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1. Introduction

Due to working in a harsh environment, aero-engine blades 
are likely to be damaged or deformed from their original 
geometric shape over time. Considering the high material and 
tooling cost of manufacturing aero-engine blades, 
remanufacturing of damaged blades is a promising and 
economical choice for blade restoration to a desirable working 
condition [1-3].

In general, the remanufacturing process of damaged blades 
involves a pre-inspection to detect the material-missing 
regions on the blade’s surface as well as checking for the 
conformance of the blade to the specified tolerances at the 
undamaged regions, including the surface profile tolerance 
and section-specific tolerances [4-6]. The inspection starts 
with 3D scanning of the damaged blade to capture the 
geometry of the part surface in the form of a point cloud. 
Optical 3D scanners, such as laser scanners or structured-light 
scanners, are preferred for data acquisition since they can 
quickly capture high-density point clouds with good accuracy 
[7, 8]. 

For any section-specific or surface profile inspection of the 
blades, the scanned point cloud data must be compared to the

nominal CAD model, while these two initially lie in two 
different coordinate systems. The scanned point cloud data 
lies in the measurement coordinate system (MCS) and the 
CAD model is located in the design coordinate system (DCS)
[9]. As can be seen in Fig. 1, the measured point cloud data 
has an arbitrary relative position and orientation with respect 
to DCS. A scan-to-CAD alignment (aka registration) is thus 
required to bring the measured point cloud to a common 
coordinate system with the CAD model. Due to the fact that 
there is a considerable geometric nonconformity between 
scanned point cloud data of a damaged blade and its CAD 
model in defective regions, registration of the damaged blades 
is a challenge. If the effects of the geometric nonconformities 
are not considered during aligning two geometric 
representations, an incorrect matching result will be obtained
between two datasets.

Traditionally, the iterative closest point (ICP) algorithm
[10] and its variants [11] are applied to best match the scanned 
point cloud data and CAD model of freeform surfaces [12, 
13]. The main idea behind applying the ICP algorithm is to 
iteratively minimize the sum of the squared distances between 
measured data points and their corresponding points on the 
CAD model.
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Fig. 1. Initial position and orientation of the scan data relative to the CAD 
model.

A rigid body transformation (i.e., a translation vector T
and a rotation matrix R) is applied to match every measured 
point ip with its corresponding point qi on the CAD model by
minimizing the least-squares objective function E of Eq. (1)
[13]. PN is the number of points in the scanned point cloud.
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The performance of the ICP method highly depends on the 
initial relative position and orientation of the measurement 
point cloud and CAD model. When two datasets are 
significantly far from each other, it is easy for the ICP 
algorithm to fall into a local optimum [14]. Therefore, it is 
necessary to find a proper initial estimation of the rigid 
transformation between two datasets using a coarse alignment 
and bring both sets close to each other before ICP fine 
alignment. Principal component analysis (PCA) is an effective 
technique to statistically estimate the principal axes of datasets 
and roughly bring two datasets close to each other [15]. 
Employing the PCA-based technique, the scanned point cloud 
is translated to share the same centroid with its nominal 
model, and then the point cloud is rotated to align its principal 
axes with those of the CAD model.

Once two datasets are initially matched through an 
appropriate coarse registration, the ICP algorithm iteratively 
matches the whole point cloud to the CAD model. Original 
ICP algorithm and other purely Euclidean distance-based 
least-squares minimization approaches are precise when
aligning two identical geometric shapes. Any geometric 
nonconformity between two datasets to be aligned affects the 
registration results of the original ICP. When the scanned 
point cloud data of the damaged blade is aligned to its CAD 
model, the original ICP algorithm makes effort to minimize 
the squared distance between corresponding pairs in both 
material-missing (damaged) and undamaged regions. 
Consequently, the algorithm averages out the individual 
distances between corresponding pairs in order to globally 
minimize the least-squares objective function. As a result, the 
estimated errors between measured data points and CAD 
model at the damaged regions become smaller than the actual 

errors, and the estimated errors at the undamaged regions 
become larger than the actual errors [16].

Some studies have tried to propose new methods to weaken 
the effects of averaging-out errors on the registration of 
damaged blades. Zhang et al. [17] and Liu et al. [18] extracted 
the airfoil sections in the non-defective regions of the 
polygonal mesh model of the scanned damaged blade to align 
the point cloud data and nominal model. They employed the 
geometric features of extracted cross-sectional data, i.e.,
convex hull centroid and the centroid of minimal area 
bounding-box, for best-matching the two datasets. Calculation 
of the centroid location from the polygonal model is likely to 
be subject to area bias and centroid miscalculation [19, 20]. Li 
et al. [21] proposed a modified ICP algorithm to align the scan 
data with the nominal model based on the curvature and 
distance of each measured data point from its corresponding 
closest point on the nominal model. The point-to-point 
evaluation of geometric features of corresponding pairs makes 
the algorithm sensitive to noise. The performance of the 
methods presented in Refs. [17, 18, 21] depends on the user-
defined thresholds. In addition, these methods require manual 
settings for the alignment of two geometric representations.

We have recently proposed a fine-tuned alignment method 
for the registration of damaged blades to remove the 
averaging-out errors of the original ICP [16]. In [16], we
evaluated the effectiveness of our method using various 
numerical case studies. The present paper is an extension to 
[16] to examine the performance of the proposed method in an 
experimental case study with a real scanned point cloud. As 
the flowchart of Fig. 2 presents, the proposed scan-to-CAD 
registration approach includes three main steps: coarse (rough) 
alignment to bring two datasets sufficiently close to each other
using the PCA method, fine alignment to iteratively best-
match the whole point cloud to CAD model, and fine-tuned 
alignment to best-match only the reliable data points of 
undamaged regions with the CAD model in an iterative way to
remove the averaging-out errors resulted from the original 
ICP. A correspondence search method is utilized to 
automatically assess the geometric dissimilarity of each 
corresponding pair and remove the unreliable pairs of 
damaged regions from the registration process.

2. Fine-tuned alignment algorithm

The fine-tuned alignment algorithm aims to automatically 
detect and remove data points of damaged regions and align 
the rest of the data points with the CAD model. This 
algorithm mainly contains two steps: correspondence search 
and transformation calculation (see Fig. 2). The appropriate 
correspondence search is the key to the correct alignment. A
uniform point-sampled dataset of CAD model with the 
average point spacing equal to the scanned point cloud data is 
generated. The local neighborhood and Gaussian curvature at 
each data point of measured point cloud and CAD datasets are 
computed and inputted to the fine-tuned alignment algorithm.
The Territory claiming (TC) algorithm [22] is used for 
establishing the local neighborhood of points, and the 
Gaussian curvature at each point is calculated through local 
quadric surface fitting as discussed in detail in [23]. 
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Fig. 2. Flowchart of the proposed fine-tuned registration algorithm.

For each point of the scan, the nearest point on the CAD 
model is found as its corresponding point first. Then the 
Hausdorff distance is utilized for a group-to-group evaluation 
of Euclidean distance and curvature of the local neighborhood
of each measured point and its nearest point on the CAD 
model. A geometric dissimilarity function is defined by 
combining the curvature Hausdorff distance (CHD) and 
Euclidean Hausdorff distance (EHD) to assess the closeness 
of the local neighborhood of corresponding pairs and remove 
the unreliable pairs with high geometric dissimilarity value 
from the transformation computation process. The Hausdorff 
distance measures how far two datasets are from each other
[24, 25]. In the present study, the average Hausdorff distance 
is employed to measure the closeness of curvature and 
Euclidean distance between the local neighborhoods of each 
measured point p and its corresponding closest point q on the 
CAD model. The average Hausdorff distance between two 
sets A and B is computed by Eq. (2).

min min
( , ) b B a Aa A b B

a b b a
HD A B

A B
  

  



 

(2)

where | . | denotes the cardinality of a set, and || . || denotes the 
distance between elements of the sets (i.e., points), which can 
be determined by various distance definitions. We compute 
both the average Gaussian curvature Hausdorff distance
(CHD ) and average Euclidean Hausdorff distance ( EHD ) 
between point p and q to recognize the geometric 
dissimilarities in the damaged regions based on the shape 
changes and positional distance of local neighboring points 
N(p) and N(q).

Once the CHD and EHD values between local 
neighborhoods N(p) and N(q) of each corresponding pair (p, 
q) are calculated, the CHD and EHD values are normalized 
using the min-max normalization approach of Eq. (3) to scale 
these two variables into the [0,1] interval and make them 
unitless:

( ( ), ( )) min( )( ( ), ( ))
max( ) min( )

( ( ), ( )) min( )( ( ), ( ))
max( ) min( )

CHD N p N q CHDNCHD N p N q
CHD CHD

EHD N p N q EHDN EHD N p N q
EHD EHD











(3)

The geometric dissimilarity GD (p, q) for each corresponding 
pair (p, q) is then defined as the combination of the 
normalized average curvature Hausdorff distance 
( ( ( ), ( ))NCHD N p N q ) and the normalized average Euclidean 
Hausdorff distance ( ( ( ), ( ))N EHD N p N q ):

( , ) ( ( ), ( )) ( ( ), ( ))GD p q NCHD N p N q N EHD N p N q  (4)

In each iteration, the GD value of each pair is compared to 
the cut-off point kCP to decide whether the measured point p is 
in the undamaged region (i.e., ( , ) kGD p q CP ) or belongs to 
the damaged region (i.e., ( , ) kGD p q CP ). If the point p is in 
damaged regions, the pair (p, q) is removed from the 
registration process. To compute the cut-off point kCP in the 
kth iteration of the fine-tuned alignment algorithm, the data 
points are sequenced in ascending order of the GD values of 
all corresponding pairs. The GD versus the data point index
plot is considered as a rotated L-curve the corner of which
divides the plot into data points with relatively large GD
values and data points with relatively small GD values. Since 
the data points with relatively large GD values belong to the 
damaged regions, we calculate the corner of the L-curve and 
set its corresponding GD value as the kCP value to remove the 
corresponding pairs satisfying kGD CP . For more details 
on how to calculate kCP , the readers are referred to [16]. 

After the geometric dissimilarity assessment and retaining 
only the reliable pairs of undamaged regions, the algorithm 
computes the rigid body transformation that minimizes the 
sum of the squared error between these reliable pairs of the 
two datasets. The computed rotation and translation are then 
applied to align the scanned point cloud data with the CAD 
model. The algorithm terminates the iteration when the global 
root mean square error of matching points for two successive 
iteration falls below a threshold value. 
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3. Results and discussion

We conducted numerical case studies in [16] to validate 
the proposed fine-tuned alignment algorithm. Here, we 
compare the registration result of the proposed alignment 
method and the standard ICP algorithm for the experimental 
case study using scanned point cloud data of a damaged blade. 
The damaged blade was scanned using an ATOS Core 200 
(GOM, Braunschweig, Germany) structured-light 3D scanner. 
Figure 3 shows the damaged blade, scanned point cloud data, 
and the nominal CAD model. As can be seen in Fig. 3, the 
scanned point cloud data has an arbitrary relative position and 
orientation with respect to the CAD model. The scanned point 
cloud contains 950,202 points with an average point spacing 
of 0.08 mm. The damaged blade contains voids and tip 
damage (see Fig. 3), which are common material-missing type 
damages on the surface of the aero-engine blades. The point 
cloud of the CAD model is also obtained by the uniform 
sampling of the surface with the average point spacing equal 
to scanned point cloud data (i.e., 0.08 mm) to analyze the 
same surface area on both CAD surface and the underlying 
surface of the scan data for the subsequent curvature and 
distance analysis.

In the present study, the PCA method and original ICP 
algorithm are applied respectively for rough and fine 
matching [16]. The classical point-to-point minimization 
algorithm has been used to globally minimize the root mean 
square error (RMSE) of the measured data from the CAD 
model and compute the transformation parameters T and R. 
The iteration is terminated when the change of the global 
registration error falls below the threshold, which is set to be
µ=10-6. 

Fig. 3. (a) Damaged blade, (b) scanned point cloud of the damaged blade, and 
(c) the nominal CAD model.

Figure 4(a) shows the point cloud data of the damaged 
blade with its colormap based on the absolute deviations from
the CAD model after being aligned using the fine-tuned 
registration procedure. Figure 4(b), illustrates the removed 
data points (in black) at the end of the last iteration of the 
fine-tuned registration. Using the proposed method, almost all 
data points of the damaged regions are eliminated from the 
registration process. It is seen in Fig. 4(b) that some data 
points of the undamaged regions in the trailing edge and sharp 
edges of the blade tail are also removed as unreliable points.
Since only a tiny portion of data points in undamaged regions 

are removed as unreliable points, it does not affect the 
accuracy of the registration outcome. It should be noted that, 
in the present work, we have employed the raw scanned point 
cloud data of the blade as input, which is contaminated by 
outliers at the high-curvature features. 

To locally investigate the averaging-out errors resulted
from the original ICP algorithm, the point cloud data of both 
damaged blade and CAD model are sectioned by 17 
equidistant sectional planes parallel to XY-plane of the CAD 
model from the bottom (Z=20 mm) to top (Z=100 mm) of the 
blade. Then, the data points in 0.1 mm distance from each 
sectional plane are specified as sectional data. The post-
alignment errors are analyzed for each sectional data to 
compare the performance of the proposed method and 
standard ICP algorithm. Figure 5 shows the RMSE of 
sectional data points of the scanned point cloud from the CAD 
model after the original ICP (in red) and fine-tuned 
registration (in black). The sectional planes 4-6 and 12-17 are 
in damaged regions, and sectional planes 1-3 and 7-11 are in
undamaged areas. As can be seen in Fig. 5, the post-alignment 
sectional RMSE values of the ICP method in damaged regions 
are smaller than the post-alignment sectional RMSE values of 
the proposed method and in undamaged regions are larger 
than the RMSE values of the proposed method. The maximum 
absolute deviation between the two is 21.5 µm at the tip of the 
blade (sectional plane #17). As discussed earlier, these 
averaging-out errors result from global minimization of the 
least-squares objective function of ICP. It should be noted that 
the averaging-out error values depend on the size and the 
geometry of damages on the scanned damaged blade. The 
results of aligning the scanned point cloud data of the 
damaged blade with the CAD model demonstrated that the 
proposed fine-tuned scan-to-CAD alignment method is 
successful in avoiding the averaging-out errors of the original 
ICP algorithm. 

(a) (b)

Fig. 4. (a) Error colormap of the aligned scanned point cloud data, and (b) the 

removed data points (in black) after the last iteration of the fine-tuned 

alignment.
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Fig. 5. Deviation of post-alignment RMSE of sectional data points from the 
CAD sectional data points after original ICP registration (in red) and the 
proposed method (in black).

4. Conclusion

This paper presents an accurate and automatic scan-to-
CAD registration method for alignment of the scanned point 
clouds of damaged blades with their nominal CAD model. 
Since the least-squares minimization objective function of 
ICP-based algorithms globally minimizes the distance 
between the data points of both damaged and undamaged 
regions and their corresponding closest points on the CAD 
model, the geometric nonconformities between two datasets 
in defective areas lead to averaging-out errors. An effective 
method is developed to avoid averaging-out errors of the 
original ICP algorithm. The average curvature Hausdorff 
distance and average Euclidean Hausdorff distance are 
combined to measure the geometric dissimilarity between 
local neighborhoods of each measured data point and its 
closest point on the CAD model. The correspondence search 
step of the proposed fine-tuned alignment algorithm gradually
removes the unreliable corresponding pairs with high 
geometric dissimilarity from the transformation calculation 
step and helps the algorithm avoid the averaging-out error. 
The registration results of the scanned point cloud data of a 
damaged blade have demonstrated the effectiveness of the 
proposed scan-to-CAD alignment method in eliminating the 
averaging-out errors resulted from the original ICP method.
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