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RESUME

Dans ce projet, nous développons une méthode de calcul précise et rapide pour les
écoulements a surface libre et une méthode des sensibilités lagrangiennes adaptées a ce type
d’écoulements. Les écoulements a surface libre sont tres courants dans la nature et dans les
applications industrielles. Leur compréhension est indispensable pour le design de structures
offshore par exemple. Cependant, leur simulation numérique reste difficile car la géométrie du
domaine fluide est une inconnue du probleme. De nombreuses techniques ont été développées
mais les calculs prenant en compte toutes les caractéristiques de I’écoulement, comme la vis-
cosité, la répartition horizontale des vitesses et de la pression deviennent souvent trop cotiteux
pour atteindre une précision suffisante. Dans ces conditions, la méthode des sensibilités est un
outil tres intéressant car elle permet de calculer les dérivées de I’écoulement par rapport aux
parametres de design. Les sensibilités peuvent donc étre utilisées pour calculer rapidement
le gradient de fonctions objectifs requis par la plupart des algorithmes d’optimisation, pour
identifier les parametres clé d’un systeme ou encore pour faire une analyse d’incertitude.

[’écoulement est calculé grace a une formulation arbitrairement lagrangienne-eulérienne
des équations de Navier-Stokes. Le domaine de calcul suit donc la forme de la surface libre,
ce qui permet de connaitre sa géométrie avec précision. Le maillage est déformé grace a une
approche pseudo-solide. Des schémas temporels de Runge-Kutta d’ordre élevé permettent
d’améliorer la précision des calculs. Pour la discrétisation spatiale, on utilise la méthode des
éléments finis avec des éléments de Taylor-Hood ou des éléments P1-P1 avec une stabilisa-
tion de type SUPG/PSPG pour pouvoir faire des calculs a haut Reynolds sans oscillations
numériques. Afin de satisfaire la loi de conservation géométrique et donc conserver 'ordre de
précision temporel sur maillage déformable, la formulation variationnelle du probleme doit
étre conservative et le calcul des vitesses de maille doit étre consistant avec le schéma tem-
porel choisi. Les sensibilités sont calculées grace a un point de vue lagrangien. On calcule donc
les dérivées totales des variables par rapport au parametre, ¢’est a dire que 'on tient compte
de la dépendance du domaine fluide par rapport au parametre. Les conditions limites sont
alors simples, méme si la frontiere subit des déformations. Les équations des sensibilités sont
obtenues en dérivant la formulation faible de I’écoulement. Pour la résolution, les méthodes
numériques sont les mémes que pour I’écoulement.

La méthode est ensuite vérifiée grace a la méthode des solutions manufacturées. On
vérifie alors, pour chaque schéma temporel et pour chaque type d’éléments, que 'ordre de
convergence observé est bien conforme avec l'ordre théorique de la méthode. On montre

ainsi que les termes de stabilisation n’empéchent pas la satisfaction de la loi de conservation
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géométrique et que les sensibilités présentent le méme taux de convergence que 1’écoulement.
Les schémas de Runge-Kutta d’ordre 3 ou 5 permettent d’atteindre une meilleure précision
temporelle avec 100 fois moins de pas de temps que le schéma d’Euler implicite, ce qui permet
de réduire significativement le cout des calculs.

On présente ensuite plusieurs applications en vue de valider la méthode et d’explorer
son champ d’application. On obtient tout d’abord des résultats en accord avec 7 autres
études pour un calcul de ballotement dans un réservoir. On étudie ensuite la propagation
d’une onde solitaire dans un canal. La couche limite au fond provoque un amortissement de
I’amplitude de 'onde en accord avec des modeles analytiques. Notre méthode permet aussi
de simuler la séparation de 'onde lorsque la hauteur de fond varie. Nous testons ensuite la
génération de houle dans un bassin grace a un batteur a piston. On montre alors que la
méthode supporte des déformations importantes de la surface libre, méme si on ne peut pas
simuler de déferlement. De plus, les caractéristiques de la houle générée sont en accord avec
la théorie et des mesures expérimentales. Enfin, on présente un cas d’interaction entre la
houle et un cylindre immergé. Les efforts obtenus sur le cylindre sont proches des mesures
expérimentales. On montre en plus que le calcul complet de la surface libre est indispensable
pour obtenir toutes les harmoniques des efforts. Les sensibilités par rapport a la position
et au rayon du cylindre sont utilisées pour extrapoler les efforts et ’écoulement sur des
configurations voisines. Les principales caractéristiques de 1’écoulement perturbé sont alors
bien reproduites. La méthode choisie pour les sensibilités est donc validée et bien adaptée a

ce type d’écoulement.
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ABSTRACT

In this project, we develop a methodology for rapid and accurate free-surface flow simulation
and a Lagrangian sensitivity equation method suited to this type of flow. Free-surface flows
are very common in nature and in industrial applications. Their understanding is essential
for example, for the design of offshore structures. However, their numerical simulation is
difficult because the geometry of the fluid domain is part of the problem. Many techniques
have been developed but the simulations taking into account all the characteristics of the flow,
such as viscosity, the horizontal distribution of velocity and pressure are costly to achieve
sufficient accuracy. Thus, the sensitivity equation method is a very interesting tool because it
computes the derivatives of the flow with respect to design parameters. Sensitivities provide
quick evaluation of gradients of objective functions required by most optimization algorithms
and a better understanding of the flow by answering “what if?” questions.

The flow is calculated using an arbitrary Lagrangian-Eulerian formulation of the Navier-
Stokes equations. The computational domain follows the shape of the free surface. Hence,
its geometry is exactly known. The mesh is deformed with a pseudo-solid approach. We use
high order Runge-Kutta schemes for time integration and the finite element method with
Taylor-Hood or P1-P1 elements for the spatial discretization. Special attention must be paid
to the variational formulation of the Navier-Stokes equations and to the computation of the
mesh velocity to satisfy the Geometric Conservation Law (GCL). The GCL ensures that the
fixed mesh order of accuracy of the time integrator is preserved on moving meshes. We use
SUPG/PSPG stabilization with P1-P1 elements to compute high Reynolds numbers simula-
tion and to ensure that no numerical oscillations occur. Sensitivities are calculated using a
Lagrangian point of view. Total derivatives of the variables with respect to the parameter
are computed, ie we take into account the dependence of the fluid domain with respect to the
parameter. This method leads to simple and exact boundary conditions on moving domain.
The sensitivity equations are obtained by differentiating the weak formulation of the flow.
Similar numerical methods are used for the flow and for the sensitivities.

The method is then verified with the method of manufactured solutions. We check that
for each temporal scheme and for each type of element, the observed convergence rate is
consistent with the theoretical one. It is shown that the stabilization terms do not prevent
the satisfaction of the geometric conservation law. Moreover the sensibilities have the same
convergence rate as the flow. The 3" and 5 order accurate Runge-Kutta schemes achieve
better temporal accuracy with 100 times larger time steps than the implicit Euler scheme,

which significantly reduces the computation cost.
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Several applications are presented to validate the method and explore its scope. First,
our results are in agreement with 7 other studies for sloshing waves. Then we study the
propagation of a solitary wave in a channel. The bottom boundary layer causes a damping
of the wave amplitude in agreement with analytical models. Our method can also simulate
the separation of the wave over uneven bottom. We test wave generation in a pool using
a piston-type wave maker. We show that the method can suffer significant deformation of
the free surface, even if it cannot simulate breaking waves. Furthermore, the characteristics
of generated waves are consistent with theoretical results and experimental measurements.
Finally, we study interactions between incident waves and a submerged cylinder. The pre-
diction of the forces on the cylinder is close to experimental measurements. We show that
the complete calculation of the free surface is necessary to calculate all the harmonics of the
effort. We compute the sensitivities with respect to the position and the radius of the cylin-
der. Extrapolation of the forces and flow on nearby configurations reproduces accurately
the characteristics of the perturbed flow. The computation of the sensitivity is therefore

validated and is well suited to this type of flow.
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INTRODUCTION

Une surface libre est une interface entre un liquide et un gaz. Le mouvement du gaz a
alors peu ou pas d’influence sur le mouvement du fluide. Les surfaces libres sont de taille
et de nature tres variées. Il peut s’agir de la surface d’océans, de lacs ou de canaux, de la
surface d'un liquide dans un contenant, ou encore de goutelettes. Elles sont donc nombreuses
et interviennent dans beaucoup de cas pratiques notamment dans le domaine du transport
maritime, pour la conception des coques de bateaux, pour les constructions offshore ou flot-
tantes ou pour l'extraction d’énergie de la houle. Elles peuvent mettre en jeu des phénomenes
physiques complexes. De multiples études expérimentales ont été réalisées a leur sujet mais
elles restent cotiteuses. Les modeles numériques permettent d’obtenir des résultats de plus en
plus réalistes, mais impliquent souvent de faire des hypotheses simplificatrices (fluide parfait,
écoulement irrotationnel, écoulement moyenné sur la hauteur d’eau) ou alors ils deviennent
cotiteux. Ceci rend les études paramétriques compliquées lors du design d’objets en interac-
tion avec des surfaces libres. C’est pourquoi dans ce contexte, les sensibilités deviennent tres
intéressantes. Les sensibilités sont les dérivées de I’écoulement par rapport aux parametres
de définition du probleme. Ce parametre peut définir la forme de 'objet ou sa position, il
peut aussi s’agir d'une propriété du fluide ou de I'écoulement comme la viscosité, le nom-
bre de Reynolds, I'amplitude d’une vague incidente, etc.. Les sensibilités permettent ainsi de
calculer rapidement le gradient des fonctions de sorties qui peut ensuite étre utilisé par un
algorithme d’optimisation. Elles facilitent aussi la compréhension des phénomenes physiques
mis en jeu en quantifiant 'influence des parametres de définition du probleme. Ainsi, en un
seul calcul, elles remplacent de nombreuses simulations sur des configurations perturbées.
Cependant, peu de méthodes efficaces ont été développées pour le calcul des sensibilités des
écoulements a surface libre car les parametres affectent la forme du domaine. La forme de la
surface libre étant une inconnue de ’écoulement, la méthode de calcul des sensibilités doit
etre adaptée a celle du calcul de I’écoulement.

Dans ce projet, nous nous proposons de combiner une méthode de calcul performante
pour 'analyse de I’écoulement avec surface libre avec une analyse de sensibilité. Nous ferons
donc tout d’abord une revue de littérature pour balayer les méthodes utilisées et les modeles
correspondant pour le calcul de surface libre. Nous verrons ensuite quels sont les enjeux
apportés par la présence de la surface libre pour le calcul des sensibilités et les différentes
méthodes possibles. Grace a cette étude, nous pourrons justifier notre choix d'une description
arbitrairement lagrangienne-eulérienne pour I’écoulement couplée avec la méthode des sensi-

bilités lagrangiennes. Dans le chapitre suivant, nous décrirons de maniere détaillée la méthode



employée pour le calcul de la surface et ses enjeux numériques. Puis nous détaillerons les
équations correspondantes pour les sensibilités. L'implémentation des équations sera alors
vérifiée grace a une étude de convergence spatiale et temporelle. Le dernier chapitre portera
sur différentes applications en vue d’évaluer les performances de la méthode sur des cas pra-
tiques comme le ballotement, la génération de houle ou le calcul d’efforts générés par la houle

sur un cylindre.



CHAPITRE 1

REVUE DE LITTERATURE

1.1 Surface libre : définition

Une surface libre est une interface entre deux milieux. On considere un systeme constitué
des 2 milieux différents (1) et (2) occupant chacun les parties €y et Qy de l'espace Q et

séparés par une interface I';. Ce domaine est illustré sur la figure 1.1. L’interface I'; sera une

milieu 1

milieu 2 Q,

Figure 1.1 Domaine avec deux milieux

surface libre si le milieu (2) n’a pas d’influence sur le milieu (1), c’est-a-dire, si du point de
vue du milieu (1), le milieu (2) peut étre considéré comme du vide. La densité et la viscosité
du milieu (2) doivent donc étre négligeables par rapport a celle du milieu (1) donc py < py

et pg < py.
1.1.1 Quelques propriétés des interfaces

La tension superficielle

Toute interface porte une énergie proportionnelle a sa surface. Le coefficient de propor-
tionnalité positif s’appelle la tension superficielle et s’exprime en N/m ou en J/m?. Ainsi

toute interface aura tendance a minimiser sa surface afin d’abaisser son énergie, ¢’est pourquoi



les bulles de savon sont sphériques. Pour une interface entre de 'air et de I'eau, la tension
superficielle vaut 72mN/m. Elle est a prendre en considération pour 1’ étude des gouttelettes,
notamment pour ’éclatement de bulle, une étude numérique est par exemple présentée par
Duchemin (2001). Il montre notamment comment les échelles de temps peuvent étre variées
dans I'étude de tels phénomenes. La capillarité est aussi responsable de la formation de
ménisques et de nombreuses instabilités comme l'instabilité de Plateau-Rayleigh. Au pas-
sage d’une interface au repos, on observe un saut de pression, proportionnel a la tension

superficielle qui peut s’exprimer par la loi de Laplace :
Ap =~C (1.1)

Le saut de pression observé dans une gouttelette sphérique de rayon R est donc Ap = 2v/R.
Par exemple, la surpression dans une bulle de champagne de rayon de 'ordre de 100 microns
vaut une centaine de pascals.

Conditions limites de surface libre

— Conditions cinématiques : L’interface est une surface matérielle, c’est a dire que si elle

est définie par une équation du type F(x,z,t) =0, la dérivée matérielle de F doit étre

nulle donc
DF B oF

Dt ot

En régime stationnaire, cette condition se réduit a u-n =0

+u-VF=0 (1.2)

— Condition dynamique : Condition sur les contraintes normales

Il s’agit d’'une généralisation de la loi de Laplace citée précédemment. Au passage
de l'interface, on observe un saut des contraintes normales proportionnel a la tension
superficielle.

o1 -n—pn=+yCn (1.3)

Quelques nombres adimensionels

Selon les cas étudiés plusieurs nombres sans dimension seront pertinents pour caractériser
les systemes. Ils permettront de comparer les effets des différents phénomenes mis en jeu.
Le nombre de Bond permet de comparer les effets de la gravité par rapport aux effets de

la tension superficielle. Il s’exprime de la maniere suivante :

ng2 - L2

Po="0""%

(1.4)



ou L est une longueur caractéristique du probleme. On voit alors apparaitre la longueur
capillaire [, = \/m qui fixe I’échelle en dessous de laquelle les effets de tension superficielle
dominent les effets de la gravité (Quéré, 2004).
Le nombre capillaire permet de comparer les efforts visqueux par rapport a la tension
superficielle :
Ca = ny (1.5)
Y

Le nombre de Ohnesorge est parfois utilisé

__ K _ [Ca
Oh = T\ 7 (1.6)

ou Re est le nombre de Reynolds, Re = pUL/p
Le nombre de Weber permet de comparer les effets d’inertie par rapport aux effets de la

tension superficielle. Il s’exprime de la maniere suivante :

~ pU’L
Y

We

(1.7)

Le nombre de Froude permet de comparer les effets d’inertie par rapport a la gravité, il

a pour expression :

Fr=—— (1.8)

Le nombre de Cauchy permet de mesurer les déformations d’un solide dans I’écoulement

sous l'effet de la pression dynamique.

o

Cy z

(1.9)

ou E est le module de Young de la structure en question. De nombreux autres nombres
peuvent étre utilisés, on trouvera des exemples complémentaires dans le livre de de Langre
(2001).

Pour la modélisation de la houle, on utilisera le nombre d’Ursell :

H)\?
Ur = e

(1.10)

ou H est la différence de hauteur de la vague (créte a creux), A est la longueur d’onde et h
la profondeur d’eau au repos. Ce nombre permet de classer les différents types d’onde et de

distinguer les théories valables.



1.1.2 Modélisation des écoulements a surface libre

Selon les cas étudiés, on peut utiliser différentes équations pour décrire le mouvement
du fluide. On ne s’intéressera qu’aux écoulements laminaires, incompressibles et isothermes
de fluides newtoniens. On considere un domaine €2, sa frontiere est notée I'. La frontiere se
décompose en trois parties disjointes comme illustré sur la figure 1.2. La surface libre est
notée I';, la partie de la frontiere sur laquelle sont imposées des conditions de Dirichlet est

notée I',, et les conditions de Neumann sont imposées sur la portion de frontiere I';.

My

[

Figure 1.2 Domaine fluide comportant une surface libre.

Equations de Navier-Stokes

Les équations les plus générales sont les équations de Navier-Stokes. Elles expriment la
conservation de la masse et la conservation de la quantité de mouvement dans le domaine €2

de la fagon suivante.

Continuité : V-u=0 (1.11)

u
Mouvement : e +p(u-Vyu=-Vp+V-7(u)—pge, + f (1.12)
Avec les conditions aux frontieres classiques :

sur [y, (1.13)
sur I'y (1.14)

I
S

u

«

—pn® +7(u) - n
ou 7(u) est le tenseur des contraintes visqueuses défini de la maniére suivante :

7(u) = pu (Vu+ Vu')



A ces conditions aux limites classiques s’ajoutent les conditions a l'interface énoncées au
paragraphe 1.1.1
Ces équations sont complexes a résoudre, c’est pourquoi, selon les cas étudiés, on peut

faire quelques simplifications.

Hypothese hydrostatique

Une simplification peut étre faite si I'étude porte sur des écoulement quasi-horizontaux,
c’est-a-dire pour lesquels les vitesses horizontales sont beaucoup plus grandes que la vitesse
verticale. Dans ces conditions, ’accélération et la diffusion dans la direction verticale peuvent
étre négligées. Ainsi la projection de I’équation du mouvement sur ’axe vertical devient

dp

O:—a—pg (1.15)

La pression se réduit donc a la pression hydrostatique.

Equations de Saint-Venant

Dans le cas des eaux peu profondes, en pratique, il n’est pas intéressant de connaitre
les vitesses verticales ni la répartition des vitesses dans le plan vertical mais seulement leur
moyenne (Viollet, 1998). Dans ces cas, ce sont les équations de Saint-Venant qui sont utilisées.
Sous I’hypothese hydrostatique en supposant que 1’écoulement est quasi horizontal et que les
vitesses verticales sont négligeables, les équations de Navier-Stokes sont moyennées sur la

verticale. Elles s’expriment de la fagon suivante :

Continuité : % + V. (hu) =0 (1.16)
oh
Mouvement : 8—tu + (huV)u = —ghVz, + V - (hvAu) + hf (1.17)

ou h est la hauteur de fluide et z, la cote de la surface libre. Elles servent tres souvent
pour décrire les écoulements dans les rivieres et les canaux ou des mers le long de cotes.
Elles admettent des solutions discontinues, qui permettent de calculer les ressauts lors de la

transition entre les régimes torrentiel et fluvial dans les rivieres et dans les canaux.

Equations de Stokes

Lorsque les forces visqueuses dominent la convection, le nombre de Reynolds est tres petit

et on peut négliger le terme convectif dans les équations de Navier-Stokes (Barthes-Biezel,



2005).
Continuité : V-u=0 (1.18)
9,
Mouvement : pa—? =—-Vp+V-71(u)—pge. + f (1.19)

Ces équations, dites des écoulements rampants, sont utilisées dans les problemes de lubrifi-

cation, de graissage.

Théorie potentielle

Dans de nombreuses applications, le fluide est supposé non visqueux. De plus, si
I’écoulement est irrotationnel, la théorie potentielle s’applique. Il existe donc un potentiel
¢ tel que u = V¢. L’équation de la continuité devient alors A¢ = 0. On suppose aussi que
les forces sont conservatives et dérivent d’un potentiel ¢). Alors d’apres le deuxieme théoreme
de Bernoulli, I’écoulement est décrit par I’équation suivante :

o6 p U?

Tt T g =0(t 1.20

L v =C (1.20
Dans le cas ot le fluide n’est soumis qu’a la gravité, ¥ = gz. En deux dimensions, la surface
libre est représentée par 1'équation z = n(z,t). Les conditions de surface libre deviennent
alors

— Condition cinématique :

o 000 _ 0
ot Ordr 0z

(1.21)

— Condition dynamique :

oo 1

L VolP+g2=0 1.22
SV 4 g (122
Les conditions de surface libre compliquent la résolution car elles sont non linéaires. Le
probleme peut étre linéarisé en développant le potentiel en série de Taylor par rapport a un

petit parametre.

Modélisation de la houle et des ondes

Les surfaces libres sont tres souvent sujettes a la propagation d’ondes comme la houle ou
les tsunamis pour 'océan. Dans beaucoup de modélisations, on utilise la théorie potentielle.
Les équations sont alors simplifiées selon les cas étudiés. Le nombre d’Ursell permet de
discriminer plusieurs cas.

Si le nombre d’Ursell est tres petit, les effets non linéaires de la surface libre sont



négligeables devant les phénomenes de dispersion. On peut appliquer la procédure dite de
Stokes qui consiste a développer les variables (donc le potentiel ¢) par rapport a la cambrure
des vagues donnée par ¢ = A/\ ou A est amplitude de la vague et A sa longueur d’onde.
Une étude détaillée est donnée par Molin (2002).

Si le nombre d’Ursell est de I'ordre de 1, il s’agit d’ondes cnoidales ou d’ondes solitaires.
On suppose alors que la hauteur d’eau est petite devant la longueur d’onde et que 'amplitude

des vagues est petite devant la hauteur d’eau. On a donc

h A h?
X<<1etﬁ—0(/\2) (1.23)

En combinant la théorie potentielle et ces hypotheses, on obtient les équations de Boussi-
nesq (1872) décrites en détail par Svendsen (2006) :

o  O(h+nuy 1 50

5t o =z (1.24)
Oy on 13u0 1
% % Yoo~ 3 p (1.25)

ou ug est la vitesse au fond. Ces équations peuvent encore se simplifier selon le cas. Elles
permettent par exemple une bonne description des ondes solitaires.

Toutes ces modélisations menent a des équations n’ayant pas de solution analytique. De
nombreuses méthodes numériques ont été développées pour les résoudre et calculer notam-
ment de maniere précise la localisation de l'interface. Ces méthodes sont décrites dans la

section 1.2.

1.1.3 Quelques exemples d’écoulements a surface libre

Cette section décrit rapidement quelques écoulements qui ont été largement étudiés aussi
bien analytiquement, qu’expérimentalement ou numériquement. Ils pourront donc étre fort

utiles pour valider nos développements.

Ecoulements pouvant servir de validation

Jets Les jets peuvent étre de nombreuses natures, stable ou instable, impactant ou libre. En
particulier, les jets stationnaires s’averent utiles pour la vérification de code. Dans d’autres
situations, le jet peut se briser sous l'effet de la tension superficielle. Tous ces cas sont détaillés
dans le livre de Middleman (1995).
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Bris de barrage Le cas du bris de barrage est largement utilisé pour valider une méthode
de calcul. Le cas classique est le suivant. Le fluide est retenu par un barrage et a t=0, la paroi
du barrage est enlevée, le fluide peut donc s’écouler en s’affaissant sous 'effet de son propre
poids. On étudie alors la position du point d’avancement maximum avec le temps (Huerta
et Liu, 1988). Ce cas a fait I'objet de nombreuses études expérimentales (Jeyapalan, 1980)

pouvant servir de base de comparaison.

Modes oscillatoires de bulles Sous l'effet de la tension superficielle, éloignée de sa po-
sition d’équilibre et en négligeant les frottements, une bulle oscillera autour de sa position
d’équilibre. Elle peut osciller selon plusieurs modes bien connus et décrits par des formules
analytiques. Ceci constitue une bonne base pour valider la modélisation de la tension super-
ficielle (Dettmer et Peric, 2006b).

Ballottement de petite et grande amplitude L’étude porte sur les oscillations de la
surface libre d’'un fluide dans un réservoir. On peut étudier les oscillations de faibles ampli-
tudes : la surface libre ou l'interface est perturbée et on étudie son retour a I’équilibre. Lorsque
le contenant est en mouvement, les déformations de la surface libre sont plus importantes.
Ceci s’applique au transport sur bateau de containers de gaz naturel liquéfié. Sous 'effet de
la houle, les réservoirs ont un mouvement oscillatoire qui peut provoquer des mouvements de
forte amplitude du liquide. Le fluide peut alors exercer des efforts importants sur les parois
du container, notamment lorque les vagues derferlent. Ibrahim (2005) développe la théorie et

les applications de tels problemes.

Ecoulements plus complexes

Vagues et points d’impact Un peu dans la meme optique que le ballottement, on
peut étudier I'évolution d'une vague sur un plan incliné puis 'impact de cette vague, ayant
éventuellement déferlé sur une paroi élastique. Kimmoun et al. (2009) ont fait de nombreuses

expériences a ce sujet.

Profil d’aile ou cylindre sous une surface libre Il s’agit d’étudier le comportement
d’un profil d’aile sous la surface libre pour mieux comprendre le comportement des hydrofoils.
Par exemple, Zhu et al. (2006) proposent une étude numérique des oscillations observées sur
la surface libre au dessus d'un profil oscillant. Dans la méme gamme de probleme, on peut
citer Mironova (2008) qui étudie un cylindre oscillant sous une surface libre ou Lu et al. (2008)

qui a simulé un écoulement turbulent avec surface libre au dessus d’un obstacle cylindrique.
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1.2 Meéthodes numériques

Pour simuler les écoulement a surface libre, il faut calculer les différentes inconnues du
problemes sur un domaine fluide dont la géométrie dépend de la solution. Les différentes
approches peuvent se classer en trois catégories selon le type de maillage adopté.

— Les calculs peuvent étre effectués sur un maillage fixe. La position de l'interface est

reconstruite par le calcul sur le maillage de fond, ce sont des méthodes dites eulériennes.

— Le domaine peut étre déformé en méme temps que l'interface, on parle alors de méthodes

lagrangiennes ou lagrangiennes-eulériennes.

— Enfin, d’autres méthodes n’utilisent pas de maillage.

Nous allons donc dans cette partie décrire les techniques les plus utilisées pour chaque

catégorie en essayant d’en dégager les principaux avantages et inconvénients.

1.2.1 Meéthodes avec maillage fixe

Une formulation eulérienne est utilisée pour décrire le mouvement du fluide. Le maillage
est donc fixe et 'interface est capturée par différentes techniques. Ces méthodes peuvent se
diviser en 2 catégories (voir Gopala et van Wachem, 2008). Soit chaque milieu est marqué
de fagon a le distinguer des autres (marqueurs, VOF), soit l'interface elle-méme est repérée

(level set method, front tracking method).

Volume de fluide (Volume of fluid VOF)

Cette méthode est tres utilisée et a été développée au début des années 80 par Hirt et
Nichols (1981) et largement développée au fil des années pour améliorer la précision de la
capture d’interface.

Chaque domaine est identifié a I’aide d’une fonction indicatrice, valant 1 dans un domaine,
0 dans un autre. Pour les éléments du maillage qui contiennent une portion de l'interface,
cette fonction 6 représente la fraction de volume occupé par chaque fluide. L’écoulement
peut alors étre calculé sur tout le domaine en utilisant une combinaison des propriétés de
chaque milieu. Par exemple, pour la densité et la viscosité, on prendra p = 0p; + (1 — 0)ps
et = 0u; + (1 — 0)puz onr O vaut 0 dans le milieu 1 et vaut 1 dans le milieu 2. La fraction de

fluide 0 est calculée grace a une équation de convection :

00
- V0 =0 1.26
L’enjeu principal des méthodes VOF est alors de résoudre correctement cette équation.

La plupart des schémas classiques sont trop diffusifs ou créent des oscillations purement
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numériques. Il en résulte une mauvaise conservation de la masse ou une mauvaise géométrie
de l'interface, ce qui affecte le calcul de la tension superficielle. De nombreuses corrections
ont donc été proposées. Pour assurer la conservation du volume, McDavid et Dantzig (1998)
proposent la méthode suivante : la fraction de volume est intégrée sur chaque élément pour
obtenir une fraction de remplissage de I’élément et est actualisée en calculant les flux passant
par la partie "mouillée” de chaque aréte de I'élément. D’autres approches sont comparées par
Gopala et van Wachem (2008). La plupart reposent sur une approximation de flux donneur-
accepteur proposée initialement par Hirt et Nichols (1981) pour les méthodes VOF. Elle a
été développée et améliorée par Ubbink et Issa (1999) pour donner le schéma CICSAM qui
permet une reconstruction précise de l'interface et une bonne conservation de la masse. Aulisa
et al. (2003) ont développé un schéma permettant de conserver la masse exactement.

Les autres enjeux des méthodes VOF sont la localisation de U'interface et 1'application
de la tension superficielle sur l'interface. En effet, la géométrie de la surface libre étant
reconstruite a posteriori, le traitement des conditions limites est délicat. Il existe plusieurs
techniques de reconstruction. Par exemple, I'interface peut étre délimitée dans une cellule par
un segment parallele & un des axes de coordonnées, il s’agit de la méthode SLIC (simple line
interface calculation), ou alors la reconstruction peut étre linéaire, c’est la méthode PLIC
(piecewise linear interface calculation). La seconde est plus précise que la premiere. Pour
plus de détails, on consultera Scardovelli et Zaleski (1999). Une autre approche consiste a
considérer # comme une pseudo-concentration. L’interface correspond alors aux points pour
lesquels 6 = 1/2 (Thompson, 1986; Dufour et Malidi, 2004).

Pour la tension superficielle, Brackbill et al. (1992) propose une technique CSF (Contin-
uum Surface Force) qui permet de transformer la force surfacique de la tension superficielle
en une force volumique équivalente. Cette technique repose sur un lissage de la discontinuité
a 'interface.

Ces méthodes sont largement utilisées pour le calcul des écoulements avec des interfaces
multiples pouvant se briser ou pour la prédiction de la coalescence de bulles. On notera
les travaux de Lohner et al. (2007) sur le ballottement avec déferlement de vagues ou de
Mironova (2008) sur I’étude de 'effet d’une surface libre sur I'allée de vortex dans le sillage

d’un cylindre oscillant.

Méthodes d’ensemble de niveaux (Level Set Method)

Cette méthode a été développée par Dervieux et Thomasset (1981) et Osher et Sethian
(1988) pour calculer la position d’interfaces de toutes sortes ou pour tracer des contours de
méme intensité dans les images. La méthode est décrite dans un cadre général dans le livre

de Sethian (1996) et a été adaptée aux problemes de mécanique des fluides par Sussman
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et al. (1994) et Chang et al. (1996). Le principe de cette méthode est d’ajouter aux inconnues
du fluide une fonction représentant la distance a l'interface ®. L’interface se trouve sur le
contour de valeur nulle de cette fonction. Son signe permet de distinguer les deux milieux
de facon consistante. La valeur de cette fonction est ensuite déplacée par convection avec le

fluide, de sorte que son équation d’évolution est la suivante :

aa_f+u.vq>:0 (1.27)
Cette formulation est tres intéressante car la fonction ® apporte de nombreuses informations
sur I'interface. Par exemple, la normale et la courbure s’obtiennent en évaluant les gradients
de ®. Ainsi, n = V®/||[V®|. La tension superficielle est alors imposée comme un terme
source non local (voir Chang et al, 1996), d’'une maniere similaire a la méthode de force
continue (Brackbill et al., 1992). Les propriétés du fluides sont évaluées de la fagon suivante :
si @ est négative dans le milieu (1) et positive dans le milieu (2), alors la masse volumique

et la viscosité s’expriment par :

p(r) =p1 + H(®(x))(p2 — p1) (1.28)
p(z) =p1 + H(®(x))(p2 — ) (1.29)

ou H est la fonction de Heaviside (nulle si x < 0, unitaire ailleurs). Ces équations doivent
étre régularisées pour permettre la résolution numérique, le plus souvent en remplacant la
fonction de Heaviside sur un petit intervalle entourant 0 par une portion de sinusoide (Peskin,
1977). Un des défis de cette méthode est la discrétisation des termes convectifs de 1’équation
d’évolution de ® (1.27). En effet, la résolution de cette équation peut mener a des oscillations
ou alors a des schémas numériques trop diffusifs. Le schéma le plus utilisé est le schéma ENO
(essentially non-oscillary advection scheme). Ce schéma est précis au deuxieme ordre (Shu
et Osher, 1989). Il a été fortement amélioré pour obtenir des schémas WENO (weighted es-
sentially non-oscillary advection scheme) précis jusqu’aux 11eme ordre (Kurioka et Dowling,
2009) qui permettent aussi de réduire la taille du maillage nécessaire pour avoir une précision
suffisante. La formulation ne permettant pas non plus de conserver la masse, la fonction
® doit etre réinitialisée pour préserver ses propriétés de distance a l'interface au cours du
temps. Plusieurs possibilités ont été proposées dans les travaux de Sussman et al. (1994) et
Chang et al. (1996) et reposent sur le constat que le mouvement normal de U'interface di a la
diffusion numérique dépend de sa courbure. Malgré ces quelques difficultés, cette formulation
est tres largement employée car ® est une fonction dont la topologie des contours ® = 0 peut
changer. Ainsi, cette méthode permet de simuler facilement des gouttelettes qui fusionnent,

qui impactent sur une surface d’eau ou qui éclatent, des vagues déferlantes, des interfaces
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qui subissent de grandes déformations ou ’atomisation d’un jet laminaire. On pourra noter
les travaux de Sussman et al. (1994) et de Chang et al. (1996) sur la coalescence de bulles
avec tension superficielle, ceux de Yue et al. (2005) sur 'étude d’écoulements turbulents dans
des canaux ouverts et U'interaction entre le fond et la surface, de Ilinca et Hétu (2008) sur le
remplissage de moule avec des suspensions denses ou de Chen et Yu (2009) sur des jets ou

I’écoulement autour de coques de bateaux.

Les Marqueurs

Les marqueurs sont des particules intégrées au fluide qui permettent d’identifier la nature
du milieu. Mckee et al. (2008) en donnent un bref historique. Les premiéres méthodes appelées
Particule in cell (PIC) ont été développées a la fin des années 50 par Ervin et Harlow (1957).
Des particules matérielles transportaient la masse et la nature du fluide. Cependant le schéma
était trop diffusif. La méthode MAC (Marker and Cell) fut ensuite développée par Welch
et al. (1965). Des particules virtuelles sans masse permettent d’identifier le milieu. Elles se
déplacent de cellule en cellule sur un maillage fixe cartésien. Au départ, des particules sont
réparties uniformément dans les cellules, identifiant un certain fluide, ou s’il n’y a aucune
particule une cellule vide. Les particules se déplacent en fonction de la vitesse calculée au
centre de la cellule. Pour avoir une grande précision, il faut donc beaucoup de marqueurs.
De plus, a cause du schéma temporel explicite, la condition CFL doit étre respectée. Les
marqueurs ne peuvent donc pas se déplacer de plus d'une cellule par pas de temps. On peut
donc se limiter aux cellules décrivant la surface et a leur voisine pour la mise a jour de
la position des marqueurs. L’interface peut aussi étre sujette a des ondulations. Ceci peut
étre corrigé en introduisant des sous-cellules (de Sousa et al., 2004). La forme de l'interface
est ensuite interpolée entre les positions des marqueurs dans une cellule et ses voisines, par
exemple une interpolation quadratique est suffisante pour calculer la normale et la courbure
(de Sousa et al., 2004).

Les marqueurs sont utilisés également pour identifier I'interface elle méme (Shyy, 1996).
Cette méthode est numériquement moins cotiteuse que la précédente puisque le nombre de
marqueurs nécessaires pour estimer la position de l'interface est moins important. Les par-
ticules sont placées sur l'interface et déplacées avec la vitesse du fluide de fagon purement
lagrangienne. La géométrie de l'interface est ensuite interpolée. Shyy (1996) propose une in-
terpolation a 'aide d’arc de cercles, ce qui permet de calculer la courbure en méme temps.
Popinet et Zaleski (1999) utilisent des splines cubiques, ce qui est plus précis. La position de
I'interface étant connue dans un maillage fixe, il est alors facile de calculer des factions de
volumes et ainsi les propriétés du fluide a utiliser. Popinet et Zaleski (1999) ont comparé leur

méthode de marqueurs avec une méthode VOF classique pour étudier I'instabilité de Taylor-
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Rayleigh. Les résultats montrent que 'utilisation des marqueurs permet de localiser I'interface
de maniere tres précise. Ils peuvent donc étre utilisés pour capter des phénomenes de petite
échelle. Par exemple, Duchemin (2001) utilise cette méthode pour simuler I’éclatement d’une
bulle d’air a la surface de I'eau.

Ces méthodes se montrent assez performantes mais demandent une attention particuliere
si la topologie de l'interface change. Par exemple, si deux interfaces fusionnent ou si une

interface se divise. On trouvera des exemples de procédures pour traiter ce probleme dans
Shyy (1996) et Mckee et al. (2008).

Avantages et inconvénients

Ces méthodes offrent de multiples avantages. Comme l'interface est reconstruite sur un
maillage fixe, les changements topologiques de l'interface ou des déformations importantes
sont faciles a gérer. De plus, comme le maillage est fixe, 'adaptation de maillage est aisée
et peut améliorer grandement la précision du calcul. La présence de la surface libre de-
mande de résoudre en général une équation supplémentaire de transport, ce qui n’est pas
numériquement tres couteux. Cependant, ce calcul doit étre tres précis. Ceci est en effet le
principal inconvénient des méthodes a maillage fixe. La reconstruction approximative de la
position de 'interface fausse la conservation de la masse. Les choses se compliquent encore si
I’on envisage des situations avec plus de deux fluides. L’imposition des conditions aux limites
sur l'interface, notamment la tension superficielle est, elle aussi, plus délicate. De nombreux
algorithmes ont donc été développés pour accroitre la précision de ces méthodes qui sont tres

largement utilisées.

1.2.2 Méthodes sans maillage
Méthodes intégrales

Ces méthodes permettent d’écrire les équations du fluide par des intégrales sur la frontiere
seulement, ce qui permet de réduire d'une dimension le probleme. Cependant, ces méthodes
menent a de bons résultats seulement si les équations sont linéaires (Shyy, 1996). Elle sont
donc utilisées principalement pour les écoulements potentiels ou régis par les équations de
Stokes. Plus de détails sont donnés sur la formulation par Dijkstra et Mattheij (2008).
Par exemple, Bergmann et al. (2009) utilisent une telle méthode pour simuler les cavités
formées par la chute d'un disque dans de I'eau. Leurs résultats sont alors en accord avec les
résultats expérimentaux. Sun et Faltinsen (2006) simulent grace a cette approche I'impact

d’un écoulement d’eau sur un cylindre élastique.
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Méthode a particules lagrangiennes : SPH

La méthode dite Smoothed Particules Hydrodynamics (SPH) a été élaborée a I'origine en
astrophysique et adaptée a la simulation des écoulements avec interface par Monaghan (1994).
Cette méthode utilise des particules lagrangiennes qui possedent les propriétés matérielles
du milieu décrit, une masse et une vitesse propre. Ces méthodes s’appliquent aux fluides
compressibles et ont tendance a devenir instables quand la vitesse du son devient trop grande.
Pour des fluides incompressibles, cette derniere est fixée arbitrairement de sorte que les
variations de densité dans le fluide sont inférieures a 1%. Les équations de Navier Stokes sont
alors formulées d’un point de vue lagrangien. Les quantités nécessaires (vitesses, pression,
densité, leur dérivée lagrangienne par rapport au temps et leurs gradients) sont calculées par

la discrétisation suivante. Une fonction f en un point r est approchée par

f(r) ~ /Df(a:)W('r —x, h)dz (1.30)

ou D est un domaine circulaire de rayon proportionnel a A centré en r et W est un noyau qui
tend vers une distribution de Dirac quand h tend vers 0. Grace a une intégration par parties,

on définit facilement I'expression du gradient de f de la fagon suivante :
Vir)~ / f(x)VW(r —x, h)dx (1.31)
D
Ces expressions sont ensuite approchées par une quadrature de sorte que

f(ri) = Z flr)W(r; —rj, h)w; (1.32)

ou les points 7; sont les points d’interpolation dans le domaine D. Des algorithmes per-
formants doivent étre développés pour trouver les voisins d’une particule, on trouvera un
exemple dans larticle de Viccione et al. (2008).

Les conditions de surface libre n’ont pas a étre imposées car elles sont satisfaites naturelle-
ment par la formulation. La tension superficielle peut étre imposée par une méthode CSF
comme pour les formulations VOF. Cependant, les conditions aux limites sont délicates a
imposer pour une paroi solide. Il faut par exemple créer des particules fantomes de 1'autre
coté de la frontiere (Oger et al. (2006) et Fang et al. (2006)).

Les méthodes SPH permettent de simuler une large variété d’écoulement. La topologie
de linterface peut changer. Le traitement de détachements de gouttelettes ou de vagues
déferlantes ne pose donc aucun probleme. Elles peuvent aussi étre couplées avec des modeles

de turbulence, Shao et Ji (2006) ont ainsi obtenu de trés bon résultats pour des vagues
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déferlantes. De plus, ces méthodes sont faciles a implémenter et ne demandent pas de maillage.
Cependant, elles peuvent se montrer instables et peu précises (Oger et al., 2006). Des formu-
lations ont été développées pour pallier ces problemes (Grenier et al., 2009; Fang et al., 2009).
Grenier et al. (2009) comparent leurs résultats sur une instabilité de Taylor Rayleigh avec
la méthode des ensembles de niveaux classique. Leur formulation SPH donne des résultats

similaires mais converge beaucoup plus vite quand le nombre de particules augmente.

1.2.3 Méthodes a maillage mobile

D’autres méthodes sont dites “a maillage mobile”. Une des frontieres du domaine est
I'interface elle-méme, le domaine de calcul se déforme alors en méme temps que le domaine
matériel. Ce cas peut étre traité de maniere purement lagrangienne ou en choississant un

point de vue lagrangien-eulérien.

Méthodes completement lagrangiennes

Ces méthodes reposent sur une écriture completement lagrangienne des équations Navier-

Stokes, c’est a dire que I'équation du mouvement (1.12) devient

Du

pﬁ =—-Vp+ V- 7(u)—pge, + f (1.33)

Le maillage suit alors les particules fluides. Feng et Peric (2000) donnent un exemple de
cette méthode avec une formulation espace-temps. L’avantage de cette méthode est que la
position de l'interface est parfaitement connue puisqu’il s’agit d'une frontiere du domaine.
Cependant, comme le maillage suit 1’écoulement, des distorsions apparaissent rapidement,
comme le montre I’exemple de I’écrasement d’une colonne de fluide. Il faut alors remailler le
domaine. Powell et Savage (2001) utilisent un critére de qualité du maillage pour remailler
quand les éléments sont trop étirés ou lorsque la courbure de l'interface devient grande afin
de conserver un bonne précision. Il faut donc jumeler cette formulation a une technique

automatique de remaillage, ce qui rend le processus cotteux.

Méthodes mixtes : Formulation Lagrangienne-Eulérienne (ALE)

La formulation lagrangienne-eulérienne ALE (Arbitrary Lagrangian Eulerian) a été pro-
posée au début des années 70 par Hirt et al. (1997) pour utiliser une description lagrangienne
du fluide tout en gardant une grande flexibilité du maillage. Elle a été adaptée a la formulation
éléments finis par Hughes et al. (1981). L'interface constitue une des frontieres du domaine,

ce qui permet de connaitre précisément sa position et de faciliter I'imposition des conditions
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aux limites. Le maillage a alors sa déformation propre. Si v,, est la vitesse de déformation
du maillage, alors elle doit étre telle que (u — v,,) - = 0 a la surface libre. Ainsi, pour un
canal, les noeuds a la surface libre ne sont pas forcés de se déplacer a la vitesse du fluide,
ce qui évite les distorsions. Cependant, le domaine doit étre remaillé lorsque la déformation
de l'interface devient trop grande ou quand l'interface change de topologie. Dettmer et Peric
(2006b) montrent comment on peut intégrer la force de la tension superficielle dans une for-
mulation éléments finis et obtiennent de bons résultats en simulant la chute de gouttelettes
ou un bris de jet. Cette formulation est aussi largement utilisée en interaction fluide-structure
(Etienne et al., 2006; Dettmer et Peric, 2006a).

Procédure DSD /ST (deforming spacial domain/space time)

Cette approche consiste a écrire la formulation variationnelle éléments finis du probleme
sur un domaine espace temps @, = Q X [t,, t,+1]. L'interface constitue ici aussi une frontiere
du domaine, donc sa géométrie est connue explicitement. Ainsi aucune vitesse de déformation
n’apparait dans la formulation. Celle-ci doit cependant étre calculée pour mettre a jour
le domaine d'un pas de temps a l'autre. Cette formulation a été développée et testée par
Tezduyar et al. (Tezduyar et al., 1992a,b)

1.2.4 Conclusion

Les écoulements a surface libre sont complexes a simuler car la position de 'interface n’est
pas connue a priori. Différentes approches ont été développées pour résoudre ces problemes.
Il faut donc choisir la méthode appropriée en fonction de I'application. Les criteres seront
notamment la précision souhaitée sur la position de I'interface et la prise en compte la tension
superficielle. Dans ce dernier cas, les méthodes a maillage mobile semblent plus adaptées.
Si l'on s’attend a des déformations tres importantes de l'interface ou a des changement
topologiques, les méthodes a maillage fixe telles que les méthodes a lignes de niveaux ou

VOF seront plus appropriées.
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1.3 Formulation Lagrangienne-Eulérienne (ALE)

Des méthodes décrites précédemment, les méthodes a maillage mobile sont celles qui
permettent d’obtenir le plus de précision sur la position de la surface libre. Ainsi, dans
I'optique de calculer 'influence de divers parametres sur l'interface, ces techniques semblent
plus appropriées. La méthode lagrangienne-eulérienne permet d’avoir une grande flexibilité

pour la déformation du domaine.

1.3.1 Equations de Navier Stokes

La cinématique eulérienne-lagrangienne permet d’introduire une déformation du domaine
indépendante de I’écoulement. On introduit alors la vitesse de déformation du domaine v,,,
appelée également vitesse de maille. Sur le domaine ainsi déformé, les équations de Navier

Stokes prennent la forme suivante :

Continuité : V-u=0 (1.34)
ou

pa +p((u—vy) - V)u=—-Vp+ V. 7(u) —pge, + f (1.35)

Mouvement :

Conditions aux limites On souhaite que le domaine suive la déformation de l'interface.

Les conditions aux limites du probleme deviennent alors :

u=u sur [y, (1.36)

—pn® +7(u) -n=1ts sur Ty (1.37)
(u—v) - n=0 sur I (1.38)

U = Us sur I (1.39)

o' 'n—0o’ - n=7Cn sur I (1.40)

Ces conditions ont le méme sens physique que précédemment. La condition (1.38) traduit le

fait que l'interface est une surface matérielle.

1.3.2 Déformation du domaine de calcul

Comme on peut le constater dans I’équation (1.35), la vitesse de déformation du domaine
intervient dans les équations du mouvement. Il faut donc la calculer dans tout le domaine.

Elle doit étre réguliere et respecter les conditions aux limites
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Déformation du domaine Elle est arbitraire puisqu’elle n’a pas de signification physique.
Il s’agit d'un artifice de calcul. La qualité du maillage dépendra de la déformation choisie.
On recense plusieurs techniques. Hughes et al. (1981) proposent de calculer la vitesse de
convection u — v,, comme une fonction linéaire de la vitesse matérielle des particules fluides.
Cette fonction doit étre précisée pour chaque point du domaine a chaque pas de temps,
il est donc difficile de maintenir une bonne qualité du maillage. Huerta et Liu (1988) ne
calculent que la déformation de I'interface, la déformation a l'intérieur du domaine est définie
comme un certain pourcentage de la déformation de I'interface. Cependant, les phénomenes de
déferlement ne peuvent pas étre calculés de cette maniere. Dans 'article de Soulaimani et Saad
(1998), la déformation est calculée avec I'opérateur de Laplace, ainsi la vitesse de déformation
du maillage est solution de Awv,,, = 0. La technique du pseudo-solide est largement utilisée :
le maillage se déforme comme un solide linéaire (Sackinger et al., 1996). Cette technique est
tres souple, car le choix des coefficients de Lamé est libre. Stein et al. (2003) profitent de cette
flexibilité pour éviter les trop grandes distorsions de maillage en choisissant une structure
plus rigide pour les éléments de petite taille ou de petit volume. On peut aussi optimiser la
qualité du maillage en fonction d’un critére donné. Par exemple, Dettmer et Peric (2006b)
choisissent de rendre minimal pour chaque élément le rapport entre le rayon du cercle inscrit

au triangle et le rayon du cercle circonscrit.

Déplacement des frontieres Les noeuds sur les frontieres fixes doivent respecter
U +m = 0. Sur linterface, la condition cinématique de non pénétration impose que
(v — vy,) +n = 0. Pour que le probleme soit bien posé, il faut ajouter une condition
supplémentaire. Dans le cas d’une interface fluide-solide, le déplacement des noeuds de la
frontiere peut étre fixé par le déplacement du solide car il ne sera pas trop important. Ainsi,
u = v, sur ['; de sorte que la description de l'interface devient totalement lagrangienne.
Cette solution n’est pas tres efficace pour les autre types d’interface. En effet, pour une in-
terface fluide-structure, les vitesses a 'interface sont relativement faibles, donc la distorsion
du maillage reste acceptable dans la plupart des cas. Cependant, pour une surface libre, la
description lagrangienne entrainera souvent de trop grandes distorsions, ce sera le cas pour
le calcul de I'écoulement dans un canal ouvert. Il faut donc envisager d’autres solutions.
Dans le cadre de I'approche pseudo-solide, Sackinger et al. (1996) proposent la démarche
suivante. Sur l'interface, les résidus du déplacement du pseudo-solide sont projetés sur la
normale et la tangente a la courbe. Le résidu normal est remplacé par la condition de non
pénétration (ou de tangence) et le pseudo-solide est libre de contraintes dans la direction
tangentielle. Une autre possibilité consiste a optimiser la qualité du maillage a l'interface. On

peut alors intégrer ces noeuds dans le processus global, mais cette démarche est délicate car
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il faut intégrer la condition (1.38), ce qui demande des efforts particuliers d’implémentation
(Dettmer et Peric, 2006b). Un critere ad hoc a été proposé par Braess et Wriggers (2000). 11
consiste a répartir les noeuds le long de l'interface de sorte que les éléments linéaires créés
par ces points soient tous de méme longueur. Cruchaga et al. (2006) proposent de répartir
les noeuds en les concentrant dans les zones ot la courbure de l'interface est importante afin

d’avoir une description plus précise de celle-ci.

1.3.3 Meéthode des éléments finis

Pour résoudre, le systeme d’équations modélisant 1’écoulement (1.34-1.35) est mis sous
forme faible. Soit du une fonction test ayant la méme régularité que u et s’annulant sur I'y
et 0p une fonction test associée a la pression. En multipliant les équations (1.34-1.35) par les
fonctions test et en intégrant les termes appropriés par partie, on obtient le systeme faible

suivant :
/V-uéde:O (1.41)
Q

/(p%—?—i—p((u—v)-V)u)~(5udQ—/pV~(5udQ+/T:VdudQ
Q Q

Q

:/f-éudQ+/(T—pI)~n-5udF (1.42)
Q r

Le terme de bord dans (1.42) se décompose de la maniére suivante (en supposant que l'on se

situe dans le milieu (1)) :

/(T—pI)-n-(SudF:/ ﬁ-&udfjt/ (o3 -n+~yCn) - du dl’ (1.43)
r I r;

Le terme correspondant a la partie I'y, de la frontiere s’annule car il s’agit de conditions
de Dirichlet sur cette portion. Le terme correspondant a la tension superficielle peut étre
transformé. On peut remplacer la courbure C' par deux fois la courbure moyenne H, avec
H = —V,-n/2 ou l'opérateur de gradient surfacique est Vs = (I —m ®n) - V. Le calcul de
la courbure moyenne peut étre numériquement compliqué. On peut donc intégrer ce terme
par partie en utilisant le théoreme de la divergence surfacique. Les détails sont donnés dans

I'annexe de l'article de Cairncross et al. (2000) et menent au résultat suivant :

/ vCn - du dI' :/ you - m dC—/ YVs - (6u) dI (1.44)
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Dans cette équation, C; est la frontiere de I'; et m est un vecteur extérieur normal a cette
courbe et tangent a l'interface.

Braess et Wriggers (2000) proposent une autre approche en introduisant une in-
terprétation énergétique de ce terme et parviennent a une formulation faisant intervenir
une paramétrisation de l'interface.

A ces équations s’ajoutent, le cas échéant, la forme faible des équations permettant de
calculer la vitesse de déformation du domaine. Dans le cas du pseudo-solide, on utilisera la

forme faible des équations d’élasticité linéaire.

1.3.4 Enjeux numériques

Remaillage et déformation du domaine Lorsque la déformation de l'interface devient
trop importante par rapport a la configuration de départ, la qualité du maillage résultant
peut étre dégradée. Il est donc parfois nécessaire de remailler. Cette opération doit étre évitée
dans la mesure du possible car elle est numériquement cotiteuse et les valeurs des variables
aux noeuds doivent étre interpolées d’un maillage a I’autre, ce qui introduit des imprécisions.
Il faut donc reprendre les criteres et démarches développés pour la formulation purement
lagrangienne. Tanaka et Kashiyama (2006) proposent de conserver un maillage de fond fixe.
A chaque pas de temps, le domaine est déformé mais 'interface est ensuite replacée sur
le maillage fixe, de sorte que seulement les éléments proches de l'interface sont déformés.
Cependant cette opération ne permet pas la conservation de la masse, il faut donc ajouter
une étape supplémentaire de correction. On peut cependant tirer parti de ce remaillage en
utilisant une stratégie adaptative. Par exemple, Saksono et al. (2007) utilisent un critere sur
la qualité du maillage (rapport entre les rayons des cercle inscrit et circonscrit) puis la taille
des éléments du nouveau maillage est déterminée en fonction de la valeur du gradient de
la vitesse. Une autre méthode utilisée par Pelletier (1999) consiste a raffiner les zones ou
I'erreur est la plus grande. L’erreur est alors calculée avec un estimateur d’erreur reposant
sur une projection de la solution pour reconstruire une solution enrichie (Zienkiewicz et Zhu,
1992). Cette méthode a donné des résultats prometteurs en régime instationnaire turbulent
(Gammacurta et al., 2009).

Loi de conservation géométrique (GCL) Il faut s’assurer lors de l'utilisation de mail-
lages déformables, que la loi de conservation géométrique est vérifiée. Cette loi a de nom-
breuses définitions qui sont résumées par Etienne et al. (2009b). Ainsi, il faut s’assurer que
la déformation du maillage est telle que :

— la solution est exacte sur un maillage mobile dans le cas ou il n’y a pas d’écoulement,

— la solution est exacte sur un maillage mobile dans le cas ou I’écoulement est uniforme,
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— le schéma d’intégration en temps a le méme taux de convergence sur le maillage mobile
que sur le maillage fixe.
Ceci peut étre vérifié en choisissant de maniere adéquate la vitesse de déformation. Si la GCL

est satisfaite, des schémas d’ordre élevé peuvent étre utilisés pour réduire les cotits de calcul.

1.4 Analyse de sensibilité des écoulements a surface libre

Les écoulements a surface libre sont complexes a analyser. Optimiser des systemes faisant
intervenir des interfaces ou prévoir son comportement lorsque les parametres de définition du
systeme sont modifiés seront de longues et complexes entreprises puisque les algorithmes d’op-
timisation demandent souvent beaucoup d’itérations et donc de calculs de ces écoulements.
Nous allons étudier les différentes techniques actuellement utilisées en mettant en relief leurs

avantages et inconvénients dans le contexte des systemes faisant intervenir des interfaces.

1.4.1 Exemple de 'optimisation

Soit F(U, at) la fonction cout a optimiser sous les contraintes G(U, o) = 0, avec U les
états et a le vecteur de variables de design. La fonction cotit dépend a la fois explicitement
du vecteur de design mais aussi implicitement par 'intermédiaire des états. Nous pouvons
en effet définir la fonction F(a) = F(U (), ). Le probleme peut s’énoncer de la fagon
suivante :

Trouver le vecteur de design a* tel que
FU(a"),a”) =minF(U(a), a)

sujet & G(U, ) =0

Pour résoudre ce probleme, avec la plupart des algorithmes, il faut calculer le gradient de
la fonction objectif par rapport aux parametres de design. Pour cela, il existe principalement

deux méthodes que nous allons détailler : la méthode adjointe et la méthode des sensibilités.

Méthodes adjointes

La méthode adjointe consiste a introduire la variable adjointe & et le lagrangien :
LU,a,8) =F(U,a)- <& G(U, ) >

ou < -,- > désigne le produit scalaire. Dans le cas discret, il s’agit du produit de 2 vecteurs et

dans le cas continu d’une intégrale. Afin d’exposer généralement le fonctionnement de cette
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méthode, nous garderons la notation symbolique suivante :
L=F-&G

Le probleme d’optimisation est maintenant équivalent a extrémiser L en fonction de
(U, o, €). La premiere variation du lagrangien par rapport a chacune de ces variables doit
étre nulle :

— La variation par rapport a U conduit aux équations adjointes :

oF oG
— =&— 1.45
ou ou (1.45)
— La variation par rapport a a produit la condition d’optimalité :
OF oG
——&—=0 1.46
[oJe" [oJe" ( )
— La variation par rapport a & mene aux équations d’état :
G=0 (1.47)

Pour un vecteur de design a donné, les états U sont obtenus par les équations d’états (1.47)
et les variables adjointes par les équations adjointes (1.45). Le gradient de la fonction objectif

s’exprime alors de la maniere suivante :

dF DF _9F OF DU

da " Da_2a T 9U Da (1.48)

En utilisant les équations adjointes, nous avons :

iF _OF | ,0GDU
daa O oU Da

Or les équations d’états doivent étre respectées quelque soit le vecteur de design «, donc

DG 0G 0G DU
Do~ 9ot oU D =" (1.49)

Ceci mene a I'expression finale du gradient :

dF OF oG
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Quelque soit le nombre de parametres, il n’y a qu’'un seul probleme adjoint a résoudre par

fonctionnelle.

Méthode de I’équation des sensibilités

Pour le méme probleme que précédemment et en reprenant les mémes notations, nous

cherchons a calculer le gradient d’une fonction cotut :

dF DF 0OF OF DU
da _ Da 9o 90U Da (1.51)
Dans cette expression, DU /Da est inconnu car la dépendance des états par rapport au de-
sign est implicite. La méthode des sensibilités (appelée aussi direct differentiation method)
consiste a différentier les équations d’états par rapport au parametre de design afin d’obtenir
les équations de sensibilité. Il y a pour cela deux facons de procéder. On peut discrétiser les
équations d’états puis différentier, il s’agit de la méthode des sensibilités discretes. Les sen-
sibilités ainsi obtenues correspondent aux dérivées exactes de la solution discrete du premier
probleme. L’autre voie consiste a différentier les équations d’états pour obtenir un nouveau
systeme d’équations différentielles qu’il nous reste a discrétiser. Il s’agit alors des sensibilités
continues discrétisées. Nous obtenons ainsi une approximation de la sensibilité de la solution
exacte du premier probleme. Généralement, les deux méthodes tendent vers le gradient exact
(Borggaard et Burns, 1997b; Borggaard, 1994; Borggaard et Burns, 1997a). Ces différentes
voies & explorer sont détaillées pour 1'élasticité linéaire par van Keulen et al. (2005). La
méthode des sensibilités conduit a un systeme a résoudre par parametre de sensibilité, peu

importe 'application qui en suivra.

Atouts de la méthode de I’équation des sensibilités

Comme on vient de le voir, les sensibilités sont tres utiles en design optimal. Cependant,
leur domaine d’application s’étend bien au dela. En effet, les sensibilités donnent une infor-
mation quantitative sur 'influence des parametres définissant le systeme sur n’importe quelle
fonction de sortie (Turgeon, 2001). Ceci permet de classer les parametres par ordre d’influ-
ence. Les sensibilités permettent aussi de calculer tres rapidement des solutions voisines (par
I'intermédiaire d’une série de Taylor au premier ordre). Elles permettent donc de prévoir com-
ment le systeme réagira a de 1égers changements des parametres, ces informations permettent
de mieux comprendre le fonctionnement global du systeme. Une autre application de taille est
I’analyse d’incertitude. Les sensibilités permettent d’évaluer I'incertitude sur une variable de
sortie a partir de I'incertitude des parametres d’entrée. Ces données permettront par exemple

d’évaluer la robustesse d’un design ou alors d’établir des tolérances de fabrication.
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1.4.2 Enjeux des sensibilités de l'interface

Les parametres de design peuvent étre de deux natures. Les parametres dits “de valeur”
n’ont pas d’influence sur la forme du domaine, il peut s’agir d’une propriété physique du
fluide, d’une condition limite. La figure 1.3(a) illustre le cas ou le parametre est la vitesse
d’entrée pour ’écoulement a travers un canal. Les parametres “de forme” définissent la forme
du domaine, ce qui est assez courant en design optimal. Par exemple sur la figure 1.3(b), le
parametre est 'amplitude de la bosse sur la paroi inférieure du domaine. La géométrie du
domaine dépend alors de ce parametre. La méthode générale de résolution du probleme de
sensibilité est la méme pour chaque cas mais le traitement du parametre de forme demande

une attention toute particuliere.

o 5a, U
EEEE— >; QG
Q
/’// B ?Ba‘\\\\\
T e
(a) Parametre de valeur (b) Parametre de forme

Figure 1.3 Distinction entre parametre de valeur et parametre de forme.

Lorsqu’une interface est en jeu, la distinction entre les parametres de valeur et parametre
de forme est moins évidente. En effet, des parametres peuvent ne pas affecter directement
les frontieres fixes du domaine et néanmoins avoir une influence sur la forme de 'interface.
Ces parametres se comporteront alors comme des parametres de forme. Ceci est illustré sur
la figure 1.4. Le parametre est la vitesse d’entrée dans un canal dont une des parois est
déformable. La forme de cette paroi est couplée avec ’écoulement dans son voisinage. Ainsi,
si la vitesse d’entrée change, la forme de cette paroi sera modifiée. La vitesse d’entrée devient

donc un parametre de forme.

Méthode adjointe sur domaine variable

Lorsque le domaine dépend du parametre, la difficulté est de calculer les différents termes

de la formule (1.50). En effet, la fonction cott est souvent de la forme :

F(U, o) = /Q F(U, 2, ) d) (1.52)
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U 0 U+oU Q,

P Z ~ -
7" paroi déformable "~ _ - \

(a) Etat initial (b) Etat perturbé

Figure 1.4 Influence d'un parametre de design sur un domaine déformable.

Or le domaine dépend du parametre. Nous ne pouvons donc pas dériver simplement cette

intégrale. De méme,

< &G >= / ¢G(U, z, ) d (1.53)
Q

Il faut alors utiliser la méthode des dérivées matérielles qui est exposée par Delfour et Zolésio
(2001) de maniere générale et aussi par Haug et al. (1986), Cardoso et Arora (1989) ou Navar-
rina et al. (2000) dans le contexte de la mécanique des structures. Giannakoglou et Papadim-
itriou (2008) montrent comment ces difficultés se manifestent dans le cadre de problemes
inverses pour les équations d'Euler et pour les équations de Navier-Stokes. On ne recense
cependant pas beaucoup d’études de design optimal pour les systemes avec interfaces et la
méthode adjointe. Les travaux de Gejadze et Copeland (2005) en sont un exemple, cependant
le calcul de l'interface se fait simplement par 'intermédiaire d'une fonction représentant la

hauteur du fluide ce qui limite le champ d’application de la méthode.

Méthode des sensibilités sur domaine variable

Pour la méthode des sensibilités, il s’agit de dériver les équations d’états. Tout comme
dans le cadre de la mécanique des milieux continus, nous pouvons prendre soit un point de
vue eulérien, c¢’est-a-dire calculer les dérivées par rapport au vecteur de design en un point
fixe du domaine , soit un point de vue lagrangien, c’est-a-dire calculer la dérivée totale des

états, donc prendre un compte le changement de forme du domaine dans la dérivation.

Formulation eulérienne D’un point de vue eulérien, il suffit de dériver formellement les
équations d’états pour obtenir les dérivées partielles des états par rapport au parametre. Par
exemple pour la vitesse d'un fluide u(x, &), nous calculons Ou/da. Cependant, les conditions
aux limites en sensibilités sont données par les dérivées matérielles des états. Il faut donc

introduire les termes provenant de la transformation de la frontiere due a la variation du
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parametre de forme. Ces termes dépendent des gradients en espace des états, qui, calculés
numériquement, ne sont pas toujours précis. Le défi pour cette méthode est donc de calculer
avec précision les gradients des états a la frontiere pour obtenir de bonnes conditions aux
limites pour les sensibilités. Malgré cela, le point de vue eulérien reste intéressant par sa
simplicité de mise en oeuvre numérique. En effet, contrairement a la méthode adjointe ou
au point de vue lagrangien, il n’est pas nécessaire de dériver des intégrales dont le domaine
dépend du parametre. De nombreuses applications en mécanique des fluides ont été faites
avec cette méthode (Turgeon, 2001), en régime turbulent (DiCaro, 2007) ou en régime in-
stationnaire (Hristova et al., 2005). Cette méthode a été utilisée par Pestieau (2006) pour
les écoulements multi-fluides. La méthode pour le calcul de l'interface est une méthode de
pseudo-concentration. Ainsi I’équation de la pseudo-concentration est dérivée pour trouver la
sensibilité de 'interface, ce qui permet de ne pas avoir a traiter un domaine variable. Cepen-
dant, le probleme classique des parametres de forme persiste et pour avoir une résolution
précise de l'interface, il a fallu utiliser des maillages tres fins dans son voisinage. Les sensi-
bilités eulériennes ont été aussi utilisées en interaction fluide-structure en régime non sta-
tionnaire par Etienne et al. (2007) avec une méthode ALE pour le calcul des interfaces. La
formulation des conditions d’interface pour les sensibilités prend alors une forme assez com-
pliquée et nécessite ’évaluation des dérivées spatiales d’ordre 2 de la vitesse a l'interface qui

sont difficiles a calculer précisément.

Formulation lagrangienne En prenant un point de vue lagrangien, nous nous
intéresserons au calcul des dérivées totales des états par rapport au parametre, elles se com-
posent d’un terme lié a la variation pure du parametre et un autre du a la modification du
domaine. En effet, nous avons u(x, a) = u(x(a), a) donc

Du  Ou Dx

Pour ce faire, il faut dériver les équations d’état, sous leur forme forte ou sous leur forme
intégrale, en tenant compte des variations de géométrie du domaine. Dans ces conditions, les
opérateurs de dérivation par rapport au parametre et le gradient d’espace ou I'intégration sur
le domaine ne commutent pas puisque les coordonnées d’espaces dépendent du parametre. Il
apparait alors une vitesse de déformation, connue uniquement sur les frontieres, mais qui doit
étre calculée dans tout le domaine. Il existe différentes techniques pour évaluer cette vitesse.
La méthode de la dérivée matérielle est beaucoup utilisée. Des formulations générales ont été
établies par Delfour et Zolésio (2001), Navarrina et al. (2000) et Tortorelli et Wang (1993). Le

point de vue lagrangien a été plutot développé dans le cadre de la mécanique des structures.



29

Les problemes de transfert thermique font I'objet des travaux de Dems (1987) et Kleiber et
Sluzalec (1996). Dans les travaux de Arora (1993), nous trouverons une formulation pour les
équations d’élasticité linéaire. Bobaru et Mukherjee (2001) ont effectué quelques simulations
numériques avec une méthode de résolution sans maillage (element-free Galerkin method).
Les sensibilités lagrangiennes ont été aussi développées dans le cadre de la mécanique de la
rupture par Taroco (2000) qui a abordé les sensibilités d’ordre 2 et pour 'optimisation d’arcs
plans par Choi (2002). Dans les travaux de Lee (1997), des équations intégro-différentielles
de bord (boundary integral equation formulation) sont utilisées pour traiter des problemes
de solides élastiques axisymétriques. En mécanique des fluides, nous noterons le travail de
Smith (1996) qui traite de 1’écoulement de polymeres gouverné par les équations de Stokes.
Dans les travaux de Wang et al. (1996), les équations de Navier Stokes sont traitées, avec une
technique de paramétrisation de domaine (Tortorelli et al., 1994) pour le calcul de la vitesse
de déformation. D’autres approches mathématiquement compliquées ont été abordées par
Gao et al. (2007) en utilisant les dérivées de Piola (Boisgerault, 2000). Pour les écoulements
avec interfaces, on notera les travaux de Lund et al. (2003) qui utilisent une formulation
discrete et obtiennent de bons résultats. McDavid et Dantzig (1998) utilisent des sensibilités
lagrangiennes discretes pour résoudre un probleme de moulage avec une méthode VOF pour
le calcul de l'interface. Cependant, la dérivation de la fraction de fluide par rapport au
parametre est délicate. Une formulation continue de 1’équation des sensibilités lagrangiennes
a été développée pour les équations de Navier-Stokes par Charlot et al. (2009b). Au lieu
d’avoir recours a une paramétrisation explicite du domaine, un pseudo-solide est introduit
pour calculer les vitesses de déformation du domaine présentes dans la formulation faible
du probleme. De cette maniere, la formulation se montre tres simple a utiliser puisque les
conditions aux limites, contrairement a la formulation eulérienne, sont simples et exactes. Elle
donne aussi acces directement aux dérivées totales de I’écoulement par rapport au parametre
d’intéret. Cette approche permet d’obtenir la méme précision sur les sensibilités que sur
I’écoulement. La formulation a également fait ses preuves dans le contexte du design optimal.
Combinée a une paramétrisation NURBS (Charlot et al., 2009a), elle a mené aux meémes
résultats qu'une formulation eulérienne, mais avec des maillages beaucoup plus grossiers (10
fois moins de noeuds). A notre connaissance, une telle formulation n’a pas été utilisée pour

le calcul des sensibilités des écoulements avec interfaces.

1.5 Bilan

Les écoulements avec interface ont suscité un grand intérét et de nombreuses méthodes

numériques ont été développées pour calculer avec le plus de précision possible la géométrie
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de l'interface. Cependant, peu de problemes d’optimisation ont été traités dans ce domaine
car les gradients de la solution par rapport aux divers parametres de design sont difficiles a
évaluer.

Les méthodes de calcul des écoulements sont tres variées. Les deux grandes catégories
sont les méthodes a maillage fixe et les méthodes a maillage mobile. Les méthodes a maillage
fixe sont relativement simples a implémenter et demandent simplement d’ajouter au systeme
une équation de transport pour la fonction identifiant chaque zone de 1’écoulement et de
reconstruire ensuite la position de I'interface. Cependant, ces méthodes demandent de nom-
breux traitements particuliers pour résoudre cette équation avec le plus de précision possible
pour assurer la conservation de la masse. Il peut s’agir de maillage adaptatif pour raffiner la
zone proche de l'interface ou d’algorithmes d’ordre plus élevés. De plus, comme la position
de l'interface n’est pas explicitement connue, 'imposition de conditions limites a l'interface
est compliquée.

Les méthodes a maillage mobile ne rencontrent pas ce genre de probleme puisque 'in-
terface constitue une des frontieres du domaine. Le maillage doit donc étre déformé pour
suivre 1’évolution de l'interface. Il s’agit 1a d'un des principaux enjeux de ces méthodes, de
trop grandes déformations entrainent des distorsions des éléments du maillage, voire des re-
tournements. Il faut donc remailler le domaine, ce qui est coliteux mais en faisant appel a
un remaillage adaptatif, ces cotlits peuvent étre en partie compensés par une amélioration
de la précision de la solution. Ces méthodes ne permettent cependant pas de traiter les
changements topologiques de 'interface (détachement de gouttelettes, etc...).

Les méthodes d’analyse des écoulements avec interface sont numériquement cotiteuses.
Dans ce contexte, I’analyse de sensibilité devient un outil tres utile. Les sensibilités permettent
d’obtenir une information quantitative sur l'influence des parametres sur n’importe quelle
variable de sortie et donc de caractériser le systeme en fonction des parametres d’entrée.
Elles facilitent ainsi la compréhension des phénomenes régissant ces systemes complexes.
Leur calcul dépend de la méthode choisie pour 1’écoulement.

Pour les méthodes a maillage fixe, une formulation eulérienne est la plus adaptée mais
ne permet pas de traiter avec exactitude les parametres de forme (Pestieau, 2006). La for-
mulation lagrangienne semble plus a méme de résoudre les problemes a surface libre mais
la dérivation de la fonction “indicatrice” sera complexe (McDavid et Dantzig, 1998). Si
I’écoulement est résolu grace a une méthode ALE, la formulation eulérienne mene a des
conditions aux limites complexes et qui ne peuvent pas étre calculée exactement. En effet,
elles font intervenir les gradients des variables issus de la solution numérique (Etienne et al.,
2007). Celles-ci seraient par contre exactes et directes avec une formulation lagrangienne,

ce qui serait numériquement beaucoup moins cotteux. Le point de vue lagrangien pour les
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sensibilités semble donc étre le plus approprié pour traiter les problemes avec interface.

1.6 But et objectifs

Le but de ce projet est de développer une méthodologie robuste, rapide et efficace pour
la simulation d’écoulements a surface libre et pour la quantification précise de l'influence
des parametres controlant la réponse de l'interface par le calcul des sensibilités. Nous allons
donc coupler la formulation ALE pour I’écoulement avec une formulation lagrangienne pour

I’analyse de sensibilités. Pour atteindre ce but nous avons fixé les objectifs suivants :

1. Généraliser la formulation et I’algorithme d’éléments finis pour traiter les écoulements

avec surface libre,

2. Etendre la méthode de I’équation des sensibilités lagrangiennes (développée pour les

écoulements stationnaires) aux écoulements instationnaires avec surface libre,

3. Vérifier la formulation et la méthodologie avec des solutions analytiques obtenues par

la méthode des solutions manufacturées,

4. Valider l'approche en comparant nos résultats numériques a des résultats

expérimentaux,

5. Appliquer la méthodologie sur quelques exemples d’intérét pratique.
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CHAPITRE 2

CALCUL DE LA SURFACE LIBRE

Dans ce chapitre, nous allons détailler la modélisation adoptée pour 1’écoulement et la
surface libre. Ensuite, nous décrirons les méthodes utilisées pour résoudre les équations.
Nous utiliserons la cinématique eulérienne-lagrangienne généralisée (ALE) pour résoudre les
équations de Navier-Stokes sur un domaine déformable. Dans ce contexte, la forme faible
des équations de Navier-Stokes est écrite sous forme conservative pour satisfaire la loi de
conservation géométrique. Ainsi, I'ordre du schéma d’intégration temporel sera le méme sur
maillage mobile que sur maillage fixe. Nous décrirons ensuite les discrétisations spatiales et

temporelles utilisées ainsi que quelques détails d’implémentation de la méthode.

2.1 Modélisation des écoulements a surface libre

2.1.1 Equations de Navier-Stokes

On considere 'écoulement laminaire d’'un fluide incompressible et newtonien dans un

domaine €2. Le mouvement du fluide est alors décrit par les équations de Navier-Stokes :

Continuité : V-u=0 (2.1)
ou

pg%—p(u-V)u:—Vp—irV-a'%—f (2.2)

Mouvement :
ol o est le tenseur des contraintes défini par
o=—pl+7=—pl+p(Vu+Vu')
avec T le tenseur des contraintes visqueuses et I le tenseur métrique.

2.1.2 Conditions limites pour la surface libre

Comme illustré sur la figure 2.1, la frontiere 02 du domaine fluide €2 est composée de :
— I',, ou des conditions de Dirichlet sont imposées
— I'y ou des conditions de Neumann sont imposées

— I'; la surface libre
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[

Figure 2.1 Domaine fluide.

Dans le cas de la surface libre, on suppose que le fluide de I'autre coté de I'interface est non
visqueux. On supposera de plus que la pression de cet autre fluide est nulle (la pression étant
définie a une constante pres, cette hypothese n’est pas restrictive). Dans notre étude nous
négligerons les effets de tension superficielle. Dans ces conditions, il n’y a pas de transfert de
masse a travers l'interface et les contraintes normales doivent étre nulles a la surface libre.

On obtient alors, si la surface libre est décrite par une équation du type F(z,y,t) =0 :

u="u sur Iy, (2.3)

—pn® +71(u) -n="ts sur Ty (2.4)
DF  OF

oc-n=0 sur I (2.6)

ou n est le vecteur normal sortant a la fronticre.

2.2 Formulation lagrangienne-eulérienne pour les problemes a sur-

face libre

Lorsque 'on considere des écoulements a surface libre, le domaine fluide, c¢’est-a-dire la
forme de la surface libre est une inconnue du probleme. Pour simuler ces écoulements, nous
choisissons une cinématique eulérienne-lagrangienne pour laquelle le domaine de calcul suit les

déformations du domaine fluide. Dans cette section nous allons donc présenter la formulation
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utilisée et les équations a résoudre dans ce contexte.

2.2.1 Description eulérienne-lagrangienne

Considérons un domaine matériel €2, et la transformation ¢; qui a tout temps ¢ associe le
domaine 2, au domaine €2,. Ainsi €2, est la configuration courante du domaine (2. A un point
z de ), est associé le point y de Q, tel que y = ¢;(z). On introduit un domaine de référence
Q, et la transformation ¢, telle que y = ¢;(x). Alors on a aussi & = 1 (z) = ¢; (¢¢(2)). Ces

transformations sont illustrées sur la figure 2.2.

Domaine spatial
(mobile)

fooKiae materiel Pomaine de référenc
IXe

Figure 2.2 Domaines et transformations pour la description eulérienne-lagrangienne arbi-
traire.

On a alors ¢y(z) = ét(w) = ét(%(z)) donc

¢ 0 | 0 I
—(2)=— 4+ —— 2.7
ot (2) ot Ox Ot (27)
. 0h . - 0,
On définit uw = — la vitesse courante de la particule matérielle z et v,, = — la vitesse
du point de référence x. Grace a 1’équation (2.7) et en appliquant le théoreme des fonctions

implicites, la dérivée matérielle de la vitesse s’écrit

Du Ou
D = 5 + ((u — v,)V)u) (2.8)
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ot Ju /0t est le changement de la vitesse matérielle pour un observateur situé dans le repere
de référence. L’équation (2.8) est I’équation fondamentale de la formulation lagrangienne
eulérienne. On remarque que si v, = 0 on retrouve la formulation eulérienne et si v,, = u

la formulation devient purement lagrangienne.

2.2.2 Equations de I’écoulement et conditions limites en formulation ALE

D’apres le paragraphe précédent, nous pouvons a présent écrire les équations de Navier-

Stokes de la fagon suivante :

Continuité : V-u=0 (2.9)
ou

Mouvement : pg

+p((u —vy,) - V)u=-Vp+ V. 7(u) —pge, + f (2.10)

L’introduction de la vitesse de maille v,,, permet d’écrire les conditions aux limites avec les

conditions de surface libre de la maniére suivante :

u="u sur Iy, (2.11)

—pn® +1(u)-n =ty sur Ty (2.12)
(U —vp,) n=0 sur I (2.13)
o-n=0 sur I'; (2.14)

2.2.3 Approche pseudo-solide

Dans I'approche adoptée, le domaine se déforme avec la forme de la surface libre. La
déformation du domaine est calculée avec I'approche pseudo-solide proposée par Sackinger
et al. (1996). Cette méthode consiste a supposer que le domaine se déforme comme une
structure élastique. On choisit arbitrairement les coefficients de Lamé Aps et p,, pour le
pseudo-solide. Le déplacement x = (&,n) de la pseudo-structure est alors la solution du

probleme suivant :
1
V- (§Apstr (Vx + VX)) I+ pps (Vx + VTx)) =0in Q (2.15)

Les conditions aux limites sont données par les équations (2.13) et (2.14) sur la surface
libre. Il en résulte alors trois équations ( la condition (2.14) étant vectorielle) pour quatre
inconnues : v = (u,v) et x = (£,n). Il manque donc une équation pour que le systeme
puisse étre résolu. En effet ces trois équations permettent de calculer la vitesse a l'interface

ainsi que sa forme, la solution de F(z,y,t) = 0. L’information manquante est la facon dont
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les points sont répartis sur la frontiere. Cette information n’a pas de signification physique,
elle fait partie de I'artifice de calcul de la méthode pseudo-solide. Nous choisissons donc une
répartition telle qu’en tout temps, ’abscisse curviligne normalisée des points sur la surface

libre soit conservée. Ceci mene a une condition sur la longueur des arétes le long de la surface

i+1

Figure 2.3 Déformation des segments situés sur la surface libre.

libre : le rapport entre la longueur courante et la longueur initiale des arétes de part et d’autre
d’un point de la surface doit étre le méme. Ainsi, en utilisant les notations de la figure 2.3,

pour le point X; on a :

L. L.

- 2.1
L (2.16)

oul_ et I sont les longueurs initiales des arétes et L_ and L sont les longueurs courantes.
On prendra le carré de cette expression, donc pour le neeud i, de coordonnées (x;, y;) sur

le domaine non déformé et dont le déplacement est (&;,7;), on a

(i +& —xicn — &) + (i + 1 — Yie1 — mim1)?
(s — 2i1)? + (i — Yi—1)?
— (xl-l—l +&ip1 — T — 52) + (yH—l + Nit1 — Yi — 7h‘)2 (2 17)
(‘IH—I $1)2 + (yz—i—l - yz) '

Ailleurs le déplacement du pseudo-solide doit étre tangent aux frontieres.

2.3 Meéthodes numériques

Nous allons maintenant présenter les méthodes numériques utilisées pour résoudre
le probleme décrit dans la section précédente. La principale difficulté est la résolution

des équations de Navier-Stokes instationnaires sur un domaine dont la forme dépend de
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I'écoulement par les conditions (2.13) et (2.14). Nous allons donc ici décrire les outils utilisés.
Il faut tout d’abord établir une formulation variationnelle qui permette de satisfaire la loi de
conservation géométrique (GCL). Nous décrirons ensuite brievement la méthode des éléments
finis utilisée pour la résolution spatiale. Dans certains cas, des oscillations numériques peu-
vent apparaitre, il faut alors stabiliser les équations. Nous présenterons ensuite les schémas
utilisés pour l'intégration temporelle et nous finirons par la méthode de résolution globale

des équations.

2.3.1 Formulation variationnelle

Nous devons adopter une formulation qui permette de satisfaire la loi de conservation
géométrique (GCL). Rappelons que la GCL a trois significations :
— la solution est exacte sur un maillage mobile dans le cas ou il n’y a pas d’écoulement,
— la solution est exacte sur un maillage mobile dans le cas ou I’écoulement est uniforme,
— le schéma d’intégration en temps a le méme taux de convergence sur le maillage mobile
que sur le maillage fixe.
D’apres Etienne et al. (2009b), la formulation conservative suivante doit étre adoptée. Soient
ou et dp des fonctions tests admissibles pour la vitesse et la pression, la forme faible du

probleme associée aux équations (2.9) et (2.10) est

/ VwdpdQ =0 (2.18)
Q(t)

d

— pu-é’u,dQ—/ (V-vm)pu-éud9+/ p((u—vm) V)u-ou d
dt Jow Q) Q(t)

—l—/ U:V(SudQ:/ f~(5udQ+/ (r—pI) -n-dudl (2.19)
Q(t) Q(t) I'(t)

Pour satisfaire la GCL, la vitesse de maille et sa divergence doivent étre évaluées de fagon
consistante avec le schéma d’intégration temporelle. Leurs expressions seront détaillées a la

section 2.3.4.

2.3.2 Méthode des éléments finis

Le domaine est décomposé en N, éléments comprenant chacun N, nceuds pour la vitesse
et IV, noeuds pour la pression. Sur chaque élément, la solution est approchée de la maniere

suivante :

Nu
u~~u = Z w; N (2.20)
i=1
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ou wu; est la solution numérique au neceud 7 de I'élément considéré et les fonctions N* sont
les fonctions d’interpolation de I’élément pour la vitesse, N, est le nombre de fonctions
d’interpolation. La pression et la vitesse de déformation du domaine sont approximées de

maniere analogue :

N, Nuy,
prpt = ZpiNf et Uy X U = Z Ui N (2.21)
i=1 1=1

La méthode de Galerkin consiste alors a choisir successivement chaque fonction d’interpo-
lation comme fonction test dans la forme faible. Nous utiliserons une formulation mixte.
La pression est alors un multiplicateur de Lagrange qui permet d’imposer la condition
d’incompressibilité. Les inconnues en vitesse et en pression sont donc liées et le choix des
fonctions d’interpolation doit alors étre fait avec précaution. En effet, pour que le systeme
puisse étre résolu correctement, il suffit que les interpolants satisfassent la condition LBB
(Ladyshenskaya-Babuska-Brezzi) qui peut s’énoncer de la fagon suivante. Soient « un champ
de vitesse continu et différentiable sur un domaine R et wu; son approximation discrete,
I’élément satisfait la condition de Brezzi si uw et u;, ont la méme projection de la diver-
gence dans 'espace des pressions. De nombreux types d’éléments peuvent étre utilisés, nous

utiliserons les éléments triangulaires suivants.

Elément de Taylor-Hood d’ordre 2 (P2-P1) Cet élément a 6 noeuds en vitesse et 3
nceuds en pression. La vitesse est donc quadratique par élément et continue, et la pression
est linéaire et continue. Les noeuds en vitesse et en pression sont placés comme illustré sur la
figure 2.4. La discrétisation du pseudo-déplacement est la méme que la vitesse. Cet élément

satisfait la condition de Brezzi-Babuska.

Eléments P1-P1  Cet élément a 3 noeuds en vitesse et 3 nceuds en pression. La vitesse et la
pression sont donc linéaires par élément et continue. L’emplacement des nceuds est représenté
sur la figure 2.5.

Cet élément ne satisfait pas la condition de Brezzi-Babuska. Son utilisation peut mener
a une mauvaise résolution de la pression. Ceci peut étre corrigé en utilisant un stabilisation

adaptée telle que décrite dans la section suivante.

2.3.3 Stabilisation des équations de Navier-Stokes

Dans certains cas, la solution éléments finis peut présenter des oscillations numériques. Il
faut alors stabiliser les équations de Navier-Stokes pour palier ce probleme. Les oscillations

numériques peuvent avoir plusieurs origines : des instabilités convectives qui se produisent
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JAWAY

noeuds pour la vitesse  noeuds pour la press
et le deplacement

Figure 2.4 Elément de Taylor-Hood.

AWA

noeuds pour la vitesse  noeuds pour la press
et le deplacement

Figure 2.5 Elément P1-P1.

lorsque le nombre de Reynolds est élevé ou des instabilités dues au type d’élément qui ne
respecte pas la condition de Brezzi. Les techniques de stabilisation ont été essentiellement
développées pour des interpolants linéaires, il existe peu de méthodes éprouvées pour les
interpolants quadratiques. Nous n’utiliserons donc pas de stabilisation avec les éléments de
Taylor-Hood. Nous utiliserons les trois types de stabilisation suivants : la stabilisation SUPG
pour les instabilités convectives, la stabilisation PSPG pour se passer de la condition de

Brezzi et la stabilisation de la condition d’incompressibilité.

Stabilisation Streamline Upwind/Petrov-Galerkin (SUPG)

Le but est d’éviter les oscillations numériques apparaissant lorsque les phénomenes con-

vectifs dominent les phénomenes diffusifs. En modifiant les fonctions test pour I’équation de
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la conservation de la quantité de mouvement, de la diffusion artificielle est ajoutée dans la
direction de I’écoulement (Brooks et Hughes, 1982). Elle peut étre interprétée comme une
modification de la fonction test pour la vitesse. La nouvelle fonction test du a alors pour
expression :

du = du + Tsypg(u - V)ou (2.22)

Remarquons que la solution exacte est toujours solution de la forme stabilisée. Cette forme
est valable pour des maillages fixes, pour les maillages mobiles en formulation ALE, il faut

corriger la vitesse de convection et on obtient :
0t = du + Tsupc((u — vy) - V)ou (2.23)

Stabilisation Pressure-stabilizing/Petrov-Galerkin (PSPG)

La stabilisation PSPG est utilisée avec les éléments qui ne satisfont pas la condi-
tion de Brezzi pour les rendre stables. Comme pour la stabilisation SUPG, des termes
supplémentaires sont ajoutés et peuvent s’interpréter comme une modification de la fonc-

tion test. La nouvelle fonction test dm a alors pour expression :

5 = ou + LELCsp (2.24)
P
ou dp est la fonction test pour la pression.

Stabilisation de la contrainte d’incompressibilité

Cette derniere forme concerne la contrainte d’incompressibilité. Les termes a ajouter sont
basés sur les termes de stabilisation aux moindres carrés pour rendre le calcul plus robuste

(Aliabadi et Tezduyar, 2000) et ont I’expression suivante :
/ TconTV - 0upV - u (2.25)
0

Choix des parametres

Il faut maintenant préciser I'expression des coefficients 75y pa, Trspa €t Tcont. Ils sont
définis par élément. Souvent, les coefficients 7sypa et Tpspa sont les mémes. Il est montré
dans le livre de Thomasset (1981) qu’il existe un coefficient optimal pour des problemes
unidimensionnels. Ce coefficient optimal a alors pour expression :

h

TOPT = o711
2|

(coth(Re) _ é) (2.26)
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ou h représente la taille caractéristique de 1’élément, v est la viscosité cinématique et Re est
2p|[ul[h
v

le nombre de Reynolds local : Re =

Plusieurs généralisations existent pour les problemes 2D. Nous nous appuierons sur les
travaux de Tezduyar et Osawa (2000) et de Verdier (2008). Ainsi nous choisissons les coeffi-

cients suivants :

1
TSUPG = TPSPG = ; - (2.27)
\/ 4 +4HuH L gl6v
At? h? h*

Ici w représente la vitesse de convection, donc en formulation ALE, on obtient :

1
TSUPG = TPSPG = \/ (2.28)

2 2
Le terme en At provient de la formulation espace-temps utilisée par Tezduyar et Osawa
(2000). 11 ne s’applique pas pour notre formulation, on a cependant remarqué qu’il contribuait
a une meilleure convergence dans certains cas. Cependant, la solution dépend alors du pas
de temps.

Pour la stabilisation de la contrainte d’incompressibilité, on choisit le coefficient proposé

par Tezduyar et Osawa (2000) en corrigeant le vitesse de convection pour la formulation

ALE :
h

TCONT = §||'u, — V|| min(1, Re/3) (2.29)

La taille de I’élément peut elle aussi étre calculée de différentes facons. On peut par

exemple choisir pour la taille caractéristique de 1’élément h, la longueur du coté du triangle

équilatéral qui aurait la méme aire que 1I’élément considéré. On notera cette longueur h.. Une

autre possibilité a été proposée par Tezduyar et Osawa (2000) et reprise par Verdier (2008).

Elle consiste a prendre en compte la direction de ’écoulement dans le calcul de la taille. La
taille caractéristique d'un élément donné a alors pour expression pour les maillages fixes :

huey = v2 (2.30)

La vitesse considérée étant encore la vitesse de convection, sur un maillage mobile, cette taille
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caractéristique aura pour expression :

huan = V2 (2.31)

> (fezsey )

i=1

La longueur hygn sera utilisée pour le calcul de 75y pg, pour les autres coefficients, on utilisera

la longueur h.., cette combinaison s’avérant la plus robuste.

Formulation stabilisée des équations de Navier-Stokes

En regroupant ces trois stabilisations, on obtient le systéeme suivant :

/V.u(Sde—i—/TP;PGV(Sp- (paa—?jtp((u—vm)-V)u—V-o-—f) dQ2=0 (2.32)
0 0

pu~(5udQ—/

Q

—l—/o‘:V(SudQ—/f-6udQ—/(7‘—pI)-n-5’u,dF
Q Q r

(V-vm)pu-5ud9+/p((u—vm)-V)u~(5udQ

[ sl = vm) - D (654w m) V- Vo~ £ ) a0

+ / TconTV - 0upV - u d) =0 (2.33)
Q

Nous utiliserons ces équations avec les éléments P1-P1. Avec les éléments de Taylor-Hood,
nous utiliserons les équations (2.10). Il nous faudra vérifier si la forme stabilisée satisfait la
GCL.

2.3.4 Intégration temporelle et vitesse de maille

Pour l'intégration temporelle, nous utiliserons des schémas de Runge-Kutta d’ordre élevé
puisque si la GCL est satisfaite, les ordres de convergence seront conservés sur maillage
mobile. Soit I’équation différentielle ordinaire suivante : ' = f(y,t), la formulation générale

de ces schémas est la suivante :

ye) =y p AL ag (T ) pout =1, s (2.34)
j=1
S

Jj=1
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ol s est le nombre de sous-niveaux, ¢t(**¢) = ¢ 4 c; At et y£”+ci) est la solution évaluée au

temps intermédiaire t™+¢) . Ceci peut se résumer sous forme de tableau de Butcher :

Ci | Qi1 - Qs
Cs As1 T Asgs
bl R bs

Nous utiliserons deux schémas implicites de Runge-Kutta.
— le schéma de Radau ITA3, noté IRK32, précis a l'ordre 3 pour la vitesse et a 'ordre 2
pour la pression. Ce schéma compte au total 2 niveaux.
— le schéma de Radau ITA5, noté IRK53, précis a l'ordre 5 pour la vitesse et a 'ordre 3
pour la pression. Ce schéma compte au total 3 niveaux.
L’ordre de convergence pour la pression est plus faible car la pression est traitée comme
un multiplicateur de Lagrange (Hairer et Wanner, 2002). Ces schémas ont les tableaux de

Butcher suivants :
1/3 5/12 -1/12
1 3/4 1/4
IRK32 | 3/4 1/4

(4—+6)/10 | (88 —7v6)/360 (296 — 169+/6)/1800 (—2 + 3v/6)/225
(44 +/6)/10 | (296 — 169v/6)/1800 (88 +7/6)/360 (-2 — 3v/6)/225
1 (16 — /6)/36 (16 ++/6)/36 1/9

IRK53 (16 — /6)/36 (16 +1/6)/36 1/9

Nous utiliserons aussi le schéma d’Euler implicite ou Radau ITA1, qui est aussi un schéma

de Runge-Kutta. Il s’exprime de la fagon suivante :
Yt = () 4 Atf(y(nJrl)’ t(n+1)) (2.36)

ou avec le tableau de Butcher suivant

1 1
IRKI1 | 1

Son taux de convergence est de 1 pour la vitesse et pour la pression, nous le noterons IRK11.

Pour les schémas utilisés, on a as; = b; et la matrice des coeflicients (a;;) est inversible.
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Pour que la GCL soit satisfaite, I’évaluation de la vitesse de maille et de sa divergence
doivent étre consistantes avec le schéma d’intégration temporelle. La vitesse de maille et sa di-
vergence peuvent étre évaluées indépendamment, nous reprenons les expressions développées
par Etienne et al. (2009b). Pour la divergence de la vitesse de maille, nous utilisons la formule

suivante : ( : -
S Jnter) _ g
(V-vm)(”J’Cj) :Za;kl—, j=1---s (2.37)

At Je;)
k=1
ot J® est le jacobien de la transformation entre le domaine de référence € et le domaine
déformé €(t). Cette formule est valable seulement si la matrice A = (a;;) est inversible.

La vitesse de maille est évaluée de la fagon suivante :

(nte)) s 71w(n+ck) — ™ '
U J(a:):ZajkT, j=1,---,s (2.38)
k=1
L’utilisation de ces deux formules et de la forme conservative pour la forme faible des
équations de Navier-Stokes permet de satisfaire la GCL (Etienne et al., 2009b).

2.3.5 Méthode de résolution

Nous utilisons une stratégie monolithique couplant tous les degrés de liberté : la
vitesse, la pression et le déplacement du pseudo-solide. La discrétisation éléments finis et
la discrétisation temporelle menent a un systeme d’équations algébriques non linéaires, noté
R(U) =0 ou U est le vecteur des inconnues. Ce systeme est linéarisé avec une méthode de

Newton-Raphson. Dans cette méthode itérative, on résout

OR(U™)
——0U = —-R(U"™ 2.39

i @) 2.9
et on actualise la solution : U™t! = U™ + §U. La matrice jacobienne OR(U™)/0U est

difficile a calculer, c¢’est pourquoi nous utilisons un jacobien numérique :

OR(U) R(U + AU) — R(U)
ou AU (2.40)

Le systeme résultant est résolu avec le solveur direct pour matrices creuses Pardiso (Schenk
et Gartner, 2004, 2006) .



45

2.4 Implémentation de la méthode

Nous avons intégré notre méthode a un code d’éléments finis fluide-structure. Nous
soulignons dans cette section quelques détails d’implémentation des conditions de surface

libre et de la stabilisation avec les schémas de Runge-Kutta.

2.4.1 Implémentation des conditions de surface libre

Pour les nceuds situés sur la surface libre, les résidus correspondants aux équations de
Navier-Stokes sont inchangés (résidus correspondant a la vitesse), ce qui impose au sens
faible des contraintes nulles sur toute la surface. On change les résidus du pseudo-solide pour
imposer les conditions de surface libre (2.13) and (2.16), appelées par Sackinger et al. (1996)
les distinguish conditions. Si R, et R, sont les résidus du pseudo-solide pour un point de la

surface libre, on les remplace de la fagon suivante :

> IL?

Re=— — = (2.41)
ZET)

R,=(u—vm) n (2.42)

ol u est la vitesse nodaleet n = L_n_ + L;n,. Il n’est pas nécessaire de normer l’expression

de la normale.

Cas de I’élément de Taylor-Hood : Noeud au milieu des segments de frontiere
Si le nceud considéré se trouve au milieu d'un segment s;, comme la déformée de I'aréte doit
rester un segment, il faut imposer a ce nceud de rester au milieu des deux autres. Cependant
les conditions dynamiques et cinématiques de surface libre doivent étre respectées (contraintes
nulles et flux nul a travers l'interface). Sans changer les résidus correspondants aux équations

de Navier-Stokes, on impose :

R, =&n—0,5(6 + &) (2.43)
Ry = 1 — 0,5(m + n2) (2.44)

ou l'indice ,, désigne le noeud milieu et les indices 1 et 5 les extrémités du segment
considéré.(voir figure 2.6)

La condition de tangence n’est alors pas satisfaite. On I'impose comme une contrainte en
introduisant un multiplicateur de Lagrange par segment \,,. La discrétisation du multiplica-
teur est donc PO, constante par élément. La contrainte a respecter est G5, = (4 —v,,) -1 = 0.

Si les équations du fluide étaient linéaires, les résoudre correspondrait a minimiser une
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X1

Figure 2.6 Segment de surface libre.

fonctionnelle I par rapport aux variables U de 'écoulement. En ajoutant la contrainte, on
cherche alors a minimiser I — AG.

— Minimisation par rapport aux variables de I’écoulement :

ol oG
— —A=—==0 (2.45)
ou ou
Le premier terme correspond a la forme faible des équations de Navier-Stokes.
— Minimisation par rapport a A : G =0
Il suffit donc d’ajouter ces équations aux résidus pour satisfaire a la fois les conditions de

surface libre et les contraintes géométriques de I’élément pour le noeud au milieu du segment.

2.4.2 Implémentation des schémas d’intégration de Runge-Kutta

Nous allons a présent donner quelques détails sur I'implémentation des schémas de Runge-
Kutta qui demande une attention particuliere. Reprenons 'expression générale des schémas
de Runge-Kutta (2.35) :

S
y£n+ci) _ y(n) + Atzaijf(yinJer),t(n-l—Cj)) pour i=1---,s (2.46)
j=1
y(n+1) _ y(n) + At Z bjf(yinJrcj), t(n+6j)) (2.47)

Jj=1
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Avec les éléments de Taylor-Hood, c’est a dire sans les termes de stabilisation, on doit

discrétiser 1'équation (2.10). En combinant le schéma et I’équation, on obtient

(ntci) (n) s
(/qu Sou dQ) = (/Q pu - du dQ) + At Z a;jR; (2.48)
j=1

avec R, = (/Q(V~vm)pu~(5ud9—/p((u—vm)-V)u-éudQ

Q

(ntc;)
—/a':V§udQ/f~(5udQ+/(T—pI)-n~(5udF) (2.49)
Q 0 r

Dans ce cas, la vitesse de maille doit étre évaluée de maniere consistante avec le schéma, c¢’est
a dire avec I’équation (2.38).
Avec la forme stabilisée des équations de Navier-Stokes, cette approche n’est plus possible

car la dérivée temporelle de la vitesse apparait dans les termes additionnels par les termes :

/TgUpg((u—vm)-V)6u~ p@_u dQ et /TPSPGV(S]J- p@_u dQ (2.50)

L’approche précédente ne peut donc pas s’appliquer. Il faut procéder autrement, en reformu-

lant le schéma de Runge-Kutta. Reprenons le cas d’une équation différentielle ordinaire de
type ¢'(t) = f(y,t). L’écriture classique du schéma est alors
S

yrted = ¢ 4 A¢ Z ag f(y"re) tre)y pour i=1,--- s (2.51)
j=1

On considere A la matrice de composantes A;; = a;;, Y et Y les vecteurs tels que Y; = y(ntes)
et Y/ =y (t(*es)) et le vecteur Y™ de coordonnées Y= y™,

Avec ces notations, le schéma devient :

Y, =YY"+ AtZAijf(y(”J’Cj), t(”+cf)) pour i=1,---,s (2.52)
j=1
Or d’apres I'équation différentielle originale f(y™+e), t(+e)) = o/ (t(rtes)) = Y/, on obtient
donc :

Yi:Yi"—l-AtZAinj/ pour i=1,---,s (2.53)

J=1

qui peut se réécrire sous la forme vectorielle :

Y = Y" + AtAY’ (2.54)
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Si le tableau de Butcher est inversible, donc si A est inversible, on a

Yy —-Yyn
ViAo —— 2.
( i~ ) (2.55)

Cette expression permet d’écrire toutes les dérivées temporelles de maniere consistante
avec le schéma. On remarque que cette expression est bien cohérente avec I’équation (2.38)
qui permettait d’évaluer la vitesse de maille, c’est a dire la dérivée temporelle du pseudo-
déplacement. On peut donc résoudre les équations stabilisées (2.32) et (2.33) pour chaque

niveau en utilisant les expressions suivantes pour les termes instationnaires :

J () g (n+ey) (n)
— pu-éudQ) = - (/pu-éudQ) —(/p’u,-éudQ)
(it /. > (U Q

(au) (n+ei) s ai_jl (u(nJer) o u(n))

(2.56)

=> (2.57)

ot : At
7j=1
; ie 3_X (n+c;) B s &;jl (w(n—l—c]-) - w(n)) (2 58)
i ot — At '

Dans ce chapitre, nous avons décrit la modélisation choisie pour la surface libre et les
méthodes utilisées pour résoudre les équations de la modélisation sur maillage mobile. La
description ALE permet une grande flexibilité quant au choix de la déformation du maillage
tout en garantissant la conservation de la masse. La déformation du maillage pouvant provo-
quer une perte d’ordre de convergence temporel, nous avons choisi une formulation respectant
la GCL pour utiliser des schémas de Runge-Kutta d’ordre élevé. Enfin, pour les calculs a haut
nombre de Reynolds, nous avons recours aux éléments P1-P1 avec une stabilisation de type
SUPG/PSPG adaptée a la formulation ALE.

Nous allons maintenant développer les équations des sensibilités correspondant a la

méthode choisie.
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CHAPITRE 3

METHODE DES SENSIBILITES LAGRANGIENNES

La méthode des sensibilités lagrangiennes a été développée et vérifiée en détail dans
Charlot (2008) pour les écoulements stationnaires et laminaires. Nous allons donc ici rap-
peler comment sont établies les équation des sensibilités lagrangiennes et dériver ensuite les
équations des sensibilités correspondant a la méthode exposée au chapitre 2. Il faudra donc
étendre les équations présentées dans Charlot (2008) au cas des écoulements instationnaires
en formulation ALE, donc sur maillages mobiles. Nous dériverons ensuite les conditions aux

limites pour les sensibilités a la surface libre.

3.1 Méthode de I’équation des sensibilités lagrangiennes

La sensibilité lagrangienne d’une variable est sa dérivée totale ou matérielle par rapport
au parametre d'intérét. En effet, les variables présentent a la fois une dépendance explicite par
rapport au parametre (qui peut s’exprimer par sa dérivée partielle par rapport au parametre)
et une dépendance implicite par les variables spatiales. En effet, si le parametre affecte la
géométrie du domaine, les variables spatiales dépendent du parametre. Ainsi, si on considere
le champ de vitesse u, on peut écrire u = wu(x(«), a,t). La sensibilité lagrangienne de la
vitesse, notée S, est alors définie par :
~ Du . ux(a+da),a+da) —u(x(a), o)

= lim (3.1)

Sy = — =
Da  sa—0 da

3.1.1 Etablissement de la forme faible des équations des sensibilités lagrangien-

nes

Les équations des sensibilités lagrangiennes sont obtenues en dérivant la forme faible des
équations de Navier-Stokes (2.18) et (2.19) par rapport au parametre d’intérét que nous
noterons a. Cette dérivation n’est pas triviale car le domaine €2 dépend du parametre, ainsi,
nous le noterons €),. Il faut donc introduire une transformation entre le domaine de référence

)y et le domaine courant déformé €2, dont la forme dépend du parametre.

Méthode générale

On note ® la transformation entre le domaine de référence et le domaine courant comme
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Figure 3.1 Déformation du domaine.

le montre la figure 3.1. Cette transformation dépend du temps et du parametre, ces deux
variables étant indépendantes. Pour obtenir les équations des sensibilités, la forme faible des
équations de I’écoulement est exprimée sur la configuration de référence 2y qui ne dépend pas
du parametre «. Ainsi, 'opération de dérivation et d’intégration sur le domaine commutent et
on peut dériver directement la fonction a intégrer par rapport a a. On peut ensuite revenir au
domaine courant €, ce qui donne la forme faible des équations des sensibilités. Ces opérations
nécessitent la manipulation de la transformation et d’opérateurs différentiels (gradient et
divergence) exprimés sur différents domaines. Les développements mathématiques associés
ont été décrits par Delfour et Zolésio (2001) et Tortorelli et Wang (1993). On donnera les
composantes des tenseurs dans une base orthonormale et on utilisera la double contraction

définie pour des tenseurs d’ordre 2 :
i

Ainsi, on utilisera pour les transformation d’espace les notations suivantes :

— Le tenseur des déformations :

Flxat) =Véxan=| o 3 (3.3)
dx Oy

Le déterminant de F' est le jacobien de la transformation et est défini de la facon

suivante :

ozx® oy~ B oy* 0z
Oxr Oy or Oy

J(x, a, t) = det[F(x, a,t)] = det[Vo(x, a, t)] = (3.4)
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— La vitesse de déformation est la dérivée de la transformation par rapport au parametre

a.
ve(ea = 220D
On a alors I’égalité suivante :
ove, ove,
oF o Ox oy
B VVe = ove, ave, (3.5)
Oz oy

Nous présentons maintenant quelques formules utiles pour obtenir les équations des sen-
sibilités lagrangiennes :
— Dérivée du jacobien de la transformation :

Son expression differe selon le domaine considéré :

Sur le domaine de référence : g—J =VVe: JF! (3.6)
o
. , , DJ*

Sur le domaine déformé : Do = JNV> Ve (3.7)
«

— Opérateurs gradients et divergence :
Ces opérateurs font intervenir les dérivées spatiales du champ sur lequel ils s’ap-
pliquent, leur expression dépend donc du domaine sur lequel ils sont exprimés. Soient
f*(x*, ) la représentation d’un champ vectoriel sur le domaine déformé €, et f(x, «)
la représentation de ce méme champ sur le domaine de référence €)y. La divergence et

le gradient de f“ s’expriment en fonction de ceux de f de la fagon suivante :

Ve -f*=F"':Vf (3.8)
Ve =vVf-F! (3.9)

— Formule de Nanson (Delfour et Zolésio, 2001) :
Cette formule est tres utile pour traiter le passage des intégrales de bord d'un domaine

a l'autre.
/ £ (2%, y*) nadly = / f(z,y) JE~T - nodly (3.10)
[ F0

ou f est un champ vectoriel ou une fonction scalaire
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— Autres formules utiles (dérivées des définitions précédentes) :

DF~!

F . = Ve e A1
b=V (3.11)
DJ

e v Vae 3.12
o=V (3.12)

Exemple de I’équation de continuité
Pour illustrer le processus décrit précédemment, nous présentons ici la méthode pour
I’équation de continuité. Soit dp une fonction test admissible pour la pression. La forme

faible de I’équation de continuité est alors :

V*-udpdQ, =0

Qa

1. On exprime cette intégrale sur le domaine de référence €} :

F™':Vudp JdQy =0

Qo
2. On dérive par rapport a a.
Dﬂ F~':Vuép JdQy = / D (F~':Vudp J)dQy =0 (3.13)
a Ja, 0, D
ce qui s’écrit
/QO {(F1:V%+%:Vu)6pJ+F1:Vu5p% dQpy = 0

3. On revient sur le domaine déformé et on obtient ’équation des sensibilités correspon-

dant & la continuité

/ (V¥ 8, = VIV VU + V" uV* - V) pdQ, = 0 (3.14)
Qa

On remarque que I'équation (3.14) fait intervenir la vitesse de déformation V& qui est
I’équivalent continu des sensibilités de maille rencontrées dans les approches discretes, ou

la discrétisation des équations précede la dérivation.

Calcul de la vitesse de déformation
La méthode est appliquée de la méme maniere pour ’équation du mouvement. La vitesse de

déformation apparait aussi dans cette équation. La vitesse de déformation V< est connue
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sur les parties de la frontieres qui dépendent du parametre, mais il faut la connaitre sur tout
le domaine pour pouvoir résoudre les équations. La définition de la vitesse de déformation
a I'intérieur du domaine est donc arbitraire et il y a beaucoup de facons de procéder. Dans
le contexte de la description ALE pour I’écoulement, il est naturel d’utiliser la sensibilité
du pseudo-déplacement. Les équations d’élasticité linéaires étant lagrangiennes, c’est-a-dire
exprimées sur le domaine non déformé, leur dérivation par rapport au parametre « est triviale.
Comme les coefficients de Lamé pour le pseudo-solide sont arbitraires, leur sensibilité par

rapport au parametre est nulle. La vitesse de déformation V' est alors solution de :
V- (%)\pstr (VVE+VIVE) + s (VV* + VTV"‘)) = 0 dans
Les conditions limites correspondantes sont
V=V sur 09

oll V& est la vitesse de déformation aux frontieres du probleme. Cette approche a I'avantage

de rester tres générale et de permettre le traitement de géométries complexes.

3.1.2 Conditions aux limites de Dirichlet et de Neumann

Le probleme associé aux sensibilités doit maintenant étre fermé par les conditions aux
limites appropriées. Elles sont obtenues par simple dérivation des conditions aux limites de

I’écoulement.

Du Du o
Su = m = m sur F'u, (315)
De méme pour les conditions de Neumann, on a :
D
m o (—pna +7 - na) -ou dFa
DE (s «
= —L V-V —;(VV®-n)-n)- dudl, (3.16)
re \ Da

Contrairement aux sensibilités eulériennes (Pelletier et al., 2008), ces conditions sont tres
simples et exactes.

Nous avons donc décrit de fagon générale comment les équations des sensibilités lagran-
giennes sont obtenues. Le détail des équations pour le régime stationnaire a déja été présenté
(Charlot, 2008). Nous allons a présent développer les équations pour le cas des écoulements

instationnaires sur maillage mobile.
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3.2 Sensibilités lagrangiennes instationnaires sur maillage mobile

Le traitement des termes instationnaires demande une attention particuliere lorsque le
maillage se déforme. Tout comme I’écoulement, les sensibilités doivent respecter la GCL, c’est-
a-dire que l'ordre de convergence du schéma temporel doit étre le méme sur maillage mobile
que sur maillage fixe. Pour cela, comme pour I’écoulement, il faut écrire la forme faible sous
forme conservative. Pour cela, il existe plusieurs approches menant au méme résultat. Par
exemple, on peut prendre comme point de départ la forme faible de I’écoulement écrite sous
forme conservative et procéder comme expliqué a la section précédente. Une autre possibilité
consiste a partir de la forme non conservative pour I’écoulement, dériver par rapport au
parametre et mettre le résultat obtenu sous forme conservative. Ces deux possibilités menent
au meme résultat car la dérivation par rapport au temps et par rapport au parametre de
forme commutent, le temps et le parametre étant indépendant I'un de 'autre. En partant de

la forme conservative, on doit calculer la dérivée suivante :

d |d /
— |= pudu dQ) —/ puV - v 0u dQ} 3.17
da |:dt ( Qa(t) Qa(t) ( )

En inversant 'ordre de la dérivation par rapport au parametre et par rapport au temps, on

obtient :
a [i (/ pudu dQ) —/ puV - v 0u dQ}
do | dt Qa(t) Qa(t)

il (] )i )
= |— uow dQ) || — — uV - v 0u dS2 3.18
dt {da ( o do \Jo, 0" (3.18)

La dérivation des intégrales par rapport au parametre de forme est calculée en utilisant la
transformation ® et son inverse pour passer sur le domaine de référence et revenir sur le

domaine courant. On obtient alors pour les deux termes ci-dessus :

i )-a(f )
— | = wouw dQ || = — S,u+ pSy + puV - V¥ ou df) 3.19
dox {dt ( Qa(t)p dt Qa(t)[ mr ! | (3.19)

d

— puV - v 0u dQ:/ pu(V-S,, —VV*: Vv, +V -V .v,)ou
dOé Qa(t)

Qul(t)
+ (S,uV - vy, + pSLV - vy,) du dQ (3.20)

Note : si x est le déplacement du pseudo solide, alors

_ove Px

Som = 3 = Bida

(3.21)
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Nous pouvons a présent reprendre la forme faible de 1'écoulement (2.19) et identifier

chaque terme de la fagon suivante :

Instationnaire + Convection + Pression + Diffusion

= Force + Terme de bord

Pour obtenir les équations des sensibilités lagrangiennes, nous dérivons terme a terme la
forme faible par rapport au parametre. La forme faible de ’équation des sensibilités aura la

forme suivante :

D Instationnaire D Convection N D Pression n D Diffusion

Do + Do D« Do
B D Force n D Terme de bord
 Da Do

Les expressions de chaque terme sont les suivantes :

Dérivation du terme instationnaire

D [d
Do [@ (/Q pudu dQ) —/quv-vmé'u, dQ}

d
= — S,u+ pS, + puV - V¥ ou dS2
dt (/Q [Spte +pSutp ] ) (3.22)
—/[p’u,(V-Svm - VV*: Vv, +V -V . v,)du
Q
+ (SpuV - Uy + pSLV - V) du| dQ
Dérivation du terme de convection
2/ ((u — vp,) - V) u - du dQ
Da /" m
:/ (@ + pVe . V"‘) ((u — vy, - V) u - du dQ (3.23)
Q 30(
+/p[((Su—Svm)-V)u—Vu-VV"‘-(u—vm)+((u—vm)~V)Su] - ou dS)
Q
Dérivation du terme de pression
DE —pV - du dS2
@ Jo (3.24)

:_/[(Sp+pV-V°‘)V-5u—pVV°‘:Vé'u,] dQ
Q

Dérivation du terme de diffusion
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D

: Véou dS)
DaQT Vou

D
:/ (_“Jruv.va) (Vu + V') : Vou dQ
o \ Do

+ / 1 (VSy + V'Sy) : Viu dQ2 (3.25)
Q

- / i (vwva + (V’u,VVa)T) L V68, dQ
Q

— / 1 (VVe- (Vu+ V') : Vou dQ
Q

Dérivation du terme de force volumique

Dga/ﬂf-éusz/ﬂ(g—i%—V~V°‘f)-5udQ (3.26)

Il suffit de regrouper ces termes pour obtenir la formulation pour ’équation de quantité

de mouvement pour les sensibilités lagrangiennes. Pour ’équation de continuité, elle a été
présentée en détail a la section précédente et est inchangée si on considere des maillages

déformables, on utilisera donc ’équation (3.14).

3.3 Sensibilité des conditions de surface libre

I1 ne reste plus qu’a développer les conditions pour la surface libre. Les conditions limites
pour les sensibilités s’obtiennent en calculant la dérivée matérielle des conditions limites de

I’écoulement. Les conditions de surface libre pour ’écoulement étaient les suivantes :

o-n=0 sur Ty (3.28)
12

=7 pour chaque nceud de T (3.29)
- -

Comme les sensibilités sont les dérivées totales des variables par rapport au parametre,
contrairement aux formulations eulériennes des sensibilités (Etienne et al., 2007), les condi-

tions d’interface sont tres simples.

(Su—Su,) n+(u—vy,) S,=0 (3.30)
D
D—Z-n+a‘-5n=0 sur T (3.31)
SL2 SLQ
- == pour chaque nceud de T (3.32)

]
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ou S, est la sensibilité de la normale, elle s’exprime pour chaque nceud en fonction de la
sensibilité du pseudo-déplacement. Pour une viscosité constante, la sensibilité du tenseur des

contraintes Do /Do se développe de la fagon suivante :

DU' o oanT
D—a_—sp1+u((vsu—w-vv ) 4+ (VSy — V- VV) )

En pratique, nous n’utilisons pas cette expression car pour ’écoulement, la condition dy-
namique est imposée faiblement par la méthode des réactions (Dhatt et Touzot, 1981). Pour
les sensibilités, il en va de méme, les réactions du probleme de sensibilités étant justement

égales a
RE" = 2/ o-ndl (3.33)
L Da Jr.,

Enfin, la sensibilité des longueurs des segments s’exprime en fonction de la sensibilité du

pseudo déplacement. La condition (3.32) devient alors :

(@i + & —mim1 = &-1)(Se = Se) + Wit i — yim1 — 0i-1) (S — Sy
(i —zio1)* + (yi — Yi1)?
_ (Tip1 + &ivr — 2 — &) (e, — Se,) + Wirr + Mix1 — ¥i — 1) (Sniyy — i) (3.34)
(Tit1 — )% + (Y1 — vi)? '

La formulation pour les sensibilités est a présent complete. Les méthodes numériques
sont les mémes que celles utilisées pour ’écoulement. La formulation et I'implémentation
doivent étre vérifiées surtout pour la convergence temporelle afin de s’assurer que la GCL
est respectée, ce qui permettra d’avoir la méme précision pour 1’écoulement et les sensibilités

avec des schémas d’intégration d’ordre élevé.
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CHAPITRE 4

VERIFICATION

4.1 Solution manufacturée

L’implémentation des conditions de surface libre est vérifiée par la méthode des solutions
manufacturées. Cette méthode consiste a choisir une solution analytique vérifiant les condi-
tions de surface libre et a calculer le terme source correspondant pour satisfaire les équations
de Navier-Stokes. Ensuite, la solution numérique peut étre comparée a la solution analytique
et permet de vérifier que les ordres de convergence correspondant a la discrétisation spatiale
et a I'intégration temporelle sont respectés. Nous allons tout d’abord vérifier I'implémentation
en régime stationnaire pour les éléments de Taylor-Hood puis pour les éléments P1-P1. En-
suite, nous vérifierons I'implémentation en régime non stationnaire, avec différents types de

schémas pour chacun des éléments.

4.1.1 Régime stationnaire

On doit tout d’abord construire une solution analytique qui servira de référence. Pour
cela, on suivra une méthode analogue a celle décrite par Etienne et al. (2010), puis nous

testerons la convergence de l'erreur avec le raffinement du maillage.

Construction d’une solution analytique

Nous devons choisir une solution analytique qui respecte la conservation de la masse (2.9)
et les conditions de surface libre (2.13) et (2.14). On suppose que la surface libre est décrite de
facon univoque par 'équation y; = f(x). Le vecteur normal a pour composantes n = (n,, n,)
avec . .

Ny = —F———oxnr and ny=——— (4.1)
(f"(x))* +1 (f"(2))* +1

On choisit la composante horizontale de la vitesse u de la forme :

u(z,y) = (1+y— f(x)H(y) (4.2)
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[’équation de continuité sera satisfaite si la vitesse verticale v est telle que :

ov ou ,
8_3/ = Tor f'(x)H (y) (4.3)

Apres intégration, on obtient :

) = 1@ [ "H(z)dz + Gla) (4.4)

Il faut maintenant déterminer les fonctions H et G et les expressions de la pression et de
la viscosité telles que les conditions de surface libre soient satisfaites. Pour les écoulements
stationnaires, la condition (2.13) devient un, +vn, = 0. En remplagant le vecteur normal et

la vitesse par leurs expressions (4.1), (4.2) et (4.4), la condition cinématique devient :

f'(z) /y H(z)dz 4+ G(z) = f'(x)H(y) sur T} (4.5)

La condition dynamique de surface libre (2.14) se décompose de la fagon suivante :

—pn, + 28_u + 8_u+@ =0
Plta T 1 aa:”"” oy Ox M| =

I I (-cCh IS L )
Py T # dy Ox e 0yny B

sur I (4.6)

Il faut résoudre ce systeme par rapport a la pression p et la viscosité u. La solution doit étre

non nulle donc les deux équations doivent étre liées, ce qui se traduit de la fagon suivante.

—n 28un + 0u+81))n
T % T a_y % Y -

det . @4_@ i +2@n =0 sur I} (4.7)
Y \oy ox) " oy !

En utilisant nos expressions, on obtient alors I’équation suivante :

f(z)
(1= (f"(x))?) [H’(f(x)) + H(f(x)) + f"(x) H(z)dz + G'(z)

+HA(f () H(f (x)) = 0 (4.8)

On doit ensuite choisir G et H telles que les équations (4.5) and (4.8) soient satisfaites en
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tout point de la surface libre. En éliminant (G, on obtient la condition suivante pour H :

(1= (f'@)") (1= (f'(@)* + (@) + 4(f'(2))*] H(f())
0

+ (1= (f'(@)?) 1+ (f'(2)*) H'(f(x)) = (4.9)

La fonction f définit la forme de la surface libre. Pour obtenir une solution relativement
simple, mais non triviale, on choisit f(z) = 2z. On obtient finalement la solution analytique

suivante :
u(z,y) = 1+y— 22)kes? (4.10)
6 4
v(z,y) =k ced + —ed® (4.11)
5 5
La pression correspondant a une viscosité unitaire p = 1 est
20
p(x,2z) = —kge%% sur I (4.12)
Cette solution est étendue sur tout le domaine :
5 s 59z
p(x,y) = —kgeBy — 3kes*® dans (4.13)

Le terme source correspondant dans les équations de Navier-Stokes est obtenu de la fagon

suivante :

( ou 0u) op (82u 82u)
fo=plug+v— |+ —nl 55 T35
x Y x

oz " Yay) T 222 T By

ov ov op v 0%
_ e -~ E A T 4.14
fo=r (uﬁx +U3y) Ty (0962 " 03/2) 414

Etude de convergence avec le maillage

Pour vérifier 'implémentation de la condition de surface libre dans le cas stationnaire,
on choisit un domaine initial pour lequel la géométrie de la surface libre est quelconque.
Les formes initiale et finale du domaine de calcul sont représentées sur la figure 4.1. La
ligne pointillée représente la portion de frontiere sur laquelle sont imposées des conditions
de surface libre. Sur les frontieres voisines, on impose des conditions de Neumann et ailleurs
des conditions de Dirichlet. Pour les simulations, la densité volumique p est fixée a 1 et le
parametre k vaut 1. Le champ de vitesse attendu est représenté sur la figure 4.1(c).

On peut maintenant procéder a 1’étude de convergence. A chaque cycle adaptatif les
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E&n=0
0.5, 1) (€] .
& n I," fl’ffexsgrzfice /
= free surface BC,’ y=f(x)=
o &m=0 of—n
©.-02)
€=0 Qo Q
n = free
©.-1 (=0 -1
(a) Domaine initial (b) Domaine déformé attendu (c) Vecteurs vitesse

Figure 4.1 Domaine initial et déformé et champ de vitesse pour la solution manufacturée
stationnaire.

erreurs sont estimées et le maillage est raffiné 1a ou l'erreur est la plus grande. Les erreurs
sont estimées avec la norme énergie pour la vitesse et en norme L? pour le champ de pression.

Elles sont définies de la facon suivante :

lewllZnergic = /Q (Veu+ VTed) : (Veu + Ve, ") d (4.15)
lerlop = [ ¢ a9 (4.16)
Q

ou e, et ep sont les erreurs locales pour la vitesse et la pression. On calculera deux types
d’erreurs pour chaque champ.
— L’erreur exacte e®® : La solution éléments finis , notée avec 'exposant " est comparée
a la solution analytique, notée avec I'exposant “**. Par exemple, pour la vitesse e;*® =
|uh _ ,ule:z:a‘
— L’erreur estimée e : dans le cas général, la solution exacte n’est pas connue. On

reconstruit donc une solution enrichie a partir de la solution éléments finis avec une

méthode de projection décrite par Zienkiewicz et Zhu (1992). Cette solution est notée

est

"
u

avec l'exposant *. Ainsi pour le champ de vitesse, on aura e®*t = |[u" — u

La précision de 'estimateur d’erreur fait entierement partie du processus de vérification.
Dans le cas général, c’est le seul outil dont on dispose pour quantifier la précision de la
solution et donc de vérifier la convergence de 1’écoulement. Nous utiliserons des éléments de

Taylor-Hood et des éléments de type P1-P1 stabilisés.
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Pour les éléments de type Taylor-Hood, la discrétisation de la vitesse est quadratique et
celle de la pression est linéaire. Donc le taux de convergence théorique pour chaque norme
(énergie et L%) est de 2. On trace I'évolution de la norme d’erreur en fonction de la taille
caractéristique des éléments du maillage. Avec une échelle logarithmique, on devrait obtenir

une droite de pente 2 dans la zone asymptotique.

MMS - surface libre stationnaire MMS - surface libre stationnaire
1 T 1 T
Erreur exacte —+— Erreur exacte ——
Erreur estimee. ---x--—- Erreur estimee ---<--
© 0.1f E 01 ¢ E
> (]
© =
a 2
Q
© 0.01F . @ 001 F .
5 hat
o 8
o &
0.001 ¢ E 0.001 E
0.0001 L 0.0001 L
0.001 0.01 0.1 0.001 0.01 0.1
taille des elements taille des elements
(a) Norme L% (b) Norme énergie

Figure 4.2 Solution manufacturée stationnaire, éléments Taylor-Hood : convergence des er-
reurs exactes et estimées avec le maillage.

La figure 4.2 montre 1’évolution de I'erreur en norme énergie et L%. Pour chacune des
erreurs, l'erreur estimée tend vers l'erreur exacte avec le raffinement du maillage. De plus,
apres 2000 nceuds, la zone asymptotique est atteinte et la pente de la droite est de 2, ce qui
signifie que le taux de convergence théorique est atteint.

Pour les éléments de type P1-P1, les discrétisations spatiales de la vitesse et de la pression
sont linéaires. On s’attend donc a observer un taux de convergence de 1 pour la norme énergie,
c’est a dire une droite de pente de 1 pour la courbe représentant I'erreur en norme énergie
en fonction de la taille des éléments. Pour la norme L%, comme pour les éléments de Taylor-
Hood, on s’attend a un ordre 2, donc une droite de pente 2 pour la courbe représentant
l'erreur en norme L% en fonction de la taille des éléments. Ces courbes sont présentées sur la
figure 4.3. Pour la pression, la figure 4.3(a) montre que 'erreur estimée sous-estime I'erreur
exacte. Cependant l'ordre de convergence est bon et les deux courbes ont tendance a se
resserrer. La zone asymptotique n’est peut-étre pas encore atteinte. Pour la norme énergie,
I’estimateur d’erreur semble fonctionner correctement et la pente est conforme a nos attentes.

L’implémentation est donc vérifiée et nous avons constaté que la condition de surface libre

ne perturbe pas la convergence spatiale de la solution.
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Figure 4.3 Solution manufacturée stationnaire, éléments P1-P1 : convergence des erreurs
exactes et estimées avec le maillage.

4.1.2 Solution manufacturée instationnaire
Construction de la solution analytique

On reprend la méthode précédente. Cette fois, la surface libre est en mouvement.
L’équation de la surface libre devient y; = f(z) * M(t). Le vecteur normal a pour expression
n = (ng,n,) avec

— (2 M(t 1

P@ME
V(@) M) +1 V() M(t))? + 1

La surface libre étant décrite de fagon univoque, on impose le déplacement horizontal nul.

Nnge =

(4.17)

Ainsi, I'équation (2.13) devient

0
ung + (v — a—Z)ny =0 sur Iy (4.18)
on  Oyr , . . . .
avec = =~ = f(z)M'(t). Comme pour le cas stationnaire, on choisit u et v de fagon a

satisfaire la conservation de la masse, par exemple de la forme :

wx,y,t) =1 +y— fx)M(@))H(y) et ov(z,y,t)= f'(x)M(t) /y H(2)dz+ G(z) (4.19)

Ce champ de vitesse doit satisfaire la condition (4.18) sur la surface libre. Donc
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f(z)M(t) /y H(z)dz + G(z) = f'(x)H(y) sur T} (4.20)

En combinant avec la condition sur les contraintes normales (4.8), on obtient la relation

suivante entre f et H :

(L= (M) f'(2)*) (1= (M) f'(2))* + M) " () +4M () f'(2))*] H (f(2)M(t))
+ (1= (M(0)f'(2))?) (1 + (M(1) f'(x))*) H (f(2)M(1))
+ (1= (M) f'(2))?) M'(t) f(z) =0 (4.21)

On remarque que si M(t) = 1, donc si la surface libre ne bouge pas, on retrouve 1’équation
du paragraphe 4.1.1.
On choisit f(z) = 2z. Pour alléger I'écriture, on note M (t) par M, de méme on écrira M’

pour M'(t) La solution de I’équation est alors de la forme :

AM? + 1 AM? + 1
il ) oy UM+ 1) (4.22)

H(y) = dexp | -~ S
(y) = Aexp (4M2 —1Y (402 —1)2

Avec A une constante arbitraire. On en déduit alors les expressions de la vitesse et de la

pression :
u(z,y,t) =(14+y —2Mzx) {)\ exp (fmj\/[z%y) + 2]\/['((;1]\]\/;[22%11))2] (4.23)
v(z,y,t) :% {(4]\/[2 —1)exp (i%z%y) + 2exp (%%2]\41’)}
+2xM’+4MM/%(1+y—2Mx) (4.24)
p(z,y,t) =— M%/\ {exp (%y) + 3exp (%QMI)}
% (4.25)

On peut a présent choisir la modulation temporelle M. Dans notre cas, on prendra M (t) =
1+ Asin(wt), avec A =0.1 et w = 27/4.
Résultats numériques

Nous devons étudier la convergence spatiale ( en fonctions de la taille des éléments du

maillage) et la convergence temporelle (en fonction du nombre de pas de temps utilisés).
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y=1+A.sin( &)

Surface libre ///

Figure 4.4 Solution manufacturée instationnaire : domaine et sa déformation.

L’erreur exacte peut se décomposer en une erreur spatiale et une erreur temporelle :
| teza — u(h, At)|| = erreur spatiale + erreur temporelle = O(h?) + O(At") (4.26)

ou p est le taux de convergence spatial et n est le taux de convergence temporel. Plusieurs
méthodes peuvent étre employées pour mener cette étude de convergence, elles sont décrites
précisément par Etienne et al. (2009a). Une premiére option consiste a étudier la convergence
temporelle et la convergence spatiale de facon couplées. Il faut alors effectuer une série de
simulations en ajustant a la fois la taille du maillage et du pas de temps pour réduire ’erreur
totale d'un facteur donné. Par exemple, avec des éléments de Taylor-Hood et un schéma
d’Euler implicite pour l'intégration temporelle, I'ordre de convergence spatial est de 2 en
norme énergie par rapport a la taille de maille et de 1 par rapport au nombre de pas de
temps. Si la taille de maille est divisée par 2, 'erreur spatiale sera divisée par 4. Il faut donc
diviser le pas de temps par 4 pour que ’erreur temporelle et ainsi I’erreur totale soient divisées
par 4. De méme, avec un schéma de Runge-Kutta d’ordre 5, lorsque le pas de temps est divisé
par 2, l'erreur temporelle est divisée par 32. Avec des éléments de Taylor-Hood, la taille de
maille doit étre divisée par 2°/2 pour parvenir au méme ordre de réduction, ce qui signifie que
le nombre de neeuds doit étre 32 fois plus important. Avec des schémas d’intégration d’ordre
élevé, cette approche conduit rapidement a des maillages tres fins et donc a des simulations

cotiteuses qui limitent la portée de cette approche. Une autre voie consiste a étudier les deux
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types d’erreurs séparément de la facon suivante :

— Erreur spatiale : On choisit un pas de temps suffisamment petit pour que 'erreur
temporelle soit négligeable par rapport a la plus petite erreur spatiale attendue. Ainsi,
|teza — u(h, At)|| = O(hP) et la méme méthode que pour la solution stationnaire peut
etre appliquée.

— Erreur temporelle : Pour un maillage donné, on étudie l'erreur ||u(h, At) — u*(h)|| ou
u*(h) est la solution convergée en temps sur le maillage donné, c’est a dire

u*(h) im wu(h, At) (4.27)

=1
At—0

Avec cette méthode, on calcule bien 'erreur temporelle seulement. En effet, I'erreur

spatiale est la méme pour les solutions u*(h) et u(h, At) puisqu’elle sont calculées sur

le méme maillage.

Convergence avec le maillage On calcule les erreurs exactes et estimées a l'instant
t =T/2 ou T est la période de la modulation M. Pour étudier l'erreur spatiale, ces erreurs
sont calculées sur une série de maillages de plus en plus fins. Ils sont obtenus par adaptation
de maillage sur la condition initiale. Le pas de temps est le méme pour toutes les simulations,
il doit étre suffisamment petit pour que I'erreur temporelle soit négligeable. On choisit donc
At = T/40 avec un schéma de Runge-Kutta d’ordre 3. Si le pas de temps est trop grand,
I'erreur stagnerait avec le raffinement de maillage. Si le pas de temps est trop petit, les
courbes de convergence observées seraient les mémes mais le temps de calcul serait plus long.
La figure 4.5 présente I’évolution des erreurs exactes et estimées en norme LZQ) et énergie. Pour
chacune de ces normes, I'écart entre ’erreur exacte et I’erreur estimée est assez important sur
les maillages grossiers, mais il est ensuite comblé rapidement. Lorsque la zone asymptotique
est atteinte, la pente de chaque courbe se rapproche de 2, ce qui correspond bien au taux de

convergence théorique.

Convergence temporelle Pour les éléments de Taylor-Hood, on choisit un maillage de
487 noeuds et on fait une série de simulations avec des pas de temps de plus en plus petits. La
solution exacte sur ce maillage u*(h) est approchée par la solution numérique obtenue avec
un schéma de Runge-Kutta d’ordre 5. Comme précédemment, les erreurs exactes et estimées
sont calculées a l'instant 7'/2. On utilise successivement les schémas d’Euler implicite et
RK32 et RK53. Les résultats obtenus sont présentés sur la figure 4.6. Pour les schémas de
Runge-Kutta, on observe le méme ordre de convergence pour la norme énergie et la norme L%.
Ceci est surprenant car I'ordre de convergence de la pression devrait étre plus petit. La figure

4.6 illustre bien les caractéristiques de chaque schéma. La pente de chaque courbe représente
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Figure 4.5 Solution manufacturée instationnaire - élément de Taylor-Hood : convergence de
I'erreur avec le raffinement du maillage.

I'ordre de convergence temporelle. Pour le schéma d’Euler implicite, la zone asymptotique est

atteinte a partir de 320 pas de temps. Par la suite, on observe bien un taux de convergence

de 1. Pour le schéma de Runge-Kutta 32, la zone asymptotique est déja atteinte a 10 pas

de temps et le taux de convergence est de 3 pour chacune des normes. Pour le schéma de

Runge-Kutta 53, on se trouve déja en zone asymptotique a 10 pas de temps. L’ordre de

convergence sur le premier segment est de 5 pour la vitesse et 4.4 pour la pression. Ensuite,

il diminue mais Ierreur est de 'ordre de 1078.
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Figure 4.6 Solution manufacturée instationnaire - élément de Taylor-Hood : convergence de
Ierreur avec le raffinement du pas de temps.

Pour les éléments P1-P1, on utilise un maillage de 1078 nceuds. On a utilisé une stabili-



68

sation SUPG/PSPG, le coefficient de stabilisation est

1
TSUPG = TPSPG = \/ (4.28)

4w — vpl* 1602
o T

On n’utilise pas ici le terme en 4/A¢?. Nous allons vérifier ici que les termes de stabilisation
ne viennent pas réduire l'ordre de convergence temporelle. On utilise la méme méthode que
pour les éléments de Taylor-Hood. L’évolution des normes d’erreur en fonction du nombre
de pas de temps est représentée sur la figure 4.7. Nous avons des résultats similaires a ceux
obtenus avec les éléments de Taylor-Hood. C’est a dire que chaque schéma atteint son ordre de
convergence temporelle. Ceci indique que la GCL est satisfaite malgré les termes additionnels

de stabilisation.

! ' " a8 —+— RK53- norme Energie
01+ /‘5:1355 ’ 4 -~ RK53-normeL2p
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Figure 4.7 Solution manufacturée instationnaire - élément P1-P1 stabilisés : convergence de
Ierreur avec le raffinement du pas de temps.

Conclusion Dans les deux paragraphes précédents, nous avons vérifié la convergence de la
solution avec les raffinements de maillage et de pas de temps pour un cas de surface libre.
Pour chaque type d’éléments utilisés, les ordres de convergence observés tendent vers ’ordre
théorique. Les équations sont donc correctement résolues et I'implémentation des schémas de
Runge-Kutta avec les conditions de surface libre est donc vérifiée. De plus, 'utilisation de
la stabilisation en régime instationnaire sur maillage mobile n’affecte pas le taux de conver-
gence temporelle. Ces résultats montrent I'intérét de 1'utilisation de schémas de Runge-Kutta
d’ordre élevé. Par exemple pour obtenir une erreur temporelle de I'ordre de 107%, 5120 pas
de temps ne sont pas suffisant avec le schéma d’Euler implicite, en extrapolant les résultats,

il faudrait environ 300 000 pas de temps alors que 80 pas de temps suffisent pour le schéma
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de Runge-Kutta 32 et que moins de 10 pas de temps sont nécessaires avec les schéma 53.
Le prix a payer pour obtenir cette précision est un plus gros systeme a résoudre a cause
des sous-niveaux. Pour le schéma RK32, la matrice est 2 fois plus large que pour le schéma
d’Euler implicite et pour le schéma 53, elle est 3 fois plus large. Cependant le nombre de pas
de temps nécessaires étant beaucoup plus petit, I'utilisation de ces schémas permet d’attein-
dre une meilleure précision avec un temps de calcul plus court. Une étude détaillée des cotits

de calcul avec les différents schémas a été réalisée par Cori (2011).

4.2 Vérification des sensibilités lagrangiennes sur maillage mobile

Nous allons maintenant vérifier le calcul des sensibilités. Nous n’allons pas présenter de
solution manufacturée avec surface libre. En effet, pour vérifier les sensibilités lagrangiennes,

il faut fixer la vitesse de déformation car les sensibilités en dépendent :

Sy = g—z + V- Vu (4.29)

Or sur l'interface, la vitesse de déformation est calculée par les conditions de surface libre

pour les sensibilités. Si nous fixons arbitrairement la vitesse de déformation dans tout le
domaine, les conditions de surface libre pour les sensibilités ne sont pas testées.

Nous allons donc nous assurer que la GCL est satisfaite pour les sensibilités, la convergence

spatiale des sensibilités lagrangiennes ayant été déja vérifiées précédemment (Charlot (2008)).

Sur un domaine rectangulaire de longueur 2 et de largueur 1, nous choisissons la solution

analytique suivante :
(z,y,1)
(z,9,1)
p(z,y,t) =8(1 —x) (4.30)
(z,y,1)
(z,9,1)

Il s’agit d'un écoulement de type Poiseuille dont la vitesse maximale varie avec le temps.
Comme il ne s’agit pas d’une solution exacte des équations de Navier-Stokes, il faut ajouter

le terme source adapté :

ou

ﬁ=05;=&W—y5 (4.31)

f,=0 (4.32)
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Pour les sensibilités, nous choisissons arbitrairement,

ou 29 ov B dp B
%(.CE, Y, t) =4t Y ) da (.T, Y, t) =0 et da (x7y>t) - 8(:5 1) (433)
Vi (w,y,t) =0 et Vi(z,y,t)=y(l+1/2) (4.34)

Ensuite, les sensibilités lagrangiennes sont obtenues de la facon suivante

Sﬁ‘:a—u—i-Vu-V"‘

Oa
Sg‘z@—FVU-Vo‘

Oa

Jp
S = —+4+Vp- V< 4.35
P = T VP (4.35)
Sg =V,
5= vy

Le terme source pour les sensibilités est calculé de la facon suivante : ¢ = df /0a+V f -V

avec

Ofx
oo oy

Les autres termes sont nuls. On utilise un schéma de Runge-Kutta d’ordre 3 avec des éléments

=8ty et

= 8t(1 — 2y) (4.36)

de Taylor-Hood et on fait une étude de convergence avec le raffinement du pas de temps. On
procede comme pour ’écoulement. Le temps final des simulations est ¢y = 0.125. La figure
4.8 montre I'évolution de 'erreur pour Iécoulement et les sensibilités en norme L% et en
norme énergie. Les ordres de grandeur des erreurs pour I’écoulement et pour les sensibilités
sont les mémes. De plus, pour une méme norme, les ordres de convergence sont les mémes
puisque dans la zone asymptotique les droites sont paralleles. Ces ordres sont bien conformes
a la théorie, c’est-a-dire de 3 pour la norme énergie et de 2 pour la norme L%.

Nous avons obtenus des résultats similaires en prenant le méme écoulement orienté ver-
ticalement plutot qu'horizontalement afin de vérifier les termes qui étaient nuls dans cette
solution.

La formulation adoptée pour les sensibilités respecte donc bien la GCL, c’est-a-dire que
sur maillage mobile, 'ordre de convergence temporelle est le méme que sur maillage fixe.

Nous avons donc a présent vérifié toute la méthode proposée, aussi bien pour le calcul
de surface libre que pour le calcul des sensibilités lagrangiennes instationnaires sur maillage

mobile.
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Figure 4.8 Erreur temporelle pour I’écoulement et les sensibilités.

4.3 Ballotement de grande amplitude

Nous présentons ici un cas simple de surface libre. Apres une étude de convergence tem-
porelle, nous comparerons nos résultats avec ceux de Dettmer et Peric (2006b). Le domaine
est représenté sur la figure 4.9. On considere un fluide contenu dans un réservoir rectangu-
laire. A I'instant initial, le fluide est en équilibre hydrostatique. La longueur du réservoir est
de 1.0 et la hauteur de fluide au repos est de 1.0. La viscosité et la densité du fluide sont fixées
respectivement a 0.01 et a 1.0. L’intensité de la gravité est de 1.0. Sur les parois du réservoir,
on impose une condition de glissement. Le réservoir est ensuite soumis a un déplacement
horizontal donné par Az = A(1 — cos(wt)), avec A = 0.075. On prend w = 1.5 car Dettmer

et Peric (2006b) ont montré que cette pulsation correspond a la résonance.

4.3.1 Convergence temporelle pour 1’écoulement

Pour 'étude de convergence, la méthode utilisée est la méme que celle utilisée pour
la solution manufacturée. En effet, pour 'erreur temporelle, nous n’avons pas besoin de
connaitre la solution analytique. A nouveau, nous utiliserons les trois schémas d’intégration
(Euler implicite, Runge-Kutta d’ordre 3 et d’ordre 5) et les éléments de Taylor-Hood et P1-
P1 stabilisés. Les erreurs sont calculées a I'instant ¢ = 7'/10 ou T est la période d’oscillation
du réservoir. Les vecteurs vitesse de la solution a ¢ = 7'/10 sont représentés sur la figure 4.10.

Pour les éléments de Taylor-Hood, le maillage est constitué de 487 nceuds et on choisit
comme référence la solution obtenue avec 256 pas de temps pour le schéma de Runge Kutta
d’ordre 5. L’évolution de l'erreur en norme énergie et L2 avec le raffinement du pas de temps

est représentée sur la figure 4.11. Comme précédemment, les différences entre les schémas
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surface libre

Ax = A(1 — cos( ux)

Figure 4.9 Ballotement : domaine

sont nettes. Pour le schéma d’Euler implicite, ’ordre de convergence est de 1. Pour le schéma
de Runge-Kutta d’ordre 3, le taux de convergence est de 3 pour la norme énergie et de 2
pour la norme L%, ce qui est conforme aux ordres théoriques. Pour le schéma de Runge-Kutta
d’ordre 5, le taux de convergence est bien de 3 pour la norme L%. Pour la norme énergie, il
commence a 5 puis diminue a 3. L’erreur approche de I'erreur machine, ce qui peut contribuer
a cette réduction d’ordre de convergence.

Pour les éléments P1-P1, la méthode est la méme, on a utilisé un maillage de 1078
neeuds. On a utilisé une stabilisation de type SUPG/PSPG. Les résultats sont présentés sur
la figure 4.7. Les résultats sont similaires a ceux obtenus avec les éléments de Taylor-Hood.
La stabilisation n’interfere donc pas avec la convergence temporelle. Cependant, on peut
nuancer ces résultats par le fait que le nombre de Reynolds reste faible (de I'ordre de 10) et

que les termes additionnels dus a la stabilisation sont faibles eux aussi.

4.3.2 Comparaison des résultats

Nous comparons maintenant nos résultats avec ceux obtenus par Dettmer et Peric (2006b).
On utilise un maillage de taille similaire composé de 487 nceuds (vs 528 noeuds). Pour
I'intégration temporelle, on compare les résultats obtenus avec le schéma d’Euler implicite et
un schéma de Runge-Kutta d’ordre 3. Les simulations couvrent 10 périodes d’oscillation du
réservoir avec 25, 50, 100 et 200 pas de temps par période.

L’élévation du point extréme droit de la surface libre en fonction du temps est représentée
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Figure 4.10 Ballotement : vecteurs vitesse a t = 7/10

sur la figure 4.13. La figure 4.13(a) montre les courbes obtenues avec le schéma d’Euler
implicite pour les différents pas de temps. Les résultats pour le schéma de Runge-Kutta sont
représentés sur la figure 4.13(b). En comparant ces 2 figures, on peut clairement voir que le
schéma de Runge-Kutta d’ordre 3 est bien plus précis que le schéma d’Euler implicite. Comme
on peut le voir sur la figure 4.13(a), méme avec le plus fin pas de temps, At = T/200, le
schéma d’Euler n’a pas encore convergé, 'amplitude est largement sous-estimée. Il faudrait
encore réduire le pas de temps pour obtenir une amplitude similaire a celle obtenues avec le
schéma de Runge-Kutta. Pour ce dernier, le pas de temps At = T'/50 semble déja donner une
bonne estimation de I'amplitude. La figure 4.14 montre I’agrandissement d’une créte obtenue
avec le schéma de Runge-Kutta. Les points calculés avec des pas de temps plus petits que
T/50 sont confondus. La courbe obtenue avec 25 pas de temps par période reste cependant
proche des autres. Ce pas de temps permet d’obtenir a moindre cotut 'allure de 1’élévation
de la surface libre. Nos résultats sont similaires & ceux obtenus par Dettmer et Peric (2006b)
avec une élévation maximale de 0.565.

Dettmer et Peric (2006b) observent des erreurs sur le volume de fluide, alors que la
formulation ALE, comme le domaine de calcul suit le domaine fluide, la conservation de la
masse devrait étre respectée. Le tableau 4.1 présente les erreurs sur le volume total de fluide
en fonction du pas de temps pour notre étude (avec le schéma RK32) et celle de Dettmer et
Peric obtenues au temps ¢ = 107".

Avec notre méthode, nous observons également une erreur sur le volume total mais elle est
bien plus petite que celle observée par Dettmer et Peric. De plus, elle semble converger vers 0
avec un taux de convergence de 3, ce qui est consistant avec le schéma d’intégration. Dans les

cas stationnaires, aucune erreur n’avait été observée, cette erreur est donc probablement due
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Figure 4.11 Ballotement - éléments de Taylor-Hood : Convergence de I'erreur avec le raffine-
ment du pas de temps.

At | | T/50 T/100 T /200
v ‘_/ Yo (%) present 712 x 1072 9.08 x 107* 1.14 x 1074
0
V-V
- ° (%) | Dettmer-Peric 1.82 1.10 0.72
0

Tableau 4.1 Erreurs de volume apres 10 périodes d’oscillation.

a l'intégration temporelle et a la déformation de la surface. Ceci est illustré sur la figure 4.15.
Cette figure représente 1’évolution du volume de fluide en fonction du temps avec différents
pas de temps pour le schéma d’Euler implicite (figure 4.15(a)) et pour le schéma RK32 (figure
4.15(b)). L’erreur augmente avec des oscillations ayant la méme période que le mouvement du
réservoir. De plus 'erreur obtenue avec le schéma d’Euler implicite est bien plus importante
que celle obtenue avec le schéma de Runge-Kutta d’ordre 3, plus de 100 fois plus grande et
semble converger vers 0 a 'ordre 1, ce qui est encore consistant avec 'ordre de convergence
du schéma.

Notre outil de calcul de surface libre semble donc étre performant et précis, surtout
en utilisant des schémas d’intégration temporelle d’ordre élevé. L’erreur sur le volume est
consistante avec le schéma et devient rapidement tres petite en utilisant un schéma de Runge-
Kutta d’ordre 3, alors qu’elle n’est pas négligeable avec un schéma d’Euler implicite. Ce
schéma demande des pas de temps beaucoup plus petits et donc des temps de simulation

beaucoup plus longs que les schémas de Runge-Kutta d’ordre 3 ou 5 pour la méme précision.
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4.3.3 Etude de sensibilité

Nous allons maintenant faire la méme étude pour les sensibilités. Ceci nous permettra
de vérifier la convergence temporelle des sensibilités avec surface libre. On choisit comme
parametre la viscosité. Méme si ce parametre n’est pas un parametre de forme dans un sens
purement géométrique, une modification de la viscosité entrainera une déformation différente

de la surface libre, donc un changement de forme du domaine.

Etude de convergence

Nous procédons toujours de la méme facon pour obtenir 'erreur temporelle. La figure
4.16 montre la convergence des erreurs pour 1’écoulement et les sensibilités en norme énergie
et en norme L%. Les erreurs sont un peu plus élevées pour les sensibilités mais elles ont le
méme ordre de convergence que pour I’écoulement, en effet les droites sont paralleles. La
formulation adoptée pour les sensibilités des écoulements avec surface libre respecte donc
la GCL. La précision sur les sensibilités est la méme que pour I’écoulement. L’usage des
schémas d’ordre élevé pour le calcul de surface libre et de sensibilité est donc justifié pour

des applications ultérieures.
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Figure 4.16 Evolution de lerreur temporelle avec le raffinement du pas de temps pour
I’écoulement et les sensibilités.

Interprétation des sensibilités

La figure 4.17 montre la valeur de la sensibilité du déplacement vertical du pseudo-solide.
Elle est positive sur la gauche, 1a ou la surface est la plus basse et négative la ou la surface est

la plus haute. Cela signifie que si la viscosité augmente, la surface libre sera moins déformée,
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ceci est en accord avec la physique, si le fluide est plus visqueux, il est plus difficile de le

mettre en mouvement et donc de déformer la surface libre.

SETA_MU

-136.9 -100.57 -64.25 -27.927 8.3962 44,719

Figure 4.17 Sensibilité du déplacement vertical a ¢t = 8.8T par rapport a la viscosité.

4.4 Conclusion

Dans ce chapitre, nous avons vérifié :

— I'implémentation des conditions de surface libre en régime stationnaire et instationnaire,
— Pimplémentation des schémas de Runge-Kutta avec la stabilisation PSPG/SUPG,

— que la GCL était bien respectée avec les éléments P1-P1 stabilisés,

— I'implémentation des sensibilités instationnaires sur maillage déformable,

— limplémentation des sensibilités de surface libre,

— que la GCL était bien satisfaite avec I’écoulement et les sensibilités pour les écoulements

avec surface libre.
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Notre code pourra donc étre utilisé pour le calcul d’écoulement avec surface libre avec
des nombres de Reynolds élevé sur des éléments P1-P1 stabilisés avec des schémas temporels
d’ordre élevé, donc avec un nombre de pas de temps réduit. On pourra aussi calculer les
sensibilités de 1’écoulement, avec des schémas temporels d’ordre élevé et des éléments de
Taylor-Hood, cette fois a bas Reynolds, puisque nous ne disposons pas de stabilisation pour

les sensibilités.
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CHAPITRE 5

RESULTATS NUMERIQUES

Ce chapitre présente plusieurs applications de la méthode décrite aux chapitres précédents.
On cherchera a tester ses performances et ses limites. On s’intéressera tout d’abord a un cas
de ballotement qui a fait I'objet d’une étude comparative. Nous pourrons alors valider le
calcul de la surface libre. Puis, on étudiera la propagation d'une onde solitaire dans un
canal et sa séparation lorsque le fond du canal est irrégulier. Cette étude nous permettra de
quantifier les effets de la viscosité et de comparer nos résultats avec des modeles théoriques.
On simulera ensuite la génération de vagues avec un batteur a houle, pour tester les limites
de la déformations du maillage et pour déterminer si les vagues générées numériquement
sont fideles a la réalité. Enfin, nous étudierons les efforts sur un cylindre soumis a une houle
incidente et on évaluera grace a l'analyse de sensibilités I'impact de la distance entre le
cylindre et la surface libre et celui du rayon du cylindre. Ce cas nous permettra d’évaluer
I'impact de la surface libre et de la viscosité sur les efforts et de montrer I'utilité de ’analyse

de sensibilité.

5.1 Etude comparative pour un cas de ballotement

Le but de cette étude est de comparer nos résultats avec d’autres études numériques. On
reprend le travail de Westhuis (2001). Ce dernier utilise une méthode potentielle, c’est a dire
que le fluide est parfait et que I’écoulement est irrotationnel. Il confronte ses résultats avec
7 méthodes similaires issues de I’étude comparative de Nestegard (1994). Le probleme est le
suivant : on considere un réservoir de longueur 160m rempli avec de I'eau. La hauteur d’eau
au repos est de 70m. Au temps initial, on suppose que la surface libre est déformée, de sorte

que son équation est la suivante :
yr(t =0) =70+ 12 [1 — (2/53)?] e/ (5.1)

On laisse ensuite évoluer le fluide sous l'influence de la gravité. On utilise les éléments P1-
P1 stabilisés sur un maillage de 8520 noeuds et le schéma temporel IRK32 avec un pas de
temps At = 0.1. Comme nous comparerons nos résultats avec des simulations utilisant la
théorie potentielle, on impose des conditions de glissement sur toutes les parois du réservoir.

Ainsi, il n’y aura pas de couche limite visqueuse le long des parois. La figure 5.1 montre
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I’évolution de la surface jusqu’a t = 10s. Pour chaque étude, la vitesse et la position de la

t (sec)

x(m)

Figure 5.1 Evolution de la surface libre.

surface libre ont été relevées a l'abcisse x = 60m et au temps t = 9,2s. Les résultats des

différentes études et les notres sont résumés dans le tableau 5.1. Les colonnes “min” et “max”

représentent respectivement la valeur minimale ou maximale parmi les 8 autres études, la

colonne “moyenne” est la moyenne des 8 études.

Nos résultats concordent bien avec les résultats obtenus par les autres études, ce qui

permet de valider le calcul de la surface libre.

5.2 Propagation d’une onde solitaire

Nous reprenons un autre cas développé par Westhuis (2001). 11 s’agit de simuler la prop-

agation d’une onde solitaire dans un bassin de longueur 300m avec une hauteur de fluide au

repos de 0.5m. Au temps initial, le profil de la surface libre est le suivant :

F— 0 0.215
yi(t=0) = +cosh(1.18x)
min  moyenne max | present
elevation SL | -3.860  -3.796  -3.720 | -3.797
u -2.480  -2.410  -2.280 | -2.415
% -0.690  -0.547  -0.363 | -0.571

(5.2)

Tableau 5.1 Ballotement : vitesse et position de la surface libre en x = 60m et a t = 9, 2s.
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Le fluide évolue ensuite sous l'effet de la gravité en générant une onde solitaire d’amplitude
0.1m.

5.2.1 Propagation de ’onde

On étudie tout d’abord la propagation de 'onde. On utilise des éléments P1-P1 stabilisés
sur un maillage de 9458 nceuds et un schéma de Runge-Kutta 32 avec un pas de temps
At = 0.1s. Les propriétés du fluide sont celles de I’eau, donc la densité est p = 1000kg.m =3, la
viscosité est p = 0.001Pa.s. Comme nous allons comparer nos résultats avec des simulations
utilisant la théorie potentielle, des conditions de glissement sont imposées sur toutes les
parois du bassin. Le temps final est de 120s. La figure 5.2 montre la déformée de surface libre
obtenue toutes les 10s. Une fois 'onde correctement formée soit a t = 20s, son amplitude est
de 0.097m. Elle diminue ensuite légerement pour atteindre la valeur de 0.093m a t = 120s.
Cette diminution non observée par Westhuis (2001) est due a la viscosité, et certainement

aussi au maillage utilisé qui était assez grossier (moins de 10 000 nceuds avec des éléments
P1-P1 stabilisés).

0.6

0.581- _
0.56~ -
>0.54 _
0.521- _
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0.48 I I I I I
0 50 100 150 200 250 300

Figure 5.2 Onde solitaire : surface libre toutes les 10 secondes.

La génération de l'onde n’est pas parfaite, en effet le profil utilisé est empirique. C’est
pourquoi des oscillations en arriere de ’onde sont observées. Elles ont une forme (amplitude
et localisation) tout a fait comparable a celles observées par Westhuis (2001) comme on peut
le voir sur la figure 5.3.

La vitesse de propagation observée ici est un peu plus faible que celle mentionnée par

Westhuis (2001), et diminue un peu au court du temps comme le montre la figure 5.4.
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Figure 5.3 Oscillations derriere 'onde a t = 60s.

Les points représentent les valeurs obtenues, celles-ci ne sont pas régulieres a cause de la

discrétisation spatiale, la courbe est une régression quadratique de ces points. La vitesse au
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Figure 5.4 Vitesse de propagation de I'onde.

début est de 2.422m /s et diminue jusqu’a 2.412m /s, Westhuis obtient une valeur de 2.427m/s
qu’il compare avec le modele théorique de Boussinesq appliqué aux ondes solitaires. La vitesse

¢ d'une onde d’amplitude a dans un bassin de profondeur h est

c=/gh (1 + %) (5.3)
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Ceci mene a une valeur de 2.426m/s. Dans notre cas, la vitesse est donc plus faible. Le modele
théorique et les simulations de Westhuis reposent sur la théorie potentielle. L’écoulement
observé étant irrotationnel, cet amortissement est probablement d a la viscosité qui est

négligée dans la théorie potentielle.

5.2.2 Impact de la couche limite au fond

Nous allons maintenant nous intéresser a I'impact de la couche limite visqueuse sur le fond
du bassin. Nous reprenons donc le méme calcul que précédemment, mais en imposant une
condition de non glissement sur le fond. Ce cas est donc beaucoup plus proche de la réalité
que le cas précédent et n’aurait pas pu étre simulé avec des modeles potentiels. Un modele
théorique a été développé pour ce cas par Keulegan (1948) et repris par Liu et Orfila (2004).
L’écoulement est alors supposé potentiel partout sauf dans la couche limite. [’amortissement

visqueux correspond a la réduction suivante de I'amplitude :

()6 o0

ou ag est 'amplitude de départ, a; 'amplitude de 'onde au moment d’observation, d est la
distance parcourue par l'onde entre temps, h est la profondeur d’eau au repos et K est une

constante. Sa valeur théorique est la suivante :

1 v
Ky, = 1\ PR (5.5)

Nous allons donc calculer la valeur de ce coefficient pour les simulations numériques et les
comparer au modele. On reprend la configuration avec une condition de non glissement au
fond. L’amplitude de I’onde passe alors de 0.095m a 0.08m at = 91.5s. La figure 5.5 représente
la déformée de surface libre toutes les dix secondes et la figure 5.6 montre 1’évolution de
I’élévation maximale de la surface libre au cours du temps. En comparant les figures 5.2 et
5.5, on remarque que la vitesse de propagation de 'onde est réduite.

Pour ce cas, on obtient un coefficient théorique Ky, = 7.9197 x 107%. On choisit des points
a intervalle régulier de 10s pour obtenir le coefficient K pour la simulation entre 10s et 80s. Il
n’apparait pas d’évolution significative de K au cours du temps. On obtient une moyenne de
1.80 x 10794, L’ordre de grandeur est le méme que le modele théorique Ky, = 7.9197 x 1079
mais la valeur est surestimée. Ceci peut s’expliquer par le fait que le maillage utilisé n’est
pas assez fin pour décrire correctement la couche limite. En utilisant I'analyse de Ippen et
Kulin (1957) qui cherche a déterminer le nombre de Reynolds et 1'épaisseur de la couche

limite en se basant sur la théorie développée pour une plaque plane. Notre cas correspond
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Figure 5.5 Onde solitaires-non glissement : surface libre toutes les 10 secondes.

alors & un nombre de Reynolds d’environ 1.53 x 10° ce qui correspond au domaine laminaire
dans la théorie de la plaque plane. L’épaisseur de couche limite est alors de I'ordre de 0.01m.
Or la taille des éléments et de l'ordre de 0,05m, ce qui n’est pas suffisant. On reprend
donc le calcul en raffinant le maillage au fond, de sorte que les éléments ont une taille
approximative de 0,003m au fond. Pour limiter les cotits de calcul, le temps de simulation
est moins long, ce qui permet de rétrécir le domaine. Le profil de vitesse horizontale obtenu
est représenté en rouge sur la figure 5.7 avec le maillage utilisé. Le maillage reste encore
grossier par rapport aux variations de la vitesse. Le coefficient d’amortissement K a alors pour
moyenne K = 1.04 x 10~ ce qui est plus proche du modele théorique Ky, = 7.9197 x 1079,

On peut nuancer ces résultats en considérant les résultats expérimentaux de Ippen et Kulin
(1957). Ces expériences ont mis en évidence une dépendance du coefficient avec 'amplitude
de l'onde, donc avec la valeur du nombre de Reynolds dans la couche limite. Les coefficients
mesurés sont plus grands que les coefficients théoriques lorsque le rapport entre 'amplitude de
I'onde et la profondeur sont petits comme dans notre cas. Ce cas nous a permis de montrer
que notre méthode permettait bien de simuler la propagation d’une onde solitaire et que

I’amortissement observé correspond a la physique du probleme.

5.2.3 Séparation de 1’onde solitaire

Le cas est le méme que précédemment mais le fond du bassin n’est plus plat. Ainsi entre
xr = 30m et x = 40m la hauteur d’eau passe linéairement de 0.5m a hy. Comme le mentionne
Westhuis (2001), cette variation de profondeur provoque une séparation de I'onde solitaire

en deux, voire trois ondes, selon la profondeur h; considérée. Nous allons donc simuler cette
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Figure 5.6 Elévation maximale de la surface libre.

séparation pour des hauteurs h; de 0.35m et 0.25m pour lesquelles Westhuis (2001) avait
obtenu respectivement des séparations en deux et trois ondes. Nous étudierons aussi I'impact

de la couche limite au fond pour chacune de ces hauteurs.

Condition de glissement au fond

La figure 5.8 présente les résultats obtenus pour une hauteur h; de 0.35m avec une
condition de glissement au fond du bassin. La variation de profondeur provoque bien une
séparation de l'onde en deux parties. Sur la figure 5.8(b) on peut observer 1'évolution de
I’'onde au cours du temps. Lorsqu’elle atteint la position z = 30m, lorsque la hauteur du fond
commence a varier, elle se décompose en une onde transmise et une onde réfléchie. Cette
derniere a une amplitude tres faible. Elle se propage d’abord dans le sens des x décroissants
avant d’etre réfléchie contre la paroi du bassin en x = Om a environ ¢ = 30s. Elle repart
ensuite dans le sens positif. On peut 1'observer ensuite en arriere de I'onde transmise. Sur
la figure 5.8(a) elle se trouve a I'abscisse © ~ 170m. L’onde transmise est bien séparée en
deux ondes. Lorsque la profondeur du bassin atteint h;, 'amplitude de 'onde est de 0.127m
puis décroit jusqu’a 0.121m. On remarque que l'onde principale se propage moins vite que
I'onde solitaire avec une profondeur de bassin constante. En effet, a ¢ = 119s, la figure 5.8(a)
montre que la créte de 'onde principale se situe environ a x = 260m contre x = 290m pour
une profondeur constante de 0.5m. Ceci n’est pas étonnant car la vitesse de propagation
des ondes infinitésimales en faible profondeur est v/gh. Comme h diminue, il est normal que
la vitesse de propagation diminue aussi. La figure 5.8(c) montre que 'onde secondaire se

propage moins vite que 'onde principale. Son amplitude est de 0.02m a t = 120s. Ceci est
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Figure 5.7 Vitesse horizontale dans la couche limite et maillage.

en accord avec I'expression de Boussinesq (5.3) pour la vitesse de propagation. La vitesse est

une fonction croissante de 'amplitude.

La figure 5.9 montre les résultats obtenus pour h; = 0.25m. On observe une division en trois
parties de 'onde transmise et la présence, comme précédemment, d’une onde réfléchie.

On constate que 'onde principale se propage plus vite que les ondes secondaires et qu’elle
est amortie, son amplitude passe de 0.15m a t = 20s a 0.11m a t = 120s. Cet amortissement
est bien plus élevé que celui constaté pour h; = 35m. L’amortissement ne provient donc pas
d’une perte d’énergie dans la couche limite. On remarque que 'amplitude de 'onde varie
moins vite vers la fin du canal pour h; = 0.25m, c’est a dire lorsque l'onde secondaire
est plus éloignée. I’onde principale alimente les autres qui, elles, ne semblent pas subir
d’amortissement. La profondeur est aussi un parametre important. L’amplitude de 1'onde
est plus grande pour 0.25m, l'interaction entre le fond et 'onde est donc plus importante, ce

qui crée de I'amortissement.
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Figure 5.8 Evolution de la surface libre, h; = 0.35m, glissement.
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Figure 5.9 Evolution de la surface libre, h; = 0.25m, glissement.
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Condition de non glissement au fond

La figure 5.10 montre I’évolution de la surface libre pour h; = 0.35m avec une condition de
non glissement au fond du bassin. Cette condition de non glissement provoque une diminution
de I'amplitude de 'onde ainsi qu’'un ralentissement de sa propagation. On retrouve encore, en
arriere des deux ondes transmises, I’onde réfléchie. On peut 'observer a I’abscisse x ~ 170m en
arriere de 'onde transmise sur la figure 5.10(a). On peut voir que les deux ondes se propagent
a des vitesses différentes, celle de plus grande amplitude allant plus vite. Par contre, celle-ci
est plus amortie. Son amplitude passe de 0.117m a t = 20s a 0.73m a t = 120s. C’est donc
un amortissement plus important que pour 'onde seule avec une profondeur de h = 0.5m. La
comparaison avec le modele théorique de Keulegan (1948) ou les résultats expérimentaux de
Ippen et Kulin (1957) ne serait pas pertinente ici car ils ne s’appliquent que pour les ondes
solitaires et, ici, il y a une interaction entre les deux ondes.

La figure 5.11 montre I'évolution de la surface libre au cours du temps pour h; = 0.25m
sans glissement au fond du bassin. On observe bien une séparation de ’onde en trois. L’effet
de la condition de non glissement provoque une diminution significative de 'amplitude de
I'onde, de 0.148m a 0.063m, ainsi qu’un ralentissement de sa propagation. L’onde secondaire
la plus proche de 'onde principale est elle aussi amortie, son amplitude passe de 0.055m a
t =40s a 0.0535m a t = 120s.
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Figure 5.10 Evolution de la surface libre, h; = 0.35m, non glissement.
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5.3 Batteur a houle

Dans cette section, nous allons simuler un bassin a vague utilisé pour faire des mesures sur
des maquettes. Il existe plusieurs méthodes pour générer la houle. On choisit ici de simuler un

batteur a piston, c’est a dire qu’'une paroi du bassin oscille selon un mouvement horizontal.

5.3.1 Canal court

On considere un bassin de longueur 4, avec une hauteur d’eau au repos de 0.25. La
paroi gauche du canal se déplace selon le mouvement Az = Asin(wt) avec A = 0.1 et

w = 27 pour simuler le mouvement d’un batteur a piston. Le nombre de Reynolds est de
U,
Re = 700 et le nombre de Froude Fr = —

= 0.178. Ce cas ne correspond pas vraiment a

un cas physique, le but étant d’évaluer les capacités du code. Ce calcul a été réalisé avec des
éléments P1-P1 stabilisés avec un schéma IRK32 sur un maillage de 15185 noeuds. Les essais
réalisés avec les éléments de Taylor-Hood n’ont pas abouti a cause des instabilités numériques,
méme en utilisant un maillage plus fin. L’utilisation du schéma ITRK32 permet d’augmenter
significativement le pas de temps par rapport a un schéma d’Euler implicite. Nous avons
utilisé ici 100 pas de temps par période. Avec le schéma d’Euler, les amplitudes des vagues
étaient beaucoup plus petite. Une réduction du pas de temps menait a des résultats tres
différents. Il aurait donc fallu utiliser un pas de temps plus beaucoup plus petit, ce qui aurait
allonger le temps de calcul. Ceci n’a pas été observé avec le schéma IRK32 pour ce pas de
temps.

Les figures 5.12, 5.13 et 5.14 montrent les déformées obtenues a des moments différents. A
t = 1.5s, une premiere vague est générée et se propage vers la droite, a t = 2.3s, une seconde
vague est générée. Ensuite, la premiere est réfléchie et rencontre la seconde a t = 2.86s
comme le montre la figure 5.14. L’amplitude de la vague augmente et commence a déferler.
Cependant, le maillage devient alors trop étiré et se replie, la simulation s’arréte. On constate
aussi sur ces figures que la vorticité est nulle partout sauf proche de la surface. Dans ce cas,
la théorie potentielle est donc insuffisante pour le calcul de la surface libre.

La figure 5.15 montre la créte de la vague au dernier pas de temps calculé. La vitesse
croit rapidement entre le bas et la créte de la vague et atteint des valeurs assez importantes
(> 3) par rapport a la vitesse du batteur (V,,q, = 0.63). La figure 5.15(d) montre les vecteurs
vitesse multipliés par le pas de temps. On peut ainsi prévoir la géométrie de la surface libre au
pas de temps suivant. On constate que la vague va commencer a déferler, le maillage n’a pas
pu suivre la déformation, c¢’est pourquoi la simulation a da étre interrompue. Utiliser un pas
de temps plus faible aurait peut étre permis de poursuivre la simulation, mais la méthode de

déformation de maillage est intrinsequement limitée : si la vague déferle vraiment, il faudra
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de toute facon remailler.
Notre méthode permet cependant de simuler des déformations importantes de la surface

libre, son domaine d’application reste donc large.
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Figure 5.12 Maillage et vitesse horizontale a ¢t = 1.5s.
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Figure 5.14 Maillage et vitesse horizontale a t = 2.86s.
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5.3.2 Canal long

Nous proposons ici une étude plus réaliste. Pour cela, nous nous basons sur la configuration
décrite par Duclos et al. (2004) (sans digue). Le but est de déterminer si la méthode, utilisant
les équations de Navier-Stokes permet de simuler sans dissipation la propagation de vagues
dans un bassin Le bassin mesure 33m de long et la hauteur d’eau au repos est de 0.8m.
Le mouvement du batteur est Az = Asin(wt) avec A = 0.01 et w = 6.04, la période de
battement étant de 1.04s.

Nous utilisons des éléments P1-P1 avec la stabilisation SUPG/PSPG. Le maillage compte
9350 nceuds dont 979 sont situés sur la surface libre. Les propriétés du fluide sont les sui-
vantes : p = 1000kg.m=3, p = 0.001Pa.s, g = 9.807m.s2. La figure 5.19 montre I’évolution
de la surface libre toutes les 10 secondes. Les vagues se propagent au fur et a mesure dans le
milieu au repos. Le déplacement vertical de la surface libre est compris entre environ —0.020m
et 0.020m. A 50 secondes, sur la figure 5.19(e), on peut observer leur réflexion sur la paroi
opposée, I'amplitude des vagues est modifiée entre 20m et 33m. Ce phénomene se traduit par
une amplification ou une diminution de 'amplitude, comme on peut le voir sur les figures
5.16 et 5.17.

On peut comparer nos résultats avec le modele de la houle d’Airy, décrit en détail par
Molin (2002). Ce modele est basé sur la théorie potentielle et ne prend en compte que les
termes de premier ordre par rapport a la cambrure des vagues. La cambrure de la houle est

le rapport entre 'amplitude et la longueur d’onde. Le profil de la surface libre est alors :
n(t) = Acos(kx — wt) (5.6)

Si la profondeur du bassin est h, le nombre d’onde k et la pulsation w sont liés par 1’équation

suivante :

w? = gk tanh(kh) (5.7)

Ici w vaut 27/T = 6.0415rad.s™" donc on peut s’attendre & un nombre d'onde k =
3.741m™!, ce qui correspond & une longueur d’onde de A = 1.6797m. Au temps t = 30s,
on calcule la moyenne de la distance entre deux crétes successives sur un total de 10 crétes.
On trouve alors une longueur d’onde \,.,, = 1.6795m, ce qui est en tres bon accord avec la
théorie linéaire.

Nous allons maintenant comparer nos résultats avec les expériences et les calculs de Duclos
et al. (2004). Une sonde est placée dans le bassin a l'abscisse x; = 8.25m. Le relevé de la
surface libre pour nos calculs est tracé sur la figure 5.18, la figure est tres voisine de celle

obtenue par Duclos et al. (2004). Pour comparer de maniére plus quantitative, on calcule la
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série de Fourier du signal lorsque le régime périodique est établi. On a alors

At) = Ag + Z A, cos(nwt + ¢,) (5.8)

Les premieres composantes obtenues sont résumées dans le tableau 5.2.

Al AQ A3
expérience | 1.75 1072 | 7107% -
numérique | 1.76 1072 | 5.8 1074 | 1.2 1074

Tableau 5.2 Batteur a houle : coefficients de Fourier de la déformée de surface libre.

Les mesures n’ont pas permis de déterminer le troisieme mode. Nos résultats sont tres
proches des mesures pour le premier et second mode. Duclos et al. (2004) ont comparé les
mesures avec des codes potentiels et visqueux qui ont mené a des écarts compris entre 5% et
10% pour le premier mode contre moins de 1% dans notre cas.

Notre code est donc capable de générer une houle possédant des caractéristiques sem-

blables a celles générées en bassin.
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Figure 5.16 Batteur a houle : évolution de la surface libre entre 47 et 50 secondes.
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5.4 Interaction entre un cylindre et des vagues

L’écoulement autour d'un cylindre soumis a une houle incidente a de nombreuses appli-
cations pratiques comme les structures offshore ou les pipelines sous-marins. Par exemple,
Boccotti (1996) a mené une série d’expériences sur la plage a Reggio Calabria en vue de
la construction d’un pont submergé pour relier la Sicile au continent. Une analyse précise
des efforts est alors nécessaire pour éviter tout phénomene de résonance sur les structures
immergées. Dean (1948) a montré dans le cadre de la théorie potentielle qu’il n’y avait pas
d’onde réfléchie par le cylindre et que 'onde transmise avait la méme amplitude que 'onde
incidente mais était déphasée. Ogilvie (1963) a calculé, toujours dans le cadre de la théorie
potentielle, les efforts au premier ordre sur le cylindre. Des expériences ont été menées par
Chaplin (1984) pour mesurer les efforts sur le cylindre en fonction du nombre de Keulegan-
Carpenter qui compare 'amplitude de la houle incidente avec le diametre du cylindre. 11 a
montré que le modele potentiel utilisé par Ogilvie (1963) n’était pas valable pour le calcul
de la premiere harmonique des efforts, a cause des effets visqueux et non linéaires. En ef-
fet, a cause de la viscosité, on peut observer une couche limite oscillante autour du cylindre
et 'apparition d’une circulation autour du cylindre. Ce phénomeéne provoque une chute du
coefficient d’inertie avec 'augmentation du nombre de Keulegan-Carpenter. C’est pourquoi,
Guerber et al. (2010), dont les simulations sont basées sur un modele potentiel, n’observent
pas ce phénomene et retrouvent les résultats théoriques dOgilvie (1963). Il convient donc d'u-
tiliser les équations de Navier-Stokes afin de simuler correctement ce cas. Tavassoli et Kim
(2001) utilisent les équations de Navier-Stokes et des marqueurs pour le calcul de la surface
libre. Ils obtiennent la méme tendance que celle observée par Chaplin (1984).

Nous allons donc voir si on retrouve des résultats similaires et nous ferons une analyse
de sensibilité par rapport a la position et au rayon du cylindre afin de voir quel est leur
impact sur I’écoulement et de valider le calcul de sensibilité. Lors des analyses de sensibilité
en régime instationnaire, il faut éviter de choisir des parametres pouvant affecter la période
des phénomenes observés sous peine de voir les sensibilités diverger (semi-sécularité). Ici,
le mouvement est forcé par le batteur et il n’y a pas de détachement tourbillonnaire, les
sensibilités resteront donc bornées, sauf si on calcule les sensibilités par rapport a la fréquence
du batteur.

Nous allons reprendre les dimensions du bassin expérimental utilisé par Chaplin (1984)
pour construire un bassin numérique. Les longueurs sont adimensionnées sur le diametre du
cylindre noté D. Le bassin mesure 300D de long et la hauteur au repos du fluide est A = 8.5D,
il est représenté sur la figure 5.20. La houle est générée grace a un batteur a piston. La paroi

gauche du bassin oscille selon le mouvement x = Asin(wt), avec A = 0.1D. On obtient une
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x=Asin(wt)

Figure 5.20 Interaction entre un cylindre et des vagues.

houle de longueur d’onde A = 15.58 D, ce qui correspond a un nombre d’onde k£ = 0.4033. Le
cylindre circulaire est situé a 100D du piston, on note d la distance entre le haut du cylindre
et la surface libre au repos. Le nombre de Keulegan-Carpenter est alors défini de la fagon

suivante :

2
Ke= %e—kw/”d) (5.9)

ol a est 'amplitude des vagues incidentes. Ici nous avons a = 0.2D.

On utilise un maillage d’environ 36800 nceuds avec des éléments de Taylor-Hood, pour
pouvoir faire ’analyse de sensibilité. Comme nous ne disposons pas de stabilisation adaptée,
le nombre de Reynolds basé sur le diametre du cylindre et la vitesse maximale de la houle
est de 200. Prendre une valeur plus haute pourrait causer des oscillations numériques et une

valeur plus basse pourrait causer un amortissement des vagues trop important.

5.4.1 Impact du cylindre sur la déformée de surface libre

Afin d’étudier I'impact du cylindre sur la déformée de surface libre, on prend des valeurs
de d de 1D, 1.5D et 2D. On comparera avec une simulation sans cylindre.

La figure 5.21 représente la déformée de surface libre obtenue apres 30 oscillations du
batteur avec et sans cylindre pour plusieurs positions du cylindre. En amont du cylindre,
donc pour x < 100D les courbes sont confondues. Conformément aux résultats de Dean
(1948) il n’y a pas de réflexion de la houle sur le cylindre, 'onde transmise a bien la méme
amplitude que 'onde non perturbée, elle est environ 2D en arriere. On constate cependant
que lorsque le cylindre se rapproche de la surface libre, donc pour d = 1D, la forme de
I’onde est changée, voir 'agrandissement figure 5.22. La figure 5.23 montre que le déphasage

augmente légerement quand le cylindre se rapproche de la surface.
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5.4.2 Efforts sur le cylindre

Nous nous intéressons a présent aux efforts sur le cylindre. Pour le cas ou d = 1.5D, on

obtient les efforts présentés sur la figure 5.24. On constate que la force verticale et la force
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Figure 5.24 Efforts sur le cylindre pour d = 1.5D.

horizontale sont déphasées de /2. A partir de 110s le régime permanent est établi.

On peut décomposer les efforts en série de Fourier :

F.(t) = Fyo + Z Fop cos(nwt + @) (5.10)
F,(t)=Fy,+ Z Fy, cos(nwt + @yn) (5.11)

Selon la formule de Morison (Chaplin, 1984; Molin, 2002), la composante de force horizontale
de pulsation w se décompose en une force inertielle, en phase avec 'accélération, et une force

de trainée, en phase avec la vitesse. On a alors :
D? . 1

Nous calculons ces coefficients en prenant comme vitesse celle a la surface libre. Les valeurs

de C'yy et Cp pour différentes immersions sont présentées dans le tableau 5.3. On constate

d Kc OM CD
1D | 0.68 | 0.923 | 4.594
1.5D | 0.56 | 0.779 | 3.565
2D ] 0.46 | 0.651 | 2.824

Tableau 5.3 Coefficients d’inertie et de trainée.
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que plus le cylindre est proche de la surface libre, plus le rapport entre le coefficient de trainée
et d’inertie devient important.

Pour chaque pulsation nw, Chaplin (1984) utilise la décomposition suivante pour les efforts

oo o0
Fo =Y %OxnmpD?’wQKcm et Fy=>_ éC’ynmpD?’wQKcm (5.13)

m=0 m=0
Les valeurs des coefficients mesurés C,,,,, sont les mémes pour les efforts verticaux que pour
les efforts horizontaux. Pour la distance d = 1D, les conditions de simulation correspondent
au cas C testé par Chaplin (1984). Les coefficients mesurés et les forces résultantes sont
résumés dans le tableau 5.4 et comparés a nos résultats pour F, et [, ainsi qu’aux résultats
obtenus avec le modele d’Ogilvie (1963). On obtient des écarts relatifs avec les expériences
de Chaplin (1984) de 5% pour le premier mode et de 13% pour le second mode. Nos résultats
sont donc relativement en accord. Notre méthode capte la circulation autour du cylindre
qui mene a des efforts plus faibles pour la premiere harmonique. Notons que pour notre
simulation, # = Re/Kc = 299, alors que dans les expériences de Chaplin (1984), 5 = 9120,
donc notre écoulement est beaucoup plus visqueux. Cependant, ’accord entre nos calculs et
les expériences peuvent s’expliquer par le fait que la circulation créée autour du cylindre est

indépendante de la viscosité selon Longuet-Higgins (1970).
On va a présent comparer les résultats obtenus avec des simulations utilisant une houle
d’Airy a la place du batteur. Ce cas est beaucoup plus simple. Le conditions aux limites pour
la vitesse correspondent a une houle d’Airy sur toutes les frontieres du domaine. L’origine

du repere étant au fond, la vitesse dans le domaine de profondeur A est

~, cosh(ky)

u=Aw cosh(kh) cos(kx — wt) (5.14)
. sinh(ky) .

v = AWW Sln(k’x wt) (515)

Il n’y a donc pas de surface libre, le maillage est fixe. Ces simulations sont beaucoup plus

Cu Ciz F Cop I
Chaplin | 1.99 -0.36 0.156 | 0.081 0.0048
Ogilvie | 2.061 - 0.178 - -
Fzx - - 0.1646 - 0.0056
Fy - - 0.1647 - 0.0054

Tableau 5.4 Comparaison des efforts expérimentaux et numériques.
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rapides car le régime permanent est vite établi (quelques périodes contre 20 battements si on
simule le cas complet) et on peut réduire le domaine de calcul puisque les interactions avec
les bords sont beaucoup plus petites : il n'y a pas de réflexion des vagues au bout du bassin
ni d’interaction avec le batteur. On va donc déterminer a ’aide de I'analyse de Fourier si la
simulation du cas complet est vraiment utile ou non. Le tableau 5.5 contient les coefficients
de Fourier pour les pulsations w, 2w et 3w.

Conformément aux observations de Ogilvie (1963); Chaplin (1984); Guerber et al. (2010),
les forces horizontales et verticales ont des coefficients tres proches. Lorsque les conditions de
Dirichlet correspondent a une houle d’Airy, les efforts de pulsation w sont surestimés d’environ
9%. Par contre, les modes suivants sont tres mal captés notamment lorsque le cylindre est
plus proche de la surface libre. Ces modes sont donc principalement liés a la déformation de
la surface libre et a 'interaction entre le cylindre et la surface. L’approximation de la surface
libre avec une houle d’Airy n’est donc valable que lorsque le cylindre est suffisamment loin

de la surface libre.

5.4.3 Analyse de sensibilité par rapport a la distance entre le cylindre et la

surface libre

On prend comme parametre de sensibilité la position verticale du cylindre yq et donc la
distance entre le cylindre et la surface libre (h = yo + D/2 4 d). La figure 5.25 montre la
sensibilité de la déformation par rapport au parametre pour une valeur de d = 1D. On voit
alors que rapprocher le cylindre de la surface accentuerait la dissymétrie de la forme des
vagues observée sur la figure 5.22.

La sensibilité des efforts évolue en phase avec les efforts. On peut décomposer les sensi-

d Fxl Fx2 Fx3 Fyl Fy2 Fy3
1D SL [0.165 | 5.41 1072 | 473 107% | 0.165 | 5.60 107 | 5.26 10~
Airy | 0.178 | 1.07 1072 | 1.38 107%* | 0.176 | 0.68 1073 | 1.16 10~**
1.5D SL | 0.137 | 1.64 1073 | 1.12107% | 0.136 | 1.80 102 | 1.61 107"
Airy | 0.150 | 0.43 103 | 6.25 107 | 0.147 | 0.29 103 | 1.03 10~

Tableau 5.5 Coefficients de Fourier des efforts sur le cylindre.
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Figure 5.25 Sensibilité du déplacement vertical par rapport a la position du cylindre.

bilités en série de Fourier

Sp,(t) = Sz + Z Szn cos(nwt + Qgzn) (5.16)
n=1

Sp,(t) = Syo+ Y Syn cos(nwt + ©syn) (5.17)
n=1

Il faut noter ici qu’avec cette décomposition, les coefficients S, et S,, ne sont pas les sensi-
bilités des coefficients Fy,, et Fy,. Ces coefficients sont présentés dans le tableau 5.6 pour le

calcul complet et pour le calcul avec la houle d’Airy.

d le Sm2 Sm3 Syl Sy2 Sy3
1D SL 6311072 |1.421072 | 1.871073 | 6.54 1072 | 1.45 1072 | 1.85 1073
Airy | 5.98 1072 | 2.38 1073 | 3.05107* | 6.17 1072 | 1.67 1072 | 3.31 107°
15D SL [5.151072 (3721072 ]21910°*]5251072|3.831073 | 2.6210°*
Airy | 5.07 1072 | 6.46 107* | 6.70 107° | 5.11 1072 | 5.20 10~* | 4.46 10~°
2D SL | 4251072 | 9.53107% | 2.86 107° | 4.35 1072 | 9.69 10~* | 2.34 10~°

Tableau 5.6 Coefficients de Fourier de la sensibilité des efforts par rapport a la position du
cylindre.

Ces valeurs montrent que si le cylindre se rapproche de la surface libre, les efforts vont
augmenter, c’est la tendance que nous avions observée au paragraphe 5.4.2. On constate aussi
que pour d = 1D, la sensibilité des modes élevés est assez importante. Les efforts d’ordre
supérieur sont donc liés a 'interaction entre le cylindre et la surface libre.

Afin de valider le calcul de sensibilité nous allons faire un calcul de solution voisine. En

partant d’une configuration de base pour laquelle le parametre d’'intérét est ag, on peut
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calculer une approximation d’une variable de sortie v sur la configuration perturbée ag+ A«

avec une série de Taylor du premier ordre

(g + Aa) =~ Plag) + Aa %(ao) (5.18)

Ainsi, pour les efforts, en partant de la configuration d = 1.5D, on peut rapidement
obtenir une extrapolation pour les configurations d = 1D et d = 2D. Les figures 5.26 et
5.27 permettent de comparer les extrapolations avec les valeurs exactes pour les efforts sur

le cylindre.

0.2 T T T 2.2

---d=1D
—extra

0.151

_DAElO 11‘5 léO léS 130 1‘ZlO 11‘5 léO léS 130
temps temps
(a) Fa (b) Fy

Figure 5.26 Efforts recalculés et extrapolés pour d = 1D.

Fx
T

0.15

---d=2D
fox 22 |—extra
0.1- 17\ / —base
0.05f
ok
-0.05F
-0.1 ‘_/l'
110 115 120 125 130
temps
(a) Fx

Figure 5.27 Efforts recalculés et extrapolés pour d = 2D.

L’extrapolation reconstitue bien les principales caractéristiques des efforts sur la configu-
ration perturbée. Les plus grandes différences se situent au niveau de quelques crétes car le

signal n’est pas toujours tres régulier. Nous allons donc quantifier ces erreurs avec 1’analyse
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de Fourier. Pour cela, on décompose les efforts et leurs sensibilités de la fagon suivante :

F.(t) = Fyo + Z UpcOS(nwt) + by, sin(nwt) (5.19)

n

Sk, (t) = Swo+ Y Stgncos(nwt) + Sby, sin(nwt) (5.20)

n

Avec ces notations, on a bien Sa,, = Da,,/Dyo. Donc en utilisant un développement en

série de Taylor,

Fo(t, yo + Ayo) ~F0 + AyoSao

+ Z(am + AyogSag,)cos(nwt) + (bny + AyoSby,) sin(nwt) (5.21)

~F5, i Z F¢ cos(nwt + ¢5,,) (5.22)

avec Fry=Fp+ Anyosxo (5.23)
F, =\ (e + DyoSaun)? + (bus + AyoSbis)? (5.24)

tan(yt,,) = — buz  B4oSbna (5.25)

Ang + AyOS&xn

On choisit a nouveau d = 1.5D comme référence. Les coefficients extrapolés pour les efforts
horizontaux et les coefficients d’inertie et de trainée extrapolés sont présentés dans le tableau
5.7.

d CYM CVD Fxl Fx2 Fx3
1.5D référence | 0.779 | 3.565 | 0.137 | 1.64 1072 | 1.12 107"
1D calculé 0.923 | 4.594 | 0.165 | 5.41 1073 | 4.73 10~
extrapolé | 0.915 | 4.412 | 0.162 | 3.46 1073 | 2.13 107%™

erreur 08% 39% |15% 36% 55%
2D  calculé 0.651 | 2.824 | 0.113 | 3.73107* | 6.95 107%
extrapolé | 0.643 | 2.719 | 0.111 | 5.10 10* | 6.05 107%

erreur 1.3% | 3.7% | 1.8% 36% 13%

Tableau 5.7 Efforts recalculés et extrapolés a partir de la géométrie d = 1.5D.

L’erreur d’extrapolation est petite pour les termes du premier ordre (de pulsation w). Pour
les ordres supérieurs, les écarts relatifs entre les différentes configurations sont beaucoup plus
importants : F,; est multiplié par 3 entre les positions d = 1.5D et d = 1D. Il n’est pas
étonnant que les erreurs relatives soient plus importantes pour ces termes. Les effets non

linéaires sont donc beaucoup plus importants pour les efforts d’ordre plus élevés, notamment
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pour les efforts de pulsation 3w, ils augmentent fortement lorsque le cylindre se rapproche de
la surface. Malgré ces erreurs, les sensibilités permettent d’estimer correctement les termes
de premier ordre et prévoient la tendance des termes d’ordre plus élevés.

Nous pouvons aussi a partir des champs de vitesse et de vitesse de déformation sur la
configuration d = 1.5D obtenir les champs de vitesse pour les configurations d = 1D et
d = 2D. Les résultats obtenus sont présentés sur la figure 5.28 pour l'extrapolation sur la

géométrie d = 1D et sur la figure 5.29 pour la géométrie d = 2D.

—

0 003 006 009 U120 e TOIT T R I B FAREE A 0V 1) I VA 0 < A 4

(a) U d=1.5D (b) Vd=15D

.. +U..
0 U003 0.06 0.09 017 015 o T OIT 073 0T o 005 00T 007 ' 013 T O

(¢) U extrapolé d = 1D (d) V extrapolé d = 1D

0 S 006 009 18 b 015 o8 T oI 073 U7 o 005 00T 007 ' 013 T O

(e) U calculé d = 1D (f) V calculé d = 1D

Figure 5.28 Extrapolation de d = 1.5D a d = 1D pour le champ de vitesse a t = 9.57".
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Malgré le déplacement important, un rayon vers le haut ou vers le bas, 'extrapolation

restitue correctement ’écoulement.

0 003 006 009 0T 015 oe TOIT T

(a) Ud=1.5D

0 — LRI 0.06 0.09 LR} 015 ' ot TOIZT T

(¢) U extrapolé d = 2D (d) V extrapolé d = 2D

(e) U calculé d = 2D (f) V calculé d = 2D

Figure 5.29 Extrapolation de d = 1.5D a d = 2D pour le champ de vitesse a t = 9.57".



114

5.4.4 Analyse de sensibilité par rapport au rayon du cylindre

Le parametre d’intérét est maintenant le rayon du cercle R. Pour d = 1D, la sensibilité

de la surface libre est représentée sur la figure 5.30.

SETA RO

0.19 ) -0 TaZ ) 0084 ' -0.Uab ) LLAV] Vs ' 0.06 0.108 ) U.Ton

Figure 5.30 Sensibilité du déplacement vertical par rapport au rayon du cylindre.

On constate que le rayon a un impact sur la forme de la surface libre et sur le déphasage.

On peut aussi procéder a 'extrapolation de I’écoulement sur une géométrie voisine. La
figure 5.31 montre le champ de vitesse sur la configuration de référence et sur la configuration
extrapolée. On constate que la forme de la surface libre est déformée par rapport a ’allure
sinusoidale de la configuration de référence. Le fluide est aussi accéléré au dessus du cylindre.

La décomposition de Fourier des sensibilités pour 'effort horizontal est résumée dans le
tableau 5.8

d SCM SCD le Sx2 Sx3
1D | —2.45 1073 | 12.74 | 0.686 | 4.40 10=2 | 4.05 1073
1.5D | —6.27 1072 | 7.90 | 0.546 | 1.29 102 | 9.65 10~*

Tableau 5.8 Coefficients de Fourier de la sensibilité des efforts par rapport au rayon du
cylindre.

Une augmentation du rayon provoque une augmentation des efforts d’autant plus im-
portante que le cylindre est proche de la surface libre. Les efforts d’ordre 2 et 3 semblent
prendre plus d’importance avec I'augmentation du rayon. Cependant les coefficients d’iner-
tie et de trainée sont plus parlants. La sensibilités du coefficient d’inertie est assez faible et
négative. Par contre la sensibilité du coefficient de trainée est positive et assez importante.
[augmentation du rayon provoquera donc principalement une augmentation des effets de

trainée.
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Figure 5.31 Extrapolation de dR = 0.5D a R = 0.7D pour le champ de vitesse.

Les expériences de Chaplin (1984) montrent que le coefficient d’inertie se comporte comme
Cy ~ a— K. A Taide de I’analyse de sensibilité, on peut retrouver ce coefficient 3. En
effet

dChy dCy dR —RdCy,

dke - Ke= ke T Ke dR (5.26)

On trouve des valeurs de (3 de 'ordre de 10~ 2. Ces valeurs sont plus faibles que celles trouvées

par Chaplin (1984). Rappelons que les conditions ne sont pas les mémes, Chaplin (1984) a
obtenu ces tendances en modifiant 'amplitude de la houle incidente pour faire varier le
nombre de Keulegan-Carpenter. On pourrait donc faire ’analyse de sensibilité par rapport a

I’amplitude du mouvement du batteur.

5.4.5 Conclusion

Pour ce cas, nous avons donc montré que notre méthode permet de simuler correctement
I'interaction entre un cylindre fixe et une houle incidente. Les vagues en aval du cylindre sont
déphasées. Nous avons aussi étudié les efforts sur le cylindre. Nos résultats sont en bon accord

avec les expériences de Chaplin (1984) en prédisant un effort de pulsation w plus faible que
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la théorie potentielle. Nous avons aussi montré que la déformée de surface libre générait des
efforts de pulsation 2w et 3w, d’autant plus importants que le cylindre est proche de la surface
libre. Ces observations ont été confirmées par ’analyse de sensibilité. Nous avons aussi pu
valider le calcul des sensibilités avec un calcul de solution voisine. Les efforts de pulsation w
sont alors tres bien restitués. Pour les pulsations plus élevées, les phénomenes non linéaires
deviennent trop importants pour permettre une extrapolation précise.

Nous avons donc montré que notre code peut étre employé dans de nombreuses configu-
rations et que les simulations visqueuses sont indispensables pour le calcul précis des efforts.
Nous avons aussi montré que les sensibilités permettent d’extrapoler I’écoulement et les ef-
forts sur des géométries voisines. Elles pourraient donc étre utilisées pour le calcul de gradient

de fonctions objectifs dans un algorithme d’optimisation.
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CHAPITRE 6

CONCLUSION

Dans ce projet, nous avons développé une méthode de calcul pour les écoulements a sur-
face libre. Nous avons utilisé une formulation arbitrairement lagrangienne-eulérienne afin de
gérer les déformations du domaine fluide et donc de situer avec précision la surface libre. Pour
éliminer les oscillations numériques, nous avons mis en place une stabilisation des équations
de Navier-Stokes appropriée a la formulation ALE et tenant compte de la déformation du
maillage. Nous avons utilisé des schémas de Runge-Kutta d’ordre élevé pour l'intégration
temporelle pour un meilleur rapport entre le cotuit des calculs et la précision obtenue. Afin de
satisfaire la loi de conservation géométrique, nous avons adopté une formulation variationnelle
des équations de Navier-Stokes conservative et une évaluation consistante des dérivées tem-
porelles, notamment de la vitesse de maille. Ceci permet de conserver 'ordre de convergence
des schémas sur maillage déformable.

Nous avons ensuite développé les équations des sensibilités lagrangiennes sur maillage
mobile pour les équations de Navier-Stokes instationnaires. Nous avons donc dérivé d’un
point de vue lagrangien la formulation précédente par rapport a un parametre d’intérét. Le
point de vue lagrangien permet d’obtenir des conditions limites simples pour les conditions
de surface libre, contrairement aux méthodes eulériennes.

L’implémentation des équations a été vérifiée a 1’aide d’une solution manufacturée
vérifiant des conditions de surface libre. Nous avons alors montré que la surface libre
ne perturbe pas l'ordre de convergence spatial ou temporelle. Nous avons aussi vérifié
I'implémentation de la stabilisation de type PSPG/SUPG en régime instationnaire sur mail-
lage mobile. Les termes supplémentaires n’ont pas provoqué de perte de convergence tem-
porelle avec les schémas de Runge Kutta d’ordre élevé. Notre formulation stabilisée respecte
donc la loi de conservation géométrique. Nous avons ensuite comparé nos résultats pour
un cas de sloshing avec une autre étude numérique. Nous avons obtenu des amplitudes de
ballotement similaires et des erreurs sur le volume total beaucoup plus faibles. Avec notre for-
mulation, ces erreurs convergent vers zéro avec un taux de convergence consistant avec celui
du schéma d’intégration temporelle. Cette étude a aussi permis de montrer les atouts des
schémas d’intégration de Runge Kutta d’ordre élevé. Ils fournissent une meilleure précision
que le schéma d’Euler avec cent fois moins de pas de temps. Ce gain de temps de calcul com-
pense largement ’augmentation de la taille de la matrice. Nous avons vérifié I'implémentation

des sensibilités instationnaires sur maillage mobile. Notre méthode permet d’avoir la méme
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précision sur les sensibilités que sur ’écoulement.

Nous avons ensuite comparé les performances de notre méthode avec des méthodes po-
tentielles sur des cas adaptés, c’est a dire lorsque 1’écouelement est irrotationnel et que la
viscosité a un role minime. Nous avons retrouvé des résultats tout a fait comparables. Nous
avons ainsi montré que notre approche permet de simuler la propagation d’ondes solitaires et
de générer une houle et donc de simuler un bassin expérimental. Notre méthode permet en
plus de prendre en compte les effets visqueux, ce qui mene a des résultats plus proches des
observations expérimentales, comme on a pu le voir avec la propagation d'une onde solitaire.
Nous avons ensuite testé les limites de la méthode en terme de déformation de maillage.
De grandes déformations sont supportées mais le domaine d’application de la méthode reste
cependant limité a des déformations raisonnables de la surface libre. Nous avons enfin ap-
pliqué la méthode pour le calcul des efforts générés par la houle sur un cylindre circulaire.
Nous avons montré 'importance des effets visqueux. De plus, la simulation complete de la
surface libre est nécessaire pour capter les efforts d’ordre 2 et 3. On pourrait compléter I’
analyse en déterminant & partir de quelles valeurs des parametres de définition (amplitude
de la houle, profondeur du cylindre, etc... ) la déformée de surface libre n’a plus d’impact du
les efforts, ce qui permettrait de simplifier les simulations en utilisant une houle d’Airy.

Nous avons ensuite validé le calcul des sensibilités. L’extrapolation de I’écoulement sur une
géométrie voisine permet de reconstruire assez fidelement les caractéristiques de 1’écoulement
perturbé. Les erreurs, entre les efforts extrapolés a 'aide des sensibilités et recalculés, sont
faibles malgré des changements importants de la géométrie. Les sensibilités sont donc un
outil performant pour étudier la physique des phénomenes mis en jeu. De plus, le calcul
précis des sensibilités permet de calculer rapidement les données requises par les algorithmes
d’optimisation. Rappelons seulement que cette méthode ne s’applique qu’aux parametres
n’affectant pas la fréquence des phénomenes observés afin que les sensibilités restent bornées.

On pourrait dans de futures applications combiner le calcul de surface libre avec le calcul
d’interaction fluide-structure pour calculer, par exemple, les efforts générés par la houle sur
une paroi verticale élastique.

De nombreuses améliorations peuvent étre apportées a la méthode. D’un point de vue
numérique, pour le calcul de la surface libre, on pourrait intégrer a la disposition des points
sur la surface une contrainte sur le volume total afin d’assurer la conservations de la masse
exactement. Ensuite, il faudrait développer une stabilisation en Reynolds pour les éléments
de Taylor-Hood. On pourrait alors les utiliser a plus haut Reynolds et avoir une meilleure
précision spatiale qu’avec les éléments P1-P1. Le champ d’application des sensibilités serait
élargi si on disposait d’une stabilisation appropriée pour des calculs a plus hauts Reynolds.

La méthode pourrait aussi étre facilement transposée de 2 dimensions en 3 dimensions.
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D’un point de vue plus pratique, des méthodes de déformation de maillage plus per-
formantes permettraient d’élargir le champ d’application de la méthode. On pourrait aussi
ajouter des conditions de frottement (par exemple des conditions de Navier) pour une si-
mulation plus réaliste du mouvement de la surface libre sur une paroi solide. Ajoutée a des
conditions de tangence du pseudo-solide sur des surfaces courbes, cette amélioration per-
mettrait de simuler l'interaction entre des objets, flottants ou non, de forme complexe avec
la surface libre. Ceci permettrait de simuler des digues flottantes. Enfin, dans le cadre de la
simulation de la houle, des couches absorbantes au bout du bassin permettraient de limiter la
réflexion de la houle contre la paroi et donc de mieux simuler un milieu infini. On disposerait

ainsi d'un outil permettant de simuler un plus large spectre d’application.
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