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ARTICLE INFO ABSTRACT

Keywords: Spinal cord atrophy is a well-known biomarker in multiple sclerosis (MS) and other diseases. It is measured by

Atrophy segmenting the spinal cord on an MRI image and computing the average cross-sectional area (CSA) over a few

Simulation slices. Introduced about 25 years ago, this procedure is highly sensitive to the quality of the segmentation and is

:s;lgi:;rzi prone to rater-bias. Recently, fully-automated spinal cord segmentation methods, which remove the rater-bias
and enable the automated analysis of large populations, have been introduced. A lingering question related to
these automated methods is: How reliable are they at detecting atrophy? In this study, we evaluated the precision
and accuracy of automated atrophy measurements by simulating scan-rescan experiments.

Spinal cord MRI data from the open-access spine-generic project were used. The dataset aggregates 42 sites
worldwide and consists of 260 healthy subjects and includes T1w and T2w contrasts. To simulate atrophy, each
volume was globally rescaled at various scaling factors. Moreover, to simulate patient repositioning, random
rigid transformations were applied. Using the DeepSeg algorithm from the Spinal Cord Toolbox, the spinal cord
was segmented and vertebral levels were identified. Then, the average CSA between C3-C5 vertebral levels was
computed for each Monte Carlo sample, allowing us to derive measures of atrophy, intra/inter-subject vari-
ability, and sample-size calculations.

The minimum sample size required to detect an atrophy of 2% between unpaired study arms, commonly seen
in MS studies, was 467 +/— 13.9 using T1lw and 467 +/— 3.2 using T2w images. The minimum sample size to
detect a longitudinal atrophy (between paired study arms) of 0.8% was 60 +/— 25.1 using T1lw and 10 +/— 1.2
using T2w images. At the intra-subject level, the estimated CSA, observed in this study, showed good precision
compared to other studies with COVs (across Monte Carlo transformations) of 0.8% for T1w and 0.6% for T2w
images.

While these sample sizes seem small, we would like to stress that these results correspond to a “best case”
scenario, in that the dataset used here was of particularly good quality and the model for simulating atrophy does
not encompass all the variability met in real-life datasets. The simulated atrophy and scan-rescan variability may
over-simplify the biological reality. The proposed framework is open-source and available at https://csa-atrophy.
readthedocs.io/.

1. Introduction Sclerosis (MS) (Trapp and Nave, 2008), Amyotrophic Lateral Sclerosis
(ALS) (Wimmer et al., 2020), Neuromyelitis Optica Spectrum Disorder

1.1. Spinal cord atrophy, description and causes (NMOSD) (Lersy et al., 2021), Alzheimer’s disease (Lorenzi et al., 2020)
and traumatic injuries (Ziegler et al., 2018). In MS, distinct phenotypes

Spinal cord (SC) atrophy is characterized by the progressive loss of are associated with different SC atrophy rates; thus it is a relevant
SC parenchyma and can occur in a variety of diseases, including Multiple biomarker for diagnosis and prognosis (Moccia et al., 2019; van Faals

Abbreviations: ALS, Amyotrophic Lateral Sclerosis; CSA, Cross-Sectional Area; CSF, Cerebrospinal Fluid; MS, Multiple Sclerosis; NMOSD, Neuromyelitis Optica
Spectrum Disorder; SD, Standard Deviation; SC, Spinal Cord; SCT, Spinal Cord Toolbox; PVE, Partial Volume Effect; SI, Superior-Inferior.
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et al., 2020). Precise and accurate monitoring of SC atrophy over time
offers high prognosis value (Sastre-Garriga et al., 2020). Pooled annual
atrophy rates, found in Casserly et al. meta-study (Casserly et al., 2018),
were 1.78% per year for all types of MS (mean rate across 22 studies)
and 2.08% per year for progressive MS (mean rate across 15 studies).
Typical atrophy rates for different pathologies are presented in supple-
mentary material Table S1.

1.2. How to measure SC atrophy?

SC atrophy is typically measured by segmenting the SC on an MRI
image and computing its CSA (Losseff et al., 1996). The precision of CSA
is primarily limited by the axial image resolution (Tardif et al., 2009),
therefore averaging the CSA over multiple slices increases this precision.
To minimize rater bias, several segmentation methods have been
developed over the past three decades, with varying degrees of auto-
mation (De Leener et al., 2016; Weeda et al., 2019). Notably, a study by
Yiannakas et al. (Yiannakas et al., 2016) found good agreement between
a semi-automatic (Horsfield et al., 2010) and the fully automatic Prop-
Seg (De Leener et al., 2014) segmentation method available in SCT.
Other studies have also used SCT to assess SC atrophy in MS (Combes
et al., 2017; Mariano et al., 2021; Weeda et al., 2019), amyotrophic
lateral sclerosis (Paquin et al., 2018; Querin et al., 2021), spinal
muscular atrophy (Querin et al., 2019), neuromyelitis optica spectrum
disorders (Lersy et al., 2021; Mariano et al., 2021; Ventura et al., 2016),
degenerative cervical myelopathy (Martin et al., 2018; Ost et al., 2021),
traumatic SC injury (Azzarito et al., 2020), adrenomyeloneuropathy
(Adanyeguh et al., 2021) and MOG-antibody disease (Mariano et al.,
2021), including longitudinal studies looking at atrophy change over
time (Combes et al., 2017; Martin et al., 2018; Querin et al., 2021).

When comparing absolute CSA across groups, one is faced with the
relatively large variation of SC morphometry across individuals. For
example, Yiannakas et al. reported an inter-subject CSA standard devi-
ation of 7.1 mm? (9.81%) (Yiannakas et al., 2016), which is large
compared to an expected atrophy rate of ~ 2%. The typical procedure
for assessing atrophy over time is to repeat an MRI scan and to compute
CSA at each time point (Lin et al., 2003; Weeda et al., 2019; Zivadinov
et al., 2008). This procedure is hampered by scan-rescan variability (e.
g., subject repositioning, motion artifacts, and noise) and by the repro-
ducibility of the image analysis pipeline especially during image seg-
mentation. The accumulation of these errors, when performed across
several time points, can significantly hinder the detection sensitivity of
subtle atrophy rates. Prados et al. have addressed this problem by using
a generalized boundary shift integral (GBSI) method, which computes
atrophy measures after co-registering data across time points (Free-
borough and Fox, 1997). While this approach bypasses the above stated
error accumulation, it remains sensitive to the quality of the co-
registration. The outcome of these developments highlights the perti-
nence of quantifying the sensitivity of state-of-the-art methods for
measuring atrophy rates.

In this study, we evaluate the robustness and the sensitivity of an
automated analysis pipeline for detecting SC atrophy. To perform this
evaluation, a realistic simulation framework was developed following
similar approaches to those previously used in the brain (Bernal et al.,
2021; Boyes et al., 2006; Camara et al., 2006; Karacali and Davatzikos,
2006; Khanal et al., 2017). Notably, the proposed framework utilizes
image scaling and applies a random rigid transformation to mimic
subject repositioning (scan-rescan) enabling the quantification of the
accuracy and precision of the estimated CSA across various degrees of
simulated atrophy. From these experiments, power analyses and mini-
mum sample sizes are derived. Our simulations are based on an open-
access multi-center and multi-vendor (GE, Philips, Siemens) database
of 260 subjects (Cohen-Adad et al., 2021).
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2. Methods
2.1. Data

We used data from the spine-generic multi-subject database (Cohen-
Adad et al., 2021) version r20201130". This repository contains MRI
data from 260 healthy participants with multiple contrasts including T1-
weighted (T1w) and T2w which are used in this study. The vendor-
specific sequences used were: BRAVO/IR-FSPGR (GE), T1TFE (Phi-
lips), MPRAGE (Siemens) for T1w images and CUBE (GE), VISTA (Phi-
lips), SPACE (Siemens) for T2w images. For details of the protocol,
please refer to https://github.com/spine-generic/protocols. For confi-
dentiality reasons, the faces of subjects were removed (defaced).
Particularly useful, this database follows the BIDS convention (Gorgo-
lewski et al., 2016), making the analysis framework developed here
compatible with any other BIDS dataset.

2.2. Processing

Processing code was done using Python 3.7, and the script specific to
this study is available as open-source (https://github.com/sct-pip
eline/csa-atrophy). Dependent software package, including SCT v5.1.0
(De Leener et al., 2017a) was used. Fig. 1 shows an overview of the
processing and evaluation pipeline.

2.2.1. Image scaling to simulate atrophy

Prior to processing, all images were resampled to 1 mm isotropic
(T1w) and 0.8 mm isotropic (T2w). To mimic SC atrophy a global scaling
was applied on each image using a homothetic transformation, on all
three axes (x,y,2), in order to preserve the global morphometry (shape)
of the SC. While a x-y scaling would appear to be more realistic from the
standpoint of cord atrophy (because tissue atrophy mostly occurs in the
antero-posterior and right-left axes), there is a major flaw associated
with this approach: x-y scaling is only valid if the spinal cord centerline
is perfectly orthogonal to the axial slice. If it is not the case, the x-y
scaling would produce a non-linear deformation (dependent on the SC
morphometry), introducing a dependency of the estimated CSA on the
angle between the centerline and the axial slice. This phenomenon is
illustrated in Fig. 2. We thus opted for an isotropic scaling.

In order to simulate real-world atrophy studies in which patients
(becoming atrophic over time) are followed up in different visits the
scaling factor is combined with the affine transformation matrices (see
2.2.2. Transformation). This scaling factor was then used to compare the
estimated SC atrophy versus the true atrophy (simulated, with known
scaling factor). The idea of combining the scaling factor and the affine
transformation matrix is to only do one image resampling (instead of
two) and thus minimize interpolation errors.

2.2.2. Transformation

Clinical trials often rely on longitudinal studies to measure atrophy
progression. This approach naturally comes with a scan-rescan vari-
ability partly caused by repositioning of the subject in the scanner. To
mimic this variability, 30 uniformly distributed random 3D rotations
(+/- 2.5°) and 3D translations (+/- 5 voxels) were combined with the
scaling matrix obtained in 2.2.1., and applied on each subject image.
This resulted in 30 Monte Carlo samples per subject and per scaling. The
data was then resampled using 5th order sinc interpolation. Once
completed, all transformations were stored in a CSV file so that results
could be reproduced by using the frozen parameters in subsequent runs
of the pipeline.

1

https://github.
com/spine-generic/data-multi-subject/releases/tag/r20201130
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Fig. 1. Csa-atrophy pipeline.

z
O CSA original = 80 mm?
() CSAwith 0.9 x-y-z
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@

Fig. 2. Impact of anisotropic scaling on the estimated CSA. In this example the SC is represented by a disc of radius R =

P X

7

(b)

\/% mm, yielding an area of 80 mm?. (a) In a

scenario where the SC centerline is collinear to the vector normal to the axial slice (z), the CSA is scaled by the same factor whether the scaling is isotropic (x-y-z) or
only along x-y. In this example, a scaling of 0.9 in each axis yields 80x(0.9)*> = 64.8 mm?. (b) In a scenario where there is an angle between the cord centerline and
the vector normal to the axial slice (z), the CSA submitted to an isotropic scaling is independent from that angle, and the scaled CSA is the same as in (a): CSAs, , , =

80 x (0.9)? = 64.8 mm?. However, the x-y scaling does create a dependency on that centerline angle. For example, with a 10° angle in the (x,z) plane between the SC
centerline and the vector normal to the axial slice (z), only the projection on the (x,y) plane is scaled. The scaled projection of the radius R on the x-axis is Rsy = 0.9 x
cos(10) x R, while on the y-axis it is Ry, = 0.9 x R, and on the z-axis it is R, = sin(10) x R (no scaling along z). Using the formula for the area of an ellipse CSAs,, =

7 xRs,, xR, and the pythagorean theorem Rsy, = 1/Rsy® + Rs,*we find:CSAs_, = 7x Rs,, x Ry, = mx sqrt[(O.Q x cos(10) x R)? + (sin(10) x R)z} x 0.9 x

R = 65.03 mm?.

2.2.3. Segmentation

SC segmentation was done using SCT’s sct_deepseg_sc, which is
based on the DeepSeg algorithm (Gros et al., 2019). This method consists
in finding the SC centerline using a support vector machine combined
with histogram oriented gradients algorithm (SVM-HOG), called the
“OptiC” method (Gros et al., 2018), followed by a cropping around the
centerline and segmentation using a Convolutional Neural Network

(CNN), with a 2D kernel. DeepSeg was trained on images with SC pa-
thologies (MS, ALS, compression), and included scaling in data
augmentation; hence its performance is robust with regard to SC pa-
thologies and atrophy.

2.2.4. Vertebral labeling

Vertebral labeling was performed using SCT’s
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sct_label_vertebrae. In brief, the disc C2-C3 is identified using the
OptiC algorithm, then the other intervertebral discs are found using SC
straightening (De Leener et al., 2017b) followed by template matching
(Ullmann et al., 2014) with the PAM50 template (De Leener et al.,
2018). Following the identification of the discs, the SC segmentation
produced above is labeled with the respective vertebral levels. In cases
where automatic labeling failed, the problematic subjects were
manually-labeled by an expert and uploaded to the spine-generic data-
base, as detailed in the spine-generic documentation®.

2.2.5. Computing CSA

CSA was computed using SCT’s sct_process_segmentation,
which sums the number of pixels for each axial slice and multiplies them
by the pixel area. The estimated CSA is then corrected slice-wise using
the cosine of the angle between the axial plane and the SC centerline
(regularized using spline functions). The CSA was then averaged be-
tween vertebral levels C3 and C5 (included). The number of slices
yielding this coverage was 49.7+/- 4.7 for Tlw and 61.9 +/— 5.7 for
T2w (across all subjects). The reason for the higher number of slices for
T2w is due to the smaller voxel size (0.8 mm vs. 1 mm for T1w).

2.3. Statistics

We denote CSAg rx .y the CSA computed for subject s, scaling factor
rX and transformation tY. The first metrics of interest are the intra-
subject CSA variability, which is represented by the standard devia-
tion across transformations: 6,{CSA x } and the coefficient of variation:
COV{CSAyx}. These metrics aim at representing a scan-rescan vari-
ability, although without the additional “real-life” factors contributing
to scan-rescan variance such as different shimming parameters, scanner
drifts and motion patterns. These intra-subject metrics were then aver-
aged across subjects, yielding u,{0:{CSA,x}} and u {COV,{CSA.x}}.

The inter-subject variability is represented by the standard deviation
across the mean CSA: o.{y,{CSAx}} and its associated COV:
COVs{u {CSAx}}.

2.3.1. Between-group minimum sample size

Of interest, the minimum sample size (number of subjects per study
arm) necessary to detect an atrophy between unpaired study arms was
computed based on a two-sample (unpaired) bilateral t-test using the
following formula (Wang and Ji, 2020; Wittes, 2002):

(e + 2)* (0:{CSAx 0} + 0, {CSAL w}?)

Nunpaired = 3
group

where Nyppaireq is the minimum sample size required to differentiate be-
tween groups given a power (f) and level of significance (). z; corre-
sponds to the power z-score, e.g. 80% power gives p = 0.2 and 25 =
-0.84. z,/, corresponds to the significance level z-score, e.g. 5% level of
significance gives a = 0.05 and z,; = -1.96. 6;{CSA/x,y} and os{
CSAn v} are respectively the inter-subject standard deviation of the
rescaled (rX) and unscaled (r1, native resolution) CSA taken at a random
transformation tY. Agyy is the theoretical difference between the
average CSA of each group:

Agroup = p{u {CSAN}}(1 = 1X7)

2.3.2. Within-subject minimum sample size

The minimum sample size necessary to detect an atrophy in a lon-
gitudinal (within subject repeated measures) study was computed based
on a two-sample bilateral paired t-test using the following formula

2 https://spine-generic.readthedocs.io/en/latest/analysis-pipeline.
html#segmentation-and-vertebral-labeling
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(Altmann et al., 2009):

(22 + 25)* (0ur)”

Mpaired = )

A group

where og4y is the standard deviation of the difference between the
unscaled and scaled CSA across subjects:

Odiff = 0.\{C5Ar1.zy - CSArX,tZ}

Here, we selected random Monte Carlo samples (transformation) for the
rescaled and for the unscaled CSA, which are respectively denoted tY
and tZ. In addition, errors on theoretical CSA measures after rescaling
were computed. This allowed us to take a deeper look into the effect of
the atrophy simulation on the segmentation and CSA measures. To do so,
the error was computed using the following formula:

2 (wACSAdx} — ACSAun }'(VX)Z)

Error =

where y,{CSAqx} is the average CSA across Monte Carlo samples with
scaling rX, u,{CSAy 1 }-(rX)? is the average unscaled CSA across Monte
Carlo samples, multiplied by the scaling coefficient rX squared to ac-
count for area change, and n is the number of subjects (in this study n =
260).

3. Results
3.1. Precision and accuracy of atrophy estimation

The simulated intra-subject variability (without scaling) expressed
with COV{CSA ,x} was 0.8% for T1w images and 0.6% for T2w images.
Fig. 3 illustrates the variability of the estimated atrophy as a function of
CSA scaling, which is obtained by dividing the estimated CSA at a given
scaling factor by the CSA without scaling. This calculation is done
independently for every subject, hence there is no variability for the
abscissa “100”. The purpose of this figure is to illustrate the variability
associated with transformations and scaling, not the inter-subject vari-
ability. Overall, the estimated CSA is in agreement with the various
degrees of simulated atrophy. We notice a higher number of outliers and
variability (i.e., larger quartile bounds) on the Tlw vs. on the T2w
contrast (discussed in section 4.2).

Table 1 reports the mean absolute CSA error across simulated atro-
phies. As observed in Fig. 3, error increases as the CSA scaling decreases
(i.e., going from right to left on the table). As also observed on the figure,
the error is higher on T1w vs. on T2w images.

Overall, we observe an underestimation of atrophy (i.e., over-
estimation of CSA), which amplifies as the simulated atrophy increases
(going from right to left on the figure). This underestimated atrophy is
larger on the T1w vs. the T2w data. Interestingly, most outliers are prone
to over-segmentation rather than under-segmentation (discussed in
section 4.1).

3.2. Inter-subject variability of CSA

The inter-subject variability was computed by calculating the inter-
subject mean and standard deviation (denoted o,{y,{CSA/x}} in sec-
tion 2.3) of the intra-subject mean CSA across Monte Carlo samples (i.e.
rigid transformations). Fig. 4 illustrates the dispersion of CSA means
across subjects. Overall, there is a good agreement between the mean
CSA and the ground truth CSA. We also notice a fairly large inter-subject
variability, which is expected as spinal cord sizes vary across people
(Papinutto et al., 2020) and no normalization was applied here. Overall,
dispersion decreases as the CSA scaling decreases (going from right to
left on the figure, 100% being the “unscaled” CSA). This justifies the use
of COV as the principal indicator for inter-subject variability, because
the reduction of the dispersion is likely associated with the reduction of
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Tlw images 1.0 mm iso

T2w images 0.8 mm iso
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Fig. 3. Estimated atrophy as a function
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olution 1.0 mm isotropic (left) and T2w
images with resolution 0.8 mm isotropic
(right). The green horizontal bar in each
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tion of the references to colour in this
, figure legend, the reader is referred to the
web version of this article.)
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Table 1
Mean absolute CSA error as a function of percent atrophy. “0” corresponds to no atrophy (native resolution).
Atrophy % 13.51 11.64 9.75 7.84 5.91 3.96 1.99 0
mean error % T1w images 1.04 0.96 0.85 0.75 0.61 0.44 0.19 0.00
T2w images —0.01 0.00 0.02 0.06 0.05 0.06 0.02 0.00

the mean CSA. We also notice an overall higher CSA estimation on the
T2w vs. on the Tlw contrast. On the native (unscaled) images, this
difference is 6.42 mm?. This observation is further discussed in section
4.2.

Table 2 shows the inter-subject COV (defined as COV,{u,{CSA,x}} in
section 2.3), on the CSA measures for T1w and T2w images, and for each
percent atrophy. Overall, the inter-subject COV is similar between the
two contrasts, and slightly decreases as the atrophy increases (from right
to left).

3.3. Sample size calculation

Sample size was computed for both cross-sectional and longitudinal
studies respectively using the formulas presented in section 2.3.1 and
2.3.2. Fig. 5 represents the minimum sample size required to detect a
significant atrophy between unpaired study arms. This figure is consis-
tent with the trends presented in Table 2 (inter-subject COV) demon-
strating similar required sample sizes for both contrasts.

Table 3 shows the minimum sample size required to detect a sig-
nificant atrophy between unpaired study arms for T1w and T2w images,
and for each CSA scaling. Note that to simulate “true” conditions, only
one Monte Carlo sample (transformation) for each subject was used to
compute sample sizes. Then 500 iterations of this Monte Carlo simula-
tion were averaged and variability was estimated.

Fig. 6 represents the minimum sample size required to detect a sig-
nificant atrophy in a longitudinal study. This figure is consistent with the

trends presented in Fig. 3 (intra-subject variability between scalings)
demonstrating a larger required sample sizes for T1w vs. T2w images.

Table 4 shows the minimum required sample size required to detect a
significant atrophy in a within subject study for T1w and T2w images,
and for each CSA scaling. Note that to simulate “true” conditions only
one Monte Carlo sample (transformation) for each subject was used to
compute sample sizes. Then, 500 iterations of this Monte Carlo simu-
lation were averaged and variability was estimated.

4. Discussion

The purpose of this article was to gain insights on the minimally
detectable SC atrophy using a fully automated pipeline for SC segmen-
tation and vertebral labeling. To promote transparency and reproduc-
ibility an open-access data was used (Cohen-Adad et al., 2021), and the
analysis code is open-source and fully documented (https://csa-atrophy.
readthedocs.io). The method used for simulating atrophy was a global
image scaling, while the method used to mimic scan-rescan variability
was rigid transformations. An important outcome of this investigation is
that a mean atrophy difference of 2% between unpaired study arms,
commonly seen in MS (Casserly et al., 2018), could be detected with a
minimum of 467 +/— 13.9 subjects using T1w (1 mm iso resolution) and
467 +/— 3.2 subjects using T2w images (0.8 mm iso resolution).
Whereas in a longitudinal study, the minimum sample size to detect a
0.4% atrophy between two time points was 229 +/— 90.3 subjects using
Tlw and 37 +/— 4.9 subjects using T2w images. The discussion below
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T1lw images 1mm iso

T2w images 0.8mm iso
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Fig. 4. Inter-subject CSA as a function of

T CSA scaling. The green horizontal bar in
100 + T each boxplot corresponds to the median, the
T red cross corresponds to the mean, the
- boxplot edges represent to the inter-quartile
range (IQR = Q3 —Q;) while the whiskers
90 T represent the 1.5 x IQR and outliers corre-
o T spond to the subjects past the whiskers. The
1o ° black dashed line represents the ground
[0} truth CSA. (For interpretation of the refer-
o o ences to colour in this figure legend, the
80 4 o) 1 | reader is referred to the web version of this
[0} article.)
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Table 2
Inter-subject COV of CSA across subjects as a function of percent atrophy. “0” corresponds to no atrophy (native resolution).
atrophy % 13.51 11.64 9.75 7.84 5.91 3.96 1.99 0
COV inter-subject %atrophy % T1lw images 10.38 10.40 10.43 10.46 10.53 10.62 10.83 10.89
T2w images 10.85 10.87 10.87 10.86 10.89 10.90 10.94 10.94

minimum number of participants to detect an atrophy with 5% uncertainty

T1lw (1.0 mm iso): SD = 7.56 mm?, mean CSA= 69.74 mm?
T2w (0.8 mm iso): SD = 8.41 mm?, mean CSA= 76.16 mm?
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Fig. 5. Minimum number of participants required to detect an atrophy. This
power analysis is based on a two-sample bilateral t-test, with the ratio of pa-
tients to controls being 1:1 and a 5% type-I error rate. This analysis was run for
T1w (blue) and T2w (red), for 80% (continuous line) and 90% (dashed line)
powers. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

addresses the main findings, limitations and perspectives. We stress that
these results correspond to a “best case” scenario, in that the dataset
used here was of particularly good quality and the model for simulating
atrophy does not encompass all the variability met in real-life datasets.

4.1. Inter- and intra-subject variability of CSA estimation

A strength of this study lies in the multi-center dataset used,
featuring 260 subjects from 42 international centres (America, Europe,
Asia, Oceania), spanning three vendors (GE, Philips and Siemens) and
multiple models and software versions. As implied by the geographic
diversity of scanning centers, the data includes heterogeneity of ethnic
background. The scan quality also varied across centres, due to the level
of expertise of the operator, and the subjects themselves. Subjects with
notable artifacts are listed in the GitHub repository of the dataset.>*

The inter-subject SD (COV) of CSA estimation were 7.56 mm?
(10.86%) for T1lw images and 8.41 mm? (10.90%) for T2w images,
which is consistent with previous studies. Weeda et al. reported an inter-
subject SD CSA of 4.51 mm? (8.45%) using the SCT-propseg method,
8.22 mm? (15.00%) using the SCT-deepseg method, 10.20 mm? (13.4%)
using NeuroQLab, 10.96 mm? (14.54%) using XinapseJIM and 8.49
mm? (11.45%) using ITK-SNAP (Weeda et al., 2019). Yiannakas et al.
reported an inter-subject SD CSA of 7.1 mm? (9.81%) using SCT-propseg
and 7.4 mm?> (9.4%) using XinapseJIM (Yiannakas et al., 2016).

At the intra-subject level, the estimated CSA showed good precision,
with COVs (across Monte Carlo transformations) of 0.8% for T1w images
and 0.57% for T2w images. When comparing with a previous single-

3 T1w: https://github.com/spine-generic/data-multi-subject/issues/30
4 T2w: https://github.com/spine-generic/data-multi-subject/issues/39
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Table 3
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Minimum sample size needed for a given atrophy. This power analysis is based on a two-sample bilateral t-test, with the ratio of patients to controls being 1:1 and at a

5% type-I error rate.

atrophy % 13.51 11.64 9.75 7.84 5.91 3.96 1.99

Sample size 80% power T1lw images 9+/-0.2 12 +/- 0.3 18 +/- 0.4 28 +/—- 0.7 50 +/—- 1.3 114 +/- 3.2 467 +/— 13.9
T2w images 9+/-0.1 13+/-0 18 +/-0.1 29 +/-0.2 51 +/- 0.3 116 +/- 0.7 467 +/— 3.2

Sample size 90% power T1w images 12 +/-0.3 17 +/- 0.4 24 +/- 0.6 37 +/- 0.9 67 +/— 1.7 152 +/—- 4.2 625 +/— 18.6
T2w images 12 +/- 0.1 17 +/-0.1 24 +/-0.2 38 +/—-0.2 68 +/— 0.4 155 4+/-1 625 +/— 4.3

minimum number of participants to detect an atrophy with 5% uncertainty

T1lw (1.0 mm iso): SD_diff = 1.68 mm?, mean CSA= 69.74 mm?
T2w (0.8 mm iso): SD_diff = 0.64 mm?, mean CSA= 76.16 mm?
700

\ —— T1lw 80% power
H —=- T1lw 90% power
\ —— T2w 80% power
\
\
\
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~=- T2w 90% power
= 500

400

Number of participants per group of study
(patients or controls) with ratio 1:1
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Atrophy in %
Fig. 6. Minimum number of participants required to detect an atrophy. This
power analysis is based on a two-sample bilateral t-test, with the ratio of pa-
tients to controls being 1:1 and a 5% type-I error rate. This analysis was run for
T1w (blue) and T2w (red), for 80% (continuous line) and 90% (dashed line)
powers. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Table 4

Minimum sample size needed for a given atrophy. This power analysis is based
on a paired bilateral t-test, with the ratio of patients to controls being 1:1 and at a
5% type-I error rate.

atrophy % 1.59 1.20 0.80 0.40
Sample size 80%  Tlw 14 +/- 27 +/— 60 +/— 229 +/—
power images 5.7 10.3 25.1 90.3
T2w 3+/- 5+/- 10 +/— 37 +/—
images 0.3 0.4 1.2 4.9
Sample size 90%  Tlw 19 +/— 35 +/— 80 +/— 307 +/—
power images 7.7 13.8 33.7 120.9
T2w 44/- 6+/— 13 +/— 50 +/—
images 0.4 0.6 1.6 6.6

subject scan-rescan study across 19 sites (Cohen-Adad, 2020), scan-
rescan COVs on T1w (T2w in brackets) images were respectively 2.3%
(2.3%), 1.8% (2.1%) and 0.9% (1.5%) for GE, Philips and Siemens
scanners. A notable difference is that, in the spine-generic study, the
same subject was scanned across different sites, hence the variability
also included possible site-specific differences (scanner, positioning, coil
loading, etc.). Conversely, in the present study, intra-subject variability
only resulted from rigid transformations. In future work one could
improve the realism of the scan-rescan variability by simulating image
artifacts and noise (Camara-Rey et al., 2006; Graham et al., 2016).

We noticed several subjects with overestimated CSA. These outliers
are visible outside the boxplot whiskers in Fig. 3 particularly on T1lw
images. Interestingly, the same subjects seemed to be outliers across the
different scaling values. A deeper look at these subjects’ images did not
suggest evident cause for them being outliers. Notably, the following
artifacts were looked for: subject motion; cord pulsatile motion; poor
shimming; poor fat saturation; aliasing; ghosting; and Gibbs ringing, but
none of them were clearly discernible on the outlier subjects. T2w im-
ages exhibited less outliers, which could be due to the “cleaner” aspect of
the images (i.e. less sensitive to patient motion, sharper SC/CSF border

and a higher contrast) between the SC and the CSF and also to better
spatial resolution (0.8 mm vs. 1 mm isotropic for the T1w data) which is
further investigated in the supplementary material Figure S4 and
Table S4. The contrast-dependent differences are further discussed in
section 4.2. Beyond the visual inspection of image quality to explain
these outliers, we also investigated if the precision of CSA estimation
across Monte Carlo samples (rigid transformations) had an impact on
CSA error. As detailed in Figure S1 and Table S2, there is an association
between the precision and the accuracy of CSA estimation. Further
investigation, detailed in Figure S2, suggests no particular association
subject-wise. For example, subjects that are outliers in Tlw are not
necessarily outliers in T2w contrasts.

4.2. Accuracy of CSA estimation and impact of image contrast

As scaling increased, CSA estimation error also increased (Fig. 3).
This scaling-dependent bias may be explained by an increase in partial
volume effect with tissues outside of the parenchyma which had similar
intensity as the cord (e.g. epidural space, ligaments). As the image is
further scaled down, the mixture of different tissues in voxels at the SC/
CSF interface increases, causing a “leaking” of the segmentation and an
overestimation of the CSA. This overestimation is possibly related to the
segmentation algorithm, which expects a cord and surrounding tissues
to be of a certain dimension. However, the deep learning segmentation
approach used here should in principle be less sensitive to these
rescalings, because the model training included image scaling during
data augmentation. A possible association between CSA size and error
on CSA estimation is further investigated in supplementary material
Figure S3 and Table S3, but no significant association was found.
Moreover, during the development of the pipeline, we noticed that the
use of different interpolation orders had a small impact on the accuracy
of the estimated CSA, but it did not affect the precision.

CSA computed on the T2w images is on average 6.42 mm? larger
than that on T1w images. Other studies have reported similar outcomes
(De Leener et al., 2014). There are multiple factors that could explain
differences: (i) inherent image contrast differences, caused by the fact
that tissues don’t have the same relaxation parameters (e.g. the pial
matter has a short T2), hence the visible boundary at tissue interface
could be slightly shifted. (ii) Image processing, such as the application of
a smoothing kernel (apodization), image artifacts including Gibbs
ringing, sensitivity to motion and flow artifacts. (iii) Sensitivity of the
segmentation algorithm to the CSF/SC contrast difference. Most seg-
mentation algorithms, such as PropSeg (De Leener et al., 2014) and
Xinapse JIM (Horsfield et al., 2010) are driven by the image gradient at
the tissue interface. Thus, it is not surprising that two different image
contrasts yield a different definition of the interface boundary from the
segmentation algorithm. Consequently, sct_deepseg_sc (Gros et al.,
2019) which was trained from masks generated by PropSeg, then
manually corrected, featured the same bias. It is important to note that a
systematic bias across software is not an issue when it comes to using
CSA values for clinical studies: it only adds an offset and does not affect
the precision of the measure. It is similar to a calibration problem. (iv)
The native spatial resolution is different between T1w (1 mm iso) and
T2w (0.8 mm iso) images. To further investigate the impact of spatial
resolution on the accuracy of CSA estimation, T2w images were down-
sampled to the native resolution of the T1lw data (1 mm iso) and also
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upsampled to 0.5 mm iso. Results of this investigation show that a
different spatial resolution affects the association between CSA error and
atrophy (Figure S4 and Table S4). These results suggest that differences
in native image resolutions could partly explain the CSA difference
observed between the T1w and T2w contrasts.

4.3. Minimum sample size to detect atrophy

Sample size calculation provides an estimation of the minimum
number of subjects required to detect a given atrophy between study
arms. Even though the observed mean CSA was larger on T2w images
than on T1lw images (see section 4.2), Table 3 shows that the required
number of subjects, to detect a given atrophy, were similar between T1w
and T2w contrasts. For example, to detect a 2% atrophy between un-
paired study arms, 467 +/— 13.9 and 467 +/— 3.2 subjects are required
for T1w and T2w data, respectively. In comparison, the recent paper by
Papinutto et al. (Papinutto et al., 2020) reported an inter-subject stan-
dard deviation of the CSA of 7.59 mm?, and to detect an atrophy of 10%
(corresponding to 7.77 mm? in their study) they estimated a minimum
sample size of 43 subjects. In our study, we also report an inter-subject
standard deviation of 7.59 mm? (the matching number at the 100th
decimal is a pure coincidence), and to detect the same atrophy of 10%
(corresponding to 6.97 mm?) the minimum sample size computed from
the formula presented in section 2.3.1 is 50 subjects (25 subjects per
study arm), which is in the same order as the study of Papinutto et al.

Results of sample sizes computed to detect an atrophy between
paired study arms were much higher using T1w (229 +/— 90.3) vs T2w
(37 +/— 4.9) images. This discrepancy is coherent with the higher intra-
subject variability between scalings for T1w vs. T2w images presented in
Fig. 3. These sample size results are in the same order of magnitude as
the study presented by Altmann et al. (Altmann et al., 2009) for a real
clinical longitudinal atrophy study. In the brain, to detect 50% treat-
ment effect (equivalent for progressive MS in the SC atrophy to 1.02%/
year (Casserly et al., 2018)) the necessary sample sizes were (respec-
tively for 12, 24 and 36 months) 98, 70 and 60 using CCV power and 47,
28 and 30 using SIENA power.

Looking at the broader picture, even though the required sample size
is often larger in comparison with clinical trials using brain atrophy
(—1.78% vs — 0.5% per year) (Moccia, Ruggieri, et al., 2019), SC atro-
phy is increasingly used as an outcome measure (Moccia et al., 2017).

4.4. Realism of the atrophy model

The convenience of the highly controlled “global scaling” atrophy
model may over-simplify the biological reality. Atrophy models have
been studied in the brain using several approaches to “mimic” atrophy
and produce ground truth data with known brain volume changes. These
studies simulate longitudinal deformation and atrophy for the produc-
tion of brain ground truth MRI images by introducing various atrophy
models based on: (i) known biomechanical brain tissue atrophy values
(Camara et al., 2006; da Silva et al., 2020; Khanal et al., 2017); (ii) al-
gorithms modelling target images of atrophied brains (Karacali and
Davatzikos, 2006; Modat et al., 2014); and (iii) CNN and segmentation
priors (Bernal et al., 2021).

The present study has more similarities with the method presented
by Boyes et al. (Boyes et al., 2006) where ground truth was produced
using a global image scaling. Although this method is easy to exploit, it is
inherently limited. Firstly, the relative scaling between the structures
present in an image is not accounted for. In a realistic atrophy scenario,
the SC volume decreases, but not the surrounding bones and muscles. In
a global scaling, as in our study, all tissue volumes decrease equally.
Secondly, a highly pathological cord likely includes abnormal signals in
the image, such as hyper/hypointense lesions. Their presence in the SC
could impact the performance of the segmentation algorithm, which in
turn could impact the accuracy of CSA estimations. DeepSeg’s deep
learning model was trained using data presenting various pathologies
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(MS, ALS, NMO, degenerative cervical myelopathy, etc.) (Gros et al.,
2019) and therefore mitigates bias due to abnormal SCs.

On a broader scale, the direct correlation of axonal loss and atrophy
is still debated. Poor correlation has been reported showing that SC CSA
underestimates the degree of axonal loss and that the CSA measure
should be associated with other histopathological markers such as
microstructural abnormalities and axon density (Filippi et al., 2020).

4.5. Limitations of binary segmentation

The problem with binary segmentations is the loss of precision.
When initially introduced in the 90s, SC CSA measures were performed
over a single, or very few, slices. Considering a spatial resolution of 1
mm in-plane, a true SC CSA of 70 mm? would be highly sensitive to the
inclusion/exclusion of a pixel at that resolution. It would represent a
fraction of 1/70 of the total pixel count used to calculate CSA. This
number is on the same order of magnitude as the CSA atrophy over a
year in MS, which is about 1.78% (Casserly et al., 2018). However,
partial volume averaging, an approach introduced in later years, rec-
ommended to compute CSA over a larger coverage, e.g. C2/C3, which
corresponds to 40 slices (assuming 0.8 mm slice thickness). In that case
the pixel precision fraction now represents 1/2800. In the present study,
the lack of precision caused by binary masks is therefore mitigated
because we compute CSA over a large SI coverage (i.e. C3-C5) as shown
in supplementary material Table S5.

Another promising workaround is to replace binary segmentation
with “soft” segmentation methods, wherein the prediction encodes
partial volume information. For example, a segmentation mask with a
voxel of value 0.2 would mean that the SC accounts for 20% of the voxel.
This approach would produce more precise CSA estimations by mini-
mizing the impact of PVEs. SoftSeg, a recent deep learning framework
introduced by Gros et al. (Gros et al., 2021), is aiming in that direction by
outputting a soft (float values between O and 1) instead of a binary
segmentation. For example, this method demonstrates better precision
for the morphometric analysis of SC gray matter, MS lesions and brain
tumor segmentations. Further studies could adapt SoftSeg for segment-
ing the SC and evaluate if these “soft” segmentations provide better
sample size calculations than those obtained here.

5. Conclusion

In this study we evaluated the robustness and the sensitivity of an
automated analysis pipeline for computing SC cross-sectional area at
levels C3-C5. Using simulated SC atrophy (global image scaling) and
scan-rescan variability (rigid transformations), we computed the mini-
mum sample size to detect an atrophy between groups (cross-sectional
study) or within subjects (longitudinal study). While the realism of the
atrophy and scan-rescan variability is limited, the present study benefits
from a representative pool of data from 42 different sites worldwide,
suggesting that the presented results can be generalized outside of a
“single site”. The proposed framework is open-source (https://csa-atr
ophy.readthedocs.io) and could be re-used to assess the sensitivity of
other published methods. It would notably be interesting to assess the
performance of the recent Generalized Boundary Shift Integral (GBSI)
method, which has been shown to improve sample size for similar
datasets (Moccia et al., 2020).
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