissipation visqueuse. Ce terme de
dissipation visqueuse noté t: Vv est induit par la résistance a I’écoulement du fluide et peut étre vu
comme une source de chaleur potentielle. Il n’est cependant pas rare de le négliger pour des fluides
peu visqueux [6]. Dans le cas des polymeéres tels que le celluloid, la viscosité a taux de cisaillement
nul peut facilement dépasser 10 kPa-s [31]. Il n’est donc pas forcément raisonnable de négliger ce
terme. Dans le cas de I’écoulement du HDPE dans une conduite cylindrique, par exemple, il est
possible de démontrer que la dissipation visqueuse peut engendrer une augmentation de
température de 50 K [88]. En somme, I’effet de la dissipation visqueuse devrait donc fortement

impacter I’écoulement du fluide ce qui augmente d’un cran la complexité du probléme a résoudre.

2.2 Mise en forme du celluloid et défaut d’extrusion

Le celluloid est un composé qu’il est possible de mettre en forme par des techniques
utilisées couramment dans le domaine de la plasturgie sous certaines conditions [68]. L’application
de ces techniques au celluloid dependra grandement du produit final souhaité. Dans cette section,
I’accent sera mis sur les possibilités de mise en forme existantes ainsi que les problémes qu’il est

possible de rencontrer dans le cas d’un écoulement viscoélastique.

2.2.1 Technique de mise en forme des polymeres

Le polymere sortant des unités de polymérisation courantes se présente souvent sous la

forme d’un solide trés peu malléable a température ambiante. Il est donc d’usage de le faire fondre
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a I’intérieur d’une extrudeuse en augmentant progressivement la température du polymere. Dans

le cas du celluloid, un solvant est ajouté au mélange afin de diminuer la viscosité du composé.

,
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Figure 2.5 Schéma général d’une extrudeuse bi-vis [13].

Cette machine, utilisée pour la mise en forme des thermoplastiques, se compose de trois

éléments majeurs :

- une trémie, qui recevra le polymére en petit morceau ayant souvent la forme de granulés,
et qui permettra de convoyer ce polymeére solide a la vis d’ Archiméde;
- Une vis d’Archimede couplée a un élément chauffant permettant de faire fondre le polymere
tout en I’acheminant vers I’alimentation;
- une alimentation qui recevra le polymére fondu et I’enverra vers le procédé de mise en
forme.
Le choix des deux premicres parties est d’ordinaire trés important, car ce sont celles-ci qui
permettront de transformer le polymeére solide en un fluide malléable qui pourra étre structuré a
I’aide d’un procédé mis en forme. Toutefois, dans cette étude, ce sujet ne sera pas aborde étant

donné que le domaine d’intérét présenté concerne la mise en forme dans un profilé.

De maniere générale, cette technique consiste a connecter la sortie de 1’extrudeuse a une

géométrie ouverte a ces extrémités, permettant ainsi 1’écoulement continue d’un flux de matiére
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ayant la forme de la sortie de cette géométrie. Cette technique est la plus simple a mettre en place
puisqu’elle consiste a simplement connecter le profilé et a laisser la matiére s’écouler
continuellement vers la sortie. Elle offre, comme avantages majeurs, de pouvoir fonctionner en
régime permanent avec une simplicité de mise en ceuvre inégalée dans ce domaine. Toutefois, elle

n’est pas exempte d’inconvénients, le plus contraignant étant celui des formes usinables [14].

En effet, certaines formes, trop complexes, ne peuvent tout simplement pas étre générées
par cette méthode. Les briques de Lego, par exemple, avec une forme alternant plusieurs aspérités
ne peuvent étre obtenues grace a cette technique, puisqu’il est impossible de générer un profilé
pouvant expulser le fluide de maniere ponctuellement discontinue [14]. Il sera donc préférable,
dans ces cas particuliers, d’utiliser une technique appelée moulage par injection. Celle-ci fait
intervenir un moule préalablement usiné. La mise en forme en profilé sera donc plus indiquée dans

le cas ou les géomeétries des produits finis sont simples, notamment pour une feuille.

La contraction est d’ailleurs un des cas les plus couramment étudiés a 1’aide des simulations
numériques lorsque ces dernieres ont besoin d’un cas test pour Vérifier leur résultat. Ceci est
majoritairement di au fait que cette géométrie possede des solutions analytiques validées
experimentalement dans certains cas [15]. Pour finir, cette forme est la géométrie la plus simple
qui permet de générer un gonflement en sortie de filiere. Ce gonflement est le premier défaut de
mise en forme qu’il est possible d'observer a faible nombre de Weissenberg. Il est a noter que, dans
ce cas précis, les nombres de Deborah et de Weissenberg ont strictement la méme définition que

celle présentée précédemment c’est-a-dire :

We =De =yA (20)

2.2.2 Défauts classiques d’extrusion

Les défauts d’extrusion apparaissent trés régulierement lors de la mise en forme des
polymeres en profilé. 1l se manifeste généralement a faible Weissenberg par un gonflement en
sortie de géométrie et s’aggrave jusqu’a générer ce qui est communément appelé en anglais un
Gross Melt Fracture (fracture de fusion) [16]. Cette aggravation est due jusqu’a un certain point, &
I’augmentation de la vitesse du fluide qui accroit les forces de contraintes normales générées par

la partie élastique du fluide. Puisque de trés faibles vitesses sont suffisantes pour générer des
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défauts, il est important de signaler que ces phénoménes sont complétement déconnectés du
nombre de Reynolds, car ils se produisent, la plupart du temps, a des Reynolds tres faibles [10].
Par conséquent, il est difficile d’imputer ces phénoménes a une turbulence quelconque. Ce point
étant clarifié, il est maintenant temps d’étudier chacun de ces défauts par ordre croissant de

Weissenberg.

2.2.2.1 Gonflement en sortie de filiére

Le gonflement en sortie de filicre est le premier défaut qu’il est possible de rencontrer lors
de la mise en forme en profilé. Il n’est pas entiérement d aux contraintes normales, mais celles-ci
contribuent significativement a son ampleur. En effet, le gonflement s’observe méme dans le cas
d’un fluide newtonien comme ’eau. Il s’explique d’abord par le fait que dans la filiére I’écoulement
est contraint aux parois ce qui engendre le profil parabolique caractéristique d’un écoulement
laminaire. Lors de sa sortie, aux fronti¢res du fluide, 1’air n’exerce pas de contraintes sur le fluide.
Ceci engendre un réarrangement du profil de vitesse de sorte que 1’écoulement passe d’un profil
parabolique a plat, ce qui explique pourquoi tout fluide newtonien ou non newtonien, en régime

laminaire, sortant d’une filiére, aura toujours tendance a gonfler en sortie [18].

\

Cependant, tel que cité précédemment, cela ne suffit pas a expliquer ’ampleur du
phénoméne dans le cas d’un fluide viscoélastique. Par conséquent, il est impératif de reprendre
I’analogie du ressort pour illustrer la deuxieéme partie du phénoméne. Dans un écoulement contraint
quelconque, le fluide en écoulement subit un cisaillement se caractérisant par une contrainte sur
deux plans orthogonaux. Si le polymeére est représenté par une bande élastique, cela revient a
considérer que ce dernier est étiré dans le sens de 1I’écoulement et comprimé dans la direction
orthogonale a I’écoulement. Dés lors qu’il est exposé a 1’air libre, il ne subit plus aucune contrainte
puisque 1’air ambiant ne le permet pas. Il apparait donc clairement que le ressort reprendra sa forme
initiale ce qui forcera le fluide a gonfler dans le sens transverse de I’écoulement [17]. La Figure

2.6 permet de I’illustrer.
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Figure 2.6 Représentation d’un gonflement en sortie de filiére [19].

D’un point de vue analytique, il n’existe qu'une manicre de prévoir le gonflement en sortie
de filiére. 1l s’agit de ’utilisation de la formule analytique suivante démontrée par Tanner en 1970
[17]:

[ IS

2
Dgonsiement _ [1 + E(N_1> l +0.13 &
dsortie 2 2T12

dans laquelle DgopriemenceSt le diametre du gonflement, dg,i est le diametre de sortie de la

filiere, N1 représente la différence de contraintes normales et t,, représente la contrainte en

cisaillement.

L’Eq. (21) (hnommeée loi de Tanner) implique que le ratio de gonflement (D/d) entre I’entrée
et la sortie est une fonction des forces de cisaillement ainsi que des forces normales. Il est possible
de remarquer que le gonflement en sortie de filiere sera d’autant plus grand que la différence de
contraintes normales sera supeérieure aux contraintes en cisaillement. Conséquemment, cette
formule a pour avantage de donner un lien direct, entre le gonflement et les contraintes, qu’il est
possible d’obtenir analytiquement ou par simulation numérique. Cependant, tel qu’il est précisé
dans I’article de Tanner, cette approximation est limitée par plusieurs hypothéses permettant de
simplifier suffisamment 1’équation afin d’obtenir une solution analytique. Si jamais une des
hypotheses était fausse, il serait nécessaire d’utiliser la forme non simplifiée des équations

viscoélastiques. Celle-ci implique 1’utilisation d’une technique de simulation numérique dans le
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but de résoudre les équations de maniére approchée. Par contre, elle reste beaucoup plus complexe
a mettre en place et implique de grandes connaissances tant dans le domaine de la rhéologie que
dans celui de la simulation numérique. Ce point sera, d’ailleurs, développé dans la section dédiée
a la simulation numérique.

2.2.2.2 Défauts « peau de requin » et « adhérence-glissement »

Les deux prochains défauts présentés se produisent juste apres le gonflement en sortie de
filiere. Ce sont tous deux des défauts de surface induits par une augmentation ponctuelle
significative de la contrainte normale en sortie de 1’écoulement. Ils sont donc illustrés dans la

Figure 2.7 en fonction du taux de cisaillement auquel ils se produisent.
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Figure 2.7 Evolution des défauts d’extrusion en fonction du taux de cisaillement (GMF signifie

Gross Melt Fracture ou fracture de fusion en francgais) [20]
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Il est possible de remarquer que le défaut « peau de requin » apparait juste avant le défaut
« adhérence-glissement ». Le défaut « peau de requin » tire son nom de sa forme trés similaire a
celle de la peau des requins. Cet effet est, en partie, d0 au bord de sortie tres écharpée des profilés
qui engendre une augmentation ponctuelle de la contrainte normale en sortie. Cette augmentation
trés soudaine est accompagnée d’une diminution périodique de la contrainte normale due, en
majeure partie, a la nature élastique du fluide [20]. Cette variation de contrainte normale se traduit
par des augmentations et diminutions de gonflement trés réguliéres. Il est d’ailleurs possible de le
constater gréce a la formule de Tanner. Si la contrainte normale est une fonction périodique, alors

le gonflement devient lui aussi une fonction périodique.

En ce qui concerne le défaut « adhérence-glissement », cela devient un peu plus complexe,
car ce phénomeéne est & mi-chemin entre les défauts GMF et « peau de requin ». En effet, ce
phénomene apparait dés lors que les contraintes normales sont suffisamment fortes pour faire
basculer le fluide d’un écoulement en régime permanent a un écoulement transitoire systématique.
Pour reprendre 1’analogie du ressort, cela reviendrait & méler plusieurs milliers de ressorts entre
eux de maniére a ce que certains comprimés forcent les autres ressorts a étre tendus. Cette
configuration engendre une situation telle qu’a partir d’un certain taux de cisaillement, le fluide

redevient périodiquement stable sans le moindre défaut en surface [21].

Ceci est un paradoxe puisqu’une augmentation du taux de cisaillement devrait normalement
entrainer plus de contraintes normales et donc plus de défauts. Toutefois, cette situation étrange ne
se produit que sous certaines conditions bien précises pouvant ne jamais apparaitre; ce qui explique

la zone de transition discontinue du diagramme précédent.

2.2.2.3 Fracture de fusion (Gross Melt Fracture)

Le dernier défaut qu’il est possible de croiser dans le cas d’un écoulement en profilé est la
fracture de fusion plus communément appelée GMF (Gross Melt Fracture). Ce défaut apparait pour
de trés hauts nombres de Weissenberg (>1000) et se caractérise par un écoulement complétement
erratique. Ce comportement s’explique par le fait que les contraintes normales deviennent si
grandes que 1’écoulement passe d’un régime permanent & un régime pulsé. Les forces
viscoélastiques faisant que les contraintes normales s’accumulent a ’intérieur du fluide (et non

plus en surface comme c’est le cas pour le défaut « peau de requin »), cela entraine une déformation
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volumique du fluide dés qu’il se retrouve en surface libre [22]. Ce défaut ne sera pas étudié ici
parce que la tres grande viscosité du celluloid et sa sensibilité aux variations de température, due a

la friction, rendent la génération d’un GMF hautement improbable.

2.2.3 Contraintes de mise en forme dues a Dutilisation du mélange

nitrocellulose/camphre

Au vu des défauts et modéles exposés précédemment, il sera présenté dans cette section le
comportement du celluloid lors de sa mise en forme. Or, les matériaux énergeétiques tels que le
celluloid sont des composés thermosensibles difficiles a mettre en forme. Cette difficulté vient du
fait que les polymeres en fusion ont tendance a générer de la dissipation visqueuse qui engendre
une élévation de la température au fur et a mesure que le fluide s’écoule le long du profilé. Dans le
cas d’un polymeére énergétique, cette génération peut s’avérer critique puisque la température de
thermoplasticité peut méme dépasser celle de décomposition thermique [23]. Ce phénomene

s’applique parfaitement au mélange nitrocellulose/camphre plus communément appelé celluloid.

La nitrocellulose est un polymeére énergétique fibreux de la famille des thermoplastiques.
Découvert par le Docteur Friedrich Schénbein en 1846, elle est produite par immersion de cellulose
(coton, bois,...) dans un bain composé d’acide nitrique et sulfurique. Cette cellulose est un
polymere compose de cycle glucose contenant chacun trois groupements OH. Ces groupements
OH réagiront avec I’acide nitrique par estérification pour former des groupements NO qui
viendront remplacer les groupements OH de la cellulose [1]. Cette réaction produisant de la

nitrocellulose et de 1’eau est illustrée sur la Figure 2.8.
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Figure 2.8 Schéma de nitration de la cellulose [28].
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A premiére vue, I’utilisation d’une solution composée essentiellement d’acide nitrique
semble plus intéressante étant donné que cela permettrait d’avoir un réactif en excés qui
engendrerait la reaction de tous les groupements OH. Neanmoins, il apparait qu’a forte
concentration d’acide nitrique (>90%), la nitrocellulose se dilue localement avec 1’eau formée lors
de la réaction et se répand dans le reste des fibres non nitrées, engendrant ainsi une dissolution qui
conduit a une gélatinisation des fibres empéchant donc toute nitration de cette zone. Le mélange
durcit, par endroits, de maniere a ce que les zones touchées deviennent completement insolubles.
Pour contrer ce probleme, la solution qui a été trouvée consiste a ajouter de I’acide sulfurique. De
fait, cet ajout permettra une réaction avec les molécules d’eau formées lors de la nitration de la
cellulose. Ceci empéche les molécules d’acides nitriques de former les zones de durcissement
insoluble et permet d’atteindre un taux d’azote théorique maximal de 14.1%. Celui-ci correspond
a une cellulose dont tous les groupements OH ont été remplacés par des groupements NO,. Dans
la réalité, le taux d’azote maximal atteint est de 13.9%, car plusieurs facteurs rendent certains
groupements OH plus difficiles d’accés. Ce taux d’azote sera ainsi la principale caractéristique

différenciant les nitrocelluloses les unes des autres [1].

Il existe différentes classifications de la nitrocellulose dépendamment de son taux de

nitration. Cette classification se fait comme suit :

- mono-nitratée (si le taux d’azote est inférieur a 6.76%) ou statistiquement la majorité des
cycles glucoses ne contiennent que 1 groupement NO2;

- binitratée (si le taux d’azote est proche de 11.12%) ou statistiquement la majorité des cycles
glucoses contiennent 2 groupements NO;

- tri nitratée (si le taux d’azote est de 14.12%) ou la quasi-totalité des cycles glucoses

contiennent 3 groupements NO3.

En conséquence, cette catégorisation de la nitrocellulose permet ainsi de déterminer le
niveau de réactivité de la nitrocellulose. Une nitrocellulose, avec un taux de nitration supérieur a
12%, sera classée CP (CP = coton poudre), ce qui correspond a un grade militaire et servira
d’explosif. En revanche, une nitrocellulose avec un taux de nitration inférieur a 12% sera classée
CA2 ou CA4 (CA= coton azoté), ce qui est un grade dit « industriel » et elle sera utilisée dans la

production de laques, produits cosmétiques, balles de ping-pong, etc.
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Une fois fabriquée, séchée et stabilisée, la nitrocellulose se présente comme un solide qui
peut étre amorphe ou semi cristallin dépendamment de plusieurs facteurs dont le taux d’azote.
Cependant, cette structure semi cristalline ne commence a apparaitre sur un cliché de diffraction
qu’a partir de 10% d’azote. Une étude de I’Université Cranfield a d’ailleurs montré que pour de la
nitrocellulose fabriquée récemment et possédant un taux d’azote de 13,55%, son niveau cristallinité
peut alors atteindre 29 [25]. La nitrocellulose ainsi formée, si elle n’est pas plastifiée, donnera un
solide tres rigide. Cette rigidité n’est pas pratique lors de la mise en forme de cette derniére. Il
faudra donc la mélanger a un plastifiant afin de 1’assouplir et de la rendre ainsi plus malléable. Pour
ce faire, il est nécessaire de la solvater dans un mélange qui peut étre constitué d’un alcool, d’une
cétone ou d’éther. Dans le cas du celluloid, il est possible d’utiliser un mélange composé d’alcool
¢éthylique et d’acétone dans un ratio 1:2, ce qui forme un gel augquel on incorpore le camphre qui

est le plastifiant utilisé dans la composition du celluloid [26] :

Au vue de la trés grande viscosité du mélange, il est d’usage d’utiliser un malaxeur sigma
afin d’obtenir une pate malléable contenant la nitrocellulose et le plastifiant. Toutefois, cette
opération n’est pas sans risque puisque le mélange alcool/acétone est assez volatile : il se peut que
la pate s’échauffe par friction et qu’il y ait une grande perte de solvant. Cette derniére engendrerait
une augmentation de la température du mélange et causerait son ignition. Il faut donc étre
particuliérement précautionneux lors de ce mélange et toujours s’assurer qu’il y ait suffisamment
de solvant [27]. La concentration de plastifiant, ainsi utilisée, affectera les propriétés mécaniques

pour rendre le solide plus ou moins malléable dépendamment des propriétés souhaitées.

Dans le cas du celluloid, la concentration de camphre souhaitable pour cette étude serait
située a environ 20 % puisqu’a ce pourcentage, la contrainte a la rupture est maximale comme le

montre la Figure 2.9 [29].
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NiTRocELLULOSE AND CAMPHOR
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Figure 2.9 Test d’élongation du celluloid [29].

Pour finir, il faut noter qu’il est nécessaire d’utiliser un stabilisant & cause de la tendance
qu’a la nitrocellulose a se dégrader au cours du temps. Cette dégradation est auto catalytique, car
la nitrocellulose produit un acide qui catalysera sa reaction et engendrera une réaction
exothermique en chaine. Pour éviter cela, de la centralite sera ajoutée au mélange afin de neutraliser
I’acide produit lors de la dégradation du composé ce qui permettra d’augmenter la durée de vie de

notre polymere.

L’étude de ce celluloid sera donc complexe parcequ’elle nécessitera de manipuler un
mélange sensible a la chaleur. Or, cela nécessiterait également de coupler les équations précédentes
a I’équation de la chaleur, car un fluide en mouvement génére de 1’énergie par dissipation
visqueuse. Une étude de 1987, de Carter et Warren, présente d’ailleurs des résultats montrant la
maniere dont la température impacte la rhéologie du fluide. Il est ainsi possible de voir qu’un
mélange double base nitrocellulose/nitroglycérine, utilisant de 1’acétone comme solvant, posséde
une contrainte et des parametres seuils d’Herschel -Bulkley diminuant avec la température. Pour

rappel, la contrainte t issue de 1I’équation d’Herschel- Bulkley s’écrit sous la forme suivante [10] :
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T =1+ k()" (22)

ou To représente la contrainte seuil alors que k et n représentent des parametres du modeéle. Il est
toutefois important de noter que si n<1 1’écoulement est rhéofluidifiant, ce qui est toujours le cas
pour tous les mélanges utilisés par Warren et Carter [30]. L’article de ces chercheurs étudie 1’effet
d’une contraction instantanée sur 1’écoulement du polymeére énergétique. Ainsi, ils versent dans
une extrudeuse le mélange NC/NG afin de voir comment un angle d’entrée de 90° peut affecter le
gonflement en sortie de filiere. Ils montrent ainsi que celui-ci, pour ce genre de mélange, peut

atteindre jusqu’a 1.5 fois la taille de sortie de la filiere.

Toutefois, ces résultats ne sont que des tests rhéologiques utilisant, certes le modele
Herschel-Bukley, mais ne permettant pas vraiment de prédire avec exactitude le gonflement en
sortie de filiere ou tout autre probléme courant dans I’industrie polymérique. Pour cela, il faudra
attendre 1992 pour que Tanner et Beverly reprennent les travaux de Warren et Carter afin de
simuler I’écoulement avec des modéles plus riches et plus complexes [102]. Dans cette étude, les
auteurs confrontent les résultats obtenus via la simulation par des modéles HB (Herschel-Bukley)
et MPTT (Modified Phan Thien Tanner) afin de voir comment cela affecterait le résultat.

A ce niveau, le modéle HB est incapable de prédire un gonflement en sortie de filiére
quelconque puisqu’en cisaillement, pour ce modele, les contraintes normales sont nulles en tout
temps. Or, le gonflement en sortie de filiére est en grande partie d aux contraintes normales non
nulles en cisaillement. Le seul modéle pouvant donc prédire 1’évolution du gonflement en sortie de

filiere dans cette étude sera donc le modéle MPTT.

En effet, le modéle MPTT utilisé dans cet article est une version améliorée du modele PTT
présenté par Phan Thien et Tanner et a deux avantages majeurs. D’une part, il permet de prédire
avec une certaine exactitude la contrainte normale; d’autre part, il fait intervenir la trace du tenseur
des extra-contraintes, ce qui permet de prédire un écoulement rhéofluidifiant. Warren et Carter
ayant déja démontré que le fluide est un rhéofluidifiant, toutes ces preuves tendent a dire que le
modeéle MPTT est une alternative qui permet de prédire 1’écoulement du celluloid. Cela est appuyé
par les résultats a la Figure 2.10, qui montre que le modéle MPTT prédit assez précisément le

gonflement en sortie filiére pour différents taux de cisaillement .
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Fig. 9. Computed values of the swelling ratio for the MPTT model as a func-
tion of apparent shear rate for a propellant dough extruded through a 100 mm
long axisymmetric die of radius 1 mm maintained at a reference temperature of
20°C. — M — Experimental curve; X numerical solution x = 0.264; * (upper) nu-
merical solution A = 0.35; * (lower) numerical solution A — 0.15.

Figure 2.10 Gonflement en sortie de filiere pour un mélange NC/
NG [102].

Ces résultats sont obtenus a faible temps de relaxation : ils ne représentent pas toute la
complexité du systeme. Par ailleurs, il est possible de voir sur la Figure 2.10 que le modele MPTT,
tout comme le modele HB, diverge clairement des résultats expérimentaux a haut taux de
cisaillement apparent.
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Fig. 6. Computed values of yield stress, reference viscosity, fluid consistency,
dimensianless I, and the power law index chosen to give a line of best fit when
compared to the experimental flow curve of a propellant dough. — + — Ex-
perimental flow curve; (upper) Herschel-Bulkley scheme; (lower)
MPTT model.

Figure 2.11 Evolution de la contrainte en cisaillement pour un
mélange NC/NG [102].
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Les contraintes imposées par 1’écoulement dans une filiere d’un celluloid composé¢ de

nitrocellulose sont donc :

la stabilité thermique, qui rend complexe la manipulation du fluide et nécessite 1’ajout de

stabilisant et de solvant afin de minimiser les risques d’inflammation voire d’explosion;

la dissipation visqueuse due au fait que le fluide est extrémement visqueux (5 kPa.s a 60°C
[102]) ce qui pourrait engendrer une grande libération de chaleur. Tel qu’expliqué
précedemment, le fluide est sensible a la chaleur. Il faudrait donc ajouter 1’équation de la
chaleur aux équations déja définies afin de tenir compte de cette génération thermique et
donc de contréler la température du fluide;

les contraintes seuils dues a la NC nécessiteront donc de déterminer le moment critique en
dessous duquel le fluide n’est pas en mouvement. Ceci complexifie la simulation, car, en
dessous de cette contrainte seuil, la viscosité est supposée tendre vers I’infini ce que les

simulations par ordinateur ne sont pas réellement capables de représenter;

la rhéofluidité du composé, provenant de la nature polymérique de la nitrocellulose qui
engendre un profil trés différent d’un écoulement en cisaillement pour un régime laminaire
classique, nécessite donc d’utiliser un mod¢le tenant compte de la dépendance au

cisaillement de la viscosité;

les contraintes normales, étant dues encore une fois a la nature polymérique de la NC et
engendrant les phénoménes gonflement en sortie de filiere, « peau de requin », « adhérence-
glissement », imposent 1’utilisation d’un modéle viscoélastique tenant compte du taux de
cisaillement et du temps de relaxation pour obtenir des résultats de simulations proches de

ce qui peut étre obtenu expérimentalement.

Maintenant que nous avons abordé toutes les contraintes.... , il convient donc maintenant

d’examiner la question de la simulation.

2.3

Simulation numérique des écoulements viscoélastiques

Tel que souligné précédemment, il peut s’avérer particulierement dangereux de manipuler

du celluloid lors de sa mise en forme. Pour limiter ce risque ainsi que les colts liés a
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I’expérimentation du procédé, il semble intéressant de simuler numériquement 1’écoulement du
fluide dans une filiére a 1’aide d’une méthode d’approximation numérique. Au vu de toutes les
techniques présentes dans la littérature, il est possible de construire un graphe de répartition des

techniques utilisées couramment dans le domaine des écoulements viscoélastiques.

publication pour différentes
méthodes numériques

M element finis

M volume finis
M |attice boltzman
Smoothed particle

hydrodynamics
m spectral element method

Figure 2.12 Répartition des publications dans le domaine du
viscoélastique pour différentes methodes numériques (sur la base d’une

revue de la littérature a partir de plusieurs bases de donnees).

Tel que montré a la Figure 2.12, il ressort que les méthodes numériques les plus employées
sont les éléments finis (FEM), les volumes finis (FVM), la méthode de Boltzmann sur réseau, et
celle des éléments spectraux. En ce qui concerne la SPH, bien qu’elle soit présente sur le graphique,

vu le nombre limité de références dans le domaine, elle ne sera pas présentée dans cette étude.

Par ailleurs, la technique des différences finies ne sera pas abordée ici, car il est précisé
dans le livre « Computation Rheology » que, pour des géométries complexes a plus d’une
dimension, cette technique présente des lacunes dues en partie a la discrétisation du maillage. Il lui
sera préféré la méthode des éléments finis qui est moins rigide dans le domaine du viscoélastique
[31]. Il est, cependant, possible de noter des évolutions de cette technique grace a la méthode MAC
(Marker and Cell) et FVM qui utilise, dans une certaine mesure, quelques-unes de ces

approximations [31].

En ce qui concerne la méthode de Boltzmann sur réseau, bien que Malaspinas ait démontré

qu’il est possible de simuler des écoulements complexes tels que I’écoulement convergent d’un
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fluide viscoélastique obéissant a un modele FENE-P [70], aucun code commercial ou en libre acces
simulant ce type d’écoulement n’a été trouvé. Il aurait donc fallu partir d’une page blanche et coder
toute la méthode ce qui aurait fait complétement dévier la recherche de son but initial. Par
conséquent, il a été décidé d’écarter cette méthode de celles qui seront utilisées dans ce projet de
maitrise. Pour ce qui est de la méthode des éléments spectraux, elle ne sera pas non plus étudiée
dans ce document. La raison est qu’elle est tres similaire, sur le principe, a la méthode des éléments
finis. En somme, il a donc été décidé de se cantonner dans cette étude aux methodes les plus

couramment utilisées dans la littérature scientifique, c¢’est-a-dire les méthodes FEM et FVM.

2.3.1 Méthode des éléments finis

La méthode des éléments finis est une méthode de résolution numérique datant du début du
XXE siécle. Elle a pour but de résoudre les équations différentielles de maniére numérique. Cette
approche nécessite, comme la plupart des méhodes de CFD, de mailler le domaine étudié de
maniere a calculer en chaque nceud du maillage les valeurs que peuvent prendre les variables du

systeme.

Dans le cas des ¢éléments finis, le probléme est considéré comme une résolution d’un

systéme variationnel s’écrivant sous la forme [32] :
a(uw)=Ilw)VweVetu€eV (23)

ou V représente un sous espace vectoriel de Sobolev, ou évoluent les fonctions u et les fonctions
test w, a représente une forme bilinéaire continue sur V x V' et enfin [ représente une application

linéaire continue sur V [32].

Le passage de la forme forte a la formulation variationnelle se fait a 1’aide des fonctions
tests. Cet « affaiblissement » de la forme forte permet, entre autres, d’utiliser des espaces
fonctionnels genéralises afin de résoudre les EDP de maniere a ce que la solution appartienne au
méme espace que les approximations [32]. Le théoréme de Lax-Milgram dit ainsi que si a de I’Eq.

(23) est coercive ou elliptique, alors il existe une unique solution u pour I’Eq. (23) [32].

La premiere étape de la résolution d’un probléme par la méthode des éléments finit sera

donc d’écrire le systéeme d’équations différentiels en y incorporant les fonctions tests [89]. Cela
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permettra notamment d’affaiblir la forme forte et de générer le systéme d’équation a résoudre lors
de la discrétisation du probleme. Une des techniques employées a cet effet a été mise au point par
Boris Galerkin et consiste a multiplier chaque EDP par une fonction test différente, ce qui crée
autant de fonctions tests que d’équations différenticlles. Cette formulation dite de Galerkin sera

dans le cas d’un fluide viscoélastique type Oldroyd-B [31]:

f(ﬁvm p-Vil+ TV )dQ = 0 (24)
Q

fﬂ((v - $):q)dQ =0 (25)
f(r+ We « ¥):S dQ = f (1 — B)(V5 + (VB)T): S dO2 (26)
Q n

A noter que les fonctions S, % et q représentent ici les fonctions tests de la méthode Galerkin
continue. Une fois le domaine discrétiser, dans un cas en une dimension, la fonction test peut
prendre la forme d’un polynoéme, interpolant les valeurs entre les différents noeuds, et s’écrivant

dans le cas d’un polynéme linéaire sous la forme [31] :

=—1 " et ) e
Pri= Xj=Xj-1 P25 = Xj=Xj-1 (27)
Avec pour chaque nceud intérieur du domaine [31]:
(,02']', xj—l <x < Xj
(pj = (pl,j' Xj <x < Xj+1 (28)
0, autrement,

En ce qui concerne les fonctions solutions u a déterminer, il est possible de les approximer

en chaque nceud du domaine par [31]:
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Grace a cela, le probléme devient un systeme matriciel linéaire sous la forme AX=B. Il

suffira dés lors de le résoudre pour obtenir la solution en chaque nceud du domaine.

En deux dimensions, il suffit de transformer les éléments du domaine discrétiser en un

élément de référence a I’aide de la matrice Jacobienne tel qu’illustré a la Figure 2.13 [31].

vi vh
b
2 3 iy
3
4
L L
0 s - 0 -
0 a X 0 x
{a) Plane rectangular element (b) General quadrilateral element

Figure 2.13 Transformation d'un quadrilatére quelcongue en un rectangle de référence [34].

Ceci permet ainsi d’éviter de stocker en mémoire chaque élément et de pouvoir faire les

operations necessaires sans trop de difficultés [89].

Avant d’aller plus loin, il est important de signaler que les points présentés précédemment
ne sont qu’un rapide survol de certains principes de la méthode des éléments finis. Plusieurs détails
ont été ainsi passés sous silence pour simplifier le propos et aller directement vers la simulation
des écoulements viscoélastiques. Pour plus de deétails le lecteur est encouragé a consulter 1’ouvrage
« Numerical solution of partial differential equations by the finite element method » de Clae
Johnson [106].

Ainsi, dans le cas des systemes viscoélastiques, la méthode Galerkin continue, présentée
précedemment, ne fonctionne que pour des nombres de Weissenberg trés faibles (de I’ordre de
0.01). Ceci s’explique, en partie, par le fait que les équations différentielles décrivant le tenseur des
extra-contraintes sont a dominance convective, ce qui rend le probleme trés hyperbolique [31].
Cette particularité crée ainsi une grande instabilité de la méthode de Galerkin qui se traduit par des
problemes de convergence au-dela d’un nombre de Weissenberg critique [31]. Pour résoudre ce
probleme, différentes approches ont été développées au cours des 50 derniéres annees. Celle qui

est la plus couramment rencontrée dans la littérature est la technique Discrete Elastic Viscous Split
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Stress (DEVSS). Cette technique crée par Rajagopalan consiste a ajouter une équation différentielle
ainsi qu’une fonction test aux autres équations différentielles afin de redéfinir le tenseur de taux de
déformation noté D [11]. De cette maniere, le tenseur des extra-contraintes sera redéfini et il sera
ainsi possible d’aller vers de plus hauts nombres de Weissenberg sans trop de difficultés. Guenette
et Fortin ont par ailleurs démontré que 1’utilisation de cette technique permettait de retrouver la
condition Ladyzhenskaya—-Babuska—Brezzi (LBB) d’unicité qui était perdue sans cela [35]. Le
seul bémol a cette technique est qu’elle impose de choisir des conditions frontiéres sur le taux de
déformation. Ceci est trés complexe, car la variable en question fait intervenir le gradient de la
vitesse et sa transposée. Or, si dans la situation d’un no slip classique les conditions frontieres sont
telles que toutes les composantes de la vitesse sont nulles aux parois, ce n’est absolument pas le
cas pour le taux de déformation. Il est, toutefois, possible de contourner ce probleme en utilisant
une condition de Neumann aux frontieres. Ce qui revient a dire qu’il n’y a pas de transfert
d’informations aux frontieres. Une autre possibilité tres présente, elle aussi, dans la littérature, est
la technique Streamline Upwind Petrov Galerkin ou SUPG [36]. Elle consiste a modifier la
fonction test des équations différenticlles de maniére a ce qu’il n’y ait plus un seul et unique terme
par équation; mais plut6t une expression qui permettra de créer un terme de diffusion artificielle.
Cela permettra d’éviter les probléemes de divergence inhérents a la méthode de Galerkin résultante
du terme convectif. Cette nouvelle fonction test prendra la forme [31] :
Ssupg = Sgaterkin ﬁﬁ VS gaterkin (30)
ou h est un facteur de transport relié a la taille de 1’¢1ément, U est une vitesse caractéristique et
S gaterkin Teprésente la fonction test d’'une méthode de galerkin. Le terme gradient de Sgqerkin
multiplié par les champs de vitesse permet de limiter I’impact des termes convectés en créant une
diffusion artificielle additionnelle qui tient compte du champ de vitesse local. En contrepartie
I’ordre de convergence ne sera que de premier ordre [31]. Ceci signifie qu’il faudrait raffiner le
maillage en augmentant le nombre de nceuds aux carrés pour obtenir une erreur similaire au cas
précédent. De plus, cette technique ne permet pas d’assurer que 1’unicité de la solution existe bien.

Pour assurer 1’unicité, cette technique devrait étre couplée a la méthode DEVSS [35].
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Il existe encore beaucoup de techniques de stabilisation telles que la méthode Galerkin
Least Square (GLS) ou I’ajout de termes artificiels, fonctions du résidu des équations d’Euler —
Lagrange, permet d’augmenter la stabilité du probléme [90]. Cependant, ces méthodes doivent étre
couplées au minimum a une technique telle que DEVSS pour permettre de s’assurer de 1’unicité de
la solution et éprouver la précision [90]. Fan, Tanner et Phan-Thien ont d’ailleurs prouvé qu’il était
possible de venir modifier la formulation DEVSS classique en la reformulant de maniére a'y inclure
le terme de la méthode GLS afin d’atteindre de plus haut nombre de Weissenberg avec une bonne
précision [90]. Cependant, en Galerkin continu cette technique a ses limites en fonction du modéle
utilisé et il n’est pas possible de simuler & n’importe quelle nombre de Weissenberg. Ce nombre de
Weissenberg critique dépend de la géométrie, du modeéle et de la technique de stabilisation utilisée

pour simuler 1’écoulement [31].

Durant le courant des années 80, les évolutions dans le domaine ont stagné et I’engouement
pour la méthode DEVSS, dans ce domaine de recherche, a diminué. Fort heureusement, deux
techniques développées dans des champs n’ayant a priori aucun rapport avec les écoulements
viscoélastiques ont relancé la recherche dans ce domaine. Ces deux techniques sont la méthode de

Galerkin discontinue et la méthode du logarithme de tenseur de conformation.

Développée initialement pour résoudre 1’équation du transport de neutron [91], la méthode
Galerkin discontinue s’avere particulierement puissante des lors qu’il s’agit d’étudier des équations
fortement hyperboliques. En ce qui concerne la méthode du logarithme de tenseur de
conformation, il s’agit d’approcher le probléme en utilisant le tenseur de conformation a la place
du tenseur de contrainte. Il faut, par conséquent, résoudre une forme alternative de 1’équation d’état
du tenseur de contrainte, faisant intervenir le logarithme du tenseur de conformation [38]. Le

probléme devient ainsi :
((V-9),q9)=0 (31)
M- (32)
T 2 (c-1

(E, (Vi + (Vv®)")-D) =0 (33)
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((Vﬁ)r, (zn((vﬁ + (v)T) — ﬁ) + T) — (V4, p)) -0 (34)

35
<(s+ ﬁ-vs),%(c-1)+g—(t:—[C-Vﬁ+(vﬁ)T-c])=0 ()

Il est a noter que (.,.) correspond au produit intérieur défini dans I’espace L? et que le tenseur

de conformation sera remplacé par :

C =exp(Y) (36)

ou C repesent le tenseur de conformation et ¢ le logarithme du tenseur de confromation.
L’avantage de cette technique est qu’il est possible de démontrer qu’en deux dimensions, les deux
valeurs propres du systéme sont strictement positives, ce qui engendre une matrice définie positive.
Cette propriété fait que la technique devient donc particulierement intéressante en 2D [38].
Cependant, en 3D, cette propriété n’est pas vérifiée en tout temps. Cette derniére rend la technique
complexe pour une application 3D. Heureusement, la méthode GD (Galerkin discontinue) n'a pas
ce probleme et permet de réaliser ce genre de simulation en 3D. Elle consiste a considérer des
termes de flux aux bornes des éléments, brisant ainsi la continuité qu’il est nécessaire d’avoir pour
Galerkin discontinue [39]. Cette technique ne sera pas plus développée, car son principe ressemble
grandement a la méthode des volumes finis qui sera présentée a la prochaine section. Les
techniques DEVSS, SUPG et logarithme du tenseur de conformation sont les plus répandues. Elles
seront donc utilisées pour résoudre les équations différentielles afin de simuler 1’écoulement du

celluloid en profilé.

Pour conclure cette partie, il est a noter que certaines études concernant I’optimisation du
gonflement en sortie de filiere dans un profilé ont déja été réalisées, a I’aide de la méthode des
éléments finis, pour des polymeéres tels que le polypropyléne [4]. En plus de prédire 1’écoulement

dans une filiere, il a été ainsi démontré qu'en utilisant un algorithme d’optimisation topologique tel
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que D’algorithme BOBYQA?, il est possible d’optimiser la géométrie du profilé pour diminuer le

gonflement en sortie de profilé [105].

2.3.2 Méthode des volumes finis

Cette méthode est sur le principe plus simple a comprendre que la méthode des éléments
finis. Tout comme cette derniére, elle nécessite de mailler le domaine afin d’obtenir une forme
discréte de la géométrie. Par contre, contrairement a la MEF, il n’est plus question d’affaiblir la
forme forte via une fonction test quelconque. Le probleme sera plutét de convertir les équations en
un probléme de flux autour des éléments du maillage et de modifier la valeur des variables calculée
aux centroides via le transfert d’informations induit par ces flux. Cette technique repose
majoritairement sur le théoreme de Gauss-Ostrogradski qui stipule que la somme des flux
surfaciques d’un élément donné est égale au gradient du flux a I’intérieur de cet élément. Cela peut

s’interpréter d’un point de vue purement mathématique ainsi [42]:

fffﬂv'ﬁd“e:ffrﬁ'ﬁdre (37)

ol F est un vecteur quelconque, . est le volume de I’élément, 7 est le vecteur normal aux faces

de I’élément et I, représente la surface de 1’élément.

Gréace a ce théoreéme, il est maintenant possible de transformer les termes volumiques des
équations définissant le gradient de contrainte en flux de surface ce qui simplifie grandement le
systeme de PDE et permet une résolution plus facile des équations.

4 L’algorithme BOBYQA est un algorithme d’optimisation a régions de confiance.



40

) "‘ n
M‘L—lj'l'l MLJ‘H ML+U+\
L L @
| n |
g- .
l \_JlLJ+/?_ |
|__C A =
n n n
‘ {7/ .
W’ T = Tty n
i~ @ < ——> W
- *
I
D| (__/lﬂ o 79(
| Joi-% :
[ ! L ® -
n Wiy -1
us . W’ J
1= -1

Figure 2.14 Representation des flux de transport pour la méthode des volumes finis [43].

Toutefois, ceci n’est que la premiére étape permettant I’implémentation d’une technique de
volume fini. Pour continuer, il faudra trouver une définition a chaque nouveau terme en prenant

en compte plusieurs subtilités qui pourraient engendrer des probléemes de convergence.

Premierement, les termes de diffusion (tel que les laplaciens) qui sont d’ordre 2 peuvent
étre approximés a 1’aide d’une différence finie qui dépendra de 1’ordre de convergence souhaité.
Pour comprendre cela, il suffit de partir, par exemple, de 1’équation de la chaleur purement
diffusive sur un élément. En utilisant le théoréme de Gauss-Ostrogradski cette équation

devient [44]:
kL

En intégrant autour des surfaces, a I’aide d’une méthode d’intégration numérique (trapéze,

€ (V- (VD)da, = [ kvT-diar, (38)
e

e

Gauss,Simpson,...), il est possible de transformer I’intégrale en somme. Dans le cas I’Eq. (38), Si
la regle du point milieu est appliquée (pour I’intégration), cela donne [92] :

J

39
kVT -7 dT, =kaTi_]..§i_j (39)
7

e
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avec sj_; représentant le vecteur normal entre les surfaces des éléments i et j et T;_; représentant la

température a I’interface entre les élément i et j.

Il ne reste plus qu’a définir le terme VT;_;. C’est & ce moment qu’interviennent les

différences finies étant donné qu’il est possible de définir cet opérateur par une différence finie

centrée. Ce qui donnerait pour une différence finie linéaire en une dimension :

T, =T, (39)
X] — X

VTi—j ==

Cette facon de procéder permet de converger a 1’ordre 2. Ce qui peut étre modifié en utilisant

d’autres différences finies possédant un plus grand ordre de convergence.

Deuxiemement, tous les termes convectifs devraient étre traitées différemment des termes
diffusifs et ce afin de prendre en considération leur caractere dépendant du champ de vitesse. Cela
se traduit mathématiquement par de nouveaux schémas d’interpolation qui tiennent compte du
champ de vitesse. Pour reprendre 1’exemple de 1’équation de la chaleur, il suffit de considerer un
probléme sans diffusion ce qui donnerait (si la partie temporelle de 1’équation n’est pas considéree)
[44]:

f V. (TH)d, = | (TH)-Adr, (40)
Q

e Fe
Ce qui donne aprées I’application de la régle du point milieu :

(41)

f (TT})) ' 7’_1> dFe = E (Ti—]'ﬁi—j) . §i—j
r n
¢ J

avec v;_; représentant le vecteur vitesse a I’interface des élément i et j. Si jamais un schéma
d’interpolation linéaire centré était appliqué au terme T, comme préecédemment, des oscillations
commenceront a apparaitre. Cela étant dd au fait que le schéma linéaire centré n’est pas borné et
ne respecte pas le sens de propagation. Ceci est critique pour des problemes hyperboliques tels que

celui de la simulation du celluloid. Pour corriger cela, il est possible d’utiliser un schéma upwind
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qui s’écrit de la maniére suivante, en une dimension, considérant une propagation de i vers j [92]

T T;siv>0 (42)
=1 T Tjsiv<0

Ici I’information aux faces provient intégralement du centroide se trouvant dans le sens du
champ de vitesse. Cela crée des sortes de fonctions escalier ou la valeur de la fonction d’intérét
saute d'un coup [44]. Ce schéma est, par consequent, borné et prend en compte le sens de
propagation. Il ne converge, cependant, qu’a 1’ordre 1 mais il corrige les défauts du schéma linéaire
centré [92]. Il est possible de trouver d’autres schémas plus performants tels que les schémas
QUICK (Quadratic upwind interpolation) qui peuvent converger a de plus grands ordres de
grandeur [92]. Cependant, ils ne seront pas utilisés dans cette étude, leur fonctionnement ne sera
donc pas détaillé. Pour approfondir ce sujet, le lecteur est encouragé a consulter I’ouvrage « An
Introduction to Computational Fluid Dynamics: The Finite Volume Method » de H. Versteeg [107].
Dans le cas des écoulements viscoélastiques, il est nécessaire d’incorporer aux techniques vues

précédemment, la méthode DEVSS pour s’assurer de 1’unicité de la solution [45].

Une fois les schémas d’interpolations des termes de convection et de diffusion établis, il ne
restera plus qu’a choisir (dans le cas d’un probléme instationnaire) entre un schéma explicite ou

implicite en temps.

Si le schéma est explicite en temps, la stabilité dépendra majoritairement du pas de temps
choisi et ne nécessitera pas de résolution d’un systéme matriciel supplémentaire [46]. En reprenant
le cas de I’équation de la chaleur, et en utilisant un schéma d’Euler « avant » cela donnerait pour
le terme temporel [92] :

oT; T/ —T} (43)

ot At

En revanche si la résolution est implicite en temps, le probleme impliquera de résoudre un systeme
sous la forme AX=h. Cela engendre un colt de calcul supplémentaire non négligeable, qui peut

étre contrebalancé par le fait que les schémas d’Euler implicites sont inconditionnellement stables.
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Dans le cas du terme temporel de 1’équation de la chaleur, cela reviendrait a utiliser, par exemple,

le schéma d’Euler « arriere », ce qui donnerait [92]:

oT; Tf—Tf™ (44)
at At
Il est par ailleurs important de noter que, dans le cas d’une simulation d’un systéme en

régime permanent, il faudra aussi résoudre un probléme d’équation linéaire de la forme AX=Db[44].

L’avantage majeur de la méthode des volumes finis est que, contrairement a la formulation
classique des ¢léments finis, elle est complétement discontinue. Il n’y a théoriquement rien qui
implique une quelconque continuité entre les éléments. Si les données brutes sont representées sans
lissage, il apparaitra que les valeurs du champ sautent d’un élément a I’autre sans la moindre
continuité apparente. Cette particularité est puissante puisqu’elle autorise la discontinuité entre les
éléments, ce qui n’était pas le cas avec la méthode MEF « classique ». Conséquemment, des lors
que le probléme est a dominante convective, comme cela est souvent le cas dans les problemes
d’ondes de choc, la technique des volumes finis devient un atout majeur. Or, tel que stipulé
précedemment, le probleme des écoulements viscoélastiques est a dominante convective : la

méthode des volumes finis semble donc tout indiquée pour résoudre ce probleme [31].

Il existe plusieurs algorithmes dans le cas de la méthode des volumes finis permettant de
résoudre a peu prés n’importe quel probléme de mécanique des fluides. L’un des plus utilisés, en
régime stationnaire, se nomme semi-Implicit Method for Pressure Linked Equations ou SIMPLE.
Il a été développé par Patankar : un des pionniers de la recherche en volumes finis [69]. Il permet
non seulement de résoudre I’équation de quantit¢ de mouvement et de la continuité de maniere
classique, mais aussi de les coupler a n’importe quelle autre équation constitutive. Cet algorithme
est employé la plupart du temps pour simuler les écoulements viscoélastiques, car il est trés robuste
et permet de prédire un certain nombre de phénomenes rhéologiques [93]. Toutefois, certains
phenomeénes physiques (« peau de requin », GMF,...) sont purement transitoires, il parait donc
assez peu judicieux de simuler ce type d’écoulement a I’aide d’un algorithme créé pour le régime
permanent. Heureusement, plusieurs chercheurs, dont Patankar, ont créé 1’algorithme PISO

présenté ci-aprés pour les écoulements newtoniens [44].
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Figure 2.15 Algorithme PISO [44].

Pour ce qui est des écoulements viscoélastiques, il suffit de venir rajouter une étape ou le
systetme d’équation définissant le champ de contrainte viscoélastique est résolu de manicre
découplée [44]. En incluant un pas de temps modifiable, il en résulte I’un des algorithmes les plus
utilisés dans la simulation des écoulements viscoélastiques en filiere. 1l est a noter que cette
technique n’a, cependant, jamais été utilisée dans le cas d’un quelconque polymere énergétique.
Toutefois, puisqu’elle fonctionne parfaitement avec des polymeéres classiques tels que le HDPE ou
le PP, il semble raisonnable de penser qu’elle puisse fonctionner pour n’importe quel type de
polymere. Pour finir a propos de la méthode des volumes finis, il faut ajouter que celle-ci, méme
si elle n’est pas aussi répandue que celle des éléments finis, reste une alternative plus facile d’acces
que la méthode des éléments finis et permet de simuler autant de phénomeénes que cette derniere.

Finalement, c’est donc une des méthodes qui sera employée dans cette étude.
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2.4 Logiciel de simulation

Toutes les techniques présentées auparavant sont déja implémentées dans des logiciels
commerciaux ou « open-source » mis a jour continuellement. Il a donc été choisi, pour gagner du
temps, que I’utilisation d’un logiciel de simulation déja codé serait préférable. Présentement, dans
le cas des simulations viscoélastiques, seuls trois logiciels sont couramment utilisés et ont fait leurs
preuves dans ce domaine. Les logiciels concernés sont: OpenFoam/FoamExtend (utilisant la

méthode des volumes finis), Comsol et Polyflow (utilisant la méthode des éléments finis).

Publication en date du 07-31-2019 sur 717 articles

15%
v

Polyflow

Openfoam

Figure 2.16 Publication en fonction du logiciel utilisé.

La Figure 2.16 ci-dessus présente 1’utilisation des différents logiciels dans le domaine des
écoulements viscoélastiques. Toutefois, ces valeurs sont a prendre avec précaution, car, méme s’il
semble que le logiciel le plus utilisé soit Polyflow d’ANSYS, il a été créé en 1970 soit 16 ans avant
le logiciel Comsol et 34 ans avant OpenFoam. Il a donc plus mature et posséde une plus grande

communauté active.

2.4.1 Polyflow (ANSYS)

Polyflow est un logiciel commercial de simulation d’écoulement utilisant la méthode des
éléments finis qui a été racheté par la société ANSYS. Il a été initialement congu pour simuler les
écoulements polymeriques viscoélastiques, mais il est utilisé, aujourd’hui, pour plusieurs types
d’écoulements. Il a donc comme avantage de permettre 1’utilisation d’une large bibliothéque de
modeles viscoelastiques deja implémentés et régulierement mise a jour par la société ANSYS. 1l a,

de plus, une interface utilisateur assez claire et possede une documentation conséquente facilitant
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I’utilisation de fonctionnalités complexes déja implantées. Une des simulations les plus
intéressantes utilisant ce logiciel a d’ailleurs permis de simuler un gonflement en sortie de filiére
dont le ratio D/d allait jusqu’a 5 pour des taux de cisaillements dépassant les 100 s** pour divers

modeles rhéologiques [49].
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Figure 2.17 Gonflement en sortie de filiere prédit par ANSYS [49].

Il faut signaler que, dans le cas étudié ici, ce taux de cisaillement est représentatif de ce
qu’il est possible de rencontrer dans un écoulement en profilé. Les nombres de Weissenberg
peuvent, dans certains cas, depasser les 100 ce qui est le cas pour 1’écoulement en filiére plate d’un
film de celluloid. Cependant, les licences du logiciel Polyflow ont un certain colt non négligeable
(de I’ordre de la dizaine de milliers de dollars US pour une licence) qui rend difficile I’acquisition
de ce logiciel. Contrairement, au logiciel Comsol ci-aprés, il n’est pas possible de concevoir des
applications simplifiées autonomes qui permettraient de faire un transfert facile des modéles
développés a d’éventuels partenaires industriels. Ainsi, pour toutes ces raisons, il est peu probable
que ce logiciel soit utilisé, mais il reste une alternative possible, déja tres exploitée dans la

littérature.
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2.4.2 Comsol multiphysics

Comsol est un logiciel commercial a licence payante de simulation en éléments finis codés
originellement sous Matlab, en 1986, sous le nom de FEMLAB. Ce logiciel a comme avantage de
permettre de coupler trés facilement plusieurs physiques, ce qui est une chose particuliérement
importante lors de 1’étude des écoulements viscoélastiques. En outre, il est possible de trouver une
large combinaison d’outils permettant de créer des physiques qui n’existaient pas initialement dans
les modules implémentés sous Comsol. En ce qui concerne les écoulements viscoélastiques, il
n’existe pas de mode¢le préfabriqué sous Comsol contrairement a Polyflow [50]. Cependant, il est
possible de trouver plusieurs exemples, sur le site web de cette compagnie, qui expliquent comment
créer ces modeles et la facon de les stabiliser. De surcroit, un des gros avantages de Comsol par
rapport a Polyflow est qu’il est possible de téléverser les modeles créés sur le logiciel Comsol vers
un site web permettant la simulation sur des clusters de la compagnie Comsol, ce qui limite le
recours a des clusters personnels codteux. Il est, par la suite, permis de convertir ces modeles en de
petites applications plus simples donnant lieu & un transfert technologique plus rapide et
n’obligeant pas I’utilisateur a comprendre parfaitement le fonctionnement du logiciel. Depuis 2018
et ’avénement de la version 5.4., il est envisageable de créer des applications Standalone

supportant 1’utilisation de ces applications sans avoir Comsol installé sur son ordinateur.

En ce qui concerne les simulations viscoélastiques déja réalisées sur ce logiciel, un article
de 2013 montre la simulation, a 1’aide d’un mod¢le PTT classique, des écoulements « peau de
requin », gonflement en sortie de filiere et GMF, et ce, grace & une technique de level set couplée
a une stabilisation. Celle-ci implique le logarithme du tenseur de conformation, pour des nombres

de Deborah allant jusqu’a 60 comme cela est illustré a la Figure 2.18 [51].
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Fig.4 Streamlines and extrudate
surfaces on the contour of
pressure that depict gross melt
fracture. Flow fields
corresponding to De=60, n=0.1,
§=0,001 at r=1.7 (multimedia
view)

Figure 2.18 Gonflement en sortie de filiere simulé sous Comsol [51].

Il est, par ailleurs, facile d’utiliser sous Comsol des systémes multi-physiques ou encore
d’optimiser des formes géométriques afin de minimiser les défauts d’écoulement. Par conséquent,
le logiciel Comsol est tres intéressant pour un projet ou on désirerait tenter de faire des simulations
multiphysiques. 1l ne faut, cependant, pas oublier que tout comme Polyflow, ce logiciel est payant.
De plus, I’implantation d’un modéle viscoélastique en 3D est une chose tres difficile. Ceci étant
principalement d0 au fait que pour permettre le passage de la 2D a la 3D, il est impératif d’utiliser
une methode de Galerkin discontinue [50]. Or, présentement, bien que ces techniques soient
présentes pour d’autres applications (acoustique, électromagnétisme...), il est techniquement trop
complexe de I’implanter dans la physique CFD (computational fluid dynamics). Par ailleurs, une
fois en 3D il n’est plus possible d’utiliser une méthode LU directe, car le systéme d’équations peut
allégrement dépasser les 10°. 11 est donc obligatoire d’utiliser une méthode de Krylov puisque le
systeme n’est pas du tout symétrique [50]. L’unique méthode de Krylov existante sur Comsol étant
la méthode GMRES. Le seul choix éventuel concernera la sélection du préconditionneur et, méme
a ce niveau, les possibilités sont limitées. Sur Comsol, il n’est pas possible d’implanter ses propres

préconditionneurs numeriques ou son propre solveur.

2.4.3 OpenFoam/Foam-Extend

Le dernier logiciel, le plus couramment utilisé dans ce domaine, est le logiciel OpenFoam
qui, contrairement aux deux logiciels précédents, est open source et disponible gratuitement en

ligne. OpenFoam utilise la méthode des volumes finis pour simuler a peu prés n’importe quelle
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équation différentielle partielle. La premiére version d’OpenFoam est sortie en 2004 [52] et ne
contenait aucun modele pour des écoulements viscoélastiques déja implantés. Il faudra attendre la
scission d’OpenFoam en deux versions; OpenFoam et Foam-Extend, pour voir apparaitre les
premiers modéles impliquant du viscoélastique. Par la suite, en 2009, Foam-Extend inclut ainsi
officiellement dans sa version 3.1 une bibliotheque viscoélastique qui s’est depuis largement
étoffée. Cette prouesse est en grande partie due aux efforts du professeur Jovanni L. Favro qui a
créé un véritable arsenal de modeles viscoélastiques utilisables en 2D et en 3D [53]. Le logiciel
Foam-extend a toutefois une contrainte, par rapport a ses deux autres concurrents, qui réside dans
la manieére de I'utiliser. Contrairement aux deux autres logiciels, il ne posséde pas d’interface
graphique facilitant sa prise en main. Il est donc impératif de 1’utiliser a 1’aide de ligne de

commande Bash ce qui nécessite un minimum de connaissance dans ce langage.

Cependant, une fois ce prérequis complété, Foam-Extend devient un outil efficace facilitant
la manipulation des équations différentielles hyperboliques complexes et la génération des codes
procéduraux afin de tester plusieurs cas simultanément, sous différentes conditions, dans le but de
trouver des optimums. Dans le cas des écoulements viscoélastiques, la Figure 2.19 présente des

résultats allant jusqu’a un des nombres de Deborah de 10000.
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Figure 6: The size of the vortex near the re-entrant corner with the De number (log-scale) for left: the linear and right: the
exponential PTT fluid with 3 = 1/9 and a = 0.25.

Figure 2.19 Vortex de contraction prédit grace a OpenFoam [55].
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En somme, ce logiciel est donc une excellente alternative gratuite trés prometteuse méme
s’il nécessite des connaissances en Bash. Il embarque d’ailleurs un nombre impressionnant de
fonctionnalités autorisant ainsi la parallélisassions du code a un niveau trés avancé. En outre, il
existe tout un éventail de solveurs numériques en tout genre couplés a un grand nombre de
préconditionneurs. Finalement, il est a noter que si I’équation différentielle n’existe pas ou que les
solveurs ne conviennent pas, il est tout a fait possible de les programmer sans forcément avoir des
connaissances tres pointues sur OpenFoam. Il faudra cependant avoir des notions de C++ pour

programmer et compiler le solveur afin de I’utiliser dans Foam-extend.

Pour conclure cette section, il est important de rappeler que, la manipulation du mélange,
NC/Camphre requiert beaucoup de précautions. Or, a 1’exception de quelques rares études sur le
comportement de ce genre de mélange, il n’existe que peu de données sur la manicre de simuler ce
genre d’écoulement de fluide énergétique en surface libre. Ce mélange n’a ainsi jamais été encore
¢tudié¢ dans le cadre d’une simulation d’écoulement. Ce memoire présentera donc un outil
développé spécifiquement pour simuler I’écoulement du celluloid dans un profilé. Gréace a cet outil,

il sera possible de simuler pour la premiére fois le comportement du celluloid en écoulement.

2.5 Objectifs spécifiques

Pour conclure, au terme de cette revue de la littérature, il a été permis d’identifier plusieurs
points clefs permettant de définir les objectifs spécifiques qui devront étre accomplis dans ce

mémoire. Ceux-ci sont :

1. établir une régression non-linéaire a partir de données rhéologiques en cisaillement
existantes afin d’obtenir les parametres du modéle rhéologique caractérisant le celluloid
étudié, puis injecter ce modéle dans les modeles viscoélastiques étudiés (PTT, Giesekus,
White-Metzner) de maniére a ce qu’ils respectent les données expérimentales en

cisaillement;

2. implanter des modeéles de fluides viscoélastiques a I’aide de la méthode des éléments finis
et du logiciel Comsol, étant donné qu’il n’existe aucun module par défaut dans Comsol

contenant des modéles viscoélastiques du moins jusqu’a la version 5.4;
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3. simuler I’écoulement du celluloid dans la gamme de nombres de Weissenberg d’opération
du profilé, a I’aide de la méthode des éléments finis implantée dans Comsol ou a 1’aide de

la méthode des volumes finis implantée dans Foam-Extend;

4. tester la faisabilité de la simulation de 1’écoulement du celluloid dans la géométrie réelle

du profilé toujours a I’aide du logiciel Foam-Extend.
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CHAPITRE3 METHODOLOGIE

Dans ce chapitre, la démarche utilisée sera présentée afin de répondre aux objectifs
spécifiques de la recherche énoncée précédemment. Ce cheminement commencera par une
définition du cadre et des hypothéses qui seront posés afin de simplifier le probleme étudié. Par la
suite, suivra une section expliquant comment seront construites les simulations sous les deux
logiciels. Celle-ci contiendra en plus des détails techniques concernant les deux logiciels, un
résumé des conditions frontiéres utilisées ainsi que de leurs définitions. Cette partie sera suivie de
deux autres qui expliqueront le modus operandi utilisé pour vérifier si les simulations prédisent
bien des résultats cohérents avec les solutions analytiques et avec les données expérimentales. Il
est cependant important de signaler que, malheureusement, aucune expérience n’a pu étre réalisée
au cours de cette recherche. Les données utilisées, lors de cette étude, étant celles obtenues par le

professeur Charles Dubois durant ses expérimentations.

3.1 Hypotheses et cadre de la recherche

Pour commencer correctement le cycle de la modélisation, il est important de partir du
phénoméne physique qui sera modélisé et de se débarrasser des variables superflues qui
complexifieraient inutilement le probléme. Les principales hypothéses de notre modéle sont les

suivantes :
1. le fluide s’écoule en régime rampant (Re<<1);
2. le fluide est incompressible;
3. le fluide est isotherme;
4. il n’y a pas de contrainte seuil ;
Nous allons maintenant les analyser en détails.

Dans le cas présent, si I’équation de quantité de mouvement est analysée terme par terme,
il apparait assez rapidement que la composante convective du probléme est inutile. Cette derniere
décrit principalement les phénomenes d’accélération du fluide et serait trés utile pour des fluides
trés peu visqueux comme 1’air. Cependant, dans le cas d’un fluide tel que le celluloid, la viscosité

est des milliards de fois plus grandes que celle de 1’air. Les termes d’accélération n’auront donc
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qu’une trés faible contribution dans le phénomeéne qu’il est nécessaire de modéliser. Les équations
de la quantité de mouvement deviennent donc :

oV . (45)
Plof)="VP-V T+pg

En ce qui concerne la pression, elle sera définie a 1’aide de I’équation de continuité, parce
que le fluide est considéré incompressible. En revanche, le terme de dissipation visqueuse sera
négligé ce qui éliminera la seule source de chaleur. De plus, si I’on considére que le systéme est
thermiquement isolé, cela revient a dire que le probléme est isotherme, ce qui rend inutile la
résolution de 1’équation de la chaleur. Cette hypothese simplificatrice est une hypothese
couramment utilisée dans les études essayant de modéliser le comportement viscoélastique en
premiére approximation [53]. Cette derniére sera étudiée dans la partie discussion et résultat afin

de voir quels impacts elle peut avoir sur les résultats de simulation qui seront présentés.

En ce qui concerne la "contrainte seuil™ du fluide, cela revient a dire qu’en dessous d’une
certaine contrainte le fluide exhibe une viscosité infinie. D’un point de vue numérique, ce fait peut
étre approximé par une viscosité trés grande, mais finit en dessous d’une certaine contrainte.
Cependant, ceci rajoute un degré de complexité inutile étant donné qu’il n’est pas sir que le
celluloid utilisé ici exhibe ce comportement. L’étude de Beverly et Tanner parlant de ce phénomene
utilise d’ailleurs un mélange de nitrocellulose et nitroglycérine, ce qui est tres différent du celluloid
[102]. 1l a donc été décide de négliger cette particularité du fluide en 1’absence de données

suffisantes sur ce phénomeéne.

Ce point étant expliqué, il ne reste plus qu’a trouver une définition pour le tenseur des
extra-contraintes. Cette définition sera, dans un premier temps, celle d’un fluide de type Maxwell
convecté. Ce choix a été fait, car la forme de ce modele est celle que devrait avoir tous les autres
modeles présentés a la section 2.1.2 a une modification pres. S’il est correctement implanté, il sera
facile de le transformer en un autre modéle plus évolué prenant en compte le caractére
rhéofluidifiant du matériau. Ces modeles seront, dans le cadre de cette étude, Ceux de Giesekus,
PTT et White-Metzner. Enfin, il faudra par ailleurs déterminer les paramétres nécessaires a leur

utilisation ce qui sera expliqué dans la section vérification expérimentale.
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3.2 Construction de la simulation viscoélastique

Etant donné que I'Eq. (19) ne sera pas considérée, pour des raisons de simplification du
probléme déja fort complexe, les parameétres de viscosité utilisés dans cette étude seront obtenus
a basse température. En faisant ce choix, il est assuré que les contraintes normales prédites seront
maximales, car elles sont proportionnelles a la viscosité. Cette simplification donnera donc une
borne supérieure qu’il sera théoriquement difficile de dépasser puisque 1’augmentation de la
température (induite par la dissipation visqueuse) fera mécaniquement diminuer la viscosité [60].
Les données de gonflement en sortie de filiere (die swell) ainsi obtenues ne devraient donc ne

jamais étre dépassées ce qui permet de prédire le pire des cas qui pourrait arriver.

3.2.1 Conditions frontieres et conditions initiales

Le choix des conditions frontiéres dans tout probléme de simulation numérique est un des
points les plus critiques a définir. De fait, il conditionne toute la stabilité du probleme et engendre
une quantité de questions quant au bien-fondé de leur définition. Dans le cadre de 1’étude ici
présentée, les conditions frontieres devront étre imposées sur trois ensembles de variables. Celles-
ci sont la vitesse, la pression et les extra-contraintes. Globalement, elles auront toujours la méme
définition dépendamment du type de frontiére pris. Trois types de conditions frontiéres seront
utilisés et sont dénommées respectivement parois fixe, entrée et sortie. Ces derniéres représenteront

physiquement [61]:

1. une condition de non-glissement aux parois pour la frontiére dénommée parois fixes. Cette
condition représente le fait qu’au niveau de la paroi, le fluide est stagnant ce qui se
caractérise par un profil de vitesse nul. Autrement dit, a la paroi, la condition frontiére pour
la vitesse est une condition de Dirichlet. Pour ce qui est de la pression, du champ des extra-
contraintes et du tenseur D de la méthode DEVSS, il faudra utiliser une condition de
Neumann qui permet de poser une absence d’échange d’informations. Ainsi, a chaque fois

que la condition parois fixe sera évoquée cela reviendra a poser :
13=6;V‘t-ﬁ=6;Vp-ﬁ=0;Vﬁ-ﬁ=6

2. Une condition d’entrée uniforme pour la frontiere dénommée entrée. Elle se caractérise par

le fait que le fluide est considéré comme entrant avec une vitesse uniforme dans le profilé.
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Physiquement, cela est assez proche de ce qui se passe dans la réalité étant donné que, bien
souvent, 1’écoulement provient d’une extrudeuse qui posséde un diamétre plus grand que
celui observé dans les faits. Cette contraction créant ainsi un profil d’entrée plat, il devient
possible d’approximer le champ de vitesse par une condition de Dirichlet constante. Pour
ce qui est de la pression, du champ des extra-contraintes et du tenseur D de la méthode
DEVSS, ils sont définis de la méme maniere que précédemment puisqu’en entrée il est

d’usage de déduire ces variables du champ de vitesse imposee :
D-A=c;Vt-i=0;Vp-A=0;VD-7=0

3. une condition de frontiere ouverte pour la frontiere dénomme sortie de filiere. Cette
condition consiste a considérer qu’il n’y a pas de variation de vitesse en sortie lorsque le
fluide est en contact avec le milieu extérieur. Le point crucial de cette condition est que
cette fois-ci la condition de Dirichlet sera imposée sur la pression et non sur le champ de
vitesse. Ici, la pression est considérée comme nulle sur toute la frontiére. Etant donné qu’il
est question de pression relative, cela signifie que le fluide est a pression ambiante dés lors
qu’il est en contact avec I’air ambiant. Ceci est une approximation physiquement réaliste
puisqu’en sortie, le fluide n’est plus du tout contraint par une quelconque force exceptée
celle induite par la pression atmosphérique. En ce qui concerne le tenseur de contrainte, le
tenseur D de la méthode DEVSS et le champ de vitesse, ils seront définis a 1’aide d’une
condition de Neumann, car il n’y a théoriquement aucune accélération du fluide qui pourrait

créer un transfert d’information :
p=0;Vr-7=0;V3-B=0;VD-7=0

Le tableau suivant résume les définitions qui seront utilisées des lors qu’une référence sera

faite a I’une de ces trois conditions frontiéres.
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Entrée Parois Fixe Sortie t=0s
Tenseur des Condition de Condition de Condition de Fluide au
extra- Neumann Neumann Neumann repos
contraintes . . L =
? Vr-n=0 Vr-n=0 Vr-n=0 ;=0
Champs de Condition de Condition de Condition de Fluide au
vitesse Dirichlet Dirichlet Neumann repos
v v-R=c v-n=0 Vi-ii=0 =0
Pression p Condition de Condition de Condition de Fluide au
Neumann Neumann Dirichlet repos
Vp-n=0 Vp-n=0 p=0 p=0
Tenseur D de Condition de Condition de Condition de Fluide au
la méthode Neumann Neumann Neumann repos
DEVSS VD -7 =0 VD i =0 VD i =0 D, =0

Il apparait de maniére assez évidente que la condition concernant le tenseur des extra-
contraintes sera toujours la méme. Ceci s’explique majoritairement par le fait qu’imposer une
condition frontiére autre que celle de Neumann est quasiment impossible, car il s’agit d’une
variable dépendante du gradient du champ de vitesse. Il faudrait connaitre le gradient, ce qui
détruirait tout I’intérét d’une simulation numérique visant a déterminer comment la contrainte

influence le gradient de vitesse et réciproquement.

En somme, il est important de signaler qu’a cause de ’utilisation de la méthode DEVSS, le
probléme doit étre étudié en régime transitoire. En effet, cela est d0 au fait qu’il est peu raisonnable
d'utiliser une condition autre que celle de Neumann a D en tout point. Comme précédemment, il
faudrait connaitre le gradient du champ de vitesse ce qui rendrait la méthode peu intéressante. Or,

en faisant le choix d’utiliser cette condition frontiére pour ce genre de probléme, cela reviendrait
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par analogie a étudier un probleme de transfert thermique possédant un terme source ou toutes les
parois sont isolées. Le probleme est un probleme de Neumann avec termes sources pour lequel une
solution en régime permanent ne peut étre garantie dans le cas géneral; il faut absolument utilisée
le régime transitoire. Ce qui signifie qu’il est impératif de définir des conditions initiales telles

qu’elles soient représentatives de ce qui pourrait se passer au démarrage d’une mise en profilé.

Etant donné que le fluide est censé étre au repos dans la filiére, si elle n’est pas en fonction,
il parait légitime de supposer qu’initialement le fluide est immobile et que la pression entre I’entrée

et la sortie est équilibrée. Ceci signifie qu’initialement (t=0) :

1_7) =6;p =0;Tij =O}ﬁij =0

3.2.2 Implantation sous Comsol

Maintenant que les équations a utiliser sont connues et que toutes les conditions frontieres
sont poseées. Voyons comment implanter tout ce qui a été présenté précédemment. Il existe

essentiellement trois manieres de procéder sous Comsol si les équations de base n’existent pas.

La premiére consiste a utiliser une formulation forte de 1’équation et d'y ajouter des termes
stabilisant (SUPG, GLS,...) a I’aide d’une fonction particuliere dans Comsol. Cette technique est
de loin la plus utilisée, car elle permet d’entrer les €quations sans se soucier des termes de la
formulation. C’est aussi la technique la plus opaque compte tenu du fait qu’il n’y a aucun moyen
d’étre sOr que la formulation faible finale que Comsol utilisera est bien celle formulée. La seconde
est une variante de la premiére et se nomme formulation par coefficient. Ici, une version générale
de toutes les équations est écrite et les seules choses modifiables sont les coefficients affichés dans
cette équation. Cette méthode est encore plus opaque que la précédente puisqu’elle limite la liberté
de la forme des équations a celle proposée par Comsol. La derniére méthode, nommée formulation
faible, est celle qui sera utilisée dans cette étude. Il s’agit de rentrer de maniere brute la forme faible
des équations présentés précédemment. Cette méthode a été choisie, car elle est la plus transparente

des trois techniques vu que les termes de stabilisation sont introduits explicitement dans Comsol.

Une fois ce choix fait, il a été décidé de ne pas utiliser le module CFD de Comsol
considérant qu’il pourrait y avoir une incompatibilité fondamentale entre les techniques de stabilité

utilisées et celle équipant le module CFD. La forme faible des équations de Cauchy est recréée,
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puis testée dans un premier temps. Dans un second temps, une fois que la méthode a convergé pour
des fluides newtoniens simples, dont les solutions sont connues, I’équation d’Oldroyd B a été créée
et couplée a celle de Cauchy déja implantée. La premiére version de cette équation était denuée de
tout terme stabilisant et utilisait une formulation de Galerkin avec des éléments P2. 1l est important
de signaler que les éléments utilisés dans 1’équation de Cauchy sont des éléments P1 pour la
pression et P2 pour le champ de vitesse. Lorsqu’une convergence était obtenue a tres faible nombre
de Weissenberg (environ 0.01), une technique de stabilisation était ajoutée par-dessus afin de
monter en nombre de Weissenberg. Pour s’assurer que Comsol implantait correctement les

méthodes de stabilisations (SUPG et DEVSS), plusieurs cas tests ont été utilises.

Ces cas tests consistent, par exemple, dans le cas de SUPG, a simuler une onde de choc.
Dans ce cas preécis, la méthode Galerkin classique oscille assez violemment, car elle ne supporte
pas des variations rapides induites par une convection forcée. La méthode SUPG, quant a elle, n’est
pas supposée osciller ce qui indiquerait que 1’implantation a correctement été réalisée. La derniére
étape consistera a prédire une rhéofluidifiance en fonction du taux de cisaillement. Pour ce faire, il
a ét¢ ajouté le terme exponentiel de PTT manquant a I’équation d'Oldroy-B. 1l a suffi, par la suite,
de Vérifier que les données obtenues étaient bien conformes au cas analytique avant d’aller plus
loin et de prédire le phénomeéne en trois dimensions. Ceci a été impossible sous Comsol pour les

raisons qui seront évoquées dans la présentation des résultats.

3.2.3 Implantation sous Foam-Extend

Contrairement a Comsol, ici il ne sera pas question de construire la simulation en partant
d’une page vierge. Grace au travail du professeur Jovanni L. Favro, qui a déja implanté une dizaine
de modeéles dont les trois présentés précédemment, cela consistera en une manipulation du logiciel
qui ne posséde aucune interface graphique a utiliser [71]. En outre, Foam-Extend, contrairement a
Comsol, n’a pas de logiciel de CAO avancé qui générerait des géométries complexes ainsi que leur
maillage associé. Il faudra donc aussi trouver un autre logiciel pour remplacer le constructeur de

maillage de base (BlockMesh) fourni avec Foam-Extend.

Pour utiliser Foam-extend en viscoélastique, il est nécessaire de créer trois fichiers
indispensables. Le premier est appelé 0 et contiendra les conditions initiales ainsi que les conditions

frontieres de chaque variable. Le second, dénommé constant, aura a la fois les données du maillage,
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de la géomeétrie et les propriétés du fluide. Le dernier fichier, intitulé system, comprendra toutes
les méthodes relatives a la FVM ainsi qu’a la décomposition du domaine en vue de sa
parallélisation. Par la suite, a chaque fois, qu’il faudra exécuter OpenFoam, il sera important
d’exécuter une suite d’instruction dont la premicre est la génération du maillage. Tel que stipulé
précédemment, cette étape ne sera pas réalisée a 1’aide du logiciel de base fournie dans Foam-
Extend. A la place, il a été décidé d’utiliser le logiciel GMSH beaucoup plus versatile et puissant
que blockMesh. Il s’exécute normalement en écrivant un code détaillant toutes les spécificités du
maillage. Cependant, il existe une interface graphique, dénommée OpenCascade, aidant a
manipuler les géométries et a obtenir des prévisualisations du maillage fort utile. Une fois que les
données de maillage sont générées par GMSH, il ne suffira plus que de décomposer le maillage a
l'aide de I’algorithme metis puis de lancer la simulation en parallele, en utilisant les commandes de
la bibliothéque MPI. Une fois les résultats bruts obtenus, le post traitement des données se fera
grace au logiciel ParaView. Il suffira, pour finir, de comparer ces données a celles obtenues
analytiquement pour vérifier leur prédiction théorique. Puis, de confronter la simulation a des cas
réels pour voir si les données obtenues sont bien celles observées expérimentalement. Pour ce qui
est de la convergence a proprement parler, elle sera verifiée en tracant graphiquement le résidu
initial en fonction du temps. Ce point sera expliqué plus en détails dans la partie résultats a la
section dédiée a Foam-Extend. Pour finir, il est a noter que le solveur utilisé dans Foam-Extend est

un solveur Bi-gradient conjugué stabilisé (BiCGStab) combiné a un préconditionneur ILUO.

3.3 Vérification des simulations numériques

Les modeles présentés antérieurement sont censes prédire un certain nombre de
comportements non newtonien. Considérant la forte teneur en terme hyperbolique de ces équations,
il n’est absolument pas évident de trouver des solutions analytiques a ce probleme. Fort
heureusement, dans certains cas bien spécifiques, le probleme se simplifie énormément et permet
d’obtenir certaines solutions comparables a celles prédites. L’une de ces situations consiste a

considérer un cisaillement linéaire tel que:
lyl=ax+b

Ici, a et b représentent des constantes et x représente la composante orthogonale a I’écoulement ou

s’établit le champ de contrainte(en cisaillement et normale). Pour obtenir ce phénomene, il suffit
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de simuler un écoulement établi dans une conduite (cylindrique ou rectangulaire) qui peut étre

représentée par la forme suivante (en 2 Dimensions).

Temps=4.4 s Surface: Variable dépendante v (m/s) Fléches sur surface:
T T T T T T T
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Figure 3.1 Profil de vitesse dans une fente.

Sur cette figure, le profil de vitesse est représenté par des fleches orientées dans le sens de
I’écoulement. Cette forme et le fait que 1’écoulement soit bidimensionnel forcent le profil de vitesse
a prendre une configuration parabolique classique. Grace a cela, il est possible de simplifier les
équations définissant le tenseur des extra-contraintes afin d’en extraire des équations du coefficient
de la premiere différence des extra-contraintes et de la viscosité. Il suffira, ensuite, de comparer
ces valeurs a celles obtenues par simulation et d’en tirer les conclusions qui s’imposent quant a la
validité de ces résultats. A titre d’exemple, voici quelle serait analytiquement la forme de 1’équation
définissant la viscosité en fonction du temps pour un modele de Maxwell convecté [10]:

012 ( ’1) (46)

Nanalytique = v =Mno(l—et
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En supposant qu’ici la définition de I’erreur est celle prise au sens de la norme L2. C’est-a-

dire :

L (47)

2
Nig; se — Nanalytique
erreur = j ( stmulée dQ
Q nanalytique

La vérification consistera a obtenir une erreur avoisinant les 1% ce qui permettra de

considérer que la simulation est suffisamment fiable pour étre utilisée dans des prédictions.

Dans les cas ou il est impossible d’avoir des solutions analytiques, il est possible de mettre
a profit la méthode d’extrapolation géneralisée de Richardson qui consiste a lancer plusieurs
simulations pour des maillages de plus en plus fins, et qui dans la limite de la convergence
asymptotique permet d’estimer la solution qui serait obtenue pour un maillage infiniment petit
[101]. Cette solution peut alors servir comme solution de référence a la place de la solution
analytique. Toutefois, ceci n’est qu’une premiére partie du probléme puisqu’il faudra confronter

ces prédictions a la réalité expérimentale. Ceci est abordé a la section suivante.

3.4 Précision relative a la validation expérimentale du projet

Apres I’étape de vérification de la bonne implantation du modéle numérique, il est d’usage
de réaliser la validation du modele numérique par comparaison des prédictions du modéle a des
données expérimentales. Dans ce contexte-ci, une des possibilités aurait été de réaliser des tests sur
le profilé en faisant varier la pression d’entrée puis en mesurant le débit de sortie et 1’épaisseur des
films produits. De cette maniére, il aurait été¢ possible d’estimer si les simulations permettent bien
de prédire le méme comportement observé expérimentalement. Toutefois, la validation n’a pu étre

meneée a terme pour trois raisons:
1. le manque de disponibilité de I’extrudeuse et de son profilé, et du celluloid lui-méme;

2. la dangerosité du celluloid qui empéche de réaliser les mesures rhéologiques
(p.ex. contrainte seuil, module de perte, module stockage...) requise comme donnée

d’entrée du modéle numérique;

3. les contraintes de temps reliées au projet.
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CHAPITRE 4 RESULTATS ET ANALYSE

Apres cette bréve explication de la méthodologie qui a été employée afin de répondre aux
objectifs spécifique de cette recherche, il est maintenant temps de voir quels résultats ont pu étre
obtenus. Dans cette partie, il sera présenté, dans un premier temps, les données rhéologiques
utilisées ainsi que la maniére dont ont été obtenus les paramétres des modeles viscoélastiques. Dans
un second temps, les données obtenues seront examinées a I’aide de la méthode des éléments finis
implantés dans le logiciel Comsol ainsi que les limitations du logiciel. Pour finir, les données qu’il
a pu étre possible d’obtenir par la méthode des volumes finis implantée dans le logiciel Foam-
Extend seront exposées. Il faut porter a I’attention du lecteur que le développement de la partie
éléments finis (Comsol) du projet a pris prés de deux ans de développement. Tandis que la méthode

des volumes finis (Foam-Extend) n’a été étudiée que durant les 6 derniers mois de la recherche.

4.1 Données rhéologiques et choix des parametres des modeéles

A I’aide des données de viscosité apparente en fonction du taux de cisaillement apparent
obtenue en rhéometre capillaire (C. Dubois, M. Massart, communication privée, aout 2018), il est
permis de construire une courbe de viscosité en fonction du taux de cisaillement & une température
donnée. Rappelons que le but de cette étude est de prédire les plus fortes contraintes normales qu’il

serait théoriquement possible d’observer.

Tableau 2 Viscosité en fonction du taux de cisaillement, pour un écoulement de celluloid dans un
profilé a 70 °C.

Logarithme | Logarithme

Taux de Viscosité en du en base 10
cisaillement, 1/s cisaillement Pa.s cisaillement d’éta
33.2 1497.8 1.52 3.18
62.7 898.0 1.80 2.95
120.4 535.4 2.08 2.73
321.1 243.0 2.50 2.38
781.0 113.8 2.89 2.06
1750.9 56.0 3.24 1.75
4995.1 21.9 3.70 1.34
9990.2 11.7 3.99 1.07
13048.4 10.2 411 1.01
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Le Tableau 3 présente les données obtenues en rhéologie capillaire. Ces données ont été
récoltées a la plus basse température d’opération possible c¢’est-a-dire 70 °C. Il est a signaler qu’il
n’existe aucun appareil capable de mesurer directement la viscosité d’un fluide en écoulement.
Ces données ont été obtenues en mesurant la pression et le débit de sortie, puis en appliquant une

formule qui permet de déduire le cisaillement aux parois et la viscosité.

En représentant ces données sur un graphique logarithmique et en essayant de faire passer

une courbe a travers les points, il est possible de construire la courbe suivante.

100000

10000

1000

100

Viscosite (Pa.s)

10

0,01 0,1 1 10 100 1000 10000 100000
Taux de cisaillement (1/s)

loi de Carreau données experimentales

Figure 4.1 Loi de Carreau vs données expéerimentales a 70 °C.

La Figure 4.1 présente la régression non linéaire (obtenue par Matlab « fitnim ») du modele
de Carreau sur les données rhéologiques. La viscosité plateau a faible taux de cisaillement n,
n’étant pas disponible a partir des données expérimentales, le paramétre n, a été
approximativement estimé a 10 kPa.s a partir des travaux de Beverly et Tanner pour des mélanges
NC/NG [102] pour des températures similaires. Apres régression, les parametres n et | du modéle

de Carreau ont été estimés respectivement a 0.19 et 0.31 s (avec des p-valeurs de 1.6E-11 et 3.2E-
10).

Pour ce qui est du temps de relaxation A, puisqu’il n’a pas été possible de le déterminer par

une quelconque expérimentation, il a été décidé de le poser plus ou moins arbitrairement a 0.264
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s, valeur choisie par Beverly et Tanner pour un mélange® a forte teneur (supérieure a 60%) en NC
similaire au celluloid [102]. Les résultats de simulations ainsi obtenus a partir de ces valeurs,
régressees et choisis, seront donc a prendre que comme une preuve de concept et non comme des

valeurs physiquement réalistes.

Pour résumer, les parametres des modeéles viscoélastiques censés représenter le celluloid

seront les suivants :

Tableau 3 Résumé des parameétres utilisés.

White-Metzner PTT Giesekus
Mo 10 kPa.s n.a. n.a.
n 0.19 n.a. n.a.
l 031s n.a. n.a.
A 0.264 s 0.264 s 0.264 s
n n.a. 10 kPa.s 10 kPa.s
3 n.a. 0.196 n.a
a n.a. n.a 0.22*

n.a. : Non applicable.

Il est & noter que, pour la partie impliquant le logiciel Comsol, un modéle type Maxwell a été

implanté avec des valeurs de parameétres plus faibles dans un premier temps. Ce choix a été fait,

5 1l ne faut cependant pas oublier que le mélange de Beverly et Tanner est plastifié avec de la nitroglycérine ce qui

n’est pas le cas pour du celluloid.

6 Ces valeurs ont été obtenues par calibration de sorte que la courbe de viscosité en fonction du taux de cisaillement

générée par simulation dans une conduite a section rectangulaire concorde a la courbe rhéologique de la Figure 4.1.



65

parce que, pour des valeurs de temps de relaxation réelles, la simulation n'arrivait pas a converger.

Ceci sera explique plus en détail dans la section suivante.
4.2 Implémentation sous Comsol

4.2.1 Test de la Méthode de Galerkin continue

Telle que précisée dans la partie méthodologie, la technique employée pour implanter le
modele viscoélastique dans Comsol sera, grace a la formulation faible, disponible sous Comsol.
L’idée de départ est de simuler de maniere « naive » 1’équation d’état du fluide sans utiliser de
terme de stabilisation. Pour ce faire, la premicre étape a ét¢ de construire 1’équation en 2
dimensions et de la coupler a I’équation de Cauchy. Puisque le tenseur des extra-contraintes est un
tenseur d’ordre 2 de dimension 2*2 et qu’il est symétrique, cela signifie qu’il faut rajouter 3
équations différentielles aux 3 de base définissant les deux composantes(en 2 dimensions) de la
vitesse ainsi que la pression. Par conséquent, il est impératif d’ajouter 3 fonctions tests qui
permettront d’affaiblir ces équations. Cette premiére version simplifiée donne donc un total de 6
équations auxquelles sont associées 6 fonctions tests. A noter que, sous Comsol, lors de la
déclaration des variables tests affaiblissant la formulation forte, cela se fera via une commande
nommeée test. Par exemple, dans le cas simplifié présenté, cela signifie que les variables et leur

fonction test associée seront nommeés :
011; O12; O, et test(ayq); test(oy,); test(os,)

Cette définition de test revient a utiliser la formulation de Galerkin classique. Dans le cas
présent, la discrétisation de ces fonctions tests se fera grace a des éléments de Lagrange P2. Ce
choix a été fait pour diminuer la quantité d’éléments a générer compte tenu des techniques de
stabilisation qui seront utilisées plus tard. Une fois tous ces parametres et équations implantés, il
est nécessaire de vérifier si I’équation de Maxwell convecté a été correctement implantée sur
Comsol. Pour y arriver, il a donc été décidé de simuler un écoulement en régime transitoire dans la
géométrie présentée dans la partie méthodologie. Comme condition d’entrée, il a été décidé
d’appliquer un profil de vitesse parabolique avec une vitesse maximale au centre de 0.1 m/s en
entrée. Ce choix a été fait pour des raisons de stabilité et afin de comparer directement le profil de

vitesse en entrée a celui obtenu a un point quelconque de la simulation.
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profil - de vitesse predit vs simulé
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Figure 4.2 Profil de vitesse a faible nombre de Weissenberg.

Le résultat présenté a la figure précédente montre que le profil de vitesse obtenu par
simulation (point en bleu sur la figure) correspond parfaitement au profil de vitesse parabolique
classique (trait continue vert). Théoriquement, c¢’est ce que predit le modéle de Maxwell convecté.
Il est, par ailleurs, important de signaler que ce profil est celui obtenu lorsque le systéme a atteint
son régime permanent. Toutefois, ce résultat ne montre en rien qu’il y a bien un effet viscoélastique.
Pour le faire apparaitre, il faut regarder la premiéere différence de contraintes normales aux parois.
Pour un fluide newtonien commun, dans un cas comme celui-ci, il ne devrait pas y avoir de
contrainte normale quelle que soit la position ou I’observation est réalisée. Or, dans cette
simulation, il est possible de prédire une différence de contrainte non nulle (excepté au centre)

significative.
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Figure 4.3 Premier coefficient de contraintes simulé a faible nombre de Weissenberg (modéle

non stabilisé).

Comme il est possible de le constater a la lecture de la figure ci-dessus, la valeur du premier

coefficient de contrainte normale est supposée étre theoriqguement constante et vaut:

kg
Y, = anol/l = 20? (16)

(48)

Numériquement, la valeur obtenue est quasiment constante mis a part de trés légéres

variations imputables essentiellement au fait que proche du centre de la géomeétrie le cisaillement

et la premiere différence de contrainte (t;; — T,5) tendent vers 0. Cependant, cette variation crée,

au maximum, une erreur de 1’ordre de 0.075% ce qui est largement en-dessous du seuil de 1% fixé

dans la partie méthodologie.
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Tableau 4 Erreurs obtenues a faible nombre de Weissenberg (modele non stabilisé).

012 Vitesse V1
V4
Erreur
selon la 0.00005% 0.00005% 0.1%
norme L2

Les erreurs ainsi obtenues sur les variables d’intérét et sont tres largement en dessous de
1% ce qui respecte le critére fixé et permet de dire que la simulation est valide d’un point de vue
théorique. Néanmoins, cette simulation ne fonctionne que pour un nombre de Weissenberg
inférieur ou égal & 0.1. Au-dela de cette faible valeur, il s’avere que la simulation ne converge
pas quel que soit le maillage employé. Pour arriver a dépasser cette trop faible valeur du nombre
de Weissenberg, il est impératif d’utiliser des techniques de stabilisation preésentées dans la revue

de la littérature.

4.2.2 Test de la stabilisation couplée SUPG/ DEVSS

Il a été impossible de dépasser un Weissenberg de 0.1 quel que soit le maillage par la
méthode de Galerkin non stabilisée, ce qui est cohérent puisque 1’équation d’état est a8 dominante
convective. La stabilisation du systéme d’équations a dd étre faite en en ajoutant des termes aux
fonctions test de base. Toutefois, pour que cela soit réellement efficace, il est nécessaire
d’appliquer toutes ces modifications & une forme alternative de I’équation d’état. Cette derniere est
celle du tenseur de conformation qui est relié au tenseur de contrainte par la formule présentée dans
la revue de la littérature. En raisonnant de cette maniére, il est possible de grandement stabiliser le
probléme et de multiplier le nombre de Weissenberg maximal atteint par un facteur 8 ce qui est

assez bon.

L’inconvénient d’utiliser cette technique est que raisonner sur le tenseur de conformation
nécessite de renoncer a chercher une quelconque interprétation physique aux valeurs de la variable
obtenue. Cela est d0 au fait que cette variable est reliée a la conformation que peut prendre la
molécule dans ’espace qui lui est allouée. Puisque raisonnée sur le sens physique que représente

le tenseur des extra-contraintes est une chose déja ardue, il semble encore plus improbable
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d’obtenir une interprétation physique sur une variable encore plus abstraite. De plus, la technique
DEVSS impose d’ajouter 3 nouvelles équations en 2D pour déefinir les composantes du tenseur de
taux de cisaillement. Ceci augmente le nombre d’équations différentielles (ainsi que le nombre de
fonctions test associées) le faisant passer de 6 a 9. Les résultats restent, cependant, appréciable et
il est assez aisé de remarquer qu’une fois les problémes d’implémentation passés les simulations

en 2 dimensions sont assez rapides.
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Figure 4.4 Premier coefficient de contraintes normales prédit a ’aide d’un modéle oldroyd-B
stabilisé [72].

Il est donc permis de constater, sur la courbe précédente, que les résultats simulés suivent
ce que prédisent les solutions analytiques. Cette courbe présente, ainsi, les résultats en régime
transitoire d’un test appelé shear stress step. L’idée derriére ce test est d’appliquer a t0 un taux de
cisaillement constant en tout point du systeme et de mesurer 1’évolution des fonctions rhéologiques
présentées précédemment. Dans un cas newtonien incompressible, la réponse au test est instantanée
puisqu’a cause de 1’équation de continuité, le transport de I’information est instantané. Or, dans un
cas viscoélastique, la transmission de 1’information est freinée proportionnellement au temps de
relaxation qui limite le transport de I’information. Ceci se caractérise sur la courbe par un délai
entre le moment ou le test est démarré(t=0) et le moment ou le régime permanent est atteint. Dans
ce cas, le temps auquel la courbe atteint le régime permanent, représenté graphiquement par un

plateau ce situe a 5 s. Ce phénomeéne est prédictible analytiquement par 1’équation suivante [10] :
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C’est les résultats de cette équation qui ont été représentés sur la courbe par la ligne
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(49)

continue. En les comparant au point bleu obtenu par simulation numérique, il apparait que les deux

courbes se superposent quasi parfaitement. L’erreur par la norme L2 n’est d’ailleurs que de 0.5%,

ce qui est en dessous du seuil de 1 % fixé. Les résultats sont donc suffisamment précis pour étre

utilisés dans la simulation numérique de I’écoulement pour une géométrie un peu plus complexe.

La géomeétrie qui a été choisie pour réaliser cette expérience est une contraction 4 :1en 2 dimensions

représentée a la Figure 4.5.
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Figure 4.5 Simulation d’une contraction sous Comsol.
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Ici, I’entrée et la sortie se situent respectivement a y=0 et y=0.2; le reste des conditions

frontiéres sont des parois. Sur la figure précédente, le code couleur représente le profil de vitesse

en tout point de la géométrie. Il apparait de facon trés évidente que le fluide est accéléré une fois

la contraction dépassée. Ceci est cohérent avec ce qu’il est possible d’observer physiquement

puisque le débit volumétrique est constant (fluide incompressible) le profil de vitesse doit

augmenter pour pallier la réduction de section. Il est, par contre, impossible de prédire
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analytiquement si le profil de vitesse est le méme que celui obtenu analytiquement. En effet, il
n’existe aucune solution analytique a ce probléme. La seule manieére de savoir si cette solution
numérique est juste est de verifier si elle prédit les comportements observables expérimentalement.
L’un de ces comportements est le fait qu’aprés une contraction la quantité de contraintes normales
augmente brutalement. Puis, elle se dissipe au fur et a mesure que le fluide avance dans la conduite.
Cela est di a I’effet mémoire induit par la partie élastique du fluide et a la déformation que subit la
macromolécule une fois qu’elle entre dans la contraction. Elles sont ainsi distordues comme un
élastique qui se ferait tendre d’un seul coup. Cet excés de contrainte sera, par la suite, atténué par
le réarrangement des molécules dans le nouvel espace qu’elles occupent. Il suffit donc d’observer
la différence de contraintes normales pour se rendre assez vite compte de cet effet ce qui est

représenté a la Figure 4.6.
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Figure 4.6 Evolution de la premiére différence de contrainte au centre d’une contraction.

Cette courbe représente 1’évolution de la différence de contraintes normales le long de la
filiere juste apreés la contraction. Les données ont été normalisées afin de voir 1’évolution de cet
exces de contrainte. Le choix du centre de la filiere n’est pas anodin puisqu’en théorie la contrainte
est nulle s’il n’y a pas de contraction. II est donc 1égitime de s’attendre a ce qu’elle vaille zéro des
lors que le fluide a fini son réarrangement, ce qui arrive a 50% de la contraction. Le comportement
obtenu correspond ainsi, assez fidelement, a ce qui a été décrit dans le paragraphe précédent. Le
modele est donc assez cohérent physiquement ce qui rend ces prédictions pertinentes. Au vu de ces

résultats, il est possible d’affirmer que pour un fluide viscoélastique; si 1’écoulement se fait a un



72

nombre de Weissenberg égal a 1.2 dans une contraction similaire a celle présentée précédemment,
il faudrait laisser 5 cm de canal en plus, aprés la contraction, pour éviter un exces de contrainte
normale qui conduirait a une augmentation du gonflement en sortie de filiére. Cette analyse n’est
valide que si le fluide obéit a une équation de Maxwell convecté ce qui est loin d’étre le cas pour
la plupart des polymeres. Cette divergence est due au fait que la loi de Maxwell convectg, telle
qu’elle a été présentée, ne tient pas compte du fait que les propriétés sont dépendantes du taux de
cisaillement. Tel que déja montreé dans la revue de la littérature, les polymeres tels que le celluloid
ont tendance a voir leur viscosité diminuée des lors que le taux de cisaillement augmente. Cette
diminution peut étre suffisamment forte pour transformer un profil parabolique commun en un
profil quasi plat. Ceci fausse complétement les résultats et conclusions présentés précédemment,
car ils se basent sur le fait que les propriétés du fluide étaient constantes. Fort heureusement, il est
possible de corriger ce probléeme en ajoutant une constante et en modifiant légérement la forme
finale de I’équation du tenseur des extra-contraintes. Sous Comsol, cela a été réalisé en
implémentant le modele E-PTT présentée dans la partie méthodologie. De cette maniére, le profil

de vitesse suivant a été obtenu:
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Figure 4.7 Profil de vitesse d’un fluide rhéofluidifiant simulé sous Comsol.

Sur cette courbe, apparait le profil d’entrée normalisée appliquée ainsi que le profil établi
normalisé apres une certaine distance parcourue par le fluide. Il est quasi plat puisque la viscosité
a tendance a chuter assez rapidement en fonction du taux de cisaillement. La géométrie utilisée,

ici, est la méme que celle employée pour valider le modéle de Maxwell convecté (c’est-a-dire un
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rectangle). Dans cette configuration, le taux de cisaillement sera toujours plus fort aux parois, car
le fluide a une vitesse nulle aux parois. A contrario, le fluide aura un taux de cisaillement quasiment
nul, proche du centre, puisque le profil de vitesse dans cette zone est plat. Ces deux affirmations
impliquent que la viscosité du fluide devrait étre plus grande au centre et plus faible proche des
parois puisque le fluide est rhéofluidifiant. Pour vérifier si cette affirmation est validée dans notre
modele, il suffit de considérer un fluide ayant une viscosité a taux de cisaillement nul de 1000 Pa.s
et de voir comment évolue la fonction de viscosité n qui a été définie dans la revue de la littérature

comme étant le ratio contrainte en cisaillement sur taux de cisaillement.
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Figure 4.8 Evolution de la viscosité pour un modéle PTT sous Comsol [72].

La figure ci-dessus montre ainsi clairement que la viscosité prédite numériquement est
dépendante du taux de cisaillement. En outre, il apparait que cette viscosité est inversement
proportionnelle au taux de cisaillement. Tout ceci tend a prouver que les prédictions faites par la
simulation restent cohérentes par rapport au phénoméne et donc que le modele est valide.
Toutefois, si les résultats sont comparés a ceux obtenus par un modele de Carreau avec € = n et
m=n, , les deux courbes suivent la méme tendance, mais ne se chevauchent pas en tout point. Vu
que les prédictions du modele de Carreau sont supposement les solutions analytiques du modele
E-PTT, en ce qui concerne la viscosité en régime permanent établie, la norme L2 de I’erreur
calculée grace aux deux courbes approche les 5%. Bien que cela soit faible, cette valeur est au-
dessus des 1% de seuil fixé dans cette étude. Plusieurs tests ont été réalisés pour raffiner le maillage
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afin de diminuer cette erreur, mais ils furent tous un échec. Aucun des maillages raffinés n’a permis
d’atteindre une forme de convergence quelconque, ce qui tend a prouver que, malgré tous les

efforts mis en ceuvre, des instabilités dans la méthode d’implantation choisie subsistent.

4.2.3 Limite de ’implémentation sous Comsol

L’utilisation de Comsol comme outil de simulation numérique découle d’un intérét de
I’industriel partenaire pour la simulation des écoulements viscoélastique par des logiciels
commerciaux simples d’utilisation. Comsol a en effet pour avantages de faciliter le couplage de
physiques et le transfert rapide de technologie. La version 5.4 permet méme de créer des
applications autonomes qu’il est possible d’utiliser sans posséder le logiciel Comsol. Il a donc été
décidé de voir quel nombre de Weissenberg était possible d’atteindre, malgré les limitations
inhérentes aux meéthodes Galerkin continues. Aprés deux ans de développement, il s’est avéré
qu’au-dela d’un nombre de Weissenberg de 1, la plupart des simulations n’ont pas convergé. Ce
probléeme est récurrent dans la littérature et il fallait s’y attendre au vu des méthodes employées.
Depuis le début de cette étude, il a été précisé qu’il n’existe aucun terme diffusif dans 1’équation
des extra-contraintes. Cette équation est a dominante convective ce qui est un probleme des lors
que des discrétisations de Galerkin commune sont utilisées. Dans la littérature, il est précisé que,
pour atteindre des nombres de Weissenberg supérieur a la dizaine, il est obligatoire d’utiliser des
techniques discontinues. En élément fini, cela revient a utiliser une technique dite de Galerkin
discontinue. Cette technique autorise la discontinuité d’un €lément a un autre, ce qui est
particulierement utile dans des cas comme celui étudié ici. Le probleme de cette implémentation
est qu’elle est tres dure, voire méme impossible, a réaliser dans Comsol avec les outils fournis par
le logiciel. Par surcroit, il faut aborder le probléeme des solveurs dans Comsol. Depuis le début cela
n’a pas été précisé, mais pour résoudre les systemes d’équations linéaires générées, la technique
employée est celle de la décomposition LU. Elle est utilisée a ’aide de 1’algorithme Paradiso qui
permet de fortement paralléliser les calculs. Toutefois, comme cela est stipulé dans plusieurs livres
d’algébre linéaire, cette technique nécessite un temps de calcul qui évolue en O(n®). Cela signifie
que, si le nombre de mailles est triplé le temps de calcul sera multiplié par 27. Autant en deux
dimensions ce n’est pas un probléme, car les calculs restent assez rapides, autant en 3 dimensions

cela devient inacceptable. Les calculs devraient donc se faire en 3 dimensions par une méthode
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itérative munie du préconditionneur adéquat. C'est donc la que Comsol perd tout son intérét puisque
la seule technique itérative intéressante implantée est la méthode GMRES. Cette derniére permet
certes de résoudre les problémes en un temps de 1’ordre de O(n?), mais elle nécessite de trouver
le bon pré conditionneur. Sous Comsol 5.3 ce choix est trés limité et il n’est pas possible d’importer
un autre pré conditionneur d’une source externe. Ceci expliquant pourquoi la plupart des
publications utilisant Comsol se concentrent sur la 2D. Le logiciel reste un bon outil pour apprendre
les bases, mais il ne permet pas encore de réaliser des projets en viscoélastique a la hauteur de ses
concurrents. Pour conclure sur les résultats obtenus a I’aide de ce logiciel, il apparait que pour des
applications a faible nombre de Weissenberg en 2 dimensions, le logiciel est utilisable. En
revanche, pour des projets en 3 dimensions d’envergure, il n’est pas encore assez mature. Il faudrait
attendre de voir si, dans les futures versions, il existera un moyen d’utiliser la méthode de Galerkin

discontinue pour simuler ce genre d’écoulement.

4.3 Implémentation sous Foam-Extend

Sous Foam-Extend, I’implantation de la technique de stabilisation et des modeles
viscoélastiques est déja réalisée pour 10 modeles différents. La véritable difficulté de ce logiciel
est que I’environnement de travail est contrdlé par ligne de commande. Il faut donc créer un dossier
contenant les éléments de base; ¢’est-a-dire, maillage, propriété du fluide, propriété du solveur,

type de discrétisation et condition frontiére pour chaque variable.

Dans tous les cas qui seront présentés sous Foam-Extend, il est & noter que les schémas

utilisés sont les suivants :

1. pour les gradients de pression, de vitesse et tous les laplaciens, un schéma

d’interpolation linéaire (ou linéaire corrigé) sera utilisé;
2. les divergences sont interpolées a 1’aide d’un schéma upwind;

3. un schéma d’Euler implicite en temps sera utilisé avec un pas de temps adaptatif, pour

ce qui est des derivées temporelles. Ce pas de temps sera limité par un nombre de
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Courants’ maximal de 0.1 et ne devra pas dépasser un pas de temps maximal de 0.01s;
tel que suggéré par Jovanni L. Favro pour éviter d’éventuelles instabilités de la

procédure adaptative [53].

De plus, deux correcteurs seront utilisés dans 1’algorithme PISO ainsi quun correcteur pour
la non-orthogonalité. 1l est & signaler que le résidu au début de chaque itération diminue au cours
du temps jusqu’a se stabiliser vers une valeur fixée par la tolérance imposée au solveur qui devrait
indiquer que le régime permanent est atteint. Ainsi, les tolérances utilisées par le solveur sont :
pour la pression de 107; pour le tenseur des extra-contraintes de 10°; pour le champ de vitesse de
10°.

Puisque la plupart de ces fichiers ne changent pas de forme d’une simulation a ’autre, le
véritable probleme proviendra de la géométrie et du maillage. Tel que mentionné dans la partie
méthodologie, le constructeur par défaut BlockMesh est limité. Il a donc été décidé d’utiliser le
constructeur de maillage GMSH qui, lui aussi, fonctionne en ligne de code. L’avantage de ce
constructeur par rapport a BlockMesh est qu’il possede une interface graphique facilitant les

opérations de CAO.

Cette section présente les résultats de simulations d’écoulement du celluloid obtenu pour
diverses géométries tests en deux et trois dimensions, découlant a 1’aide de la méthode de
stabilisation DEVSS. Des tests de vérification et de convergence ont été réalisés sur des géométries
de plus en plus complexes allant de la simple contraction 2D au cas réel du profilé et seront analysés

dans la suite de cette section.

4.3.1 Veérification sur une contraction en deux dimensions

Dans un premier temps, il a été décidé de créer une contraction en 2D afin de simuler un
écoulement viscoélastique via différents modeles. Cette géomeétrie a été choisie, car elle permet

d’obtenir certaines données comparables a des prédictions analytiques. La Figure 4.9 présente la

" Le nombre de Courants étant définis par Co = ”Aiit
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géomeétrie ainsi que le profil de pression obtenu pour un fluide obéissant & une loi de White-

Metzner.
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Figure 4.9 Contraction simple en 2 dimensions sous Foam-Extend.

Sur cette figure, I’entrée se trouve au niveau ou la pression est la plus forte (surface rouge)
et la sortie se trouve du c6té ou la pression est la plus faible (surface bleue). Le fluide entre ainsi a
une vitesse uniforme, ce qui est assez représentatif de ce qui peut étre observé a I’entrée d’une
filiere classique. Il est a noter que les données de pression sous FOAM-EXTEND sont rapportées

par rapport a la masse volumique du fluide.

Dans le cas du celluloid, cette variable a été fixée & 850 kg/m?, ce qui est la valeur la plus
plausible trouvée dans la littérature pour un melange (faute de données expérimentales suffisantes
pour confirmer cette hypothése) [73]. Comme pour ce qui avait été fait sous Comsol, il faut
comparer les résultats produits a ceux obtenus analytiguement. Vu que les modeéles les plus
intéressants sont déja implémentés dans le logiciel, il a été décidé de ne pas simuler les équations
ne prédisant pas de rhéofluidifiant et de s’attaquer directement a des modeles plus complexes. La
Figure 4.10 montre ainsi I’évolution de la viscosité en fonction du taux de cisaillement pour : un
modele de White-Metzner; un modéle exponentiel Phan-Thien-Tanner (E-PTT) ainsi qu’un modéle

Giesekus. La vitesse d’entrée imposée est de 0.01 m/s. Les données de viscosité et de temps de
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relaxation utilisées sont celles présentées dans la partie « Données rhéologiques et choix des

parameétres des modeles ».
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Figure 4.10 Evolution de la viscosité pour différents modeles implantés sous Foam-

Extend.

La Figure 4.10 présente les différentes courbes de viscosité générées en tracant une ligne

de coupe sur la géométrie présentée a la Figure 4.9 a 0.4 m (c.-a-d. proche de la sortie). Ces

données de viscosité sont tracées en fonction du taux de cisaillement afin de mettre en évidence le

caractere rhéofluidifiant des modeéles. La courbe en rouge représente, a titre indicatif, les données

obtenues par la régression de la loi de Carreau a la Section 4.1. Ces résultats montrent que les

parameétres choisis par calibration, pour les modeles E-PTT et Giesekus, permettent bien de

retrouver la forme générale de la courbe rhéologique. Par ailleurs, les données de viscosité

découlant des modeéles de White Metzner concordent bien avec celles venant du modéle de Carreau

introduit en donnée d’entrée. Ceci est une forme de vérification de la bonne implantation du dit

modele.
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Il est évident que le modéle de White-Metzner permet de capturer toute la complexité de la
courbe (en comparaison aux deux autres modeles) étant donné qu’il utilise deux parametres de plus
et qu’il utilise en entrée le modele de Carreau. Les deux autres modéles, quant a eux, n’utilisent
qu’un seul paramétre calibré (Cf. Tableau 3). Par ailleurs, ce faible nombre de degrés de liberté ne
permet pas un rendu aussi bon de la courbe rhéologique.

Pour ce qui est de la vérification des résultats précédents du point de vue de la convergence
de la simulation, la Figure 4.11 présente 1’évolution du résidu initial en fonction du temps pour un
modele White-Metzner. Les courbes sont trés similaires pour les deux autres modeles

viscoélastiques.
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Figure 4.11 Evolution du résidu initial dans une contraction 2D en fonction du
temps pour : la pression; la norme de la vitesse; la norme de Frobenius du

tenseur des extra-contraintes.

Il apparait ainsi sur la Figure 4.11 que, pour le champ de vitesse et le tenseur des extra-
contraintes, la valeur du résidu initial converge bien vers la valeur de tolérance fixée. Cependant,
pour la pression, cette valeur n’est pas atteinte méme au-dela de 60 secondes. Apres plusieurs tests
il semble que cela puisse étre réglé en fixant le champ de pression en entrée a la place du champ

de vitesse. Ce résultat sera illustré a la section suivante en trois dimensions ou la condition frontiére
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a été effectivement modifiée. Toutefois, il est possible de dire que, pour I’instant, les résultats
semblent cohérents avec la physique et que le résidu initial est relativement assez faible pour

poursuivre les tests.

4.3.2 Effet du maillage dans une conduite rectangulaire en trois dimensions

Sous Foam-extend, I’ajout d’une dimension est assez simple puisque le modele 2D est en
réalité un modele 3D ne possédant qu’un seul élément dans la dimension z. Il faut donc raffiner le
maillage dans cette direction et spécifier les bonnes conditions frontieres. Comme expliqué
précédemment, aprés plusieurs essaies la meilleure condition d’entrée semble étre un profil de
pression constant a la place d’un champ de vitesse constant. Pour visualiser ce phénomene une

conduite rectangulaire a été construite en trois dimensions sous Foam-Extend.
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. 400

200
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Figure 4.12 Présentation du champ de pression dans une conduite rectangulaire.

Tel que démontré auparavant, sur la Figure 4.12, la couleur rouge représente une forte
pression (associée a I’entrée) et la couleur bleue représente une basse pression (associée a la sortie).
Il est & noter que la résolution de la conduite n’est réalisée que sur % du domaine par I’utilisation
d’axe de symétrie pour un modele de White-Metzner. Lors de la simulation de I’écoulement dans
cette conduite, les tolérances des solveurs ont été abaissée a 10 afin de voir s’il était possible

d’atteindre des résidus initiaux plus faibles en changeant de condition frontiere.
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La Figure 4.13 présente 1’évolution de ces résidus initiaux et il apparait que le résidu initial

pour la pression passe en dessous de la barre des 10 autour de 40 secondes. Ceci montre que le

changement de la condition frontiére a bien eu un effet bénefique sur la convergence et améliore
grandement les résidus initiaux.
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Figure 4.13 Evolution du résidu initial dans une conduite rectangulaire 3D
en fonction du temps pour : la pression; la norme de la vitesse; la norme de

Frobenius du tenseur des extra-contraintes.

Cependant, la Figure 4.13 n’indique rien concernant la qualité des résultats et il s’avére que

le choix du type de maillage joue aussi un réle trés important. Ce résultat est illustré a la Figure

4.14.
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Figure 4.14 Magnitude de la contrainte dans une conduite rectangulaire pour un

maillage non structuré (a gauche) et un maillage structuré (a droite).

Il apparait ainsi a la Figure 4.14 qu’un maillage non structuré donnera des résultats plus
bruités qu’un maillage structuré. Cela signifie que I’outil de simulation utilisé est trés sensible aux
types de maillage. Un maillage structuré serait donc préférable a un maillage non structuré quand
celaest possible. Dans le cas contraire, il sera toujours possible de produire des résultats; cependant
ces résultats seront assez bruités ce qui rendra leur exploitation plus complexe. Ceci sera montré

dans les sections suivantes.

4.3.3 Convergence dans un canal de repartition simple en 3 dimensions

Avant de simuler des géométries de profilés existants, il a été décidé de simuler
I’écoulement dans une géométrie représentant un canal de répartition simplifiée au maximum ce
qui permet de produire des feuilles d’une épaisseur arbitraire fixé a 1 cm. Ce choix a été fait afin
d’étudier, d’abord, le profil de vitesse obtenue pour une simplification du profilé réel (qui sera
présentée dans la derniére partie de cette section). La géométrie ainsi utilisée est celle présentée a
la Figure 4.15.



83

— 34e+02

200

e

004 100
T ‘W Sortie

Figure 4.15 Géométrie d’un canal de répartition approximer par une

succession de deux hexaédres réguliers.

Sur la Figure 4.15 la pression d’entrée a été fixée a 289 kPa. Cette valeur a été choisie, car
elle permet de reproduire un phénomeéne de non-uniformité de 1’écoulement en sortie observable
expérimentalement. Ce phenomene est illustré a la Figure 4.16, se caractérise par un exces de
matiere en sortie la ou le profil de vitesse est le plus grand. Il est a noter que, comme
précédemment, la résolution de la géométrie n’est réalisée que sur ¥ du domaine par I’utilisation

d’axe de symétrie pour un modele de White-Metzner.

La Figure 4.16 présente donc les champs de vitesse obtenus en sortie pour deux maillages
non structurés, un grossier et un plus fin, ainsi que pour un maillage structuré de méme longueur
caracteéristique que le maillage non structuré le plus fin. Dans tous les cas, il est possible d’observer
que le champ de vitesse est plus grand au centre du profilé (x=0) ce qui est signe que le débit de
matiére est plus grand a ce niveau. Un bruit notable sur le maillage non structuré le plus fin peut
aussi étre observé a la Figure 4.16. Par ailleurs, dans le cas du maillage structuré de taille similaire,
aucun bruit notable n’est apparent ce qui laisse suggérer que le bruit est di au type de maillage
employé. Une des causes eventuelles de ce bruit serait reliée a une erreur d’interpolation engendrée
par la structure non uniforme du maillage. Toutefois, du fait de la forte hyperbolicité des équations,
il se peut que le transfert d’information sur des volumes non alignés puisse causer des erreurs

numériques supplémentaires. Ceci reste une hypothése a vérifier.
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Figure 4.16 Profil de vitesse a y=0 et z=0.06 pour deux maillages non
structurés de longueur caractéristique (LC) égale 2 5.10% et 2.10° m,
et un maillage structuré de longueur caractéristique égale a 5.10% m

(NS=non structuré, S=structuré).

Etant donné qu’il n’existe pas vraiment de solution analytique pour cette géométrie et que
le champ de vitesse est assez bruité dans le cas non structuré le plus fin, il a été décidé d’utiliser le

procédé d'extrapolation de Richardson afin de trouver la valeur numérique de 1’asymptote.

Pour réaliser ce procéde, il a été nécessaire de simuler I’écoulement pour différentes tailles
de mailles afin d’obtenir a chaque fois des valeurs du champ de vitesse a y=0 et z=0.06. L’erreur
utilisée dans le procédé d'extrapolation de Richardson a été calculée point par point selon la norme
L2. La Figure 4.17 présente les erreurs de simulations en fonction de la longueur caractéristique
des éléments et de la courbe de convergence obtenue a ’aide du procédé d'extrapolation de
Richardson. Ainsi, grace au procédé d'extrapolation de Richardson, il apparait que I’ordre de

convergence de la méthode des volumes finis employée pour résoudre ce probléme est de 1.68. Cet
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ordre se situe entre 1 et 2, ce qui est cohérent puisque que les discrétisations employées mélangent

des schémas d’ordre 1 et 2.
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0,1 A
0,0001 0,001 0,01
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Figure 4.17 Erreur selon la norme L2 en fonction de la longueur

caractéristique des eléments pour différente simulation.

Globalement, les résultats présentés dans cette section montrent qu’il est possible d’obtenir
une convergence dans un profilé en 3 dimensions méme avec un maillage non structuré. Toutefois,
un maillage structuré reste préférable puisque que dans le cas d’un maillage non structuré, du bruit
est observable méme apres raffinement. 1l a, de plus, été possible de constater que dans un canal
de répartition, un profil de vitesse non uniforme peut apparaitre, ce qui cause un exces de matiere
dans une partie de la sortie du profilé. 1l est maintenant temps de voir ce qui se passerait si une

simulation était lancée sur un profilé proche de celui disponible en laboratoire.

4.3.4 Simulations dans une filiere simplifiée et la filiere actuelle

Considérant que la filiere réel (présenté a I’annexe A) a été difficile a mailler correctement
(ce qui sera vu un peu plus bas), des tests ont été lancés sur une version simplifiée ne faisant appel
qu’a des formes géométriques simples. Cependant, méme en simplifiant la ggéométrie de maniére a

ce qu’elle reste plus ou moins fidéle a la géométrie du véritable profilé, il a fallu utiliser un maillage
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non structuré, car la génération d’un maillage structurée sur GMSH dans ce genre de géométrie est
longue et complexe. Il faudra donc s’attendre a voir apparaitre un bruit dans les simulations qui
seront réalisées. De plus, a cause de I’incertitude sur les parameétres utilisés dans les modeles, il
faudra prendre les données présentées ci-aprés avec beaucoup de précautions. Ces données
pourraient ne pas représenter les valeurs physiques observables expérimentalement. Elles
donneront, néanmoins, des prédictions de phénomenes physiques observables dans ce type de

profilé.

Entrée \

Figure 4.18 Géométrie simplifiée de profilé existant.

La Figure 4.18 présente le profilé simplifié utilisé pour effectuer les simulations du
Celluloid. Ce profilé est donc une simplification du profilé sur lequel les expérimentations ont été
réalisées. Cette simplification a été faite, car les premieres implémentations fidéles de la géométrie
ne permettaient pas d’avoir des données valables. Ceci était d au maillage généré par GMSH qui
était tres mal répartie dans la géométrie. Dans celle qui est représentée a ’annexe A, la génération
du maillage construit des éléments fortement asymétriques avec une non-orthogonalité pouvant
dépasser les 89°. Or, dans la littérature, il est précisé que ce genre de maillage converge tres
rarement, ce qui est exactement ce que I’on observe dans le cas présent [65]. Le seul moment ou
cette non-orthogonalité a baissé en dessous des 70° a été le moment ou le nombre d’éléments a
dépassé les 20 Millions. A raison de 50000 éléments par processeur, il en aurait donc fallu 400

tournant en paralléle pendant une semaine pour obtenir une seule simulation compléte. Grace a la
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simplification de la géométrie comme présenté a la Figure 4.18, le nombre d’¢léments nécessaires
pour obtenir un résultat acceptable sera plus de I’ordre du million. Sur cette figure, le seul gros
défaut est qu’avec 1.3 million d’éléments il n’y aura que 6 éléments sur la tranche transversale en
sortie. Cela est di a une contrainte forte qui est telle que le ratio épaisseur sur longueur du rectangle
de sortie est tres inférieur a 1. Ceci signifiant que si le nombre d’éléments sur cette longueur
transverse devait étre doublé, il faudrait multiplier par 8 le nombre d’éléments dans tout le
rectangle. Or, sur les 1.3 million d’¢léments, prés de 1 million d’entre eux sont répartis dans ce
rectangle de sortie. Une premiere approximation a donc été réalisée afin d’observer les tendances
bien plus que les résultats. Ainsi, en appliquant un champ de vitesse de 0.01 m/s en entrée, il a été
prédit par le modéle de White-Metzner qu’en sortie, le profil de vitesse ressemblerait a celui

présenté a la Figure 4.18.
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Figure 4.19 Champs de vitesse en sortie de profilé pour un maillage non structuré.

Sur cette courbe, il apparait que le champ de vitesse est quasi plat partout sauf au centre.
Etant donné qu’il n’a pas été possible d’avoir une solution analytique ou de raffiner le maillage
(faute de temps et de ressources de calcul) pour utiliser le procédé d'extrapolation de Richardson,
il est difficile vu le fort bruit de considérer ce résultat comme acceptable méme si le résidu initial

était de I’ordre de 10°. Au vu des simulations présentées a la section 4.3.2 et 4.3.3, ce fort bruit
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provient trés probablement du maillage non structuré. Il faudrait donc simuler une nouvelle fois

avec un maillage structuré afin d’éliminer ce bruit ce qui n’a pas pu étre fait faute de temps.

Cependant, dans la Section 4.3.3 le phénoméne de non-uniformité du champ de vitesse a
déja pu étre observé pour des géométries tres simplifiées. De plus, ceci est cohérent avec ce qu’il

est possible d’observer physiquement.

Expérimentalement, il a d’ailleurs été observé que le débit de matiere sortant est plus grand
au centre du profilé que sur les cotés. Puisque ce débit est directement relié aux champs de vitesse
par une double intégration sur la surface orthogonale a ce vecteur, plus la vitesse sera grande, plus
le débit sera élevé, ce qui est exactement ce qui est observé. D’un point de vue pratique, ce
phénomeéne pourrait s’expliquer par un probléme de distribution du liquide dans le profilé. En ce
qui a trait a la pression, le profil obtenu dans le profilé est le suivant.
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Figure 4.20 Champ de pression le long de la filiere.

La courbe de pression présentée a la Figure 4.20 montre que, pour les parametres entrés et
une vitesse d’entrée uniforme de 0.01m/s, la perte de charge totale sera d’environ 7.6 MPa. Sur
cette méme courbe, il est possible de distinguer trois zones ou la pression chute selon différentes

pentes. Elles correspondent aux trois contractions qui ont lieu respectivement a 1,4 et 8 cm. En
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rhéologie plus une contraction est forte plus la perte de charge qui lui est associée sera grande. Sur
la courbe la contraction a 8 cm est une contraction 1:20 tandis que celle a 4 cm n’est que de 1:6.
La courbe respecte donc bien cette prédiction rhéologique et ajoute un degreé de confiance au
modele. La derniére chose a vérifier sera la différence de contrainte normale qui ne peut étre prédite

que pour des modeéles viscoélastiques.
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Figure 4.21 Evolution de la premiére différence de contraintes (B) le long du plan de coupe du
profilé (A).
Sur la Figure 4.21 (B), la premiére différence de contrainte a été obtenue en tracant une
ligne de coupe en x=0 et y=0. L’allure générale de la courbe s’explique par les différentes

contractions qui ont lieu successivement au fur et a mesure que le fluide avance dans le profilé
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(Figure 4.21 (A)). En effet, lorsque le fluide s’écoule les molécules polymériques sont contraintes
a changer de conformation a chaque contraction dans la géométrie (présentée a la Figure 4.18).
Cela engendre des pics de contrainte normale comme présentée a la Figure 4.21 (B) [31].Par
exemple, la premiére contraction a lieu vers 0.003 m. Ceci devrait se caractériser par un pic dans
cette région ce qui est bien ce qu’il est possible d’observer sur la Figure 4.21 (B). Les deux pics
situes & 0.04 et 0.074 m sont suivis d’une ligne quasi constante, ce qui est significatif d’une région
plate car les macromolécules ont eu le temps de se réarranger [31]. Pour ce qui est des oscillations
se situant au-dela de 0.08 m, elles sont dues au faible nombre de mailles du maillage non structuré.
Le seul point difficilement explicable vient de la région située entre 0.025 et 0.04 m puisque la
courbe donne une différence de contrainte négative. Etant donné la forme bombée de la géométrie
a cet endroit, I’hypothése la plus probable serait que cette détente engendre une différence de

contrainte négative [4].

Il est & noter que si le modéle avait été uniquement rhéofluidifiant, il aurait été impossible
de prédire la moindre différence de contrainte normale significative. Dans le cas présenté a la
Figure 4.21, cette contrainte normale monte jusqu’a 85 kPa. Globalement, cela représente un
nombre de Weissenberg de 140. Pour donner une idée plus tangible de ce que cela représente
précisons que : si la sortie était fixée a ce niveau, sachant qu’aux parois la contrainte en cisaillement
vaut 65kpa, il est possible de dire par la loi de Tanner (Eq. (21)) que le gonflement serait de 16%.
La valeur du gonflement en sortie est, toutefois, beaucoup plus faible et tourne autour des 13%.Il
est permis de venir modifier le profil du champ de vitesse et le taux de gonflement en sortie de
filiere en modifiant la géométrie d’entrée ce qui viendrait affecter la répartition du liquide dans le
profilé. Cela a été réalisé en essayant de reconstruire et paramétrer complétement la vraie géométrie
sous GMSH. En procédant de cette maniére, sans importer la géométrie d’un fichier STEP, il a pu
étre obtenu une géométrie tres fidéle a la vraic géométrie présentée a I’annexe A. Dans cette
derniere, (présentée a ’annexe G) le profil de vitesse obtenu pour un champ de vitesse d’entrée de

0.6 mm/s sera le suivant.
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Figure 4.22 Profil de vitesse en sortie pour la géométrie réelle.

Sur la Figure 4.23, le profil de vitesse présentée est pris a la moitié de la géométrie. Le bruit
sur la courbe vient du fait qu’un maillage non structuré a été utilisé afin de gagner du temps. Il
apparait ainsi, sur cette figure, que le profil est quasi plat pour les conditions imposées. Ceci
signifierait, d’un point de vue expérimental, qu’en sortie la répartition de la quantité¢ de maticre est
uniforme pour une vitesse d’entrée inférieure a 1 mm/s. Toutefois, cela ne serait vrai que si le profil
de contrainte normale est uniforme, ce qui est difficile a prédire étant donné que le maillage utilisé
reste assez grossier. Il est important de signaler que, n’ayant pas de données expérimentales
concernant les champs de pressions, les débits et les gonflements en sortie de filiere, il est
impossible de confronter les prédictions a la réalité. Pour conclure ce chapitre, il est nécessaire de
signaler que tous les résultats présentés sont plutét des preuves de concept. Il est donc envisageable
de prédire quasiment tous les phénomeénes physiques observables. Il faudrait, cependant, calibrer
les mode¢les a I’aide de valeurs expérimentales et vérifier la robustesse des prédictions évoquees

précedemment.
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CHAPITRES5 DISCUSSION GENERALE

Apres cette présentation des résultats de simulation obtenue sous Foam-Extend et Comsol,
il est maintenant temps d’aborder les limites de ces simulations. Il sera donc d’abord discuté de
I’utilisation de la version 5.4 du logiciel Comsol dans le cas des écoulements viscoélastiques et des
limitations que cela engendre. Ensuite, il sera discuté de I’intérét du logiciel Foam-Extend dans le
cas des écoulements viscoélastiques et de la maniére dont il serait possible de 1’améliorer. Pour
finir, certaines hypothéses seront discutées afin de voir quel pourrait étre leur impact sur les

différentes simulations.

5.1 Utilisation de Comsol et des éléments finis en viscoélastique

Tel que mentionnée a plusieurs reprises dans ce mémoire, la version 5.4 de Comsol reste
un outil limité pour étudier des fluides viscoélastiques. Contrairement a ANSYS, en élément fini,
il n’y a pas de modele viscoélastique préexistant. Bien que Comsol permette d’implémenter tous
les modeles, il n’est pas forcément possible de les stabiliser. En élément fini, les techniques
d’implantation et de stabilisation classiques ne permettent pas de simuler a n’importe quel nombre
de Weissenberg. Tres souvent, elles n’arrivent méme pas a dépasser 1. De fagcon générale, la seule
maniére efficace d’implanter un modele viscoélastique, plus ou moins stable, en elément fini, est
d’utiliser soit une technique Galerkin discontinue ou une méthode log-tensor. Or Comsol ne
permet pas réellement d’utiliser la technique GD. Il devient alors obligatoire de se rabattre sur une
méthode log-tensor. Des travaux impliquant la méthode log-tenson en 3 dimensions existent [103],
ils n'ont cependant jamais été implantés dans Comsol en 3 dimensions vu les limitations du logiciel.

Ceci empéche donc Comsol de posséder une quelconque utilité pour des cas réels non symétriques.

Il serait difficile d’accélérer les simulations en changeant de solveur puisqu’il n’est pas
possible d’importer un autre solveur dans Comsol. Méme dans le cas ou la méthode GD était
implantée sur Comsol 5.4, les solveurs qui existent sous Comsol 5.4 ne permettent pas une
combinaison solveur/préconditionneur satisfaisante pour accélérer la résolution. Par exemple, de
tous les solveurs de Krylov existants, le seul ayant été implantée sous Comsol 5.4 a été GMRES.

Il serait préférable, dans le cas des fluides viscoélastiques, d’utiliser un solveur Bi-gradient
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conjugué stabilisé (BiCGStab), car il est plus rapide que GMRES pour un méme préconditionneur
ILUO (décomposition incompléte LUO) [104].

D’un point de vue plus pragmatique, Comsol reste un outil intéressant pour des applications
académiques. Il aide a comprendre le fonctionnement des méthodes de stabilisation, mais ne permet
pas d’utiliser les plus sophistiquées. Le probleme des fluides, tel que le celluloid en solution, est
qu’il nécessite d’utiliser des équations fortement hyperbolique. Or, dans ce genre de cas, I’'une des
méthodes les plus adaptées reste la méthode GD [31]. Comsol 5.4 n’est donc pas le bon outil pour
ce genre d’application. Pour finir, la méthode des éléments finis reste une technique fondamentale
mal adaptée au probléme du viscoélastique. Le nombre d’articles publiés dans le domaine évolue
en dents de scie. D’une évolution a 1’autre de la méthode, il peut arriver que des dizaines de
publications paraissent une année, puis qu’une seule Se présente I’année suivante. Le graphique

suivant montrant d’ailleurs cette évolution.
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Figure 5.1 Nombre de publications dans le domaine du viscoélastique

par FEM sur compendex.
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L’engouement dans ce domaine est excessivement dépendant de la derniere méthode a la
mode. Il faudra attendre et voir si de nouvelles méthodes dans le domaine verront le jour et si ces

nouvelles techniques seront compatibles avec Comsol.

5.2 Valorisation de la méthode des volumes finis en viscoélastique

La méthode des volumes finis est une méthode jeune en comparaison a celle des éléments
finis. Elle a été créée dans les années 80 et n’a connu son essor que dans les années 2000. Pourtant,
sa structure discréte lui confere un avantage colossal par rapport aux éléments finis dés qu’il est

question d’étudier des problémes a dominante convective [92].

Cette technique a été construite pour ce genre de probleme et cela se voit dans les résultats
obtenus grace a Foam-Extend. La ou avec Comsol il était ardu d’atteindre un nombre de
Weissenberg de 1, le nombre de Weissenberg peut, grace a Foam-Extend, facilement dépasser les
1000 [55]. Son vrai défaut est qu’il est peu courant de la voir implanter dans des logiciels
commerciaux. Par surcroit, I’'implémentation réalisée sous Foam-Extend reste trés difficile d’acces
a des personnes ayant peu de connaissance en informatique et en mathématiques. Comsol, en

comparaison, posséde une interface graphique qui aide énormément les non-initiés a la simulation.

En ce qui concerne les simulations réalisées, elles ont nécessité un temps d’adaptation au
logiciel. Le point le plus critique est la génération du maillage. En effet, il a été démontré dans la
Section 4.3 qu’un maillage structuré était préférable a un maillage non structuré pour avoir des

résultats moins bruités entre autres.

Au début de cette étude, le constructeur de maillage blockMesh a été utilisé. Ce choix a
ralenti considérablement le projet puisque ce constructeur était beaucoup trop rudimentaire. Une
personne désirant travailler dans ce domaine ne devrait pas utiliser ce logiciel et devrait se tourner
directement vers GMSH. Il existe aussi une autre application appelée snapyHexMesh, mais elle ne
vaut pas GMSH [64]. Le logiciel vient avec une interface graphique et permet de générer de trés
bons maillages. Cependant, si une géomeétrie est importée en step sur GMSH pour étre maillée, il
se peut que le maillage obtenu ne soit pas du tout utilisable en simulation. Cela a été le cas pour la
véritable géométrie qui a di étre simplifiée afin de faire converger les simulations. Il est d’ailleurs

recommandé de créer la géométrie directement dans GMSH afin de faciliter la génération du
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maillage. Evidemment, GMSH n’est pas un constructeur de maillages parfait et certains
constructeurs de maillage commerciaux pourraient mieux convenir. A ce sujet, il semble que le
logiciel de maillage commercial le plus intéressant soit le logiciel PointWise, mais cela reste a
vérifier.

Pour ce qui est de la partie modele implantée dans Foam-Extend, le seul des 3 ayant donné
des résultats satisfaisants a été le modéle de White Metzner. Comme précisé dans la revue de la
littérature, il existe 10 modeles implantés sous Foam-Extend. Il serait donc intéressant de tester les

autres modes et de voir les prédictions qu’il en ressort.

En outre, Foam-Extend permet d’utiliser du multimode, ce qui est trés utile pour raffiner les
résultats. Le multimode vient, cependant, avec un défaut de taille qui est I’over fitting. Pour
expliquer cela, il suffit de reprendre le modele de White Metzner. Dans sa forme simple, il possede
6 paramétres si une loi de Carreau est considérée. Lors de 1’utilisation du multimode, ce nombre
de parameétres passe de 6 a 6*n ou n représente le nombre de modes. Autant dire qu’a partir de 4
modes le probleme de I’¢léphant de Neumann pointe le bout de sa trompe. L’utilisation du
multimode ne devrait donc se faire que si le nombre de points expérimentaux dépasse de tres loin
le nombre de parameétres. Pour finir, puisque les résultats d’erreur sur les cas tests en 2D et en 3D
(en simple mode) sont tous proches de 0.5%, Foam-Extend peut étre retenu comme I’outil le plus

adapté pour ce genre de simulation.

5.3 Reésultats expérimentaux et prédictions par simulation

Mis a part les résultats obtenus concernant la viscosité, il reste un abime colossal a traverser.
Les prédictions faites a 1’aide du modéle restent beaucoup plus nombreuses que les données
expérimentales comparables. Sur ce point, cette étude peut étre vue plus comme une preuve de
concept que comme une réelle prédiction comparable a ce qui est physiqguement observable. Bien
que les prédictions de la courbe de viscosité cadrent avec les données expérimentales, il est
impossible de dire si le champ de pression prédictible sera celui observé. Il est d’ailleurs impératif
de noter que les données de temps de relaxation n’ont pas été calibrées. Il faudrait des données de

pression/debit pour justement venir calibrer ce paramétre.
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De plus, la masse volumique du celluloid a été posée a 1’aide de ce qui a été trouvé dans la
littérature [102]. Il faudrait donc faire des mesures de masse volumique pour venir le confirmer.
Cen’est qu’a ce prix que cette hypothése pourra étre vérifiée. Une fois toutes ces calibrations faites,
le modéle pourra ensuite étre comparé aux données d’épaisseur des feuilles de celluloid obtenues.
Dans la partie résultat, il a été montré que 1’épaisseur du film varie & cause de la distribution. Si la
simulation numérique était exacte, alors cela reviendrait a générer un excés de matiére dans
certaines zones. Cet exces de matiére se traduisant par une variation de 1’épaisseur de la feuille
produite, il suffira de simplement mesurer cette variation et de la comparer a celle obtenue pour
différents champs de vitesse. Pour aller plus loin, il faudrait aussi augmenter le nombre de mailles
en sortie afin d’obtenir des résultats plus précis. Ceux-ci permettraient de prédire un gonflement

en sortie de filiere qui pourrait étre comparé a ce qui est obtenu expérimentalement.

Il est maintenant temps d’évaluer 1’hypothése d’un écoulement isotherme. Depuis le début,
le fluide est considéré a température constante. Dans des cas comme le HDPE, il s’avére que la
dissipation visqueuse fait augmenter la température du fluide de plusieurs degrés [88]. Dans le cas
du celluloid, il est possible de calculer un ordre de grandeur du terme de dissipation visqueuse, et
pour ce faire un écoulement de Poiseuille dans une fente en 2 dimensions (plan xz par exemple)

est considéré, ainsi que les hypothéses suivantes :
1. le fluide est newtonien incompressible
2. 1’écoulement est en régime rampant (Re<<1)
3. iln’ya pas d’effet de bord
4. la viscosité est constante (fixée a 10 kPa.s)
5. I’écoulement est en régime permanent €tabli.

Tout ceci permet de simplifier le terme de dissipation visqueuse de I’Eq. (19) qui devient :

2

dv,
Vi =u (%) (50)
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Avec pour un écoulement de Poiseuille dans une fente® :

av, 4 8x

W = vzmax(z - 6_2) (51)

Si maintenant la vitesse maximale de 1’écoulement est de 6 mm/s (ce qui est la valeur
observée a la Figure 4.20) alors, dans une fente ou les dimensions sont semblables a I’hexa¢dre de
sortie représentée a la Figure 4.18° la dissipation visqueuse générerait 157 kW/m?® (ce qui
représenterait un nombre de Brinkman?® de 1’ordre de la centaine), ce qui n’est absolument pas
négligeable. Il faudrait donc coupler toutes les équations précédentes a 1’équation de la chaleur, ce

qui n’est pas, pour le moment, une chose triviale a faire sous Foam-Extend.

Théoriquement, il faudrait aussi utiliser un facteur de glissement pour tenir compte de
I’effet des variations de température sur les différents paramétres. D’un point de vue pragmatique,
cela revient a prévoir de refaire toutes les expériences et simulations précédentes a différentes
températures. Dans le cadre de cette étude, le probléme a été contourné puisqu’a basse température

les contraintes normales et de cisaillement sont les plus fortes.

Les données présentées sont une borne supérieure théoriquement infranchissable par un
fluide correspondant aux prédictions du modele. Cette maniére de procéder est donc assez valable
s’il fallait se cantonner a étudier des fluides thermiquement stables. Le celluloid est potentiellement
un explosif de grade militaire pouvant détruire I’extrudeuse a la moindre variation de température
trop prononcée. Conséquemment, il semble impératif d’ajouter 1’équation de la chaleur aux

précédentes équations.

8 En considérant qu’a x=0 et x=¢ la vitesse est nulle, et que e représente 1’épaisseur de la fente [6].
9 C.-a-d. épaisseur=0.35mm, longueur=20mm et largueur=10cm.

10 Le nombre de Brinkman est défini comme le rapport entre ’énergie produite par les forces visqueuses et I’énergie

transféré par conduction.
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CHAPITREG6 CONCLUSION ET RECOMMANDATIONS

A la lumiére de ce qui précéde, ce projet a donc permis de simuler un écoulement de
celluloid dans un profilé. Il en résulte que le logiciel Comsol n’est pas actuellement utilisable pour
des simulations viscoélastiques en 3 dimensions. Le seul logiciel ayant donné des résultats
intéressants est Foam-Extend. En conséquence, il devrait étre le logiciel a utiliser par toute
personne désirant simuler ce genre d’écoulement gratuitement. En outre, il a pu étre prédit, grace
a ce logiciel, que I’écoulement du celluloid dans un profilé, notamment, celui présenté a la Figure

4.14, engendrerait un profil de vitesse en sortie non homogene.

Par ailleurs, ce profil de vitesse permet de prédire que les feuilles de celluloid produites ne
seront pas uniformes. Selon ce qui a pu étre calculé, leur centre devrait étre plus chargé en polymére
que le reste de la feuille. De fait, certaines observations expérimentales semblent ainsi corroborer
le modéle. Cependant, ces prédictions restent purement qualitatives. Pour s’assurer de leur validité,
il faudrait dans un premier temps calibrer le modele a I’aide d’autres données expérimentales, et
dans un second temps, confirmer les prédictions a 1’aide d’autres données expérimentales. Cette

simulation n’est, bien entendu, qu’un premier pas vers d’autres évolutions.

De surcroit, pour étoffer le simulateur, il faudrait coupler ce dernier avec un module
thermique qui prendrait en compte les variations de tempeérature induites par la dissipation
visqueuse. Ce parameétre reste un point critique, car, dans le cas du celluloid, une variation trop
grande de température pourrait engendrer une explosion. Un couplage écoulement/température

serait donc nécessaire pour s’assurer de la stabilité du procéde.

Cela n’est, toutefois, pas suffisant puisque, méme en ayant un modele calibré a tous les
niveaux (thermique ou viscoélastique), il reste 1’équation de Tanner qui pose probléme. Cette
équation a été construite a partir d'une quantité non négligeable d’hypothéses. Elle permet certes
de donner un bon ordre de grandeur des valeurs que peut prendre le gonflement. Par contre, elle

ne pourra pas prédire avec exactitude ce que peut valoir réellement le gonflement en tout point.

Par conséquent, pour obtenir des valeurs précises, il faudrait coupler le modéle fonctionnel
a une technique de simulation en surface libre. C’est un exercice bien difficile impliquant une
grande connaissance mathématique des techniques a maillage mobile. Heureusement, de

nombreuses équipes se sont penchées sur ce probleme et il en est ressorti plusieurs techniques
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viables. Celle déja implantée sous Foam-Extend se nomme « VVolume of fluid » et permet de prédire

avec précision I’évolution du gonflement en sortie de filaire.

Pour conclure, il est possible de constater que, par sa complexité, la simulation d’un
écoulement de celluloid reste un exercice laborieux. Il est donc assez difficile de trouver des outils
de simulation d’écoulement polymérique. Pourtant au cours de cette décennie, de nombreux
chercheurs ont commencé a créer des codes en libre accés permettant de simuler ce genre
d’écoulement. C’est donc un pas qui a été fait dans la bonne direction, mais ce pas reste insuffisant.
En effet, la raison majeure découle du fait que la plupart des industriels qui pourraient étre

intéressés n’ont pas forcément la formation nécessaire pour utiliser ce genre d’outil.

Tel que cela a déja été montré, les équations régissant 1’écoulement d’un fluide viscoélastique
sont a la fois complexes et variées. Une personne non initiée aurait donc beaucoup de mal a savoir
par ou commencer. La plupart du temps, si une personne non experte désire simuler ce genre
d’écoulement, elle se tournera vers un logiciel avec une documentation fournie tel que PolyFlow.
Ce genre de logiciel dit «facile a utiliser» permettra a son utilisateur de manipuler des fluides non
newtoniens sans comprendre les mécanismes en arriere. Pourtant, des solutions telles que Foam-
Extend possedent de nombreux avantages sur ces logiciels commerciaux. Il faudra donc attendre

et voir si ce logiciel permettra de créer un nouvel engouement pour ce domaine.
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ANNEXE A GEOMETRIE REELLE DE LA FILIERE

Figure A.1 Géométrie réelle de lafiliere.



ANNEXE B TABLEAU RECAPITULATIF DES AVANTAGES ET
INCONVENIENTS DES DIFFERENTS OUTILS DE SIMULATION

Comsol

Polyflow

Openfoam

Simple d’utilisation

Permets de créer
des applications sur
un cluster en ligne
de comsol

User friendly

Permet une
optimisation de
forme

Trés répandu

Vaste
documentation sur
le viscoélastique

User friendly

Crée pour I'extrusion
de polymeére

Logiciel gratuit

Bibliotheque
viscoélastique
disponible

Logiciel payant

peu de
documentation sur
le viscoélastique

N’embargue pas de
bibliotheque
viscoélastique

Logiciel payant

Ne permets pas de
créer d’application

Nécessite de fortes
connaissances en
CH++

Complexe a coder

Faible
documentation
disponible
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ANNEXE C RESULTAT DE SIMULATION POUR UN MODELE PTT
GEOMETRIE FENTE/ SPHERE POSITION APRES LA SPHERE

GEOMETRIE

m
Z
=
o)
T
m

Graphique sur ligne: Champ de vitesse, composante x

Champ de vitesse, composante x

0.2 + —O0 g
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Figure B.2 Evolution de la force normale au cours du temps dans une géométrie de fente avec un

obstacle sphérique.
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ANNEXE D ALGORITHME SIMPLE
| START )

Initial guess p*, u*, v*, p*

STEP 1: Solve discretised momentum equations
&,y Ul = Zalet (Bl = PLy) A+ by

a v = EaeV et (Pla— P At by

™

T

STEP 2: Solve pressure correction equation

@ Pl = 8s Plars + @i Pras + 8es Blea + 3o Phsa + Bl

P

STEP 3: Correct pressure and velocities

Set Pu = Po+ B
* _ - _ ,
fﬂ_ - 5-:_ - : Wy = U+ diy (Pl = pl)
' Vi = Vi dy (Pl — Pl

p, u, v, §*

STEP 4: Solve all other discretised transport equations

8= 8y e+ Buaers + By G + B P+ By

No

Convergence?

STOP

Figure C.3 Diagramme simplifié de I'algorithme SIMPLE [44].
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ANNEXE E SCRIPT VISCOELASTIQUE FOAM-EXTEND/GMSH

Ce script permet de lancer et paralléliser les simulations viscoélastiques sous Foam-Extend pour
des géométries codées en GMSH

#!/bin/bash

# please execute fe41 or other source code before launching this script
# don't use multiple .geo file inside the same directory files

# for symmetry please use in your gmsh program the flag simetry

# this part clean the case

. $WM_PROJECT_DIR/bin/tools/CleanFunctions
cleanCase

echo "done!"

nopr=4; #define number of processor >=2

rm -r processor™> # supress old processor file

gmsh *.geo -3 # execute gmsh and create .msh file
gmshToFoam *.msh # convert .msh to Foam mesh

cd constant/polyMesh/
grep simetry boundary

ligne="grep -n simetry boundary | awk '{print $1}' | sed -e "s/:/ I'"

ligne="expr $ligne + 2°

sed -e "${ligne}s/patch/symmetryPlane/" boundary > tempo;mv tempo boundary
cd -

cd system

sed -e ":a;N;$!ba;s/numberOfSubdomains.*metis/numberOfSubdomains
metis/g' decomposeParDict> tempo;mv tempo decomposeParDict

cd -

$nopr™; \n \n  method

decomposePar #decompose for parallel computing using mpi
mpirun -np $nopr viscoelasticFluidFoam —parallel #launch the computation in parallel
reconstructPar # reconstruct the solution

paraFoam -nativeReader # display the result on paraview

echo
echo Done Work
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ANNEXE F SCRIPT POUR GENERER UNE GEOMETRIE SIMPLIFIEE A
L’AIDE DE GMSH

Ce script permet de construire la géométrie du profilé sous GMSH.
I+
SetFactory("OpenCASCADE");
ec=0.0030988;
ec2=0.0030988+0.03;
I+
Cylinder(1) ={0, 0, 0, 0, 0, ec, 0.0150114, Pi/2};
Cylinder(2) = {0, 0, ec, 0, 0, 0.03, 0.0150114-0.0055114, Pi/2};
Cylinder(3) = {0, 0, ec2, 0.1, 0, 0, 0.0150114-0.0055114, Pi};
I+
Box(4) = {0,0, ec2+0.0150114-0.0066, 0.1, 0.002381249996, 0.02741869782 };
Box(6) = {0,0, ec2+0.0150114-0.0066+0.02741869782+0.00762, 0.1, 3.75E-4, 0.02741869782 };
I+
Symmetry {0, 1, 0, 0} {
Volume{3};
}
I+
Line(61) = {19, 28};
I+
Line(62) = {30, 21};
I+
Line Loop(33) = {62, -29, 61, 43};
I+
Plane Surface(33) = {33};
I+
Extrude {0.1, 0, 0} {
Surface{33}; Line{62}; Line{43}; Line{61}; Line{29};
}
Mesh.CharacteristicLengthFromCurvature=1;
Mesh.CharacteristicLengthMax=0.002;
BooleanUnion{ Volume{4}; Delete; }{ Volume{3}; Volume{2}; Volume{l}; Volume{7};
Volume{6}; Delete; }
Physical Surface("outlet”) = {30};
Physical Surface("simetry™) = {29, 26, 21, 18, 14, 10, 7, 3, 5, 8, 11, 16, 13, 23, 22, 27, 31};
Physical Surface("inlet") = {4},
Physical Surface("fixedWalls") = {1,2, 6, 9, 15, 20, 25, 12, 17, 19, 24, 28},
Characteristic Length {32, 34, 31, 35, 28, 30, 27, 33, 22, 23, 26, 29} = 0.0005;
Physical Volume(*"vol") = {1};
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ANNEXE G GEOMETRIE OBTENUE SOUS GMSH FIDELE AU
PROFILE REEL

Figure G.4 Evolution de la pression dans une géométrie fidéle au profilé réel.
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ANNEXE H PROFILE AVEC PINCES

Figure H.5 Schéma d’un profilé avec pince [66].



