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High-Dimensional Bayesian Clustering with

Variable Selection: The R Package bclust

Vahid Partovi Nia

Ecole Polytechnique de Montréal
Anthony C. Davison

Ecole Polytechnique Fédérale de Lausanne

Abstract

The R package bclust is useful for clustering high-dimensional continuous data. The
package uses a parametric spike-and-slab Bayesian model to downweight the effect of noise
variables and to quantify the importance of each variable in agglomerative clustering. We
take advantage of the existence of closed-form marginal distributions to estimate the model
hyper-parameters using empirical Bayes, thereby yielding a fully automatic method. We
discuss computational problems arising in implementation of the procedure and illustrate
the usefulness of the package through examples.

Keywords : agglomerative clustering, Bayesian clustering, Bayesian variable selection, dendro-
gram, hierarchical clustering, R, spike-and-slab model.

1. Introduction

The purpose of cluster analysis is to partition observations into groups such that observations
belonging to the same group are more similar than observations belonging to different groups.
There are various ways of attributing observations to clusters, but one may classify them
into two broad categories: distance-based (nonparametric) and model-based (parametric)
techniques. Our approach lies between these: we use a model to define a distance and we
implement hierarchical clustering as used in distance-based methods.

Hierarchical clustering using various distance measures is implemented in the R progamming
language (R Development Core Team 2012) in packages such as cluster (Mächler et al. 2012)
and has two variants, agglomerative clustering and divisive clustering, implemented in the
agnes and diana functions of this package respectively. Agglomerative clustering begins
with each observation as a separate cluster, successively merges the closest clusters using a
dissimilarity measure, and stops when there is just one cluster. Divisive clustering starts
with all the observations in one cluster and divides it until each observation forms a single

http://www.jstatsoft.org/
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cluster. However, hierarchical clustering is not the only way of grouping data. Another widely
used technique is partitioning clustering, as embodied in the k-means algorithm, kmeans, of
the package stats. A more robust variant, k-medoids, is coded in the pam function in the
package cluster. Unfortunately, partitioning approaches can be hard to visualize, though some
graphical tools are available in the packages flexclust (Leisch 2010) and cclust (Dimitriadou
2009). The dendrogram, a tree representation that provides a visual guide to the groupings
as the number of clusters changes, is usually unavailable in partitioning algorithms. Many
graphical tools are provided in the ape package (Paradis et al. 2004). One partitioning method
is Bayesian mixture modeling, which often requires Markov chain Monte Carlo simulation,
an example being the finite Gaussian mixtures of the bayesm package (Rossi 2011). Partial
tree representation of Markov chain Monte Carlo groupings is feasible through labeltodendro

package (Partovi Nia and Stephens 2012).

In many scientific domains modern technology provides data on many more variables than
individuals. Cluster analysis is widely used in such cases, and a common difficulty is to
provide reasonable statistical models for these low-sample-size-high-dimensional situations.
Statistical analysis of such data is difficult partly because of overfitting, for which two main
solutions have been proposed: the data are projected to a smaller dimension, or analysis is
based only on relevant variables. Our approach is related to the second solution.

In the high-dimensional datasets now arising in biological applications, the key information
on clustering may be hidden in a small subset of the variables (Cheeseman and Stutz 1996),
and inclusion of other variables may mask the underlying structure. Many model-based
clustering procedures depend on ratios of probability densities. When the data dimension
greatly exceeds the number of individuals, the probability that two individuals will lie close
enough to be considered part of the same cluster approaches zero, if substantial variation
occur across all variables (Hall et al. 2005; Ahn et al. 2007). Thus variable selection or
projection into a subspace seems necessary when clustering high-dimensional datasets, and
this complicates matters further.

A variable may be considered useful for clustering if it defines a mixture, so variable selection
in clustering requires the fitting of mixtures with unknown numbers of components on an
unknown number of variables (Kim et al. 2006). Researchers have dealt with this in different
ways. McLachlan et al. (2002) apply forward selection of variables using univariate significance
tests of a single component against mixtures of two components. Wang and Zhu (2008) and
Bondell and Reich (2008) implement variable selection using a penalized likelihood. Friedman
and Meulman (2004) assign different weights to each variable as a measure of its importance,
and have implemented this in the COSA software. Witten and Tibshirani (2010) similarly
perform variable selection and provide importance measures by penalization of the dissim-
ilarity matrix, implemented in the sparcl R package (Witten and Tibshirani 2011). Bergé
et al. (2012) implemented clustering and discriminant analysis of high-dimensional data in
the HDclassif R package using a new parametrization of the Gaussian mixture model which
combines the idea of dimension reduction and model constraints on the covariance matrices.
Hoff (2006) and Booth et al. (2008) suggest stochastic search to find the optimal clustering.
Raftery and Dean (2006) fit a finite Gaussian mixture model and select variables using an
approximate Bayes factor; see the R package clustvarsel (Dean and Raftery 2009). Tadesse
et al. (2005) suggest use of a reversible jump algorithm for their Bayesian model. Another
approach is dimension reduction by principal components analysis (Ghosh and Chinnaiyan
2002), but this may not show which variables are more effective for clustering or carry the



Journal of Statistical Software 3

best information about the cluster topology (Chang 1983). Liu et al. (2003) combine principal
components analysis with variable selection and propose a Gibbs sampler to determine the
number of components to be used. In the present paper we use Bayesian variable selection
through spike-and-slab models (Mitchell and Beauchamp 1988; George and McCulloch 1997).
Our suggested model imposes independence of variables, so selection of variables marginally
or conditional on the previous selected variables coincide.

Most of the model-based clustering R packages are inappropriate for high-dimensional data
except for HDclassif. The bclust package version 1.3, built for R 2.15.0, is intended to fill
this gap. Unlike HDclassif the bclust package implements a Bayesian approach to clustering,
with priors for model parameters and for the allocation of subjects to groups. The model
and its priors are chosen so that the marginal posterior is analytically tractable, providing a
fast algorithm. The marginal posterior is taken as the natural measure of the appropriateness
of a grouping. The clustering that maximizes the marginal posterior is taken to be optimal.
Since it is not easy to find the maximum a posteriori grouping over all possible partitions, we
propose an approximation. The agglomerative path is used to approximate the maximum a
posteriori clustering. This gives a visual guide to some of the other possible data allocations,
through a dendrogram. The R package implementing the methodology described in this work
is available from the Comprehensive R Archive Network at http://CRAN.R-project.org/

package=bclust.

2. Bayesian model for clustered data

Suppose that T clustering individuals are grouped into C clusters. The univariate random
variable yvct is the data of clustering individual t (t = 1, . . . , Tc) in cluster c (c = 1, . . . , C)
measured on the continuous variable v (v = 1, . . . , V ). If there are Tc observations in cluster
c (T =

∑C
c=1

Tc), then the data distribution is the same if the observations in cluster c
are arbitrarily reordered. Thus f(y1c . . . yTcc) is an exchangeable distribution, and by the
general representation theorem (Bernardo and Smith 1994, Chapter 4), there is a conditional
distribution f(yc | ξc) and a prior distribution function F (ξc) such that

f(y1c, . . . , yTcc) =

∫ Tc
∏

t=1

f(ytc | ξc)dF (ξc), (1)

suggesting use of a Bayesian model. We propose a linear model for the data:

yvct = µ+ δvγvcθvc + ηvct, (2)

where ηvc and θvc are continuous random variables, γvc and δv are binary random variables,
and µ is a constant. The random variable ηvct is noise, supposed to be independent of θvc
and sampled from a Gaussian distribution with zero mean and variance σ2

η ≥ 0. The random
variable θvc disappears when γvc = 0 or δv = 0 but is present when γvc = δv = 1. We
assume that γvc and δv are independent of each other and follow Bernoulli distributions with
probabilities p and q, respectively.

In Equation 2, µ represents an overall value for all the variables and individuals. Without
loss of generality, our model presupposes that all the variable-wise centers equal zero; thus
we suggest subtracting the median of each variable before using our software. The random

http://CRAN.R-project.org/package=bclust
http://CRAN.R-project.org/package=bclust
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Figure 1: Distributions of underlying effects and of measurements. Left: the standard Gaus-
sian density (black), the symmetric Laplace density (blue), and the asymmetric Laplace den-
sity with σ2

θR
/σ2

θL
= 10 (red), all having zero median and unit variance, giving examples of the

distribution of θvc. Right: the marginal density of a measurement yvct when the variable and
the variable-class combination is active, obtained by convolving a standard Gaussian density
with the densities on the left.

variables θvc are the cluster effects, and give different means on variable v for different clusters.
If θvc appears for at least one cluster, then the variable v is important, and the importance
of variables for clustering is coded in the Bernoulli random variable δv. One may interpret
the probabilities q and p as the proportions of important variables and of the appearance of
different cluster means for an important variable.

We propose two families for θvc: a Gaussian distribution with mean zero and variance σ2

θ > 0;
and an asymmetric Laplace distribution (Bhowmick et al. 2006), used to model heavy tailed
and asymmetric effects, centered at zero, and with left-tail and right-tail variances σ2

θL
> 0 and

σ2

θR
> 0; see Figure 1. Both the Gaussian and the asymmetric Laplace families produce closed

form marginal densities for the observations, yielding a fast algorithm. The slab density of
yvct in (2) when the effects follow the asymmetric Laplace distribution is plotted in Figures 1
and 2, and has the form

f1(yvct) =
1

2σθL
exp

(

yvct
σθL

+
σ2
η

2σ2

θL

)

Φ

(

−
yvct
ση

−
ση
σθL

)

+
1

2σθR
exp

(

−
yvct
σθR

+
σ2
η

2σ2

θR

)

Φ

(

yvct
ση

−
ση
σθR

)

.

In Bayesian variable selection the term spike-and-slab distribution is typically used for the
prior distribution. We use the terms spike for a distribution which is concentrated about zero
and slab for the distribution with tails much more dispersed than the spike density, whether
it is a prior or a marginal density.

If δv = γvc = 1, then the variable v and the variable-cluster combination v, c are active. In this
case the marginal variance of data in variable-cluster combination v, c equals σ2

θ +σ2
η, defining

a slab distribution, otherwise the marginal variance equals σ2
η, giving a spike distribution, see
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Figure 2: Marginal densities of measurements. Left: examples of a Gaussian spike (solid) and
slab (dotted and dashed) densities; the dotted density is obtained by adding a Gaussian effect
to a Gaussian noise variable; the dashed density is derived by adding a symmetric Laplace
effect to Gaussian noise. Right: Gaussian spike and right-skewed (red dashed) and left-skewed
(blue dashed) densities obtained by adding an asymmetric Laplace effect to Gaussian noise.

Figure 2. Hence model (2) always gives a Gaussian spike distribution, but depending on the
distribution of θvc, it provides a symmetric or an asymmetric slab distribution.

Sometimes clustering individuals include replicate data. One may omit the replication infor-
mation and consider each replicate as a clustering individual, but after the data are grouped
some of the replicates may then fall into different groups, and this is undesirable. We therefore
propose to generalize the model (2) by assuming another level of variability between repli-
cates of a clustering individual. If there are Rct replicates of clustering individual t grouped
in cluster c, then we propose to generalize (2) to

yvctr = µ+ δvγvcθvc + ηvct + εvctr, r = 1, . . . , Rct. (3)

This reduces to (2) if Rvc = 1 for all v = 1, . . . , V and c = 1, . . . , C, so below we focus on
(3). Comparing (3) with (2), we see that if Rvc = 1 for all c = 1, . . . , C, v = 1, . . . , V , then
the model is identifiable only with respect to σ2

η + σ2
ε . This is important when marginal

maximum likelihood is used to estimate the model hyper-parameters for unreplicated data
using the replicated model (3). In such cases we set σ2

η = 0 and estimate σ2

θ .

Suppose that the letter y with fewer indices corresponds to an appropriate vector of data.
For instance, yv denotes the data vector for variable v and yvc corresponds to the data vector
for variable v and cluster c. The marginal density of the Bayesian model (3) can be obtained
by replacing

ξc = (θ1c, θvc, . . . , θV c, η1c1, . . . , η1cTc
, . . . ηvct, . . . , ηV cTc

), (4)

in (1) and evaluating the integral. The marginal density equals (Partovi Nia 2009)

f(y) =

V
∏

v=1

f(yv), (5)
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in which the marginal density for each variable is a convex combination of the spike-and-slab
densities, given by

f(yv) = qf(yv | δv = 1) + (1− q)f(yv | δv = 0), (6)

f(yv | δv = 0) =
C
∏

c=1

Tc
∏

t=1

f0(yvct),

f(yv | δv = 1) =
C
∏

c=1

{

pf1(yvc) + (1− p)

Tc
∏

t=1

f0(yvct)

}

,

where

f0(yvct) = (2π)−Rct/2σ1−Rct(Rctσ
2

η + σ2

ε)
−1/2

× exp

{

−
1

2σ2
ε

(

Rct
∑

r=1

y2vctr −Rcty
2

vct

)

−
(yvct − µ)2

2(σ2
η + σ2

ε/Rct)

}

, (7)

is independent of the distribution assumed for the cluster effects θvc, but f1 depends on their
distribution. If the effect has a Gaussian distribution, then f1 corresponds to a multivariate
Gaussian density with mean vector µ1 and covariance matrix Σ, where Σ is of dimension
∑Tc

t=1
Rct ×

∑Tc

t=1
Rct with σ2

ε + σ2
η + σ2

θ on the main diagonals, and the off-diagonal elements
are equal to σ2

η + σ2

θ for replications of the same individual and to σ2

θ for observations from
different individuals.

When the effects are distributed according to the asymmetric Laplace distribution with vari-
ance σ2

θ = σ2

θL
+σ2

θR
, the rates of the left- and right-tail exponential distributions forming the

Laplace density being σ−1

θL
and σ−1

θR
, then

f1(yvc) = k0(kLIL + kRIR), (8)

where

k0 = (2πσ2

ε)
−

∑
Tc

t=1
Rct/2(2πσ2

η)
−Tc/2(2πσ2

η/Tc)
1/2

×(2π)Tc/2|A|−1/2 exp

{

−
1

2σ2
ε

Rct
∑

r=1

Tc
∑

t=1

y2vctr

}

,

kL = (2σθL)
−1 exp

(

σ2
η

2Tcσ2

θL

−
µ

σθL

)

,

IL = exp

(

1

2
b
⊤

LA
−1

bL

)

Φ





cL + d
⊤

LA
−1

bL
√

1 + d⊤

LA
−1dL



 ,

kR = (2σθR)
−1 exp

(

σ2
η

2Tcσ2

θR

+
µ

σθR

)

,

IR = exp

(

1

2
b
⊤

RA
−1

bR

)

Φ





cR + d
⊤

RA
−1

bR
√

1 + d⊤

RA
−1dR



 .
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Here dL,dR,bL,bR are all vectors of length Tc. The vectors dL and dR with equal elements

−T
−1/2
c σ−1

η and T
−1/2
c σ−1

η , the vectors bL and bR consisting of elements Rctyvctσ
−2+T−1

c σ−1

θL

and Rctyvctσ
−2 − T−1

c σ−1

θR
, respectively. The constants cL and cR are

cL = T 1/2
c σ−1

η {µ− σ2

η/(TcσθL)}, cR = −T 1/2
c σ−1

η {µ+ σ2

η/(TcσθR)}.

The square matrix ATc×Tc
is positive definite with determinant |A| consisting of main diag-

onals Rctσ
−2
ε + σ−2

η − T−1
c σ−2

η and equal off-diagonals −T−1
c σ−2

η .

An immediate consequence of (6) is resistance of the clustering method to the noise variables,
because the data density has two parts. The first is the density of data when the clustering
parameter θvc appears, the so-called slab density f1. This guides the clustering procedure
when a variable is important for clustering. The second, the spike density f0, is the density
of the data when the clustering parameter θvc disappears. This part down-weights the effect
of useless variables in clustering and provides a valid clustering procedure when the number
of noise variables increases. In the extreme case if the data density consists only of f0s, that
is with probability one δv = 0 for all v = 1, . . . , V, or equivalently γvc = 0 for all v and
c = 1, . . . , C, the data play no role in grouping and the clustering posterior equals the prior.

We take the log Bayes factors logBδ = log f(yv | δv = 1) − log f(yv | δv = 0) as a measure
of the importance of the variable v and logBγ = log f(yvc | δv = 1, γvc = 1) − log f(yvc |
δv = 1, γvc = 0) as a measure of importance for the variable-cluster combination v, c. The
posterior odds is a Bayesian measure of uncertainty for testing two hypotheses and equals the
prior odds times the Bayes factor. The posterior odds are only related to data through the
Bayes factor and are understood as a data-based measure of the evidence when comparing
two hypotheses (Kass and Raftery 1995).

3. Bayesian clustering paradigm

In Bayesian clustering, the allocation of observations to clusters is regarded as a statistical
parameter. Therefore a Bayesian model such as (3) is assumed for data conditional on the
grouping structure, and a prior distribution must be adopted for the clusters. Then a search
algorithm, often using Markov chain Monte Carlo simulation, is applied to find the maximum
a posteriori grouping. In the bclust package, similar to HBC (Savage et al. 2009), a Biocon-

ductor (Gentleman et al. 2004) package, we use an agglomerative search method because it
provides a visual guide to the other possible groupings through a dendrogram.

Suppose a data allocation C groups the observations into C clusters, of sizes T1, . . . , TC , with
total T =

∑C
c=1

Tc clustering individuals. We assume a multinomial-Dirichlet distribution
(Heard et al. 2006) as the allocation prior

f(C) ∝
(C − 1)!T1! . . . TC !

T (T + C − 1)!
. (9)

The clustering posterior is

f(C | y) = k−1f(y | C)f(C), (10)

in which f(y | C) is the marginal density of the data for the known allocation C derived in
(5), and k > 0 is a fixed value for given data. The normalizing constant k plays no role in
agglomerative clustering and may be omitted in numerical calculations.
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Function Description

bclust Bayesian agglomerative clustering using the spike-and-slab model.
bdiscrim Discriminates using the spike-and-slab model.
ditplot Visualizes data using image plot.
dptplot Visualizes data using profileplot.
imp Calculates variable and variable-cluster importances.
loglikelihood Computes the marginal log likelihood for the spike-and-slab model.
meancss Computes the mean and the corrected sum of squares for

loglikelihood.
profileplot Visualizes replicated data.
teethplot Visualizes grouping on image or profileplot.
viplot Visualizes variable importances.

Table 1: Summary of the functions in the bclust package.

In order to apply Bayesian agglomerative clustering we start with each individual as a single
cluster: the number of clusters equals the total number of individuals, C = T , and the number
of individuals in cluster c is Tc = 1, for all c = 1, . . . , C. In the first step, all pairwise merges
are considered. For each pairwise merge, the clustering posterior (10) is calculated and the
merge that maximizes (10) is applied. We keep gc = log f(C | y), the log posterior for the
best merge having c clusters, to use as the dendrogram height. If the best merge according
to (10) is to join cluster c1 to c2 to create the new cluster c, then of course Tc = Tc1 + Tc2 .
The algorithm then considers all pairwise merges again, and continues until all clusters are
merged and all individuals are in one cluster.

The best grouping found using the posterior as the objective function on the agglomerative
path is the one that maximizes gc across c = 1, . . . , T . Clearly the groupings associated to
gc are sorted in agglomerative order with increasing c, so a dendrogram representation is
possible. In order to draw a dendrogram a monotone height function is required, but gc is not
necessarily monotone and we use the following transformation. Write gmax = max(gc), and
suppose that cmax = argmax(gc) is the number of clusters that maximises gc. For c < cmax we
define the height of the dendrogram to be hc = gc− gmax, which is negative, and for c > cmax,
we take hc = gmax − gc, which is positive. By definition, hc is monotone if gc is unimodal,
which is usually the case, and cutting the dendrogram at zero height gives the grouping that
maximizes gc. However plotting a dendrogram object in R requires non-negative heights, so
we replace hc by hc −min(hc).

4. Computational issues in code implementation

In order to accelerate the numerical computations, most of the bclust package is written in
standard C and output is imported into R to benefit from its visualization facilities. However,
some of the required routines were already available in Fortran, and are called using the
F77_CALL function of the BLAS C library. Table 1 summarizes the main functions in the
package bclust and Figure 3 denotes their dependencies.

The main difficulty of agglomerative clustering is fast evaluation of the data joint density
f(y | C). When the number of clusters is C, C(C − 1)/2 merges are considered and because
C varies from 1 to T , the total number of evaluations is

∑T
C=1

C(C − 1)/2, which is of order
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loglikelihood

meancss
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image

ditplot
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Figure 3: Diagram of function dependencies. Left panel: functions used for computations.
Right panel: functions used for visualization. Ellipses denote functions developed in the bclust
package and rectangles denote pre-existing R functions.

O(T 3). This can be improved if a Lance-Williams type relationship (Lance and Williams
1967) holds for the posterior function. On the other hand, because the model (3) imposes
independent variables, f(y | C) reduces to

∏V
v=1

f(yv) and hence agglomerative clustering
is of order O(V T 3), linear in the number of variables V . This is encouraging because in
high dimensional settings T is small but V is large, so our algorithm is rather fast. However,
evaluation of f(y | C) may be time-consuming for large V or T , and computational acceleration
is then required.

In order to decide which clusters must be merged, we need to evaluate individual densities
for each variable (6). The density evaluation becomes computationally expensive if C is
large, as in the early stages of agglomerative clustering. A simple trick to rapidly evaluate
f(yv | C) is to use the fact that in the agglomerative method only two clusters will be joined,
so the evaluation of the density of two clusters with the past values of f(yvc | C) suffices for
evaluation of the new f(y | C). Every time that we evaluate f(y | C), only the joint density
of the merging clusters is calculated and f(y | C) is reconstructed by multiplying the lacking
components.

The individual density f(yv) for the Gaussian and the asymmetric Laplace model is composed
of products and therefore it is best computed on the log scale. If we write

l0 =

Tc
∑

t=1

log f0(yvct), l1 = log f1(yvc), (11)

then

log f(yv | δv = 1) =

C
∑

c=1

log{p exp(l0) + (1− p) exp(l1)}.
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When l0 and l1 are both very small or very large, the computation of

l =
C
∑

c=1

log{p exp(l0) + (1− p) exp(l1)} (12)

is troublesome, and computer memory may overflow or l may be evaluated as zero. To avoid
this we evaluate l after factorizing exp(l1) as

l = l1 + log {p+ (1− p) exp(l0 − l1)} . (13)

This expression is appropriate when l1 > l0, because the exponent function in (13) doesn’t
explode. There is an obvious variant when l0 ≥ l1. A similar trick is applied for the evaluation
of log f(yv) using log f(yv | δv = 1) and log f(yv | δv = 0).

In the Gaussian effects model, log f1(yvc) corresponds to logarithm of a d-variate Gaussian
density with mean µ1 and covariance matrix Σ, where d =

∑Tc

t=1
Rct, 1 is a unit vector of

length d and Σ is a d× d positive definite matrix, that is,

log f1(yvc) = −
d

2
log 2π −

1

2
log |Σ| −

1

2
(yvc − µ1)⊤Σ−1(yvc − µ1). (14)

Evaluation of this density requires computation of the Mahalanobis distance and the log
determinant of Σ. In order to efficiently compute them, let the upper-triangular matrix Bd×d

denote the Cholesky decomposition of Σ, that is B⊤
B = Σ. The Cholesky decomposition of

a positive definite matrix is efficiently implemented in Fortran and is available in the function
dpbtrf of the LAPACK library (Anderson et al. 1999). Because B is upper-triangular, a
solution to the system of linear equations

Bx = (yvc − µ1) (15)

is easily obtained by back-solving using the LAPACK function dtrtrs. Hence, x = Σ
−

1

2 (yvc−
µ1) might be used to evaluate the Mahalanobis distance as

x
⊤
x =

d
∑

i=1

x2i = (yvc − µ1)⊤Σ−1(yvc − µ1), (16)

in which xi represents the ith element of the vector x.

Once the Cholesky decomposition of Σ is computed, the eigenvalues λi are also available.

Denoting the diagonal elements of B, by bii, we have bii = λ
1/2
i , and hence

log |Σ| =
d
∑

i=1

log λi = 2
d
∑

i=1

log bii. (17)

The log density can be obtained by replacing the Mahalanobis distance (16) and the log
determinant (17) in (14), yielding

log f1(yvc) = −
d

2
log 2π −

d
∑

i=1

log bii −
1

2

d
∑

i=1

x2i .
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We need to apply this procedure for all vectors of data yvc (v = 1, . . . , V, c = 1, . . . , C).
We can save computational time for data in the same cluster but another variable, say yv′c
(v′ 6= v), because for yv′c, the covariance matrix Σ and hence B are unchanged, so we do not
need to re-calculate the Cholesky decomposition of Σ. However, the back-solving must be
updated according to the new data in Bx = yv′c − µ1, and the Mahalanobis distance must
be recomputed using the new x.

In the asymmetric Laplace model the density f1(yvc) given in (8) has a more complicated
form. However, the computational difficulty arises only in the calculation of

|A|, b
⊤

LA
−1

bL, b
⊤

RA
−1

bR, d
⊤

LA
−1

bL, d
⊤

RA
−1

bR, d
⊤

LA
−1

dL, d
⊤

RA
−1

dR, (18)

and of Φ, the standard Gaussian cumulative distribution function. The cumulative Gaussian
distribution function is available in the Rmath C library and evaluation of the quantities
in (18) is similar to the Gaussian case. First we calculate the upper-triangular Cholesky
decomposition of Ad×d, say Bd×d, in which d = Tc. Hence

log |A| = 2
d
∑

i=1

log bii,

and we find the vectors xbL
, xbR

, xdL
, xdR

by back-solving the systems of linear equations

BxbL
= bL, BxdL

= dL, BxbR
= bR, BxdR

= dR.

Therefore, the required quantities are

b
⊤

LA
−1

bL = x
⊤

bL
xbL

, b
⊤

RA
−1

bR = x
⊤

bR
xbR

, d
⊤

LA
−1

bL = x
⊤

dL
xbL

,

d
⊤

RA
−1

bR = x
⊤

dR
xbR

, d
⊤

LA
−1

dL = x
⊤

dL
xdL

, d
⊤

RA
−1

dR = x
⊤

dR
xdR

.

The value of the log density is readily obtained. For data in the same cluster but a different
variable, say yv′c, the quantities A,dL, and dR are unchanged. Hence, we just need to update
xbL

and xbR
, replace them in (19) and can then evaluate f1(yv′c) with less computational

effort. The positive definite matrix A is exchangeable and therefore |A| and A
−1 are available

analytically, but using the analytical forms doesn’t accelerate the algorithm much.

5. Code analysis on simulated data

In order to analyze our computer code, a simple factorial experiment was performed with the
number of variables V set to 50, 100, 200, 300, 500, 1000 and the number of individuals T set
to 10, 20, 30, 40, 50, 100, 200, 300. The experiment was run on a desktop PC with Intel Core
Duo processor 1.8 MHz, 1 GB RAM and Linux Ubuntu operating system. Each design was
fitted 5 times using the Gaussian and the asymmetric Laplace models and the time in seconds
required for agglomerative clustering was saved.

Least squares estimates of the parameters (β0, β1, β2)
⊤ for the linear model log10 time = β0+

β1 log10 V +β2 log10 T are (−6.62, 0.98, 3.19)⊤ for the Gaussian model and (−6.22, 0.98, 2.96)⊤

for the asymmetric Laplace model. As expected, β1 ≈ 1 and β2 ≈ 3 for both models. The value
of β2 for the asymmetric Laplace model is smaller than that for the Gaussian model, suggesting
a more efficient algorithm is implemented for the asymmetric Laplace model especially for
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V 50 500 1000
T 20 50 100 20 50 100 20 50 100

Gaussian 0.1 2.7 30.3 1.4 25.1 273.2 2.8 49.9 542.3
Asymmetric Laplace 0.2 2.9 24.6 1.8 26.8 215.9 3.6 53.3 428.6

Table 2: Average clustering time (in seconds) for different number of variables V and the
number of clustering individuals T .

large T ; see also Table 2. The fitted linear model can be used to predict the time required
for agglomerative clustering for large T or V . However, β0 is computer-dependent. On the
equipment mentioned above, the time needed for clustering T = 100 individuals measured on
V = 5000 variables is about 39 minutes for the Gaussian model and about 33 minutes for the
asymmetric Laplace model.

6. Clustering toy examples

In this section only fits using the Gaussian model are presented. The asymmetric Laplace
model leads to very similar results provided similar hyper-parameter values are used, but
hyper-parameter estimation using the asymmetric Laplace model is often more difficult.

In order to demonstrate the usefulness of the bclust package first we cluster a toy data
set consisting of a cluster of 20 observations independently and identically sampled from a
standard bivariate Gaussian distribution with correlation ρ = 0.9, and another cluster of 20
Gaussian variates with mean (4, 0)⊤, unit variances and negative correlation ρ = −0.9. This
gives a data set in which one variable is more useful for clustering than another. A scatterplot
of the data is shown in Figure 4. The generated data violate the variable independence
assumption of model (3), but, provided the cluster centers are separated reasonably well,
ignoring the dependence has little effect on the estimated grouping and the algorithm yields
convincing results.

The bclust function is the main command of the bclust package that implements the Bayesian
clustering described earlier. The essential arguments of the command are a numeric ma-
trix, with subjects in rows and variables in columns, and the hyper-parameter values. The
commands presuppose that data are unreplicated, the clustering effect distribution is Gaus-
sian, and the hyper-parameters are in a vector with a specific order and are transformed as
(log σ2

ε , log σ
2
η, log σ

2

θ , µ, logit p, logit q)
⊤.

The command for generating the toy data, performing Bayesian clustering, and plotting the
output using the hyper-parameters σ2

ε = 1, σ2
η ≈ 0, σ2

θ = 16, µ = 0, p = 0.5, and q = 0.5 is

R> set.seed(150)

R> library("MASS")

R> library("bclust")

R> x <- rbind(mvrnorm(20, c(0, 0), matrix(c(1, 0.9, 0.9, 1), 2, 2)),

+ mvrnorm(20, c(4, 0), matrix(c(1, -0.9, -0.9, 1), 2, 2)))

R> cluster.labels <- paste(c(rep(1, 20), rep(2, 20)))

R> cluster.obj <- bclust(x, transformed.par = c(0, -50, log(16), 0, 0, 0),

+ labels = cluster.labels)

R> plot(cluster.obj)
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Figure 4: Left panel: scatter plot of the bivariate toy data; two clusters are generated, the
first cluster from a standard bivariate Gaussian distribution with correlation 0.9 the second
with mean (4, 0)⊤, ρ = −0.9, and unit marginal variances. Right panel: The output of bclust
fit on the toy example visualized using the generic plot command.

R> abline(h = cluster.obj$cut, lty = 2, col = "gray", lwd = 3)

Here we set the hyper-parameters to specified values, but later we show how they can be
estimated from data. The output of the code appears in the right panel of Figure 4.

The result of the bclust command is a bclustvs object, similar to the existing R class
hclust, but including extra information needed to produce appropriate graphs.

Calculation of the importances is provided in the imp function. This imports a bclustvs

object and gives the importance measures, the log Bayes factor of variables, logBδ, and the log
Bayes factor of variable-cluster combinations, logBγ , for the maximum a posteriori clustering
found by the agglomerative method. Negative values of the importances give negative evidence
that the variable v or the variable-cluster v, c participate in the optimal clustering. The
package provides the following command for plotting variable importances:

R> viplot(imp(cluster.obj)$var)

The bclust package is not designed to handle low dimensional datasets like the bivariate
toy data. In order to demonstrate its usefulness in a high-dimensional situation we add
98 standard Gaussian noise variables to the bivariate toy example, yielding a data set with 40
observations and 100 dimensions; we use the same hyper-parameter values as in the bivariate
case. The package includes a dendrogram-image-teeth plot, ditplot, of a bclustvs object
and draws the dendrogram tree, the image plot of the unreplicated data, and the optimal
grouping, in the same figure.

R> x <- cbind(x, matrix(rnorm(3920), 40, 98))

R> cluster.obj <- bclust(x, transformed.par = c(0, -50, log(16), 0, 0, 0),

+ labels = cluster.labels)
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Figure 5: The output of bclust fit on the bivariate toy data (Figure 4 left panel), with
98 standard Gaussian noise variables added. The resulting bclustvs object is visualized
using the ditplot command.

R> plotcol <- rep(c(2, 4), each = 20)

R> ditplot(cluster.obj, plot.width = 12, horizbar.distance = 0,

+ dendrogram.lwd = 2, xlab.cex = 0.6, ylab.cex = 0.6,

+ vertbar = plotcol, vertbar.col = plotcol, ylab.mar = 0)

The output of the code is shown in Figure 5.

On the left of the figure is the dendrogram tree. To its immediate right is the image plot of
the data, with clustering individuals in rows and variables in columns. The package uses the
rainbow color scheme as the default coloring scheme for the image plot: the minimum value
appears blue, the maximum value appears magenta, and intermediate values are shown with
colors that depend on their closeness to the limiting values. The image plot is followed by a
teeth plot showing the optimal grouping found by cutting the tree. On the extreme right of
the figure is a vertical bar which can be used to represent another arbitrary grouping, here
taken to be the correct data clustering available in the plotcol numeric vector.

Our next example includes data simulated from the replicated Gaussian model (3) with Rct =
4 and T = 10 grouped in four clusters with model hyper-parameters σ2

ε = 1, σ2
η = 3, σ2

θ =
25, µ = 0, p = 0.5, q = 0.5. Figure 6 shows the profileplot of the data with red blobs
for activated variable-cluster combinations attached to a teethplot and a horizontal bar
declaring the activated variables, shown in red. The profileplot command of the bclust

package is a handy tool suitable for presentation of replicated data.

Fitting the model (3) requires specification or estimation of the model hyper-parameters. For
real data we propose estimation using maximum marginal likelihood before applying agglom-
erative clustering, i.e., considering every individual as a separate cluster. The loglikelihood
command calculates the marginal log likelihood for a given dataset. One may adopt the optim
or the nlm R functions to maximize the log likelihood and then cluster the data using the
estimated hyper-parameters. Estimation of the model hyper-parameters using maximum like-
lihood for the simulated data yields σ2

ε = 1.03, σ2
η = 1.13, σ2

θ = 25.77, µ = 0.14, p = 0.60 and
q = 0.41.

Simulated Gaussian data is provided in supplementary materials in simG.RData. Assuming
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Figure 6: Profile plot of data with four clusters, simulated using the Gaussian model with
ten clustering individuals, each having four replicates over 50 variables. The hyper-parameter
values are σ2

ε = 1, σ2
η = 1, σ2

θ = 25, µ = 0, p = 0.5, q = 0.5. The 22 activated variables are
shown using the red horizontal bar. Activated variable-cluster combinations are shown using
the red blobs on the profiles for each group.

that the simulated data are stored in x, sample code for hyper-parameter estimation and
fitting the Bayesian clustering with the Gaussian model is

R> library("bclust")

R> load("simG.RData")

R> x.id <- rep(1:10, each = 4)

R> meansumsq <- meancss(x, x.id)

R> optimfunc <- function(phi) {

+ -loglikelihood(x.mean = meansumsq$mean, x.css = meansumsq$css,

+ repno = meansumsq$repno, transformed.par = phi)

+ }

R> x.tpar <- optim(rep(0, 6), optimfunc, method = "BFGS")$par

R> bclust.obj <- bclust(x, rep.id = x.id, transformed.par = x.tpar)

R> dptplot(bclust.obj, scale = 20, horizbar.plot = TRUE,

+ varimp = imp(bclust.obj)$var, horizbar.distance = 0, dendrogram.lwd = 2)

See Figure 7 for the output.

Like ditplot, the function dptplot is intended to facilitate visualization of a bclustvs object,
but when data are replicated. This function attaches a dendrogram plot to a profile plot and
a teeth plot with an optional horizontal bar for variable importances and an optional vertical
bar to show an arbitrary grouping. The pre-specified heat colors for the variable importances
are determined by the scale proposed by Kass and Raftery (1995), blank for variables having
negative Bayes factors and a heat color for positive ones. In the profile plot the variables are
sorted automatically according to their importances.
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Figure 7: The output of bclust fit on simulated data visualized by dptplot command, see
also Figure 6. The left side of the figure includes the posterior-based dendrogram cut at
the maximum posteriori point, data are shown in the middle, and the maximum a posteriori
grouping on the right side.

The viplot figure, which uses red for variables having a positive Bayes factor (important),
and white for variables having a negative Bayes factor (unimportant), shows that one of the
inactive variables has a slightly positive Bayes factor and two out of the 22 activated variables
are thought to be unimportant:

R> viplot(imp(bclust.obj)$var, col = as.numeric(imp(bclust.obj)$var > 0) * 2)

The output of the former code appears in Figure 8.

7. Clustering real data

Many branches of science produce high-dimensional data for which classification of a new
observation to existing groups or clustering individuals is of interest. In most cases a list of
potentially important variables is available and effective discriminating or clustering variables
are demanded. Here we consider a subset of the replicated metabolomic data of Messerli et al.
(2007) available in the bclust package as the gaelle data set.

The metabolite data consist of 14 mutant samples of the plant Arabidopsis thaliana. Values of
43 potentially important metabolites are measured for each sample using GC-MS technology.
These metabolites are supposed to depend on the genetic changes. The data involve two
mutants defective in starch bio-synthesis, pgm and isa2; four defective in starch degradation
sex1, sex4, mex1, and dpe2; a mutant for comparison that accumulates starch as a pleitropic
effect, tpt; four uncharacterized mutants, deg172, deg263, ke103, and sex3; and three wild
type plants, WsWT, RLDWT, and ColWT. There are four replicates of all samples except the last,
for which there are three.
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Figure 8: The bar plot of the variable Bayes factors using viplot for the simulated data; see
also Figure 6.

When a small proportion of variables are active, i.e., q is small, it is often difficult to estimate
the model hyper-parameters using maximum marginal likelihood. We therefore fix q = 1 and
estimate the remaining parameters. The resulting procedure is equivalent to setting δv = 1,
for all v = 1, . . . , V in (3). One may use this modified model without variable selection to
discriminate or cluster subjects. This model is still resistant to the noise variables, thanks
to the variable-cluster selector γvc, but it does not include variable selection and therefore
no variable importance can be computed. Simulation shows that parameter estimation and
clustering performs better when q = 1. When noise dominates, estimation of all parameters
simultaneously is troublesome, and usually fixing q = 1 provides a better result also.

If variable selection is needed when pq is small or the noise level is high, we can help the
optimization routine by fixing the model parameters σ2

ε , σ
2
η, σ

2

θ , µ to their values already ob-
tained by fixing q = 1, and then estimate only p and q. With the gaelle data the following
sample code uses these fudges to give σ2

ε = 0.16, σ2
η = 0.37, σ2

θ = 5.10, µ = 0.08, p = 0.03
for the model with q = 1, and then the second step gives p = 0.46, q = 0.16 for the variable
selection model. Iterating between these two estimation steps typically gives estimates that
do not vary significantly. Confidence intervals for parameters can be found using the delta
method or a profile likelihood; the latter helps the user to see whether the parameters are
well-estimated. The profile likelihood curves for p and q are flat when pq is very small or the
noise level dominates, i.e., σ2

θ is tiny compared with σ2
η and σ2

ε . We do not suggest using our
package in these cases without careful attention to parameter estimation. Optimization of
the marginal likelihood for the asymmetric Laplace model is often more difficult. We suggest
checking the convergence of the optimization routine for the estimated parameters before
performing clustering, discrimination, and calculating the importances.

R> library("bclust")

R> data("gaelle")

R> x <- gaelle

R> x.id <- rep(1:14, c(3, rep(4, 13)))
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R> meansumsq <- meancss (x, x.id)

R> optimfunc <- function(phi) {

+ -loglikelihood(x.mean = meansumsq$mean, x.css = meansumsq$css,

+ repno = meansumsq$repno, transformed.par = phi, var.select = FALSE)

+ }

R> xinit.tpar <- optim(rep(0, 5), optimfunc, method = "BFGS")$par

R> optimfunc <- function(phi) {

+ -loglikelihood(x.mean = meansumsq$mean, x.css = meansumsq$css,

+ repno = meansumsq$repno, transformed.par = c(xinit.tpar[1:4], phi))

+ }

R> x.tpar <- c(xinit.tpar[1:4], optim(rep(0, 2), optimfunc,

+ method = "BFGS")$par)

The first three rows of the gaelle data set include replications of the uncharacterized plant
ColWT. The posterior discrimination percentages of ColWT using flat prior probabilities without
and with variable selection are:

R> x.labels <- c("ColWT", "d172", "d263", "isa2", "sex4", "dpe2", "mex1",

+ "sex3", "pgm", "sex1", "WsWT", "tpt", "RLDWT", "ke103")

R> bdiscrim(training = x[-(1:3), ], training.id = (x.id[-(1:3)] - 1),

+ training.labels = x.labels[-1], predict = x[1:3, ],

+ transformed.par = xinit.tpar, var.select = FALSE)$probs * 100

d172 d263 isa2 sex4 dpe2 mex1 sex3 pgm sex1 WsWT tpt RLDWT ke103 New

ColWT.1 9.6 10.6 0 8.6 0 0 9.4 0.4 4.3 16.7 14.6 15.7 3 7.1

R> bdiscrim(training = x[-(1:3), ], training.id = (x.id[-(1:3)] - 1),

+ training.labels = x.labels [-1], predict = x[1:3, ],

+ transformed.par = x.tpar)$probs * 100

d172 d263 isa2 sex4 dpe2 mex1 sex3 pgm sex1 WsWT tpt RLDWT ke103 New

ColWT.1 2.8 3.8 0 1.7 0 0 6.4 0.2 0.5 36.8 15.2 14.7 11.7 6.2

The bdiscrim function discriminates an individual to one of the previously seen groups using
the model (3). It also calculates the probability that the discriminating individual belongs
to none of these groups above, denoted by New, and computes the log Bayes factors for δv
and γvc in order to measure the importances of variable v and variable-class combination v, c,
respectively.

The clusterings for the gaelle data with and without variable selection are similar, so we
report only the result of the variable selection model. The figure below confirms that our
Bayesian clustering method clusters the data into five groups and finds 11 of the 43 variables
to be important.

R> bclust.obj <- bclust(x, rep.id = x.id, transformed.par = x.tpar,

+ labels = x.labels)

R> dptplot(bclust.obj, scale = 10, horizbar.plot = TRUE,

+ varimp = imp(bclust.obj)$var, horizbar.distance = 5, dendrogram.lwd = 2)
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Figure 9: The bclust fit on the gaelle data, visualized using dptplot.

The output of the latter code appears in Figure 9.
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