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DÉPARTEMENT DE GÉNIE MÉCANIQUE

ÉCOLE POLYTECHNIQUE DE MONTRÉAL
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ANALYSE ET CARACTÉRISATION D’INTERACTIONS FLUIDE-STRUCTURE

INSTATIONNAIRES EN GRANDS DÉPLACEMENTS.

présentée par : CORI JEAN-FRANÇOIS
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disponibilité et la confiance qu’ils m’ont temoignée. Leurs conseils, leurs qualités scientifiques

et humaines m’ont permis de travailler dans les meilleures conditions pour réaliser ce travail
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RÉSUMÉ

Le battement des ailes d’un oiseau ou le mouvement de nageoires d’un poisson produisent

l’un des plus complexe et efficace moyen de propulsion qu’on puisse trouver dans la nature.

Comprendre les processus physiques impliqués est un grand et beau défi, dont la portée est

considérable, notamment dans le domaine grandissant des micro-drones (MAV). La poussée

et la portance sont induites par un profil d’aile oscillant grâce à des phénomènes complexes

d’interaction fluide-structure (IFS) instationnaires. De plus, le comportement aéroélastique

d’un profil flexible peut-être grandement modifié par les grands déplacements de la struc-

ture causés par un couplage fort avec le fluide environnant. Le domaine des interactions

fluide-structure possède en fait un champ d’applications beaucoup plus large : du monde des

transports à celui du génie nucléaire, de l’aéronautique au génie civil, de la biomécanique à la

microélectronique et de la propulsion à l’extraction de puissance. Reproduire et comprendre

ces interactions entre deux comportements fortement non-linéaires requièrent l’assistance de

la puissance de calcul informatique via la CFD (Computational Fluid Dynamics).

Même si une littérature grandissante est désormais disponible, beaucoup de travail reste

encore à accomplir pour simuler correctement et précisément les interactions fluide-structure

instationnaires fortement couplées. A l’échelle des bas nombres de Reynolds, les résultats

classiques des études aéronautiques portant sur des ailes fixes ne sont plus applicables. De

plus, les structures très flexibles (comme les membranes animales) introduisent de grands

déplacements avec des non-linéarités géométriques. Enfin, pour étudier correctement les

caractéristiques propulsives d’un profil oscillant, il est nécessaire de prendre en compte son

déplacement induit par la poussée dans les simulations numériques.

Le but du travail présenté est de développer un cadre numérique basé sur la CFD

pour simuler les phénomènes d’interaction fluide-structure impliqués dans la propulsion

ou l’extraction de puissance d’un profil flexible oscillant dans un écoulement visqueux

incompressible.

La méthode numérique proposée repose sur une formulation monolithique directe couplée

à des intégrateurs en temps d’ordres élevés. Pour décrire les équations, on utilise une

formulation d’Euler-Lagrange arbitraire (ALE) conçue pour satisfaire la loi de conservation

géométrique (GCL) et ainsi garantir les ordres élevés de précision en temps des intégrateurs,

même sur des domaines fluides se déformant. Les équations visqueuses incompressibles de
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Navier-Stokes pour le fluide, hyperélastiques de Saint-Venant Kirchhoff pour la structure,

de Newton pour la masse ponctuelle et d’équilibre pour les termes de couplage forment un

large système monolithique à résoudre. L’approche IFS implicite monolithique utilise des

nœuds cöıncidents sur les interfaces fluide-structure afin que les efforts, les déplacements et

les vitesses soient évaluées au même endroit en un temps identique. Le problème global est

résolu de manière implicite grâce à une approche éléments finis de Newton-Raphson utilisant

un pseudo-solide. Des intégrateurs en temps implicites de Runge-Kutta (IRK) d’ordres

élevés (jusqu’au 5e ordre) ont été implémentés pour améliorer la précision et réduire le coût

du calcul numérique. Dans le contexte de problèmes raides d’IFS, la présente approche

implicite à pas de temps unique est une alternative originale aux formulations traditionnelles

à pas multiples ou explicites qui souffrent parfois d’un manque de stabilité.

La vérification du code numérique s’est faite grâce à trois études de convergence selon

le pas de temps pour un profil rigide oscillant avec un domaine fluide en déformation,

pour un problème de vibrations induites par l’écoulement d’une lamelle flexible et pour un

profil oscillant autopropulsé. Ces trois études ont montré la stabilité de l’approche proposée

même avec de grands pas de temps, l’absence d’oscillations parasites sans ajout de raideur

numérique et la conservation de la précision théorique des schémas IRK.

On a appliqué cette approche numérique performante à trois applications intéressantes

suite à une analyse dimensionnelle détaillée permettant d’obtenir leurs paramètres ca-

ractéristiques. Premièrement, on a étudié les caractéristiques vibratoires d’un problème d’in-

teraction fluide-structure très documenté : une lamelle flexible fixée derrière un cylindre carré

rigide. Les résultats obtenus se comparent favorablement avec les précédentes études. De plus,

la précision des schémas d’intégration IRK (même pour le champ de pression des écoulements

incompressibles), leur stabilité inconditionnelle et leur nature non-dissipative ont révélé de

nouveaux modes structurels dans les hautes fréquences, faiblement couplés avec l’écoulement.

Dans une seconde application, les caractéristiques d’extraction de puissance et de propulsion

de profils oscillants rigide et flexible ont été explorées. L’étude des performances d’extraction

de puissance d’une aile rigide (NACA0015) oscillante a donné des résultats en très bon accord

avec ceux trouvés dans la littérature. Une seconde étude paramétrique a permis d’identifier

de grandes efficacités de propulsion avec un mouvement optimal du profil. Une flexibilité

optimale semble également améliorer l’efficacité d’extraction de puissance. Enfin, une étude

sur l’autopropulsion d’un profil oscillant a donné des résultats préliminaires et a ouvert une

nouvelle voie de simulation, plus proche des conditions réelles, pour étudier les performances

de propulsion.
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ABSTRACT

Flapping wings for flying and oscillating fins for swimming stand out as the most

complex yet efficient propulsion methods found in nature. Understanding the phenomena

involved is a great challenge generating significant interests, especially in the growing

field of Micro Air Vehicles. The thrust and lift are induced by oscillating foils thanks to a

complex phenomenon of unsteady fluid-structure interaction (FSI). Moreover, the aeroelastic

behaviour of a flexible foil may be modified by the large structural displacements caused by

a strong coupling with the surrounding flow. The fluid-structure interaction field is actually

much wider and intensively studied in a large range of applications : nuclear engineering,

aeronautics, power harvesting, civil engineering, biomechanics or microelectronics. This

interaction of two strong nonlinear behaviors requires the help of the Computational Fluid

Dynamics (CFD) to reproduce and improve our understanding of FSI phenemenon.

Even if an increasing body of literature is now available, much research needs to be

done to properly and accurately simulate unsteady fluid-structure interactions with a strong

coupling. In the low Reynolds numbers scale, classical aeronautics results with fixed wings

are not applicable. Moreover, highly flexible structures (such as biological fins) induce large

displacements with geometrical non-linearities. Finally, the thrust generated by the oscillat-

ing airfoils requires the simulation of the induced forward motion of this self-propulsive device.

The aim of the dissertation is to develop an efficient CFD framework for simulating

the FSI process involved in the propulsion or the power extraction of an oscillating flexible

airfoil in a viscous incompressible flow.

The numerical method relies on direct implicit monolithic formulation using high-order

implicit time integrators. We use an Arbitrary Lagrangian Eulerian (ALE) formulation of

the equations designed to satisfy the Geometric Conservation Law (GCL) and to guarantee

that the high order temporal accuracy of the time integrators observed on fixed meshes is

preserved on ALE deforming meshes. Hyperelastic structural Saint-Venant Kirchhoff model,

viscous incompressible Navier-Stokes equations for the flow, Newton’s law for the point

mass and equilibrium equations at the interface form one large monolithic system. The

fully implicit FSI approach uses coincidents nodes on the fluid-structure interface, so that

loads, velocities and displacements are evaluated at the same location and at the same time.

The problem is solved in an implicit manner using a Newton-Raphson pseudo-solid finite
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element approach. High-order implicit Runge-Kutta time integrators are implemented (up

to 5th order) to improve the accuracy and reduce the computational cost. In this context of

stiff interaction problems, the highly stable fully implicit one-step approach is an original

alternative to traditional multistep or explicit one-step finite element approaches.

The methodology has been verified with three different test-cases. Thorough time-step

refinement studies for a rigid oscillating airfoil on deforming meshes, for flow induced

vibrations of a flexible strip and for a self-propulsed flapping airfoil indicate that the

stability of the proposed approach is always observed even with large time steps, spurious

oscillations on the structure are avoided without any damping and the high order accuracy

of the IRK schemes is maintained.

We have applied our powerful FSI framework on three interesting applications, with a

detailed dimensional analysis to obtain their characteristic parameters. Firstly, we have

studied the vibrational characteristics of a well-documented fluid-structure interaction case :

a flexible strip fixed behind a rigid square cylinder. Our results compare favorably with

previous works. The accuracy of the IRK time integrators (even for the pressure field of

incompressible flow), their unconditional stability and their non-dissipative nature produced

results revealing new, never previously reported, higher frequency structural forces weakly

coupled with the fluid. Secondly, we have explored the propulsive and power extraction

characteristics of rigid and flexible flapping airfoils. For the power extraction, we found an

excellent agreement with literature results. A parametric study indicates the optimal motion

parameters to get high propulsive efficiencies. An optimal flexibility seems to improve power

extraction efficiency. Finally, a survey on flapping propulsion has given initial results for a

self-propulsed airfoil and has opened a new way of studying propulsive efficiency.



x

TABLE DES MATIÈRES
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5.3 Profil autopropulsé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.3.1 Description du cas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
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6.3 Travaux et améliorations futures . . . . . . . . . . . . . . . . . . . . . . . . . 170
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Figure 3.6 Matrice globale pour le cas d’un profil rigide autopropulsé . . . . . . 92
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Figure 5.31 Déplacement xmp (en corde) des deux profils de masse m = 0.30 et

m = 1.20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Figure A.1 Fonction de raccord C2. . . . . . . . . . . . . . . . . . . . . . . . . . 187
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ΓN frontière du domaine où on impose des conditions

de Neumann
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CHAPITRE 1

INTRODUCTION

Les détails font la perfection et la perfection n’est pas un détail.

Léonard de Vinci

Improbable mélange de légèreté, de puissance et de contrôle, l’envolée d’un oiseau est un

spectacle extraordinaire que les hommes tentent d’imiter depuis d’innombrables générations.

C’est le mythe d’Icare. Ce n’est toutefois qu’à la fin du XIXe siècle qu’un homme a pu voler 1,

en la personne d’Otto Lilienthal à l’aide de ses nombreux planeurs. Ainsi, c’est essentiellement

la phase de vol plané qui est la source de l’aviation telle qu’on la connait aujourd’hui. En

ajoutant des moteurs à ces ”planeurs” dont les ailes fixes constituent d’énormes surfaces

portantes, on a développé des machines volantes de plus en plus performantes reposant sur

ce simple principe, de l’avion des frères Wright en 1903 jusqu’à l’airbus A380 en 2005.

Bien que les battements d’ailes d’un oiseau, tout comme le mouvement des nageoires

d’un poisson, fassent partie des systèmes de propulsion les plus efficaces qu’on puisse trouver

dans la nature, cette forme de vol a donc été laissée de côté jusqu’à maintenant au profit de

différents types de moteurs. En effet, à l’échelle d’un frère Wright (et à plus forte raison à celles

des 550 personnes dans un A380), il parâıt impensable de propulser un avion avec des ailes

de plusieurs mètres de long en battement. Imaginez une mouche de 80 mètres d’envergure !

De plus, à ces échelles, les rendements des moteurs à hélices ou à réactions sont très bons.

Depuis quelques années pourtant, les progrès de la miniaturisation ont permis la concep-

tion d’avions sans pilote de la taille d’un oiseau, appelés micro-drones. Destinés à la sur-

veillance (militaire et civile), leur charge utile ainsi que leurs dimensions sont très réduites.

A cette échelle, le rendement d’un moteur décroit fortement alors que la nature nous montre

l’efficacité de la propulsion par des ailes battantes. L’utilisation d’ailes générant à la fois de la

portance et une poussée grâce à leur mouvement semble être une voie des plus prometteuses.

Il est donc très intéressant de comprendre les phénomènes impliqués dans ce mode de

propulsion. Toutefois, cela reste encore un grand défi. Certes, chacun d’entre nous a pu

observer des centaines de fois le vol d’un oiseau dans le ciel, les déplacements circulaires

d’un poisson dans un aquarium et même expérimenter soi-même la propulsion marine en se

jetant dans une piscine. Mais voir une mouche se poser sur son pain ne signifie pas qu’on sait

comment elle arrive à se déplacer aussi vite sans qu’on puisse l’attraper ! De plus, à cause

1. Les frères Montgolfier ont toutefois pu s’élever dans les airs dès 1783 à bord de leur engin ”plus léger

que l’air”.
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de la grande différence d’échelle, les résultats des études aéronautiques classiques portant

sur des ailes d’avions fixes sont inutiles ici, les caractéristiques aérodynamiques (portance,

trâınée) étant bien différentes. Plus délicat encore, les forces de portance et de poussée sont

ici produites par le battement des ailes (non-fixes) sur le fluide environnant, on parle alors

d’interaction fluide-structure (IFS) ou plus précisément d’aéroélasticité. A l’inverse le fluide

ainsi perturbé va agir sur la structure des ailes dont les déformations et les déplacements

seront d’autant plus forts que sa flexibilité sera grande. Les petites dimensions des micro-

drones ainsi que leur faible poids contribuent à accroitre fortement la flexibilité des ailes tout

comme celles des oiseaux, les palmes d’un plongeur ou les nageoires des poissons. On fait

alors face à un phénomène complexe de couplage fort qui altère les performances de l’aile

déformée, bien différentes de celles du profil non-déformé.

Plus généralement, on parle d’IFS lorsqu’un solide est en présence d’un fluide ou du moins

lorsque les mouvements de l’un influencent les déplacements de l’autre. Les domaines d’ap-

plication concernés sont donc extrêmement variés, du monde des transports à celui du génie

nucléaire, de l’aéronautique au génie civil et de la biomécanique à la microélectronique. C’est

pourquoi les problèmes d’interactions fluide-structure suscitent depuis des années un intérêt

croissant en ingénierie et deviennent de plus en plus incontournables. Toutefois, les comporte-

ments non-linéaires des fluides et des solides complexes soumis à de grands déplacements ainsi

que la déformation des interfaces induisent de nombreuses difficultés à surmonter. Il est donc

clair que la résolution analytique de tels problèmes est impossible. Seules des expérimentations

minutieuses et l’utilisation de simulations numériques complexes par ordinateur peuvent re-

produire de tels problèmes et en augmenter notre compréhension.

Dans l’optique de comprendre et de contrôler ces processus d’extraction de puissance et de

propulsion grâce à des profils flexibles oscillants, ce présent projet de recherche se concentre

sur la simulation numérique des phénomènes d’interaction fluide-structure entre un fluide

visqueux et incompressible et une structure en grands déplacements. L’étude s’appuie donc

en grande partie sur la mécanique des fluides assistée par ordinateur ou CFD (Computational

Fluid Dynamics) qui a atteint un niveau de maturité considérable. De même la modélisation

éléments finis des structures donne depuis bien longtemps d’excellents résultats. En revanche,

le couplage entre ces deux disciplines est quelque chose de beaucoup plus récent et ouvre

la porte a de nombreuses améliorations avec en point de mire le contrôle de phénomènes

d’interactions fluide-structure afin d’améliorer les efficacités des profils oscillants.

Le projet présenté ici se trouve donc dans la continuité de ce qui se fait en IFS

et propose d’apporter une contribution nouvelle à l’analyse de phénomènes d’interactions

fluide-structure dans la perspective de simuler numériquement des processus d’extraction

de puissance d’un écoulement fluide et de propulsion grâce à un profil flexible en grands
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déplacements. On s’appuiera ainsi sur l’approche monolithique d’Etienne[5, 6] pour traiter

les phénomènes d’interactions fluide-structure instationnaires. On devra alors développer les

outils nécessaires à la simulation numérique d’un profil oscillant en grands déplacements,

améliorer la précision et la rapidité des algorithmes de calcul des phénomènes d’IFS insta-

tionnaires, vérifier et valider l’approche adoptée et l’appliquer à une large gamme de mouve-

ment de profils flexibles oscillants en grands déplacements afin de qualifier et de quantifier

les phénomènes mis en jeux.

Ce mémoire comporte 5 chapitres. Pour commencer, au chapitre 2, une revue bibliogra-

phique permet de replacer le présent travail dans le contexte des réalisations antérieures et des

recherches actuelles ainsi que de souligner les diverses voies restant à explorer. Cela permet de

fixer le but et les objectifs de cette étude. Le chapitre 3 présente l’ensemble de la méthodologie

mise en place pour ce projet de recherche. Tout d’abord, une analyse dimensionnelle générale

des problèmes d’interaction fluide-structure est menée de manière détaillée. On expose en-

suite la modélisation mathématique du problème fluide-solide constituée des équations pour le

fluide, pour le solide, pour le couplage fluide-solide et pour la déformation du domaine fluide.

Enfin, la technique d’intégration en temps utilisée est décrite. La vérification et la validation

du code présentées au chapitre 4 se composent d’une vérification des schémas d’intégration en

temps, d’une étude comparative avec des données numériques de résultats obtenus pour un

exemple d’extraction de puissance par un profil oscillant et d’une validation de la modélisation

des interactions fluide-structure. Le code ainsi vérifié et validé, on expose au chapitre 5 les

résultats obtenus pour des exemples d’interaction fluide-structure en vibration, en extraction

de puissance et en propulsion. On termine naturellement ce mémoire en exposant les conclu-

sions et les voies restant à explorer par de futurs travaux sur les phénomènes d’interaction

fluide-structure instationnaires, notamment leur optimisation et contrôle.
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CHAPITRE 2

REVUE DE LITTÉRATURE

Afin de situer notre travail par rapport à l’état des recherches actuelles et de déterminer

les voies restant à explorer, il s’avère essentiel de se baser sur une revue de littérature cri-

tique et pertinente. Hormis certains travaux précurseurs, souvent expérimentaux ou basés

sur des théories analytiques, on concentrera cette revue sur les études les plus récentes afin

de déterminer l’avancement actuel des connaissances. En effet, malgré d’énormes progrès, la

simulation, l’analyse et la caractérisation des interactions fluide-structure instationnaires (à

bas Reynolds) restent aujourd’hui encore incomplètes comme le soulignent Shyy et al. [7]

dans l’introduction de leur revue de littérature sur l’utilisation des profils oscillants pour les

micro-drones (MAV) datant du mois d’août 2008. Ceci est d’autant plus vrai lorsqu’on super-

pose un mouvement imposé de battement d’ailes, une déformation en grands déplacements

due à la flexibilité de la structure et un mouvement libre lorsqu’une force de poussée est

produite. Cette superposition de complexités posent de tous nouveaux défis qui ne se re-

trouvent que dans une littérature très récente, mais toutefois grandissante à cause de leur

large champ d’applications. Notamment, l’étude des oiseaux nous montre un parfait exemple

d’aérodynamique instationnaire avec des ailes flexibles à géométrie variable s’adaptant rapi-

dement aux conditions de vol pour se propulser.

Ce chapitre exposera ainsi l’état des connaissances dans les trois domaines suivants :

l’analyse et la caractérisation de profils oscillants à bas Reynolds, les interactions fluide-

structure en grands déplacements et enfin l’intégration en temps des phénomènes instation-

naires. Ceci nous permettra de souligner les voies restant encore à explorer : amélioration

des modèles numériques, généralisation des approches IFS, utilisation de profils flexibles en

grands déplacements et développement de schémas d’intégration en temps plus efficaces.

2.1 Profils oscillants

En 1982, McCroskey [8] faisait un état des lieux des recherches concernant les écoulements

instationnaires autour des profils aérodynamiques. C’était un tout nouveau champ d’ex-

ploration pour la simulation, ayant alors pour but la réduction des effets indésirables de

phénomènes comme les vibrations, le flottement (flutter) ou le tremblement (buffeting) des

ailes d’avion. Ces phénomènes instationnaires, néfastes et non mâıtrisés, devaient alors être

évités ou du moins réduits pour améliorer les performances des avions.
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Pourtant, en parallèle, McKinney et DeLaurier voyaient déjà les avantages potentiels de ces

phénomènes instationnaires, en mettant volontairement un profil en mouvement pour extraire

l’énergie du fluide qui l’entoure [9], c’est alors du flottement ”avantageux”. Le but n’était

déjà donc plus de supprimer le mouvement de l’aile mais de le mâıtriser pour l’utiliser. L’idée

était donc déjà là mais il fallu attendre presque 20 ans avant que les chercheurs commencent

à emprunter cette voie de manière significative. D’ailleurs, ce n’était plus pour extraire de

la puissance, mais plutôt pour en créer. Dans ce laps de temps, les progrès de la technique

en miniaturisation et l’augmentation stupéfiante de la puissance des ordinateurs ont en ef-

fet permis le développement de petits véhicules volants ressemblant à de gros oiseaux, les

micro-drones ou Micro-Aerial Vehicles (MAV). Bientôt, ils auront la taille d’un insecte et

on devine alors la nécessité de sources de propulsion adaptées. On doit en effet noter que

la vitesse d’un oiseau ainsi que ses dimensions sont petits et qu’on se trouve dans le régime

des écoulements à faibles nombres de Reynolds (voir tableau 2.1). Dans la nature, les ailes

battantes pour voler ou les nageoires pour nager, passent pour les méthodes de propulsion les

plus complexes mais aussi les plus efficaces connues à ce jour. Comprendre les phénomènes

naturels impliqués est donc un beau défi afin de les transposer au domaine du génie. En effet,

à ces faibles nombres de Reynolds, les caractéristiques aérodynamiques d’un profil oscillant

(portance, trâınée) diffèrent significativement de celles habituellement considérées pour des

ailes fixes utilisées en aéronautique. Avec des yeux d’ingénieurs, on peut ainsi se représenter

un insecte ou un oiseau comme un corps élancé pourvu d’au moins deux profils oscillants de

chaque côté.

Ainsi, les revues de littérature récentes [13, 14, 15, 16, 7, 17, 18] portant sur les profils

oscillants montrent que les recherches actuelles dans ce domaine sont étroitement liées aux

MAVs, ou à la propulsion animale, source première d’inspiration. Dans un premier temps,

nous verrons donc les différentes applications d’un profil oscillant à bas Reynolds. Ensuite,

on exposera de manière qualitative les divers paramètres et les principaux phénomènes phy-

siques mis en jeux lors du battement d’un profil oscillant. Enfin, on fera un état des lieux

des différentes études déjà menées, expérimentales et numériques, et des résultats qu’elles

fournissent.

On doit ici préciser deux hypothèses simplificatrices considérées dans ce projet : des

écoulements 2D et laminaires. La simulation 3D de profils oscillants reste encore trop dis-

pendieuse en ressources et les études sont encore très restreintes même dans le domaine de la

propulsion [15, 19, 20, 21, 22]. En résolvant les équations simplifiées d’Euler, Neef et Hum-

mel [22] concluent que les effets 3D (trâınée supplémentaire en extrémité d’aile) réduisent

considérablement l’efficacité de génération de poussée par rapport au cas 2D. Il faut donc être

conscient de cette limitation même si certains auteurs soutiennent que l’approche 2D est une
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Espèce Longueur Vitesse Fréquence Reynoldsa Fréq. réduite
l en m U en m/s f en Hz Re = Ul/ν k = 2πfl/U

Spermatozöıde [10] 0.00005 0.0001 15 0.0005 50
Petite guêpe [10] 0.006 1.0 60 400 2.25

Colibri [11] 0.05 15 100 50 000 2.10
Pigeon [10] 0.1 10. 0.8 70 000 0.25
Poisson [10] 0.5 1. 0.3 500 000 0.95
Nageur [12] 2. 1. 2. 2 000 000 25
Cétacé [12] 4. 3. 0.75 15 000 000 6.25
Kitty Hawk 6. 14. - 5 600 000 -

A380 (décollage) 80. 70. - 370 000 000 -

Tableau 2.1 Nombre de Reynolds et autres ordres de grandeurs caractéristiques pour quelques
créatures vivantes, Kitty Hawk : l’avion des frères Wright et l’Airbus A380. a En prenant :
νair = 1.5× 10−5m2/s, νsang = 10−5m2/s et νeau = 10−6m2/s.

très bonne approximation [23, 24]. En outre, on prévoit de faire une étude de ces phénomènes

à très faible nombre de Reynolds (autour de 1000) et on considère alors l’écoulement comme

laminaire. Cette hypothèse est confortée par les conclusions de Julien et al. [25] dans leur

étude sur l’extraction de puissance par un profil oscillant. Ils constatent en effet que des

grands nombres de Reynolds turbulents (105-106) permettent certes d’accrôıtre le coefficient

de portance et retardent la séparation de l’écoulement mais la plupart des résultats qualitatifs

obtenus en laminaire (Re=1100) restent valables car le phénomène d’extraction de puissance

est largement dominé par les effets inertiels. De manière plus quantitative, Young et Lai [26]

comparent les résultats obtenus sur un profil en battement (pas de rotation) pour Re=2.104

avec un code laminaire, un code turbulent et des données expérimentales. Ils concluent que la

plupart du temps l’écoulement peut être considéré comme laminaire, en particulier les forces

aérodynamiques ne sont affectées que marginalement par les effets turbulents, sauf aux très

basses fréquences.

2.1.1 Diverses applications

Comme on vient de le voir, le principe du profil oscillant peut être utilisé tant par la

nature que dans le domaine du génie pour générer de la puissance ou en récolter. Les études

concernant l’utilisation de profils oscillants pour l’extraction de puissance restent très peu

nombreuses alors qu’elles sont de plus en plus nombreuses dans le domaine de la propulsion

et de la sustentation des insectes, des oiseaux et aussi désormais des MAVs, technologie en

plein développement.

Certes, dès 1981, McKinney et DeLaurier utilisaient un profil rigide oscillant, nommé
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“wingmill” pour l’extraction d’énergie dans des travaux précurseurs expérimentaux [9].

Mais comme le soulignent Jones et al. en 2003 [27], peu de travaux sur le sujet ont été

publiés tant en expérimental qu’en numérique durant plus de 20 ans. On note parmi eux,

celui de Jones et Platzer [28] qui expose une méthode de simulation numérique des profils

oscillants pour caractériser les phénomènes d’extraction de puissance et de propulsion.

Ils concluent que pour un profil en rotation et en translation verticale, l’amplitude de

rotation du profil doit être plus grande que l’angle d’attaque induit par le mouvement

horizontal du profil pour obtenir de l’extraction de puissance. Prolongeant ce travail,

Davids [29] et Lindsey [30] montrent que cette technique a du potentiel pour une uti-

lisation commerciale. En 2006, Kinsey et Dumas [31] présentent une étude numérique

très complète où ils identifient les influences des différents paramètres et les phénomènes

physiques menant à de fortes efficacités. Enfin, Julien et al. [25] complètent cette étude par

l’introduction des phénomènes turbulents. Les études concernant l’extraction de puissance

par un profil oscillant sont donc assez peu nombreuses. Toutefois, comme le relève les

articles précédents [28, 31], il suffit de changer certains paramètres pour donner de la

puissance au fluide au lieu de lui en prélever. On tombe alors dans les domaines de la

propulsion qui fait l’objet de très nombreuses études tant dans la perspective de produire

une poussée (thrust) [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44] pour avancer

(forward flight) que dans celle de générer la portance nécessaire à la sustentation pour le

vol stationnaire (hovering [45, 46, 47]). En effet, comme on l’a vu, un oiseau peut être vu

comme un corps avec deux profils oscillants. Il en va de même pour les mammifères marins

dont la nageoire propulsive est similaire à un profil en mouvement 2D. Ainsi, les études

biologiques visant à trouver les paramètres optimum dans la nature sont nombreuses, tant

par l’expérimentation [48, 49, 50, 51] que par la simulation numérique [12, 52]. Toutefois, ce

sont les recherches dans le domaine des MAVs qui sont en pleine expansion et utilisent de

plus en plus de simulations numériques [19, 53, 54, 55, 56, 57, 58, 59, 51]. Il existe même

des micro-sous-marins (Autonomous Underwater Vehicles, AUV) [60, 14] mimant le mode

de propulsion d’un poisson. On doit aussi noter l’existence de l’ornithoptère [61], petit

avion développé par l’équipe du Pr. DeLaurier dont la propulsion est assurée par ses ailes

oscillantes !

2.1.2 Description du problème

Nous voulons ici préciser notre sujet de recherche en exposant les principaux paramètres

définissant le problème des profils oscillants ainsi que les principaux phénomènes physiques

mis en jeux.
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A. Paramètres caractéristiques

Pour un profil 2D oscillant dans un écoulement laminaire, trois types de paramètres

décrivent le problème : les propriétés du fluide, les propriétés du solide (le profil) et les

caractéristiques du mouvement du profil. Dans un premier temps, on considère le solide

comme rigide (voir la section 2.2 pour un profil flexible). Il est donc entièrement caractérisé

par sa forme. Quant au fluide, il se caractérise par sa viscosité µ, sa masse volumique ρ et sa

vitesse à l’infini U∞. Enfin, le profil possède trois degrés de liberté en 2D : une rotation, une

translation verticale (le battement) et une autre horizontale. Les possibilités de mouvements

dynamiques sont donc infinies et une paramétrisation du mouvement est donc nécessaire. Tous

Battement

h0

θ0

Axe de rotation

U∞

c

xp

Figure 2.1 Mouvement 2D du profil oscillant.

les auteurs étudiés utilisent des mouvements périodiques sinusöıdaux (sauf dans certaines

études d’optimisation [62, 63]) avec une même fréquence d’oscillation f = ω/2π pour les

différents degrés de liberté. La quasi-totalité des articles étudiés vont se limiter à 2 degrés de

liberté : le battement et la rotation. Ainsi, le mouvement du profil, présenté sur la figure 2.1,
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est généralement gouverné par les équations suivantes :

{

θ(t) = θav + θ0 sin (ωt+ φ) rotation

h(t) = h0 sin (ωt) battement

où θ(t) est l’angle de rotation autour d’un point de la corde c situé à xp/c, θ0, θav et h0 sont

des constantes et φ est l’angle de déphasage entre la rotation et le battement.

On introduit alors plusieurs paramètres adimensionnels, qui peuvent différer selon les

auteurs et les applications :

nombre de Reynolds :

Re = 2π
ρfh0c

µ
si U∞ = 0 (hovering) [47]

Re =
ρU∞c

µ
sinon

nombre de Strouhal : St =
2fh0

U∞

=
ωh0

πU∞

fréquence réduite :

k =
2πfc

U∞

=
ωc

U∞

dans [16, 29, 30, 17]

k =
πfc

U∞

=
ωc

2U∞

dans [7, 8, 33, 64]

f ∗ =
fc

U∞

=
ωc

2πU∞

dans [31]

k = πfc si U∞ = 0 (hovering) [47]

angle d’attaque effectif : αe(t) = arctan

(

− 1

U∞

∂h(t)

∂t
− θ(t)

)

angle d’attaque maximum : αmax ≈ arctan

(
h0ω

U∞

)

− θ0

paramètre de “plumage” : χ =
θ0

arctan

(
h0ω

U∞

)

(feathering)
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Ce dernier paramètre χ est utile pour définir de manière simplifiée si on se situe dans la

zone d’extraction de puissance ou dans celle de propulsion. En effet, par une approche quasi-

statique sur un profil symétrique, on peut montrer que si χ < 1 (αmax > 0) on est dans une

configuration de propulsion alors que si χ > 1 (αmax < 0) on va extraire de l’énergie comme

le montre la figure 2.2. Il est aussi à noter ici qu’une littérature grandissante [27, 65, 66] traite

des profils en tandem ; i.e. deux profils en interaction. Cette configuration aurait des effets

bénéfiques pour la propulsion [16, 67] ainsi que pour l’extraction de puissance [29]. D’autres

paramètres peuvent donc être ajoutés, notamment des grandeurs géométriques caractérisant

le positionnement relatif de ces deux solides.
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Figure 2.2 Profils oscillants : 2 modes de fonctionnement

Les paramètres présentés jusqu’à présent sont des paramètres “contrôlants”, mais il y

a aussi des paramètres “résultants” qui vont définir les performances du système physique

étudié et vont donc dépendre des applications envisagées (i.e. : propulsion, extraction, ...).

De manière générale en 2D, se sont 4 coefficients aérodynamiques qui vont être à la base de
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toutes les mesures de performances d’un profil oscillant :

Coefficient de force horizontale : Cx(t) =
Fx(t)
1

2
ρU2

∞
c

Coefficient de poussée : CT (t) = − Fx(t)
1

2
ρU2

∞
c

Coefficient de force verticale : Cy(t) =
Fy(t)
1

2
ρU2

∞
c

Coefficient de moment autour de xp : CM(t) =
Mxp

(t)

1

2
ρU2

∞
c2

On définit aussi les coefficients adimmensionalisés suivants pour la puissance [31] :

Contribution du battement : CPy
(t) =

Py(t)
1
2
ρU3

∞
c

=
1

U∞

∂h(t)

∂t
Cy(t)

Contribution de la rotation : CPθ
(t) =

Pθ(t)
1
2
ρU3

∞
c

=
c

U∞

∂θ(t)

∂t
CM(t)

Contribution totale : CP (t) =
P (t)

1
2
ρU3

∞
c

= CPy
(t) + CPθ

(t)

Il suffit alors de sommer sur un nombre N de périodes pour obtenir un coefficient de

puissance moyenne, autrement dit un coefficient de travail :

CWP
= CP =

1

NT

∫ NT

0

CP (t)dt

Concernant la notion de rendement ou d’efficacité, les définitions varient selon les applica-

tions et les auteurs ce qui complique la comparaison entre les différentes études. De manière

générale, le dictionnaire Larousse 1 définit le rendement comme le rapport de l’énergie ou

d’une autre grandeur fournie par une machine à l’énergie ou à la grandeur correspondante

consommée par cette machine. On doit donc définir une grandeur consommée Aentrée comme

entrée du système et une valeur utile Asortie en sortie. Le rendement s’écrit alors :

η =
Asortie
Aentrée

1. Dictionnaire Larousse en ligne : www.larousse.fr.
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Dans le domaine de l’extraction de puissance, l’efficacité totale compare la puissance

extraite P = Py + Pθ avec la puissance Pa disponible dans le fluide [31] :

ηe =
Py + Pθ

Pa
, avec Pa =

1

2
ρU3

∞
d (2.1)

où d est l’amplitude maximale parcourue par le profil en battement. Alors que l’efficacité

idéale utilise la puissance “idéale” comme point de comparaison. Elle est définie à partir de

la limite théorique d’extraction de puissance introduite par Betz [9] :

ηid =
Py + Pθ

Pid

=
ηe
ηbetz

, avec Pid = ηbetzPa et ηbetz =
16

27
≈ 59% (2.2)

On cherche certes à développer des systèmes passifs récupérant de l’énergie de l’écoulement

fluide. Toutefois, les différentes études dans le domaine imposent, au moins en partie, le

mouvement de battement du profil (excepté [68]). La définition du rendement devrait donc

tenir compte de l’énergie fournie au système pour entretenir ce mouvement. Ou bien, il

faudrait considérer des profils libre dont le mouvement est le seul fait de l’interaction avec le

fluide.

Pour le mode de propulsion, la grande majorité des auteurs s’accorde pour définir l’ef-

ficacité comme le rapport de la puissance de poussée sur la puissance totale nécessaire au

mouvement du profil [32, 28, 33, 53, 69, 70, 34, 54, 35, 36, 38, 41]. L’efficacité de propulsion

est donc ainsi définie :

ηp = −FxU∞

P
=

CT

Cp

(2.3)

Des valeurs négatives de rendement apparaissent alors lorsque le système produit de la trainée

(au lieu d’une poussée) mais que le travail nécessaire n’est pas nul. De même, lorsque le

profil oscillant se propulse lui-même, les efforts moyens de trâınée FD et de poussée FT se

compensent lorsque le régime établit est atteint (par la loi de Newton max = 0 = Fx =

FT +FD) [49]. L’efficacité ainsi définie devient donc nulle lors des simulations numériques qui

ne permettent de calculer que la résultante totale des forces Fx sans distinguer les apports réels

de la trâınée et de la poussée ! Pour tenter de résoudre ce problème, Windte et Radespiel [39]

considèrent la trainée statique du profil à l’angle d’attaque moyen du mouvement θav pour

calculer le coefficient de poussée :

CT = −Cx + Cx,stat(θav)

En ajoutant cette trâınée minimale qu’un moteur (à hélice) devrait compenser, trainée et
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poussée sont artificiellement découplées et l’efficacité ne tends plus vers zéro en régime établi.

Cette technique reste toutefois une approximation de la réalité.

De plus, comme le note Barrett et al. [49], l’efficacité totale du système devrait aussi prendre

en compte les différentes pertes lors d’un cycle global. Difficile à intégrer numériquement, il

est possible d’évaluer ces pertes lors d’études expérimentales : pertes dans le moteur, pertes

dans la transmission jusqu’au profil mais aussi pertes d’énergie dans le corps d’un animal

(efficacité aérobique [12]). Enfin, Kaya et Tuncer [36] notent que la masse, et donc l’inertie

du profil, n’est pas prise en compte dans cette définition, notamment lors de l’évaluation de

la puissance nécessaire au mouvement.

Enfin, aucune étude ne définit clairement un rendement de sustentation par hovering.

Les études portant sur l’optimisation du processus [63, 71] cherchent plutôt à minimiser la

puissance nécessaire P pour soulever un certain poids mg. Pesavento et Wang [71] définissent

alors une quantité adimensionnelle P ∗ qui peut être utilisée pour quantifier l’efficacité de

hovering :

P ∗ =
P

2πh0mg

Le tableau 2.2 suivant résume les différentes définitions des rendements que l’on peut

trouver dans la littérature selon les applications.

B. Principaux phénomènes physiques

Comme on l’a vu, les premiers phénomènes physiques instationnaires étudiés étaient

néfastes car non-mâıtrisés. Aujourd’hui, on se sert de ces effets instationnaires pour atteindre

certains buts : extraction de puissance, propulsion et hovering.

L’effet Knoller-Betz [16] : Dans les années 1910, Knoller et Betz furent les premiers

à observer que le battement d’une aile crée un angle d’attaque efficace et donc une force

aérodynamique, N , qui se divise en une composante verticale (la portance si elle est positive)

et une composante horizontale (poussée/trâınée). L’effet Knoller-Betz est donc le premier

effet instationnaire mis en évidence.

Les lâchers tourbillonnaires (vortex shedding) : Le modèle de Knoller-Betz omet

toutefois la présence de lâchers tourbillonnaires au bord de fuite des profils oscillants. Mc-

Croskey [8] note en effet que chaque changement de la circulation (et donc des forces

aérodynamiques) autour du profil se traduit par un lâcher tourbillonnaire. Il conclue que
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Applications Aentrée Asortie Rendement

Extraction de
puissance

Puissance disponible Puissance extraite Efficacité totale [31]
dans le fluide

Pa =
1

2
ρU3

∞
d P ηe = CP

c

d

Puissance “idéale” Puissance extraite Efficacité idéale [9]
de Betz

Pid = ηbetzPa P ηeid =
ηe
ηbetz

Propulsion
Puissance nécessaire Puissance de poussée Efficacité

P FxU∞ ηp =
CT

CP

Hovering
Puissance nécessaire Poids Quantité adim. [71]

P mg
1

P ∗
=

2πh0mg

P

Tableau 2.2 Différentes définitions du rendement selon les applications.



15

la dépendance au temps du sillage est un aspect distinctif des profils oscillants. Il se crée

ainsi naturellement des allées de tourbillons de von Karman à l’arrière d’un corps au re-

pos ou à l’arrière d’un profil oscillant subissant des variations d’angle d’attaque. Une in-

teraction profil-vortex apparâıt alors avec un impact d’une grande importance, notamment

dans la création de portance [16]. C’est en fait un échange d’énergie bénéfique (des insectes

récupèrent cette énergie pour se propulser) ou destructeur (résonance non-mâıtrisée). Ainsi,

la compréhension de ces phénomènes d’interaction profil-vortex est primordiale mais d’une

grande complexité à simuler. Young et Lai [26] ont montré que l’interaction entre les lâchers

naturels du profil et son mouvement oscillatoire produisent des lâchers de paires de vortex

au bord de fuite [72]. Ils ont aussi mis en évidence une région de lock-in dans le plan k − h0

où cette interaction peut se produire. Le comportement de l’écoulement séparé proche du

bord de fuite devient alors crucial et ne peut être prédit que grâce à une approche visqueuse.

Toutefois, c’est la compréhension du lâcher tourbillonnaire au bord d’attaque, LEVS (Lea-

ding Edge Vortex Shedding), et de ses effets qui font l’objet de toutes les attentions en ce

moment [31, 73, 74, 21, 70] et qui font le plus polémique [21]. En effet, depuis sa découverte

par Ellington et al. [75], certains y voient une source importante de portance lorsqu’il reste

attaché au profil. Ainsi, pour Platzer et Jones [16] ainsi que pour Pesavento et Wang [71] le

LEVS joue un rôle crucial dans la création importante de portance nécessaire au vol station-

naire (hovering) des insectes et petits oiseaux. Mais d’autres sont plus sceptiques. Il semble

en tout cas que pour l’extraction de puissance, le LEVS joue un rôle essentiel de synchro-

nisation entre les forces aérodynamiques et les mouvements du profil pour obtenir de forts

rendements [31].

La signature de sillage [31, 76] : Il est intéressant d’observer la signature du sillage

car elle permet de faire la distinction entre une configuration d’extraction de puissance et de

propulsion. Ainsi, un sillage avec une allée du type von Karman est synonyme de création

de trâınée, de perte de vitesse horizontale et va caractériser l’extraction de puissance. Au

contraire, le phénomène de propulsion va se traduire par une augmentation de la vitesse

horizontale et la création d’une allée de von Karman inversée [16] : les vortex du haut vont

dans le sens inverse des aiguilles d’une montre alors que ceux du bas vont dans le sens des

aiguilles d’une montre. Sur la ligne de séparation de ces deux rangées de vortex, on a donc une

sorte de “jet” qui se crée comme entre deux rouleaux de laveuse automatique de voiture. Ceci

induit de la poussée sur le profil. Ainsi, les tourbillons générés par un régime de propulsion

vont s’éloigner plus vite du profil et que ceux générer dans le cas de l’extraction de puissance.
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Le décrochage dynamique : Lorsqu’on impose à un profil de rapides changements

d’angles d’attaque avec de fortes amplitudes, il peut se produire une séparation de

l’écoulement. On parle alors de décrochage dynamique (dynamic stall) [8]. Ce phénomène

visqueux n’est pas propre aux profils oscillants (hélicoptères, turbines, etc.) mais est très

important lorsqu’on en fait l’étude. En effet, si l’angle d’attaque instationnaire est de l’ordre

de celui du décrochage statique, un phénomène important d’hystérésis se développe pour les

forces et les moments par rapport à l’angle d’attaque. Les valeurs maximales des coefficients

de portance, de trâınée et de moment peuvent alors dépassées largement leur valeurs statiques.

Ce phénomène est donc crucial dans la génération de grandes quantités de puissance [27, 77].

Visuellement, c’est un phénomène de séparation massive, typiquement visqueux, qui induit le

développement au bord d’attaque puis la convection d’un grand tourbillon du au décrochage

dynamique (Dynamic Stall Vortex, DSV ). Pour plus d’information à ce sujet, on invite le

lecteur à se référer aux articles de Tuncer et al. [77] ou de Sarkar et Venkatraman [78] et au

livre de Cebeci [76].

2.1.3 Simulations et résultats

En parallèle de la compréhension qualitative des phénomènes physiques caractérisant les

profils oscillants, les tentatives de modélisation quantitatives se sont développées grâce aux

mesures expérimentales et aux simulations numériques. Comme on l’a vu précédemment,

peu d’auteurs se servent des profils oscillants pour l’extraction de puissance [9, 30, 27, 31,

25, 68] mais leur potentiel en régime de propulsion est de plus en plus étudié. On donne en

premier lieu un bref aperçu des études expérimentales menées sur les profils oscillants, souvent

associées à la propulsion animale. On présente ensuite les différentes méthodes de simulation

numérique utilisées pour modéliser les profils oscillants que ce soit en régime d’extraction de

puissance ou de production de poussée. Enfin, on souligne les principaux résultats obtenus

avec des profils oscillants en termes de rendement d’extraction de puissance, d’efficacité de

propulsion et de production de poussée.

A. Biologie et études expérimentales

Les biologistes étudient depuis longtemps la propulsion animale, aquatique [48, 50, 12]

ou aérienne [75, 79]. Leurs conclusions semblent toutes aller dans le même sens : chaque

créature utilise le mode de propulsion le plus économique (le plus efficace) selon la manière

de vivre qu’ils ont développée via la sélection naturelle [48, 11]. La nature a donc déjà

optimisé des modes de propulsion dont les chercheurs vont s’inspirer pour améliorer

l’efficacité des systèmes mécaniques. L’analyse dimensionnelle joue un rôle important dans
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ces études zoologiques puisqu’elle permette une classification des espèces selon leurs “simi-

larités” [50, 11] et permet de tirer des conclusions transposables à des espèces semblables.

Ainsi, Taylor et al. [50] démontrent que les animaux nagent et volent principalement à

l’intérieur d’un intervalle du nombre de Strouhal : 0.2 < St < 0.4 permettant de grandes

efficacités de propulsion (de 70% à 80%). Cette optimisation naturelle du nombre de

Strouhal se retrouve dans les études expérimentales [33, 80] et numériques [33, 24] portant

sur les profils oscillants. Enfin, les nombreux travaux sur le vol et la nage des animaux ont

identifié les différents mécanismes instationnaires utilisés pour générer d’importantes forces

de poussée ou de portance. Ainsi, l’importance du LEVS (leading-edge vortex shedding) dans

la production de portance a été mise à jour par Ellington et al. [75] dès 1996 grâce à l’étude

de l’écoulement autour de l’aile d’un papillon Manduca sexta.

Les études expérimentales essaient de reproduire ces modes de propulsion animale grâce

à des profils oscillants comme le soulignent Triantafyllou et al. [81] dans leur revue de

littérature sur le sujet. Ces travaux visent essentiellement à comprendre les mécanismes

de formation, de lâcher et d’interaction des tourbillons produits par des profils oscil-

lants [33, 72, 82], notamment au bord d’attaque pour mieux comprendre le développement

du LEVS [74]. Dans cette optique, la plupart des études (voir tableau 2.3) utilise une

géométrie NACA0012 en battement et/ou en rotation afin de décrire des mouvements

proches de ceux observés dans la nature. Exceptés Sahoo et Bowersox [74] qui étudient

l’écoulement du fluide autour du bord d’attaque d’un profil oscillant à haut Reynolds

(hélicoptère), les autres auteurs se concentrent sur des régimes d’écoulement à bas Reynolds

(<40 000) correspondant à ceux rencontrés en biologie et pour la conception de MAV. Dans

le domaine de la propulsion [33, 80, 34], des efficacités supérieures à 70% sont obtenues (les

rendements diminuent lorsqu’on abaisse le nombre de Reynolds car la viscosité s’accrôıt).

L’interaction entre la vorticité du bord d’attaque et celle du bord de fuite apparâıt comme

un mécanisme fondamental dans l’atteinte de hautes efficacités. Le déphasage entre le

mouvement de battement et celui de rotation semble être le paramètre contrôlant ce

mécanisme. Toutefois, les auteurs constatent que le mouvement optimal pour le rendement

n’est pas le même que pour la production de poussée. Les mécanismes générant de grandes

performances de propulsion ont encore leur part de mystère. L’introduction d’une flexibilité

selon la corde ou l’envergure du profil semble également avoir des effets bénéfiques sur les

rendements de propulsion [81, 14, 83, 84, 38, 85] même si la production de poussée est alors

affectée (pour plus de détails voir section 2.2).

Finalement, soulignons l’existence d’une étude expérimentale sur l’extraction de
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puissance par des profils oscillants menée par Simpson et al. [86]. Celle-ci est d’ailleurs

également inspirée par des études biologiques montrant la capacité de certains poissons

à récupérer l’énergie des vagues pour se propulser. Les auteurs obtiennent une efficacité

maximale d’extraction de puissance intéressante de 43% (limite de Betz : 57%) avec un profil

NACA0012 oscillant. Toutefois, cette efficacité décroit rapidement lorsque l’allongement du

profil diminue.

Auteur, Année Applications Profil Mvt Reynolds ηmax

Anderson[33] Propulsion NACA0012 B+R 40 000 87%
1998 et 1100
Lai[72] Oscill. NACA0012 B 500 -
1999 à 21 000
Read[80] Propulsion NACA0012 B+R 40 000 71.5%
2003
Schouveiler[34] Propulsion NACA0012 B+R 40 000 73%
2005
Heathcote[83, 84] Propulsion Goutte B 9 000 -
2007 flexibilité-C + plaque flexible à 27 000
Sahoo[74] Oscill. NACA0012 B 2 000 000 -
2008
McGowan[87] Validation SD7003 B+R 40 000 -
2008 de code
Heathcote[38] Propulsion NACA0012 B 10 000 -
2008 flexibilité-E à 30 000
Simpson[86] Extraction NACA0012 B+R 13 800 43%
2008 de puissance
Jardin[46] Hover NACA0012 asym - -
2009
Ansari[82] Oscill. Plaque plane R 500 -
2009 et 15 000
Mazaheri[85] Hover Membrane B - -
2010 flexibilité-C

Tableau 2.3 Principales études expérimentales : application à la propulsion, au vol station-
naire (hover), à l’extraction de puissance ou à l’étude précise de l’écoulement autour d’un
profil oscillant (oscill.), flexibilité selon la corde (C) ou l’envergure (E), mouvements (Mvt)
de rotation (R) et de battement (B) ou asymétrique (asym) pour le vol stationnaire.
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B. Simulation numérique

Les chercheurs se sont tournés vers la simulation numérique des profils oscillants afin

d’explorer plus en détails les phénomènes physiques mis en jeu (voir tableau 2.4) et les

performances des profils oscillants tant pour l’extraction de puissance (voir tableau 2.5) que

pour la propulsion (voir tableau 2.6). Toutefois, le problème est complexe à modéliser car il

met en jeux des mécanismes fortement instationnaires avec des séparations de l’écoulement,

des lâchers tourbillonnaires ainsi que de fortes interactions entre la vorticité produite au bord

d’attaque et celle produite au bord de fuite. Des simplifications ont donc du être faites lors des

premières simulations à cause de la puissance limitée des ordinateurs. Puis, les modèles ont

été complexifiés avec l’accroissement des capacités de calculs pour rapprocher les simulations

de la réalité. Pour présenter les méthodes numériques utilisées dans la simulation de profils

oscillants, on va ainsi distinguer trois approches explorées historiquement dans un ordre

croissant de complexité : les théories linéarisées, les approches simplifiées non-visqueuses et

les équations visqueuses de Navier-Stokes.

Théories linéarisées : A la suite de la découverte de l’effet Knoller-Betz, les premières

études théoriques sur l’aérodynamique des profils oscillants furent menées en s’appuyant sur

des théories linéarisées, par exemple celle de Garrick en 1936 [95] basée sur les travaux de

plaque plane de Theodorsen [96]. La linéarisation se fait grâce à l’hypothèse des petites

perturbations ce qui limite les analyses. En outre, ces théories ne tiennent pas compte de

l’évolution instationnaire du sillage créée par les lâchers tourbillonnaires. Ainsi, dans les

travaux précurseurs de McKinney et DeLaurier [9] sur l’extraction de puissance par des

profils oscillants, on trouve une étude analytique du problème comparée avec une étude

expérimentale. Les auteurs attribuent la différence raisonnable (20% d’erreur) entre les deux

approches aux effets de décrochages dynamiques qui ne sont pas modélisés. L’approche

linéarisée permet donc d’avoir une première modélisation qualitative. À partir des travaux de

Theodorsen [96], on a tenté de modéliser les phénomènes non-linéaires qui caractérisent les

profils instationnaires et prennent en compte les propriétés réels du phénomène (épaisseur,

cambrure, grandes amplitudes, ...), comme le note McCroskey [8]. Ainsi, les travaux de An-

sari et al [97, 98] améliorent la théorie de Theodorsen en y incluant les LEVS dans le cadre

d’analyse aéroélastique.

Théories simplifiées : L’approche quasi-statique est une manière d’approximer les

phénomènes instationnaires qui fut utilisée pour modéliser les forces aérodynamiques générées

par des ailes battantes d’oiseaux et d’insectes [99] et ainsi mieux comprendre leur physique.

Toutefois, ces modèles négligent les effets “d’histoire” caractéristiques des problèmes ins-
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Auteur, Année Équations fluides Méthode de résolution
Katz[88] 2D potentielles DVM (+séparation)
1981
Streitlien[89] 2D linéaires analytique
1998
Wang[24] 2D N-S Différences Finies
2000

Ramamurti[73] 2D N-S Éléments Finis
2001
Zhu[53] 3D potentielles Méthode des panneaux
2002
Young[26] 2D RANS -
2004 2D potentielles Méthode des panneaux
Blondeaux[90] 3D N-S Différences Finies
2005
Platzer[91] 2D potentielles Méthode des panneaux
2006
Isaac[92] 2D N-S Logiciel FLUENT
2008
McGowan[87] 3D RANS Logiciel CFL3D
2008
Sarkar[78] 2D potentielles DVM (+séparation)
2008
Visbal[93] 3D N-S Logiciel FDL3DI
2009 Différences finies
Sudhakar[94] 2D N-S Méthode de
2010 frontière immergée

Tableau 2.4 Principales études numériques pour les profils oscillants : équations fluides et
méthodes de résolution.
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tationnaires et sous-estiment ainsi les forces générées par les ailes en battement [21, 100].

Ainsi, Kinsey et al. [31] concluent que même pour des cas simples, loin du décrochage dyna-

mique, cette méthode ne permet pas de résoudre le problème de manière adéquate. Une autre

approximation consiste à négliger les effets visqueux. En effet, grâce à la puissance des ordina-

teurs modernes, on lève la limitation des petites perturbations et on fait une seule hypothèse :

l’écoulement est potentiel (non-visqueux et irrotationnel). On a alors une approximation rai-

sonnable du développement instationnaire du sillage durant le cycle d’oscillation du profil

grâce à la modélisation d’un lâcher tourbillonnaire au bord de fuite. En pratique, on utilise

les méthodes de panneaux instationnaires (unsteady panel methods) [26, 30, 27, 76, 68] et

les méthodes des vortex discrets, DVM (Discrete Vortex Methods) [88]. La validation de ces

méthodes montre un bon accord qualitatif avec les résultats expérimentaux [26, 53]. Toutefois,

l’omission des effets visqueux et de la séparation de l’écoulement induisent un taux d’erreur

important (autour de 20%) [27, 33]. Pour corriger ce problème, certains auteurs ont essayé

d’inclure dans ces méthodes quelques éléments de viscosité (en plus du lâcher au bord de

fuite). Ainsi, certains se servent de données expérimentales pour fixer un point de séparation

de l’écoulement sur des profils cambrés [88, 53] ou améliorer la modélisation de l’évolution

du tourbillon de bord de fuite dans le sillage [53, 65, 101]. L’importance du LEVS sur les

performances d’un profil oscillant a poussé d’autres auteurs à tenter de le modéliser dans

ces méthodes potentielles, avec un certain succès [64]. Toutefois, malgré les améliorations ap-

portées aux méthodes potentielles notamment afin de modéliser la séparation de l’écoulement,

les approches non-visqueuses sont limitées au problème sans décrochage dynamique [31]. Or,

ceci est problématique, car ce phénomène joue un rôle clé dans les performances des profils

oscillants. Il faut donc utiliser les équations générales de Navier-Stokes afin de modéliser

correctement le problème des profils oscillants dans le cadre d’un processus d’optimisation.

Équations de Navier-Stokes : Depuis les 20 dernières années, il est possible de laisser

tomber l’hypothèse non-visqueuse et de faire tourner des codes de CFD (Computational

Fluid Dynamics) basés sur les équations de Navier-Stokes. C’est cette approche que l’on va

choisir dans notre étude. C’est en effet la seule qui permet une modélisation assez précise des

phénomènes instationnaires dus à un profil oscillant pour une bonne compréhension physique

de tous les phénomènes mis en jeux. Dans le cadre de l’extraction de puissance, seule l’équipe

du Pr. Dumas de l’Université Laval [102, 25, 4] utilise une approche complètement visqueuse

avec les équations de Navier-Stokes grâce au logiciel commercial FLUENT. Malgré des études

très détaillées, les résultats ne sont pas comparés avec des études précédentes sur l’extraction

de puissance, soit numériques, soit expérimentales. Les simulations ne sont donc pas validées

(sauf sur un cylindre) et on ne voit pas concrètement l’avantage qu’apporte l’utilisation des
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équations de Navier-Stokes par rapport aux méthodes potentielles. Toutefois, l’utilisation

de codes Navier-Stokes pour étudier l’efficacité de propulsion de profils oscillants est plus

répandue [77, 24, 26, 23, 87, 54, 35, 103, 57, 104, 58, 42, 41, 105]. Les études de Young [26, 23]

sont particulièrement intéressantes puisqu’elles comparent des données expérimentales avec

différents codes basés sur : les formules analytiques de Garrick/Theodorsen [96, 95], la

théorie potentielle avec différents types de sillages, les équations Navier-Stokes laminaires et

les équations de Navier-Stokes turbulentes. L’auteur peut ainsi valider ses codes, comparer

les différentes approches et isoler les effets des différents phénomènes physiques présents.

Le premier effet qui n’est pas pris en compte par les méthodes potentielles classiques est

le lâcher tourbillonnaire au bord d’attaque (LEVS) qui a une influence particulièrement

importante pour de faibles fréquences d’oscillation [33]. Ainsi, alors que les résultats des

méthodes potentielles montrent que les forces dépendent essentiellement du nombre de

Strouhal St, les simulations Navier-Stokes soulignent aussi une influence non négligeable

d’un autre paramètre indépendant : la fréquence réduite k. L’apparition de ce deuxième

paramètre est directement due au LEVS. La deuxième conclusion est que seul un code

Navier-Stokes peut reproduire les structures complexes du sillage car le phénomène de

lâchers tourbillonnaires multiples (par cycle) est typiquement visqueux. Ainsi, seule une

analyse avec les équations de Navier-Stokes permet de voir que la production de poussée via

des allées de Karman renversées apparâıt grâce aux lâchers de paires de vortex au bord de

fuite.

Auteur, Année Équations fluides Méthode de résolution

McKinney[9] Équations linéarisées Analytique
1981
Lindsey[30] 2D potentielles Méthode des panneaux
2002 2D RANS Différences finies
Jones[27] 2D potentielles Méthode des panneaux
2003

Kinsey[31] 2D N-S Éléments finis
2006

Julien[25] 2D RANS Éléments Finis
2007
Zhu[68] 3D potentielles Méthode des panneaux
2009

Tableau 2.5 Principales études numériques pour l’extraction de puissance : équations fluides
et méthodes de résolution.
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Auteur, Année Équations fluides Méthode de résolution
Garrick[95] Theodorsen[96] Analytique
1936
Jones[28] 2D potentielles Méthode des panneaux
1997
Anderson [33] 2D linéaires Algorithme
1998 + lâchers de vortex spécifique
Zhu[53] 3D potentielles Méthode des panneaux
2002

Guglielmini[70] Équations Méthode spectrale
2004 de vorticité et différences finies
Sarkar[106] 2D visqueuses DVM
2006
Kaya[54, 36] 2D RANS Maillage chimère
2007
Soueid[107] 2D N-S Méthode spectrale
2008
Guerrero[42] 2D N-S Différences finies
2009
Gopalakrishnan[41] 3D N-S, LES Volumes finis
2009
von Loebbecke[108, 12] 3D N-S Différences finies
2009
Xiao[105] 2D N-S Volumes finis
2010

Tableau 2.6 Principales études numériques pour la propulsion : équations fluides et méthodes
de résolution.
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En conclusion, le régime d’utilisation à bas Reynolds des profils oscillants, que ce soit

dans le cadre de l’extraction de puissance ou de la propulsion, provoque une séparation

de l’écoulement au bord d’attaque, notamment pour des angles d’attaques importants. Les

méthodes potentielles sont incapables de prédire de tels effets de séparation et de lâchers

tourbillonnaires. Il est donc nécessaire d’utiliser les équations de Navier-Stokes pour modéliser

l’écoulement fluide dans notre étude afin de prendre un compte tous les paramètres régissant

la physique des profils oscillants.

C. Résultats

Finalement grâce à l’étude des paramètres influents sur les performances d’un profil os-

cillants, les différents auteurs ont pu obtenir des performances intéressantes en termes d’ef-

ficacité d’extraction de puissance ou de propulsion, soit grâce à de nombreuses simulations

soit grâce à des optimisations plus ou moins automatiques.

Rendements pour l’extraction de puissance : Concernant l’extraction de puissance,

on a regroupé ces résultats dans le tableau 2.7, même si les données sont parfois lacunaires.

Ainsi, dès 1981, les travaux précurseurs expérimentaux de McKinney et DeLaurier [9] avec

un profil rigide oscillant donnaient des rendements maximaux de l’ordre de 17%. Grâce à une

optimisation “à la main”, Davids [29] obtint une efficacité d’environ 30% avec un code poten-

tiel. Enfin, Kinsey et Dumas [31] grâce à une étude numérique Navier-Stokes très complète

des différents paramètres trouvent des rendements dépassant les 34%.

Toutefois, ces fortes efficacités n’ont pas encore été reproduites expérimentalement. En

outre, il est intéressant de noter que contrairement à ce que disent Jones et Platzer [28],

l’optimum de l’extraction de puissance n’est pas atteint en même temps que l’efficacité op-

Auteur,date NACA Re k =
ωc

U∞

θ0 (̊ ) h0/c xp/c φ ηeT

McKinney[9] 0012 2.106 ? 30 0.30 0.50 90̊ 16.8%
1981
Davids[29] 0012 - 1.975 ? 0.625 0.55 94̊ 30.0%
1999
Lindsey[30] 0014 106 1.0 ? 2.0 0.25 90̊ 33.4%
2002 0014 2.104 1.0 ? 1.3 0.25 90̊ 17.2%
Kinsey[31] 0015 1100 0.880 76.33 1.0 0.33 90̊ 33.6%
2006

Tableau 2.7 Rendements optimaux pour l’extraction de puissance.
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timale [30, 4]. Il faut donc bien faire un compromis entre puissance et efficacité, et ainsi

pondérer les critères d’optimisation des performances d’un profil oscillant.

Rendements pour la propulsion : Les études s’intéressant à la propulsion produite par

des profils oscillants sont de plus en plus nombreuses. Toutefois, peu d’entre elles cherchent à

optimiser les rendements de propulsion. Seuls Kaya et Tuncer [54, 36] et Soueid et al. [107] ont

développé des algorithmes d’optimisation du mouvement du profil afin d’obtenir de meilleures

performances en termes de poussée, de portance ou d’efficacité de propulsion. Présentés dans

le tableau 2.8, les résultats de Tuncer et Kaya [54] et de Soueid et al. [107] s’approchent

des efficacités élevées obtenues expérimentalement (voir tableau 2.3). On note également que

les mouvements optimisant la poussée (CT = 1.45 et CT = 2.0) réduisent les efficacités de

propulsion. A nouveau, un compromis doit donc être fait entre poussée et efficacité. Dans

une étude plus récente [36], ces mêmes auteurs améliorent la production de poussée avec

un mouvement oscillant non-sinusöıdal. Toutefois, ils concluent également que le mouvement

sinusöıdal permet d’obtenir les meilleurs rendements de propulsion.

À cause d’adimensionnalisations différentes et de données manquantes, il est difficile de

comparer un certain nombre d’études. Toutefois, on peut établir certaines conditions menant

à des performances élevées. Tout d’abord, la production de poussée ainsi que l’efficacité

augmentent en général avec le nombre de Reynolds [40]. Ensuite, comme on peut l’observer

avec les résultats présentés dans le tableau 2.8, l’introduction d’une rotation en plus du

battement permet une nette amélioration des performances. Dans ce cas, un axe de rotation

situé au tiers de la corde semble donner les meilleurs résultats [33, 70, 107]. Concernant la

valeur de l’angle déphasage Φ entre les deux mouvements, de nombreux auteurs utilisent

Φ = 90̊ [89, 70] alors que d’autres suggèrent des valeurs plus élevées autour de 107̊ [28].

Les résultats d’optimisation semblent convergés entre 85̊ et 95̊ . Enfin, l’utilisation de

plusieurs profils semble avoir des effets bénéfiques sur les performances de propulsion comme

le soulignent Platzer et Jones [91] dans leur revue de littérature. Utilisés en biplan, l’un

au-dessus de l’autre, les profils oscillants produisent de 20 à 40% plus de poussée qu’un profil

seul. Encore mieux, dans une configuration en tandem, avec un profil fixe à l’arrière d’un

profil oscillant, l’efficacité propulsive se rapproche de 100%. En effet, l’énergie transportée

par les vortex créés par le premier profil est convertie en poussée par le deuxième pro-

fil comme le ferai un oiseau avec sa queue [67, 32] ou un poisson avec sa nageoire caudale [53].
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Auteur, date NACA Re
k =

ωc

U∞

θ0 h0/c xp/c φ CT ηp

Guglielmini 0012 1100 0.37 35.0̊ 3.00 1/3 90.0̊ 0.517 46.0%
2004[70]
Tuncer 0012 104 1.00 35.6̊ 0.83 1/2 86.5̊ 0.18 67.5%
2005[54] 0012 104 1.00 28.6̊ 1.55 1/2 94.9̊ 1.45 35.9%
Soueid 0012 1100 ? 32.1̊ 2.820 1/3 85.4̊ 0.512 50.2%
2008[107] 0012 1100 ? 33.4̊ 4.512 1/3 89.7̊ 2.000 38.1%
Ashraf 0012 2.104 2.0 0 0.25 - - 0.112 25.1%
2009[40] 0015 2.104 2.0 0 0.25 - - 0.122 29.8%
Guerrero 2412 1100 4.20 0 0.3 - - 0.849 15.9%
2009[42]

Tableau 2.8 Performances optimales pour la propulsion.

2.2 Interaction fluide-structure en grands déplacements

Comme on vient de le voir, un profil rigide oscillant dans un écoulement peut extraire

de l’énergie du fluide ou lui en donner, produisant ainsi une poussée. En effet, les forces

aérodynamiques produites par le battement des ailes (non-fixes) agissent sur l’écoulement

du fluide environnant, on parle alors d’interaction fluide-structure (IFS) ou plus précisément

d’aéroélasticité. A l’inverse le fluide ainsi perturbé va agir sur la structure des ailes dont les

déformations et les déplacements seront d’autant plus forts que sa flexibilité sera grande.

Les petites dimensions des micro-drones ainsi que leur faible poids contribuent à accrôıtre

fortement la flexibilité des ailes tout comme celles des oiseaux, les palmes d’un plongeur

ou les nageoires des poissons. On fait alors face à un phénomène complexe de couplage

fort qui modifie les performances de l’aile déformée, bien différentes de celles du profil

non-déformé. D’ailleurs, l’utilisation de structures flexibles semblent améliorer l’efficacité

de propulsion de près de 38% [14] lors d’études expérimentales. Les travaux expérimentaux

d’Heathcote et Gursul [84, 83] confirment que les profils oscillants flexibles permettent

d’obtenir de meilleures performances que les profils rigides, notamment en termes d’efficacité.

Une meilleure compréhension de ces processus d’extraction de puissance et de propulsion

par des structures flexibles oscillantes passe donc par la simulation de problèmes d’interaction

fluide-structure. Toutefois, les comportements non-linéaires des écoulements incompressibles

de fluides visqueux et des solides en grands déplacements ainsi que la déformation des

interfaces induisent de nombreuses difficultés à surmonter. Ainsi, en régime stationnaire,

ces phénomènes d’IFS sont étudiés depuis quelques années déjà mais restent d’une grande
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complexité et requièrent d’importantes ressources informatiques comme on a pu le constater

lors de nos travaux de mâıtrise [109]. En régime instationnaire, les temps de calculs sont

démultipliés de sorte que ces phénomènes sont extrêmement complexes à modéliser et leur

compréhension reste encore délicate. Même si on assiste actuellement à la naissance d’une

littérature grandissante portant sur les profils oscillants dans le cadre de la propulsion des

MAVs, des insectes, des oiseaux ou encore des mammifères marins [7, 15], Shyy et al. [18]

soulignent qu’il reste encore de nombreuses questions ouvertes dans une récente revue des

connaissances sur le sujet. Il y a notamment un intérêt certain à utiliser des profils flexibles

mais d’importantes recherches doivent encore être menées afin de mieux comprendre le

comportement aérodynamique des profils flexibles en grands déplacements : “There is a

desirable level of structural flexibility to support desirable aerodynamics. Significant work

needs to be done to better understand the interaction between structural flexibility and

aerodynamic performance under unpredictable wind gust conditions.” Du côté de l’extraction

de puissance, ce n’est guère mieux puisque nos travaux présentés en 2007 [6] semblent être

les seuls existants. De plus, les études menées jusqu’ici sur les performances propulsives

d’une structure oscillante considèrent rarement, pour ne pas dire jamais, le mouvement du

profil induit par la poussée. Ainsi, le problème d’IFS est en partie découplé puisque les effets

des forces fluides sur le profil ne sont pas pris en compte, i.e. la poussée produite ne fait pas

avancer le profil. On peut alors se demander si les rendements de propulsion ainsi calculés

sont pertinents ?

Afin d’améliorer la simulation des problèmes d’interaction fluide-structure, on propose

un tour d’horizon des techniques utilisées pour traiter les 3 parties constituant le système :

l’écoulement fluide, la structure et le couplage. Tout d’abord, on regarde comment gérer

adéquatement la déformation du domaine fluide due aux déplacements du solide. Ensuite, on

étudie les différentes manières de modéliser la structure, des déformations imposées jusqu’aux

grands déplacements libres. Enfin, on souligne l’importance du couplage numérique entre le

fluide et la structure afin de préserver l’équilibre à l’interface.

2.2.1 Déformation du domaine fluide

Quelque soit la “force” du couplage et le type de structure, les déplacements du solide vont

induire une déformation du domaine fluide au cours du temps. Dans une approche éléments

finis, on doit alors gérer cette déformation induisant un déplacement des points de calcul, i.e.

le maillage. De plus, il faut choisir une écriture adaptée des équations sur le domaine fluide

ainsi déformé. Mais alors, quelles propriétés doivent être respectées lors de la transformation

du maillage pour que le problème reste correctement posé ? On tentera de répondre à cette
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question dans la troisième partie en introduisant la notion de loi de conservation géométrique

ou GCL (geometric conservation law).

A. Déformation du maillage

Dans le cadre des maillages non-structurés, on trouve dans la littérature plusieurs

techniques permettant de gérer à la fois les déplacements des frontières et les déformations

du domaine fluide. On peut les classer en trois catégories. Tout d’abord, il est possible de

remailler entièrement le domaine fluide une fois le déplacement du solide connu et d’itérer

jusqu’à la convergence [110]. Cette approche permet de gérer n’importe quelle déformation du

domaine fluide mais à un coût de calcul élevé, notamment pour des problèmes instationnaires.

La seconde option, très répandue, est d’utiliser l’analogie avec un ressort (spring analogy)

pour déplacer les points du maillage selon la déformation des frontières [111, 112, 113, 114].

Enfin, on peut gérer la déformation du domaine fluide en introduisant des simili-équations

structurelles grâce à différentes approches pseudo-solides [115, 116, 117, 118, 119, 120].

Parmi ces approches, on choisit d’étudier celle présentée par Sackinger et al. [121]. Elle est

formulée au niveau continu ce qui permet un couplage complet de toutes les variables fluides et

pseudo-solides. Bien que moins bien adaptée aux très grandes déformations que la technique

de remaillage, l’approche pseudo-solide est aussi bien moins coûteuse (équations linéaires). De

plus, on peut facilement l’améliorer de plusieurs façons : en adaptant les propriétés élastiques

du pseudo-solide pour éviter le repliement du maillage, en associant une formulation de

lagrangien actualisé [122] qui utilise le maillage déformé au temps précédent pour générer

le nouveau maillage sur la configuration déformée ou encore en introduisant un zonage du

domaine. Par exemple, pour un profil oscillant avec de grandes amplitudes de rotation, il

devient nécessaire de découper le domaine en 2 zones [31] dont l’une subit un mouvement de

corps rigide associé au profil. Traitant les équations au niveau continu, l’approche pseudo-

solide rend alors implicite la gestion des interfaces entre les zones fluides (aucun glissement).

Enfin, cette approche générale est compatible avec les procédures utilisées pour l’estimation

d’erreur et l’adaptation de maillage [123].

B. Approche ALE

Dans le contexte de la méthode des éléments finis, deux approches sont communément

utilisées pour résoudre des problèmes d’écoulements fluides instationnaires avec des

frontières en mouvement. Tout d’abord, la méthode d’éléments finis espace-temps connait

un intérêt grandissant ces dernières années. Introduite par Hughes et al. en dynamique
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des structures [124] puis en dynamique des fluides [125], cette méthode est désormais

aussi utilisée avec succès pour étudier les problèmes d’interaction fluide-structure (voir

tableau 2.13). Elle permet notamment une description plus naturelle du domaine fluide

qui se déforme et respecte automatiquement la loi de conservation géométrique (GCL)

introduite ci-après [126]. Toutefois, le nombre d’inconnues est multiplié à chaque pas de

temps, par 2 par exemple dans le cas d’un schéma d’intégration en temps du second ordre.

La seconde approche, et la plus utilisée, est la formulation Eulerienne-Lagrangienne

arbitraire (Arbitrary Lagrangian Eulerian, ALE). Elle permet le couplage d’une approche

lagrangienne pour la structure (repère non-déformé) et eulérienne pour l’écoulement

(configuration déformée). Dans cette approche, les équations fluides instationnaires sont

exprimées par rapport à une configuration de référence fixe [127]. Une transformation ALE

associe, à chaque temps t, un point du domaine de calcul déformé Ω(t) à un point dans

le domaine de référence Ω(0). Les propriétés de cette transformation ALE (ou vitesse de

maille) et leurs incidences sur le schéma numérique sont d’une grande importance comme

souligné par Etienne et al. [128]. En effet, même si Lacroix et Garon [129] ont montré

que cette approche fonctionne très bien dans le cas d’une déformation unidirectionnelle du

domaine fluide, et contrairement à l’approche espace-temps, la formulation ALE n’est plus

intrinsèquement consistante dès que les déformations du domaine sont arbitraires.

Malgré cet inconvénient, l’approche ALE reste intéressante car elle engendre un nombre

d’inconnues moindre par rapport à l’approche espace-temps. On opte ainsi pour cette for-

mulation ALE pour simuler les interactions fluide-structure. Toutefois il faut rendre cette

formulation consistante pour que le problème reste correctement posé et conserver les pro-

priétés du schéma de résolution. La loi de conservation géométrique (GCL) semble être la

clé pour obtenir une formulation ALE appropriée. Notons que l’approche ALE permet de

traiter la structure dans sa configuration non-déformée, ce qui facilite grandement les calculs

puisque la formulation du problème structurel reste naturellement consistante.

C. Loi de conservation géométrique

La loi de conservation géométrique ou GCL (geometric conservation law) a fait l’ob-

jet de nombreuses études qui ont engendré des conclusions contradictoires au sujet de sa

définition et de son impact sur la consistence de la formulation ALE. Il est généralement

admis que si une formulation ALE préserve un écoulement uniforme sur un domaine qui se

déforme, alors ceci constitue une définition de la GCL, ou du moins un test de respect de la

GCL [112, 126, 130]. On parle de version discrète de la GCL ou D-GCL (Discrete Geometric
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Conservation Law). Toutefois, bien que cette définition semble nécessaire pour conserver la

stabilité d’une approche ALE [131], elle semble encore insuffisante pour obtenir une formula-

tion ALE totalement consistante, notamment lorsqu’on parle d’intégration en temps d’ordres

élevés. Ainsi, Étienne et al. [128] proposent une définition généralisée de la GCL avec trois

niveaux de conformité (tests) :

1. une formulation ALE satisfaisant la GCL doit produire la solution exacte d’un problème

de fluide au repos (no-flow test) sur un maillage qui se déforme de façon arbitraire

(voir [132]).

2. une formulation ALE satisfaisant la GCL doit produire la solution exacte d’un

écoulement uniforme sur un maillage qui se déforme (i.e. respect de la D-GCL présentée

par Farhat et al. [131]).

3. pour une formulation ALE conçue pour satisfaire la GCL, le schéma d’intégration en

temps doit conserver le même ordre de convergence sur un maillage qui se déforme que

sur un maillage fixe.

Pour satisfaire ces trois niveaux de conformité de la GCL, il est nécessaire d’adapter la

conception de la formulation ALE en imposant d’importantes contraintes sur les algorithmes

d’intégration en temps [126, 131]. On opte pour l’approche développée par Etienne et al. [128],

évaluant séparément la divergence de la vitesse de maille d’un côté, pour satisfaire les

niveaux 1 et 2, et d’un autre côté, la vitesse de maille elle-même pour maintenir la précision

en temps. Ils ont prouvé l’efficacité de leur approche, vérifiant les trois niveaux de conformité

de la GCL sur des problèmes d’écoulements fluides avec des maillages qui se déforment.

Avec des ajustements mineurs, on appliquera cette approche aux problèmes d’interaction

fluide-structure (voir détails à la section 3.4.3).

2.2.2 Modélisation de la structure

On a déjà souligné dans la première partie de cette revue de littérature que plusieurs

approximations ont été mises en œuvre pour simplifier la modélisation d’un écoulement

fluide instationnaire, les méthodes potentielles en sont un exemple. Ces approches simplifiées

peuvent encore être utilisées dans le cadre d’interaction fluide-structure [133, 134]. Il en va

de même pour la modélisation de la structure. Certes, son traitement sur la configuration

non-déformée (approche ALE) facilite sa résolution par rapport à celle de l’écoulement

soumise à la déformation du domaine de calcul. Néanmoins, la complexité du couplage entre

la structure et le fluide a poussé les chercheurs à utiliser des simplifications pour modéliser la

structure du profil. On peut distinguer trois principaux niveaux de modélisation du solide en

2D. Tout d’abord, la modélisation la plus simple consiste à simuler les IFS sans “structure”,
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simplement en imposant des déplacements plus ou moins complexes aux frontières du

domaine fluide. C’est ce type de modélisation avec des mouvements de corps rigides qui

est le plus utilisé dans le domaine des profils oscillants comme on l’a vu à la section 2.1.

Ensuite, la modélisation peut tenir compte de la dynamique propre du solide en lui associant

une masse (et donc une inertie). Le profil subit alors des mouvements libres de corps rigide,

on parle d’aéroélasticité. Enfin, on peut tenir compte des déformations structurelles dues

à la flexibilité du profil en introduisant des équations d’état régissant ces grands déplacements.

A. Déplacements imposés

La modélisation la plus simple est de considérer des problèmes d’interactions fluide-

structure sans “structure”. Autrement dit, ce sont les frontières du domaine fluide dont

on impose les déplacements qui font office de modélisation pour le solide. Il n’y a donc

aucune équation structurelle à résoudre, seul l’écoulement fluide soumis à des frontières en

mouvement doit être résolu. On néglige toute rétroaction du fluide sur le solide, i.e. on est

dans le domaine du couplage faible. Cette approche découplée semble être adéquate pour

l’étude de certains objets volants de type insectes à hauts nombres de Reynolds (approche

non-visqueuse) d’après Daniel et Combes [135]. En considérant un fluide non-visqueux et

des petits déplacements, ils déduisent d’une étude analytique que les effets inertiels sont

prépondérants sur les forces de pression exercées par l’écoulement sur le solide. Il ne serait

donc pas nécessaire de modéliser le couplage fluide-structure en entier mais seulement le

transfert des efforts du solide sur l’écoulement fluide.

Deux types de déplacements peuvent alors être imposés. Tout d’abord, un mouvement

de corps rigide de l’ensemble du solide peut être imposé aux frontières du profil oscillant

(voir les études et les résultats présentés à la section 2.1). Ensuite, on peut améliorer cette

modélisation en imposant des mouvements locaux aux frontières du profil solide, mimant

ainsi une certaine flexibilité, ou du moins des profils à formes évolutives. De cette manière

certains auteurs ont pu confirmer en premier les avantages des profils flexibles observés de

manière expérimentale [14, 84]. Ainsi, Miao et Ho [35] ont étudié l’effet de la “flexibilité”

d’un profil en battement en lui imposant des déformations prédéterminées. Ils concluent tout

d’abord qu’il existe une amplitude de déformation optimale pour l’efficacité de propulsion.

Ensuite, ils définissent un angle de déphasage φ entre le battement et la déformation du

profil. Ils trouvent alors une valeur optimale de φ = −π/2, semblable à celle trouvée pour le

déphasage optimal entre le battement et la rotation d’un profil rigide ! Avec ce déphasage,

l’efficacité de propulsion passe de 17% pour un profil rigide à 30% pour un profil déformé
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d’une amplitude optimale. Il semble que la déformation du profil aide le tourbillon à parcourir

l’aile en douceur du bord d’attaque ou bord de fuite. Tay et Lim [136] utilisent le même

procédé avec une déformation du profil plus complexe mais concluent que la “flexibilité” n’est

pas nécessairement bénéfique et son effet dépend de la configuration oscillante et de la forme

du profil. La configuration de battement pur (sans rotation) semble être à privilégier pour que

la flexibilité améliore l’efficacité de propulsion et la quantité de poussée. De fortes efficacités

sont alors obtenues entre 66% et 76%. Toutefois, à cause de la très forte nonlinéarité des

problèmes d’interaction fluide-structure, il est risqué de faire un lien aussi direct entre

flexibilité et déformations imposées du profil, sans considérer les réactions de l’écoulement

sur la structure flexible. En outre, le calcul de l’efficacité est biaisé pour les mêmes raisons ou

alors il faudrait prendre en compte l’énergie nécessaire à la déformation active de la structure.

Ces premières études montrent donc des améliorations au niveau des performances des

profils se déformant (flexibles ou munis d’actionneurs) en termes d’efficacité de propul-

sion pour certaines configurations d’oscillations. L’introduction d’une flexibilité du pro-

fil devrait donc permettre d’améliorer ses performances mais doit encore être confirmée

par de meilleures modélisations de l’interaction fluide-structure. En effet, l’importance des

déformations élastiques n’est pas toujours négligeable. Ainsi, dans le cadre hydrodynamique

(forte densité du fluide), Daniel et Combes [135] confirment qu’elles ne sont plus négligeables.

On peut aussi se demander si on peut encore négliger les déformations élastiques à bas Rey-

nolds (écoulement visqueux) ou avec des solides en grands déplacements.

B. Aéroélasticité

Une amélioration de la modélisation de la structure consiste à lui associer une masse

(et donc une inertie) afin de tenir compte de sa dynamique. Les effets inertiels ainsi que

les effets des forces fluides agissant sur le profil peuvent alors être pris en compte. Cette

modélisation s’appuie généralement sur 2 degrés de liberté en 2D : l’amplitude de battement

h et l’angle d’attaque α. Comme le montre la figure 2.3, la modélisation s’appuie sur le

système d’équations couplées suivant :
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ḣ

α̇

]

+

[

Kh S3
α

S3
α Kα

][

h

α

]

=

{

F y
ext

Mext

}

(2.4)

où F y
ext représente les efforts verticaux s’exerçant sur le profil, Mext le moment autour de

l’axe élastique, m la masse du solide, Iα son moment d’inertie, Ch et Cα ses amortissements

en flexion et en torsion, Kh et Kα ses raideurs en flexion et en torsion et Si
α les termes de
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couplage.

Figure 2.3 Modélisation d’une structure aéroélastique, tiré de [2]

.

Cette modélisation est surtout utilisée pour étudier le flottement et le décrochage dyna-

mique des profils [137, 78, 2, 138] ou les phénomènes vibratoires induits par l’écoulement [139].

Dans le cadre des profils oscillants, cette modélisation permet d’introduire une dynamique

libre du profil et ainsi un couplage total entre le fluide et la structure. La rétroaction des

forces fluides va en effet avoir lieu grâce au système d’équations 2.4 et induire un mouvement

du solide. Dans le domaine de la propulsion, Murray et Howle [69] étudient l’impact de

l’ajout d’un degré de liberté sur l’amplitude de battement (voir Eq. 2.4 avec seulement

Kh non-nul) lorsqu’on impose un mouvement de rotation du profil (sans masse) dans un

écoulement non-visqueux. A l’inverse, Willis et al. cherchent à optimiser le mouvement

de battement du profil pour améliorer l’efficacité de propulsion en libérant le degré de

liberté en rotation α. Toomey et Eldredge [134] ont quant à eux utilisé cette modélisation

aéroélastique pour faire un pas vers l’étude d’un profil flexible. Plus précisément, ils ont eu

l’idée de couper le profil en deux demi-profils et d’insérer un degré de liberté en rotation

(une charnière à ressort, i.e. une raideur en torsion) entre les deux parties. Le mouvement

du profil amont est imposé alors que le profil aval subi une rotation sous l’effet des forces

aérodynamiques, de pesanteur, d’inertie et de la réaction du ressort (voir Eq. 2.4). Utilisant

une méthode de vortex prenant en compte la séparation de l’écoulement, ils concluent qu’une

aile “flexible” requiert moins de puissance pour être mise en mouvement mais fournie aussi

moins de portance. Toutefois, l’efficacité du système (rapport portance/puissance requise)

est améliorée. Farnell et al. [140] présentent des résultats préliminaires qui vont encore plus

loin en modélisant une structure flexible par N éléments rigides reliées par des charnières
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en torsion (raideur+amortissement). L’imposition d’un terme d’avancée (driving terms) sur

chaque élément permet l’avancement du solide, à l’image d’une anguille.

Enfin, il semble judicieux d’utiliser cette modélisation pour étudier de manière plus réaliste

l’extraction de puissance et la propulsion des profils oscillants. En effet, les mouvements

imposés du profil empêchent de quantifier les réels effets des efforts de l’écoulement sur le

solide. Si on introduit des degrés de liberté sur l’amplitude ou la rotation du profil, on pourra

alors étudier la force et donc l’énergie récupérable par le système du profil oscillant. Dans une

récente étude, Peng et Zhu [141] étudient l’extraction de puissance par un profil oscillant de

manière purement passive, i.e. déplacement du solide induit par les seules forces fluides. Le

système est constitué d’un profil monté sur un ressort en torsion Kα et d’un amortisseur Ch

représentant le générateur de puissance (masse et inertie sont négligées). Les équations 2.4

se réduisent alors à :

Chḣ = F y
ext (2.5)

Kαα = Mext (2.6)

En définissant l’énergie extraite par Pout = cḣ2, ils obtiennent des efficacités maximales de

l’ordre de 20%. L’avantage de cette approche réside surtout dans sa simplicité de mise en

œuvre et de contrôle puisque le mouvement n’est plus imposé (voir aussi les travaux similaires

de Zhu et al. [68] avec des équations aéroélastiques légèrement différentes).

De même, dans le domaine de la propulsion, cette modélisation permet de simuler la libre

avancée (ou montée) du profil due aux actions des forces de l’écoulement. On peut ainsi étudier

réellement le processus de propulsion dont l’objectif est de faire avancer le système, soit selon

l’axe horizontal (propulsion) soit selon l’axe vertical (sustentation). On a seulement trouvé

quatre études utilisant cette modélisation pour simuler l’autopropulsion des poissons [55,

56, 142, 52]. Dans les quatre cas, les auteurs imposent une déformation ondulatoire aux

frontières du “poisson” simulant une flexibilité (voir section 2.2.2) et observent la nage libre

de ce dernier due aux forces hydrodynamiques. Shirgaonkar et al. [142] reformulent alors

le nombre de Reynolds en fonction de la vitesse maximale Umax de déformation imposée

alors que Yeo et al. [52] utilisent la fréquence f d’ondulation pour définir Ref = ρfl20/µ.

Ces derniers adaptent également la définition de l’efficacité de propulsion avec la formule de

Lighthill suivante :

ηL =
TUavg

TUavg + PL

(2.7)
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où Uavg est la vitesse moyenne du poisson, T la poussée moyenne et PL la perte de puissance

moyenne. Toutefois, les auteurs ne précisent pas comment ils calculent en pratique la poussée

et la perte de puissance alors que ce n’est pas évident. En effet, les calculs des efforts donnent

la résultante totale composée de la trainée D et de la poussée T :

Fx(t) = T (t)−D(t) (2.8)

De plus, la perte de puissance peut être définie de plusieurs façons. Borazjani et Sotiropoulos

[143] proposent une approche permettant de décomposer Fx en ses 2 composantes T et

D et un calcul de la perte de puissance en fonction des déformations imposées. On voit

ainsi la difficulté à définir une efficacité de propulsion lorsqu’on sort de l’habituel champ de

modélisation dans lequel le solide n’a pas de mouvement libre.

C. Structure en grands déplacements

Dans cette dernière partie, on se concentre sur les modélisations structurelles reposant sur

des équations d’état. On parle alors de structures flexibles. Il existe de nombreuses équations

d’état permettant de modéliser les déplacements (variations de forme) et les déformations

(variations de volume) d’une structure. On peut toutefois les classer en 4 catégories (sans

parler de la plasticité bien au-delà du champ d’investigation de notre étude) :

1. petites déformations - petits déplacements : élasticité linéaire

2. petites déformations - grands déplacements : hyperélasticité

3. grandes déformations - petits déplacements : hyperélasticité finie

4. grandes déformations - grands déplacements : hyperélasticité finie

Ainsi, un modèle d’élasticité linéaire suffit pour de petits déplacements et de petites

déformations [133, 144, 103, 145, 146, 44, 147]. Toutefois, dès qu’on a de grands déplacements,

un modèle hyperélastique est nécessaire. De nombreuses lois de comportement non-linéaires

existent (voir travaux de mâıtrise [109]) mais c’est celle de Saint-Venant Kirchhoff qui

est la plus répandue [111, 148, 149, 150] dans le cadre des interactions fluide-structure.

Les autres modèles hyperélastiques sont encore peu utilisés dans le domaine de la CFD

(Mooney-Rivlin [151], Neo-Hookien [152]). Le domaine de l’hyperélasticité finie reste donc

encore à explorer. Concernant les profils oscillants, seule l’étude d’Etienne et al. [6] utilise

un modèle hyperélastique.

Dans l’hypothèse de petits déplacements et petites déformations, les modèles d’élasticité

linéaire peuvent être facilement mis en œuvre. Ainsi, en 1978, Katz et Weih [133]
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modélisaient un profil flexible par une série de poutres soumis à un écoulement non-visqueux

(sans séparation). Ils concluaient déjà que la flexibilité tend à diminuer la magnitude de la

portance mais aussi à changer sa direction, ce qui a un effet bénéfique pour la propulsion.

Ainsi, malgré une faible diminution de la poussée, l’efficacité de propulsion augmente de

près de 20%. En 2010, Gopalakrishnan et Tafti [147] prenant en compte les phénomènes de

séparation, dont le LEVS (leading-edge vortex shedding), avec une méthode 3D arrivent à des

conclusions différentes tout en gardant une modélisation linéaire de la structure (membrane).

La cambrure du profil induite par la flexibilité provoque une augmentation “considérable”

de la poussée (jusqu’à 40%) et de la portance. Ils expliquent ce bénéfice par le fait que le

LEVS reste attaché sur l’extrados du profil et glisse le long de la cambrure, couvrant la

majeure partie du profil. Les forces sont alors plus importantes que pour un profil rigide. De

plus, l’efficacité de propulsion n’augmente pas autant que dans l’étude précédente, passant

d’environ 18% pour un profil rigide à un peu plus de 22% pour une flexibilité optimum.

La complexité des problèmes d’interactions fluide-structure limite fortement le nombre

d’études numériques utilisant des modèles structuraux nonlinéaires. De ce petit nombre

d’études, la plupart utilisent une plaque plane comme profil flexible [13, 101], les autres

des éléments de types poutres gérés par des logiciels commerciaux spécialisés dans les

structures [64, 58]. Ces approches simplifient la résolution du problème mais permettent

de prendre en compte les effets de structures non-linéaires. Gogulapati et al. [64] ainsi que

Zhu [101] ajoutent également une hypothèse d’écoulement potentiel, les premiers prenant en

compte la séparation de l’écoulement et la formation du LEVS (mais ils ne présentent que

des résultats préliminaires). Les équations de Navier-Stokes ne sont donc utilisées que par

Chimakurthi et al. [58] et Tang et al. [57] qui sont aussi les seuls à faire des simulations avec

un profil épais. Il faut noter que ces deux dernières études sont faites en 3D et les auteurs

considèrent une flexibilité selon l’envergure du profil. On parle aussi alors d’aéroélasticité.

En 2D, l’impact de la flexibilité selon la corde sera différent. On se concentrera sur cet

aspect dans notre étude.

Ainsi, en 2D, une des conclusions de ces études est que la flexibilité induit une rotation de

manière passive, qu’on peut caractériser par un angle virtuel. Il est défini entre les lignes

qui relient le bord de fuite et le bord d’attaque du profil flexible d’un côté et d’un profil

virtuel rigide de l’autre côté. Ceci donne aussi lieu à l’introduction de l’angle de déphasage

entre le mouvement de battement et la rotation composée d’une partie imposée et d’une

partie libre due à la flexibilité du profil. Enfin, d’un point de vue pratique, il devient alors

possible d’imposer seulement un mouvement de battement au profil et d’utiliser la flexibilité

du profil pour obtenir la rotation induite souhaitée. On retrouve ici la conclusion de Tay
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et Lim [136] qui imposent une déformation au profil pour simuler sa flexibilité et indiquent

qu’il est alors préférable d’utiliser un profil en battement pur. Ainsi, cette rotation passive

induit une réduction de l’angle d’attaque effectif global du profil et ainsi une réduction des

efforts (poussée et portance) [101, 64] et un retardement du décrochage dynamique du profil.

Ainsi, Zhu [101] conclue à une baisse des performances à cause de la flexibilité mais il ne

tient pas compte de la séparation de l’écoulement (et donc du rôle des LEVS). Avec une

approche visqueuse, on se rend compte que la flexibilité tend à adapter l’angle d’attaque

effectif local à l’écoulement, limitant ainsi les phénomènes de séparation du LEVS [13, 64] et

aidant la convection des tourbillons générés (même conclusion qu’en élasticité linéaire [147]).

Ce phénomène de recollement des LEVS assure des efficacités de propulsion supérieures à

celles obtenues avec un profil rigide.

L’introduction d’une flexibilité pour des profils oscillants a donc un impact sur les per-

formances d’un profil. Toutefois, selon les auteurs, les conclusions ne sont pas les mêmes sur

les aspects bénéfiques ou non de la flexibilité. Il faut admettre que dans les études menées

jusqu’à présent, les approximations faites pour modéliser le fluide (potentiel, sans séparation)

masquent l’impact de la modélisation structurelle. En effet, les auteurs arrivent à des conclu-

sions identiques avec les différentes modélisations pourvu qu’ils utilisent les mêmes hypothèses

sur le fluide. Il y a donc une nécessité de mener des études d’interaction fluide-structure

rigoureuses utilisant les équations de Navier-Stokes visqueuses d’un côté et une loi de com-

portement hyperélastique de l’autre afin d’analyser correctement ce problème complexe et de

comprendre l’impact réel de la flexibilité sur les performances d’un profil oscillant.

2.2.3 Couplage IFS

Après avoir choisi une modélisation pour le fluide et une modélisation pour la struc-

ture, il est nécessaire de coupler numériquement ces deux parties constituant un problème

d’IFS. Le couplage numérique est ainsi la partie clé de la résolution et doit permettre de

préserver l’équilibre à l’interface. Deux approches sont alors possibles pour coupler fluide et

structure [137] : les méthodes faiblement couplées ou les formulations fortement couplées.

A. L’approche faiblement couplée

D’une part, les méthodes faiblement couplées ou étagées [153, 154, 112] utilisent des al-

gorithmes de résolution séparés pour le fluide, le pseudo-solide et la structure. Ce sont les

méthodes les plus populaires, notamment parce qu’elles permettent l’utilisation de codes

spécialisés déjà existants dans chaque domaine (soit dans le traitement d’écoulements soit
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dans la résolution de problèmes structuraux). De plus, elles offrent la possibilité d’utiliser

des pas de temps de résolution différents pour le fluide et pour la structure, permettant ainsi

de l’adapter aux échelles de temps propres aux deux domaines. Enfin, cette approche mi-

nimise ainsi les ressources informatiques nécessaires et facilite l’implémentation de couplage

numérique entre les équations fluides et structurelles sans demander d’adaptation majeure

des codes de calcul spécifiques. En pratique, le couplage s’effectue alors de manière itérative :

les efforts du fluide obtenus grâce à un logiciel de CFD sont transférées au code de dynamique

des structures qui calcule les déplacements solides ; ces derniers sont alors transférés en retour

au module de CFD jusqu’à convergence et obtention de la géométrie déformée. Ces approches

étagées ont donc un certain coût causé par les itérations de convergence jusqu’à l’équilibre.

De plus, comme le transfert de données est approximé à chaque itération, l’équilibre à l’inter-

face n’est pas parfaitement satisfait. Un éloignement trop important de l’équilibre pourrait

provoquer une explosion du couplage et la divergence du calcul.

B. L’approche fortement couplée

D’autre part, on trouve les formulations fortement couplées ou monoli-

thiques [111, 155, 148] qui garantissent l’équilibre à l’interface fluide-structure. Ces

approches monolithiques résolvent l’ensemble du système fluide-structure d’un seul bloc, ce

qui garantit à tout moment l’équilibre à l’interface fluide-structure [6]. Leur implémentation

est plus délicate que les approches faiblement couplées et nécessite des ressources infor-

matiques plus importantes. Toutefois, elles sont plus stables que les méthodes faiblement

couplées lorsqu’elles sont bien implémentées. Blom [137] confirme cet avantage sur un

problème simple de piston en 1D (l’implémantation étant trop complexe pour être testée).

Alors que pour des pas de temps petits il n’y a pas vraiment de différence entre une approche

faiblement couplée et une approche monolithique, l’algorithme étagé produit une déviation

non-physique par rapport à l’équilibre lorsqu’on augmente le pas de temps. L’approche

monolithique reste alors stable même pour des pas de temps importants. On a donc opté

pour une approche monolithique directe, ou entièrement couplée, dans notre étude, basée

sur l’approche pseudo-solide continue de Sackinger et al. [121].

2.2.4 Voies de recherche pour les IFS

On peut conclure cette revue de littérature sur les interactions fluide-structure en

reprenant le constat fait par Shyy et al. [18] en 2010. Il y a actuellement des lacunes à

combler dans la compréhension des phénomènes d’interaction fluide-structure pour des
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profils oscillants, notamment à bas nombre de Reynolds. En effet, il y a un manque à la

fois de données expérimentales mais aussi de méthodes numériques pour simuler des profils

flexibles oscillants. Ceci confirme l’importance de disposer d’un modèle numérique complet

pour simuler ce processus extrêmement complexe et la nécessité de disposer d’outils de

modélisation très avancés pour étudier l’introduction d’une flexibilité au profil.

L’étude des différents travaux numériques existants (voir tableau 2.9) a plus parti-

culièrement mis en lumière certaines voies de recherche susceptibles d’améliorer la simulation

des problèmes d’interaction fluide-structure en grands déplacements dans le contexte des

profils oscillants :

– prise en compte des forces visqueuses et des LEVS (leading-edge vortex shedding) dans

la partie fluide (équations de Navier-Stokes) ;

– modélisation correcte des grands déplacements à l’aide d’équations d’état hy-

perélastiques ;

– application d’une approche monolithique (fortement couplée) à des profils oscillants ;

– introduction des équations d’aéroélasticité permettant un libre mouvement de corps

rigide des profils oscillants.

Ces améliorations numériques permettront ainsi une meilleure modélisation et

compréhension des phénomènes IFS notamment dans les domaines suivants :

– étude précise de l’influence de la flexibilité pour un profil oscillant soumis à un

écoulement visqueux ;

– simulation de structures subissant des vibrations induites arbitraires (grands

déplacements) ;

– prise en compte de l’avancée du profil autopropulsé lors de l’étude de son efficacité à

produire de la poussée.
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Auteur, Équations Méthode Modèle
Année fluides de résolution de structure
Toomey[134] 2D potentielles DVM 1 rotation
2006 (+séparation) libre
Miao[35] 3D N-S Logiciel Déformation
2006 FLUENT imposée
Zhu[101] 3D potentielles Méthode Plaque plane
2007 des panneaux non-linéaire
Tang[57] 3D N-S Logiciel Logiciel
2008 STREAM UM/NLABS
Gogulapati[64] 2D potentielles DVM Logiciel
2008 (+séparation) MARC
Chimakurthi[58] 3D N-S Logiciel Logiciel
2009 STREAM MARC
Gopalakrishnan[147] 3D N-S, LES Volumes finis Membrane linéaire
2010

Tableau 2.9 Principales études numériques IFS sur des profils oscillants.

2.3 Intégration en temps

There are at least two ways to combat stiffness. One is to design a better computer, the

other, to design a better algorithm.

H. Lomax, tiré de [1]

Grâce à l’approche monolithique implicite, il est possible de simuler des problèmes d’in-

teraction fluide-structure fortement couplés. Toutefois, la simulation de ce type de problèmes

raides reste très coûteuse en temps lorsqu’on cherche à étudier les comportements dynamiques

sur une longue période. Comme le dit Lomax, il ne reste plus qu’à acheter des meilleurs or-

dinateurs ou, à défaut, à améliorer les performances des algorithmes d’intégration en temps.

Cette partie s’intéresse ainsi à l’efficacité de l’intégration en temps qui est d’une importance

cruciale. Tout d’abord, on présente les concepts théoriques importants de l’intégration en

temps des problèmes raides tels que les interactions fluide-structure. Ensuite, on expose les

différentes approches mises en pratique pour résoudre des problèmes d’interaction fluide-

structure instationnaires. Enfin, le choix du schéma d’intégration de Runge-Kutta implicite

Radau-IIA est expliqué.
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2.3.1 Problèmes raides

A-stability is not the whole answer to the problem of stiff equations.

R. Alexander, tiré de [1]

Comme le soulignent Hairer et Wanner [1] dans leur introduction du chapitre IV, la notion

de problèmes raides reste encore très difficile à définir mathématiquement bien qu’on puisse

en avoir une définition intuitive basée sur l’expérience. La première et la plus pragmatique

des définitions a été donnée par Curtiss et Hirschfelder [156] en une simple phrase : “stiff

equations are equations where certain implicit methods, in particular BDF 2, perform better,

usually tremendously better, than explicit ones”. Plus concrètement, ils proposent l’exemple

raide 1D suivant :

y′ = −α(y − cos(t)), α = 50, y(0) = y0 (2.9)

Selon la condition initiale y0, la solution de cette équation est une courbe au voisinage de

y ≈ cos(t) précédée d’une rapide phase de transition depuis y0 si y0 6= cos(0) = 1. Une telle

transition est typique des équations raides sans être une condition ni nécessaire ni suffisante.

Hairer et Wanner [1] présentent des résultats numériques pour une équation encore plus raide

avec α = 2000 et y0 = 0 (voir figure 2.4). On observe une bonne tenue du schéma d’Euler

implicite mais les solutions obtenues avec des schémas implicites de Crank-Nicolson (ou règle

du trapèze, impl. Trap.) subissent des oscillations parasites, dues à la phase de transition

initiale. Ainsi, même des schémas implicites peuvent ne pas être suffisants pour résoudre des

problèmes très raides.

Le concept de stabilité des schémas d’intégration doit donc être précisé. Habituellement,

le critère de stabilité linéaire (CFL par exemple) définit un domaine sur lequel le schéma

d’intégration est stable. On parle de méthodes A-stables lorsqu’il n’y a aucune restriction

(aucun critère) sur le domaine de stabilité pour l’équation suivante :

y′ = λy, <(λ) < 0 (2.10)

Autrement dit, on peut choisir n’importe quel pas de temps ∆t sans mettre en péril la sta-

bilité de l’intégrateur en temps. Contrairement aux méthodes explicites, le schéma d’Euler

implicite ainsi que les schémas implicites de Runge-Kutta sont tous A-stables. Les schémas de

Crank-Nicolson possèdent aussi cette propriété de A-stabilité. Toutefois, comme on le voit sur

2. BDF : backward difference formulae ou formules aux différences finies arrières, ce sont des schémas à

pas multiples.
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Figure 2.4 Crank-Nicolson (non L-stable) verus Euler implicite (L-stable), tiré de [1]

la figure 2.4, le schéma de Crank-Nicolson est fortement affecté par la phase transitoire ce qui

provoque des oscillations parasites de la solution et une convergence très lente vers la solution.

Une convergence rapide vers la solution recherchée apparâıt ainsi comme une propriété sou-

haitable des schémas d’intégration, on parle alors de L-stabilité. Ainsi, les méthodes L-stables

ne sont pas sensibles au fait qu’une équation soit dite raide. Contrairement au schéma de

Crank-Nicolson, le schéma d’Euler implicite ainsi que les formules implicites de Runge-Kutta

(IRK) Radau-IIA sont L-stables, et même précises pour les équations raides [1]. Concernant

les méthodes à pas multiples (règle du trapèze, BDF, Newmark), le théorème de Dahlquist

limite leur ordre de précision p. En effet, ces méthodes ne peuvent posséder la propriété de

A-stabilité seulement si p ≤ 2. Le tableau 2.10 résume les propriétés de stabilité de différents

schémas implicites.

Comme le souligne Saint-Amand [157], en plus des problèmes de stabilité, la résolution

de problèmes raides peut également induire des réductions d’ordre des schémas d’intégration

étagés à pas unique. En effet, chaque étage des méthodes à pas unique possède un ordre q de

précision propre qui peut différer de l’ordre global p de la méthode. Ainsi, sur des problèmes

raides, l’ordre de la méthode peut diminuer de p à qmax, l’ordre maximal de chaque étage.

Hairer et Wanner [1] présentent un tableau (tableau 15.1, p226) des ordres de convergence

des erreurs pour les différentes méthodes IRK dans le cas de problèmes raides. Avec un
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Schémas Ordre A-stable L-stable Précis pour
les éq. raides

P
as

m
u
lt
ip
le
s Euler implicite 1 oui oui oui

Crank-Nicolson 2 oui non -
BDF2 (schéma de Gear) 2 oui oui -

BDFp (p > 3) p non non -
Newmark (accélération moyenne) 2 oui ? -

IR
K

Gauss 2s oui non non
Radau-IA 2s-1 oui oui non
Radau-IIA 2s-1 oui oui oui
Lobatto-IIIA 2s-2 oui non non
Lobatto-IIIB 2s-2 oui non non
Lobatto-IIIC 2s-2 oui oui oui

Tableau 2.10 Propriétés de stabilité de différents schémas implicites. Pour les schémas IRK,
s représente le nombre d’étages.

pas de temps constant, on peut en déduire les ordres de convergence réduits des schémas

IRK appliqués aux problèmes raides comme le résume le tableau 2.11. Sans entrer dans les

détails, on note que certains travaux [158] visent à améliorer les méthodes IRK classiques

afin de contrer ces effets de réduction d’ordre.

Enfin, les équations de Navier-Stokes incompressibles induisent une raideur

supplémentaire. Elles forment en effet un système d’équations différentielles-algébriques

(EDA) d’index 2 [1, 157], qui peut s’écrire sous la forme :

{

y′ = f(y, z)

0 = g(y)
(2.11)

où y représente le vecteur de vitesse du fluide et z la pression qui est le multiplicateur

de Lagrange de la contrainte d’incompressibilité g(y) = 0. La question est alors de savoir

si les schémas d’intégration en temps conservent leur précision dans le cas d’EDA d’index

2, notamment pour le multiplicateur de Lagrange. Le tableau 2.12 (tiré de [1]) résume les

ordres de convergence des erreurs globales pour les schémas IRK appliqués aux EDA d’index

2. On constate une réduction d’ordre du schéma pour le multiplicateur de Lagrange, i.e. la

pression. Notamment, pour les méthodes SDIRK (singly diagonally implicit Runge-Kutta), la

convergence reste linéaire sur la pression quelque soit le nombre d’étages. Pour les méthodes

Radau-IIA, l’ordre de convergence est réduit pour la pression à s au lieu de (2s−1). Il existe

toutefois des techniques [159] pour améliorer l’ordre de convergence sur le multiplicateur de
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Schémas Ordre global Ordre pour les
équations raides

Gauss

{
s impair
s pair

2s

{
s+1
s

Radau-IA 2s-1 s
Radau-IIA 2s-1 s

Lobatto-IIIA

{
s impair
s pair

2s-2

{
s-1
s

Lobatto-IIIB

{
s impair
s pair

2s-2

{
s-1
s

Lobatto-IIIC 2s-2 s-1

Tableau 2.11 Réduction d’ordre des schémas IRK appliqués aux problèmes raides avec un
pas de temps constant.

Lagrange pour ces schémas Radau-IIA. Concernant les schémas BDFp, leur convergence reste

d’ordre p sur l’écoulement et sur la pression si la précision sur les valeurs initiales des vitesses

est d’ordre p+1. Ainsi, le schéma de Crank-Nicolson est d’ordre 2 en pression. Ce résultat se

généralise aux autres méthodes à pas multiples si en plus la précision sur les valeurs initiales

de la pression est d’ordre p [1].

Les interactions fluide-structure en grands déplacements présentent un bel exemple de

problème raide. Non seulement les équations fluides forment un système d’EDA d’index 2

mais en plus les grands déplacements structurels rendent le problème encore plus raide.

L’application de schémas d’intégration en temps aux IFS est donc un défi tant au niveau de

la stabilité que de la précision.

2.3.2 Intégration en temps des IFS

Jusqu’à récemment, les différentes études sur les IFS étaient au mieux basées sur des

méthodes d’intégration en temps du second ordre [160, 161, 162, 163, 152, 3]. Désormais,

grâce à une puissance de calcul grandissante, l’utilisation de méthodes d’intégration en

temps d’ordres supérieurs devient possible. Par exemple, van Zuijlen et Bijl [164] ont

démontré “the excellence of higher order schemes (up to fifth) over the popular second order

backward-difference scheme (BDF)” pour un problème d’IFS linéaire sur un piston. Yang et

Mavriplis [165] confirment la prééminence de l’efficacité globale d’un schéma d’ordre élevé

IRK64 sur celle des schémas BDF en procédant à une étude de raffinement du pas de temps

sur un problème IFS 3D avec un écoulement compressible non-visqueux.
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Méthode Étages Erreur globale
écoulement pression

Gauss
s impair ∆ts+1 ∆ts−1

s pair ∆ts ∆ts−2

Radau-IA s ∆ts ∆ts−1

Radau-IIA s ∆t2s−1 ∆ts

Lobatto-IIIA
s impair ∆t2s−2 ∆ts−1

s pair ∆t2s−2 ∆ts

Lobatto-IIIC s ∆t2s−2 ∆ts−1

SDIRK3 3 ∆t2 ∆t1

SDIRK5 5 ∆t2 ∆t1

Tableau 2.12 Estimation de l’erreur pour les problèmes d’index 2 [1].

L’intégration en temps, quelque soit l’ordre de précision, repose sur des approches ex-

plicite, implicite ou mixte. Les approches totalement explicites doivent être proscrites pour

résoudre des problèmes raides (comme les IFS) à cause de leur manque de stabilité. En effet,

le critère de stabilité (CFL par exemple) restreint la valeur du pas de temps. Elle diminue

ainsi lorsque le maillage se raffine. Alors, bien que la résolution pour un pas de temps soit

peu coûteuse, la résolution globale du problème devient alors très coûteuse puisque le nombre

de pas de temps augmente pour mener une simulation sur une période de temps donnée. A

l’opposé, les intégrateurs implicites coûtent plus cher à chaque pas de temps mais sont très

efficaces pour les problèmes raides (jusqu’au 17e ordre pour des systèmes mécaniques [166])

et inconditionnellement stables. Le choix de la longueur du pas de temps dépends alors seule-

ment de la précision recherchée et non pas d’un critère de stabilité. Toutefois, il semble diffi-

cile d’implémenter des méthodes d’intégration totalement implicites, notamment pour les ap-

proches étagées de résolution d’IFS. Ainsi, les schémas mixtes (IMEX : implicite/explicite) ou

de Runge-Kutta explicite diagonalement implicite et à valeur uniforme sur la diagonale (ES-

DIRK : explicit single diagonal implicit Runge-Kutta) [157] sont les plus populaires [164, 165].

Mêmes s’ils sont performants, ils n’ont cependant pas les mêmes propriétés de stabilité que

les méthodes totalement implicites. En effet, dans le domaine des écoulements incompres-

sibles (EDA d’index 2), les schémas ESDIRK possèdent l’inconvénient majeur de réduire la

précision en temps sur la pression (premier ordre) ce qui restreint fortement leur utilisation.

Avec l’approche IMEX, la composante raide (les équations fluides et structurelles) est traitée

avec un schéma implicite pour des raisons de stabilité. Toutefois, ce schéma est souvent un

intégrateur ESDIRK. L’autre composante non-raide (les termes de couplage) est intégrée à
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l’aide de schémas explicites d’ordres élevés pour obtenir une grande précision en temps à

moindre coût.

Le tableau 2.13 expose une compilation de quelques contributions à l’intégration en temps

dans le contexte des interactions fluide-structure. Bien que les approches d’ordres élevés

(supérieurs à 2) soient de plus en plus utilisées pour la simulation des écoulements fluides,

on constate qu’elles restent marginales dans le domaine de l’IFS. De plus, elles sont souvent

utilisées comme un simple outil ou “bôıte noire”, sans aucune vérification de leurs efficacités

présumées. Ainsi, l’application de schémas d’ordres élevés sur des problèmes d’IFS soulèvent

plusieurs questions : sont-ils encore stables pour des problèmes raides d’IFS ? Conservent-ils

leur efficacité théorique sur des domaines déformables ? Leur précision est-elle conservée avec

des écoulements incompressibles ?

La plupart des études prennent bien en compte la déformation du maillage en introdui-

sant des sortes de lois de conservation géométriques mais sans vérifier les trois niveaux de

conformité précédemment décrits. Seulement trois auteurs [164, 165, 149] s’intéressent à cet

aspect, au moins partiellement, avec des études de convergence en temps. Hübner et al. [149]

confirment l’efficacité de leur schéma d’intégration en temps de Galerkin discontinu d’ordre

3 à l’aide d’une étude de convergence sur le cas d’un piston en mouvement 1D dans un

liquide non-visqueux. Sur le même cas, van Zuijlen et al. [164] vérifient que leur approche

IMEX d’ordre élevé est plus efficace qu’une approche monolithique avec un schéma BDF du

deuxième ordre (BDF2). Toutefois, le schéma BDF2 est aussi efficace que le schéma IMEX

d’ordre 3. De plus, l’étude de raffinement en pas de temps n’est pas concluante concernant

l’ordre de la précision en temps puisque les taux de convergence sont calculés par rapport au

coût de calcul et non pas par rapport à la longueur des pas de temps utilisés. Finalement,

ils observent un comportement instable de l’intégrateur IMEX lorsque la longueur du pas

de temps augmente, même pour un problème linéaire. Ceci peut s’expliquer par le fait que

l’approche IMEX n’est pas inconditionnellement stable puisqu’elle utilise un schéma explicite

pour résoudre les termes de couplage. Yang et Mavriplis [165] ont développé une approche

fortement couplée basée sur des méthodes BDF et ESDIRK. Ils construisent spécialement

leurs différents schémas d’intégration en temps pour satisfaire la GCL. Leurs nombreuses

études de convergence en temps confirment que l’utilisation de méthodes d’intégration

d’ordres élevés donne des résultats stables et précis. Toutefois, seulement le schéma BDF2

maintient son ordre de précision en temps théorique. Ainsi, l’intégrateur BDF3 (non

L-stable) devient instable pour de larges pas de temps, notamment lorsqu’interviennent des

modes structurels de hautes fréquences. De même, l’utilisation du schéma ESDIRK d’ordre

4 révèle un taux réduit de convergence autour de 3. Aucune explication n’est avancée par

les auteurs pour expliquer ces réductions d’ordre. Cependant, on peut penser que cela est en
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Auteur, Année Couplage Int. temp. Ordre ALE GCL Étude
conv.

Inc.

Wall
1999 [162]

étagé
?

∆t2 oui oui non oui

Matthies
2003 [160]

étagé bloc-Newton
implicite

? oui non non oui

Jan
2004 [161]

étagé Euler expli-
cite/ERK4

∆t1 oui oui non oui

Hübner
2004 [149]

mono. Galerkin
discontinu

∆t3 oui oui oui oui

de Bortoli
2005 [167]

? ERK ∆t4 oui non non non

Dettmer
2006 [163]

étagé α-méthode
généralisée

∆t2 oui oui non oui

Valdés-Vásquez
2007 [168]

étagé α-méthode
généralisée

∆t2 oui non non oui

Yang
2007 [165]

étagé ESDIRK ∆t4 oui oui oui non

van Zuijlen
2007 [169]

étagé IMEX
(ESDIRK4)

∆t4 oui oui oui non

Wood
2008 [152]

étagé BDF2/Newmark
amorti

∆t2 oui oui non oui

De Nayer
2009 [3]

étagé. BDF2/Newmark
amorti

∆t2 non - non oui

Présente étude mono. IRK ∆t5 oui oui oui oui

Tableau 2.13 Caractéristiques de quelques schémas appliqués aux IFS. Couplage (étagé (se-
gregated), mono. : monolithique), intégrateur en temps pour le fluide/la structure(IMEX :
implicite/explicite Runge-Kutta, ERK : Runge-Kutta explicite, IRK : Runge-Kutta impli-
cite), la précision en temps annoncée, utilisation d’une approche ALE, respect de la GCL,
occurence d’une étude de convergence en temps et incompressibilité de l’écoulement.
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partie dû à la manière explicite de traiter l’interface entre fluide et structure.

Finalement, à cause de la complexité de résolution des IFS, nous n’avons trouvé aucune étude

utilisant une approche temporelle totalement implicite lors de notre revue de littérature.

Pourtant, ce type d’approche permettrait une amélioration notable de la précision et surtout

de la stabilité des schémas.

Un dernier questionnement important survient lorsqu’on traite la partie structurelle du

problème d’interaction. En effet, comme présenté par Valdés-Vásquez [168], les non-linéarités

géométriques de la structure induisent un transfert d’énergie entre un nombre infini de modes

de déformation. Si l’intégrateur en temps n’est pas adapté, ces non-linéarités peuvent intro-

duire des oscillations parasites de hautes fréquences lors de simulations sur une longue période

de temps. Les méthodes de Newmark sont donc abandonnées au profits de schémas amortis

(Bossak ou α-méthodes généralisées) qui augmentent la dissipation pour les modes de hautes

fréquences sans trop dégrader la précision en temps contrairement au schéma de Newmark

amorti dont l’ordre est réduit à 1 [170, 163, 168, 152, 3]. De même, les méthodes ESDIRK

sont construites de manière à amortir les modes de hautes fréquences [164]. Cependant, la

dissipation numérique supprime également les modes structurels réels de hautes fréquences.

Ce phénomène peut être évité en utilisant des schémas de Runge-Kutta totalement impli-

cites, sans aucune dissipation numérique, comme présenté dans la présente étude. En effet,

l’excellente stabilité de ces schémas prévient naturellement toutes oscillations parasites sans

tronquer la physique du problème (voir section 5.1.3).

2.3.3 Schéma de Runge-Kutta implicite Radau-IIA

La section 2.3.1 a mis en évidence les difficultés de stabilité et de précision rencontrées par

les schémas d’intégration en temps pour résoudre des problèmes raides. Il est donc primordial

de choisir une méthode stable et précise pour simuler les interactions fluide-structure en

grands déplacements qui présentent non seulement un système d’EDA d’index 2 à cause de

l’incompressibilité du fluide mais aussi une grande raideur créée par les grands déplacements

structurels.

Tout d’abord, la simulation de problèmes IFS instationnaires requiert le calcul d’un

grand nombre d’inconnues (fluide+structure+couplage) sur de longues périodes de temps

pour saisir les phénomènes instationnaires. Les méthodes d’intégration d’ordres élevés

semblent donc une voie intéressante afin de réduire les temps de calcul. Les méthodes à

pas unique sont alors plus avantageuses que les méthodes à pas multiples qui ne sont pas

A-stables pour un ordre supérieur à 3. Les mêmes raisons de stabilité poussent logiquement
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à l’utilisation de méthodes implicites.

Parmi les méthodes implicites à pas unique, on se concentre sur les méthodes de Runge-Kutta

(IRK). Elles sont construites de différentes manières. Les méthodes dites de Radau-IIA

et Lobatto-IIIC sont A-stables, L-stables et précises pour les équations raides d’après le

tableau 2.10. Malgré un ordre de convergence supérieur pour un même nombre de pas temps,

les méthodes de Gauss ne sont pas L-stables. De plus, dans le cadre des EDA d’index 2, elles

subissent une importante réduction d’ordre de convergence comme le montre le tableau 2.12.

On remarque d’ailleurs que les méthodes SDIRK d’ordres élevés sont à proscrire lorsqu’on

veut traiter un fluide incompressible car elles sont seulement linéaires en pression. Quid alors

des méthodes ESDIRK ? Finalement, les méthodes Radau-IIA sont plus précises d’un ordre

que les méthodes Lobatto-IIIC dans tous les cas.

2.3.4 Une nouvelle approche d’intégration en temps

Le choix d’une approche monolithique implicite basée sur une méthode d’intégration

IRK de Radau-IIA pour résoudre des problèmes d’interactions fluide-structure est donc

entièrement justifié tant au niveau de la stabilité que de la précision. Pourtant, d’après la

revue de littérature présentée à la section 2.3.2, cela semble être une nouveauté à plusieurs

points de vue. Tout d’abord, les méthodes de Runge-Kutta utilisées ont toujours une part

explicite, notamment pour gérer les termes d’interface. On propose dans cette présente étude

une approche reposant entièrement sur des méthodes implicites de Runge-Kutta à la fois

pour le fluide, la structure et les termes de couplage. De plus, contrairement aux méthodes

multipas, les IRK n’ont pas besoin de dissipation des hautes fréquences pour rester stables,

même pour des ordres de précision élevés. D’ailleurs, la plupart des études sur les interactions

fluide-structure sont menées avec des schémas d’ordre inférieur ou égal à 2. Certains travaux

utilisent tout de même des schémas d’ordres 3 et 4 mais ne vérifient pas le maintient de cette

précision lors de leur application à des problèmes raides d’interaction fluide-structure. La

présente étude utilise des schémas IRK d’ordre 1 à 5 et étudie leur précision dans le cas de

problèmes raides.

2.4 Conclusion

Cette revue de littérature met donc en lumière le besoin d’améliorer encore les modèles

numériques pour simuler les phénomènes provoqués par un profil oscillant même si de nom-

breux progrès ont été faits dans les dernières années. Les améliorations doivent notamment

porter la résolution des équations instationnaires visqueuses de Navier-Stokes (nécessaires
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pour modéliser la physique complexe des profils oscillants) dans le contexte de problèmes

d’interaction fluide-structure. L’introduction d’une flexibilité du profil ainsi que le mou-

vement induit d’un profil autopropulsé complexifient d’autant plus la modélisation de ces

phénomènes d’interactions fluide-structure mais donne déjà des résultats prometteurs dans

le domaine de la propulsion. Afin de résoudre efficacement ces problèmes fortement couplés, il

apparâıt alors nécessaire d’améliorer les schémas d’intégration en temps tant pour des raisons

de stabilité et que de précision, et donc de temps de calcul.

Le but du présent travail de recherche est donc de simuler numériquement des processus

d’extraction de puissance d’un écoulement fluide et de propulsion grâce à un profil flexible

en grands déplacements. Pour atteindre ce but, on établit plusieurs objectifs spécifiques :

– Développer les outils nécessaires à la simulation numérique d’un profil oscillant en

grands déplacements ;

– Développer une approche précise et rapide de calcul des phénomènes d’interaction

fluide-structure instationnaires ;

– Vérifier l’approche sur des solutions analytiques et avec des données expérimentales ;

– Appliquer la méthodologie à une large gamme de mouvement de profils flexibles oscil-

lants en grands déplacements.
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CHAPITRE 3

MÉTHODOLOGIE

La mécanique est le paradis des sciences mathématiques, car c’est avec la mécanique qu’on

touche au fruit mathématique.

Léonard de Vinci

Pour remplir les buts et objectifs définis dans les chapitres précédents, on met en place une

approche spécifique aux problèmes d’interaction fluides-structure en grands déplacements. La

méthodologie et le code numérique de simulation s’appuient sur nos précédents travaux de

maitrise [109] auxquels on ajoute 5 volets spécifiques. Tout d’abord, il est important de réaliser

une analyse dimensionnelle rigoureuse des phénomènes d’IFS afin d’en faire ressortir les va-

leurs caractéristiques. Dans un second temps, on présente la modélisation mathématique

de ces phénomènes grâce aux équations appropriées. Le troisième volet important de la

méthodologie concerne la gestion particulière de la déformation du maillage pour des grands

déplacements. Les techniques d’intégration en temps sont l’objet de la quatrième partie. En-

fin, on expose la stratégie de résolution s’appuyant sur la méthode des éléments finis (MEF).

3.1 Analyse dimensionnelle

Notre revue de littérature (voir chapitre 2) a clairement mis en lumière le manque d’un

système de notations unifié pour les problèmes d’interaction fluide-structure. Chaque auteur

utilise en effet son système propre et il est alors difficile de comparer les différentes études.

De plus, les valeurs caractéristiques ne sont pas toujours clairement identifiées de sorte que

les études paramétriques ne s’interprètent pas toujours aisément. Enfin, dans le cadre de

simulation numérique, il est important d’adimmensionnaliser correctement les équations car

cette opération agit comme un préconditionneur naturel des équations et facilite la tâche du

solveur.

Une analyse dimensionnelle rigoureuse des phénomènes d’interaction fluide-structure est donc

nécessaire pour combler ces lacunes et classer les différents types de problèmes d’interaction

fluide-structure.

3.1.1 Hypothèses

Cette analyse se veut la plus générale possible. Toutefois pour qu’elle soit pertinente on

va tenir compte des hypothèses qui s’appliquent dans le cadre de notre étude :
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– l’écoulement est considéré laminaire ;

– le fluide et le solide sont contenus dans des domaines disjoints ;

– il n’y a pas d’échange de masse entre les deux milieux ;

– la température y est uniforme et constante dans le temps ;

– le fluide est incompressible ;

– on néglige la gravité ;

– il n’y a pas d’amortissement structurel.

3.1.2 Variables d’un problème général d’IFS

Malgré les hypothèses considérées, l’analyse dimensionnelle reste indépendante des

équations utilisées et repose simplement sur les différents variables du problème.

De Langre [171] les classent en trois types :

– Les variables indépendantes :

– les coordonnées géométriques x = (x, y, z) ;

– le temps t.

– Les variables dépendantes :

– dans le fluide : la vitesse uf et la pression p ;

– dans la structure : la contrainte σ et le déplacement χ.

– Les paramètres physiques et les données :

– paramètres physiques du fluide : masse volumique ρf et viscosité dynamique µf ;

– paramètres physiques de la structure : masse volumique ρs, module d’Young E et

coefficient de Poisson ν ;

– données communes au fluide et au solide : longueur caractéristique du domaine l0 ;

– données propres au fluide : une vitesse de référence U0 et une pression de référence p0 ;

– données propres au solide : un déplacement de référence ξ0

– données propres au solide rigide : une masse m, un angle de rotation θ0, une

amplitude de battement h0 et une fréquence d’oscillation f0.

Ainsi, pour un temps t et une position spatiale x donnés, on peut exprimer la dépendance

de chaque variable dépendante U en fonction des divers paramètres caractérisant le problème :

U(x, t) = f (x, t, ρf , µf , ρs, E, ν, l0, U0, p0, ξ0, m, θ0, h0, f0) (3.1)
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3.1.3 Analyse couplée

Dans les cadres des problèmes d’interaction fluide-structure, on procède à une ana-

lyse dimensionnelle couplée en considérant que les variables dépendantes de chaque milieu

dépendent des paramètres physiques des deux milieux. Ainsi, grâce au théorème de Vaschy-

Buckingham [171], ou théorème de π, on peut réduire le nombre de variables dans la rela-

tion 3.1 en considérant des paramètres adimensionnels. Ils sont construits par combinaison

des variables dimensionnelles, en considérant seulement leurs dimensions physiques [171, 172]

(M :masse, L :longueur, T :temps) :

[x] = L [U0] = LT−1

[t] = T [p0] = ML−1T−2

[ρf ] = ML−3 [ξ0] = L

[µf ] = ML−1T−1 [m] = M

[ρs] = ML−3 [θ0] = ∅
[E] = ML−1T−2 [h0] = L

[ν] = ∅ [f0] = T−1

[l0] = L [U] = variable

On observe qu’il existe au moins trois paramètres dimensionnellement indépendants :

ρf , l0, U0 pour 16 grandeurs caractérisant les problèmes d’interaction fluide-structure, en

considérant U une variable dépendante quelconque. Le théorème de Vaschy-Buckingham in-

dique alors qu’il existe (16−3) = 13 grandeurs sans dimensions πj caractérisant complètement

le problème (dont une concernant la variable dépendante). On peut former ces nombres de

différentes manières selon le choix du noyau de 3 grandeurs dimensionnelles. Si on prend
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arbitrairement ρf , l0, U0 comme noyau, on obtient les 12 nombres adimensionnels suivants :







π1 = ρa1f lb10 U c1
0 x =

x

l0
x∗ : position adimensionnelle

π2 = ρa2f lb20 U c2
0 t =

U0t

l0
t∗ : temps adimensionnel

π3 = ρa3f lb30 U c3
0 µf =

µf

ρfU0l0
Re−1 : nombre de Reynolds

π4 = ρa4f lb40 U c4
0 ρs =

ρs
ρf

Mflex : nombre de Masse (flexible)

π5 = ρa5f lb50 U c5
0 E =

E

ρfU2
0

C−1
Υ : nombre de Cauchy

π6 = ρa6f lb60 U c6
0 ν = ν ν : coefficient de Poisson

π7 = ρa7f lb70 U c7
0 p0 =

p0
ρfU2

0

Eu : nombre d’Euler

π8 = ρa8f lb80 U c8
0 ξ0 =

ξ0
l0

D : déplacement réduit

π9 = ρa9f lb90 U c9
0 m =

m

ρf l30
Mrigide : nombre de Masse (rigide)

π10 = ρa10f lb100 U c10
0 θ0 = θ0 θ0 : angle de rotation

π11 = ρa11f lb110 U c11
0 h0 =

h0

l0
h∗

0 : amplitude de battement adim

π12 = ρa12f lb120 U c12
0 f0 =

f0l0
U0

f ∗ : fréquence réduite
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La construction de ces paramètres fait ainsi apparâıtre des nombres adimensionnels clas-

siques :

– Re : le nombre de Reynolds mesure l’importance relative des vitesses de convection

et de diffusion visqueuse. À très bas Reynolds (ordre 100), les phénomènes visqueux ne

sont donc pas négligeables.

– Mflex : le nombre de masse pour une structure flexible représente le rapport des

densités du fluide et du solide. C’est un terme de couplage.

– CΥ : le nombre de Cauchy reflète le couplage entre le fluide et la structure. Il mesure

l’ordre de grandeur des déformations (liées à E) consécutives à la pression dynamique

ρfU
2
0 . Plus le nombre de Cauchy est grand, plus la structure immergée est flexible.

– ν : le coefficient de Poisson permet de caractériser la contraction de la matière

perpendiculairement à la direction de l’effort appliqué. Il est compris entre 0 et 0.5.

Plus sa valeur se rapproche de 0.5 et plus la structure devient incompressible (pas de

changement de volume).

– Eu : le nombre d’Euler représente le rapport des forces de pression sur les forces

d’inertie (il peut servir à caractériser les pertes de pression dans un fluide en mouve-

ment).

– Mrigide : l’équivalent du nombre de masse pour une structure rigide.

– f ∗ : la fréquence réduite permet de déterminer dans quelle mesure le mouvement

du solide peut modifier l’écoulement. Lorsque sa valeur est petite devant 1, la distance

parcourue par une particule fluide pendant une période d’oscillation est grande devant la

longueur de la structure. L’écoulement se comporte comme si les oscillations n’existaient

pas et on dit qu’il est quasi-stationnaire, c’est à dire qu’à chaque instant on peut le

considérer stationnaire pour chaque position instantanée de la structure. Par contre,

plus f ∗ sera grand, plus on devra tenir compte de l’instationnarité du système.
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Le 13e nombre adimensionnel π13 = U∗ concerne la variable dépendante étudiée U et

s’écrit π13 = U∗ :

Pour U :







π13 = ρa13f lb130 U c13
0 uf =

uf

U0
vitesse adimensionnelle

π13 = ρa13f lb130 U c13
0 p =

p

ρfU2
0

pression adimensionnelle

π13 = ρa13f lb130 U c13
0 χ =

χ

l0
déplacement adimensionnel

π13 = ρa13f lb130 U c13
0 σ =

σ

ρfU
2
0

contrainte adimensionnelle

On peut maintenant réécrire l’équation (3.1) pour π13 = U*, le nombre adimensionnel

approprié pour U :

U* = f (x∗, t∗, Re,Mflex, CΥ, ν,Eu,D,Mrigide, θ0, h
∗

0, f
∗) (3.2)

Toutefois, il faudra adapter l’analyse dimensionnelle aux différents cas que l’on rencontre.

En effet, les paramètres caractérisant les phénomènes et leurs valeurs caractéristiques varient

d’un cas à l’autre comme le montre le tableau 3.1. Habituellement, on considère la vitesse du

fluide en entrée U∞ comme vitesse caractéristique : U0 = Uinf . Toutefois, dans certains cas

particuliers, cette vitesse n’est plus caractéristique du problème (cas de profils autopropulsés)

et peut même être nulle (notamment dans un cas de hovering). Ainsi, d’autres nombres

adimensionnels seront plus adaptés à certains cas particuliers, comme par exemple ϑ =

U∞/U0. Enfin, on note qu’on pose habituellement : p0 = ρfU
2
0 et ξ0 = l0 de sorte que Eu = 1

et D = 1.

Types de structures ρf µf ρs E ν l0 U0 p0 ξ0 m θ0 h0 f0
Rigide statique × × × U∞ ρfU

2
0

Rigide oscillante × × × U∞ ρfU
2
0 × × ×

Flexible encastrée × × × × × × U∞ ρfU
2
0 l0

Flexible oscillante × × × × × × U∞ ρfU
2
0 l0 × × ×

Rigide autopropulsée × × × f0l0 ρfU
2
0 × × × ×

Flexible autopropulsée × × × × × × f0l0 ρfU
2
0 l0 × × × ×

Tableau 3.1 Paramètres pertinents pour différents problèmes d’IFS.
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3.1.4 Cas particuliers

Structure rigide statique

C’est le cas classique d’aérodynamique sans structure. D’après le tableau 3.1, on a (8−3) =

5 nombres adimensionnels caractéristiques du problème. L’expression 3.2 se simplifie donc

ainsi :

U* = f (x∗, t∗, Re,Eu) (3.3)

Ce type de problème est donc essentiellement caractérisé par le nombre de Reynolds.

Structure rigide oscillante

Pour un profil rigide oscillant, on obtient 8 nombres adimensionnels caractéristiques :

U* = f (x∗, t∗, Re,Eu, θ0, h
∗

0, f
∗) (3.4)

Certains auteurs préfèrent définir une fréquence adimensionnelle en tenant compte de l’am-

plitude de battement et remplacent la fréquence réduite f ∗ par le nombre de Strouhal :

St = h∗

0f
∗ = 2fh0/U∞. Toutefois, le nombre de Strouhal devrait plutôt être défini grâce à la

fréquence propre du fluide et non grâce à la fréquence d’oscillation du solide. C’est pourquoi

on préfère l’appellation de fréquence réduite.

Structure flexible encastrée

Pour les problèmes d’IFS simples sans mouvement de corps rigide (structure flexible

encastrée), 9 nombres adimensionnels caractérisent le comportement du système :

U* = f (x∗, t∗, Re,Mflex, CΥ, ν,Eu,D) (3.5)

On voit ici apparâıtre les paramètres caractéristiques de la structure ν et D mais surtout

les paramètres caractérisant le couplage IFS : Mflex et CΥ. Dans certaines situations, il est

intéressant de définir la vitesse réduite UR = U0/
√

E/ρs =
√

CΥ/Mflex qui détermine

l’intensité du couplage IFS [171] : si UR << 1 : couplage faible (écoulement statique), si

UR ≈ 1 : couplage fort et si UR >> 1 : couplage faible (aéroélasticité).

Structure flexible oscillante

Si on rajoute une flexibilité au profil oscillant, 4 nombres adimensionnels supplémentaires

apparaissent : Mflex, CΥ, ν et D. L’équation 3.2 s’écrit alors à l’aide de 11 paramètres adi-
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mensionnels :

U* = f (x∗, t∗, Re,Mflex, CΥ, ν,Eu,D, θ0, h
∗

0, f
∗) (3.6)

Trois dynamiques différentes sont alors en interaction : celle de l’écoulement fluide U0, celle

des oscillations du solide f0l0 et celle des déformations de la structure
√

E/ρs. Les paramètres

Mflex, CΥ et f ∗ font ressortir le couplage de ces trois dynamiques. Le temps caractéristique

dépend alors de la dynamique dominante du problème étudié. On suppose ici que la dyna-

mique de l’écoulement est encore prépondérante en gardant t∗ = U0t/l0 comme échelle de

temps adimensionnelle.

Structure rigide autopropulsée

Dans le cas d’un profil rigide autopropulsé, le mouvement de la structure est induit par les

efforts aérodynamiques qui s’exercent sur elles. Ces efforts sont provoqués par le mouvement

d’oscillation du solide ce qui crée une poussée le propulsant. La vitesse de référence n’est donc

plus celle du fluide U∞ (qui peut être nulle), mais celle du solide en mouvement. Toutefois,

cette vitesse ump n’est pas un paramètre mais une nouvelle variable dépendante. On définit

donc une vitesse caractéristique grâce à la fréquence f0 d’oscillation du profil : U0 = f0l0.

Ainsi, il y a un nombre adimensionnel en moins puisque f ∗ = 1 remplacé par un nouveau

nombre, le rapport des vitesses ϑ = U∞/U0. On obtient l’expression suivante en remplaçant

U0 par f0l0 dans les expressions des nombres adimensionnels :

U* = f
(
x∗, t̃∗, Re,Eu,Mrigide, θ0, h

∗

0, ϑ
)

(3.7)

Si la vitesse du fluide à l’infini U∞ n’est pas nulle, on en tient compte dans la définition l’échelle

de vitesses (comme si on changeait de repère) et on définit alors les vitesses adimensionnelles

(pour le fluide et la masse ponctuelle) ainsi :

u∗ =
u− U∞

l0f0
=

u

l0f0
− ϑ (3.8)

Le nombre de Reynolds s’exprime alors comme Re=
ρff0l

2
0

µf

.
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Structure flexible autopropulsée

Le cas le plus général d’IFS qu’on va rencontrer dans cette étude est le problème d’un

profil flexible autopropulsé. Comme on vient de le voir, on redéfinit U0 = f0l0 et on obtient :

U* = f
(
x∗, t̃∗, Re,Mflex, CΥ, ν,Eu,D,Mrigide, θ0, h

∗

0, ϑ
)

(3.9)

u∗

f =
uf

l0f0
− ϑ (3.10)

u∗

mp =
ump

l0f0
− ϑ (3.11)

Cette analyse dimensionnelle a défini les paramètres adimensionnels caractérisant les

problèmes d’interaction fluide-structure. Ceci permet une uniformisation des notations et

facilite ainsi la comparaison des différentes études par similitude. L’adimensionnalisation des

équations à la section 3.2.5 fera ressortir ces mêmes paramètres adimensionnels et facilitera

leur résolution par le solveur numérique.

3.2 Équations

La modélisation mathématique de la physique d’un processus est un choix crucial afin

que les simulations numériques soient le plus réalistes possible. Dans le cadre des interac-

tions entre un écoulement laminaire à bas Reynolds et une structure en grand déplacement,

il faut modéliser 4 sous-ensembles. Premièrement, le fluide est décrit par les équations de

Navier-Stokes incompressibles. Ensuite, la structure est régie par l’équation d’équilibre de

Cauchy et par les lois de comportement géométriquement non-linéaires. L’interface fluide-

solide forme le troisième sous-ensemble où les équations d’équilibre doivent être vérifiées.

Enfin, le déplacement de corps rigide est modélisé par une masse ponctuelle.

On rappelle que pour traiter les interactions fluide-structure, on utilise une formulation

Eulerienne-Lagrangienne arbitraire (Arbitrary Lagrangian Eulerian, ALE) permettant le cou-

plage d’une approche lagrangienne pour la structure (repère non-déformé) et eulérienne pour

l’écoulement (configuration déformée). Ainsi, contrairement au cas stationnaire, on n’aura pas

besoin d’utiliser la méthode du Lagrangien Actualisé [109]. Les équations sont donc présentées

sous la forme appropriée à l’approche ALE et les notations sont illustrées sur la figure 3.1.

La formulation eulérienne sera associée à la configuration déformée dénotée par l’indice 1. La

configuration non-déformée est dénotée par l’indice 0. Le lecteur intéressé pourra trouver de

plus amples détails sur l’approche ALE dans l’article de Lacroix et Garon [129].
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Figure 3.1 Notation du problème fluide-solide selon la configuration.

3.2.1 Équations fluides

À bas Reynolds, on peut considérer le fluide comme imcompressible. L’écoulement est

ainsi décrit par les équations instationnaires de Navier-Stokes : continuité et conservation de

la quantité de mouvement [173]. On les écrit sous leur forme convective (non-conservative)

dans Ω1
f :

∇ · uf = 0 (3.12)

ρfuf,t + ρfuf ·∇uf = ∇ · σf + ff (3.13)

Dans un système de coordonnées arbitraire dépendant du temps, les équations de quantité

de mouvement non-conservatives (3.13) s’écrivent :

ρfuf,t + ρf (uf − um) ·∇uf = ∇ · σf + ff (3.14)

où um est la vitesse de maille, ρf la densité du fluide, uf la vitesse du fluide et σf le tenseur

des contraintes fluides (incluant pression et forces visqueuses). Les équations (3.12) et (3.13)

sont exprimées dans un système de coordonnées Eulérien alors que l’équation (3.14) est une

formulation d’Eulerienne-Lagrangienne arbitraire (Arbitrary Lagrangian Eulerian, ALE). En
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supposant que le fluide est Newtonien, sa loi de comportement est donnée par :

σf = τ f − pI (3.15)

= µf [∇uf + (∇uf )
T ]− pI

où µf est la viscosité dynamique et p la pression du fluide.

Les équations fluides sont mathématiquement fermées par les conditions frontières sui-

vantes :

σf · n̂f = tf sur Γf
N (3.16)

uf = uf sur Γf
D (3.17)

où Γf
N représente une frontière du fluide où des conditions de Neumann s’appliquent sous la

forme de forces surfaciques (de tractions) tf , et Γf
D correspond à une frontière de Dirichlet

sur laquelle la vitesse, uf , est imposée.

3.2.2 Équations structurelles

Le comportement de la structure est régi par les équations différentielles d’équilibre de

Cauchy exprimées sur la configuration initiale non-déformée par une formulation de Lagran-

gien Total dans Ω0
s :

ρsus,t +∇ · σl + fs = 0 (3.18)

us = χs,t (3.19)

avec ρs la densité du solide, us la vitesse solide, χs la déformation solide et fs le champ de

forces volumiques dans le solide.

Afin de modéliser les grands déplacements de la structure (non-linéarités géométriques),

on considère une structure de Saint-Venant Kirchhoff dont la loi de comportement s’écrit :

σl = Fσk avec σk = λstr(E)I+ 2µsE (3.20)

où λs et µs sont les constantes de Lamé telles que :

λs = Eg1(ν) =
Eν

(1 + ν)(1 − 2ν)
et µs = Eg2(ν) =

E

2(1 + ν)

F = I + ∇χs le gradient de la transformation et E le tenseur de déformations non-linéaire



62

de Green-Lagrange s’écrivant :

E =
1

2

(
FTF− I

)
=

1

2

(
∇χs +∇

Tχs +∇
Tχs∇χs

)

où le dernier terme fait ressortir les non-linéarités quadratiques géométriques.

Les équations 3.18 et 3.19 sont complétées par les conditions aux limites suivantes :

σl · n = ts sur Γs
N (3.21)

χs = χs sur Γs
D (3.22)

Pour plus d’informations sur les modèles structuraux et leurs lois de comportement

en grands déplacements, on réfère le lecteur au chapitre II de notre précédent travail de

mâıtrise [109].

3.2.3 Interface fluide-structure

L’interaction entre le fluide et la structure passe physiquement par leur interface conjointe.

La modélisation de cette interface va donc assurer le couplage fluide-structure grâce aux

équations de continuité suivantes pour la vitesse, les efforts et les déplacements :

uf = us non-glissement sur ΓI1 (3.23)

σc · n̂s + σf · n̂f = 0 équilibre des contraintes sur ΓI1 (3.24)

χf = χs continuité des déplacements sur ΓI0 (3.25)

où σf est le tenseur habituel des contraintes fluides et σc est le tenseur de Cauchy exprimant

les contraintes solides en configuration déformée :

σc =
FσkF

T

J
(3.26)

où J = det(F).

On précisera dans la section 3.3 concernant la déformation de maillage la définition du

déplacement fluide χf sur l’interface non-déformée ΓI0.

3.2.4 Équations de la masse ponctuelle

Lorsqu’on veut simuler un mouvement libre de corps rigide en réponse aux forces

aérodynamiques fext = faero agissant sur ses frontières, on modélise le solide par une masse

ponctuelle dont la dynamique est régie simplement par la seconde loi du mouvement de
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Newton :

mump,t = fext (3.27)

ump = χmp,t (3.28)

où m est la masse du solide, ump sa vitesse et χmp son déplacement.

Si on impose un mouvement forcé aux frontières du solide, celui-ci se superpose au mou-

vement libre de corps rigide comme décrit à la section 4.4.1. En outre, dans le cas où le

solide est en partie flexible, on modélise la partie rigide par une masse ponctuelle alors que

la partie flexible est régie par les équations 3.20. La force s’exerçant sur la masse ponctuelle

provient alors en partie de la structure de sorte qu’on remplace la force dans l’équation 3.27

par fext = faero + fsolide. Le mouvement de la partie rigide est alors transmis à la partie

flexible implicitement, tout comme pour une interface fluide-structure simplifiée (vitesse et

déplacement uniformes sur l’interface).

Ainsi, sur les interfaces entre la masse ponctuelle et le fluide ΓIf et entre la masse ponc-

tuelle et le solide ΓIs, on peut écrire :

fext =

∫

ΓIf

σl · n̂fdΓ +

∫

ΓIs

σc · n̂sdΓ (3.29)

Ces deux intégrales sont considérées comme des variables secondaires et seront calculées

implicitement par la méthode des réactions (voir section 3.5).

3.2.5 Adimensionalisation des équations

Suite à l’analyse dimensionnelle de la section 3.1, on a fait ressortir les paramètres

caractéristiques des différents problèmes d’interaction fluide-structure que l’on se propose

d’étudier. Il est donc intéressant de procéder à l’adimensionalisation des équations présentées

pour faire directement intervenir ces paramètres caractéristiques. En outre, cette démarche

est parfois même nécessaire pour des raisons numériques. En effet, sans ce préconditionneur

naturel, les ordres de grandeurs des coefficients peuvent être trop éloignés et ainsi empêcher

le solveur de converger.

On montre que les équations adimensionnelles se déduisent des équations dimensionnelles

par simple composition linéaire quelque soit le cas étudié. En annotant d’un astérisque (∗) les

valeurs adimensionnelles, le système global adimensionné s’écrit ainsi sous la forme générale
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suivante :

eq. 3.12· l0
U0

: ∇ · u∗

f = 0

eq. 3.13· l0
ρfU2

0

: ρ∗fu
∗

f,t∗ + ρ∗f
(
u∗

f − u∗

m) ·∇
)
u∗

f = −∇p∗ + µ∗

f∇ · ζ
(
u∗

f

)
+ f∗f

eq. 3.16· 1

ρfU2
0

:
(
µ∗

fζ
(
u∗

f

)
− p∗I

)
· n̂f = t

∗

f sur Γf
N

eq. 3.17· 1
U0

: u∗

f = u∗

f sur Γf
D

eq. 3.18· l0
ρfU2

0

: ρ∗su
∗

s,t∗ +∇ · (F [λ∗

str(E)I+ 2µ∗

sE]) + f∗s = 0

eq. 3.19· 1
U0

: u∗

s = χ∗

s,t∗

eq. 3.21· 1

ρfU
2
0

: (F [λ∗

str(E)I+ 2µ∗

sE]) · n = t
∗

s sur Γs
N

eq. 3.22· 1
l0

: χ∗

s = χ∗

s sur Γs
D

eq. 3.23· 1
U0

: u∗

f = u∗

s sur ΓI1

eq. 3.24· 1

ρfU2
0

:
F [λ∗

str(E)I+ 2µ∗

sE]F
T

J
· n̂s = −

(
µ∗

fζ
(
u∗

f

)
− p∗I

)
· n̂f sur ΓI1

eq. 3.25· 1
l0

: χ∗

f = χ∗

s sur ΓI0

eq. 3.27· l0
ρfU2

0

: m∗u∗

mp,t∗ = f∗ext

eq. 3.28· 1
U0

: u∗

mp = χ∗

mp,t∗

où ζ
(
u∗

f

)
=

[
∇u∗

f + (∇u∗

f)
T
]
. De plus, par définition F, E et J sont déjà des grandeurs adi-

mensionnées. Enfin, pour éviter de surcharger les notations, on note également ∇ le gradient

adimensionnalisé ∇
∗ = l0∇ et

u∗

f,t∗ =
∂u∗

f

∂t∗
= t0

∂u∗

f

∂t
= t0u

∗

f,t

On note alors que deux problèmes seront similaires s’il y a similitude géométrique et si les

coefficients du système d’équations à résoudre sont égaux. Les définitions de ces coefficients

dépendent des cas étudiés et des paramètres caractéristiques associés. La similarité totale

entre deux problèmes géométriquement similaires sera donc vérifiée lorsque leurs paramètres

caractéristiques (nombres adimensionnels définis à la section 3.1) seront égaux. Enfin, on

suppose dans la présente étude des forces extérieures nulles : f∗s = fs = 0, f∗s = fs = 0.
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Dans la suite, on développe l’adimensionnalisation de chaque équation afin de faire ap-

parâıtre les paramètres caractéristiques des problèmes d’interactions fluide-structure. Afin de

se placer dans un domaine espace-temps adimensionalisé, on pose :

x∗ = x/l0 (3.30)

t∗ = t/t0 = tU0/l0 (3.31)

Dans la présente étude, on considère la corde du profil comme longueur caractéristique l0 = c.

En outre, on définit habituellement la vitesse du fluide en entrée comme la vitesse ca-

ractéristique U0 = U∞. Toutefois, dans certains cas, il est intéressant de définir la vitesse

caractéristique d’une manière plus appropriée. Ainsi, on note qu’en posant U0 = f0l0 dans

le cas d’un profil autopropulsé, on obtient une échelle de temps plus adaptée : t̃∗ = f0t. En

effet, l’échelle de temps propre au solide parâıt plus adéquate que celle du fluide pour étudier

la physique de propulsion profil oscillant (surtout si U∞ = 0).

Équations fluides

Afin d’adimensionnaliser les équations fluides, on pose :

u∗

f = uf/U0 (3.32)

p∗ = p/p0 (3.33)

p0 = ρfU
2
0 (ainsi Eu=1) (3.34)

f∗f = l0ff/
(
ρfU

2
0

)
(3.35)

t
∗

f = tf/
(
ρfU

2
0

)
(3.36)

u∗

f = uf/U0 (3.37)

L’équation de continuité 3.12 adimensionnalisée s’écrit alors :

(
l0
U0

)

∇ · uf = 0

l0∇ ·
(
uf

U0

)

= 0

∇
∗ · u∗

f = 0 (3.38)



66

et l’équation de quantité de mouvement 3.14 s’adimensionnalise comme suit :

l0
ρfU

2
0

[

ρfuf,t + ρf (uf − um) ·∇uf = −∇p+ µf∇ ·
[
∇uf + (∇uf )

T
]
+ ff

]

l0
U0

uf,t

U0
+

(
uf

U0
− um

U0

)

· (l0∇)

(
uf

U0

)

= −l0∇

(
p

ρfU2
0

)

+
µf

l0ρfU0
l0∇ ·

[

l0∇

(
uf

U0

)

+ (l0∇

(
uf

U0

)

)T
]

+
l0

ρfU2
0

ff

u∗

f,t∗ + (u∗

f − u∗

m) ·∇∗uf
∗ = −∇

∗p∗

+
1

Re
∇

∗ ·
[
∇

∗u∗

f + (∇∗u∗

f)
T
]
+ f∗f (3.39)

Ainsi les équations dimensionnelles et adimensionnelles sont reliées par la composition linéaire

utilisant :

ρ∗f = 1. (3.40)

µ∗

f =
1

Re
(3.41)

Concernant les équations aux frontières 3.16 et 3.17, on obtient :

1

ρfU2
0

( (
µf

[
∇uf + (∇uf )

T
]
− pI

)
· n̂f = tf

)

(
µf l0

l0ρfU2
0

[
∇uf + (∇uf)

T
]
− 1

ρfU2
0

pI

)

· n̂f =
1

ρfU2
0

tf
(

1

Re

[
∇

∗u∗

f + (∇∗u∗

f )
T
]
− p∗I

)

· n̂f = t
∗

f sur Γf
N (3.42)

1

U0

(uf = uf)

u∗

f = u∗

f sur Γf
D (3.43)

Dans les cas étudiés, on considère des contraintes nulles (condition libre) sur les

frontières de type Neumann : t
∗

f = tf = 0. Sur les frontières de type Dirichlet, on impose

habituellement U0 = U∞ en entrée et des vitesses nulles ailleurs. Ainsi, on a dans tous les

cas u∗

f = 1 en entrée et u∗

f = 0 sur les autres frontières de Dirichlet.

Remarque : dans le cas où la vitesse caractéristique du problème U0 est différente de la

vitesse d’entrée U∞ (par exemple profil oscillant autopropulsé), il faut faire attention au fait
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qu’il y a un paramètre de similarité supplémentaire sur la frontière :

ϑ =
U∞

U0
(3.44)

Équations solides

On procède de la même manière avec les équations solides en posant en plus :

u∗

s = us/U0 (3.45)

χ∗

s = χs/l0 (on suppose D = 1) (3.46)

f∗s = l0fs/
(
ρfU

2
0

)
(3.47)

t
∗

s = ts/
(
ρfU

2
0

)
(3.48)

χ∗

s = χs/l0 (3.49)

L’équation 3.19 s’adimensionalise directement :

1

U0

us =
1

U0

l0
l0
χs,t

u∗

s = χ∗

s,t∗ (3.50)

Pour l’équation de Cauchy 3.18 en utilisant :

λs = Eg1(ν) =
Eν

(1 + ν)(1 − 2ν)
et µs = Eg2(ν) =

E

2(1 + ν)

on obtient :

l0
ρfU2

0

(

ρsus,t +∇ · (F [λstr(E)I+ 2µsE]) + fs = 0
)

ρs
ρf

l0
U0

us,t

U0
+

1

ρfU2
0

∇
∗ · (F [λstr(E)I+ 2µsE]) +

l0
ρfU2

0

fs = 0

Mflexu
∗

s,t∗ +∇
∗ ·

(

F

[
Eg1(ν)

ρfU2
0

tr(E)I+ 2
Eg2(ν)

ρfU2
0

E

])

+ f∗s = 0

Mflexu
∗

s,t∗ +∇
∗ ·

(

F

[
g1(ν)

CΥ

tr(E)I+ 2
g2(ν)

CΥ

E

])

+ f∗s = 0 (3.51)
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Ainsi on passe des équations dimensionnelles aux équations adimensionnelles en utilisant :

ρ∗s = Mflex (3.52)

λ∗

s =
g1(ν)

CΥ
=

1

CΥ

ν

(1 + ν)(1− 2ν)
(3.53)

µ∗

s =
g2(ν)

CΥ
=

1

CΥ

1

2(1 + ν)
(3.54)

En divisant les équations 3.21 par (ρfU
2
0 ) et 3.22 par l0 on obtient les conditions aux

limites adimensionnelles pour la structure :

(

F

[
g1(ν)

CΥ

tr(E)I+ 2
g2(ν)

CΥ

E

])

· n = t
∗

s sur Γs
N (3.55)

χ∗

s = χs
∗ sur Γs

D (3.56)

À l’exception des efforts du fluide à l’interface, la structure n’est pas soumise à d’autres

contraintes dans la présente étude. Ainsi, t
∗

s = ts = 0. Par contre, on peut imposer un

mouvement à la structure sur sa frontière non-mouillée par des conditions de Dirichlet.

Dans le cas d’un profil oscillant, ce mouvement est décrit par les équations présentées à

la section 2.1.2 :

{

θ(t) = θav + θ0 sin (2πf0t+ φ) rotation

h(t) = h0 sin (2πf0t) battement

On impose ainsi à chaque point de la frontière de coordonnées initiales (xe,ye) les conditions

suivantes :

χs(t) =

[

cos(θ(t)) − sin(θ(t))

sin(θ(t)) cos(θ(t))

][

xe

ye

]

+

[

0

h(t)

]

(3.57)

Ainsi en divisant par l0 on obtient :

χ∗

s(t
∗) =

[

cos(θ(t∗)) − sin(θ(t∗))

sin(θ(t∗)) cos(θ(t∗))

][

x∗

e

y∗e

]

+

[

0

h∗(t∗)

]

(3.58)
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avec :

θ(t∗) = θav + θ0 sin

(

2πf0
l0
U0

t∗ + φ

)

= θav + θ0 sin (2πf
∗t∗ + φ) (3.59)

h∗(t∗) = h∗

0 sin

(

2πf0
l0
U0

t∗
)

= h∗

0 sin (2πf
∗t∗) (3.60)

On observe alors que les conditions aux limites de Dirichlet seront similaires si et seulement

si on a égalité des grandeurs adimensionnelles suivantes :

θav = 0 dans les cas étudiés (3.61)

θ0 = θ0 (3.62)

φ = −π

2
dans les cas étudiés (3.63)

f ∗ =
l0f0
U0

(3.64)

h∗

0 =
h0

l0
(3.65)

Équations d’interface

Pour adimensionnaliser les équations d’interface, il est très important de s’assurer de

la compatibilité avec les équations fluides et structurelles adimensionnalisées. Comme on

a procédé de façon similaire pour les équations du fluide et de la structure, on en déduit

facilement les équations adimensionnelles suivantes en divisant respectivement les équations

par U0, ρfU
2
0 et l0 :

u∗

f = u∗

s sur ΓI1 (3.66)

F
[
g1(ν)
CΥ

tr(E)I+ 2 g2(ν)
CΥ

E
]

FT

J
· n̂s = −

(
1

Re
ζ
(
u∗

f

)
− p∗I

)

· n̂f ΓI1 (3.67)

χ∗

f = χ∗

s sur ΓI0 (3.68)

La composition linéaire pour passer aux équations d’interface adimensionnelles se fait

avec les coefficients suivantes :

µ∗

f =
1

Re
(3.69)

λ∗

s =
g1(ν)

CΥ
=

1

CΥ

ν

(1 + ν)(1− 2ν)
(3.70)

µ∗

s =
g2(ν)

CΥ

=
1

CΥ

1

2(1 + ν)
(3.71)
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Notons que dans le cas d’un profil oscillant rigide (sans équations structurelles), les

équations d’interface se résument à des conditions de type Dirichlet afin d’imposer le mou-

vement sur l’interface-frontière :

u∗

f = u∗

s sur ΓID (3.72)

χ∗

f = χ∗

s sur ΓID (3.73)

Le mouvement adimensionné χ∗

s est alors défini par l’équation 3.58 et la vitesse u∗

s par

l’équation suivante obtenue de la même manière en divisant par U0 :

u∗

s(t
∗) = θ(t∗),t∗

[

sin(θ(t∗)) cos(θ(t∗))

cos(θ(t∗)) − sin(θ(t∗))

][

x∗

e

y∗e

]

+

[

0

h∗(t∗),t∗

]

(3.74)

Ces conditions seront alors similaires si les grandeurs adimensionnelles suivantes sont

conservées :

θ0 = θ0 (3.75)

f ∗ =
l0f0
U0

(3.76)

h∗

0 =
h0

l0
(3.77)

Équations de la masse ponctuelle

Enfin, en posant :

u∗

mp = ump/U0 (3.78)

χ∗

mp = χmp/l0 (3.79)

f∗ext = fext/
(
ρf l

2
0U

2
0

)
(3.80)

(3.81)

les équations de la masse ponctuelle s’adimensionnalisent simplement en divisant

l’équation 3.27 par (ρf l
2
0U

2
0 ) et l’équation 3.28 par U0 :

Mrigideu
∗

mp,t∗ = f∗ext (3.82)

u∗

mp = χ∗

mp,t∗ (3.83)

Les problèmes impliquant une masse ponctuelles seront alors similaires si le nombre de
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masse est conservé :

m∗ = Mrigide =
m

ρf l
3
0

(3.84)

On note que cette adimensionnalistion est compatible avec l’équation 3.29 qui devient :

f∗ext =

∫

ΓIf

σl

ρfU2
0

· n̂f
dΓ

l20
+

∫

ΓIs

σc

ρfU2
0

· n̂s
dΓ

l20

=

∫

ΓIf

σ∗

l · n̂fdΓ
∗ +

∫

ΓIs

σ∗

c · n̂sdΓ
∗ (3.85)

Similitude des problèmes

L’adimensionalistion des équations confirme l’analyse dimensionnelle des problèmes d’in-

teraction fluide-structure et on retrouve les paramètres adimensionnels comme coefficients de

similarité. Le tableau 3.2 résume les nombres adimensionnels caractéristiques, selon le type

de structures étudiée.

Types de structures Re Mflex CΥ ν Mrigide θ0 h∗

0 f ∗ ϑ
Rigide statique × - - - - - - - 1.
Rigide oscillante × - - - - × × × 1.
Flexible encastrée × × × × - - - - 1.
Flexible oscillante × × × × - × × × 1.
Rigide autopropulsée × - - - × × × 1. ×
Flexible autopropulsée × × × × × × × 1. ×

Tableau 3.2 Nombres adimensionnels caractéristiques de similitude pour différents problèmes
d’IFS.

3.3 Déformation du domaine fluide

Lorsqu’on étudie les interactions fluide-structure, on remarque que l’approche ALE rend

incompatibles les deux formulations utilisées pour le fluide (eulérienne) et le solide (lagran-

gienne). En effet, lors de la résolution, les déformations du solide ou les mouvements d’une

frontière fluide nécessitent la déformation du domaine fluide à chaque pas de temps. Or,

dans une approche eulérienne ceci est impossible car le volume de contrôle est fixe. On doit

donc déformer la partie fluide pour rendre les deux formulations compatibles à l’aide d’une
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approche pseudo-solide [121]. L’approche pseudo-solide classique décrite dans la première sec-

tion utilise des équations d’élasticité linéaire qui permet de déformer correctement le domaine

fluide dans la plupart des problèmes d’interaction fluide-structure [174]. Toutefois, pour de

très grands déplacements, on doit adapter cette méthode, soit en utilisant un zonage du

domaine comme exposé dans la seconde partie, soit en utilisant des équations non-linéaires

comme présentée dans la troisième section.

3.3.1 Approche pseudo-solide

Afin de déformer le domaine fluide selon les mouvements et les déformations solides,

l’approche pseudo-solide identifie le domaine fluide à une structure élastique. Dans l’approche

classique, la déformation du maillage χf = χps est alors régie par les équations habituelles

d’élasticité linéaire stationnaires. Ainsi, à chaque pas de temps, la forme du domaine fluide

épouse la nouvelle géométrie solide. En utilisant une forme linéaire du tenseur de Green-

Lagrange Eps et une loi de comportement de Saint-Venant Kirchhoff, on obtient les équations

d’élasticité linéaire suivantes :

∇ · σps
l = 0 dans Ωf

0 (3.86)

avec : σ
ps
l = σ

ps
k = λps tr (Eps) I + 2µpsEps (3.87)

Eps =
1

2

(
∇χps +∇

Tχps

)
(3.88)

où γps et µps sont les coefficients de Lamé propres au pseudo-solide. Ils peuvent alors être

considérés comme unitaires partout dans le domaine fluide ou alors être adaptés dans les zones

de grands déplacements (proche des frontières en mouvement et interfaces) afin d’éviter des

déformations néfastes des mailles. En pratique, on augmente le module d’Young localement

des éléments concernés afin de prévenir des déformations trop importantes menant au replie-

ment du maillage.

L’équation d’équilibre de Cauchy pour le pseudo-solide est complétée par les conditions

aux frontières suivantes :

χps = χps sur Γps
D0

− ΓI0 (3.89)

σ
ps
l · nf = tps sur Γps

N0
− ΓI0 (3.90)

où χps et tps sont respectivement les déplacements et les forces imposés au pseudo-solide.

Sur l’interface fluide-solide, l’équation de continuité des déplacements présentée à la sec-
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tion 3.2.3 prends alors tout son sens :

χf = χps = χs sur ΓI0 (3.91)

On note alors qu’on n’impose pas la continuité des contraintes à l’interface entre le solide

et le pseudo-solide. Ceci permet au pseudo-solide de se déformer librement tout en n’offrant

aucune résistance au déplacement du solide. Il ne s’agit en fait que d’un artifice de calcul

qui n’influence pas la physique du problème. En outre, cela permet un libre choix de lois de

comportement du pseudo-solide (on pourrait considérer une loi non-linéaire).

3.3.2 Zonage du maillage

L’approche pseudo-solide classique permet de traiter de grands déplacements de la struc-

ture. Toutefois, pour des amplitudes extrêmes, il peut être avantageux de faire un zonage

du domaine et d’imposer le déplacement des frontières de certaines zones. On ne parle donc

pas ici des grandes déformations liées aux structures flexibles mais plutôt des grands mou-

vements de corps rigides (rotations et translations) imposés aux frontières solides. Un profil

rigide oscillant est un excellent exemple.

Ainsi, pour de très grandes amplitudes de rotation (i.e. θ0 > 70̊ ), on peut introduire

une zone pseudo-solide circulaire autour du profil (maillage plus clair sur la figure 3.2) qui

est l’aire d’intérêt. On impose à ses frontières le même mouvement que celui du profil de

sorte que l’ensemble du maillage de cette zone subisse un mouvement de corps rigide. Ainsi,

les mailles autour du profil rigide ne se déforment pas. A l’extérieur du disque, la deuxième

zone pseudo-solide se déforme plus facilement puisque les mailles sont de plus grandes tailles

comme le montre la figure 3.2 ce qui empêche le repliement. Certes, la qualité du maillage est

alors moindre dans cette zone mais, se trouvant à l’extérieur du domaine qui nous intéresse

le plus, l’impact négatif sur les résultats est réduit.

L’utilisation d’une approche pseudo-solide facilite grandement le zonage du domaine de

calcul. Il n’y a aucune modification à effectuer aux frontières des zones puisqu’on applique

simplement des conditions de non-glissement. Ainsi, les différentes zones fluides sont traitées

implicitement comme un seul domaine fluide. Les nœuds de calcul sur les frontières ne sont

donc pas dédoublés et appartiennent aux zones de part et d’autre de l’interface fluide-fluide. Il

n’est donc pas nécessaire de faire glisser le maillage ou de s’occuper des conditions d’interfaces,

tout ceci est implicite. Bien entendu, si les mouvements relatifs entre deux zones sont trop

importants le maillage va se déchirer et il faudra alors songer à utiliser des techniques de

remaillage en parallèle. Une approche adaptative permettrait d’utiliser en majeur partie un

pseudo-solide pour déformer le maillage et de remailler le domaine lorsque les mouvements
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Figure 3.2 Maillage déformé pour un angle de rotation θ0 = 90˚.

des frontières sont trop importants.

3.3.3 Approche non-linéaire

L’approche pseudo-solide classique possède l’avantage majeur d’être linéaire et donc peu

coûteuse. Toutefois, dans le cadre des problèmes d’IFS en grands déplacements, il existe

deux grandes limitations. Premièrement, comme on l’a vu, on doit adapter les propriétés

du pseudo-solide afin de gérer au mieux la déformation du maillage. Mais cette technique

n’est pas automatique ni évolutive. On doit en effet définir par ”expérience” les zones (du

domaine non-déformé) où le risque de déformation du maillage est le plus élevé. Il n’y a

donc aucun critère objectif concernant la qualité du maillage. De plus, cette approche ne

s’adapte pas bien aux problèmes instationnaires où les zones de grandes déformations varient

avec le temps, pouvant passer d’une forte compression à un fort étirement. La deuxième

limitation est directement liée à la nature linéaire de l’approche restreignant les déformations

du pseudo-solide à sa zone ”élastique” sous peine de repliement lorsque les ”contraintes”

(dues aux grands déplacements) sont trop fortes.

On propose deux adaptations de la méthode classique afin d’éliminer ces deux limitations.

Tout d’abord, en développant une approche automatisée évolutive non-linéaire utilisant des

critères de qualité pour le maillage. Ensuite, en linéarisant cette approche pour tenter de

réduire les coûts de calcul dus à la non-linéarité des équations précédents.

A. Équations non-linéaires

Afin d’obtenir une approche automatique et évolutive, on adapte l’approche classique en

ajoutant un critère sur la qualité du maillage. En pratique, on adapte le module d’Young

local d’un élément grâce à une fonction f dont l’argument est un critère de qualité Cq au
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temps t :

Elocal(t) = Elocal(0)f (Cq(t)) (3.92)

Ce critère supplémentaire doit empêcher une trop forte déformation des éléments de manière

automatique (on ne cherche pas ici à évaluer la forme optimal de l’élément en fonction de

la solution à obtenir). Dans leur rapport, Duval et Guillard [175] définissent un critère de

qualité géométrique pour les éléments triangulaire afin de localiser les éléments présentant une

déformation importante. C’est le rapport entre les rayons des cercles inscrit r et circonscrit

R à chaque élément :

Cgeo(t) =
r(t)

R(t)

Selon ce critère, l’élément optimal est le triangle équilatéral avec Cq = 1/2. Un élément très

déformé sera alors caractérisé par un Cq tendant vers 0. Les auteurs adoptent toutefois une

stratégie de remaillage (global puis local) qu’on tente d’éviter ici car trop coûteuse dans le

cadre de simulations instationnaires.

On va utiliser ce critère en considérant que le maillage non-déformé a une bonne qua-

lité géométrique. On veut donc au moins préserver la qualité de chaque maille malgré les

déformations. On pose alors :

Elocal(t) = Elocal(0)f (Cq(t)) = Elocal(0)
Cgeo(0)

Cgeo(t)

Ainsi, si Cgeo(t) = Cgeo(0), le module d’Young reste inchangé, si Cgeo(t) → 0, E augmente

pour diminuer la déformation et enfin si Cgeo(t) → 1/2, E diminue de manière à ce que la

maille puisse tendre vers un triangle équilatéral. Si en outre on pose : Elocal(0) = 1/Cgeo(0),

on obtient :

Elocal(t) =
1

Cgeo(t)

Comme Cq dépend de la déformation au temps t, cette méthodologie rend l’approche non-

linéaire mais automatique, plus besoin de spécifier le module d’Young des éléments, et

évolutive, plus l’élément se déforme et plus son module d’Young augmente, empêchant les

repliements du domaine fluide sur lui-même.

B. Équations linéarisées

L’adaptation proposée fonctionne très bien mais, par sa non-linéarité, augmente le temps

de calcul de manière importante (pratiquement le double) ! On recherche donc une manière

linéaire de déformer le maillage tout en s’appuyant sur l’instationnarité du problème. On

peut linéariser l’équation (3.92) en procédant de manière explicite. Pour calculer le module
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d’Young au temps t on utilise le critère de qualité au temps précédent (t− 1) :

Elocal(t) = Elocal(0)× f (Cq(t− 1)) (3.93)

Toutefois, cette approche linéarisée crée une oscillation des modules d’Young lorsqu’on avance

dans le temps. Si les déplacements de la structure sont trop grands, ces oscillations divergent

au bout d’un moment ce qui mène au repliement. En effet, si on arrive à limiter fortement la

déformation d’une maille grâce à un fort module d’Young, le module d’Young à tn+1 devient

plus petit puisque la déformation est très faible. Or, la maille subit toujours des ”contraintes”

très fortes dues à la physique de l’écoulement. Donc, un faible module d’Young E couplé à

une grande contrainte induisent une déformation importante du maillage. Au temps suivant,

on a alors un module d’Young grand et donc une petite déformation. Ce phénomène se répète

alors jusqu’à mener en général au repliement de la maille comme le décrit la table 3.3.

Cette approche linéarisée a l’avantage d’être automatique contrairement à l’approche

classique. Toutefois, le décalage en temps (formulation explicite) crée une instabilité de la

méthode pour les problèmes raides, c’est à dire lorsqu’il y a de grandes déformations dues à

de grands déplacements structurels.

L’utilisation d’une approche non-linéaire apparâıt ainsi inévitable si on veut traiter des

problèmes d’IFS en grands déplacements sans remailler le domaine à chaque pas de temps.

Mais alors, bien qu’il n’y ait pas d’interpolation de la solution à effectuer, l’approche n’est

plus forcément plus économique en termes de temps de calcul.

3.4 Intégration en temps

La simulation numérique des phénomènes d’interaction fluide-structure instationnaires

nécessite une résolution en temps des variables. La méthode d’intégration en temps doit

être efficace et robuste afin de faire face aux problèmes raides que représentent les IFS en

grands déplacements. On présentera ainsi dans un premier temps, les schémas habituellement

Temps : t1 t2 t3 t4 t5
Déformation physique : 0 ↗ + ↗ ++ ↗ +++ ↗ ++++
Déformation du maillage : 0 ↗ + ↘ 0 ↗↗ ++ ↘ 0

⇑ ↘ ⇑ ↘ ⇑ ↘ ⇑ ↘ ⇑
Module d’Young : E0 → E0 ↗ + ↘ E0 ↗↗ ++

Tableau 3.3 Evolution du module d’Young pour l’approche linéarisée
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utilisés d’Euler implicite et de Crank-Nicolson. On verra ensuite la nécessité d’utiliser des

schémas d’ordres supérieurs comme ceux de Runge-Kutta implicites. Enfin, on exposera la

formulation adéquate des intégrateurs en temps permettant le respect de la loi de conservation

géométrique (GCL).

On note que pour rester consistant, on utilise le même schéma d’intégration en temps

pour le fluide, la structure, le pseudo-solide et la masse ponctuelle.

3.4.1 Schémas d’Euler et de Crank-Nicolson implicites

Comme souligné dans la revue de littérature, les schémas d’intégration en temps d’ordre

inférieur à 2 sont les plus répandus dans le cadre des problèmes d’IFS. Ils ne nécessitent pas

l’introduction de sous-pas de temps implicites entre les pas de temps de calcul. Ceci facilite

leur implémentation. Nous considérons ici les schémas implicites d’Euler (ordre ∆t1) et de

Crank-Nicolson (ordre ∆t2), plus stables que les schémas explicites.

La méthode d’Euler implicite (Backward Euler) repose sur une approximation des dérivées

d’une fonction y par une différence finie décentrée :

y′(t) =
y(t)− y(t−∆t)

∆t

Ainsi, appliquée à une simple équation différentielle ordinaire (EDO) y′ = φ(t, y), on obtient :

y(t) = y(t−∆t) + ∆tφ(t, y(t))

d’où y(n+1) = y(n) +∆tφ(t(n+1), y(n+1)) (3.94)

où t(n+1) = t(n) +∆t, y(n) = y(t) et y(n+1) = y(t+∆t). Le schéma d’Euler implicite est alors

d’ordre 1 en temps. Le schéma de Crank-Nicolson permet d’augmenter la précision en temps

à l’ordre 2 [174, 176] en moyennant la méthode d’Euler implicite et d’Euler explicite :

y′(t) =
y(t)− y(t−∆t)

∆t
Euler implicite

y′(t−∆t) =
y(t)− y(t−∆t)

∆t
Euler explicite

d’où
y(t)− y(t−∆t)

∆t
=

y′(t) + y′(t−∆t)

2
Crank Nicolson
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Appliqué à l’EDO y′ = φ(t, y), le schéma de Crank-Nicolson s’écrit :

y(t) = y(t−∆t) +∆t
φ(t, y(t)) + φ(t−∆t, y(t−∆t))

2

d’où y(n+1) = y(n) +∆t
φ(t(n+1), y(n+1)) + φ(t(n), y(n))

2
(3.95)

Le schéma de Crank-Nicolson étant implicite, il possède de bonnes propriétés de stabilité.

Toutefois, la solution numérique peut contenir des oscillations parasites si le problème est

trop raide (et le pas de temps trop grands) comme indiqué à la section 2.3. C’est pour

cette raison, que beaucoup de chercheurs préfèrent utiliser le schéma d’Euler implicite pour

les problèmes raides d’interaction fluide-structure en grands déplacements. En effet, même

si sa précision en temps est moindre, il est inconditionnellement stable et ne génère pas

d’oscillations parasites. Si on souhaite utiliser des schémas d’intégration en temps d’ordre

supérieur, on doit donc chercher des modèles présentant les mêmes propriétés de stabilité

que celles du schéma d’Euler implicite.

3.4.2 Schémas de Runge-Kutta

La revue de littérature (voir section 2.3) a mis en lumière les très bonnes propriétés de

stabilité des schémas de Runge-Kutta Radau-IIA pour faire face à des problèmes raides. On

retrouve naturellement ces propriétés avec le schéma d’Euler implicite puisque ce dernier est

en fait le schéma de Radau-IIA d’ordre 1. On utilise trois schémas implicites d’intégration

en temps de Runge-Kutta : les schémas de Radau-IIA du premier (IRK1), troisième (IRK3)

et cinquième (IRK5) ordres. Ces schémas sont respectivement précis aux 1er, 3e et 5e ordres

pour la vitesse et les déplacements et aux 1er, 2e et 3e ordres pour la pression. D’après

Hairer et al. [1], comme la pression est un multiplicateur de Lagrange pour l’incompressibi-

lité, les équations de Navier-Stokes pour les écoulements incompressibles sont des systèmes

d’équations différentielles algébriques (EDA) d’index 2. Cela induit une précision en temps

réduite pour le champ de pression.

Pour mieux comprendre les effets des schémas IRK d’intégration en temps, on illustre leur

utilisation sur l’exemple d’EDO suivante : y′ = φ(t, y). Un schéma IRK général s’applique à

cette équation de la façon suivant :

y(n+ci)
∗

= y(n) +∆t
s∑

j=1

aijφ(t
(n+cj), y

(n+cj)
∗ ), for i = 1, ..., s (3.96)

y(n+1) = y(n) +∆t

s∑

j=1

bjφ(t
(n+cj), y

(n+cj)
∗ ) (3.97)
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où t(n+cj) signifie t(n)+ cj∆t. Ce système est alors résumé de manière compacte sous la forme

d’un Tableau général de Butcher :

c1 a11 . . . a1s
...

...
. . .

...

cs as1 . . . ass

b1 . . . bs

Suivant Hairer [1], pour tous les schémas IRK, on a asi = bi, pour i = 1 . . . s afin d’assurer

la L-stabilité. Ainsi, l’étape de projection définie par l’équation (3.97) peut être mise de

côté. Remarquons aussi que les schémas IRK sont construits de manière à avoir la propriété

suivante : ci =
∑s

k=1 aik, for i = 1 . . . s.

A. IRK à l’ordre 1

Le Tableau de Butcher pour le schéma IRK du premier ordre s’écrit comme suit :

1 1

IRK1 1

Ainsi, on peut résumer le schéma IRK1 (Euler implicite) en une seule ligne :

y(n+1) = y(n) +∆tφ(t(n+1), y(n+1)) (3.98)

B. IRK à l’ordre 3

Pour l’IRK3, le Tableau de Butcher se présente sous la forme suivante :

1/3 5/12 -1/12

1 3/4 1/4

IRK3 3/4 1/4

ce qui se traduit par la formulation suivante :

y(n+1/3) = y(n) +
5∆t

12
φ(t(n+1/3), y(n+1/3))− ∆t

12
φ(t(n+1), y(n+1)) (3.99)

y(n+1) = y(n) +
3∆t

4
φ(t(n+1/3), y(n+1/3)) +

∆t

4
φ(t(n+1), y(n+1)) (3.100)

On note alors que deux pas de temps implicites sont couplés. Comparé à IRK1, on double

alors le nombre d’inconnues lors de la résolution du problème instationnaire de t(n) à t(n+1).
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C. IRK à l’ordre 5

Enfin, le schéma Radau-IIA5 peut se résumer ainsi :

(4-
√
6)/10 (88-7

√
6)/360 (296-169

√
6)/1800 (-2+3

√
6)/225

(4+
√
6)/10 (296+169

√
6)/1800 (88+7

√
6)/360 (-2-3

√
6)/225

1 (16-
√
6)/36 (16+

√
6)/36 1/9

IRK5 (16-
√
6)/36 (16+

√
6)/36 1/9

ce qui se traduit en :

y(n+c1) = y(n) +
3∑

j=1

a1j∆tφ(t(n+cj), y(n+cj)) (3.101)

y(n+c2) = y(n) +

3∑

j=1

a2j∆tφ(t(n+cj), y(n+cj)) (3.102)

y(n+c3) = y(n) +

3∑

j=1

a3j∆tφ(t(n+cj), y(n+cj)) (3.103)

Trois pas de temps implicites sont alors couplés, triplant le nombre d’inconnues par rapport

à IRK1.

D. IRK à l’ordre 7

Il est intéressant d’étudier des schémas IRK d’ordres encore plus élevés pour deux raisons

principales. Tout d’abord, passer d’un schéma d’ordre q à un schéma d’ordre q + 2 requiert

une augmentation de l’espace mémoire de plus en plus petite quand q croit, pour tendre vers

1. En effet, l’espace mémoire nécessaire au calcul est proportionnel au carré du nombre de

pas de temps couplés : Mem(q) ∝ s2 = (q + 1)2/4. On a ainsi :

Mem(q + 2)

Mem(q)
∝

(
q + 3

q + 1

)2

−−−→
q→∞

1 (3.104)

Ensuite, il est intéressant d’utiliser des IRK d’ordres élevés pour simuler précisément des

comportements à basses fréquences induits par des phénomènes hautes fréquences. En effet,

une grande précision en temps permet de résoudre avec exactitude les phénomènes hautes

fréquences tout en ne résolvant le problème qu’à intervalles de temps grands correspondant au

comportement basses fréquences étudiés. L’étude du galop d’un cylindre dans un écoulement

en est un parfait exemple. La période du galop est longue mais la résolution nécessite une

bonne précision temporelle pour capter les lâchers tourbillonnaires, à plus hautes fréquences,

responsables du galop. Toutefois, il n’est pas nécessaire d’avoir la solution du problème à ces
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hautes fréquences mais seulement en quelques points de la période de galop. D’où l’utilité de

schémas de IRK d’autres très élevés. Dans cette optique, on a déterminé les coefficients du

tableau de Butcher constituant l’IRK d’ordre 7 avec 4 pas de temps implicites :

c1 a11 a12 a13 a14

c2 a21 a22 a23 a24

c3 a31 a32 a33 a34

1 a41 a42 a43 a44

IRK7 b1 b2 b3 b4

avec les ci suivants pour le calcul des temps implicites :

c1 = − 3

√√
50

7

2

245






cos







arccos

(
1√
50

)

3







+
√
3 sin







arccos

(
1√
50

)

3












+

45

105

c2 =
3

√√
50

7

2

245






− cos







arccos

(
1√
50

)

3







+
√
3 sin







arccos

(
1√
50

)

3












+

45

105

c3 = 2
3

√√
50

7

2

245
cos







arccos

(
1√
50

)

3







+
45

105

c4 = 1

Les coefficients bj vérifient le système linéaire suivant faisant intervenir une matrice de

Vandermonde V : 







1 1 1 1

c1 c2 c3 c4

c21 c22 c23 c24

c31 c32 c33 c34









︸ ︷︷ ︸

V









b1

b2

b3

b4









=









1

1/2

1/3

1/4









Les bj s’obtiennent ainsi aprés inversion de la matrice de Vandermonde V :

V −1 =









d1 0 0 0

0 d2 0 0

0 0 d3 0

0 0 0 d4

















c2c3 −(c2 + c3 + c2c3) c2 + c3 + 1 −1

−c1c3 c1 + c3 + c1c3 −(c1 + c3 + 1) 1

c1c2 −(c1 + c2 + c1c2) c1 + c2 + 1 −1

−c1c2c3 c1c2 + c2c3 + c1c3 −(c1 + c2 + c3) 1








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où les coefficients de la matrice diagonale D s’écrivent :

d1 =
1

(1− c1)(c3 − c1)(c2 − c1)

d2 =
1

(1− c2)(c3 − c2)(c2 − c1)

d3 =
1

(1− c3)(c3 − c2)(c3 − c1)

d4 =
1

(1− c1)(1− c2)(1− c3)

Ainsi les bj s’expriment :

b1 =
1

12

1− 2(c2 + c3) + 6c2c3
(1− c1)(c3 − c1)(c2 − c1)

b2 = − 1

12

1− 2(c1 + c3) + 6c1c3
(1− c2)(c3 − c2)(c2 − c1)

b3 =
1

12

1− 2(c1 + c2) + 6c1c2
(1− c3)(c3 − c2)(c3 − c1)

b4 =
1

12

3− 4(c1 + c2 + c3) + 6(c1c2 + c2c3 + c3c1)− 12c1c2c3
(1− c1)(1− c2)(1− c3)

On vérifie que
∑4

1 bi = 1.

Enfin, les coefficients aij du tableau de Butcher se déduisent de la formule suivante :









ai1

ai2

ai3

ai4









= V −1









ci

c2i /2

c3i /3

c4i /4









a11 = d1

[

c1c2c3 −
c21
2
(c2 + c3 + c2c3) +

c31
3
(c2 + c3 + 1)− c41

4

]

a12 = d2

[

−c21c3 +
c21
2
(c1 + c3 + c1c3)−

c31
3
(c1 + c3 + 1) +

c41
4

]

a13 = d3

[

c21c2 −
c21
2
(c1 + c2 + c1c2) +

c31
3
(c1 + c2 + 1)− c41

4

]

a14 = d4

[

−c21c2c3 +
c21
2
(c1c2 + c2c3 + c1c3)−

c31
3
(c1 + c2 + c3) +

c41
4

]
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a21 = d1

[

c22c3 −
c22
2
(c2 + c3 + c2c3) +

c32
3
(c2 + c3 + 1)− c42

4

]

a22 = d2

[

−c1c2c3 +
c22
2
(c1 + c3 + c1c3)−

c32
3
(c1 + c3 + 1) +

c42
4

]

a23 = d3

[

c1c
2
2 −

c22
2
(c1 + c2 + c1c2) +

c32
3
(c1 + c2 + 1)− c42

4

]

a24 = d4

[

−c1c
2
2c3 +

c22
2
(c1c2 + c2c3 + c1c3)−

c32
3
(c1 + c2 + c3) +

c42
4

]

a31 = d1

[

c2c
2
3 −

c23
2
(c2 + c3 + c2c3) +

c33
3
(c2 + c3 + 1)− c43

4

]

a32 = d2

[

−c1c
2
3 +

c23
2
(c1 + c3 + c1c3)−

c33
3
(c1 + c3 + 1) +

c43
4

]

a33 = d3

[

c1c2c3 −
c23
2
(c1 + c2 + c1c2) +

c33
3
(c1 + c2 + 1)− c43

4

]

a34 = d4

[

−c1c2c
2
3 +

c23
2
(c1c2 + c2c3 + c1c3)−

c33
3
(c1 + c2 + c3) +

c43
4

]

a41 = d1

[

c2c3 −
1

2
(c2 + c3 + c2c3) +

1

3
(c2 + c3 + 1)− 1

4

]

a42 = d2

[

−c1c3 +
1

2
(c1 + c3 + c1c3)−

1

3
(c1 + c3 + 1) +

1

4

]

a43 = d3

[

c1c2 −
1

2
(c1 + c2 + c1c2) +

1

3
(c1 + c2 + 1)− 1

4

]

a44 = d4

[

−c1c2c3 +
1

2
(c1c2 + c2c3 + c1c3)−

1

3
(c1 + c2 + c3) +

1

4

]

E. Vérification sur un problème simplifié

Afin de vérifier les valeurs des tableaux de Butcher pour les schémas implicites de Runge-

Kutta (et surtout IRK7), on considère le problème raide de Curtiss et Hirschfelder (1952)

présenté dans le livre d’Hairer et Wanner [1] :

y′ = −1

ε
(y − cos(t)), avec : ε = 0.0005 (3.105)
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Ce problème a pour solution exacte la fonction suivante :

ye(t) =

(

y(0)− 1 + ε

1 + ε2

)

e−t/ε +
cos(t)

1 + ε2
+

ε sin(t)

1 + ε2
(3.106)

On simplifie la résolution du problème, en remplaçant y par sa solution exacte dans

l’équation 3.105 :

y′ = −1

ε

[(

y(0)− 1 + ε

1 + ε2

)

e−t/ε +
cos(t)

1 + ε2
+

ε sin(t)

1 + ε2
− cos(t)

]

(3.107)

où y(0) = 0. On résout l’équation sur l’intervalle [0, 1.5] avec 12 pas de temps différents :

δti = 1.5/2i, ∀i ∈ [1 : 12] et les différentes méthodes d’intégrations présentées. La figure 3.3

présente les résultats obtenus en considérant l’erreur eRMS de la solution interpolée par une

spline cubique par rapport à la solution exacte :

eRMS =

N∑

i=1

√

(y(ti)− ye(ti))
2

N

où N est le nombre de pas temps ti.

10
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2

Figure 3.3 Convergence des méthodes d’intégration en temps pour une problème simplifié.
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Lorsque la zone asymptotique est atteinte, on obtient bien les ordres de convergence

théoriques des différents schémas d’intégration en temps, notamment une convergence d’ordre

7 pour IRK7. On remarque d’ailleurs le début de phénomène de saturation de l’erreur puisque

le schéma IRK7 atteint le zéro machine (et on remarque que pour les grands pas de temps,

l’interpolation de la solution par une spline cubique induit une erreure prépondérante ce qui

provoque une augmentation de l’erreur).

3.4.3 Formulation respectant la GCL

La section 2.3 de la revue de littérature a souligné l’importance d’avoir une formula-

tion ALE respectant la loi de conservation géométrique (GCL), notamment au niveau de

l’intégration en temps. Parmi les approches existantes, nous reprenons celle présentée par

Étienne et al. [128] qui consiste à évaluer séparément la vitesse de maille um et sa divergence

∇ · um afin de respecter la GCL.

La forme faible des équations de Navier-Stokes est obtenue en multipliant l’équation (3.14)

par une fonction test w et en intégrant le tout sur le domaine de calcul Ω(t) se déformant

avec le temps t :

∫

Ω(t)

w · ρf
duf

dt
dΩ (3.108)

+

∫

Ω(t)

w · {ρf [(uf − um) · ∇]uf +∇w : σf} dΩ =

∫

ΓN (t)

w · (σf · n)dΓ

Cette formulation est dite non-conservative car elle ne permet par l’application directe du

théorème de la divergence. Si on considère la transformation T (t) de Ω(0), le domaine de

référence, à Ω(t), le domaine de calcul, comme régulière pour tout temps t, i.e. de classe C(1),

injective et telle que son déterminant J(t) 6= 0 sur Ω(0), on reformule l’équation 3.108 sous

sa forme conservative :

d

dt

∫

Ω(t)

w · ρfufdΩ−
∫

Ω(t)

w · (∇ · um)ρfufdΩ (3.109)

+

∫

Ω(t)

w · {ρf [(uf − um) · ∇]uf +∇w : σf} dΩ =

∫

ΓN (t)

w · (σf · n)dΓ

Bien que ces deux formulations faibles conservatives et non-conservatives sont totalement

équivalentes d’un point de vue mathématique, elle ne le restent pas nécessairement lorsqu’on

procède à une discrétisation numérique des équations. La forme conservative correspond

à la forme générale des lois de conservation puisque son intégration sur un volume fixe Ω

rend l’application du théorème de la divergence possible, et produit un terme impliquant



86

une intégrale surfacique. L’intégrale de surface représente alors le flux de masse sortant

du volume Ω. Ainsi, l’importance de la forme conservative dans un schéma numérique

discret repose sur le fait que, si correctement prise en compte, la discrétisation de la forme

conservative mène à un schéma dans lequel tous les flux de masse à travers les frontières

d’une maille vont s’annuler les uns les autres de sorte que le schéma numérique conservera

une masse totale constante. Ce traitement n’est pas possible avec une forme non-conservative.

Sur un volume Ω(t) se déformant avec le temps, la divergence de la vitesse de maille

apparaissant dans la formulation conservative 3.109 doit en plus être évaluée de manière

à satisfaire la loi de conservation géométrique (GCL). Étienne et al. [128] ont développé

une construction systématique de cette divergence en imposant le respect des deux premiers

niveaux de la GCL sur la formulation conservative et obtiennent l’expression suivante pour

les schémas d’intégration implicites de Runge-Kutta :

(∇ · um)
(n+cj) =

s∑

i=1

[aij ]
−1 J

(n+ci) − J (n)

∆tJ (n+cj)
, j = 1...s (3.110)

si le maillage est constitué de triangles (ou tétraèdres en 3D) à arretes droites se déformant

linéairement.

Concernant la vitesse maille, elle est construite de manière à satisfaire le troisième niveau

de conformité de la GCL à savoir assurer la même précision en temps de l’intégrateur sur un

maillage se déformant que sur un domaine fixe. Cette construction se fait indépendamment

de celle de la divergence de la vitesse de maille et s’écrit pour les intégrateurs IRK :

u(n+cj)
m (x) =

s∑

i=1

[aij ]
−1x

(n+ci) − x(n)

∆t
, j = 1...s (3.111)

si le maillage est constitué de triangles (ou tétraèdres en 3D) à arrêtes droites se déformant

linéairement.

L’utilisation de schémas implicites de Runge-Kutta d’ordres élevés va permettre la

résolution précise de problèmes raides d’interaction fluide-structure en grands déplacements.

La grande stabilité des schémas de Radau-IIA élimine toutes oscillations parasites sans

induire d’amortissement numérique. En outre, la formulation respectant la GCL conserve la

grande précision de ces schémas (même dans le cas d’écoulements incompressibles), induisant

un gain de temps de calcul notable.
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3.5 Stratégie de résolution

Le problème d’interaction fluide-structure fortement couplé est résolu de manière impli-

cite à l’aide d’une procédure éléments finis de Newton-Raphson. La stratégie de résolution est

donc basée sur une formulation monolithique totalement implicite adaptée de notre travail de

mâıtrise [109]. On fait donc ici un bref rappel des caractéristiques de la méthode d’éléments fi-

nis (MEF) utilisée, un résumé de l’approche monolithique implicite et une courte présentation

du solveur utilisé.

3.5.1 Méthode des éléments finis

La résolution numérique des systèmes d’équations aux dérivées partielles présentées aux

sections 3.2 et 3.3 s’effectue à l’aide de la méthode des éléments finis (MEF). Elle repose sur

une formulation faible des équations qu’on discrétise sur des sous-domaines de calcul simples

appelés éléments.

La formulation faible des équations est semblable à celle présentée dans notre tra-

vail de maitrise [109]. On doit toutefois porter une attention particulière au respect de

la loi de conservation géométrique (GCL) comme expliqué à la section 3.4.3. De plus,

la méthode des réactions [177] permet d’appliquer les forces fluides sur la structure

(flexible ou masse ponctuelle) de manière implicite sans alourdir ni ralentir la phase de

résolution et ce indépendamment du type d’élément retenu. On récupère également les ef-

forts aérodynamiques totaux sans post-traitement des données grâce au calcul implicite des

réactions nodales sur l’interface rint.

Très brièvement on obtient les équations éléments finis en discrétisant la forme va-

riationnelle des équations obtenue précédemment. On découpe le domaine de calcul en

sous-domaines simples appelés éléments. On utilise la méthode de Galerkin qui consiste à

discrétiser la forme faible et à prendre comme fonctions tests les fonctions d’interpolation

de la solution. La discrétisation du domaine de calcul repose sur un maillage non-structuré

avec des éléments de type Taylor-Hood à 6 nœuds (P2-P1). Cet élément est linéaire en pres-

sion et quadratique en vitesse et en déplacement comme illustré sur la figure 3.4. Il est à

noter que la pression est continue par morceaux. En outre, dans le cadre d’une approche

monolithique, un traitement implicite de toutes les conditions frontières y compris celles à

l’interface est nécessaire. On utilise ainsi une discrétisation spéciale à l’aide d’éléments unidi-

mensionnels d’épaisseur nulle appelés éléments d’interface présentés sur la figure 3.4. Ils ont

pour fonction de communiquer les forces fluides au solide et d’imposer les déplacements du
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solide au pseudo-solide de manière implicite. Ces éléments sont eux aussi quadratiques pour

les vitesses, les déplacements et les réactions nodales.

Ils assurent un couplage le plus intime possible entre le fluide et le solide comme c’est

illustré sur la figure 3.4. L’élément d’interface à gauche impose les relations de mouvement

χps = χs et uf = us. Autrement dit, il transmet le mouvement du solide (χs,us) au domaine

fluide, via la déformation du pseudo-solide χps pour le déplacement. L’élément de droite

garantit l’équilibre des forces de part et d’autre de l’interface grâce aux réactions nodales :

rints = rintf . Ainsi, les forces induites par l’écoulement du fluide sont transférées au solide qui

va subir des déformations. Cette boucle illustre très bien le couplage implicite à l’interface.

Dans le cas d’un solide rigide modélisé par une masse ponctuelle, la boucle de couplage est

similaire. La seule différence réside dans le mouvement du solide rigide qui est uniforme tant

à sa frontière Γ qu’en son sein.

Domaine

Fluide

Structure

Pseudo-solide Navier-Stokes

(u ,p )

r

Couplage

s

Couplage

f

r
f

χ ps
f

Eléments 

d’interface

: Interpolant quadratique pour les vitesses et les déplacements

: Interpolant linéaire pour la pression

(    ,u )χ s s(u ,χ  )
f ps

int int

Figure 3.4 Maillage non-structuré : éléments de Taylor-Hood et couplage implicite à l’interface
fluide-structure.

3.5.2 Calcul des réactions pour les IRK

Avant d’assembler le système global, on introduit une variante implicite de la méthode

des réactions [177, 109]. On rappelle que cette méthode s’appuie sur une reformulation des

formes faibles des équations 3.14 et 3.18 pour faire apparâıtre deux nouvelles inconnues, les
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réactions du fluide rintf et de la structure rints :

∫

Γf
N1

∪ΓI1

δu ·
(

σf · nf
1

)

δΓ =

∫

ΓI1

δu ·
(

σf · nf
1

)

δΓ

︸ ︷︷ ︸

rintf

+

∫

Γf
N1

δu ·
(

σf · nf
1

)

δΓ

︸ ︷︷ ︸

condition de Neumann
∫

Γs
N0

∪ΓI0

δr ·
(
σl · ns

0

)
δΓ =

∫

ΓI0

δr ·
(
σl · ns

0

)
δΓ

︸ ︷︷ ︸

rints

+

∫

Γs
N0

δr ·
(
σl · ns

0

)
δΓ

︸ ︷︷ ︸

condition de Neumann

(3.112)

Cette méthode est la clef de voute de l’approche monolithique implicite. En effet, rintf et rints

permettent d’appliquer les forces fluides sur la structure de manière implicite sans alourdir

ni ralentir la phase de résolution et indépendamment du type d’élément retenu.

Dans le cadre des schémas d’intégration en temps de Runge-Kutta, les réactions rn+ci sont

calculées pour chaque sous-pas de temps implicites tn+ci. Or, ce ne sont pas des inconnues du

problème mais des variables secondaires (issues des conditions naturelles de Neumann). C’est

pourquoi rn+1 ne correspond pas à la condition de Neumann de l’équation de mouvement au

temps tn+1 mais à une variable secondaire d’un système d’équations couplées aux différents

sous-pas de temps implicites tn+ci. Plus précisément, rn+ci est la réaction au temps :

tn+ci
p =

s∑

i=1

aijt
n+ci

Ainsi, pour extraire les efforts Ln+1 au temps tn+1 on doit les reconstruire à partir de ces

réactions calculées rn+ci. On “découple” en quelque sorte ces variables secondaires grâce

au tableau de Butcher inversé. Par exemple, on obtient les efforts selon ~x avec la formule
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suivante :

Ln+1
x =












a11 · · · a1i · · · a1s
...

. . .
...

. . .
...

ai1 · · · aii · · · ais
...

. . .
...

. . .
...

as1 · · · asi · · · ass












−1 










rn+c1
x
...

rn+ci
x
...

rn+cs
x












(3.113)

où s est le nombre d’étages du schéma IRK et aij représentent les coefficients du tableau de

Butcher associé.

3.5.3 Approche monolithique

La stratégie de résolution des équations présentées aux sections 3.2 et 3.3, repose sur une

approche monolithique [109]. Tous les degrés de liberté du problème de tous les sous-pas de

temps implicites sont ainsi couplés dans un seul système matriciel :

– vitesses et pressions dans le domaine fluide (uf , p) ;

– déplacements pseudo-solide dans le domaine fluide (χps) ;

– vitesses et déplacements dans le solide (us,χs) ;

– vitesses et déplacements de la masse ponctuelle (ump, χmp) ;

– réactions nodales sur l’interface fluide-solide (rint) ;

– réactions nodales sur la masse ponctuelle (rΓ).

À chaque pas de temps, toutes les équations discrétisées, y compris celles correspondant

aux conditions d’équilibre à l’interface, sont donc assemblées dans un seul et même système

global non-linéaire R (U(t)) = 0. Ce système est schématisé pour les trois principaux cas

étudiés sous forme d’une matrice globale : profil flexible (encastré ou oscillant) sur la figure 3.5,

profil rigide autopropulsé sur la figure 3.6 et profil flexible autopropulsé sur la figure 3.8.

A. Cas d’un profil flexible (encastré ou oscillant)

Pour les problèmes d’interaction fluide-structure sans mouvement libre de corps rigide

(cas d’un profil flexible encastré ou oscillant), 11 inconnues forment le vecteur d’état : U =
[
uf , pf ,u

int
f , rintf ,χps,χ

int
ps ,χ

int
s , rints ,uint

s ,χs,us

]T
, où (int) dénote une valeur sur l’interface.

Pour calculer ces variables, on dispose des équations présentées précédemment qui forment le

système global d’équations résiduellesR (U) = 0 illustré sur la figure 3.5. Les zones ombragées

indiquent la contribution de la forme faible correspondante et le symbole I, correspondant à

la matrice identité, traduit la continuité des inconnues à l’interface.
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Figure 3.5 Matrice globale pour le cas d’un profil flexible (encastré ou oscillant)

Ainsi, les lignes 1 et 2 correspondent aux équations de Navier-Stokes, les lignes 5 et 10

traduisent respectivement les équations de Cauchy pour le pseudo-solide et pour le solide et

la ligne 11 représente les équations des vitesses du solide. Ensuite, à l’interface, les lignes

3 et 6 expriment respectivement la continuité des vitesses et des déplacements et la ligne

8 reflète la condition d’équilibre des forces fluides et solides. Enfin, la ligne 4 représente la

relation implicite entre les réactions du fluide et les autres inconnues alors que les lignes 7 et

9 expriment la même sorte de relation implicite pour les réactions du solide.

La différence entre un profil encastré et un profil oscillant apparâıt seulement sur les

équations de conditions aux frontières du solide (voir section 3.5.4).

Remarque : Malgré l’adimensionnalisation des équations présentée à la section 3.2.5,

les coefficients des équations structurelles et pseudo-solide peuvent prendre des valeurs très

élevées qui déséquilibrent le système d’équations. Ainsi il arrive que le solveur diverge dans

les cas où les modules d’Young sont importants (nombre de Cauchy très faibles). Afin de

pré-conditionner le système d’équations, on propose de diviser les équations structurelles et

pseudo-solides par la valeur maximale du module d’Young, ce qui ne change en rien à la valeur

de la solution. Il n’est donc pas nécessaire de répercuter ces changements sur les équations

d’interface. En pratique, on note une nette amélioration de la convergence du solveur.
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B. Cas d’un profil rigide autopropulsé

Dans le cas d’un profil rigide autopropulsé, on considère le mouvement libre de

corps rigide d’un solide soumis aux forces fluides. On introduit donc une masse ponc-

tuelle pour modéliser le solide. Le vecteur d’état est alors formé de 9 variables : U =
[
uf , pf ,u

Γ
f , r

Γ
f ,χps,χ

Γ
ps, r

Γ
mp,ump,χmp

]T
, où (Γ) dénote une valeur sur la frontière mouillée

du solide rigide. La figure 3.5 présente le système global d’équations résiduelles à résoudre

R (U) = 0.
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Γ
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0

0

0
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0

0
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χ
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mpu
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Γ
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Figure 3.6 Matrice globale pour le cas d’un profil rigide autopropulsé

Tout d’abord, comme pour le cas A, les équations de Navier-Stokes sont représentées sur

les lignes 1 et 2, la ligne 5 traduit l’équation de Cauchy pour le pseudo-solide et la ligne 4

représente la relation implicite entre les réactions du fluide et les autres inconnues. Ensuite,

les lignes 8 et 9 représentent les équations de la masse ponctuelle modélisant le mouvement

libre du solide. Enfin, les lignes 3, 6 et 7 expriment respectivement la continuité des vitesses,

des déplacements et des efforts à la frontière mouillée du solide.

On doit ici noter l’importance de respecter l’ordre des équations de la masse ponctuelle

afin que la matrice résultante reste inversible (lignes 8 et 9). Les équations 3.27 et 3.28

gouvernant le mouvement de la masse ponctuelle se discrétisent avec un pas de temps ∆t
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comme suit :

ump =
∆χmp

∆t
sur χmp (3.114)

faero = mamp = m
∆ump

∆t
sur ump (3.115)

Afin d’avoir une matrice inversible, l’implantation des équations précédentes doit se faire

comme suit ;




1

∆t
0

0
m

∆t





[

∆χmp

∆ump

]

=

[

ump

rΓmp

]

avec faero = rΓmp.

En effet, si on n’y prend pas garde, on peut former le système non-inversible suivant :




0

1

∆tm

∆t
0





[

∆ump

∆χmp

]

=

[

ump

rΓmp

]

C. Cas d’un profil flexible autopropulsé

Si on ajoute une partie flexible au solide constituant le profil autopropulsé, de nouvelles

relations d’interface doivent être prises en compte. On considère ici seulement le cas où la

partie rigide du solide est entourée entièrement par la partie flexible comme représenté sur la

figure 3.7. Deux interfaces doivent donc être considérées : l’interface IFS Γint entre le fluide

et la structure flexible et la frontière Γ entre la structure flexible et la partie rigide.

On considère ainsi 17 variables pour former le vecteur d’état : U =
[
uf , pf ,u

int
f , rintf ,χps,χ

int
ps ,χ

int
s , rints ,uint

s ,χs,us,u
Γ
s ,χ

Γ
s , r

int
s , rΓmp,ump,χmp

]T
, où ( int)

dénote une valeur sur l’interface IFS et ( Γ) sur la frontière mouillée du solide rigide. Le

système global R (U) = 0 est schématisé sur la figure 3.8.

Dans ce cas, la matrice globale comprends trois blocs diagonaux correspondant aux

équations régissant le domaine fluide (lignes 1, 2, 4 et 5), la structure flexible (lignes 7,

9, 10, 11 et 14) et la masse ponctuelle (lignes 16 et 17). Les relations d’interface s’ex-

priment par les termes en dehors de ces blocs diagonaux : lignes 3, 6 et 8 pour l’équilibre

à l’interface fluide-structure et lignes 12, 13 et 15 pour la continuité sur la frontière Γ du

solide rigide.
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Figure 3.7 Modélisation pour une structure flexible autopropulsée.

3.5.4 Imposition des conditions aux limites

Les conditions aux limites de Dirichlet imposent des valeurs connues sur certaines

frontières du domaine. Les matrices globales R présentées précédemment peuvent donc tenir

compte directement des conditions aux limites. Ainsi, les vecteurs d’inconnues U ne font

pas apparâıtre ces conditions aux limites U. Toutefois, c’est une manière explicite d’imposer

ces conditions aux limites. Par conséquent, l’approche monolithique n’est plus entièrement

implicite ce qui peut poser des problèmes de stabilité.

En effet, si on impose de cette manière le déplacement χs du profil oscillant, les frontières

sont explicitement déplacées avant même de résoudre le système. Ainsi, les autres points du

domaine n’étant pas déplacés, la résolution se fait sur un domaine replié si le déplacement du

solide est trop grand comme le montre la figure 3.9. On remarque alors que le pas de temps

∆t de l’intégrateur est alors limité par la taille du maillage ∆h pour éviter le repliement.

Contrairement à une formulation implicite, la longueur pas de temps n’est plus alors dictée

par la précision désirée mais pas une relation de stabilité de la forme :

χs(t +∆t)− χs(t) < ∆h (3.116)

Pour éviter ces problèmes de stabilité, les conditions aux limites doivent être imposées de

manière implicite. Pour ce faire, on utilise une méthode directe en introduisant les conditions
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Figure 3.8 Matrice globale pour le cas d’un profil flexible autopropulsé.

aux limites dans le vecteur des inconnues :

R̃Ũ =

[

R RΓ

0 R

][

U

UΓ

]

=

[

F

U

]

(3.117)

où UΓ représente les degrés de liberté sur lesquels s’appliquent les conditions aux limites U.

En règle générale R = I. On réduit alors ce système en un système équivalent afin de réduire

le nombre d’équations :

RU = F̃ (3.118)

F̃ = F−RΓUΓ = F−RΓR
−1
U (3.119)
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Figure 3.9 Repliement du maillage avec des conditions aux limites explicites.

3.5.5 Méthode de Newton-Raphson

Pour résoudre ce système global creux R (U(t)) = 0 à chaque pas de temps, on initia-

lise toutes les variables grâce à la solution au temps précédent U(t − 1). On dispose alors

d’une bonne estimation initiale de la solution pour assurer la convergence de la méthode de

Newton-Raphson. Cette dernière utilise une évaluation de la matrice jacobienne J qui décrit

la sensibilité des équations par rapport à chacune des inconnues pour déterminer les vecteurs

de correction successifs δU(t) :

J (Un(t)) δUn(t) = −R (Un(t)) (3.120)

Un+1(t) = Un(t) + δUn(t) (3.121)

où Jij =
∂Ri (U

n(t))

∂Uj(t)

On utilise l’approche du jacobien numérique [148] qui approxime les dérivées par

différences finies en perturbant la solution d’une petite quantité δ :

Jij =
∂Ri (U

n(t))

∂Uj(t)
=

Ri

(
Un
1 (t), U

2
2 (t), . . . , U

n
j (t) + δ, . . . , Un

N(t)
)
− Ri (U

n(t))

δ
(3.122)

Cette technique de linéarisation des équations couplées permet de prendre en compte toutes

les dépendances implicites. Ainsi, la stratégie monolithique adoptée ici permet d’atteindre

une convergence quadratique de la méthode de Newton-Raphson. Ceci se fait aux dépens du

nombre de variables et de la taille du système qui augmentent par rapport à une approche

découplée. Toutefois, cet inconvénient est largement compensé par la réduction significative

du nombre d’itérations de Newton, i.e. : du temps de calcul. De plus, l’utilisation de la

factorisation conditionnelle [109] permet un gain notable de temps de calcul en évitant de
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recalculer à chaque itération de Newton la matrice inverse de J . En pratique, les résolutions

numériques successives de Un(t) se font à l’aide du logiciel PARDISO [178, 179].

Ce chapitre a présenté la méthodologie adoptée pour simuler les interactions

fluide-structure instationnaires en grands déplacements. On a souligné les principaux

développements nécessaires effectués pendant ce projet de recherche. Les deux chapitres sui-

vants traitent de la mise en pratique de ces développements dans le cadre de simulations

numériques. Tout d’abord, on expose des cas de vérification des différents volets composant

cette étude. Ensuite, on applique notre méthodologie à des cas pratiques faisant intervenir

tout ou partie des concepts théoriques développés jusque là.
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CHAPITRE 4

VÉRIFICATIONS

Ce chapitre présente des cas intéressants permettant la vérification du code de calcul.

Il est en effet important de vérifier la bonne implémentation des schémas de résolution des

équations, des schémas d’intégration en temps et du solveur avant d’aborder les problèmes

d’application qui feront l’objet du dernier chapitre. Contrairement à la validation qui

compare les modèles mathématiques avec le phénomène naturel qu’il tente de décrire, la

vérification se réfère à la comparaison d’une solution connue (exacte) tirée des équations

qui nous intéressent avec la solution numérique obtenue par le code de calcul en résolvant

ces même équations. Cette solution connue doit être suffisamment complexe pour activer

tous les termes des équations et pour s’assurer qu’ils sont bien traités par le code. Une

analyse de convergence sur un problème dont la solution est connue permet alors d’évaluer

la performance du solveur.

Le code de calcul reposant sur la méthodologie décrite au chapitre 3 a déjà fait l’objet

de vérifications rigoureuses pour certains cas particuliers. Ainsi, la précision temporelle et

spatiale de l’algorithme implicite monolithique a été vérifiée pour le schéma d’intégration en

temps de Crank-Nicolson par Étienne et al. [174, 176]. En outre, dans une autre publica-

tion [128], la précision en temps des intégrateurs implicites de Runge-Kutta (IRK), respectant

la GCL, a été vérifiée pour des écoulements instationnaires (sans structure) sur des domaines

de calcul fixes et déformables. La vérification a été faite sur des écoulements simples grâce

à une solution analytique puis sur une solution manufacturée activant tous les termes des

équations de Navier-Stokes grâce à une étude de convergence par raffinement du pas de temps.

Pour une vérification du code de calcul dans le cadre plus général des interactions fluide-

structure en grands déplacements, on étudie ici deux problèmes de référence. Tout d’abord, ce-

lui d’un profil rigide oscillant induisant d’importante déformation du maillage. On s’intéresse

en particulier à la précision temporelle des schémas IRK1, IRK3 et IRK5 grâce à une étude de

convergence des forces aérodynamiques par raffinement du pas de temps. Dans un deuxième

temps, on étudie le cas d’une languette flexible fixée à l’arrière d’un cylindre carré (cas de

Wall [162]). La précision temporelle des schémas implicites de Runge-Kutta sera démontrée

par une étude de convergence du déplacement du bout libre de languette en raffinant le pas de

temps utilisé. Avant d’attaquer les cas de vérification, on définie les normes d’erreur utilisées
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dans le cadre instationnaire pour vérifier la précision de notre méthodologie.

4.1 Définitions des normes d’erreur

Afin d’étudier correctement la précision temporelle des schémas en temps, on doit définir

des normes d’erreurs adaptées aux phénomènes instationnaires. Tout d’abord, afin de mi-

nimiser l’erreur intrinsèque de la discrétisation en temps, on interpole la solution discrète

obtenue par des splines cubiques sur l’intervalle de temps étudié. On peut alors définir une

norme d’erreur temporelle basée sur une estimation d’erreur par une moyenne quadratique

(Root Mean Square, (RMS)). De plus, lorsque les phénomènes vibratoires sont importants, la

précision du modèle se mesure non seulement sur l’amplitude des variables dépendantes mais

aussi et surtout sur leur fréquence. On définit donc également une norme dans le domaine

spectral. Enfin, on rappelle les définitions des normes d’erreur énergie, l2p et h1p pour étudier

l’erreur du calcul sur tout le domaine de calcul à un temps t donné.

4.1.1 Interpolation temporelle de la solution

Pour comparer correctement les résultats obtenus par différentes discrétisations en temps

∆tk, on interpole les solutions Uh
k avec des splines cubiques générées par MATLAB sur N

points d’interpolation : [t1, tN ]. Ainsi, on utilise la précision des schémas d’intégration en

temps (IRK3 et IRK5) pour générer des approximations Uk(ti) de la solution entre deux

temps où la solution est calculée afin de jouir d’une plus grande flexibilité pour le calcul

d’erreur. Ceci nous permet de comparer les solutions obtenues par deux calculs avec deux

pas de temps différents ∆t1 et ∆t2 même si les temps où les calculs sont effectués sont

différents, i.e. ∆t1 6= q∆t2, ∀q ∈ N (voir l’exemple présenté sur la figure 4.1).

4.1.2 Domaine temporel

Pour une solution de référence donnée Uref , on définit une norme d’erreur de convergence

comme la moyenne quadratique (RMS) de la différence entre la solution calculée interpolée

U et la solution de référence à chaque temps de calcul ti de l’intervalle [t1; tN ] :

eRMS =

N∑

i=1

√

(U(ti)−Uref(ti))
2

N
(4.1)

Afin vérifier le plus rigoureusement possible le code de calcul, la solution de référence

devrait être la solution exacte, analytique, des équations utilisées. Toutefois, si on ne dispose

pas d’une telle solution à cause de la complexité du problème étudié, on utilise la solution
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la plus précise que l’on peut obtenir. Dans le cadre d’une étude de précision en temps, on

considère la solution obtenue avec la pas de temps le plus petit et le schéma d’intégration

d’ordre le plus élevé. Dans ce cas, il n’y a pas d’interférences dûes à la taille du maillage puis-

qu’un même maillage sera utilisé pendant le processus de vérification. On fait ici l’hypothèse

que cette solution précise est très proche de la solution exacte. L’hypothèse sera vérifiée si

les courbes de convergence vers cette solution ont des taux de descente prévue par la théorie.

Si ce n’est pas le cas, soit le code de calcul n’est pas vérifié, soit la solution précise n’est

pas assez proche de la solution exacte. On se heurte alors à un phénomène de saturation de

l’erreur.

Cette mesure de l’erreur est appropriée aux problèmes où la fréquence dominante est fixée,

par exemple par l’oscillation d’un profil. L’écoulement est alors forcé par la solide, notamment

lorsque le phénomène de lock-in se produit. Toutefois, les fréquences structurelles et celles

des lâchers tourbillonnaires intervenant dans les interactions fluide-structure doivent le plus

souvent être résolues par le solveur. Ainsi, la précision du schéma d’intégration en temps va

aussi s’évaluer dans le domaine spectral.

4.1.3 Domaine spectral

Le passage du domaine temporel au domaine spectral se fait au moyen d’une transforma-

tion en série de Fourrier à l’aide de la fonction FFT (Fast Fourier Transform) de MATLAB.

On utilise des splines cubiques pour interpoler la solution sur N = 2q points de l’intervalle de

temps considéré et effectuer la décomposition FFT. On dispose alors de N/2 = 2(q−1) points

de discrétisation dans l’espace des fréquences pour la transformée de Fourier FFT (U).

On utilise la même approche de moyenne quadratique (RMS) pour définir la norme d’er-

reur dans le domaine spectral. L’erreur spectrale est ainsi calculée sur l’intervalle de fréquence

[f1; fN/2] comme suit :

eFFT =

N/2
∑

i=1

√

(FFT (U) (fi)− FFT (Uref) (fi))
2

N/2
(4.2)

4.1.4 Normes Énergie, L2p et H1p

Pour finir, on rappelle les définitions des normes d’erreur Énergie, L2p et H1p afin

d’étudier l’erreur du calcul sur tout le domaine de calcul à un temps t donné. En considérant

une solution de référence au temps t, Uref(t) = [uref , pref ], on définit les normes comme

suit :
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– Norme Énergie : pour la vitesse

‖eu‖2E = ‖uref − uh‖2E =

∫

Ω

[

(∇uref −∇uh) + (∇uref −∇uh)
T
]

(4.3)

:
[

(∇uref −∇uh) + (∇uref −∇uh)
T
]

dΩ

– Norme L2p : pour la pression

‖ep‖2L2
= ‖pref − ph‖2L2

=

∫

Ω

(pref − ph)
2dΩ (4.4)

– Semi-norme H1p : pour la pression

‖ep‖2H1
= ‖pref − ph‖2H1

=

∫

Ω

∇ (pref − ph) · ∇ (pref − ph) dΩ (4.5)

où l’indice h définit les solutions éléments finis.

4.2 Profil rigide oscillant

On vérifie tout d’abord le code de calcul sur un cas avec des frontières en mouvement

provoquant une déformation du maillage. On considère simplement un profil rigide oscillant

en 2D dont les mouvements sont forcés. Il n’existe pas de solution analytique (exacte) à

ce problème complexe. On utilise donc une solution obtenue avec la meilleure précision en

temps comme solution de référence. Plus précisément, on cherche à vérifier l’implémentation

des schémas IRK1, IRK3 et IRK5 par une étude de raffinement du pas de temps. Si l’erreur

par rapport à la solution de référence décroit avec des taux égaux aux ordres théoriques des

schémas IRK, la vérification sera faite.

4.2.1 Description du cas

On considère une aile rigide oscillante dont la géométrie est décrite par un profil

NACA0015 avec une corde unitaire c = 1.. Comme souligné dans la revue de littérature,

on lui impose l’habituel mouvement périodique de battement et de rotation :

{

θ(t) = θ0 cos(ωt)

h(t) = h0 sin(ωt)

où ω est la pulsation telle que la période s’écrive T = 2π/ω = 5.55s et la fréquence f = 0.18Hz.

L’angle de rotation moyen θav est considéré comme nul, l’amplitude de la rotation est définie



103

par θ0 = π/3. et l’axe de rotation est situé au tiers de la corde :xc = 1/3. Enfin, le battement

a une amplitude unitaire h0 = 1.. On utilise une fonction lissante jusqu’à t = 0.6s (e = 2.0)

afin de débuter le mouvement avec une vitesse et une accélération nulles (voir annexe A).

Concernant les propriétés du fluide, on a ρf = 1. pour sa densité, U0 = U∞ = 1.corde/s

pour sa vitesse en entrée et un nombre de Reynolds Re=ρcU0/µf=1100. Les conditions aux

limites sont précisées sur la figure 4.2.

x

y

1.00

1/3.

10.

30.

20.

u=libre, v=0.
χ=libre, η=0. 

u=libre, v=0.
χ=libre, η=0.

u=1., χ=0.
v=0., η=libre

NACA0015

u=libre, χ=0.
v=libre, η=libre

xc:(0,0)

u=usager, χ=usager
v=usager, η=usager{

Figure 4.2 Conditions aux limites pour le profil rigide oscillant.

Le maillage utilisé tout au long de cette vérification comporte 10 513 nœuds répartis

sur deux zones fluides comme présenté sur la figure 4.3. En effet, comme souligné dans la

section 3.3.2, l’approche pseudo-solide permet un zonage du domaine de calcul facilitant les

déformations du maillage. Ainsi, on introduit un zone circulaire autour du profil (décrite par

le maillage bleu-clair sur la figure 4.3) dont les frontières subissent le même mouvement de

corps rigide que le profil afin d’éviter le repliement du maillage. Notons que le petit nombre

de nœuds utilisés permet l’étude d’une large gamme de pas de temps en un temps de calcul

raisonnable.

4.2.2 Taux de convergence

Afin de mener l’étude de raffinement en pas de temps, on utilise 9 pas de temps différents :

∆tk = ∆t0/2
k, k ∈ [0, 8] où ∆t0 = 0.08s ≈ T/70 et 3 schémas d’intégration en temps : IRK1,

IRK3 et IRK5. L’intervalle d’étude est [0 : 10s] afin d’étudier une période d’oscillation

après le régime transitoire tout en gardant un temps de calcul raisonnable avec les pas de

temps les plus petits. Les résultats de la simulation utilisant le schéma IRK5 et un pas de
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Figure 4.3 Maillage non-déformé - 10 513 nœuds - 2 zones.

temps ∆t7 = ∆t0/2
7 sont utilisés comme solution de référence, représentant la solution exacte.

Efforts aérodynamiques

On étudie la convergence des efforts aérodynamiques s’appliquant sur le profil grâce à la

norme d’erreur temporelle eRMS. Ainsi, la figure 4.4 présente l’évolution de la norme eRMS

de la force verticale Fy sur l’intervalle de temps [8− 10s] pour les différents pas de temps et

les 3 schémas d’intégration (les courbes concernant la force horizontale Fx et le moment M

autour de xp ont la même allure et ne sont pas reproduites pour alléger la figure).

On constate sur la figure 4.4 que les courbes de convergence pour les trois schémas

IRK ont une pente constante dès les premiers pas de temps, la zone asymptotique est donc

atteinte très rapidement. On peut donc facilement constater que les courbes d’erreur ont des

pentes de 1, 2 et 3 respectivement pour les schémas IRK1, IRK3 et IRK5. Ces résultats sont

en parfait accord avec les ordres réduits de convergence pour la pression (ordre s), présentés

dans la section 3.4.2. En effet, les forces aérodynamiques sont induites tant par le gradient

des vitesses que par la différence de pression. Dans l’approche adoptée (voir section 3.5.3),

les forces sont calculées implicitement grâce à la méthode des réactions. Ces dernières sont
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donc résolues par couplage avec les vitesses du fluide et le champ de pression. D’un point

de vue numérique, il semble donc aussi cohérent de retrouver les taux de convergence de la

pression.

En outre, on a remarqué une légère variation des taux de convergence des courbes d’erreur

selon l’intervalle de temps considéré. Le tableau 4.1 résume les ordres de convergence observés

pour les 3 schémas de Runge-Kutta étudié pour 5 intervalles de temps différents. On voit une

convergence des ordres très rapide vers les valeurs qu’on vient d’exposer pour l’intervalle [8−
10s]. Seul le schéma IRK5 a des ordres de convergence qui varient fortement sur les 2 premiers

intervalles de temps présentés, qui contiennent le régime transitoire. On pourrait supposer

que le problème devient plus raide à cause des phénomènes transitoires et qu’on a donc une

réduction d’ordre mais c’est le contraire qui se produit pour le 2e intervalle. Par contre, on

note que la variation de l’ordre de IRK5 en fonction des intervalles en temps est semblable à

celle en fonction du pas de temps présenté par la figure 4.4. Ainsi, on peut supposer que la

zone asymptotique de IRK5 n’est pas atteinte avec les pas de temps étudiés pour le régime

transitoire générant des phénomènes de plus hautes fréquences. Le 2e intervalle de temps

coupant une partie du régime transitoire par rapport au premier, il est normal qu’on se

rapproche de la zone asymptotique avec les même pas de temps et qu’on obtienne donc

un ordre de convergence autour de 4 comme sur la figure 4.4. À partir du 3e intervalle, le

régime transitoire est passé et on se retrouve donc dans la zone asymptotique avec un ordre

de convergence de 3. Cette explication a l’avantage de s’appliquer aussi aux schémas IRK1

et IRK3 qui voient leurs taux de convergence restaient sensiblement constants alors que la

figure 4.4 montre qu’ils atteignent leurs zones asymptotiques dès le premier pas de temps.

Intervalle 0-10s 2-10s 4-10s 6-10s 8-10s
IRK1 0.96 0.95 0.95 0.98 1.00
IRK3 2.02 2.09 2.01 2.01 2.05
IRK5 1.57 4.05 3.09 3.10 3.12

Tableau 4.1 Ordres de convergence de l’erreur eRMS (Fy) des schémas IRK.

Variables de l’écoulement

Pour confirmer le rôle de la pression sur la précision des schémas IRK, on s’intéresse

à la convergence des variables de l’écoulement : champs de vitesses et de pression dans le

domaine fluide. Les variables sont évaluées au temps final t = 10s et on utilise les normes

d’erreur présentées à la section 4.1.4. Les courbes de convergence de l’erreur spatiale pour les
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normes Énergie, L2p et H1p sont présentées sur la figure 4.5. On remarque tout d’abord le

faible taux de convergence des courbes d’erreur pour le schéma IRK1, mais les trois normes

ont un comportement similaire comme prédit par la théorie : premier ordre pour les vitesses

et la pression. Les courbes concernant les schémas IRK3 et IRK5 sont plus intéressantes

pour évaluer le rôle de la pression sur la précision des schémas d’intégration en temps. On

observe en effet que les normes d’erreur concernant la pression (L2p et H1p) décroissent moins

rapidement que la norme Énergie pour la vitesse dans les zones asymptotiques respectives des

schémas IRK, identiques à celles trouvées pour lors de l’étude des efforts aérodynamiques.

Normes Énergie L2p H1p

IRK1
0.6899 0.7196 0.7026 a
0.5904 0.5985 0.5861 b
0.5069 0.5249 0.4861 c

IRK3
2.9995 2.2950 2.1304 a
2.9991 2.4505 2.2231 b
2.9980 2.5832 2.3461 c

IRK5
5.0386 3.1309 3.1699 a
5.0130 3.2481 3.1013 b
4.9967 3.6339 3.1228 c

Tableau 4.2 Ordres de convergence de l’erreur spatiale pour les normes Énergie, L2p et H1p
pour les schémas IRK à t = 10s.

Plus précisément le tableau 4.2 résume les taux de convergence des courbes calculés entre

le dernier point de chaque courbe et : a) l’avant-dernier point, b) l’antépénultième point et

c) l’avant-avant-avant dernier point. On note ainsi des ordres de précisions optimums pour

la norme Énergie à la fois pour IRK3 et IRK5 avec des taux de convergence très proches

de 3.0 et 5.0 respectivement. La précision en temps des schémas IRK sur la vitesse est donc

vérifiée. En outre, les normes d’erreur L2p et H1p font apparâıtre clairement la réduction

d’ordre pour la pression (multiplicateur de Lagrange) soulignée à la section 3.4.2. On obtient

ainsi des taux de convergence d’environ 2.3 pour le schéma IRK3 et d’environ 3.2 pour le

schéma IRK5. La précision en temps théorique des schémas implicites de Runge-Kutta est

donc vérifiée à la fois pour les vitesses et pour la pression. De plus, le rôle de la pression est

ainsi confirmé dans la réduction de la précision des schémas d’intégration en temps pour les

efforts aérodynamiques.

4.2.3 Efficacité des schémas IRK

L’implémentation du code est ainsi vérifiée sur le cas du profil oscillant présentant des

frontières en mouvement et de fortes déformations du maillage. Le 3e niveau de respect
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de la loi de conservation géométrique (GCL) présenté à la section 2.3 est donc vérifié. On

obtient bien les ordres élevés de précision en temps prévus par la théorie pour les schémas

implicites de Runge-Kutta. En pratique toutefois, l’évaluation de la solution à chaque pas de

temps requiert plus de mémoire pour les schémas d’ordres élevés. En effet, l’espace mémoire

requis pour IRK3 est doublé par rapport à IRK1 et triplé pour IRK5. Le nombre d’inconnues

augmentant, chaque évaluation est aussi plus chère en termes de temps CPU si on utilise des

schémas d’ordres élevés. Cependant, la grande précision en temps apportée par des schémas

d’ordres élevés permet d’utiliser des pas de temps plus grands pour le même niveau de

précision et ainsi de diminuer le nombre total d’évaluations sur un intervalle de temps donné.

Pour comparer l’impact des ces deux effets contradictoires, on a évalué le temps de calcul réel

(sur une même machine) nécessaire pour effectuer les calculs présentés jusqu’ici. Les temps

résultants sont tracés sur la figure 4.6 en fonction de la précision obtenue sur l’intervalle de

temps [2−10s]. On observe ainsi que les schémas IRK3 et IRK5 sont moins couteux que IRK1

en termes de temps de calcul quelque soit la précision désirée. D’ailleurs, on voit clairement

les limites du schéma IRK1 qui rend impossible des calculs précis en un temps raisonnable.

Ainsi, pour une précision de 10−6, le calcul avec IRK3 nécessite un peu moins d’un jour et

demi alors qu’on peut estimer par extrapolation que le calcul avec IRK1 nécessiterait près de

deux ans ! Enfin, le schéma d’ordre 5, IRK5, devient intéressant comparé à IRK3 pour des

simulations précises, si on dispose d’un espace mémoire suffisant.

L’étude du cas d’un profil rigide oscillant a permis de vérifier la bonne implémentation

du code de calcul et de confirmer la grande efficacité des schémas implicites de Runge-Kutta

d’ordres élevés pour les simulations précises, même avec des frontières en mouvement et de

fortes déformations du maillage. Le 3e niveau de respect de la loi de conservation géométrique

(GCL) est donc aussi vérifié.
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4.3 Languette flexible encastrée

Le couplage monolithique du fluide avec une structure flexible est ici vérifié sur le cas

d’une languette flexible encastrée à l’arrière d’un cylindre carré. Ce problème présente une

forte interaction entre le fluide et la structure qui se déforme grandement. Comme pour le cas

précédent, la complexité des phénomènes mis en jeux requiert la substitution de la solution

exacte par une solution calculée avec précision. Une étude de raffinement du pas de temps

permet de vérifier la bonne implémentation du couplage IFS et des schémas IRK, si l’erreur

par rapport à la solution de référence décroit avec des taux égaux aux ordres théoriques des

schémas IRK (voir section 3.4.2).

4.3.1 Description du problème

On reprend ici l’exemple de référence présenté par Wall en 1999 [162] et décrit plus en

détail à la section 5.1. Il s’agit d’une languette flexible encastrée à l’arrière d’un cylindre carré

soumis à un écoulement fluide uniforme. A cause des lâchers tourbillonnaires du cylindre, la

languette subit de fortes oscillations induites par le fluide. La géométrie du problème et les

conditions aux limites utilisées sont décrites sur la figure 4.7. Sur les frontières du cylindre,

on peut autoriser un glissement libre du pseudo-solide afin de faciliter la déformation du

maillage (soit 0, soit libre). Les conditions d’interface sont traitées de manière implicite.

x

y

0.800.200.90

8.90

0.0012

2.40

u=libre, χ=0.
v=libre, η=libre

u=libre, v=0.
χ=libre, η=0. 

u=libre, v=0.
χ=libre, η=0.

u=1., χ=0.
v=0., η=libre

u=impl., χ=impl.
v=impl., η=impl.

u=0., χ=0./libre
v=0., η=0./libre

Figure 4.7 Géométrie et conditions aux limites pour la languette flexible encastrée.

Les paramètres du problème sont adimensionalisés de manière consistante (voir section 5.1

pour plus de détails) et ont les valeurs suivantes :
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Longueurs Fluide Structure

Carré : d = 0.20 Vitesse : U∞ = 1.00 Poisson : ν = 0.35

Totale : L = 1.00 Densité : ρf = 1.00 Densité : ρs = 1 695

Épaisseur : e = 0.012 Viscosité : µf = 98.10−4 Young : E = 1 708 153

Le nombre de Reynolds est donc : Re=204. La structure est modélisée par la loi de com-

portement de Saint-Venant Kirchhoff pour modéliser correctement les grands déplacements.

Le calcul instationnaire démarre à partir d’une solution stationnaire. Enfin, le maillage utilisé

comporte 10 179 nœuds et est présenté sur la figure 4.8. Encore une fois, le faible nombre

de nœuds permet une bonne étude de raffinement en pas de temps en un temps de calcul

raisonnable.

Figure 4.8 Maillage non-déformé pour la languette flexible encastrée - 10179 nœuds.

4.3.2 Taux de convergence

Ce problème va permettre de vérifier l’implémentation des schémas d’intégration de

Runge-Kutta du premier au cinquième ordre pour les interactions fluide-structure en grands

déplacements. On étudie la convergence des déplacements horizontaux et verticaux de

l’extrémité libre de la languette, représentatifs des forts effets de couplage entre le fluide

et la structure. Comme les déformations structurelles de la languette sont uniquement le

fruit des interactions avec le fluide (aucune imposition de mouvement), tant l’amplitude que

la fréquence des déplacements de l’extrémité libre vont être calculés par le code. Ainsi, la

vérification se fera tant dans le domaine temporel, avec la norme eRMS, que spectral, avec

la norme eFFT.

On considère trois intervalles de temps pour effectuer l’étude du taux de convergence

des IRK : I1 = [10s; 25s], I2 = [0; 10s] et I3 = [0; 15s]. Le premier correspond à celui

communément utilisé dans les précédents travaux portant sur ce problème IFS [3]. Les deux

autres intervalles, plus courts, sont utilisés pour étudier l’ordre de convergence du schéma
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IRK du 5e ordre et les possibles effets de saturation. Selon les intervalles, on utilise jusqu’à 7

pas de temps différents tels que : ∀i ∈ [1, 6],∆ti = ∆t0/2
i−1 avec ∆t0 = 4.10−2s et ∆t7 = 5.

10−4s. La solution de référence va alors aussi variée selon l’intervalle d’étude.

Vérification de IRK1 et IRK3 sur I1

La figure 4.9 présente l’évolution des normes d’erreurs eRMS et eFFT pour les

déplacements (x,y) de l’extrémité libre de la languette sur l’intervalle de temps I1 = [10s; 25s].

La solution de référence est obtenue avec un schéma en temps IRK3 et le pas de temps

∆t7 = 5. 10−4s. On prend N1 = 216 points de discrétisation pour calculer l’erreur eRMS

et la transformée de Fourrier des solutions calculées avec les différents pas de temps. Sur

la gamme de pas de temps étudiés, le schéma IRK du premier ordre délivre un taux de

convergence vraiment faible, même plus petit que le taux théorique de 1. Ainsi, on peut

supposer que la zone asymptotique de ce schéma IRK1 commencer pour des pas de temps ∆t

bien inférieurs à 10−3s. De plus, l’erreur est vraiment importante dans le domaine spectral

(figure 4.9.b) et semble rester constante parce que cet intégrateur en temps IRK1 capture la

mauvaise fréquence de vibration structurelle comme souligné dans le section 5.1.

Pour le schéma IRK du 3e ordre, on note que la zone asymptotique de convergence

commence vers ∆t = 5. 10−3s (notamment avec la norme eRMS ) et le taux de convergence

est alors très proche du taux théorique de 3. Toutefois, dans le domaine spectral, on observe

un taux réduit autour de 2.5. Ceci pourrait s’expliquer par le fait que le schéma IRK3

n’est que du second ordre pour la pression, bien qu’il soit du 3e ordre pour la vitesse et les

déplacements. En effet, les déplacements de l’extrémité libre sont dus en partie aux forces de

pression agissant sur la structure, ce qui pourrait détériorer le taux de convergence observé.

En conclusion, le schéma IRK3 est correctement implémenté et offre un avantage indéniable

de précision en temps sur le schéma d’Euler implicite (IRK1).

Vérification de IRK3 et IRK5 sur I2 et I3

L’utilisation de l’intégrateur en temps IRK du 5e ordre améliore très visiblement les

résultats obtenus. Les figures 4.10 et 4.11 montrent l’erreur de calcul sur les déplacements

(x,y) de l’extrémité libre respectivement pour les intervalles I2 = [0; 10s] et I3 = [0; 15s]. On

utilise dans les deux cas, les résultats d’une simulation obtenus avec le schéma IRK5 et le

pas de temps : ∆t6 = 1.25 10−3s. On considère en outre, N2 = 216 et N3 = 217 points de

discrétisation sur chaque intervalle de temps. On observe que le taux de convergence de IRK3
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est globalement confirmé sur les deux intervalles de temps même si des effets de saturation

semblent apparâıtre sur le dernier point (pas de temps le plus petit). On peut très clairement

voir cet effet de saturation avec la norme eRMS sur l’intervalle de temps le plus court I2 (voir

figure 4.10.a) tandis que le taux de convergence reste égal à 3 jusqu’au dernier pas de temps

sur l’intervalle I3 dans le domaine spectral (voir figure 4.11.b). Cet effet peut venir du manque

de précision de la solution de référence, substitut de la solution exacte. Cette hypothèse tend

à être confirmée par d’autres calculs (non présentés ici), puisque l’effet de saturation em-

pire lorsqu’on utilise les résultats obtenus avec un schéma IRK3 comme solution de référence.

Concernant le schéma du 5e ordre, son taux de convergence est vraiment proche de 5,

tout comme prévu par la théorie, sur l’intervalle de temps I2 = [0; 10s]. Contrairement au

schéma IRK3, c’est sur l’intervalle I3 qu’une saturation apparâıt sur le dernier point. De plus,

le taux de convergence sur cet intervalle est plus proche de 4.5 que de 5. Ceci peut facilement

être expliqué par les effets des forces de pression qui sont résolues avec un ordre réduit de 3

pour les schémas IRK5. Ce schéma IRK d’ordre élevé reste toutefois très efficace puisque sa

zone asymptotique est atteinte dès le premier pas de temps étudié (∆t = 2.10−2s). De plus,

sa précision est 4 fois meilleure que celle de IRK3 dès le début de la zone asymptotique (i.e.

∆t0 = 10−2). Avec ce pas de temps, le schéma IRK5 est aussi précis que le schéma IRK3

avec un pas de temps ∆t = 5. 10−3s. A partir de là, dans la zone asymptotique, l’écart de

précision s’accroit avec un taux de 5/3.

4.3.3 Discussion

Les taux de convergence des schémas IRK de 3e et 5e ordres, obtenus pour le problème

IFS étudié ici, sont vraiment proches de ceux prévus par la théorie ce qui vérifie le code de

calcul pour les interactions fluide-structure en grands déplacements. Ces schémas d’ordre

élevés en temps apportent une amélioration significative sur la précision des calculs même

si l’évaluation de la solution pour un pas de temps est plus coûteuse. Ainsi, pour un même

niveau de précision en temps, les schémas d’ordres élevés utilisent des ∆t de plus en plus

grands et donc le nombre d’évaluations de la solution diminue d’autant, surcompensant le

coût plus important pour une évaluation. Le résultat net est une réduction du temps de

calcul total.

Toutefois, le taux de convergence peut se dégrader dans certains cas. On suppose qu’il y

a deux origines possibles : le manque de précision de la solution de référence (ce qui dans

ce cas n’influence pas l’ordre réel du schéma d’intégration en temps) et le rôle des forces

de pression sur les mouvements de la languette. Pour confirmer la première hypothèse, des

simulations avec une plus grande précision devraient être menées bien que cela nécessite
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un temps de calcul de plus en plus important. La seconde origine est plus complexe à

vérifier car impliquant les fondements théoriques de la méthodologie de calcul (et non la

méthode de vérification). On doit en effet déterminer l’impact de l’ordre réduit de précision

en temps pour la pression (seulement 2 pour IRK3 et 3 pour IRK5) sur la précision pour

les déplacements de l’extrémité libre de la languette. Il semble évident que physiquement la

pression joue un rôle majeur dans la déformation de la languette mais numériquement les

taux de convergence des erreurs sur les déplacements de l’extrémité libre ne sont pas réduits

à ceux de la pression.
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4.4 Profil autopropulsé

Pour compléter la vérification du code de calcul, il reste à mettre en œuvre les équations

de masse ponctuelle. On s’intéresse alors au cas d’un profil autopropulsé, i.e. qui avance

librement grâce à la poussée aérodynamique produite par son mouvement oscillant. Une étude

préliminaire de raffinement du pas de temps permet de vérifier la bonne implémentation des

équations de masse ponctuelle couplées avec celles de l’écoulement fluide pour le schéma

IRK3. La convergence de l’erreur par rapport à une solution précise prise comme référence

confirmera l’ordre de précision en temps du code de calcul.

4.4.1 Description du problème

Le problème étudié est semblable à celui présenté à la section 4.2 avec f = 0.18Hz et

θ0 = π/3.. La seule différence consiste en l’introduction d’une masse ponctuelle, située sur

l’axe de rotation, permettant le mouvement libre du profil selon l’axe horizontal (aucune

liberté sur l’axe vertical). Ainsi, les mouvements de battement et de rotation sont identiques

mais dans un repère en mouvement avec une vitesse ump et lié à la position xmp de la masse

ponctuelle. Les coordonnées (x(t),y(t)) et la vitesse (u(t),v(t)) d’un point du profil au temps t

s’écrivent, à partir de ses coordonnées initiales (xe,ye), par combinaison d’un mouvement

imposé et d’un mouvement libre :







x(t) = xmp(t)+ (cos(θ(t))xe − sin(θ(t))ye)

y(t) = (cos(θ(t))ye + sin(θ(t))xe) + h(t)

u(t) = ump(t)−
dθ(t)

dt
(sin(θ(t))xe + cos(θ(t))ye)

v(t) =
dθ(t)

dt
(− sin(θ(t))ye + cos(θ(t))xe) +

dh(t)

dt

xmp et ump sont les variables dépendantes de la masse ponctuelle qui doivent être résolues.

Pour le mouvement imposé, on utilise la même fonction lissante jusqu’à t = 0.6s (voir an-

nexe A) et on considère :

{

f = 0.18Hz, T = 5.55s, h0 = 1/5c

θ0 = π/8., θav = 0, xc = 1/3c

Le solide est modélisé par la masse ponctuelle telle que m = 0.30 (i.e. la densité du solide

est environ 2.5 fois ρf) et pour le fluide on conserve ρf = 1. et µf=1./1100. Par contre, les

conditions aux limites changent afin de prendre en compte le mouvement du profil. Ainsi, on
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considère ici U0 = U∞ = 0. pour la vitesse du fluide en entrée et on autorise le mouvement

horizontal de toutes les frontières fluides comme indiqué sur la figure 4.12.

x

y

1.00

1/3.

10.

30.
20.

u=libre, v=0.
χ=libre, η=0. 

u=libre, v=0.
χ=libre, η=0.

u=0., χ=libre
v=0., η=libre

NACA0015

u=libre, χ=libre
v=libre, η=libre

xc:(xmp,0)

u=usager, χ=usager
v=usager, η=usager{

masse
ponctuelle

Figure 4.12 Conditions aux limites pour le profil autopropulsé.

On utilise le même maillage comportant 10 513 nœuds présenté sur la figure 4.3 mais avec

une seule zone fluide car l’angle de rotation est assez faible.

4.4.2 Taux de convergence

On a mené une étude préliminaire de raffinement du pas de temps pour le schéma

d’intégration en temps IRK3. On utilise 6 pas de temps différents : ∆t ∈ [∆t0/2
5,∆t0]

où ∆t0 = 9T/125 ≈ T/14. L’intervalle d’étude est I = [0 : 100s] = [0 : 18T ]. Les résultats de

la simulation utilisant le plus petit pas de temps ∆t = 9T/4000 sont utilisés comme solution

de référence, représentant la solution exacte.

Mouvement de la masse ponctuelle

On étudie la convergence des deux variables dépendantes spécifiques aux mouvements

de la masse ponctuelle xmp et ump grâce aux normes d’erreur temporelle eRMS et spec-

trale eFFT. Le déplacement xmp et la vitesse ump de la masse ponctuelle (i.e. du centre de

rotation du profil) sont représentés sur la figure 4.13. On note Uavg la vitesse moyenne de la

masse ponctuelle (en régime établi) et xmax la distance maximale parcourue depuis t = 0.

Le tableau 4.3 expose la convergence du calcul sur uavg (en corde/s) et xmax (en corde) es-

timés sur l’intervalle I=[20 : 50s] grâce à N=217 points d’interpolation. Les erreurs relatives

(erreur rel.) sont calculées par rapport à la solution obtenue pour ∆t0/32. On trace les erreurs

relatives sur la vitesse et le déplacement sur la figure 4.14 avec une échelle logarithmique.
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On observe alors que les deux erreurs convergent avec une pente d’ordre 3, i.e. en O(∆t3).

On retrouve ainsi le taux de convergence théorique du schéma d’intégration en temps IRK3

pour les vitesses et déplacements.

Concernant les variables instationnaires ump(t) et xmp(t), on constate aussi, sur la fi-

gure 4.15, que l’ordre théorique de précision en temps du schéma IRK3 est maintenu sur

l’intervalle I = [20 : 50s] (N=217 points d’interpolation). En effet, les courbes de convergence

des erreurs temporelle et spectrale ont une pente de 3 aussi bien pour le déplacement que

pour la vitesse. La zone asymptotique est atteinte dès le premier pas de temps et les taux de

convergence sont conservés sur les différents intervalles de temps considérés comme le montre

le tableau 4.4, où ils sont calculés sur les 3 derniers pas de temps.

Efforts aérodynamiques

Comme lors de l’étude du profil oscillant (voir section 4.2), on observe un ordre de précision

en temps réduit du schéma IRK3 pour les efforts aérodynamiques comme l’indique la fi-

gure 4.16. Les courbes de convergence des erreurs temporelle et spectrale semblent en effet

avoir un ordre plus proche de 2. que de 3., aussi bien pour Fx que pour Fy. En effet, l’influence

de la précision réduite sur la pression engendre des taux de convergence réduits autour de 2.2

pour les efforts aérodynamiques. La zone asymptotique est encore atteinte dès le premier pas

de temps sauf pour l’erreur spectrale sur Fy où elle démarre au deuxième pas de temps. Les

taux de convergence sont ici aussi constants sur les différents intervalles de temps considérés

comme le montre le tableau 4.5, où ils sont calculés sur les 3 derniers pas de temps.

4.4.3 Discussion

Le problème du profil autopropulsé a permis une vérification préliminaire de la bonne

implémentation des équations de masse ponctuelle couplées avec celles de l’écoulement fluide.

∆t uavg erreur rel. xmax erreur rel.
∆t0 .28466159 0.42557% 13.219092 0.45418%
∆t0/2 .28362474 0.05978% 13.168144 0.06701%
∆t0/4 .28347996 0.00870% 13.160611 0.00977%
∆t0/8 .28345860 0.00116% 13.159496 0.00130%
∆t0/16 .28345568 0.00013% 13.159344 0.00015%
∆t0/32 .28345530 0% 13.159325 0%

Tableau 4.3 Convergence de la distance parcourue xmax et de la vitesse moyenne uavg de la
masse ponctuelle pour t ∈ [20 : 50s].
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Intervalle 0-50s 20-50s 0-100s 20-100s 50-100s
eRMS (x) 3.0290 3.0280 3.0218 3.0216 3.0206
eRMS (u) 3.0307 3.0172 3.0235 3.0157 3.0148
eFFT (x) 3.0299 3.0283 3.0225 3.0221 3.0208
eFFT (u) 3.0278 3.0172 3.0216 3.0156 3.0147

Tableau 4.4 Ordres de précision sur le mouvement de la masse ponctuelle pour différents
intervalles de temps.

Intervalle 0-50s 20-50s 0-100s 20-100s 50-100s
eRMS (Fx) 2.2640 2.1969 2.2564 2.1957 2.1949
eRMS (Fy) 2.1875 2.1835 2.1873 2.1834 2.1833
eFFT (Fx) 2.2851 2.1858 2.2543 2.1849 2.1846
eFFT (Fy) 2.1948 2.2300 2.1956 2.2298 2.2303

Tableau 4.5 Ordres de précision sur les efforts aérodynamiques pour différents intervalles de
temps.

Malgré de fortes déformations du maillage dues aux mouvements libre et forcé du profil, on

obtient bien les ordres de précision en temps théoriques prévus l’intégrateur en temps de

Runge-Kutta du 3e ordre (IRK3). Seul le schéma IRK3 a été utilisé et la vérification pour

IRK1 et IRK5 reste à compléter. Les résultats préliminaires pour IRK3 sont toutefois assez

prometteurs pour espérer vérifier le code de calcul avec les schémas IRK1 et IRK5.

Comme sur le cas similaire du profil oscillant présenté à la section 4.2, la réduction de

précision observée sur les efforts aérodynamiques s’explique logiquement par l’influence di-

rect de la pression pour laquelle les schémas IRK ont un ordre de précision en temps réduit

dans le cadre d’écoulements incompressibles (multiplicateur de Lagrange). Par contre, concer-

nant la vitesse et le déplacement de la masse ponctuelle, le schéma IRK3 conserve son ordre

de précision optimal ce qui vérifie le code de calcul.

Enfin, on note que contrairement aux cas de vérification précédents, il n’y a pas dépendance

du taux de convergence par rapport à l’intervalle de temps étudié, notamment lors du

régime transitoire. Le mouvement libre du profil peut expliquer ce phénomène car il rend

le déplacement plus naturel et le régime transitoire moins brutal. Le problème est ainsi

moins raide à résoudre lors de la phase transitoire.
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4.5 Conclusion

La conclusion générale de cette étape de vérification est que l’approche numérique

adoptée avec les schémas d’intégration en temps IRK produit des résultats dont la précision

est très proche de celle prédit par la théorie pour des problèmes d’interaction fluide-structure

en grands déplacements. A cause de l’ordre de précision réduit pour la pression (multi-

plicateur de Lagrange), il semble évident d’obtenir une détérioration de la précision en

temps pour les forces aérodynamiques et les déplacements de la structure. Toutefois, comme

souligné par St-Amand [157], un problème raide, comme ceux concernant les IFS fortement

couplés, peut réduire l’ordre théorique global à celui, plus petit, d’un étage (temps implicites

intermédiaires). Pour les méthodes de Radau-IIA, le schéma IRK3 peut voir son ordre

de précision passer de 3 à 2 et de 5 à 3 pour IRK5. Une étude plus étendue devrait être

menée pour comprendre plus précisément ce phénomène de réduction d’ordre et essayer de

le minimiser comme indiquer à la section 2.3 de la revue de littérature.

On doit ici souligner le rôle prépondérant du choix de la solution initiale à chaque pas

de temps pour les intégrateurs en temps IRK à plusieurs étages. En effet, il est possible

d’initialiser la solution Un+ci
0 de trois manières différentes :

1. ∀i ∈ [1, s], Un+ci
0 = Un ;

2. ∀i ∈ [1, s], Un+ci
0 = U (n−1)+ci ;

3. ∀i ∈ [1, s], Un+ci
0 = g

(
U (n−1)+ci

)
, avec g une fonction d’extrapolation.

Seule la première manière de procéder induit une méthode auto-démarrante et initialise les

inconnues avec des valeurs plus proches de la solution que la 2e option. Toutefois, pour

un problème non-forcé (cas de la languette flexible encastrée), on s’est heurté à quelques

problèmes de convergence numérique de la méthode de Newton-Raphson à chaque pas de

temps. L’utilisation de la deuxième option a résolu ce problème. En effet, avec la première

méthode, tous les niveaux de temps ont la même valeur initiale Un comme si la solution

recherchée était permanente. Or, pour un problème non-forcé d’interaction fluide-structure

instationnaire, toute la solution initiale semble permanente pour le solveur, même les condi-

tions aux limites qui ne forcent pas le problème. Ainsi, le solveur ne peut pas facilement

trouver la solution instationnaire. Par contre, pour les problèmes forcés comme un profil os-

cillant, les conditions aux limites rendent la solution initiale instationnaire à certains points,

même avec la première option. Cette dernière permet en plus de considérer des pas de temps

plus importants et accélère la convergence des itérations de Newton-Raphson puisque la so-

lution initiale est plus proche de la solution recherchée. Enfin, la troisième option initialise le

vecteur des inconnues avec des valeurs extrapolées grâce aux solutions des temps précédents.
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Cette méthode n’est pas auto-démarrante mais permet d’améliorer la solution initiale, sans

dénaturer la nature instationnaire du problème IFS, en ajoutant un faible coût de calcul

d’extrapolation. Cette méthode doit encore être testée plus précisément.
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CHAPITRE 5

RÉSULTATS

Quand tu rédigeras ton traité de la Science des mouvements de l’eau, souviens-toi de

mentionner, sous chaque proposition, quelles applications elle a, afin que cette science ne

soit pas inutile.

Léonard de Vinci

Le code de calcul ayant été vérifié, on expose dans ce chapitre les différentes applications

numériques de la méthodologie développée dans ce mémoire. Trois principaux problèmes d’in-

teraction fluide-structure ont été étudiés. Le premier, appelé cas de Wall [162] présente l’étude

vibratoire d’une languette flexible encastrée à l’arrière d’un cylindre carré. Le deuxième

problème explore les possibilités énergétiques d’un profil oscillant, rigide ou flexible, pour

l’extraction de puissance et la propulsion. Enfin, la troisième partie de ce chapitre expose des

résultats préliminaires d’un profil oscillant autopropulsé.

5.1 Étude du problème de Wall

En 1999, Wall [162] présentait un problème test impliquant une languette flexible en-

castrée à l’arrière d’un cylindre carré soumis à un écoulement fluide uniforme. À cause des

lâchers tourbillonnaires du cylindre, la languette flexible subit des déformations induites

par le fluide. Ce problème bidimensionnel a été largement étudié à plusieurs reprises par

de nombreux auteurs pour évaluer la qualité de leur approche numérique pour résoudre

les interactions fluide-structure, dans sa configuration initiale par Dettmer et al. [163], Oli-

vier et al. [150], Valdés Vásquez [168] et Wood et al. [152], ou avec quelques changements

par De Nayer [3], Hübner et al. [149] et Valdés Vásquez [168].

À partir d’une valeur critique du nombre de Reynolds, un écoulement passant autour d’un

corps non-profilé génère des tourbillons (vortex) qui sont lâchers à partir des angles du carré

à une fréquence constante. C’est le fameux lâcher tourbillonnaire de von Kármán. Toutefois,

la languette flexible encastrée derrière le cylinde carré modifie ce lâcher de vortex. En effet,

le comportement oscillatoire du fluide induit des forces aérodynamiques (poussée et trâınée)

dépendantes du temps, ce qui excite la languette flexible et mène à un mouvement oscil-

latoire de la structure. Ce mouvement, interagissant avec les tourbillons, perturbe alors le

comportement de l’écoulement comme le montre la figure 5.1. C’est donc un problème IFS
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très fortement couplé qui altère l’allée initiale de von Kármán.

t ≈ T/4 t ≈ T

Figure 5.1 Champs de vorticité obtenus avec IRK3 - ∆t = 5. 10−3s et 79 850 nodes.

5.1.1 Description du cas

A. Analyse dimensionnelle

Le choix des paramètres et des données du fluide et de la structure va déterminer la

nature de ce problème oscillatoire. Grâce à l’analyse dimensionnelle des interactions fluide-

structure présentée à la section 3.1, on peut identifier les paramètres adimensionnels qui

caractérisent ce problème physique. Ceci permet une meilleure compréhension du problème

en réduisant le nombre de paramètres le décrivant en totalité. On pourra ainsi classer les

études précédentes plus facilement et comparer correctement nos résultats obtenus avec une

configuration adimensionnalisée. D’après l’analyse dimensionnelle d’une structure flexible

encastrée (voir section 3.1.4), 7 nombres adimensionnels caractérisent le comportement du

système :

U* = f (x∗, t∗, Re,Mflex, CΥ, ν) (5.1)

En effet, on pose habituellement p0 = ρfU
2
0 et ξ0 = L de sorte que Eu = 1 et D = 1 ne sont

plus caractéristiques du problème.

Grâce à ces nombres adimensionnels, on peut classer les précédentes études en deux cas : le

cas de Wall et le cas de Hübner dont les paramètres sont résumés dans le tableau 5.1. Comme

on peut le voir, bien que les auteurs abordent des problèmes géométriquement identiques,

les deux cas correspondent à deux problèmes physiques différents. En outre, contrairement

aux notations trouvées dans les travaux précédents, le côté du carré semble être une échelle

plus appropriée que la longueur totale du système pour caractériser le problème puisque le

cylindre est responsable des lâchers tourbillonnaires, induisant les vibrations de la structure.
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C’est pourquoi, on définit deux échelles de temps et deux nombres de Reynolds par rapport

à la longueur totale τL et ReL d’un côté puis par rapport au côté du carré d’autre part τd et

Red. Ainsi, on définit les pas de temps adimensionnels par ∆t∗L = ∆t/τL et ∆t∗d = ∆t/τd.

Paramètres
Cas de Wall Cas d’Hübner

dim dim adim
Côté du carré : d 0.01m 0.01m 0.2

Longueur totale : L 0.05m 0.05m 1

Épaisseur de la languette : e 0.0006m 0.0006m 0.012

Échelle
de temps

:

{
τL = L/U0

τd = d/U0

1/10.26 s
1/51.3 s

1/6.3 s
1/31.5 s

1
0.2

Module d’Young : E 2.5MPa 0.2MPa 1 708 153
Densité de la structure : ρs 100kg/m3 2000kg/m3 1 694.91525
Viscosité du fluide : µf 1.82 10−5Pa.s 1.8210 10−5Pa.s 98.04 10−4

Densité du fluide : ρf 1.18kg/m3 1.18kg/m3 1
Vitesse du fluide : U∞ 0.513m/s 0.315m/s 1

Nombre de Reynolds :

{
ReL
Red

333
67

204
41

Coefficient de Poisson : ν 0.35 0.35
Nombre de Cauchy : CΥ 12.4216 10−7 5.85427 10−7

Nombre de Masse : Mflex 0.01180 0.00059

Tableau 5.1 Paramètres dimensionels et adimensionnels pour les cas de Wall et d’Hübner.

B. Cas d’Hübner

On choisit d’étudier le second cas, initialement décrit par Hübner et al. [149], dans sa forme

adimensionnelle décrite dans la dernière colonne du tableau 5.1. Comme dans l’exemple de

vérification, la géométrie et les conditions aux limites sont spécifiées sur la figure 5.2. La

structure est modélisée par la loi de comportement de Saint-Venant Kirchhoff pour modéliser

correctement les grands déplacements. Le calcul instationnaire démarre à partir d’une solu-

tion stationnaire.

L’application de la méthodologie au cas d’Hübner a pour but d’analyser le comportement

vibratoire de la languette et de comparer les résultats avec ceux trouvés dans le littérature

pour valider l’approche numérique. On note que tous les résultats présentés sont redimen-

sionnalisés grâce au tableau 5.1 afin de faciliter la comparaison avec les précédentes études.
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x

y

0.800.200.90

8.90

0.0012

2.40

u=libre, χ=0.
v=libre, η=libre

u=libre, v=0.
χ=libre, η=0. 

u=libre, v=0.
χ=libre, η=0.

u=1., χ=0.
v=0., η=libre

u=impl., χ=impl.
v=impl., η=impl.

u=0., χ=0./libre
v=0., η=0./libre

Figure 5.2 Géométrie et conditions aux limites pour le cas de Wall.

C. Convergence en maillage

Afin de vérifier la convergence en maillage du code de calcul (la convergence en temps

a déjà été étudiée en détails au chapitre 4), on a effectué des simulations avec 4 maillages

différents présentés sur les figures 5.3 et 5.4 avec des éléments de Taylor-Hood (voir sec-

tion 3.5). Les nombres de nœuds sont à peu près doublés à chaque fois : 10 179, 19 410, 41

913 et 79 850 nœuds.

a) 10 179 nœuds b) 19 410 nœuds

c) 41 913 nœuds d) 79 850 nœuds

Figure 5.3 Maillages utilisés pour le problème de Wall.

Le processus de raffinement de maillage se fait manuellement en essayant de prendre

en compte les zones de déformations de la structure ainsi que les lâchers tourbillonnaires.

L’instationnarité des phénomènes rend difficile la construction d’un maillage initial adapté

à la physique de chaque pas de temps. Il serait nécessaire de remailler pour améliorer ce

processus. En outre, les fortes déformations de la lamelle flexible ont nécessité l’utilisation
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d’un pseudo-solide non-linéaire (voir section 3.3.3) pour éviter des repliements de mailles sur

le maillage le plus fin de 79 850 nœuds. Ce choix a évité tout remaillage mais a requis des

temps de calcul beaucoup plus longs (doublés par rapport à un pseudo-solide linéaire).

a) 10 179 nœuds b) 19 410 nœuds

c) 41 913 nœuds d) 79 850 nœuds

Figure 5.4 Détails des maillages utilisés pour le problème de Wall.

Afin d’effectuer les simulations en un temps de calcul raisonnable, on a opté pour un

schéma IRK3 avec un pas de temps ∆t = 10−3s (∆t∗d = 0.0315 pour mener les simulations sur

l’intervalle [0; 25s]. Les résultats présentés sur la figure 5.6 montrent clairement un décalage

temporel selon la finesse du maillage. Il parâıt donc plus adéquat d’étudier la convergence

en maillage avec la norme d’erreur spectrale eFFT , définie au chapitre 4, sur l’intervalle

[15; 25s]. En prenant comme solution de référence les résultats obtenus avec le maillage à

79 850 nœuds, on obtient les courbes de convergence présentées sur la figure 5.7. Les taux

de convergence des erreurs sont proches de la valeur théorique d’ordre 1 à la fois sur les

déplacements et sur les efforts. En effet, si on note he la taille des éléments, la décroissance de

l’erreur devrait être quadratique avec les éléments utilisés : O (h2
e). Or, le nombre de nœuds

Nd est approximativement proportionnel à 1/h2
e. On prévoit donc une erreur inversement

proportionnelle au nombre de nœuds, tel qu’observé. Le solveur est ainsi vérifié au sens de

Roache[180].

Finalement, l’erreur relative du maillage le plus grossier par rapport au maillage de

référence le plus fin étant déjà relativement faible, on a opté pour le maillage comportant
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Figure 5.5 Maillage non-déformé pour le cas de Wall - 10179 nœuds.

10 179 nœuds, présenté sur la figure 5.5. Ceci autorise en effet de nombreuses simulations

dans un temps de calcul raisonnable. De plus, le faible nombre de nœuds, et donc d’inconnues,

permet l’utilisation de schémas d’intégration d’ordres élevés IRK5 malgré les faibles espaces

mémoires disponibles.

5.1.2 Comportement vibratoire

Les figures 5.9 à 5.12 présentent le comportement vibratoire de la languette obtenu avec

différents pas de temps et trois schémas d’intégration en temps IRK1, IRK3 et IRK5 (voir

aussi la figures 5.13). La force verticale Fy agissant sur la languette est exprimée en Newton

grâce à l’adimensionnalisation suivante :

CL = 2Fy/(ρfDU2
0 )

Le spectre de Fourier est calculé pour t ∈ [10s : 25s] avec N = 215 points d’échantillonnage.

On utilise des splines cubiques pour interpoler, à ces points d’échantillonnage, les résultats

obtenus avec les différents schémas d’intégration en temps et les différents pas de temps.

A. Théorie linéaire

La théorie des poutres (linéaire) fournit une première approximation pour analyser et

comparer le comportement vibratoire de la lamelle flexible. Les fréquences modales de la

structure s’expriment alors ainsi :

f s
n =

R2
n

2π

√

Ee2

12ρsL
4
strip

=
R2

n

2π

L2

L2
strip

e

L

√

M

12CΥ

1

τL
(5.2)



135

22.5 23 23.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Temps (s)

D
é

p
la

ce
m

e
n

t 
ve

rt
ic

al
 (c

m
)

10 179 nds 19 410 nds 41 913 nds 79 850 nds

0.8

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Spectre de l’amplitude y(t)

Fréquences (Hz)

|Y
(f

)|

10 179 nds
19 410 nds
41 913 nds
79 850 nds

10 179
19 410

41 913 79 850

Figure 5.6 Convergence en maillage du déplacement vertical y de l’extrémité libre.
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Figure 5.7 Convergence en maillage des erreurs relatives sur les déplacements et les efforts.
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en prenant Ix = be3/12 pour l’inertie de la languette, A = be pour son aire et b étant son

envergure. Avec R1 = 1.875099, R2 = 4.694084, R3 = 7.85476, R4 = 10.99554 et R5 =

14.13717, on obtient pour le cas d’Hübner (Lstrip/L = 0.8, 1/τL =6.3 Hz) :

f s
1 f s

2 f s
3 f s

4 f s
5

0.606 Hz 3.796 Hz 10.63 Hz 20.83 Hz 34.43 Hz

B. Étude fréquentielle

Pour la languette au repos (pas de déformation), Hübner et al. [149] et De Nayer [3]

ont trouvé sur le cylindre carré des fréquences de lâchers tourbillonnaires d’environ 3.7 Hz.

Cette fréquence est très proche de la seconde fréquence modale de la structure f s
2 = 3.796 Hz.

Quand la languette est libérée, il parâıt alors évident d’observer un mouvement correspondant

à l’excitation du second mode structurel avec de larges déplacements comme représenté sur

la figure 5.8. Toutefois, l’analyse spectrale des déplacements de l’extrémité libre et des forces

verticales agissant sur la languette (voir tableaux 5.3 et 5.2) met en évidence une fréquence

de vibration dominante d’environ 3.1 Hz pour le problème couplé. De plus, la lamelle flexible

vibre selon une superposition de plusieurs modes avec le mode principal. Le fort couplage

IFS et les grands déplacements de la structure rendent le problème fortement non-linéaire ce

qui limite ici l’application de la théorie des poutres.

f y
1 f y

2 f y
3 f y

4 f y
5 f y

6 f y
12

3.067 9.134 15.13 - - - -

Tableau 5.2 Fréquences modales du déplacement vertical y (en Hz) avec IRK3 - ∆t = 5. 10−4s.

Auteur f c
1 f c

2 f c
3 f c

4 f c
5 f c

12

Hübner [149] 3.1 - - - - -
De Nayer [3] 3.07-3.20 9.20-9.52 15.16-15.85 - - -
Valdès Vásquez [168] 3.22 9.-10. 15.-17. - - -
Présente étude 3.067 9.201 15.27 21.27 27.40 -
IRK3 - ∆t = 5.10−3s
Présente étude 3.067 9.134 15.13 21.13 27.14 89.67
IRK3 - ∆t = 5.10−4s

Tableau 5.3 Comparaison des résultats obtenus pour les fréquences de la force verticale (en
Hz) avec ceux de la littérature.
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(a) t ≈ 0× T (b) t ≈ T/2

(c) t ≈ T/8 (d) t ≈ 5T/8

(e) t ≈ T/4 (f) t ≈ 2T/3

(g) t ≈ 3T/8 (h) t ≈ T

Figure 5.8 Champs de vorticité obtenus avec IRK3 - ∆t = 5.10−3s et un maillage plus fin :
79 850 nœuds.
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Figure 5.9 Comportement vibratoire, ∆t = 5.10−3s pour IRK1 et IRK3 : a) Déplacement
vertical y de l’extrémité libre, b) Spectre de Fourier de y, c) Force verticale Fy, d) Spectre
de Fourier de Fy.
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Figure 5.10 Comportement vibratoire, ∆t = 5.10−4s pour IRK1 et IRK3 : a) Déplacement
vertical y de l’extrémité libre, b) Spectre de Fourier de y, c) Force verticale Fy, d) Spectre
de Fourier de Fy.
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Figure 5.11 Comportement vibratoire, ∆t = 5.10−3s pour IRK3 et IRK5 : a) Déplacement
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Figure 5.12 Comportement vibratoire, ∆t = 5.10−4s pour IRK3 et ∆t = 6.25 10−4s pour
IRK5 : a) Déplacement vertical y de l’extrémité libre, b) Spectre de Fourier de y, c) Force
verticale Fy, d) Spectre de Fourier de Fy.
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C. Validation

Les figures 5.9 à 5.12 montrent que les résultats pour le déplacement vertical du

l’extrémité libre de la languette sont semblables à ceux obtenus par De Nayer, Hübner et

Valdés Vásquez [3, 149, 168] excepté avec l’intégrateur en temps IRK du premier ordre et un

grand pas de temps. En effet, la languette oscille principalement selon son deuxième mode

de vibration (voir figure 5.8) avec une amplitude maximale d’environ 0.8cm. Or, le schéma

IRK1 (Euler implicite) ne peut pas capturer ce 2e mode avec un pas de temps trop grand

(voir figure 5.9). A contrario, il obtient un mouvement correspondant au premier mode

structurel (fréquence couplée : f c ≈ 0.8 Hz) avec de très grandes amplitudes (ymax ≈ 1.2 cm).

Toute l’énergie se concentre en effet dans ce mode unique. Avec un pas de temps plus

petit (voir figure 5.10), le schéma IRK1 capte le bon mode de déformation avec toutefois

des amplitudes réduites par rapport aux résultats trouvés dans la littérature. Les schémas

implicites de Runge-Kutta d’ordres supérieurs peuvent supporter ce comportement non-

linéaire et sont suffisamment précis pour reproduire plusieurs modes structurels avec justesse.

Plus précisément, les fréquences couplées f c
i de ce problème IFS sont résumées dans

le tableau 5.3 et se comparent avantageusement aux résultats obtenus par les précédentes

études pour les trois premiers modes. Toutefois, les modes de fréquences supérieurs à 20Hz

ne sont pas retrouvés dans les résultats des travaux précédents. De même, les résultats

obtenus pour le déplacement vertical de l’extrémité libre de la languette et pour le spectre

de la force verticale Fy sont très proches de ceux obtenus par De Nayer [3] avec un schéma

de Newmark amorti présentés sur la figure 5.14 pour les modes principaux mais diffèrent

pour les vibrations de hautes fréquences. On le voit en effet clairement sur la figure 5.13

présentant les résultats des simulations pour le cas d’Hübner avec IRK5 - ∆t = 6.25 10−4s.

Cette différence dans les résultats pour les modes de hautes fréquences sera discutée à la

section 5.1.3.

Enfin, la figure 5.15 montre les champs de pression obtenus autour de la languette au

cours d’une demi-période (déterminée par le premier mode couplé). Ils sont semblables à

ceux présentés par De Nayer [3] sur la figure 5.16. Ainsi, les résultats obtenus sont en très

bon accord avec ceux trouvés dans la littérature. De plus, les schémas en temps utilisés sont

très robustes même avec une approche monolithique et de ”grands” pas de temps.
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Figure 5.13 Résultats pour le cas d’Hübner avec IRK5 - ∆t = 6.25 10−4s.
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Figure 5.14 Résultats obtenus par De Nayer[3] avec un schéma de Newmark amorti.
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Figure 5.15 Champs de pression à différents temps t, obtenu avec IRK3 - ∆t = 5.10−4s.



147

Figure 5.16 Champs de pression sur une demi-période obtenus par De Nayer[3]

.



148

5.1.3 Discussion

On doit souligner le fait que, grâce à la précision des schémas de Runge-Kutta

d’ordres élevées, on a mis en lumière plusieurs modes structurels dans le domaine des

hautes fréquences [20Hz,100Hz] pour la force verticale qui ne sont pas mentionnés par

les précédentes études trouvés dans la littérature (voir figure 5.13 et tableau 5.3). En

effet, il n’y a aucun amortissement physique dans le modèle structurel utilisé. Il n’y a pas

non plus d’amortissement numérique induit par les intégrateurs en temps IRK d’ordres

élevés qui ne sont pas stabilisés, contrairement aux schémas amortis habituellement uti-

lisés [164, 163, 168, 152, 3]. Ainsi, la grande stabilité de l’approche présentée pour simuler

les interactions fluide-structure instationnaires permet de capturer les hautes fréquences

structurelles sans induire d’oscillations parasites numériques.

On note que les spectres de Fourier des déplacements verticaux de l’extrémité libre et des

forces verticales n’ont que les trois premières fréquences modales en commun. D’ailleurs,

il n’y a aucune fréquence modale au-delà de 20Hz pour les déplacements comme on peut

le voir sur la figure 5.9 et les tableaux 5.3 et 5.4. On peut expliquer cela en considérant

que l’on a à faire à des efforts structurels internes qui n’interagissent pas avec le fluide

à hautes fréquences de sorte que le comportement vibratoire de l’extrémité libre n’en est

pas affecté. En effet, si on utilise la vitesse réduite UR = Tstructure/Tfluid = U0/cs, où cs

représente la vitesse des ondes dans la structure, on peut estimer la force du couplage

IFS des différents modes. Pour les modes structurels de hautes fréquences, la vitesse des

ondes est grande et ainsi la vitesse réduite est petite (donc couplage faible). Dans ce cas

particulier, on a UR = U0/cs ≈ U0/(Lfs) = 6.3/fs. Ainsi, pour des fréquences couplées

hautes fc = fs >> 20Hz, on a UR << 0.315 < 1. Donc, le fluide et la structure ont deux

échelles de temps très différentes : Tstructure << Tfluid comme on peut le voir graphiquement

sur la figure 5.17. Autrement dit, au-delà des basses fréquences, du point de vue de la

structure, le fluide semble statique. Le couplage IFS est ainsi vraiment faible de sorte

que les modes structurels internes de hautes fréquences ne sont pas couplés directement à

l’écoulement fluide et n’influencent donc pas le mouvement de la languette flexible.

Comme la loi de comportement de la structure est non-linéaire, tous les modes sont couplés

et un échange d’énergie s’opère librement entre eux. Sans amortissement structurel, ce

transfert peut exciter un nombre infini de modes structuraux puisque seulement les modes

f y
1 f y

2 f y
3 f y

4 f y
5 f y

6 f y
12

3.067 9.134 15.13 - - - -

Tableau 5.4 Fréquences modales du déplacement vertical (en Hz) avec IRK3 - ∆t = 5. 10−4s.
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Figure 5.17 Évolution de la force verticale Fy appliquée à la structure comparée à celle du
déplacement vertical de l’extrémité libre.

de basses fréquences sont amortis par le fluide à cause d’un fort couplage IFS. Dans ces

conditions, le comportement vibratoire ne deviendra sans doute jamais périodique. Pour être

plus réaliste, on devrait introduire une forme d’amortissement structurelle pour les modes

de hautes fréquences.
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5.2 Performances d’un profil oscillant

La méthodologie développée dans ce mémoire pour simuler les interactions fluide-structure

en grands déplacements a pour but pratique d’explorer numériquement des processus d’ex-

traction de puissance d’un écoulement fluide et de propulsion grâce à un profil flexible en

grands déplacements. C’est ainsi que cette deuxième application présente l’étude des per-

formances d’un profil NACA0015 oscillant tant pour l’extraction de puissance que pour la

propulsion. Dans un premier temps, l’étude du régime d’extraction de puissance permettra

de comparer les résultats obtenus avec ceux de Kinsey et al. [4]. Dans un second temps, on

explorera le domaine de la propulsion avec une approche classique supposant une vitesse fixée

U∞ de l’écoulement (voir section 5.3 pour le profil autopropulsé). Enfin, on présentera l’effet

de la flexibilité du profil sur les rendements.

5.2.1 Description du problème

A. Analyse dimensionnelle

On étudie un cas semblable à celui présenté à la section 4.2 dans le cadre de la vérification

du code de calcul. Grâce à l’analyse dimensionnelle des interactions fluide-structure présentée

à la section 3.1, on peut identifier 6 nombres adimensionnels caractérisant le cas d’un profil

rigide oscillant :

U* = f
(
x∗, t̃∗, Re, θ0, h

∗

0, f
∗
)

(5.3)

En effet, on pose habituellement p0 = ρfU
2
0 de sorte que Eu = 1 n’est plus caractéristique du

problème. De plus, on considère des échelles de temps définies par la fréquence de battement

avec le temps adimensionnel t̃∗ = t∗f ∗ et le nombre de Strouhal St = ωh/(πU0). L’échelle

de longueur l0 est bien sûr fixée par la corde c du profil.

B. Paramètres du problème

L’aile rigide est décrite par un profil NACA0015 de corde unitaire c = 1. et subit un mou-

vement périodique de battement et de rotation représenté sur la figure 5.18. Ce mouvement

est régi par les équations suivantes :

{

θ(t) = θ0 cos(ωt)

h(t) = h0 sin(ωt)

où ω est la pulsation telle que la période s’écrive T = 2π/ω. L’angle de rotation moyen θav

est considéré comme nul, l’amplitude de la rotation est définie par θ0 et l’axe de rotation est

situé au tiers de la corde : xc = 1/3. Enfin, le battement a une amplitude unitaire h∗

0 = 1..
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On a donc deux paramètres variables pour le mouvement : θ0 et f ∗. On utilise une fonction

lissante jusqu’à t0∗ = 0.5 (e = 3.0) afin de débuter le mouvement avec une vitesse et une

accélération nulles (voir annexe A).

Mouvement de montée

Mouvement de descente

Figure 5.18 Champs de vorticité pour (θ0 = 60˚, f ∗ = 0.18), obtenus avec IRK3 - ∆t = ∆t0/2
et 120 386 nœuds.

Concernant les propriétés du fluide, on utilise ρf = 1. pour sa densité, U0 = U∞ =

1.corde/s pour sa vitesse en entrée et un nombre de Reynolds Re=ρcU0/µf=1100 (avec une

viscosité µf = 1/1100). Les conditions aux limites sont précisées sur la figure 5.19.

C. Choix du maillage

Le maillage est identique à celui utilisé pour l’étape de vérification avec 10 513 nœuds

répartis sur deux zones fluides (voir figure 5.20). Toutefois, pour les angles faibles (i.e. θ0 <

70˚), l’approche pseudo-solide permet une déformation du maillage sans repliement avec une

seule zone fluide. C’est cette configuration qui est utilisée pour les faibles angles dans l’étude

d’extraction de puissance. En outre, le faible nombre de nœds permet d’effectuer des études

paramétriques des performances d’un profil oscillant avec des temps de calcul raisonnables.
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Figure 5.19 Conditions aux limites pour le profil rigide oscillant.

Figure 5.20 Maillage initial avec 2 zones - 10513 nœuds.
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5.2.2 Performances d’un profil oscillant

A. Extraction de puissance

On étudie le profil NACA0015 rigide oscillant à un nombre de Reynolds Re = 1100 dans

son régime d’extraction de puissance afin de valider les résultats obtenus lors des simulations

avec ceux présentés par Kinsey et al. [4]. On mène une étude paramétrique pour explorer

l’espace “angle de rotation/fréquence réduite” défini par θ0 ∈ [0 : 90˚] et f ∗ ∈ [0; 0.25]. Les

simulations ont été menées avec un schéma IRK du premier ordre et différents pas de temps

tels qu’on ait toujours ∆t < T/2000.

Les puissances extraites et les rendements sont calculés sur la troisième période de batte-

ment. On utilise ici la notion d’efficacité totale définie par l’équation 2.1 ainsi :

ηe = 2
Py + Pθ

ρU3
∞
d

L’efficacité est alors théoriquement bornée par la limite de Betz : ηbetz ≈ 59%.
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Figure 5.21 Évolution des puissances sur une période pour le cas : (θ0 = 60˚, f ∗ = 0.18).

Pour le cas de référence (θ0 = 60˚, f ∗ = 0.18), on obtient une efficacité assez faible de

12.0% proche de celle de 11.4% trouvée par Kinsey et al. [4]. L’évolution des puissances sur

une période (voir figure 5.21) est également semblable à celle présentée par Kinsey et al..
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On observe d’ailleurs que le manque de synchronisme entre les efforts verticaux Cy et la

vitesse verticale Vy engendre des puissances transversales Py négatives sur une grande partie

de la période. La puissance moyenne extraite est donc faible, induisant un faible rendement

d’environ 12.0%.

La figure 5.22 représente la cartographie de l’efficacité d’extraction de puissance ηe dans

l’espace paramétrique (f ∗, θ0). Les cas simulés sont indiqués par les ronds noirs et les contours

d’efficacité sont interpolés sous MATLAB. La cartographie obtenue se compare favorablement

avec celle obtenue par Kinsey et al. [4] (voir figure 5.23) et dévoile la même zone de hauts

rendements : θ0 ≈ 70− 90˚ et f ∗ ≈ 0.12− 0.18. Les résultats des simulations s’en trouvent

ainsi validés. Toutefois, pour de forts angles de rotation (au-delà de 80˚), nos résultats

n’indiquent pas de baisse d’efficacité mais restent cohérents sur l’espace paramétrique. Il est

alors difficile de dire quelle solution est la plus juste. Cette cartographie exhibe en outre la

délimitation entre les domaines de l’extraction de puissance et celui de la propulsion. On voit

alors que le courbe de plumage (χ = 1) est une très bonne approximation de cette limite.
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Figure 5.22 Cartographie de l’efficacité d’extraction de puissance ηe dans l’espace pa-
ramétrique (f ∗, θ0).

L’utilisation de schémas implicites de Runge-Kutta d’ordres élevés améliore la précision

des calculs comme l’a clairement montré le chapitre 4 portant sur la vérification du code de

calcul. Ainsi, une étude de raffinement en pas de temps a été menée avec un schéma IRK3
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Figure 5.23 Cartographie de l’efficacité d’extraction de puissance ηe obtenue par Kinsey et
al. [4] .

au point de meilleur rendement pour l’extraction de puissance : (f ∗ = 0.14, θ0 = 76.33˚)[4].

Comme la variation des valeurs caractéristiques entre les cycles de battement 8 et 9 est

inférieure à 0.1%, les calculs se feront sur la 8e période de battement. Les résultats sont

consignés dans le tableau 5.5 pour les principales valeurs caractéristiques. On a utilisé quatre

valeurs de pas de temps : T/50, T/100, T/200 et T/400 et les résultats de Kinsey et al. [4]

avec 253 000 éléments et ∆t = T/4000 sont présentés dans la seconde colonne et valident

nos résultats. La dernière colonne du tableau présente l’erreur relative entre les résultats

obtenus pour des pas de temps ∆t = T/200 et ∆t = T/400.

On observe dans la dernière colonne du tableau que l’erreur relative reste inférieure à 0.25%

∆t Kinsey [4] T/50 T/100 T/200 T/400 Erreur relative

−CT 2.019 2.17530 2.16254 2.15150 2.14876 0.13 %
maxCY 1.942 1.98664 1.99382 2.01325 2.01371 0.023 %
maxCM 0.664 0.64114 0.61447 0.61457 0.61606 0.24 %

ηe 33.9% 36.37% 36.09% 35.93% 35.89% 0.11 %

Tableau 5.5 Résultats du raffinement en pas de temps pour un profil oscillant avec
(f ∗ = 0.14, θ0 = 76.33˚).

pour toutes les valeurs caractéristiques. On choisit donc un pas de temps ∆t = T/200 pour
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mener les simulations. Enfin, à partir de la figure 4.4 présentée à la section 4.2 pour un cas

légèrement différent, on peut déduire que pour ∆t = T/200 ≈ 3.10−2, on a une erreur eRMS

sur Fy de l’ordre de 10−3. Pour ce niveau de précision, la figure 4.6 montre que le schéma

IRK3 est plus rapide que le IRK5 et requiert moins de mémoire.

B. Propulsion

Grâce aux schémas implicites de Runge-Kutta d’ordres élevés, il est possible de calculer

l’efficacité propulsive d’un profil oscillant pour une large gamme de mouvements. Suite à

l’étude faite précédemment pour le cas de rendement optimal d’extraction de puissance, on va

considérer un schéma IRK3 et un pas de temps ∆t = T/200 pour mener l’étude paramétrique

explorant le domaine défini par θ0 ∈ [0 : 60˚] et f ∗ ∈ [0; 0.25].

f ∗

θ0 0.10 0.14 0.18 0.22 0.25

0˚ < 0 1.39 4.38 4.65 4.83
20˚ 17.71 35.72 33.03 29.25 26.71
30˚ < 0 44.00 32.70 40.37 37.69
40˚ < 0 < 0 43.21 43.64 26.37
50˚ < 0 < 0 < 0 27.08 38.87
60˚ < 0 < 0 < 0 < 0 < 0

Tableau 5.6 Efficacité de propulsion ηp (en %) dans l’espace paramétrique (f ∗, θ0).

On considère ici la définition classique de l’efficacité de propulsion donnée par

l’équation 2.3 : ηp =
CT

CP

. Le tableau 5.6 présente l’efficacité ηp (en %) obtenue pour

différents paramètres du mouvement. Des efficacités négatives (’< 0’) sont évidemment ob-

tenues pour les paires (f ∗, θ0) se situant dans le domaine d’extraction de puissance indiqué

sur la figure 5.24. La plus grande efficacité de propulsion ηmax
p ≈ 44% est obtenue pour des

amplitudes de rotation modérées, θ0 ≈ 30 − 40˚ et pour des fréquences réduites dans la

gamme f ∗ ≈ 0.18− 0.22.

Toutefois, les efficacités les plus élevées ne garantissent pas les plus grandes forces de poussée.

En effet, la figure 5.24 présente la cartographie du coefficient de poussée CT dans l’espace

paramétrique (f ∗, θ0) où les ronds noirs représentent les cas simulés. Contrairement à l’ef-

ficacité, la poussée maximale est obtenue pour les hautes fréquences (f ∗ > 0.25). Afin de

délimiter la zone de poussée maximale, il faudrait prolonger l’étude à des fréquences d’oscil-

lation supérieures.



157

0 0.05 0.1 0.15 0.2 0.25 0.3

0

10

20

30

40

50

60

A
n

g
le

s 
θ

0
 (

°)

f*

EXTRACTION 

DE PUISSANCE
1.0

0.8

0.6

0.4

0.2

1.8

1.6

1.4

1.2

Figure 5.24 Cartographie du coefficient de poussée CT dans l’espace paramétrique (f ∗, θ0).



158

C. Profil flexible oscillant

Analyse dimensionnelle : Afin d’explorer les effets de la flexibilité sur les perfor-

mances d’un profil oscillant, on introduit une composante structurelle flexible dans le profil

NACA0015 représentée par la zone noire sur les images situées dans la colonne de droite de la

figure 5.26. L’analyse dimensionnelle diffère alors de celle d’un profil rigide oscillant comme

souligné dans la section 3.1.4. Les paramètres physiques de la structure induisent en effet

4 nombres adimensionnels supplémentaires de sorte que le problème étudié est désormais

caractérisé par 11 paramètres adimensionnels :

U* = f
(
x∗, t̃∗, Re,Mflex, CΥ, ν,Eu,D, θ0, h

∗

0, f
∗
)

(5.4)

On considère une structure avec une densité ρs = 1. et un coefficient de Poisson ν = 0.1.

Les effets de la variation de sa flexibilité seront étudiés en changeant son module d’Young

E. Les conditions aux limites sont identiques à celles indiquées sur la figure 5.19 excepté en

ce qui concerne le profil. Le mouvement (usager) est imposé sur les frontières intérieures de

la structure, tandis que l’interface fluide-structure est traitée de manière implicite sans avoir

à imposer de conditions aux limites explicites.

Extraction de puissance : L’impact de l’introduction d’une partie flexible est étudiée

pour le cas de référence défini par (θ0 = 60˚, f ∗ = 0.18, h0 = 1.0). On se trouve alors

dans le domaine de l’extraction de puissance. Différentes valeurs du module d’Young

adimensionnalisé sont étudiées : E∗ = [2.102, 2.103, 2.104, 2.106] avec un schéma IRK du 1er

ordre et un pas de temps ∆t = 0.002 ≈ T/2800, assez petit pour avoir une bonne précision

même avec des interactions fluide-structure.

La figure 5.26 présente les champs de pression autour de l’aile rigide et du profil le plus

E∗ PY Pθ Ptot ηe
2.102 0.1868 -0.03996 0.1407 11.73%
2.103 0.2113 -0.05998 0.1513 12.61%
2.104 0.2137 -0.06540 0.1483 12.36%
2.106 0.2137 -0.06611 0.1476 12.31%

RIGIDE 0.2045 -0.06064 0.1439 11.99%

Tableau 5.7 Comparaison des puissances et des efficacités d’extraction de puissance entre des
profils rigide et flexible.
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flexible étudié (E∗ = 200). On voit clairement la déformation du bord de fuite due à la flexi-

bilité de la structure sur la figure 5.26. L’effet sur le champ de pression est aussi évident avec

sensiblement la même chose au bord d’attaque mais une réduction des gradients de pression

au bord de fuite dans le cas flexible. Il est toutefois difficile d’en évaluer les conséquences

sur l’extraction de puissance. La figure 5.25 propose une comparaison de la puissance totale

(dimensionnelle) pour différentes flexibilités du profil. L’amplitude de même que la puis-

sance de crête diminuent avec la flexibilité. Toutefois, la puissance moyenne extraite peut

être améliorée par l’introduction d’une flexibilité comme le montre le tableau 5.7. Ainsi, si

on évalue l’efficacité de la même manière que pour le profil rigide (même amplitude d), il

existe un module d’Young optimal autour de E∗ = 2.103 qui délivre un meilleur rendement

ηe = 12.61% pour l’extraction de puissance que celui du profil rigide ηe = 11.99%.
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Figure 5.25 Comparaison de la puissance totale instantanée entre des profils rigide et flexibles
sur une période de battement.

Propulsion : Enfin, on a obtenu quelques résultats préliminaires de simulation d’un pro-

fil flexible oscillant en régime de propulsion pour un cas à haut rendement de propulsion

(θ0 = 40̊ , f ∗ = 0.20). Par rapport à l’étude précédente, on utilise ici un schéma d’intégration

en temps d’ordre 3, IRK3. Le pas de temps reste identique ∆t = T/200 et on étudie 4
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Figure 5.26 Comparaison des champs de pression entre un profil rigide à gauche et un profil
flexible (E = 200) à droite pour (f ∗ = 0.18, θ0 = 60˚).
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modules d’Young différents : E∗ = [2.102, 4.102, 103, 105]. Dans le cas de la propulsion, on

observe aussi sur la figure 5.27 que les valeurs de crête pour la puissance ainsi que pour la

poussée diminuent avec la flexibilité. De plus, pour le mouvement considéré, le coefficient de

poussée diminue avec la flexibilité puisque les valeurs minimales ne sont que peu affectées

alors que les valeurs maximales de poussée sont fortement diminuées.

5.2.3 Conclusion

Dans cette seconde application, on a étudié les performances d’un profil oscillant tant

dans le domaine de l’extraction de puissance que dans la propulsion. Un faible nombre de

nœuds dans le maillage et des schémas d’intégration en temps performants nous ont permis

de mener plusieurs études paramétriques.

Tout d’abord, l’étude des performances d’extraction de puissance d’une aile rigide

(NACA0015) oscillante a donné des résultats en très bon accord avec ceux trouvés dans

la littérature. La modélisation adoptée est ainsi validée. Ensuite, une seconde étude pa-

ramétrique, utilisant des schémas d’intégration en temps d’ordre 3, a permis d’identifier de

grandes efficacités de propulsion avec un mouvement optimal du profil. La zone de poussée

optimale semble toutefois se situer au-delà des fréquences étudiées (f ∗ > 0.3). Une étude

complémentaire semble donc nécessaire pour parachever cette étude paramétrique. Enfin,

l’influence de la flexibilité du profil a été explorée sur deux mouvements différents, l’un dans

le régime de l’extraction de puissance, l’autre dans le domaine de la propulsion. Une flexibi-

lité optimale semble améliorer l’efficacité d’extraction de puissance pour le mouvement choisi.

Dans le domaine de la propulsion, on a seulement présenté des résultats préliminaires utili-

sant un schéma IRK3. La flexibilité tend à diminuer la poussée disponible mais également la

puissance totale. Une étude paramétrique complète de l’impact de la flexibilité sur l’efficacité

de propulsion et d’extraction de puissance serait bénéfique pour avoir une vision plus générale

des performances de profils flexibles oscillants.



162

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 7  7.2  7.4  7.6  7.8  8

C
 (

t)
p

t/T

E =1d5
E =1d3
E =4d2
E =2d2

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 7  7.2  7.4  7.6  7.8  8

C
T (

t)

t/T

E =1d5
E =1d3
E =4d2
E =2d2

Figure 5.27 Comparaison des coefficients de puissances totales instantanées et de poussée sur
une période de battement pour différentes flexibilités du profil : (f ∗ = 0.20, θ0 = 40̊ ).
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5.3 Profil autopropulsé

Comme dernière application de la méthode développée pour simuler les interactions fluide-

structure en grands déplacements, on présente les résultats préliminaires obtenus sur un profil

autopropulsé grâce à ces mouvements de battement et de rotation à l’instar d’une aile d’oiseau

ou d’une nageoire de baleine. Introduire un mouvement libre du profil (et non plus imposé

par une vitesse fictive U∞ en entrée) rend bien plus réaliste l’étude de la propulsion par

un profil oscillant. Toutefois, l’approche classique doit alors être adaptée afin de définir des

paramètres adimensionnels et des rendements appropriés, tenant compte de la masse du profil

et du fait que la vitesse du fluide à l’infini du fluide U∞ n’est plus caractéristique du problème

puisqu’elle peut être nulle.

5.3.1 Description du cas

A. Analyse dimensionnelle

Suite à l’étude de vérification de la méthodologie sur un profil autopropulsé présentée à la

section 4.4, on a appliqué le code numérique développé sur des cas similaires avec différents

paramètres de mouvement. Grâce à l’analyse dimensionnelle des interactions fluide-structure

présentée à la section 3.1, sept nombres adimensionnels caractérisent le cas d’un profil rigide

autopropulsé :

U* = f
(
x∗, t̃∗, Re,Mrigide, θ0, h

∗

0, ϑ
)

(5.5)

En effet, on pose habituellement p0 = ρfU
2
0 de sorte que Eu = 1 n’est plus caractéristique

du problème. On rappelle que le nombre de Reynolds s’exprime alors comme Re=ρff0l
2
0/µf

et ϑ définit l’échelle des vitesses : ϑ = U∞/(f0L0).

B. Paramètres du problème

On reprend les mêmes paramètres de mouvement que ceux décrit dans la section 5.2

concernant les profils oscillants. Ainsi, même si le nombre de Reynolds est désormais défini

de façon différente, on considère le même fluide (même masse volumique et même viscosité).

Par contre, la vitesse d’entrée (U∞) peut désormais varier, et éventuellement être prise comme

nulle. C’est en effet, la vitesse d’avancée du profil autopropulsé qui compte désormais. Ce

dernier possède en effet un degré de liberté selon l’axe horizontal lui permettant d’avancer

selon l’équation 3.27 (voir figure figure 5.28).



164

C. Choix du maillage

Pour faire des comparaisons futures, le maillage est identique à celui utilisé pour l’étape

de vérification avec 10 513 nœuds présenté à la section 4.4. Par contre, il est désormais libre

de “glisser” avec le profil qui avance. Ainsi, les déplacements horizontaux du pseudo-solide

sont libres sur les quatre frontières du domaine comme l’indique la figure 5.28. Ceci permet

une déformation du maillage sans aucun repliement.

x

y

1.00

1/3.

10.

30.

20.

u=libre, v=0.
χ=libre, η=0. 

u=libre, v=0.
χ=libre, η=0.

u=0., χ=libre
v=0., η=libre

NACA0015

u=libre, χ=libre
v=libre, η=libre

xc:(xmp,0)

u=usager, χ=usager
v=usager, η=usager{

masse
ponctuelle

Figure 5.28 Conditions aux limites pour le profil autopropulsé.

5.3.2 Résultats préliminaires

A. Premiers résultats

Les premiers résultats obtenus pour un profil oscillant autopropulsé ont été présentés

lors de la vérification du code à la section 4.4 avec m = 0.30, h0/c = 1., f = 0.18Hz et

θ0 = π/3. Avec un schéma d’intégration en temps IRK3 et un pas de temps ∆t = 0.1s, la

figure 5.29 expose l’avancée du profil durant 12 périodes de battement avec les isolignes de

vitesse horizontale.

B. Influence de la masse

Dans un second temps, on a commencé à étudier l’influence de la masse du profil sur la

dynamique du système avec un problème simple. On a considéré un mouvement de battement

pur (θ0 = 0) avec h0/c = 0.5 et f = 1.Hz. Pour le fluide, on a considéré ρf = 4. et

µf = 0.04 ainsi Re=ρff0l
2
0/µf = 100. Pour les profils, deux masses ont été étudiées :m = 0.30

et m = 1.20. La figure 5.30 présente l’évolution de la vitesse pour ces deux profils. On
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Figure 5.29 Avancée du profil - isolignes de vitesse horizontale Ump pour t=T/4, T/2, 3T/4,
T, 5T/4, 2T, 6T, 12T.
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remarque que, malgré des vitesses de pointe plus élevées, le profil le plus lourd se déplace

plus rapidement que le profil avec une masse de m = 0.30. Ainsi, même en régime établi, la

masse joue un rôle dans la dynamique du profil autopropulsé.
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Figure 5.30 Vitesse Ump (en corde/période) des deux profils de masse m = 0.30 et m = 1.20.

La figure 5.31 représentant les déplacements xmp des deux profils permet de mieux

appréhender le régime transitoire. On constate en effet que le profil le plus léger se déplace en

premier mais il est rapidement rejoint dans sa course par l’autre profil. Finalement, le profil

le plus lourd avance plus vite une fois le régime périodique établi.

5.3.3 Discussion

Cette dernière application de la méthodologie développée a donné les premiers résultats

sur l’autopropulsion d’un profil oscillant. Elle ouvre une nouvelle voie de simulation, plus

proche des conditions réelles, pour étudier les performances de propulsion. Le déplacement

induit du profil est en effet calculé au lieu d’être imposé par une vitesse d’entrée U∞.

Ceci implique une nouvelle manière d’appréhender les études sur les performances de

propulsion. En effet, la définition du nombre de Reynolds doit être revue car U∞ n’est plus

caractéristique du problème. De même, l’efficacité de propulsion ne peut plus s’appuyer

sur l’évaluation de la force de poussée qui est équilibrée en régime établi. Par contre, on a
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Figure 5.31 Déplacement xmp (en corde) des deux profils de masse m = 0.30 et m = 1.20.

vu que la masse du profil a une influence sur sa dynamique, même en régime établi. C’est

pourquoi, une nouvelle définition du rendement de propulsion devrait désormais prendre en

compte la masse du profil.

Ces premiers résultats posent les bases d’une façon plus réaliste de simuler et de quan-

tifier la propulsion d’un profil oscillant. Des études paramétriques pourront alors servir à la

comparaison des performances propulsives par rapport à la manière classique présentée à la

section 5.2. De plus, il sera intéressant d’étudier l’impact de l’introduction d’une flexibilité

du profil dans ce contexte.
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CHAPITRE 6

CONCLUSION

Le but de ce projet de thèse était de simuler numériquement des processus d’extraction

de puissance d’un écoulement fluide visqueux et de propulsion grâce à un profil flexible en

grands déplacements. Pour atteindre ce but, on a mené des travaux originaux en améliorant

les techniques de résolution de problèmes d’interaction fluide-structure instationnaires en

grands déplacements. Cette étude par ses limitations, d’ordres théorique et pratique, laisse

aussi la porte ouverte à certaines améliorations tout en posant dès maintenant les bases de

travaux futurs très prometteurs.

6.1 Synthèse des travaux

On a tout d’abord développé une méthodologie complète pour la simulation numérique

d’interactions fluide-structure en grands déplacements basée sur un code informatique

de CFD (Computational Fluid Dynamics) préexistant. Afin de mieux appréhender les

problèmes d’IFS, on a commencé notre projet par une analyse dimensionnelle détaillée

permettant d’obtenir les paramètres caractéristiques des cas étudiés. On a ensuite prolongé

une formulation monolithique implicite stationnaire des interactions fluide-structure[109] au

régime instationnaire. On a ainsi amélioré l’imposition des conditions aux limites pour les

frontières en mouvement afin de garantir le traitement totalement implicite du problème.

De plus, on a perfectionné la gestion de la déformation du maillage due aux grands

déplacements de la structure via une approche pseudo-solide. L’introduction des équations

de masse ponctuelle a permis de prendre en compte le mouvement d’ensemble de la structure

du aux forces extérieurs. Enfin, des schémas implicites de Runge-Kutta ont été implémentés

afin d’améliorer la stabilité et la précision de l’intégration en temps du système d’équations.

Cette méthodologie a donc été implémentée dans un code numérique reposant sur une

formulation monolithique directe couplée à des intégrateurs en temps d’ordres élevés. Les

équations sont décrites grâce à une formulation d’Euler-Lagrange arbitraire (ALE) conçue

pour satisfaire la loi de conservation géométrique (GCL) et ainsi garantir les ordres élevés

de précision en temps des intégrateurs, même sur des domaines fluides se déformant. Les

équations visqueuses incompressibles de Navier-Stokes pour le fluide, hyperélastiques de

Saint-Venant Kirchhoff pour la structure, de Newton pour la masse ponctuelle et d’équilibre
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pour les termes de couplage forment un large système monolithique à résoudre. L’approche

IFS implicite monolithique utilise des nœuds cöıncidents sur les interfaces fluide-structure

afin que les efforts, les déplacements et les vitesses soient évaluées au même endroit en un

temps identique. Le problème global est résolu de manière implicite grâce à une approche

éléments finis de Newton-Raphson utilisant un pseudo-solide. Des intégrateurs en temps

implicites de Runge-Kutta (IRK) d’ordres élevés (jusqu’a au 5e ordre) ont été implémentés

pour améliorer la précision et réduire le coût du calcul numérique. Dans le contexte de

problèmes raides d’IFS, la présente approche implicite à pas de temps unique est une

alternative originale aux formulations traditionnelles à pas multiples ou explicites qui

souffrent parfois d’un manque de stabilité.

Le code numérique développé a ensuite été vérifié grâce à 3 études de convergence selon

le pas de temps pour : un profil rigide oscillant avec un domaine fluide en déformation, un

problème de vibrations induites par l’écoulement d’une lamelle flexible et un profil oscillant

autopropulsé. Ces trois études ont montré la stabilité de l’approche proposée même avec de

grands pas de temps, l’absence d’oscillations parasites sans ajout de raideur numérique et la

conservation de la précision théorique des schémas IRK.

Enfin, on appliqué cette approche numérique performante à trois applications

intéressantes. Premièrement, on a étudié les caractéristiques vibratoires d’un problème d’in-

teraction fluide-structure très documenté : une lamelle flexible fixée derrière un cylindre carré

rigide. Les résultats obtenus se comparent favorablement avec les précédentes études. La

précision des schémas d’intégration IRK (même pour le champ de pression des écoulements

incompressibles), leur stabilité inconditionnelle et leur nature non-dissipative ont révélé de

nouveaux modes structurels dans les hautes fréquences, faiblement couplés avec l’écoulement.

Dans une seconde application, les caractéristiques d’extraction de puissance et de propulsion

de profils oscillants rigide et flexible ont été explorées. L’étude des performances d’extraction

de puissance d’une aile rigide (NACA0015) oscillante a donné des résultats en très bon accord

avec ceux trouvés dans la littérature. Une seconde étude paramétrique a permis d’identifier

de grandes efficacités de propulsion avec un mouvement optimal du profil. Une flexibilité

optimale semble également améliorer l’efficacité d’extraction de puissance. Enfin, une étude

sur l’autopropulsion d’un profil oscillant a donné des résultats préliminaires et a ouvert une

nouvelle voie de simulation, plus proche des conditions réelles, pour étudier les performances

de propulsion.
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6.2 Limitations de l’étude

Malgré la performance de l’approche numérique développée, l’étude menée présente des

limitations de deux ordres : théoriques et pratiques. Dès le début de l’étude, on a en effet

posé deux hypothèses : l’écoulement considéré est laminaire et en 2D. Bien que justifiées pour

certaines applications, ces hypothèses réduisent le champ d’application de la méthodologie

développée. L’introduction de modèles de turbulence dans la théorie ainsi que l’extension à

la 3D permettraient une étude plus réaliste des phénomènes, notamment dans le cadre des

études de propulsion animale où des phénomènes complexes apparaissent en bout d’aile ou

de nageoire.

Des contraintes pratiques restreignent également la portée des résultats de cette étude.

Tout d’abord, le manque d’espace mémoire n’a pas permis d’utiliser les schémas IRK d’ordres

supérieurs à 3 avec des maillages fins (supérieurs à 10 000 nœuds). C’est une des limi-

tations d’une approche totalement implicite lorsqu’on ne dispose pas d’assez de mémoire.

Ensuite, on a choisi d’utiliser des cas tests bien documentés pour vérifier le code numérique

développé. Ceci a permis en pratique de comparer avantageusement nos résultats avec les

études précédentes mais a empêché la comparaison avec une solution exacte dans le processus

de vérification. Enfin, les contraintes de temps et de puissance de calcul ont limité les études

paramétriques qui nécessitent un grand nombre de calcul. Ainsi, la cartographie des perfor-

mances propulsives est limitée aux basses fréquences tandis que les études paramétriques

pour les profils flexibles et autopropulsés restent encore à faire.

6.3 Travaux et améliorations futures

La présente étude, par ses limitations, laisse la porte ouverte à de nombreuses

améliorations mais pose aussi dès maintenant les bases de travaux futurs très prometteurs.

La méthodologie pourrait ainsi être améliorée dans trois domaines. Tout d’abord, la

modélisation du fluide serait plus réaliste en prenant en compte les phénomènes turbulents

et les effets 3D. De même pour la structure, l’introduction d’un amortissement des hautes

fréquences rendrait son comportement plus réaliste. Enfin, l’amélioration de la précision des

intégrateurs en temps IRK est encore possible, soit en augmentant l’ordre des schémas, soit

en améliorant la précision sur la pression (multiplicateur de Lagrange) par modification des

coefficients de Butcher [159].

Malgré ces améliorations qu’on pourra apporter plus tard à la méthodologie, on peut

dès maintenant mener de nombreux travaux de simulation dont les conclusions auront une
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grande portée. Tout d’abord, on pourra compléter les études paramétriques pour les profils

rigides, notamment aux fréquences élevées dans le domaine de la propulsion. Ensuite, bien

que les schémas IRK d’ordres élevés aient été vérifiés avec d’une part un profil en mouvement

et d’autre part une languette déformable, il serait souhaitable de vérifier leur implémentation

sur un profil flexible en mouvement. Ainsi, il sera possible de mener une étude paramétrique

complète des performances des profils flexibles oscillants. De même, les résultats obtenus

pour les profils autopropulsé pourront être étendus à une large gamme de mouvements.

Finalement, on pourra comparer précisément les effets de la flexibilité sur les performances

des profils oscillants tant en propulsion qu’en extraction de puissance. De même, on étudiera

en détails l’influence du mouvement des profils autopropulsé sur l’évaluation de l’efficacité

de propulsion.

Enfin, la méthodologie présentée sera une base solide à l’optimisation et au contrôle

des phénomènes d’interaction fluide-structure impliqués dans les processus de propulsion

ou d’extraction de puissance engendrés par un profil oscillant. L’amélioration du temps de

calcul grâce à des intégrateurs en temps performants facilitera grandement l’optimisation et

le contrôle. Il restera toutefois à estimer les gradients des fonctions coûts de manière précise

et fiable, notamment grâce à la méthode des sensibilités.
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ANNEXE A

Fonction lissante du mouvement

Afin d’éviter les problèmes numériques, on a besoin d’un mouvement d’oscillation du

profil régulier et très continue (i.e. C2) afin de lisser les accélérations au départ. On construit

par prolongement une fonction C2 variant rapidement de 0 à 1 lorsque le temps varie de 0 à

l’infini et ayant des dérivées première et seconde nulles au départ du mouvement et tendant

rapidement vers 0. Pour une fréquence d’oscillation f0 et un temps adimmensionel t̃∗ = f0t,

on définit cette fonction g par morceaux (voir figure A.1 ) :

g(t) =

{

g1 = a(t̃∗)3 si t̃∗ < t∗0

g2 = b tanh(et̃∗ + c) + (1− b) sinon

avec : ∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

c = atanh

(

− 1

et0

)

− et0

α = tanh(et + c)

b =
3

et0(1− α2)− 3(α− 1)

a =
b(α− 1) + 1

t30

On a en outre les dérivées par rapport au temps dimmensionnel t s’exprimant :

g′(t) =

{

g′1 = 3af0(t̃
∗)2 si t̃∗ < t∗0

g′2 = bef0
(
1− tanh(et̃∗ + c)2

)
sinon

g′′(t) =

{

g′′1 = 6af 2
0 (t̃

∗) si t̃∗ < t∗0

g′′2 = −2b(ef0)
2 tanh(et̃∗ + c)

(
1− tanh(et̃∗ + c)2

)
sinon

Le mouvement du foil ainsi imposé, se décompose en une translation vertical (heaving)
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Figure A.1 Fonction de raccord C2.
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Figure A.2 Dérivées première et seconde de la fonction g de raccord C2.
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et une rotation (pitching) lissées au départ grâce à la fonction g :

{

h(t) = h0 sin(ωt)g(t) translation verticale

θ(t) = θ0 cos(ωt)g(t) rotation

La figure A.3 présente l’évolution du battement h(t) et de l’angle de rotation θ(t) ainsi que

de leurs dérivées pour h0 = 1.0, θ0 = π/3, f = 0.18, e = 2.0 et t0∗ = 0.108. Le lissage

du mouvement au départ, donne un déplacement plus lent et progressif du profil comme

représenté sur la figure A.4.
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Figure A.3 Évolution de l’amplitude de translation et de l’angle de rotation.

La figure A.3 montre l’impact de la fonction de raccord sur les accélérations du profil au

départ. Même si elles sont continues et nulles au départ, les dérivées secondes de l’amplitude

de battement changent brutalement de signe peu après t = 0 ce qui pourrait rendre le

problème plus raide (simulation numérique plus complexe) et entrâıner un régime transitoire

important.
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