
Titre:
Title:

Real-time Linux analysis using low-impact tracer

Auteurs:
Authors:

François Rajotte, & Michel Dagenais

Date: 2014

Type: Article de revue / Article

Référence:
Citation:

Rajotte, F., & Dagenais, M. (2014). Real-time Linux analysis using low-impact
tracer. Advances in Computer Engineering, 2014, 1-8.
https://doi.org/10.1155/2014/173976

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/5105/

Version: Version officielle de l'éditeur / Published version
Révisé par les pairs / Refereed

Conditions d’utilisation:
Terms of Use: CC BY

Document publié chez l’éditeur officiel
Document issued by the official publisher

Titre de la revue:
Journal Title:

Advances in Computer Engineering (vol. 2014)

Maison d’édition:
Publisher:

Hindawi

URL officiel:
Official URL:

https://doi.org/10.1155/2014/173976

Mention légale:
Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://doi.org/10.1155/2014/173976
https://publications.polymtl.ca/5105/
https://doi.org/10.1155/2014/173976

Research Article
Real-Time Linux Analysis Using Low-Impact Tracer

François Rajotte and Michel R. Dagenais

École Polytechnique de Montréal, C.P. 6079, Station Downtown, Montréal, QC, Canada H3C 3A7

Correspondence should be addressed to François Rajotte; francois.rajotte@polymtl.ca

Received 21 March 2014; Accepted 18 May 2014; Published 5 June 2014

Academic Editor: Ying-Tung Hsiao

Copyright © 2014 F. Rajotte and M. R. Dagenais.This is an open access article distributed under theCreativeCommonsAttribution
License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the originalwork is properly cited.

Debugging real-time software presents an inherent challenge because of the nature of real-time itself. Traditional debuggers use
breakpoints to stop the execution of a program and allow the inspection of its status. The interactive nature of a debugger is
incompatiblewith the strict timing constraints of a real-time application. In order to observe the execution of a real-time application,
it is therefore necessary to use a low-impact instrumentation solution. Tracing allows the collection of low-level events withminimal
impact on the traced application. These low-level events can be difficult to use without appropriate tools. We propose an analysis
framework tomodel real-time tasks from tracing data recovered using the LTTng tracer.We show that this information can be used
to populate views and help developers discover interesting patterns and potential problems.

1. Introduction

Real-time applications distinguish themselves from their
non-real-time counterparts because of their strict timing
constraints. The correct operation of a real-time system
requires that it responds to stimuli in a bounded time. Real-
time systems are often separated in two categories: hard and
soft real-time. Hard real-time requires the response time to
be bounded and never exceeded. In soft real-time systems,
an exceeded response time is undesirable but does not incur
the complete failure of the system.

The real-time capabilities of the Linux kernel have been
improved thanks to the work done by the PREEMPT-RT
patch contributors. Many tools have been developed to help
demonstrate the real-time capabilities and limits of Linux
systems. Previous work has also demonstrated the good
real-time behavior of the LTTng tracer [1]. LTTng provides
both kernel and user space instrumentation. Because of the
demonstrated low impact of LTTng on real-time applications,
we have chosen to use it to gather the traces required for the
analysis.

In Linux, the thread is the basic unit of execution man-
aged by the scheduler. A single real-time task can therefore
easily be mapped to a thread. A task can have properties that
are unknown to the kernel such as periodicity andmaximum
tolerated response time. Our goal is to extract these higher

level concepts of real-time tasks from information collected
at the kernel level.

The low overhead needed for the instrumentation means
that the events are recorded with as little preprocessing as
possible. In order to extract more advanced information
from the events, it is possible to apply a postprocessing step
on a recovered trace. Using the semantics of the events,
it is possible to extract metrics such as CPU or memory
usage over time [2]. Our contribution consists of an analysis
framework to extract additional debugging information and
metrics from a trace recorded using the LTTng tracer on
a Linux system running real-time applications, without the
need for manual instrumentation.

2. Related Work

This section presents closely related work on the sub-
ject of trace analysis. The techniques discussed here are
divided in two categories: algorithm-based techniques and
visualization-based techniques.

2.1. Existing Algorithmic Techniques. Some techniques use
knowledge of the execution of a task to compute metrics
and statistics. Santos and Wellings calculate blocking time
experienced by a task to help identify errors in the worst

Hindawi Publishing Corporation
Advances in Computer Engineering
Volume 2014, Article ID 173976, 8 pages
http://dx.doi.org/10.1155/2014/173976

2 Advances in Computer Engineering

case execution time assumptions [3]. This algorithm uses
knowledge of the tasks’ base and active priorities to identify
periods of priority inversion. Modifications in the operat-
ing system were required to acquire all the information
necessary for the algorithm. Terrasa and Bernat use finite
state machines to extract metrics at the task and global
level [4]. Simple automatons can generate metaevents to feed
into larger automatons enabling the computation of more
complex metrics. This approach defines four minimal events
required to build the automatons.These events describewhen
a task becomes ready and when it is finished as well as its
base priority. The final event describes context switches. Of
these four events, only the context switch event is directly
retrievable from a Linux kernel trace.

Data mining techniques are also useful to find periodic
patterns and anomalies in a trace. Mannila et al. introduce
the concept of episode to describe temporal relationships
between events [5]. An algorithm is provided to find frequent
episodes.The frequency of episodes is determined by splitting
the trace into windows of a fixed size and measuring the
number of windows that contain the episode. These frequent
episodes can then be used to infer rules about the presence
or absence of events in a trace. Other techniques focus on
finding periodic patterns. Some of these techniques require
the definition of windows or specific events to split the trace
into individual worksets [6] while others can find patterns
without this need [7]. Common to all these methods is the
incremental approach to building the patterns. It is therefore
necessary to read the trace multiple times or preprocess the
trace in a different format.

2.2. Existing Visualization Techniques. Visualization tech-
niques are also useful to organize the content of a large trace.

Zinsight provides three views to present trace data in
different formats [8]. The first one places the events in
rectangles in a two-dimensional plane with time on the
vertical axis and a variable grouping scheme on the horizontal
axis. The second view groups events by type and provides
timing information on paired events such as function entry
and exit.The third view calculates sequences of events leading
up or following an event type of interest, presenting this
information in a directed graph.This view allows a developer
to see common event sequences and abnormal ones. These
views have the advantage of letting user display information
in many different ways but still require advanced knowledge
of the trace events to find sequences of interest.

TuningFork is a framework developed specifically to help
debug complex real-time systems [9]. It provides filters and
aggregation functions to generate data for views. Among its
generic views is the Oscilloscope view. This view allows the
visualization of high frequency data by separating the trace
in strips using a predefined time interval and stacking them.
This view allows the observation of periodic behaviour but
it requires the knowledge of the period of the task and is
of limited use on tasks exhibiting a varying period, such as
sporadic tasks.

2.3. TMF. The tracing and monitoring framework (TMF)
is the default viewer for traces recorded using LTTng. It
provides views to explore traces and display various statistics.
Among these views, the Control Flow View is used to display
detailed information about the states of the different threads
running on the system.These states are derived from the trace
events using an extensive finite state machine. An efficient
storagemechanism is then used to store and retrieve the states
for display without the need to recompute them from the
trace.

3. Proposed Model

Whereas TMF recreates the threads’ states as they are inside
the Linux kernel, our approach’s goal is to create a higher level
understanding of the thread at the task level.We define a real-
time task as a series of recurring jobs running on a single
thread. If the recurring jobs arrive at constant intervals, the
task is said to be periodic. An example of this kind of task
is the running of a real-time simulation, such as an aircraft
simulator. Periodic tasks are in charge of calculating new
simulation parameters in time for the next frame. When the
recurring jobs do not arrive at regular intervals, the task is
said to be sporadic. Using the same example, a sporadic task
could be in charge of modifying simulation parameters when
the operator inputs a command or activates a switch.

In schedulability analysis [10], a periodic task is defined
using a period, a relative deadline, and a worst case execution
time. A sporadic task is similar to a periodic task but has a
variable period. It is rather defined using a minimum arrival
time, specifying the minimum time between two jobs.

A system will generally have many of these tasks running
at the same time, on one or many processor cores.

The operating system is in charge of scheduling the
different tasks. In Linux, the schedulable entity is the thread.
We must therefore map the thread’s state inside the kernel to
the higher level task state we want to model.

The Linux kernel uses two major states to keep track of
the status of a thread: it is either running or blocked. When
a thread is in the running state, it means that the scheduler
is free to schedule the task on a CPU. Even in the running
state, a thread can still wait in the run queue if all the CPUs
are occupied. When it is not running, a thread will be in one
of the three principal blocking states.When blocked, a thread
will be sleeping until a certain condition is met. Each of these
blocking states describes what can wake up the thread. In
interruptible sleep, a thread is woken up when the required
condition is met or when an interrupt occurs or a signal is
received. In uninterruptible sleep, only the required condition
can wake up the thread. Killable sleep is a specialization of
uninterruptible sleep that also allows the thread to wake up
when a fatal signal is received.

3.1. Modeled Task States. The thread states contained within
the Linux kernel represent the concerns of the operating
system and do not translate directly to the realities of the
application or real-time task. A recurring real-time task will
follow a pattern of two major phases. It is either executing

Advances in Computer Engineering 3

Ready

Running

Blocked

Preempted

Waiting

Figure 1: The states of the model and the possible transitions
between them. Waiting represents the duration between the end of
the previous job and the start of the following job. Ready represents
the duration between a task receiving the signal to wake up (its
arrival) and the actual start of the job. Blocked is reachedwhen a task
is blocked from entering a critical section. Preempted happens when
a task is preemptively stopped from running because of a higher
priority task entering the running state on the same processor.
Running is the state in which the task executes the job.

to complete before a deadline, or waiting until its next
execution. Because other real-time tasks are executing at the
same time, the execution phase will generally be broken up
by periods of waiting. This waiting can happen because a
higher priority task must execute first, or because a necessary
resource is currently held by another task.

A real-time task will therefore follow a series of waiting
and execution states. Our approach models the different
states that a task can be in during its execution. Most
importantly, it distinguishes between the different reasons for
waiting. For that purpose, we have modeled four different
states describing different types of waiting. The fifth state
is used to describe the running state. These states and the
possible transitions between them are shown in Figure 1.

3.2. Trace Events. In order to extract these states from the
trace, we have identified the kernel events that allow us to
define the necessary state transitions.

When tracing a real-time system, it is important to
disturb the system as little as possible. As such, we have
chosen those events because they are the minimal set that
allows describing the transitions of our model.

The states are built using a finite state machine using the
same states as those defined in the model discussed earlier.
The transitions are based on the chosen events and conditions
on their fields. The two events needed are both generated
from the scheduler of the Linux kernel.

The sched wakeup event is used to know when a task
becomes ready. The sched switch event is generated when

sched_switch
 next_tid == t

sched_switch
 prev_tid = t

 prev_state != 0
 next_prio >= prev_prio

sched_switch
 prev_tid = t

 prev_state == 0

sched_switch
 prev_tid = t

 prev_state != 0
 next_prio < prev_prio

sched_switch
 next_tid = t

sched_switch
 next_tid = t

sched_wakeup
 tid == tReady

Running

Blocked

Preempted

Waiting

Figure 2: The state transitions are defined using specific events and
their fields.

the scheduler changes the thread executing on a processor.
We use this event to know when a task starts running, when
it is preempted or blocked, and when it starts waiting for the
next job.

3.3. State Transitions. The running-to-preempted transition
is easily covered using the prev state field of the sched

switch event. When a thread is scheduled out while still
being runnable, the prev state field will indicate TASK

RUNNABLE. This can be directly mapped to the preempted
state of our model.

The running-to-blocked and running-to-waiting
transitions are trickier because in both cases the
thread will be in the TASK INTERRUPTIBLE, TASK
UNINTERRUPTIBLE, or TASK KILLABLE state. Using
the prev state field is not sufficient in this case because the
kernel uses the same values to describe different realities at
the task level. The ambiguity arises if the task uses mutexes
with priority inheritance to delimit its critical sections.
According to the priority inheritance protocol, in case of
contention, the priority of the offending thread will be
boosted to the priority of the highest priority blocked thread.
We can therefore use the prev prio and next prio fields
to distinguish the blocked and waiting states. If the next
thread to run has a lower priority, we can be certain that the
previous thread has transitioned to the waiting state. If the
priority of the next process is equal or higher, the previous
thread has transitioned to the blocked state. Figure 2 presents
the graph of transitions with the required events and their
fields.

This distinction can bemade if all threads follow the first-
in first-out scheduling (SCHED FIFO) and have different
base priorities. In the case of a higher priority thread
becoming ready, it will immediately preempt the current
running thread. The current task will therefore always enter
the preempted state at that point. In the case of a lower
priority thread becoming ready, it will not have the chance to
run until all other higher priority tasks voluntarily enter the
waiting state.The only ambiguous transition is when a thread
of the same priority replaces the current one. Since we have as

4 Advances in Computer Engineering

Table 1: State transitions that start and end the accumulation of a
given statistics.

Statistics Transition begin Transition end
Latency Waiting-to-ready Running-to-waiting
Running time Any-to-running Running-to-any
Blocking time Any-to-blocked Blocked-to-any
Inter-arrival time Waiting-to-ready Waiting-to-ready
Wakeup time Waiting-to-ready Ready-to-running

a restriction that all threads have different base priorities, the
only way another thread would have the same priority is if its
priority was boosted. The boosted priority requires that the
current thread is blocked from acquiring a mutex still held
by the offending thread.

3.4. Statistics Extraction. As the trace is analyzed using our
model, we divide the tasks according to the individual jobs
they contain. The task entering the ready state is used as
the marker for a new job. Statistics can then be calculated
for each individual job. Some statistics are defined using the
transitions of the state machine. The transitions define when
a statistics should start accumulating andwhen it should stop.
Some transitions can occur multiple times during a job and
therefore trigger the same statistics accumulation. In those
cases, only the total value for a job is kept. Table 1 shows
an example of common statistics and the transitions used to
compute them.

4. Performance Analysis

The performance of this statistics extraction technique was
tested on traces of varying sizes. The traces were gener-
ated using the LTTng kernel tracer with the sched switch

and sched wakeup events enabled. Enabling other events
populates the trace with events that are ignored by our
model.The worst performance is expected when most events
translate to state changes. By enabling only these two events,
we ensure that the density of events of interest is high and that
many events will generate state transitions in the model.

The real-timeworkloadwas generated using the cyclictest
tool, part of the rt-tests test suite. Cyclictest is used tomeasure
the worst case latency expected on the system. It does this
by running simultaneous real-time tasks and measuring
difference in time between the expected arrival time and the
actual job start time.

For this test, we used cyclictest running ten threads at
varying periods and priorities while tracing the kernel. Larger
traces were achieved by running cyclictest for a longer period
of time. The analysis was run on an Intel Core7 processor
running at 2.6GHz with 10GB of RAM. The analysis time is
presented in Figure 3.The time spent only reading the trace is
also presented to better show the actual time spent generating
the model.

We observe a linear progression of the time spent gen-
erating the model compared to the size of the trace. This is
expected since evaluating a state change of themodel requires

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600

Ti
m

e (
s)

Size of trace (MB)

Trace read and statistics
Trace read only

Figure 3: Time spent calculating our model for traces of varying
sizes.

verifying conditions on a finite number of fields for each
event. Most of the time is actually spent reading and parsing
the trace file. This cost is unavoidable but is not a major issue
when we take into account the fact that other analyses can be
run at the same time on the same trace. The cost of reading
the trace is therefore amortized over all the analyses running
on the same data.

5. View

The model we presented earlier allows for fast modelling
of task data from thread information contained in kernel
traces. Common statistics can be extracted from the model
and provide an overview of the performance of a real-
time task. The use of tracing also allows for more in-depth
analysis. By tracing the kernel, it is even possible to record
events outside the real-time application, without the need
for additional instrumentation. At this level of detail, views
become important tools to quickly navigate the large quantity
of information.

Since traces contain chronologically ordered events, it is
typical to display the desired information on a single timeline
from trace start to trace end with the possibility to zoom in
and out at will.This kind of displaymakes it easy to follow the
execution of a single thread but it becomes harder to compare
two sections of the trace far apart in time at a sufficient level
of detail.

We used these modeled states to separate a task into
each individual job. We developed a view to show the jobs
together on the same time base, synchronized on the task
release time. It is therefore easier to compare them without
having to scroll through the trace to compare two jobs. It is
also possible to sort the jobs, according to different statistics
that can be calculated from the time spent in each state or
between transitions.

Advances in Computer Engineering 5

 0

 100

 200

 300

 400

 500

 600

 700

 0 2 4 6 8 10 12 14
Latency (𝜇s)

N
um

be
r o

f j
ob

s

Figure 4: Histogram of the latency of a cyclictest thread running at
medium priority.

6. Test Cases

In this section, we will show how this view can be used
in tandem with existing tools to better understand complex
interactions of real-time applications. First, a simple case will
be presented to introduce basic concepts. Then, two more
examples will demonstrate the additional insight provided
using our approach and the help it provides to debug
problems.

6.1. Basic Concepts. To introduce the view, we will use
cyclictest to generate a simple trace. Cyclictest was configured
to run ten threads, simulating ten real-time periodic tasks on
the same CPU. Each task’s period is 100 us longer than the
previous one, the smallest period being 100 us. The task with
the smallest period was also the one with the highest priority.
The other tasks have one lower priority than the previous one,
following their respective period in increasing order.

Once this run of cyclictest is traced, the analysis is
performed.The gathered statistics provide a good overview of
the whole run. Figure 4 presents the histogram of the latency
observed for the fifth highest priority task. The maximum
latency observed is 14 us but most latencies are between 2 and
3 us. Other peaks are observed at 7 and 10 us.

Statistics alone cannot explain the observed behavior, but
they provide clues for potential problems. In this case, we
would like to understand the cause of the peaks in latency
observed. Although still acceptable, the peaks could be signs
of a deeper problem.TheControl FlowView of TMF presents
the trace in a chronological fashion that allows zooming
in on a time range and observes the interactions between
threads. Such a view is presented in Figure 5. In this view,
threads of higher priority are at the top. Although most
jobs are executed without delay, sometimes, a higher-priority
job will preempt the execution of a lower-priority one. This
preemption increases the latency of lower priority jobs. We
also observe that longer delays can happen when multiple
higher-priority jobs need to be executed in a short interval.

c

11:58:27.479100Process TID
Cyclictest
Cyclictest
Cyclictest
Cyclictest
Cyclictest
Cyclictest
Cyclictest
Cyclictest
Cyclictest
Cyclictest

1603
1604
1605
1608
1609
1610
1611
1612
1613
1614

Figure 5: A zoomed-in Control Flow View of TMF showing the
preemption of threads.

Figure 6: Our view showing individual jobs stacked and synchro-
nized on their arrival time.

Preemption is a normal and desired feature for real-
time schedulers. It allows high priority tasks to finish sooner
and therefore have low latency. If we were to investigate the
latency spike observed using only TMF’s Control Flow View,
we might dismiss the spike as normal and not a cause for
concern. Using our model, we can extract jobs of a real-time
task and show them in a way that would not be possible in
a strictly chronologically accurate view such as the Control
Flow View of TMF.

The resulting view is shown in Figure 6. Using this view,
we can observe that the longer latencies are not randomly
distributed but follow a pattern. Every two jobs, a higher
priority preempts the current job. Every six jobs, another
job also preempts it, producing an even larger delay. This is
caused by the arrival times of different tasks that happen too
close to one another.

6.2. AbnormalDelay. Theprevious section dealt with extract-
ing knowledge from a seemingly normal execution. This
section will deal with finding the source of the problem
after an anomaly occurs such as a missed deadline. During
our work with cyclictest, we have experienced unexpected
latencies in the order of several milliseconds. This was
surprising considering the fact that the programwas running
on an isolated core. We were able to trace the system while
the latency spike happened and use our model to pinpoint
the problem.

Since we want to find a missed deadline, we use our
view while sorting by longest latency first (Figure 7). The
worst offending job will be at the top of the view. We can
further explore the source of the problem by examining the
surrounding area of the trace. Since our view is synchronized
with the Control FlowView, simply clicking on a job will take

6 Advances in Computer Engineering

Figure 7: Our custom view showing individual jobs, sorted by
longest latency.

11:58:27.483200Process TID
Cyclictest
Cyclictest
Cyclictest
Cyclictest
Cyclictest
Cyclictest
Cyclictest
Cyclictest
Cyclictest
Cyclictest

1603
1604
1605
1608
1609
1610
1611
1612
1613
1614

........

..

....

.

...

.

.

.

.

Figure 8: The delayed threads as seen in the Control Flow View of
TMF.

the Control Flow View to the same location in the trace. This
view is shown in Figure 8.

In that view, we can confirm the problem is plaguing
all the other threads of cyclictest as well. At that location,
we also find another program executing on another core.
That program was executing an ioctl system call. Using
the syscall entry event from the trace, we can recover that
call’s arguments and discover that this particular call is tied
to the graphics driver. Upon further investigation, we found
out that the graphics driver executed a privileged instruction
invalidating the cache of the processor. This caused subse-
quently the processor to stall for a few milliseconds while
the cache was being repopulated, even on cores theoretically
shielded from the others.

6.3. Sporadic Tasks. The previous cases dealt mainly with
simple periodic tasks.The next case we present will deal with
sporadic tasks and exhibit blocking and priority inheritance.
The use of specific kernel events does not limit the separation
of the trace according to a fixed period. It is also possible
to split a trace according to a task of variable period. To
demonstrate that possibility, we have implemented a simple
producer-consumer application.

We have attributed higher priority to the consumer task
than the producer task to keep the overall latency of the
application as low as possible.The data is transferred from the
producer to the consumer using a shared buffer in memory.
To prevent concurrent access, this buffer is synchronized
using semaphores. A third task is also running at the same

time,with the highest priority.This task’s purpose is to disturb
the two other tasks of interest and create jitter.

Because of the way this application is designed, we can
expect the behaviour to follow a pattern. At the beginning
of the execution, the consumer has nothing to consume and
is therefore blocked. The producer produces its first unit of
data, stores it in the buffer, and indicates via a semaphore that
data is ready to be consumed. The consumer wakes up and
starts consuming right away because of its higher priority. It
soon consumes all the data in the buffer and blocks. This, in
turn, allows the producer to continue producing and the cycle
begins anew until all data is processed.

We can try to verify this behaviour using theControl Flow
View of TMF. In Figure 9, we can see the tasks executing
one after the other as expected. However, it is not clear when
each of the expected phases is active. There appears to be
additional scheduling activity that was not predicted by the
previous analysis. In Figure 10, we use our algorithm to split
the consumer task in its individual phases.

We can observe that the additional scheduling activity
is caused by a period of blocking at the end of each job.
Some jobs also show a second period of blocking. Cross-
referencing these jobswith theControl FlowView, we see that
these extraneous periods of blocking are caused by the higher
priority task interfering with the execution of the consumer,
of lower priority.

However, the common period of blocking to all jobs is
not caused by an external process. It is rather caused by
the use of a fully preemptible Linux kernel modified with
the PREEMPT RT patch. The goal of this patch is to reduce
latency inside the Linux kernel by reducing the amount of
time spent in nonpreemptible code.

In our case, when the producer task wakes up the
consumer to indicate that data is ready, the producer enters
kernel space. However, as soon as the consumer becomes
ready, the producer is preempted and prevented from leaving
protected areas of the kernel. This allows the consumer to
complete its work earlier and reduce latency. When all the
data is consumed, the consumer tries to enter the waiting
state once again but is prevented from entering protected
areas of the kernel because the producer has not left them
yet. The consumer is blocked while the producer’s priority
is boosted and can leave the protected areas. Once this is
complete, the consumer wakes up yet again, this time to wait
on the availability of data on the shared buffer.

The extra context switches are an example of the draw-
backs of using a kernel modified to reduce latency. By
reducing the overall latency of the system, the throughput
of the application is affected negatively. If the reduced
throughput is an important concern for the application, it
might be desirable to configure the kernel to reduce its
preemptibility. This allows the user to fine-tune the system
between throughput and latency.

Using this real-time application as example, we are able
to observe some inner workings of the Linux kernel that are
not obvious when programming at the user space level. Our
task-splitting algorithm can improve the comprehension of a

Advances in Computer Engineering 7

Fu Fute Futex Fu FuFute FuteFutex

(a)

Fu Futex FuteFutexFuFute

(b)

Figure 9: The producer (a) and consumer (b) threads as seen in TMF’s Control Flow View.

Figure 10: The individual jobs of the consumer thread, ordered
chronologically.

trace by extracting important states and displaying them in a
way that helps the user discover interesting patterns that are
not obvious in a strictly linear chronological view.

7. Conclusion

This paper addresses the analysis of real-time tasks from
information found in a kernel trace. Debugging real-time
tasks is inherently difficult because it is not possible to use
traditional debuggers to analyse complex timing interactions.
Using the low-impact LTTng kernel tracer, we can gather
traces of real-time tasks running on Linux while disturbing
the system as little as possible. Using a kernel tracer also has
the benefit of not requiringmodifying the application’s source
code to add trace pointsmanually. Once the trace is retrieved,
we can recreate the task state from the kernel events contained
in the trace.

We begin by defining our model using common states
and concepts of real-time applications. These states take
into account the common realities of priority-based schedul-
ing such as preemption and priority inheritance. Next, we
identify the kernel events that can be used to generate the
required transitions of the model. We use knowledge of the
scheduler to distinguish task states that are ambiguous at
the kernel level. We then use the model to extract statistics

useful in gaining insight on the application. We analyse the
performance of our method and find that the time spent
generating the model is very small compared to the time
required to read the trace. We then use the generated model
to split a task into its constituent jobs, whether they are
periodic or sporadic. A view is presented in which the jobs
are shown and easily compared to one another. The statistics
gathered previously can be used to reorder the jobs and find
areas of interest. Two real-time applications are analyzed
using this approach. In the first case, we find unforeseen
interactions between tasks within the application and outside
the application. In the second case, we observe interactions
with the kernel that are invisible at the user space level.

One area of future work is to express the transitions of the
model using a generic language that would allow a greater
flexibility. Users could define their own model, include the
necessary instrumentation, and even define their own views.
Another area of interest is the calculation of critical paths
during periods of blocking. Critical paths are used to explain
the duration of blocked states by following the chain of
events that caused the blocked states to end. When applied
to real-time tasks, critical paths can be used to find complex
interactions between threads.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] R. Beamonte, Traçage de systèmes linux multi-coeurs en temps
réel [Ph.D. thesis], École Polytechnique de Montréal, Montréal,
Canda, 2013.

[2] F. Giraldeau, J. Desfossez, D. Goulet, M. Dagenais, and M.
Desnoyers, “Recovering system metrics from kernel trace,” in
Proceedings of the Ottawa Linux Symposium (OLS ’11), pp. 109–
116, 2011.

[3] O. M. D. Santos and A. Wellings, “Measuring and policing
blocking times in real-time systems,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 10, no. 1, article 2,
2010.

[4] A. Terrasa and G. Bernat, “Extracting temporal properties from
real-time systems by automatic tracing analysis,” in Real-Time
and Embedded Computing Systems and Applications, pp. 466–
485, Springer, New York, NY, USA, 2004.

[5] H. Mannila, H. Toivonen, and A. I. Verkamo, “Discovery
of frequent episodes in event sequences,” Data Mining and
Knowledge Discovery, vol. 1, no. 3, pp. 259–289, 1997.

8 Advances in Computer Engineering

[6] P. L. Cueva, A. Bertaux, A. Termier, J. F. Méhaut, and
M. Santana, “Debugging embedded multimedia application
traces through periodic pattern mining,” in Proceedings of
the 10th ACM International Conference on Embedded Software
(EMSOFT ’12), pp. 13–22, ACM, New York, NY, USA, 2012.

[7] S. Ma and J. L. Hellerstein, “Mining partially periodic event
patterns with unknown periods,” in Proceedingsof the 17th
International Conference on Data Engineering, pp. 205–214,
IEEE, Heidelberg, Germany, 2001.

[8] W. de Pauw and S. Heisig, “Zinsight: a visual and analytic
environment for exploring large event traces,” in Proceedings
of the 5th International Symposium on Software Visualization
(SOFTVIS ’10), pp. 143–152, ACM,NewYork, NY,USA,October
2010.

[9] D. F. Bacon, P. Cheng, D. Frampton, andD. Grove, “Tuningfork:
visualization, analysis and debugging of complex real-time
systems,” IBM Research RC24162, 2007.

[10] B. Sprunt, L. Sha, and J. Lehoczky, “Scheduling sporadic and
aperiodic events in a hard real-time system,” Tech. Rep., DTIC
Document, 1989.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

