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Abstract: In recent years, multiple serial histology techniques were developed to enable whole rodent

brain imaging in 3-D. The main driving forces behind the emergence of these imaging techniques

were the genome-wide atlas of gene expression in the mouse brain, the pursuit of the mouse brain

connectome, and the BigBrain project. These projects rely on the use of optical imaging to target

neuronal structures with histological stains or fluorescent dyes that are either expressed by transgenic

mice or injected at specific locations in the brain. Efforts to adapt the serial histology acquisition scheme

to use intrinsic contrast imaging (ICI) were also put forward, thus leveraging the natural contrast of

neuronal tissue. This review focuses on these efforts. First, the origin of optical contrast in brain tissue

is discussed with emphasis on the various imaging modalities exploiting these contrast mechanisms.

Serial blockface histology (SBH) systems using ICI modalities are then reported, followed by a review

of some of their applications. These include validation studies and the creation of multimodal brain

atlases at a micrometer resolution. The paper concludes with a perspective of future developments,

calling for a consolidation of the SBH research and development efforts around the world. The goal

would be to offer the neuroscience community a single standardized open-source SBH solution,

including optical design, acquisition automation, reconstruction algorithms, and analysis pipelines.

Keywords: serial blockface histology; intrinsic optical contrast; brain imaging; neurophotonics

1. Introduction

Over the last decades, technological advances in imaging assisted the scientific community in

linking functions to structures inside the brain. Neuroimaging modalities such as magnetic resonance

imaging (MRI), diffusion MRI (dMRI), functional MRI (fMRI), positron emission tomography (PET),

and others have revolutionized our understanding of the brain. These tools were used to study,

among other investigations, brain metabolism and neurodegenerative diseases [1,2]. Alongside these

modalities, neurophotonics methods were developed to observe the brain with optical means, providing

better spatial and temporal resolutions [3,4]. Light–tissue interaction mechanisms that can be used to

study biological tissues include reflection, refraction, absorption, scattering, and some nonlinear optical

effects such as two-photon excitation fluorescence (TPEF), second- and third-harmonic generation

(SHG and THG, respectively), and Raman scattering [5].

Despite the ubiquitous use of MRI and PET imaging in neuroscience, these techniques are not

well-suited when it comes to studying the brain structure at a micrometer scale. This finer imaging

resolution requirement arises in multiple neuroscience research fields. For example, it has been
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hypothesized that some neurodegenerative diseases could be related in part to brain microvascular

pathologies such as microvascular dementia, microvascular incidents, endothelial disfunction, or mild

cognitive diseases [6–9]. To test these hypotheses, neuroscientists need an imaging tool that enables

the mapping of the neuronal tissue at micrometer scale across the whole brain. In the field of

neurophotonics, a tool that meets this increasing resolution requirement is serial blockface histology

(SBH). This technology combines a tissue-slicing apparatus with an optical microscope. The brain is

sequentially sliced to reveal new tissue layers that are imaged with the microscope. The process is

repeated until the whole sample has been imaged. Then, through advanced registration methods,

the thousands of image tiles acquired are assembled into a single 3-D volume. The first automated SBH

systems used fluorescent confocal microscopy and TPEF microscopy (TPEFm) [10–12]. These tools

were an essential component of many high-profile neuroscience projects to map genome-wide gene

expression [13] and to obtain a micrometer scale connectome in a whole mouse brain [14,15]. Building

on the success of SBH, other groups have coupled this technique with intrinsic optical contrast imaging

modalities (ICI). The main rationale motivating this effort is a reduction in tissue preparation complexity

that leads to an improvement in serial histology acquisition times.

This paper is a review of SBH using intrinsic optical contrast with applications of this technology

to image whole brains in 3-D. The first section describes the various optical contrast mechanisms of

brain tissues. Some imaging modalities discussed include Optical Coherence Tomography (OCT),

polarization-sensitive OCT (PS-OCT), Raman scattering techniques (Raman microscopy, Coherent

Anti-stokes Raman Spectroscopy (CARS), and Stimulated Raman Spectroscopy (SRS)), intrinsic

fluorescence and multi-photon microscopy without labeling, Second- and Third-Harmonic Generation

(SHG/THG), and photoacoustic imaging. The second section of this paper deals with SBH for whole

brain imaging. This section presents the main components of an SBH setup, ranging from tissue slicing

and acquisition automation to data processing and reconstruction. The paper then concludes with a

review of the two main applications of ICI-SBH reported in the literature: validation studies and the

creation of multimodal brain atlases.

2. Intrinsic Optical Contrast Imaging (ICI) of Brain Tissue

In this section, we review the distinct intrinsic optical contrast sources that can be exploited to

image the brain. Representative brain images for each optical modality discussed in this section are

illustrated in Figure 1. The light–tissue interactions presented are reflectivity and scattering, absorption,

birefringence, nonlinear optical processes such as second- and third-harmonic generation, and Raman

scattering. For comparison purposes, more details about the different imaging techniques are provided

in Table 1.
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Figure 1. Examples of various intrinsic optical contrast mechanisms that can be used to image the brain:

(A) Reflectivity, (B) absorption from photo-acoustics microscopy (PAM), (C) attenuation, (D) retardance

from Optical Coherence Tomography (OCT) imaging, (E) nonlinear optics such as third-harmonic

generation (THG), and (F) Raman scattering. The images for Figure 1A,C come from our previous

work [16]. For more information about the images presented, consult the appropriate references.

The absorption image is an excerpt from a still frame from the supplementary video 3 of Wong2017 [17],

the THG image is a reproduction of Figure 3 from Farrar2011 [18], the retardance image comes

from Wang2014 [19], and the Coherent Anti-stokes Raman Spectroscopy (CARS) image is taken from

Fu2008 [20].
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Table 1. A comparative table for different intrinsic contrast imaging (ICI) techniques: In the case of

autofluorescence two-photon excitation fluorescence microscopy (TPEFm), the sensitivity of the signal

is highly dependent on the effective cross section of the excitation from the targeted molecule. Moreover,

the examples shown here are dependent on the resolution desired for the microscopic observation.

In the case where slow modality was used, high magnification microscope objective tended to slow the

speed of acquisition. This duality between resolution and speed is an important factor to consider,

and in the optimization for applications such as ex-vivo microscopy, speed is often put aside for the

benefit of resolution and vice versa for in vivo imaging. OCT: Optical Coherence Tomography, PS-OCT:

Polarization-sensitive OCT, SDOCT: Spectral Domain OCT, PAM: Photoacoustic Microscopy, SHG:

Second-harmonic generation, THG: Third-harmonic generation, SRS: Stimulated Raman Scattering,

CARS: Coherence Anti-Stokes Raman Spectroscopy, IR: Infrared, NIR: Near Infrared.

Imaging Technique Sensitivity
Spatial Resolution

(Voxel Size)
Speed Wavelength

OCT/PS-OCT/SDOCT 90 dB–110 dB [21]
6 × 6 × 3.5 µm3 [19]

25 × 25 × 25 µm3 [16]
Fast (4 cm3/h) [19] NIR-IR

Autofluorescence TPEFm Highly variable [22] 1 × 1 × 2.5 µm3 [12] Slow (190 mm3/h) [12] NIR

PAM ~65 dB [23] 1.5 mm × 1.5 mm [24] Fast (18 cm3/h) [24] Visible-NIR

SHG/ THG >20 dB [25] 0.6 × 0.6 × 2 µm3 [26] Slow (125 µm3/h) [26] NIR-IR

SRS/CARS >20 dB [27] 0.3 × 0.3 × 1.5 µm3 [28] Slow (4000 µm3/h) [28] NIR-IR

2.1. Reflectivity

The index of refraction, defined as the factor that changes the velocity of light in a sample,

is affected by biological components such as phospholipids and proteins and mainly by the water

content. For the brain, neuron and glial cell microstructures modify the local refractive index and

cause a deflection of the light at interfaces between two different tissue components [29]. The interface

between two regions having different indices of refraction will cause a reflection and a transmission of

light following Fresnel’s equations. These interfaces can be imaged with interference-based imaging

modalities such as OCT. Moreover, changes in a refractive index can provide valuable information

on the internal compositions of a sample and can give insight about diseases or medical conditions,

e.g., damage of brain tissue or macular abnormalities [30,31].

To understand interference imaging, one can consider a Michelson–Morley interferometer as an

intuitive OCT technique. Instead of using mirrors to create the interferometric pattern, the reference

arm contains a mirror but the second arm contains the biological sample to study. Then by moving the

reference arm, scattering components inside the tissue will reflect the incoming light and create an

interferometric signal. However, to obtain an interferometric signal, one must consider the travelled

path in the tissue; the signal will be retrieved where the two arms will correspond to the same path

length. This technique enables deep-tissue imaging with near infrared light and can be engineered to

work with different OCT configurations, for example, spectral-domain OCT (SDOCT). SDOCT uses

spectral encoding of the interferometric signal to recreate the complete reflectivity map of the tissues

via inverse Fourier transform [21]. The gathering of this structural information, combined with SBH,

enables the complete 3-D reconstruction of biological samples such as mouse brains and can even

yield information on the neuronal fiber bundles orientation. Indeed, neuronal fibers perpendicular to

the optical axis will reflect light more efficiently and act as a greater scattering component than fibers

parallel to the optical axis. With careful image processing, one can retrieve the fiber bundle orientation

and add complimentary information in the white matter structure.

2.2. Attenuation

As mentioned above, the index of refraction is an important physical parameter to describe

light interaction with matter. In addition to the real component describing the refractive index,

this complex parameter also bears an imaginary part representing the light absorption. Physical

processes contributing to the absorption include heat generation [32,33], with others leading to the
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reemission of light, e.g., fluorescence. Light attenuation is due to the combination of absorption

and scattering, a process that occurs with microscopic changes of the refractive index throughout

a tissue [34,35]. The attenuation caused by tissue is typically described by the Beer–Lambert law

which stipulates that the loss of intensity will follow an exponential decrease with the length travelled.

However, the mathematical modeling of the attenuation differs between coherent imaging and

noncoherent imaging. In noncoherent imaging, the scattering events can be taken into consideration by

a modified Beer–Lambert law contributing to an intensity reduction of the signal received, e.g., in TPFM.

On the other hand, coherent imaging relies on the phase of the scattering light to be unchanged.

During scattering events, light will tend to lose its coherence, degrading furthermore the intensity of

the signal. Moreover, multiple scattering events can contribute to a back scattered signal, increasing the

detected signal. This effect must be considered inside the mathematical expression of the attenuation

in coherent modalities, e.g., in OCT [36].

As discussed above, optical absorption by a tissue causes a signal decrease. If a high energy

pulse of light is absorbed by a tissue, energy transferred in the process does not only produce heat

or deterioration of the sample but can also induce nonadiabatic expansion. The concept of using

light absorption to create a mechanical wave in a sample has the advantage to combine the ultrasonic

resolution and the high contrast due to light absorption [37]. With this effect, it is possible to create a

mechanical wave inside the sample and to retrieve, via a transducer, the pressure wave created via

absorption of high energy light. The contrast retrieved with photo-acoustics microscopy (PAM) is a

map proportional to the absorption [17]. Applications of PAM for brain imaging include brain injury

monitoring by monitoring the absorptivity of selected tissue [38,39], brain inflammatory responses

monitoring in fetal rats [40], and tumor monitoring [41,42].

2.3. Birefringence

During propagation, light polarization can also be modified via interactions with the biological

sample. In birefringent materials, the refractive index is dependent on polarization. An input beam

with polarization that is not aligned with the orthogonal fast and slow axes or in a media with

randomly distributed birefringent tissue will see its polarization modified as it propagates due to

the accumulation of phase retardation, causing an elliptic polarization of the propagated beam [43].

In biological samples, birefringent effects arise from repetitive anisotropic structures such as tendons

and their collagen fibers [44] or myelin sheaths containing multilayered membranes of lipids, mostly

glucocerebroside and the myelin basic protein (MBP), for a correct structural formation [45]. Depending

on the distance traveled by light, there will be an accumulated retardance of the slow-axis polarization,

hence the name of the signal. Separating the received light in each polarization, the measurement

of the birefringence of the sample is possible. This technique combined with OCT, called polarized

sensitive OCT (PS-OCT) microscopy, was used to observe retardance in biological tissues such as

coronary arteries where the contrast arises from collagen fibers in the coronary walls or in the fibrous

cap of a thrombus [46,47], in retinal imaging where the intracellular structure of the melanosomes in

the retinal pigment epithelium depolarize the backscattered light [48,49], and in white matter of mouse

brains where lipids with MBP create an anisotropic structure [19]. The dependence of white-matter

birefringence on its orientation helped provide a ground truth when correlating with other imaging

techniques such as diffusion tensor imaging (DTI) via magnetic resonance [50]. It was also used to

observe Amyloid Beta plaques in Alzheimer’s disease mice brain models [51].

2.4. Nonlinear Optical Processes

Nonlinear optical phenomena also enable intrinsic imaging in biological tissues. The propagation

of the light’s electric field creates a response in accordance with the sample electric susceptibility.

This response is sensitive to the sample tridimensional structure and can be nonlinear with respect to
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the electric field. The light output can be generated at twice the frequency or even higher multiples [52].

The polarization density for a single frequency electric field is described as follows:

P = ǫ0
[

χ(1)Ei + χ
(2)Ei

2 + χ(3)Ei
3 + · · ·

]

(1)

where χ(i) represent the electric susceptibility represented by a tensor and E is the electric field. By using

ultrashort pulses of light, the generation of signals at a multiple of the input frequency will arise.

The propagation of the generated field obeys the Helmholtz equation at the harmonic frequency of the

interacting incoming electric field.

−∇
2E +

ǫ(1)

c2

δ2E

δt2
= −

1

ǫ0c2

δ2PNL

δt2
(2)

where ε
(1) represents the relative permittivity of the propagation media, c is the speed of light, ε0 is

the permittivity of empty space, E is the electromagnetic wave, and PNL corresponds to the nonlinear

polarization density described by removing the first term of the expression in Equation (1). This leads

to the generation of harmonics known as Second-Harmonic Generation (SHG) for signals with twice

the frequency of the input or Third-Harmonic Generation (THG) for signals with three times the

frequency of the input. Developments in harmonic generation imaging techniques have shed light

on cellular structure, vascular morphology, or even membrane electric potential [26,53]. For SHG or

THG to work, conditions inside the propagation media must be fulfilled. In the case of SHG, which is

a three-wave mixing process, a condition of anisotropy of the media must be present in the sample

for generation to occur [54,55]. An example where SHG is present is for biological tissues containing

collagen proteins. The proteins exhibit SHG contrast due to the anisotropic structure of hydroxyproline,

proline, and glycine. SHG contrast has also been used for the study of elastin networks [56]. On the

other hand, THG contrast does not require anisotropic molecular structures. Thus, THG signals are

more widely applicable in microscopy setups when structural information is needed [26].

The SHG and THG techniques use virtual molecular states in their underlying light-interaction

mechanism. Another contrast source that can be measured within unlabeled tissue is absorption

followed by fluorescence emission. The absorption can be linear (single photon) or nonlinear (two or

more photons). The difference between SHG and the TPF are only in the relaxation mechanisms:

For SHG, the excited state is virtual, and for TPF, it is a molecular energetic state. Once excited by the

TPF technique, intermediary relaxation by heat, vibrations, or lower-energy-excited electronic levels

will cause the final emitted fluorescent light to be at a lower energy than twice the incoming photons.

Biological tissue can naturally exhibit a TPF signal even without labeling the technique for structures

such as NADP-H and flavins or via three-photon fluorescence imaging, e.g., serotonin [22]. However,

the relaxation processes also have decay characteristics. This, in turn, enables lifetime imaging via a

time tagging of the received autofluorescence signal [57]. Applications of this contrast in histology

include cell damage monitoring from UV A or NIR photostress via lifetime TPF of coenzymes [58],

investigation of cerebral energy metabolism via lifetime TPF [59], or brain tumor detection [60].

2.5. Raman Scattering

Structural information on the brain can yield clues to the neuronal architecture, but chemical

information can provide insight on the biological sample’s composition at the cellular level. Chemical

information can be obtained exploiting the Raman effect. Similar to a scattering process, part of the

incoming light energy is reemitted in a lesser energy state while the molecule remains at a higher

vibrational state through Stokes Raman scattering [61–63]. The reemitted light can be compared with

the input light, and a spectral band structure distinctive for each of the vibrational states that were

excited can be observed. The spectrum is specific to each molecule since vibrational states are linked

to the molecular structure. Furthermore, this process is reversible. When the molecule is in a higher

vibrational state, it can release its energy to the interacting photon to enhance its energy, resulting in
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what is called Anti-Stokes Raman scattering. Microscopic techniques were developed to exploit this

phenomenon. The most common use of Raman imaging is via spectroscopy and single point imaging.

By observing the complete Raman spectrum of a sample, one can observe vibrational states of interest

or use multiplexed data to create maps of chemical composition [64,65]. Nonlinear techniques can

also provide Raman information in a four-wave mixing process such as CARS microscopy. By using

stimulated emission with two high-power laser sources, a pump beam and a probe beam, one can

promote the excitation of molecules in a certain vibrational state and measure the signal from the

Anti-Stokes Raman process coming from the second excitation by the pump beam on the excited

vibrational state. This technique will provide an output signal with a higher frequency than the

input signal, and optical filters can ensure that only the CARS output is conserved during imaging

sessions [66]. Raman information can also be obtained with a lock-in amplification of a stimulated

Raman signal such as SRS. By using a pump and a probe beam with an energy difference equal to a

Raman energy level, one can promote the excitation of a desired Raman level via stimulated emission.

This effect will cause an intensity loss from the pump beam and an intensity gain for the probe

beam. To detect the probe beam gain and to ensure a high signal-to-noise ratio, a modulation of the

pump beam with an electro-optic modulator will provide the frequency for the lock-in amplification

technique [67,68]. For the two last techniques mentioned, video-rate imaging is possible, enabling high

throughput research in genetic screening [69], metabolic fingerprinting [70] or tumor detection [71].

More generally, Raman imaging techniques are useful in pharmacology to observe the deposition

of drugs [72] in chemistry for purity evaluation [73] or, in the context of this paper, for microscopic

imaging [74]. The application of this physical imaging principle has recently led to powerful tools to

guide surgical extraction of brain tumors via a Raman probe [75–77] as well as chemical imaging of

different regions of the brain [28,78].

3. Serial Blockface Histology

The main drawbacks of the aforementioned optical techniques are (1) the limited depth of

penetration of light in tissue and (2) the nonspecific nature of the intrinsic optical contrast. The former

is due to the attenuation of the sampling beam with increasing tissue depth. Whether the attenuation

is due to scattering or absorption, the cumulative interactions along the light path will effectively

limit the depth that can be imaged within the brain. The second limiting factor incurred by using

the tissue’s intrinsic optical properties is the lack of specificity. Any brain structure traversed by the

sampling beam contributes to the signal, not only the labeled structure of interest for a given imaging

study. This results in a significantly lower contrast between the brain structures of interest and the

surrounding tissue as compared to, for example, confocal microscopy using fluorescent dyes that only

binds to specific sites. In addition, multiple contrast mechanisms can affect the measured signal for a

given optical modality, all of which must be considered when interpreting the images. For example,

in OCT, the contrast is mainly due to index-of-refraction changes between interfaces and, to a lesser

extent, to backscattering. Furthermore, the backscattered intensity of myelinated fiber bundles was

shown to be affected by the bundle angle with the sampling beam direction. Parallel fiber bundles

appear darker as the surrounding tissue, as for bundles orthogonal to the microscope optical axis

are brighter than their surroundings [16,79]. All these factors must be considered when analyzing

OCT acquired brain images, and the same logic applies to other intrinsic optical modalities. Some of

the strategies that have been developed over the years to help reduce the confounding factors and to

simplify image interpretation are tissue clearing and mechanical slicing.

A variant of mechanical slicing and the main subject of this review is serial blockface histology.

In this configuration, the microscope is coupled with a tissue-slicing apparatus and the brain is sectioned

during the imaging experiment rather than prior to the imaging session. With SBH, the sample surface

is first imaged with the microscope. To alleviate the limited field of view of many microscope setups,

the sample is often placed on a kinetic stage. It is used to acquire a mosaic of images or volumes that

are assembled into a single slice. Once the sample surface has been imaged completely, a small tissue
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layer is removed with the slicing apparatus, and the acquisition is performed again. The alternation of

blockface imaging and cutting is repeated until the whole brain is acquired. The main advantages of

SBH are the elimination of the complex registration of consecutive slices, the reduction of deformation

and cutting-related damages, and the significantly simpler tissue preparation protocol if intrinsic

optical contrast is used. A drawback of this method is that, in most systems, the brain slices are either

destructed or discarded depending on the cutting apparatus employed. The development of a hybrid

serial histology system, combining blockface histology and conventional histology, would be a major

next step to allow direct comparisons of multiple modalities.

Most SBH systems use a vibratome to perform the tissue sectioning. This consists in a

vibrating blade that sequentially removes a thin tissue layer in-between blockface imaging periods.

This configuration uses a simplified tissue preparation protocol when compared to other serial imaging

modalities. The brains are first perfused with formaldehyde to fix the tissue. Then, the brains are

extracted from the skulls and embedded in agarose blocks for mechanical support during tissue

slicing. The embedded samples are then oxidized to create covalent cross-links between the tissue

and embedding medium and thus to prevent tissue separation during sectioning [12]. The agarose

blocks are next placed in a water-filled container mounted onto a kinetic platform. The agarose blocks

are fixed by either gluing them at the bottom of the container or by using custom-made 3-D printed

holders [80]. A water-filled container is necessary to use a vibratome because this allows the slice to

separate from the remaining block without necessitating manual removal. This slicing configuration

was used with TPEFm [12,81–83], with OCT and PS-OCT [16,19,80,84–86], with PAM [17], and with

CARS and THG [18,20,87].

There are other tissue sectioning methods that can be used for SBH. Some systems replace the

vibrating blade by a diamond knife [11]. This approach is commonly used to prepare ultra-thin samples

for serial blockface electron microscopy acquisitions [88,89]. Another system configuration uses the

knife to section the tissue and to perform the imaging. This alternative method, called Knife-Edge

Scanning Microscopy [90,91], enables the simultaneous sectioning and imaging of small animal brains.

Finally, another alternative method is all-optical histology [10,92], wherein a femtosecond laser is

combined to the imaging system and used to ablate small layers of tissue. This sectioning method

result in irreversible tissue loss, whereas the tissue slices obtained vibratome-based approach can be

collected for further imaging.

3.1. SBH Acquisition Automation

To acquire whole mouse brains within a reasonable time and without necessitating labor-intensive

manual user interactions, several serial histology systems are automated using computer-controlled

hardware. Initial automation efforts consisted of hardware controllers, acquisition routines,

and graphical user interfaces (GUI) [10,11]. For instance, the MPScope toolkit [93,94] was developed for

the all-optical histology system and for TPEF laser scanning microscopes. It may be used to control the

mechanical stage, to acquire the images, to manage the data generated, and to visualize the acquisition.

A similar open-source cross-platform software package is µManager [95,96]. Its modular design

and the multiple hardware devices supported enable users to create advanced techniques, and they

accelerate custom-imaging system development. Additional acquisition time reduction was obtained

by using a service-oriented architecture for system control [12]. The reported controlling software

suite consisted in several services that each interacted with a different part of the microscope. Another

global service was used to orchestrate the services and to perform task scheduling. This approach

enables simultaneous operations (e.g., moving the stage while processing the data); it can also be used

to plan complex sequences of tasks.

Apart from hardware communication, image digitization, and sample stage motion control,

another important component of serial histology consists in all the routines used to automate the

process. Figure 2 illustrates the control pipeline and routines required for the full automation of

a dual-resolution serial OCT microscope [80]. This workflow consists in hardware control and
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data processing algorithms (white boxes), mechanical tasks such as tissue cutting or sample stage

movements (green boxes), data acquisition and transfer operations (blue boxes), and decision nodes

(diamond-shaped boxes).

 

 

Figure 2. A representation of a fully automated dual-resolution serial OCT imaging system (Right) and

a diagram of the workflow pipeline used to control the acquisition (Left): The 2R-SOCT consists in a

vibratome coupled to two OCT arms, a 3X arm to acquire low-resolution data (25 µm/voxel) used for the

whole mouse brain reconstruction, and a 40X arm used to acquire high-resolution images (1.5 µm/voxel)

in automatically chosen regions of interests (ROIs). The solid lines represent the order of operation of

acquisition. The dashed lines represent data transfer to other parts of the workflow (e.g., sending in

situ assembled slices to generate 40X ROIs). The green shaded boxes are tasks necessitating mechanical

movements, and the blue shaded boxes represent data generation or transfer operations. FM: Flip

mirror, M: Mirror. Adapted from our previous work [80].

The following is a description of a typical automated SBH acquisition, mostly based on our

previously published dual resolutions serial OCT (2R-SOCT) system [80]. Other similar acquisition

pipelines were described for single-resolution SBH platforms [12,81,85]. A typical automated SBH

acquisition begins with an initialization and calibration process. At this stage, manual or automated

routines are used to calibrate the motorized stage displacement, to detect the agarose block bounding

box, to initialize the vibratome cutting height, and to optimize the focus position within the tissue.

Then, multiple vibratome cuts are performed until the brain tissue is reached. This step is necessary

because the brain is often covered by agarose during the embedding process and the SBH needs a

clean tissue surface to initialize imaging. For our 2R-SOCT system, the last calibration operations were

the acquisition of background images in both water and agarose used during data reconstruction for

inhomogeneous illumination correction and the initialization of the data folder structure to save the

volumetric tiles.

After calibration, an initial mosaic is acquired over the whole agarose bounding box (“Detect

Tissue” process in Figure 2 workflow). The volumetric OCT data was assembled, and tissue was

segmented to refine the acquisition bounding box. The tissue mask was then used to generate the

mosaic graph. Some mosaic parameters that can be set by the user are the size of the field of view

(FOV), the overlap fraction between adjacent tiles, a margin size around the bounding box to make

sure that all tissue is covered by the acquisition, and a tissue mask to avoid acquisition of empty tiles.

Once the mosaic graph is generated, the blockface acquisition can begin. For each tile within the mosaic,

the sample stage is moved to the predefined position. An optional focus depth optimization can be

performed, and the image/volume tile is acquired. The data is then sent to an in-line reconstruction
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algorithm that stitches the tiles together to get a visualization of the current blockface tissue slice.

This process is repeated until the whole mosaic has been acquired.

Following mosaic acquisition, our 2R-SOCT system can perform 40X imaging for the same

blockface tissue slice. This is represented by the group of process blocks following the “Perform 40X”

decision in the Figure 2 workflow. The acquisition procedure for the dual-resolution mode is similar to

the single resolution mosaic acquisition, except that the sample moves from the 3X to the 40X for each

region of interest (ROI). These ROIs can either be selected manually by the microscope operator with a

graphical user interface or be generated automatically with an image processing algorithm. Briefly,

the ROI selection algorithm segments the tissue within the low-resolution assembled mosaic, computes

a saliency map based on the local image gradient magnitude, and then randomly selects ROIs to be

imaged. More details about the automated ROI selection algorithm can be found in our previous

publication [80]. Once all the 40X ROIs are acquired, the acquisition workflow determines if there is

still tissue left to be imaged (“Remaining Tissue?” decision box in Figure 2). This can be determined

either by setting a number of serial scans to perform, by asking for user interaction, or by analyzing the

assembled mosaic with a computer vision-based method. If there is still tissue to image, the sample

is moved to the vibratome, a small tissue layer is removed, and the mosaic acquisition is repeated.

If there is no tissue remaining, the raw data is transferred to a remote server for further reconstruction

and post processing and the SBH system is shut down to enabled sample removal and setup cleaning.

3.2. SBH Data Processing

The key advantage of SBH is that the generated sequential tissue images are inherently pre-aligned,

which greatly simplifies the 3-D reconstruction algorithm when compared to high-throughput serial

histology. Still, due to the limited FOV size of most optical setups, whole blockface tissue slices have to

be acquired as a mosaic of tiles (Figure 3, 1st column). These tiles have to be assembled into a single

image for each blockface tissue slice. Thus, most reconstruction pipelines for SBH consists in the steps

illustrated in Figure 3.

 
Figure 3. A representation of the principal data reconstruction steps used for SBH, which consists in

preprocessing (here, vignetting correction is illustrated), lateral (XY) reconstruction of each tissue slices,

and the stitching of each slices along the z-axis to obtain a complete 3-D representation of the whole

mouse brain.

3.2.1. SBH Data Preprocessing

The initial step of any SBH reconstruction pipeline is tile-based data preprocessing. This consists

in various operations, including data compression, slice cropping, uneven illumination correction,

optical aberrations compensation, optical attenuation extraction and compensation, as well as coarse

data reconstruction for dataset quality assessment. The key preprocessing step that contributes to
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creating seamless assembled images is the uneven illumination correction (Figure 3, 2nd column).

This correction can be performed in multiple ways. If a flat-field background image was acquired

during the calibration phase of the acquisition, then it is used to normalize the intensity of each

image [97]. If this data is not available, then the vignetting effect can be eliminated by cropping the

images to only keep the relatively flat illumination area at the center of each tile [98]. Alternatives

are estimating flat-field from the dataset, either by averaging all images within the dataset [12,99],

by averaging only the tiles within the agarose background [16], or by performing low-frequency

high-pass filtering of the illumination intensity [100]. A recent method, BaSiC [101], is a more advanced

signal model to perform retrospective background and shading correction. It uses a shading model

and optimization to compute both the flat-field and an additive dark-field from a collection of images.

The shading correction techniques described above were developed for 2-D image tiles. However,

some imaging modalities (e.g., OCT) acquire a mosaic of 3-D volumetric tiles for each tissue slice.

In that case, intensity inhomogeneities have to be compensated both laterally (X-Y) and axially (Z).

For instance, in serial OCT [16], the contrast is affected by both the axial confocal point spread function

(PSF) and by optical attenuation with depth. In that paper, the confocal PSF was compensated by fitting

a Gaussian profile. Then a single-photon scattering model was used to model the optical attenuation

with depth. This enabled the extraction of a spatially resolved attenuation coefficient within the tissue.

This attenuation information was then used to remove this effect from the reflectivity data. Another

uneven illumination compensation algorithm that was developed for 3-D data is Intensify3D [102].

This method first extracts the background of each 2-D image within a volume stack, then normalizes the

images with this background. Last, the background correction is uniformized along the Z direction to

obtain the final corrected stack. This method is recommended when the signal is sparse (e.g., for TPFM

or for OCT with cleared tissue).

3.2.2. Intra-Slice Registration and Stitching

The second data processing step is intra-slice tile registration and stitching. The third column of

Figure 3 illustrates this operation. Most methods assume that only translation is needed to register

the tile within the global slice coordinate reference. This hypothesis is met in most instances by using

multiple linear kinetic stages stacked on each other to move the sample under the microscope objective.

An initial reconstruction effort in SBH used a semi-automated reconstruction approach, wherein a pair

of adjacent images were first manually aligned and then the translation was propagated to all other

tiles within the mosaic [103,104]. When necessary, an automatic fine-scale optimization is performed

by using normalized cross-correlation and by detecting misidentified translations. Another early

reconstruction effort used a Fourier-based cross-correlation technique to align the neighboring tiles in the

X-Y plane and to assemble them by averaging the signal in the overlapping areas [11]. The registration

is later optimized and fully automated by using phase correlation in Fourier space and by finding a

global optimal configuration for all tiles within the mosaic [105,106]. This reconstruction approach also

introduced a nonlinear blending method based on the exponentially weighted distance from the tile

boundary. This data processing method was adopted by many SBH implementations [19,38,84,85] in

part due to its integration as a plugin in the Fiji open-source biological-image analysis platform [107].

A similar open-source tool is TeraStitcher [108], which can be used either as a stand-alone software or

as a plugin in Vaa3D [109,110]. This reconstruction pipeline was adapted to assemble the teravoxel

sized images in an efficient manner, and it was used to assemble the data coming from both serial

histology and light-sheet microscopy [111,112].

Instead of performing multiple registrations between neighboring tiles followed by position

optimization, other techniques rely more directly on the high accuracy of the linear stages used for

sample movements. For example, the serial photoacoustic microscope data reconstruction presented in

Reference [17] does not perform any registration and it solely relies on precise stage positioning. In our

previous works, we have adopted a similar approach by modeling the sample stage motion using

either the acquired mosaic data [16] or during a calibration stage prior to acquisition [80]. We used
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the transform matrix obtained from the modeling to accurately predict the tile position within the

assembled image without necessitating further optimization. The reconstruction method was also

adapted to execute in parallel on a computer cluster. The tiles were stitched together using a linear

blending and a novel diffusion-based blending weight method. Morphological operations were used to

define the overlap area shape instead of relying on predefined overlay geometries. Finally, some mosaic

reconstruction methods were developed to assemble tiles that were acquired without using a motorized

stage. These techniques require an additional mosaic topology detection method. This provides an

optimal path to traverse the mosaic and to compute a fine-scale registration between neighboring tiles.

Some software tools using this technique to perform the mosaic assembly are MicroMos [113] and

XuvTools [114].

3.2.3. Inter-Slice Registration and Stitching

The final data processing stage of SBH is z-axis registration and volume reconstruction from the

series of assembled slices, corresponding to the 4th column of Figure 3. It is for this reconstruction step

that the blockface configuration is the most helpful. Indeed, this imaging and slicing configuration

introduces a very limited amount of tissue deformations. This eliminates the resource-intensive

and time-consuming processing steps that are necessary with conventional serial histology, such as

slice flattening [88], or complex deformable tissue registrations between slices [99,115–118]. In fact,

some SBH systems [10,15,82] rely only on the accuracy of the motorized stage and on the slicing

performance of the system and do not even perform axial registration between consecutive slices.

When SBH acquisition is performed with 3-D volumetric tiles, the axial shifts between each

volume need to be computed in order to perform a seamless 3-D reconstruction. The axial registration

is performed manually using either a GUI [11], a set of features between slices and a descriptor-based

image registration method [81], or a normalized-correlation based method with the 2-D image

gradient modulus [16]. Other reconstruction techniques do not assemble tissue slices and volumes

in a consecutive way but instead treat all tiles at the same time and perform 3-D registration and

optimization simultaneously [108]. In our previous work [16], the axial registration and stitching were

combined with the in-slice 3-D tissue segmentation and mask optimization to make sure there is a

consistent overlap between consecutive slices. This mask was also necessary to remove the water

above the tissues in the acquired volumes. The slices were assembled using linear blending and

diffusion-based blending weights. A similar reconstruction approach was employed for TPFM-SBF [82],

where a small margin close to the cutting interface was removed from the data before assembling the

slices to avoid introducing cutting artifacts in the reconstructed volume.

To summarize, data reconstruction is an essential part of SBF systems. Among all the data

preprocessing algorithms, uneven illumination compensation is the most important to ensure a

uniform and seamless reconstruction. Next, intra-slice registration and stitching is performed to obtain

an image for each blockface tissue slice. This operation can use a variety of techniques and tools based

on the data dimensionality (2-D vs. 3-D) and on the SBH setup. Finally, the tissue slices are assembled

into a single volume. This inter-slice reconstruction requires the axial registration of adjacent blockface

volumes for 3-D data. In the simplest case, no further image registration is necessary due to the

inherent alignment of the tissue slices provided by SBH.

3.3. Alternatives to SBH

Apart from SBH, other whole brain imaging techniques exist. One option is to perform whole

sample tissue clearing, a chemical treatment that dramatically reduces the optical scattering and

absorption within the tissue [98,119–121]. These procedures render the samples clear and colorless.

This allows the light to traverse the whole tissue section without much degradation and thus enable

imaging, for example, of intact whole mouse brains. Some microscope configurations that exploit tissue

clearing are optical projection tomography [122–124], light-sheet microscopy [125–130], clearing assisted

scattering tomography [111], optical frequency domain imaging [111], and expansion super-resolution
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microscopy [131]. Despite the opportunity offered by tissue clearing to perform an optical imaging

of complete whole brains, this process presents a few drawbacks such as a long preparation time,

tissue shrinkage, protein and lipid loss, and the usage of highly toxic chemical reagents [132,133].

Tissue clearing is not limited to the imaging of intact whole mouse brains, it can be used with SBH,

for example, to extend light penetration depth within the tissue, thus allowing thicker tissue sections

and faster acquisition times. Tissue clearing with SBH was also shown to be beneficial to increase

white matter contrast in clearing-assisted scattering tomography [111].

A different approach to whole brain imaging that can be used to work around the limited light

penetration depth is to use histological slicing. With this technique, the brain can be cut into thin

slices prior to imaging. The collected slices are usually labeled to provide contrast for various cellular

components and then imaged with high-resolution photography. This is the way conventional histology

is performed, and this is considered the gold standard in cellular biology upon which the findings

observed by many other imaging modalities are validated. Histological slicing is a well-known and

established technique, and the procedure was developed and improved over many decades. However,

the complex tissue preparation procedure, the staining process, and manual slice handling can result in

tissue deformations and damages and can represent a significant time investment for an imaging study.

Some systems have been developed to address these limitations. For example, a slicing apparatus [134]

was developed using a modified tape-transfer technique that combines cryostat sectioning with the

tape-transfer technique and custom UV curing platform. This method enables a high-throughput

preparation of histological slices with reduced sectioning-induced damages, and the authors report a

preparation time of 4 h to slice a single frozen block into 20 microns thick histological slides. This system

was used to obtain a brain-wide mesoscale connectivity mapping of the common marmoset [135].

The reported time to prepare and image a full Nissl marmoset brain was 6.4 days. Due to the very nature

of histological imaging, consecutive slices were assembled using complex deformable registration

methods in which prior-knowledge coming from pre-acquired MRI volumes or existing atlases are

used to guide the histological data reconstruction [116]. Another strategy to assist data reconstruction

is to acquire a high-resolution blockface photography prior to slicing and then use this blockface image

as reference when performing the histological slice deformation [117,118,136].

4. Applications

SBH is an increasingly popular tool in neuroscience. This imaging setup was employed in

high-profile scientific projects that study the connectome, gene expression, and microvasculature in

whole mouse brains [13–15]. Since the seminal works that presented the first implementations of

computer-controlled serial histology systems [10–12], multiple similar apparatus using intrinsic optical

contrast have been built around the world [16–19,80]. Still, most neuroimaging studies with SBH use a

combination of tissue clearing and fluorescent labeling. Significantly fewer applications using intrinsic

optical contrast have been reported. The ICI-SBH systems reported in the literature are mainly used

for two types of applications: validation studies and the creation of multimodal brain atlases.

4.1. Validation Studies

Some preliminary validation studies were performed with ICI-SBH. The goals of these studies can

be separated into two main categories: (1) to better understand the origin of intrinsic optical contrast

within the brain tissue and (2) to compare the information obtained from ICI serial histology with other

neuroimaging modalities. The first category aims at delineating the information provided by intrinsic

optics in the brain, and as such, the images are frequently compared to histological labeled slices.

For example, OCT and optical coherence microscopy (OCM) images measured in brain tissues were

compared with adjacent slices labeled with Nissl staining. The latter are considered the gold standard

to study the brain tissue cytoarchitecture [84,86]. These studies have shown a good correlation between

OCT and Nissl staining. They demonstrated that the cortical layers could be accurately segmented

from the intrinsic OCT signal. For OCM, it was shown that the neuron cell bodies could be colocalized
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with Nissl in 60% of instances. Some of the variability has been attributed to light shadowing effects

of dense fiber structures traversed by the sampling beam and to other protocols and human-related

factors [86]. A similar study performed in the cerebellum showed that a polarization-sensitive OCT

signal can be used to distinguish between the molecular layer, the granular layer, and the white matter

fibers [137]. To confirm the myelin origin of CARS signals, brain tissue slices were labeled with a

lipophilic fluorescent dye and imaged with TPEFm [20]. This comparison revealed that CARS is

able to extract quantitative information about fiber volume, myelin density, and bundle orientation

across the brain. A similar study was performed with third-harmonic generation (THG), and this

modality was shown to colocalize with TPFM, the authors concluding that this dye-free modality is

an ideal tool for the study of myelin loss and recovery [18]. The microtromy-assisted photoacoustic

microscope (mPAM) images were compared with adjacent tissue slices stained with hematoxylin

and eosin (H&E) to reveal that this modality can localize cell nuclei with a sensitivity of 93% and a

specificity of 99.8% [17]. The authors have also demonstrated that this label-free imaging method is

sensitive to DNA/RNA, hemoglobin, and lipids, enabling the visualization of cell nuclei, blood vessels,

axons, and other anatomical structures. To validate the sensitivity of optical frequency domain imaging

(OFDI) to neuronal fiber bundles and blood vessels, the same tissue slices were stained with fluorescent

dyes and observed with confocal fluorescence microscopy [111]. This revealed a strong correlation

between the label-free scattering signal and the fluorescent signal, demonstrating that a clearing can

selectively enhance the contrast of some important anatomical structures in mammalian brains.

Another type of validation study aims at using serial block-face histology in combination with

MRI to validate the hypotheses used when analyzing the MRI results. Due to the capability of OCT

to directly image myelinated fibers without requiring tissue labeling, this modality was compared

with diffusion MRI data in multiple investigations. Using polarization-sensitive OCT, Wang et al.

demonstrated that the optical contrast was able to extract the fiber orientation that was consistent

with fiber bundles orientation obtained with DTI [50]. Furthermore, they showed that analyzing

the image texture orientation with the structure tensor technique also provided information that

correlated with DTI measurements [138]. With a similar serial OCT setup, we developed a fully

automated reconstruction and registration pipeline that enabled the alignment to a common coordinate

framework of both the reconstructed brain and the dMRI data acquired in the same brains prior to

slicing [16]. This enabled the direct comparison of OCT contrast with dMRI derived metrics, validating

the relationship between the fiber bundle angle and contrast. It, moreover, indicated potential new OCT

contrast mechanisms such as fiber orientation heterogeneity, fiber bundle density, and neurite density.

This pipeline was also used to study the deformations introduced by tissue fixation, by brain extraction

and by serial histology [139]. The comparison between in vivo MRI, ex vivo MRI, and assembled

3-D OCT brains revealed that the main deformations were imputable to a lack of tissue adhesion

to the agarose embedding matrix and to ventricles collapse after the animal sacrifice. In a further

study [80], our SOCT apparatus was modified to include a second high-resolution arm, which enabled

the acquisition of OCM volumes that could be precisely colocalized with dMRI voxels in 3-D in an

automated fashion. This was used to compare the white matter microstructure directly with various

dMRI metrics and to validate the intuition underlying some dMRI models. This tool, as it provides

a way to perform completely automatized validation studies of MRI, presents a good potential for

future multimodal neuroimaging studies. In a similar MRI validation work, CARS microscopy of

mouse brain slices was used to develop a myelin sheet segmentation method [140]. In follow-up works,

the segmentation model was adapted for serial electron microscopy [141,142]. These techniques can be

used as examples to compare the histology derived g-ratio of myelin sheets with similar measurements

obtained from MRI [143,144] and to validate microstructural imaging using quantitative MRI in the

spinal cord [145].
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4.2. Multi-Modal Brain Atlases

Another common use of SBH is to create multimodal brain atlases combining multiple image

sources such as MRI, conventional histological staining, and blockface intrinsic contrast imaging.

In these instances, the intrinsic imaging modality most commonly used is high-resolution blockface

photography. For example, this modality was used in an early work to create a multimodal

mouse brain atlas [146]. Besides high-resolution blockface photography, this atlas also contains

diffusion-weighted MRI volumes, histological stains (Nissl-bodies, myelin, and acetylcholine-esterase),

and immunohistochemistry essays revealing a few gene expression maps. In a similar work, blockface

images were acquired before performing Nissl staining to help with 3-D data reconstruction and

further alignment with MRI data for the Waxholm space atlas [147]. The strategy of using the

blockface images to serve as a reference for histological slice deformations was adopted by other

high-throughput brain atlasing projects. For instance, this technique was adopted for human brains

(BigBrain project) [118], for rodent brains [136], for opossum brains [148], and for common marmoset

brains [135]. The blockface photography used in these projects could be replaced by other more

informative intrinsic imaging modalities, such as autofluorescence or OCT. These modalities have the

double advantage of providing more tissue selectivity due to their optical slicing capability and of

providing 3-D slice acquisition. The 3-D information can be used to exclude the tissue deformations near

the cutting interface, to provide more information for the 3-D reconstruction, and to guide the nonlinear

deformations of the histological slices. An original approach for obtaining cytoarchitecture landmarks

at the cellular level was to perform in situ cell body counterstaining during serial histology [149].

This was achieved by immersing the brain in a fluorescent nuclear staining solution and by letting the

dye penetrate in the tissue after each tissue sections. Another recent multimodal serial histology system

is ChroMS [87], a multicolor and multiscale brain imaging apparatus with chromatic multiphoton

serial microscopy. This implementation enables the acquisition with a single microscope of both

fluorescent proteins and of label-free nonlinear signals (THG and CARS) used to identify the white

matter fiber bundles.

5. Discussion and Conclusions

5.1. Tissue Preparation and Cutting Artefacts

Compared to conventional serial histology, SBH greatly reduces tissue deformations and artifacts

caused by slicing, fixation, and tissue preparation. This simplifies the data reconstruction methods

because complex nonlinear deformations are not necessary to align consecutive images. Some methods

reported in the literature do not even perform image registration to obtain the tile position within the

mosaics, as they solely rely on the motorized stage positioning accuracy [16,17,80]. Regardless of this

advantage of SBH, tissue preparation still remains an important aspect to consider. Common steps in

tissue preparation protocols include animal sacrifice, perfusion with a fixating agent, brain extraction

from the skull, sample storage, optional tissue clearing, and brain embedding in an agarose matrix.

When performing additional ex vivo neuroimaging (e.g., MRI), the animal can also be perfused with

additional contrast agents. An aspect often missing in published brain atlases obtained from serial

histology is the localization of anatomical reference points. For example, many neurophotonics studies

localize the imaging position according to skull-based reference points such as the bregma and lambda

points [150–152]. Thus, keeping track of the precise position of an acquired brain within the animal

skull would enable neuroscientists to access the serial histological data more reliably. To address

this question, Majka et al. [148] acquired micro-computed tomography and ex vivo anatomical MRI

before histology and then performed a multimodal registration of the histological data onto these

pre-acquired volumes. A similar multimodal imaging pipeline could be adopted for whole rodent

brain imaging with SBH.

An understudied aspect of whole brain serial histology is the effect of ex vivo neuroimaging

on the tissue. For example, many studies perform MRI and dMRI acquisitions on fixed mouse
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brains after animal sacrifice and before brain extraction and histological slicing. Some of the imaging

protocols require perfusion with contrast enhancing agents, brain immersion in low MRI signal liquids

(e.g., Fomblin) and long acquisition sequences (multiple hs/days). These could have an effect on

brain tissue properties due to energy deposits by the MRI sequence, chemical interaction with the

contrast agent, immersion fluid, or other reagents, as well as the longer waiting time between animal

sacrifice and serial histology acquisition. To illustrate, we have observed experimentally that brains

imaged with long MRI sequences before serial OCT acquisitions exhibited more partial tissue tearing

during sectioning. These appeared as floating fibers in the acquired images (Figure 4E). Similarly,

in a previous investigation [139] of brain tissue spatial deformations induced by sample preparation,

stronger tissue shrinkage along the brain’s longitudinal axis was identified between ex vivo brains

in and out of the skull. Also, our analysis revealed that ex vivo brains exhibited ventricles collapse

when compared with in vivo MRI volumes acquired within the same animal. Possible causes of these

deformations are the reduction of intracranial pressure after sacrifice and the use of a vacuum pump

to remove any bubbles in the MRI immersion fluid that could induce imaging artifacts during MRI.

Both the experimental observation and the quantitative evaluation of tissue deformations induced by

serial histology reveal that the effect of neuroimaging on fixed whole mouse brains needs to be better

understood. An optimization of the ex vivo MRI imaging protocols will also reduce the effect of these

acquisitions on the ex vivo tissue.

 

 

Figure 4. Examples of tissue sectioning artefacts for a serial OCT mouse brain: (A) Agarose tearing,

(B) coronal slice exhibiting shadowing effects due to floating fibers, (C) horizontal slice with missing

tissue due to tissue/agarose separation (arrow), (D) B-Scan corresponding to the horizontal red line

of image B showing water-tissue interface denivelation, and (E) B-Scan corresponding to the vertical

green line in Figure 4B, showing floating tissue fibers and their shadow. The scale bar is 1.5 mm.

Some of the tissue-related deformations come also from the slicing process. The brain is usually

embedded in an agarose block, which is itself fixed in a water-filled container to help with tissue

slices removal. Many factors can impact the vibratome tissue sectioning efficacy. Some are related

to the agarose embedding (size and geometry of the block, agarose concentration, agarose oxidation,

and fixation method in the water container), some are related to the blade (vibrating frequency,

blade width, angles, slice thickness, cutting speed, blade holding mechanism, etc.), and others

are linked to various experimental factors (temperature, laser power, acquisition duration, etc.).

The optimization of the mechanical aspect of vibratome sectioning is an aspect that deserves more

attention, as this will help to reduce the slicing related deformations. Some of the tissue-sectioning

artifacts that were observed with our serial OCT are illustrated in Figure 4. These include agarose
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tearing due to the shearing force of the blade and adhesion of agarose to the 3-D printed plastic base

(Figure 4A), tissue separation from the agarose matrix causing brain displacements and missing cuts

(Figure 4C), cutting interface denivelation (Figure 4D), floating fibres and tissue slices (Figure 4B,E),

and tissue tearing (Figure 4E), often occurring with the olfactory lobes at the end of acquisition.

Sometimes the tissue slices were stuck on the agarose block after sectioning, thus preventing the

imaging of the next blockface. These slicing-related tissue deformations complexify the acquisition

and reconstruction methods, for example, by necessitating a water-tissue interface detection during

acquisition or data reconstruction. Furthermore, some of the deformations cause data obstructions or

complete loss of tissue that impedes data reconstruction and further limits the information available

for data analysis. The vibrating blade also represents a limitation on the sample size that can be

imaged with SBH, as the agarose block cannot be wider than the blade width. Alternative cutting

methods thus need to be considered if larger samples need to be imaged (e.g., fixed diamond blade

or all-optical histology [92]), or different tissue preparation and embedding protocols need to be

developed (i.e., splitting a larger brain into smaller blocks that are imaged separately with the serial

histology microscopy and then assembled back on the computer into a single volume).

Further work is needed to improve the reliability of serial blockface imaging. For example,

an initial effort [153] has derived an analytical model to describe the sectioning of soft materials with

an oscillating blade. This model could be used to predict the optimal cutting parameters for various

tissues. A systematic investigation could be done to adapt these results to the SBH configuration

and to establish an optimized tissue preparation protocol. Furthermore, data reconstruction and

analysis methods should consider these tissue deformations by either identifying missing brain areas,

compensating for cutting interface imperfection and denivelations, or by considering the effect of

tissue fixations.

5.2. Machine Learning and Serial Histology

SBH generates a tremendous amount of data for each brain. This represents a challenge for data

management, reconstruction, and the analysis methods. Future development in this neurophotonics

field will increasingly require a closer synergy between imaging and machine learning. This effort

will likely have two objectives: (1) to accelerate image acquisition and reconstruction by integrating

the microscope with advanced computer vision methods and (2) to analyze the large amount of data

generated by such imaging systems with machine learning based methods.

First, combining serial imaging with computer vision methods and automation procedures

will reduce the acquisition time of whole datasets. Applications include the automation of ROI

selection [154], the acceleration of acquisition time with compressed sensing [155,156] and with

deep learning [157], and the adaptation of the acquisition protocol to deep learning based denoising

techniques such as Noise2Noise [158]. To accelerate high-throughput microscopy, a recent work [159]

has combined a microscope with a deep learning image reconstruction approach. This method employs

a generative adversarial network (GAN) to infer a realistic high-resolution image from a low-resolution

acquisition. Regarding automated ROI selection, another recent work has presented a technique to

colocalize a 2-D histological image within the 3-D Allen mouse brain template [160]. Integrating

this approach to an SBH system will allow the use of existing templates to target structures in the

brain. Similar advances were presented in the field of augmented reality microscopy. With the use of

modern computer vision and machine learning methods, these novel systems can perform automated

cell tracking with a convolutional neural network trained for object detection [161], cancerous tissue

identification with image classification networks [162], or the use of machine learning for online

automated optimization of microscopy [163].

A second application of machine learning for SBH will likely be to better exploit the immense

amount of data generated by these imaging systems. Similar efforts were deployed in whole slide

histology image analysis [164–166]. These methods can be applied to detect and remove imaging

artifacts, to improve image denoising, to perform image segmentation, to assist data annotation, and to
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detect tissue changes in an unsupervised way. A recent work has used image texture information and

machine learning to improve multimodal brain registration [167]. Their technique was also used to

create an active atlas that is improved after each use. For multimodal brain imaging studies, weakly

supervised learning, multiple instances learning, and unsupervised methods could be used to identify

changes in large histological 3-D data sets [166]. It will thus reduce the quantity of human intervention

to annotate the data. This will contribute to a better understanding of the evolution of various

neurodegenerative pathologies and could help discover early biomarkers of these diseases. Relating

MRI and whole brain histology can, in addition, help link MRI-based biomarkers to optical biomarkers.

These could be used by neurosurgeons when performing an intervention. Indeed, as intrinsic optics

does not require the addition of contrast agents, the findings in SBH using intrinsic contrast could

potentially be translated to human intervention with robotic microscopes, similar to a reported robotic

Raman platform used to identify tumors during surgery [168].

5.3. Open-Source SBH Platform

SBH using the brain tissue intrinsic contrast offers great potential for future neuroimaging

studies. This is due to its simplified tissue preparation protocol and its significant reduction of

slicing-induced deformations and of acquisition time. This review has identified a variety of serial

histology implementations using intrinsic optics, each exploiting a different contrast mechanism.

An observation from this literature search is that there is no common architecture between imaging

pipelines. Systems were developed by multiple research groups around the world, each team

developing their own solution for the serial histology optical design, for microscope automation,

for reconstruction, and for analysis pipelines. A consolidation of the research and development efforts

to create a standardized serial histology platform would be of great service to the neuroimaging

community. The standardization of open-source serial histology platform would be akin to the open

source efforts that democratized light-sheet microscopy [169] with the OpenSPIM platform [170] and

single-plane illumination microscopy with the MesoSPIM platform [171]. These projects provide the

microscope optical design (mechanical components, list of parts, and installation instructions), the open

source control software, the tissue preparation protocols, and the open documentation. A similar

project for sample clearing and whole-mount immunolabeling for volume imaging is iDISCO [172].

This project also provides the ClearMap software [173] to analyze the volumetric data acquired from

tissue prepared by iDISCO. It is not in the scope of this review paper to provide a detailed design of an

open-source SBH platform. Nevertheless, it is possible to identify the principal modular components

of most SBH systems (Table 2).

An SBH platform designed in a modular manner would offer the possibility to select various

intrinsic contrasts. As the technological platform settles and matures, this multi-center solution would

empower neuroscientists to perform studies using this new tool and it could be adopted by other

research communities. Furthermore, the combination of SBH and machine learning is a must as these

systems will generate increasing amounts of data that will require a closer merge of both fields to

analyze this information. Finally, an open-source serial histology platform could contribute to creating

a multimodal multiscale atlas of the brain intrinsic contrast properties. Such information could be

integrated in a public mouse brain database such as the Scalable atlas project [174] and would offer an

invaluable reference asset for neuroscientists. Needless to say, creating an open-source platform for

serial blockface imaging is an initiative that will require the collaboration of multiple research groups.

This effort could be initiated by a set of meetings and workshops, similar to the mesoSPIM initiative.
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Table 2. The main components and parts of an SBH system.

Components Parts

Tissue preparation

Animal sacrifice protocol
Brain extraction protocol

Tissue storage
Tissue clearing protocol

Agarose embedding
Pre-Acquisition with other modalities (e.g., MRI)

Microscope and Optical Design

Collection optics
Beam scanning system

Microscope objective swapping
Modality swapping (e.g., PS-OCT to confocal)

Various microscope modalities

Mechanical

Motorized sample stage
Tissue sectioning system

Slice collection
Immersion container

Sample holder

Acquisition control

Calibration procedures
Stage motion

Tissue detection
Mosaic path planning

Image acquisition
Tissue slicing

Focus depth optimization
Data management system

In-situ reconstruction method
Visualization and control interface

Acquisition cards for communication with computer

Reconstruction and Analysis

Preprocessing methods (illumination inhomogeneity compensation,
denoising, artifacts removal, attenuation compensation, and tissue

segmentation)
Tile registration

Tile stitching
Registration to a template

Brain parcellation and atlasing
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