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Phase separation of formation fluids in the subsurface introduces hydrodynamic perturbations which are critical for mass and
energy transport of geofluids. Here, we present pore-scale lattice-Boltzmann simulations to investigate the hydrodynamical
response of a porous system to the emergence of non-wetting droplets under background hydraulic gradients. A wide parameter
space of capillary number and fluid saturation is explored to characterize the droplet evolution, the droplet size and shape
distribution, and the capillary-clogging patterns. We find that clogging is favored by high capillary stress; nonetheless, clogging
occurs at high non-wetting saturation (larger than 0.3), denoting the importance of convective transport on droplet growth and
permeability. Moreover, droplets are more sheared at low capillary number; however, solid matrix plays a key role on droplet’s
volume-to-surface ratio.

1. Introduction

Fluids flowing through natural reservoirs are often solutions
of several chemical species/volatiles, some of which are less
abundant and, depending on thermodynamic conditions,
dissolve in the host fluids. Changes of reservoir thermody-
namic conditions, though, can drive the solution out of equi-
librium such that the host fluids might become oversaturated
with one or more chemical species [1]. Under some circum-
stances, this oversaturation eventually leads to volatile exso-
lution and/or phase separation with the emergence and
growth of a second phase. These circumstances have been
reported in (1) gas bubble migration in sediments and sub-
surfaces [2, 3], (2) CO2 sequestration [4–10] where the dis-
solved CO2 exsolves from solution due to depressurization
and/or increase in temperature, (3) hydrothermal phase

separation [11–13] where a denser brine and a lighter low-
salinity vapor coexist at elevated temperatures and pressures,
and (4) gas exsolutions in magma reservoirs which can be
induced by depressurization episodes and/or crystallization
of anhydrous mineral phases driven by cooling [14–16]. This
conversion from a single-phase to a multiphase system, par-
ticularly a mixture of immiscible fluids, is known to alter the
system dynamics due the emergence of, such as buoyancy,
viscosity contrast, and capillarity. In particular, the capillary
resistivity to the multiphase transport influences the
discharges of phases by means of the competition between
viscous and capillary stresses [5, 7, 10, 17, 18]. This conver-
sion in the mid-ocean ridge hydrothermal systems is also
thought to strongly influence the chemistry of vents and the
convective transfer of energy [11, 19]. In shallow ocean
sediments, this conversion leads to the formation of gassy
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sediments, due to the arising and growing of gas bubbles.
These bubbles affect the mechanical properties of the sedi-
ment [20, 21] and could dramatically reduce the sediment
hydraulic conductivity [22].

While the aforementioned studies have elucidated some
effects of phase separation on some convective systems, these
studies have not focused on dynamic response of phase
separation in a heterogeneous porous medium under a back-
ground pressure gradient [5, 7–9, 16]. In this paper, we inves-
tigate, via multiphase numerical modeling, the system’s
hydrodynamic response to phase exsolution/separation out
of a solution, where fluid flow is driven by a constant hydrau-
lic gradient and where the buoyancy stress potentially rising
from the emergence of a dispersed phase can be neglected
(i.e., low Bond number). We focus our discussions on two
main aspects: (1) the characterization of the evolution of
the separating/dispersed non-wetting phase (including size,
shape, and mobility of the emergent droplets) and (2) phase
separation effects on fluid discharge (i.e., hydraulic response
to the evolving capillary stress on the emergence of two-
phase fluid flows). In the interest of our analysis, density
and viscosity of both phases are assumed to be identical
(i.e., both the capillary and viscous stresses dominate over
the buoyancy stress), and the theme of this work is mainly
on the effects of variations in capillary properties (surface
tension) and fluid saturations on the system evolution.

2. Conceptual Model and Simulation Set-Up

Our numerical model is designed to investigate the hydrody-
namic response of the system during the emergence, growth,
and transport of non-wetting droplets in a complex porous
geometry where the flow of the wetting phase is driven by a
constant hydraulic gradient. The model manipulates the
emergence of droplets using a diffusion process and resolves
the competition between the capillary and viscous stresses at
the pore scale. For convenience, we avoid modeling the com-
plex thermodynamics of droplet nucleation by taking the
out-of-equilibrium conceptual model, i.e., the so-called spi-
nodal decomposition [23–25]. The spinodal decomposition
describes a mechanism that governs a rapid demixing of a
multiphase mixture into multiple coexisting/immiscible
fluids. This mechanism obeys a purely diffusion process
and triggers phase separation where droplets are formed
without overcoming an energetic barrier. Once the formation
of droplets is initiated, the growth of droplets is driven by the
droplet-droplet hydrodynamic interactions and coalescence.
Eventually, the system evolves into a two-phase system with
a continuous wetting phase and a dispersed non-wetting
phase (i.e., droplets). This simplification allows us to intro-
duce in situ, random droplet nucleations and to focus on
the physical processes of droplet growth during the simula-
tions of two immiscible fluid flows under isothermal and
isobaric conditions.

In this work, a variant of the lattice-Boltzmann two-
phase color-gradient method (CGM) described by Leclaire
et al. [26] is employed to perform the simulations of pore-
scale isothermal immiscible two-phase fluid flow in porous
media. The lattice-Boltzmann method (LBM) is a finite

difference computational fluid dynamic approach that, in
contrary to the traditional discrete solvers of Navier-Stokes
equations, solves a simplified discrete version of the
Boltzmann equation [27]. The LBM excels in the modeling
of fluid-fluid and fluid-solid interactions of multiphase fluids
within structures of complex geometry such as porous media
[28, 29]. The CGM has been shown to be capable of correctly
simulating a time-scale power law which is related to the coa-
lescence rate of spinodal decomposition [24]. In addition, the
CGM has been extensively validated against various bench-
marks [26, 30–32]. The CGM has also been reported to be
well suited to resolve the competition between capillary and
viscous stresses as occurring in porous media [26]. In order
to take advantage of high parallelization efficiency, our
CGM code is implemented in PALABOS [33], an open-
source C++ parallel library for LBM. All reported simulations
in the current work are performed using Euler, the high-
performance scientific compute clusters, at ETH Zurich.

For this study, the CGM performs time integrations of
two ensembles of particle populations (e.g., red and blue)
that describe a continuous wetting phase and a dispersed
non-wetting phase, respectively. By employing a three-
dimensional D3Q15 lattice, the time integration of the
particle population collision-streaming scheme is divided
into seven calculation steps:

(1) First, the particle populations at the computational
domain boundaries are updated according to the
classical fully periodic boundary conditions [34]

(2) The classical weakly compressible Boltzmann fluid
hydrodynamic is introduced into the color-gradient
method with a color-blind collision between the par-
ticles. The hydraulic gradient is modeled by including
an external force on the wetting phase [32, 35]

(3) The wetting boundary condition is applied (i.e., the
dispersed phase is perfectly non-wetting with a 180-
degree contact angle) using ghost nodes as described
by Leclaire et al. [31]

(4) A perturbation operator is introduced to model the
interfacial tension at the interface between the two
immiscible phases

(5) The finite width of the interface and the immiscibility
is preserved by using an additional recoloring step

(6) A no-slip boundary condition between the colored
particles and the solid phase is applied using a classi-
cal full-way bounce-back [27]

(7) Finally, the usual streaming step is applied to each of
the colored particle populations

Compared to the CGM described by Leclaire et al. [26],
the current model applies two simplifications so that the total
computational expense of this study can be reduced. The first
simplification is the implementation of a single-relaxation-
time model which is a special case of the multirelaxation-
time model with χ = 1, as presented by Leclaire et al. [26].
The second simplification is the employment of the ghost
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node approach, instead of the advanced wetting boundary
condition described by Leclaire et al. [26]. It has been demon-
strated that the ghost node approach yields satisfactory wet-
tability behaviors (i.e., a correct contact angle) for a
dispersed non-wetting phase with a contact angle larger than
120 degrees (see the supplementary material in Leclaire et al.
[31]). We would like to point out, however, that if the dis-
persed phase is more wetting than the continuous phase,
i.e., the contact angle of the dispersed phase is less than 90
degrees, a much more careful attention on the implementa-
tion of the wetting boundary condition would be necessary,
because nonphysical mass transport could appear along the
solid surfaces [26, 31, 36]. In order to concise the text and
emphasize the focus of this study, the detailed mathematical
description of the proposed CGM model (i.e. steps 2, 4, 5,
and 7) is documented in the appendix. The mathematical
description of the boundary conditions (i.e., steps 1, 3,
and 6) refers to the aforementioned references.

The current CGM belongs to a so-called diffused-
interface class of immiscible multiphase solver where 3-5
lattice nodes are required to resolve the fluid-fluid inter-
face between the immiscible fluids. However, the low-
dissolution properties peculiar to the recoloring method
(RM) during the recoloring step allow the formation of
stable small droplets (radii smaller than 5 lattice nodes)
which, although underresolved, can be advectively trans-
ported by the fluid flow [29, 37]. These small droplets might
coalesce with each other or with larger droplets and, there-
fore, fully participate in the evolving dynamics that we want
to investigate. More importantly, the RM instinctively guar-
antees the mass conservation for both the wetting and the
non-wetting fluids. In our calculations, a flag variable, Ψ =
ρw − ρnw / ρw + ρnw , is defined using the density fields of
the wetting fluid, ρw, and the non-wetting fluid, ρnw . Region-
s/lattice nodes occupied by the wetting and the non-wetting
fluids are indicated by Ψ < 0 and Ψ ≥ 0, respectively (e.g.,
droplets in Figure 1(c) are the volume rendering of Ψ ≥ 0).
The flag Ψ is also used to retrieve the total momentum field,
j, and the individual momentum fields, jw and jnw , of the
wetting and non-wetting fluids, respectively. Integration of
the vertical components of the momentum fields, namely,
jz , j

w
z , and jnwz , over the whole simulation domain yields the

total discharge, J totz , and its individual contributions, Jwz and
Jnwz , of the two immiscible fluids, respectively (Figure 1(a)).

The porous medium used in the current simulations is
generated using a crystal nucleation-and-growth algorithm
[38] that follows Hersum and Marsh [39]. The computa-
tional domain measures in total nz × ny × nx = 300 × 200 ×
200 lattice nodes. The porosity of this porous medium, ϕ, is
set to 0.5 to ensure a high enough numerical resolution for
resolving a significant size range in both pores and droplets
(the characteristic pore size is about 10-20 lattice nodes). This
high porosity thus preserves a statistically meaningful num-
ber of crystals and droplets (each about thousands, establish-
ing critically necessary large representative elementary
volumes (REVs)). It therefore allows us to draw conclusions
on fluid discharges for a wide range of phase saturation, S.

A set of simulations with a non-wetting phase saturation
of 0 ≤ Snw ≤ 0 7 and a surface tension of 5 × 10−4 ≤ σ ≤ 10−1

(in lattice units) has been performed to focus on the effect
of variation in capillary properties (surface tension) and fluid
volume fractions/saturations. For an individual simulation,
its fluid saturation S of individual calculation is preset and
remains constant during the simulation. Except for some
small random perturbations (which are needed to trigger
the phase separation process), the two fluids are initially
uniformly mixed and distributed throughout the void
space of the porous medium. The viscosity of both phases
is set to vlb = 0 1667 (in lattice units), which corresponds
to a relaxation time of τ = 1 0 for all the simulations. Peri-
odic boundary conditions are applied in all directions. In
all simulations, a constant hydraulic gradient is imple-
mented by applying a body force of Fp

lb = 2 × 10−4 on the
wetting phase only [40]. Therefore, the total driving force
on the system is proportional to the wetting phase volume,
Vw. The dispersed phase is assumed to be completely non-
wetting (i.e., its contact angle is equal to 180°). Under such
conditions, the transport of the non-wetting droplets
depends solely on the competition between the shear (viscous)
and capillary stresses.

3. Results and Discussions

3.1. Transport Stage and Mechanism. A typical three-stage
evolution of the phase separation is clearly demonstrated in
our simulations (Figure 1): transport of mixture in stage I,
transport of growing droplets in stage II, and steady-state
transport of two phases in stage III. During stage I, the two-
fluid mixture quickly establishes an early/initial steady-state
discharge, jtotz , which depends on Fp

lb and the wetting fluid
volume fraction Sw (Figure 1(a)). At this stage, the two phases
are still completely mixed (i.e., droplets are not yet formed).
This complete mixing is indicated by the zero discharge,
jnwz , of the non-wetting phase. At the beginning of stage II,
phase separation is triggered and droplets start to develop
via the spinodal decomposition, dominated by a diffusion
growth (Figure 1(a)). A few thousand iterations later, droplets
hydrodynamically interact with each other, and they grow via
coalescence. As soon as the droplets reach sizes similar to the
ones of pores and throats, capillary stresses start affecting the
fluid flow. These observations are supported by the confirma-
tion of the increase in jnwz (due to the growth and transport of
droplets) and the decrease in total discharge, jtotZ , induced by
the capacity reduction of flow pathways which results in
higher energy dissipation. At late times of stage II, droplets
can reach sizes similar to or even bigger than the ones of pores
and throats. A typical example of droplet evolution is reported
by taking snapshots at early and late times during stage II in
one of our simulations (Figure 1(c)). A more comprehensive
understanding of the phase separation process at early
times can be gained by watching movies included in our
supplementary materials (available here). In stage III, both
the total and non-wetting discharges eventually reach their
steady-state values. During this stage, transport of large drop-
lets is strongly controlled by the competition between capil-
lary and shear stresses. At high surface tension (indicated
by the red line in Figure 1(a)), large droplets are mostly
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Figure 1: (a) Three-stage (i.e., stages I, II, and III) temporal evolution of total discharge, J totZ , and non-wetting fluid discharge, JnwZ , for three
σlb values and Snw = 0 05. (b) Temporal evolution of Snw distribution (simulation time is normalized to the maximum lattice time of 6 × 105)
as a function of porous medium conductivity for null (middle panel) and non-null (bottom panel) hydraulic gradients with σlb = 0 05 and
Snw = 0 05. The top panel shows the histogram of the normalized velocity. (c) Droplet evolution at two different times (early and later
times at stage II) during spinodal decomposition for σlb = 0 05, Snw = 0 05, and Fp

lb = 2 0 × 10−4.
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trapped and they act as immobile obstacles to the flow of the
wetting phase. At small surface tensions (indicated by the
blue and green curves in Figure 1(a)), droplets are likely to
be deformed and they can migrate under the driving of
the wetting phase. The latter case results in much higher
total and non-wetting discharges. Nonetheless, both the
total and non-wetting discharges fluctuate around their
steady-state values due to the capture and release of drop-
lets. Apparently, this fluctuation is lessened due to snap-
off and reconnection of droplets as surface tension
decreases, which will be further explained in the subse-
quent subsections.

Since phase separation is occurring while the fluid mix-
ture is being transmitted, droplet growth is expected to be
strongly influenced by the connectivity of the porous
medium and the advection of fluids. This observation is con-
firmed in our calculations that growth of droplets is governed
by a transport-enhanced mechanism, as described by Zuo
et al. [10]. Such behavior is clearly visible (Figure 1(b)) when
comparing the evolution of saturation distribution Snw of
the non-wetting phase between two particular scenarios,
one with a null hydraulic gradient (i.e., droplet growth is
diffusion-dominated) and one with a non-null hydraulic
gradient (i.e., droplet growth is influenced by fluid advec-
tion). To interpret such behavior, for both scenarios, the
saturation of the non-wetting phase, Snw , is assembled as
a function of the normalized z-component of fluid veloc-
ity. The fluid velocity is obtained in a steady-state single-
phase fluid flow calculation with the same geometry and
hydraulic gradient. It is rational to approximate that the
strength/capacity of advection is proportional to velocity
magnitude, i.e., the higher the z-velocity, the higher the
advection capacity. For the scenario of null hydraulic
gradient (i.e., diffusion-controlled and affected at a lesser
extent by geometrical properties), Snw quickly becomes a
roughly uniform distribution, where non-wetting droplets
mainly reside in regions of median advection capacity
(Figure 1(b)). For the scenario of non-null hydraulic
gradient, a much more rich temporal evolution of Snw is reg-
istered, especially at the early times when small droplets are
transported in the highly advective regions (i.e., the most
well-connected pores and throats) but eventually coalesce to
form large droplets which reside in regions of low (but non-
null) advection capacity and likely to be capillary-trapped.

3.2. Connectivity of Wetting Fluid. As stated in previous
sections, a steady-state velocity field is reached during
stage III. This steady-state velocity uw of the wetting phase
is utilized to compute the continuous streamlines of the
wetting phase only. Here, the continuous streamline is
defined as a streamline continuously spanning from the
inlet to outlet boundaries along the main flow direction.
By definition, in the lattice-Boltzmann method, the veloc-
ity uw x, y, z is calculated as the ratio of momentum over
fluid density, i.e., uw = jw/ρw. Then, a seepage velocity of
the wetting phase in the main flow direction (z-direction)
Uw

z is calculated along the streamlines. Note that stream-
lines are generally tortuously passing through the porous
medium and thus have a length longer than the 22domain

size in the z-direction [41]. Mathematically, the z-direction
seepage velocity of the wetting phase is formulated as

Uw
z = 1

N
〠
N

s=1
〠
Ls

i=1
uwz xi, yi, zi , 1

where Ls is the length of the s-th continuous streamline
and N is the total number of the continuous streamlines
that can be identified and pass through the porous
medium from the initial cross section z = 0 in an indi-
vidual simulation. A total velocity, Uw, along all the
continuous streamlines is calculated accordingly:

Uw = 1
N

〠
N

s=1
〠
Ls

i=1
uwx xi, yi, zi 2 + uwy xi, yi, zi 2 + uwz xi, yi, zi 2

2

Starting from the initial cross section z = 0 , velocities
along the streamlines are sampled at the equidistant
points, using an integration step equals to 0.1 of a lattice
to ensure a good estimation of the continuous streamlines
passing through the pore space. The presence of a notable
amount of continuous streamlines indicates that (1) con-
tinuous pathways still exist in the wetting phase (i.e., it
is physically meaningful to use body force to formulate a
background hydraulic gradient) and (2) the porous
medium is not yet completely clogged by the non-
wetting phase. A completely clogged stage is reached when
the wetting phase retains very limited number of continu-
ous streamlines (up to 100). Note that there are more than
8000 continuous wetting-fluid streamlines for a single-
phase flow in the current porous medium. At the
completely clogged stage, the trapped or slowly moving
non-wetting fluid breaks up the wetting phase into several
disconnected parts inside the porous medium and thus
impedes the transmit of the wetting phase. Figure 2(b)
shows the completely clogged stages for five different surface
tensions σlb, indicated by arrows with different colors. Our
results clearly indicate that the completely clogged stage
occurs at higher wetting-fluid saturation Sw for higher σlb,
due to higher resistance introduced by capillary stresses.

Since the viscosity of both phases is fixed, the competition
between capillary and viscous stresses is therefore explored
by uniquely varying σlb. This competition can be cast into a
dimensionless capillary number Ca = uwc vlb/σlb, where uwc is
the characteristic velocity of the wetting phase. If uwc is
defined as the mean seepage velocity, Uw

z , of the wetting
phase, i.e., before the system is completely clogged, Ca is
yielded between 2 8 × 10−3 and 1 63. If uwc is defined as the
mean velocity of uw from discharge jw, Ca is yielded between
7.8710 and 0.03. Although there are discussions on the defi-
nition validity of the pore-scale capillary number [42, 43], a
transition of a capillary-dominated regime to a viscous-
dominated one is indeed observed in our simulations.

3.3. Droplet Shape and Size Distribution. It is expected that
the volume and shape of droplets reveal the effect of the
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competition between the viscous and capillary stresses on
droplet mobilities. Such a competition is qualitatively
depicted in Figure 3(a), where droplet distributions of three
scenarios at Snw = 0 05 at a later stage are reported with
respect to σlb = 0 0005, 0.005, and 0.05. When the capillary
stresses dominate over the viscous stresses (at σlb = 0 05, ren-
dered in red in Figure 3(a)), droplets are mainly rounded.
Under such circumstances, droplets with radii similar to the
ones of pores in which they reside are likely to be capillary-
trapped. At lower surface tensions (rendered in blue and
green in Figure 2(a)), the viscous stresses tend to overwhelm
the capillary ones. The dominant of viscous stress facilitates
the elongation of medium-size droplets along the main flow
direction, while large droplets can be heavily squeezed and
stretched during their creeping movements from one pore
to the other. As a result, the snap-off of droplets often occurs,
as indicated by Rossen [44]. In summary, the competition
between viscous and capillary stresses governs the droplet

mobilities, which influence the overall mass discharge, as
reported in Figure 1(a). We can conclude that the smaller
the surface tension, the lower the energy dissipation and
therefore the higher the total discharge. Moreover, as surface
tension decreases, snap-off and creeping movement of drop-
lets ease the sawlike disturbance in fluid discharge due to the
capture and release of droplets.

By further varying Snw , two distinguishable dynamic
behaviors of the non-wetting phase can be identified:
droplet percolation and ganglion snap-off. Droplet perco-
lation occurs at low non-wetting phase saturations
(Snw < 0 1 − 0 15, depending on σlb). In this regime, small
droplets are passively transported by the wetting fluid
and they moderately interact with the solid geometry. In
contrast, large droplets strongly interact with the solid
geometry, move slowly through the pores, or can be even
capillary-trapped. Overall, large droplets act as collectors
of smaller and faster ones. As Snw increases, large ganglia
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Figure 2: (a) Magnitude of the norm of total velocity throughout the porous medium (solid in back and gray) as well as non-wetting droplets
(in red) at Snw = 0 05 and σlb = 0 05 at a given time snapshot (3 × 105 iterations). (b) Mean seepage velocity, Uw

z , averaged along the
continuous streamlines of the wetting phase. (c) and (d) Magnitude of the norm of seepage velocity (solids are rendered transparently in
gray) and non-wetting droplets (in red) for Snw = 0 05 (left) and Snw = 0 20 (right) with σlb = 0 05 at 3 × 105 iterations. For better
visualization, not all streamlines are reported.
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(i.e., collections of connected droplets) can be formed,
some of which will eventually percolate the entire system.
Such ganglia are likely to snap off and reconnect again
over time. Our simulations suggest that for Snw > 0 2
(depending on σlb), ganglion snap-off and redevelopment

represent the most important mechanism of droplet
mobilities. Moreover, snap-off is more frequent at lower
surface tension (low Ca, see movies in the supplementary
material). Our observation is in line with Deng et al.
[45], stating that high capillary stresses inhibit snap-off.
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Figure 3: (a) Snapshots of non-wetting phase (droplets) at steady state for different surface tensions (σlb = 5 × 10−2, 5 × 10−3, and 5 × 10−4)
and Snw = 0 05. (b) Characterization of droplet shape at different surface tensions using volume-to-surface-area, Vnw/Sf nw , versus “spherical
radius” of individual droplets, 3Vnw/4π 1/3, where Vnw and Sf nw are the volume and surface area of individual droplets. For a spherical
droplet, Vnw/Sf nw = 3Vnw/4π 1/3, indicated by the black solid line. Results are plotted for all simulations with saturations of 0 8 ≤ Sw ≤ 0 95.
Inset: individual droplet volumes normalized by the averaged pore size of the medium are plotted against the apparent Capillary number,
Ca∗ = SwF

p
lbSf nw/σlb, for these three surface tensions. The size of the symbols is proportional to the reciprocal of droplet saturation; i.e., the

higher the droplet saturation, the smaller the symbol.
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Figure 3(b) reports the distributions of volume Vnw to
surface Sf nw ratio of droplets with respect to the hypothetical
volume-to-surface ratio for a perfect sphere (black line with a
slope of 1). Such analyses are performed for σlb = 0 0005,
0.005, and 0.05 and for Snw up to 0.2. This is because at
higher Snw, droplets mostly develop into large ganglia
(i.e., collections of coalesced droplets) that strongly skew
these distributions. Droplet statistics are evaluated when the
system reaches a time-averaged steady state (either at 3 ×
105 or 6 × 105 iterations, depending on σlb). As expected,
the lower the surface tension, the smaller the droplet
volume-to-surface ratio (i.e., the higher the droplet deforma-
tion). In contrast, high surface tension results in more spher-
ical droplets which follow the black line with a slope of 1. The
deviation away from the black line is induced by the size of
the droplets and the saturation of the non-wetting phase
(up to Snw ≥ 0 15), where droplets are sensibly larger than
the average pore size and therefore more deformed. This
deviation enhances the coalescence of droplets [46] and
forces the volume-to-surface ratio to deviate from the black
line in Figure 3(b).

The effect of pore topology on droplet volume distribu-
tion is documented in the inset of Figure 3(b), where the
normalized droplet volume (to the averaged pore volume)
is plotted versus an apparent Capillary number Ca∗ which
is formulated as Ca∗ = SwF

p
lbSf nw/σlb. Here, Ca∗ is an analog

of the dimensionless Bond number, Bo = Δρgr2/σ (Δρ is the
density difference between fluid phases, g is the gravitational
acceleration, r is the droplet radius, and σ is the surface ten-
sion), where r2 is approximated by the droplet surface area
Sf nw and Δρg is replaced by SwF

p
lb which represents the effec-

tive hydraulic gradient applied to the system and exerted as a
body force on the wetting phase only. A regression analysis
suggests that the normalized droplet volume is proportional
to Ca∗ , where γ = 1 259, 1.294, and 1.375, with respect to
σlb = 5 × 10−4, 5 × 10−3, and 5 × 10−2. Note that the exponent
γ is bounded by γ = 1 50which is obtained through a theoret-
ical calculation on a spherical droplet. The decrease in expo-
nent γ due to the decrease in surface tension further confirms
the effect of lower surface tensions on droplet stretching
and breaking (into smaller droplets, i.e., snap-off). However,
the change in γ is rather subtle such that amuch higher weight
can be likely attributed to the pore topology effect on γ. Our
interpretation is in agreement with Shimizu and Tanaka
[25], discussing the dominant effect of the solid-matrix
topology on phase separation in porous media.

3.4. Implications to Geothermal, Hydrothermal, and
Magmatic Systems. Up till now, we have demonstrated the
following observations that can be concluded from our sim-
ulations on phase separation driven by a background hydrau-
lic gradient in a porous medium:

(a) The exsolved phase (hereafters droplet) prefers its
settlements in regions of low advection capacity, sug-
gesting a transport-enhanced mechanism for droplet
growth. Because of the trapping of droplets, the
overall resistance to flow increases

(b) System clogging varies with capillary-viscous stress
competition, but overall clogging prefers at high
non-wetting phase saturation. In other words, the
higher the phase proportion of droplets, the higher
the potential of system clogging

(c) The fluid-matrix interaction strongly influences the
normalized droplet volume distribution that follows
a power law. The geometry of the pore space plays
an important role in the geometry of the non-
wetting fluid and hence in the clogging

It is well-known that phase separation has been identified
as a critical process that strongly influences the efficiency of
heat and mass transfer in geothermal (particularly high-
enthalpy) [47–49] and hydrothermal systems [12, 50–53].
In geothermal and hydrothermal systems, phase separation
may take place under a variety of circumstances, typically
including subcritical (i.e., boiling) and supercritical (conden-
sation) phase separations. The former one occurs below the
critical point where a vapor will be separated from the brine,
whereas the latter one occurs above the critical point where a
dense, highly saline brine will be separated [51]. Despite the
evidence and the importance of clogging due to phase separa-
tion, the impact of clogging on geofluid circulation during
phase separation has not been considered. One of the key
impacts due to clogging is the reduction in permeability
which has been identified as a critical parameter for geofluid
circulation. Our results suggest that the reduction in perme-
ability depends on the velocity distribution (due to the
transport-enhanced mechanism), fluid composition (phase
saturation), and pore space geometry.

In magmatic systems, a so-called gas-driven filter-
pressing has been proposed to elucidate the influence of bub-
ble exsolution and growth on the melt extraction from
crystal-rich zones [54–57]. As the exsolved bubbles nucleate
and grow in the pore space in magma reservoirs (largely
made of crystals and silicate melt in the interstices, called
“crystal mushes”), the volume taken by the exsolved bubbles
is expected to push out the melt and form the so-called
crystal-poor rhyolite/obsidian flow. However, the clogging
effect of bubbles is certainly not taken into consideration in
these gas-driven filter-pressing scenarios [54–57]. Our results
show that clogging by bubbles is important and must be
considered in estimating the efficiency of gas-driven
filter-pressing (particularly for low Bond number situations).
In particular, the more the bubbles form, the slower the
phase separation will be, ultimately limiting the efficiency
of phase separation.

4. Conclusions

In summary, a series of lattice-Boltzmann simulations of
multiphase flow has been performed in a porous medium
that is generated via a crystal nucleation and growth algo-
rithm. These simulations address the hydrodynamic response
when phase exsolution/separation occurs in a flow through
this medium driven by a hydraulic gradient. The focus of this
study is limited on the effect of variations in surface tension
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and fluid volume fractions. For convenience, the phase sepa-
ration process is simplified by taking the spinodal decompo-
sition to describe a rapid demixing of a mixture of phases to
form immiscible droplets out of a solution. Three stages have
been identified during the evolution of phase separation,
namely, transport of mixture in stage I, transport of growing
droplets in stage II, and steady-state transport of two phases
in stage III. Moreover, large droplets or clusters of droplets
tend to settle in regions of low advection capacity, suggesting
a transport-enhanced mechanism for droplet growth. Two
distinguishable dynamic behaviors of droplet transport can
be recognized, namely, droplet percolation at low non-
wetting phase saturation and ganglion snap-off at high
non-wetting phase saturation. The snap-off and formation
of ganglion represent the most important features of droplet
mobility especially at high non-wetting phase content. These
large droplets or ganglia move slowly through or even are
trapped in the pores due to capillary resistance. As surface ten-
sion increases, the breakup chance of the wetting phase
increases and ultimately a completely clogged stage arises in
the system. This completely clogged stage can be quantita-
tively defined using an averaged flux of the wetting phase
calculated along continuous streamlines. The completely
clogged stage occurs at higher wetting-fluid saturation for
higher surface tension, due to higher resistance introduced
by capillary stresses. Both the decrease in surface tension
and the saturation increase in the non-wetting phase enhance
the coalescence of droplets and thus the deviation of the
volume-to-surface ratio to the one of spherical droplets. A
regression analysis suggests that the normalized droplet vol-
ume is proportional to the power of an apparent Capillary
Number. However, we tend to attribute a much higher weight
of pore topology, rather than surface tension, on the exponent
change of this power. Our results provide insights to the
understanding of phase separation in natural systems, such
as gassy soils [20–22], CO2 storage reservoirs [7–10], hydro-
thermal systems [11, 19], and water-rich magma reservoirs
[16]. In all of these settings, the emergence, growth, and trans-
port of the secondary phase introduce perturbations to the
fluid flow driven by background pressure gradients, which
are likely critical to the dynamic evolution of these settings.

Appendix

Color Gradient Multiphase (CGM) Lattice
Boltzmann Model

The core algorithm of our CGM approach follows the D3Q15
two-phase model of [26]. The two-phase fluid flows are
resolved using two sets of distribution functions, one for each
fluid, moving on the D3Q15 lattice with the velocity vectors
c i as given in [26]. Note that a rescale between the lattice
and the physical units is always needed, even though the
lattice system is defined as ΔzLB = ΔyLB = ΔxLB = ΔtLB = 1,
where ΔxLB is the lattice spacing and ΔtLB is the lattice
time step.

The distribution functions for a fluid of color k
(with k = r, b) are denoted as Nk

i x , t , while Ni x , t =

Nr
i x , t +Nb

i x , t is the color-blind distribution function.
Excluding the boundary condition, the evolution algorithm
of the fluid bulk follows the operators below:

(1) Collision operator:

Nk x , t∗ = Ωk
3

Ωk
2 Ωk

1
Nk x , t

A 1

(2) Streaming operator:

Nk
i x + c i, t + 1 =Nk

i x , t∗ , A 2

where the symbol denotes the bra Dirac notation with
an expansion with respect to the velocity space. The col-
lision operator results in three main operations: the

single-phase collision operator Ωk 1
, the multiphase per-

turbation operator Ωk
i

2
, and the multiphase recoloring

operator Ωk
i

3

The first operator Ωk 1
is based on the standard single-

relaxation-time operator of the single-phase LB model

Ωk
1

Nk = Nk − ωeff Nk − Nk e + ΔNk

A 3

The density of the fluid k is given by the first moment of
the distribution functions

ρk =〠
i

Nk
i =〠

i

Nk e
i , A 4

where the superscript e denotes the equilibrium. The
total fluid density is given by ρ =∑kρk, while the total
momentum is defined as the second moment of the distri-
bution functions:

ρu =〠
i

〠
k

Nk
i c i =〠

i

〠
k

Nk e
i c i, A 5

where u is the velocity of the color-blind distribution
functions. The general form of the D3Q15 equilibrium
functions are defined in [26].

The term ΔNk in Eq. (A.3) is a density distribution
function modification designed to add external forces. In this
study, this term is solely used to change momentum of the
dispersed phase:

ΔNk = λM−1 Δm , A 6
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where Δm is an all-zero moment vector except for the
indexes corresponding to the momentum such that

Δmpx
= Cx,

Δmpy
= Cy ,

Δmpz
= Cz

A 7

Here, λ = ρb/ρ, so that the constant forcing C = Cx, Cy,
Cz = 0, 0, 0 0002 is applied on a single-component (here
the wetting phase only) [35] pore and where the momentum
indexes px , py, and pz are lattice-dependent and are given in
[26]. Note that all these modifications are made in the
moment space before being translated into the distribution
space with the matrix multiplication M−1. The matrix M is
defined in [26] for the D3Q15 lattice.

The effective relaxation parameter ωeff is defined so that
the fluid viscosity is consistent with the macroscopic equa-
tions for a single-phase flow in the single-phase regions.
When the viscosities of the fluids are different, an interpola-
tion is applied to define the parameter ωeff at the interface. If
vk is the kinematic viscosity of the fluid k, we define the
viscosity v at the interface between the fluids

v = ρr
ρr + ρb

vr +
ρb

ρr + ρb
vb A 8

Then, the effective relaxation parameter is

ωeff =
2

6v + 1 A 9

The surface tension in the CGM is modeled by means of
the perturbation operator [58, 59]. It takes the following
form:

Ωk
i

2
Nk

i =Nk
i +

A
2 F Wi

F ⋅ c i
2

F
2 − Bi , A 10

where the color gradient F approximates the normal to the
interface

F = ∇
ρr − ρb
ρr + ρb

, A 11

and Bi are lattice-dependent weights given in [26]. Reis and
Phillips [59] and Liu et al. [60] have shown that this operator
complies within the macroscopic limit, with the capillary
stress tensor present in the macroscopic equations for two-
phase flows if the weights Bi are well chosen. The parameter
A is space- and time-dependent and is chosen to fit the sur-
face tension value at the fluid interface:

A = 9
4ωeffσ, A 12

with σ being the interfacial surface tension. Although this
operator generates the surface tension, it does not guarantee
the fluid’s immiscibility. To minimize mixing and segregate

the fluids, the recoloring operator Ωk
i

3
needs to be properly

selected.
This operator is used to maximize the amount of fluid k

at the interface that is sent to the fluid k region, while remain-
ing consistent with the laws of conservation of mass and total
momentum. The recoloring operator presented here is based
on Refs. [61, 62] and is as follows:

Ωr
i

3 Nr
i = ρr

ρ
Ni + β

ρrρb
ρ2

cos φi 〠
k

Nk e
i ρk, 0 , αk ,

Ωb
i

3
Nb

i = ρb
ρ
Ni − β

ρrρb
ρ2

cos φi 〠
k

Nk e
i ρk, 0 , αk ,

A 13

where β is a parameter controlling the thickness of the
interface. The variable φi corresponds to the angle between

the color gradient F and the lattice velocity c i. A special rela-
tion for β exists for which it is possible to easily control the
spurious currents and the physical width of the interface with
lattice refinement [63].

For more information on the CGM model, the reader
may refer to [26].
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Supplementary Materials

There are three movies which describe the phase separation
process in three different scenarios: (i) BF_2e-4_Sigma_5e-
2_Snw_5e-2.gif shows the separation process of the non-
wetting phase rendered in red with a hydraulic gradient of
Fp
lb = 2 × 10−4, a surface tension σ = 5 × 10−2, and a non-

wetting phase saturation Snw = 0 05. (ii) BF_2e-4_Sigma_
5e-4_Snw_5e-2.gif shows the separation process of the

10 Geofluids



non-wetting phase rendered in green with a hydraulic
gradient of Fp

lb = 2 × 10−4, a surface tension σ = 5 × 10−4, and
a non-wetting phase saturation Snw = 0 05. (iii) nullBF_
Sigma_5e-2_Snw_5e-2.gif shows the separation process of
thenon-wettingphase rendered inbluewith ahydraulic gradi-
entof Fp

lb = 0, a surface tensionσ = 5 × 10−2, andanon-wetting
phase saturation Snw = 0 05. (Supplementary Materials)
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