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ARTICLE

Biosourced quinones for high-performance
environmentally benign electrochemical capacitors
via interface engineering
Abdelaziz Gouda 1,3✉, Alexandre Masson1, Molood Hoseinizadeh1, Francesca Soavi 2 & Clara Santato 1✉

Biosourced and biodegradable organic electrode materials respond to the need for sustain-

able storage of renewable energy. Here, we report on electrochemical capacitors based on

electrodes made up of quinones, such as Sepia melanin and catechin/tannic acid (Ctn/TA),

solution-deposited on carbon paper engineered to create high-performance interfaces. Sepia

melanin and Ctn/TA on TCP electrodes exhibit a capacitance as high as 1355 mF cm−2

(452 F g−1) and 898 mF cm−2 (300 F g−1), respectively. Sepia melanin and Ctn/TA sym-

metric electrochemical capacitors operating in aqueous electrolytes exhibit up to 100%

capacitance retention and 100% coulombic efficiency over 50,000 and 10,000 cycles at

150mA cm−2 (10 A g−1), respectively. Maximum power densities as high as 1274mW cm−2

(46 kW kg−1) and 727mW cm−2 (26 kW kg−1) with maximum energy densities of

0.56 mWh cm−2 (20Wh kg−1) and 0.65 mWh cm−2 (23Wh kg−1) are obtained for Sepia

melanin and Ctn/TA.
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Environmental concerns related to global warming necessi-
tate migration from fossil fuel energy to renewable energy.
However, the most promising renewable energy sources,

sun and wind, are intermittent and dependent on predictable but
uncontrollable meteorological phenomena1. Thus, the migration
in energy sources has to be accompanied by the development of
electrical grids and/or energy storage facilities. In addition, the
increased use of electric vehicles and portable electronic devices
and the development of the Internet of Things require low-cost
and sustainable power sources2,3.

Energy storage is recognized as the key technology for a dec-
arbonized economy by the European Commission Energy
Roadmap 20504. Commercially available electrochemical energy
storage devices often make use of electrode materials that are
produced by processes or include materials that are costly and
have dramatic environmental impacts1,5–7. The recent Batteries
Europe Strategic Research Agenda stresses that “future research
and development activities on batteries must address environ-
mental sustainability by developing methodologies and technol-
ogies to optimize battery production, minimize resource and
energy use, and strive to achieve the lowest possible environ-
mental footprint of batteries”8.

Despite having about ten times less energy density than bat-
teries, supercapacitors can deliver hundred times more power
density and perform thousand times more charge-discharge high-
rate cycles than batteries. They are rapidly recharged and find
applications where peak power is required: ignition systems,
emergency doors in aircrafts, power grids to improve the lifespan
of storage systems by smoothening power fluctuations, regen-
erative braking in vehicles, wearable electronics, space applica-
tions, and in vivo medical devices9–12.

Electrochemical double layer capacitors (EDLCs) are the most
common electrochemical capacitors (supercapacitors). Carbon is
widely used for EDLCs for the abundance, low cost, high surface
area, and conductivity of some of its forms13. EDLCs store/deliver
charge by a rapid electrostatic process. The charge storage cap-
ability of carbon can be increased in pseudosupercapacitors by
depositing redox-active materials that undergo fast and reversible
Faradic processes. As EDLCs, pseudosupercapacitor electrodes
provide box-shaped voltammetries and triangular galvanostatic
charge/discharge profiles (as opposed to battery-like electrodes
that feature voltammetric peaks and galvanostatic charge/dis-
charge profile plateaus)14–19.

The redox activity of quinone-based molecules, such as melanins,
lignin, and tannins, permits higher charge storage performance
through pseudocapacitance in supercapacitors. Quinone and qui-
none derivatives have been exploited to enhance the charge storage
capacity of carbon electrodes20–23. In aqueous solutions, quinones
undergo two-electron, proton-coupled electron transfers24–29. Bio-
sourced, quinone-based organic electrode materials operating in
aqueous electrolytes represent a promising option for next-
generation sustainable energy storage devices (Supplementary
Table 1, portion on biosourced quinone-based materials). Poly-
anthraquinone/carbon electrodes in 0.5M LiCl4 in acetonitrile
exhibit specific capacitance of up to 650 F g−1 with 88% capacitance
retention over 1000 cycles; corresponding asymmetric super-
capacitors making use of a second electrode based on graphene
feature energy density up to 45.5Wh kg−1 and power density up to
21.4 kWkg−120. Electrodes based on polydopamine on functiona-
lized carbon cloth feature specific capacitance of 617 mF cm−2

(626 F g−1) in PVA-H2SO4 electrolyte, with cycling stability of 81%
over 10,000 cycles; symmetric supercapacitors built from these
electrodes exhibit maximum energy and power density of
11.7Wh kg−1 and 6.4 kWkg−1, respectively30. Carbonized
chitosan-amino acid gel supercapacitors show maximum specific
capacitance of ca. 478 F g−1 in 6M KOH with 100% cycling stability
after 100,000 cycles, and 30Wh kg−1 and 225Wkg−1 maximum
energy and power density, respectively31. Pyrolyzed benzoquinone-
amine supercapacitors show maximum specific capacitance of ca.
360 F g−1 in 1M H2SO4 with 90% cycling stability after 100 000
cycles, and 18.2Wh kg−1 and 300W kg−1 maximum energy and
power density, respectively22. Perylene diimide and hexaaza-
trinaphthylene (PHATN)-based electrodes exhibit a specific capa-
citance of 689 F g−1 in 6M KOH. An asymmetric electrochemical
capacitor from PHATN and activated carbon shows 100% Cou-
lombic efficiency and 50% capacity retention after 10 000 cycles at
20 A g−116.

Unfortunately, issues such as high contact resistance at the
quinone/carbon interface in pseudosupercapacitors lead to poor
rate response (loss in performance at higher current densities)
and short cycling stability, thus hindering the commercial
development of the devices27,29,30,32. Therefore, the engineering
of such interfaces is deemed imperative.

Eumelanin is a quinone-based biomacromolecule belonging to
the melanin family. Sepia melanin (indicated as Sepia melanin or
sepia from here on) is a natural eumelanin extracted from the ink

Fig. 1 Schematic representation of quinone redox forms. a Redox forms of the building blocks of eumelanin: 5,6-dihydroxyindole (DHI) and 5,6
dihydroxyindole-2-carboxylic acid (DHICA). R is −H in DHI and −COOH in DHICA. b Redox forms from catechol to catequinone for catechin molecule.
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sac of cuttlefish (Sepia officinalis)33,34. It features fascinating
properties such as redox activity, strong broadband UV-visible
absorption, metal-binding affinity, hydration-dependent electrical
response, possible electronic transport, and good thermal and
photo stability35,36. Our group investigated the biodegradability
in industrial compost conditions of eumelanin for sustainable
(green) organic electronics and their powering elements37.

Eumelanin is made of two main building blocks, 5,6-dihy-
droxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid
(DHICA), coexisting in different redox states (Fig. 1a). The redox
activity of eumelanin combined with its capability to reversibly
bind multivalent cations constitute the foundation for the use of
eumelanin in energy storage systems29,38. Eumelanin-based
electrodes have been reported for flexible micro supercapacitors,
light-assisted supercapacitors, and secondary Na+ and Mg2+

batteries28,29,39–43. We studied eumelanin aqueous super-
capacitors operating at different pH values29,39,40. Our studies
reported relatively low specific capacitance values (up to 5.6
mF cm−2), attributable to the low electronic conductivity of
eumelanin and high contact resistance at the eumelanin/current
collector interface.

Tannins can easily be extracted from a wide range of natural
precursors27,44–48. Tannins have been used since antiquity in
leather treatment and wine production27,49,50. A wide variety of
tannins, particularly tannic acid (TA), have been used as electrode
materials for supercapacitors51 and cathodes for lithium-ion
batteries52, owing to their redox properties (reversible oxidation
of the catechol group into a quinone, Fig. 1b). TA has also been
used to improve the capacitance of polydopamine-coated elec-
trodes, using the interactions between Fe3+ and TA to create
strong and durable metal-phenol bonds for flexible carbon-based
supercapacitors53. Moreover, the hydrogen-bonding capability of
TA has been exploited to use it as a small-molecule binder to
improve the stability of silicon anodes in Li-ion batteries54 and
also to enhance the mechanical strength of carbon nanotubes
(CNT) and reduced graphene oxide (r-GO) electrodes for flexible
supercapacitor applications51,55.

The great diversity of the tannin family is a double-edged sword,
on the one hand giving a wide range of candidate molecules and
sources but on the other making it more difficult to find the optimal
solution for supercapacitor applications. Catechin (Ctn) is a member
of this family as a part of the condensed tannins branch (macro-
molecules composed of smaller phenolic components)49. It has been
reported that the use of hydrolysable chestnut bark tannins and
polypyrrole (ppy) greatly increases the capacitance (from 100 F g−1

for ppy alone to 370 F g−1 for the ppy-tannin composite) of a car-
bonized wood electrode through simple galvanostatic deposition of
tannins and ppy in aqueous solution27.

Here, we report on environmentally friendly and high-
performance pseudosupercapacitors based on chemically engi-
neered carbon modified by solution-processing with two quinone
materials, namely Sepia melanin and catechin, and operating in a
mild aqueous electrolyte. Brunauer-Emmett-Teller (BET) surface
area measurements, scanning electron microscopy (SEM), X-ray
diffraction (XRD), Raman spectroscopy, and X-ray photoelectron
spectroscopy (XPS) were used to investigate the surface area,
morphology, and chemistry of the electrode materials. Cyclic
voltammetry, galvanostatic charge/discharge, and electrochemical
impedance spectroscopy were performed to study the electro-
chemical behavior of the electrodes and characterize the perfor-
mance of supercapacitors based thereon.

Results and discussion
A key component in our strategy for environmentally benign,
high-performance energy storage is the engineering of the

quinone/carbon interfaces through the modification of the carbon
surface.

Morphological and chemical characterization
CP and TCP. We treated carbon paper (CP) using a two-step
chemical method (18M H2SO4/16M HNO3 (3:1 v/v)) and 7M
(NH4)2HPO4 salt, in controlled temperature conditions19,56.

SEM was used to investigate the surface morphology of CP,
treated carbon paper (TCP) and biosourced quinones (sepia or
catechin) on TCP. SEM images of CP and TCP show surface
grooves (Fig. 1a, b); long whiskers are observable for TCP,
imparting a relatively coarse surface for better biosourced
material hosting.

To study the wettability of carbon with respect to aqueous
electrolytes, we performed contact angle (wetting angle) measure-
ments. CP exhibits a contact angle of about 133°, typical of a
hydrophobic surface (inset of Fig. 2a and Supplementary Video 1).
On the other hand, water droplets rapidly disappear on TCP,
indicating that the treatment results in a hydrophilic surface
(Supplementary Video 2).

To gain insight into surface area and pore size distribution, we
performed N2 adsorption-desorption isotherm measurements using
BET and BJH methods, respectively. TCP exhibits larger N2

adsorption compared to CP: the surface area increases from 0.4
m2 g−1 to 43.0 m2 g−1 and the pore volume increases from 6 ´ 10�4

cm3 g−1 to 2:0 ´ 10�3 cm3 g−1 (Supplementary Table 2). The
adsorption isotherm of TCP shows a hysteresis loop, attributable to
capillary condensation (Fig. 2d). In addition, the increase of N2

adsorption at high pressure suggests the co-existence of micro-
(<2 nm), meso- (2–50 nm), and macro-pores (>50 nm)57,58. The
pore size distribution analysis of TCP reveals a large majority of
micropores (<2 nm) and mesopores (Fig. 2e). Pore diameters are
primarily in the range of 1–4 nm, suitable for adsorption of hydrated
SO4

2– (7.33 Å) and Na+ (3.59 Å) ions (inset Fig. 2e)59. The carbon
architecture with porosities at different scales exhibits multiple
advantages for energy storage: micropores provide active sites for ion
adsorption and charge accumulation, mesopores provide a facile
pathway for ion transport to minimize the capacitance fading at large
current densities, and macropores serve as ion-buffering reservoirs
that ensure ion availability for transport57,58.

EDX mapping shows the presence of O, N, S, and P on TCP,
differently from CP, on which is shown only the presence of C
with very small traces of O and N (Fig. 2c and Supplementary
Fig. 1d). To further investigate the chemical effects of the
treatment on carbon paper, XPS spectra were collected too
(Supplementary Note 1, Supplementary Fig. 2 and Supplementary
Table 3).

XRD spectra of CP and TCP show the characteristic graphitic
peaks (002) located at 25.5° and (004) located at 54°
(Supplementary Fig. 3a). CP shows a higher degree of
graphitization than TCP through a more intense (002) peak
and a decreased (002) interplanar distance (about 3.45 Å for CP
and 3.49 Å for TCP)60. The lower graphitization degree of TCP
could be attributed to the chemical surface treatment.

In addition, Raman spectra of CP and TCP show a graphitic-
band and defect-band located at 1580 and 1350 cm−1, respec-
tively (Supplementary Fig. 3b). A higher degree of disorder is
observed for TCP with respect to CP, as TCP has a higher ID/IG
ratio (0.88 for TCP and 0.39 for CP), attributable to the chemical
treatment.

Sepia and Tannins on Carbon. SEM images obtained from sepia
on TCP samples revealed dense spherical sepia aggregates
(Fig. 3a, c)61. Since SEM images showed that catechin was not
distinguishable from TCP (inset Fig. 3b), we stained the catechin
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Fig. 2 Morphology, elemental composition, surface area and pore size distribution of CP and TCP. SEM images: top view of (a) CP, (b) TCP, (c) EDX
mapping of O, N, S, and P elements for TCP at 5 keV, (d) N2 adsorption/desorption isotherms for carbon paper (CP) and treated carbon paper (TCP), and
(e) pore size distribution: total pore volume, total pore area, and pore diameter of TCP. Inset Fig. 1e: micropore and mesopore distributions of TCP.

Fig. 3 SEM images of quinone-based species on TCP. Top view of (a) sepia, (b) silver-stained catechin on TCP while (c) and (d) are tilted, zoomed-in
views of samples in (a) and (b) at 5 keV. Inset (Fig. 4b) is the top-view image of unstained catechin on TCP.
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with silver nitrate solution (Fig. 3b)62. High magnification images
showed a heterogenous distribution of silver nanoparticles on
TCP as a result of chemical reduction of silver cations by catechin
molecules (Fig. 3d)44,63. It is worth noting that neither CP nor
TCP show any bright regions attributable to the presence of silver
after exposure to silver nitrate solution (Supplementary Fig. 1).

XPS survey spectra of sepia and Ctn on TCP clearly confirm
the presence of biosourced quinones on TCP through the
coexistence of carbon (C 1 s), oxygen (O 1 s), nitrogen (N 1 s),
and sulfur (S 2 s and S 2p) (Supplementary Note 2, Supplemen-
tary Figs. 4 and 5).

Electrochemical Characterization in 3-Electrode Cell Configura-
tion. The electrochemical behavior of CP, TCP, and sepia or Ctn
on CP and TCP was studied through cyclic voltammetry and
electrochemical impedance spectroscopy in 0.5 M Na2SO4 aqu-
eous electrolyte. The CVs show a quasi-box-shaped CV and an
electrochemical stability window of ca. 2 V (no obvious oxygen or
hydrogen evolution is observable at the electrodes, Fig. 4a–c). The
wide electrochemical window in a mild-pH aqueous electrolyte
can be tentatively ascribed to several factors, such as low [H+]
and [OH−], water molecules engaged in a strong solvation of ions
such as Na+, and carbon surface partly covered by adsorbed ions
of the electrolyte. This contributes to the increased overpotential
for decomposition of the water molecules at the surface of the
electrode59,64.

TCP shows better stability in the cathodic potential region and
two orders of magnitude higher voltammetric current compared to
CP (Fig. 4a, Supplementary Fig. 6a, b). At 5mV s−1, TCP shows an
areal capacitance of ca. 500 mF cm−2 compared to 1.2 mF cm−2

for CP (Fig. 4d). Several factors could explain why the treatment
improves the electrochemical performance. Besides increased

surface area and suitable porosity, the heteroatoms (O, N, S, and
P) bring in a polar electrode surface with enhanced electrolyte
wettability (i.e. ion adsorption) and possible Faradic (charge
transfer) processes at the TCP surface65,66.

Electrochemical impedance spectroscopy (EIS) not only
confirms the capacitance enhancement for TCP with respect to
CP but also sheds light onto the aforementioned Faradic
processes. EIS plots were fitted according to the Randles
equivalent circuit (inset of Fig. 4e). TCP exhibits a small
semicircle as a result of Faradic processes attributable to the
presence of the heteroatoms; this semicircle is absent for CP
(Supplementary Fig. 6c). The charge transfer resistance, quanti-
fied from the diameter of the semicircle, is 0.3 ohms. Further, the
high-frequency intercepts of the Nyquist plots of CP and TCP are
different (Supplementary Fig. 6c); such intercepts are affected by
the electronic resistance of the working electrode, bulk electrolyte
resistance and cell geometry (distance between the reference and
working electrode). TCP features a more vertical low-frequency
diffusion line with a lower imaginary impedance component than
that of CP (8 Ohms vs. 16.5 kOhms) (Supplementary Fig. 6c).
This reflects the better capacitive behavior of TCP
compared to CP.

After the electrochemical characterization of CP and TCP
electrodes, we proceeded to the characterization of electrodes
made of quinone-based biosourced materials on CP and TCP.

CV curves of sepia on TCP, obtained at 5 mV s−1, show about
one order of magnitude higher voltammetric current than that for
sepia on CP and redox features located at about 0.16 and 0.09 V
vs. Ag/AgCl (Fig. 4a and Supplementary Fig. 7b). Those features
are attributable to the hydroquinone-quinone redox couple
(Fig. 1a)67. Sepia on CP features broad redox features at about
0.11 and 0.02 V vs. Ag/AgCl (inset of Supplementary Fig. 7b).

Fig. 4 Electrochemical characterization of bare CP, bare TCP, and sepia on TCP and Ctn/TA on TCP. (a) Cyclic voltammetry at 5 mV s−1. Cyclic
voltammetry at different scan rates of (b) sepia on TCP, (c) Ctn/TA on TCP. (d) Capacitance vs scan rate for the aforementioned samples, obtained from
cyclic voltammetry. (e) Nyquist plot for sepia and Ctn/TA on TCP in the frequency range 4.25 × 103−10−1 Hz. Inset: corresponding simplified simulated
circuit where Ru is the uncompensated resistance, Rct is the charge-transfer resistance, Q is the constant phase element, and W is the Warburg element.
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Catechin on TCP shows redox features at ca. 0.50 and 0.45 V
vs. Ag/AgCl (Fig. 4a and Supplementary Fig. 8b), also attributable
to the hydroquinone-quinone redox couple (Fig. 1b)68. These
features are consistent with those observed in other quinone-
based plant varieties such as bark tannins27. Catechin redox peaks
are also observable on CP (Supplementary Fig. 8c). The limited
cycling stability of catechin, due to its high solubility in aqueous
electrolytes, prompted us to mix catechin with tannic acid, a
tannin-based binder with high hydrogen-bonding capability54.
After mixing, the redox activity of tannic acid does not
significantly affect the redox activity of catechin (Supplementary
Fig. 8g, obtained at 5 mV s−1).

The CV curves of sepia and Ctn/TA on TCP at different scan
rates (5 to 100 mV s−1) confirm the capacitive behavior of the
electrodes (Fig. 4b, c) and suggest efficient electronic coupling
between biosourced quinones and TCP30,67. EIS of sepia and Ctn/
TA on TCP confirms enhanced capacitance and decreased charge
transfer resistance compared to their deposition on CP (Fig. 4e,
Supplementary Figs. 7c and 8h).

The deposition of the biosourced materials on TCP had a
significant effect on the capacitance and the charge-transfer
resistance22. The capacitance of sepia on TCP increased from 38
to 1355 mF cm−2 (13 to 452 F g−1, based on the mass of quinone-
based material) with respect to CP, while the charge-transfer
resistance decreased from 4 to 0.15 ohms cm−2 (Supplementary
Fig. 7h, i).

For Ctn/TA, the capacitance on TCP increased from 21 to 898
mF cm−2 (7 to 300 F g−1, based on the mass of quinone-based
material) compared to CP, whereas charge-transfer resistance
decreased (from 10.8 to 1.4 ohms cm−2) (Supplementary Fig. 8k, l).

Both sepia and Ctn/TA on TCP maintain good rate
capabilities, achieving 670 mF cm−2 (223 F g−1) and 680 mF
cm−2 (227 F g−1), respectively, at 100 mV s−1, compared to 1355
mF cm−2 (452 F g−1) and 898 mF cm−2 (300 F g−1) at 5 mV s−1,
respectively (Fig. 4d). This performance can be attributed to facile
charge transfer, in turn due to effective electronic coupling
between TCP and sepia or Ctn/TA, facile ion transport and
availability of an ion buffering reservoir within the porous
architecture of TCP. These results confirm the success of interface
engineering by treating carbon prior to deposition of the
quinones to boost energy storage.

Our biosourced quinones on CP show a Faradic (pseudoca-
pacitance) contribution of about 95% to the total capacitance with
respect to non-Faradic (electric double layer). Upon deposition
on TCP, sepia and Ctn/TA show a non-Faradic contribution
(electric double layer) of about 73% and 85%, respectively, to the
total capacitance with respect to Faradic (pseudocapacitance)69.
This confirms the hybrid nature of our electrode materials and
explains their interesting electrochemical properties (Supplemen-
tary Note 3, Evaluation of the Faradic and non-Faradic
capacitance contribution, Supplementary Fig. 9).

It is worth noting that mixing biosourced quinones with
common conductive additives (e.g., conductive carbon super P
(SP) and reduced graphene oxide (r-GO)) did not bring any
significant performance storage improvement (Supplementary
Note 4, Supplementary Figs. 10, 11, and 12), differently from
depositing the biosourced quinones without additives on TCP.

Characterization of symmetric devices based on treated carbon and
biosourced quinones on treated carbon paper (TCP). After per-
forming voltammetric and impedance studies on electrode
materials, we assembled symmetric supercapacitors and pro-
ceeded to their characterization to examine the suitability of our
electrode materials for energy storage applications.

The CV curves of TCP supercapacitors clearly show lower
voltammetric currents and lower coulombic efficiency (ca. 99%)

compared to sepia and Ctn/TA on TCP (Fig. 5a and
Supplementary Fig. 13d). The voltammograms of sepia and
Ctn/TA on TCP devices at different scan rates are typical of
pseudocapacitive supercapacitors (Fig. 5b, c).

The supercapacitors should be able to withstand a voltage
window of 2 V, based on the CV curve in the three-electrode cell
configuration. However, for long-term stability of the device, we
shrank the operating voltage to 1.6 V to limit possible cycling-
induced overoxidation/overreduction of the active material and to
ensure reversible charging/discharging processes at high current
density (Supplementary Fig. 13a–c). Galvanostatic charge/dis-
charge curves of sepia and Ctn/TA supercapacitors at high
current density (150 mA cm−2 i.e. ~10 A g−1) feature a nearly
triangular shape, indicating reversible pseudocapacitive behavior
with excellent coulombic efficiency (ca. 100%) (Fig. 5d–e and
Supplementary Fig. 14).

The specific capacitance decreases with increasing current
density for both sepia and Ctn/TA supercapacitors. This is
attributable to ion diffusion-limited transport at higher current
densities (Fig. 5f). Nevertheless, we observed that both sepia and
Ctn/TA supercapacitors work at high specific currents (30 to
150 mA cm−2 ~2 to 10 A g−1), with a decrease in areal
capacitance of less than 25%. The areal capacitance of the
symmetric supercapacitors based on Sepia on TCP decreases with
current density more rapidly than that one of those based on Ctn/
TA on TCP (Fig. 5f). The spherical Sepia nano-aggregates could
limit the access of ions to the carbon’s pores. Such a limitation is
not expected to be present in the case of the small molecules Ctn
and TA deposited on carbon’s surface.

Sepia and Ctn/TA supercapacitors feature remarkable cycling
stabilities (ca. 100% capacitance retention) and coulombic
efficiencies (ca. 100%) over 50,000 cycles for Sepia and 10,000
cycles for Ctn/TA at 10 A g−1 (Fig. 6a, b).

Galvanostatic charge/discharge cycles of sepia and Ctn/TA
supercapacitors feature a small potential drop at the beginning of
the discharge (4V , ca. 21 and 29 mV, respectively, at 0.5 A g−1),
corresponding to a low equivalent series resistance (ca. 1 and 2
ohm cm−2, Fig. 5d, e and Supplementary Fig. 15). Ragone plots of
sepia and Ctn/TA supercapacitors illustrate the practical energy
densities and power densities of the devices at different values of
current density (Fig. 6c). These devices exhibit noteworthy
maximum energy densities of ca. 0.56 and 0.65 mWh cm−2 ~20
and 23W h kg−1 and maximum power densities of ca. 1274 and
727 mW cm−2 ~46 and 26 kW kg−1, respectively. Specific values
refer to the total mass (current collector and quinone-based
material, for the whole device). These figures of merit are rarely
obtained with organic biosourced materials without a conductive
additive or fluorinated binder (please refer to the literature review
reported in Fig. 6c and Supplementary Table 1). They are
attributed to the increased surface area, improved wettability, and
enhanced conductivity of sepia and Ctn/TA on TCP electrode
material that make the surface area of the electrode easily
accessible to electrolyte ions.

Conclusions
Biodegradable, biosourced redox-active organic quinone-based
materials deposited on carbon, operating in mild-pH aqueous
electrolytes, represent a promising option for resilient green
energy storage.

Unfortunately, issues such as high contact resistance at the
organic material/carbon interface often lead to poor rate response
and short cycling stability. We show that engineering such an
interface, e.g., by chemically treating carbon paper prior to
deposition of the quinone-based material, improves rate response
and cycling stability by bringing about increased surface area,
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suitable porosity, and improved aqueous electrolyte wettability of
the carbon surface. Further, the O, N, S, and P surface-doping of
carbon, after the chemical treatment, imparts Faradic activity to
the carbon surface that parallels the typical electrostatic activity of
carbon. The deposition of two biosourced quinone-based mate-
rials, Sepia melanin and catechin/tannic acid, on treated carbon
paper (TCP) results in the improvement of capacitance by a
factor of two to three with respect to bare TCP without requiring
any conductive additive or toxic binder. Tannic acid was intro-
duced as a binder with hydrogen-bonding capability in order to
limit the solubility of catechin in aqueous electrolytes.

Symmetric electrochemical capacitors were fabricated with
Sepia melanin (extracted from cuttlefish ink) and catechin/
tannin acid. Sepia melanin reached capacitance of 1355 mF
cm−2 (452 F g−1), 100% coulombic efficiency, and ca. 100%
capacitance retention after 50 000 cycles. Ctn/TA reached
capacitance of 898 mF cm−2 (300 F g−1), 100% coulombic
efficiency, and about 100% capacitance retention after 10 000
cycles. These devices exhibited noteworthy maximum energy
and power densities: 0.56 and 0.65 mW h cm−2 (20 and 23W h
kg−1, based on the total mass of the current collector and
quinone-based material for the whole device) and 1274 and
727 mW cm−2 (46 and 26 kW kg−1) for sepia and catechin/
tannic acid, respectively.

Our work paves the way to high-performance sustainable
electrochemical capacitor electrodes based on biosourced and
biodegradable organic materials. We are currently investigating
other organic materials extracted from natural sources to
demonstrate the universality of our interface engineering
approach. Mechanically robust, environmentally friendly, and
biodegradable supercapacitors making use of hydrogels, instead
of liquid electrolytes, are currently under investigation.

Methods
Treatment of carbon paper. Carbon paper (CP) was purchased from Fuel Cell
Store (Spectracarb 2050A-1550, 10 mils, plane electrical resistivity of 5.4 mΩ cm,
composed of multiple plies of graphitized resin-bonded carbon fibers). Carbon
paper was cut in 5-cm-by-0.5-cm rectangular pieces, cleaned sequentially in
anhydrous ethanol (Commercial Alcohols, Ontario, Canada) and acetone (Hon-
eywell, VLSI, 100%) in an ultrasonic bath at 40 kHz (Eumax-4L), and dried under
vacuum for 30 min. at 60˚C. The cleaned carbon was activated through a two-step
oxidative treatment. First, it was sonicated at 40 kHz for 2 h in a mixed acid
solution (30 mL H2SO4 (Sigma-Aldrich ACS reagents 95%–98%): 10 mL HNO3

(16M Fischer Chemical, ACS plus)) and placed, in the same solution, in an
autoclave for a thermal treatment of 20 min. at 120˚C followed by cooling to room
temperature. Second, the previously treated carbon was rinsed with deionized water
(MilliQ water, 18.2 MΩ m) and placed in an autoclave for a thermal treatment of
24 h at 180˚C in a 7 M (NH4)2HPO4 (Sigma-Aldrich, ACS reagents >98%) satu-
rated solution. After cooling to room temperature in the autoclave, the treated
carbon was rinsed with deionized water and dried under vacuum for 6 h at 60˚C to
produce what we indicate as treated carbon paper (TCP).

Electrode preparation. Sepia melanin was extracted from the ink sac of the cut-
tlefish Sepia officinalis (commercially available in the fish market) then purified and
ground into a fine powder70. Catechin (Ctn) hydrate and tannic acid (TA) were
purchased from Sigma-Aldrich (ACS reagents >98%). Reduced graphene oxide
(r-GO from Sigma-Aldrich) and Super P carbon black (SP, Imerys Graphite &
Carbon) were used as conductive additives in the preparation of some types of
electrodes.

Sepia, sepia/r-GO, sepia/SP, and Ctn/r-GO electrodes were prepared by mixing
the active molecule (sepia or catechin), the chosen conductive additive (r-GO or
SP) in different mass ratios of 8:2,7:3, 6:4, and 5:5, and a few drops (70 µL for 25 mg
of composite powder) of dimethyl sulfoxide (DMSO) (Sigma-Aldrich anhydrous, ≥
99.9%). The preparation was stirred overnight to create a uniform slurry that was
deposited over TCP (covering 1-cm-by-0.5-cm of the 5-cm-by-0.5-cm rectangular
pieces) with a brush.

Ctn/TA/SP and Ctn/TA electrodes were prepared by mixing the materials in
powder form with mass ratios of 7:1:2 and 7:1, respectively, in a deionized water-
ethanol mixture (2:1 v/v) (1 mL of solvent for 50 mg of composite powder) and
stirring vigorously to form a homogenous solution. Afterwards, 63 µL of the
solution were drop-cast over TCP (same coverage as the other electrodes).

Fig. 5 Electrochemical characterization of symmetric supercapacitors based on TCP, sepia on TCP, and Ctn/TA on TCP in 0.5M Na2SO4. (a) Cyclic
voltammetry at 5 mV s−1. (b) Cyclic voltammetry of sepia on TCP at different scan rates. (c) Cyclic voltammetry of Ctn/TA on TCP at different scan rates.
Galvanostatic charge/discharge curves at different current densities of (d) sepia on TCP and (e) Ctn/TA on TCP. (f) Relationship between areal
capacitance evaluated from galvanostatic charge/discharge and corresponding current density.
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All electrodes were vacuum-dried for 20 min at 60˚C prior to morphological
and electrochemical characterizations. The loading of active material in all
electrodes was about 3.0 ± 0.2 mg cm−2 on TCP (the mass of bare TCP for the
covered surface was 4.74 mg ± 0.20 mg cm−2), measured using a microbalance
(Sartorius BP 210 D, accuracy 10–5 g).

Electrolyte. 0.5 M Na2SO4 aqueous solutions (pH ca. 5) were prepared from
Na2SO4 (Sigma-Aldrich >99%) dissolved in DI water (18.2 MΩ cm).

Electrochemical characterization
For material characterization. cyclic voltammetry (CV), galvanostatic charge/dis-
charge (GCD), and electrochemical impedance spectroscopy (EIS) measurements
were performed using a Biologic bipotentiostat (SP-300) in a three-electrode cell
configuration, with CP or TCP loaded with active materials as working electrodes,
Pt mesh as a counter electrode, and Ag/AgCl in 3M NaCl as a reference electrode.

CV was performed in the potential range of −1 V to 1 V vs. Ag/AgCl at scan
rates of 100, 50, 20, 10, and 5 mV s−1. EIS measurements were conducted before
and after the CV scans in the same setup at open circuit potential and 10 mV AC
amplitude within the frequency range 105Hz to 10−1Hz.

Symmetric supercapacitor characterization. CV, GCD, and EIS were performed
with TCP loaded with active material as working and counter electrodes. These two
electrodes were separated by a filter paper. Ag/AgCl reference electrode was used to
monitor the potential of each electrode during the tests.

GCD was performed at current densities of 0.5, 2, 4, 8, and 10 A g−1 (calculated
over the total mass of the current collector and quinone-based material for the
whole device) for a potential scan ranging from 0 V to 1.6 V vs. Ag/AgCl. Finally,

50 000 and 10 000 GCD cycles were performed at a current density of 10 A g−1 for
sepia and Ctn/TA supercapacitors, respectively.

The electrode-specific capacitance was evaluated from 3-electrode CV
measurements using:

CCV ¼
R
I dV

νw4V

Where
R
IdV is the integral area of the cathodic (discharge) CV cycle, ν the scan

rate, w the mass loading of the active material on the current collector, and 4V the
potential range.

From GCD curves, the cell-specific capacitance (CGCD), coulombic efficiency
(η), equivalent series resistance (ESR), power density (P), energy density (E),
maximum power density (Pmax), and maximum energy density (Emax) were
calculated at different current densities using:

CGCD ¼ Idis
R

1
V

� �
dt

w
; η ¼

R
Idis dtR
Ichdt

; ESR ¼ 4VESR

2 Idis
;E ¼

Idis
R

Vdt

3600
;

P ¼ E
tdis

; Emax ¼
1=2CGCDV

2
max

3600
and Pmax ¼

V2
max

4 ESR 2w

Where, Idis and Ich are the constant discharge and charge currents, respectively, tdis
is the discharging time, 4VESR the ohmic drop at the beginning of the discharge,R
Vdt the integral area of the GCD discharge cycle, and Vmax the upper limit of the

potential while charging (charge cut-off potential).
At least five samples for each electrode material and 3 symmetric supercapacitor

devices of TCP, sepia on TCP, and Ctn/TA on TCP were tested. All of them
(electrode materials and supercapacitors) give the same electrochemical response
with almost the same performance, with an error of ± 5%.

Fig. 6 Electrochemical characterization of sepia and Ctn/TA symmetric supercapacitors deposited on treated carbon in 0.5M Na2SO4. Capacitance
retention and coulombic efficiency for 50 000 and 10 000 cycles of galvanostatic charge/discharge at 10 A g−1 of (a) Sepia on TCP and (b) Ctn/TA on
TCP. (c) is the Ragone plot extracted from galvanostatic charge/discharge cycles at different current densities: 0.5, 2, 4, 8, and 10 A g−1, compared with
the state of the art in literature. See refs. 22,29–31,39,40,69,71–78 and table S1 for a more comprehensive study that includes a wider range of organic,
inorganic, and hybrid materials.
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Morphology and structure characterization. The morphology of the sepia, CP,
and TCP was examined by scanning electron microscopy (SEM, JEOL JSM-7600F)
at an acceleration voltage of 5 kV. The morphology of Ag-stained Ctn/TA com-
posite was examined in both secondary and backscattered electron modes at 5 kV.
The Ctn/TA electrodes were stained in 0.5 M AgNO3 for 48 h prior to morphology
examination by SEM44,63. Energy-dispersive X-ray spectroscopy (EDX) was
carried out using the same SEM with Aztec (Oxford) software and detector x-Max
(80 mm2) (Oxford), at 5 kV. X-ray diffraction was carried out on a Bruker D2-
Phaser X-ray diffractometer using Cu Kα radiation generated at 30 kV.

The elemental composition of the samples was studied by X-ray photoelectron
spectroscopy (XPS), using a VG ESCALAB 2250 apparatus. The X-ray source was
Al Kα (1486.6 eV) at a power of 1W (1 kV, 1 mA). Pressure in the analysis
chamber was lower than 10-9 mbar. Survey scans and high-resolution scans were
carried out with 1.0 eV and 0.1 eV energy steps, respectively.

Raman spectra of CP and TCP were acquired using Raman microscope Senterra
(Bruker), furnished with laser excitation at 532 nm. Spectra were recorded in
optical geometry 180° in the range of Raman shifts 100–3200 cm−1 at optical
resolution of 3–5 cm−1, using a laser excitation power of 20 mW.

Brunauer-Emmett-Teller surface area, pore volume, and pore size measure-
ments. Brunauer-Emmett-Teller (BET) surface area, pore volume, and pore size
of CP and TCP were evaluated by N2 adsorption/desorption measurement
(Micromeritics, model TriStar 3000). Samples were first degassed at 120 °C under
vacuum overnight, and then analysis was carried out using N2 as an adsorbate gas
at −196 °C; the volume of the adsorbate gas was determined at standard tem-
perature and pressure (STP) (273.15 K and atmospheric pressure (1.013 × 105 Pa)).
Surface area and pore-size distribution were determined by BET and Barrett-
Joyner-Halenda (BJH) methods, respectively.

Contact angle measurements. Contact angle measurements for CP and TCP,
according to sessile and captive drop methods, were performed using DataPhysics
dynamic contact-angle-measuring devices and a force tensiometer. 2 µL water
droplets were used at a speed rate of 2 µL s−1.

Data availability
All the data of this study are available. The authors declare that the data supporting the
findings of this study are available within the article and its Supplementary Information
files. The data that support the findings of this study are available from the corresponding
authors upon reasonable request.
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