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1. Introduction

When machine tools come to operation as measuring 
systems, they boost production efficiency because of the 
synergy between measurement and manufacture. Like in any 
other measurement procedure, the estimates for measurand 
obtained by these apparatus are complete only when they come 
with uncertainty metrics [1]. This is essential to establish the 
traceability of the measurement process.

On the other hand, generating an accurate uncertainty 
assessment is usually a time-consuming process. This stems 
from the computation cost of the propagation of uncertainty, 
which provides the basis of uncertainty estimators. The 
complexities associated with the analytical method for the 
propagation of uncertainty, known as the Markov formula [2], 
have brought about the development of numerical methods. The 
Monte Carlo method (MCM) is an iterative numerical approach 
to propagate distributions and is favourable for complex 
measurement functions or those with no closed-form 
mathematical expression. Moreover, according to the central 
limit theorem [2], this method has promising convergence 

properties. Despite that, calling the measurement function once 
in every MCM trial highly increases the computation time, 
especially when it comes to an adaptive MCM where the 
convergence criteria require conducting an adequately large 
number of trials. Supplement 2 to GUM [3] specifies an 
alternative analytical solution for the propagation of 
uncertainty, referred to as the GUM uncertainty framework 
(GUF). Validated with an adaptive MCM, GUF is an efficient 
replacement for the inefficient MCM. 

The GUF application in the metrology of machine tools has 
remained limited probably because of the convolutions of 
covariance analysis. These difficulties confine the GUF 
implementation to its single-output form, specified by GUM [1]
as the law of propagation of uncertainty [4, 5]. In this study, 
however, a full covariance estimator allows for conducting 
GUF. Adhering to Supplement 2 to GUM [3], we then assess 
the validity of the GUF results by comparing them with the 
MCM estimates, considering predefined numerical tolerances. 
The conformity of GUF to the MCM results is also examined 
through ellipsoidal coverage regions and marginal probability 
distribution functions (PDFs).
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2. Uncertainty evaluation 

2.1. Measurement function, input, and output quantities 

The forward kinematic model of the machine serves as the 
on-machine measurement function. This model receives the 
probed axis positions and the machine parameters to calculate 
the compensated Cartesian coordinates in the workpiece frame 
using a chain of homogeneous transformation matrices that 
gives the relative position of the tool frame, as the stylus tip 
centre, with respect to the workpiece frame. When probing a 
point set of size 𝑛𝑛 , like in estimating a ring’s diameter by 
probing 𝑛𝑛  points around its surface, the recorded 5 𝑛𝑛  axis 
positions (five joint positions per probed point) together with 
13 machine parameters, describing the geometric status of the 
machine, form the input data of uncertainty estimators. 
Therefore, the number of input quantities is 𝑁𝑁 = 5𝑛𝑛 + 13. The 
5×5 repeatability matrices of probed axis positions [6] and the 
13×13 covariance matrix associated with the machine 
parameters [7] separately encode information on the 
correlations involved in on-machine measurement since the 
data on the machine parameters and the probed axis positions 
is acquired independently. As a result, the full covariance 
matrix of the input quantities is not directly obtainable from 
observations. To assemble these effects and obtain a single full 
covariance matrix 𝑼𝑼𝒙𝒙  of dimension (5 𝑛𝑛 +13)×(5 𝑛𝑛 +13), a 
covariance estimator simulates pseudo-repeatability tests as 
though the replicated tests of on-machine probing and those of 
geometric error indication (with SAMBA [8]) occur at the same 
time, which approximates the full covariance matrix of the 
input quantities. Details on the covariance simulator can be 
found in [9]. 

The 3𝑛𝑛 compensated Cartesian coordinates of the probed 
points in the workpiece frame are the output quantities of the 
measurement function, thus the number of output quantities is 
𝑚𝑚 = 3𝑛𝑛  and covariance matrix 𝑼𝑼𝒚𝒚  is of dimension 3𝑛𝑛×3𝑛𝑛 . 
When a probed point set is further processed to estimate the 
actual value of geometric feature attributes, the final covariance 
matrix diagonals are the scalar values (variance) associated 
with the estimates. 

2.2. Monte Carlo method 

MCM evaluates with the measurement function (the 
machine’s forward kinematic model) an adequately large 
sample of input quantities 𝑿𝑿, drawn at random from a joint 
distribution, resulting in a corresponding sample of output 
quantities 𝒀𝒀  [3, 10]. In an adaptive MCM, this procedure 
completes in ℎ sequences, each including 𝑀𝑀=104 trials. During 
each sequence, matrix 𝑮𝑮𝑿𝑿 accumulates 𝑀𝑀 drawn input vectors 
𝒙𝒙  and matrix 𝑮𝑮𝒀𝒀  stores the corresponding evaluated output 
vectors 𝒚𝒚  (Fig. 1a). The latter provides essential statistical 
information to evaluate the uncertainty of the measurement 
function’s outputs. As a result, regardless of the number of 
input and output quantities, an estimate for the joint PDF of the 
measurand is obtainable by MCM. Given a desirable coverage 
probability of 𝑝𝑝, the MCM simulator initially conducts ℎ0 =

10  sequences and then calculates output estimates 𝒚𝒚 , 
associated standard uncertainty 𝒖𝒖𝒚𝒚, maximum eigenvalue 𝜆𝜆max 
of the output correlation matrix, and coverage factor 𝑘𝑘𝑝𝑝 (Fig. 
1a). Comparing with predefined numerical tolerances, if 
convergence does not hold, it then conducts one more sequence 
and continues until the results converge. More details on the 
MCM procedure can be found in [7]. 

2.3. GUM uncertainty framework 

The Taylor series of a function evaluates it with an infinite 
sum of the terms formed by the function’s derivatives at a 
single point. Considering the first two terms of the Taylor series 
of a measurement function at the expectation values of the input 
quantities, GUM estimates the measurement function in a small 
neighbourhood of these expected values. Drawing an analogy 
between this neighbourhood and the standard uncertainty 
intervals of the input values, the law of propagation of 
uncertainty evaluates the standard uncertainty of the output 
quantities. 

The GUF outcome is an estimate for the covariance matrix 
of the output variables. Then, compared to MCM, GUF reveals 
limited information about the measurand. Particularly, GUF 
does not provide any joint PDF for the output quantities. 
Nonetheless, fitting certain distributions, such as normal, to the 
obtained covariance matrix might approximate the true joint 
PDF of the output quantities. 

Supplement 2 to GUM [3] develops this concept for multi-
output measurement function 𝒀𝒀 = 𝑓𝑓(𝑿𝑿) , where 𝑿𝑿 =
[𝑋𝑋1, … , 𝑋𝑋𝑁𝑁]T  is a vector of 𝑁𝑁  input quantities and 𝒀𝒀 =
[𝑌𝑌1, … , 𝑌𝑌𝑚𝑚]T  is a vector of 𝑚𝑚  output quantities. Covariance 
matrix 𝑼𝑼𝒚𝒚 associated with output estimates 𝒚𝒚 is [3] 

𝑼𝑼𝒚𝒚 = 𝑪𝑪𝒙𝒙 𝑼𝑼𝒙𝒙 𝑪𝑪𝒙𝒙
𝑇𝑇 (1) 

where 𝑼𝑼𝒙𝒙  is the covariance matrix associated with best 
estimates 𝒙𝒙 of input quantities 𝑿𝑿. In this equation, 𝑪𝑪𝒙𝒙  is the 
sensitivity matrix at 𝑿𝑿 = 𝒙𝒙 of dimension 𝑚𝑚 × 𝑁𝑁: 

𝑪𝑪𝒙𝒙 =

[
 
 
 
 𝜕𝜕𝑌𝑌1
𝜕𝜕𝑋𝑋1

⋯ 𝜕𝜕𝑌𝑌1
𝜕𝜕𝑋𝑋𝑁𝑁

⋮ ⋱ ⋮
𝜕𝜕𝑌𝑌𝑚𝑚
𝜕𝜕𝑋𝑋1

⋯ 𝜕𝜕𝑌𝑌𝑚𝑚
𝜕𝜕𝑋𝑋𝑁𝑁]

 
 
 
 
 (2) 

Given the complexity of the on-machine measurement 
function, numerical differentiation is a suitable means to 
estimate the partial derivatives stored in the sensitivity matrix 
𝑪𝑪𝒙𝒙 given in Eq. (2). According to GUM [1], the step size for 
differentiating the measurement function with respect to the 𝑗𝑗th 
input quantity 𝑋𝑋𝑗𝑗  equals the corresponding standard 
uncertainty 𝑢𝑢(𝑥𝑥𝑗𝑗) . Fig. 2 illustrates the numerical 
differentiation procedure using the symmetric derivative. 
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3. Validation of GUF with an adaptive Monte Carlo 
method 

Supplement 2 to GUM [3] specifies the validation procedure 
of GUF using an adaptive MCM. After indicating the numerical 
tolerances for convergence criteria of the adaptive MCM, these 
metrics also define the required accuracy of the GUF results. 
This standard defines: 

𝒅𝒅𝒚𝒚 = |𝒚𝒚𝐺𝐺𝐺𝐺𝐺𝐺 − 𝒚𝒚𝑀𝑀𝑀𝑀𝑀𝑀| 

𝒅𝒅𝒖𝒖(𝒚𝒚) = |𝒖𝒖(𝒚𝒚)GUF − 𝒖𝒖(𝒚𝒚)MCM| 

𝑑𝑑𝜆𝜆max = |𝜆𝜆max
GUF − 𝜆𝜆max

MCM| 

𝑑𝑑𝑘𝑘𝑝𝑝 = |𝑘𝑘𝑝𝑝
𝐺𝐺𝐺𝐺𝐺𝐺 − 𝑘𝑘𝑝𝑝

𝑀𝑀𝑀𝑀𝑀𝑀| 

(3) 

where 𝒅𝒅𝒚𝒚 , 𝒅𝒅𝒖𝒖(𝒚𝒚), 𝑑𝑑𝜆𝜆max , and 𝑑𝑑𝑘𝑘𝑝𝑝  are the absolute differences 
between the MCM and GUF results (denoted by the respective 
superscripts) respectively for best estimates 𝒚𝒚 , associated 
standard uncertainty 𝒖𝒖(𝒚𝒚), the largest eigenvalue 𝜆𝜆max of the 
output correlation matrix, and coverage factor 𝑘𝑘𝑝𝑝. If numerical 
tolerance for 𝒚𝒚 and 𝒖𝒖(𝒚𝒚) is 𝜹𝜹 and that for 𝜆𝜆max and 𝑘𝑘𝑝𝑝 is 𝜌𝜌 and 
𝜅𝜅𝑝𝑝, respectively, the adaptive MCM validates the GUF results 
if all the absolute differences given by Eq. (3) are smaller than 
the corresponding numerical tolerances: 

𝒅𝒅𝒚𝒚 ≤ 𝜹𝜹 

𝒅𝒅𝒖𝒖(𝒚𝒚) ≤ 𝜹𝜹 

𝑑𝑑𝜆𝜆max ≤ 𝜌𝜌 

𝑑𝑑𝑘𝑘𝑝𝑝 ≤ 𝜅𝜅𝑝𝑝 

(4) 

4. Results and discussion 

Experimental on-machine measurements on a gauge block 
(Fig. 1b) and a precision sphere (Fig. 1c) with a Mitsui Seiki 
HU40-T five-axis horizontal machining centre have already 
validated the MCM results by examining whether the 
uncertainty intervals provide the desired coverage probability 
[9]. Each compensated coordinate of a probed point is regarded 
as having four significant decimal digits when expressed in 
mm. Then, the numerical tolerance for best estimates 𝒚𝒚 and 
associated standard uncertainty 𝒖𝒖(𝒚𝒚)  is 𝜹𝜹 =0.05 𝟏𝟏3𝑛𝑛×1  µm, 
where 𝟏𝟏3𝑛𝑛×1  is a column vector of ones of length 3𝑛𝑛 . The 
numerical tolerance for the largest eigenvalue 𝜆𝜆max  of the 
output correlation matrix and coverage factor 𝑘𝑘𝑝𝑝  is also 
𝜌𝜌=𝜅𝜅𝑝𝑝=0.05. Table 1 includes the absolute differences for best 
estimates 𝒚𝒚  and associated standard uncertainty 𝒖𝒖(𝒚𝒚) , 
determined for two points probed on the gauge block with a 
calibrated length of 500.0095 mm [9]. For point 1, the probed 
positions for linear axes X, Y, and Z are -138.5650, 94.6560, 
and 196.2320 mm, and those for the rotary axes B and C are -
42° and -293°, respectively. These values for point 2 are -
61.2880, 48.3440, 246.8170 mm, -64°, and -124°, respectively. 

This table also includes the estimate for the gauge’s length and 
its standard uncertainty along with the absolute differences 
between these quantities obtained with the two evaluation 
methods. The largest eigenvalue 𝜆𝜆max and coverage factor 𝑘𝑘𝑝𝑝 
given by GUF and their absolute difference are also presented 
in  

Table 2. All the absolute differences listed in these two 
tables are smaller than the stipulated numerical tolerances, 
which validates the GUF results. For best estimates 𝒚𝒚 , the 
maximum absolute difference is 72% of the specified 
numerical tolerance. This metric is 38% for standard 
uncertainty 𝒖𝒖(𝒚𝒚) . For maximum eigenvalue 𝜆𝜆max  and 
coverage factor 𝑘𝑘𝑝𝑝, these differences are even smaller, that is, 
1% and 9% of the numerical tolerance, respectively. Verifying 
these criteria for different points probed at various positions on 
the machine tool holds the credibility of the GUF results. 

 

 

Fig. 1. a) Data flow for uncertainty assessment in on-machine measurement 
using an adaptive Monte Carlo method, and on-machine measurement of b) 
gauge block and c) precision sphere. 

 

 

Fig. 2. Numerical differentiation of the output quantities 𝒀𝒀 of on-machine 
measurement function at 𝑿𝑿 = 𝒙𝒙 with respect to 𝑋𝑋𝑗𝑗, the 𝑗𝑗th input quantity. 

For the three compensated coordinates of point 1, Fig. 3a-c 
compare the ellipsoidal and rectangular coverage regions for 
coverage probability 𝑝𝑝=95% obtained with GUF and MCM, 
which encompass 2000 random output points. The smallest 
coverage region for each pair of output quantities is also 
estimated with a finite element method specified in Supplement 
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2. Uncertainty evaluation 

2.1. Measurement function, input, and output quantities 

The forward kinematic model of the machine serves as the 
on-machine measurement function. This model receives the 
probed axis positions and the machine parameters to calculate 
the compensated Cartesian coordinates in the workpiece frame 
using a chain of homogeneous transformation matrices that 
gives the relative position of the tool frame, as the stylus tip 
centre, with respect to the workpiece frame. When probing a 
point set of size 𝑛𝑛 , like in estimating a ring’s diameter by 
probing 𝑛𝑛  points around its surface, the recorded 5 𝑛𝑛  axis 
positions (five joint positions per probed point) together with 
13 machine parameters, describing the geometric status of the 
machine, form the input data of uncertainty estimators. 
Therefore, the number of input quantities is 𝑁𝑁 = 5𝑛𝑛 + 13. The 
5×5 repeatability matrices of probed axis positions [6] and the 
13×13 covariance matrix associated with the machine 
parameters [7] separately encode information on the 
correlations involved in on-machine measurement since the 
data on the machine parameters and the probed axis positions 
is acquired independently. As a result, the full covariance 
matrix of the input quantities is not directly obtainable from 
observations. To assemble these effects and obtain a single full 
covariance matrix 𝑼𝑼𝒙𝒙  of dimension (5 𝑛𝑛 +13)×(5 𝑛𝑛 +13), a 
covariance estimator simulates pseudo-repeatability tests as 
though the replicated tests of on-machine probing and those of 
geometric error indication (with SAMBA [8]) occur at the same 
time, which approximates the full covariance matrix of the 
input quantities. Details on the covariance simulator can be 
found in [9]. 

The 3𝑛𝑛 compensated Cartesian coordinates of the probed 
points in the workpiece frame are the output quantities of the 
measurement function, thus the number of output quantities is 
𝑚𝑚 = 3𝑛𝑛  and covariance matrix 𝑼𝑼𝒚𝒚  is of dimension 3𝑛𝑛×3𝑛𝑛 . 
When a probed point set is further processed to estimate the 
actual value of geometric feature attributes, the final covariance 
matrix diagonals are the scalar values (variance) associated 
with the estimates. 

2.2. Monte Carlo method 

MCM evaluates with the measurement function (the 
machine’s forward kinematic model) an adequately large 
sample of input quantities 𝑿𝑿, drawn at random from a joint 
distribution, resulting in a corresponding sample of output 
quantities 𝒀𝒀  [3, 10]. In an adaptive MCM, this procedure 
completes in ℎ sequences, each including 𝑀𝑀=104 trials. During 
each sequence, matrix 𝑮𝑮𝑿𝑿 accumulates 𝑀𝑀 drawn input vectors 
𝒙𝒙  and matrix 𝑮𝑮𝒀𝒀  stores the corresponding evaluated output 
vectors 𝒚𝒚  (Fig. 1a). The latter provides essential statistical 
information to evaluate the uncertainty of the measurement 
function’s outputs. As a result, regardless of the number of 
input and output quantities, an estimate for the joint PDF of the 
measurand is obtainable by MCM. Given a desirable coverage 
probability of 𝑝𝑝, the MCM simulator initially conducts ℎ0 =

10  sequences and then calculates output estimates 𝒚𝒚 , 
associated standard uncertainty 𝒖𝒖𝒚𝒚, maximum eigenvalue 𝜆𝜆max 
of the output correlation matrix, and coverage factor 𝑘𝑘𝑝𝑝 (Fig. 
1a). Comparing with predefined numerical tolerances, if 
convergence does not hold, it then conducts one more sequence 
and continues until the results converge. More details on the 
MCM procedure can be found in [7]. 

2.3. GUM uncertainty framework 

The Taylor series of a function evaluates it with an infinite 
sum of the terms formed by the function’s derivatives at a 
single point. Considering the first two terms of the Taylor series 
of a measurement function at the expectation values of the input 
quantities, GUM estimates the measurement function in a small 
neighbourhood of these expected values. Drawing an analogy 
between this neighbourhood and the standard uncertainty 
intervals of the input values, the law of propagation of 
uncertainty evaluates the standard uncertainty of the output 
quantities. 

The GUF outcome is an estimate for the covariance matrix 
of the output variables. Then, compared to MCM, GUF reveals 
limited information about the measurand. Particularly, GUF 
does not provide any joint PDF for the output quantities. 
Nonetheless, fitting certain distributions, such as normal, to the 
obtained covariance matrix might approximate the true joint 
PDF of the output quantities. 

Supplement 2 to GUM [3] develops this concept for multi-
output measurement function 𝒀𝒀 = 𝑓𝑓(𝑿𝑿) , where 𝑿𝑿 =
[𝑋𝑋1, … , 𝑋𝑋𝑁𝑁]T  is a vector of 𝑁𝑁  input quantities and 𝒀𝒀 =
[𝑌𝑌1, … , 𝑌𝑌𝑚𝑚]T  is a vector of 𝑚𝑚  output quantities. Covariance 
matrix 𝑼𝑼𝒚𝒚 associated with output estimates 𝒚𝒚 is [3] 

𝑼𝑼𝒚𝒚 = 𝑪𝑪𝒙𝒙 𝑼𝑼𝒙𝒙 𝑪𝑪𝒙𝒙
𝑇𝑇 (1) 

where 𝑼𝑼𝒙𝒙  is the covariance matrix associated with best 
estimates 𝒙𝒙 of input quantities 𝑿𝑿. In this equation, 𝑪𝑪𝒙𝒙  is the 
sensitivity matrix at 𝑿𝑿 = 𝒙𝒙 of dimension 𝑚𝑚 × 𝑁𝑁: 

𝑪𝑪𝒙𝒙 =

[
 
 
 
 𝜕𝜕𝑌𝑌1
𝜕𝜕𝑋𝑋1

⋯ 𝜕𝜕𝑌𝑌1
𝜕𝜕𝑋𝑋𝑁𝑁

⋮ ⋱ ⋮
𝜕𝜕𝑌𝑌𝑚𝑚
𝜕𝜕𝑋𝑋1

⋯ 𝜕𝜕𝑌𝑌𝑚𝑚
𝜕𝜕𝑋𝑋𝑁𝑁]

 
 
 
 
 (2) 

Given the complexity of the on-machine measurement 
function, numerical differentiation is a suitable means to 
estimate the partial derivatives stored in the sensitivity matrix 
𝑪𝑪𝒙𝒙 given in Eq. (2). According to GUM [1], the step size for 
differentiating the measurement function with respect to the 𝑗𝑗th 
input quantity 𝑋𝑋𝑗𝑗  equals the corresponding standard 
uncertainty 𝑢𝑢(𝑥𝑥𝑗𝑗) . Fig. 2 illustrates the numerical 
differentiation procedure using the symmetric derivative. 

 

 

3. Validation of GUF with an adaptive Monte Carlo 
method 

Supplement 2 to GUM [3] specifies the validation procedure 
of GUF using an adaptive MCM. After indicating the numerical 
tolerances for convergence criteria of the adaptive MCM, these 
metrics also define the required accuracy of the GUF results. 
This standard defines: 

𝒅𝒅𝒚𝒚 = |𝒚𝒚𝐺𝐺𝐺𝐺𝐺𝐺 − 𝒚𝒚𝑀𝑀𝑀𝑀𝑀𝑀| 

𝒅𝒅𝒖𝒖(𝒚𝒚) = |𝒖𝒖(𝒚𝒚)GUF − 𝒖𝒖(𝒚𝒚)MCM| 

𝑑𝑑𝜆𝜆max = |𝜆𝜆max
GUF − 𝜆𝜆max

MCM| 

𝑑𝑑𝑘𝑘𝑝𝑝 = |𝑘𝑘𝑝𝑝
𝐺𝐺𝐺𝐺𝐺𝐺 − 𝑘𝑘𝑝𝑝

𝑀𝑀𝑀𝑀𝑀𝑀| 

(3) 

where 𝒅𝒅𝒚𝒚 , 𝒅𝒅𝒖𝒖(𝒚𝒚), 𝑑𝑑𝜆𝜆max , and 𝑑𝑑𝑘𝑘𝑝𝑝  are the absolute differences 
between the MCM and GUF results (denoted by the respective 
superscripts) respectively for best estimates 𝒚𝒚 , associated 
standard uncertainty 𝒖𝒖(𝒚𝒚), the largest eigenvalue 𝜆𝜆max of the 
output correlation matrix, and coverage factor 𝑘𝑘𝑝𝑝. If numerical 
tolerance for 𝒚𝒚 and 𝒖𝒖(𝒚𝒚) is 𝜹𝜹 and that for 𝜆𝜆max and 𝑘𝑘𝑝𝑝 is 𝜌𝜌 and 
𝜅𝜅𝑝𝑝, respectively, the adaptive MCM validates the GUF results 
if all the absolute differences given by Eq. (3) are smaller than 
the corresponding numerical tolerances: 

𝒅𝒅𝒚𝒚 ≤ 𝜹𝜹 

𝒅𝒅𝒖𝒖(𝒚𝒚) ≤ 𝜹𝜹 

𝑑𝑑𝜆𝜆max ≤ 𝜌𝜌 

𝑑𝑑𝑘𝑘𝑝𝑝 ≤ 𝜅𝜅𝑝𝑝 

(4) 

4. Results and discussion 

Experimental on-machine measurements on a gauge block 
(Fig. 1b) and a precision sphere (Fig. 1c) with a Mitsui Seiki 
HU40-T five-axis horizontal machining centre have already 
validated the MCM results by examining whether the 
uncertainty intervals provide the desired coverage probability 
[9]. Each compensated coordinate of a probed point is regarded 
as having four significant decimal digits when expressed in 
mm. Then, the numerical tolerance for best estimates 𝒚𝒚 and 
associated standard uncertainty 𝒖𝒖(𝒚𝒚)  is 𝜹𝜹 =0.05 𝟏𝟏3𝑛𝑛×1  µm, 
where 𝟏𝟏3𝑛𝑛×1  is a column vector of ones of length 3𝑛𝑛 . The 
numerical tolerance for the largest eigenvalue 𝜆𝜆max  of the 
output correlation matrix and coverage factor 𝑘𝑘𝑝𝑝  is also 
𝜌𝜌=𝜅𝜅𝑝𝑝=0.05. Table 1 includes the absolute differences for best 
estimates 𝒚𝒚  and associated standard uncertainty 𝒖𝒖(𝒚𝒚) , 
determined for two points probed on the gauge block with a 
calibrated length of 500.0095 mm [9]. For point 1, the probed 
positions for linear axes X, Y, and Z are -138.5650, 94.6560, 
and 196.2320 mm, and those for the rotary axes B and C are -
42° and -293°, respectively. These values for point 2 are -
61.2880, 48.3440, 246.8170 mm, -64°, and -124°, respectively. 

This table also includes the estimate for the gauge’s length and 
its standard uncertainty along with the absolute differences 
between these quantities obtained with the two evaluation 
methods. The largest eigenvalue 𝜆𝜆max and coverage factor 𝑘𝑘𝑝𝑝 
given by GUF and their absolute difference are also presented 
in  

Table 2. All the absolute differences listed in these two 
tables are smaller than the stipulated numerical tolerances, 
which validates the GUF results. For best estimates 𝒚𝒚 , the 
maximum absolute difference is 72% of the specified 
numerical tolerance. This metric is 38% for standard 
uncertainty 𝒖𝒖(𝒚𝒚) . For maximum eigenvalue 𝜆𝜆max  and 
coverage factor 𝑘𝑘𝑝𝑝, these differences are even smaller, that is, 
1% and 9% of the numerical tolerance, respectively. Verifying 
these criteria for different points probed at various positions on 
the machine tool holds the credibility of the GUF results. 

 

 

Fig. 1. a) Data flow for uncertainty assessment in on-machine measurement 
using an adaptive Monte Carlo method, and on-machine measurement of b) 
gauge block and c) precision sphere. 

 

 

Fig. 2. Numerical differentiation of the output quantities 𝒀𝒀 of on-machine 
measurement function at 𝑿𝑿 = 𝒙𝒙 with respect to 𝑋𝑋𝑗𝑗, the 𝑗𝑗th input quantity. 

For the three compensated coordinates of point 1, Fig. 3a-c 
compare the ellipsoidal and rectangular coverage regions for 
coverage probability 𝑝𝑝=95% obtained with GUF and MCM, 
which encompass 2000 random output points. The smallest 
coverage region for each pair of output quantities is also 
estimated with a finite element method specified in Supplement 
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2 to GUM [3]. The difference between the coverage areas for 
coordinates X and Y does not exceed 1% for both the 

 
 

 

Fig. 3. a-c) Ellipsoidal and rectangular coverage regions (for coverage probability 𝑝𝑝=0.95) obtained by the adaptive MCM and GUF for the compensated 
coordinates of a point probed on the gauge block. Also shown are 2000 random output points. d-f) Comparison between the marginal histograms given by the 
adaptive MCM and GUF. 

 

Table 1. The adaptive MCM and GUF results for best estimates 𝒚𝒚 and associated standard uncertainty 𝒖𝒖(𝒚𝒚) together with their absolute differences obtained for 
the compensated coordinates of two points probed on a gauge block and its estimated length. 

 Best estimate 𝒚𝒚 (mm)  Standard uncertainty 𝒖𝒖(𝒚𝒚) (µm) MCM validates 
GUF?  MCM GUF 𝒅𝒅𝒚𝒚 𝒅𝒅𝒚𝒚/𝜹𝜹 (%)  MCM GUF 𝒅𝒅𝒖𝒖(𝒚𝒚) 𝒅𝒅𝒖𝒖(𝒚𝒚)/ 𝜹𝜹 (%) 

Coordinate X of point 1 -178.6461 -178.6462 2.89E-05 58  6.7 6.7 4.38E-03 9 Yes 
Coordinate Y of point 1 -178.6461 -178.6461 3.61E-05 72  8.2 8.2 1.23E-02 25 Yes 
Coordinate Z of point 1 53.1107 53.1107 2.54E-05 51  7.6 7.6 4.25E-03 9 Yes 
Coordinate X of point 2 179.1009 179.1009 1.38E-05 28  6.8 6.8 1.71E-03 3 Yes 
Coordinate Y of point 2 179.0881 179.0881 1.18E-05 24  8.4 8.4 1.20E-02 24 Yes 
Coordinate Z of point 2 53.1067 53.1068 1.79E-05 36  7.7 7.7 1.91E-02 38 Yes 
Gauge’s length 499.9966 499.9966 1.21E-05 24  9.0 9.0 6.76E-03 14 Yes 

 

Table 2. The adaptive MCM and GUF results for the largest eigenvalue 𝜆𝜆max of the output correlation matrix and coverage factor 𝑘𝑘𝑝𝑝 along with their absolute 
differences obtained for the compensated coordinates of two points and the estimated length listed in Table 1. 

 𝜆𝜆max  𝑘𝑘𝑝𝑝 MCM validates 
GUF?  MCM GUF 𝑑𝑑𝜆𝜆max  𝑑𝑑𝜆𝜆max/𝜌𝜌 (%)  MCM GUF 𝑑𝑑𝑘𝑘𝑝𝑝 𝑑𝑑𝑘𝑘𝑝𝑝/𝜅𝜅𝑝𝑝 (%) 

Point set (Table 1) 1.313 1.312 4.80E-04 1  3.55 3.55 4.50E-03 9 Yes 
Length 1.000 1.000 0 0  1.96 1.96 8.45E-04 2 Yes 

 
 

ellipsoidal and rectangular coverage regions. For these 
coordinates, the smallest coverage area is 982.8 µm2, which is 
by less than 1% different from the GUF ellipsoidal coverage 
area. These differences for the X-Z and Y-Z pairs also do not 
exceed 1%, whose smallest areas of coverage region are 962.6 

and 1178.5 µm2, respectively. Fig. 3d-f demonstrate the 
closeness between the MCM marginal PDFs for the 
compensated coordinates of point 1 and the normal PDFs fitted 
based on best estimates and the associated covariance matrix 
given by GUF. 
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For almost all the considered tasks, the adaptive MCM 
converges in ℎ=10 sequences, including. 𝑀𝑀=105 trials [9]. For 
the estimation of the gauge’s length, where the probed point set 
includes two points (𝑛𝑛=2), the adaptive MCM completes in 167 
s, on a computer with an Intel i7 processor running at 4.2 GHz, 
32 GB of RAM, and Windows 10. This time for GUF is 7 s, 24 
times faster than the adaptive MCM. In a different task, the 
adaptive MCM estimates the diameter of a sphere [9] and the 
associated uncertainty in 1967 s, whereas GUF completes in 12 
s, being 164 times faster. Fig. 4 compares the computation 
times between the adaptive MCM and GUF for the sphere’s 
diameter obtained from the point sets with different sizes 
varying from 𝑛𝑛 =10 to 25. The computation time of GUF 
increases almost linearly proportional to the size of point set 𝑛𝑛. 
On average, GUF is 249 times more efficient than MCM in the 
sphere identification. This notable reduction in the computation 
cost mainly originates from the costly covariance simulator that 
operates based on an MCM algorithm (for both the MCM and 
GUF uncertainty schemes) and has to recur every MCM trial, 
whereas this occurs only once in GUF. This difference is more 
evident for larger point sets, where the number of calls for the 
forward kinematic model rises. 

 

 

Fig. 4. The computation time of GUF for uncertainty evaluation of the 
sphere’s diameter from the point sets with different sizes and the time ratio of 
the adaptive MCM to GUF. 

5. Conclusions 

An adaptive MCM developed for uncertainty assessment in 
on-machine measurement examines the feasibility of GUF. We 
apply these methods to obtain the best estimates and the 
associated standard uncertainty of the length of a gauge block 
and the diameter of a precision sphere. The computation cost 
of the uncertainty evaluation is also measured for the sphere’s 
diameter obtained from sets of 𝑛𝑛 =10 to 25 points. The 
summarized conclusions are as follows: 

1. The adaptive MCM validates the GUF application for 
uncertainty assessment in on-machine probing and part 
verification. For the studied case of the gauge block 
measurement, the maximum absolute differences 
between the MCM and the GUF results are 72% and 38% 
of the specified numerical tolerance, respectively for best 
estimates and the associated standard uncertainty. These 
measures are 1% and 9% for maximum eigenvalue 𝜆𝜆max 

of the output correlation matrix and coverage factor 𝑘𝑘𝑝𝑝, 
respectively. 

2. Besides complying with the criteria specified by 
Supplement 2 to GUM, the ellipsoidal and rectangular 
coverage regions as well as the marginal PDFs given by 
GUF closely approximate those obtained by MCM, 
which further validates GUF. 

3. The GUF implementation dramatically decreases the 
uncertainty computation time. This method evaluates the 
uncertainty associated with a compensated bipoint 
probed on the gauge block and that with its length 
estimate in 7 s, which is 24 times faster than the adaptive 
MCM (167 s). For a point set of size 25 probed on the 
sphere, GUF gives the uncertainty associated with the 
compensated points and with the sphere’s diameter in 12 
s, whereas this time for MCM is 1967 s, i.e. 164 times 
longer. On average, GUF is 249 times more efficient in 
the sphere identification. 
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2 to GUM [3]. The difference between the coverage areas for 
coordinates X and Y does not exceed 1% for both the 

 
 

 

Fig. 3. a-c) Ellipsoidal and rectangular coverage regions (for coverage probability 𝑝𝑝=0.95) obtained by the adaptive MCM and GUF for the compensated 
coordinates of a point probed on the gauge block. Also shown are 2000 random output points. d-f) Comparison between the marginal histograms given by the 
adaptive MCM and GUF. 

 

Table 1. The adaptive MCM and GUF results for best estimates 𝒚𝒚 and associated standard uncertainty 𝒖𝒖(𝒚𝒚) together with their absolute differences obtained for 
the compensated coordinates of two points probed on a gauge block and its estimated length. 

 Best estimate 𝒚𝒚 (mm)  Standard uncertainty 𝒖𝒖(𝒚𝒚) (µm) MCM validates 
GUF?  MCM GUF 𝒅𝒅𝒚𝒚 𝒅𝒅𝒚𝒚/𝜹𝜹 (%)  MCM GUF 𝒅𝒅𝒖𝒖(𝒚𝒚) 𝒅𝒅𝒖𝒖(𝒚𝒚)/ 𝜹𝜹 (%) 
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Table 2. The adaptive MCM and GUF results for the largest eigenvalue 𝜆𝜆max of the output correlation matrix and coverage factor 𝑘𝑘𝑝𝑝 along with their absolute 
differences obtained for the compensated coordinates of two points and the estimated length listed in Table 1. 

 𝜆𝜆max  𝑘𝑘𝑝𝑝 MCM validates 
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ellipsoidal and rectangular coverage regions. For these 
coordinates, the smallest coverage area is 982.8 µm2, which is 
by less than 1% different from the GUF ellipsoidal coverage 
area. These differences for the X-Z and Y-Z pairs also do not 
exceed 1%, whose smallest areas of coverage region are 962.6 

and 1178.5 µm2, respectively. Fig. 3d-f demonstrate the 
closeness between the MCM marginal PDFs for the 
compensated coordinates of point 1 and the normal PDFs fitted 
based on best estimates and the associated covariance matrix 
given by GUF. 
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For almost all the considered tasks, the adaptive MCM 
converges in ℎ=10 sequences, including. 𝑀𝑀=105 trials [9]. For 
the estimation of the gauge’s length, where the probed point set 
includes two points (𝑛𝑛=2), the adaptive MCM completes in 167 
s, on a computer with an Intel i7 processor running at 4.2 GHz, 
32 GB of RAM, and Windows 10. This time for GUF is 7 s, 24 
times faster than the adaptive MCM. In a different task, the 
adaptive MCM estimates the diameter of a sphere [9] and the 
associated uncertainty in 1967 s, whereas GUF completes in 12 
s, being 164 times faster. Fig. 4 compares the computation 
times between the adaptive MCM and GUF for the sphere’s 
diameter obtained from the point sets with different sizes 
varying from 𝑛𝑛 =10 to 25. The computation time of GUF 
increases almost linearly proportional to the size of point set 𝑛𝑛. 
On average, GUF is 249 times more efficient than MCM in the 
sphere identification. This notable reduction in the computation 
cost mainly originates from the costly covariance simulator that 
operates based on an MCM algorithm (for both the MCM and 
GUF uncertainty schemes) and has to recur every MCM trial, 
whereas this occurs only once in GUF. This difference is more 
evident for larger point sets, where the number of calls for the 
forward kinematic model rises. 

 

 

Fig. 4. The computation time of GUF for uncertainty evaluation of the 
sphere’s diameter from the point sets with different sizes and the time ratio of 
the adaptive MCM to GUF. 

5. Conclusions 

An adaptive MCM developed for uncertainty assessment in 
on-machine measurement examines the feasibility of GUF. We 
apply these methods to obtain the best estimates and the 
associated standard uncertainty of the length of a gauge block 
and the diameter of a precision sphere. The computation cost 
of the uncertainty evaluation is also measured for the sphere’s 
diameter obtained from sets of 𝑛𝑛 =10 to 25 points. The 
summarized conclusions are as follows: 

1. The adaptive MCM validates the GUF application for 
uncertainty assessment in on-machine probing and part 
verification. For the studied case of the gauge block 
measurement, the maximum absolute differences 
between the MCM and the GUF results are 72% and 38% 
of the specified numerical tolerance, respectively for best 
estimates and the associated standard uncertainty. These 
measures are 1% and 9% for maximum eigenvalue 𝜆𝜆max 

of the output correlation matrix and coverage factor 𝑘𝑘𝑝𝑝, 
respectively. 

2. Besides complying with the criteria specified by 
Supplement 2 to GUM, the ellipsoidal and rectangular 
coverage regions as well as the marginal PDFs given by 
GUF closely approximate those obtained by MCM, 
which further validates GUF. 

3. The GUF implementation dramatically decreases the 
uncertainty computation time. This method evaluates the 
uncertainty associated with a compensated bipoint 
probed on the gauge block and that with its length 
estimate in 7 s, which is 24 times faster than the adaptive 
MCM (167 s). For a point set of size 25 probed on the 
sphere, GUF gives the uncertainty associated with the 
compensated points and with the sphere’s diameter in 12 
s, whereas this time for MCM is 1967 s, i.e. 164 times 
longer. On average, GUF is 249 times more efficient in 
the sphere identification. 
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