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Limits of heralded single-photon sources based on parametric photon-pair generation

Stéphane Virally,* Suzanne Lacroix, and Nicolas Godbout

COPL, Département de Génie Physique, École Polytechnique de Montréal,

Case Postale 6079, Succursale Centre-Ville, Montréal, Québec H3C 3A7, Canada

(Received 13 October 2009; published 14 January 2010)

We derive calculations on the statistics of a heralded single-photon source based on parametric photon-pair

generation. These calculations highlight fundamental and practical limits for these sources and show which

physical parameters can be optimized to improve the quality of a real source.

DOI: 10.1103/PhysRevA.81.013808 PACS number(s): 42.50.Ar, 42.50.Dv

I. HERALDED SINGLE-PHOTON SOURCES

Although the concept of a light particle has existed for

a long time, the modern description of what would later

be termed the “photon” was introduced by A. Einstein in

1905 [1]. Since then, progress has been made in the detection

of single photons [2], but the design of true single-photon

sources remains a challenge. One of the proposed solutions

is a heralded single-photon source (HSPS) [3,4] based on a

parametric source of photon pairs.

We derive herein calculations taking into account relevant

physical parameters of such a source. The simple HSPS setup

on which these calculations are based entails no interference

effects, so that we can focus on photon statistics rather

than the full picture of the quantum states involved. These

simple results shed light on the importance of each individual

parameter in the quality of the source and provide formulas

that can be used to find each parameter’s optimum value. They

also provide fundamental limits for the performance of HSPSs,

as these sources are inherently imperfect.

In Sec. II, we detail the basic HSPS model. In Sec. III we

derive the exact statistics associated with this model. In Sec. IV

we examine the properties and limits of unfiltered HSPSs. We

then analyze the effect of filtering in Sec. V. We conclude the

paper in Sec. VI.

II. A SIMPLE HERALDED SINGLE-PHOTON

SOURCE MODEL

We propose to study the simple setup represented in

Fig. 1. In this model, a source of photon pairs entangled in

time-energy (e.g., generated via parametric down-conversion

in a crystal [5] or four-wave mixing in a fiber [4]) is

assumed to statistically provide N photon pairs with proba-

bility Pin(N ) during a specified time bin (e.g., the duration

of the pump pulse or the active time of a single-photon

detector).

The two photons in each pair are furthermore assumed

to be distinguishable and separable (e.g., using spatial or

frequency filtering). One photon from each pair is used as a

heralding signal for the second photon. The heralding photon

is detected by a single-photon detector, hence announcing the

presence of another photon in the signal (heralded) branch.

For a perfect HSPS, the probability of having no photon in

*stephane.virally@polymtl.ca

the signal branch is reduced to zero when a heralding signal is

present.

However, HSPSs are fundamentally limited by physics,

as even a perfect heralding system would not provide a true

single-photon source. Indeed, parametric processes inherently

generate multiple pairs with a nonzero probability. These

multiple pairs cannot be eliminated by the heralding signal.

In fact, we will see that the heralding system increases their

probability. In addition, none of the physical elements of a real

source are perfect. In particular, losses occur in both branches

and at the detector level, and dark counts can provide false

heralding signals.

Fortunately, it is rather straightforward to model losses

in a quantum system. Indeed, a lossy system can always be

modeled by one or several simplified beam splitters, for which

we consider only one input and one output each [6]. In addition,

some systems (such as the one studied here) are so simple that

no interference takes place. In those instances, one needs only

to compute intensities (i.e., probabilities), instead of complex

amplitudes, for the quantum states. This simplification ensures

better readability of the results.

In this instance, assuming nin = N photons at the input

of the simplified beam splitter, 0 � nout � N photons at the

output, and a probability of transmission 0 � η � 1, we have

[7]

P (nout = n) =

(

N

n

)

ηn(1 − η)N−n, (1)

a simple binomial law for the transmission of n photons.

All losses in a single branch (including detection losses due

to the limited efficiency of the detector) can be compounded

and modeled by a single beam splitter. We assume that losses

are independent of the mode (i.e., independent of the wave-

vector direction, spectrum, and polarization of the photons).

Effects of mode-dependent filtering are analyzed separately in

Sec. V.

III. STATISTICS OF THE MODEL

Let us assume first that N pairs have been produced in a

single time bin at the input of the system. Let us denote the

transmission efficiency of the heralding branch (including the

quantum efficiency of the detector) ηh and the transmission

efficiency of the signal, or heralded, line ηs . Let us also denote

the probability of a dark count on the detector during a single

time bin dh. Using Eq. (1), we find the probability that a
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FIG. 1. Simplified HSPS setup. PPPS, parametric photon-pair

source (photons within a single pair are supposed to be distinguishable

and therefore separable); HB, heralding branch; D, detector; EO,

electrical output (heralding signal); SB, signal branch; OO, optical

output (heralded photons).

heralding signal is triggered (i.e., the detector clicks) to be

H (N ) = (1 − dh)

N
∑

k=1

(

N

k

)

ηk
h(1 − ηh)N−k + dh

= 1 − (1 − dh)(1 − ηh)N . (2)

Remembering that the probability of having N photons at

the input is denoted Pin(N ), the total probability of having

n photons at the output of the signal line, conditional to the

presence of a heralding signal, is

Ps(n) =

∑+∞

N=n

(

N

n

)

Pin(N )H (N )ηn
s (1 − ηs)

N−n

∑+∞

N=0
Pin(N )H (N )

. (3)

We can apply Eq. (3) to the most common type of

probability for the generation of photon pairs, namely, Poisson

statistics. In the case of photon pairs generated via parametric

down-conversion or four-wave mixing, this type of statistics

arises when a large number of distinguishable modes are

accessible to the parametric process [8]. In this case, the

N -photon-pair probability is

Pin(N ) = e−µ µN

N !
, (4)

where µ is the average number of photons pairs generated per

time bin.

Inserting Eqs. (2) and (4) into Eq. (3), we get

Ps(n) = e−µηs
(µηs)

n

n!
ξp(n), (5)

where

ξp(n) =
1 − (1 − dh)(1 − ηh)ne−µηh(1−ηs )

1 − (1 − dh)e−µηh
(6)

is a correcting term to the Poisson distribution e−µηs (µηs)
n/n!

that would be observed at the output of the signal line in the

absence of a heralding signal. This correcting term usually

ensures that the statistics becomes sub-Poisson [as measured

by a g(2)(0) factor <1 for the photons at the output of the

heralded line].

There is a second interesting case where Eq. (3) can be

applied. When heavy mode filtering takes place downstream

of the parametric process, or in the case of some inherently

narrow processes [9], the statistics of the produced pairs is

thermal [8]. This case is very interesting, because it leads

to indistinguishable photons (i.e., photons produced in the

same spatial and spectral mode), which is a requirement for

most linear optical quantum computing operations [8]. The

N -photon-pair thermal probability is

Pin(N ) =
1

1 + µ

(

µ

1 + µ

)N

. (7)

Inserting Eqs. (2) and (7) into Eq. (3), we get

Ps(n) =
1

1 + µηs

(

µηs

1 + µηs

)n

ξt (n), (8)

where

ξt (n) =
1 + µηh

dh + µηh

{

1 −
(1 − dh)(1 − ηh)n(1 + µηs)

n+1

[1 + µ(ηs + ηh − ηsηh)]n+1

}

(9)

is a correcting factor to the thermal distribution (µηs)
n/(1 +

µηs)
n+1 that would be observed at the output of the signal line

in the absence of a heralding signal.1

IV. PROPERTIES AND LIMITS OF THE HERALDED

SINGLE-PHOTON SOURCE

A. Properties

The form of Eqs. (5) and (6) [respectively, Eqs. (8) and (9)]

makes it straightforward to understand the significance of the

physical parameters of the source.

First, we have

ξp(1)

ξp(0)
=

1 − (1 − dh)(1 − ηh)e−µηh(1−ηs )

1 − (1 − dh)e−µηh(1−ηs )
(10)

for Poisson statistics and

ξt (1)

ξt (0)
=

1 + µ(ηs + ηh − ηsηh)

1 + µ(ηs + ηh − ηsηh)2

×
1 + µ(ηs + ηh − ηsηh)2 − (1 − dh)(1 − ηh)(1 + µηs)

2

1 + µ(ηs + ηh − ηsηh) − (1 − dh)(1 + µηs)

(11)

for thermal statistics.

For the limit case µ = 0 we obtain

ξp(1)

ξp(0)
=

ξt (1)

ξt (0)
= 1 − ηh +

ηh

dh

. (12)

So for ηh ≫ dh (i.e., when the transmission efficiency of

the heralding branch is much higher than the dark-count

probability on the detector), there is an important increase

in the probability of seeing one photon versus that of seeing

no photon in the signal branch. That is the main mechanism

of the HSPS.

Equations (6) and (9) show functions ξp(n) and ξt (n)

increasing with n. This means that multiple-pair probabilities

increase even more than the probability of a single pair.

This is detrimental to the process of obtaining a true single-

photon source. However, this effect is small compared to the

1Whatever the actual nature (pure or mixed) of the state at the input

of the beam splitter, a state with Poisson or thermal statistics for the

arrival of photons retains that statistics after the beam splitter (even

though the nature of the state can be changed).
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FIG. 2. Example of probability modifications due to heralding.

Left axis: probabilities associated with the nonheralded signal branch

(dashed line); improved probabilities associated with the heralded

signal (solid line). Right axis: values of ξp(n) (dash-dotted line). In

this example, ηh = ηs = 50%, dh = 10−4, and µ = 0.01.

attenuation provided by a small µηs [see Eqs. (5) and (8)].

Indeed, ξp(n) and ξt (n) are concave and tend asymptotically

toward the respective finite limits

lim
n→+∞

ξp(n) =
1

1 − (1 − dh)e−µηh

and

lim
n→+∞

ξt (n) =
1 + µηh

dh + µηh

.

In the end, the original exponentially decreasing probability

(inherent to Poisson and thermal statistics with ηsµ ≪ 1) is

multiplied by the relatively slowly increasing correcting factor

ξ . It is then possible to increase the probability of getting a

single photon while keeping the chances of getting multiple

pairs low. Figure 2 shows an example of this feature in the

case of Poisson statistics. In this case, the graphs for thermal

statistics would be almost identical.

B. Limits

Let us examine what happens in a perfect experiment where

ηs = ηh = 1 and dh = 0. First, we get ξp(0) = ξt (0) = 0. As

expected, all instances where no photons are present are

eliminated.

Also, the correcting factor for a single photon in the

signal branch is ξp(1) = eµ/(eµ − 1) and ξt (1) = (1 + µ)/µ,

respectively. Since HSPSs are usually operated in regimes

where µ ≪ 1, these factors can be very large. However, the

probability of getting exactly one photon is not unity but

µ/(eµ − 1) and 1/(1 + µ), respectively. These terms become

unity only for µ = 0, that is, only when no photons are

generated! This is a fundamental limitation of the HSPS, due to

the parametric process used for the generation of photon pairs.

As we have seen, the probability of getting multiple pairs is

increased by the heralding process. This effect can be managed

only by reducing µ. However, real sources cannot be dimmed

too much because of dark counts on the detector.

To determine the limits of dimming, we use Eq. (5) to com-

pute the photon number variance of a Poisson-based

1.0
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0.0
0.50.40.30.20.10.0

FIG. 3. Effect of dimming. (�n)2/ 〈n〉 as a function of µ for

ηh = ηs = 50% and dh = 10−4. Optimal operation arises for µ ≃

0.016 photon per time bin.

HSPS as

(�n)2 = µηs{1 + γ ηh[1 − µηsηh(1 + γ )]}, (13)

where

γ =
(1 − dh)e−µηh

1 − (1 − dh)e−µηh
. (14)

In addition, the average number of photons is

〈n〉 = µηs(1 + γ ηh). (15)

A true single-photon source would have zero variance.

In practice, we want the source to exhibit strong sub-

Poisson behavior, that is, (�n)2 ≪ 〈n〉. This behavior is well

characterized by Mandel’s Q factor [10], defined as Q =

[(�n)2/ 〈n〉] − 1. A negative Q factor indicates sub-Poisson

statistics. Using Eqs. (13)–(15), we indeed find a negative

value for Q, as

Q =
−µηsη

2
h

1 + (1 − dh)(1 − ηh)e−µηh
. (16)

For µ → 0, dark counts on the detector become dominant

and (�n)2 → 〈n〉. The same is true for µ → +∞, this time

because the probability of having zero photons becomes

negligible even in the absence of the heralding signal. Hence,

minimizing (�n)2/ 〈n〉 provides a value of µ that optimizes

the sub-Poisson behavior of the source, as shown in Fig. 3

for the same set of parameters as in Fig. 2. An equivalent

curve for thermal statistics at the output of the parametric

photon-pair source would exhibit the same behavior, as thermal

and Poisson statistics are very similar for small values of µ.

V. EFFECTS OF FILTERING

A filter (e.g., spectral, spatial, or polarization) can be placed

in one or the other line to purify the heralded states (i.e.,

only one mode is left unfiltered and photons in the heralded

branch become truly indistinguishable). The effect of filtering

is different from the effect of attenuation. Filtering one of

the branches has two effects, namely, selective attenuation

in the filtered branch and projection of the photons in the

other branch into a statistical mixture of photons paired with

an unfiltered photon and extraneous photons (formerly paired

with filtered-out photons).
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In this section, we consider that the pair source features

Poisson statistics, and the filtering selects only one mode with

thermal statistics. The extraneous photons in the unfiltered

branch then retain Poisson statistics (i.e., the number of

corresponding modes remains large). We denote by f the

transmitted fraction of photons through the filter, so that µf

is the mean number of photons allowed to go through, while

µ(1 − f ) is the mean number of photons filtered out of the

branch.

A. Filtering the signal branch

To purify the modes of the heralded photons, it is natural

to think first about placing a filter in the signal branch. In

such a configuration, the extraneous photons in the heralding

branch can simply be seen as additional background noise on

the detector. This is the equivalent of replacing dh with

νh = dh + (1 − dh)e−µ(1−f )

+∞
∑

k=0

[µ(1 − f )]k

k!
[1 − (1 − ηh)k]

= 1 − (1 − dh)e−µηh(1−f ). (17)

We then have

Ps(n) =
1

1 + µf ηs

(

µf ηs

1 + µf ηs

)n

ξs(n), (18)

with

ξs(n) =
1 + µf ηh

νh + µf ηh

×

{

1 −
(1 − νh)(1 − ηh)n(1 + µf ηs)

n+1

[1 + µf (ηs + ηh − ηsηh)]n+1

}

, (19)

as the filtered mode exhibits thermal statistics.

The filter improves the modal purity of the source. However,

comparing Eqs. (8) and (9) with Eqs. (18) and (19), it can be

seen that the performance of the source is affected by the

presence of the filter. In addition to decreasing the number of

heralded photons (a feature of filtering), the filter also increases

the noise on the heralding line (as dh is replaced by an always

larger νh). This additional noise increases the probability of

seeing no photon in the signal branch when a heralding signal

is present, which greatly reduces the gain obtained by the

heralding signal in the first place.

B. Filtering the heralding branch

When a filter is placed in the heralding branch, we must

take into account extraneous photons in the signal branch.

Hence, the probability of finding exactly n photons in the

signal branch is

n
∑

k=0

(

n

k

)

P1(k)P2(n − k), (20)

where

P1(k) =
1

µf + 1

+∞
∑

N=k

(

N

k

)

[1 − (1 − dh)(1 − ηh)N ]

×

(

µf

µf + 1

)N

ηk
s (1 − ηs)

N−k (21)

is the probability of finding exactly k photons paired to an

unfiltered heralding photon, and

P2(k) = e−µ(1−f )

+∞
∑

N=k

(

N

k

)

[µ(1 − f )]N

N !
ηk

s (1 − ηs)
N−k (22)

is the independent probability of finding exactly k extraneous

photons.

In the end, we find

Ps(n) =
1

1 + µf ηs

(

µf ηs

1 + µf ηs

)n

ξh(n), (23)

with

ξh(n) =
1 + µf ηh

dh + µf ηh

e−µηs (1−f )

×

{

αn − βn

(1 − dh)(1 − ηh)n(1 + µf ηs)
n+1

[1 + µf (ηs + ηh − ηsηh)]n+1

}

,

(24)

αn = Ln

[

−
(1 + µf ηs)(1 − f )

f

]

, (25)

βn = Ln

{

−
[1 + µf (ηs + ηh − ηsηh)](1 − f )

f (1 − ηh)

}

, (26)

and Ln is the nth-order Laguerre polynomial, defined as

(Ref. [11], Eq. 22.11.6)

Ln(x) =
ex

n!

dn

dxn
(e−xxn) =

n
∑

k=0

(

n

k

)

(−x)k

k!
. (27)

As expected, Eq. (24) reduces to Eq. (9) for f = 1.

However, for f < 1, ξh(n) no longer features a finite limit

when n → +∞ (ξh grows exponentially), and multipair

probabilities increase. Indeed, as n increases, Eq. (23) becomes

Ps(n) ≃
1 + µf ηh

(1 + µf ηs)(dh + µf ηh)
e−µηs (1−f ) [µηs(1 − f )]n

n!
,

(28)

which shows that the main contribution to the multiphoton

statistics is that of the extraneous photons. Fortunately, the

probability of having multiple photons in the signal branch

remains negligible for sufficiently small µηs .

Figure 4 shows how filtering in the heralding and signal

branch modifies the probabilities of the source. All filtering in

1.0
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0.6

0.4

0.2

0.0

86420

FIG. 4. Effects of filtering. The original, nonheralded, probability

is shown as the solid line. As in Fig. 2, ηh = ηs = 50%, dh = 10−4,

and µ = 0.01. A filter with f = 10% is then inserted on one of the

branches. Filtering on the heralding branch is shown as the dashed

line; filtering on the signal branch, as the dash-dotted line.
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a single branch is both beneficial to the purity of the modes

and detrimental to the sub-Poisson quality of the source. The

physical effects of filtering in the signal and heralding branches

are different. Filtering in the signal branch degrades the

source by increasing Ps(0), which goes against the heralding

mechanism of the HSPS. On the other hand, a filter placed on

the heralding branch increases multiple-pair probabilities. This

effect can be reduced by proper dimming of the photon-pair

source. Hence, filtering the heralding branch is a better solution

for HSPSs.

VI. CONCLUSION

We have developed a model for HSPSs based on parametric

photon-pair generation. This model shows that the heralding

process results in a multiplying factor that increases the

probability of seeing at least one photon at the optical output

when a heralding signal is present.

Because of the parametric photon-pair source used in the

HSPS, the probability of seeing multiple photons at the output

cannot be eliminated. In fact, the heralding process only

increases that probability. Hence, the probability of having

exactly one photon is never unity. The only way to reduce the

occurrence of multiple pairs is to lower the average number

of pairs produced by the parametric source. However, dark

counts on the detector impose a lower limit on that average

value.

When a modally pure source of photons is required, the

best solution is to try and increase the purity of the parametric

photon source. However, this is not always possible, and

additional filtering might be required inside the heralding

system. In this case, it is preferable to implement filtering

of the heralding line, rather than the signal line.
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