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TABU SEARCH FOR THE RNA PARTIAL DEGRADATION PROBLEM
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bInstitute of Bioorganic Chemistry
Polish Academy of Sciences, Noskowskiego 12, 61-704 Poznan, Poland

c Department of Mathematics and Industrial Engineering
Polytechnique Montreal/GERAD, Montreal, Canada

In recent years, a growing interest has been observed in research on RNA (ribonucleic acid), primarily due to the discovery
of the role of RNA molecules in biological systems. They not only serve as templates in protein synthesis or as adapters
in the translation process, but also influence and are involved in the regulation of gene expression. The RNA degrada-
tion process is now heavily studied as a potential source of such riboregulators. In this paper, we consider the so-called
RNA partial degradation problem (RNA PDP). By solving this combinatorial problem, one can reconstruct a given RNA
molecule, having as input the results of the biochemical analysis of its degradation, which possibly contain errors (false
negatives or false positives). From the computational point of view the RNA PDP is strongly NP-hard. Hence, there is a
need for developing algorithms that construct good suboptimal solutions. We propose a heuristic approach, in which two
tabu search algorithms cooperate, in order to reconstruct an RNA molecule. Computational tests clearly demonstrate that
the proposed approach fits well the biological problem and allows to achieve near-optimal results. The algorithm is freely
available at http://www.cs.put.poznan.pl/arybarczyk/tabusearch.php.

Keywords: RNA degradation, tabu search, bioinformatics.

1. Introduction
In the last two decades, there has been a rapid progress
in computational molecular biology. Many problems
that have arisen in this discipline have been classified as
computationally hard (i.e., unlikely to be solved optimally
in polynomial time). We consider one of them, namely,
the RNA partial degradation problem (RNA PDP for
short), proved to be strongly NP-hard, in which the
primary actor is the ribonucleic acid (RNA) subjected to
a nonenzymatic hydrolysis experiment (Blazewicz et al.,
2011).

RNA molecules play an essential role in a large
variety of biological processes (Zok et al., 2015), such
as regulation of gene expression, protein synthesis or
RNA degradation (Deutscher, 2003; Jankowiak et al.,

∗Corresponding author

2004; 2005; Podkowinski et al., 2009; Szostak et
al., 2014; Rybarczyk et al., 2015; Kuppusamy and
Mahendran, 2016). RNA degradation (cleavage of
RNA into fragments) is a major component of RNA
metabolism. It secures the balance between transcription
and RNA decay pathways and provides cell homeostasis
(Nowacka et al., 2012). In fulfilling its role, the RNA
degradation machinery has to distinguish between a set
of molecules being unnecessary at certain conditions or
defective and those essential for a proper cell functioning.
Unfortunately, it still remains to be established how
RNA degradation pathways control such higher level
functions, namely, which specific RNAs involved in
cellular differentiation and functions are targeted by RNA
degradation machinery and which stay intact (Chanfreau,
2015).

What is more, it has been shown that not

© 2017 A. Rybarczyk et al.
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the Creative Commons Attribution-NonCommercial-NoDerivs license
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all redundant RNA fragments are rapidly removed
(Jackowiak et al., 2011). Some of the cleavage products
are stable and display regulatory functions through acting
as translational inhibitors or signaling molecules (Zhang
et al., 2009; Bibillo et al., 1999; 2000; Kierzek, 1992;
2001; Ender et al., 2008; Haussecker et al., 2010). These
findings promote further research on RNA degradation
which is essential for broadening our knowledge on
physiological functions of RNA.

The biological process described above is analyzed
at the biochemical level. However, the data it generates
must be also studied at the computational level because
their quantity and interdependence make it unfeasible for
biochemists to analyze them manually.

Our focus is on biochemical experiments that use
in vitro systems, since it is not possible to study
all aspects of this process in a living organism using
methods currently available. Blazewicz et al. (2011)
analyzed the degradation patterns of two artificial
RNA molecules applying commonly used experimental
methods (Dutkiewicz and Ciesiolka, 2005; Rybarczyk
et al., 2016; Adachi and Yu, 2014). As a result of
the partial degradation process, many copies of an RNA
molecule are cleaved into a collection of fragments of
the original molecule. Based on the data obtained, they
formulated (on a computational level) a new strongly
NP-hard problem, called the RNA PDP, which is to
reconstruct an RNA molecule using the results of the
biochemical analysis of its degradation. The same authors
developed an exact algorithm for the RNA PDP. Given
that this exact algorithm is not capable of handling large
instances, we propose here to solve the problem with a
heuristic method, based on two cooperative tabu search
algorithms. We assume that the available results of the
degradation process possibly contain false negatives (i.e.,
missing elements) and false positives (i.e., falsely reported
elements).

The organization of the paper is as follows. In
Section 2 we give a precise definition of the RNA PDP,
the proposed heuristic algorithm is presented in Section 3,
and computational results are given in Section 4.

2. RNA partial degradation problem
The degradation process of an RNA molecule can be
summarized as follows. The input molecule of the
full length (in many copies) is first broken at primary
cleavage sites, which gives rise to a collection of pri-
mary fragments. These fragments are then broken at
secondary cleavage sites, what creates secondary frag-
ments. Hence, the result of the degradation process is
a set of primary and secondary fragments, which comes
from two separate experiments: involving multi-labeled
RNA, where labeled nucleotides are randomly introduced
along the RNA molecule and single-labeled RNA, which

contain labeled 5′ end of the RNA molecule (let us say, its
“left” end). Each primary fragment is assumed to cleave
at most once. The only information available for every
fragment is its length, and whether or not it contains the
“left” end of the input RNA molecule. It is not known
whether a fragment is primary or secondary. The objective
of the RNA PDP is to reconstruct the original molecule
by determining from this limited information the exact
positions of the primary and secondary cleavage sites.
More details can be found in the work of Blazewicz et al.
(2011).

We now give a mathematical formulation of the
problem. Assume that the analyzed molecule has length
L, and that we are given the multiset (where multiple
occurrences of elements are allowed) D of fragment
lengths resulting from the degradation process, as well
as its subset Z ⊆ D containing the lengths of those
fragments having the “left” end of the input RNA
molecule. Missing elements (i.e., false negatives) in
D and Z are allowed, but (for the moment) not false
positives, and we assume that each primary fragment
cleaves at most once. We aim to determine two disjoint
sets P1 and P2 of integers, where P1 stands for the set of
primary cleavage sites, and P2 for the set of secondary
ones. For a set P of integers in {1, . . . , L − 1}, let
R(P) denote the set of pairs (x, y) �= (0, L) such that
x, y ∈ P ∪ {0, L} and x < y. If P is a set of primary
cleavage sites, then R(P) is the set of primary fragments
(x, y), where x stands for the “left” end of the fragment,
and y for the “right” end.

Definition 1. Let L be a positive integer, C a
non-negative integer, and let P1 and P2 be two sets of
integers such that 0 < x < L for all x ∈ P1∪P2. The pair
(P1,P2) is C-consistent with D and Z if the following
constraints are satisfied:

There is a function f : R′ → P2

between a subsetR′ ⊆ R(P1) and P2

such that x < f(x, y) < y, ∀(x, y) ∈ R′, (1)

D ⊆ D′ =
⋃

(x,y)∈R(P1)

{y − x}, (2)

Z ⊆ Z ′ = P1 ∪
⋃

(0,y)∈R′

{f(0, y)}

∪
⋃

(x,y)∈R′

{y − f(x, y), f(x, y)− x}, (3)

|D′| − |D|+ |Z ′| − |Z| ≤ C. (4)

Set R′ in (1) contains the primary fragments that
broke into smaller secondary fragments. For every
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(x, y) ∈ R′, f(x, y) ∈ P2 is the location of the secondary
cleavage on fragment (x, y). The fact that f is a function
enforces the requirement that primary fragments cleave
at most once. Multiset D′ in (3) contains the lengths
of all primary fragments in R(P1), and of all secondary
fragments (x, f(x, y)) and (f(x, y), y) resulting from a
secondary cleavage at position f(x, y) on (x, y) ∈ R′.
Since we assume no false positive, it is imposed that D′

contains multisetD of fragment lengths resulting from the
degradation process. Set Z ′ in (2) contains the lengths
of all primary and secondary segments with the left end
(position 0) of the the input RNA molecule. Finally, since
missing elements in D and Z are allowed, we aim to
minimize the total number of false negatives. Constraint
(4) imposes an upper bound C on the number of missing
elements in D and Z . If C = 0 we get the ideal problem
with no false negatives allowed. It is worth noting that,
if an element of Z ′ is missing both in Z and D, then the
error is counted twice since D′ contains Z ′.

Note that the lack of a secondary cleavage site
in a primary fragment is not treated as an error. If
every primary fragment is assumed to degrade into two
secondary fragments (a case also observed in biology) we
set R′ = R(P1) in constraint (1). Also, if false positives
are allowed, then we do not impose D ⊆ D′ and Z ⊆ Z ′

in constraints (3) and (2), while constraint (4) becomes

|D′|+ |D| − 2|D′ ∩D|+ |Z ′|
+ |Z| − 2|Z ′ ∩ Z| ≤ C. (4’)

The RNA PDP can now be formulated as follows.

RNA PDP.
Instance: A positive integer L, non-negative integer C,
multiset D and set Z of integers such that 0 < x < L for
all x ∈ D, and Z ⊆ D.
Objective: Find two sets P1 and P2 such that (P1,P2) is
C-consistent with D and Z .

The following example illustrates the problem.

Example 1. Consider the parameter L = 4653, C ≥ 5,
Z = {11, 435, 1248, 1254, 4554} and D = {11, 16,
83, 154, 424, 435, 886, 890, 1002, 1035, 1248, 1254,
1269, 1694, 2216, 2271, 2283, 2370, 3233, 3300, 4119,
4218, 4554}. We assume here that all primary fragments
have broken into exactly two parts due to the secondary
cleavages.

A possible solution is depicted in Fig. 1, with
P1 = {435, 2283, 4554} as a set of primary cleavage
sites, and P2 = {11, 1248, 1254, 2129, 2651, 3552, 3668,
3763, 4637} as a set of secondary ones. The pair (P1,P2)
is 5-consistent with D and Z , since we have five missing
fragment lengths: one in Z (2283) and four in D (99,

1480, 1848, 2002). �

The decision version of the RNA PDP is to determine
whether there is a C-consistent pair (P1,P2) with D
and Z . It was proved by Blazewicz et al. (2011) that
the problem is strongly NP-complete when no errors
are allowed (i.e., when C = 0). The computational
complexity of the modified problem with R′ = R(P1)
is not formally determined yet, but presumably it remains
strongly NP-complete even without any errors allowed.
The main difficulty of the basic problem (constraints
(1)–(4)) lies in coupling secondary fragments, even if we
know all of them and the set of intervals they should fit
in. In the modified problem we stay with the same task,
it is a similar situation as in the strongly NP-complete
problem numerical matching with target sums (Garey and
Johnson, 1979).

The idea behind the RNA partial degradation
problem, which consists in exploiting information about
lengths of fragments defined by pairs of cut points
located within a nucleic acid sequence, makes the problem
somewhat similar to DNA mapping problems: the partial
digest problem (PDP) and its newer version, the simplified
partial digest problem (SPDP) (Blazewicz et al., 2001).
For the moment, a dependence between the combinatorial
PDP and RNA PDP, as well as the SPDP, that could
have an impact on determining computational complexity
of the former problem (open from the computational
complexity point of view), is not yet known and is an
interesting question for further studies.

3. Tabu search approach for the RNA PDP
The proposed heuristic algorithm for solving the RNA
PDP is based on the tabu search metaheuristic, which
is one of the most frequently used in combinatorial
optimization (Glover, 1990; Glover et al., 1995; Glover
and Laguna, 1997; Bilski and Wojciechowski, 2016;
Yao et al., 2014). This choice has been motivated by
high-quality results this metaheuristic reached in solving
a problem of reconstructing a DNA sequence with false
negatives and false positives (Blazewicz et al., 2005). We

1035 890

886

2002

3300

1248

3233

2216

1254

1480

435 2283 4554 4653

424 154 1002 16

0

11 1694 1269 83

11 1248 1254 2129 2651 3552 3668 3763 4637

Fig. 1. Possible solution to the RNA PDP for the example con-
sidered. The primary cleavage sites (elements of P1) are
represented by vertical solid lines while the secondary
ones (elements of P2) by vertical dashed lines.
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suppose that every primary fragment breaks into smaller
fragments. As mentioned at the end of this section, this
assumption can easily be modified for dealing with the
case where not all primary fragments have a secondary
cleavage site.

Let D be the multiset of (primary and secondary)
fragment lengths resulting from the degradation process
of an RNA molecule of length L, and let Z be its subset
containing the lengths of those fragments having the “left”
end of the input RNA molecule. Let S = (PS

1 , PS
2 ) be a

solution to the RNA PDP with a set PS
1 = {p1, . . . , pv}

of v primary cleavage sites. Assume pi < pj for all i < j,
and let p0 = 0 and pv+1 = L. The primary cleavage sites
in S create a set of r = 2v + v(v − 1)/2 = v(v + 3)/2
primary fragments. Note, that the input RNA molecule
with left end p0 and right end pv+1 is not considered
a fragment. Remember that R(PS

1 ) is the set of pairs
(pi, pj) �= (0, L) such that 0 ≤ i < j ≤ v + 1. For
every primary fragment (pi, pj) ∈ R(PS

1 ), let sij be
the position of the secondary cleavage site, which implies
pi < sij < pj . We thus have a set PS

2 = {sij : (pi, pj) ∈
R(PS

1 )} of r secondary cleavage sites which give rise
to a set of 2r secondary fragments. We denote by DS

the multiset of primary and secondary fragment lengths,
which result from solution S, while ZS contains only
those with the “left” end at position 0. Hence, |DS | = 3r
and |ZS | = 2v.

To evaluate the quality of a solution S, we consider
two functions : F(S) is the number of elements that appear
inD but not inDS plus the number of elements that appear
in Z but not in ZS ; G(S) is the number of elements that
appear inDS but not inD plus the number of elements that
appear in ZS but not in Z . Following (4’) we see that for
solutionS, the pair (PS

1 ,PS
2 ) is (F (S)+G(S))-consistent

with D and Z .
The proposed algorithm is executed several times

with various numbers v of primary cleavage sites, which
we set in the following manner. Since the given sets D
and Z possibly have false positives and false negatives,
we can only estimate v. In an ideal situation, without
false positives or negatives, we should have |Z| = 2v and
|D| = 3v(v + 3)/2, which gives two estimates for v, v1
based on the cardinality of Z and v2 based on D:

v1 =
⌊ |Z|

2
+

1

2

⌋

, v2 =
⌊−9 +

√

81 + 24|D|
6

+
1

2

⌋

.

If v1 ≤ v2, we first apply our algorithm for v = v1−c
and v = v2 + c, where c is a constant. Otherwise, we
consider v = v2 − c and v = v1 + c. Let v∗ denote the
value that provides a better solution. It is considered the
starting point for further analysis. More precisely, it is
decreased as long as better solutions are obtained. Next,
the number of primary cleavage sites is set back to v∗ and
increased as long as better solutions are found.

For each value of v considered, we apply two tabu
search algorithms: the first one, TSprimary, is dedicated
to finding primary cleavage sites, while the second one,
TSsecondary, looks for secondary cleavage sites. The former
does not take into account secondary cleavage sites and
the latter considers primary cleavage sites as fixed. In
addition, we apply two heuristic algorithms, ISprimary and
ISsecondary, which role is to provide initial solutions to the
tabu search algorithms.

Algorithm 1. General scheme of the method.
Input: D, Z , L, the range of values of v
Output: Sbest
1: Set Fbest ← ∞, Gbest ← ∞
2: for every given number v of primary cleavage sites
do

3: Generate an initial set P1 of primary cleavage sites
(ISprimary)

4: Try to get a better set P∗
1 of primary cleavage sites

(TSprimary)
5: Generate an initial set P2 of secondary cleavage

sites, considering the primary ones in P∗
1 as fixed

(ISsecondary)
6: Try to get a better set P∗

2 of secondary
cleavage sites, without modifying the primary ones
(TSsecondary), and let S∗

v = (P∗
1 ,P∗

2 ) be the
resulting solution

7: if F(S∗
v ) + G(S∗

v ) < Fbest +Gbest then
8: Set Fbest ← F(S∗

v ), Gbest ← G(S∗
v ), Sbest ← S∗

v

9: end if
10: end for

Note, that for a fixed number v of primary cleavage
sites and solution S, the addition to DS of an element
in D \ DS decreases both F(S) and G(S). Similarly,
an increase of F(S) results in an increase of G(S). We
therefore use only F(S) to compare solutions with the
same number of cleavage sites. Function G(S) helps to
determine the best solution among all those obtained with
various values of v.

Each time a number is inserted/deleted to/from a
set or multiset, this means that its single occurrence is
inserted or deleted.

ISprimary builds an initial set P1 of primary cleavage
sites as follows. Each time an element d is added to P1,
the fragment lengths d andL−d are not further considered
in D, and d is not further considered in Z . Starting from
the empty set, elements are added to P1 in the following
order. First, every element z ∈ Z is considered a primary
cleavage site if its complementL− z belongs to D. Then,
if there are z ∈ Z and d ∈ D such that both d′ = z + d
and L − d′ belong to D, we add position d′ to P1. Next,
every element d of D such that L − d also belongs to D
is added to P1. Finally, if necessary, elements of Z and
D are added (in the order of non-increasing values of the
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elements) to P1. The algorithm stops when P1 contains v
elements.

Algorithm 2. ISprimary (Generate an initial set P1 of
primary cleavage sites).
Input: D, Z , L, v
Output: P1

1: Set num ← 0, P1 ← ∅, D0 ← D, Z0 ← Z
2: while num < v and there are z ∈ Z0 and d ∈ D0

such that z + d = L do
3: Add z to P1 and set num ← num+ 1
4: Remove z from Z0 and D0 and d from D0

5: end while
6: while num < v and there are d, d′, d′′ ∈ D0 and

z ∈ Z0 such that z + d = d′

and d′ + d′′ = L do
7: Add d′ to P1 and set num ← num+ 1
8: Remove d′ and d′′ from D0

9: end while
10: while num < v and there are d, d′ ∈ D0 such that

d+ d′ = L do
11: Addmax{d, d′} to P1 and set num ← num+ 1
12: Remove d and d′ from D0

13: end while
14: while num < v and Z0 �= ∅ do
15: Add the largest element z of Z0 to P1 and set

num ← num+ 1
16: Remove z from Z0 and D0

17: end while
18: while num < v and D0 �= ∅ do
19: Add the largest element d of D0 to P1 and set

num ← num+ 1
20: Remove d from D0

21: end while

In what follows, S(P) denotes the solution having
P as a set of primary cleavage sites (and no secondary
cleavage). Let P1 = {p1, . . . , pv} be the output of the
ISprimary algorithm, with pi < pj for all i < j. The
tabu search algorithm TSprimary tries to generate a better
set P∗

1 . This is done as follows. Moves to neighbor
solutions are defined as a shift of a cleavage site to the
left or to the right within the RNA molecule. The given
new locations for a cleavage currently at position pi are
all integers in [pi−1 + 1, pi+1 − 1], except for pi. We
try all such moves and perform the best “non-tabu” one.
The tabu restrictions are contained in matrix M with v
rows and L−1 columns, whereMi,j denotes the iteration
number before which it is forbidden to move the i-th
primary cleavage to position j. Initially, all Mi,j are
set to 0, and if the i-th primary cleavage (currently at
position pi) is moved to a new position at iteration Iter,
we setMi,pi

equal to Iter+ ⌈√v⌉ to prevent cycling, i.e.,
endless executing the same sequence of moves (revisiting
the same solutions). The tabu status of a move is canceled

if the solution resulting from such a move is better than
the current best known solution. TSprimary stops after |D|
iterations.

Algorithm 3. TSprimary (Try to get a better set P∗
1 of

primary cleavage sites).
Input: D, L, v, P1 = {p1, . . . , pv} with pi < pj for all

i < j
Output: P∗

1

1: Set P∗
1 ← P1, p0 ← 0, pv+1 ← L

2: Initialize the tabu matrixM with zero entries
3: for Iter = 1 to |D| do
4: Set F ′ ← ∞ (best value of a neighbor solution)
5: for every i = 1, . . . , v do
6: for every q ∈ {pi−1 + 1, . . . , pi − 1} ∪ {pi +

1, . . . , pi+1 − 1} do
7: Let Siq be the solution obtained by replacing

pi with q
8: ifMiq ≤ Iter or F(Siq) < F(S(P∗

1 )) then
9: if F(Siq) < F ′ then
10: Set F ′ ← F(Siq), P ′

1 ← (P1 \ {pi}) ∪
{q}

11: end if
12: end if
13: end for
14: end for
15: if F(S(P ′

1)) < F(S(P∗
1 )) then

16: Set P∗
1 ← P ′

1

17: end if
18: Set P1 ← P ′

1 and update the tabu matrixM
19: end for

The output P∗
1 of TSprimary is now considered a fixed

set of primary cleavage sites. They give rise to the
set R(P∗

1 ) of primary fragments. We now determine
secondary cleavage sites by defining f(x, y) for a subset
R′ ofR(P∗

1 ) so that x < f(x, y) < y for all (x, y) ∈ R′.
Let D0 ← D \ {y − x : (x, y) ∈ R(P∗

1 )} be the multiset
of fragment lengths inD that do not correspond to lengths
of primary fragments. Let E be the subset of primary
fragment lengths that can be obtained by summing two
elements of D0. For every e ∈ E , let me denote the
number of different pairs d, d′ of elements of D0 with
d ≤ d′ and d + d′ = e. The elements e of E are then
considered by non-decreasing values of me. For every
e ∈ E , we look for two elements d, d′ in D0 and a primary
fragment (x, y) not yet inR′ such that e = d+d′ = y−x.
If we succeed, we remove d, d′ fromD0, add (x, y) toR′,
and fix a secondary cleavage site on (x, y): if x = 0 and d
or d′ belongs to Z , say d, we set f(0, y) = d; otherwise,
we set f(x, y) = x+min{d, d′}.

We start the TSsecondary algorithm with the set P∗
1 of

primary cleavage sites produced by TSprimary and with the
set P2 = {f(x, y) : (x, y) ∈ R′} of secondary cleavage
sites produced by ISsecondary, where R′ ⊆ R(P∗

1 ). We
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Algorithm 4. ISsecondary (Generate an initial set P2 of
secondary cleavage sites).
Input: D, Z , P∗

1

Output: S = (P∗
1 ,P2)

1: Set D0 ← D \ {y − x : (x, y) ∈ R(P∗
1 )}, R0 ←

R(P∗
1 ) and E ← ∅

2: for every d, d′ ∈ D0 with d ≤ d′ and e = d + d′ ∈
{y − x : (x, y) ∈ R0} do

3: if e ∈ E then
4: Setme ← me + 1
5: else
6: Add e to E and setme ← 1
7: end if
8: end for
9: Order E so that E = {e1, . . . , e|E|} with mei ≤ mej

for all i < j
10: for i = 1, . . . , |E| do
11: if there are d ≤ d′ ∈ D0 and (x, y) ∈ R0 with

d+ d′ = y − x = ei then
12: if x = 0 and {d, d′} ∩ Z �= ∅ then
13: Choose the largest d̃ in {d, d′} ∩ Z and set

f(0, y) ← d̃
14: else
15: Set f(x, y) ← x+ d
16: end if
17: Remove d, d′ from D0 and (x, y) fromR0

18: end if
19: end for

try to improve P2 by using the tabu search metaheuristic
for 2|D| iterations. At each iteration, we generate
three sets N1(S), N2(S) and N3(S) of solutions in the
neighborhood of the current solution S. These sets are
defined as follows, where

D0 = D \
(

⋃

(x,y)∈R(P∗

1
)

{y − x}

∪
⋃

(x,y)∈R′

{y − f(x, y), f(x, y)− x}
)

,

Z0 = Z \
(

P∗
1 ∪

⋃

(0,y)∈R′

{f(0, y)}
)

are the sets of fragment lengths in D and Z , respectively,
that are not yet used by primary or secondary fragments.

(i) The solutions in N1(S) are obtained from S by
removing a secondary cleavage site on a primary
fragment (x, y) ∈ R′ and by adding a secondary
cleavage site on two primary fragments (x′, y′) and
(x′′, y′′) not belonging to R′. This is done only if
there exist two integers d, d′ inD0 such that f(x, y)−
x+ d′ = y′ − x′ and y− f(x, y) + d′′ = y′′ − x′′. If
these conditions are met, we replace (x, y) by (x′, y′)

and (x′′, y′′) inR′ and we fix the secondary cleavage
sites on (x′, y′) and (x′′, y′′) as follows: if x′ = 0
and d′ ∈ Z0, we set f(x′, y′) = d′, otherwise we
set f(x′, y′) = x′ +min{f(x, y)− x, d′}; similarly,
if x′′ = 0 and d′′ ∈ Z0, we set f(x′′, y′′) =
d′′, otherwise we set f(x′′, y′′) = x′′ + min{y −
f(x, y), d′′}.

(ii) The solutions in N2(S) are obtained from S by
adding a secondary cleavage site on a primary
fragment (x, y) /∈ R′. If x = 0, this is done only if
there are z ∈ Z0 and d ∈ D0 such that z + d = y, in
which case we add (0, y) toR′ and fix the secondary
cleavage site at f(x, y) = z. If x > 0, we have to
find two integers d, d′ inD0 such that d+d′ = y−x,
and if we succeed, we add (x, y) to R′ and f ix the
secondary cleavage site at f(x, y) = x+min{d, d′}.

(iii) The solutions in N3(S) are obtained from S by
removing a secondary cleavage site on a primary
fragment (x, y) ∈ R′ and adding one on (x′, y′) /∈
R′. If x′ = 0, this is done if there is z ∈ Z0 such that
z + f(x, y)− x or z + y − f(x, y) is equal to y′, in
which case we replace (x, y) by (0, y′) in R′ and fix
the secondary cleavage site on (0, y′) at f(0, y′) = z.
If x′ > 0, we have to find an integer d ∈ D0 such that
d+ f(x, y)−x or d+ y− f(x, y) is equal to y′−x′,
and if we succeed, we replace (x, y) by (x′, y′) in
R′ and fix the secondary cleavage site on (x′, y′) at
f(x′, y′) = x′ + d.

Let D = {d1, . . . , d|D|}. The tabu restrictions are
contained in matrix M ′ with |D| rows and |D| columns,
whereM ′

ij denotes the iteration number before which it is
forbidden to combine two secondary fragments of lengths
di and dj , respectively, to obtain a primary fragment.
Initially, all M ′

ij are set to 0. Then, if the chosen move at
iteration Iter involves the removal of a primary fragment
(x, y) from R′, we set M ′

ij = M ′
ji = Iter + 10 for i, j

such that di = f(x, y) − x and dj = y − f(x, y). The
tabu status of a move to a neighbor solution is canceled if
the solution resulting from such a move is better than the
current best known solution.

If all moves are tabu (have the tabu status as defined
above), we delete one of the most rarely (since the start
of the TSsecondary procedure) relocated secondary cleavage
sites from S, say f(x, y), which means that (x, y) is
removed fromR′. Otherwise, the best non-tabu neighbor
S′ in N1(S) ∪ N2(S) ∪ N3(S) becomes the new current
solution for the next iteration.

Let S∗
v denote the best solution found after 2|D|

iterations, let R∗
0 be the set of primary fragments in S∗

v

with no secondary cleavage site, and let D∗
0 and Z∗

0 be
the set of fragment lengths in D and Z , respectively, that
are not used by primary or secondary fragments in S∗

v .
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If R∗
0 �= ∅ and D∗

0 ∪ Z∗
0 �= ∅, we do the following.

While there are primary fragments (0, y) in R∗
0 and z in

Z∗
0 with z < y, we fix a secondary cleavage site on (0, y)

at f(0, y) = z, and we remove (0, y) fromR∗
0 and z from

Z∗
0 . Then, while there are primary fragments (x, y) inR∗

0

and d in D∗
0 with d < y − x, we fix a secondary cleavage

site on (x, y) at f(x, y) = x + d, and we remove (x, y)
fromR∗

0 and d from D∗
0 .

Algorithm 5. TSsecondary (Try to get a better set P∗
2 of

secondary cleavage sites).
Input: D, Z , S = (P∗

1 ,P2)
Output: S∗

v = (P∗
1 ,P∗

2 )
1: Set S∗

v ← S
2: Initialize the tabu matrixM ′ with zero entries
3: for iter = 1 to 2|D| do
4: Let N (S) be the set of non-tabu solutions in

N1(S) ∪ N2(S) ∪ N3(S).
5: ifN (S) �= ∅ then
6: Let S′ be a solution inN (S) with smallest value

F(S′)
7: if F(S′) < F(S∗

v ) then
8: Set S∗

v ← S′

9: end if
10: else
11: Set S′ equal to the solution obtained from S

by removing the most rarely relocated secondary
cleavage site

12: end if
13: S ← S′ and update the tabu matrixM ′

14: end for
15: Assign unused elements of Z to primary segments

(0, y) with no secondary cleavage site, and then
assign unused elements of D to primary segments
(x, y) with no secondary cleavage site

As already explained in the general scheme, the four
algorithms ISprimary, TSprimary, ISsecondary, and TSsecondary
are applied sequentially for different numbers v of
primary fragments. We illustrate the whole process using
the instance from Example 1.

Example 2. As a reminder, we have L = 4653,
Z = {11, 435, 1248, 1254, 4554}, and D = {11, 16,
83, 154, 424, 435, 886, 890, 1002, 1035, 1248, 1254,
1269, 1694, 2216, 2271, 2283, 2370, 3233, 3300, 4119,
4218, 4554}. Length 2283 is missing in Z , while lengths
99, 1480, 1848, and 2002 are missing in D, for a total of 5
false negatives.

Since |Z| = 5 and |D| = 23, we get v1 = v2 = 3.
Assuming c = 0, we f irst set v = 3. ISprimary chooses
primary cleavages at positions 435 (instruction 2), 2283
(instruction 6), and 4554 (instruction 14), which gives
Z0 = {11, 1248, 1254}, D0 = {11, 16, 83, 154, 424,
886, 890, 1002, 1035, 1248, 1254, 1269, 1694, 2216,

3233, 3300} and a solution S of value F(S) = 19.
TSprimary does not modify this set P1 = {435, 2283,
4554} of primary cleavage sites. Then, ISsecondary chooses
secondary cleavages at the following positions:

• 11 on primary fragment (0, 435), since 11+424=435;

• 589 (which corresponds to position 154 on primary
fragment (435, 2283)) since 2283 − 435 = 1848 =
154 + 1694;

• 1248 on primary fragment (0, 2283), since 1248 +
1035 = 2283;

• 1254 on primary fragment (0, 4554), since 1254 +
3300 = 4554;

• 1321 (which corresponds to position 886 on primary
fragment (435, 4554)), since 4554− 435 = 4119 =
886 + 3233;

• 3285 (which corresponds to position 1002 on
primary fragment (2283, 4554)), since 4554 −
2283 = 2271 = 1002 + 1269;

• 4570 (which corresponds to position 16 on primary
fragment (4554, 4653)), since 4653− 4554 = 99 =
16 + 83.

Thus, we get Z0 = ∅, D0 = {890,2216} and a
solution S with F(S) = 2. TSsecondary adds the two
following secondary cleavage sites:

• 3173 (which corresponds to position 890 on primary
fragment (2283, 4653));

• 2651 (which corresponds to position 2216 on
primary fragment (435, 4653)).

As a result, we get a solution S∗
3 with F(S∗

3 ) = 0, while
G(S∗

3 ) = 5 since there are 5 false negatives (one in Z and
4 inD). Note, that although the positions of the secondary
cleavage sites in S∗

3 are not identical to those in Fig. 1, the
assignment of secondary fragments to primary ones is the
same. The difference is due to the lack of information
about the order of the secondary fragments on the primary
ones.

The four algorithms are then executed again with
v = 2, and we obtain the solution S∗

2 with F(S∗
2 ) = 11,

G(S∗
2 ) = 2. In order to compare S∗

2 with S∗
3 , we use the

sum of the two functions F andG. Since 0 + 5 < 11 + 2,
S∗
3 is considered better than S∗

2 .
The algorithm is then executed again with v = 4 and

produces a solution S∗
4 with F(S∗

4 ) = 0 and G(S∗
4 ) =

22. Hence S∗
3 is again a better solution, and the output

of the whole process is therefore S∗
3 , which is the optimal

solution. �
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As mentioned at the beginning of this section, the
proposed algorithm assumes that all primary fragments
break into smaller ones. If this is not the case, we
propose the following modifications. The estimates v1
and v2 should be adjusted according to the probability
that a primary fragment breaks into smaller ones. For
example, if this probability is 0.5, we get the estimated
values |Z| = 3v/2 and |D| = v(v + 3), which results in

v1 =
⌊2|Z|

3
+

1

2

⌋

, v2 =
⌊−3 +

√

9 + 4|D|
2

+
1

2

⌋

.

We also recommend to increase the value of constant c
extending the range of v. Algorithms ISprimary, TSprimary
and ISsecondary do not require any modification, while
instruction 15 of TSsecondary can be removed. Note that
this instruction has no impact on the total value F(S) +
G(S) of solution S. It divides a primary fragment into
two secondary ones and the lengths of these secondary
fragments are such that one is in D ∪Z while the other is
outside this set. Hence, F(S) is decreased while G(S) is
increased by the same amount.

4. Computational results
In this section, we report computational experiments

made on random instances, using a machine with the
Intel Xeon E5-2670, 2.60 GHz processor, 16 GB of
RAM and Linux operating system. The algorithms were
implemented in C++.

We have generated RNA molecules of length L =
5000 and with numbers p = 5, 10, 15 or 20 of
primary cleavage sites, based on values met in biological
experiments (Blazewicz et al., 2011; Jackowiak et al.,
2011; Rybarczyk et al., 2016). The positions of
the primary cleavages were chosen using a uniform
distribution in the interval [1, 4999]. Also, for every
instance and every primary fragment (x, y), we have
generated a secondary cleavage site using a uniform
distribution in the interval [x+ 1, y − 1].

The first data set considered contains instances
without any error in the input sets D and Z . The
second data set contains instances with 5, 10, 15 or 20
false negatives, these errors being obtained by randomly
deleting elements from D ∪ Z . The third set contains
instances with 5, 10, 15 or 20 false positives, where
elements have been added to D ∪ Z using a uniform
distribution in [1, 4999]. The last set contains instances
with e = 5, 10, 15 or 20 false negatives, and the same
number, respectively, of false positives, for a total of 2e
errors. The heading of the columns of Tables 1–4 has the
following meaning:

p : number of primary cleavage sites
in the tested instance

Neg : number of false negatives
Pos : number of false positives
Fbest : average value Fbestobtained at the end

of the algorithm
Gbest : average valueGbest obtained at the end

of the algorithm
v1 − v2 : initial range of values of v we apply

our algorithm with
(where constant c is equal to 0)

v : numbers of primary cleavage sites
considered by the algorithm

F : average value F (S∗
v ) of the best solutions S∗

v

obtained with v primary cleavage sites
G : average valueG(S∗

v ) of the best solutions S∗
v

obtained with v primary cleavage sites
Hits : number of instances, among the 10

tested ones, for which the best solution
Sbest was equal to S∗

v .

For each set of parameters (p, Neg, Pos) 10 random
instances were generated and solved, and the presented
results are mean values. Note, that the values in columns
F and G do not necessarily correspond to average values
taken on 10 instances. Particular instances can be solved
with different ranges of values of v, only v1 and v2 are
guaranteed to be used for all 10 instances.

Table 1 contains the results for the instances without
any error. Most of these instances are solved optimally.
The only exception from reaching ideal solutions appears
for the largest instances, but even then the number of
reconstructed cleavage sites is correct.

The results for instances with false negatives (and
no false positive) are shown in Table 2 and Figure 2.
We observe that the algorithm often produces solutions
with the right number p of primary cleavage sites. Some
solutions have only p − 1 primary cleavage sites, and a
very limited number have p− 2 ones. This deviation of 2
units is observed only for the smallest instances with the
largest number of false negatives (p = 5, Neg = 20) and
is due to the fact that there is a big percentage of lacking
elements in D and Z . Figure 2 clearly illustrates the fact
that our global criterion Fbest + Gbest is almost equal to
the number of errors for instances with up to 15 primary
cleavages sites and at most 10 errors. Instances with a
larger number of primary cleavage sites or with more false
negatives appear to be more challenging.

The results are even better for instances with false
positives (and no false negative). They appear in Table 3
and Figure 3. Hits are almost always associated with
the proper value v of primary cleavage sites, and the
total value Fbest + Gbest is always very close to the total
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Table 1. Results for instances without any error.
p Neg Pos Fbest Gbest v1 − v2 v F G Hits

5 0 0 0.0 0.0 5–5 4 18.0 0.0 0
5 0.0 0.0 10
6 0.0 23.0 0

10 0 0 0.0 0.0 10–10 9 33.0 0.0 0
10 0.0 0.0 10
11 0.0 37.7 0

15 0 0 0.0 0.0 15–15 14 48.0 0.0 0
15 0.0 0.0 10
16 0.1 52.4 0

20 0 0 2.2 3.5 20–20 19 62.1 0.5 0
20 2.2 3.5 10
21 0.1 68.3 0

number of errors. This better performance in comparison
to the case with false negatives was previously observed
on another problem from the bioinformatics area, namely
sequencing by hybridization (Blazewicz and Kasprzak,
2012). Although both variants of the latter problem (with
only false negatives and with only false positives) are
strongly NP-hard, typical instances of both kinds are not
equally hard to be processed by a sequencing algorithm
(see, e.g., Blazewicz et al., 1999; 2002). The reason is
that a random false positive error is usually easier to be
handled since it may not fit to the rest of the instance,
while a false negative error makes the task more complex
to guide the search towards an optimal solution.

Fig. 2. Values of Fbest +Gbest for instances with false negatives.

Fig. 3. Values of Fbest +Gbest for instances with false positives.

The most general case with errors of both kinds is
represented in Table 4 and Fig. 4. This case cumulates
difficulties associated with both kinds of errors. Again,
our algorithm often predicts the proper numbers of
cleavage sites and finds most of the secondary cleavage
sites.

Since the size of D is quadratic with respect to the
number of primary cleavage sites, F (Sv) is a convex
decreasing function of v, while G(Sv) is a convex
increasing function of v. Hence, F (Sv) + G(Sv) is a
convex function and we are looking for its minimal value.
A typical shape of these functions is shown in Fig. 5 for
p = 10 and Neg = Pos = 20. The optimal solution
we are looking for is approximately at the intersection of
the curves F(Sv) and G(Sv). Note that we choose one of
v1 − c, v2 + c (or v2 − c, v1 + c) as a starting point for
v which is then decreased and increased until we do not
get any improvement. Since we try both directions, one
of them moves the search towards the optimal value. The
influence of ISprimary, TSprimary, ISsecondary, and TSsecondary
on the total process can be seen in Fig. 6, where we
represent the values F(S) reached by the four algorithms
for instances with Neg = 20 false negatives and no
false positive. We observe very good performance of

Fig. 4. Values of Fbest +Gbest for instances with false negatives
and false positives.
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Table 2. Results for instances with false negatives.
p Neg Pos Fbest Gbest v1 − v2 v F G Hits

5 10 0 0.4 9.9 5–5 4 12.6 4.0 0
5 0.4 9.9 10
6 0.0 31.8 0

15 0 4.0 10.4 4–4 3 22.6 2.3 0
4 10.8 5.9 4
5 0.8 14.7 6
6 0.2 36.7 0

20 0 7.3 8.8 4–4 2 29.0 1.0 0
3 19.1 3.1 1
4 9.2 8.2 7
5 0.9 19.2 2
6 0.0 40.0 0

10 10 0 0.0 9.3 10–10 9 27.4 3.7 0
10 0.0 9.3 10
11 0.0 46.9 0

15 0 7.5 11.7 9–10 8 52.5 2.8 0
9 26.0 6.6 3
10 3.4 17.5 7
11 0.4 52.0 0

20 0 9.3 14.2 9–9 8 51.0 5.2 0
9 24.1 8.9 4
10 3.6 22.2 6
11 1.7 57.9 0

15 10 0 0.0 9.4 15–15 14 41.9 3.3 0
15 0.0 9.4 10
16 0.0 61.8 0

15 0 12.2 12.1 14–15 13 81.5 2.4 0
14 39.1 5.0 3
15 6.2 20.8 7
16 3.1 70.0 0

20 0 4.1 18.2 14–15 13 79.6 4.1 0
14 38.3 8.3 1
15 2.2 21.0 9
16 0.5 71.6 0

20 10 0 6.1 11.0 20–20 18 113.0 0.0 0
19 55.8 4.0 1
20 3.0 14.3 9
21 0.2 78.3 0

15 0 12.8 15.8 19–20 18 111.3 3.9 0
19 53.7 6.4 2
20 7.9 23.5 8
21 5.8 88.6 0

20 0 4.4 24.7 19–20 19 51.6 8.6 0
20 4.4 24.7 10
21 0.8 88.4 0

the initial heuristics. Although the output of ISprimary is
not markedly corrected by TSprimary (in the sense of the
criterion function value), it finally appears to be quite
appropriate to get near-optimal solutions. The role of
TSsecondary is better visible. While three of the curves
increase with p, we see that TSsecondary has values almost
independent of p, which is our goal since the solution S
we are looking for has values F (S) = 0 and G(S) = 20

that do not depend on the number of primary cleavage
sites. Similar curves can be drawn for instances with both
false negatives and false positives.

Figure 7 represents the total computing time
needed to solve instances with negative and positive
errors. Blazewicz et al. (2011) have developed an
exact exponential-time algorithm for instances with false
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Table 3. Results for instances with false positives.
p Neg Pos Fbest Gbest v1 − v2 v F G Hits

5 0 10 10.0 0.0 5–5 4 28.0 0.0 0
5 10.0 0.0 10
6 1.8 14.6 0

0 15 15.0 0.0 5–6 4 32.8 0.1 0
5 15.0 0.0 10
6 6.5 13.8 0

0 20 20.0 0.0 6–6 4 37.0 0.0 0
5 20.0 0.0 10
6 11.0 13.2 0

10 0 10 10.0 0.0 10–10 9 43.0 0.0 0
10 10.0 0.0 10
11 0.0 27.7 0

0 15 15.0 0.0 10–10 9 47.8 0.0 0
10 15.0 0.0 10
11 1.0 23.2 0

0 20 20.0 0.4 11–11 9 52.5 0.1 0
10 20.0 0.4 10
11 5.6 23.1 0

15 0 10 10.2 0.2 15–15 14 58.1 0.1 0
15 10.2 0.2 10
16 0.0 42.2 0

0 15 15.3 0.5 15–15 14 62.8 0.0 0
15 15.3 0.5 10
16 0.2 37.4 0

0 20 20.4 0.7 15–16 14 67.6 0.0 0
15 20.4 0.7 10
16 1.1 33.3 0

20 0 10 11.7 2.9 20–20 19 71.8 0.2 0
20 11.7 2.9 10
21 0.0 58.3 0

0 15 15.0 8.2 20–20 19 76.8 0.3 0
20 18.5 5.1 9
21 0.8 53.7 1
22 0.0 122.0 0

0 20 20.6 8.8 20–21 19 83.9 2.6 0
20 24.3 5.8 9
21 0.8 48.9 1
22 0.2 118.5 0

negatives, but no false positive. Computing times are
shown in Fig. 8, using a logarithmic scale, for instances
with p = 5 (curve 5-Ex) and p = 10 (curve 10-Ex)
primary cleavage sites. The exact algorithm is not able
to solve larger instances. For comparison, we also present
the computing times of our algorithms.

5. Conclusion
In this paper, we have developed a heuristic algorithm,
with two cooperating tabu search procedures, for the
solution of the RNA partial degradation problem. The
proposed algorithm can deal with both kinds of errors:
false negatives and false positives. Computational tests

have clearly shown that the solutions produced by our
algorithm are of good quality, with numbers of cleavage
sites close to the optimal ones. It should be stressed that
the parameters used to generate the instances (number of
cleavage sites, number of errors) are those met in the real
world. Hence, the proposed algorithm will perform well
in practice and will be useful in supporting analysis of
biochemical data.

An exact algorithm exists for the case of only false
negatives, but computing times become unacceptable
for instances with more than 10 primary cleavage sites.
Hence, the proposed algorithm is the only option for
solving the problem with a lot of cleavage sites, and with
false positives.
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Table 4. Results for instances with false negatives and false positives.
p Neg Pos Fbest Gbest v1 − v2 v F G Hits

5 10 10 7.6 9.1 5–5 4 22.4 3.7 0
5 8.9 8.3 9
6 0.6 22.6 1
7 0.0 45.0 0

15 15 13.4 10.4 5–5 3 37.0 2.0 0
4 25.5 5.9 1
5 12.5 11.4 9
6 4.6 25.9 0

20 20 17.8 14.9 5–5 3 38.0 2.0 0
4 28.7 8.2 3
5 18.1 16.0 5
6 8.7 29.1 2
7 0.0 46.5 0

10 10 10 8.6 7.8 10–10 9 36.9 3.1 0
10 8.6 7.8 10
11 0.0 37.0 0

15 15 16.9 17.1 10–10 8 66.7 3.0 0
9 40.3 6.0 3
10 23.0 22.4 4
11 5.0 41.2 3
12 0.3 77.5 0

20 20 23.8 15.9 10–10 8 68.3 2.7 0
9 43.6 8.7 3
10 23.5 21.8 6
11 11.3 46.8 1
12 2.0 80.0 0

15 10 10 8.0 7.3 15–15 14 51.2 2.5 0
15 8.0 7.3 10
16 0.1 51.6 0

15 15 16.8 11.2 15–15 13 95.0 1.0 0
14 53.2 4.1 1
15 14.5 13.8 9
16 3.0 54.3 0

20 20 23.8 17.8 15–15 13 99.5 4.0 0
14 56.8 6.9 2
15 24.8 23.5 7
16 6.8 57.5 1
17 9.5 115.0 0

20 10 10 8.8 10.1 20–20 19 65.0 3.3 0
20 8.8 10.1 10
21 0.0 68.0 0

15 15 12.4 13.3 20–20 19 70.4 8.2 0
20 12.4 13.3 10
21 2.7 70.2 0

20 20 15.6 29.5 20–20 19 72.6 10.1 0
20 22.7 23.4 8
21 8.1 75.4 2
22 0.0 136.0 0

As mentioned above, the proposed algorithm can
easily be modified to handle the case where not all
primary fragments break into smaller secondary ones. As
a continuation of the research reported in this paper, one

may consider the analysis of not only secondary but also
further products of the spontaneous RNA degradation,
which are observed in biology. Taking them into account
is a real challenge.
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Fig. 5. Values of F (Sv), G(Sv) and F (Sv) + G(Sv) for in-
stances with p = 10 primary cleavage sites, Neg = 20
false negatives, and Pos = 20 false positives.

Fig. 6. Average best values F (S) produced by the four subrou-
tines for instances with 20 false negatives.
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Montreal. He is also a member of the multidis-
ciplinary GERAD research group that includes
nearly sixty researchers and experts in operations
research and discrete mathematics. He is the au-

thor of about more than 200 scientific publications His main research
domains are combinatorial optimization, graph theory, algorithmics, and
the development of decision aid systems for scheduling and distribution
problems.

Marta Kasprzak received her PhD degree in
computer science at the Poznan University of
Technology, Poland, in 1999. In 2015, she ob-
tained the scientific title of a professor. She
focuses her scientific research on bioinformat-
ics/computational biology, with the emphasis on
theoretical analysis of problems. She has pub-
lished 61 articles, 37 of them indexed by the Web
of Science, and has worked in 15 national and in-
ternational research projects. She is a founding

member of the Polish Bioinformatics Society.

Jacek Blazewicz is a professor at the Poznan
University of Technology. His research interests
include algorithm design, computational com-
plexity, scheduling, combinatorial optimization,
bioinformatics, e-commerce. Blazewicz has a
PhD in computer science from the Poznan Uni-
versity of Technology. His publication record in-
cludes over 340 papers in many outstanding jour-
nals. He is also the author and co-author of over
ten monographs. He is an IEEE Fellow.

Received: 24 October 2016
Revised: 15 February 2017
Accepted: 27 March 2017


	2017_Rybarczyk_Tabu_search_RNA_partial_degradation

