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Finite-Volume Solutions to the Water-Hammer Equations
in Conservation Form Incorporating Dynamic Friction

Using the Godunov Scheme
Aboudou Seck1; Musandji Fuamba, Ph.D., M.ASCE2; and René Kahawita, Ph.D.3

Abstract: Although derived from the principles of conservation of mass and momentum, the water-hammer equations integrating dynamic
friction are almost never expressed in conservative form. This is because the pressure and volume discharge are used as variables but these are
not conserved quantities, especially when the one-dimensional velocity profile is distorted from its assumed steady state shape due to the large
accelerations imposed on the fluid particles across the cross section. This paper presents the derivation of the water-hammer equations in
conservation form incorporating dynamic friction. With the dynamic friction taken into account, a source term appears in the basic partial
differential equations as presented by Guinot. The numerical algorithm implements the Godunov approach to one-dimensional hyperbolic
systems of conservation laws on a finite-volume stencil. Two case studies are used to illustrate the influence of the various formulations.
A comparative study between the analytical solution, the numerical solution with quasi-steady friction only, the numerical solution with
dynamic friction, and the measurements has been presented. The results indicate that the dynamic friction formulation reduces the peak water
hammer pressures when compared with a quasi-steady representation. DOI: 10.1061/(ASCE)HY.1943-7900.0001333. This work is made
available under the terms of the Creative Commons Attribution 4.0 International license, http://creativecommons.org/licenses/by/4.0/.

Author keywords: Hydraulic transients; Water hammer; Unsteady friction; Finite volume; Hyperbolic source term; Riemann problem;
Godunov scheme; Wave attenuation.

Introduction

In the preliminary design of hydraulic systems, practicing engi-
neers use a general framework to design equipment to prevent
and/or mitigate any excessive pressures caused by water hammer.
The detailed design further attempts to refine the preliminary con-
cept to elaborate the complete system response using various tools
such as numerical modeling. In general, numerical simulation tools
assume that the friction factor is considered steady or quasi-steady;
this has the tendency to overestimate the water-hammer peak pres-
sures because the primary mechanism that may significantly affect
pressure waveforms is the unsteady friction. This results in over-
sizing of surge control equipment.

The origin of the theory of water hammer goes back to the con-
tributions of Menabrea (1858), who published a short note on the
calculation of water pressures (Anderson 1976). However, because
of the mathematical rigor and significant theories presented, the
papers of Michaud (1878, 1903), Allievi (1903, 1913, 1932),
Schnyder (1932), and Jaeger (1933) have been the source of

inspiration for all studies on water hammer. Water hammer in
hydropower systems and its stability problems were reviewed by
Lescovich (1967), Roche (1975), and Chaudhry (1987). Research
by Chaudhry et al. (1985), Finnemore and Franzini (2002), and
Azhdari Moghaddam (2004) provide implicit equations for analyz-
ing the water-hammer wave. Chaudhry and Silvaaraya (1992) in-
vestigated the stability of water level oscillations during transient
conditions in a surge tank. Kim (2010) applied a genetic algorithm
(GA) coupled with an impulse response technique to derive the
impedance functions for pipe systems equipped with a surge tank.
Ramadan and Mustafa (2013) investigated the effects of different
parameters such as the friction loss coefficient, tank dimensions,
and total discharge on transient overpressures. Seck and Fuamba
(2015) have developed the analytical equations to design cylindri-
cal and conical surge tanks, and have provided user-friendly dia-
grams that are based on the equations developed. Their paper
bridges the gap between the design concept and the detailed design
phase for surge tanks but cannot be used as a general purpose tool
for transient analysis because certain key parameters such as the
dynamic friction are not incorporated. Guinot (2003) focused on
the theoretical and practical implementation of the Godunov ap-
proach to simulate water hammer using finite volumes with steady
friction that gives rise to a nonhyperbolic source term.

In general, water-hammer models assume that the friction factor
is steady or quasi-steady. However, in transient flows with a con-
stant pipe diameter, the one-dimensional velocity profile is dis-
torted from its assumed steady state shape due to the large
accelerations (varying across the cross section) that are imposed
on the fluid particles. The equivalent friction then exceeds the value
assumed at steady state. Brunone et al. (1991) and subsequently
Bergant et al. (2001) decomposed the dynamic friction into the
sum of a quasi-steady and unsteady parts. Bergant et al. (2008a, b)
have experimentally investigated key parameters (unsteady friction,
cavitation, fluid–structure interaction, viscoelastic behavior of the
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pipe wall, leakage, and blockage) that may affect the pressure
waveform predicted by the classical theory of water hammer.
Bousso and Fuamba (2013) have numerically represented the un-
steady friction in transient two-phase flow with a hyperbolic source
term. Shamloo et al. (2015) review a quasi-steady model and four
unsteady friction models (Zielke 1968; Vardy and Brown 2003;
Trikha 1975; Brunone et al. 1991) for transient pipe flow. The
Vardy and Brown model is limited to smooth pipes while the Zielke
model is developed for transient laminar flow. The Trikha (1975)
model presents a simplification of the Zielke (1968) model.
The Brunone model appears to be the only one developed for
all types of transient flows and all roughness values. Shamloo and
Mousavifard (2015) use a two-dimensional finite-differencemethod
incorporating the k-ω turbulence model to study the dynamics of
turbulence during different periods of water hammer in a polymeric
pipe. However, comparison of their model with experimental tests
reveal that the model underestimates the peak water-hammer
pressures, which could pose a significant risk for pipe safety.

Although derived from the principles of conservation of mass
and momentum, the water-hammer equations integrating dynamic
friction are almost never expressed in conservation form. This is
because the presence of the dynamic friction terms preclude pre-
sentation in the integral (conservation) form and also cause a source
term to appear. The finite-volume method that was developed for
hyperbolic equations in conservation form (e.g., the Euler equa-
tions in fluid dynamics) has to be adapted to tackle systems that
are not in proper conservation form. Hyperbolic systems admit
weak solutions in the form of discontinuities or shocks. The treat-
ment of these discontinuities requires special treatment of the
flux function to avoid spurious oscillations. A large body of liter-
ature is available on finite-volume schemes developed to handle the
solution in the vicinity of these shocks. Among the most modern
numerical schemes are total variation diminishing (TVD) (Zijlema
and Wesseling 1998), essentially nonoscillatory (ENO) (Harten
et al. 1987), and weighted essentially nonoscillatory (WENO)
schemes (Liu et al. 1994; Jiang and Shu 1995). One limitation
of the TVD schemes is unsatisfactory performance near extrema
(Osher and Chakravarthy 1984; Titarev and Toro 2003; Park et al.
2010). Essentially nonoscillatory and WENO schemes have been
developed to overcome this limitation and provide a better scheme
that can handle both sharp interfaces and smooth gradients (Shu
1998). According to Gallerano and Cannata (2011) and Gallerano
et al. (2012), ENO and WENO shock capturing higher-order
schemes for the solution of hyperbolic systems can be considered
as a further development of ideas that gave rise to the TVD
schemes. The original contribution of this paper is to present the
derivation of the water-hammer equations in conservation form
incorporating dynamic friction. The hyperbolic system is then
solved using a finite-volume scheme. The Godunov scheme was
retained to obtain the numerical solutions to the present problem.

It is hoped that this paper will help practical engineers who are
at the detailed design phase to further safely optimize any incorpo-
rated surge controls by assisting in the development and numerical
simulation of the water-hammer equations with dynamic friction.

Methodology

This paper focuses on implementation of the Godunov approach to
one-dimensional hyperbolic systems of conservation laws that de-
scribe the phenomenon of water-hammer. It is first order accurate in
both space and time. In the present context, given the simple geom-
etry, the basic Godunov scheme is considered adequate by the au-
thors. First, the computation of the fluxes is detailed followed by a

description of the complete numerical algorithm. Finally, two case
studies are investigated with comparisons being made between
an analytical solution, the numerical solution with quasi-steady
friction, the numerical solution with dynamic friction, and exper-
imental results.

Governing Equations

For a pipe of constant cross section, the one-dimensional flow
equations presented in vector form (Guinot 2003) are

∂U
∂t þ

∂F
∂x ¼ S

U ¼
�

μ

Qm

�
; F ¼

�
Qm

A0p

�
; S ¼

�
0

−fjVjV
�

ð1Þ

where t ¼ time; x = unit vector in the x-direction; U = flow variable
vector; F = flux vector in the x-direction; S = source term vector;
μ = mass of fluid per unit length of pipe; Qm = mass discharge;
A0 = cross-sectional area of pipe; p = pressure; V = fluid velocity;
and f = friction coefficient dependant on the pipe roughness and
the fluid viscosity.

For unsteady friction in transient flow with a constant pipe
diameter, the friction factor f is split into the sum of the quasi-
steady fq and unsteady fu part i.e., f ¼ fq þ fu as in the model
by Brunone et al. (1991) and modified by Bergant et al. (2001)

f ¼ fq þ
ffiffiffiffiffiffi
C�p

D
2jVjV

�∂V
∂t þ asignðVÞ

���� ∂V∂x
����
�

ð2Þ

where a = celerity of the pressure waves; D = diameter of the pipe;
and C� = Vardy’s shear decay constant depending on the flow
regime (Reynolds number R) expressed as

C� ¼
�

0.00476 if laminar flow
7.41

Rlogð14.3=R0.05Þ if turbulent flow ð3Þ

Eq. (2) may be rewritten in terms of the flow variables μ and
Qm as

f ¼ fq þ
ffiffiffiffiffiffi
C�p

D
2jVjV

��
1

μ
∂Qm

∂t −Qm

μ2

∂μ
∂t

�
þ aψ

�
1

μ
∂Qm

∂x −Qm

μ2

∂μ
∂x

��
ð4Þ

where ψ is expressed as

ψ ¼
�þ1 if V ∂V

∂x > 0

−1 if V ∂V
∂x < 0

ð5Þ

For turbulent flow, the Colebrook-White equation may be iter-
atively solved for the quasi-steady part fq of the fiction factor

1ffiffiffiffiffi
fq

p ¼ −2log10
�
kS=D
3.7

þ 2.51

R
ffiffiffiffiffi
fq

p �
ð6Þ

In which kS = absolute roughness of the pipe.
Streeter and Wylie (1993) provide the following expression for

the celerity (sonic velocity) a in a circular pipe:

a ¼
ffiffiffiffiffiffi
EV

ρ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ DEV
eE

s
ð7aÞ
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where EV = bulk modulus of elasticity; ρ = mass density; e and
E = pipe wall thickness and Young’s modulus of elasticity for
the pipe material, respectively.

Eq. (7a) may be rewritten

a ¼
ffiffiffiffiffiffiffiffiffiffiffi
EVA0

μ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ DEV
eE

s
ð7bÞ

By taking into consideration the unsteady friction, Eq. (1) may
be written as

8>><
>>:

∂μ
∂t þ ∂Qm∂x ¼ 0

∂Qm∂t þ ∂
∂x
h

2μ
2μþ ffiffiffiffi

C�p
D
A0p

i
− ffiffiffiffi

C�p
D

2μþ ffiffiffiffi
C�p

D
aψV ∂μ

∂x · · ·

þ
ffiffiffiffi
C�p

D
2μþ ffiffiffiffi

C�p
D
ðaψ − VÞ ∂Qm∂x ¼ − 2μ

2μþ ffiffiffiffi
C�p

D
fqjVjV

ð8Þ

In pipe flows, the flow velocity V is negligible compared with a
(the celerity of the pressure waves). The authors also note that
2μ=2μþ ffiffiffiffiffiffi

C�p
D ≈ 1 because the term

ffiffiffiffiffiffi
C�p

D is negligible com-
pared with 2μ. Eq. (8) may now be rewritten

8<
:

∂μ
∂t þ ∂Qm∂x ¼ 0

∂Qm∂t þ ∂
∂x ðA0pÞ−

ffiffiffiffi
C�p

D
2μþ ffiffiffiffi

C�p
D
aψV ∂μ

∂xþ
ffiffiffiffi
C�p

D
2μþ ffiffiffiffi

C�p
D
ðaψÞ ∂Qm∂x ¼−fqjVjV

ð9Þ

In conservation form the governing Eq. (9) may be written,
respectively

∂U
∂t þ

∂F
∂x þR

∂U
∂x ¼ S

U ¼
�

μ

Qm

�
; F ¼

�
Qm

A0p

�

R ¼ kaψ

�
0 0

−V 1

�
; S ¼

�
0

−fqjVjV
�

ð10Þ

where k ¼ ffiffiffiffiffiffi
C�p

D=2μþ ffiffiffiffiffiffi
C�p

D

∂U
∂t þA

∂U
∂x þR

∂U
∂x ¼ S

A ¼
� 0 1

k A0p
μ þ a2 0

�
¼

�
0 1

a2 0

�
ð11Þ

This is the general form of the water-hammer equations with
unsteady friction.

In Eq. (11), A ¼ ∂F=∂U is the Jacobian matrix of F with
respect to the matrix U. In the expression for the matrix A,
kA0p=μ ≪ a2. The general Eq. (10) is equivalent to the Guinot
Eq. (1) if unsteady friction is not considered. The inclusion of
the unsteady friction results in the appearance of the quasi-linear
term R∂U=∂x in the hyperbolic system [Eq. (10)] thus destroying
the integral form of the equations.

The Godunov method is a conservative numerical scheme for
solving partial differential equations (PDE) in computational fluid
dynamics. This conservative finite-volume method solves an exact
or approximate Riemann problem (depending on the friction for-
mulation) at each intercell boundary. It is first order accurate in both
space and time. The next section describes the solution process for
these equations with the Godunov method.

Numerical Solution

Guinot (2003) as well as Bousso and Fuamba (2013) have provided
the procedure for solving PDE’s by Godunov’s method using the
time splitting technique. Eq. (10) is solved in three steps. The first
step uses the Guinot solution for the conservation part of the PDE
[Eq. (10)]

∂U
∂t þ

∂F
∂x ¼ 0 ð12Þ

The second step solves for the nonconservative term of Eq. (10)

∂U
∂t þR

∂U
∂x ¼ 0 ð13Þ

The final step uses the Toro (2001) and Guinot (2003) treatment
of the nonhyperbolic source term of Eq. (10)

∂U
∂t ¼ S ð14Þ

Guinot’s Solutions at the Internal Cells and at the
Boundaries for the Conservation Terms

The conservation component of Eqs. (10) and (12) is the same con-
servation component as Eq. (1) in Guinot (2003). For the internal
cells, Guinot (2003) constructs the Riemann problem Uðx; tnÞ and
presents the solution Unþ1=2

iþ1=2 of this Riemann problem in Eq. (15)

computing the flux Fnþ1=2
iþ1=2 between the time intervals tn and tnþ1

according to Eq. (16)

Unþ1=2
iþ1=2 ¼

"
μnþ1=2
iþ1=2

Qnþ1=2
m;iþ1=2

#
¼ 1

2

"
μn
i þ μn

iþ1 þ ðQn
m;i −Qn

m;iþ1Þ=a
ðμn

i þ μn
iþ1ÞaþQn

m;i −Qn
m;iþ1

#

ð15Þ

Fnþ1=2
iþ1=2 ¼ FðUnþ1=2

iþ1=2 Þ ¼
�

Qnþ1=2
m;iþ1=2

A0pref þ a2ðμnþ1=2
iþ1=2 − μrefÞ

�
ð16Þ

where pref is a reference pressure at which the density ρref is
known. μref is calculated as μref ¼ A0ρref .

The flux solutions for a prescribed pressure pb at the left-hand
(pb;L) and the right-hand (pb;R) boundary are respectively given by

Fnþ1=2
1=2 ¼

�
Qn

m;1 þ ðμnþ1=2
1=2 − μn

1Þa
A0pb;L

�
ð17Þ

Fnþ1=2
Nþ1=2 ¼

�
Qn

m;N þ ðμn
N − μnþ1=2

Nþ1=2Þa
A0pb;R

�
ð18Þ

In Eqs. (17) and (18), pb represents a pressure to be prescribed
at the boundary. The mass of fluid per unit length of pipe μnþ1=2

1=2 (at
the left hand) and μnþ1=2

Nþ1=2 (at the right hand) is obtained from the
prescribed pressure pb using

μb ¼ μref þ
A0

a2
ðpb − prefÞ ð19Þ

The fluxes for a prescribed dischargeQb at the left-hand and the
right-hand boundary are respectively given by

© ASCE 04017029-3 J. Hydraul. Eng.
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Fnþ1=2
1=2 ¼

�
Qbμ

nþ1=2
1=2 =A0

A0pref þ ðμnþ1=2
1=2 − μrefÞa2

�
ð20Þ

Fnþ1=2
Nþ1=2 ¼

�
Qbμ

nþ1=2
Nþ1=2=A0

A0pref þ ðμnþ1=2
Nþ1=2 − μrefÞa2

�
ð21Þ

where μnþ1=2
1=2 in Eq. (20) and μnþ1=2

Nþ1=2 in Eq. (21) are obtained,
respectively, from

μnþ1=2
1=2 ¼ Qn

m;1 − aμn
1

Qb
A0

− a
ð22Þ

μnþ1=2
Nþ1=2 ¼

Qn
m;N þ aμn

N
Qb
A0

þ a
ð23Þ

For all cells, the balance is performed omitting the source term
using

Unþ1;x
i ¼ Un

i þ
Δt
Δxi

ðFnþ1=2
i−1=2 − Fnþ1=2

iþ1=2 Þ ð24Þ

Solution for the Hyperbolic Source Term at the
Internal Cells

The intermediate solution Unþ1;x
i is taken as a starting point for

the computation of the hyperbolic source term. This nonhyperbolic
source term is solved according to the procedure detailed
subsequently.

In Eq. (13), R ¼ kaψ
h

0 0

−V 1

i
. The two eigenvalues λð1Þ and

λð2Þ of the matrix R are therefore

λð1Þ ¼
�

0; if ψ ¼ 1

−ka; if ψ ¼ −1 ð25Þ

λð2Þ ¼
�
ka; if ψ ¼ 1

0; if ψ ¼ −1 ð26Þ

Fig. 1. Schematic of the proposed algorithm

© ASCE 04017029-4 J. Hydraul. Eng.
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The matrix K of the R eigenvectors is given by

K ¼

8>>><
>>>:

�
1 0

V 1

�
; if ψ ¼ 1�

0 1

1 V

�
; if ψ ¼ −1

ð27Þ

This yields the following generalized Riemann invariants

dμ
1
¼ dQm

V ; across dx
dt ¼ 0

dμ
0
¼ dQm

1
; across dx

dt ¼ ka

	
for ψ ¼ 1 ð28Þ

dμ
0
¼ dQm

1
; across dx

dt ¼ −ka
dμ
1
¼ dQm

V ; across dx
dt ¼ 0

	
for ψ ¼ −1 ð29Þ

Noting that dQm ¼ μdV þ Vdμ, the system Eqs. (28) and (29)
may be rewritten as

d


Qm
ρ

�
¼ 0; across dx

dt ¼ 0

dμ ¼ 0; across dx
dt ¼ ka

)
for ψ ¼ 1 ð30Þ

dμ ¼ 0; across dx
dt ¼ −ka

d


Qm
ρ

�
¼ 0; across dx

dt ¼ 0

)
for ψ ¼ −1 ð31Þ

Consider the Riemann problem as follows:

Uðx; tnÞ ¼
�
Unþ1;x

i ; if x ≤ xiþ1=2

Unþ1;x
iþ1 ; if x > xiþ1=2

ð32Þ

The solution Uh of this Riemann problem is given by

for ψ ¼ 1

Uhðx; tnþ1Þ ¼

8><
>:

Unþ1;x
i ; if x < xiþ1=2

U�
iþ1=2; if xiþ1=2 ≤ x < xiþ1=2 þ kaΔt

Unþ1;x
iþ1 ; if x ≥ xiþ1=2 þ kaΔt

ð33Þ

where

U�
iþ1=2 ¼

1

A0

2
64 μnþ1;x

iþ1

A2
0

μnþ1;x
iþ1

μnþ1;x
i μnþ1;x

i
Qnþ1;x

mi

3
75

for ψ ¼ −1

Uhðx; tnþ1Þ ¼
8<
:

Unþ1;x
i ; if x ≤ xiþ1=2 − kaΔt

U�
iþ1=2; if xiþ1=2 − kaΔt < x ≤ xiþ1=2

Unþ1;x
iþ1 ; if x > xiþ1=2

ð34Þ

where U�
iþ1=2 ¼ 1

A0

"
μnþ1;x
i

A2
0

μnþ1;x
i

μnþ1;x
iþ1

μnþ1;x
iþ1

Qnþ1;x
miþ1

#

The value of Unþ1;x
i is obtained from

Unþ1;x
i ¼ 1

Δxi

Z
xiþ1=2

xi−1=2
Uhðx; tnþ1Þdx ð35Þ

By substituting Eqs. (33) and (34) into Eq. (35), the following
equation is obtained:

Unþ1;h
i ¼

�
1þ kaψΔt

Δxi

�
Unþ1;x

i − kaψΔt
Δxi

U�
iþ1=2 ð36Þ

Discretization of the Nonhyperbolic Source Term

Taking the provisional solution Unþ1;h
i as the initial state, the sol-

ution Unþ1
i of the nonhyperbolic source term is presented by

Toro (2001), Guinot (2003), and Bousso and Fuamba (2013) in
the following form:

Unþ1
i ¼ Unþ1;h

i þ SðUnþ1;h
i ÞΔt ð37Þ

where SðUnþ1;h
i Þ is calculated by using Unþ1;h

i in Eq. (1) of the
source term.

Fig. 2. Comparison of pressure profiles at pipe midpoint (Δt ¼ 0.0002 s, N ¼ 50) between the various formulations for the friction term
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Computational Time Step

Because the scheme is explicit, the CFL condition for stability must
be respected, i.e., the maximum permissible time stepΔtMax as pre-
sented by Guinot (2003) is as follows:

ΔtMax ¼ Min

�
min

i¼1; : : : ;N

�
Δxi
a

�
;ΔtMax;S

�
ð38Þ

Water-Hammer Wave Attenuation Ratio

The water-hammer wave attenuation ratio η is computed from

ηnþ1
i ð%Þ ¼

�
1 − jpnþ1

i − pb;Lj
pb;L

�
100 ð39Þ

As t increases (t → ∞) and assuming no pipe failure, the water-
hammer wave is completely attenuated in the pipe.

Then, ηnþ1
i approaches 100% according to

if t → ∞;

η∞1 ≈ η∞2 ≈ · · · ≈η∞N ≈ lim
n→∞

�
1 − jpnþ1

i − pb;Lj
pb;L

�
100≈ 100%

ð40Þ

Resolution Algorithm

The proposed algorithm is presented in the following (Fig. 1).

Results and Discussion

Two case studies have been simulated: (1) the sudden opening of an
upstream valve; and (2) sudden closure of a downstream valve. For
the second case study, the numerical results have been compared
with data from two recent experimental tests conducted by Brunone

Fig. 3. Comparison of discharge profiles (Δt ¼ 0.0002 s, N ¼ 50) between the various formulations for the friction term: (a) pipe midpoint;
(b) downstream of the reservoir
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and Berni (2010), which are considered to be of good quality. The
second case represents the classic case of water hammer.

Case 1: Sudden Opening of an Upstream Valve

Physical Data

The physical data for the case study is adapted from Guinot (2003).
The pressure waves and the discharges due to the sudden opening
of an upstream valve of a pipe coupled to a reservoir at constant
head, higher than that of the prevailing pressure in the pipe is com-
puted. The end of the pipe is considered closed. Initial conditions
specify all velocities to be zero. In the Guinot example, the friction
is assumed constant, consequently the source term does not appear.
The physical data are given as follows (these constitute the initial
conditions):
• Pipe diameter: 100 mm;
• Pipe length: 50 m;
• Absolute roughness of the pipe: 0 mm (smooth pipe);

• Sonic velocity (celerity): 1,000 m=s;
• Initial pressure in the pipe: 105 Pa;
• Pressure at the left-hand boundary: 106 Pa;
• Discharge at the right-hand boundary: 0 m3=s;
• Initial discharge in the pipe: 0 m3=s; and
• Water density: 1,000 kg=m3.

Results and Discussion

The equations for water hammer with unsteady friction were solved
using the Godunov scheme detailed previously. In keeping with
the objectives of this paper, results were obtained for the analytical
resolution, the numerical solution with quasi-steady friction only
and the numerical solution with dynamic friction. A time step of
Δt ¼ 0.0002 s was used. Comparison between the results indicates
that the inclusion of all components of the friction has an influence
on the pressure profiles at pipe midpoint (Fig. 2) and the flow os-
cillation profiles at pipe midpoint and at the downstream end
[Figs. 3(a and b)].

Fig. 4. Test no. 1: comparison of pressure profiles (Δt ¼ 0.002 s, N ¼ 100) between the various formulations for the friction term: (a) Section no. 2;
(b) Section no. 3
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Because of damping, the waves will be of decreasing amplitude
until the final equilibrium pressure is reached. Also, the dynamic
friction tends to rapidly attenuate the magnitude of the overpres-
sures. Comparisons at the middle of the pipe and at the downstream
end indicate that inclusion of the dynamic friction causes the peak
pressure to decay at a rate faster than that with the quasi-steady
friction term only.

Case 2: Sudden Closure of a Downstream Valve

Experimental Setup

The results of experimental studies conducted by Brunone and
Berni (2010) are compared with the computational results. For
two cases of initial conditions, a transient event is initiated by
the rapid closure of a downstream valve in a pipe coupled to a con-
stant head reservoir under initially steady flow conditions. The ex-
perimental setup is composed of a 352 m long pipe with an inner

diameter of 0.0933 m and a thickness of 8.9 mm that connects an
upstream the air vessel that is at a (constant) head. The celerity has
been estimated as equal to 332.53 m=s. The pressure waves and dis-
charge have been computed and compared with the corresponding
experimental values at Section no. 1 (distance x ¼ 13.76 m down-
stream the reservoir), Section no. 2 (distance x ¼ 180 m down-
stream of reservoir), and Section no. 3 (just upstream of the valve).

The initial conditions for Test no. 1 and Test no. 2 are given as
follows:
1. Test no. 1

• Reynolds number: 45200;
• Initial discharge in the pipe: 3.32 L=s;
• Pressure at the reservoir: 21.45 m; and
• Pressure at section no. 3: 20.35 m.

2. Test no. 2
• Reynolds number: 60700;
• Initial discharge in the pipe: 4.46 L=s;
• Pressure at the reservoir: 20.95 m; and
• Pressure at section no. 3: 19.12 m.

Fig. 5. Test no. 1: comparison of discharge profiles (Δt ¼ 0.002 s,N ¼ 100) between the various formulations for the friction term: (a) Section no. 1;
(b) Section no. 2
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Results and Discussion

The water-hammer equations with unsteady friction were solved
using the Godunov scheme detailed previously. In keeping with
the objectives of this paper, results were obtained for the analytical
resolution, the numerical solution with quasi-steady friction only,
and the numerical solution with dynamic friction using a time step
ofΔt ¼ 0.002 s. These results are compared with the experimental
measurements. Comparison of the results (Figs. 4–7) indicates that
the inclusion of all components of the friction has an influence on
the pressure profiles [Figs. 4(a and b) and 6(a and b)] and the flow
oscillation profiles [Figs. 5(a and b) and 7(a and b)]. At the valve
[Figs. 4(b) and 6(b)] the peak pressures are shown as sloping
upward in high pressure and downward in low pressure. The
quasi-steady friction model and dynamic friction model are able
to reproduce almost exactly the evolution of the typical shape of
the pressure oscillations. However, the quasi-steady friction model
underestimates the damping and dispersion predicted by the physi-
cally more accurate dynamic friction model. The dynamic friction
tends to rapidly attenuate the magnitude of the overpressures.

At the middle of the pipe and at the downstream end, inclusion
of the dynamic friction causes the peak pressure to decay at a faster
rate than that with the quasi-steady friction term only. It is expected
that better agreement between measured and computed dynamic
friction profiles would be obtained if other key parameters are prop-
erly modeled and incorporated into the formulation. The resolution
will be able to better capture discontinuities in the computed
profiles.

Conclusions and Recommendations

The water-hammer equations in conservation form incorporating
dynamic friction is developed and numerically solved using a
finite-volume formulation. The computational algorithm based
on the Godunov scheme for one-dimensional hyperbolic systems
is presented in some detail. Introduction of the dynamic friction
results in the appearance of a source term in the hyperbolic system
of governing partial differential equations. Two case studies have
been presented to compare and contrast the separate impacts of

Fig. 6. Test no. 2: comparison of pressure profiles (Δt ¼ 0.002 s, N ¼ 100) between the various formulations for the friction term: (a) Section no. 2;
(b) Section no. 3
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steady friction only and of dynamic friction on wave attenuation in
time. The findings indicate that inclusion of the dynamic friction
reduces the peak water-hammer pressures when compared with the
standard quasi-steady assumption for the friction. The inclusion of
the dynamic friction results in a better agreement between calcu-
lated and measured values. In these two case studies, grid size and
time step were reduced to test for convergence; the numerical sol-
ution presented is the converged solution. Computational time for
each of the cases studied took only 3 min on a PC (operating sys-
tem: Windows 7, 64 bits; CPU: Intel(R) Xeon(R) CPU E5620 @
2.40 GHz x 2 processors; mainboard: ASUS Z8NA-D6(C);
memory: 12280 MB triple channel DDR3 ECC @ 1333 MHz).
Thus several variants may be studied in a short period of time.
The efficient algorithm introduced in this paper may be adapted,
with some modifications, to incorporate higher-order schemes that
may yield less computational effort. Because the principal objective
of this paper was to refine the physics of the phenomenon, exten-
sive numerical experimentation with different schemes was not
undertaken. However, for more precision in engineering applica-
tions, other key parameters such as cavitation, fluid–structure

interaction, viscoelastic behavior of the pipe wall, leakage, and
blockage have to be properly modeled and incorporated into the
formulation. This paper may be used as a basis for the study of
real mass variations in a surge tank. It should also prove useful
as a tool for the optimal design of surge controls.
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Notation

The following symbols are used in this paper:
A = Jacobian matrix of the flux F respecting to U;
A0 = cross-sectional area of pipe;
a = celerity of the pressure waves;

Fig. 7. Test no. 2: comparison of discharge profiles (Δt ¼ 0.002 s,N ¼ 100) between the various formulations for the friction term: (a) Section no. 1;
(b) Section no. 2
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C� = Vardy’s shear decay constant;
D = diameter of the pipe;
d = (operator) differential;
E = Young’s modulus of elasticity for the pipe material;

EV = bulk modulus of elasticity;
e = pipe wall thickness;
F = vector flux in the x-direction;
f = friction factor;
fq = quasi-steady part of the friction factor;
fu = unsteady part of the friction factor;
kS = absolute roughness of the pipe;
N = number of cells in the computational domain;
p = pressure;
Q = volume discharge;

Qm = mass discharge;
R = matrix for the hyperbolic source term;
R = Reynolds number;
S = vector source term;
t = time;
U = vector variable;
V = fluid velocity;
x = unit vector in the x-direction;

Δt = computational time step;
Δx = cell size in the x-direction;
μ = mass of fluid per unit length of pipe; and
ρ = mass density.

Subscripts

b = value to be prescribed at a boundary;
b, L = value to be prescribed at the left-hand boundary;
b, R = value to be prescribed at the right-hand boundary; and

i = cell number.

Superscripts

n = time level;
n, h = numerical solution obtained at the time level n after the

solution of the hyperbolic source term of the equation;
n, x = numerical solution obtained at the time level n after the

solution of the conservation part of the equation in the
x-direction;

nþ 1=2 = Average value between the time level n and nþ 1;
∞ = time level if t gets larger; and
* = intermediate region in the solution of the Riemann

problem.
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