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Minimum detectable spinal cord atrophy with automatic segmentation: 
Investigations using an open-access dataset of healthy participants 

Paul Bautin a, Julien Cohen-Adad a,b,c,* 

a NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada 
b Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada 
c Mila - Quebec AI Institute, Montreal, QC, Canada   

A R T I C L E  I N F O   
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A B S T R A C T   

Spinal cord atrophy is a well-known biomarker in multiple sclerosis (MS) and other diseases. It is measured by 
segmenting the spinal cord on an MRI image and computing the average cross-sectional area (CSA) over a few 
slices. Introduced about 25 years ago, this procedure is highly sensitive to the quality of the segmentation and is 
prone to rater-bias. Recently, fully-automated spinal cord segmentation methods, which remove the rater-bias 
and enable the automated analysis of large populations, have been introduced. A lingering question related to 
these automated methods is: How reliable are they at detecting atrophy? In this study, we evaluated the precision 
and accuracy of automated atrophy measurements by simulating scan-rescan experiments. 

Spinal cord MRI data from the open-access spine-generic project were used. The dataset aggregates 42 sites 
worldwide and consists of 260 healthy subjects and includes T1w and T2w contrasts. To simulate atrophy, each 
volume was globally rescaled at various scaling factors. Moreover, to simulate patient repositioning, random 
rigid transformations were applied. Using the DeepSeg algorithm from the Spinal Cord Toolbox, the spinal cord 
was segmented and vertebral levels were identified. Then, the average CSA between C3-C5 vertebral levels was 
computed for each Monte Carlo sample, allowing us to derive measures of atrophy, intra/inter-subject vari
ability, and sample-size calculations. 

The minimum sample size required to detect an atrophy of 2% between unpaired study arms, commonly seen 
in MS studies, was 467 +/− 13.9 using T1w and 467 +/− 3.2 using T2w images. The minimum sample size to 
detect a longitudinal atrophy (between paired study arms) of 0.8% was 60 +/− 25.1 using T1w and 10 +/− 1.2 
using T2w images. At the intra-subject level, the estimated CSA, observed in this study, showed good precision 
compared to other studies with COVs (across Monte Carlo transformations) of 0.8% for T1w and 0.6% for T2w 
images. 

While these sample sizes seem small, we would like to stress that these results correspond to a “best case” 
scenario, in that the dataset used here was of particularly good quality and the model for simulating atrophy does 
not encompass all the variability met in real-life datasets. The simulated atrophy and scan-rescan variability may 
over-simplify the biological reality. The proposed framework is open-source and available at https://csa-atrophy. 
readthedocs.io/.   

1. Introduction 

1.1. Spinal cord atrophy, description and causes 

Spinal cord (SC) atrophy is characterized by the progressive loss of 
SC parenchyma and can occur in a variety of diseases, including Multiple 

Sclerosis (MS) (Trapp and Nave, 2008), Amyotrophic Lateral Sclerosis 
(ALS) (Wimmer et al., 2020), Neuromyelitis Optica Spectrum Disorder 
(NMOSD) (Lersy et al., 2021), Alzheimer’s disease (Lorenzi et al., 2020) 
and traumatic injuries (Ziegler et al., 2018). In MS, distinct phenotypes 
are associated with different SC atrophy rates; thus it is a relevant 
biomarker for diagnosis and prognosis (Moccia et al., 2019; van Faals 

Abbreviations: ALS, Amyotrophic Lateral Sclerosis; CSA, Cross-Sectional Area; CSF, Cerebrospinal Fluid; MS, Multiple Sclerosis; NMOSD, Neuromyelitis Optica 
Spectrum Disorder; SD, Standard Deviation; SC, Spinal Cord; SCT, Spinal Cord Toolbox; PVE, Partial Volume Effect; SI, Superior-Inferior. 
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et al., 2020). Precise and accurate monitoring of SC atrophy over time 
offers high prognosis value (Sastre-Garriga et al., 2020). Pooled annual 
atrophy rates, found in Casserly et al. meta-study (Casserly et al., 2018), 
were 1.78% per year for all types of MS (mean rate across 22 studies) 
and 2.08% per year for progressive MS (mean rate across 15 studies). 
Typical atrophy rates for different pathologies are presented in supple
mentary material Table S1. 

1.2. How to measure SC atrophy? 

SC atrophy is typically measured by segmenting the SC on an MRI 
image and computing its CSA (Losseff et al., 1996). The precision of CSA 
is primarily limited by the axial image resolution (Tardif et al., 2009), 
therefore averaging the CSA over multiple slices increases this precision. 
To minimize rater bias, several segmentation methods have been 
developed over the past three decades, with varying degrees of auto
mation (De Leener et al., 2016; Weeda et al., 2019). Notably, a study by 
Yiannakas et al. (Yiannakas et al., 2016) found good agreement between 
a semi-automatic (Horsfield et al., 2010) and the fully automatic Prop
Seg (De Leener et al., 2014) segmentation method available in SCT. 
Other studies have also used SCT to assess SC atrophy in MS (Combes 
et al., 2017; Mariano et al., 2021; Weeda et al., 2019), amyotrophic 
lateral sclerosis (Paquin et al., 2018; Querin et al., 2021), spinal 
muscular atrophy (Querin et al., 2019), neuromyelitis optica spectrum 
disorders (Lersy et al., 2021; Mariano et al., 2021; Ventura et al., 2016), 
degenerative cervical myelopathy (Martin et al., 2018; Ost et al., 2021), 
traumatic SC injury (Azzarito et al., 2020), adrenomyeloneuropathy 
(Adanyeguh et al., 2021) and MOG-antibody disease (Mariano et al., 
2021), including longitudinal studies looking at atrophy change over 
time (Combes et al., 2017; Martin et al., 2018; Querin et al., 2021). 

When comparing absolute CSA across groups, one is faced with the 
relatively large variation of SC morphometry across individuals. For 
example, Yiannakas et al. reported an inter-subject CSA standard devi
ation of 7.1 mm2 (9.81%) (Yiannakas et al., 2016), which is large 
compared to an expected atrophy rate of ~ 2%. The typical procedure 
for assessing atrophy over time is to repeat an MRI scan and to compute 
CSA at each time point (Lin et al., 2003; Weeda et al., 2019; Zivadinov 
et al., 2008). This procedure is hampered by scan-rescan variability (e. 
g., subject repositioning, motion artifacts, and noise) and by the repro
ducibility of the image analysis pipeline especially during image seg
mentation. The accumulation of these errors, when performed across 
several time points, can significantly hinder the detection sensitivity of 
subtle atrophy rates. Prados et al. have addressed this problem by using 
a generalized boundary shift integral (GBSI) method, which computes 
atrophy measures after co-registering data across time points (Free
borough and Fox, 1997). While this approach bypasses the above stated 
error accumulation, it remains sensitive to the quality of the co- 
registration. The outcome of these developments highlights the perti
nence of quantifying the sensitivity of state-of-the-art methods for 
measuring atrophy rates. 

In this study, we evaluate the robustness and the sensitivity of an 
automated analysis pipeline for detecting SC atrophy. To perform this 
evaluation, a realistic simulation framework was developed following 
similar approaches to those previously used in the brain (Bernal et al., 
2021; Boyes et al., 2006; Camara et al., 2006; Karaçali and Davatzikos, 
2006; Khanal et al., 2017). Notably, the proposed framework utilizes 
image scaling and applies a random rigid transformation to mimic 
subject repositioning (scan-rescan) enabling the quantification of the 
accuracy and precision of the estimated CSA across various degrees of 
simulated atrophy. From these experiments, power analyses and mini
mum sample sizes are derived. Our simulations are based on an open- 
access multi-center and multi-vendor (GE, Philips, Siemens) database 
of 260 subjects (Cohen-Adad et al., 2021). 

2. Methods 

2.1. Data 

We used data from the spine-generic multi-subject database (Cohen- 
Adad et al., 2021) version r202011301. This repository contains MRI 
data from 260 healthy participants with multiple contrasts including T1- 
weighted (T1w) and T2w which are used in this study. The vendor- 
specific sequences used were: BRAVO/IR-FSPGR (GE), T1TFE (Phi
lips), MPRAGE (Siemens) for T1w images and CUBE (GE), VISTA (Phi
lips), SPACE (Siemens) for T2w images. For details of the protocol, 
please refer to https://github.com/spine-generic/protocols. For confi
dentiality reasons, the faces of subjects were removed (defaced). 
Particularly useful, this database follows the BIDS convention (Gorgo
lewski et al., 2016), making the analysis framework developed here 
compatible with any other BIDS dataset. 

2.2. Processing 

Processing code was done using Python 3.7, and the script specific to 
this study is available as open-source (https://github.com/sct-pip 
eline/csa-atrophy). Dependent software package, including SCT v5.1.0 
(De Leener et al., 2017a) was used. Fig. 1 shows an overview of the 
processing and evaluation pipeline. 

2.2.1. Image scaling to simulate atrophy 
Prior to processing, all images were resampled to 1 mm isotropic 

(T1w) and 0.8 mm isotropic (T2w). To mimic SC atrophy a global scaling 
was applied on each image using a homothetic transformation, on all 
three axes (x,y,z), in order to preserve the global morphometry (shape) 
of the SC. While a x-y scaling would appear to be more realistic from the 
standpoint of cord atrophy (because tissue atrophy mostly occurs in the 
antero-posterior and right-left axes), there is a major flaw associated 
with this approach: x-y scaling is only valid if the spinal cord centerline 
is perfectly orthogonal to the axial slice. If it is not the case, the x-y 
scaling would produce a non-linear deformation (dependent on the SC 
morphometry), introducing a dependency of the estimated CSA on the 
angle between the centerline and the axial slice. This phenomenon is 
illustrated in Fig. 2. We thus opted for an isotropic scaling. 

In order to simulate real-world atrophy studies in which patients 
(becoming atrophic over time) are followed up in different visits the 
scaling factor is combined with the affine transformation matrices (see 
2.2.2. Transformation). This scaling factor was then used to compare the 
estimated SC atrophy versus the true atrophy (simulated, with known 
scaling factor). The idea of combining the scaling factor and the affine 
transformation matrix is to only do one image resampling (instead of 
two) and thus minimize interpolation errors. 

2.2.2. Transformation 
Clinical trials often rely on longitudinal studies to measure atrophy 

progression. This approach naturally comes with a scan-rescan vari
ability partly caused by repositioning of the subject in the scanner. To 
mimic this variability, 30 uniformly distributed random 3D rotations 
(+/- 2.5◦) and 3D translations (+/- 5 voxels) were combined with the 
scaling matrix obtained in 2.2.1., and applied on each subject image. 
This resulted in 30 Monte Carlo samples per subject and per scaling. The 
data was then resampled using 5th order sinc interpolation. Once 
completed, all transformations were stored in a CSV file so that results 
could be reproduced by using the frozen parameters in subsequent runs 
of the pipeline. 

1 https://github. 
com/spine-generic/data-multi-subject/releases/tag/r20201130 
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2.2.3. Segmentation 
SC segmentation was done using SCT’s sct_deepseg_sc, which is 

based on the DeepSeg algorithm (Gros et al., 2019). This method consists 
in finding the SC centerline using a support vector machine combined 
with histogram oriented gradients algorithm (SVM-HOG), called the 
“OptiC” method (Gros et al., 2018), followed by a cropping around the 
centerline and segmentation using a Convolutional Neural Network 

(CNN), with a 2D kernel. DeepSeg was trained on images with SC pa
thologies (MS, ALS, compression), and included scaling in data 
augmentation; hence its performance is robust with regard to SC pa
thologies and atrophy. 

2.2.4. Vertebral labeling 
Vertebral labeling was performed using SCT’s 

Fig. 1. Csa-atrophy pipeline.  

Fig. 2. Impact of anisotropic scaling on the estimated CSA. In this example the SC is represented by a disc of radius R =

̅̅̅̅
80
π

√

mm, yielding an area of 80 mm2. (a) In a 
scenario where the SC centerline is collinear to the vector normal to the axial slice (z), the CSA is scaled by the same factor whether the scaling is isotropic (x-y-z) or 
only along x-y. In this example, a scaling of 0.9 in each axis yields 80×(0.9)2 

= 64.8 mm2. (b) In a scenario where there is an angle between the cord centerline and 
the vector normal to the axial slice (z), the CSA submitted to an isotropic scaling is independent from that angle, and the scaled CSA is the same as in (a): CSASx− y− z =

80× (0.9)2 = 64.8 mm2. However, the x-y scaling does create a dependency on that centerline angle. For example, with a 10◦ angle in the (x,z) plane between the SC 
centerline and the vector normal to the axial slice (z), only the projection on the (x,y) plane is scaled. The scaled projection of the radius R on the x-axis is Rsx = 0.9×

cos(10)× R, while on the y-axis it is RsY = 0.9× R, and on the z-axis it is Rsz = sin(10) × R (no scaling along z). Using the formula for the area of an ellipse CSASx,y =

π × RSx,z × Rsy and the pythagorean theorem Rsx,z =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Rsx

2 + Rsz
2

√
we find:CSASx− y = π × RSx,z × Rsy = π × sqrt

[
(0.9 × cos(10) × R)2 + (sin(10) × R)2

]
× 0.9×

R = 65.03 mm2. 
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sct_label_vertebrae. In brief, the disc C2-C3 is identified using the 
OptiC algorithm, then the other intervertebral discs are found using SC 
straightening (De Leener et al., 2017b) followed by template matching 
(Ullmann et al., 2014) with the PAM50 template (De Leener et al., 
2018). Following the identification of the discs, the SC segmentation 
produced above is labeled with the respective vertebral levels. In cases 
where automatic labeling failed, the problematic subjects were 
manually-labeled by an expert and uploaded to the spine-generic data
base, as detailed in the spine-generic documentation2. 

2.2.5. Computing CSA 
CSA was computed using SCT’s sct_process_segmentation, 

which sums the number of pixels for each axial slice and multiplies them 
by the pixel area. The estimated CSA is then corrected slice-wise using 
the cosine of the angle between the axial plane and the SC centerline 
(regularized using spline functions). The CSA was then averaged be
tween vertebral levels C3 and C5 (included). The number of slices 
yielding this coverage was 49.7+/- 4.7 for T1w and 61.9 +/− 5.7 for 
T2w (across all subjects). The reason for the higher number of slices for 
T2w is due to the smaller voxel size (0.8 mm vs. 1 mm for T1w). 

2.3. Statistics 

We denote CSAsI,rX,tY the CSA computed for subject sI, scaling factor 
rX and transformation tY. The first metrics of interest are the intra- 
subject CSA variability, which is represented by the standard devia
tion across transformations: σt{CSAsI,rX} and the coefficient of variation: 
COVt{CSAsI,rX}. These metrics aim at representing a scan-rescan vari
ability, although without the additional “real-life” factors contributing 
to scan-rescan variance such as different shimming parameters, scanner 
drifts and motion patterns. These intra-subject metrics were then aver
aged across subjects, yielding μs{σt{CSArX}} and μs{COVt{CSArX}}. 

The inter-subject variability is represented by the standard deviation 
across the mean CSA: σs{μt{CSArX}} and its associated COV: 
COVs{μt{CSArX}}. 

2.3.1. Between-group minimum sample size 
Of interest, the minimum sample size (number of subjects per study 

arm) necessary to detect an atrophy between unpaired study arms was 
computed based on a two-sample (unpaired) bilateral t-test using the 
following formula (Wang and Ji, 2020; Wittes, 2002): 

nunpaired =

(
zα/2 + zβ

)
2
(

σs
{

CSArX, tY
}

2 + σs
{

CSAr1, tY
}

2
)

Δ2
group  

where nunpaired is the minimum sample size required to differentiate be
tween groups given a power (β) and level of significance (α). zβ corre
sponds to the power z-score, e.g. 80% power gives β = 0.2 and zβ =

-0.84. zα/2 corresponds to the significance level z-score, e.g. 5% level of 
significance gives α = 0.05 and zα/2 = -1.96. σs{CSArX,tY} and σs{

CSAr1,tY} are respectively the inter-subject standard deviation of the 
rescaled (rX) and unscaled (r1, native resolution) CSA taken at a random 
transformation tY. Δgroup is the theoretical difference between the 
average CSA of each group: 

Δgroup = μs{μt{CSAr1}}⋅(1 − rX2)

2.3.2. Within-subject minimum sample size 
The minimum sample size necessary to detect an atrophy in a lon

gitudinal (within subject repeated measures) study was computed based 
on a two-sample bilateral paired t-test using the following formula 

(Altmann et al., 2009): 

npaired =

(
zα/2 + zβ

)
2
(
σdiff

)
2

Δgroup
2  

where σdiff is the standard deviation of the difference between the 
unscaled and scaled CSA across subjects: 

σdiff = σs{CSAr1,tY − CSArX,tZ}

Here, we selected random Monte Carlo samples (transformation) for the 
rescaled and for the unscaled CSA, which are respectively denoted tY 
and tZ. In addition, errors on theoretical CSA measures after rescaling 
were computed. This allowed us to take a deeper look into the effect of 
the atrophy simulation on the segmentation and CSA measures. To do so, 
the error was computed using the following formula: 

Error =

∑n
1(μt{CSAsI,rX} − μt{CSAsI,r1}⋅(rX)2

)

n  

where μt{CSAsI,rX} is the average CSA across Monte Carlo samples with 
scaling rX, μt{CSAsI,r1}⋅(rX)2 is the average unscaled CSA across Monte 
Carlo samples, multiplied by the scaling coefficient rX squared to ac
count for area change, and n is the number of subjects (in this study n =
260). 

3. Results 

3.1. Precision and accuracy of atrophy estimation 

The simulated intra-subject variability (without scaling) expressed 
with COVt{CSAsI,rX}was 0.8% for T1w images and 0.6% for T2w images. 
Fig. 3 illustrates the variability of the estimated atrophy as a function of 
CSA scaling, which is obtained by dividing the estimated CSA at a given 
scaling factor by the CSA without scaling. This calculation is done 
independently for every subject, hence there is no variability for the 
abscissa “100”. The purpose of this figure is to illustrate the variability 
associated with transformations and scaling, not the inter-subject vari
ability. Overall, the estimated CSA is in agreement with the various 
degrees of simulated atrophy. We notice a higher number of outliers and 
variability (i.e., larger quartile bounds) on the T1w vs. on the T2w 
contrast (discussed in section 4.2). 

Table 1 reports the mean absolute CSA error across simulated atro
phies. As observed in Fig. 3, error increases as the CSA scaling decreases 
(i.e., going from right to left on the table). As also observed on the figure, 
the error is higher on T1w vs. on T2w images. 

Overall, we observe an underestimation of atrophy (i.e., over
estimation of CSA), which amplifies as the simulated atrophy increases 
(going from right to left on the figure). This underestimated atrophy is 
larger on the T1w vs. the T2w data. Interestingly, most outliers are prone 
to over-segmentation rather than under-segmentation (discussed in 
section 4.1). 

3.2. Inter-subject variability of CSA 

The inter-subject variability was computed by calculating the inter- 
subject mean and standard deviation (denoted σs{μt{CSArX}} in sec
tion 2.3) of the intra-subject mean CSA across Monte Carlo samples (i.e. 
rigid transformations). Fig. 4 illustrates the dispersion of CSA means 
across subjects. Overall, there is a good agreement between the mean 
CSA and the ground truth CSA. We also notice a fairly large inter-subject 
variability, which is expected as spinal cord sizes vary across people 
(Papinutto et al., 2020) and no normalization was applied here. Overall, 
dispersion decreases as the CSA scaling decreases (going from right to 
left on the figure, 100% being the “unscaled” CSA). This justifies the use 
of COV as the principal indicator for inter-subject variability, because 
the reduction of the dispersion is likely associated with the reduction of 

2 https://spine-generic.readthedocs.io/en/latest/analysis-pipeline. 
html#segmentation-and-vertebral-labeling 
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the mean CSA. We also notice an overall higher CSA estimation on the 
T2w vs. on the T1w contrast. On the native (unscaled) images, this 
difference is 6.42 mm2. This observation is further discussed in section 
4.2. 

Table 2 shows the inter-subject COV (defined as COVs{μt{CSArX}} in 
section 2.3), on the CSA measures for T1w and T2w images, and for each 
percent atrophy. Overall, the inter-subject COV is similar between the 
two contrasts, and slightly decreases as the atrophy increases (from right 
to left). 

3.3. Sample size calculation 

Sample size was computed for both cross-sectional and longitudinal 
studies respectively using the formulas presented in section 2.3.1 and 
2.3.2. Fig. 5 represents the minimum sample size required to detect a 
significant atrophy between unpaired study arms. This figure is consis
tent with the trends presented in Table 2 (inter-subject COV) demon
strating similar required sample sizes for both contrasts. 

Table 3 shows the minimum sample size required to detect a sig
nificant atrophy between unpaired study arms for T1w and T2w images, 
and for each CSA scaling. Note that to simulate “true” conditions, only 
one Monte Carlo sample (transformation) for each subject was used to 
compute sample sizes. Then 500 iterations of this Monte Carlo simula
tion were averaged and variability was estimated. 

Fig. 6 represents the minimum sample size required to detect a sig
nificant atrophy in a longitudinal study. This figure is consistent with the 

trends presented in Fig. 3 (intra-subject variability between scalings) 
demonstrating a larger required sample sizes for T1w vs. T2w images. 

Table 4 shows the minimum required sample size required to detect a 
significant atrophy in a within subject study for T1w and T2w images, 
and for each CSA scaling. Note that to simulate “true” conditions only 
one Monte Carlo sample (transformation) for each subject was used to 
compute sample sizes. Then, 500 iterations of this Monte Carlo simu
lation were averaged and variability was estimated. 

4. Discussion 

The purpose of this article was to gain insights on the minimally 
detectable SC atrophy using a fully automated pipeline for SC segmen
tation and vertebral labeling. To promote transparency and reproduc
ibility an open-access data was used (Cohen-Adad et al., 2021), and the 
analysis code is open-source and fully documented (https://csa-atrophy. 
readthedocs.io). The method used for simulating atrophy was a global 
image scaling, while the method used to mimic scan-rescan variability 
was rigid transformations. An important outcome of this investigation is 
that a mean atrophy difference of 2% between unpaired study arms, 
commonly seen in MS (Casserly et al., 2018), could be detected with a 
minimum of 467 +/− 13.9 subjects using T1w (1 mm iso resolution) and 
467 +/− 3.2 subjects using T2w images (0.8 mm iso resolution). 
Whereas in a longitudinal study, the minimum sample size to detect a 
0.4% atrophy between two time points was 229 +/− 90.3 subjects using 
T1w and 37 +/− 4.9 subjects using T2w images. The discussion below 

Fig. 3. Estimated atrophy as a function 
of CSA scaling for T1w images with res
olution 1.0 mm isotropic (left) and T2w 
images with resolution 0.8 mm isotropic 
(right). The green horizontal bar in each 
boxplot corresponds to the median, the 
red cross corresponds to the mean, the 
dotted line represents the ground truth 
CSA, the boxplot edges represent the 
interquartile range (IQR = Q3 − Q1) 
while the whiskers represent the 1.5 ×

IQR and outliers correspond to the sub
jects past the whiskers. (For interpreta
tion of the references to colour in this 
figure legend, the reader is referred to the 
web version of this article.)   

Table 1 
Mean absolute CSA error as a function of percent atrophy. “0” corresponds to no atrophy (native resolution).  

Atrophy %  13.51 11.64 9.75 7.84 5.91 3.96 1.99 0 

mean error % T1w images  1.04  0.96  0.85  0.75  0.61  0.44  0.19  0.00 
T2w images  − 0.01  0.00  0.02  0.06  0.05  0.06  0.02  0.00  
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addresses the main findings, limitations and perspectives. We stress that 
these results correspond to a “best case” scenario, in that the dataset 
used here was of particularly good quality and the model for simulating 
atrophy does not encompass all the variability met in real-life datasets. 

4.1. Inter- and intra-subject variability of CSA estimation 

A strength of this study lies in the multi-center dataset used, 
featuring 260 subjects from 42 international centres (America, Europe, 
Asia, Oceania), spanning three vendors (GE, Philips and Siemens) and 
multiple models and software versions. As implied by the geographic 
diversity of scanning centers, the data includes heterogeneity of ethnic 
background. The scan quality also varied across centres, due to the level 
of expertise of the operator, and the subjects themselves. Subjects with 
notable artifacts are listed in the GitHub repository of the dataset.3,4 

The inter-subject SD (COV) of CSA estimation were 7.56 mm2 

(10.86%) for T1w images and 8.41 mm2 (10.90%) for T2w images, 
which is consistent with previous studies. Weeda et al. reported an inter- 
subject SD CSA of 4.51 mm2 (8.45%) using the SCT-propseg method, 
8.22 mm2 (15.00%) using the SCT-deepseg method, 10.20 mm2 (13.4%) 
using NeuroQLab, 10.96 mm2 (14.54%) using XinapseJIM and 8.49 
mm2 (11.45%) using ITK-SNAP (Weeda et al., 2019). Yiannakas et al. 
reported an inter-subject SD CSA of 7.1 mm2 (9.81%) using SCT-propseg 
and 7.4 mm2 (9.4%) using XinapseJIM (Yiannakas et al., 2016). 

At the intra-subject level, the estimated CSA showed good precision, 
with COVs (across Monte Carlo transformations) of 0.8% for T1w images 
and 0.57% for T2w images. When comparing with a previous single- 

Fig. 4. Inter-subject CSA as a function of 
CSA scaling. The green horizontal bar in 
each boxplot corresponds to the median, the 
red cross corresponds to the mean, the 
boxplot edges represent to the inter-quartile 
range (IQR = Q3 − Q1) while the whiskers 
represent the 1.5 × IQR and outliers corre
spond to the subjects past the whiskers. The 
black dashed line represents the ground 
truth CSA. (For interpretation of the refer
ences to colour in this figure legend, the 
reader is referred to the web version of this 
article.)   

Table 2 
Inter-subject COV of CSA across subjects as a function of percent atrophy. “0′′ corresponds to no atrophy (native resolution).  

atrophy %  13.51 11.64 9.75 7.84 5.91 3.96 1.99 0 

COV inter-subject %atrophy % T1w images  10.38  10.40  10.43  10.46  10.53  10.62  10.83  10.89 
T2w images  10.85  10.87  10.87  10.86  10.89  10.90  10.94  10.94  

Fig. 5. Minimum number of participants required to detect an atrophy. This 
power analysis is based on a two-sample bilateral t-test, with the ratio of pa
tients to controls being 1:1 and a 5% type-I error rate. This analysis was run for 
T1w (blue) and T2w (red), for 80% (continuous line) and 90% (dashed line) 
powers. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

3 T1w: https://github.com/spine-generic/data-multi-subject/issues/30  
4 T2w: https://github.com/spine-generic/data-multi-subject/issues/39 
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subject scan-rescan study across 19 sites (Cohen-Adad, 2020), scan- 
rescan COVs on T1w (T2w in brackets) images were respectively 2.3% 
(2.3%), 1.8% (2.1%) and 0.9% (1.5%) for GE, Philips and Siemens 
scanners. A notable difference is that, in the spine-generic study, the 
same subject was scanned across different sites, hence the variability 
also included possible site-specific differences (scanner, positioning, coil 
loading, etc.). Conversely, in the present study, intra-subject variability 
only resulted from rigid transformations. In future work one could 
improve the realism of the scan-rescan variability by simulating image 
artifacts and noise (Camara-Rey et al., 2006; Graham et al., 2016). 

We noticed several subjects with overestimated CSA. These outliers 
are visible outside the boxplot whiskers in Fig. 3 particularly on T1w 
images. Interestingly, the same subjects seemed to be outliers across the 
different scaling values. A deeper look at these subjects’ images did not 
suggest evident cause for them being outliers. Notably, the following 
artifacts were looked for: subject motion; cord pulsatile motion; poor 
shimming; poor fat saturation; aliasing; ghosting; and Gibbs ringing, but 
none of them were clearly discernible on the outlier subjects. T2w im
ages exhibited less outliers, which could be due to the “cleaner” aspect of 
the images (i.e. less sensitive to patient motion, sharper SC/CSF border 

and a higher contrast) between the SC and the CSF and also to better 
spatial resolution (0.8 mm vs. 1 mm isotropic for the T1w data) which is 
further investigated in the supplementary material Figure S4 and 
Table S4. The contrast-dependent differences are further discussed in 
section 4.2. Beyond the visual inspection of image quality to explain 
these outliers, we also investigated if the precision of CSA estimation 
across Monte Carlo samples (rigid transformations) had an impact on 
CSA error. As detailed in Figure S1 and Table S2, there is an association 
between the precision and the accuracy of CSA estimation. Further 
investigation, detailed in Figure S2, suggests no particular association 
subject-wise. For example, subjects that are outliers in T1w are not 
necessarily outliers in T2w contrasts. 

4.2. Accuracy of CSA estimation and impact of image contrast 

As scaling increased, CSA estimation error also increased (Fig. 3). 
This scaling-dependent bias may be explained by an increase in partial 
volume effect with tissues outside of the parenchyma which had similar 
intensity as the cord (e.g. epidural space, ligaments). As the image is 
further scaled down, the mixture of different tissues in voxels at the SC/ 
CSF interface increases, causing a “leaking” of the segmentation and an 
overestimation of the CSA. This overestimation is possibly related to the 
segmentation algorithm, which expects a cord and surrounding tissues 
to be of a certain dimension. However, the deep learning segmentation 
approach used here should in principle be less sensitive to these 
rescalings, because the model training included image scaling during 
data augmentation. A possible association between CSA size and error 
on CSA estimation is further investigated in supplementary material 
Figure S3 and Table S3, but no significant association was found. 
Moreover, during the development of the pipeline, we noticed that the 
use of different interpolation orders had a small impact on the accuracy 
of the estimated CSA, but it did not affect the precision. 

CSA computed on the T2w images is on average 6.42 mm2 larger 
than that on T1w images. Other studies have reported similar outcomes 
(De Leener et al., 2014). There are multiple factors that could explain 
differences: (i) inherent image contrast differences, caused by the fact 
that tissues don’t have the same relaxation parameters (e.g. the pial 
matter has a short T2), hence the visible boundary at tissue interface 
could be slightly shifted. (ii) Image processing, such as the application of 
a smoothing kernel (apodization), image artifacts including Gibbs 
ringing, sensitivity to motion and flow artifacts. (iii) Sensitivity of the 
segmentation algorithm to the CSF/SC contrast difference. Most seg
mentation algorithms, such as PropSeg (De Leener et al., 2014) and 
Xinapse JIM (Horsfield et al., 2010) are driven by the image gradient at 
the tissue interface. Thus, it is not surprising that two different image 
contrasts yield a different definition of the interface boundary from the 
segmentation algorithm. Consequently, sct_deepseg_sc (Gros et al., 
2019) which was trained from masks generated by PropSeg, then 
manually corrected, featured the same bias. It is important to note that a 
systematic bias across software is not an issue when it comes to using 
CSA values for clinical studies: it only adds an offset and does not affect 
the precision of the measure. It is similar to a calibration problem. (iv) 
The native spatial resolution is different between T1w (1 mm iso) and 
T2w (0.8 mm iso) images. To further investigate the impact of spatial 
resolution on the accuracy of CSA estimation, T2w images were down
sampled to the native resolution of the T1w data (1 mm iso) and also 

Table 3 
Minimum sample size needed for a given atrophy. This power analysis is based on a two-sample bilateral t-test, with the ratio of patients to controls being 1:1 and at a 
5% type-I error rate.  

atrophy %  13.51 11.64 9.75 7.84 5.91 3.96 1.99 

Sample size 80% power T1w images 9 +/− 0.2 12 +/− 0.3 18 +/− 0.4 28 +/− 0.7 50 +/− 1.3 114 +/− 3.2 467 +/− 13.9 
T2w images 9 +/− 0.1 13 +/− 0 18 +/− 0.1 29 +/− 0.2 51 +/− 0.3 116 +/− 0.7 467 +/− 3.2 

Sample size 90% power T1w images 12 +/− 0.3 17 +/− 0.4 24 +/− 0.6 37 +/− 0.9 67 +/− 1.7 152 +/− 4.2 625 +/− 18.6 
T2w images 12 +/− 0.1 17 +/− 0.1 24 +/− 0.2 38 +/− 0.2 68 +/− 0.4 155 +/− 1 625 +/− 4.3  

Fig. 6. Minimum number of participants required to detect an atrophy. This 
power analysis is based on a two-sample bilateral t-test, with the ratio of pa
tients to controls being 1:1 and a 5% type-I error rate. This analysis was run for 
T1w (blue) and T2w (red), for 80% (continuous line) and 90% (dashed line) 
powers. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Table 4 
Minimum sample size needed for a given atrophy. This power analysis is based 
on a paired bilateral t-test, with the ratio of patients to controls being 1:1 and at a 
5% type-I error rate.  

atrophy %  1.59 1.20 0.80 0.40 

Sample size 80% 
power 

T1w 
images 

14 +/−
5.7 

27 +/−
10.3 

60 +/−
25.1 

229 +/−
90.3 

T2w 
images 

3 +/−
0.3 

5 +/−
0.4 

10 +/−
1.2 

37 +/−
4.9 

Sample size 90% 
power 

T1w 
images 

19 +/−
7.7 

35 +/−
13.8 

80 +/−
33.7 

307 +/−
120.9 

T2w 
images 

4 +/−
0.4 

6 +/−
0.6 

13 +/−
1.6 

50 +/−
6.6  
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upsampled to 0.5 mm iso. Results of this investigation show that a 
different spatial resolution affects the association between CSA error and 
atrophy (Figure S4 and Table S4). These results suggest that differences 
in native image resolutions could partly explain the CSA difference 
observed between the T1w and T2w contrasts. 

4.3. Minimum sample size to detect atrophy 

Sample size calculation provides an estimation of the minimum 
number of subjects required to detect a given atrophy between study 
arms. Even though the observed mean CSA was larger on T2w images 
than on T1w images (see section 4.2), Table 3 shows that the required 
number of subjects, to detect a given atrophy, were similar between T1w 
and T2w contrasts. For example, to detect a 2% atrophy between un
paired study arms, 467 +/− 13.9 and 467 +/− 3.2 subjects are required 
for T1w and T2w data, respectively. In comparison, the recent paper by 
Papinutto et al. (Papinutto et al., 2020) reported an inter-subject stan
dard deviation of the CSA of 7.59 mm2, and to detect an atrophy of 10% 
(corresponding to 7.77 mm2 in their study) they estimated a minimum 
sample size of 43 subjects. In our study, we also report an inter-subject 
standard deviation of 7.59 mm2 (the matching number at the 100th 
decimal is a pure coincidence), and to detect the same atrophy of 10% 
(corresponding to 6.97 mm2) the minimum sample size computed from 
the formula presented in section 2.3.1 is 50 subjects (25 subjects per 
study arm), which is in the same order as the study of Papinutto et al. 

Results of sample sizes computed to detect an atrophy between 
paired study arms were much higher using T1w (229 +/− 90.3) vs T2w 
(37 +/− 4.9) images. This discrepancy is coherent with the higher intra- 
subject variability between scalings for T1w vs. T2w images presented in 
Fig. 3. These sample size results are in the same order of magnitude as 
the study presented by Altmann et al. (Altmann et al., 2009) for a real 
clinical longitudinal atrophy study. In the brain, to detect 50% treat
ment effect (equivalent for progressive MS in the SC atrophy to 1.02%/ 
year (Casserly et al., 2018)) the necessary sample sizes were (respec
tively for 12, 24 and 36 months) 98, 70 and 60 using CCV power and 47, 
28 and 30 using SIENA power. 

Looking at the broader picture, even though the required sample size 
is often larger in comparison with clinical trials using brain atrophy 
(− 1.78% vs − 0.5% per year) (Moccia, Ruggieri, et al., 2019), SC atro
phy is increasingly used as an outcome measure (Moccia et al., 2017). 

4.4. Realism of the atrophy model 

The convenience of the highly controlled “global scaling” atrophy 
model may over-simplify the biological reality. Atrophy models have 
been studied in the brain using several approaches to “mimic” atrophy 
and produce ground truth data with known brain volume changes. These 
studies simulate longitudinal deformation and atrophy for the produc
tion of brain ground truth MRI images by introducing various atrophy 
models based on: (i) known biomechanical brain tissue atrophy values 
(Camara et al., 2006; da Silva et al., 2020; Khanal et al., 2017); (ii) al
gorithms modelling target images of atrophied brains (Karaçali and 
Davatzikos, 2006; Modat et al., 2014); and (iii) CNN and segmentation 
priors (Bernal et al., 2021). 

The present study has more similarities with the method presented 
by Boyes et al. (Boyes et al., 2006) where ground truth was produced 
using a global image scaling. Although this method is easy to exploit, it is 
inherently limited. Firstly, the relative scaling between the structures 
present in an image is not accounted for. In a realistic atrophy scenario, 
the SC volume decreases, but not the surrounding bones and muscles. In 
a global scaling, as in our study, all tissue volumes decrease equally. 
Secondly, a highly pathological cord likely includes abnormal signals in 
the image, such as hyper/hypointense lesions. Their presence in the SC 
could impact the performance of the segmentation algorithm, which in 
turn could impact the accuracy of CSA estimations. DeepSeg’s deep 
learning model was trained using data presenting various pathologies 

(MS, ALS, NMO, degenerative cervical myelopathy, etc.) (Gros et al., 
2019) and therefore mitigates bias due to abnormal SCs. 

On a broader scale, the direct correlation of axonal loss and atrophy 
is still debated. Poor correlation has been reported showing that SC CSA 
underestimates the degree of axonal loss and that the CSA measure 
should be associated with other histopathological markers such as 
microstructural abnormalities and axon density (Filippi et al., 2020). 

4.5. Limitations of binary segmentation 

The problem with binary segmentations is the loss of precision. 
When initially introduced in the 90s, SC CSA measures were performed 
over a single, or very few, slices. Considering a spatial resolution of 1 
mm in-plane, a true SC CSA of 70 mm2 would be highly sensitive to the 
inclusion/exclusion of a pixel at that resolution. It would represent a 
fraction of 1/70 of the total pixel count used to calculate CSA. This 
number is on the same order of magnitude as the CSA atrophy over a 
year in MS, which is about 1.78% (Casserly et al., 2018). However, 
partial volume averaging, an approach introduced in later years, rec
ommended to compute CSA over a larger coverage, e.g. C2/C3, which 
corresponds to 40 slices (assuming 0.8 mm slice thickness). In that case 
the pixel precision fraction now represents 1/2800. In the present study, 
the lack of precision caused by binary masks is therefore mitigated 
because we compute CSA over a large SI coverage (i.e. C3-C5) as shown 
in supplementary material Table S5. 

Another promising workaround is to replace binary segmentation 
with “soft” segmentation methods, wherein the prediction encodes 
partial volume information. For example, a segmentation mask with a 
voxel of value 0.2 would mean that the SC accounts for 20% of the voxel. 
This approach would produce more precise CSA estimations by mini
mizing the impact of PVEs. SoftSeg, a recent deep learning framework 
introduced by Gros et al. (Gros et al., 2021), is aiming in that direction by 
outputting a soft (float values between 0 and 1) instead of a binary 
segmentation. For example, this method demonstrates better precision 
for the morphometric analysis of SC gray matter, MS lesions and brain 
tumor segmentations. Further studies could adapt SoftSeg for segment
ing the SC and evaluate if these “soft” segmentations provide better 
sample size calculations than those obtained here. 

5. Conclusion 

In this study we evaluated the robustness and the sensitivity of an 
automated analysis pipeline for computing SC cross-sectional area at 
levels C3-C5. Using simulated SC atrophy (global image scaling) and 
scan-rescan variability (rigid transformations), we computed the mini
mum sample size to detect an atrophy between groups (cross-sectional 
study) or within subjects (longitudinal study). While the realism of the 
atrophy and scan-rescan variability is limited, the present study benefits 
from a representative pool of data from 42 different sites worldwide, 
suggesting that the presented results can be generalized outside of a 
“single site”. The proposed framework is open-source (https://csa-atr 
ophy.readthedocs.io) and could be re-used to assess the sensitivity of 
other published methods. It would notably be interesting to assess the 
performance of the recent Generalized Boundary Shift Integral (GBSI) 
method, which has been shown to improve sample size for similar 
datasets (Moccia et al., 2020). 
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