
Titre:
Title:

Acceleration of step and linear discontinuous schemes for the 
method of characteristics in DRAGON5

Auteurs:
Authors:

Alain Hébert 

Date: 2017

Type: Article de revue / Article

Référence:
Citation:

Hébert, A. (2017). Acceleration of step and linear discontinuous schemes for the 
method of characteristics in DRAGON5. Nuclear Engineering and Technology, 
49(6), 1135-1142. https://doi.org/10.1016/j.net.2017.07.004

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/4938/

Version: Version officielle de l'éditeur / Published version 
Révisé par les pairs / Refereed 

Conditions d’utilisation:
Terms of Use: CC BY-NC-ND 

Document publié chez l’éditeur officiel
Document issued by the official publisher

Titre de la revue:
Journal Title:

Nuclear Engineering and Technology (vol. 49, no. 6) 

Maison d’édition:
Publisher:

Elsevier Korea LLC

URL officiel:
Official URL:

https://doi.org/10.1016/j.net.2017.07.004

Mention légale:
Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://doi.org/10.1016/j.net.2017.07.004
https://publications.polymtl.ca/4938/
https://doi.org/10.1016/j.net.2017.07.004


Technical Note

Acceleration of step and linear discontinuous schemes for the method

of characteristics in DRAGON5

Alain H�ebert
�Ecole Polytechnique de Montr�eal, P.O. Box 6079 Station “Centre-Ville”, Montr�eal, Qu�ebec H3C 3A7, Canada

a r t i c l e i n f o

Article history:

Received 21 June 2017

Accepted 7 July 2017

Available online 25 July 2017

Keywords:

Method of characteristics

Linear discontinuous source

Algebraic collapsing acceleration

Generalized minimal residual acceleration

method

DRAGON5 code

a b s t r a c t

The applicability of the algebraic collapsing acceleration (ACA) technique to the method of characteristics

(MOC) in cases with scattering anisotropy and/or linear sources was investigated. Previously, the ACA was

proven successful in cases with isotropic scattering and uniform (step) sources. A presentation is first made

of the MOC implementation, available in the DRAGON5 code. Two categories of schemes are available for

integrating the propagation equations: (1) the first category is based on exact integration and leads to the

classical step characteristics (SC) and linear discontinuous characteristics (LDC) schemes and (2) the second

category leads to diamond differencing schemes of various orders in space. The acceleration of these MOC

schemes using a combination of the generalized minimal residual [GMRES(m)] method preconditioned

with the ACA technique was focused on. Numerical results are provided for a two-dimensional (2D) eight-

symmetry pressurized water reactor (PWR) assembly mockup in the context of the DRAGON5 code.

© 2017 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

This paper is related to the application of the method of char-

acteristics (MOC) for solving the neutron transport equation [1].

This method iteratively solves the transport equation in terms of

the angular moments of regional fluxes by summation upon a

tracking. Solution of the characteristics form of the transport

equation is performed over each track as a function of a polynomial

approximation for the neutron source along this track. Most pro-

duction implementations of the MOC are based either on a

discontinuous flat-source spatial approximation [2e7] or on a

discontinuous linear-source spatial approximation [8e14] along

the tracks. We investigated a new class of linear characteristics

schemes along cyclic tracks for solving the transport equation for

neutral particles with scattering anisotropy. These algorithms rely

on step and linear discontinuous exact integration, as described in

[15,16]. These schemes are based on linear discontinuous co-

efficients that are derived through the application of approxima-

tions describing the mesh-averaged spatial flux moments in terms

of spatial source moments and of the beginning- and end-of-

segment flux values. The linear discontinuous characteristics

(LDC) scheme is inherently conservative, a property that facilitates

its practical implementation and the acceleration of its scattering

iterations in a production code such as DRAGON5 [17]. In this paper,

the focus is on the acceleration of the scattering iterations which

are required with the application of the MOC. Two acceleration

techniques are investigated: (1) the generalized minimal residual

[GMRES(m)] method [18] and (2) the algebraic collapsing acceler-

ation (ACA) method [4]. The application of these techniques was

demonstrated on a two-dimensional (2D) eight-symmetry pres-

surized water reactor (PWR) assemblymockup in the context of the

DRAGON5 code. It is shown that the acceleration remains effective

in spite of the introduction of scattering anisotropy and linear

sources.

2. Theory

A brief introduction of the MOC formalism is given. The

boundary conditions treatment along with the details on the iter-

ative strategy are not reported in the present paper but can be

found in [1]. The classical step characteristics (SC) and flat-source

diamond differencing (DD0) schemes are also presented in this

book. Emphasis is put on the characteristic form of the transport

equation which arises from the trajectory-based formulation of the

flux integration. The conservation principle is formulated within

this framework.

The backward characteristic form of the transport was obtained

in Section 3.2.1 of [1]. The one-speed and steady-state form of this

equation is written as:E-mail address: alain.hebert@polymtl.ca.
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d

ds
fðr þ s U;UÞ þ Sðr þ s UÞ fðr þ s U;UÞ ¼ Qðr þ s U;UÞ (1)

where r is the starting point of the particle, s is the distance trav-

elled by the particle on its characteristic, U is the direction of the

characteristic, S(r) is the value of the macroscopic total cross sec-

tion at r, 4(r,U) is the particle angular flux at r, and Q(r,U) is the fixed

source at r.

The spatial integration domain is partitioned into regions of

volume fVi; i ¼ 1; Ig, each of them characterized by uniform nuclear

properties and surrounded by boundary surfaces fSa;a ¼ 1;Lg. The
MOC is based on the discretization of Eq. (1) along each path of the

particle and on the integration of the flux contributions using

spatial integrals of the form:

Vifi ¼
Z

Vi

d3r

Z

4p

d2U fðr;UÞ

¼
Z

Y

d4T

Z

∞

�∞

ds cVi
ðT ; sÞ fðpþ sU;UÞ

(2)

where 4i is the average flux in region i and Y ¼ (T) is the tracking

domain.

A single characteristic T is determined by its orientation U and

its starting point p defined on a reference plane PU perpendicular

to T, as depicted in Fig. 1. The characteristics are selected in domain

Y ¼ 4p�PU which is characterized by an order-four differential

d4T ¼ d2U d2p. The local coordinate s defines the distance of point r

with respect to plane PU. Finally, the characteristic function

cVi
ðT; sÞ ¼ 1 if point p þ sU of characteristic T is located inside Vi,

and 0 otherwise.

The MOC requires knowledge of region indices Nk and segment

lengths [k describing the overlapping of characteristic T with the

domain. This information is written ðNk; [k; k ¼ 1;KÞwhere K is the

total number of regions crossed by T. It is important to note that

segment lengths [k are always defined in three-dimensions, even

for prismatic 2D geometries. The intersection points of a charac-

teristic with the region boundaries, and the corresponding angular

flux on these boundaries, are written:

rkþ1 ¼ rk þ [k U; k ¼ 1;K: (3)

2.1. The linear discontinuous characteristic assumption in space

A linear representation of the sources along characteristic T

based on an expansion in normalized Legendre polynomials is

introduced. This expansion is applied over segment [kðTÞ, as

pictured in Fig. 2. Its mathematical expression is:

Qðrk þ s U;UÞ ¼ Q
ð0Þ
k

ðUÞ þ 2
ffiffiffi

3
p �

s� [kðTÞ
2

�

Q
ð1Þ
k

ðUÞ; k ¼ 1;K

(4)

where

Q
ð0Þ
k

ðUÞ ¼ 1

[kðTÞ

Z

[kT

0

ds Qðrk þ s U;UÞ (5)

and

Q
ð1Þ
k

ðUÞ ¼ 2
ffiffiffi

3
p

[
3
kðTÞ

Z

[kT

0

ds

�

s� [kðTÞ
2

�

Qðrk þ s U;UÞ: (6)

Knowledge of the moments of the flux over segment [kðTÞ are
required in order to compute components of the source, Q

ð0Þ
k

ðUÞ
and Q

ð1Þ
k

ðUÞ. The moments of the segment-averaged fluxes are

defined as:

f
ð0Þ
k ðTÞ ¼ 1

[kðTÞ

Z

[kT

0

ds fðrk þ s U;UÞ (7)

and

f
ð1Þ
k ðTÞ ¼ 2

ffiffiffi

3
p

[
3
kðTÞ

Z

[kT

0

ds

�

s� [kðTÞ
2

�

fðrk þ s U;UÞ: (8)

Substitution of the linear source approximation Eq. (4) into the

characteristics form of the transport equation leads to:

d

ds
fðrk þ s U;UÞ þ SNk

fðrk þ s U;UÞ

¼ Q
ð0Þ
k

ðUÞ þ 2
ffiffiffi

3
p �

s� [kðTÞ
2

�

Q
ð1Þ
k

ðUÞ: (9)

Analytical solution of Eq. (9) is written:

fðrk þ s U;UÞ ¼ fðrk;UÞ e�s SNk þ
Q

ð0Þ
k

ðUÞ
SNk

�

1� e�s SNk

�

þ
ffiffiffi

3
p

Q
ð1Þ
k

ðUÞ
S2
Nk

h

2e�s SNk þ 2
�

s SNk
� 1

�

� SNk
[kðTÞ

�

1� e�s SNk

�i

: (10)

where fkðTÞ ¼ fðrk;UÞ.Fig. 1. Spatial integration domain.
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Using Eq. (7), it is possible to rewrite Eq. (2) as:

Vif
ð0Þ
i

¼
Z

Y

d4T
X

k

diNk
[kðTÞ f

ð0Þ
k ðTÞ (11)

where dij is the Kronecker delta function and where the summation

over k is performed over all the existing indices. All the character-

istics T are spanned in Eq. (11), but only those that effectively cross

region i contribute to the integral.We introduced a summation over

characteristics with index n � N, with N as the total number of

characteristics. Note that each track of the tracking object is used

twice as two characteristics, in Un and �Un directions.

Using the same approach that leads to Eq. (11), the volume of

region i is written:

4p Vi ¼
Z

Y

d4T
X

k

diNk
[kðTÞ: (12)

Eq. (12) is the numerical approximation used in MOC for the

numerical volumes. The effect of this approximation can be miti-

gated by renormalizing tracking in order to force the equality. Two

renormalization options are available, depending if the normali-

zation factors are function or not of the track directions.

Setting fkðTÞ≡fðrk;UÞ and fkþ1ðTÞ≡f ðrk þ [kðT U;UÞ , it is

possible towrite the propagation equations for theMOCwith linear

source approximation and anisotropic scattering as:

fkþ1ðTÞ ¼ AkðTÞ fkðTÞ þ BkðTÞ Q
ð0Þ
k

ðUÞ þ CkðTÞ [kðTÞ Q
ð1Þ
k

ðUÞ

f
ð0Þ
k ðTÞ ¼ 1

[kðTÞ
h

BkðTÞ fkðTÞ þ DkðTÞ Q
ð0Þ
k

ðUÞ

þ EkðTÞ [kðTÞ Q
ð1Þ
k

ðUÞ
i

and

f
ð1Þ
k ðTÞ ¼ 1

[kðTÞ2
h

FkðTÞ fkðTÞ þ GkðTÞ Q
ð0Þ
k

ðUÞ

þ HkðTÞ [kðTÞ Q
ð1Þ
k

ðUÞ
i

(13)

where the set of coefficients AkðTÞeHkðTÞ can take different values,

depending on the type of MOC approximation and on the magni-

tude of the optical path tkðTÞ. The set of coefficient corresponding

to the linear discontinuous characteristics (LDC) case with tkðTÞ � ε

is:

AkðTÞ ¼ e�tkðTÞ

BkðTÞ ¼ 1

SNk

�

1� e�tkðTÞ
�

CkðTÞ ¼
ffiffiffi

3
p

tkðTÞ SNk

�

2e�tkðTÞ þ tkðTÞ � 2þ tkðTÞ e�tkðTÞ
�

DkðTÞ ¼
[kðTÞ
SNk

 

1� 1� e�tkðTÞ

tkðTÞ

!

EkðTÞ ¼ �
ffiffiffi

3
p

tkðTÞ S2
Nk

�

2e�tkðTÞ þ tkðTÞ � 2þ tkðTÞ e�tkðTÞ
�

FkðTÞ ¼ �
ffiffiffi

3
p

tkðTÞSNk

�

2e�tkðTÞ þ tkðTÞ � 2þ tkðTÞ e�tkðTÞ
�

GkðTÞ ¼
ffiffiffi

3
p

tkðTÞS2
Nk

�

2e�tkðTÞ þ tkðTÞ � 2þ tkðTÞ e�tkðTÞ
�

GkðTÞ ¼
ffiffiffi

3
p

tkðTÞS2
Nk

�

2e�tkðTÞ þ tkðTÞ � 2þ tkðTÞe�tkðTÞ
�

HkðTÞ ¼
1

tkðTÞ2S2
Nk

h

12� 12e�tkðTÞ � 3tkðTÞ2 þ tkðTÞ3

� 3tkðTÞ2e�tkðTÞ � 12tkðTÞe�tkðTÞ
i

: (14)

Otherwise, in case of a small optical path, Taylor expansions of

the above relations are used.

Solution of Eq (13) over a finite track is straightforward. Each

track is travelled back and forth starting from the initial boundary

where f1ðTÞ or fKþ1ð�TÞ is set. This approach is simpler than the

algorithm proposed in [15], but leads to the same solution.

Solution of Eq. (13) over a cyclic track is based on the require-

ment that fKþ1ðTÞ ¼ f1ðTÞ where K is the total number of seg-

ments in all the subtracks constituting the track T. A recursion is

applied, as described in [16].

Fig. 2. A segment of a single characteristic.
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2.2. Determination of the spherical harmonics coefficients

Expressions of the segment-averaged fluxes f
ð0Þ
k ðTnÞ and f

ð1Þ
k ðTnÞ

are expanded in spherical harmonics. The uniform component of

the flux in direction Un for the track Tn is defined as:

f
ð0Þ
k ðTnÞ ¼

X

∞

[¼0

2[þ 1

4p

X

[

m¼�[

[þm even

f
m
[;k R

m
[
ðUnÞ (15)

and the linear component of the flux in direction Un for the track Tn
is defined from its Cartesian components as:

f
ð1Þ
k ðTnÞ ¼

X

∞

[¼0

2[þ 1

4p

X

[

m¼�[

[þm even

h

Vf
m
[;k,U

i

Rm
[
ðUnÞ: (16)

Here, important remarks should be made concerning Eqs. (15)

and (16). We are not assuming limited expansions for f
ð0Þ
k ðTnÞ

and f
ð1Þ
k ðTnÞ Eqs. (15) and (16) are introduced as a convenient way

to define the flux moments f
m
[;k and Vf

m
[;k that need to be evaluated

up to the order of the anisotropic source. Angular accuracy of the

flux is limited by the number of discrete angles used in the tracking,

not by a limited spherical harmonic expansion. Finally, we assume a

2D geometry, so that only even l þ m indices are used and so that

flux moments Vf
m
[;k are two-component vectors. The high-order

property of our characteristics scheme in space comes from the

introduction of Eq. (16).

Two conditions have to be fulfilled in order for the MOC scheme

to be inherently conservative: (1) the balance equation must be

imposed on each track; and (2) consistent spherical harmonic

moments must be defined for f
m
[;k and Vf

m
[;k in Eqs. (15) and (16).

This second condition is more difficult to reach for the LDC and DD1

schemes, due to the nonorthogonality of the spherical harmonic

basis U Rm
[
ðUÞ.

Eq. (15) is a plain spherical harmonic expansion. Its segment-

averaged coefficients are therefore written:

f
m
[;k ¼

Z

4p

d2U Rm
[
ðUÞ fð0Þ

k ðTnÞ ; [ � L (17)

and can be collapsed into region-averaged spherical harmonic

moment fm
[;Nk

, where Nk is the region index containing segment k.

The determination of coefficients Vfm
[;Nk

≡col

	

v
vxf

m
[;Nk

; v
vyf

m
[;Nk




is

now presented. Unfortunately, the trial functions U Rm
[
ðUÞ are not

mutually orthogonal. Off-diagonal contributions need to be taken

into account. As presented in [15], the spherical harmonics co-

efficients jm
[;Nk

are a linear combination of the slope components

Vfm
[;Nk

. The MOC procedure proceed in successive steps:

(1) Based on Eq. (17), sum the angular neutron flux segment-

averaged contributions over volumes Vi and smear these contri-

butions over computational regions. This relation is written:

1

4p
fm
[;i ¼

PN
n¼1 un

P

k

diNk
[kðTnÞ f

ð0Þ
k ðTnÞ Rm[ ðUnÞ

PN
n¼1 un

P

k

diNk
[kðTnÞ

(18)

where the segment-averaged flux f
ð0Þ
k ðTnÞ can be evaluated from

the propagation Eq. (13). In the context of the LDC and DD1

schemes, Eq. (18) is still used, in conjunctionwith Eq. (13). The basic

relation allowing MOC to construct the slope-related moments 4m
[;i

is obtained from a relation similar to Eq. (17), using trial functions

Rm
[
ðUnÞ Un, and written:

4m
[;k ¼

Z

4p

d2U U Rm
[
ðUÞ fð1Þ

k ðTnÞ: (19)

Smearing these contributions over computational regions, we

obtain:

1

4p
jm
[;i ¼

PN
n¼1 un

P

k

diNk
[kðTnÞ fðTnÞ Rm[ ðUnÞ Un

PN
n¼1 un

P

k

diNk
[kðTnÞ

(20)

where smeared values jm
[;i are evaluated up to order Lþ2.

(2) The spherical harmonics expansion of the flux gradient on

volume i is based on Eq. (16):

f
ð1Þ
i

ðUÞ ¼
X

∞

[
0¼0

2[0 þ 1

4p

X

[
0

m0¼�[
0

[
0þm0 even

h

Vfm0

[
0;i,U

i

Rm
0

[
0 ðUÞ: (21)

We multiply both sides by URm
[
ðUÞ and integrates over 4p:

jm
[;i ¼

X

∞

[
0¼0

2[0 þ 1

4p

X

[
0

m0¼�[
0

[
0þm0 even

Z

4p

d2U U Rm
[

Uð Þ

�
�

Vfm0

[
0;i,U

�

Rm
0

[
0 Uð Þ (22)

where

jm
[;i ¼

Z

4p

d2U U Rm
[
ðUÞfð1Þ

i
ðUÞ: (23)

Eq. (22) is the relation between slope components Vfm
[;i and

smeared values jm
[;i obtained from Eq. (20).

(3) Slope components Vfm
[;i in each region i are obtained by

inverting Eq. (22), which can be rewritten as [15]:

jm
[;i ¼

X

Lþ2

[
0¼0

2[0 þ 1

4p

X

[
0

m0¼�[
0

[
0þm0 even

Mm;m0

[;[0
,Vfm0

[
0;i (24)

where [�Lþ2 and where the dyadic coefficients are written:

Mm;m0

[;[0
¼
Z

4p

d2U ðU5UÞ Rm
[
ðUÞ Rm0

[
0 ðUÞ: (25)

Only a 2 � 2 submatrix of Mm;m0

[;[0
is worthwhile to analyze 2D

geometries, based on the following definition of:

U5U ¼
"

R11ðUÞR11ðUÞ R11ðUÞR�1
1 ðUÞ

R11ðUÞR�1
1 ðUÞ R�1

1 ðUÞR�1
1 ðUÞ

#

: (26)

Calculation of coefficients Mm;m0

[;[0
up to order P3 is presented in

[15]. In the simple case of isotropic scattering sources, moments j0
0;i

are a linear combination of slope components Vf0
0;i and Vfm

2;i. After
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inversion of Eq. (24), calculation of Vf0
0;i requires knowledge of j0

0;i

and jm
2;i. This procedure is required for making the LDC and DD1

schemes inherently conservative.

We should also remember an important issue presented in a

recent study [15]. There is an inherent singularity with the linear

coefficients of Eq. (24) at each Legendre order with [ > 0. It is

therefore not possible to determine the moments of the flux

gradient Vfm
[;i by performing a simple inversion of Eq. (24). The

approach proposed in [15] consists of adding heuristic equations to

the linear system and to perform a pseudoinversion of the resulting

rectangular matrix. We have been able to find heuristic equations

up to Vfm
[;i order.

(4) The last operation consists to compute the scattering sources

for the next scattering iteration. An assumption is made on the

anisotropy order L of the scattering sources. The uniform source in

direction Un is defined as:

Q
ð0Þ
Nk

ðUnÞ ¼
X

L

[¼0

2[þ 1

4p

X

[

m¼�[

[þm even

Qm
[;Nk

Rm
[
ðUnÞ: (27)

The linear source in direction Un is defined from its Cartesian

components as:

Q
ð1Þ
Nk

ðUnÞ ¼
X

L

[¼0

2[þ 1

4p

X

[

m¼�[
[þm even

�

VQm
[;Nk

,Un

�

Rm
[
ðUnÞ (28)

The spherical harmonic moments of the sources are expressed

as a function of fixed sources Sm
[;i and scattering information as:

Qm
[;i ¼ Sm

[;i þ Ss;[;i f
m
[;i (29)

and

VQm
[;i ¼ VSm

[;i þ Ss;[;iVf
m
[;i : (30)

2.3. Synthetic acceleration

The particle source distribution Q(r,U) appearing in the right-

hand side of the transport Eq. (1) is written in terms of the

within-group scattering reaction rate using:

Qðr;UÞ ¼
X

L

[¼0

2[þ 1

4p

X

[

m¼�[

�

Sw;[ðrÞ fm
[
ðrÞ þ Q⋄m

[
ðrÞ
�

Rm
[
ðUÞ (31)

where Sw;[ðrÞ is the [-th Legendre moment of the macroscopic

within-group scattering cross section, Fm
[
ðrÞ is a spherical har-

monic component of the flux and Q⋄m
[

ðrÞ is a spherical harmonic

component of the source representing other contributions such as

fission and out-of-group scattering rates. Scattering source itera-

tions are always required with the MOC. Introducing an iteration

index (k), the basic scattering source iterative scheme is written:

Fig. 3. Description of the AIC assembly benchmark. The dimensions are given in cm. AIC, silvereindiumecadmium.
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d

ds
fðkþ1Þðr þ s U;UÞ þ Sðr þ s UÞfðkþ1Þðr þ s U;UÞ

¼
X

L

[¼0

2[þ 1

4p

X

[

m¼�[

h

Sw;[ðr þ s UÞfm;ðkÞ
[

ðr þ s UÞ

þ Q⋄m
[

ðr þ s UÞ
i

Rm
[
ðUÞ (32)

where F
m;ðkÞ
[

ðrÞ are the spherical harmonic flux component

computed with the MOC at the (k)-th iteration.

As pointed out in [19], the fixed-point convergence of Eq. (32)

becomes difficult with large domains or in the presence of purely

scatteringmedia as the scattering ratio approaches one. In this case,

Alcouffe [19] proposed a preconditioning known as synthetic ac-

celeration, based on the following scheme:

d

ds
fðkþ1=2Þðr þ s U;UÞ þ Sðr þ s UÞfðkþ1=2Þðr þ s U;UÞ

¼
X

L

[¼0

2[þ 1

4p

X

[

m¼�[

�

Sw;[ðr þ s UÞfm; kð Þ
[

ðr þ s UÞ

þ Q⋄m
[

ðr þ s UÞ
�

Rm
[

Uð Þ

(33)

U,Vdfðkþ1=2Þðr;UÞ þ S rð Þdfðkþ1=2Þðr;UÞ

� 1

4p
Sw;0 rð Þdf0;ðkþ1=2Þ

0 rð ÞRm
[

Uð Þ

¼ 1

4p
Sw;0 rð Þ

h

f
0;ðkþ1=2Þ
0 rð Þ � f

0; kð Þ
0 rð Þ

i

Rm
[

Uð Þ (34)

and

4 kþ1ð Þðr;UÞ ¼ 4ðkþ1=2Þðr;UÞ þ d4ðkþ1=2Þðr;UÞ: (35)

In the present work, Eq. (34) is a simplified transport equation

with scattering isotropy and uniform (flat) sources. Moreover, we

have chosen to solve this equation with the Algebraic Collapsing

(AC) method, as presented in [4] and Section 3.10.3 of [1]. This

choice is similar to the approach proposed by Alcouffe [19], con-

sisting of replacing Eq. (34) by a form of the transport equation that

is simpler to solve. In his work, Alcouffe proposed to replace Eq.

(34) with a compatible diffusion equation, leading to the diffusion

synthetic acceleration (DSA) scheme. A synthetic acceleration

approach based on the AC method to solve Eq. (34) has been pro-

posed and validated in the past, but only in cases where Eq. (33) is

solved with the MOC with scattering isotropy and uniform (flat)

sources [20]. The main contribution of this paper is to validate the

use of a synthetic acceleration approach based on the ACmethod in

cases with anisotropic scattering and linear sources.

3. Results

The SC and LDC schemes with scattering anisotropy have been

implemented in the DRAGON5 lattice code for 2D problems. These

implementations were validated on a set of simple few-group

benchmarks in fundamental mode condition (i.e., with reflective

Table 1

MOC results for the AIC assembly benchmark with scattering anisotropy. Step

characteristic (SC) scheme.a

Submesh Ntot keff Dkeff
(pcm)

εmax

(%)

ε

(%)

CPU

(s)

1 þ 1 513 0.908298 �654.1 2.35 0.54 2.4

2 þ 4 3,978 0.913206 �163.3 0.60 0.16 7.0

3 þ 6 9,009 0.914373 �46.6 0.24 0.06 10.4

4 þ 8 15,759 0.914882 4.3 0.20 0.06 17.4

AIC, silvereindiumecadmium; MOC, method of characteristics; SC, step

characteristic.
a Reference keff ¼ 0:914839.

Table 2

MOC results for the AIC assembly benchmark with scattering anisotropy. Linear

discontinuous characteristic (LDC) scheme.a

Submesh Ntot keff Dkeff
(pcm)

εmax

(%)

ε

(%)

CPU

(s)

1 þ 1 1,539 0.914345 �47.3 0.87 0.11 6.8

2 þ 4 11,934 0.914397 �44.2 0.25 0.08 19.1

AIC, silvereindiumecadmium; LDC, linear discontinuous characteristic; MOC,

method of characteristics.
a Reference keff ¼ 0:914839. CPU stands for Central processing unit time.

Fig. 4. Acceleration strategies for the MOC with SC scheme. Linear scattering anisotropy is present. ACA, algebraic collapsing acceleration; GMRES, generalized minimal residual;

MOC, method of characteristics; SC, step characteristics.
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boundary conditions). We have performed convergence studies

relative to three variants of the method of characteristics, namely

the SC and LDC schemes, and with respect to increasing mesh

refinement of the original Cartesian mesh. Note that our imple-

mentation of the method of characteristics is also compatible with

unstructured meshes.

Statistics will be given for keff and absorption rate distribution

accuracies. In all tables, Ntot is the total number of unknowns per

energy group. Memory requirements are proportional to Ntot , as no

matrices need to be stored. In all cases studied, a reference solution

was established from a spatially converged calculation. Reference

absorption rates R*a;i of assembly iwere obtained with the following

formula:

R*a;i ¼
1

Vi

Z

Vi

d3r½SðrÞ � SsðrÞ�fðrÞ (36)

where SsðrÞ is the scattering cross section.

These reaction rates are then compared with data from less

accurate calculations in order to obtain maximum εmax and average

ε errors.

3.1. The silvereindiumecadmium assembly benchmark

We investigated the application of the MOC in fundamental

mode condition, focusing on specular boundary conditions

Fig. 6. Acceleration strategies for the MOC with SC scheme. Case with scattering isotropy. ACA, algebraic collapsing acceleration; GMRES, generalized minimal residual; MOC,

method of characteristics; SC, step characteristics.

Fig. 5. Acceleration strategies for the MOC with LDC scheme. Linear scattering anisotropy is present. ACA, algebraic collapsing acceleration; GMRES, generalized minimal residual;

LDC, linear discontinuous characteristics; MOC, method of characteristics.
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obtained with the introduction of cyclic characteristics. We have

constructed a four-group Cartesian mockup of a production eight-

symmetry PWR assembly with five silvereindiumecadmium

(AIC) pins inserted. The corresponding geometry is depicted in

Fig. 3. This benchmark retains many characteristics of a production

assembly with more energy groups and with cylindrical pincells.

The reactivity discrepancy between a P0 and a P1 scattering source

is of the order of ~2380 pcm. This discrepancy is reduced to ~370

pcm if a transport correction is applied to the P0 scattering source.

Most lattice calculations are performed with a transport-corrected

P0 scattering source. In this case, an agreement with Monte Carlo

better than 370 pcm is due to error compensation. This benchmark

is therefore a good candidate for verifying both linear discontin-

uous and scattering anisotropy implementations of the neutrons

sources in the MOC and for testing the effectiveness of the accel-

eration techniques.

The MOC method with SC and LDC schemes was implemented

in DRAGON5 as described in the previous section. The SALT:

module in DRAGON5 was used to generate a cyclic tracking with

option “TSPC 12 25.0” set to select the number of planar angles and

the number of tracks per cm. The cyclic tracks are computed on the

eight-symmetry assembly, without unfolding the triangular

domain. The reference solution is a DD2 approximation, with S18
level-symmetric quadrature and submesh ¼ 2 þ 4. (see Tables 1

and 2)

The implementation of ACA and GMRES(m) acceleration stra-

tegies were implemented in DRAGON5 as described in Section

3.10.3 of [1]. These strategies were applied to the four-group AIC

benchmark in order to determine their effectiveness in the pres-

ence of scattering anisotropy and linear sources. The percent ac-

curacy on the neutron flux in the fourth energy group is depicted in

Figs. 4 and 5, corresponding to the step and linear discontinuous

characteristic schemes, respectively. As expected, we observed a

small decrease in effectiveness of the ACA method, if we compared

Fig. 4 to Fig. 6 obtained for a case with scattering isotropy. The

GMRES(m) effectiveness is not affected by scattering anisotropy

and linear sources.

4. Conclusion

The implementation of the MOC in DRAGON5 is based on low

and high order differencing schemes along finite or cyclic charac-

teristics. Two foundation papers were dedicated to implementa-

tions of the MOC related to finite and cyclic characteristics,

respectively [15,16]. This conference contribution completes the

two foundation papers to cover issues related to acceleration of

scattering iterations in the presence of scattering anisotropy and

linear discontinuous sources. We have shown that acceleration

techniques such as ACA and GMRES(m) remain effective in these

conditions, in spite of a small decrease in ACA effectiveness. The

resulting MOC implementation is therefore a candidate for

performing accurate lattice calculations in a code similar to

DRAGON5.
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