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DÉPARTEMENT DE GÉNIE MÉCANIQUE

ÉCOLE POLYTECHNIQUE DE MONTRÉAL
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RÉSUMÉ

Dans ce projet, nous développons une méthode de calcul précise et rapide pour les

écoulements à surface libre et une méthode des sensibilités lagrangiennes adaptées à ce type

d’écoulements. Les écoulements à surface libre sont très courants dans la nature et dans les

applications industrielles. Leur compréhension est indispensable pour le design de structures

offshore par exemple. Cependant, leur simulation numérique reste difficile car la géométrie du

domaine fluide est une inconnue du problème. De nombreuses techniques ont été développées

mais les calculs prenant en compte toutes les caractéristiques de l’écoulement, comme la vis-

cosité, la répartition horizontale des vitesses et de la pression deviennent souvent trop coûteux

pour atteindre une précision suffisante. Dans ces conditions, la méthode des sensibilités est un

outil très intéressant car elle permet de calculer les dérivées de l’écoulement par rapport aux

paramètres de design. Les sensibilités peuvent donc être utilisées pour calculer rapidement

le gradient de fonctions objectifs requis par la plupart des algorithmes d’optimisation, pour

identifier les paramètres clé d’un système ou encore pour faire une analyse d’incertitude.

L’écoulement est calculé grâce à une formulation arbitrairement lagrangienne-eulérienne

des équations de Navier-Stokes. Le domaine de calcul suit donc la forme de la surface libre,

ce qui permet de connâıtre sa géométrie avec précision. Le maillage est déformé grâce à une

approche pseudo-solide. Des schémas temporels de Runge-Kutta d’ordre élevé permettent

d’améliorer la précision des calculs. Pour la discrétisation spatiale, on utilise la méthode des

éléments finis avec des éléments de Taylor-Hood ou des éléments P1-P1 avec une stabilisa-

tion de type SUPG/PSPG pour pouvoir faire des calculs à haut Reynolds sans oscillations

numériques. Afin de satisfaire la loi de conservation géométrique et donc conserver l’ordre de

précision temporel sur maillage déformable, la formulation variationnelle du problème doit

être conservative et le calcul des vitesses de maille doit être consistant avec le schéma tem-

porel choisi. Les sensibilités sont calculées grâce à un point de vue lagrangien. On calcule donc

les dérivées totales des variables par rapport au paramètre, c’est à dire que l’on tient compte

de la dépendance du domaine fluide par rapport au paramètre. Les conditions limites sont

alors simples, même si la frontière subit des déformations. Les équations des sensibilités sont

obtenues en dérivant la formulation faible de l’écoulement. Pour la résolution, les méthodes

numériques sont les mêmes que pour l’écoulement.

La méthode est ensuite vérifiée grâce à la méthode des solutions manufacturées. On

vérifie alors, pour chaque schéma temporel et pour chaque type d’éléments, que l’ordre de

convergence observé est bien conforme avec l’ordre théorique de la méthode. On montre

ainsi que les termes de stabilisation n’empêchent pas la satisfaction de la loi de conservation
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géométrique et que les sensibilités présentent le même taux de convergence que l’écoulement.

Les schémas de Runge-Kutta d’ordre 3 ou 5 permettent d’atteindre une meilleure précision

temporelle avec 100 fois moins de pas de temps que le schéma d’Euler implicite, ce qui permet

de réduire significativement le coût des calculs.

On présente ensuite plusieurs applications en vue de valider la méthode et d’explorer

son champ d’application. On obtient tout d’abord des résultats en accord avec 7 autres

études pour un calcul de ballotement dans un réservoir. On étudie ensuite la propagation

d’une onde solitaire dans un canal. La couche limite au fond provoque un amortissement de

l’amplitude de l’onde en accord avec des modèles analytiques. Notre méthode permet aussi

de simuler la séparation de l’onde lorsque la hauteur de fond varie. Nous testons ensuite la

génération de houle dans un bassin grâce à un batteur à piston. On montre alors que la

méthode supporte des déformations importantes de la surface libre, même si on ne peut pas

simuler de déferlement. De plus, les caractéristiques de la houle générée sont en accord avec

la théorie et des mesures expérimentales. Enfin, on présente un cas d’interaction entre la

houle et un cylindre immergé. Les efforts obtenus sur le cylindre sont proches des mesures

expérimentales. On montre en plus que le calcul complet de la surface libre est indispensable

pour obtenir toutes les harmoniques des efforts. Les sensibilités par rapport à la position

et au rayon du cylindre sont utilisées pour extrapoler les efforts et l’écoulement sur des

configurations voisines. Les principales caractéristiques de l’écoulement perturbé sont alors

bien reproduites. La méthode choisie pour les sensibilités est donc validée et bien adaptée à

ce type d’écoulement.
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ABSTRACT

In this project, we develop a methodology for rapid and accurate free-surface flow simulation

and a Lagrangian sensitivity equation method suited to this type of flow. Free-surface flows

are very common in nature and in industrial applications. Their understanding is essential

for example, for the design of offshore structures. However, their numerical simulation is

difficult because the geometry of the fluid domain is part of the problem. Many techniques

have been developed but the simulations taking into account all the characteristics of the flow,

such as viscosity, the horizontal distribution of velocity and pressure are costly to achieve

sufficient accuracy. Thus, the sensitivity equation method is a very interesting tool because it

computes the derivatives of the flow with respect to design parameters. Sensitivities provide

quick evaluation of gradients of objective functions required by most optimization algorithms

and a better understanding of the flow by answering “what if?” questions.

The flow is calculated using an arbitrary Lagrangian-Eulerian formulation of the Navier-

Stokes equations. The computational domain follows the shape of the free surface. Hence,

its geometry is exactly known. The mesh is deformed with a pseudo-solid approach. We use

high order Runge-Kutta schemes for time integration and the finite element method with

Taylor-Hood or P1-P1 elements for the spatial discretization. Special attention must be paid

to the variational formulation of the Navier-Stokes equations and to the computation of the

mesh velocity to satisfy the Geometric Conservation Law (GCL). The GCL ensures that the

fixed mesh order of accuracy of the time integrator is preserved on moving meshes. We use

SUPG/PSPG stabilization with P1-P1 elements to compute high Reynolds numbers simula-

tion and to ensure that no numerical oscillations occur. Sensitivities are calculated using a

Lagrangian point of view. Total derivatives of the variables with respect to the parameter

are computed, ie we take into account the dependence of the fluid domain with respect to the

parameter. This method leads to simple and exact boundary conditions on moving domain.

The sensitivity equations are obtained by differentiating the weak formulation of the flow.

Similar numerical methods are used for the flow and for the sensitivities.

The method is then verified with the method of manufactured solutions. We check that

for each temporal scheme and for each type of element, the observed convergence rate is

consistent with the theoretical one. It is shown that the stabilization terms do not prevent

the satisfaction of the geometric conservation law. Moreover the sensibilities have the same

convergence rate as the flow. The 3rd and 5th order accurate Runge-Kutta schemes achieve

better temporal accuracy with 100 times larger time steps than the implicit Euler scheme,

which significantly reduces the computation cost.
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Several applications are presented to validate the method and explore its scope. First,

our results are in agreement with 7 other studies for sloshing waves. Then we study the

propagation of a solitary wave in a channel. The bottom boundary layer causes a damping

of the wave amplitude in agreement with analytical models. Our method can also simulate

the separation of the wave over uneven bottom. We test wave generation in a pool using

a piston-type wave maker. We show that the method can suffer significant deformation of

the free surface, even if it cannot simulate breaking waves. Furthermore, the characteristics

of generated waves are consistent with theoretical results and experimental measurements.

Finally, we study interactions between incident waves and a submerged cylinder. The pre-

diction of the forces on the cylinder is close to experimental measurements. We show that

the complete calculation of the free surface is necessary to calculate all the harmonics of the

effort. We compute the sensitivities with respect to the position and the radius of the cylin-

der. Extrapolation of the forces and flow on nearby configurations reproduces accurately

the characteristics of the perturbed flow. The computation of the sensitivity is therefore

validated and is well suited to this type of flow.
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Figure 5.1 Évolution de la surface libre. . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 5.2 Onde solitaire : surface libre toutes les 10 secondes. . . . . . . . . . . 82
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Figure 5.26 Efforts recalculés et extrapolés pour d = 1D. . . . . . . . . . . . . . . 110

Figure 5.27 Efforts recalculés et extrapolés pour d = 2D. . . . . . . . . . . . . . . 110
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Ne nombre d’éléments dans le maillage

Nu nombre de noeuds de calcul par élément

pour la variables u

np nombre de paramètres de design
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INTRODUCTION

Une surface libre est une interface entre un liquide et un gaz. Le mouvement du gaz a

alors peu ou pas d’influence sur le mouvement du fluide. Les surfaces libres sont de taille

et de nature très variées. Il peut s’agir de la surface d’océans, de lacs ou de canaux, de la

surface d’un liquide dans un contenant, ou encore de goutelettes. Elles sont donc nombreuses

et interviennent dans beaucoup de cas pratiques notamment dans le domaine du transport

maritime, pour la conception des coques de bateaux, pour les constructions offshore ou flot-

tantes ou pour l’extraction d’énergie de la houle. Elles peuvent mettre en jeu des phénomènes

physiques complexes. De multiples études expérimentales ont été réalisées à leur sujet mais

elles restent coûteuses. Les modèles numériques permettent d’obtenir des résultats de plus en

plus réalistes, mais impliquent souvent de faire des hypothèses simplificatrices (fluide parfait,

écoulement irrotationnel, écoulement moyenné sur la hauteur d’eau) ou alors ils deviennent

coûteux. Ceci rend les études paramétriques compliquées lors du design d’objets en interac-

tion avec des surfaces libres. C’est pourquoi dans ce contexte, les sensibilités deviennent très

intéressantes. Les sensibilités sont les dérivées de l’écoulement par rapport aux paramètres

de définition du problème. Ce paramètre peut définir la forme de l’objet ou sa position, il

peut aussi s’agir d’une propriété du fluide ou de l’écoulement comme la viscosité, le nom-

bre de Reynolds, l’amplitude d’une vague incidente, etc.. Les sensibilités permettent ainsi de

calculer rapidement le gradient des fonctions de sorties qui peut ensuite être utilisé par un

algorithme d’optimisation. Elles facilitent aussi la compréhension des phénomènes physiques

mis en jeu en quantifiant l’influence des paramètres de définition du problème. Ainsi, en un

seul calcul, elles remplacent de nombreuses simulations sur des configurations perturbées.

Cependant, peu de méthodes efficaces ont été développées pour le calcul des sensibilités des

écoulements à surface libre car les paramètres affectent la forme du domaine. La forme de la

surface libre étant une inconnue de l’écoulement, la méthode de calcul des sensibilités doit

être adaptée à celle du calcul de l’écoulement.

Dans ce projet, nous nous proposons de combiner une méthode de calcul performante

pour l’analyse de l’écoulement avec surface libre avec une analyse de sensibilité. Nous ferons

donc tout d’abord une revue de littérature pour balayer les méthodes utilisées et les modèles

correspondant pour le calcul de surface libre. Nous verrons ensuite quels sont les enjeux

apportés par la présence de la surface libre pour le calcul des sensibilités et les différentes

méthodes possibles. Grâce à cette étude, nous pourrons justifier notre choix d’une description

arbitrairement lagrangienne-eulérienne pour l’écoulement couplée avec la méthode des sensi-

bilités lagrangiennes. Dans le chapitre suivant, nous décrirons de manière détaillée la méthode
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employée pour le calcul de la surface et ses enjeux numériques. Puis nous détaillerons les

équations correspondantes pour les sensibilités. L’implémentation des équations sera alors

vérifiée grâce à une étude de convergence spatiale et temporelle. Le dernier chapitre portera

sur différentes applications en vue d’évaluer les performances de la méthode sur des cas pra-

tiques comme le ballotement, la génération de houle ou le calcul d’efforts générés par la houle

sur un cylindre.
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CHAPITRE 1

REVUE DE LITTÉRATURE

1.1 Surface libre : définition

Une surface libre est une interface entre deux milieux. On considère un système constitué

des 2 milieux différents (1) et (2) occupant chacun les parties Ω1 et Ω2 de l’espace Ω et

séparés par une interface Γi. Ce domaine est illustré sur la figure 1.1. L’interface Γi sera une

n

t

Ω1

Ω2

Γ i

milieu 2 

milieu 1

Figure 1.1 Domaine avec deux milieux

surface libre si le milieu (2) n’a pas d’influence sur le milieu (1), c’est-à-dire, si du point de

vue du milieu (1), le milieu (2) peut être considéré comme du vide. La densité et la viscosité

du milieu (2) doivent donc être négligeables par rapport à celle du milieu (1) donc ρ2 ≪ ρ1

et µ2 ≪ µ1.

1.1.1 Quelques propriétés des interfaces

La tension superficielle

Toute interface porte une énergie proportionnelle à sa surface. Le coefficient de propor-

tionnalité positif s’appelle la tension superficielle et s’exprime en N/m ou en J/m2. Ainsi

toute interface aura tendance à minimiser sa surface afin d’abaisser son énergie, c’est pourquoi
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les bulles de savon sont sphériques. Pour une interface entre de l’air et de l’eau, la tension

superficielle vaut 72mN/m. Elle est à prendre en considération pour l’ étude des gouttelettes,

notamment pour l’éclatement de bulle, une étude numérique est par exemple présentée par

Duchemin (2001). Il montre notamment comment les échelles de temps peuvent être variées

dans l’étude de tels phénomènes. La capillarité est aussi responsable de la formation de

ménisques et de nombreuses instabilités comme l’instabilité de Plateau-Rayleigh. Au pas-

sage d’une interface au repos, on observe un saut de pression, proportionnel à la tension

superficielle qui peut s’exprimer par la loi de Laplace :

∆p = γC (1.1)

Le saut de pression observé dans une gouttelette sphérique de rayon R est donc ∆p = 2γ/R.

Par exemple, la surpression dans une bulle de champagne de rayon de l’ordre de 100 microns

vaut une centaine de pascals.

Conditions limites de surface libre

– Conditions cinématiques : L’interface est une surface matérielle, c’est à dire que si elle

est définie par une équation du type F(x,z,t) =0, la dérivée matérielle de F doit être

nulle donc
DF

Dt
=
∂F

∂t
+ u · ∇F = 0 (1.2)

En régime stationnaire, cette condition se réduit à u · n = 0

– Condition dynamique : Condition sur les contraintes normales

Il s’agit d’une généralisation de la loi de Laplace citée précédemment. Au passage

de l’interface, on observe un saut des contraintes normales proportionnel à la tension

superficielle.

σ1 · n − p2n = γCn (1.3)

Quelques nombres adimensionels

Selon les cas étudiés plusieurs nombres sans dimension seront pertinents pour caractériser

les systèmes. Ils permettront de comparer les effets des différents phénomènes mis en jeu.

Le nombre de Bond permet de comparer les effets de la gravité par rapport aux effets de

la tension superficielle. Il s’exprime de la manière suivante :

Bo =
ρgL2

γ
=
L2

l2c
(1.4)
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où L est une longueur caractéristique du problème. On voit alors apparâıtre la longueur

capillaire lc =
√

γ/ρg qui fixe l’échelle en dessous de laquelle les effets de tension superficielle

dominent les effets de la gravité (Quéré, 2004).

Le nombre capillaire permet de comparer les efforts visqueux par rapport à la tension

superficielle :

Ca =
µU

γ
(1.5)

Le nombre de Ohnesorge est parfois utilisé

Oh =
µ√
ργL

=

√

Ca

Re
(1.6)

où Re est le nombre de Reynolds, Re = ρUL/µ

Le nombre de Weber permet de comparer les effets d’inertie par rapport aux effets de la

tension superficielle. Il s’exprime de la manière suivante :

We =
ρU2L

γ
(1.7)

Le nombre de Froude permet de comparer les effets d’inertie par rapport à la gravité, il

a pour expression :

Fr =
U√
gL

(1.8)

Le nombre de Cauchy permet de mesurer les déformations d’un solide dans l’écoulement

sous l’effet de la pression dynamique.

Cy =
ρU2

E
(1.9)

où E est le module de Young de la structure en question. De nombreux autres nombres

peuvent être utilisés, on trouvera des exemples complémentaires dans le livre de de Langre

(2001).

Pour la modélisation de la houle, on utilisera le nombre d’Ursell :

Ur =
Hλ2

h3
(1.10)

où H est la différence de hauteur de la vague (crête à creux), λ est la longueur d’onde et h

la profondeur d’eau au repos. Ce nombre permet de classer les différents types d’onde et de

distinguer les théories valables.
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1.1.2 Modélisation des écoulements à surface libre

Selon les cas étudiés, on peut utiliser différentes équations pour décrire le mouvement

du fluide. On ne s’intéressera qu’aux écoulements laminaires, incompressibles et isothermes

de fluides newtoniens. On considère un domaine Ω, sa frontière est notée Γ. La frontière se

décompose en trois parties disjointes comme illustré sur la figure 1.2. La surface libre est

notée Γi, la partie de la frontière sur laquelle sont imposées des conditions de Dirichlet est

notée Γu et les conditions de Neumann sont imposées sur la portion de frontière Γt.

tΓ

iΓ

Γu

Ω

Figure 1.2 Domaine fluide comportant une surface libre.

Équations de Navier-Stokes

Les équations les plus générales sont les équations de Navier-Stokes. Elles expriment la

conservation de la masse et la conservation de la quantité de mouvement dans le domaine Ω

de la façon suivante.

Continuité : ∇ · u = 0 (1.11)

Mouvement : ρ
∂u

∂t
+ ρ(u · ∇)u = −∇p + ∇ · τ (u) − ρgez + f (1.12)

Avec les conditions aux frontières classiques :

u = u sur Γu (1.13)

−pnα + τ (u) · nα = tf sur Γt (1.14)

où τ (u) est le tenseur des contraintes visqueuses défini de la manière suivante :

τ (u) = µ
(

∇u + ∇uT
)
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À ces conditions aux limites classiques s’ajoutent les conditions à l’interface énoncées au

paragraphe 1.1.1

Ces équations sont complexes à résoudre, c’est pourquoi, selon les cas étudiés, on peut

faire quelques simplifications.

Hypothèse hydrostatique

Une simplification peut être faite si l’étude porte sur des écoulement quasi-horizontaux,

c’est-à-dire pour lesquels les vitesses horizontales sont beaucoup plus grandes que la vitesse

verticale. Dans ces conditions, l’accélération et la diffusion dans la direction verticale peuvent

être négligées. Ainsi la projection de l’équation du mouvement sur l’axe vertical devient

0 = −∂p
∂z

− ρg (1.15)

La pression se réduit donc à la pression hydrostatique.

Équations de Saint-Venant

Dans le cas des eaux peu profondes, en pratique, il n’est pas intéressant de connâıtre

les vitesses verticales ni la répartition des vitesses dans le plan vertical mais seulement leur

moyenne (Viollet, 1998). Dans ces cas, ce sont les équations de Saint-Venant qui sont utilisées.

Sous l’hypothèse hydrostatique en supposant que l’écoulement est quasi horizontal et que les

vitesses verticales sont négligeables, les équations de Navier-Stokes sont moyennées sur la

verticale. Elles s’expriment de la façon suivante :

Continuité :
∂h

∂t
+ ∇ · (hu) = 0 (1.16)

Mouvement :
∂hu

∂t
+ (hu∇)u = −gh∇zs + ∇ · (hν∆u) + hf (1.17)

où h est la hauteur de fluide et zs la cote de la surface libre. Elles servent très souvent

pour décrire les écoulements dans les rivières et les canaux ou des mers le long de côtes.

Elles admettent des solutions discontinues, qui permettent de calculer les ressauts lors de la

transition entre les régimes torrentiel et fluvial dans les rivières et dans les canaux.

Équations de Stokes

Lorsque les forces visqueuses dominent la convection, le nombre de Reynolds est très petit

et on peut négliger le terme convectif dans les équations de Navier-Stokes (Barthès-Biezel,
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2005).

Continuité : ∇ · u = 0 (1.18)

Mouvement : ρ
∂u

∂t
= −∇p + ∇ · τ (u) − ρgez + f (1.19)

Ces équations, dites des écoulements rampants, sont utilisées dans les problèmes de lubrifi-

cation, de graissage.

Théorie potentielle

Dans de nombreuses applications, le fluide est supposé non visqueux. De plus, si

l’écoulement est irrotationnel, la théorie potentielle s’applique. Il existe donc un potentiel

φ tel que u = ∇φ. L’équation de la continuité devient alors ∆φ = 0. On suppose aussi que

les forces sont conservatives et dérivent d’un potentiel ψ. Alors d’après le deuxième théorème

de Bernoulli, l’écoulement est décrit par l’équation suivante :

∂φ

∂t
+
p

ρ
+
U2

2
+ ψ = C(t) (1.20)

Dans le cas où le fluide n’est soumis qu’à la gravité, ψ = gz. En deux dimensions, la surface

libre est représentée par l’équation z = η(x, t). Les conditions de surface libre deviennent

alors

– Condition cinématique :
∂η

∂t
+
∂φ

∂x

∂η

∂x
=
∂φ

∂z
(1.21)

– Condition dynamique :
∂φ

∂t
+

1

2
|∇φ|2 + gz = 0 (1.22)

Les conditions de surface libre compliquent la résolution car elles sont non linéaires. Le

problème peut être linéarisé en développant le potentiel en série de Taylor par rapport à un

petit paramètre.

Modélisation de la houle et des ondes

Les surfaces libres sont très souvent sujettes à la propagation d’ondes comme la houle ou

les tsunamis pour l’océan. Dans beaucoup de modélisations, on utilise la théorie potentielle.

Les équations sont alors simplifiées selon les cas étudiés. Le nombre d’Ursell permet de

discriminer plusieurs cas.

Si le nombre d’Ursell est très petit, les effets non linéaires de la surface libre sont
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négligeables devant les phénomènes de dispersion. On peut appliquer la procédure dite de

Stokes qui consiste à développer les variables (donc le potentiel φ) par rapport à la cambrure

des vagues donnée par ε = A/λ où A est l’amplitude de la vague et λ sa longueur d’onde.

Une étude détaillée est donnée par Molin (2002).

Si le nombre d’Ursell est de l’ordre de 1, il s’agit d’ondes cnöıdales ou d’ondes solitaires.

On suppose alors que la hauteur d’eau est petite devant la longueur d’onde et que l’amplitude

des vagues est petite devant la hauteur d’eau. On a donc

h

λ
≪ 1 et

A

h
= O

(

h2

λ2

)

(1.23)

En combinant la théorie potentielle et ces hypothèses, on obtient les équations de Boussi-

nesq (1872) décrites en détail par Svendsen (2006) :

∂η

∂t
+
∂(h + η)u0

∂x
=

1

6
h3∂

3u0

∂x3
(1.24)

∂u0

∂t
+ g

∂η

∂x
+

1

2

∂u2
0

∂x
=

1

2
h2 ∂

3u0

∂2x∂t
(1.25)

où u0 est la vitesse au fond. Ces équations peuvent encore se simplifier selon le cas. Elles

permettent par exemple une bonne description des ondes solitaires.

Toutes ces modélisations mènent à des équations n’ayant pas de solution analytique. De

nombreuses méthodes numériques ont été développées pour les résoudre et calculer notam-

ment de manière précise la localisation de l’interface. Ces méthodes sont décrites dans la

section 1.2.

1.1.3 Quelques exemples d’écoulements à surface libre

Cette section décrit rapidement quelques écoulements qui ont été largement étudiés aussi

bien analytiquement, qu’expérimentalement ou numériquement. Ils pourront donc être fort

utiles pour valider nos développements.

Écoulements pouvant servir de validation

Jets Les jets peuvent être de nombreuses natures, stable ou instable, impactant ou libre. En

particulier, les jets stationnaires s’avèrent utiles pour la vérification de code. Dans d’autres

situations, le jet peut se briser sous l’effet de la tension superficielle. Tous ces cas sont détaillés

dans le livre de Middleman (1995).
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Bris de barrage Le cas du bris de barrage est largement utilisé pour valider une méthode

de calcul. Le cas classique est le suivant. Le fluide est retenu par un barrage et à t=0, la paroi

du barrage est enlevée, le fluide peut donc s’écouler en s’affaissant sous l’effet de son propre

poids. On étudie alors la position du point d’avancement maximum avec le temps (Huerta

et Liu, 1988). Ce cas a fait l’objet de nombreuses études expérimentales (Jeyapalan, 1980)

pouvant servir de base de comparaison.

Modes oscillatoires de bulles Sous l’effet de la tension superficielle, éloignée de sa po-

sition d’équilibre et en négligeant les frottements, une bulle oscillera autour de sa position

d’équilibre. Elle peut osciller selon plusieurs modes bien connus et décrits par des formules

analytiques. Ceci constitue une bonne base pour valider la modélisation de la tension super-

ficielle (Dettmer et Peric, 2006b).

Ballottement de petite et grande amplitude L’étude porte sur les oscillations de la

surface libre d’un fluide dans un réservoir. On peut étudier les oscillations de faibles ampli-

tudes : la surface libre ou l’interface est perturbée et on étudie son retour à l’équilibre. Lorsque

le contenant est en mouvement, les déformations de la surface libre sont plus importantes.

Ceci s’applique au transport sur bateau de containers de gaz naturel liquéfié. Sous l’effet de

la houle, les réservoirs ont un mouvement oscillatoire qui peut provoquer des mouvements de

forte amplitude du liquide. Le fluide peut alors exercer des efforts importants sur les parois

du container, notamment lorque les vagues derferlent. Ibrahim (2005) développe la théorie et

les applications de tels problèmes.

Écoulements plus complexes

Vagues et points d’impact Un peu dans la même optique que le ballottement, on

peut étudier l’évolution d’une vague sur un plan incliné puis l’impact de cette vague, ayant

éventuellement déferlé sur une paroi élastique. Kimmoun et al. (2009) ont fait de nombreuses

expériences à ce sujet.

Profil d’aile ou cylindre sous une surface libre Il s’agit d’étudier le comportement

d’un profil d’aile sous la surface libre pour mieux comprendre le comportement des hydrofoils.

Par exemple, Zhu et al. (2006) proposent une étude numérique des oscillations observées sur

la surface libre au dessus d’un profil oscillant. Dans la même gamme de problème, on peut

citer Mironova (2008) qui étudie un cylindre oscillant sous une surface libre ou Lu et al. (2008)

qui a simulé un écoulement turbulent avec surface libre au dessus d’un obstacle cylindrique.
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1.2 Méthodes numériques

Pour simuler les écoulement à surface libre, il faut calculer les différentes inconnues du

problèmes sur un domaine fluide dont la géométrie dépend de la solution. Les différentes

approches peuvent se classer en trois catégories selon le type de maillage adopté.

– Les calculs peuvent être effectués sur un maillage fixe. La position de l’interface est

reconstruite par le calcul sur le maillage de fond, ce sont des méthodes dites eulériennes.

– Le domaine peut être déformé en même temps que l’interface, on parle alors de méthodes

lagrangiennes ou lagrangiennes-eulériennes.

– Enfin, d’autres méthodes n’utilisent pas de maillage.

Nous allons donc dans cette partie décrire les techniques les plus utilisées pour chaque

catégorie en essayant d’en dégager les principaux avantages et inconvénients.

1.2.1 Méthodes avec maillage fixe

Une formulation eulérienne est utilisée pour décrire le mouvement du fluide. Le maillage

est donc fixe et l’interface est capturée par différentes techniques. Ces méthodes peuvent se

diviser en 2 catégories (voir Gopala et van Wachem, 2008). Soit chaque milieu est marqué

de façon à le distinguer des autres (marqueurs, VOF), soit l’interface elle-même est repérée

(level set method, front tracking method).

Volume de fluide (Volume of fluid VOF)

Cette méthode est très utilisée et à été développée au début des années 80 par Hirt et

Nichols (1981) et largement développée au fil des années pour améliorer la précision de la

capture d’interface.

Chaque domaine est identifié à l’aide d’une fonction indicatrice, valant 1 dans un domaine,

0 dans un autre. Pour les éléments du maillage qui contiennent une portion de l’interface,

cette fonction θ représente la fraction de volume occupé par chaque fluide. L’écoulement

peut alors être calculé sur tout le domaine en utilisant une combinaison des propriétés de

chaque milieu. Par exemple, pour la densité et la viscosité, on prendra ρ = θρ1 + (1 − θ)ρ2

et µ = θµ1 + (1− θ)µ2 où θ vaut 0 dans le milieu 1 et vaut 1 dans le milieu 2. La fraction de

fluide θ est calculée grâce à une équation de convection :

∂θ

∂t
+ u · ∇θ = 0 (1.26)

L’enjeu principal des méthodes VOF est alors de résoudre correctement cette équation.

La plupart des schémas classiques sont trop diffusifs ou créent des oscillations purement



12

numériques. Il en résulte une mauvaise conservation de la masse ou une mauvaise géométrie

de l’interface, ce qui affecte le calcul de la tension superficielle. De nombreuses corrections

ont donc été proposées. Pour assurer la conservation du volume, McDavid et Dantzig (1998)

proposent la méthode suivante : la fraction de volume est intégrée sur chaque élément pour

obtenir une fraction de remplissage de l’élément et est actualisée en calculant les flux passant

par la partie ”mouillée” de chaque arête de l’élément. D’autres approches sont comparées par

Gopala et van Wachem (2008). La plupart reposent sur une approximation de flux donneur-

accepteur proposée initialement par Hirt et Nichols (1981) pour les méthodes VOF. Elle a

été développée et améliorée par Ubbink et Issa (1999) pour donner le schéma CICSAM qui

permet une reconstruction précise de l’interface et une bonne conservation de la masse. Aulisa

et al. (2003) ont développé un schéma permettant de conserver la masse exactement.

Les autres enjeux des méthodes VOF sont la localisation de l’interface et l’application

de la tension superficielle sur l’interface. En effet, la géométrie de la surface libre étant

reconstruite a posteriori, le traitement des conditions limites est délicat. Il existe plusieurs

techniques de reconstruction. Par exemple, l’interface peut être délimitée dans une cellule par

un segment parallèle à un des axes de coordonnées, il s’agit de la méthode SLIC (simple line

interface calculation), ou alors la reconstruction peut être linéaire, c’est la méthode PLIC

(piecewise linear interface calculation). La seconde est plus précise que la première. Pour

plus de détails, on consultera Scardovelli et Zaleski (1999). Une autre approche consiste à

considérer θ comme une pseudo-concentration. L’interface correspond alors aux points pour

lesquels θ = 1/2 (Thompson, 1986; Dufour et Malidi, 2004).

Pour la tension superficielle, Brackbill et al. (1992) propose une technique CSF (Contin-

uum Surface Force) qui permet de transformer la force surfacique de la tension superficielle

en une force volumique équivalente. Cette technique repose sur un lissage de la discontinuité

à l’interface.

Ces méthodes sont largement utilisées pour le calcul des écoulements avec des interfaces

multiples pouvant se briser ou pour la prédiction de la coalescence de bulles. On notera

les travaux de Löhner et al. (2007) sur le ballottement avec déferlement de vagues ou de

Mironova (2008) sur l’étude de l’effet d’une surface libre sur l’allée de vortex dans le sillage

d’un cylindre oscillant.

Méthodes d’ensemble de niveaux (Level Set Method)

Cette méthode a été développée par Dervieux et Thomasset (1981) et Osher et Sethian

(1988) pour calculer la position d’interfaces de toutes sortes ou pour tracer des contours de

même intensité dans les images. La méthode est décrite dans un cadre général dans le livre

de Sethian (1996) et a été adaptée aux problèmes de mécanique des fluides par Sussman
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et al. (1994) et Chang et al. (1996). Le principe de cette méthode est d’ajouter aux inconnues

du fluide une fonction représentant la distance à l’interface Φ. L’interface se trouve sur le

contour de valeur nulle de cette fonction. Son signe permet de distinguer les deux milieux

de façon consistante. La valeur de cette fonction est ensuite déplacée par convection avec le

fluide, de sorte que son équation d’évolution est la suivante :

∂Φ

∂t
+ u · ∇Φ = 0 (1.27)

Cette formulation est très intéressante car la fonction Φ apporte de nombreuses informations

sur l’interface. Par exemple, la normale et la courbure s’obtiennent en évaluant les gradients

de Φ. Ainsi, n = ∇Φ/‖∇Φ‖. La tension superficielle est alors imposée comme un terme

source non local (voir Chang et al., 1996), d’une manière similaire à la méthode de force

continue (Brackbill et al., 1992). Les propriétés du fluides sont évaluées de la façon suivante :

si Φ est négative dans le milieu (1) et positive dans le milieu (2), alors la masse volumique

et la viscosité s’expriment par :

ρ(x) =ρ1 +H(Φ(x))(ρ2 − ρ1) (1.28)

µ(x) =µ1 +H(Φ(x))(µ2 − µ1) (1.29)

où H est la fonction de Heaviside (nulle si x < 0, unitaire ailleurs). Ces équations doivent

être régularisées pour permettre la résolution numérique, le plus souvent en remplaçant la

fonction de Heaviside sur un petit intervalle entourant 0 par une portion de sinusöıde (Peskin,

1977). Un des défis de cette méthode est la discrétisation des termes convectifs de l’équation

d’évolution de Φ (1.27). En effet, la résolution de cette équation peut mener à des oscillations

ou alors à des schémas numériques trop diffusifs. Le schéma le plus utilisé est le schéma ENO

(essentially non-oscillary advection scheme). Ce schéma est précis au deuxième ordre (Shu

et Osher, 1989). Il a été fortement amélioré pour obtenir des schémas WENO (weighted es-

sentially non-oscillary advection scheme) précis jusqu’aux 11ème ordre (Kurioka et Dowling,

2009) qui permettent aussi de réduire la taille du maillage nécessaire pour avoir une précision

suffisante. La formulation ne permettant pas non plus de conserver la masse, la fonction

Φ doit être réinitialisée pour préserver ses propriétés de distance à l’interface au cours du

temps. Plusieurs possibilités ont été proposées dans les travaux de Sussman et al. (1994) et

Chang et al. (1996) et reposent sur le constat que le mouvement normal de l’interface dû à la

diffusion numérique dépend de sa courbure. Malgré ces quelques difficultés, cette formulation

est très largement employée car Φ est une fonction dont la topologie des contours Φ = 0 peut

changer. Ainsi, cette méthode permet de simuler facilement des gouttelettes qui fusionnent,

qui impactent sur une surface d’eau ou qui éclatent, des vagues déferlantes, des interfaces
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qui subissent de grandes déformations ou l’atomisation d’un jet laminaire. On pourra noter

les travaux de Sussman et al. (1994) et de Chang et al. (1996) sur la coalescence de bulles

avec tension superficielle, ceux de Yue et al. (2005) sur l’étude d’écoulements turbulents dans

des canaux ouverts et l’interaction entre le fond et la surface, de Ilinca et Hétu (2008) sur le

remplissage de moule avec des suspensions denses ou de Chen et Yu (2009) sur des jets ou

l’écoulement autour de coques de bateaux.

Les Marqueurs

Les marqueurs sont des particules intégrées au fluide qui permettent d’identifier la nature

du milieu. Mckee et al. (2008) en donnent un bref historique. Les premières méthodes appelées

Particule in cell (PIC) ont été développées à la fin des années 50 par Ervin et Harlow (1957).

Des particules matérielles transportaient la masse et la nature du fluide. Cependant le schéma

était trop diffusif. La méthode MAC (Marker and Cell) fut ensuite développée par Welch

et al. (1965). Des particules virtuelles sans masse permettent d’identifier le milieu. Elles se

déplacent de cellule en cellule sur un maillage fixe cartésien. Au départ, des particules sont

réparties uniformément dans les cellules, identifiant un certain fluide, ou s’il n’y a aucune

particule une cellule vide. Les particules se déplacent en fonction de la vitesse calculée au

centre de la cellule. Pour avoir une grande précision, il faut donc beaucoup de marqueurs.

De plus, à cause du schéma temporel explicite, la condition CFL doit être respectée. Les

marqueurs ne peuvent donc pas se déplacer de plus d’une cellule par pas de temps. On peut

donc se limiter aux cellules décrivant la surface et à leur voisine pour la mise à jour de

la position des marqueurs. L’interface peut aussi être sujette à des ondulations. Ceci peut

être corrigé en introduisant des sous-cellules (de Sousa et al., 2004). La forme de l’interface

est ensuite interpolée entre les positions des marqueurs dans une cellule et ses voisines, par

exemple une interpolation quadratique est suffisante pour calculer la normale et la courbure

(de Sousa et al., 2004).

Les marqueurs sont utilisés également pour identifier l’interface elle même (Shyy, 1996).

Cette méthode est numériquement moins coûteuse que la précédente puisque le nombre de

marqueurs nécessaires pour estimer la position de l’interface est moins important. Les par-

ticules sont placées sur l’interface et déplacées avec la vitesse du fluide de façon purement

lagrangienne. La géométrie de l’interface est ensuite interpolée. Shyy (1996) propose une in-

terpolation à l’aide d’arc de cercles, ce qui permet de calculer la courbure en même temps.

Popinet et Zaleski (1999) utilisent des splines cubiques, ce qui est plus précis. La position de

l’interface étant connue dans un maillage fixe, il est alors facile de calculer des factions de

volumes et ainsi les propriétés du fluide à utiliser. Popinet et Zaleski (1999) ont comparé leur

méthode de marqueurs avec une méthode VOF classique pour étudier l’instabilité de Taylor-
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Rayleigh. Les résultats montrent que l’utilisation des marqueurs permet de localiser l’interface

de manière très précise. Ils peuvent donc être utilisés pour capter des phénomènes de petite

échelle. Par exemple, Duchemin (2001) utilise cette méthode pour simuler l’éclatement d’une

bulle d’air à la surface de l’eau.

Ces méthodes se montrent assez performantes mais demandent une attention particulière

si la topologie de l’interface change. Par exemple, si deux interfaces fusionnent ou si une

interface se divise. On trouvera des exemples de procédures pour traiter ce problème dans

Shyy (1996) et Mckee et al. (2008).

Avantages et inconvénients

Ces méthodes offrent de multiples avantages. Comme l’interface est reconstruite sur un

maillage fixe, les changements topologiques de l’interface ou des déformations importantes

sont faciles à gérer. De plus, comme le maillage est fixe, l’adaptation de maillage est aisée

et peut améliorer grandement la précision du calcul. La présence de la surface libre de-

mande de résoudre en général une équation supplémentaire de transport, ce qui n’est pas

numériquement très coûteux. Cependant, ce calcul doit être très précis. Ceci est en effet le

principal inconvénient des méthodes à maillage fixe. La reconstruction approximative de la

position de l’interface fausse la conservation de la masse. Les choses se compliquent encore si

l’on envisage des situations avec plus de deux fluides. L’imposition des conditions aux limites

sur l’interface, notamment la tension superficielle est, elle aussi, plus délicate. De nombreux

algorithmes ont donc été développés pour accrôıtre la précision de ces méthodes qui sont très

largement utilisées.

1.2.2 Méthodes sans maillage

Méthodes intégrales

Ces méthodes permettent d’écrire les équations du fluide par des intégrales sur la frontière

seulement, ce qui permet de réduire d’une dimension le problème. Cependant, ces méthodes

mènent à de bons résultats seulement si les équations sont linéaires (Shyy, 1996). Elle sont

donc utilisées principalement pour les écoulements potentiels ou régis par les équations de

Stokes. Plus de détails sont donnés sur la formulation par Dijkstra et Mattheij (2008).

Par exemple, Bergmann et al. (2009) utilisent une telle méthode pour simuler les cavités

formées par la chute d’un disque dans de l’eau. Leurs résultats sont alors en accord avec les

résultats expérimentaux. Sun et Faltinsen (2006) simulent grâce à cette approche l’impact

d’un écoulement d’eau sur un cylindre élastique.
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Méthode à particules lagrangiennes : SPH

La méthode dite Smoothed Particules Hydrodynamics (SPH) a été élaborée à l’origine en

astrophysique et adaptée à la simulation des écoulements avec interface par Monaghan (1994).

Cette méthode utilise des particules lagrangiennes qui possèdent les propriétés matérielles

du milieu décrit, une masse et une vitesse propre. Ces méthodes s’appliquent aux fluides

compressibles et ont tendance à devenir instables quand la vitesse du son devient trop grande.

Pour des fluides incompressibles, cette dernière est fixée arbitrairement de sorte que les

variations de densité dans le fluide sont inférieures à 1%. Les équations de Navier Stokes sont

alors formulées d’un point de vue lagrangien. Les quantités nécessaires (vitesses, pression,

densité, leur dérivée lagrangienne par rapport au temps et leurs gradients) sont calculées par

la discrétisation suivante. Une fonction f en un point r est approchée par

f(r) ≈
∫

D

f(x)W (r − x, h)dx (1.30)

où D est un domaine circulaire de rayon proportionnel à h centré en r et W est un noyau qui

tend vers une distribution de Dirac quand h tend vers 0. Grâce à une intégration par parties,

on définit facilement l’expression du gradient de f de la façon suivante :

∇f(r) ≈
∫

D

f(x)∇W (r − x, h)dx (1.31)

Ces expressions sont ensuite approchées par une quadrature de sorte que

f(ri) ≈
∑

j

f(rj)W (ri − rj, h)ωj (1.32)

où les points rj sont les points d’interpolation dans le domaine D. Des algorithmes per-

formants doivent être développés pour trouver les voisins d’une particule, on trouvera un

exemple dans l’article de Viccione et al. (2008).

Les conditions de surface libre n’ont pas à être imposées car elles sont satisfaites naturelle-

ment par la formulation. La tension superficielle peut être imposée par une méthode CSF

comme pour les formulations VOF. Cependant, les conditions aux limites sont délicates à

imposer pour une paroi solide. Il faut par exemple créer des particules fantômes de l’autre

côté de la frontière (Oger et al. (2006) et Fang et al. (2006)).

Les méthodes SPH permettent de simuler une large variété d’écoulement. La topologie

de l’interface peut changer. Le traitement de détachements de gouttelettes ou de vagues

déferlantes ne pose donc aucun problème. Elles peuvent aussi être couplées avec des modèles

de turbulence, Shao et Ji (2006) ont ainsi obtenu de très bon résultats pour des vagues
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déferlantes. De plus, ces méthodes sont faciles à implémenter et ne demandent pas de maillage.

Cependant, elles peuvent se montrer instables et peu précises (Oger et al., 2006). Des formu-

lations ont été développées pour pallier ces problèmes (Grenier et al., 2009; Fang et al., 2009).

Grenier et al. (2009) comparent leurs résultats sur une instabilité de Taylor Rayleigh avec

la méthode des ensembles de niveaux classique. Leur formulation SPH donne des résultats

similaires mais converge beaucoup plus vite quand le nombre de particules augmente.

1.2.3 Méthodes à maillage mobile

D’autres méthodes sont dites “à maillage mobile”. Une des frontières du domaine est

l’interface elle-même, le domaine de calcul se déforme alors en même temps que le domaine

matériel. Ce cas peut être traité de manière purement lagrangienne ou en choississant un

point de vue lagrangien-eulérien.

Méthodes complètement lagrangiennes

Ces méthodes reposent sur une écriture complètement lagrangienne des équations Navier-

Stokes, c’est à dire que l’équation du mouvement (1.12) devient

ρ
Du

Dt
= −∇p + ∇ · τ (u) − ρgez + f (1.33)

Le maillage suit alors les particules fluides. Feng et Peric (2000) donnent un exemple de

cette méthode avec une formulation espace-temps. L’avantage de cette méthode est que la

position de l’interface est parfaitement connue puisqu’il s’agit d’une frontière du domaine.

Cependant, comme le maillage suit l’écoulement, des distorsions apparaissent rapidement,

comme le montre l’exemple de l’écrasement d’une colonne de fluide. Il faut alors remailler le

domaine. Powell et Savage (2001) utilisent un critère de qualité du maillage pour remailler

quand les éléments sont trop étirés ou lorsque la courbure de l’interface devient grande afin

de conserver un bonne précision. Il faut donc jumeler cette formulation à une technique

automatique de remaillage, ce qui rend le processus coûteux.

Méthodes mixtes : Formulation Lagrangienne-Eulérienne (ALE)

La formulation lagrangienne-eulérienne ALE (Arbitrary Lagrangian Eulerian) a été pro-

posée au début des années 70 par Hirt et al. (1997) pour utiliser une description lagrangienne

du fluide tout en gardant une grande flexibilité du maillage. Elle a été adaptée à la formulation

éléments finis par Hughes et al. (1981). L’interface constitue une des frontières du domaine,

ce qui permet de connâıtre précisément sa position et de faciliter l’imposition des conditions



18

aux limites. Le maillage a alors sa déformation propre. Si vm est la vitesse de déformation

du maillage, alors elle doit être telle que (u − vm) · n = 0 à la surface libre. Ainsi, pour un

canal, les noeuds à la surface libre ne sont pas forcés de se déplacer à la vitesse du fluide,

ce qui évite les distorsions. Cependant, le domaine doit être remaillé lorsque la déformation

de l’interface devient trop grande ou quand l’interface change de topologie. Dettmer et Peric

(2006b) montrent comment on peut intégrer la force de la tension superficielle dans une for-

mulation éléments finis et obtiennent de bons résultats en simulant la chute de gouttelettes

ou un bris de jet. Cette formulation est aussi largement utilisée en interaction fluide-structure

(Etienne et al., 2006; Dettmer et Peric, 2006a).

Procédure DSD/ST(deforming spacial domain/space time)

Cette approche consiste à écrire la formulation variationnelle éléments finis du problème

sur un domaine espace temps Qn = Ω× [tn, tn+1]. L’interface constitue ici aussi une frontière

du domaine, donc sa géométrie est connue explicitement. Ainsi aucune vitesse de déformation

n’apparâıt dans la formulation. Celle-ci doit cependant être calculée pour mettre à jour

le domaine d’un pas de temps à l’autre. Cette formulation a été développée et testée par

Tezduyar et al. (Tezduyar et al., 1992a,b)

1.2.4 Conclusion

Les écoulements à surface libre sont complexes à simuler car la position de l’interface n’est

pas connue a priori. Différentes approches ont été développées pour résoudre ces problèmes.

Il faut donc choisir la méthode appropriée en fonction de l’application. Les critères seront

notamment la précision souhaitée sur la position de l’interface et la prise en compte la tension

superficielle. Dans ce dernier cas, les méthodes à maillage mobile semblent plus adaptées.

Si l’on s’attend à des déformations très importantes de l’interface ou à des changement

topologiques, les méthodes à maillage fixe telles que les méthodes à lignes de niveaux ou

VOF seront plus appropriées.
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1.3 Formulation Lagrangienne-Eulérienne (ALE)

Des méthodes décrites précédemment, les méthodes à maillage mobile sont celles qui

permettent d’obtenir le plus de précision sur la position de la surface libre. Ainsi, dans

l’optique de calculer l’influence de divers paramètres sur l’interface, ces techniques semblent

plus appropriées. La méthode lagrangienne-eulérienne permet d’avoir une grande flexibilité

pour la déformation du domaine.

1.3.1 Équations de Navier Stokes

La cinématique eulérienne-lagrangienne permet d’introduire une déformation du domaine

indépendante de l’écoulement. On introduit alors la vitesse de déformation du domaine vm,

appelée également vitesse de maille. Sur le domaine ainsi déformé, les équations de Navier

Stokes prennent la forme suivante :

Continuité : ∇ · u = 0 (1.34)

Mouvement : ρ
∂u

∂t
+ ρ((u − vm) · ∇)u = −∇p + ∇ · τ (u) − ρgez + f (1.35)

Conditions aux limites On souhaite que le domaine suive la déformation de l’interface.

Les conditions aux limites du problème deviennent alors :

u = u sur Γu (1.36)

−pnα + τ (u) · n = tf sur Γt (1.37)

(u − v) · n = 0 sur Γi (1.38)

u1 = u2 sur Γi (1.39)

σ1 · n − σ2 · n = γCn sur Γi (1.40)

Ces conditions ont le même sens physique que précédemment. La condition (1.38) traduit le

fait que l’interface est une surface matérielle.

1.3.2 Déformation du domaine de calcul

Comme on peut le constater dans l’équation (1.35), la vitesse de déformation du domaine

intervient dans les équations du mouvement. Il faut donc la calculer dans tout le domaine.

Elle doit être régulière et respecter les conditions aux limites
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Déformation du domaine Elle est arbitraire puisqu’elle n’a pas de signification physique.

Il s’agit d’un artifice de calcul. La qualité du maillage dépendra de la déformation choisie.

On recense plusieurs techniques. Hughes et al. (1981) proposent de calculer la vitesse de

convection u−vm comme une fonction linéaire de la vitesse matérielle des particules fluides.

Cette fonction doit être précisée pour chaque point du domaine à chaque pas de temps,

il est donc difficile de maintenir une bonne qualité du maillage. Huerta et Liu (1988) ne

calculent que la déformation de l’interface, la déformation à l’intérieur du domaine est définie

comme un certain pourcentage de la déformation de l’interface. Cependant, les phénomènes de

déferlement ne peuvent pas être calculés de cette manière. Dans l’article de Soulaimani et Saad

(1998), la déformation est calculée avec l’opérateur de Laplace, ainsi la vitesse de déformation

du maillage est solution de ∆vm = 0. La technique du pseudo-solide est largement utilisée :

le maillage se déforme comme un solide linéaire (Sackinger et al., 1996). Cette technique est

très souple, car le choix des coefficients de Lamé est libre. Stein et al. (2003) profitent de cette

flexibilité pour éviter les trop grandes distorsions de maillage en choisissant une structure

plus rigide pour les éléments de petite taille ou de petit volume. On peut aussi optimiser la

qualité du maillage en fonction d’un critère donné. Par exemple, Dettmer et Peric (2006b)

choisissent de rendre minimal pour chaque élément le rapport entre le rayon du cercle inscrit

au triangle et le rayon du cercle circonscrit.

Déplacement des frontières Les noeuds sur les frontières fixes doivent respecter

vm · n = 0. Sur l’interface, la condition cinématique de non pénétration impose que

(u − vm) · n = 0. Pour que le problème soit bien posé, il faut ajouter une condition

supplémentaire. Dans le cas d’une interface fluide-solide, le déplacement des noeuds de la

frontière peut être fixé par le déplacement du solide car il ne sera pas trop important. Ainsi,

u = vm sur Γi de sorte que la description de l’interface devient totalement lagrangienne.

Cette solution n’est pas très efficace pour les autre types d’interface. En effet, pour une in-

terface fluide-structure, les vitesses à l’interface sont relativement faibles, donc la distorsion

du maillage reste acceptable dans la plupart des cas. Cependant, pour une surface libre, la

description lagrangienne entrâınera souvent de trop grandes distorsions, ce sera le cas pour

le calcul de l’écoulement dans un canal ouvert. Il faut donc envisager d’autres solutions.

Dans le cadre de l’approche pseudo-solide, Sackinger et al. (1996) proposent la démarche

suivante. Sur l’interface, les résidus du déplacement du pseudo-solide sont projetés sur la

normale et la tangente à la courbe. Le résidu normal est remplacé par la condition de non

pénétration (ou de tangence) et le pseudo-solide est libre de contraintes dans la direction

tangentielle. Une autre possibilité consiste à optimiser la qualité du maillage à l’interface. On

peut alors intégrer ces noeuds dans le processus global, mais cette démarche est délicate car
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il faut intégrer la condition (1.38), ce qui demande des efforts particuliers d’implémentation

(Dettmer et Peric, 2006b). Un critère ad hoc a été proposé par Braess et Wriggers (2000). Il

consiste à répartir les noeuds le long de l’interface de sorte que les éléments linéaires créés

par ces points soient tous de même longueur. Cruchaga et al. (2006) proposent de répartir

les noeuds en les concentrant dans les zones où la courbure de l’interface est importante afin

d’avoir une description plus précise de celle-ci.

1.3.3 Méthode des éléments finis

Pour résoudre, le système d’équations modélisant l’écoulement (1.34-1.35) est mis sous

forme faible. Soit δu une fonction test ayant la même régularité que u et s’annulant sur ΓU

et δp une fonction test associée à la pression. En multipliant les équations (1.34-1.35) par les

fonctions test et en intégrant les termes appropriés par partie, on obtient le système faible

suivant :

∫

Ω

∇ · u δp dΩ = 0 (1.41)

∫

Ω

(

ρ
∂u

∂t
+ ρ ((u − v) · ∇)u

)

· δu dΩ −
∫

Ω

p∇ · δu dΩ +

∫

Ω

τ : ∇δu dΩ

=

∫

Ω

f · δu dΩ +

∫

Γ

(τ − pI) · n · δu dΓ (1.42)

Le terme de bord dans (1.42) se décompose de la manière suivante (en supposant que l’on se

situe dans le milieu (1)) :

∫

Γ

(τ − pI) · n · δu dΓ =

∫

Γt

tf · δu dΓ +

∫

Γi

(σ2 · n + γCn) · δu dΓ (1.43)

Le terme correspondant à la partie Γu de la frontière s’annule car il s’agit de conditions

de Dirichlet sur cette portion. Le terme correspondant à la tension superficielle peut être

transformé. On peut remplacer la courbure C par deux fois la courbure moyenne H , avec

H = −∇s ·n/2 où l’opérateur de gradient surfacique est ∇s = (I −n⊗n) · ∇. Le calcul de

la courbure moyenne peut être numériquement compliqué. On peut donc intégrer ce terme

par partie en utilisant le théorème de la divergence surfacique. Les détails sont donnés dans

l’annexe de l’article de Cairncross et al. (2000) et mènent au résultat suivant :

∫

Γi

γCn · δu dΓ =

∫

Ci

γδu · m dC −
∫

Γi

γ∇s · (δu) dΓ (1.44)
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Dans cette équation, Ci est la frontière de Γi et m est un vecteur extérieur normal à cette

courbe et tangent à l’interface.

Braess et Wriggers (2000) proposent une autre approche en introduisant une in-

terprétation énergétique de ce terme et parviennent à une formulation faisant intervenir

une paramétrisation de l’interface.

À ces équations s’ajoutent, le cas échéant, la forme faible des équations permettant de

calculer la vitesse de déformation du domaine. Dans le cas du pseudo-solide, on utilisera la

forme faible des équations d’élasticité linéaire.

1.3.4 Enjeux numériques

Remaillage et déformation du domaine Lorsque la déformation de l’interface devient

trop importante par rapport à la configuration de départ, la qualité du maillage résultant

peut être dégradée. Il est donc parfois nécessaire de remailler. Cette opération doit être évitée

dans la mesure du possible car elle est numériquement coûteuse et les valeurs des variables

aux noeuds doivent être interpolées d’un maillage à l’autre, ce qui introduit des imprécisions.

Il faut donc reprendre les critères et démarches développés pour la formulation purement

lagrangienne. Tanaka et Kashiyama (2006) proposent de conserver un maillage de fond fixe.

À chaque pas de temps, le domaine est déformé mais l’interface est ensuite replacée sur

le maillage fixe, de sorte que seulement les éléments proches de l’interface sont déformés.

Cependant cette opération ne permet pas la conservation de la masse, il faut donc ajouter

une étape supplémentaire de correction. On peut cependant tirer parti de ce remaillage en

utilisant une stratégie adaptative. Par exemple, Saksono et al. (2007) utilisent un critère sur

la qualité du maillage (rapport entre les rayons des cercle inscrit et circonscrit) puis la taille

des éléments du nouveau maillage est déterminée en fonction de la valeur du gradient de

la vitesse. Une autre méthode utilisée par Pelletier (1999) consiste à raffiner les zones où

l’erreur est la plus grande. L’erreur est alors calculée avec un estimateur d’erreur reposant

sur une projection de la solution pour reconstruire une solution enrichie (Zienkiewicz et Zhu,

1992). Cette méthode a donné des résultats prometteurs en régime instationnaire turbulent

(Gammacurta et al., 2009).

Loi de conservation géométrique (GCL) Il faut s’assurer lors de l’utilisation de mail-

lages déformables, que la loi de conservation géométrique est vérifiée. Cette loi a de nom-

breuses définitions qui sont résumées par Etienne et al. (2009b). Ainsi, il faut s’assurer que

la déformation du maillage est telle que :

– la solution est exacte sur un maillage mobile dans le cas où il n’y a pas d’écoulement,

– la solution est exacte sur un maillage mobile dans le cas où l’écoulement est uniforme,
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– le schéma d’intégration en temps a le même taux de convergence sur le maillage mobile

que sur le maillage fixe.

Ceci peut être vérifié en choisissant de manière adéquate la vitesse de déformation. Si la GCL

est satisfaite, des schémas d’ordre élevé peuvent être utilisés pour réduire les coûts de calcul.

1.4 Analyse de sensibilité des écoulements à surface libre

Les écoulements à surface libre sont complexes à analyser. Optimiser des systèmes faisant

intervenir des interfaces ou prévoir son comportement lorsque les paramètres de définition du

système sont modifiés seront de longues et complexes entreprises puisque les algorithmes d’op-

timisation demandent souvent beaucoup d’itérations et donc de calculs de ces écoulements.

Nous allons étudier les différentes techniques actuellement utilisées en mettant en relief leurs

avantages et inconvénients dans le contexte des systèmes faisant intervenir des interfaces.

1.4.1 Exemple de l’optimisation

Soit F(U, α) la fonction coût à optimiser sous les contraintes G(U, α) = 0, avec U les

états et α le vecteur de variables de design. La fonction coût dépend à la fois explicitement

du vecteur de design mais aussi implicitement par l’intermédiaire des états. Nous pouvons

en effet définir la fonction F(α) = F(U(α), α). Le problème peut s’énoncer de la façon

suivante :

Trouver le vecteur de design α∗ tel que

F(U(α∗), α∗) = min
α

F(U(α), α)

sujet à G(U, α) = 0

Pour résoudre ce problème, avec la plupart des algorithmes, il faut calculer le gradient de

la fonction objectif par rapport aux paramètres de design. Pour cela, il existe principalement

deux méthodes que nous allons détailler : la méthode adjointe et la méthode des sensibilités.

Méthodes adjointes

La méthode adjointe consiste à introduire la variable adjointe ξ et le lagrangien :

L(U, α, ξ) = F(U, α)− < ξ,G(U, α) >

où < ·, · > désigne le produit scalaire. Dans le cas discret, il s’agit du produit de 2 vecteurs et

dans le cas continu d’une intégrale. Afin d’exposer généralement le fonctionnement de cette
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méthode, nous garderons la notation symbolique suivante :

L = F − ξG

Le problème d’optimisation est maintenant équivalent à extrémiser L en fonction de

(U, α, ξ). La première variation du lagrangien par rapport à chacune de ces variables doit

être nulle :

– La variation par rapport à U conduit aux équations adjointes :

∂F

∂U
= ξ

∂G

∂U
(1.45)

– La variation par rapport à α produit la condition d’optimalité :

∂F

∂α
− ξ

∂G

∂α
= 0 (1.46)

– La variation par rapport à ξ mène aux équations d’état :

G = 0 (1.47)

Pour un vecteur de design α donné, les états U sont obtenus par les équations d’états (1.47)

et les variables adjointes par les équations adjointes (1.45). Le gradient de la fonction objectif

s’exprime alors de la manière suivante :

dF
dα

=
DF

Dα
=
∂F

∂α
+
∂F

∂U

DU

Dα
(1.48)

En utilisant les équations adjointes, nous avons :

dF
dα

=
∂F

∂α
+ ξ

∂G

∂U

DU

Dα

Or les équations d’états doivent être respectées quelque soit le vecteur de design α, donc

DG

Dα
=
∂G

∂α
+
∂G

∂U

DU

Dα
= 0 (1.49)

Ceci mène à l’expression finale du gradient :

dF
dα

=
∂F

∂α
− ξ

∂G

∂α
(1.50)
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Quelque soit le nombre de paramètres, il n’y a qu’un seul problème adjoint à résoudre par

fonctionnelle.

Méthode de l’équation des sensibilités

Pour le même problème que précédemment et en reprenant les mêmes notations, nous

cherchons à calculer le gradient d’une fonction coût :

dF
dα

=
DF

Dα
=
∂F

∂α
+
∂F

∂U

DU

Dα
(1.51)

Dans cette expression, DU/Dα est inconnu car la dépendance des états par rapport au de-

sign est implicite. La méthode des sensibilités (appelée aussi direct differentiation method)

consiste à différentier les équations d’états par rapport au paramètre de design afin d’obtenir

les équations de sensibilité. Il y a pour cela deux façons de procéder. On peut discrétiser les

équations d’états puis différentier, il s’agit de la méthode des sensibilités discrètes. Les sen-

sibilités ainsi obtenues correspondent aux dérivées exactes de la solution discrète du premier

problème. L’autre voie consiste à différentier les équations d’états pour obtenir un nouveau

système d’équations différentielles qu’il nous reste à discrétiser. Il s’agit alors des sensibilités

continues discrétisées. Nous obtenons ainsi une approximation de la sensibilité de la solution

exacte du premier problème. Généralement, les deux méthodes tendent vers le gradient exact

(Borggaard et Burns, 1997b; Borggaard, 1994; Borggaard et Burns, 1997a). Ces différentes

voies à explorer sont détaillées pour l’élasticité linéaire par van Keulen et al. (2005). La

méthode des sensibilités conduit à un système à résoudre par paramètre de sensibilité, peu

importe l’application qui en suivra.

Atouts de la méthode de l’équation des sensibilités

Comme on vient de le voir, les sensibilités sont très utiles en design optimal. Cependant,

leur domaine d’application s’étend bien au delà. En effet, les sensibilités donnent une infor-

mation quantitative sur l’influence des paramètres définissant le système sur n’importe quelle

fonction de sortie (Turgeon, 2001). Ceci permet de classer les paramètres par ordre d’influ-

ence. Les sensibilités permettent aussi de calculer très rapidement des solutions voisines (par

l’intermédiaire d’une série de Taylor au premier ordre). Elles permettent donc de prévoir com-

ment le système réagira à de légers changements des paramètres, ces informations permettent

de mieux comprendre le fonctionnement global du système. Une autre application de taille est

l’analyse d’incertitude. Les sensibilités permettent d’évaluer l’incertitude sur une variable de

sortie à partir de l’incertitude des paramètres d’entrée. Ces données permettront par exemple

d’évaluer la robustesse d’un design ou alors d’établir des tolérances de fabrication.
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1.4.2 Enjeux des sensibilités de l’interface

Les paramètres de design peuvent être de deux natures. Les paramètres dits “de valeur”

n’ont pas d’influence sur la forme du domaine, il peut s’agir d’une propriété physique du

fluide, d’une condition limite. La figure 1.3(a) illustre le cas où le paramètre est la vitesse

d’entrée pour l’écoulement à travers un canal. Les paramètres “de forme” définissent la forme

du domaine, ce qui est assez courant en design optimal. Par exemple sur la figure 1.3(b), le

paramètre est l’amplitude de la bosse sur la paroi inférieure du domaine. La géométrie du

domaine dépend alors de ce paramètre. La méthode générale de résolution du problème de

sensibilité est la même pour chaque cas mais le traitement du paramètre de forme demande

une attention toute particulière.

α δα

U

Ω

(a) Paramètre de valeur

Ωα
U

α
δα

(b) Paramètre de forme

Figure 1.3 Distinction entre paramètre de valeur et paramètre de forme.

Lorsqu’une interface est en jeu, la distinction entre les paramètres de valeur et paramètre

de forme est moins évidente. En effet, des paramètres peuvent ne pas affecter directement

les frontières fixes du domaine et néanmoins avoir une influence sur la forme de l’interface.

Ces paramètres se comporteront alors comme des paramètres de forme. Ceci est illustré sur

la figure 1.4. Le paramètre est la vitesse d’entrée dans un canal dont une des parois est

déformable. La forme de cette paroi est couplée avec l’écoulement dans son voisinage. Ainsi,

si la vitesse d’entrée change, la forme de cette paroi sera modifiée. La vitesse d’entrée devient

donc un paramètre de forme.

Méthode adjointe sur domaine variable

Lorsque le domaine dépend du paramètre, la difficulté est de calculer les différents termes

de la formule (1.50). En effet, la fonction coût est souvent de la forme :

F(U, α) =

∫

Ω

f(U, x, α) dΩ (1.52)
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paroi déformable

ΩU

(a) État initial

ΩU
U+δU

(b) État perturbé

Figure 1.4 Influence d’un paramètre de design sur un domaine déformable.

Or le domaine dépend du paramètre. Nous ne pouvons donc pas dériver simplement cette

intégrale. De même,

< ξ, G >=

∫

Ω

ξG(U, x, α) dΩ (1.53)

Il faut alors utiliser la méthode des dérivées matérielles qui est exposée par Delfour et Zolésio

(2001) de manière générale et aussi par Haug et al. (1986), Cardoso et Arora (1989) ou Navar-

rina et al. (2000) dans le contexte de la mécanique des structures. Giannakoglou et Papadim-

itriou (2008) montrent comment ces difficultés se manifestent dans le cadre de problèmes

inverses pour les équations d’Euler et pour les équations de Navier-Stokes. On ne recense

cependant pas beaucoup d’études de design optimal pour les systèmes avec interfaces et la

méthode adjointe. Les travaux de Gejadze et Copeland (2005) en sont un exemple, cependant

le calcul de l’interface se fait simplement par l’intermédiaire d’une fonction représentant la

hauteur du fluide ce qui limite le champ d’application de la méthode.

Méthode des sensibilités sur domaine variable

Pour la méthode des sensibilités, il s’agit de dériver les équations d’états. Tout comme

dans le cadre de la mécanique des milieux continus, nous pouvons prendre soit un point de

vue eulérien, c’est-à-dire calculer les dérivées par rapport au vecteur de design en un point

fixe du domaine , soit un point de vue lagrangien, c’est-à-dire calculer la dérivée totale des

états, donc prendre un compte le changement de forme du domaine dans la dérivation.

Formulation eulérienne D’un point de vue eulérien, il suffit de dériver formellement les

équations d’états pour obtenir les dérivées partielles des états par rapport au paramètre. Par

exemple pour la vitesse d’un fluide u(x, α), nous calculons ∂u/∂α. Cependant, les conditions

aux limites en sensibilités sont données par les dérivées matérielles des états. Il faut donc

introduire les termes provenant de la transformation de la frontière due à la variation du
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paramètre de forme. Ces termes dépendent des gradients en espace des états, qui, calculés

numériquement, ne sont pas toujours précis. Le défi pour cette méthode est donc de calculer

avec précision les gradients des états à la frontière pour obtenir de bonnes conditions aux

limites pour les sensibilités. Malgré cela, le point de vue eulérien reste intéressant par sa

simplicité de mise en oeuvre numérique. En effet, contrairement à la méthode adjointe ou

au point de vue lagrangien, il n’est pas nécessaire de dériver des intégrales dont le domaine

dépend du paramètre. De nombreuses applications en mécanique des fluides ont été faites

avec cette méthode (Turgeon, 2001), en régime turbulent (DiCaro, 2007) ou en régime in-

stationnaire (Hristova et al., 2005). Cette méthode a été utilisée par Pestieau (2006) pour

les écoulements multi-fluides. La méthode pour le calcul de l’interface est une méthode de

pseudo-concentration. Ainsi l’équation de la pseudo-concentration est dérivée pour trouver la

sensibilité de l’interface, ce qui permet de ne pas avoir à traiter un domaine variable. Cepen-

dant, le problème classique des paramètres de forme persiste et pour avoir une résolution

précise de l’interface, il a fallu utiliser des maillages très fins dans son voisinage. Les sensi-

bilités eulériennes ont été aussi utilisées en interaction fluide-structure en régime non sta-

tionnaire par Etienne et al. (2007) avec une méthode ALE pour le calcul des interfaces. La

formulation des conditions d’interface pour les sensibilités prend alors une forme assez com-

pliquée et nécessite l’évaluation des dérivées spatiales d’ordre 2 de la vitesse à l’interface qui

sont difficiles à calculer précisément.

Formulation lagrangienne En prenant un point de vue lagrangien, nous nous

intéresserons au calcul des dérivées totales des états par rapport au paramètre, elles se com-

posent d’un terme lié à la variation pure du paramètre et un autre dû à la modification du

domaine. En effet, nous avons u(x, α) = u(x(α), α) donc

Du

Dα
=
∂u

∂α
+ ∇u · Dx

Dα
(1.54)

Pour ce faire, il faut dériver les équations d’état, sous leur forme forte ou sous leur forme

intégrale, en tenant compte des variations de géométrie du domaine. Dans ces conditions, les

opérateurs de dérivation par rapport au paramètre et le gradient d’espace ou l’intégration sur

le domaine ne commutent pas puisque les coordonnées d’espaces dépendent du paramètre. Il

apparâıt alors une vitesse de déformation, connue uniquement sur les frontières, mais qui doit

être calculée dans tout le domaine. Il existe différentes techniques pour évaluer cette vitesse.

La méthode de la dérivée matérielle est beaucoup utilisée. Des formulations générales ont été

établies par Delfour et Zolésio (2001), Navarrina et al. (2000) et Tortorelli et Wang (1993). Le

point de vue lagrangien a été plutôt développé dans le cadre de la mécanique des structures.
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Les problèmes de transfert thermique font l’objet des travaux de Dems (1987) et Kleiber et

Sluzalec (1996). Dans les travaux de Arora (1993), nous trouverons une formulation pour les

équations d’élasticité linéaire. Bobaru et Mukherjee (2001) ont effectué quelques simulations

numériques avec une méthode de résolution sans maillage (element-free Galerkin method).

Les sensibilités lagrangiennes ont été aussi développées dans le cadre de la mécanique de la

rupture par Taroco (2000) qui a abordé les sensibilités d’ordre 2 et pour l’optimisation d’arcs

plans par Choi (2002). Dans les travaux de Lee (1997), des équations intégro-différentielles

de bord (boundary integral equation formulation) sont utilisées pour traiter des problèmes

de solides élastiques axisymétriques. En mécanique des fluides, nous noterons le travail de

Smith (1996) qui traite de l’écoulement de polymères gouverné par les équations de Stokes.

Dans les travaux de Wang et al. (1996), les équations de Navier Stokes sont traitées, avec une

technique de paramétrisation de domaine (Tortorelli et al., 1994) pour le calcul de la vitesse

de déformation. D’autres approches mathématiquement compliquées ont été abordées par

Gao et al. (2007) en utilisant les dérivées de Piola (Boisgerault, 2000). Pour les écoulements

avec interfaces, on notera les travaux de Lund et al. (2003) qui utilisent une formulation

discrète et obtiennent de bons résultats. McDavid et Dantzig (1998) utilisent des sensibilités

lagrangiennes discrètes pour résoudre un problème de moulage avec une méthode VOF pour

le calcul de l’interface. Cependant, la dérivation de la fraction de fluide par rapport au

paramètre est délicate. Une formulation continue de l’équation des sensibilités lagrangiennes

a été développée pour les équations de Navier-Stokes par Charlot et al. (2009b). Au lieu

d’avoir recours à une paramétrisation explicite du domaine, un pseudo-solide est introduit

pour calculer les vitesses de déformation du domaine présentes dans la formulation faible

du problème. De cette manière, la formulation se montre très simple à utiliser puisque les

conditions aux limites, contrairement à la formulation eulérienne, sont simples et exactes. Elle

donne aussi accès directement aux dérivées totales de l’écoulement par rapport au paramètre

d’intéret. Cette approche permet d’obtenir la même précision sur les sensibilités que sur

l’écoulement. La formulation a également fait ses preuves dans le contexte du design optimal.

Combinée à une paramétrisation NURBS (Charlot et al., 2009a), elle a mené aux mêmes

résultats qu’une formulation eulérienne, mais avec des maillages beaucoup plus grossiers (10

fois moins de noeuds). À notre connaissance, une telle formulation n’a pas été utilisée pour

le calcul des sensibilités des écoulements avec interfaces.

1.5 Bilan

Les écoulements avec interface ont suscité un grand intérêt et de nombreuses méthodes

numériques ont été développées pour calculer avec le plus de précision possible la géométrie
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de l’interface. Cependant, peu de problèmes d’optimisation ont été traités dans ce domaine

car les gradients de la solution par rapport aux divers paramètres de design sont difficiles à

évaluer.

Les méthodes de calcul des écoulements sont très variées. Les deux grandes catégories

sont les méthodes à maillage fixe et les méthodes à maillage mobile. Les méthodes à maillage

fixe sont relativement simples à implémenter et demandent simplement d’ajouter au système

une équation de transport pour la fonction identifiant chaque zone de l’écoulement et de

reconstruire ensuite la position de l’interface. Cependant, ces méthodes demandent de nom-

breux traitements particuliers pour résoudre cette équation avec le plus de précision possible

pour assurer la conservation de la masse. Il peut s’agir de maillage adaptatif pour raffiner la

zone proche de l’interface ou d’algorithmes d’ordre plus élevés. De plus, comme la position

de l’interface n’est pas explicitement connue, l’imposition de conditions limites à l’interface

est compliquée.

Les méthodes à maillage mobile ne rencontrent pas ce genre de problème puisque l’in-

terface constitue une des frontières du domaine. Le maillage doit donc être déformé pour

suivre l’évolution de l’interface. Il s’agit là d’un des principaux enjeux de ces méthodes, de

trop grandes déformations entrâınent des distorsions des éléments du maillage, voire des re-

tournements. Il faut donc remailler le domaine, ce qui est coûteux mais en faisant appel à

un remaillage adaptatif, ces coûts peuvent être en partie compensés par une amélioration

de la précision de la solution. Ces méthodes ne permettent cependant pas de traiter les

changements topologiques de l’interface (détachement de gouttelettes, etc. . .).

Les méthodes d’analyse des écoulements avec interface sont numériquement coûteuses.

Dans ce contexte, l’analyse de sensibilité devient un outil très utile. Les sensibilités permettent

d’obtenir une information quantitative sur l’influence des paramètres sur n’importe quelle

variable de sortie et donc de caractériser le système en fonction des paramètres d’entrée.

Elles facilitent ainsi la compréhension des phénomènes régissant ces systèmes complexes.

Leur calcul dépend de la méthode choisie pour l’écoulement.

Pour les méthodes à maillage fixe, une formulation eulérienne est la plus adaptée mais

ne permet pas de traiter avec exactitude les paramètres de forme (Pestieau, 2006). La for-

mulation lagrangienne semble plus à même de résoudre les problèmes à surface libre mais

la dérivation de la fonction “indicatrice” sera complexe (McDavid et Dantzig, 1998). Si

l’écoulement est résolu grâce à une méthode ALE, la formulation eulérienne mène à des

conditions aux limites complexes et qui ne peuvent pas être calculée exactement. En effet,

elles font intervenir les gradients des variables issus de la solution numérique (Etienne et al.,

2007). Celles-ci seraient par contre exactes et directes avec une formulation lagrangienne,

ce qui serait numériquement beaucoup moins coûteux. Le point de vue lagrangien pour les
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sensibilités semble donc être le plus approprié pour traiter les problèmes avec interface.

1.6 But et objectifs

Le but de ce projet est de développer une méthodologie robuste, rapide et efficace pour

la simulation d’écoulements à surface libre et pour la quantification précise de l’influence

des paramètres contrôlant la réponse de l’interface par le calcul des sensibilités. Nous allons

donc coupler la formulation ALE pour l’écoulement avec une formulation lagrangienne pour

l’analyse de sensibilités. Pour atteindre ce but nous avons fixé les objectifs suivants :

1. Généraliser la formulation et l’algorithme d’éléments finis pour traiter les écoulements

avec surface libre,

2. Étendre la méthode de l’équation des sensibilités lagrangiennes (développée pour les

écoulements stationnaires) aux écoulements instationnaires avec surface libre,

3. Vérifier la formulation et la méthodologie avec des solutions analytiques obtenues par

la méthode des solutions manufacturées,

4. Valider l’approche en comparant nos résultats numériques à des résultats

expérimentaux,

5. Appliquer la méthodologie sur quelques exemples d’intérêt pratique.
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CHAPITRE 2

CALCUL DE LA SURFACE LIBRE

Dans ce chapitre, nous allons détailler la modélisation adoptée pour l’écoulement et la

surface libre. Ensuite, nous décrirons les méthodes utilisées pour résoudre les équations.

Nous utiliserons la cinématique eulérienne-lagrangienne généralisée (ALE) pour résoudre les

équations de Navier-Stokes sur un domaine déformable. Dans ce contexte, la forme faible

des équations de Navier-Stokes est écrite sous forme conservative pour satisfaire la loi de

conservation géométrique. Ainsi, l’ordre du schéma d’intégration temporel sera le même sur

maillage mobile que sur maillage fixe. Nous décrirons ensuite les discrétisations spatiales et

temporelles utilisées ainsi que quelques détails d’implémentation de la méthode.

2.1 Modélisation des écoulements à surface libre

2.1.1 Équations de Navier-Stokes

On considère l’écoulement laminaire d’un fluide incompressible et newtonien dans un

domaine Ω. Le mouvement du fluide est alors décrit par les équations de Navier-Stokes :

Continuité : ∇ · u = 0 (2.1)

Mouvement : ρ
∂u

∂t
+ ρ(u · ∇)u = −∇p+ ∇ · σ + f (2.2)

où σ est le tenseur des contraintes défini par

σ = −pI + τ = −pI + µ
(

∇u + ∇uT
)

avec τ le tenseur des contraintes visqueuses et I le tenseur métrique.

2.1.2 Conditions limites pour la surface libre

Comme illustré sur la figure 2.1, la frontière ∂Ω du domaine fluide Ω est composée de :

– Γu où des conditions de Dirichlet sont imposées

– Γt où des conditions de Neumann sont imposées

– Γi la surface libre
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tΓ

iΓ

Γu

Ω

Figure 2.1 Domaine fluide.

Dans le cas de la surface libre, on suppose que le fluide de l’autre côté de l’interface est non

visqueux. On supposera de plus que la pression de cet autre fluide est nulle (la pression étant

définie à une constante près, cette hypothese n’est pas restrictive). Dans notre étude nous

négligerons les effets de tension superficielle. Dans ces conditions, il n’y a pas de transfert de

masse à travers l’interface et les contraintes normales doivent être nulles à la surface libre.

On obtient alors, si la surface libre est décrite par une équation du type F (x, y, t) = 0 :

u = u sur Γu (2.3)

−pnα + τ (u) · n = tf sur Γt (2.4)

DF

Dt
=
∂F

∂t
+ u∇F = 0 sur Γi (2.5)

σ · n = 0 sur Γi (2.6)

où n est le vecteur normal sortant à la frontière.

2.2 Formulation lagrangienne-eulérienne pour les problèmes à sur-

face libre

Lorsque l’on considère des écoulements à surface libre, le domaine fluide, c’est-à-dire la

forme de la surface libre est une inconnue du problème. Pour simuler ces écoulements, nous

choisissons une cinématique eulérienne-lagrangienne pour laquelle le domaine de calcul suit les

déformations du domaine fluide. Dans cette section nous allons donc présenter la formulation
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utilisée et les équations à résoudre dans ce contexte.

2.2.1 Description eulérienne-lagrangienne

Considérons un domaine matériel Ωz et la transformation φt qui à tout temps t associe le

domaine Ωz au domaine Ωy. Ainsi Ωy est la configuration courante du domaine Ωz. À un point

z de Ωz est associé le point y de Ωy tel que y = φt(z). On introduit un domaine de référence

Ωx et la transformation φ̂t telle que y = φ̂t(x). Alors on a aussi x = ψt(z) = φ̂−1
t (φt(z)). Ces

transformations sont illustrées sur la figure 2.2.

Ωx

Ωy

Ωz

(mobile)
Domaine spatial

φ
t

φ
t

ψ =
t

(mobile)
Domaine matériel

(fixe)
Domaine de référence

φ
t

φ
t

y

z x

o
−1

Figure 2.2 Domaines et transformations pour la description eulérienne-lagrangienne arbi-
traire.

On a alors φt(z) = φ̂t(x) = φ̂t(ψt(z)) donc

∂φt

∂t
(z) =

∂φ̂t

∂t
+
∂φ̂t

∂x

∂ψt

∂t
(2.7)

On définit u =
∂φt

∂t
la vitesse courante de la particule matérielle z et vm =

∂φ̂t

∂t
la vitesse

du point de référence x. Grâce à l’équation (2.7) et en appliquant le théorème des fonctions

implicites, la dérivée matérielle de la vitesse s’écrit

Du

Dt
=
∂u

∂t
+ ((u − vm)∇)u) (2.8)
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où ∂u/∂t est le changement de la vitesse matérielle pour un observateur situé dans le repère

de référence. L’équation (2.8) est l’équation fondamentale de la formulation lagrangienne

eulérienne. On remarque que si vm = 0 on retrouve la formulation eulérienne et si vm = u

la formulation devient purement lagrangienne.

2.2.2 Équations de l’écoulement et conditions limites en formulation ALE

D’après le paragraphe précédent, nous pouvons à présent écrire les équations de Navier-

Stokes de la façon suivante :

Continuité : ∇ · u = 0 (2.9)

Mouvement : ρ
∂u

∂t
+ ρ((u − vm) · ∇)u = −∇p + ∇ · τ (u) − ρgez + f (2.10)

L’introduction de la vitesse de maille vm permet d’écrire les conditions aux limites avec les

conditions de surface libre de la manière suivante :

u = u sur Γu (2.11)

−pnα + τ (u) · n = tf sur Γt (2.12)

(u − vm) · n = 0 sur Γi (2.13)

σ · n = 0 sur Γi (2.14)

2.2.3 Approche pseudo-solide

Dans l’approche adoptée, le domaine se déforme avec la forme de la surface libre. La

déformation du domaine est calculée avec l’approche pseudo-solide proposée par Sackinger

et al. (1996). Cette méthode consiste à supposer que le domaine se déforme comme une

structure élastique. On choisit arbitrairement les coefficients de Lamé λps et µps pour le

pseudo-solide. Le déplacement χ = (ξ, η) de la pseudo-structure est alors la solution du

problème suivant :

∇ ·
(

1

2
λpstr

(

∇χ + ∇T χ
)

I + µps

(

∇χ + ∇T χ
)

)

= 0 in Ω (2.15)

Les conditions aux limites sont données par les équations (2.13) et (2.14) sur la surface

libre. Il en résulte alors trois équations ( la condition (2.14) étant vectorielle) pour quatre

inconnues : u = (u, v) et χ = (ξ, η). Il manque donc une équation pour que le système

puisse être résolu. En effet ces trois équations permettent de calculer la vitesse à l’interface

ainsi que sa forme, la solution de F (x, y, t) = 0. L’information manquante est la façon dont
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les points sont répartis sur la frontière. Cette information n’a pas de signification physique,

elle fait partie de l’artifice de calcul de la méthode pseudo-solide. Nous choisissons donc une

répartition telle qu’en tout temps, l’abscisse curviligne normalisée des points sur la surface

libre soit conservée. Ceci mène à une condition sur la longueur des arêtes le long de la surface

l+

xi

xi−1

xi+1

−L

+L

l−

Figure 2.3 Déformation des segments situés sur la surface libre.

libre : le rapport entre la longueur courante et la longueur initiale des arêtes de part et d’autre

d’un point de la surface doit être le même. Ainsi, en utilisant les notations de la figure 2.3,

pour le point Xi on a :

L−

l−
=
L+

l+
(2.16)

où l− et l+ sont les longueurs initiales des arêtes et L− and L+ sont les longueurs courantes.

On prendra le carré de cette expression, donc pour le nœud i, de coordonnées (xi, yi) sur

le domaine non déformé et dont le déplacement est (ξi, ηi), on a

(xi + ξi − xi−1 − ξi−1)
2 + (yi + ηi − yi−1 − ηi−1)

2

(xi − xi−1)2 + (yi − yi−1)2

=
(xi+1 + ξi+1 − xi − ξi)

2 + (yi+1 + ηi+1 − yi − ηi)
2

(xi+1 − xi)2 + (yi+1 − yi)2
(2.17)

Ailleurs le déplacement du pseudo-solide doit être tangent aux frontières.

2.3 Méthodes numériques

Nous allons maintenant présenter les méthodes numériques utilisées pour résoudre

le problème décrit dans la section précédente. La principale difficulté est la résolution

des équations de Navier-Stokes instationnaires sur un domaine dont la forme dépend de
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l’écoulement par les conditions (2.13) et (2.14). Nous allons donc ici décrire les outils utilisés.

Il faut tout d’abord établir une formulation variationnelle qui permette de satisfaire la loi de

conservation géométrique (GCL). Nous décrirons ensuite brièvement la méthode des éléments

finis utilisée pour la résolution spatiale. Dans certains cas, des oscillations numériques peu-

vent apparâıtre, il faut alors stabiliser les équations. Nous présenterons ensuite les schémas

utilisés pour l’intégration temporelle et nous finirons par la méthode de résolution globale

des équations.

2.3.1 Formulation variationnelle

Nous devons adopter une formulation qui permette de satisfaire la loi de conservation

géométrique (GCL). Rappelons que la GCL a trois significations :

– la solution est exacte sur un maillage mobile dans le cas où il n’y a pas d’écoulement,

– la solution est exacte sur un maillage mobile dans le cas où l’écoulement est uniforme,

– le schéma d’intégration en temps a le même taux de convergence sur le maillage mobile

que sur le maillage fixe.

D’après Etienne et al. (2009b), la formulation conservative suivante doit être adoptée. Soient

δu et δp des fonctions tests admissibles pour la vitesse et la pression, la forme faible du

problème associée aux équations (2.9) et (2.10) est

∫

Ω(t)

∇ · u δp dΩ = 0 (2.18)

d

dt

∫

Ω(t)

ρu · δu dΩ −
∫

Ω(t)

(∇ · vm)ρu · δu dΩ +

∫

Ω(t)

ρ ((u − vm) · ∇) u · δu dΩ

+

∫

Ω(t)

σ : ∇δu dΩ =

∫

Ω(t)

f · δu dΩ +

∫

Γ(t)

(τ − pI) · n · δu dΓ (2.19)

Pour satisfaire la GCL, la vitesse de maille et sa divergence doivent être évaluées de façon

consistante avec le schéma d’intégration temporelle. Leurs expressions seront détaillées à la

section 2.3.4.

2.3.2 Méthode des éléments finis

Le domaine est décomposé en Ne éléments comprenant chacun Nu nœuds pour la vitesse

et Np nœuds pour la pression. Sur chaque élément, la solution est approchée de la manière

suivante :

u ≈ uh =
Nu
∑

i=1

uiN
u
i (2.20)
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où ui est la solution numérique au nœud i de l’élément considéré et les fonctions Nu
i sont

les fonctions d’interpolation de l’élément pour la vitesse, Nu est le nombre de fonctions

d’interpolation. La pression et la vitesse de déformation du domaine sont approximées de

manière analogue :

p ≈ ph =

Np
∑

i=1

piN
p
i et vm ≈ vm

h =

Nvm
∑

i=1

vmiN
vm

i (2.21)

La méthode de Galerkin consiste alors à choisir successivement chaque fonction d’interpo-

lation comme fonction test dans la forme faible. Nous utiliserons une formulation mixte.

La pression est alors un multiplicateur de Lagrange qui permet d’imposer la condition

d’incompressibilité. Les inconnues en vitesse et en pression sont donc liées et le choix des

fonctions d’interpolation doit alors être fait avec précaution. En effet, pour que le système

puisse être résolu correctement, il suffit que les interpolants satisfassent la condition LBB

(Ladyshenskaya-Babuška-Brezzi) qui peut s’énoncer de la façon suivante. Soient u un champ

de vitesse continu et différentiable sur un domaine R et uh son approximation discrète,

l’élément satisfait la condition de Brezzi si u et uh ont la même projection de la diver-

gence dans l’espace des pressions. De nombreux types d’éléments peuvent être utilisés, nous

utiliserons les éléments triangulaires suivants.

Élément de Taylor-Hood d’ordre 2 (P2-P1) Cet élément a 6 nœuds en vitesse et 3

nœuds en pression. La vitesse est donc quadratique par élément et continue, et la pression

est linéaire et continue. Les nœuds en vitesse et en pression sont placés comme illustré sur la

figure 2.4. La discrétisation du pseudo-déplacement est la même que la vitesse. Cet élément

satisfait la condition de Brezzi-Babuška.

Éléments P1-P1 Cet élément a 3 nœuds en vitesse et 3 nœuds en pression. La vitesse et la

pression sont donc linéaires par élément et continue. L’emplacement des nœuds est représenté

sur la figure 2.5.

Cet élément ne satisfait pas la condition de Brezzi-Babuška. Son utilisation peut mener

à une mauvaise résolution de la pression. Ceci peut être corrigé en utilisant un stabilisation

adaptée telle que décrite dans la section suivante.

2.3.3 Stabilisation des équations de Navier-Stokes

Dans certains cas, la solution éléments finis peut présenter des oscillations numériques. Il

faut alors stabiliser les équations de Navier-Stokes pour palier ce problème. Les oscillations

numériques peuvent avoir plusieurs origines : des instabilités convectives qui se produisent
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noeuds pour la pression
et le deplacement

noeuds pour la vitesse

Figure 2.4 Élément de Taylor-Hood.

noeuds pour la pressionnoeuds pour la vitesse
et le deplacement

Figure 2.5 Élément P1-P1.

lorsque le nombre de Reynolds est élevé ou des instabilités dues au type d’élément qui ne

respecte pas la condition de Brezzi. Les techniques de stabilisation ont été essentiellement

développées pour des interpolants linéaires, il existe peu de méthodes éprouvées pour les

interpolants quadratiques. Nous n’utiliserons donc pas de stabilisation avec les éléments de

Taylor-Hood. Nous utiliserons les trois types de stabilisation suivants : la stabilisation SUPG

pour les instabilités convectives, la stabilisation PSPG pour se passer de la condition de

Brezzi et la stabilisation de la condition d’incompressibilité.

Stabilisation Streamline Upwind/Petrov-Galerkin (SUPG)

Le but est d’éviter les oscillations numériques apparaissant lorsque les phénomènes con-

vectifs dominent les phénomènes diffusifs. En modifiant les fonctions test pour l’équation de
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la conservation de la quantité de mouvement, de la diffusion artificielle est ajoutée dans la

direction de l’écoulement (Brooks et Hughes, 1982). Elle peut être interprétée comme une

modification de la fonction test pour la vitesse. La nouvelle fonction test δũ a alors pour

expression :

δũ = δu + τSUPG(u · ∇)δu (2.22)

Remarquons que la solution exacte est toujours solution de la forme stabilisée. Cette forme

est valable pour des maillages fixes, pour les maillages mobiles en formulation ALE, il faut

corriger la vitesse de convection et on obtient :

δũ = δu + τSUPG((u − vm) · ∇)δu (2.23)

Stabilisation Pressure-stabilizing/Petrov-Galerkin (PSPG)

La stabilisation PSPG est utilisée avec les éléments qui ne satisfont pas la condi-

tion de Brezzi pour les rendre stables. Comme pour la stabilisation SUPG, des termes

supplémentaires sont ajoutés et peuvent s’interpréter comme une modification de la fonc-

tion test. La nouvelle fonction test δũ a alors pour expression :

δũ = δu +
τPSPG

ρ
∇δp (2.24)

où δp est la fonction test pour la pression.

Stabilisation de la contrainte d’incompressibilité

Cette dernière forme concerne la contrainte d’incompressibilité. Les termes à ajouter sont

basés sur les termes de stabilisation aux moindres carrés pour rendre le calcul plus robuste

(Aliabadi et Tezduyar, 2000) et ont l’expression suivante :

∫

Ω

τCONT∇ · δuρ∇ · u (2.25)

Choix des paramètres

Il faut maintenant préciser l’expression des coefficients τSUPG, τPSPG et τCONT . Ils sont

définis par élément. Souvent, les coefficients τSUPG et τPSPG sont les mêmes. Il est montré

dans le livre de Thomasset (1981) qu’il existe un coefficient optimal pour des problèmes

unidimensionnels. Ce coefficient optimal a alors pour expression :

τOPT =
h

2‖u‖

(

coth(Re) − 1

Re

)

(2.26)
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où h représente la taille caractéristique de l’élément, ν est la viscosité cinématique et Re est

le nombre de Reynolds local : Re =
2ρ‖u‖h

ν

Plusieurs généralisations existent pour les problèmes 2D. Nous nous appuierons sur les

travaux de Tezduyar et Osawa (2000) et de Verdier (2008). Ainsi nous choisissons les coeffi-

cients suivants :

τSUPG = τPSPG =
1

√

4

∆t2
+

4‖u‖2

h2
+ 9

16ν2

h4

(2.27)

Ici u représente la vitesse de convection, donc en formulation ALE, on obtient :

τSUPG = τPSPG =
1

√

4

∆t2
+

4‖u − vm‖2

h2
+ 9

16ν2

h4

(2.28)

Le terme en ∆t provient de la formulation espace-temps utilisée par Tezduyar et Osawa

(2000). Il ne s’applique pas pour notre formulation, on a cependant remarqué qu’il contribuait

à une meilleure convergence dans certains cas. Cependant, la solution dépend alors du pas

de temps.

Pour la stabilisation de la contrainte d’incompressibilité, on choisit le coefficient proposé

par Tezduyar et Osawa (2000) en corrigeant le vitesse de convection pour la formulation

ALE :

τCONT =
h

2
‖u − vm‖min(1, Re/3) (2.29)

La taille de l’élément peut elle aussi être calculée de différentes façons. On peut par

exemple choisir pour la taille caractéristique de l’élément h, la longueur du côté du triangle

équilatéral qui aurait la même aire que l’élément considéré. On notera cette longueur hc. Une

autre possibilité a été proposée par Tezduyar et Osawa (2000) et reprise par Verdier (2008).

Elle consiste à prendre en compte la direction de l’écoulement dans le calcul de la taille. La

taille caractéristique d’un élément donné a alors pour expression pour les maillages fixes :

hUGN =

√
2

√

√

√

√

Nu
∑

i=1

(

u

‖u‖ · ∇Nu
i

)2

(2.30)

La vitesse considérée étant encore la vitesse de convection, sur un maillage mobile, cette taille
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caractéristique aura pour expression :

hUGN =

√
2

√

√

√

√

Nu
∑

i=1

(

(u − vm)

‖u − vm‖ · ∇Nu
i

)2

(2.31)

La longueur hUGN sera utilisée pour le calcul de τSUPG, pour les autres coefficients, on utilisera

la longueur hc, cette combinaison s’avérant la plus robuste.

Formulation stabilisée des équations de Navier-Stokes

En regroupant ces trois stabilisations, on obtient le système suivant :

∫

Ω

∇ · u δp dΩ +

∫

Ω

τPSPG

ρ
∇δp ·

(

ρ
∂u

∂t
+ ρ((u − vm) · ∇)u −∇ · σ − f

)

dΩ = 0 (2.32)

d

dt

∫

Ω

ρu · δu dΩ −
∫

Ω

(∇ · vm)ρu · δu dΩ +

∫

Ω

ρ ((u − vm) · ∇) u · δu dΩ

+

∫

Ω

σ : ∇δu dΩ −
∫

Ω

f · δu dΩ −
∫

Γ

(τ − pI) · n · δu dΓ

+

∫

Ω

τSUPG((u − vm) · ∇)δu ·
(

ρ
∂u

∂t
+ ρ((u − vm) · ∇)u −∇ · σ − f

)

dΩ

+

∫

Ω

τCONT∇ · δuρ∇ · u dΩ = 0 (2.33)

Nous utiliserons ces équations avec les éléments P1-P1. Avec les éléments de Taylor-Hood,

nous utiliserons les équations (2.10). Il nous faudra vérifier si la forme stabilisée satisfait la

GCL.

2.3.4 Intégration temporelle et vitesse de maille

Pour l’intégration temporelle, nous utiliserons des schémas de Runge-Kutta d’ordre élevé

puisque si la GCL est satisfaite, les ordres de convergence seront conservés sur maillage

mobile. Soit l’équation différentielle ordinaire suivante : y′ = f(y, t), la formulation générale

de ces schémas est la suivante :

y(n+ci)
∗

= y(n) + ∆t

s
∑

j=1

aijf(y
(n+cj)
∗ , t(n+cj)) pout i = 1, · · · , s (2.34)

y(n+1) = y(n) + ∆t
s

∑

j=1

bjf(y
(n+cj)
∗ , t(n+cj)) (2.35)
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où s est le nombre de sous-niveaux, t(n+cj) = t(n) + cj∆t et y
(n+ci)
∗ est la solution évaluée au

temps intermédiaire t(n+ci). Ceci peut se résumer sous forme de tableau de Butcher :

c1 a11 · · · a1s

...
...

. . .
...

cs as1 · · · ass

b1 · · · bs

Nous utiliserons deux schémas implicites de Runge-Kutta.

– le schéma de Radau IIA3, noté IRK32, précis à l’ordre 3 pour la vitesse et à l’ordre 2

pour la pression. Ce schéma compte au total 2 niveaux.

– le schéma de Radau IIA5, noté IRK53, précis à l’ordre 5 pour la vitesse et à l’ordre 3

pour la pression. Ce schéma compte au total 3 niveaux.

L’ordre de convergence pour la pression est plus faible car la pression est traitée comme

un multiplicateur de Lagrange (Hairer et Wanner, 2002). Ces schémas ont les tableaux de

Butcher suivants :

1/3 5/12 -1/12

1 3/4 1/4

IRK32 3/4 1/4

(4 −
√

6)/10 (88 − 7
√

6)/360 (296 − 169
√

6)/1800 (−2 + 3
√

6)/225

(4 +
√

6)/10 (296 − 169
√

6)/1800 (88 + 7
√

6)/360 (−2 − 3
√

6)/225

1 (16 −
√

6)/36 (16 +
√

6)/36 1/9

IRK53 (16 −
√

6)/36 (16 +
√

6)/36 1/9

Nous utiliserons aussi le schéma d’Euler implicite ou Radau IIA1, qui est aussi un schéma

de Runge-Kutta. Il s’exprime de la façon suivante :

y(n+1) = y(n) + ∆tf(y(n+1), t(n+1)) (2.36)

ou avec le tableau de Butcher suivant

1 1

IRK11 1

Son taux de convergence est de 1 pour la vitesse et pour la pression, nous le noterons IRK11.

Pour les schémas utilisés, on a asj = bj et la matrice des coefficients (aij) est inversible.
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Pour que la GCL soit satisfaite, l’évaluation de la vitesse de maille et de sa divergence

doivent être consistantes avec le schéma d’intégration temporelle. La vitesse de maille et sa di-

vergence peuvent être évaluées indépendamment, nous reprenons les expressions développées

par Etienne et al. (2009b). Pour la divergence de la vitesse de maille, nous utilisons la formule

suivante :

(∇ · vm)(n+cj) =
s

∑

k=1

a−1
jk

J (n+ck) − J (n)

∆tJ (n+cj)
, j = 1, · · · , s (2.37)

où J (t) est le jacobien de la transformation entre le domaine de référence Ω0 et le domaine

déformé Ω(t). Cette formule est valable seulement si la matrice A = (aij) est inversible.

La vitesse de maille est évaluée de la façon suivante :

vm
(n+cj)(x) =

s
∑

k=1

a−1
jk

x(n+ck) − x(n)

∆t
, j = 1, · · · , s (2.38)

L’utilisation de ces deux formules et de la forme conservative pour la forme faible des

équations de Navier-Stokes permet de satisfaire la GCL (Etienne et al., 2009b).

2.3.5 Méthode de résolution

Nous utilisons une stratégie monolithique couplant tous les degrés de liberté : la

vitesse, la pression et le déplacement du pseudo-solide. La discrétisation éléments finis et

la discrétisation temporelle mènent à un système d’équations algébriques non linéaires, noté

R(U) = 0 où U est le vecteur des inconnues. Ce système est linéarisé avec une méthode de

Newton-Raphson. Dans cette méthode itérative, on résout

∂R(Un)

∂U
δU = −R(Un) (2.39)

et on actualise la solution : Un+1 = Un + δU . La matrice jacobienne ∂R(Un)/∂U est

difficile à calculer, c’est pourquoi nous utilisons un jacobien numérique :

∂R(U)

∂U
=

R(U + ∆U) − R(U)

∆U
(2.40)

Le système résultant est résolu avec le solveur direct pour matrices creuses Pardiso (Schenk

et Gärtner, 2004, 2006) .
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2.4 Implémentation de la méthode

Nous avons intégré notre méthode à un code d’éléments finis fluide-structure. Nous

soulignons dans cette section quelques détails d’implémentation des conditions de surface

libre et de la stabilisation avec les schémas de Runge-Kutta.

2.4.1 Implémentation des conditions de surface libre

Pour les nœuds situés sur la surface libre, les résidus correspondants aux équations de

Navier-Stokes sont inchangés (résidus correspondant à la vitesse), ce qui impose au sens

faible des contraintes nulles sur toute la surface. On change les résidus du pseudo-solide pour

imposer les conditions de surface libre (2.13) and (2.16), appelées par Sackinger et al. (1996)

les distinguish conditions. Si Rx et Ry sont les résidus du pseudo-solide pour un point de la

surface libre, on les remplace de la façon suivante :

Rx =
L2
−

l2
−

− L2
+

l2+
(2.41)

Ry = (u − vm) · n (2.42)

où u est la vitesse nodale et n = L−n− + L+n+. Il n’est pas nécessaire de normer l’expression

de la normale.

Cas de l’élément de Taylor-Hood : Noeud au milieu des segments de frontière

Si le nœud considéré se trouve au milieu d’un segment si, comme la déformée de l’arête doit

rester un segment, il faut imposer à ce nœud de rester au milieu des deux autres. Cependant

les conditions dynamiques et cinématiques de surface libre doivent être respectées (contraintes

nulles et flux nul à travers l’interface). Sans changer les résidus correspondants aux équations

de Navier-Stokes, on impose :

Rx = ξm − 0, 5(ξ1 + ξ2) (2.43)

Ry = ηm − 0, 5(η1 + η2) (2.44)

où l’indice m désigne le nœud milieu et les indices 1 et 2 les extrémités du segment

considéré.(voir figure 2.6)

La condition de tangence n’est alors pas satisfaite. On l’impose comme une contrainte en

introduisant un multiplicateur de Lagrange par segment λsi
. La discrétisation du multiplica-

teur est donc P0, constante par élément. La contrainte à respecter est Gsi
= (u−vm) ·n = 0.

Si les équations du fluide étaient linéaires, les résoudre correspondrait à minimiser une
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xm

x1

x2n

Figure 2.6 Segment de surface libre.

fonctionnelle I par rapport aux variables U de l’écoulement. En ajoutant la contrainte, on

cherche alors à minimiser I − λG.

– Minimisation par rapport aux variables de l’écoulement :

∂I

∂U
− λ

∂G

∂U
= 0 (2.45)

Le premier terme correspond à la forme faible des équations de Navier-Stokes.

– Minimisation par rapport à λ : G = 0

Il suffit donc d’ajouter ces équations aux résidus pour satisfaire à la fois les conditions de

surface libre et les contraintes géométriques de l’élément pour le nœud au milieu du segment.

2.4.2 Implémentation des schémas d’intégration de Runge-Kutta

Nous allons à présent donner quelques détails sur l’implémentation des schémas de Runge-

Kutta qui demande une attention particulière. Reprenons l’expression générale des schémas

de Runge-Kutta (2.35) :

y(n+ci)
∗

= y(n) + ∆t

s
∑

j=1

aijf(y
(n+cj)
∗ , t(n+cj)) pour i = 1, · · · , s (2.46)

y(n+1) = y(n) + ∆t
s

∑

j=1

bjf(y
(n+cj)
∗ , t(n+cj)) (2.47)
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Avec les éléments de Taylor-Hood, c’est à dire sans les termes de stabilisation, on doit

discrétiser l’équation (2.10). En combinant le schéma et l’équation, on obtient

(
∫

Ω

ρu · δu dΩ

)(n+ci)

=

(
∫

Ω

ρu · δu dΩ

)(n)

+ ∆t
s

∑

j=1

aijRj (2.48)

avec Rj =

(
∫

Ω

(∇ · vm)ρu · δu dΩ −
∫

Ω

ρ ((u − vm) · ∇) u · δu dΩ

−
∫

Ω

σ : ∇δu dΩ

∫

Ω

f · δu dΩ +

∫

Γ

(τ − pI) · n · δu dΓ

)(n+cj)

(2.49)

Dans ce cas, la vitesse de maille doit être évaluée de manière consistante avec le schéma, c’est

à dire avec l’équation (2.38).

Avec la forme stabilisée des équations de Navier-Stokes, cette approche n’est plus possible

car la dérivée temporelle de la vitesse apparâıt dans les termes additionnels par les termes :

∫

Ω

τSUPG((u − vm) · ∇)δu ·
(

ρ
∂u

∂t

)

dΩ et

∫

Ω

τPSPG

ρ
∇δp ·

(

ρ
∂u

∂t

)

dΩ (2.50)

L’approche précédente ne peut donc pas s’appliquer. Il faut procéder autrement, en reformu-

lant le schéma de Runge-Kutta. Reprenons le cas d’une équation différentielle ordinaire de

type y′(t) = f(y, t). L’écriture classique du schéma est alors

y(n+ci) = y(n) + ∆t
s

∑

j=1

aijf(y(n+cj), t(n+cj)) pour i = 1, · · · , s (2.51)

On considère A la matrice de composantes Aij = aij , Y et Y ′ les vecteurs tels que Yj = y(n+cj)

et Y ′

j = y′(t(n+cj)) et le vecteur Y n de coordonnées Y n
j = y(n).

Avec ces notations, le schéma devient :

Yi = Y n
i + ∆t

s
∑

j=1

Aijf(y(n+cj), t(n+cj)) pour i = 1, · · · , s (2.52)

Or d’après l’équation différentielle originale f(y(n+cj), t(n+cj)) = y′(t(n+cj)) = Y ′

j , on obtient

donc :

Yi = Y n
i + ∆t

s
∑

j=1

AijY
′

j pour i = 1, · · · , s (2.53)

qui peut se réécrire sous la forme vectorielle :

Y = Y n + ∆tAY ′ (2.54)
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Si le tableau de Butcher est inversible, donc si A est inversible, on a

Y ′ = A−1

(

Y − Y n

∆t

)

(2.55)

Cette expression permet d’écrire toutes les dérivées temporelles de manière consistante

avec le schéma. On remarque que cette expression est bien cohérente avec l’équation (2.38)

qui permettait d’évaluer la vitesse de maille, c’est à dire la dérivée temporelle du pseudo-

déplacement. On peut donc résoudre les équations stabilisées (2.32) et (2.33) pour chaque

niveau en utilisant les expressions suivantes pour les termes instationnaires :

(

d

dt

∫

Ω

ρu · δu dΩ

)(n+ci)

=

s
∑

j=1

a−1
ij

∆t

[

(
∫

Ω

ρu · δu dΩ

)(n+cj)

−
(

∫

Ω

ρu · δu dΩ

)(n)
]

(2.56)

(

∂u

∂t

)(n+ci)

=
s

∑

j=1

a−1
ij (u(n+cj) − u(n))

∆t
(2.57)

vm
(n+ci) =

(

∂χ

∂t

)(n+ci)

=

s
∑

j=1

a−1
ij (x(n+cj) − x(n))

∆t
(2.58)

Dans ce chapitre, nous avons décrit la modélisation choisie pour la surface libre et les

méthodes utilisées pour résoudre les équations de la modélisation sur maillage mobile. La

description ALE permet une grande flexibilité quant au choix de la déformation du maillage

tout en garantissant la conservation de la masse. La déformation du maillage pouvant provo-

quer une perte d’ordre de convergence temporel, nous avons choisi une formulation respectant

la GCL pour utiliser des schémas de Runge-Kutta d’ordre élevé. Enfin, pour les calculs à haut

nombre de Reynolds, nous avons recours aux éléments P1-P1 avec une stabilisation de type

SUPG/PSPG adaptée à la formulation ALE.

Nous allons maintenant développer les équations des sensibilités correspondant à la

méthode choisie.
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CHAPITRE 3

MÉTHODE DES SENSIBILITÉS LAGRANGIENNES

La méthode des sensibilités lagrangiennes a été développée et vérifiée en détail dans

Charlot (2008) pour les écoulements stationnaires et laminaires. Nous allons donc ici rap-

peler comment sont établies les équation des sensibilités lagrangiennes et dériver ensuite les

équations des sensibilités correspondant à la méthode exposée au chapitre 2. Il faudra donc

étendre les équations présentées dans Charlot (2008) au cas des écoulements instationnaires

en formulation ALE, donc sur maillages mobiles. Nous dériverons ensuite les conditions aux

limites pour les sensibilités à la surface libre.

3.1 Méthode de l’équation des sensibilités lagrangiennes

La sensibilité lagrangienne d’une variable est sa dérivée totale ou matérielle par rapport

au paramètre d’intérêt. En effet, les variables présentent à la fois une dépendance explicite par

rapport au paramètre (qui peut s’exprimer par sa dérivée partielle par rapport au paramètre)

et une dépendance implicite par les variables spatiales. En effet, si le paramètre affecte la

géométrie du domaine, les variables spatiales dépendent du paramètre. Ainsi, si on considère

le champ de vitesse u, on peut écrire u = u(x(α), α, t). La sensibilité lagrangienne de la

vitesse, notée Su est alors définie par :

Su =
Du

Dα
= lim

δα→0

u(x(α + δα), α+ δα) − u(x(α), α)

δα
(3.1)

3.1.1 Établissement de la forme faible des équations des sensibilités lagrangien-

nes

Les équations des sensibilités lagrangiennes sont obtenues en dérivant la forme faible des

équations de Navier-Stokes (2.18) et (2.19) par rapport au paramètre d’intérêt que nous

noterons α. Cette dérivation n’est pas triviale car le domaine Ω dépend du paramètre, ainsi,

nous le noterons Ωα. Il faut donc introduire une transformation entre le domaine de référence

Ω0 et le domaine courant déformé Ωα dont la forme dépend du paramètre.

Méthode générale

On note Φ̂ la transformation entre le domaine de référence et le domaine courant comme
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Ω0

(x , y )0 0
Ω α

(x , y )α αΦ^

Φ̂−1

Figure 3.1 Déformation du domaine.

le montre la figure 3.1. Cette transformation dépend du temps et du paramètre, ces deux

variables étant indépendantes. Pour obtenir les équations des sensibilités, la forme faible des

équations de l’écoulement est exprimée sur la configuration de référence Ω0 qui ne dépend pas

du paramètre α. Ainsi, l’opération de dérivation et d’intégration sur le domaine commutent et

on peut dériver directement la fonction à intégrer par rapport à α. On peut ensuite revenir au

domaine courant Ωα, ce qui donne la forme faible des équations des sensibilités. Ces opérations

nécessitent la manipulation de la transformation et d’opérateurs différentiels (gradient et

divergence) exprimés sur différents domaines. Les développements mathématiques associés

ont été décrits par Delfour et Zolésio (2001) et Tortorelli et Wang (1993). On donnera les

composantes des tenseurs dans une base orthonormale et on utilisera la double contraction

définie pour des tenseurs d’ordre 2 :

A : B =
∑

i

∑

j

AijBji (3.2)

Ainsi, on utilisera pour les transformation d’espace les notations suivantes :

– Le tenseur des déformations :

F (x, α, t) = ∇φ̂(x, α, t) =









∂xα

∂x

∂xα

∂y
∂yα

∂x

∂yα

∂y









(3.3)

Le déterminant de F est le jacobien de la transformation et est défini de la façon

suivante :

J(x, α, t) = det[F (x, α, t)] = det[∇φ̂(x, α, t)] =
∂xα

∂x

∂yα

∂y
− ∂yα

∂x

∂xα

∂y
(3.4)
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– La vitesse de déformation est la dérivée de la transformation par rapport au paramètre

α.

V α(x, α, t) =
∂φ̂(x, α, t)

∂α

On a alors l’égalité suivante :

∂F

∂α
= ∇V α =









∂V α
x

∂x

∂V α
x

∂y
∂V α

y

∂x

∂V α
y

∂y









(3.5)

Nous présentons maintenant quelques formules utiles pour obtenir les équations des sen-

sibilités lagrangiennes :

– Dérivée du jacobien de la transformation :

Son expression diffère selon le domaine considéré :

Sur le domaine de référence :
∂J

∂α
= ∇V α : JF−1 (3.6)

Sur le domaine déformé :
DJα

Dα
= Jα∇α · V α (3.7)

– Opérateurs gradients et divergence :

Ces opérateurs font intervenir les dérivées spatiales du champ sur lequel ils s’ap-

pliquent, leur expression dépend donc du domaine sur lequel ils sont exprimés. Soient

fα(xα, α) la représentation d’un champ vectoriel sur le domaine déformé Ωα et f(x, α)

la représentation de ce même champ sur le domaine de référence Ω0. La divergence et

le gradient de fα s’expriment en fonction de ceux de f de la façon suivante :

∇α · fα = F−1 : ∇f (3.8)

∇αfα = ∇f · F−1 (3.9)

– Formule de Nanson (Delfour et Zolésio, 2001) :

Cette formule est très utile pour traiter le passage des intégrales de bord d’un domaine

à l’autre.

∫

Γα

fα(xα, yα) nαdΓα =

∫

Γ0

f(x, y) JF−T · n0dΓ0 (3.10)

où f est un champ vectoriel ou une fonction scalaire
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– Autres formules utiles (dérivées des définitions précédentes) :

F · DF−1

Dα
= −∇αV α (3.11)

J−1DJ

Dα
= ∇α · V α (3.12)

Exemple de l’équation de continuité

Pour illustrer le processus décrit précédemment, nous présentons ici la méthode pour

l’équation de continuité. Soit δp une fonction test admissible pour la pression. La forme

faible de l’équation de continuité est alors :

∫

Ωα

∇α · u δp dΩα = 0

1. On exprime cette intégrale sur le domaine de référence Ω0 :

∫

Ω0

F−1 : ∇u δp JdΩ0 = 0

2. On dérive par rapport à α.

D

Dα

∫

Ω0

F−1 : ∇u δp JdΩ0 =

∫

Ω0

D

Dα

(

F−1 : ∇u δp J
)

dΩ0 = 0 (3.13)

ce qui s’écrit

∫

Ω0

[(

F−1 : ∇Du

Dα
+
DF−1

Dα
: ∇u

)

δp J + F−1 : ∇u δp
DJ

Dα

]

dΩ0 = 0

3. On revient sur le domaine déformé et on obtient l’équation des sensibilités correspon-

dant à la continuité

∫

Ωα

(∇α · Su −∇αV α : ∇αu + ∇α · u∇α · V α) δp dΩα = 0 (3.14)

On remarque que l’équation (3.14) fait intervenir la vitesse de déformation V α qui est

l’équivalent continu des sensibilités de maille rencontrées dans les approches discrètes, où

la discrétisation des équations précède la dérivation.

Calcul de la vitesse de déformation

La méthode est appliquée de la même manière pour l’équation du mouvement. La vitesse de

déformation apparâıt aussi dans cette équation. La vitesse de déformation V α est connue
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sur les parties de la frontières qui dépendent du paramètre, mais il faut la connâıtre sur tout

le domaine pour pouvoir résoudre les équations. La définition de la vitesse de déformation

à l’intérieur du domaine est donc arbitraire et il y a beaucoup de façons de procéder. Dans

le contexte de la description ALE pour l’écoulement, il est naturel d’utiliser la sensibilité

du pseudo-déplacement. Les équations d’élasticité linéaires étant lagrangiennes, c’est-à-dire

exprimées sur le domaine non déformé, leur dérivation par rapport au paramètre α est triviale.

Comme les coefficients de Lamé pour le pseudo-solide sont arbitraires, leur sensibilité par

rapport au paramètre est nulle. La vitesse de déformation V α est alors solution de :

∇ ·
(

1

2
λpstr

(

∇V α + ∇T V α
)

+ µps

(

∇V α + ∇T V α
)

)

= 0 dans Ω

Les conditions limites correspondantes sont

V α = V α sur ∂Ω

où V α est la vitesse de déformation aux frontières du problème. Cette approche a l’avantage

de rester très générale et de permettre le traitement de géométries complexes.

3.1.2 Conditions aux limites de Dirichlet et de Neumann

Le problème associé aux sensibilités doit maintenant être fermé par les conditions aux

limites appropriées. Elles sont obtenues par simple dérivation des conditions aux limites de

l’écoulement.

Su =
Du

Dα
=
Du

Dα
sur Γα

u (3.15)

De même pour les conditions de Neumann, on a :

D

Dα

∫

Γα
t

(−pnα +τ · nα) · δu dΓα

=

∫

Γα
t

(

Dtf

Dα
+ ∇ · V α tf −tf(∇V α · n) · n

)

· δu dΓα (3.16)

Contrairement aux sensibilités eulériennes (Pelletier et al., 2008), ces conditions sont très

simples et exactes.

Nous avons donc décrit de façon générale comment les équations des sensibilités lagran-

giennes sont obtenues. Le détail des équations pour le régime stationnaire a déjà été présenté

(Charlot, 2008). Nous allons à présent développer les équations pour le cas des écoulements

instationnaires sur maillage mobile.
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3.2 Sensibilités lagrangiennes instationnaires sur maillage mobile

Le traitement des termes instationnaires demande une attention particulière lorsque le

maillage se déforme. Tout comme l’écoulement, les sensibilités doivent respecter la GCL, c’est-

à-dire que l’ordre de convergence du schéma temporel doit être le même sur maillage mobile

que sur maillage fixe. Pour cela, comme pour l’écoulement, il faut écrire la forme faible sous

forme conservative. Pour cela, il existe plusieurs approches menant au même résultat. Par

exemple, on peut prendre comme point de départ la forme faible de l’écoulement écrite sous

forme conservative et procéder comme expliqué à la section précédente. Une autre possibilité

consiste à partir de la forme non conservative pour l’écoulement, dériver par rapport au

paramètre et mettre le résultat obtenu sous forme conservative. Ces deux possibilités mènent

au même résultat car la dérivation par rapport au temps et par rapport au paramètre de

forme commutent, le temps et le paramètre étant indépendant l’un de l’autre. En partant de

la forme conservative, on doit calculer la dérivée suivante :

d

dα

[

d

dt

(
∫

Ωα(t)

ρuδu dΩ

)

−
∫

Ωα(t)

ρu∇ · vmδu dΩ

]

(3.17)

En inversant l’ordre de la dérivation par rapport au paramètre et par rapport au temps, on

obtient :

d

dα

[

d

dt

(
∫

Ωα(t)

ρuδu dΩ

)

−
∫

Ωα(t)

ρu∇ · vmδu dΩ

]

=
d

dt

[

d

dα

(
∫

Ωα(t)

ρuδu dΩ

)]

− d

dα

(
∫

Ωα(t)

ρu∇ · vmδu dΩ

)

(3.18)

La dérivation des intégrales par rapport au paramètre de forme est calculée en utilisant la

transformation Φ̂ et son inverse pour passer sur le domaine de référence et revenir sur le

domaine courant. On obtient alors pour les deux termes ci-dessus :

d

dα

[

d

dt

(
∫

Ωα(t)

ρuδu dΩ

)]

=
d

dt

(
∫

Ωα(t)

[Sρu + ρSu + ρu∇ · V α] δu dΩ

)

(3.19)

d

dα

∫

Ωα(t)

ρu∇ · vmδu dΩ =

∫

Ωα(t)

ρu (∇ · Svm
−∇V α : ∇vm + ∇ · V α∇ · vm) δu

+ (Sρu∇ · vm + ρSu∇ · vm) δu dΩ (3.20)

Note : si χ est le déplacement du pseudo solide, alors

Svm
=
∂V α

∂t
=

∂2χ

∂t∂α
(3.21)



55

Nous pouvons à présent reprendre la forme faible de l’écoulement (2.19) et identifier

chaque terme de la façon suivante :

Instationnaire + Convection + Pression + Diffusion

= Force + Terme de bord

Pour obtenir les équations des sensibilités lagrangiennes, nous dérivons terme à terme la

forme faible par rapport au paramètre. La forme faible de l’équation des sensibilités aura la

forme suivante :

D Instationnaire

Dα
+
D Convection

Dα
+
D Pression

Dα
+
D Diffusion

Dα

=
D Force

Dα
+
D Terme de bord

Dα

Les expressions de chaque terme sont les suivantes :

Dérivation du terme instationnaire

D

Dα

[

d

dt

(
∫

Ω

ρuδu dΩ

)

−
∫

Ω

ρu∇ · vmδu dΩ

]

=
d

dt

(
∫

Ω

[Sρu + ρSu + ρu∇ · V α] δu dΩ

)

−
∫

Ω

[ρu (∇ · Svm
−∇V α : ∇vm + ∇ · V α∇ · vm) δu

+ (Sρu∇ · vm + ρSu∇ · vm) δu] dΩ

(3.22)

Dérivation du terme de convection

D

Dα

∫

Ω

ρ ((u − vm) · ∇)u · δu dΩ

=

∫

Ω

(

∂ρ

∂α
+ ρ∇α · V α

)

((u − vm) · ∇)u · δu dΩ

+

∫

Ω

ρ [((Su − Svm
) · ∇)u −∇u · ∇V α · (u − vm) + ((u − vm) · ∇) Su] · δu dΩ

(3.23)

Dérivation du terme de pression

D

Dα

∫

Ω

− p∇ · δu dΩ

= −
∫

Ω

[(Sp + p∇ · V α)∇ · δu − p∇V α : ∇δu] dΩ

(3.24)

Dérivation du terme de diffusion
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D

Dα

∫

Ω

τ : ∇δu dΩ

=

∫

Ω

(

Dµ

Dα
+ µ∇ · V α

)

(

∇u + ∇T u
)

: ∇δu dΩ

+

∫

Ω

µ
(

∇Su + ∇T Su

)

: ∇δu dΩ

−
∫

Ω

µ
(

∇u∇V α + (∇u∇V α)T
)

: ∇δSu dΩ

−
∫

Ω

µ
(

∇V α ·
(

∇αu + ∇T u
))

: ∇δu dΩ

(3.25)

Dérivation du terme de force volumique

D

Dα

∫

Ω

f · δu dΩ =

∫

Ω

(

Df

Dα
+ ∇ · V αf

)

· δu dΩ (3.26)

Il suffit de regrouper ces termes pour obtenir la formulation pour l’équation de quantité

de mouvement pour les sensibilités lagrangiennes. Pour l’équation de continuité, elle a été

présentée en détail à la section précédente et est inchangée si on considère des maillages

déformables, on utilisera donc l’équation (3.14).

3.3 Sensibilité des conditions de surface libre

Il ne reste plus qu’à développer les conditions pour la surface libre. Les conditions limites

pour les sensibilités s’obtiennent en calculant la dérivée matérielle des conditions limites de

l’écoulement. Les conditions de surface libre pour l’écoulement étaient les suivantes :

(u − vm) · n = 0 (3.27)

σ · n = 0 sur Γi (3.28)

L2
−

l2
−

=
L2

+

l2+
pour chaque nœud de Γi (3.29)

Comme les sensibilités sont les dérivées totales des variables par rapport au paramètre,

contrairement aux formulations eulériennes des sensibilités (Etienne et al., 2007), les condi-

tions d’interface sont très simples.

(Su − Svm
) · n + (u − vm) · Sn = 0 (3.30)

Dσ

Dα
· n + σ · Sn = 0 sur Γi (3.31)

SL2
−

l2
−

=
SL2

+

l2+
pour chaque nœud de Γi (3.32)



57

où Sn est la sensibilité de la normale, elle s’exprime pour chaque nœud en fonction de la

sensibilité du pseudo-déplacement. Pour une viscosité constante, la sensibilité du tenseur des

contraintes Dσ/Dα se développe de la façon suivante :

Dσ

Dα
= −SpI + µ

(

(∇Su −∇u · ∇V α) + (∇Su −∇u · ∇V α)T
)

En pratique, nous n’utilisons pas cette expression car pour l’écoulement, la condition dy-

namique est imposée faiblement par la méthode des réactions (Dhatt et Touzot, 1981). Pour

les sensibilités, il en va de même, les réactions du problème de sensibilités étant justement

égales à

Rlgr

Γi
=

D

Dα

∫

Γi

σ · n dΓ (3.33)

Enfin, la sensibilité des longueurs des segments s’exprime en fonction de la sensibilité du

pseudo déplacement. La condition (3.32) devient alors :

(xi + ξi − xi−1 − ξi−1)(Sξi
− Sξi−1

) + (yi + ηi − yi−1 − ηi−1)(Sηi
− Sηi−1

)

(xi − xi−1)2 + (yi − yi−1)2

=
(xi+1 + ξi+1 − xi − ξi)(Sξi+1

− Sξi
) + (yi+1 + ηi+1 − yi − ηi)(Sηi+1

− Sηi
)

(xi+1 − xi)2 + (yi+1 − yi)2
(3.34)

La formulation pour les sensibilités est à présent complète. Les méthodes numériques

sont les mêmes que celles utilisées pour l’écoulement. La formulation et l’implémentation

doivent être vérifiées surtout pour la convergence temporelle afin de s’assurer que la GCL

est respectée, ce qui permettra d’avoir la même précision pour l’écoulement et les sensibilités

avec des schémas d’intégration d’ordre élevé.
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CHAPITRE 4

VÉRIFICATION

4.1 Solution manufacturée

L’implémentation des conditions de surface libre est vérifiée par la méthode des solutions

manufacturées. Cette méthode consiste à choisir une solution analytique vérifiant les condi-

tions de surface libre et à calculer le terme source correspondant pour satisfaire les équations

de Navier-Stokes. Ensuite, la solution numérique peut être comparée à la solution analytique

et permet de vérifier que les ordres de convergence correspondant à la discrétisation spatiale

et à l’intégration temporelle sont respectés. Nous allons tout d’abord vérifier l’implémentation

en régime stationnaire pour les éléments de Taylor-Hood puis pour les éléments P1-P1. En-

suite, nous vérifierons l’implémentation en régime non stationnaire, avec différents types de

schémas pour chacun des éléments.

4.1.1 Régime stationnaire

On doit tout d’abord construire une solution analytique qui servira de référence. Pour

cela, on suivra une méthode analogue à celle décrite par Etienne et al. (2010), puis nous

testerons la convergence de l’erreur avec le raffinement du maillage.

Construction d’une solution analytique

Nous devons choisir une solution analytique qui respecte la conservation de la masse (2.9)

et les conditions de surface libre (2.13) et (2.14). On suppose que la surface libre est décrite de

façon univoque par l’équation yI = f(x). Le vecteur normal a pour composantes n = (nx, ny)

avec

nx =
−f ′(x)

√

(f ′(x))2 + 1
and ny =

1
√

(f ′(x))2 + 1
(4.1)

On choisit la composante horizontale de la vitesse u de la forme :

u(x, y) = (1 + y − f(x))H(y) (4.2)
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L’équation de continuité sera satisfaite si la vitesse verticale v est telle que :

∂v

∂y
= −∂u

∂x
= f ′(x)H(y) (4.3)

Après intégration, on obtient :

v(x, y) = f ′(x)

∫ y

H(z)dz +G(x) (4.4)

Il faut maintenant déterminer les fonctions H et G et les expressions de la pression et de

la viscosité telles que les conditions de surface libre soient satisfaites. Pour les écoulements

stationnaires, la condition (2.13) devient unx + vny = 0. En remplaçant le vecteur normal et

la vitesse par leurs expressions (4.1), (4.2) et (4.4), la condition cinématique devient :

f ′(x)

∫ y

H(z)dz +G(x) = f ′(x)H(y) sur Γi (4.5)

La condition dynamique de surface libre (2.14) se décompose de la façon suivante :















−pnx + µ

[

2
∂u

∂x
nx +

(

∂u

∂y
+
∂v

∂x

)

ny

]

= 0

−pny + µ

[(

∂u

∂y
+
∂v

∂x

)

nx + 2
∂v

∂y
ny

]

= 0

sur Γi (4.6)

Il faut résoudre ce système par rapport à la pression p et la viscosité µ. La solution doit être

non nulle donc les deux équations doivent être liées, ce qui se traduit de la façon suivante.

det









−nx 2
∂u

∂x
nx +

(

∂u

∂y
+
∂v

∂x

)

ny

−ny

(

∂u

∂y
+
∂v

∂x

)

nx + 2
∂v

∂y
ny









= 0 sur Γi (4.7)

En utilisant nos expressions, on obtient alors l’équation suivante :

(

1 − (f ′(x))2
)

[

H ′(f(x)) +H(f(x)) + f ′′(x)

∫ f(x)

H(z)dz +G′(x)

]

+4(f ′(x))2H(f(x)) = 0 (4.8)

On doit ensuite choisir G et H telles que les équations (4.5) and (4.8) soient satisfaites en
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tout point de la surface libre. En éliminant G, on obtient la condition suivante pour H :

[(

1 − (f ′(x))2
) (

1 − (f ′(x))2 + f ′′(x)
)

+ 4(f ′(x))2
]

H(f(x))

+
(

1 − (f ′(x))2
) (

1 + (f ′(x))2
)

H ′(f(x)) = 0 (4.9)

La fonction f définit la forme de la surface libre. Pour obtenir une solution relativement

simple, mais non triviale, on choisit f(x) = 2x. On obtient finalement la solution analytique

suivante :

u(x, y) = (1 + y − 2x)ke
5

3
y (4.10)

v(x, y) = k

(

6

5
e

5

3
y +

4

5
e

5

3
2x

)

(4.11)

La pression correspondant à une viscosité unitaire µ = 1 est

p(x, 2x) = −k20

3
e

5

3
2x sur Γi (4.12)

Cette solution est étendue sur tout le domaine :

p(x, y) = −k5

3
e

5

3
y − 3ke

5

3
2x dans Ω (4.13)

Le terme source correspondant dans les équations de Navier-Stokes est obtenu de la façon

suivante :

fx = ρ

(

u
∂u

∂x
+ v

∂u

∂y

)

+
∂p

∂x
− µ

(

∂2u

∂x2
+
∂2u

∂y2

)

fy = ρ

(

u
∂v

∂x
+ v

∂v

∂y

)

+
∂p

∂y
− µ

(

∂2v

∂x2
+
∂2v

∂y2

)

(4.14)

Étude de convergence avec le maillage

Pour vérifier l’implémentation de la condition de surface libre dans le cas stationnaire,

on choisit un domaine initial pour lequel la géométrie de la surface libre est quelconque.

Les formes initiale et finale du domaine de calcul sont représentées sur la figure 4.1. La

ligne pointillée représente la portion de frontière sur laquelle sont imposées des conditions

de surface libre. Sur les frontières voisines, on impose des conditions de Neumann et ailleurs

des conditions de Dirichlet. Pour les simulations, la densité volumique ρ est fixée à 1 et le

paramètre k vaut 1. Le champ de vitesse attendu est représenté sur la figure 4.1(c).

On peut maintenant procéder à l’étude de convergence. À chaque cycle adaptatif les
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η 
ξ = 0

= free

0

(ξ, η) = 0

(ξ, η) = 0

(ξ, η) = 0

= free surface BC

(ξ, η)

Ωο

(0, −0.2)

(0, −1) (1, −1)

(1, 1)(0.5, 1)

(a) Domaine initial

0

Ω

free surface

y=f(x)=2x

    

(b) Domaine déformé attendu

X

Y

Z

(c) Vecteurs vitesse

Figure 4.1 Domaine initial et déformé et champ de vitesse pour la solution manufacturée
stationnaire.

erreurs sont estimées et le maillage est raffiné là ou l’erreur est la plus grande. Les erreurs

sont estimées avec la norme énergie pour la vitesse et en norme L2 pour le champ de pression.

Elles sont définies de la façon suivante :

‖eu‖2
energie =

∫

Ω

(

∇eu + ∇T eu

)

:
(

∇eu + ∇eu
T
)

dΩ (4.15)

‖eP‖2
L2P =

∫

Ω

e2P dΩ (4.16)

ou eu et eP sont les erreurs locales pour la vitesse et la pression. On calculera deux types

d’erreurs pour chaque champ.

– L’erreur exacte eexa : La solution éléments finis , notée avec l’exposant h est comparée

à la solution analytique, notée avec l’exposant exa. Par exemple, pour la vitesse eexa
u

=

|uh − uexa|
– L’erreur estimée eest

u
: dans le cas général, la solution exacte n’est pas connue. On

reconstruit donc une solution enrichie à partir de la solution éléments finis avec une

méthode de projection décrite par Zienkiewicz et Zhu (1992). Cette solution est notée

avec l’exposant ∗. Ainsi pour le champ de vitesse, on aura eest
u

= |uh − u∗|
La précision de l’estimateur d’erreur fait entièrement partie du processus de vérification.

Dans le cas général, c’est le seul outil dont on dispose pour quantifier la précision de la

solution et donc de vérifier la convergence de l’écoulement. Nous utiliserons des éléments de

Taylor-Hood et des éléments de type P1-P1 stabilisés.
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Pour les éléments de type Taylor-Hood, la discrétisation de la vitesse est quadratique et

celle de la pression est linéaire. Donc le taux de convergence théorique pour chaque norme

(énergie et L2
P ) est de 2. On trace l’évolution de la norme d’erreur en fonction de la taille

caractéristique des éléments du maillage. Avec une échelle logarithmique, on devrait obtenir

une droite de pente 2 dans la zone asymptotique.
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Figure 4.2 Solution manufacturée stationnaire, éléments Taylor-Hood : convergence des er-
reurs exactes et estimées avec le maillage.

La figure 4.2 montre l’évolution de l’erreur en norme énergie et L2
P . Pour chacune des

erreurs, l’erreur estimée tend vers l’erreur exacte avec le raffinement du maillage. De plus,

après 2000 nœuds, la zone asymptotique est atteinte et la pente de la droite est de 2, ce qui

signifie que le taux de convergence théorique est atteint.

Pour les éléments de type P1-P1, les discrétisations spatiales de la vitesse et de la pression

sont linéaires. On s’attend donc à observer un taux de convergence de 1 pour la norme énergie,

c’est à dire une droite de pente de 1 pour la courbe représentant l’erreur en norme énergie

en fonction de la taille des éléments. Pour la norme L2
P , comme pour les éléments de Taylor-

Hood, on s’attend à un ordre 2, donc une droite de pente 2 pour la courbe représentant

l’erreur en norme L2
P en fonction de la taille des éléments. Ces courbes sont présentées sur la

figure 4.3. Pour la pression, la figure 4.3(a) montre que l’erreur estimée sous-estime l’erreur

exacte. Cependant l’ordre de convergence est bon et les deux courbes ont tendance à se

resserrer. La zone asymptotique n’est peut-être pas encore atteinte. Pour la norme énergie,

l’estimateur d’erreur semble fonctionner correctement et la pente est conforme à nos attentes.

L’implémentation est donc vérifiée et nous avons constaté que la condition de surface libre

ne perturbe pas la convergence spatiale de la solution.



63

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0.001  0.01  0.1  1

er
re

ur
 a

bs
ol

ue

taille des elements

MMS - surface libre stationnaire

Erreur exacte
Erreur estimee.

(a) Norme L2

P

 0.01

 0.1

 1

 10

 0.001  0.01  0.1  1

er
re

ur
 a

bs
ol

ue

taille des elements

MMS - surface libre stationnaire

Erreur exacte
Erreur estimee

(b) Norme énergie

Figure 4.3 Solution manufacturée stationnaire, éléments P1-P1 : convergence des erreurs
exactes et estimées avec le maillage.

4.1.2 Solution manufacturée instationnaire

Construction de la solution analytique

On reprend la méthode précédente. Cette fois, la surface libre est en mouvement.

L’équation de la surface libre devient yI = f(x) ∗M(t). Le vecteur normal a pour expression

n = (nx, ny) avec

nx =
−f ′(x)M(t)

√

(f ′(x)M(t))2 + 1
and ny =

1
√

(f ′(x)M(t))2 + 1
(4.17)

La surface libre étant décrite de façon univoque, on impose le déplacement horizontal nul.

Ainsi, l’équation (2.13) devient

unx + (v − ∂η

∂t
)ny = 0 sur ΓI (4.18)

avec
∂η

∂t
=
∂yI

∂t
= f(x)M ′(t). Comme pour le cas stationnaire, on choisit u et v de façon à

satisfaire la conservation de la masse, par exemple de la forme :

u(x, y, t) = (1 + y − f(x)M(t))H(y) et v(x, y, t) = f ′(x)M(t)

∫ y

H(z)dz + G(x) (4.19)

Ce champ de vitesse doit satisfaire la condition (4.18) sur la surface libre. Donc
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f ′(x)M(t)

∫ y

H(z)dz +G(x) = f ′(x)H(y) sur Γi (4.20)

En combinant avec la condition sur les contraintes normales (4.8), on obtient la relation

suivante entre f et H :

[(

1 − (M(t)f ′(x))2
) (

1 − (M(t)f ′(x))2 +M(t)f ′′(x)
)

+ 4(M(t)f ′(x))2
]

H (f(x)M(t))

+
(

1 − (M(t)f ′(x))2
) (

1 + (M(t)f ′(x))2
)

H ′ (f(x)M(t))

+
(

1 − (M(t)f ′(x))2
)

M ′(t)f(x) = 0 (4.21)

On remarque que si M(t) = 1, donc si la surface libre ne bouge pas, on retrouve l’équation

du paragraphe 4.1.1.

On choisit f(x) = 2x. Pour alléger l’écriture, on note M(t) par M , de même on écrira M ′

pour M ′(t) La solution de l’équation est alors de la forme :

H(y) = λ exp

(

4M2 + 1

4M2 − 1
y

)

+ 2M ′
(4M2 + 1)

(4M2 − 1)2
(4.22)

Avec λ une constante arbitraire. On en déduit alors les expressions de la vitesse et de la

pression :

u(x, y, t) =(1 + y − 2Mx)

[

λ exp

(

4M2 + 1

4M2 − 1
y

)

+ 2M ′
(4M2 + 1)

(4M2 − 1)2

]

(4.23)

v(x, y, t) =
2Mλ

4M2 + 1

[

(4M2 − 1) exp

(

4M2 + 1

4M2 − 1
y

)

+ 2 exp

(

4M2 + 1

4M2 − 1
2Mx

)]

+ 2xM ′ + 4MM ′
(4M2 + 1)

(4M2 − 1)2
(1 + y − 2Mx) (4.24)

p(x, y, t) = −M
(4M2 + 1)

(4M2 − 1)
λ

[

exp

(

4M2 + 1

4M2 − 1
y

)

+ 3 exp

(

4M2 + 1

4M2 − 1
2Mx

)]

+
8MM ′

4M2 + 1
(4.25)

On peut à présent choisir la modulation temporelle M . Dans notre cas, on prendra M(t) =

1 + A sin(ωt), avec A = 0.1 et ω = 2π/4.

Résultats numériques

Nous devons étudier la convergence spatiale ( en fonctions de la taille des éléments du

maillage) et la convergence temporelle (en fonction du nombre de pas de temps utilisés).
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y=1+A.sin(  t)                     ω

Surface libre

Ω

Figure 4.4 Solution manufacturée instationnaire : domaine et sa déformation.

L’erreur exacte peut se décomposer en une erreur spatiale et une erreur temporelle :

‖uexa − u(h,∆t)‖ = erreur spatiale + erreur temporelle = O(hp) +O(∆tn) (4.26)

où p est le taux de convergence spatial et n est le taux de convergence temporel. Plusieurs

méthodes peuvent être employées pour mener cette étude de convergence, elles sont décrites

précisément par Etienne et al. (2009a). Une première option consiste à étudier la convergence

temporelle et la convergence spatiale de façon couplées. Il faut alors effectuer une série de

simulations en ajustant à la fois la taille du maillage et du pas de temps pour réduire l’erreur

totale d’un facteur donné. Par exemple, avec des éléments de Taylor-Hood et un schéma

d’Euler implicite pour l’intégration temporelle, l’ordre de convergence spatial est de 2 en

norme énergie par rapport à la taille de maille et de 1 par rapport au nombre de pas de

temps. Si la taille de maille est divisée par 2, l’erreur spatiale sera divisée par 4. Il faut donc

diviser le pas de temps par 4 pour que l’erreur temporelle et ainsi l’erreur totale soient divisées

par 4. De même, avec un schéma de Runge-Kutta d’ordre 5, lorsque le pas de temps est divisé

par 2, l’erreur temporelle est divisée par 32. Avec des éléments de Taylor-Hood, la taille de

maille doit être divisée par 25/2 pour parvenir au même ordre de réduction, ce qui signifie que

le nombre de nœuds doit être 32 fois plus important. Avec des schémas d’intégration d’ordre

élevé, cette approche conduit rapidement à des maillages très fins et donc à des simulations

coûteuses qui limitent la portée de cette approche. Une autre voie consiste à étudier les deux
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types d’erreurs séparément de la façon suivante :

– Erreur spatiale : On choisit un pas de temps suffisamment petit pour que l’erreur

temporelle soit négligeable par rapport à la plus petite erreur spatiale attendue. Ainsi,

‖uexa − u(h,∆t)‖ ≈ O(hp) et la même méthode que pour la solution stationnaire peut

être appliquée.

– Erreur temporelle : Pour un maillage donné, on étudie l’erreur ‖u(h,∆t) − u∗(h)‖ où

u∗(h) est la solution convergée en temps sur le maillage donné, c’est à dire

u∗(h) = lim
∆t→0

u(h,∆t) (4.27)

Avec cette méthode, on calcule bien l’erreur temporelle seulement. En effet, l’erreur

spatiale est la même pour les solutions u∗(h) et u(h,∆t) puisqu’elle sont calculées sur

le même maillage.

Convergence avec le maillage On calcule les erreurs exactes et estimées à l’instant

t = T/2 où T est la période de la modulation M . Pour étudier l’erreur spatiale, ces erreurs

sont calculées sur une série de maillages de plus en plus fins. Ils sont obtenus par adaptation

de maillage sur la condition initiale. Le pas de temps est le même pour toutes les simulations,

il doit être suffisamment petit pour que l’erreur temporelle soit négligeable. On choisit donc

∆t = T/40 avec un schéma de Runge-Kutta d’ordre 3. Si le pas de temps est trop grand,

l’erreur stagnerait avec le raffinement de maillage. Si le pas de temps est trop petit, les

courbes de convergence observées seraient les mêmes mais le temps de calcul serait plus long.

La figure 4.5 présente l’évolution des erreurs exactes et estimées en norme L2
p et énergie. Pour

chacune de ces normes, l’écart entre l’erreur exacte et l’erreur estimée est assez important sur

les maillages grossiers, mais il est ensuite comblé rapidement. Lorsque la zone asymptotique

est atteinte, la pente de chaque courbe se rapproche de 2, ce qui correspond bien au taux de

convergence théorique.

Convergence temporelle Pour les éléments de Taylor-Hood, on choisit un maillage de

487 nœuds et on fait une série de simulations avec des pas de temps de plus en plus petits. La

solution exacte sur ce maillage u∗(h) est approchée par la solution numérique obtenue avec

un schéma de Runge-Kutta d’ordre 5. Comme précédemment, les erreurs exactes et estimées

sont calculées à l’instant T/2. On utilise successivement les schémas d’Euler implicite et

RK32 et RK53. Les résultats obtenus sont présentés sur la figure 4.6. Pour les schémas de

Runge-Kutta, on observe le même ordre de convergence pour la norme énergie et la norme L2
P .

Ceci est surprenant car l’ordre de convergence de la pression devrait être plus petit. La figure

4.6 illustre bien les caractéristiques de chaque schéma. La pente de chaque courbe représente
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Figure 4.5 Solution manufacturée instationnaire - élément de Taylor-Hood : convergence de
l’erreur avec le raffinement du maillage.

l’ordre de convergence temporelle. Pour le schéma d’Euler implicite, la zone asymptotique est

atteinte à partir de 320 pas de temps. Par la suite, on observe bien un taux de convergence

de 1. Pour le schéma de Runge-Kutta 32, la zone asymptotique est déjà atteinte à 10 pas

de temps et le taux de convergence est de 3 pour chacune des normes. Pour le schéma de

Runge-Kutta 53, on se trouve déjà en zone asymptotique à 10 pas de temps. L’ordre de

convergence sur le premier segment est de 5 pour la vitesse et 4.4 pour la pression. Ensuite,

il diminue mais l’erreur est de l’ordre de 10−8.
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Figure 4.6 Solution manufacturée instationnaire - élément de Taylor-Hood : convergence de
l’erreur avec le raffinement du pas de temps.

Pour les éléments P1-P1, on utilise un maillage de 1078 nœuds. On a utilisé une stabili-
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sation SUPG/PSPG, le coefficient de stabilisation est

τSUPG = τPSPG =
1

√

4‖u − vm‖2

h2
+ 9

16ν2

h4

(4.28)

On n’utilise pas ici le terme en 4/∆t2. Nous allons vérifier ici que les termes de stabilisation

ne viennent pas réduire l’ordre de convergence temporelle. On utilise la même méthode que

pour les éléments de Taylor-Hood. L’évolution des normes d’erreur en fonction du nombre

de pas de temps est représentée sur la figure 4.7. Nous avons des résultats similaires à ceux

obtenus avec les éléments de Taylor-Hood. C’est à dire que chaque schéma atteint son ordre de

convergence temporelle. Ceci indique que la GCL est satisfaite malgré les termes additionnels

de stabilisation.
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Figure 4.7 Solution manufacturée instationnaire - élément P1-P1 stabilisés : convergence de
l’erreur avec le raffinement du pas de temps.

Conclusion Dans les deux paragraphes précédents, nous avons vérifié la convergence de la

solution avec les raffinements de maillage et de pas de temps pour un cas de surface libre.

Pour chaque type d’éléments utilisés, les ordres de convergence observés tendent vers l’ordre

théorique. Les équations sont donc correctement résolues et l’implémentation des schémas de

Runge-Kutta avec les conditions de surface libre est donc vérifiée. De plus, l’utilisation de

la stabilisation en régime instationnaire sur maillage mobile n’affecte pas le taux de conver-

gence temporelle. Ces résultats montrent l’intérêt de l’utilisation de schémas de Runge-Kutta

d’ordre élevé. Par exemple pour obtenir une erreur temporelle de l’ordre de 10−4, 5120 pas

de temps ne sont pas suffisant avec le schéma d’Euler implicite, en extrapolant les résultats,

il faudrait environ 300 000 pas de temps alors que 80 pas de temps suffisent pour le schéma
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de Runge-Kutta 32 et que moins de 10 pas de temps sont nécessaires avec les schéma 53.

Le prix à payer pour obtenir cette précision est un plus gros système à résoudre à cause

des sous-niveaux. Pour le schéma RK32, la matrice est 2 fois plus large que pour le schéma

d’Euler implicite et pour le schéma 53, elle est 3 fois plus large. Cependant le nombre de pas

de temps nécessaires étant beaucoup plus petit, l’utilisation de ces schémas permet d’attein-

dre une meilleure précision avec un temps de calcul plus court. Une étude détaillée des coûts

de calcul avec les différents schémas a été réalisée par Cori (2011).

4.2 Vérification des sensibilités lagrangiennes sur maillage mobile

Nous allons maintenant vérifier le calcul des sensibilités. Nous n’allons pas présenter de

solution manufacturée avec surface libre. En effet, pour vérifier les sensibilités lagrangiennes,

il faut fixer la vitesse de déformation car les sensibilités en dépendent :

Sα
u =

∂u

∂α
+ V α · ∇u (4.29)

Or sur l’interface, la vitesse de déformation est calculée par les conditions de surface libre

pour les sensibilités. Si nous fixons arbitrairement la vitesse de déformation dans tout le

domaine, les conditions de surface libre pour les sensibilités ne sont pas testées.

Nous allons donc nous assurer que la GCL est satisfaite pour les sensibilités, la convergence

spatiale des sensibilités lagrangiennes ayant été déjà vérifiées précédemment (Charlot (2008)).

Sur un domaine rectangulaire de longueur 2 et de largueur 1, nous choisissons la solution

analytique suivante :

u(x, y, t) = 4t2(y − y2)

v(x, y, t) = 0

p(x, y, t) = 8(1 − x) (4.30)

ξ(x, y, t) = t2(1 − x2)(y − y2))

η(x, y, t) = t2(1 − x2)(y − y2))

Il s’agit d’un écoulement de type Poiseuille dont la vitesse maximale varie avec le temps.

Comme il ne s’agit pas d’une solution exacte des équations de Navier-Stokes, il faut ajouter

le terme source adapté :

fx = ρ
∂u

∂t
= 8t(y − y2) (4.31)

fy = 0 (4.32)
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Pour les sensibilités, nous choisissons arbitrairement

∂u

∂α
(x, y, t) = 4t2y2 ,

∂v

∂α
(x, y, t) = 0 et

∂p

∂α
(x, y, t) = 8(x− 1) (4.33)

V α
x (x, y, t) = 0 et V α

y (x, y, t) = y(1 + t/2) (4.34)

Ensuite, les sensibilités lagrangiennes sont obtenues de la façon suivante

Sα
u =

∂u

∂α
+ ∇u · V α

Sα
v =

∂v

∂α
+ ∇v · V α

Sα
p =

∂p

∂α
+ ∇p · V α (4.35)

Sα
ξ = V α

x

Sα
η = V α

y

Le terme source pour les sensibilités est calculé de la façon suivante : Sα
f = ∂f/∂α+∇f ·V α

avec
∂fx

∂α
= 8ty2 et

∂fx

∂y
= 8t(1 − 2y) (4.36)

Les autres termes sont nuls. On utilise un schéma de Runge-Kutta d’ordre 3 avec des éléments

de Taylor-Hood et on fait une étude de convergence avec le raffinement du pas de temps. On

procède comme pour l’écoulement. Le temps final des simulations est tf = 0.125. La figure

4.8 montre l’évolution de l’erreur pour l’écoulement et les sensibilités en norme L2
P et en

norme énergie. Les ordres de grandeur des erreurs pour l’écoulement et pour les sensibilités

sont les mêmes. De plus, pour une même norme, les ordres de convergence sont les mêmes

puisque dans la zone asymptotique les droites sont parallèles. Ces ordres sont bien conformes

à la théorie, c’est-à-dire de 3 pour la norme énergie et de 2 pour la norme L2
P .

Nous avons obtenus des résultats similaires en prenant le même écoulement orienté ver-

ticalement plutôt qu’horizontalement afin de vérifier les termes qui étaient nuls dans cette

solution.

La formulation adoptée pour les sensibilités respecte donc bien la GCL, c’est-à-dire que

sur maillage mobile, l’ordre de convergence temporelle est le même que sur maillage fixe.

Nous avons donc à présent vérifié toute la méthode proposée, aussi bien pour le calcul

de surface libre que pour le calcul des sensibilités lagrangiennes instationnaires sur maillage

mobile.
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Figure 4.8 Erreur temporelle pour l’écoulement et les sensibilités.

4.3 Ballotement de grande amplitude

Nous présentons ici un cas simple de surface libre. Après une étude de convergence tem-

porelle, nous comparerons nos résultats avec ceux de Dettmer et Peric (2006b). Le domaine

est représenté sur la figure 4.9. On considère un fluide contenu dans un réservoir rectangu-

laire. À l’instant initial, le fluide est en équilibre hydrostatique. La longueur du réservoir est

de 1.0 et la hauteur de fluide au repos est de 1.0. La viscosité et la densité du fluide sont fixées

respectivement à 0.01 et à 1.0. L’intensité de la gravité est de 1.0. Sur les parois du réservoir,

on impose une condition de glissement. Le réservoir est ensuite soumis à un déplacement

horizontal donné par ∆x = A(1 − cos(ωt)), avec A = 0.075. On prend ω = 1.5 car Dettmer

et Peric (2006b) ont montré que cette pulsation correspond à la résonance.

4.3.1 Convergence temporelle pour l’écoulement

Pour l’étude de convergence, la méthode utilisée est la même que celle utilisée pour

la solution manufacturée. En effet, pour l’erreur temporelle, nous n’avons pas besoin de

connâıtre la solution analytique. À nouveau, nous utiliserons les trois schémas d’intégration

(Euler implicite, Runge-Kutta d’ordre 3 et d’ordre 5) et les éléments de Taylor-Hood et P1-

P1 stabilisés. Les erreurs sont calculées à l’instant t = T/10 où T est la période d’oscillation

du réservoir. Les vecteurs vitesse de la solution à t = T/10 sont représentés sur la figure 4.10.

Pour les éléments de Taylor-Hood, le maillage est constitué de 487 nœuds et on choisit

comme référence la solution obtenue avec 256 pas de temps pour le schéma de Runge Kutta

d’ordre 5. L’évolution de l’erreur en norme énergie et L2
P avec le raffinement du pas de temps

est représentée sur la figure 4.11. Comme précédemment, les différences entre les schémas
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x = A(1 − cos(   t) ∆                       ω

surface libre

Figure 4.9 Ballotement : domaine

sont nettes. Pour le schéma d’Euler implicite, l’ordre de convergence est de 1. Pour le schéma

de Runge-Kutta d’ordre 3, le taux de convergence est de 3 pour la norme énergie et de 2

pour la norme L2
P , ce qui est conforme aux ordres théoriques. Pour le schéma de Runge-Kutta

d’ordre 5, le taux de convergence est bien de 3 pour la norme L2
P . Pour la norme énergie, il

commence à 5 puis diminue à 3. L’erreur approche de l’erreur machine, ce qui peut contribuer

à cette réduction d’ordre de convergence.

Pour les éléments P1-P1, la méthode est la même, on a utilisé un maillage de 1078

nœuds. On a utilisé une stabilisation de type SUPG/PSPG. Les résultats sont présentés sur

la figure 4.7. Les résultats sont similaires à ceux obtenus avec les éléments de Taylor-Hood.

La stabilisation n’interfère donc pas avec la convergence temporelle. Cependant, on peut

nuancer ces résultats par le fait que le nombre de Reynolds reste faible (de l’ordre de 10) et

que les termes additionnels dus à la stabilisation sont faibles eux aussi.

4.3.2 Comparaison des résultats

Nous comparons maintenant nos résultats avec ceux obtenus par Dettmer et Peric (2006b).

On utilise un maillage de taille similaire composé de 487 nœuds (vs 528 nœuds). Pour

l’intégration temporelle, on compare les résultats obtenus avec le schéma d’Euler implicite et

un schéma de Runge-Kutta d’ordre 3. Les simulations couvrent 10 périodes d’oscillation du

réservoir avec 25, 50, 100 et 200 pas de temps par période.

L’élévation du point extrême droit de la surface libre en fonction du temps est représentée
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X
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0 0.022462 0.044925 0.067387 0.089849 0.11231

Figure 4.10 Ballotement : vecteurs vitesse à t = T/10

sur la figure 4.13. La figure 4.13(a) montre les courbes obtenues avec le schéma d’Euler

implicite pour les différents pas de temps. Les résultats pour le schéma de Runge-Kutta sont

représentés sur la figure 4.13(b). En comparant ces 2 figures, on peut clairement voir que le

schéma de Runge-Kutta d’ordre 3 est bien plus précis que le schéma d’Euler implicite. Comme

on peut le voir sur la figure 4.13(a), même avec le plus fin pas de temps, ∆t = T/200, le

schéma d’Euler n’a pas encore convergé, l’amplitude est largement sous-estimée. Il faudrait

encore réduire le pas de temps pour obtenir une amplitude similaire à celle obtenues avec le

schéma de Runge-Kutta. Pour ce dernier, le pas de temps ∆t = T/50 semble déjà donner une

bonne estimation de l’amplitude. La figure 4.14 montre l’agrandissement d’une crête obtenue

avec le schéma de Runge-Kutta. Les points calculés avec des pas de temps plus petits que

T/50 sont confondus. La courbe obtenue avec 25 pas de temps par période reste cependant

proche des autres. Ce pas de temps permet d’obtenir à moindre coût l’allure de l’élévation

de la surface libre. Nos résultats sont similaires à ceux obtenus par Dettmer et Peric (2006b)

avec une élévation maximale de 0.565.

Dettmer et Peric (2006b) observent des erreurs sur le volume de fluide, alors que la

formulation ALE, comme le domaine de calcul suit le domaine fluide, la conservation de la

masse devrait être respectée. Le tableau 4.1 présente les erreurs sur le volume total de fluide

en fonction du pas de temps pour notre étude (avec le schéma RK32) et celle de Dettmer et

Peric obtenues au temps t = 10T .

Avec notre méthode, nous observons également une erreur sur le volume total mais elle est

bien plus petite que celle observée par Dettmer et Peric. De plus, elle semble converger vers 0

avec un taux de convergence de 3, ce qui est consistant avec le schéma d’intégration. Dans les

cas stationnaires, aucune erreur n’avait été observée, cette erreur est donc probablement due
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Figure 4.11 Ballotement - éléments de Taylor-Hood : Convergence de l’erreur avec le raffine-
ment du pas de temps.

∆t T/50 T/100 T/200
V − V0

V0
(%) present 7.12 × 10−3 9.08 × 10−4 1.14 × 10−4

V − V0

V0
(%) Dettmer-Peric 1.82 1.10 0.72

Tableau 4.1 Erreurs de volume après 10 périodes d’oscillation.

à l’intégration temporelle et à la déformation de la surface. Ceci est illustré sur la figure 4.15.

Cette figure représente l’évolution du volume de fluide en fonction du temps avec différents

pas de temps pour le schéma d’Euler implicite (figure 4.15(a)) et pour le schéma RK32 (figure

4.15(b)). L’erreur augmente avec des oscillations ayant la même période que le mouvement du

réservoir. De plus l’erreur obtenue avec le schéma d’Euler implicite est bien plus importante

que celle obtenue avec le schéma de Runge-Kutta d’ordre 3, plus de 100 fois plus grande et

semble converger vers 0 à l’ordre 1, ce qui est encore consistant avec l’ordre de convergence

du schéma.

Notre outil de calcul de surface libre semble donc être performant et précis, surtout

en utilisant des schémas d’intégration temporelle d’ordre élevé. L’erreur sur le volume est

consistante avec le schéma et devient rapidement très petite en utilisant un schéma de Runge-

Kutta d’ordre 3, alors qu’elle n’est pas négligeable avec un schéma d’Euler implicite. Ce

schéma demande des pas de temps beaucoup plus petits et donc des temps de simulation

beaucoup plus longs que les schémas de Runge-Kutta d’ordre 3 ou 5 pour la même précision.
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Figure 4.12 Ballotement - éléments P1-P1 : Convergence de l’erreur avec le raffinement du
pas de temps.
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Figure 4.13 Évolution de l’élévation du point extrême droit de la surface libre en fonction du
temps.
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Figure 4.15 Évolution du volume de fluide avec le temps.
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4.3.3 Étude de sensibilité

Nous allons maintenant faire la même étude pour les sensibilités. Ceci nous permettra

de vérifier la convergence temporelle des sensibilités avec surface libre. On choisit comme

paramètre la viscosité. Même si ce paramètre n’est pas un paramètre de forme dans un sens

purement géométrique, une modification de la viscosité entrainera une déformation différente

de la surface libre, donc un changement de forme du domaine.

Étude de convergence

Nous procédons toujours de la même façon pour obtenir l’erreur temporelle. La figure

4.16 montre la convergence des erreurs pour l’écoulement et les sensibilités en norme énergie

et en norme L2
P . Les erreurs sont un peu plus élevées pour les sensibilités mais elles ont le

même ordre de convergence que pour l’écoulement, en effet les droites sont parallèles. La

formulation adoptée pour les sensibilités des écoulements avec surface libre respecte donc

la GCL. La précision sur les sensibilités est la même que pour l’écoulement. L’usage des

schémas d’ordre élevé pour le calcul de surface libre et de sensibilité est donc justifié pour

des applications ultérieures.
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Figure 4.16 Évolution de l’erreur temporelle avec le raffinement du pas de temps pour
l’écoulement et les sensibilités.

Interprétation des sensibilités

La figure 4.17 montre la valeur de la sensibilité du déplacement vertical du pseudo-solide.

Elle est positive sur la gauche, là où la surface est la plus basse et négative là où la surface est

la plus haute. Cela signifie que si la viscosité augmente, la surface libre sera moins déformée,
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ceci est en accord avec la physique, si le fluide est plus visqueux, il est plus difficile de le

mettre en mouvement et donc de déformer la surface libre.

X

Y

Z

SETA_MU

-136.9 -100.57 -64.25 -27.927 8.3962 44.719

Figure 4.17 Sensibilité du déplacement vertical à t = 8.8T par rapport à la viscosité.

4.4 Conclusion

Dans ce chapitre, nous avons vérifié :

– l’implémentation des conditions de surface libre en régime stationnaire et instationnaire,

– l’implémentation des schémas de Runge-Kutta avec la stabilisation PSPG/SUPG,

– que la GCL était bien respectée avec les éléments P1-P1 stabilisés,

– l’implémentation des sensibilités instationnaires sur maillage déformable,

– l’implémentation des sensibilités de surface libre,

– que la GCL était bien satisfaite avec l’écoulement et les sensibilités pour les écoulements

avec surface libre.
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Notre code pourra donc être utilisé pour le calcul d’écoulement avec surface libre avec

des nombres de Reynolds élevé sur des éléments P1-P1 stabilisés avec des schémas temporels

d’ordre élevé, donc avec un nombre de pas de temps réduit. On pourra aussi calculer les

sensibilités de l’écoulement, avec des schémas temporels d’ordre élevé et des éléments de

Taylor-Hood, cette fois à bas Reynolds, puisque nous ne disposons pas de stabilisation pour

les sensibilités.
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CHAPITRE 5

RÉSULTATS NUMÉRIQUES

Ce chapitre présente plusieurs applications de la méthode décrite aux chapitres précédents.

On cherchera à tester ses performances et ses limites. On s’intéressera tout d’abord à un cas

de ballotement qui a fait l’objet d’une étude comparative. Nous pourrons alors valider le

calcul de la surface libre. Puis, on étudiera la propagation d’une onde solitaire dans un

canal et sa séparation lorsque le fond du canal est irrégulier. Cette étude nous permettra de

quantifier les effets de la viscosité et de comparer nos résultats avec des modèles théoriques.

On simulera ensuite la génération de vagues avec un batteur à houle, pour tester les limites

de la déformations du maillage et pour déterminer si les vagues générées numériquement

sont fidèles à la réalité. Enfin, nous étudierons les efforts sur un cylindre soumis à une houle

incidente et on évaluera grâce à l’analyse de sensibilités l’impact de la distance entre le

cylindre et la surface libre et celui du rayon du cylindre. Ce cas nous permettra d’évaluer

l’impact de la surface libre et de la viscosité sur les efforts et de montrer l’utilité de l’analyse

de sensibilité.

5.1 Étude comparative pour un cas de ballotement

Le but de cette étude est de comparer nos résultats avec d’autres études numériques. On

reprend le travail de Westhuis (2001). Ce dernier utilise une méthode potentielle, c’est à dire

que le fluide est parfait et que l’écoulement est irrotationnel. Il confronte ses résultats avec

7 méthodes similaires issues de l’étude comparative de Nesteg̊ard (1994). Le problème est le

suivant : on considère un réservoir de longueur 160m rempli avec de l’eau. La hauteur d’eau

au repos est de 70m. Au temps initial, on suppose que la surface libre est déformée, de sorte

que son équation est la suivante :

yI(t = 0) = 70 + 12
[

1 − (x/53)2
]

e(x/76)2 (5.1)

On laisse ensuite évoluer le fluide sous l’influence de la gravité. On utilise les éléments P1-

P1 stabilisés sur un maillage de 8520 nœuds et le schéma temporel IRK32 avec un pas de

temps ∆t = 0.1. Comme nous comparerons nos résultats avec des simulations utilisant la

théorie potentielle, on impose des conditions de glissement sur toutes les parois du réservoir.

Ainsi, il n’y aura pas de couche limite visqueuse le long des parois. La figure 5.1 montre
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l’évolution de la surface jusqu’à t = 10s. Pour chaque étude, la vitesse et la position de la
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Figure 5.1 Évolution de la surface libre.

surface libre ont été relevées à l’abcisse x = 60m et au temps t = 9, 2s. Les résultats des

différentes études et les nôtres sont résumés dans le tableau 5.1. Les colonnes “min” et “max”

représentent respectivement la valeur minimale ou maximale parmi les 8 autres études, la

colonne “moyenne” est la moyenne des 8 études.

Nos résultats concordent bien avec les résultats obtenus par les autres études, ce qui

permet de valider le calcul de la surface libre.

5.2 Propagation d’une onde solitaire

Nous reprenons un autre cas développé par Westhuis (2001). Il s’agit de simuler la prop-

agation d’une onde solitaire dans un bassin de longueur 300m avec une hauteur de fluide au

repos de 0.5m. Au temps initial, le profil de la surface libre est le suivant :

yI(t = 0) = 0.5 +
0.215

cosh(1.18x)
(5.2)

min moyenne max present
elevation SL -3.860 -3.796 -3.720 -3.797

u -2.480 -2.410 -2.280 -2.415
v -0.690 -0.547 -0.363 -0.571

Tableau 5.1 Ballotement : vitesse et position de la surface libre en x = 60m et à t = 9, 2s.
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Le fluide évolue ensuite sous l’effet de la gravité en générant une onde solitaire d’amplitude

0.1m.

5.2.1 Propagation de l’onde

On étudie tout d’abord la propagation de l’onde. On utilise des éléments P1-P1 stabilisés

sur un maillage de 9458 nœuds et un schéma de Runge-Kutta 32 avec un pas de temps

∆t = 0.1s. Les propriétés du fluide sont celles de l’eau, donc la densité est ρ = 1000kg.m−3, la

viscosité est µ = 0.001Pa.s. Comme nous allons comparer nos résultats avec des simulations

utilisant la théorie potentielle, des conditions de glissement sont imposées sur toutes les

parois du bassin. Le temps final est de 120s. La figure 5.2 montre la déformée de surface libre

obtenue toutes les 10s. Une fois l’onde correctement formée soit à t = 20s, son amplitude est

de 0.097m. Elle diminue ensuite légèrement pour atteindre la valeur de 0.093m à t = 120s.

Cette diminution non observée par Westhuis (2001) est due à la viscosité, et certainement

aussi au maillage utilisé qui était assez grossier (moins de 10 000 nœuds avec des éléments

P1-P1 stabilisés).
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Figure 5.2 Onde solitaire : surface libre toutes les 10 secondes.

La génération de l’onde n’est pas parfaite, en effet le profil utilisé est empirique. C’est

pourquoi des oscillations en arrière de l’onde sont observées. Elles ont une forme (amplitude

et localisation) tout à fait comparable à celles observées par Westhuis (2001) comme on peut

le voir sur la figure 5.3.

La vitesse de propagation observée ici est un peu plus faible que celle mentionnée par

Westhuis (2001), et diminue un peu au court du temps comme le montre la figure 5.4.
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Les points représentent les valeurs obtenues, celles-ci ne sont pas régulières à cause de la

discrétisation spatiale, la courbe est une régression quadratique de ces points. La vitesse au
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Figure 5.4 Vitesse de propagation de l’onde.

début est de 2.422m/s et diminue jusqu’à 2.412m/s, Westhuis obtient une valeur de 2.427m/s

qu’il compare avec le modèle théorique de Boussinesq appliqué aux ondes solitaires. La vitesse

c d’une onde d’amplitude a dans un bassin de profondeur h est

c =

√

gh
(

1 +
a

h

)

(5.3)
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Ceci mène à une valeur de 2.426m/s. Dans notre cas, la vitesse est donc plus faible. Le modèle

théorique et les simulations de Westhuis reposent sur la théorie potentielle. L’écoulement

observé étant irrotationnel, cet amortissement est probablement dû à la viscosité qui est

négligée dans la théorie potentielle.

5.2.2 Impact de la couche limite au fond

Nous allons maintenant nous intéresser à l’impact de la couche limite visqueuse sur le fond

du bassin. Nous reprenons donc le même calcul que précédemment, mais en imposant une

condition de non glissement sur le fond. Ce cas est donc beaucoup plus proche de la réalité

que le cas précédent et n’aurait pas pu être simulé avec des modèles potentiels. Un modèle

théorique a été développé pour ce cas par Keulegan (1948) et repris par Liu et Orfila (2004).

L’écoulement est alors supposé potentiel partout sauf dans la couche limite. L’amortissement

visqueux correspond à la réduction suivante de l’amplitude :

(a0

h

)

−1/4

−
(ai

h

)

−1/4

= K
d

h
(5.4)

où a0 est l’amplitude de départ, ai l’amplitude de l’onde au moment d’observation, d est la

distance parcourue par l’onde entre temps, h est la profondeur d’eau au repos et K est une

constante. Sa valeur théorique est la suivante :

Kth =
1

12

√

ν

g1/2h3/2
(5.5)

Nous allons donc calculer la valeur de ce coefficient pour les simulations numériques et les

comparer au modèle. On reprend la configuration avec une condition de non glissement au

fond. L’amplitude de l’onde passe alors de 0.095m à 0.08m à t = 91.5s. La figure 5.5 représente

la déformée de surface libre toutes les dix secondes et la figure 5.6 montre l’évolution de

l’élévation maximale de la surface libre au cours du temps. En comparant les figures 5.2 et

5.5, on remarque que la vitesse de propagation de l’onde est réduite.

Pour ce cas, on obtient un coefficient théorique Kth = 7.9197×10−05. On choisit des points

à intervalle régulier de 10s pour obtenir le coefficient K pour la simulation entre 10s et 80s. Il

n’apparâıt pas d’évolution significative de K au cours du temps. On obtient une moyenne de

1.80× 10−04. L’ordre de grandeur est le même que le modèle théorique Kth = 7.9197× 10−05

mais la valeur est surestimée. Ceci peut s’expliquer par le fait que le maillage utilisé n’est

pas assez fin pour décrire correctement la couche limite. En utilisant l’analyse de Ippen et

Kulin (1957) qui cherche à déterminer le nombre de Reynolds et l’épaisseur de la couche

limite en se basant sur la théorie développée pour une plaque plane. Notre cas correspond
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Figure 5.5 Onde solitaires-non glissement : surface libre toutes les 10 secondes.

alors à un nombre de Reynolds d’environ 1.53× 105 ce qui correspond au domaine laminaire

dans la théorie de la plaque plane. L’épaisseur de couche limite est alors de l’ordre de 0.01m.

Or la taille des éléments et de l’ordre de 0, 05m, ce qui n’est pas suffisant. On reprend

donc le calcul en raffinant le maillage au fond, de sorte que les éléments ont une taille

approximative de 0, 003m au fond. Pour limiter les coûts de calcul, le temps de simulation

est moins long, ce qui permet de rétrécir le domaine. Le profil de vitesse horizontale obtenu

est représenté en rouge sur la figure 5.7 avec le maillage utilisé. Le maillage reste encore

grossier par rapport aux variations de la vitesse. Le coefficient d’amortissement K a alors pour

moyenne K = 1.04× 10−4 ce qui est plus proche du modèle théorique Kth = 7.9197× 10−05.

On peut nuancer ces résultats en considérant les résultats expérimentaux de Ippen et Kulin

(1957). Ces expériences ont mis en évidence une dépendance du coefficient avec l’amplitude

de l’onde, donc avec la valeur du nombre de Reynolds dans la couche limite. Les coefficients

mesurés sont plus grands que les coefficients théoriques lorsque le rapport entre l’amplitude de

l’onde et la profondeur sont petits comme dans notre cas. Ce cas nous a permis de montrer

que notre méthode permettait bien de simuler la propagation d’une onde solitaire et que

l’amortissement observé correspond à la physique du problème.

5.2.3 Séparation de l’onde solitaire

Le cas est le même que précédemment mais le fond du bassin n’est plus plat. Ainsi entre

x = 30m et x = 40m la hauteur d’eau passe linéairement de 0.5m à h1. Comme le mentionne

Westhuis (2001), cette variation de profondeur provoque une séparation de l’onde solitaire

en deux, voire trois ondes, selon la profondeur h1 considérée. Nous allons donc simuler cette
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Figure 5.6 Élévation maximale de la surface libre.

séparation pour des hauteurs h1 de 0.35m et 0.25m pour lesquelles Westhuis (2001) avait

obtenu respectivement des séparations en deux et trois ondes. Nous étudierons aussi l’impact

de la couche limite au fond pour chacune de ces hauteurs.

Condition de glissement au fond

La figure 5.8 présente les résultats obtenus pour une hauteur h1 de 0.35m avec une

condition de glissement au fond du bassin. La variation de profondeur provoque bien une

séparation de l’onde en deux parties. Sur la figure 5.8(b) on peut observer l’évolution de

l’onde au cours du temps. Lorsqu’elle atteint la position x = 30m, lorsque la hauteur du fond

commence à varier, elle se décompose en une onde transmise et une onde réfléchie. Cette

dernière a une amplitude très faible. Elle se propage d’abord dans le sens des x décroissants

avant d’être réfléchie contre la paroi du bassin en x = 0m à environ t = 30s. Elle repart

ensuite dans le sens positif. On peut l’observer ensuite en arrière de l’onde transmise. Sur

la figure 5.8(a) elle se trouve à l’abscisse x ≈ 170m. L’onde transmise est bien séparée en

deux ondes. Lorsque la profondeur du bassin atteint h1, l’amplitude de l’onde est de 0.127m

puis décroit jusqu’à 0.121m. On remarque que l’onde principale se propage moins vite que

l’onde solitaire avec une profondeur de bassin constante. En effet, à t = 119s, la figure 5.8(a)

montre que la crête de l’onde principale se situe environ à x = 260m contre x = 290m pour

une profondeur constante de 0.5m. Ceci n’est pas étonnant car la vitesse de propagation

des ondes infinitésimales en faible profondeur est
√
gh. Comme h diminue, il est normal que

la vitesse de propagation diminue aussi. La figure 5.8(c) montre que l’onde secondaire se

propage moins vite que l’onde principale. Son amplitude est de 0.02m à t = 120s. Ceci est
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Figure 5.7 Vitesse horizontale dans la couche limite et maillage.

en accord avec l’expression de Boussinesq (5.3) pour la vitesse de propagation. La vitesse est

une fonction croissante de l’amplitude.

La figure 5.9 montre les résultats obtenus pour h1 = 0.25m. On observe une division en trois

parties de l’onde transmise et la présence, comme précédemment, d’une onde réfléchie.

On constate que l’onde principale se propage plus vite que les ondes secondaires et qu’elle

est amortie, son amplitude passe de 0.15m à t = 20s à 0.11m à t = 120s. Cet amortissement

est bien plus élevé que celui constaté pour h1 = 35m. L’amortissement ne provient donc pas

d’une perte d’énergie dans la couche limite. On remarque que l’amplitude de l’onde varie

moins vite vers la fin du canal pour h1 = 0.25m, c’est à dire lorsque l’onde secondaire

est plus éloignée. L’onde principale alimente les autres qui, elles, ne semblent pas subir

d’amortissement. La profondeur est aussi un paramètre important. L’amplitude de l’onde

est plus grande pour 0.25m, l’interaction entre le fond et l’onde est donc plus importante, ce

qui crée de l’amortissement.
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(c) Surface libre toutes les 20s

Figure 5.8 Évolution de la surface libre, h1 = 0.35m, glissement.
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Figure 5.9 Évolution de la surface libre, h1 = 0.25m, glissement.
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Condition de non glissement au fond

La figure 5.10 montre l’évolution de la surface libre pour h1 = 0.35m avec une condition de

non glissement au fond du bassin. Cette condition de non glissement provoque une diminution

de l’amplitude de l’onde ainsi qu’un ralentissement de sa propagation. On retrouve encore, en

arrière des deux ondes transmises, l’onde réfléchie. On peut l’observer à l’abscisse x ≈ 170m en

arrière de l’onde transmise sur la figure 5.10(a). On peut voir que les deux ondes se propagent

à des vitesses différentes, celle de plus grande amplitude allant plus vite. Par contre, celle-ci

est plus amortie. Son amplitude passe de 0.117m à t = 20s à 0.73m à t = 120s. C’est donc

un amortissement plus important que pour l’onde seule avec une profondeur de h = 0.5m. La

comparaison avec le modèle théorique de Keulegan (1948) ou les résultats expérimentaux de

Ippen et Kulin (1957) ne serait pas pertinente ici car ils ne s’appliquent que pour les ondes

solitaires et, ici, il y a une interaction entre les deux ondes.

La figure 5.11 montre l’évolution de la surface libre au cours du temps pour h1 = 0.25m

sans glissement au fond du bassin. On observe bien une séparation de l’onde en trois. L’effet

de la condition de non glissement provoque une diminution significative de l’amplitude de

l’onde, de 0.148m à 0.063m, ainsi qu’un ralentissement de sa propagation. L’onde secondaire

la plus proche de l’onde principale est elle aussi amortie, son amplitude passe de 0.055m à

t = 40s à 0.0535m à t = 120s.
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Figure 5.10 Évolution de la surface libre, h1 = 0.35m, non glissement.
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Figure 5.11 Évolution de la surface libre, h1 = 0.25m, non glissement.
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5.3 Batteur à houle

Dans cette section, nous allons simuler un bassin à vague utilisé pour faire des mesures sur

des maquettes. Il existe plusieurs méthodes pour générer la houle. On choisit ici de simuler un

batteur à piston, c’est à dire qu’une paroi du bassin oscille selon un mouvement horizontal.

5.3.1 Canal court

On considère un bassin de longueur 4, avec une hauteur d’eau au repos de 0.25. La

paroi gauche du canal se déplace selon le mouvement ∆x = Asin(ωt) avec A = 0.1 et

ω = 2π pour simuler le mouvement d’un batteur à piston. Le nombre de Reynolds est de

Re = 700 et le nombre de Froude Fr =
U0√
gL

= 0.178. Ce cas ne correspond pas vraiment à

un cas physique, le but étant d’évaluer les capacités du code. Ce calcul a été réalisé avec des

éléments P1-P1 stabilisés avec un schéma IRK32 sur un maillage de 15185 nœuds. Les essais

réalisés avec les éléments de Taylor-Hood n’ont pas abouti à cause des instabilités numériques,

même en utilisant un maillage plus fin. L’utilisation du schéma IRK32 permet d’augmenter

significativement le pas de temps par rapport à un schéma d’Euler implicite. Nous avons

utilisé ici 100 pas de temps par période. Avec le schéma d’Euler, les amplitudes des vagues

étaient beaucoup plus petite. Une réduction du pas de temps menait à des résultats très

différents. Il aurait donc fallu utiliser un pas de temps plus beaucoup plus petit, ce qui aurait

allonger le temps de calcul. Ceci n’a pas été observé avec le schéma IRK32 pour ce pas de

temps.

Les figures 5.12, 5.13 et 5.14 montrent les déformées obtenues à des moments différents. À

t = 1.5s, une première vague est générée et se propage vers la droite, à t = 2.3s, une seconde

vague est générée. Ensuite, la première est réfléchie et rencontre la seconde à t = 2.86s

comme le montre la figure 5.14. L’amplitude de la vague augmente et commence à déferler.

Cependant, le maillage devient alors trop étiré et se replie, la simulation s’arrête. On constate

aussi sur ces figures que la vorticité est nulle partout sauf proche de la surface. Dans ce cas,

la théorie potentielle est donc insuffisante pour le calcul de la surface libre.

La figure 5.15 montre la crête de la vague au dernier pas de temps calculé. La vitesse

croit rapidement entre le bas et la crête de la vague et atteint des valeurs assez importantes

(> 3) par rapport à la vitesse du batteur (Vmax = 0.63). La figure 5.15(d) montre les vecteurs

vitesse multipliés par le pas de temps. On peut ainsi prévoir la géométrie de la surface libre au

pas de temps suivant. On constate que la vague va commencer à déferler, le maillage n’a pas

pu suivre la déformation, c’est pourquoi la simulation a dû être interrompue. Utiliser un pas

de temps plus faible aurait peut être permis de poursuivre la simulation, mais la méthode de

déformation de maillage est intrinsèquement limitée : si la vague déferle vraiment, il faudra
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de toute façon remailler.

Notre méthode permet cependant de simuler des déformations importantes de la surface

libre, son domaine d’application reste donc large.

(a) Maillage

U
-0.64256 -0.3189 0.0047505 0.3284 0.65206 0.97571

(b) U

(c) Vorticité

Figure 5.12 Maillage et vitesse horizontale à t = 1.5s.
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(a) Maillage

U
-0.53117 -0.15853 0.21411 0.58674 0.95938 1.332

(b) U

(c) Vorticité

Figure 5.13 Maillage et vitesse horizontale à t = 2.3s.
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(a) Maillage

U
-0.93284 -0.17581 0.58121 1.3382 2.0953 2.8523

(b) U

(c) Vorticité

Figure 5.14 Maillage et vitesse horizontale à t = 2.86s.
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Figure 5.15 Zoom sur la crête de la vague à t = 2.86s.
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5.3.2 Canal long

Nous proposons ici une étude plus réaliste. Pour cela, nous nous basons sur la configuration

décrite par Duclos et al. (2004) (sans digue). Le but est de déterminer si la méthode, utilisant

les équations de Navier-Stokes permet de simuler sans dissipation la propagation de vagues

dans un bassin Le bassin mesure 33m de long et la hauteur d’eau au repos est de 0.8m.

Le mouvement du batteur est ∆x = A sin(ωt) avec A = 0.01 et ω = 6.04, la période de

battement étant de 1.04s.

Nous utilisons des éléments P1-P1 avec la stabilisation SUPG/PSPG. Le maillage compte

9350 nœuds dont 979 sont situés sur la surface libre. Les propriétés du fluide sont les sui-

vantes : ρ = 1000kg.m−3, µ = 0.001Pa.s, g = 9.807m.s−2. La figure 5.19 montre l’évolution

de la surface libre toutes les 10 secondes. Les vagues se propagent au fur et à mesure dans le

milieu au repos. Le déplacement vertical de la surface libre est compris entre environ −0.020m

et 0.020m. À 50 secondes, sur la figure 5.19(e), on peut observer leur réflexion sur la paroi

opposée, l’amplitude des vagues est modifiée entre 20m et 33m. Ce phénomène se traduit par

une amplification ou une diminution de l’amplitude, comme on peut le voir sur les figures

5.16 et 5.17.

On peut comparer nos résultats avec le modèle de la houle d’Airy, décrit en détail par

Molin (2002). Ce modèle est basé sur la théorie potentielle et ne prend en compte que les

termes de premier ordre par rapport à la cambrure des vagues. La cambrure de la houle est

le rapport entre l’amplitude et la longueur d’onde. Le profil de la surface libre est alors :

η(t) = A cos(kx− ωt) (5.6)

Si la profondeur du bassin est h, le nombre d’onde k et la pulsation ω sont liés par l’équation

suivante :

ω2 = gk tanh(kh) (5.7)

Ici ω vaut 2π/T = 6.0415rad.s−1 donc on peut s’attendre à un nombre d’onde k =

3.741m−1, ce qui correspond à une longueur d’onde de λ = 1.6797m. Au temps t = 30s,

on calcule la moyenne de la distance entre deux crêtes successives sur un total de 10 crêtes.

On trouve alors une longueur d’onde λnum = 1.6795m, ce qui est en très bon accord avec la

théorie linéaire.

Nous allons maintenant comparer nos résultats avec les expériences et les calculs de Duclos

et al. (2004). Une sonde est placée dans le bassin à l’abscisse xs = 8.25m. Le relevé de la

surface libre pour nos calculs est tracé sur la figure 5.18, la figure est très voisine de celle

obtenue par Duclos et al. (2004). Pour comparer de manière plus quantitative, on calcule la
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série de Fourier du signal lorsque le régime périodique est établi. On a alors

A(t) = A0 +
∑

n

An cos(nωt+ ϕn) (5.8)

Les premières composantes obtenues sont résumées dans le tableau 5.2.

A1 A2 A3

expérience 1.75 10−2 7 10−4 -
numérique 1.76 10−2 5.8 10−4 1.2 10−4

Tableau 5.2 Batteur à houle : coefficients de Fourier de la déformée de surface libre.

Les mesures n’ont pas permis de déterminer le troisième mode. Nos résultats sont très

proches des mesures pour le premier et second mode. Duclos et al. (2004) ont comparé les

mesures avec des codes potentiels et visqueux qui ont mené à des écarts compris entre 5% et

10% pour le premier mode contre moins de 1% dans notre cas.

Notre code est donc capable de générer une houle possédant des caractéristiques sem-

blables à celles générées en bassin.
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Figure 5.16 Batteur à houle : évolution de la surface libre entre 47 et 50 secondes.
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Figure 5.17 Batteur à houle : évolution de la surface libre entre 49 et 50 secondes.
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Figure 5.18 Évolution de la surface libre à xs = 8.25m.
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(e) Surface libre à t = 50s

Figure 5.19 Propagation des vagues générées par un batteur à piston.
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5.4 Interaction entre un cylindre et des vagues

L’écoulement autour d’un cylindre soumis à une houle incidente a de nombreuses appli-

cations pratiques comme les structures offshore ou les pipelines sous-marins. Par exemple,

Boccotti (1996) a mené une série d’expériences sur la plage à Reggio Calabria en vue de

la construction d’un pont submergé pour relier la Sicile au continent. Une analyse précise

des efforts est alors nécessaire pour éviter tout phénomène de résonance sur les structures

immergées. Dean (1948) a montré dans le cadre de la théorie potentielle qu’il n’y avait pas

d’onde réfléchie par le cylindre et que l’onde transmise avait la même amplitude que l’onde

incidente mais était déphasée. Ogilvie (1963) a calculé, toujours dans le cadre de la théorie

potentielle, les efforts au premier ordre sur le cylindre. Des expériences ont été menées par

Chaplin (1984) pour mesurer les efforts sur le cylindre en fonction du nombre de Keulegan-

Carpenter qui compare l’amplitude de la houle incidente avec le diamètre du cylindre. Il a

montré que le modèle potentiel utilisé par Ogilvie (1963) n’était pas valable pour le calcul

de la première harmonique des efforts, à cause des effets visqueux et non linéaires. En ef-

fet, à cause de la viscosité, on peut observer une couche limite oscillante autour du cylindre

et l’apparition d’une circulation autour du cylindre. Ce phénomène provoque une chute du

coefficient d’inertie avec l’augmentation du nombre de Keulegan-Carpenter. C’est pourquoi,

Guerber et al. (2010), dont les simulations sont basées sur un modèle potentiel, n’observent

pas ce phénomène et retrouvent les résultats théoriques dOgilvie (1963). Il convient donc d’u-

tiliser les équations de Navier-Stokes afin de simuler correctement ce cas. Tavassoli et Kim

(2001) utilisent les équations de Navier-Stokes et des marqueurs pour le calcul de la surface

libre. Ils obtiennent la même tendance que celle observée par Chaplin (1984).

Nous allons donc voir si on retrouve des résultats similaires et nous ferons une analyse

de sensibilité par rapport à la position et au rayon du cylindre afin de voir quel est leur

impact sur l’écoulement et de valider le calcul de sensibilité. Lors des analyses de sensibilité

en régime instationnaire, il faut éviter de choisir des paramètres pouvant affecter la période

des phénomènes observés sous peine de voir les sensibilités diverger (semi-sécularité). Ici,

le mouvement est forcé par le batteur et il n’y a pas de détachement tourbillonnaire, les

sensibilités resteront donc bornées, sauf si on calcule les sensibilités par rapport à la fréquence

du batteur.

Nous allons reprendre les dimensions du bassin expérimental utilisé par Chaplin (1984)

pour construire un bassin numérique. Les longueurs sont adimensionnées sur le diamètre du

cylindre notéD. Le bassin mesure 300D de long et la hauteur au repos du fluide est h = 8.5D,

il est représenté sur la figure 5.20. La houle est générée grâce à un batteur à piston. La paroi

gauche du bassin oscille selon le mouvement x = A sin(ωt), avec A = 0.1D. On obtient une
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h

d

ωx=Asin(   t)

Figure 5.20 Interaction entre un cylindre et des vagues.

houle de longueur d’onde λ = 15.58D, ce qui correspond à un nombre d’onde k = 0.4033. Le

cylindre circulaire est situé à 100D du piston, on note d la distance entre le haut du cylindre

et la surface libre au repos. Le nombre de Keulegan-Carpenter est alors défini de la façon

suivante :

Kc =
2πa

D
e−k(D/2+d) (5.9)

où a est l’amplitude des vagues incidentes. Ici nous avons a = 0.2D.

On utilise un maillage d’environ 36800 nœuds avec des éléments de Taylor-Hood, pour

pouvoir faire l’analyse de sensibilité. Comme nous ne disposons pas de stabilisation adaptée,

le nombre de Reynolds basé sur le diamètre du cylindre et la vitesse maximale de la houle

est de 200. Prendre une valeur plus haute pourrait causer des oscillations numériques et une

valeur plus basse pourrait causer un amortissement des vagues trop important.

5.4.1 Impact du cylindre sur la déformée de surface libre

Afin d’étudier l’impact du cylindre sur la déformée de surface libre, on prend des valeurs

de d de 1D, 1.5D et 2D. On comparera avec une simulation sans cylindre.

La figure 5.21 représente la déformée de surface libre obtenue après 30 oscillations du

batteur avec et sans cylindre pour plusieurs positions du cylindre. En amont du cylindre,

donc pour x < 100D les courbes sont confondues. Conformément aux résultats de Dean

(1948) il n’y a pas de réflexion de la houle sur le cylindre, l’onde transmise a bien la même

amplitude que l’onde non perturbée, elle est environ 2D en arrière. On constate cependant

que lorsque le cylindre se rapproche de la surface libre, donc pour d = 1D, la forme de

l’onde est changée, voir l’agrandissement figure 5.22. La figure 5.23 montre que le déphasage

augmente légèrement quand le cylindre se rapproche de la surface.



104

0 50 100 150 200 250 300
8.3

8.4

8.5

8.6

8.7

8.8

x

y 
(t

=
18

8s
)

 

 

sans
1D

(a) d = 1D

0 50 100 150 200 250 300
8.3

8.4

8.5

8.6

8.7

8.8

x

y 
(t

=
18

8s
)

 

 

sans
1.5D

(b) d = 1.5D

0 50 100 150 200 250 300
8.2

8.3

8.4

8.5

8.6

8.7

8.8

x

y 
(t

=
18

8s
)

 

 

sans
2D

(c) d = 2D

Figure 5.21 Déformée de surface libre à t = 188s.
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Figure 5.22 Forme de la surface libre pour d = 1D.
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Figure 5.23 Agrandissement d’une crête après le cylindre.
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5.4.2 Efforts sur le cylindre

Nous nous intéressons à présent aux efforts sur le cylindre. Pour le cas où d = 1.5D, on

obtient les efforts présentés sur la figure 5.24. On constate que la force verticale et la force
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Temps
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Figure 5.24 Efforts sur le cylindre pour d = 1.5D.

horizontale sont déphasées de π/2. À partir de 110s le régime permanent est établi.

On peut décomposer les efforts en série de Fourier :

Fx(t) = Fx0 +
∑

n

Fxn cos(nωt+ ϕxn) (5.10)

Fy(t) = Fy0 +
∑

n

Fyn cos(nωt+ ϕyn) (5.11)

Selon la formule de Morison (Chaplin, 1984; Molin, 2002), la composante de force horizontale

de pulsation ω se décompose en une force inertielle, en phase avec l’accélération, et une force

de trâınée, en phase avec la vitesse. On a alors :

Fx1 = ρCMπ
D2

4
U̇ +

1

2
ρCDDU |U | (5.12)

Nous calculons ces coefficients en prenant comme vitesse celle à la surface libre. Les valeurs

de CM et CD pour différentes immersions sont présentées dans le tableau 5.3. On constate

d Kc CM CD

1D 0.68 0.923 4.594
1.5D 0.56 0.779 3.565
2D 0.46 0.651 2.824

Tableau 5.3 Coefficients d’inertie et de trâınée.
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que plus le cylindre est proche de la surface libre, plus le rapport entre le coefficient de trâınée

et d’inertie devient important.

Pour chaque pulsation nω, Chaplin (1984) utilise la décomposition suivante pour les efforts

Fxn =

∞
∑

m=0

1

8
CxnmρD

3ω2Kcm et Fyn =

∞
∑

m=0

1

8
CynmρD

3ω2Kcm (5.13)

Les valeurs des coefficients mesurés Cnm sont les mêmes pour les efforts verticaux que pour

les efforts horizontaux. Pour la distance d = 1D, les conditions de simulation correspondent

au cas C testé par Chaplin (1984). Les coefficients mesurés et les forces résultantes sont

résumés dans le tableau 5.4 et comparés à nos résultats pour Fx et Fy ainsi qu’aux résultats

obtenus avec le modèle d’Ogilvie (1963). On obtient des écarts relatifs avec les expériences

de Chaplin (1984) de 5% pour le premier mode et de 13% pour le second mode. Nos résultats

sont donc relativement en accord. Notre méthode capte la circulation autour du cylindre

qui mène à des efforts plus faibles pour la première harmonique. Notons que pour notre

simulation, β = Re/Kc = 299, alors que dans les expériences de Chaplin (1984), β = 9120,

donc notre écoulement est beaucoup plus visqueux. Cependant, l’accord entre nos calculs et

les expériences peuvent s’expliquer par le fait que la circulation créée autour du cylindre est

indépendante de la viscosité selon Longuet-Higgins (1970).

On va à présent comparer les résultats obtenus avec des simulations utilisant une houle

d’Airy à la place du batteur. Ce cas est beaucoup plus simple. Le conditions aux limites pour

la vitesse correspondent à une houle d’Airy sur toutes les frontières du domaine. L’origine

du repère étant au fond, la vitesse dans le domaine de profondeur h est

u = Aω
cosh(ky)

cosh(kh)
cos(kx− ωt) (5.14)

v = Aω
sinh(ky)

cosh(kh)
sin(kx− ωt) (5.15)

Il n’y a donc pas de surface libre, le maillage est fixe. Ces simulations sont beaucoup plus

C11 C13 F1 C22 F2

Chaplin 1.99 -0.36 0.156 0.081 0.0048
Ogilvie 2.061 - 0.178 - -
Fx - - 0.1646 - 0.0056
Fy - - 0.1647 - 0.0054

Tableau 5.4 Comparaison des efforts expérimentaux et numériques.
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rapides car le régime permanent est vite établi (quelques périodes contre 20 battements si on

simule le cas complet) et on peut réduire le domaine de calcul puisque les interactions avec

les bords sont beaucoup plus petites : il n’y a pas de réflexion des vagues au bout du bassin

ni d’interaction avec le batteur. On va donc déterminer à l’aide de l’analyse de Fourier si la

simulation du cas complet est vraiment utile ou non. Le tableau 5.5 contient les coefficients

de Fourier pour les pulsations ω, 2ω et 3ω.

Conformément aux observations de Ogilvie (1963); Chaplin (1984); Guerber et al. (2010),

les forces horizontales et verticales ont des coefficients très proches. Lorsque les conditions de

Dirichlet correspondent à une houle d’Airy, les efforts de pulsation ω sont surestimés d’environ

9%. Par contre, les modes suivants sont très mal captés notamment lorsque le cylindre est

plus proche de la surface libre. Ces modes sont donc principalement liés à la déformation de

la surface libre et à l’interaction entre le cylindre et la surface. L’approximation de la surface

libre avec une houle d’Airy n’est donc valable que lorsque le cylindre est suffisamment loin

de la surface libre.

5.4.3 Analyse de sensibilité par rapport à la distance entre le cylindre et la

surface libre

On prend comme paramètre de sensibilité la position verticale du cylindre y0 et donc la

distance entre le cylindre et la surface libre (h = y0 + D/2 + d). La figure 5.25 montre la

sensibilité de la déformation par rapport au paramètre pour une valeur de d = 1D. On voit

alors que rapprocher le cylindre de la surface accentuerait la dissymétrie de la forme des

vagues observée sur la figure 5.22.

La sensibilité des efforts évolue en phase avec les efforts. On peut décomposer les sensi-

d Fx1 Fx2 Fx3 Fy1 Fy2 Fy3

1D SL 0.165 5.41 10−3 4.73 10−04 0.165 5.60 10−3 5.26 10−04

Airy 0.178 1.07 10−3 1.38 10−04 0.176 0.68 10−3 1.16 10−04

1.5D SL 0.137 1.64 10−3 1.12 10−04 0.136 1.80 10−3 1.61 10−04

Airy 0.150 0.43 10−3 6.25 10−05 0.147 0.29 10−3 1.03 10−04

Tableau 5.5 Coefficients de Fourier des efforts sur le cylindre.
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Figure 5.25 Sensibilité du déplacement vertical par rapport à la position du cylindre.

bilités en série de Fourier

SFx
(t) = Sx0 +

∞
∑

n=1

Sxn cos(nωt+ ϕSxn) (5.16)

SFy
(t) = Sy0 +

∞
∑

n=1

Syn cos(nωt+ ϕSyn) (5.17)

Il faut noter ici qu’avec cette décomposition, les coefficients Sxn et Syn ne sont pas les sensi-

bilités des coefficients Fxn et Fyn. Ces coefficients sont présentés dans le tableau 5.6 pour le

calcul complet et pour le calcul avec la houle d’Airy.

d Sx1 Sx2 Sx3 Sy1 Sy2 Sy3

1D SL 6.31 10−2 1.42 10−2 1.87 10−3 6.54 10−2 1.45 10−2 1.85 10−3

Airy 5.98 10−2 2.38 10−3 3.05 10−4 6.17 10−2 1.67 10−3 3.31 10−5

1.5D SL 5.15 10−2 3.72 10−3 2.19 10−4 5.25 10−2 3.83 10−3 2.62 10−4

Airy 5.07 10−2 6.46 10−4 6.70 10−5 5.11 10−2 5.20 10−4 4.46 10−5

2D SL 4.25 10−2 9.53 10−4 2.86 10−5 4.35 10−2 9.69 10−4 2.34 10−5

Tableau 5.6 Coefficients de Fourier de la sensibilité des efforts par rapport à la position du
cylindre.

Ces valeurs montrent que si le cylindre se rapproche de la surface libre, les efforts vont

augmenter, c’est la tendance que nous avions observée au paragraphe 5.4.2. On constate aussi

que pour d = 1D, la sensibilité des modes élevés est assez importante. Les efforts d’ordre

supérieur sont donc liés à l’interaction entre le cylindre et la surface libre.

Afin de valider le calcul de sensibilité nous allons faire un calcul de solution voisine. En

partant d’une configuration de base pour laquelle le paramètre d’intérêt est α0, on peut



110

calculer une approximation d’une variable de sortie ψ sur la configuration perturbée α0 +∆α

avec une série de Taylor du premier ordre

ψ(α0 + ∆α) ≈ ψ(α0) + ∆α
Dψ

Dα
(α0) (5.18)

Ainsi, pour les efforts, en partant de la configuration d = 1.5D, on peut rapidement

obtenir une extrapolation pour les configurations d = 1D et d = 2D. Les figures 5.26 et

5.27 permettent de comparer les extrapolations avec les valeurs exactes pour les efforts sur

le cylindre.
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Figure 5.26 Efforts recalculés et extrapolés pour d = 1D.
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Figure 5.27 Efforts recalculés et extrapolés pour d = 2D.

L’extrapolation reconstitue bien les principales caractéristiques des efforts sur la configu-

ration perturbée. Les plus grandes différences se situent au niveau de quelques crêtes car le

signal n’est pas toujours très régulier. Nous allons donc quantifier ces erreurs avec l’analyse
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de Fourier. Pour cela, on décompose les efforts et leurs sensibilités de la façon suivante :

Fx(t) = Fx0 +
∑

n

anxcos(nωt) + bnx sin(nωt) (5.19)

SFx
(t) = Sx0 +

∑

n

Saxncos(nωt) + Sbnx sin(nωt) (5.20)

Avec ces notations, on a bien Saxn = Danx/Dy0. Donc en utilisant un développement en

série de Taylor,

Fx(t, y0 + ∆y0) ≈Fx0 + ∆y0Sx0

+
∑

n

(anx + ∆y0Saxn)cos(nωt) + (bnx + ∆y0Sbnx) sin(nωt) (5.21)

≈F e
x0 +

∑

n

F e
xncos(nωt+ ϕe

xn) (5.22)

avec F e
x0 =Fx0 + ∆y0Sx0 (5.23)

F e
xn =

√

(anx + ∆y0Saxn)2 + (bnx + ∆y0Sbnx)
2 (5.24)

tan(ϕe
xn) = − bnx + ∆y0Sbnx

anx + ∆y0Saxn
(5.25)

On choisit à nouveau d = 1.5D comme référence. Les coefficients extrapolés pour les efforts

horizontaux et les coefficients d’inertie et de trâınée extrapolés sont présentés dans le tableau

5.7.

d CM CD Fx1 Fx2 Fx3

1.5D référence 0.779 3.565 0.137 1.64 10−3 1.12 10−04

1D calculé 0.923 4.594 0.165 5.41 10−3 4.73 10−04

extrapolé 0.915 4.412 0.162 3.46 10−3 2.13 10−04

erreur 0.8 % 3.9 % 1.5 % 36% 55%
2D calculé 0.651 2.824 0.113 3.73 10−4 6.95 10−05

extrapolé 0.643 2.719 0.111 5.10 10−4 6.05 10−05

erreur 1.3% 3.7% 1.8% 36% 13%

Tableau 5.7 Efforts recalculés et extrapolés à partir de la géométrie d = 1.5D.

L’erreur d’extrapolation est petite pour les termes du premier ordre (de pulsation ω). Pour

les ordres supérieurs, les écarts relatifs entre les différentes configurations sont beaucoup plus

importants : Fx1 est multiplié par 3 entre les positions d = 1.5D et d = 1D. Il n’est pas

étonnant que les erreurs relatives soient plus importantes pour ces termes. Les effets non

linéaires sont donc beaucoup plus importants pour les efforts d’ordre plus élevés, notamment
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pour les efforts de pulsation 3ω, ils augmentent fortement lorsque le cylindre se rapproche de

la surface. Malgré ces erreurs, les sensibilités permettent d’estimer correctement les termes

de premier ordre et prévoient la tendance des termes d’ordre plus élevés.

Nous pouvons aussi à partir des champs de vitesse et de vitesse de déformation sur la

configuration d = 1.5D obtenir les champs de vitesse pour les configurations d = 1D et

d = 2D. Les résultats obtenus sont présentés sur la figure 5.28 pour l’extrapolation sur la

géométrie d = 1D et sur la figure 5.29 pour la géométrie d = 2D.

(a) U d = 1.5D (b) V d = 1.5D

(c) U extrapolé d = 1D (d) V extrapolé d = 1D

(e) U calculé d = 1D (f) V calculé d = 1D

Figure 5.28 Extrapolation de d = 1.5D à d = 1D pour le champ de vitesse à t = 9.5T .
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Malgré le déplacement important, un rayon vers le haut ou vers le bas, l’extrapolation

restitue correctement l’écoulement.

(a) U d = 1.5D (b) V d = 1.5D

(c) U extrapolé d = 2D (d) V extrapolé d = 2D

(e) U calculé d = 2D (f) V calculé d = 2D

Figure 5.29 Extrapolation de d = 1.5D à d = 2D pour le champ de vitesse à t = 9.5T .
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5.4.4 Analyse de sensibilité par rapport au rayon du cylindre

Le paramètre d’intérêt est maintenant le rayon du cercle R. Pour d = 1D, la sensibilité

de la surface libre est représentée sur la figure 5.30.

Figure 5.30 Sensibilité du déplacement vertical par rapport au rayon du cylindre.

On constate que le rayon a un impact sur la forme de la surface libre et sur le déphasage.

On peut aussi procéder à l’extrapolation de l’écoulement sur une géométrie voisine. La

figure 5.31 montre le champ de vitesse sur la configuration de référence et sur la configuration

extrapolée. On constate que la forme de la surface libre est déformée par rapport à l’allure

sinusöıdale de la configuration de référence. Le fluide est aussi accéléré au dessus du cylindre.

La décomposition de Fourier des sensibilités pour l’effort horizontal est résumée dans le

tableau 5.8

d SCM
SCD

Sx1 Sx2 Sx3

1D −2.45 10−3 12.74 0.686 4.40 10−2 4.05 10−3

1.5D −6.27 10−2 7.90 0.546 1.29 10−2 9.65 10−4

Tableau 5.8 Coefficients de Fourier de la sensibilité des efforts par rapport au rayon du
cylindre.

Une augmentation du rayon provoque une augmentation des efforts d’autant plus im-

portante que le cylindre est proche de la surface libre. Les efforts d’ordre 2 et 3 semblent

prendre plus d’importance avec l’augmentation du rayon. Cependant les coefficients d’iner-

tie et de trâınée sont plus parlants. La sensibilités du coefficient d’inertie est assez faible et

négative. Par contre la sensibilité du coefficient de trâınée est positive et assez importante.

L’augmentation du rayon provoquera donc principalement une augmentation des effets de

trâınée.
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(a) U d = 1D, R = 0.5D (b) V d = 1D, R = 0.5D

(c) U extrapolé R = 0.7D (d) V extrapolé R = 0.7D

Figure 5.31 Extrapolation de dR = 0.5D à R = 0.7D pour le champ de vitesse.

Les expériences de Chaplin (1984) montrent que le coefficient d’inertie se comporte comme

CM ≈ α − βKc2. À l’aide de l’analyse de sensibilité, on peut retrouver ce coefficient β. En

effet
dCM

dKc
= −2βKc =

dCM

dR

dR

dKc
=

−R
Kc

dCM

dR
(5.26)

On trouve des valeurs de β de l’ordre de 10−2. Ces valeurs sont plus faibles que celles trouvées

par Chaplin (1984). Rappelons que les conditions ne sont pas les mêmes, Chaplin (1984) a

obtenu ces tendances en modifiant l’amplitude de la houle incidente pour faire varier le

nombre de Keulegan-Carpenter. On pourrait donc faire l’analyse de sensibilité par rapport à

l’amplitude du mouvement du batteur.

5.4.5 Conclusion

Pour ce cas, nous avons donc montré que notre méthode permet de simuler correctement

l’interaction entre un cylindre fixe et une houle incidente. Les vagues en aval du cylindre sont

déphasées. Nous avons aussi étudié les efforts sur le cylindre. Nos résultats sont en bon accord

avec les expériences de Chaplin (1984) en prédisant un effort de pulsation ω plus faible que
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la théorie potentielle. Nous avons aussi montré que la déformée de surface libre générait des

efforts de pulsation 2ω et 3ω, d’autant plus importants que le cylindre est proche de la surface

libre. Ces observations ont été confirmées par l’analyse de sensibilité. Nous avons aussi pu

valider le calcul des sensibilités avec un calcul de solution voisine. Les efforts de pulsation ω

sont alors très bien restitués. Pour les pulsations plus élevées, les phénomènes non linéaires

deviennent trop importants pour permettre une extrapolation précise.

Nous avons donc montré que notre code peut être employé dans de nombreuses configu-

rations et que les simulations visqueuses sont indispensables pour le calcul précis des efforts.

Nous avons aussi montré que les sensibilités permettent d’extrapoler l’écoulement et les ef-

forts sur des géométries voisines. Elles pourraient donc être utilisées pour le calcul de gradient

de fonctions objectifs dans un algorithme d’optimisation.
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CHAPITRE 6

CONCLUSION

Dans ce projet, nous avons développé une méthode de calcul pour les écoulements à sur-

face libre. Nous avons utilisé une formulation arbitrairement lagrangienne-eulérienne afin de

gérer les déformations du domaine fluide et donc de situer avec précision la surface libre. Pour

éliminer les oscillations numériques, nous avons mis en place une stabilisation des équations

de Navier-Stokes appropriée à la formulation ALE et tenant compte de la déformation du

maillage. Nous avons utilisé des schémas de Runge-Kutta d’ordre élevé pour l’intégration

temporelle pour un meilleur rapport entre le coût des calculs et la précision obtenue. Afin de

satisfaire la loi de conservation géométrique, nous avons adopté une formulation variationnelle

des équations de Navier-Stokes conservative et une évaluation consistante des dérivées tem-

porelles, notamment de la vitesse de maille. Ceci permet de conserver l’ordre de convergence

des schémas sur maillage déformable.

Nous avons ensuite développé les équations des sensibilités lagrangiennes sur maillage

mobile pour les équations de Navier-Stokes instationnaires. Nous avons donc dérivé d’un

point de vue lagrangien la formulation précédente par rapport à un paramètre d’intérêt. Le

point de vue lagrangien permet d’obtenir des conditions limites simples pour les conditions

de surface libre, contrairement aux méthodes eulériennes.

L’implémentation des équations a été vérifiée à l’aide d’une solution manufacturée

vérifiant des conditions de surface libre. Nous avons alors montré que la surface libre

ne perturbe pas l’ordre de convergence spatial ou temporelle. Nous avons aussi vérifié

l’implémentation de la stabilisation de type PSPG/SUPG en régime instationnaire sur mail-

lage mobile. Les termes supplémentaires n’ont pas provoqué de perte de convergence tem-

porelle avec les schémas de Runge Kutta d’ordre élevé. Notre formulation stabilisée respecte

donc la loi de conservation géométrique. Nous avons ensuite comparé nos résultats pour

un cas de sloshing avec une autre étude numérique. Nous avons obtenu des amplitudes de

ballotement similaires et des erreurs sur le volume total beaucoup plus faibles. Avec notre for-

mulation, ces erreurs convergent vers zéro avec un taux de convergence consistant avec celui

du schéma d’intégration temporelle. Cette étude a aussi permis de montrer les atouts des

schémas d’intégration de Runge Kutta d’ordre élevé. Ils fournissent une meilleure précision

que le schéma d’Euler avec cent fois moins de pas de temps. Ce gain de temps de calcul com-

pense largement l’augmentation de la taille de la matrice. Nous avons vérifié l’implémentation

des sensibilités instationnaires sur maillage mobile. Notre méthode permet d’avoir la même
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précision sur les sensibilités que sur l’écoulement.

Nous avons ensuite comparé les performances de notre méthode avec des méthodes po-

tentielles sur des cas adaptés, c’est à dire lorsque l’écouelement est irrotationnel et que la

viscosité a un rôle minime. Nous avons retrouvé des résultats tout à fait comparables. Nous

avons ainsi montré que notre approche permet de simuler la propagation d’ondes solitaires et

de générer une houle et donc de simuler un bassin expérimental. Notre méthode permet en

plus de prendre en compte les effets visqueux, ce qui mène à des résultats plus proches des

observations expérimentales, comme on a pu le voir avec la propagation d’une onde solitaire.

Nous avons ensuite testé les limites de la méthode en terme de déformation de maillage.

De grandes déformations sont supportées mais le domaine d’application de la méthode reste

cependant limité à des déformations raisonnables de la surface libre. Nous avons enfin ap-

pliqué la méthode pour le calcul des efforts générés par la houle sur un cylindre circulaire.

Nous avons montré l’importance des effets visqueux. De plus, la simulation complète de la

surface libre est nécessaire pour capter les efforts d’ordre 2 et 3. On pourrait compléter l’

analyse en déterminant à partir de quelles valeurs des paramètres de définition (amplitude

de la houle, profondeur du cylindre, etc... ) la déformée de surface libre n’a plus d’impact du

les efforts, ce qui permettrait de simplifier les simulations en utilisant une houle d’Airy.

Nous avons ensuite validé le calcul des sensibilités. L’extrapolation de l’écoulement sur une

géométrie voisine permet de reconstruire assez fidèlement les caractéristiques de l’écoulement

perturbé. Les erreurs, entre les efforts extrapolés à l’aide des sensibilités et recalculés, sont

faibles malgré des changements importants de la géométrie. Les sensibilités sont donc un

outil performant pour étudier la physique des phénomènes mis en jeu. De plus, le calcul

précis des sensibilités permet de calculer rapidement les données requises par les algorithmes

d’optimisation. Rappelons seulement que cette méthode ne s’applique qu’aux paramètres

n’affectant pas la fréquence des phénomènes observés afin que les sensibilités restent bornées.

On pourrait dans de futures applications combiner le calcul de surface libre avec le calcul

d’interaction fluide-structure pour calculer, par exemple, les efforts générés par la houle sur

une paroi verticale élastique.

De nombreuses améliorations peuvent être apportées à la méthode. D’un point de vue

numérique, pour le calcul de la surface libre, on pourrait intégrer à la disposition des points

sur la surface une contrainte sur le volume total afin d’assurer la conservations de la masse

exactement. Ensuite, il faudrait développer une stabilisation en Reynolds pour les éléments

de Taylor-Hood. On pourrait alors les utiliser à plus haut Reynolds et avoir une meilleure

précision spatiale qu’avec les éléments P1-P1. Le champ d’application des sensibilités serait

élargi si on disposait d’une stabilisation appropriée pour des calculs à plus hauts Reynolds.

La méthode pourrait aussi être facilement transposée de 2 dimensions en 3 dimensions.
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D’un point de vue plus pratique, des méthodes de déformation de maillage plus per-

formantes permettraient d’élargir le champ d’application de la méthode. On pourrait aussi

ajouter des conditions de frottement (par exemple des conditions de Navier) pour une si-

mulation plus réaliste du mouvement de la surface libre sur une paroi solide. Ajoutée à des

conditions de tangence du pseudo-solide sur des surfaces courbes, cette amélioration per-

mettrait de simuler l’interaction entre des objets, flottants ou non, de forme complexe avec

la surface libre. Ceci permettrait de simuler des digues flottantes. Enfin, dans le cadre de la

simulation de la houle, des couches absorbantes au bout du bassin permettraient de limiter la

réflexion de la houle contre la paroi et donc de mieux simuler un milieu infini. On disposerait

ainsi d’un outil permettant de simuler un plus large spectre d’application.
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Chesnay.

DETTMER, W. et PERIC, D. (2006a). A computational framework for fluid-structure

interaction : Finite element formulation and applications. Computer Methods in Applied

Mechanics and Engineering, 195, 5754–5779.

DETTMER, W. et PERIC, D. (2006b). A computational framework for free surface fluid

flows accounting for surface tension. Computer Methods in Applied Mechanics and Engi-

neering, 195, 3038–3071.

DHATT, G. et TOUZOT, G. (1981). Une présentation de la méthode des éléments finis.
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GAMMACURTA, É., ETIENNE, S., PELLETIER, D. et ILINCA, F. (2009). Sensitivity

analysis of unsteady rans flows. 19th AIAA Computational Fluid Dynamics Conference.

San Antonio, TX.

GAO, Z., MA, Y. et ZHUANG, H. (2007). Shape optimization for stokes flow. Applied

Numerical Mathematics, 34, 99–112.

GEJADZE, I. Y. et COPELAND, G. J. M. (2005). Adjoint sensitivity analysis for fluid flow

with free surface. International Journal for Numerical Methods in Fluids, 47, 1027–1034.

GIANNAKOGLOU, K. et PAPADIMITRIOU, D. (2008). Adjoint methods for shape opti-

mization. Optimization and Computational Fluid Dynamics. Springer.

GOPALA, V. R. et VAN WACHEM, B. G. M. (2008). Volume of fluid methods for

immiscible-fluid and free-surface flows. Chemical Engineering Journal, 141, 204–221.

GRENIER, N., ANTUONO, M., COLAGROSSI, A., LE TOUZE, D. et ALESSANDRINI,

B. (2009). An hamiltonian interface sph formulation for multi-fluid and free surface flows.

Journal of Computational Physics, 228, 8380–8393.

GUERBER, E., BENOIT, M., GRILLI, S. T. et BUVAT, C. (2010). Modeling of fully non-

linear wave interactions with moving submerged structures. 20th International Offshore and

Polar Engineering Conference, ISOPE-2010, June 20, 2010 - June 25, 2010. International

Society of Offshore and Polar Engineers, vol. 3 de Proceedings of the International Offshore

and Polar Engineering Conference, 529–536.

HAIRER, E. et WANNER, G. (2002). Stiff and differential-algebraic problems. Solving

ordinary differential equations / E. Hairer, 2. Springer, Berlin [u.a.].

HAUG, E. J., CHOI, K. K. et KOMKOV, V. (1986). Design Sensitivity Analysis of Struc-

tural Systems. Academic Press, New York.

HIRT, C. W., AMSDEN, A. A. et COOK, J. L. (1997). An arbitrary lagrangian-eulerian

computing method for all flow speeds (reprinted from the journal of computational physics,

vol 14, pg 227-253, 1974). Journal of Computational Physics, 135, 203–216.

HIRT, C. W. et NICHOLS, B. D. (1981). Volume of fluid (vof) method for the dynamics

of free boundaries. Journal of Computational Physics, 39, 201–225.

HRISTOVA, H., ETIENNE, S., PELLETIER, D. et BORGGAARD, J. (2005). A continous

sensitivity equation method for time-dependent incompressible laminar flows. International

Journal for Numerical Methods in Fluids, 50, 817–844.

HUERTA, A. et LIU, W. K. (1988). Viscous flow with large free surface motion. Computer

Methods in Applied Mechanics and Engineering, 69, 277–324.



125

HUGHES, T. J. R., LIU, W. K. et ZIMMERMANN, T. K. (1981). Lagrangian-eulerian

finite element formulation for incompressible viscous flows. Computer Methods in Applied

Mechanics and Engineering, 29, 329–349.

IBRAHIM, R. A. (2005). Liquid sloshing dynamics : theory and applications. Cambridge

University Press, Cambridge, U.K.
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