
Titre:
Title:

Classification of Alzheimer's and MCI patients from semantically 
parcelled PET images: A comparison between AV45 and FDG-PET

Auteurs:
Authors:

Seyed Hossein Nozadi, & Samuel Kadoury 

Date: 2018

Type: Article de revue / Article

Référence:
Citation:

Nozadi, S. H., & Kadoury, S. (2018). Classification of Alzheimer's and MCI patients 
from semantically parcelled PET images: A comparison between AV45 and FDG-
PET. International Journal of Biomedical Imaging, 2018, 1-13. 
https://doi.org/10.1155/2018/1247430

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/5061/

Version: Version officielle de l'éditeur / Published version 
Révisé par les pairs / Refereed 

Conditions d’utilisation:
Terms of Use:

CC BY 

Document publié chez l’éditeur officiel
Document issued by the official publisher

Titre de la revue:
Journal Title:

International Journal of Biomedical Imaging (vol. 2018) 

Maison d’édition:
Publisher:

Hindawi Publishing Corporation

URL officiel:
Official URL:

https://doi.org/10.1155/2018/1247430

Mention légale:
Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://doi.org/10.1155/2018/1247430
https://publications.polymtl.ca/5061/
https://doi.org/10.1155/2018/1247430


Research Article
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Early identification of dementia in the early or late stages of mild cognitive impairment (MCI) is crucial for a timely diagnosis and
slowing down the progression of Alzheimer’s disease (AD). Positron emission tomography (PET) is considered a highly powerful
diagnostic biomarker, but few approaches investigated the efficacy of focusing on localized PET-active areas for classification
purposes. In this work, we propose a pipeline using learned features from semantically labelled PET images to perform group
classification. A deformable multimodal PET-MRI registration method is employed to fuse an annotated MNI template to each
patient-specific PET scan, generating a fully labelled volume from which 10 common regions of interest used for AD diagnosis are
extracted. The method was evaluated on 660 subjects from the ADNI database, yielding a classification accuracy of 91.2% for AD
versus NC when using random forests combining features from cross-sectional and follow-up exams. A considerable improvement
in the early versus late MCI classification accuracy was achieved using FDG-PET compared to the AV-45 compound, yielding
a 72.5% rate. The pipeline demonstrates the potential of exploiting longitudinal multiregion PET features to improve cognitive
assessment.

1. Introduction

Alzheimer’s disease (AD) is one of the most common types
of neurodegenerative disorders in the aging population [1].
A recent research by the Alzheimer’s association reports
that AD is the sixth-leading cause of death in the United
States and is rising every year considering its proportion in
the causes of death [2]. The first signs of AD will typically
include forgetfulness and will progress by affecting various
functions such as language, motor skills, and memory [3].
However, a slight but noticeable and measurable decline in
cognitive abilities, including memory and reasoning abilities,
can be associated with mild cognitive impairment (MCI).
An individual diagnosed with MCI could be at risk of later
developing Alzheimer’s, or can be due to age-relatedmemory

decline, thus highlighting the importance of early diagnosis
of the disease. Still, clinical and neuroimaging studies have
demonstrated differences between MCI and normal controls
(NC) [4, 5]. Patients diagnosed with MCI can be stratified
between early MCI (EMCI) and late MCI (LMCI) [6].

There is no definitive cure for AD,whereas active research
areas seek treatments which are more effective for early
MCI in order to slow down the progression of the disease.
This implies a great urgency to develop sensitive biomarkers
to detect and monitor early brain changes. The ability to
diagnose and classify AD and MCI at an early stage allows
clinicians to take more informed decisions at later stages
for clinical intervention and treatment planning, thus hav-
ing a great impact on reducing the cost of longtime care
[7]. From a neuroimaging perspective, positron emission
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tomography (PET) of fluorodeoxyglucose (FDG) for cerebral
glucose metabolism and 𝛽 amyloid (also known as AV45 or
florbetapir) can provide complementary information for the
diagnosis of AD [8–11].

The classification between AD, MCI at its two levels
(EMCI and LMCI), and NC using PET imaging is a topic that
has been studied by previous groups. Feature-based methods
to classify various cognitive states have used several charac-
teristics such as brain volume [12], ratio of voxel intensities
represented by standardized uptake values (SUV) [13, 14],
or mean voxel intensities (VI) [15] which were extracted
from the PET volume. Voxel intensities in particular have
been shown to be one of the most discriminant features
for classification purposes [16, 17]. For instance, Smailagic
et al. used VI to reduce the number of voxels by excluding
lower intensity values from the PET image and simplify
the classification process [14]. Gray et al. differentiated AD
and NC with a classification accuracy of 88%, whereas
nonconvertible MCI and NC yielded a 65% accuracy [9].The
authors used FDG-PET images from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI). Their method proposed to
classify AD versus nonconvertible MCI and convertible MCI
to test regional feature sets based on signal intensities. In
works by López et al. [18], feature extraction was performed
using principal component analysis (PCA) on whole-brain
images, achieving accuracies up to 89%. In a work by
Rodrigues and Silveira using the same longitudinal database,
the best classification accuracy was obtained by combining
two timepoints (baseline and 12-month follow-up) (93% for
NC versus AD) [19]. In another study, Aidos et al. used VI in
some ROIs which were manually segmented by experts [20].
By using an automated feature selection method to classify
the subjects, they used mutual information to rank the
features and identify the highest values to reduce the number
of features. The optimal classification rates were achieved
using support vectormachines (SVMs) or k-nearest neighbor
(KNN) by using selected regions for MCI, with rates ranging
between 65% and 79%. An accuracy of 85% for AD versus
NC was also obtained using the same method. However, all
these previous studies exploited a specific glucose molecule
(primarily FDG), without comparing either FDG or AV45
for classification purposes, and did not include an automatic
parcellation of the specific cortical regions particularly prone
to amyloid accumulation to achieve improved classification
rates. A recent review summarizes feature-based methods
[21].

In this work, we evaluate the diagnostic potential of PET
images from automatically extracted cortical and subcortical
regions, while comparing the diagnostic efficacy of FDG-PET
with that of AV45-PET. In the first approach (hereafter called
multiregion approach), we developed a method to segment
the ROIs and extract the features while in the second we used
a similar method but for the entire brain volume (hereafter
called whole-brain approach). Due to the subtle differences
in imaging, EMCI and LMCI are a particularly challenging
problem for classification, especially using amyloid imaging
such as PET. Generally, most of the studies compared AD,
MCI (single class), and NC [9, 12, 16, 22]. Therefore in
this study, datasets were grouped into four classes (AD,

EMCI, LMCI, and NC) and performed predictions using
PET images only. Each subject had two PET scans at two
timepoints (baseline and after approximately 12 months),
FDG-PET and AV45-PET images, which were used solely
for comparative purposes.We hypothesized that longitudinal
PET images provided additional information to achieve a
high level of discrimination between EMCI and NC, LMCI
andNC, or EMCI and LMCI.Themain objective is to develop
a method to select the optimal features using PET images
alone to classify AD, EMCI, LMCI, andNC.The framework is
evaluated with a large sample size of 660 subjects, in contrast
to previous works which used a more limited number of
subjects (under 250) [9, 19, 20]. Furthermore, while previous
methods were proposed to predict the conversion [22, 23],
they were designed for whole-brain processing and did not
focus on particular regions prone to amyloid accumulation.

We propose to classify subjects by either using only the
baseline PET images or combining a 12-month follow-up
examination (the second scan of ADNI subjects was acquired
between 6 and 18 months after baseline; this period of time
is not the same for all subjects which gives an approximate
12-month period) (hereafter called second-visit). First, fol-
lowing a preprocessing step to normalize the input images,
a nonrigid registration step between magnetic resonance
images (MRI) and PET images is applied, followed by a
nonrigid transformation to the MNI152-space which was
annotated by the automated anatomical labelling (AAL) brain
atlas. To extract features from each area, we used this AAL
labelling method and selected 10 regions of interest (ROIs)
in each subject. The second-visit images underwent the same
process to extract the features and combinedwith the baseline
for the multiregion approach for AV45-PET and FDG-PET
images individually. The whole-brain approach used voxel-
wise features from the entire volume for the same images
and timepoints. For classification purposes, we used as basis
of comparison both linear and RBF SVMs, SVM using PCA
reduced features, and random forests (RF). The paper is
structured as follows. Section 2 presents thematerials and the
methodology for the classification pipeline. Section 3presents
the experimental results, followed by a discussion. Section 4
concludes the paper.

2. Materials and Methods

We propose a pipeline including PET and MRI registration,
atlas annotation, anatomical segmentation, feature selection,
and classification to automatically process input PET images
for AD/LMCI/EMCI/NC classification, as shown in Figure 1.
The following sections describe each component of the
pipeline.

2.1. Data Selection. The data used in this work was from the
ADNI database (http://www.loni.ucla.edu/ADNI). ADNI is
an ongoing longitudinal, multicenter study launched in 2003,
designed to develop clinical, imaging, genetic, and biochem-
ical biomarkers for the early detection and tracking of AD.
It includes approximately 1800 subjects recruited from over
50 sites across the US and Canada in three databases (ADNI,
ADNI GO, and ADNI 2) [24] (http://adni.loni.usc.edu/).

http://www.loni.ucla.edu/ADNI
http://adni.loni.usc.edu/
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Figure 1: Overview of the proposed method.

Table 1: Participant distribution.

Characteristics AD EMCI LMCI NC

n 99 164 189 208

Mean age (yrs) 75.7 ± 8.2 74.3 ± 8.1 72.8 ± 7.0 76.3 ± 8.4
Gender (M/F) 57/42 94/70 101/88 119/88 + 1 (undefined)

MMSE

Baseline 22.9 ± 2.2 28.5 ± 1.4 27.6 ± 1.8 29.1 ± 1.2
Second-visit 20.4 ± 4.1 27.7 ± 2.7 24.4 ± 4.9 28.3 ± 2.3

Among all subjects which are available for download,
this study collected resting-state FDG-PET brain volumes
acquired at two timepoints: baseline and second-visit (for
comparison purposes).The total number of subjects was 1046
patients; 386 patients were excluded because they did not
have the complete PET series and/or corresponding MRI
images at the same time. A final set of 660 subjects with PET
and MRI images as well as MMSE scores at both timepoints
was selected, which amounted to 99 AD, 164 EMCI, 189
LMCI, and 208 NC. Table 1 presents the characteristics of the
patient cohorts.

2.2. PET and MRI Datasets

2.2.1. PET Protocol. FDG-PET is a metabolic neuroimaging
modality frequently used in AD, producing a distribution
map of glucose uptake. The reduction of glucose uptake in
the temporal and parietal areas is often seen as an indication
of AD [4]. Foster et al. demonstrated that FDG-PET improves
the accuracy of differentiating AD from frontotemporal
dementia, especially when the symptoms and clinical tests are
equivocal [25]. However other types of tracers exist such as
florbetapir which helps to image amyloid accumulation in the
brain.

In this study, PET images were preprocessed in four steps.
These steps include (1) coregistration between sequences to
reduce the effect of patient motion and converting it into
DICOM format, (2) mean averaging of the 6 five-minute
frames of the coregistered dynamic image set, (3) reorientation
of the output images into a standard space with 160 ×
160 × 96-voxel image grid of 1.5mm cubic voxels, and (4)
acquiring a uniform image with isotropic resolution of 8mm
full width at half maximum [24] (http://adni.loni.usc.edu/).
Scans were further processed with range normalization to
provide uniform datasets. An intensity normalization was

required in order to perform direct images comparisons
between different subjects. The intensity of the PET images
was normalized based on the maximum value 𝐼max, deter-
mined from the mean of voxel intensities over the value 𝑇max.
Here, 𝑇max was determined by the intensity value of the 10th
histogram bin (using a total of 50 bins). These steps help to
discard all low-valued intensity voxels outside the brain and
avoid image saturation.

2.2.2. MRI Protocol. TheMR images were acquired on either
Philips, GE, and Siemens scanners from across all partic-
ipating sites. Since the acquisition protocols were different
in each scanner, an image normalization step was pro-
vided by ADNI. Corrections included geometry distortion,
calibration, and reduction of intensity of nonuniformity.
More detailed information is available on the ADNI website
(http://adni.loni.usc.edu/). These corrections were applied to
each MPRAGE volume following the image preprocessing
steps. We used T1-weighted images which were selected and
reviewed for quality and correction in terms of data format
and/or alignment. MR images were used only to find the
subcortical anatomical structures to increase the labelling
accuracy of the ROIs. Finally, the MRI with 176 × 256× 256
resolution with 1mm spacing was collected with the purpose
of increasing the accuracy of registration and labelling.

2.3. Region Extraction from PET

2.3.1. PET-MRI Registration. Proposing an accurate multi-
modal registration step between PET and MRI is crucial in
the proposed pipeline as it dictates the reliability of PET
segmentation and subsequently provides better results for
the ROI extraction. The first step was to register the PET
image and its corresponding T1-w MRI. In our pipeline,
skull stripping was not necessary as images were already

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
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Table 2: Configuration of cost function and transformation model (rigid with 6 parameters versus affine with 12 parameters) of registration,
comparing SPM and FLIRT tools based on landmark registration errors (LRE).

Configuration Cost function Transformation LRE with SPM (mm) LRE with FLIRT (mm)

(1) Mutual information Rigid body 3.15 ± 1.10 3.02 ± 1.11
(2) Correlation ratio Rigid body 2.26 ± 0.92 2.13 ± 0.86
(3) Mutual information Affine 2.65 ± 0.97 2.51 ± 0.41
(4) Correlation ratio Affine 1.12 ± 0.45 0.98 ± 0.31

preprocessed, so, by reducing the total processing steps
from the original images, high-dimensional information of
signal intensities was preserved as much as possible for the
feature-learning step. Choosing the appropriate registration
parameters, similarity function, and transformation model
becomes particularly important. While available tools such
as FLIRT were previously validated in other studies [26, 27],
the registration accuracy between PET and MRI using a
subset of patients from ADNI was performed in this study,
comparing both the SPM and FSL tools (FLIRT toolkit) and
measuring the anatomical landmark residual errors. These
landmarks were identified on the images by an experienced
neuroradiologist, and the Euclidean distance between land-
marks identified on the MRI with transformed points from
the PET image was calculated.The evaluation was performed
by cross-validation on a separate subset of 20 subjects with
FDG-PET and MRI from the ADNI database, including 10
AD and 10 NC patients.

We compared the registrations between PET and MRI
using four different scenarios, based on transformation
model (rigid versus affine) and with different cost functions
(mutual information versus correlation ratio). Because there
is no common gold standard for registration between PET
andMRI, we used the same method as similar works, using a
previously validated PET simulation based on corresponding
MRI [28, 29].

The simulated PET images were generated by a series of
steps which includes scalp editing and segmenting the MRI
images into GM, WM, and CSF, which is done using the
Seg3D tool version 1.10.0 (Scientific Computing and Imaging
Institute, University of Utah). The voxel intensities of GM,
WM, and CSF were modified and a rigid body or affine
transformation with resampling to the PET voxel size was
applied. Finally, an 8mm FWHMGaussian filter was used to
smooth the images and remove residual noise. This process
was repeated for 16 iterations on each image.

Results are presented in Table 2. Figure 2 shows an
example of the resulting registration between PET and MRI
using FLIRT. These quantitative comparisons show that the
FLIRT tool is able to achieve improved accuracy in terms
of registration error, using an affine transformation with
correlation ratio used as the similarity measure for all 660
subjects in two timepoints as it provided the best intermodal-
ity registration accuracy.

2.3.2. Atlas Registration. Once the PET and MRI images
were registered for each patient, the native patient MRI was
registered to a common coordinate space for multiregion
extraction (MNI152 template) to facilitate the localization

Figure 2: Selected regions of interest identified on PET images for
cognitive classification tasks.

of the analyzed regions. In order to reduce the significant
amount of time and effort required to segment and label
the set of PET-active anatomical structures listed in the
following section from the 3D MRI brain images of the
selected cohort of patients, we used an anatomical corre-
spondence estimation relating the atlas to the target image
space, thus increasing the accuracy of the resulting target
labelling [30]. For the purpose of anatomical segmentation
to extract the ROIs, we used the 2mm resolution atlas
which was adapted for registration accuracy. This labelling
technique provides 116 cortical and subcortical labels which
are accurate and are perfectly compatible with the MNI152
atlas [31]. Registration with AAL enables segmenting the
whole-brain structure and choosing the ROIs. In order to
perform voxel-wise analysis, all images were registered to
the uniform size of the MNI template. Therefore, after PET
and MRI registration, the resulting images were nonrigidly
registered once more with MNI152 atlas (2mm) using the
open source software NiftyReg. Thus, we obtained all images
with 91 × 109 × 91 resolution, with 2mm isotropic voxel
size.

2.3.3. Extraction of ROIs. FDG-PET or AV45-PET images
in dementia show specific regions presenting patterns of
abnormality caused by the disease. Therefore from the 116
regions of the brain identified using our registration tech-
nique, five regions in particular from each hemisphere were
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Figure 3: Selected regions of interest identified on PET images for
cognitive classification tasks.

studied for the accumulation of glucose, namely, (1) anterior
cingulum (right and left), (2) posterior cingulum (right and
left), (3) inferior frontal gyrus/orbitofrontal (right and left),
(4) precuneus (right and left), and (5) lateral temporal (right
and left). These patterns appear in multiple neurological
disorders, including Alzheimer’s disease. The main reason to
extract these ROIs is to extract metabolic data from specific
anatomical areas within the brain volume. These ROIs were
previously identified in the literature [32–34] and in the
neuroscience field. Previous studies on AD classification
did not use the previously mentioned regions which are
more likely to be affected by AD [35, 36], concentrating
rather on a whole-brain analysis. In order to obtain the
appropriate labels for the current study, AAL was used to
label each region of the MNI brain space. Our method is
based on the parcellation of the MNI152 brain template with
the AAL atlas. These ten selected regions were therefore
extracted from the normalized PET image by selecting the
specific labels after the AAL registration technique and
regional extraction in the original image volume space
(Figure 3).

Binary masks for each of the 10 ROIs were subsequently
created in the automated pipeline before applying it on the
processed images to collect SUV voxels. Each voxel from
the labelled ROIs obtained from segmentation was used in
this process. A single mask combining all 10 separate masks
together was then created, thus representing a single feature
vector of all regions which had more probability of being
affected by AD and specifically had less accumulation of
glucose. After applying the mask, we then replaced the mask
ROIs labels by the voxel values from the raw data for each
subject. Following that, the data and images were ready for
feature extraction.
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Figure 4: Dimensionality reduction of the feature matrix 𝑋,
containing training subjects from the ADNI dataset, used to train
the classifiers.

2.4. Feature Extraction. Preprocessed subject images each
had normalized binary masks representing the different
labelled ROIs, fromwhich the corresponding intensity values
can be used for subsequent feature extraction. From these
voxel intensities values, assuming that the number of voxels
differed for each region 𝑘𝑖, each subject dataset 𝑆, which
included 10 ROIs, can be defined as follows:

𝑆 = {𝑘1, 𝑘2, 𝑘3, . . . , 𝑘10} . (1)

Given 𝑁 = 660 subjects with a vector of voxels associated
with each subject, we reshaped the 3D matrix for all subjects,
ROIs, and voxels/per ROI, to a single feature vector. However,
because the sum of voxels for each region 𝑘𝑖 is different for
each subject, the size of each vector was normalized based on
the maximum number of voxels among all subjects for each
ROI. Based on the maximum identified values, we calculated
the maximum length of the overall vector such that

10
∑
𝑖=1

𝑁
∑
𝑗=1

max (𝑘𝑖𝑗) , 𝑁 = 660,

𝑋 = {𝑆1 = {𝑘1, 𝑘2, 𝑘3, . . . , 𝑘10} , . . . , 𝑆660
= {𝑘1, 𝑘2, 𝑘3, . . . , 𝑘10}} .

(2)

Using this approach, we created the matrix𝑋 with vector
of the subjects as rows and a maximum number of valued
voxels (𝑘max) as columns (Figure 4).

In the proposed multiregion approach, we used matrix
𝑋 which had a dimensionality of 𝑛 × 660 in order to train
the classifiers, with 𝑛 the total number of voxels, whereas,
in the whole-brain approach, the size of the feature matrix
includes all valued voxels in the image. The objective was to
learn the features from theVI in order to discriminate classes.
Themain difference between the two approacheswas the total
number of voxels used.
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2.5. Classification. Once the PET-based features were
extracted from the set of selected ROIs located in both
cortical and subcortical regions, feature vectors containing
mean-centered voxel intensities were created combining
each of the 10 ROIs and assembled for all cases. Supervised
classification was performed using four different multiclass
methods, which included (1) linear SVM on raw voxel
intensities, (2) RBF kernel SVM on raw voxel intensities,
(3) SVM trained with features extracted using principal
component analysis (PCA), and (4) random forests (RF)
classifier. Hyperparameters of the RBF kernel were obtained
using an exhaustive search grid (described in Section 3),
where the parameters were selected based on the maximum
in-sample validation accuracy which outperformed
polynomial kernels. The tuned hyperparameters were
then used to predict the out-of-sample accuracy values on
the test set.

3. Results and Discussion

3.1. Parameter Selection. We then present themethodology to
determine the optimal parameter settings of each classifier. In
order to train the RBF-SVM classifiers, two hyperparameters
need to be determined: the penalty parameter 𝐶 and the
kernel width 𝛾. Considering the number of features and
data for training and testing, a properly tuned RBF kernel
was shown in preliminary testing to be superior in terms of
accuracy to linear kernels, even though they are simpler to
use [37].

Cross-validation was used for tuning the RBF kernel. To
evaluate the performance of different classification methods
and find the best hyperparameters for SVM classifiers, we
used a 10-fold cross-validation strategy. In order to determine
the hyperparameters of the SVM-RBF kernel, an exhaustive
grid search on the 𝐶 and 𝛾 parameters was performed based
on classification accuracy, where 10 subjects were randomly
selected from the dataset for testing, and the remaining
unseen subjects (𝑁 − 10) were used to train the classifiers.
This procedure was repeated 1000 times, each time randomly
selecting a new set of 10 held-out subjects to test classification
performed based on the set of hyperparameters under the
performance converged.Themaximum in-sample validation
accuracy was found at 𝐶opt = 1 and 𝛾opt = 0.1. The tuned
hyperparameters were used to predict the out-of-sample
accuracy values on the test set. As for the PCAapproach, prin-
cipal components were calculated such that 95% of the group
variance was retained. To ensure we did not observe any
overfitting in our data, we performed an experiment which
progressively increased the PC-subset inclusion from 70% to
99% (with 1% increments) using cross-validation testing and
chose the value which offered the best performance before
seeing overfitting of the data, where reconstruction values
stabilized, yielding a value of 95%. Finally, the number of
trees grown in each forest (𝑡) and the number of features (𝑓)
randomly selected at each tree node had to be determined.
Based on out-of-bag classification errors to measure stability

of training, we found that 𝑡 = 60 and that 𝑓 = √𝐷 for all
the experiments, where 𝐷 is the initial dimensionality of the
vectors, based on the findings of Liaw and Wiener (2002).

3.2. Results. We begin by presenting the results of the multi-
region approach, followed by the whole-brain approach, both
using FDG-PET images. This is followed by a more detailed
analysis of the longitudinal classification experiments, with
the combination of two timepoints (baseline and 12-month).
Finally we present the comparative results between FDG-PET
and AV45-PET.

In this work, we report the results of classification
between six different paired classes of cognitive states using
four classifiers in two approaches (multiregion and whole-
brain). The results of four paired classes (AD versus NC, AD
versus EMCI, AD versus LMCI, and EMCI versus LMCI) of
cognitive states are presented in Tables 3 and 4.

3.2.1. Multiregion Classification. We first used the proposed
methodology to segment and classify the baseline image
based on regional signal intensities (ROIs). As shown in
Tables 3(a) and 3(b), RF and RBF-SVM demonstrated higher
accuracies (over 80%). In Tables 3(c) and 3(d), although
values were globally lower, these classifiers still had the
highest accuracies (over 65%), with the exception of the
SVM classifier which has 70% accuracy in the second visit
(Table 3(d)).

3.2.2. Whole-Brain Classification. In comparison to the re-
gion-based approach, the whole-brain technique did not
perform as well for AD versus NC and for AD versus EMCI
as shown in Tables 4(a) and 4(b). On the other hand, the
RF classifier for the whole-brain approach demonstrated the
highest accuracies for AD versus LMCI and EMCI versus
LMCI (81.7% and 72.5%, resp.) compared to the other clas-
sifiers which were between 55% and 68.2%.These results also
outperform the region-based approach using the baseline
scan for these last two pairs.

3.2.3. Combination of Longitudinal Data. The classification
results using the combination of two timepoints in the mul-
tiregion approach were obtained by combining the second-
visit data with the baseline data. Based on the literature and
the previous results, we applied RBF-SVM and RF on the
combined data. Features matrices therefore combined the
extracted information from the multiregion approach from
visits 1 and 2, which doubled the size of matrix𝑋.The highest
classification accuracy was obtained for AD versus NC based
on FDG-PET images using RBF-SVM (91.7%) andRF (91.2%)
methods. These results are shown in Table 5 and Figure 5
and are higher than baseline and second-visit results taken
individually (Table 3).

Figure 6(a) shows the Receiver Operating Characteristic
(ROC) curves, for the results based on Table 5. Classification
accuracies of AD versus NC for FDG-PET in RBF-SVM
and RF were similar but still significantly different based on
McNemar’s test (McNemar, 1947) to determine whether this
is a substantial difference.

3.2.4. AV45-PET versus FDG-PET. Finally, we compared
the diagnostic accuracy between AV45-PET and FDG-PET
images. Table 5 presents the results of the multiregion
approach using combined data for AV45-PET images (right
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Table 3: Classification performance in multiregion approaches (SVM, PCA, RBF, and RF), evaluating accuracy (ACC), sensitivity (SEN),
specificity (SPE), and area under the curve (AUC). (a) AD versus NC; (b) AD versus EMCI; (c) AD versus LMCI; (d) EMCI versus LMCI.

(a)

Method Timepoints ACC SEN SPE AUC

SVM
1st visit 81.7 83.5 72.8 0.843

1st + 2nd visit 81.0 83.2 70.8 0.839

PCA
1st visit 85.7 84.3 79.2 0.876

1st + 2nd visit 87.1 86.1 80.6 0.884

RBF
1st visit 88.2 86.4 85.2 0.894

1st + 2nd visit 89.3 88.8 85.9 0.900

RF
1st visit 88.2 89.5 86.8 0.901

1st + 2nd visit 89.7 89.1 87.0 0.903

(b)

Method Timepoints ACC SEN SPE AUC

SVM
1st visit 70.0 76.3 59.8 0.745

1st + 2nd visit 74.0 81.4 62.3 0.767

PCA
1st visit 74.5 77.2 65.9 0.772

1st + 2nd visit 74.0 79.7 66.0 0.778

RBF
1st visit 76.5 79.1 67.4 0.791

1st + 2nd visit 81.7 86.5 70.3 0.866

RF
1st visit 82.4 85.2 76.9 0.874

1st + 2nd visit 82.4 85.3 76.9 0.876

(c)

Method Timepoints ACC SEN SPE AUC

SVM
1st visit 60.0 66.5 69.2 0.675

1st + 2nd visit 63.2 70.7 51.5 0.673

PCA
1st visit 66.1 70.0 64.8 0.691

1st + 2nd visit 57.1 55.6 60.0 0.625

RBF
1st visit 66.1 69.3 71.4 0.705

1st + 2nd visit 70.1 74.2 65.7 0.754

RF
1st visit 73.2 75.6 77.2 0.788

1st + 2nd visit 75.0 74.1 76.1 0.796

(d)

Method Timepoints ACC SEN SPE AUC

SVM
1st visit 65.0 64.6 67.2 0.698

1st + 2nd visit 70.0 68.3 73.4 0.756

PCA
1st visit 53.0 55.7 59.1 0.578

1st + 2nd visit 53.0 55.6 60.2 0.577

RBF
1st visit 62.3 64.3 66.5 0.684

1st + 2nd visit 67.6 70.1 70.7 0.788

RF
1st visit 65.2 69.0 63.2 0.724

1st + 2nd visit 65.2 69.2 63.9 0.727

columns) compared to the results of FDG-PET images (left
columns). These results demonstrate the high accuracy of
RBF-SVM and RF classifiers for AD versus NC (90.8% versus
87.9%), AD versus EMCI (80.0% versus 88.0%), and AD
versus LMCI (88.9% versus 81.5%). As previously mentioned
for the FDG-PET results, higher accuracies were achieved
when using the combination of the two timepoints compared
to individual timepoint results.

Figure 6(b) illustrates the ROC curves for the classifica-
tion results based on Table 5. Classification accuracies of AD
versus NC for AV45-PET in RBF-SVM and RF were similar
but still significantly different (𝑃 = 0.02).

3.3. Discussion. To the best of our knowledge, this is one of
the few studies to focus on PET classification for cognitive
stage identification in AD, comparing learned features from
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Table 4: Classification performance in whole-brain approaches (SVM, PCA, RBF, and RF), evaluating accuracy (ACC), sensitivity (SEN),
specificity (SPE), and area under the curve (AUC). (a) AD versus NC; (b) AD versus EMCI; (c) AD versus LMCI; (d) EMCI versus LMCI.

(a)

Method Timepoints ACC SEN SPE AUC

SVM
1st visit 83.3 81.4 87.9 0.843

1st + 2nd visit 89.2 83.2 92.4 0.934

PCA
1st visit 75.0 74.7 78.1 0.796

1st + 2nd visit 76.7 75.2 79.9 0.814

RBF
1st visit 68.3 66.5 75.3 0.756

1st + 2nd visit 78.3 80.9 70.4 0.852

RF
1st visit 85.0 88.4 79.7 0.911

1st + 2nd visit 87.7 90.2 81.4 0.924

(b)

Method Timepoints ACC SEN SPE AUC

SVM
1st visit 80.0 84.5 78.9 0.857

1st + 2nd visit 82.0 86.1 79.7 0.871

PCA
1st visit 68.3 65.2 70.0 0.743

1st + 2nd visit 78.8 80.7 68.4 0.808

RBF
1st visit 62.7 64.1 59.3 0.676

1st + 2nd visit 89.2 91.8 86.2 0.934

RF
1st visit 80.4 84.2 77.6 0.855

1st + 2nd visit 82.4 86.3 79.5 0.876

(c)

Method Timepoints ACC SEN SPE AUC

SVM
1st visit 66.0 68.3 59.9 0.713

1st + 2nd visit 64.7 69.4 61.3 0.698

PCA
1st visit 64.0 67.0 61.2 0.692

1st + 2nd visit 65.0 68.1 62.0 0.708

RBF
1st visit 67.9 70.4 66.4 0.735

1st + 2nd visit 66.0 69.3 64.2 0.739

RF
1st visit 82.1 85.6 80.1 0.875

1st + 2nd visit 81.7 84.5 79.1 0.888

(d)

Method Timepoints ACC SEN SPE AUC

SVM
1st visit 51.7 54.5 57.8 0.594

1st + 2nd visit 55.0 58.2 63.9 0.643

PCA
1st visit 60.9 65.6 59.1 0.663

1st + 2nd visit 65.7 70.8 64.0 0.712

RBF
1st visit 65.0 68.1 62.5 0.704

1st + 2nd visit 68.2 71.5 65.7 0.801

RF
1st visit 72.5 79.0 68.7 0.785

1st + 2nd visit 72.5 79.2 69.9 0.790

bothAV45-PET andFDG-PET images, while using amultire-
gional approach based on segmented cortical and subcortical
areas. The objective was to assess how a feature-learning
approach focused on predefined anatomical regions with
known decline in uptake for AD patients can help achieve
better accuracy and minimize the errors of an automated
classification of different stages of Alzheimer’s, especially in
the early stages of the disease. The classification results in

this work are comparable and, in some cases, better than
the performances reported in the literature [9, 16]. Generally,
classification accuracy between AD and NC is a typical
benchmark to compare differentmethodology performances.
Classification between the different stages of MCI, namely,
EMCI and LMCI, is a more challenging issue in this field
due to subtle differences which are not noticeable from the
human perception. In fact, most publications discriminate
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Table 5: Comparison in classification accuracy between FDG-PET andAV45-PET using combination of baseline and second-visit timepoints
for all diagnostic pairs.

FDG-PET results AV45-PET results

RBF-SVM Random forest 𝑃 value RBF-SVM Random forest 𝑃 value
AD versus NC 91.7% 91.2% 0.010 90.8% 87.9% 0.024

AD versus EMCI 85.7% 85.7% 0.015 80.0% 88.0% 0.024

AD versus LMCI 87.5% 79.2% 0.016 88.9% 81.5% 0.027

EMCI versus NC 63.3% 56.7% <0.01 57.7% 59.7% 0.0203

LMCI versus NC 63.5% 65.4% 0.018 61.2% 55.7% <0.01
EMCI versus LMCI 53.9% 64.1% <0.01 52.2% 56.5% 0.017

MCI (combining both late and early stages) and AD, with
fewer attempts on EMCI or LMCI [12, 16, 19]. Considering
the importance of having the results of early and late stages
of MCI versus NC, we conducted additional experiments
to demonstrate that the models can indeed discriminate
between early and late stages of MCI.

We demonstrated that AV45-PET images as well as FDG-
PET images offer relevant and discriminative features to
yield classification results which are comparable to models
using imaging and nonimaging data [15, 16]. Results were
slightly better with FDG-PET due to increased spatial res-
olution in the image, which helps to delineate the localized
structures affected by AD. The main motivation of this
study was to directly compare the classification efficiencies
of FDG versus AV45, which was done by training separate
classifiers and evaluating the performance between pairs of
cognitive groups. Our goal was to uncover which radiotracer
demonstrated the stronger diagnostic accuracy and come to a
recommendation of the tracer to use forAD.While both FDG
and AV45 images were indeed available in ADNI for research
purposes, typically in a clinical examination, FDG and AV45
will not be acquired during the same session, but rather
one or the other. In a subsequent study, we will investigate
the combination of both modalities, which, by combining
features from both images which tend to highlight different
anatomical regions affected by AD, could improve the overall
classification accuracy.

Regarding the atlas registration step, it was crucial to
choose an atlas offering all segments of the brain anatomy
which would be included in our predefined ROIs. To achieve
this objective, we explored a number of different atlases,
including the Harvard-oxford cortical and subcortical struc-
tural atlas [38], the Talairach atlas [35, 39], the MNI152
structural atlas [40], and the automated anatomical labelling
(AAL) atlas [31]. Among all four atlases, only AAL included
all 10 ROIs of interest from the segmented 116 cortical and
subcortical regions, which were preidentified in the literature
as prone to amyloid accumulation. Therefore, the MNI152
atlas combinedwithAALwas selected for the purposes of our
pipeline.

The results obtained in this study using the ADNI-PET
imageswere similar to previousworks [9, 20], which also used
VI for feature-learning. This confirms the high diagnostic
power of uptake values in discriminating between different
cognitive stages, particularly by integrating a progression
component using time series features to the analysis.

To achieve these results, multimodal registration played
another key role to properly align both PET and MRI. The
FLIRT tool was able to register intra- and intermodal brain
images without extracting or segmenting the whole volume
of the brain, which is convenient for processing large cohorts
of patients with the proposed pipeline, by using automated
registration for all subjects. Table 1 displays the MMSE for
both groups ofADandNC for the two timepoints. It confirms
a significant progression of the disease from baseline to
the second-visit exam as observed in the results of the two
approaches.

Results using PCA-SVM see little changes in most diag-
nostic pairs between baseline and second visit, compared
to RBF-SVM or RF classifiers. This indicates that the addi-
tional PET features provided in the longitudinal scans are
nonlinear features better detected by kernel- or learning-
based methods. From these results, we can also interpret that
combining second-visit data provides additional information
to discriminate between the classes compared to the baseline
data. Finally when comparing both the ROIs and whole-
brain approaches, results at each timepoint individually were
better with the ROIs method, except when using the linear
SVM classifier. The combination between cross-sectional
and longitudinal information achieved very good accuracy
for AD compared with other classes but as presented in
Table 5 for EMCI versus NC, LMCI versus NC, and EMCI
versus LMCI, it is not as adequate as with longitudinal data
alone.

4. Conclusion

In this work, we compared both whole-brain and multicor-
tical region approaches to identify cognitive stages of AD,
comparing both FDG-PET and AV45-PET in classification
accuracy. We observed that the classification accuracy of AD
versus NC was improved using longitudinal images, as well
as for other pairs of cognitive classes. Either FDG-PET or
AV45-PET enabled discriminating early and late MCI from
AD, as well as NC, with a slight improvement using FDG-
PET. The methodologies used in this work can contribute
to improving the classification accuracy between different
stages ofADbyusing the combination of two timepoints.Our
results confirm that we can rely on PET images as a single
biomarker, although the inclusion of additional biomarkers
can also improve the accuracy of classification. Results were
shown to be favorable or better compared to previous studies,
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Figure 5: Box-plot figures of classification accuracies using multiregion approach between FDG-PET and AV45-PET, combining baseline
and second-visit timepoints for all diagnostic pairs.

especially for themore challenging classification tasks such as
NC versus EMCI, AD versus LMCI, or EMCI versus LMCI.
Future work will involve combining additional biomarkers
such as cortical thickness data, volume, voxel-wise tissue
probability, and density of gray matter, in comparison with

deep classifiers and other state-of-the-art AD classification
approaches. In the context of Alzheimer’s disease, themethod
can improve for the early detection of the disease with
promising classification rates based on ground-truth knowl-
edge.
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Figure 6: Receiver Operating Characteristic (ROC, sensitivity versus specificity) curves for classification between AD and NC using
longitudinal data for (a) FDG-PET images (AD versus NC) and (b) AV45-PET images.
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