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RESUME

Le battement des ailes d'un oiseau ou le mouvement de nageoires d’un poisson produisent
I'un des plus complexe et efficace moyen de propulsion qu’on puisse trouver dans la nature.
Comprendre les processus physiques impliqués est un grand et beau défi, dont la portée est
considérable, notamment dans le domaine grandissant des micro-drones (MAV). La poussée
et la portance sont induites par un profil d’aile oscillant grace a des phénomenes complexes
d’interaction fluide-structure (IFS) instationnaires. De plus, le comportement aéroélastique
d’un profil flexible peut-étre grandement modifié par les grands déplacements de la struc-
ture causés par un couplage fort avec le fluide environnant. Le domaine des interactions
fluide-structure possede en fait un champ d’applications beaucoup plus large : du monde des
transports a celui du génie nucléaire, de 'aéronautique au génie civil, de la biomécanique a la
microélectronique et de la propulsion a I'extraction de puissance. Reproduire et comprendre
ces interactions entre deux comportements fortement non-linéaires requierent 1’assistance de

la puissance de calcul informatique via la CED (Computational Fluid Dynamics).

Meéme si une littérature grandissante est désormais disponible, beaucoup de travail reste
encore a accomplir pour simuler correctement et précisément les interactions fluide-structure
instationnaires fortement couplées. A 1’échelle des bas nombres de Reynolds, les résultats
classiques des études aéronautiques portant sur des ailes fixes ne sont plus applicables. De
plus, les structures trés flexibles (comme les membranes animales) introduisent de grands
déplacements avec des non-linéarités géométriques. Enfin, pour étudier correctement les
caractéristiques propulsives d’un profil oscillant, il est nécessaire de prendre en compte son

déplacement induit par la poussée dans les simulations numériques.

Le but du travail présenté est de développer un cadre numérique basé sur la CFD
pour simuler les phénomenes d’interaction fluide-structure impliqués dans la propulsion
ou l'extraction de puissance d'un profil flexible oscillant dans un écoulement visqueux

incompressible.

La méthode numérique proposée repose sur une formulation monolithique directe couplée
a des intégrateurs en temps d’ordres élevés. Pour décrire les équations, on utilise une
formulation d’Euler-Lagrange arbitraire (ALE) congue pour satisfaire la loi de conservation
géométrique (GCL) et ainsi garantir les ordres élevés de précision en temps des intégrateurs,

méme sur des domaines fluides se déformant. Les équations visqueuses incompressibles de
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Navier-Stokes pour le fluide, hyperélastiques de Saint-Venant Kirchhoff pour la structure,
de Newton pour la masse ponctuelle et d’équilibre pour les termes de couplage forment un
large systeme monolithique a résoudre. L’approche IFS implicite monolithique utilise des
neeuds coincidents sur les interfaces fluide-structure afin que les efforts, les déplacements et
les vitesses soient évaluées au méme endroit en un temps identique. Le probleme global est
résolu de maniere implicite grace a une approche éléments finis de Newton-Raphson utilisant
un pseudo-solide. Des intégrateurs en temps implicites de Runge-Kutta (IRK) d’ordres
élevés (jusqu’au 5¢ ordre) ont été implémentés pour améliorer la précision et réduire le cotut
du calcul numérique. Dans le contexte de problemes raides d’'IFS, la présente approche
implicite a pas de temps unique est une alternative originale aux formulations traditionnelles

a pas multiples ou explicites qui souffrent parfois d’'un manque de stabilité.

La vérification du code numérique s’est faite grace a trois études de convergence selon
le pas de temps pour un profil rigide oscillant avec un domaine fluide en déformation,
pour un probleme de vibrations induites par I’écoulement d’une lamelle flexible et pour un
profil oscillant autopropulsé. Ces trois études ont montré la stabilité de 'approche proposée
méme avec de grands pas de temps, 'absence d’oscillations parasites sans ajout de raideur

numérique et la conservation de la précision théorique des schémas IRK.

On a appliqué cette approche numérique performante a trois applications intéressantes
suite a une analyse dimensionnelle détaillée permettant d’obtenir leurs parametres ca-
ractéristiques. Premierement, on a étudié les caractéristiques vibratoires d’un probleme d’in-
teraction fluide-structure tres documenté : une lamelle flexible fixée derriére un cylindre carré
rigide. Les résultats obtenus se comparent favorablement avec les précédentes études. De plus,
la précision des schémas d’intégration IRK (méme pour le champ de pression des écoulements
incompressibles), leur stabilité inconditionnelle et leur nature non-dissipative ont révélé de
nouveaux modes structurels dans les hautes fréquences, faiblement couplés avec 1’écoulement.
Dans une seconde application, les caractéristiques d’extraction de puissance et de propulsion
de profils oscillants rigide et flexible ont été explorées. L’étude des performances d’extraction
de puissance d’une aile rigide (NACA0015) oscillante a donné des résultats en tres bon accord
avec ceux trouvés dans la littérature. Une seconde étude paramétrique a permis d’identifier
de grandes efficacités de propulsion avec un mouvement optimal du profil. Une flexibilité
optimale semble également améliorer 'efficacité d’extraction de puissance. Enfin, une étude
sur I"autopropulsion d’un profil oscillant a donné des résultats préliminaires et a ouvert une
nouvelle voie de simulation, plus proche des conditions réelles, pour étudier les performances

de propulsion.
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ABSTRACT

Flapping wings for flying and oscillating fins for swimming stand out as the most
complex yet efficient propulsion methods found in nature. Understanding the phenomena
involved is a great challenge generating significant interests, especially in the growing
field of Micro Air Vehicles. The thrust and lift are induced by oscillating foils thanks to a
complex phenomenon of unsteady fluid-structure interaction (FSI). Moreover, the aeroelastic
behaviour of a flexible foil may be modified by the large structural displacements caused by
a strong coupling with the surrounding flow. The fluid-structure interaction field is actually
much wider and intensively studied in a large range of applications : nuclear engineering,
aeronautics, power harvesting, civil engineering, biomechanics or microelectronics. This
interaction of two strong nonlinear behaviors requires the help of the Computational Fluid

Dynamics (CFD) to reproduce and improve our understanding of FSI phenemenon.

Even if an increasing body of literature is now available, much research needs to be
done to properly and accurately simulate unsteady fluid-structure interactions with a strong
coupling. In the low Reynolds numbers scale, classical aeronautics results with fixed wings
are not applicable. Moreover, highly flexible structures (such as biological fins) induce large
displacements with geometrical non-linearities. Finally, the thrust generated by the oscillat-

ing airfoils requires the simulation of the induced forward motion of this self-propulsive device.

The aim of the dissertation is to develop an efficient CFD framework for simulating
the FSI process involved in the propulsion or the power extraction of an oscillating flexible

airfoil in a viscous incompressible flow.

The numerical method relies on direct implicit monolithic formulation using high-order
implicit time integrators. We use an Arbitrary Lagrangian Eulerian (ALE) formulation of
the equations designed to satisfy the Geometric Conservation Law (GCL) and to guarantee
that the high order temporal accuracy of the time integrators observed on fixed meshes is
preserved on ALE deforming meshes. Hyperelastic structural Saint-Venant Kirchhoff model,
viscous incompressible Navier-Stokes equations for the flow, Newton’s law for the point
mass and equilibrium equations at the interface form one large monolithic system. The
fully implicit FSI approach uses coincidents nodes on the fluid-structure interface, so that
loads, velocities and displacements are evaluated at the same location and at the same time.

The problem is solved in an implicit manner using a Newton-Raphson pseudo-solid finite
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element approach. High-order implicit Runge-Kutta time integrators are implemented (up
to 5™ order) to improve the accuracy and reduce the computational cost. In this context of
stiff interaction problems, the highly stable fully implicit one-step approach is an original

alternative to traditional multistep or explicit one-step finite element approaches.

The methodology has been verified with three different test-cases. Thorough time-step
refinement studies for a rigid oscillating airfoil on deforming meshes, for flow induced
vibrations of a flexible strip and for a self-propulsed flapping airfoil indicate that the
stability of the proposed approach is always observed even with large time steps, spurious
oscillations on the structure are avoided without any damping and the high order accuracy

of the IRK schemes is maintained.

We have applied our powerful FSI framework on three interesting applications, with a
detailed dimensional analysis to obtain their characteristic parameters. Firstly, we have
studied the vibrational characteristics of a well-documented fluid-structure interaction case :
a flexible strip fixed behind a rigid square cylinder. Our results compare favorably with
previous works. The accuracy of the IRK time integrators (even for the pressure field of
incompressible flow), their unconditional stability and their non-dissipative nature produced
results revealing new, never previously reported, higher frequency structural forces weakly
coupled with the fluid. Secondly, we have explored the propulsive and power extraction
characteristics of rigid and flexible flapping airfoils. For the power extraction, we found an
excellent agreement with literature results. A parametric study indicates the optimal motion
parameters to get high propulsive efficiencies. An optimal flexibility seems to improve power
extraction efficiency. Finally, a survey on flapping propulsion has given initial results for a

self-propulsed airfoil and has opened a new way of studying propulsive efficiency.
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CHAPITRE 1

INTRODUCTION

Les détails font la perfection et la perfection n’est pas un détail.

Léonard de Vinci

Improbable mélange de légereté, de puissance et de controle, I’envolée d’un oiseau est un
spectacle extraordinaire que les hommes tentent d’imiter depuis d’innombrables générations.
C’est le mythe d’Icare. Ce n’est toutefois qu’a la fin du XIXe si¢cle quun homme a pu voler !,
en la personne d’Otto Lilienthal a I’aide de ses nombreux planeurs. Ainsi, ¢’est essentiellement
la phase de vol plané qui est la source de 'aviation telle qu’on la connait aujourd’hui. En
ajoutant des moteurs a ces "planeurs” dont les ailes fixes constituent d’énormes surfaces
portantes, on a développé des machines volantes de plus en plus performantes reposant sur
ce simple principe, de I'avion des freres Wright en 1903 jusqu’a l'airbus A380 en 2005.

Bien que les battements d’ailes d’un oiseau, tout comme le mouvement des nageoires
d’un poisson, fassent partie des systemes de propulsion les plus efficaces qu’on puisse trouver
dans la nature, cette forme de vol a donc été laissée de coté jusqu’a maintenant au profit de
différents types de moteurs. En effet, a I’échelle d’un frere Wright (et a plus forte raison a celles
des 550 personnes dans un A380), il parait impensable de propulser un avion avec des ailes
de plusieurs metres de long en battement. Imaginez une mouche de 80 metres d’envergure!
De plus, a ces échelles, les rendements des moteurs a hélices ou a réactions sont tres bons.

Depuis quelques années pourtant, les progres de la miniaturisation ont permis la concep-
tion d’avions sans pilote de la taille d’un oiseau, appelés micro-drones. Destinés a la sur-
veillance (militaire et civile), leur charge utile ainsi que leurs dimensions sont tres réduites.
A cette échelle, le rendement d’un moteur décroit fortement alors que la nature nous montre
Iefficacité de la propulsion par des ailes battantes. L utilisation d’ailes générant a la fois de la
portance et une poussée grace a leur mouvement semble étre une voie des plus prometteuses.

Il est donc tres intéressant de comprendre les phénomenes impliqués dans ce mode de
propulsion. Toutefois, cela reste encore un grand défi. Certes, chacun d’entre nous a pu
observer des centaines de fois le vol d’un oiseau dans le ciel, les déplacements circulaires
d’un poisson dans un aquarium et meéme expérimenter soi-méme la propulsion marine en se
jetant dans une piscine. Mais voir une mouche se poser sur son pain ne signifie pas qu’on sait

comment elle arrive a se déplacer aussi vite sans qu’on puisse 'attraper! De plus, a cause

1. Les freres Montgolfier ont toutefois pu s’élever dans les airs des 1783 a bord de leur engin ”plus léger
que lair”.



de la grande différence d’échelle, les résultats des études aéronautiques classiques portant
sur des ailes d’avions fixes sont inutiles ici, les caractéristiques aérodynamiques (portance,
trainée) étant bien différentes. Plus délicat encore, les forces de portance et de poussée sont
ici produites par le battement des ailes (non-fixes) sur le fluide environnant, on parle alors
d’interaction fluide-structure (IFS) ou plus précisément d’aéroélasticité. A I'inverse le fluide
ainsi perturbé va agir sur la structure des ailes dont les déformations et les déplacements
seront d’autant plus forts que sa flexibilité sera grande. Les petites dimensions des micro-
drones ainsi que leur faible poids contribuent a accroitre fortement la flexibilité des ailes tout
comme celles des oiseaux, les palmes d'un plongeur ou les nageoires des poissons. On fait
alors face a un phénomene complexe de couplage fort qui altere les performances de I'aile
déformée, bien différentes de celles du profil non-déformé.

Plus généralement, on parle d’IF'S lorsqu’un solide est en présence d’un fluide ou du moins
lorsque les mouvements de I'un influencent les déplacements de 'autre. Les domaines d’ap-
plication concernés sont donc extrémement variés, du monde des transports a celui du génie
nucléaire, de I'aéronautique au génie civil et de la biomécanique a la microélectronique. C’est
pourquoi les problemes d’interactions fluide-structure suscitent depuis des années un intérét
croissant en ingénierie et deviennent de plus en plus incontournables. Toutefois, les comporte-
ments non-linéaires des fluides et des solides complexes soumis a de grands déplacements ainsi
que la déformation des interfaces induisent de nombreuses difficultés a surmonter. Il est donc
clair que la résolution analytique de tels problemes est impossible. Seules des expérimentations
minutieuses et 1'utilisation de simulations numériques complexes par ordinateur peuvent re-
produire de tels problemes et en augmenter notre compréhension.

Dans 'optique de comprendre et de controler ces processus d’extraction de puissance et de
propulsion grace a des profils flexibles oscillants, ce présent projet de recherche se concentre
sur la simulation numérique des phénomenes d’interaction fluide-structure entre un fluide
visqueux et incompressible et une structure en grands déplacements. L’étude s’appuie donc
en grande partie sur la mécanique des fluides assistée par ordinateur ou CED (Computational
Fluid Dynamics) qui a atteint un niveau de maturité considérable. De méme la modélisation
éléments finis des structures donne depuis bien longtemps d’excellents résultats. En revanche,
le couplage entre ces deux disciplines est quelque chose de beaucoup plus récent et ouvre
la porte a de nombreuses améliorations avec en point de mire le controle de phénomenes
d’interactions fluide-structure afin d’améliorer les efficacités des profils oscillants.

Le projet présenté ici se trouve donc dans la continuité de ce qui se fait en IFS
et propose d’apporter une contribution nouvelle a I’analyse de phénomenes d’interactions
fluide-structure dans la perspective de simuler numériquement des processus d’extraction

de puissance d’un écoulement fluide et de propulsion grace a un profil flexible en grands



déplacements. On s’appuiera ainsi sur 'approche monolithique d’Etienne[5, 6] pour traiter
les phénomenes d’interactions fluide-structure instationnaires. On devra alors développer les
outils nécessaires a la simulation numérique d’un profil oscillant en grands déplacements,
améliorer la précision et la rapidité des algorithmes de calcul des phénomenes d’'IFS insta-
tionnaires, vérifier et valider I’'approche adoptée et 'appliquer a une large gamme de mouve-
ment de profils flexibles oscillants en grands déplacements afin de qualifier et de quantifier
les phénomenes mis en jeux.

Ce mémoire comporte 5 chapitres. Pour commencer, au chapitre 2, une revue bibliogra-
phique permet de replacer le présent travail dans le contexte des réalisations antérieures et des
recherches actuelles ainsi que de souligner les diverses voies restant a explorer. Cela permet de
fixer le but et les objectifs de cette étude. Le chapitre 3 présente I’ensemble de la méthodologie
mise en place pour ce projet de recherche. Tout d’abord, une analyse dimensionnelle générale
des problemes d’interaction fluide-structure est menée de maniere détaillée. On expose en-
suite la modélisation mathématique du probleme fluide-solide constituée des équations pour le
fluide, pour le solide, pour le couplage fluide-solide et pour la déformation du domaine fluide.
Enfin, la technique d’intégration en temps utilisée est décrite. La vérification et la validation
du code présentées au chapitre 4 se composent d’une vérification des schémas d’intégration en
temps, d’une étude comparative avec des données numériques de résultats obtenus pour un
exemple d’extraction de puissance par un profil oscillant et d’une validation de la modélisation
des interactions fluide-structure. Le code ainsi vérifié et validé, on expose au chapitre 5 les
résultats obtenus pour des exemples d’interaction fluide-structure en vibration, en extraction
de puissance et en propulsion. On termine naturellement ce mémoire en exposant les conclu-
sions et les voies restant a explorer par de futurs travaux sur les phénomenes d’interaction

fluide-structure instationnaires, notamment leur optimisation et controle.



CHAPITRE 2

REVUE DE LITTERATURE

Afin de situer notre travail par rapport a 1’état des recherches actuelles et de déterminer
les voies restant a explorer, il s’avere essentiel de se baser sur une revue de littérature cri-
tique et pertinente. Hormis certains travaux précurseurs, souvent expérimentaux ou basés
sur des théories analytiques, on concentrera cette revue sur les études les plus récentes afin
de déterminer I'avancement actuel des connaissances. En effet, malgré d’énormes progres, la
simulation, 'analyse et la caractérisation des interactions fluide-structure instationnaires (a
bas Reynolds) restent aujourd’hui encore incompletes comme le soulignent Shyy et al. [7]
dans l'introduction de leur revue de littérature sur I'utilisation des profils oscillants pour les
micro-drones (MAV) datant du mois d’aotut 2008. Ceci est d’autant plus vrai lorsqu’on super-
pose un mouvement imposé de battement d’ailes, une déformation en grands déplacements
due a la flexibilité de la structure et un mouvement libre lorsqu'une force de poussée est
produite. Cette superposition de complexités posent de tous nouveaux défis qui ne se re-
trouvent que dans une littérature tres récente, mais toutefois grandissante a cause de leur
large champ d’applications. Notamment, [’étude des oiseaux nous montre un parfait exemple
d’aérodynamique instationnaire avec des ailes flexibles a géométrie variable s’adaptant rapi-
dement aux conditions de vol pour se propulser.

Ce chapitre exposera ainsi I'état des connaissances dans les trois domaines suivants :
Ianalyse et la caractérisation de profils oscillants a bas Reynolds, les interactions fluide-
structure en grands déplacements et enfin I'intégration en temps des phénomenes instation-
naires. Ceci nous permettra de souligner les voies restant encore a explorer : amélioration
des modeles numériques, généralisation des approches IFS, utilisation de profils flexibles en

grands déplacements et développement de schémas d’intégration en temps plus efficaces.

2.1 Profils oscillants

En 1982, McCroskey [8] faisait un état des lieux des recherches concernant les écoulements
instationnaires autour des profils aérodynamiques. C’était un tout nouveau champ d’ex-
ploration pour la simulation, ayant alors pour but la réduction des effets indésirables de
phénomenes comme les vibrations, le flottement (flutter) ou le tremblement (buffeting) des
ailes d’avion. Ces phénomenes instationnaires, néfastes et non maitrisés, devaient alors étre

évités ou du moins réduits pour améliorer les performances des avions.



Pourtant, en parallele, McKinney et DeLaurier voyaient déja les avantages potentiels de ces
phénomenes instationnaires, en mettant volontairement un profil en mouvement pour extraire
I'énergie du fluide qui entoure [9], c’est alors du flottement ”avantageux”. Le but n’était
déja donc plus de supprimer le mouvement de 1’aile mais de le maitriser pour 'utiliser. L’idée
était donc déja la mais il fallu attendre presque 20 ans avant que les chercheurs commencent
a emprunter cette voie de maniere significative. D’ailleurs, ce n’était plus pour extraire de
la puissance, mais plutot pour en créer. Dans ce laps de temps, les progres de la technique
en miniaturisation et 'augmentation stupéfiante de la puissance des ordinateurs ont en ef-
fet permis le développement de petits véhicules volants ressemblant a de gros oiseaux, les
micro-drones ou Micro-Aerial Vehicles (MAV). Bientot, ils auront la taille d’un insecte et
on devine alors la nécessité de sources de propulsion adaptées. On doit en effet noter que
la vitesse d’un oiseau ainsi que ses dimensions sont petits et qu’on se trouve dans le régime
des écoulements a faibles nombres de Reynolds (voir tableau 2.1). Dans la nature, les ailes
battantes pour voler ou les nageoires pour nager, passent pour les méthodes de propulsion les
plus complexes mais aussi les plus efficaces connues a ce jour. Comprendre les phénomenes
naturels impliqués est donc un beau défi afin de les transposer au domaine du génie. En effet,
a ces faibles nombres de Reynolds, les caractéristiques aérodynamiques d’un profil oscillant
(portance, trainée) different significativement de celles habituellement considérées pour des
ailes fixes utilisées en aéronautique. Avec des yeux d’ingénieurs, on peut ainsi se représenter
un insecte ou un oiseau comme un corps élancé pourvu d’au moins deux profils oscillants de
chaque coté.

Ainsi, les revues de littérature récentes [13, 14, 15, 16, 7, 17, 18] portant sur les profils
oscillants montrent que les recherches actuelles dans ce domaine sont étroitement liées aux
MAVs, ou a la propulsion animale, source premiere d’inspiration. Dans un premier temps,
nous verrons donc les différentes applications d’un profil oscillant a bas Reynolds. Ensuite,
on exposera de maniere qualitative les divers parametres et les principaux phénomenes phy-
siques mis en jeux lors du battement d'un profil oscillant. Enfin, on fera un état des lieux
des différentes études déja menées, expérimentales et numériques, et des résultats qu’elles
fournissent.

On doit ici préciser deux hypotheses simplificatrices considérées dans ce projet : des
écoulements 2D et laminaires. La simulation 3D de profils oscillants reste encore trop dis-
pendieuse en ressources et les études sont encore tres restreintes méme dans le domaine de la
propulsion [15, 19, 20, 21, 22]. En résolvant les équations simplifiées d’Euler, Neef et Hum-
mel [22] concluent que les effets 3D (trainée supplémentaire en extrémité d’aile) réduisent
considérablement l'efficacité de génération de poussée par rapport au cas 2D. Il faut donc étre

conscient de cette limitation méme si certains auteurs soutiennent que ’approche 2D est une



Espece Longueur | Vitesse | Fréquence | Reynolds® | Fréq. réduite
lenm |Uenm/s| fenHz | Re=Ul/v | k=2nfl/U
Spermatozoide [10] | 0.00005 0.0001 15 0.0005 50
Petite guépe [10] 0.006 1.0 60 400 2.25
Colibri [11] 0.05 15 100 50 000 2.10
Pigeon [10] 0.1 10. 0.8 70 000 0.25
Poisson [10] 0.5 1. 0.3 500 000 0.95
Nageur [12] 2. 1. 2. 2 000 000 25
Cétacé [12] 4. 3. 0.75 15 000 000 6.25
Kitty Hawk 6. 14. - 5 600 000 -
A380 (décollage) 80. 70. - 370 000 000 -

Tableau 2.1 Nombre de Reynolds et autres ordres de grandeurs caractéristiques pour quelques
créatures vivantes, Kitty Hawk : 'avion des freres Wright et I’Airbus A380. ® En prenant :
Vair = 1.5 X 107°m?/53, Vsang = 107°m?/s et Vegy = 107°m?/s.

treés bonne approximation [23, 24]. En outre, on prévoit de faire une étude de ces phénomenes
a tres faible nombre de Reynolds (autour de 1000) et on considere alors I’écoulement comme
laminaire. Cette hypothese est confortée par les conclusions de Julien et al. [25] dans leur
étude sur 'extraction de puissance par un profil oscillant. Ils constatent en effet que des
grands nombres de Reynolds turbulents (105-10°) permettent certes d’accroitre le coefficient
de portance et retardent la séparation de I’écoulement mais la plupart des résultats qualitatifs
obtenus en laminaire (Re=1100) restent valables car le phénomene d’extraction de puissance
est largement dominé par les effets inertiels. De maniere plus quantitative, Young et Lai [26]
comparent les résultats obtenus sur un profil en battement (pas de rotation) pour Re=2.10*
avec un code laminaire, un code turbulent et des données expérimentales. Ils concluent que la
plupart du temps ’écoulement peut étre considéré comme laminaire, en particulier les forces
aérodynamiques ne sont affectées que marginalement par les effets turbulents, sauf aux tres

basses fréquences.

2.1.1 Diverses applications

Comme on vient de le voir, le principe du profil oscillant peut étre utilisé tant par la
nature que dans le domaine du génie pour générer de la puissance ou en récolter. Les études
concernant 1'utilisation de profils oscillants pour I'extraction de puissance restent tres peu
nombreuses alors qu’elles sont de plus en plus nombreuses dans le domaine de la propulsion
et de la sustentation des insectes, des oiseaux et aussi désormais des MAVs, technologie en
plein développement.

Certes, des 1981, McKinney et DeLaurier utilisaient un profil rigide oscillant, nommé



“wingmill” pour lextraction d’énergie dans des travaux précurseurs expérimentaux [9].
Mais comme le soulignent Jones et al. en 2003 [27], peu de travaux sur le sujet ont été
publiés tant en expérimental qu’en numérique durant plus de 20 ans. On note parmi eux,
celui de Jones et Platzer [28] qui expose une méthode de simulation numérique des profils
oscillants pour caractériser les phénomenes d’extraction de puissance et de propulsion.
Ils concluent que pour un profil en rotation et en translation verticale, 'amplitude de
rotation du profil doit étre plus grande que 'angle d’attaque induit par le mouvement
horizontal du profil pour obtenir de l'extraction de puissance. Prolongeant ce travail,
Davids [29] et Lindsey [30] montrent que cette technique a du potentiel pour une uti-
lisation commerciale. En 2006, Kinsey et Dumas [31] présentent une étude numérique
tres complete ou ils identifient les influences des différents parametres et les phénomenes
physiques menant a de fortes efficacités. Enfin, Julien et al. [25] completent cette étude par
I'introduction des phénomenes turbulents. Les études concernant 'extraction de puissance
par un profil oscillant sont donc assez peu nombreuses. Toutefois, comme le releve les
articles précédents [28, 31|, il suffit de changer certains parametres pour donner de la
puissance au fluide au lieu de lui en prélever. On tombe alors dans les domaines de la
propulsion qui fait 'objet de tres nombreuses études tant dans la perspective de produire
une poussée (thrust) [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44] pour avancer
(forward flight) que dans celle de générer la portance nécessaire a la sustentation pour le
vol stationnaire (hovering [45, 46, 47]). En effet, comme on ’a vu, un oiseau peut étre vu
comme un corps avec deux profils oscillants. Il en va de méme pour les mammiferes marins
dont la nageoire propulsive est similaire a un profil en mouvement 2D. Ainsi, les études
biologiques visant a trouver les parametres optimum dans la nature sont nombreuses, tant
par 'expérimentation [48, 49, 50, 51] que par la simulation numérique [12, 52]. Toutefois, ce
sont les recherches dans le domaine des MAVs qui sont en pleine expansion et utilisent de
plus en plus de simulations numériques [19, 53, 54, 55, 56, 57, 58, 59, 51]. Il existe méme
des micro-sous-marins (Autonomous Underwater Vehicles, AUV) [60, 14] mimant le mode
de propulsion d’un poisson. On doit aussi noter l'existence de l'ornithoptere [61], petit
avion développé par 1I’équipe du Pr. DeLaurier dont la propulsion est assurée par ses ailes

oscillantes !

2.1.2 Description du probleme

Nous voulons ici préciser notre sujet de recherche en exposant les principaux parametres
définissant le probleme des profils oscillants ainsi que les principaux phénomenes physiques

mis en jeux.



A. Parametres caractéristiques

Pour un profil 2D oscillant dans un écoulement laminaire, trois types de parametres
décrivent le probléeme : les propriétés du fluide, les propriétés du solide (le profil) et les
caractéristiques du mouvement du profil. Dans un premier temps, on considere le solide
comme rigide (voir la section 2.2 pour un profil flexible). Il est donc entierement caractérisé
par sa forme. Quant au fluide, il se caractérise par sa viscosité p, sa masse volumique p et sa
vitesse a l'infini U,,. Enfin, le profil possede trois degrés de liberté en 2D : une rotation, une
translation verticale (le battement) et une autre horizontale. Les possibilités de mouvements

dynamiques sont donc infinies et une paramétrisation du mouvement est donc nécessaire. Tous

Axe de rotation
Xp

Battement

Figure 2.1 Mouvement 2D du profil oscillant.

les auteurs étudiés utilisent des mouvements périodiques sinusoidaux (sauf dans certaines
études d’optimisation [62, 63]) avec une méme fréquence d’oscillation f = w/27 pour les
différents degrés de liberté. La quasi-totalité des articles étudiés vont se limiter a 2 degrés de

liberté : le battement et la rotation. Ainsi, le mouvement du profil, présenté sur la figure 2.1,



est généralement gouverné par les équations suivantes :

O(t) = 04 + 6psin (wt+ ¢)  rotation
h(t) = hosin (wt) battement

ou #(t) est 'angle de rotation autour d'un point de la corde ¢ situé a xz,/c, 6y, 04, et hy sont
des constantes et ¢ est I'angle de déphasage entre la rotation et le battement.
On introduit alors plusieurs parametres adimensionnels, qui peuvent différer selon les

auteurs et les applications :

h

Re = 27rpf oe si Usx, = 0 (hovering) [47]
nombre de Reynolds : pUOOéL .

Re = sinon

0
2fh0 Who
bre de Strouhal : St =

nombre de Strouha U U

k (LJ];QO i dans [16, 29, 30, 17]
fréquence réduite : = 7;]—: = % dans [7, 8, 33, 64]
L Je we
f 0.~ 2nl. dans [31]
k=mnfc si Uso = 0 (hovering) [47]
1 Oh(t
angle d’attaque effectif : a,(t) = arctan _ Loy (t)
Uy Ot
. how

angle d’attaque maximum :  @u,q, ~ arctan ) Oy
parametre de “plumage” : _ %

5 =
(feathering) arctan (}(L]O_w)
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Ce dernier parametre x est utile pour définir de maniere simplifiée si on se situe dans la
zone d’extraction de puissance ou dans celle de propulsion. En effet, par une approche quasi-
statique sur un profil symétrique, on peut montrer que si X < 1 (Qnar > 0) on est dans une
configuration de propulsion alors que si x > 1 (e < 0) on va extraire de I'énergie comme
le montre la figure 2.2. Il est aussi a noter ici qu’une littérature grandissante [27, 65, 66] traite
des profils en tandem ; i.e. deux profils en interaction. Cette configuration aurait des effets
bénéfiques pour la propulsion [16, 67] ainsi que pour I'extraction de puissance [29]. D’autres
parametres peuvent donc étre ajoutés, notamment des grandeurs géométriques caractérisant

le positionnement relatif de ces deux solides.

90r
80 o
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604/// Qo L7 L //////’ - S
> ‘: o =
C: S0¢ D‘Q /// /// GQ).‘
%n o . \SS\P, > -
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Figure 2.2 Profils oscillants : 2 modes de fonctionnement

Les parametres présentés jusqu’a présent sont des parametres “controlants”, mais il y
a aussi des parametres “résultants” qui vont définir les performances du systeme physique
étudié et vont donc dépendre des applications envisagées (i.e. : propulsion, extraction, ...).

De maniere générale en 2D, se sont 4 coefficients aérodynamiques qui vont étre a la base de
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toutes les mesures de performances d’un profil oscillant :

Coefficient de force horizontale : C.(t) =

Coefficient de poussée : Cr(t) =

Coefficient de force verticale : Cy(t) =

Coefficient de moment autour de z, :  Cy(t) =

On définit aussi les coefficients adimmensionalisés suivants pour la puissance [31] :

o _  Py,(t) 1 0n(t)
Contribution du battement :  Cp,(t) = To0%c = T o Cy(t)
Contribution de la rotation :  Cp,(t) = Po(t) — L@Q_(t)CM(t)

1pU3 ¢ Uy Ot

P
Contribution totale : Cp(t) = < (tg) = Cp,(t) + Cp,(1)
ZpUs ¢

Il suffit alors de sommer sur un nombre N de périodes pour obtenir un coefficient de

puissance moyenne, autrement dit un coefficient de travail :

. 1 NT
Ciwy = Cp = —— / Co(t)dt
0

Concernant la notion de rendement ou d’efficacité, les définitions varient selon les applica-
tions et les auteurs ce qui complique la comparaison entre les différentes études. De maniere
générale, le dictionnaire Larousse! définit le rendement comme le rapport de l’énergie ou
d’une autre grandeur fournie par une machine a l’énergie ou a la grandeur correspondante

consommée par cette machine. On doit donc définir une grandeur consommeée A comme

entrée
entrée du systéme et une valeur utile Ag,,+;, en sortie. Le rendement s’écrit alors :

n = Asortie
A

entrée

1. Dictionnaire Larousse en ligne : www.larousse.fr.
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Dans le domaine de l'extraction de puissance, 1'efficacité totale compare la puissance

extraite P = P, + Py avec la puissance P, disponible dans le fluide [31] :

_Py+P9

1
ne=—p5—» avec Py =zpUsd (2.1)

ou d est 'amplitude maximale parcourue par le profil en battement. Alors que I'efficacité
idéale utilise la puissance “idéale” comme point de comparaison. Elle est définie a partir de
la limite théorique d’extraction de puissance introduite par Betz [9] :

Py + P MNe

16
id — = ) Pz = ezPa t ez:_%59(7 2.2
i F)id Tvet avee ¢ et ¢ "Hoet 27 ’ ( )

On cherche certes a développer des systemes passifs récupérant de 1’énergie de I’écoulement
fluide. Toutefois, les différentes études dans le domaine imposent, au moins en partie, le
mouvement de battement du profil (excepté [68]). La définition du rendement devrait donc
tenir compte de l’énergie fournie au systeme pour entretenir ce mouvement. Ou bien, il
faudrait considérer des profils libre dont le mouvement est le seul fait de I'interaction avec le
fluide.

Pour le mode de propulsion, la grande majorité des auteurs s’accorde pour définir 1'ef-
ficacité comme le rapport de la puissance de poussée sur la puissance totale nécessaire au
mouvement du profil [32, 28, 33, 53, 69, 70, 34, 54, 35, 36, 38, 41]. L’efficacité de propulsion

est donc ainsi définie :

(2.3)

Des valeurs négatives de rendement apparaissent alors lorsque le systeme produit de la trainée
(au lieu d’une poussée) mais que le travail nécessaire n’est pas nul. De méme, lorsque le
profil oscillant se propulse lui-méme, les efforts moyens de trainée Fp et de poussée Fr se
compensent lorsque le régime établit est atteint (par la loi de Newton ma, = 0 = F, =
Fr+Fp) [49]. L'efficacité ainsi définie devient donc nulle lors des simulations numériques qui
ne permettent de calculer que la résultante totale des forces F), sans distinguer les apports réels
de la trainée et de la poussée! Pour tenter de résoudre ce probleme, Windte et Radespiel [39]
considerent la trainée statique du profil a 'angle d’attaque moyen du mouvement 6,, pour

calculer le coefficient de poussée :
CT = _Cm + Cx,stat(ecw)

En ajoutant cette trainée minimale qu'un moteur (a hélice) devrait compenser, trainée et
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poussée sont artificiellement découplées et 'efficacité ne tends plus vers zéro en régime établi.
Cette technique reste toutefois une approximation de la réalité.

De plus, comme le note Barrett et al. [49], lefficacité totale du systeme devrait aussi prendre
en compte les différentes pertes lors d’un cycle global. Difficile a intégrer numériquement, il
est possible d’évaluer ces pertes lors d’études expérimentales : pertes dans le moteur, pertes
dans la transmission jusqu’au profil mais aussi pertes d’énergie dans le corps d’un animal
(efficacité aérobique [12]). Enfin, Kaya et Tuncer [36] notent que la masse, et donc l'inertie
du profil, n’est pas prise en compte dans cette définition, notamment lors de I’évaluation de
la puissance nécessaire au mouvement.

Enfin, aucune étude ne définit clairement un rendement de sustentation par hovering.
Les études portant sur 'optimisation du processus [63, 71] cherchent plutot a minimiser la
puissance nécessaire P pour soulever un certain poids mg. Pesavento et Wang [71] définissent
alors une quantité adimensionnelle P* qui peut étre utilisée pour quantifier I'efficacité de

hovering :

P

Pr=—
2mhomyg
Le tableau 2.2 suivant résume les différentes définitions des rendements que 1'on peut

trouver dans la littérature selon les applications.

B. Principaux phénomeénes physiques

Comme on 'a vu, les premiers phénomenes physiques instationnaires étudiés étaient
néfastes car non-maitrisés. Aujourd’hui, on se sert de ces effets instationnaires pour atteindre

certains buts : extraction de puissance, propulsion et hovering.

L’effet Knoller-Betz [16] : Dans les années 1910, Knoller et Betz furent les premiers
a observer que le battement d'une aile crée un angle d’attaque efficace et donc une force
aérodynamique, N, qui se divise en une composante verticale (la portance si elle est positive)
et une composante horizontale (poussée/trainée). L’effet Knoller-Betz est donc le premier

effet instationnaire mis en évidence.

Les lachers tourbillonnaires (vortex shedding) : Le modele de Knoller-Betz omet
toutefois la présence de lachers tourbillonnaires au bord de fuite des profils oscillants. Mc-
Croskey [8] note en effet que chaque changement de la circulation (et donc des forces

aérodynamiques) autour du profil se traduit par un lacher tourbillonnaire. Il conclue que



Applications Aoptrée

A

sortie

Rendement

Puissance disponible
dans le fluide

Puissance extraite

Efficacité totale [31]

1 — — cC
P, ==pUld P e =Cp—
Extraction de 9o g P
puissance : — . . —
Puissance “idéale” Puissance extraite Efficacité idéale [9]
de Betz
— ne
Pid = 7/]betzpa P Neiq =
Tvet
. Puissance nécessaire Puissance de poussée Efficacité
Propulsion o
P FUs Ty = =
Cp
Hoveri Puissance nécessaire Poids Quantité adim. [71]
overing 5 g 1 2mhomg
P~ P

Tableau 2.2 Différentes définitions du rendement selon les applications.
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la dépendance au temps du sillage est un aspect distinctif des profils oscillants. Il se crée
ainsi naturellement des allées de tourbillons de von Karman a l’arriere d'un corps au re-
pos ou a l'arriere d’un profil oscillant subissant des variations d’angle d’attaque. Une in-
teraction profil-vortex apparait alors avec un impact d’une grande importance, notamment
dans la création de portance [16]. C’est en fait un échange d’énergie bénéfique (des insectes
récuperent cette énergie pour se propulser) ou destructeur (résonance non-maitrisée). Ainsi,
la compréhension de ces phénomenes d’interaction profil-vortex est primordiale mais d’une
grande complexité a simuler. Young et Lai [26] ont montré que 'interaction entre les lachers
naturels du profil et son mouvement oscillatoire produisent des lachers de paires de vortex
au bord de fuite [72]. Ils ont aussi mis en évidence une région de lock-in dans le plan k — hg
ou cette interaction peut se produire. Le comportement de 1’écoulement séparé proche du
bord de fuite devient alors crucial et ne peut étre prédit que grace a une approche visqueuse.
Toutefois, c’est la compréhension du lacher tourbillonnaire au bord d’attaque, LEVS (Lea-
ding Edge Vortex Shedding), et de ses effets qui font I'objet de toutes les attentions en ce
moment [31, 73, 74, 21, 70] et qui font le plus polémique [21]. En effet, depuis sa découverte
par Ellington et al. [75], certains y voient une source importante de portance lorsqu’il reste
attaché au profil. Ainsi, pour Platzer et Jones [16] ainsi que pour Pesavento et Wang [71] le
LEVS joue un role crucial dans la création importante de portance nécessaire au vol station-
naire (hovering) des insectes et petits oiseaux. Mais d’autres sont plus sceptiques. Il semble
en tout cas que pour l'extraction de puissance, le LEVS joue un role essentiel de synchro-
nisation entre les forces aérodynamiques et les mouvements du profil pour obtenir de forts

rendements [31].

La signature de sillage [31, 76] : Il est intéressant d’observer la signature du sillage
car elle permet de faire la distinction entre une configuration d’extraction de puissance et de
propulsion. Ainsi, un sillage avec une allée du type von Karman est synonyme de création
de trainée, de perte de vitesse horizontale et va caractériser 'extraction de puissance. Au
contraire, le phénomene de propulsion va se traduire par une augmentation de la vitesse
horizontale et la création d'une allée de von Karman inversée [16] : les vortex du haut vont
dans le sens inverse des aiguilles d'une montre alors que ceux du bas vont dans le sens des
aiguilles d’'une montre. Sur la ligne de séparation de ces deux rangées de vortex, on a donc une
sorte de “jet” qui se crée comme entre deux rouleaux de laveuse automatique de voiture. Ceci
induit de la poussée sur le profil. Ainsi, les tourbillons générés par un régime de propulsion

vont s’éloigner plus vite du profil et que ceux générer dans le cas de I'extraction de puissance.
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Le décrochage dynamique : Lorsqu'on impose a un profil de rapides changements
d’angles d’attaque avec de fortes amplitudes, il peut se produire une séparation de
I'écoulement. On parle alors de décrochage dynamique (dynamic stall) [8]. Ce phénomene
visqueux n’est pas propre aux profils oscillants (hélicopteres, turbines, etc.) mais est tres
important lorsqu’on en fait I’étude. En effet, si I'angle d’attaque instationnaire est de 1'ordre
de celui du décrochage statique, un phénomene important d’hystérésis se développe pour les
forces et les moments par rapport a 'angle d’attaque. Les valeurs maximales des coefficients
de portance, de trainée et de moment peuvent alors dépassées largement leur valeurs statiques.
Ce phénomene est donc crucial dans la génération de grandes quantités de puissance [27, 77].
Visuellement, c¢’est un phénomene de séparation massive, typiquement visqueux, qui induit le
développement au bord d’attaque puis la convection d’un grand tourbillon du au décrochage
dynamique (Dynamic Stall Vortez, DSV'). Pour plus d’information a ce sujet, on invite le
lecteur a se référer aux articles de Tuncer et al. [77] ou de Sarkar et Venkatraman [78] et au
livre de Cebeci [76].

2.1.3 Simulations et résultats

En parallele de la compréhension qualitative des phénomenes physiques caractérisant les
profils oscillants, les tentatives de modélisation quantitatives se sont développées grace aux
mesures expérimentales et aux simulations numériques. Comme on ’a vu précédemment,
peu d’auteurs se servent des profils oscillants pour I'extraction de puissance [9, 30, 27, 31,
25, 68] mais leur potentiel en régime de propulsion est de plus en plus étudié. On donne en
premier lieu un bref apercu des études expérimentales menées sur les profils oscillants, souvent
associées a la propulsion animale. On présente ensuite les différentes méthodes de simulation
numérique utilisées pour modéliser les profils oscillants que ce soit en régime d’extraction de
puissance ou de production de poussée. Enfin, on souligne les principaux résultats obtenus
avec des profils oscillants en termes de rendement d’extraction de puissance, d’efficacité de

propulsion et de production de poussée.

A. Biologie et études expérimentales

Les biologistes étudient depuis longtemps la propulsion animale, aquatique [48,; 50, 12]
ou aérienne [75, 79]. Leurs conclusions semblent toutes aller dans le méme sens : chaque
créature utilise le mode de propulsion le plus économique (le plus efficace) selon la maniere
de vivre qu’ils ont développée via la sélection naturelle [48, 11]. La nature a donc déja
optimisé des modes de propulsion dont les chercheurs vont s’inspirer pour améliorer

Iefficacité des systemes mécaniques. L’analyse dimensionnelle joue un role important dans



17

ces études zoologiques puisqu’elle permette une classification des especes selon leurs “simi-
larités” [50, 11] et permet de tirer des conclusions transposables a des especes semblables.
Ainsi, Taylor et al. [50] démontrent que les animaux nagent et volent principalement &
Iintérieur d'un intervalle du nombre de Strouhal : 0.2 < St < 0.4 permettant de grandes
efficacités de propulsion (de 70% a 80%). Cette optimisation naturelle du nombre de
Strouhal se retrouve dans les études expérimentales [33, 80] et numériques [33, 24] portant
sur les profils oscillants. Enfin, les nombreux travaux sur le vol et la nage des animaux ont
identifié les différents mécanismes instationnaires utilisés pour générer d’importantes forces
de poussée ou de portance. Ainsi, 'importance du LEVS (leading-edge vortex shedding) dans
la production de portance a été mise & jour par Ellington et al. [75] des 1996 grace a I’étude

de I’écoulement autour de l'aile d’un papillon Manduca sexta.

Les études expérimentales essaient de reproduire ces modes de propulsion animale grace
a des profils oscillants comme le soulignent Triantafyllou et al. [81] dans leur revue de
littérature sur le sujet. Ces travaux visent essentiellement a comprendre les mécanismes
de formation, de lacher et d’interaction des tourbillons produits par des profils oscil-
lants [33, 72, 82], notamment au bord d’attaque pour mieux comprendre le développement
du LEVS [74]. Dans cette optique, la plupart des études (voir tableau 2.3) utilise une
géométrie NACAO012 en battement et/ou en rotation afin de décrire des mouvements
proches de ceux observés dans la nature. Exceptés Sahoo et Bowersox [74] qui étudient
I’écoulement du fluide autour du bord d’attaque d’un profil oscillant a haut Reynolds
(hélicoptere), les autres auteurs se concentrent sur des régimes d’écoulement a bas Reynolds
(<40 000) correspondant a ceux rencontrés en biologie et pour la conception de MAV. Dans
le domaine de la propulsion [33, 80, 34|, des efficacités supérieures a 70% sont obtenues (les
rendements diminuent lorsqu’on abaisse le nombre de Reynolds car la viscosité s’accroit).
L’interaction entre la vorticité du bord d’attaque et celle du bord de fuite apparait comme
un mécanisme fondamental dans l'atteinte de hautes efficacités. Le déphasage entre le
mouvement de battement et celui de rotation semble étre le parametre controlant ce
mécanisme. Toutefois, les auteurs constatent que le mouvement optimal pour le rendement
n’est pas le méme que pour la production de poussée. Les mécanismes générant de grandes
performances de propulsion ont encore leur part de mystere. L’introduction d'une flexibilité
selon la corde ou 'envergure du profil semble également avoir des effets bénéfiques sur les
rendements de propulsion [81, 14, 83, 84, 38, 85] méme si la production de poussée est alors

affectée (pour plus de détails voir section 2.2).

Finalement, soulignons l'existence dune étude expérimentale sur l'extraction de
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puissance par des profils oscillants menée par Simpson et al. [86]. Celle-ci est d’ailleurs
également inspirée par des études biologiques montrant la capacité de certains poissons
a récupérer l’énergie des vagues pour se propulser. Les auteurs obtiennent une efficacité
maximale d’extraction de puissance intéressante de 43% (limite de Betz : 57%) avec un profil
NACAO0012 oscillant. Toutefois, cette efficacité décroit rapidement lorsque I'allongement du

profil diminue.

Auteur, Année Applications Profil Mvt | Reynolds | 74z
Anderson[33] Propulsion NACA0012 B+R | 40 000 87%
1998 et 1100

Lai[72] Oscill. NACA0012 B 500 -
1999 a 21 000
Read[80] Propulsion NACA0012 B+R | 40000 | 71.5%
2003

Schouveiler|34] Propulsion NACA0012 B+R | 40 000 73%
2005

Heathcote[83, 84] | Propulsion Goutte B 9 000 -
2007 flexibilité-C | + plaque flexible a 27 000
Sahoo[74] Oscill. NACA0012 B | 2000 000 -
2008

McGowan|[87] Validation SD7003 B+R | 40 000 -
2008 de code

Heathcote[3§] Propulsion NACA0012 B 10 000 -
2008 flexibilité-E a 30 000
Simpson|[86] Extraction NACA0012 B+R | 13 800 43%
2008 de puissance

Jardin[46] Hover NACA0012 asym - -
2009

Ansari[82] Oscill. Plaque plane R 500 -
2009 et 15 000
Mazaheri[85] Hover Membrane B - -
2010 flexibilité-C

Tableau 2.3 Principales études expérimentales : application a la propulsion, au vol station-
naire (hover), a lextraction de puissance ou a ’étude précise de 1'écoulement autour d’un
profil oscillant (oscill.), flexibilité selon la corde (C) ou l'envergure (E), mouvements (Mvt)
de rotation (R) et de battement (B) ou asymétrique (asym) pour le vol stationnaire.
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B. Simulation numérique

Les chercheurs se sont tournés vers la simulation numérique des profils oscillants afin
d’explorer plus en détails les phénomenes physiques mis en jeu (voir tableau 2.4) et les
performances des profils oscillants tant pour 'extraction de puissance (voir tableau 2.5) que
pour la propulsion (voir tableau 2.6). Toutefois, le probleme est complexe a modéliser car il
met en jeux des mécanismes fortement instationnaires avec des séparations de 1’écoulement,
des lachers tourbillonnaires ainsi que de fortes interactions entre la vorticité produite au bord
d’attaque et celle produite au bord de fuite. Des simplifications ont donc du étre faites lors des
premieres simulations a cause de la puissance limitée des ordinateurs. Puis, les modeles ont
été complexifiés avec I'accroissement des capacités de calculs pour rapprocher les simulations
de la réalité. Pour présenter les méthodes numériques utilisées dans la simulation de profils
oscillants, on va ainsi distinguer trois approches explorées historiquement dans un ordre
croissant de complexité : les théories linéarisées, les approches simplifiées non-visqueuses et

les équations visqueuses de Navier-Stokes.

Théories linéarisées : A la suite de la découverte de l'effet Knoller-Betz, les premieres
études théoriques sur 'aérodynamique des profils oscillants furent menées en s’appuyant sur
des théories linéarisées, par exemple celle de Garrick en 1936 [95] basée sur les travaux de
plaque plane de Theodorsen [96]. La linéarisation se fait grace a I’hypothese des petites
perturbations ce qui limite les analyses. En outre, ces théories ne tiennent pas compte de
I’évolution instationnaire du sillage créée par les lachers tourbillonnaires. Ainsi, dans les
travaux précurseurs de McKinney et DeLaurier [9] sur Uextraction de puissance par des
profils oscillants, on trouve une étude analytique du probléeme comparée avec une étude
expérimentale. Les auteurs attribuent la différence raisonnable (20% d’erreur) entre les deux
approches aux effets de décrochages dynamiques qui ne sont pas modélisés. L’approche
linéarisée permet donc d’avoir une premiere modélisation qualitative. A partir des travaux de
Theodorsen [96], on a tenté de modéliser les phénomenes non-linéaires qui caractérisent les
profils instationnaires et prennent en compte les propriétés réels du phénomene (épaisseur,
cambrure, grandes amplitudes, ...), comme le note McCroskey [8]. Ainsi, les travaux de An-
sari et al [97, 98] améliorent la théorie de Theodorsen en y incluant les LEVS dans le cadre

d’analyse aéroélastique.

Théories simplifiées :  L’approche quasi-statique est une maniere d’approximer les
phénomenes instationnaires qui fut utilisée pour modéliser les forces aérodynamiques générées
par des ailes battantes d’oiseaux et d’insectes [99] et ainsi mieux comprendre leur physique.

Toutefois, ces modeles négligent les effets “d’histoire” caractéristiques des problemes ins-



Auteur, Année | Equations fluides | Méthode de résolution
Katz[88] 2D potentielles DVM (+séparation)
1981

Streitlien[89] 2D linéaires analytique

1998

Wang|[24] 2D N-S Différences Finies
2000

Ramamurti[73] 2D N-S Eléments Finis
2001

Zhu[53] 3D potentielles | Méthode des panneaux
2002

Young|[26] 2D RANS -

2004 2D potentielles | Méthode des panneaux
Blondeaux[90] 3D N-S Différences Finies
2005

Platzer[91] 2D potentielles | Méthode des panneaux
2006

Tsaac|92] 5D N-S Logiciel FLUENT
2008

McGowan|[87] 3D RANS Logiciel CFL3D
2008

Sarkar|78] 2D potentielles DVM (+séparation)
2008

Visbal[93] 3D N-S Logiciel FDL3DI
2009 Différences finies
Sudhakar([94] 2D N-S Méthode de

2010 frontiere immergée

Tableau 2.4 Principales études numériques pour les profils oscillants

méthodes de résolution.
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tationnaires et sous-estiment ainsi les forces générées par les ailes en battement [21, 100].
Ainsi, Kinsey et al. [31] concluent que méme pour des cas simples, loin du décrochage dyna-
mique, cette méthode ne permet pas de résoudre le probleme de maniere adéquate. Une autre
approximation consiste a négliger les effets visqueux. En effet, grace a la puissance des ordina-
teurs modernes, on leve la limitation des petites perturbations et on fait une seule hypothese :
I'écoulement est potentiel (non-visqueux et irrotationnel). On a alors une approximation rai-
sonnable du développement instationnaire du sillage durant le cycle d’oscillation du profil
grace a la modélisation d’un lacher tourbillonnaire au bord de fuite. En pratique, on utilise
les méthodes de panneaux instationnaires (unsteady panel methods) [26, 30, 27, 76, 68] et
les méthodes des vortex discrets, DVM (Discrete Vortex Methods) [88]. La validation de ces
méthodes montre un bon accord qualitatif avec les résultats expérimentaux [26, 53]. Toutefois,
I'omission des effets visqueux et de la séparation de 1’écoulement induisent un taux d’erreur
important (autour de 20%) [27, 33]. Pour corriger ce probleme, certains auteurs ont essayé
d’inclure dans ces méthodes quelques éléments de viscosité (en plus du lacher au bord de
fuite). Ainsi, certains se servent de données expérimentales pour fixer un point de séparation
de I’écoulement sur des profils cambrés [88, 53] ou améliorer la modélisation de ’évolution
du tourbillon de bord de fuite dans le sillage [53, 65, 101]. L’importance du LEVS sur les
performances d’un profil oscillant a poussé d’autres auteurs a tenter de le modéliser dans
ces méthodes potentielles, avec un certain succes [64]. Toutefois, malgré les améliorations ap-
portées aux méthodes potentielles notamment afin de modéliser la séparation de 1’écoulement,
les approches non-visqueuses sont limitées au probleme sans décrochage dynamique [31]. Or,
ceci est problématique, car ce phénomene joue un role clé dans les performances des profils
oscillants. Il faut donc utiliser les équations générales de Navier-Stokes afin de modéliser

correctement le probleme des profils oscillants dans le cadre d'un processus d’optimisation.

Equations de Navier-Stokes :  Depuis les 20 dernieres années, il est possible de laisser
tomber I’hypothése non-visqueuse et de faire tourner des codes de CFD (Computational
Fluid Dynamics) basés sur les équations de Navier-Stokes. C’est cette approche que 1'on va
choisir dans notre étude. C’est en effet la seule qui permet une modélisation assez précise des
phénomenes instationnaires dus a un profil oscillant pour une bonne compréhension physique
de tous les phénomenes mis en jeux. Dans le cadre de 'extraction de puissance, seule I’équipe
du Pr. Dumas de I'Université Laval [102, 25, 4] utilise une approche completement visqueuse
avec les équations de Navier-Stokes grace au logiciel commercial FLUENT. Malgré des études
tres détaillées, les résultats ne sont pas comparés avec des études précédentes sur I'extraction
de puissance, soit numériques, soit expérimentales. Les simulations ne sont donc pas validées

(sauf sur un cylindre) et on ne voit pas concrétement I'avantage qu’apporte 'utilisation des
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équations de Navier-Stokes par rapport aux méthodes potentielles. Toutefois, 'utilisation
de codes Navier-Stokes pour étudier l'efficacité de propulsion de profils oscillants est plus
répandue [77, 24, 26, 23, 87, 54, 35, 103, 57, 104, 58, 42, 41, 105]. Les études de Young [26, 23]
sont particulierement intéressantes puisqu’elles comparent des données expérimentales avec
différents codes basés sur : les formules analytiques de Garrick/Theodorsen [96, 95|, la
théorie potentielle avec différents types de sillages, les équations Navier-Stokes laminaires et
les équations de Navier-Stokes turbulentes. L’auteur peut ainsi valider ses codes, comparer
les différentes approches et isoler les effets des différents phénomenes physiques présents.
Le premier effet qui n’est pas pris en compte par les méthodes potentielles classiques est
le lacher tourbillonnaire au bord d’attaque (LEVS) qui a une influence particulierement
importante pour de faibles fréquences d’oscillation [33]. Ainsi, alors que les résultats des
méthodes potentielles montrent que les forces dépendent essentiellement du nombre de
Strouhal St, les simulations Navier-Stokes soulignent aussi une influence non négligeable
d’un autre parametre indépendant : la fréquence réduite k. L’apparition de ce deuxieme
parametre est directement due au LEVS. La deuxieme conclusion est que seul un code
Navier-Stokes peut reproduire les structures complexes du sillage car le phénomene de
lachers tourbillonnaires multiples (par cycle) est typiquement visqueux. Ainsi, seule une
analyse avec les équations de Navier-Stokes permet de voir que la production de poussée via
des allées de Karman renversées apparait grace aux lachers de paires de vortex au bord de

fuite.

Auteur, Année Equations fluides Méthode de résolution
McKinney[9] Equations linéarisées Analytique

1981

Lindsey[30] 2D potentielles Méthode des panneaux
2002 2D RANS Différences finies
Jones[27] 2D potentielles Méthode des panneaux
2003

Kinsey[31] 2D N-S Eléments finis
2006

Julien[25] 2D RANS Eléments Finis
2007

Zhu[68] 3D potentielles Méthode des panneaux
2009

Tableau 2.5 Principales études numériques pour l'extraction de puissance : équations fluides
et méthodes de résolution.



Auteur, Année Equations fluides | Méthode de résolution
Garrick[95] Theodorsen[96] Analytique

1936

Jones[28] 2D potentielles Méthode des panneaux
1997

Anderson [33] 2D linéaires Algorithme

1998 + lachers de vortex spécifique
Zhu[53] 3D potentielles Méthode des panneaux
2002

Guglielmini[70] Equations Méthode spectrale
2004 de vorticité et différences finies
Sarkar[106] 2D visqueuses DVM

2006

Kaya[54, 36] 2D RANS Maillage chimere
2007

Soueid[107] 2D N-S Méthode spectrale
2008

Guerrero[42] 2D N-S Différences finies
2009

Gopalakrishnan[41] 3D N-S, LES Volumes finis
2009

von Loebbecke[108, 12] 3D N-S Différences finies
2009

Xiao[105] 2D N-S Volumes finis
2010

23

Tableau 2.6 Principales études numériques pour la propulsion : équations fluides et méthodes

de résolution.
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En conclusion, le régime d’utilisation a bas Reynolds des profils oscillants, que ce soit
dans le cadre de l'extraction de puissance ou de la propulsion, provoque une séparation
de ’écoulement au bord d’attaque, notamment pour des angles d’attaques importants. Les
méthodes potentielles sont incapables de prédire de tels effets de séparation et de lachers
tourbillonnaires. Il est donc nécessaire d’utiliser les équations de Navier-Stokes pour modéliser
I’écoulement fluide dans notre étude afin de prendre un compte tous les parametres régissant

la physique des profils oscillants.

C. Résultats

Finalement grace a I’étude des parametres influents sur les performances d’un profil os-
cillants, les différents auteurs ont pu obtenir des performances intéressantes en termes d’ef-
ficacité d’extraction de puissance ou de propulsion, soit grace a de nombreuses simulations

soit grace a des optimisations plus ou moins automatiques.

Rendements pour ’extraction de puissance : Concernant l'extraction de puissance,
on a regroupé ces résultats dans le tableau 2.7, méme si les données sont parfois lacunaires.
Ainsi, des 1981, les travaux précurseurs expérimentaux de McKinney et DeLaurier [9] avec
un profil rigide oscillant donnaient des rendements maximaux de 1'ordre de 17%. Grace a une
optimisation “a la main”, Davids [29] obtint une efficacité d’environ 30% avec un code poten-
tiel. Enfin, Kinsey et Dumas [31] grace a une étude numérique Navier-Stokes trés complete
des différents parametres trouvent des rendements dépassant les 34%.

Toutefois, ces fortes efficacités n’ont pas encore été reproduites expérimentalement. En
outre, il est intéressant de noter que contrairement a ce que disent Jones et Platzer [28],

Ioptimum de I'extraction de puissance n’est pas atteint en méme temps que 'efficacité op-

Auteur,date | NACA | Re | . _ W€ |6 ()| ho/c | zp/c| ¢ Ney
UOO

McKinney[9] | 0012 | 2.10° ? 30 0.30 | 0.50 | 90" | 16.8%
1981

Davids[29] 0012 - 1.975 ? 0.625 | 0.55 | 94" | 30.0%
1999

Lindsey[30] 0014 106 1.0 ? 2.0 | 0.25 |90 | 33.4%
2002 0014 | 2.10% 1.0 ? 1.3 | 0.25 | 90° | 17.2%
Kinsey[31] 0015 | 1100 0.880 |76.33 | 1.0 | 0.33 | 90" | 33.6%
2006

Tableau 2.7 Rendements optimaux pour 'extraction de puissance.
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timale [30, 4]. Il faut donc bien faire un compromis entre puissance et efficacité, et ainsi

pondérer les criteres d’optimisation des performances d'un profil oscillant.

Rendements pour la propulsion : Les études s’intéressant a la propulsion produite par
des profils oscillants sont de plus en plus nombreuses. Toutefois, peu d’entre elles cherchent a
optimiser les rendements de propulsion. Seuls Kaya et Tuncer [54, 36] et Soueid et al. [107] ont
développé des algorithmes d’optimisation du mouvement du profil afin d’obtenir de meilleures
performances en termes de poussée, de portance ou d’efficacité de propulsion. Présentés dans
le tableau 2.8, les résultats de Tuncer et Kaya [54] et de Soueid et al. [107] s’approchent
des efficacités élevées obtenues expérimentalement (voir tableau 2.3). On note également que
les mouvements optimisant la poussée (Cr = 1.45 et Cr = 2.0) réduisent les efficacités de
propulsion. A nouveau, un compromis doit donc étre fait entre poussée et efficacité. Dans
une étude plus récente [36], ces mémes auteurs améliorent la production de poussée avec
un mouvement oscillant non-sinusoidal. Toutefois, ils concluent également que le mouvement

sinusoidal permet d’obtenir les meilleurs rendements de propulsion.

A cause d’adimensionnalisations différentes et de données manquantes, il est difficile de
comparer un certain nombre d’études. Toutefois, on peut établir certaines conditions menant
a des performances élevées. Tout d’abord, la production de poussée ainsi que l'efficacité
augmentent en général avec le nombre de Reynolds [40]. Ensuite, comme on peut 'observer
avec les résultats présentés dans le tableau 2.8, l'introduction d’une rotation en plus du
battement permet une nette amélioration des performances. Dans ce cas, un axe de rotation
situé au tiers de la corde semble donner les meilleurs résultats [33, 70, 107]. Concernant la
valeur de 'angle déphasage ® entre les deux mouvements, de nombreux auteurs utilisent
® = 90" [89, 70] alors que d’autres suggerent des valeurs plus élevées autour de 107°[28].
Les résultats d’optimisation semblent convergés entre 85" et 95°. Enfin, I'utilisation de
plusieurs profils semble avoir des effets bénéfiques sur les performances de propulsion comme
le soulignent Platzer et Jones [91] dans leur revue de littérature. Utilisés en biplan, 1'un
au-dessus de l'autre, les profils oscillants produisent de 20 & 40% plus de poussée qu’un profil
seul. Encore mieux, dans une configuration en tandem, avec un profil fixe a larriere d’un
profil oscillant, 'efficacité propulsive se rapproche de 100%. En effet, ’énergie transportée
par les vortex créés par le premier profil est convertie en poussée par le deuxieme pro-

fil comme le ferai un oiseau avec sa queue [67, 32] ou un poisson avec sa nageoire caudale [53].
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Auteur, date | NACA | Re |, _ W€ 6 | hofc | zp/c| & Cr p
UOO

Guglielmini 0012 | 1100 0.37 35.0°| 3.00 | 1/3 | 90.0° | 0.517 | 46.0%
2004[70]

Tuncer 0012 10* 1.00 35.6°| 0.83 | 1/2 | 86.5° | 0.18 | 67.5%
2005[54] 0012 10 1.00 28.6° | 1.55 | 1/2 | 94.9" | 1.45 | 35.9%
Soueid 0012 | 1100 ? 32.1° 1 2.820 | 1/3 | 85.4° | 0.512 | 50.2%
2008[107] 0012 | 1100 ? 33.47 | 4.512 | 1/3 | 89.7° | 2.000 | 38.1%
Ashraf 0012 | 2.10* 2.0 0 0.25 - - 0.112 | 25.1%
2009[40] 0015 | 2.10* 2.0 0 0.25 - - 0.122 | 29.8%
Guerrero 2412 | 1100 4.20 0 0.3 - - 0.849 | 15.9%
2009[42]

Tableau 2.8 Performances optimales pour la propulsion.

2.2 Interaction fluide-structure en grands déplacements

Comme on vient de le voir, un profil rigide oscillant dans un écoulement peut extraire
de I'énergie du fluide ou lui en donner, produisant ainsi une poussée. En effet, les forces
aérodynamiques produites par le battement des ailes (non-fixes) agissent sur 1’écoulement
du fluide environnant, on parle alors d’interaction fluide-structure (IFS) ou plus précisément
d’aéroélasticité. A I'inverse le fluide ainsi perturbé va agir sur la structure des ailes dont les
déformations et les déplacements seront d’autant plus forts que sa flexibilité sera grande.
Les petites dimensions des micro-drones ainsi que leur faible poids contribuent a accroitre
fortement la flexibilité des ailes tout comme celles des oiseaux, les palmes d’un plongeur
ou les nageoires des poissons. On fait alors face a un phénomene complexe de couplage
fort qui modifie les performances de l'aile déformée, bien différentes de celles du profil
non-déformé. D’ailleurs, 1'utilisation de structures flexibles semblent améliorer D'efficacité
de propulsion de pres de 38% [14] lors d’études expérimentales. Les travaux expérimentaux
d’Heathcote et Gursul [84, 83| confirment que les profils oscillants flexibles permettent

d’obtenir de meilleures performances que les profils rigides, notamment en termes d’efficacité.

Une meilleure compréhension de ces processus d’extraction de puissance et de propulsion
par des structures flexibles oscillantes passe donc par la simulation de problemes d’interaction
fluide-structure. Toutefois, les comportements non-linéaires des écoulements incompressibles
de fluides visqueux et des solides en grands déplacements ainsi que la déformation des
interfaces induisent de nombreuses difficultés a surmonter. Ainsi, en régime stationnaire,

ces phénomenes d'IFS sont étudiés depuis quelques années déja mais restent d’une grande



27

complexité et requierent d’importantes ressources informatiques comme on a pu le constater
lors de nos travaux de maitrise [109]. En régime instationnaire, les temps de calculs sont
démultipliés de sorte que ces phénomenes sont extrémement complexes a modéliser et leur
compréhension reste encore délicate. Méme si on assiste actuellement a la naissance d’une
littérature grandissante portant sur les profils oscillants dans le cadre de la propulsion des
MAVs, des insectes, des oiseaux ou encore des mammiferes marins [7, 15], Shyy et al. [1§]
soulignent qu’il reste encore de nombreuses questions ouvertes dans une récente revue des
connaissances sur le sujet. Il y a notamment un intérét certain a utiliser des profils flexibles
mais d’importantes recherches doivent encore étre menées afin de mieux comprendre le
comportement aérodynamique des profils flexibles en grands déplacements : “There is a
desirable level of structural flexibility to support desirable aerodynamics. Significant work
needs to be done to better understand the interaction between structural flexibility and
aerodynamic performance under unpredictable wind gust conditions.” Du coté de I'extraction
de puissance, ce n’est guere mieux puisque nos travaux présentés en 2007 [6] semblent étre
les seuls existants. De plus, les études menées jusqu’ici sur les performances propulsives
d’une structure oscillante considerent rarement, pour ne pas dire jamais, le mouvement du
profil induit par la poussée. Ainsi, le probleme d’IF'S est en partie découplé puisque les effets
des forces fluides sur le profil ne sont pas pris en compte, i.e. la poussée produite ne fait pas
avancer le profil. On peut alors se demander si les rendements de propulsion ainsi calculés

sont pertinents ?

Afin d’améliorer la simulation des problemes d’interaction fluide-structure, on propose
un tour d’horizon des techniques utilisées pour traiter les 3 parties constituant le systeme :
I’écoulement fluide, la structure et le couplage. Tout d’abord, on regarde comment gérer
adéquatement la déformation du domaine fluide due aux déplacements du solide. Ensuite, on
étudie les différentes manieres de modéliser la structure, des déformations imposées jusqu’aux
grands déplacements libres. Enfin, on souligne I'importance du couplage numérique entre le

fluide et la structure afin de préserver 1’équilibre a 'interface.

2.2.1 Déformation du domaine fluide

Quelque soit la “force” du couplage et le type de structure, les déplacements du solide vont
induire une déformation du domaine fluide au cours du temps. Dans une approche éléments
finis, on doit alors gérer cette déformation induisant un déplacement des points de calcul, i.e.
le maillage. De plus, il faut choisir une écriture adaptée des équations sur le domaine fluide
ainsi déformé. Mais alors, quelles propriétés doivent étre respectées lors de la transformation

du maillage pour que le probleme reste correctement posé? On tentera de répondre a cette
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question dans la troisieme partie en introduisant la notion de loi de conservation géométrique

ou GCL (geometric conservation law).

A. Déformation du maillage

Dans le cadre des maillages non-structurés, on trouve dans la littérature plusieurs
techniques permettant de gérer a la fois les déplacements des frontieres et les déformations
du domaine fluide. On peut les classer en trois catégories. Tout d’abord, il est possible de
remailler entierement le domaine fluide une fois le déplacement du solide connu et d’itérer
jusqu’a la convergence [110]. Cette approche permet de gérer n’importe quelle déformation du
domaine fluide mais a un cout de calcul élevé, notamment pour des problemes instationnaires.
La seconde option, treés répandue, est d’utiliser I’analogie avec un ressort (spring analogy)
pour déplacer les points du maillage selon la déformation des frontieres [111, 112, 113, 114].
Enfin, on peut gérer la déformation du domaine fluide en introduisant des simili-équations
structurelles grace a différentes approches pseudo-solides [115, 116, 117, 118, 119, 120].

Parmi ces approches, on choisit d’étudier celle présentée par Sackinger et al. [121]. Elle est
formulée au niveau continu ce qui permet un couplage complet de toutes les variables fluides et
pseudo-solides. Bien que moins bien adaptée aux tres grandes déformations que la technique
de remaillage, ’approche pseudo-solide est aussi bien moins cotteuse (équations linéaires). De
plus, on peut facilement I'améliorer de plusieurs facons : en adaptant les propriétés élastiques
du pseudo-solide pour éviter le repliement du maillage, en associant une formulation de
lagrangien actualisé [122] qui utilise le maillage déformé au temps précédent pour générer
le nouveau maillage sur la configuration déformée ou encore en introduisant un zonage du
domaine. Par exemple, pour un profil oscillant avec de grandes amplitudes de rotation, il
devient nécessaire de découper le domaine en 2 zones [31] dont 1'une subit un mouvement de
corps rigide associé au profil. Traitant les équations au niveau continu, I’approche pseudo-
solide rend alors implicite la gestion des interfaces entre les zones fluides (aucun glissement).
Enfin, cette approche générale est compatible avec les procédures utilisées pour ’estimation

d’erreur et 'adaptation de maillage [123].

B. Approche ALE

Dans le contexte de la méthode des éléments finis, deux approches sont communément
utilisées pour résoudre des problemes d’écoulements fluides instationnaires avec des
frontieres en mouvement. Tout d’abord, la méthode d’éléments finis espace-temps connait

un intérét grandissant ces dernieres années. Introduite par Hughes et al. en dynamique
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des structures [124] puis en dynamique des fluides [125], cette méthode est désormais
aussi utilisée avec succes pour étudier les problemes d’interaction fluide-structure (voir
tableau 2.13). Elle permet notamment une description plus naturelle du domaine fluide
qui se déforme et respecte automatiquement la loi de conservation géométrique (GCL)
introduite ci-apres [126]. Toutefois, le nombre d’inconnues est multiplié a chaque pas de

temps, par 2 par exemple dans le cas d'un schéma d’intégration en temps du second ordre.

La seconde approche, et la plus utilisée, est la formulation Eulerienne-Lagrangienne
arbitraire (Arbitrary Lagrangian Eulerian, ALE). Elle permet le couplage d'une approche
lagrangienne pour la structure (repére non-déformé) et eulérienne pour 1’écoulement
(configuration déformée). Dans cette approche, les équations fluides instationnaires sont
exprimées par rapport a une configuration de référence fixe [127]. Une transformation ALE
associe, a chaque temps ¢, un point du domaine de calcul déformé €(t) & un point dans
le domaine de référence €2(0). Les propriétés de cette transformation ALE (ou witesse de
maille) et leurs incidences sur le schéma numérique sont d’une grande importance comme
souligné par Etienne et al. [128]. En effet, méme si Lacroix et Garon [129] ont montré
que cette approche fonctionne tres bien dans le cas d'une déformation unidirectionnelle du
domaine fluide, et contrairement a I’approche espace-temps, la formulation ALE n’est plus

intrinsequement consistante des que les déformations du domaine sont arbitraires.

Malgré cet inconvénient, I’approche ALE reste intéressante car elle engendre un nombre
d’inconnues moindre par rapport a ’approche espace-temps. On opte ainsi pour cette for-
mulation ALE pour simuler les interactions fluide-structure. Toutefois il faut rendre cette
formulation consistante pour que le probleme reste correctement posé et conserver les pro-
priétés du schéma de résolution. La loi de conservation géométrique (GCL) semble étre la
clé pour obtenir une formulation ALE appropriée. Notons que I'approche ALE permet de
traiter la structure dans sa configuration non-déformée, ce qui facilite grandement les calculs

puisque la formulation du probleme structurel reste naturellement consistante.

C. Loi de conservation géométrique

La loi de conservation géométrique ou GCL (geometric conservation law) a fait 1’ob-
jet de nombreuses études qui ont engendré des conclusions contradictoires au sujet de sa
définition et de son impact sur la consistence de la formulation ALE. Il est généralement
admis que si une formulation ALE préserve un écoulement uniforme sur un domaine qui se
déforme, alors ceci constitue une définition de la GCL, ou du moins un test de respect de la
GCL [112, 126, 130]. On parle de version discrete de la GCL ou D-GCL (Discrete Geometric
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Conservation Law). Toutefois, bien que cette définition semble nécessaire pour conserver la
stabilité d’une approche ALE [131], elle semble encore insuffisante pour obtenir une formula-
tion ALE totalement consistante, notamment lorsqu’on parle d’intégration en temps d’ordres
élevés. Ainsi, Etienne et al. [128] proposent une définition généralisée de la GCL avec trois

niveaux de conformité (tests) :

1. une formulation ALE satisfaisant la GCL doit produire la solution exacte d’un probleme
de fluide au repos (no-flow test) sur un maillage qui se déforme de fagon arbitraire
(voir [132]).

2. une formulation ALE satisfaisant la GCL doit produire la solution exacte dun

écoulement uniforme sur un maillage qui se déforme (i.e. respect de la D-GCL présentée
par Farhat et al. [131]).

3. pour une formulation ALE congue pour satisfaire la GCL, le schéma d’intégration en
temps doit conserver le méme ordre de convergence sur un maillage qui se déforme que

sur un maillage fixe.

Pour satisfaire ces trois niveaux de conformité de la GCL, il est nécessaire d’adapter la
conception de la formulation ALE en imposant d’importantes contraintes sur les algorithmes
d’intégration en temps [126, 131]. On opte pour 'approche développée par Etienne et al. [128],
évaluant séparément la divergence de la vitesse de maille d’un coté, pour satisfaire les
niveaux 1 et 2, et d’'un autre coté, la vitesse de maille elle-méme pour maintenir la précision
en temps. Ils ont prouvé 'efficacité de leur approche, vérifiant les trois niveaux de conformité
de la GCL sur des problemes d’écoulements fluides avec des maillages qui se déforment.
Avec des ajustements mineurs, on appliquera cette approche aux problemes d’interaction

fluide-structure (voir détails a la section 3.4.3).

2.2.2 Modélisation de la structure

On a déja souligné dans la premiere partie de cette revue de littérature que plusieurs
approximations ont été mises en ceuvre pour simplifier la modélisation d'un écoulement
fluide instationnaire, les méthodes potentielles en sont un exemple. Ces approches simplifiées
peuvent encore étre utilisées dans le cadre d’interaction fluide-structure [133, 134]. Il en va
de méme pour la modélisation de la structure. Certes, son traitement sur la configuration
non-déformée (approche ALE) facilite sa résolution par rapport a celle de 1’écoulement
soumise a la déformation du domaine de calcul. Néanmoins, la complexité du couplage entre
la structure et le fluide a poussé les chercheurs a utiliser des simplifications pour modéliser la
structure du profil. On peut distinguer trois principaux niveaux de modélisation du solide en

2D. Tout d’abord, la modélisation la plus simple consiste a simuler les IFS sans “structure”,
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simplement en imposant des déplacements plus ou moins complexes aux frontieres du
domaine fluide. C’est ce type de modélisation avec des mouvements de corps rigides qui
est le plus utilisé dans le domaine des profils oscillants comme on 'a vu a la section 2.1.
Ensuite, la modélisation peut tenir compte de la dynamique propre du solide en lui associant
une masse (et donc une inertie). Le profil subit alors des mouvements libres de corps rigide,
on parle d’aéroélasticité. Enfin, on peut tenir compte des déformations structurelles dues

a la flexibilité du profil en introduisant des équations d’état régissant ces grands déplacements.

A. Déplacements imposés

La modélisation la plus simple est de considérer des problemes d’interactions fluide-
structure sans “structure”. Autrement dit, ce sont les frontieres du domaine fluide dont
on impose les déplacements qui font office de modélisation pour le solide. Il n’y a donc
aucune équation structurelle a résoudre, seul I’écoulement fluide soumis a des frontieres en
mouvement doit étre résolu. On néglige toute rétroaction du fluide sur le solide, i.e. on est
dans le domaine du couplage faible. Cette approche découplée semble étre adéquate pour
I'étude de certains objets volants de type insectes a hauts nombres de Reynolds (approche
non-visqueuse) d’apres Daniel et Combes [135]. En considérant un fluide non-visqueux et
des petits déplacements, ils déduisent d’une étude analytique que les effets inertiels sont
prépondérants sur les forces de pression exercées par I’écoulement sur le solide. Il ne serait
donc pas nécessaire de modéliser le couplage fluide-structure en entier mais seulement le

transfert des efforts du solide sur 1’écoulement fluide.

Deux types de déplacements peuvent alors étre imposés. Tout d’abord, un mouvement
de corps rigide de I'ensemble du solide peut étre imposé aux frontieres du profil oscillant
(voir les études et les résultats présentés a la section 2.1). Ensuite, on peut améliorer cette
modélisation en imposant des mouvements locaux aux frontieres du profil solide, mimant
ainsi une certaine flexibilité, ou du moins des profils a formes évolutives. De cette maniere
certains auteurs ont pu confirmer en premier les avantages des profils flexibles observés de
maniere expérimentale [14, 84]. Ainsi, Miao et Ho [35] ont étudié Ueffet de la “flexibilité”
d’un profil en battement en lui imposant des déformations prédéterminées. Ils concluent tout
d’abord qu’il existe une amplitude de déformation optimale pour l'efficacité de propulsion.
Ensuite, ils définissent un angle de déphasage ¢ entre le battement et la déformation du
profil. Ils trouvent alors une valeur optimale de ¢ = —7/2, semblable a celle trouvée pour le
déphasage optimal entre le battement et la rotation d’un profil rigide! Avec ce déphasage,

Pefficacité de propulsion passe de 17% pour un profil rigide a 30% pour un profil déformé
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d’une amplitude optimale. Il semble que la déformation du profil aide le tourbillon a parcourir
l'aile en douceur du bord d’attaque ou bord de fuite. Tay et Lim [136] utilisent le méme
procédé avec une déformation du profil plus complexe mais concluent que la “flexibilité” n’est
pas nécessairement bénéfique et son effet dépend de la configuration oscillante et de la forme
du profil. La configuration de battement pur (sans rotation) semble étre a privilégier pour que
la flexibilité améliore 'efficacité de propulsion et la quantité de poussée. De fortes efficacités
sont alors obtenues entre 66% et 76%. Toutefois, a cause de la tres forte nonlinéarité des
problemes d’interaction fluide-structure, il est risqué de faire un lien aussi direct entre
flexibilité et déformations imposées du profil, sans considérer les réactions de 1’écoulement
sur la structure flexible. En outre, le calcul de lefficacité est biaisé pour les mémes raisons ou

alors il faudrait prendre en compte 1’énergie nécessaire a la déformation active de la structure.

Ces premieres études montrent donc des améliorations au niveau des performances des
profils se déformant (flexibles ou munis d’actionneurs) en termes d’efficacité de propul-
sion pour certaines configurations d’oscillations. L’introduction d’une flexibilité du pro-
fil devrait donc permettre d’améliorer ses performances mais doit encore étre confirmée
par de meilleures modélisations de l'interaction fluide-structure. En effet, 'importance des
déformations élastiques n’est pas toujours négligeable. Ainsi, dans le cadre hydrodynamique
(forte densité du fluide), Daniel et Combes [135] confirment qu’elles ne sont plus négligeables.
On peut aussi se demander si on peut encore négliger les déformations élastiques a bas Rey-

nolds (écoulement visqueux) ou avec des solides en grands déplacements.

B. Aéroélasticité

Une amélioration de la modélisation de la structure consiste a lui associer une masse
(et donc une inertie) afin de tenir compte de sa dynamique. Les effets inertiels ainsi que
les effets des forces fluides agissant sur le profil peuvent alors étre pris en compte. Cette
modélisation s’appuie généralement sur 2 degrés de liberté en 2D : I'amplitude de battement
h et l'angle d’attaque «. Comme le montre la figure 2.3, la modélisation s’appuie sur le

systeme d’équations couplées suivant :

1 A 2 / 3 y
m S, h N Cn S: h N Ky, S, h _ F7, (2.4)
Sé [a (6% Sg Ca « Si Ka (0] Memt

, représente les efforts verticaux s’exercant sur le profil, M,,; le moment autour de

ou FY
I’axe élastique, m la masse du solide, I, son moment d’inertie, C}, et C, ses amortissements

en flexion et en torsion, Kj, et K, ses raideurs en flexion et en torsion et S’ les termes de
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couplage.

Figure 2.3 Modélisation d’une structure aéroélastique, tiré de [2]

Cette modélisation est surtout utilisée pour étudier le flottement et le décrochage dyna-
mique des profils [137, 78, 2, 138] ou les phénomeénes vibratoires induits par 1’écoulement [139].
Dans le cadre des profils oscillants, cette modélisation permet d’introduire une dynamique
libre du profil et ainsi un couplage total entre le fluide et la structure. La rétroaction des
forces fluides va en effet avoir lieu grace au systeme d’équations 2.4 et induire un mouvement
du solide. Dans le domaine de la propulsion, Murray et Howle [69] étudient I'impact de
I'ajout d'un degré de liberté sur 'amplitude de battement (voir Eq. 2.4 avec seulement
K}, non-nul) lorsqu’on impose un mouvement de rotation du profil (sans masse) dans un
écoulement non-visqueux. A l'inverse, Willis et al. cherchent & optimiser le mouvement
de battement du profil pour améliorer l'efficacité de propulsion en libérant le degré de
liberté en rotation a. Toomey et Eldredge [134] ont quant a eux utilisé cette modélisation
aéroélastique pour faire un pas vers I’étude d’un profil flexible. Plus précisément, ils ont eu
I'idée de couper le profil en deux demi-profils et d’insérer un degré de liberté en rotation
(une charniere a ressort, i.e. une raideur en torsion) entre les deux parties. Le mouvement
du profil amont est imposé alors que le profil aval subi une rotation sous l'effet des forces
aérodynamiques, de pesanteur, d'inertie et de la réaction du ressort (voir Eq. 2.4). Utilisant
une méthode de vortex prenant en compte la séparation de I’écoulement, ils concluent qu’une
aile “flexible” requiert moins de puissance pour étre mise en mouvement mais fournie aussi
moins de portance. Toutefois, l'efficacité du systéme (rapport portance/puissance requise)
est améliorée. Farnell et al. [140] présentent des résultats préliminaires qui vont encore plus

loin en modélisant une structure flexible par N éléments rigides reliées par des charnieres
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en torsion (raideur+amortissement). L'imposition d'un terme d’avancée (driving terms) sur

chaque élément permet 'avancement du solide, a I'image d’une anguille.

Enfin, il semble judicieux d’utiliser cette modélisation pour étudier de maniere plus réaliste
I'extraction de puissance et la propulsion des profils oscillants. En effet, les mouvements
imposés du profil empéchent de quantifier les réels effets des efforts de I’écoulement sur le
solide. Si on introduit des degrés de liberté sur 'amplitude ou la rotation du profil, on pourra
alors étudier la force et donc 1’énergie récupérable par le systeme du profil oscillant. Dans une
récente étude, Peng et Zhu [141] étudient I'extraction de puissance par un profil oscillant de
maniére purement passive, i.e. déplacement du solide induit par les seules forces fluides. Le
systeme est constitué d’un profil monté sur un ressort en torsion K, et d'un amortisseur Cj,
représentant le générateur de puissance (masse et inertie sont négligées). Les équations 2.4

se réduisent alors a :

Cyh = FY, (2.5)

KaOé == Mez‘t (26)

En définissant 1’énergie extraite par P,,; = chz, ils obtiennent des efficacités maximales de
Pordre de 20%. L’avantage de cette approche réside surtout dans sa simplicité de mise en
ceuvre et de controle puisque le mouvement n’est plus imposé (voir aussi les travaux similaires
de Zhu et al. [68] avec des équations aéroélastiques légerement différentes).

De méme, dans le domaine de la propulsion, cette modélisation permet de simuler la libre
avancée (ou montée) du profil due aux actions des forces de I’écoulement. On peut ainsi étudier
réellement le processus de propulsion dont I'objectif est de faire avancer le systeme, soit selon
'axe horizontal (propulsion) soit selon 1'axe vertical (sustentation). On a seulement trouvé
quatre études utilisant cette modélisation pour simuler I’autopropulsion des poissons [55,
56, 142, 52]. Dans les quatre cas, les auteurs imposent une déformation ondulatoire aux
frontieres du “poisson” simulant une flexibilité (voir section 2.2.2) et observent la nage libre
de ce dernier due aux forces hydrodynamiques. Shirgaonkar et al. [142] reformulent alors
le nombre de Reynolds en fonction de la vitesse maximale U,,,, de déformation imposée
alors que Yeo et al. [52] utilisent la fréquence f d’ondulation pour définir Rey = pfi2/p.
Ces derniers adaptent également la définition de l'efficacité de propulsion avec la formule de

Lighthill suivante :

TU g

_ 1Ty (2.7)
TUgg + Pr,

L
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ott Uy, est la vitesse moyenne du poisson, T la poussée moyenne et Py, la perte de puissance
moyenne. Toutefois, les auteurs ne précisent pas comment ils calculent en pratique la poussée
et la perte de puissance alors que ce n’est pas évident. En effet, les calculs des efforts donnent

la résultante totale composée de la trainée D et de la poussée T :
Fo(t) = T(t) — D(t) (2.8)

De plus, la perte de puissance peut étre définie de plusieurs fagons. Borazjani et Sotiropoulos
[143] proposent une approche permettant de décomposer F), en ses 2 composantes T et
D et un calcul de la perte de puissance en fonction des déformations imposées. On voit
ainsi la difficulté a définir une efficacité de propulsion lorsqu’on sort de ’habituel champ de

modélisation dans lequel le solide n’a pas de mouvement libre.

C. Structure en grands déplacements

Dans cette derniere partie, on se concentre sur les modélisations structurelles reposant sur
des équations d’état. On parle alors de structures flexibles. Il existe de nombreuses équations
d’état permettant de modéliser les déplacements (variations de forme) et les déformations
(variations de volume) d’une structure. On peut toutefois les classer en 4 catégories (sans

parler de la plasticité bien au-dela du champ d’investigation de notre étude) :
1. petites déformations - petits déplacements : élasticité linéaire
2. petites déformations - grands déplacements : hyperélasticité
3. grandes déformations - petits déplacements : hyperélasticité finie
4. grandes déformations - grands déplacements : hyperélasticité finie

Ainsi, un modele d’élasticité linéaire suffit pour de petits déplacements et de petites
déformations [133, 144, 103, 145, 146, 44, 147]. Toutefois, des qu’on a de grands déplacements,
un modele hyperélastique est nécessaire. De nombreuses lois de comportement non-linéaires
existent (voir travaux de maitrise [109]) mais c’est celle de Saint-Venant Kirchhoff qui
est la plus répandue [111, 148, 149, 150] dans le cadre des interactions fluide-structure.
Les autres modeles hyperélastiques sont encore peu utilisés dans le domaine de la CFD
(Mooney-Rivlin [151], Neo-Hookien [152]). Le domaine de I’hyperélasticité finie reste donc
encore a explorer. Concernant les profils oscillants, seule I’étude d’Etienne et al. [6] utilise

un modele hyperélastique.

Dans I'hypothese de petits déplacements et petites déformations, les modeles d’élasticité

linéaire peuvent étre facilement mis en ceuvre. Ainsi, en 1978, Katz et Weih [133]
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modélisaient un profil flexible par une série de poutres soumis a un écoulement non-visqueux
(sans séparation). Ils concluaient déja que la flexibilité tend a diminuer la magnitude de la
portance mais aussi a changer sa direction, ce qui a un effet bénéfique pour la propulsion.
Ainsi, malgré une faible diminution de la poussée, 'efficacité de propulsion augmente de
pres de 20%. En 2010, Gopalakrishnan et Tafti [147] prenant en compte les phénomenes de
séparation, dont le LEVS (leading-edge vortex shedding), avec une méthode 3D arrivent a des
conclusions différentes tout en gardant une modélisation linéaire de la structure (membrane).
La cambrure du profil induite par la flexibilité provoque une augmentation “considérable”
de la poussée (jusqu’a 40%) et de la portance. Ils expliquent ce bénéfice par le fait que le
LEVS reste attaché sur l'extrados du profil et glisse le long de la cambrure, couvrant la
majeure partie du profil. Les forces sont alors plus importantes que pour un profil rigide. De
plus, l'efficacité de propulsion n’augmente pas autant que dans I’étude précédente, passant

d’environ 18% pour un profil rigide & un peu plus de 22% pour une flexibilité optimum.

La complexité des problemes d’interactions fluide-structure limite fortement le nombre
d’études numériques utilisant des modeles structuraux nonlinéaires. De ce petit nombre
d’études, la plupart utilisent une plaque plane comme profil flexible [13, 101], les autres
des éléments de types poutres gérés par des logiciels commerciaux spécialisés dans les
structures [64, 58]. Ces approches simplifient la résolution du probléeme mais permettent
de prendre en compte les effets de structures non-linéaires. Gogulapati et al. [64] ainsi que
Zhu [101] ajoutent également une hypothese d’écoulement potentiel, les premiers prenant en
compte la séparation de I’écoulement et la formation du LEVS (mais ils ne présentent que
des résultats préliminaires). Les équations de Navier-Stokes ne sont donc utilisées que par
Chimakurthi et al. [58] et Tang et al. [57] qui sont aussi les seuls a faire des simulations avec
un profil épais. Il faut noter que ces deux dernieres études sont faites en 3D et les auteurs
considerent une flexibilité selon I'envergure du profil. On parle aussi alors d’aéroélasticité.
En 2D, 'impact de la flexibilité selon la corde sera différent. On se concentrera sur cet
aspect dans notre étude.

Ainsi, en 2D, une des conclusions de ces études est que la flexibilité induit une rotation de
maniere passive, qu'on peut caractériser par un angle virtuel. 11 est défini entre les lignes
qui relient le bord de fuite et le bord d’attaque du profil flexible d'un coté et d’un profil
virtuel rigide de 'autre coté. Ceci donne aussi lieu a I'introduction de 'angle de déphasage
entre le mouvement de battement et la rotation composée d’une partie imposée et d'une
partie libre due a la flexibilité du profil. Enfin, d'un point de vue pratique, il devient alors
possible d’imposer seulement un mouvement de battement au profil et d’utiliser la flexibilité

du profil pour obtenir la rotation induite souhaitée. On retrouve ici la conclusion de Tay
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et Lim [136] qui imposent une déformation au profil pour simuler sa flexibilité et indiquent
qu’il est alors préférable d’utiliser un profil en battement pur. Ainsi, cette rotation passive
induit une réduction de I'angle d’attaque effectif global du profil et ainsi une réduction des
efforts (poussée et portance) [101, 64] et un retardement du décrochage dynamique du profil.
Ainsi, Zhu [101] conclue a une baisse des performances a cause de la flexibilité mais il ne
tient pas compte de la séparation de 1’écoulement (et donc du role des LEVS). Avec une
approche visqueuse, on se rend compte que la flexibilité tend a adapter 'angle d’attaque
effectif local a I’écoulement, limitant ainsi les phénomenes de séparation du LEVS [13, 64] et
aidant la convection des tourbillons générés (méme conclusion qu’en élasticité linéaire [147]).
Ce phénomene de recollement des LEVS assure des efficacités de propulsion supérieures a

celles obtenues avec un profil rigide.

L’introduction d’une flexibilité pour des profils oscillants a donc un impact sur les per-
formances d'un profil. Toutefois, selon les auteurs, les conclusions ne sont pas les mémes sur
les aspects bénéfiques ou non de la flexibilité. Il faut admettre que dans les études menées
jusqu’a présent, les approximations faites pour modéliser le fluide (potentiel, sans séparation)
masquent 'impact de la modélisation structurelle. En effet, les auteurs arrivent a des conclu-
sions identiques avec les différentes modélisations pourvu qu’ils utilisent les mémes hypotheses
sur le fluide. Il y a donc une nécessité de mener des études d’interaction fluide-structure
rigoureuses utilisant les équations de Navier-Stokes visqueuses d'un coté et une loi de com-
portement hyperélastique de 'autre afin d’analyser correctement ce probleme complexe et de

comprendre 'impact réel de la flexibilité sur les performances d’un profil oscillant.

2.2.3 Couplage IFS

Apres avoir choisi une modélisation pour le fluide et une modélisation pour la struc-
ture, il est nécessaire de coupler numériquement ces deux parties constituant un probleme
d’IFS. Le couplage numérique est ainsi la partie clé de la résolution et doit permettre de
préserver 'équilibre a l'interface. Deux approches sont alors possibles pour coupler fluide et

structure [137] : les méthodes faiblement couplées ou les formulations fortement couplées.

A. L’approche faiblement couplée

D’une part, les méthodes faiblement couplées ou étagées [153, 154, 112] utilisent des al-
gorithmes de résolution séparés pour le fluide, le pseudo-solide et la structure. Ce sont les
méthodes les plus populaires, notamment parce qu’elles permettent 1'utilisation de codes

spécialisés déja existants dans chaque domaine (soit dans le traitement d’écoulements soit
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dans la résolution de problemes structuraux). De plus, elles offrent la possibilité d’utiliser
des pas de temps de résolution différents pour le fluide et pour la structure, permettant ainsi
de 'adapter aux échelles de temps propres aux deux domaines. Enfin, cette approche mi-
nimise ainsi les ressources informatiques nécessaires et facilite I'implémentation de couplage
numérique entre les équations fluides et structurelles sans demander d’adaptation majeure
des codes de calcul spécifiques. En pratique, le couplage s’effectue alors de maniere itérative :
les efforts du fluide obtenus grace a un logiciel de CFD sont transférées au code de dynamique
des structures qui calcule les déplacements solides ; ces derniers sont alors transférés en retour
au module de CFD jusqu’a convergence et obtention de la géométrie déformée. Ces approches
étagées ont donc un certain colit causé par les itérations de convergence jusqu’a 1’équilibre.
De plus, comme le transfert de données est approximé a chaque itération, I’équilibre a I'inter-
face n’est pas parfaitement satisfait. Un éloignement trop important de 1’équilibre pourrait

provoquer une explosion du couplage et la divergence du calcul.

B. L’approche fortement couplée

D’autre part, on trouve les formulations fortement couplées ou monoli-
thiques [111, 155, 148] qui garantissent 1’équilibre & linterface fluide-structure. Ces
approches monolithiques résolvent I’ensemble du systeme fluide-structure d’un seul bloc, ce
qui garantit a tout moment ’équilibre a I'interface fluide-structure [6]. Leur implémentation
est plus délicate que les approches faiblement couplées et nécessite des ressources infor-
matiques plus importantes. Toutefois, elles sont plus stables que les méthodes faiblement
couplées lorsqu’elles sont bien implémentées. Blom [137] confirme cet avantage sur un
probléme simple de piston en 1D (I'implémantation étant trop complexe pour étre testée).
Alors que pour des pas de temps petits il n’y a pas vraiment de différence entre une approche
faiblement couplée et une approche monolithique, ’algorithme étagé produit une déviation
non-physique par rapport a 1’équilibre lorsqu’on augmente le pas de temps. L’approche
monolithique reste alors stable méme pour des pas de temps importants. On a donc opté
pour une approche monolithique directe, ou entierement couplée, dans notre étude, basée

sur 'approche pseudo-solide continue de Sackinger et al. [121].

2.2.4 Voies de recherche pour les IFS

On peut conclure cette revue de littérature sur les interactions fluide-structure en
reprenant le constat fait par Shyy et al. [18] en 2010. Il y a actuellement des lacunes a

combler dans la compréhension des phénomenes d’interaction fluide-structure pour des
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profils oscillants, notamment a bas nombre de Reynolds. En effet, il y a un manque a la
fois de données expérimentales mais aussi de méthodes numériques pour simuler des profils
flexibles oscillants. Ceci confirme I'importance de disposer d’'un modele numérique complet
pour simuler ce processus extrémement complexe et la nécessité de disposer d’outils de

modélisation tres avancés pour étudier l'introduction d’une flexibilité au profil.

L’étude des différents travaux numériques existants (voir tableau 2.9) a plus parti-
culierement mis en lumiere certaines voies de recherche susceptibles d’améliorer la simulation
des problemes d’interaction fluide-structure en grands déplacements dans le contexte des
profils oscillants :

— prise en compte des forces visqueuses et des LEVS (leading-edge vortex shedding) dans

la partie fluide (équations de Navier-Stokes) ;

— modélisation correcte des grands déplacements a l'aide d’équations d’état hy-

perélastiques;;

— application d’une approche monolithique (fortement couplée) a des profils oscillants;

— introduction des équations d’aéroélasticité permettant un libre mouvement de corps

rigide des profils oscillants.

Ces améliorations numériques permettront ainsi une meilleure modélisation et
compréhension des phénomenes [FS notamment dans les domaines suivants :

— étude précise de l'influence de la flexibilité pour un profil oscillant soumis a un

écoulement visqueux ;

— simulation de structures subissant des vibrations induites arbitraires (grands

déplacements) ;

— prise en compte de 'avancée du profil autopropulsé lors de 1’étude de son efficacité a

produire de la poussée.
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Auteur, Equations Méthode Modele
Année fluides de résolution de structure
Toomey[134] 2D potentielles DVM 1 rotation
2006 (+séparation) libre
Miao[35] 3D N-S Logiciel Déformation
2006 FLUENT imposée
Zhu[101] 3D potentielles Méthode Plaque plane
2007 des panneaux non-linéaire
Tang[57] 3D N-S Logiciel Logiciel
2008 STREAM UM/NLABS
Gogulapati[64] 2D potentielles DVM Logiciel
2008 (+séparation) MARC
Chimakurthi[58] 3D N-S Logiciel Logiciel
2009 STREAM MARC
Gopalakrishnan[147] | 3D N-S, LES | Volumes finis | Membrane linéaire
2010

Tableau 2.9 Principales études numériques IFS sur des profils oscillants.

2.3 Intégration en temps

There are at least two ways to combat stiffness. One is to design a better computer, the
other, to design a better algorithm.
H. Lomax, tiré de [1]

Grace a 'approche monolithique implicite, il est possible de simuler des problemes d’in-
teraction fluide-structure fortement couplés. Toutefois, la simulation de ce type de problemes
raides reste tres cotiteuse en temps lorsqu’on cherche a étudier les comportements dynamiques
sur une longue période. Comme le dit Lomax, il ne reste plus qu’a acheter des meilleurs or-
dinateurs ou, a défaut, a améliorer les performances des algorithmes d’intégration en temps.
Cette partie s’intéresse ainsi a l'efficacité de l'intégration en temps qui est d’'une importance
cruciale. Tout d’abord, on présente les concepts théoriques importants de l'intégration en
temps des problemes raides tels que les interactions fluide-structure. Ensuite, on expose les
différentes approches mises en pratique pour résoudre des problemes d’interaction fluide-
structure instationnaires. Enfin, le choix du schéma d’intégration de Runge-Kutta implicite

Radau-IIA est expliqué.
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2.3.1 Problémes raides

A-stability is not the whole answer to the problem of stiff equations.
R. Alexander, tiré de [1]

Comme le soulignent Hairer et Wanner [1] dans leur introduction du chapitre IV, la notion
de problemes raides reste encore tres difficile a définir mathématiquement bien qu’on puisse
en avoir une définition intuitive basée sur I'expérience. La premiere et la plus pragmatique
des définitions a été donnée par Curtiss et Hirschfelder [156] en une simple phrase : “stiff
equations are equations where certain implicit methods, in particular BDEF?, perform better,
usually tremendously better, than explicit ones”. Plus concretement, ils proposent ’exemple

raide 1D suivant :

y' = —aly —cos(t)), a=50, y(0)=uyo (2.9)

Selon la condition initiale yp, la solution de cette équation est une courbe au voisinage de
y =~ cos(t) précédée d'une rapide phase de transition depuis yg si yo # cos(0) = 1. Une telle
transition est typique des équations raides sans étre une condition ni nécessaire ni suffisante.
Hairer et Wanner [1] présentent des résultats numériques pour une équation encore plus raide
avec a = 2000 et yo = 0 (voir figure 2.4). On observe une bonne tenue du schéma d’Euler
implicite mais les solutions obtenues avec des schémas implicites de Crank-Nicolson (ou regle
du trapeze, impl. Trap.) subissent des oscillations parasites, dues a la phase de transition
initiale. Ainsi, méme des schémas implicites peuvent ne pas étre suffisants pour résoudre des

problemes tres raides.

Le concept de stabilité des schémas d’intégration doit donc étre précisé. Habituellement,
le critere de stabilité linéaire (CFL par exemple) définit un domaine sur lequel le schéma
d’intégration est stable. On parle de méthodes A-stables lorsqu’il n’y a aucune restriction

(aucun critere) sur le domaine de stabilité pour I’équation suivante :
v =Xy, RN <0 (2.10)

Autrement dit, on peut choisir n’importe quel pas de temps At sans mettre en péril la sta-
bilité de I'intégrateur en temps. Contrairement aux méthodes explicites, le schéma d’Euler
implicite ainsi que les schémas implicites de Runge-Kutta sont tous A-stables. Les schémas de

Crank-Nicolson possedent aussi cette propriété de A-stabilité. Toutefois, comme on le voit sur

2. BDF : backward difference formulae ou formules aux différences finies arrieres, ce sont des schémas a
pas multiples.
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Figure 2.4 Crank-Nicolson (non L-stable) verus Euler implicite (L-stable), tiré de [1]

la figure 2.4, le schéma de Crank-Nicolson est fortement affecté par la phase transitoire ce qui
provoque des oscillations parasites de la solution et une convergence tres lente vers la solution.
Une convergence rapide vers la solution recherchée apparait ainsi comme une propriété sou-
haitable des schémas d’intégration, on parle alors de L-stabilité. Ainsi, les méthodes L-stables
ne sont pas sensibles au fait qu'une équation soit dite raide. Contrairement au schéma de
Crank-Nicolson, le schéma d’Euler implicite ainsi que les formules implicites de Runge-Kutta
(IRK) Radau-ITA sont L-stables, et méme précises pour les équations raides [1]. Concernant
les méthodes a pas multiples (regle du trapeze, BDF, Newmark), le théoreme de Dahlquist
limite leur ordre de précision p. En effet, ces méthodes ne peuvent posséder la propriété de
A-stabilité seulement si p < 2. Le tableau 2.10 résume les propriétés de stabilité de différents

schémas implicites.

Comme le souligne Saint-Amand [157], en plus des problemes de stabilité, la résolution
de problemes raides peut également induire des réductions d’ordre des schémas d’intégration
étagés a pas unique. En effet, chaque étage des méthodes a pas unique possede un ordre ¢ de
précision propre qui peut différer de 'ordre global p de la méthode. Ainsi, sur des problemes
raides, l'ordre de la méthode peut diminuer de p & @nqe, I'ordre maximal de chaque étage.
Hairer et Wanner [1] présentent un tableau (tableau 15.1, p226) des ordres de convergence

des erreurs pour les différentes méthodes IRK dans le cas de problemes raides. Avec un
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Schémas Ordre | A-stable | L-stable | Précis pour
les éq. raides
& Euler implicite 1 oul oui oui
£ Crank-Nicolson 2 oui non -
g BDF2 (schéma de Gear) 2 oui oui -
2 BDFp (p > 3) p non non -
& | Newmark (accélération moyenne) 2 oui ? -
Gauss 2s oui non non
Radau-TA 2s-1 oui oul non
R Radau-ITA 2s-1 oui oul oul
= Lobatto-IITA 2s-2 oui non non
Lobatto-I11B 2s-2 oui non non
Lobatto-II1C 2s-2 oui oui oui

Tableau 2.10 Propriétés de stabilité de différents schémas implicites. Pour les schémas IRK,
s représente le nombre d’étages.

pas de temps constant, on peut en déduire les ordres de convergence réduits des schémas
IRK appliqués aux problemes raides comme le résume le tableau 2.11. Sans entrer dans les
détails, on note que certains travaux [158] visent a améliorer les méthodes IRK classiques

afin de contrer ces effets de réduction d’ordre.

Enfin, les équations de Navier-Stokes incompressibles induisent une raideur
supplémentaire. Elles forment en effet un systeme d’équations différentielles-algébriques

(EDA) d’index 2 [1, 157], qui peut s’écrire sous la forme :

{y’ = fly,2) (2.11)
0 = gy

ou y représente le vecteur de vitesse du fluide et z la pression qui est le multiplicateur
de Lagrange de la contrainte d’incompressibilité g(y) = 0. La question est alors de savoir
si les schémas d’intégration en temps conservent leur précision dans le cas d’EDA d’index
2, notamment pour le multiplicateur de Lagrange. Le tableau 2.12 (tiré de [1]) résume les
ordres de convergence des erreurs globales pour les schémas IRK appliqués aux EDA d’index
2. On constate une réduction d’ordre du schéma pour le multiplicateur de Lagrange, i.e. la
pression. Notamment, pour les méthodes SDIRK (singly diagonally implicit Runge-Kutta), la
convergence reste linéaire sur la pression quelque soit le nombre d’étages. Pour les méthodes
Radau-ITA | I'ordre de convergence est réduit pour la pression a s au lieu de (2s —1). 1l existe

toutefois des techniques [159] pour améliorer 1'ordre de convergence sur le multiplicateur de
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Schémas Ordre global | Ordre pour les
équations raides
Gauss { > Hbatt 2s { st
S pair S
Radau-TA 2s-1 s
Radau-ITA 2s-1 s
Lobatto-TTTA { . 25-2 { +
s pair S
Lobatto-I11B { . 25-2 { +
s pair S
Lobatto-I11C 2s-2 s-1

Tableau 2.11 Réduction d’ordre des schémas IRK appliqués aux problemes raides avec un
pas de temps constant.

Lagrange pour ces schémas Radau-ITA. Concernant les schémas BDFp, leur convergence reste
d’ordre p sur I’écoulement et sur la pression si la précision sur les valeurs initiales des vitesses
est d’ordre p+ 1. Ainsi, le schéma de Crank-Nicolson est d’ordre 2 en pression. Ce résultat se
généralise aux autres méthodes a pas multiples si en plus la précision sur les valeurs initiales

de la pression est d’ordre p [1].

Les interactions fluide-structure en grands déplacements présentent un bel exemple de
probleme raide. Non seulement les équations fluides forment un systeme d’EDA d’index 2
mais en plus les grands déplacements structurels rendent le probleme encore plus raide.
L’application de schémas d’intégration en temps aux IFS est donc un défi tant au niveau de

la stabilité que de la précision.

2.3.2 Intégration en temps des IFS

Jusqu’a récemment, les différentes études sur les IFS étaient au mieux basées sur des
méthodes d’intégration en temps du second ordre [160, 161, 162, 163, 152, 3]. Désormais,
grace a une puissance de calcul grandissante, l'utilisation de méthodes d’intégration en
temps d’ordres supérieurs devient possible. Par exemple, van Zuijlen et Bijl [164] ont
démontré “the excellence of higher order schemes (up to fifth) over the popular second order
backward-difference scheme (BDF)” pour un probleme d’IFS linéaire sur un piston. Yang et
Mavriplis [165] confirment la prééminence de Defficacité globale d’un schéma d’ordre élevé
IRK64 sur celle des schémas BDF en procédant a une étude de raffinement du pas de temps

sur un probleme IFS 3D avec un écoulement compressible non-visqueux.



45

Méthode Etages Erreur globale
écoulement pression
s impair AtsT N
Gauss S pair At? At52
Radau-TA S At? At
Radau-ITA s At=T At?
s impair At*2 N
LObattO-IIIA 5 pair At28_2 Ats
Lobatto-I11C s N N
SDIRK3 3 At? At
SDIRK5 5 At? At

Tableau 2.12 Estimation de l'erreur pour les problemes d’index 2 [1].

L’intégration en temps, quelque soit l'ordre de précision, repose sur des approches ex-
plicite, implicite ou mixte. Les approches totalement explicites doivent étre proscrites pour
résoudre des problemes raides (comme les IFS) a cause de leur manque de stabilité. En effet,
le critere de stabilité (CFL par exemple) restreint la valeur du pas de temps. Elle diminue
ainsi lorsque le maillage se raffine. Alors, bien que la résolution pour un pas de temps soit
peu cotiteuse, la résolution globale du probleme devient alors tres cotiteuse puisque le nombre
de pas de temps augmente pour mener une simulation sur une période de temps donnée. A
I'opposé, les intégrateurs implicites cotitent plus cher a chaque pas de temps mais sont tres
efficaces pour les problemes raides (jusqu’au 17¢ ordre pour des systémes mécaniques [166))
et inconditionnellement stables. Le choix de la longueur du pas de temps dépends alors seule-
ment de la précision recherchée et non pas d’un critere de stabilité. Toutefois, il semble diffi-
cile d’implémenter des méthodes d’intégration totalement implicites, notamment pour les ap-
proches étagées de résolution d'TF'S. Ainsi, les schémas mixtes (IMEX : implicite/explicite) ou
de Runge-Kutta explicite diagonalement implicite et a valeur uniforme sur la diagonale (ES-
DIRK : explicit single diagonal implicit Runge-Kutta) [157] sont les plus populaires [164, 165].
Memes s’ils sont performants, ils n’ont cependant pas les mémes propriétés de stabilité que
les méthodes totalement implicites. En effet, dans le domaine des écoulements incompres-
sibles (EDA d’index 2), les schémas ESDIRK possedent I'inconvénient majeur de réduire la
précision en temps sur la pression (premier ordre) ce qui restreint fortement leur utilisation.
Avec I'approche IMEX la composante raide (les équations fluides et structurelles) est traitée
avec un schéma implicite pour des raisons de stabilité. Toutefois, ce schéma est souvent un

intégrateur ESDIRK. L’autre composante non-raide (les termes de couplage) est intégrée a
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I’aide de schémas explicites d’ordres élevés pour obtenir une grande précision en temps a
moindre cofit.

Le tableau 2.13 expose une compilation de quelques contributions a l'intégration en temps
dans le contexte des interactions fluide-structure. Bien que les approches d’ordres élevés
(supérieurs a 2) soient de plus en plus utilisées pour la simulation des écoulements fluides,
on constate qu’elles restent marginales dans le domaine de I'TF'S. De plus, elles sont souvent
utilisées comme un simple outil ou “boite noire”, sans aucune vérification de leurs efficacités
présumées. Ainsi, 'application de schémas d’ordres élevés sur des problemes d'TFS soulevent
plusieurs questions : sont-ils encore stables pour des problemes raides d’IFS? Conservent-ils
leur efficacité théorique sur des domaines déformables ? Leur précision est-elle conservée avec
des écoulements incompressibles ?

La plupart des études prennent bien en compte la déformation du maillage en introdui-
sant des sortes de lois de conservation géométriques mais sans vérifier les trois niveaux de
conformité précédemment décrits. Seulement trois auteurs [164, 165, 149] s’intéressent a cet
aspect, au moins partiellement, avec des études de convergence en temps. Hiibner et al. [149]
confirment D'efficacité de leur schéma d’intégration en temps de Galerkin discontinu d’ordre
3 a l'aide d'une étude de convergence sur le cas d'un piston en mouvement 1D dans un
liquide non-visqueux. Sur le méme cas, van Zuijlen et al. [164] vérifient que leur approche
IMEX d’ordre élevé est plus efficace qu'une approche monolithique avec un schéma BDF du
deuxieme ordre (BDF2). Toutefois, le schéma BDF2 est aussi efficace que le schéma IMEX
d’ordre 3. De plus, I'étude de raffinement en pas de temps n’est pas concluante concernant
I'ordre de la précision en temps puisque les taux de convergence sont calculés par rapport au
colit de calcul et non pas par rapport a la longueur des pas de temps utilisés. Finalement,
ils observent un comportement instable de 'intégrateur IMEX lorsque la longueur du pas
de temps augmente, méme pour un probleme linéaire. Ceci peut s’expliquer par le fait que
I’approche IMEX n’est pas inconditionnellement stable puisqu’elle utilise un schéma explicite
pour résoudre les termes de couplage. Yang et Mavriplis [165] ont développé une approche
fortement couplée basée sur des méthodes BDF et ESDIRK. Ils construisent spécialement
leurs différents schémas d’intégration en temps pour satisfaire la GCL. Leurs nombreuses
études de convergence en temps confirment que l'utilisation de méthodes d’intégration
d’ordres élevés donne des résultats stables et précis. Toutefois, seulement le schéma BDF2
maintient son ordre de précision en temps théorique. Ainsi, l'intégrateur BDF3 (non
L-stable) devient instable pour de larges pas de temps, notamment lorsqu’interviennent des
modes structurels de hautes fréquences. De méme, 1'utilisation du schéma ESDIRK d’ordre
4 révele un taux réduit de convergence autour de 3. Aucune explication n’est avancée par

les auteurs pour expliquer ces réductions d’ordre. Cependant, on peut penser que cela est en



Auteur, Année  Couplage  Int. temp. Ordre ALE GCL Etude Inc.
conv.

Wall étagé At?>  oui oui non oui

1999 [162] ?

Matthies étagé bloc-Newton ? oui non non oui

2003 [160] implicite

Jan étagé Euler expli- At! oui oui non oui

2004 [161] cite/ERKA4

Hiibner mono. Galerkin At3  oui  oui oui oui

2004 [149] discontinu

de Bortoli ? ERK At'  oui non non non

2005 [167]

Dettmer étagé a-méthode At? oui oui non oui

2006 [163] généralisée

Valdés-Vasquez étagé a-méthode At? oui non non oui

2007 [168] généralisée

Yang étagé ESDIRK Attt oui oui oui non

2007 [165]

van Zuijlen étagé IMEX At*  oui oui oui non

2007 [169)] (ESDIRKA4)

Wood étagé  BDF2/Newmark At>  oui oui non oui

2008 [152] amorti

De Nayer étagé. BDF2/Newmark At>  non - non oui

2009 [3] amorti

Présente étude mono. IRK AtS oui  oui oui oui
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Tableau 2.13 Caractéristiques de quelques schémas appliqués aux IFS. Couplage (étagé (se-

gregated), mono.

: monolithique), intégrateur en temps pour le fluide/la structure(IMEX :

implicite/explicite Runge-Kutta, ERK : Runge-Kutta explicite, IRK : Runge-Kutta impli-
cite), la précision en temps annoncée, utilisation d’une approche ALE, respect de la GCL,
occurence d'une étude de convergence en temps et incompressibilité de 1’écoulement.
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partie dii a la maniere explicite de traiter I'interface entre fluide et structure.

Finalement, a cause de la complexité de résolution des IF'S; nous n’avons trouvé aucune étude
utilisant une approche temporelle totalement implicite lors de notre revue de littérature.
Pourtant, ce type d’approche permettrait une amélioration notable de la précision et surtout

de la stabilité des schémas.

Un dernier questionnement important survient lorsqu’on traite la partie structurelle du
probleme d’interaction. En effet, comme présenté par Valdés-Vasquez [168], les non-linéarités
géométriques de la structure induisent un transfert d’énergie entre un nombre infini de modes
de déformation. Si 'intégrateur en temps n’est pas adapté, ces non-linéarités peuvent intro-
duire des oscillations parasites de hautes fréquences lors de simulations sur une longue période
de temps. Les méthodes de Newmark sont donc abandonnées au profits de schémas amortis
(Bossak ou a-méthodes généralisées) qui augmentent la dissipation pour les modes de hautes
fréquences sans trop dégrader la précision en temps contrairement au schéma de Newmark
amorti dont l'ordre est réduit a 1 [170, 163, 168, 152, 3]. De méme, les méthodes ESDIRK
sont construites de maniere a amortir les modes de hautes fréquences [164]. Cependant, la
dissipation numérique supprime également les modes structurels réels de hautes fréquences.
Ce phénomene peut étre évité en utilisant des schémas de Runge-Kutta totalement impli-
cites, sans aucune dissipation numérique, comme présenté dans la présente étude. En effet,
I’excellente stabilité de ces schémas prévient naturellement toutes oscillations parasites sans

tronquer la physique du probléme (voir section 5.1.3).

2.3.3 Schéma de Runge-Kutta implicite Radau-I1TA

La section 2.3.1 a mis en évidence les difficultés de stabilité et de précision rencontrées par
les schémas d’intégration en temps pour résoudre des problemes raides. Il est donc primordial
de choisir une méthode stable et précise pour simuler les interactions fluide-structure en
grands déplacements qui présentent non seulement un systeme d’EDA d’index 2 a cause de
I'incompressibilité du fluide mais aussi une grande raideur créée par les grands déplacements

structurels.

Tout d’abord, la simulation de problemes IFS instationnaires requiert le calcul dun
grand nombre d’inconnues (fluide+structure+couplage) sur de longues périodes de temps
pour saisir les phénomenes instationnaires. Les méthodes d’intégration d’ordres élevés
semblent donc une voie intéressante afin de réduire les temps de calcul. Les méthodes a
pas unique sont alors plus avantageuses que les méthodes a pas multiples qui ne sont pas

A-stables pour un ordre supérieur a 3. Les mémes raisons de stabilité poussent logiquement
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a l'utilisation de méthodes implicites.

Parmi les méthodes implicites a pas unique, on se concentre sur les méthodes de Runge-Kutta
(IRK). Elles sont construites de différentes manieres. Les méthodes dites de Radau-IIA
et Lobatto-IIIC sont A-stables, L-stables et précises pour les équations raides d’apres le
tableau 2.10. Malgré un ordre de convergence supérieur pour un méme nombre de pas temps,
les méthodes de Gauss ne sont pas L-stables. De plus, dans le cadre des EDA d’index 2, elles
subissent une importante réduction d’ordre de convergence comme le montre le tableau 2.12.
On remarque d’ailleurs que les méthodes SDIRK d’ordres élevés sont a proscrire lorsqu’on
veut traiter un fluide incompressible car elles sont seulement linéaires en pression. Quid alors
des méthodes ESDIRK ? Finalement, les méthodes Radau-IIA sont plus précises d'un ordre

que les méthodes Lobatto-1IIC dans tous les cas.

2.3.4 Une nouvelle approche d’intégration en temps

Le choix d’une approche monolithique implicite basée sur une méthode d’intégration
IRK de Radau-ITA pour résoudre des problemes d’interactions fluide-structure est donc
entierement justifié tant au niveau de la stabilité que de la précision. Pourtant, d’apres la
revue de littérature présentée a la section 2.3.2, cela semble étre une nouveauté a plusieurs
points de vue. Tout d’abord, les méthodes de Runge-Kutta utilisées ont toujours une part
explicite, notamment pour gérer les termes d’interface. On propose dans cette présente étude
une approche reposant entierement sur des méthodes implicites de Runge-Kutta a la fois
pour le fluide, la structure et les termes de couplage. De plus, contrairement aux méthodes
multipas, les IRK n’ont pas besoin de dissipation des hautes fréquences pour rester stables,
meéme pour des ordres de précision élevés. D’ailleurs, la plupart des études sur les interactions
fluide-structure sont menées avec des schémas d’ordre inférieur ou égal a 2. Certains travaux
utilisent tout de méme des schémas d’ordres 3 et 4 mais ne vérifient pas le maintient de cette
précision lors de leur application a des problemes raides d’interaction fluide-structure. La
présente étude utilise des schémas IRK d’ordre 1 a 5 et étudie leur précision dans le cas de

problemes raides.

2.4 Conclusion

Cette revue de littérature met donc en lumiere le besoin d’améliorer encore les modeles
numériques pour simuler les phénomeénes provoqués par un profil oscillant méme si de nom-
breux progres ont été faits dans les dernieres années. Les améliorations doivent notamment

porter la résolution des équations instationnaires visqueuses de Navier-Stokes (nécessaires
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pour modéliser la physique complexe des profils oscillants) dans le contexte de problemes
d’interaction fluide-structure. L’introduction d’une flexibilité du profil ainsi que le mou-
vement induit d’un profil autopropulsé complexifient d’autant plus la modélisation de ces
phénomenes d’interactions fluide-structure mais donne déja des résultats prometteurs dans
le domaine de la propulsion. Afin de résoudre efficacement ces problemes fortement couplés, il
apparait alors nécessaire d’améliorer les schémas d’intégration en temps tant pour des raisons
de stabilité et que de précision, et donc de temps de calcul.

Le but du présent travail de recherche est donc de simuler numériquement des processus
d’extraction de puissance d'un écoulement fluide et de propulsion grace a un profil flexible
en grands déplacements. Pour atteindre ce but, on établit plusieurs objectifs spécifiques :

— Développer les outils nécessaires a la simulation numérique dun profil oscillant en

grands déplacements ;

— Développer une approche précise et rapide de calcul des phénomenes d’interaction

fluide-structure instationnaires ;

— Vérifier 'approche sur des solutions analytiques et avec des données expérimentales ;

— Appliquer la méthodologie a une large gamme de mouvement de profils flexibles oscil-

lants en grands déplacements.
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CHAPITRE 3

METHODOLOGIE

La mécanique est le paradis des sciences mathématiques, car c’est avec la mécanique qu’on
touche au fruit mathématique.

Léonard de Vinci

Pour remplir les buts et objectifs définis dans les chapitres précédents, on met en place une
approche spécifique aux problemes d’interaction fluides-structure en grands déplacements. La
méthodologie et le code numérique de simulation s’appuient sur nos précédents travaux de
maitrise [109] auxquels on ajoute 5 volets spécifiques. Tout d’abord, il est important de réaliser
une analyse dimensionnelle rigoureuse des phénomenes d’IFS afin d’en faire ressortir les va-
leurs caractéristiques. Dans un second temps, on présente la modélisation mathématique
de ces phénomenes grace aux équations appropriées. Le troisieme volet important de la
méthodologie concerne la gestion particuliere de la déformation du maillage pour des grands
déplacements. Les techniques d’intégration en temps sont I'objet de la quatrieme partie. En-

fin, on expose la stratégie de résolution s’appuyant sur la méthode des éléments finis (MEF).

3.1 Analyse dimensionnelle

Notre revue de littérature (voir chapitre 2) a clairement mis en lumiere le manque d’'un
systeme de notations unifié pour les problemes d’interaction fluide-structure. Chaque auteur
utilise en effet son systeme propre et il est alors difficile de comparer les différentes études.
De plus, les valeurs caractéristiques ne sont pas toujours clairement identifiées de sorte que
les études paramétriques ne s’interpretent pas toujours aisément. Enfin, dans le cadre de
simulation numérique, il est important d’adimmensionnaliser correctement les équations car
cette opération agit comme un préconditionneur naturel des équations et facilite la tache du
solveur.

Une analyse dimensionnelle rigoureuse des phénomenes d’interaction fluide-structure est donc
nécessaire pour combler ces lacunes et classer les différents types de problemes d’interaction

fluide-structure.

3.1.1 Hypotheses

Cette analyse se veut la plus générale possible. Toutefois pour qu’elle soit pertinente on

va tenir compte des hypotheses qui s’appliquent dans le cadre de notre étude :
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— I’écoulement est considéré laminaire ;

— le fluide et le solide sont contenus dans des domaines disjoints;

— il n’y a pas d’échange de masse entre les deux milieux;

— la température y est uniforme et constante dans le temps;

— le fluide est incompressible ;

— on néglige la gravité;

— il n’y a pas d’amortissement structurel.

3.1.2

Variables d’un probleme général d’IF'S

Malgré les hypotheses considérées, l'analyse dimensionnelle reste indépendante des

équations utilisées et repose simplement sur les différents variables du probleme.

De Langre [171] les classent en trois types :

— Les variables indépendantes :

les coordonnées géométriques x = (z,y, 2) ;

le temps t.

— Les variables dépendantes :

dans le fluide : la vitesse uy et la pression p;

dans la structure : la contrainte o et le déplacement x.

— Les parameétres physiques et les données :

parametres physiques du fluide : masse volumique p; et viscosité dynamique gy ;
parametres physiques de la structure : masse volumique ps, module d’Young E et
coefficient de Poisson v ;

données communes au fluide et au solide : longueur caractéristique du domaine [ ;
données propres au fluide : une vitesse de référence U, et une pression de référence py ;
données propres au solide : un déplacement de référence &g

données propres au solide rigide : une masse m, un angle de rotation 6y, une

amplitude de battement hg et une fréquence d’oscillation fy.

Ainsi, pour un temps ¢ et une position spatiale x donnés, on peut exprimer la dépendance

de chaque variable dépendante U en fonction des divers parametres caractérisant le probleme :

U(X7 t) = f (Xutvpfulufapsa E7 v, lOv U07p07£07m7 907 hOv f(]) (31)
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3.1.3 Analyse couplée

Dans les cadres des problemes d’interaction fluide-structure, on procede a une ana-
lyse dimensionnelle couplée en considérant que les variables dépendantes de chaque milieu
dépendent des parametres physiques des deux milieux. Ainsi, grace au théoreme de Vaschy-
Buckingham [171], ou théoreme de 7, on peut réduire le nombre de variables dans la rela-
tion 3.1 en considérant des parametres adimensionnels. Ils sont construits par combinaison
des variables dimensionnelles, en considérant seulement leurs dimensions physiques [171, 172]

(M :masse, L :longueur, T :temps) :

x] = L Uo] = LT

t] =T po] = ML7'T?
los] = ML ] = L

) = MLAT m] = M

o = ML ) = 0

E] = ML'T? h = L

v =0 [fo] = 77

] = L [U] = variable

On observe qu’il existe au moins trois parametres dimensionnellement indépendants :
pr,lo, Uy pour 16 grandeurs caractérisant les problémes d’interaction fluide-structure, en
considérant U une variable dépendante quelconque. Le théoreme de Vaschy-Buckingham in-
dique alors qu’il existe (16—3) = 13 grandeurs sans dimensions 7; caractérisant completement
le probléme (dont une concernant la variable dépendante). On peut former ces nombres de

différentes manieres selon le choix du noyau de 3 grandeurs dimensionnelles. Si on prend
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arbitrairement py, ly, Uy comme noyau, on obtient les 12 nombres adimensionnels suivants :

(

U1

Uy’

3

Ty

5

6

7

s

9

10

11

12

P U
s Ut
asz b rres
Py o’ Ug*
a4 1baT7CH
Pitlo Up" ps
PRI USE
Py
a7lb7 c7
Py to Yo Po
aslbg 085
Py to Yo <o
s UPm
pjﬁlo lglo Uglo 90

p?“ 110711 UOCII hO

b
ptjlcm l012 Ugw fO

X
lo

Ut

lo

i
prolo

x* : position adimensionnelle

t* : temps adimensionnel

Re™! : nombre de Reynolds

My, : nombre de Masse (flexible)

Cy' : nombre de Cauchy

v : coefficient de Poisson

Eu : nombre d’Euler

D : déplacement réduit

M, gige : nombre de Masse (rigide)

Oy : angle de rotation

h§ : amplitude de battement adim

f* : fréquence réduite
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La construction de ces parametres fait ainsi apparaitre des nombres adimensionnels clas-

siques :

— Re : le nombre de Reynolds mesure I'importance relative des vitesses de convection
et de diffusion visqueuse. A trés bas Reynolds (ordre 100), les phénomenes visqueux ne
sont donc pas négligeables.

— Myje, : le nombre de masse pour une structure flexible représente le rapport des
densités du fluide et du solide. C’est un terme de couplage.

— (v : le nombre de Cauchy reflete le couplage entre le fluide et la structure. Il mesure
I'ordre de grandeur des déformations (liées a F) consécutives a la pression dynamique
psUZ. Plus le nombre de Cauchy est grand, plus la structure immergée est flexible.

— v : le coefficient de Poisson permet de caractériser la contraction de la matiere
perpendiculairement a la direction de 'effort appliqué. Il est compris entre 0 et 0.5.
Plus sa valeur se rapproche de 0.5 et plus la structure devient incompressible (pas de
changement de volume).

— Fu : le nombre d’Euler représente le rapport des forces de pression sur les forces
d’inertie (il peut servir a caractériser les pertes de pression dans un fluide en mouve-
ment).

— M,igige : 'équivalent du nombre de masse pour une structure rigide.

— f* : la fréquence réduite permet de déterminer dans quelle mesure le mouvement
du solide peut modifier ’écoulement. Lorsque sa valeur est petite devant 1, la distance
parcourue par une particule fluide pendant une période d’oscillation est grande devant la
longueur de la structure. L’écoulement se comporte comme si les oscillations n’existaient
pas et on dit qu’il est quasi-stationnaire, c’est a dire qu’a chaque instant on peut le
considérer stationnaire pour chaque position instantanée de la structure. Par contre,

plus f* sera grand, plus on devra tenir compte de l'instationnarité du systeme.
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Le 13e nombre adimensionnel w3 = U* concerne la variable dépendante étudiée U et

s'écrit w3 = U :

u
T3 = ,0?13[813U§13uf = 7’[ vitesse adimensionnelle
0
Ty = p;zclgllons Usep = ppr 5 pression adimensionnelle
0
Pour U:
Ty = pjﬁ”’lglgUgmx = % déplacement adimensionnel
0
_ a1371b1377C13 o (e . . .
my = pPlPUg o = i contrainte adimensionnelle
\ PrYo

On peut maintenant réécrire I’équation (3.1) pour m3 = U* le nombre adimensionnel

approprié pour U :
U*= f (2", t", Re, Mfieq, Cy, v, Eu, D, Mygige, 00, ho, ) (3.2)

Toutefois, il faudra adapter ’analyse dimensionnelle aux différents cas que ’on rencontre.
En effet, les parametres caractérisant les phénomenes et leurs valeurs caractéristiques varient
d’un cas a 'autre comme le montre le tableau 3.1. Habituellement, on considere la vitesse du
fluide en entrée U,, comme vitesse caractéristique : Uy = U;nf. Toutefois, dans certains cas
particuliers, cette vitesse n’est plus caractéristique du probléme (cas de profils autopropulsés)
et peut méme étre nulle (notamment dans un cas de hovering). Ainsi, d’autres nombres
adimensionnels seront plus adaptés a certains cas particuliers, comme par exemple ¥ =
Us/Up. Enfin, on note qu’on pose habituellement : py = p,Ug et & = Iy de sorte que Eu = 1
et D=1.

Types de structures pr g | ps | E|v|l| Uy po | & | m |0y | ho | fo
Rigide statique X | X X | Us | pyUS

Rigide oscillante X | X | Us | pUS X | X | X
Flexible encastrée X | x| x| x| x| x]|Ux]|pU2] lo

Flexible oscillante X | x| x| x| x| x]|Ux]|pU2] lo x | x | x
Rigide autopropulsée x | x X | folo | pyUS x | x| x| x
Flexible autopropulsée || x | x | x | x | x [ x| folo | pUZ [ lo | x | x | x | x

Tableau 3.1 Parametres pertinents pour différents problemes d’IF'S.
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3.1.4 Cas particuliers
Structure rigide statique

C’est le cas classique d’aérodynamique sans structure. D’apres le tableau 3.1, on a (8—3) =
5 nombres adimensionnels caractéristiques du probleme. L’expression 3.2 se simplifie donc
ainsi :

U*= f(x*,t", Re, En) (3.3)

Ce type de probleme est donc essentiellement caractérisé par le nombre de Reynolds.

Structure rigide oscillante

Pour un profil rigide oscillant, on obtient 8 nombres adimensionnels caractéristiques :
U*: f(x*,t*,Re,Eu, 907 8>f*) (34)

Certains auteurs préferent définir une fréquence adimensionnelle en tenant compte de I'am-
plitude de battement et remplacent la fréquence réduite f* par le nombre de Strouhal :
St = hif* = 2fhy/Us. Toutefois, le nombre de Strouhal devrait plutot étre défini grace a la
fréquence propre du fluide et non grace a la fréquence d’oscillation du solide. C’est pourquoi

on préfere 'appellation de fréquence réduite.

Structure flexible encastrée

Pour les problemes d’IFS simples sans mouvement de corps rigide (structure flexible

encastrée), 9 nombres adimensionnels caractérisent le comportement du systeme :
U*: f(x*vt*aReu Mfle:mCTaya EU—; D) (35)

On voit ici apparaitre les parametres caractéristiques de la structure v et D mais surtout

les parametres caractérisant le couplage IFS : My, et Cy. Dans certaines situations, il est

intéressant de définir la vitesse réduite Ugp = Up/\/E/ps = +/Cr/Mfie, qui détermine
I'intensité du couplage IFS [171] : si Ugr << 1 : couplage faible (écoulement statique), si
Ur =~ 1 : couplage fort et si Ur >> 1 : couplage faible (aéroélasticité).

Structure flexible oscillante

Si on rajoute une flexibilité au profil oscillant, 4 nombres adimensionnels supplémentaires

apparaissent : My, Cy,v et D. L’équation 3.2 s’écrit alors a l'aide de 11 parametres adi-



o8

mensionnels :
U* = f(a*,t", Re, Myeq, Cy, v, Eu, D, 0y, hy, f) (3.6)

Trois dynamiques différentes sont alors en interaction : celle de I’écoulement fluide Uy, celle
des oscillations du solide fyly et celle des déformations de la structure \/m . Les parametres
Myier, Cy et f* font ressortir le couplage de ces trois dynamiques. Le temps caractéristique
dépend alors de la dynamique dominante du probleme étudié. On suppose ici que la dyna-
mique de 1'écoulement est encore prépondérante en gardant t* = Uyt/ly comme échelle de

temps adimensionnelle.

Structure rigide autopropulsée

Dans le cas d'un profil rigide autopropulsé, le mouvement de la structure est induit par les
efforts aérodynamiques qui s’exercent sur elles. Ces efforts sont provoqués par le mouvement
d’oscillation du solide ce qui crée une poussée le propulsant. La vitesse de référence n’est donc
plus celle du fluide U,, (qui peut étre nulle), mais celle du solide en mouvement. Toutefois,
cette vitesse u,,, n’est pas un parametre mais une nouvelle variable dépendante. On définit
donc une vitesse caractéristique grace a la fréquence f, d’oscillation du profil : Uy = foly.
Ainsi, il y a un nombre adimensionnel en moins puisque f* = 1 remplacé par un nouveau
nombre, le rapport des vitesses ¥ = U,,/Uy. On obtient I'expression suivante en remplagant

Uy par folg dans les expressions des nombres adimensionnels :
U>/< = f ([L’*’E*’R(B,EU., Mrigideaemh();aﬁ) (37)

Si la vitesse du fluide a I'infini U, n’est pas nulle, on en tient compte dans la définition ’échelle
de vitesses (comme si on changeait de repére) et on définit alors les vitesses adimensionnelles

(pour le fluide et la masse ponctuelle) ainsi :

u—U. U
e oo (3.8)
py folg

Le nombre de Reynolds s’exprime alors comme Re=
1223
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Structure flexible autopropulsée

Le cas le plus général d'IF'S qu’on va rencontrer dans cette étude est le probleme d’un

profil flexible autopropulsé. Comme on vient de le voir, on redéfinit Uy = fyly et on obtient :

U* - f ([L’*,E*,RQ Mfle:c>CT>Va Eua Da Mrigideae()ah'aaﬁ) (39)
* Uy
_ _ 1
up Il (3.10)
* Ump
= — = 3.11
mp lo fo (3.11)

Cette analyse dimensionnelle a défini les parametres adimensionnels caractérisant les
problemes d’interaction fluide-structure. Ceci permet une uniformisation des notations et
facilite ainsi la comparaison des différentes études par similitude. L.’adimensionnalisation des
équations a la section 3.2.5 fera ressortir ces mémes parametres adimensionnels et facilitera

leur résolution par le solveur numérique.

3.2 Equations

La modélisation mathématique de la physique d’un processus est un choix crucial afin
que les simulations numériques soient le plus réalistes possible. Dans le cadre des interac-
tions entre un écoulement laminaire a bas Reynolds et une structure en grand déplacement,
il faut modéliser 4 sous-ensembles. Premierement, le fluide est décrit par les équations de
Navier-Stokes incompressibles. Ensuite, la structure est régie par I’équation d’équilibre de
Cauchy et par les lois de comportement géométriquement non-linéaires. L’interface fluide-
solide forme le troisieme sous-ensemble ou les équations d’équilibre doivent étre vérifiées.
Enfin, le déplacement de corps rigide est modélisé par une masse ponctuelle.

On rappelle que pour traiter les interactions fluide-structure, on utilise une formulation
Eulerienne-Lagrangienne arbitraire (Arbitrary Lagrangian Eulerian, ALE) permettant le cou-
plage d'une approche lagrangienne pour la structure (repere non-déformé) et eulérienne pour
I'écoulement (configuration déformée). Ainsi, contrairement au cas stationnaire, on n’aura pas
besoin d’utiliser la méthode du Lagrangien Actualisé [109]. Les équations sont donc présentées
sous la forme appropriée a I’approche ALE et les notations sont illustrées sur la figure 3.1.
La formulation eulérienne sera associée a la configuration déformée dénotée par 'indice 1. La
configuration non-déformée est dénotée par I'indice 0. Le lecteur intéressé pourra trouver de

plus amples détails sur I'approche ALE dans I'article de Lacroix et Garon [129].
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Figure 3.1 Notation du probleme fluide-solide selon la configuration.

3.2.1 Equations fluides

A bas Reynolds, on peut considérer le fluide comme imcompressible. L’écoulement est
ainsi décrit par les équations instationnaires de Navier-Stokes : continuité et conservation de

la quantité de mouvement [173]. On les écrit sous leur forme convective (non-conservative)
dans Q} :

V. u;=0 (3.12)
pfuf,t+pfuf-Vuf :V-O'f—l—ff (313)

Dans un systeme de coordonnées arbitraire dépendant du temps, les équations de quantité

de mouvement non-conservatives (3.13) s’écrivent :
pfuﬁt—l—,of(uf—um) -Vuf = V-Uf+ff (314)

ol u,, est la vitesse de maille, py la densité du fluide, uy la vitesse du fluide et o ¢ le tenseur
des contraintes fluides (incluant pression et forces visqueuses). Les équations (3.12) et (3.13)
sont exprimées dans un systeme de coordonnées Eulérien alors que I'équation (3.14) est une

formulation d’Eulerienne-Lagrangienne arbitraire (Arbitrary Lagrangian Eulerian, ALE). En
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supposant que le fluide est Newtonien, sa loi de comportement est donnée par :

O'f:Tf—pI (315)
= ps[Vuy + (Vug)'] - pl

ol py est la viscosité dynamique et p la pression du fluide.
Les équations fluides sont mathématiquement fermées par les conditions frontieres sui-

vantes :

op-ny =ty sur I, (3.16)
u; = T sur I, (3.17)

oul {V représente une frontiere du fluide ou des conditions de Neumann s’appliquent sous la
forme de forces surfaciques (de tractions) ty, et FfD correspond a une frontiere de Dirichlet

sur laquelle la vitesse, Ty, est imposée.

3.2.2 Equations structurelles

Le comportement de la structure est régi par les équations différentielles d’équilibre de
Cauchy exprimées sur la configuration initiale non-déformée par une formulation de Lagran-

gien Total dans QY :

psust + V.o, +£,=0 (3.18)
S (3.19)

avec ps la densité du solide, ug la vitesse solide, x, la déformation solide et f; le champ de
forces volumiques dans le solide.
Afin de modéliser les grands déplacements de la structure (non-linéarités géométriques),

on considere une structure de Saint-Venant Kirchhoff dont la loi de comportement s’écrit :
o,=Fo, avec o= \tr(E)I+2uE (3.20)

ol A et g sont les constantes de Lamé telles que :

Ev E
G-z & = Eel) =537

Xs = Egi(v) =

F =1+ Vx, le gradient de la transformation et E le tenseur de déformations non-linéaire
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de Green-Lagrange s’écrivant :

E=_(F'F-I) =2 (Vx,+ V'x, + V'x,Vx,)

DO | =
N | —

ol le dernier terme fait ressortir les non-linéarités quadratiques géométriques.

Les équations 3.18 et 3.19 sont complétées par les conditions aux limites suivantes :

o) n=t, sur 'y (3.21)

Xs = Xs sur '}, (3.22)

Pour plus d’informations sur les modeles structuraux et leurs lois de comportement
en grands déplacements, on réfere le lecteur au chapitre II de notre précédent travail de
maitrise [109].

3.2.3 Interface fluide-structure

L’interaction entre le fluide et la structure passe physiquement par leur interface conjointe.
La modélisation de cette interface va donc assurer le couplage fluide-structure grace aux

équations de continuité suivantes pour la vitesse, les efforts et les déplacements :

uy = u, non-glissement sur I'y, (3.23)
o.-ng+oy-np = 0 équilibre des contraintes sur I', (3.24)
X; = Xs continuité des déplacements sur I'y, (3.25)

ol o5 est le tenseur habituel des contraintes fluides et o est le tenseur de Cauchy exprimant

les contraintes solides en configuration déformée :

. FO’kFT
- J

(e

(3.26)

ou J = det(F).
On précisera dans la section 3.3 concernant la déformation de maillage la définition du

déplacement fluide X, sur l'interface non-déformée I',.

3.2.4 Equations de la masse ponctuelle

Lorsqu’on veut simuler un mouvement libre de corps rigide en réponse aux forces
aérodynamiques f,,; = f,.., agissant sur ses frontieres, on modélise le solide par une masse

ponctuelle dont la dynamique est régie simplement par la seconde loi du mouvement de
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Newton :

MUyt = fewt (327)

ump = me,t (328)

ou m est la masse du solide, u,,, sa vitesse et Xx,,, son déplacement.

Si on impose un mouvement forcé aux frontieres du solide, celui-ci se superpose au mou-
vement libre de corps rigide comme décrit a la section 4.4.1. En outre, dans le cas ou le
solide est en partie flexible, on modélise la partie rigide par une masse ponctuelle alors que
la partie flexible est régie par les équations 3.20. La force s’exercant sur la masse ponctuelle
provient alors en partie de la structure de sorte qu’on remplace la force dans ’équation 3.27
par fext = faero + fsotide- e mouvement de la partie rigide est alors transmis a la partie
flexible implicitement, tout comme pour une interface fluide-structure simplifiée (vitesse et
déplacement uniformes sur 'interface).

Ainsi, sur les interfaces entre la masse ponctuelle et le fluide I'7, et entre la masse ponc-

tuelle et le solide I';,, on peut écrire :

fewt = /
I

Ces deux intégrales sont considérées comme des variables secondaires et seront calculées

o1 - fuydl + / oo frgdl (3.29)
N

Iy

implicitement par la méthode des réactions (voir section 3.5).

3.2.5 Adimensionalisation des équations

Suite a l'analyse dimensionnelle de la section 3.1, on a fait ressortir les parametres
caractéristiques des différents problemes d’interaction fluide-structure que l'on se propose
d’étudier. Il est donc intéressant de procéder a I’adimensionalisation des équations présentées
pour faire directement intervenir ces parametres caractéristiques. En outre, cette démarche
est parfois méme nécessaire pour des raisons numériques. En effet, sans ce préconditionneur
naturel, les ordres de grandeurs des coefficients peuvent étre trop éloignés et ainsi empécher
le solveur de converger.

On montre que les équations adimensionnelles se déduisent des équations dimensionnelles
par simple composition linéaire quelque soit le cas étudié. En annotant d’un astérisque (*) les

valeurs adimensionnelles, le systeme global adimensionné s’écrit ainsi sous la forme générale
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suivante :
eq. 3.12-(lj—0 : V.ou; = 0
eq. 3.13-% Coppe + o) (U —ul) - V)up = —Vp' 45V - (uf) + £
eq. 3.16-p 1Uo2 (15¢ (uf) —p'I) Dy = f; sur T'),
eq. 3.17-Ui0 : u; = u; sur F],;
eq. 3.18-pl—0Ug : P +V o (FNitr(E)+ 2 E]) + £ =
eq. 3.19-501: u; = X
eq. 3.21-m : (F\Ntr(E)YI+2uE])-n = t, surl%
eq. 3.22-% : X, = XxXi surly
eq. 3.23-Ui0 : u; = u; surly
oq. 3.24. ﬁ . F [A:tr(E)IJ+ 2u:E| F" B o= - (¢ (w) —pT) By sur Ty,
eq. 3.25-% : X; = Xx: surly
eq. 3.27-pl—0Ug : may, . = £,
eq. 3.28-70 : U, = X

ou ¢ (u}i) = [Vu} + (Vu})T]. De plus, par définition F, E et J sont déja des grandeurs adi-
mensionnées. Enfin, pour éviter de surcharger les notations, on note également V le gradient
adimensionnalisé V* = [,V et

ou* ou*

f f *
—L = {y—L = tHu
ot* 0ot 0= st

uj . =

On note alors que deux problemes seront similaires s’il y a similitude géométrique et si les
coefficients du systeme d’équations a résoudre sont égaux. Les définitions de ces coefficients
dépendent des cas étudiés et des parametres caractéristiques associés. La similarité totale
entre deux problemes géométriquement similaires sera donc vérifiée lorsque leurs parametres
caractéristiques (nombres adimensionnels définis a la section 3.1) seront égaux. Enfin, on

suppose dans la présente étude des forces extérieures nulles : £ = f; = 0,f; =f; = 0.
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Dans la suite, on développe 'adimensionnalisation de chaque équation afin de faire ap-
paraitre les parametres caractéristiques des problemes d’interactions fluide-structure. Afin de

se placer dans un domaine espace-temps adimensionalisé, on pose :

= z/ly (3.30)
= t/ty = tUs/lo (3.31)

Dans la présente étude, on considere la corde du profil comme longueur caractéristique [y = c.
En outre, on définit habituellement la vitesse du fluide en entrée comme la vitesse ca-
ractéristique Uy = U,,. Toutefois, dans certains cas, il est intéressant de définir la vitesse
caractéristique d’une maniere plus appropriée. Ainsi, on note qu’en posant Uy = foly dans
le cas d’un profil autopropulsé, on obtient une échelle de temps plus adaptée : * = fyot. En
effet, I’échelle de temps propre au solide parait plus adéquate que celle du fluide pour étudier

la physique de propulsion profil oscillant (surtout si Uy, = 0).

Equations fluides

Afin d’adimensionnaliser les équations fluides, on pose :

u; = us/Up (3.32)
p* = p/po (3.33)
P = prg (ainsi Eu=1) (3.34)
f7 = lofy/ (psU5) (3.35)
t, = ty/ (psU7) (3.36)
u; = uy/Uy (3.37)

Vioui= 0 (3.38)
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et I’équation de quantité de mouvement 3.14 s’adimensionnalise comme suit :

lo
rUE [/)fuft+pf( uf—uy) - Vuy = —Vp+u,V-[Vus+ (Vuy)'] +ff}
lo ugy u;  uy, Uy P
O (Do) o) (L) = - v (L
Us UO+(UO UO) (o )<Uo 0\ p U2
ey Uy T
0V - |,V W'V
- lopsUs [0 <U0) i <U0))]
ly
+ f
piUS
u} .+ (u’} —u;,) - Vu,” = =V
1 * * * * * %
+ 5V [Viu) + (Viup)'] + £ (3.39)

Ainsi les équations dimensionnelles et adimensionnelles sont reliées par la composition linéaire

utilisant :

py = L (3.40)
1

Concernant les équations aux frontieres 3.16 et 3.17, on obtient :

1 ( _
——( (pr |Vusy + (Vuy) pl =t )
prg ( f[ ! f } ) ny f
/J,flo ~ 1 -
v v — I = t
(lonUoz[ uy o+ (V) ng) Y
1 _
* * * B * f
<§ v u; +(V I) n, = t; surly (3.42)
ﬁo(uf = )
u; = u; sur ry (3.43)

Dans les cas étudiés, on considere des contraintes nulles (condition libre) sur les
frontieres de type Neumann : f; = t; = 0. Sur les frontieres de type Dirichlet, on impose
habituellement Uy = U, en entrée et des vitesses nulles ailleurs. Ainsi, on a dans tous les

cas ﬁ} = 1 en entrée et ﬁ} = 0 sur les autres frontieres de Dirichlet.

Remarque : dans le cas ou la vitesse caractéristique du probleme Uy est différente de la

vitesse d’entrée Uy, (par exemple profil oscillant autopropulsé), il faut faire attention au fait



qu’il y a un parametre de similarité supplémentaire sur la frontiere :

_ U
-7

Equations solides

On procede de la méme maniere avec les équations solides en posant en plus :

u; = us/UO

X: = X,/lo (onsuppose D =1)
£ = lofs/ (psU3)

&, = T/ (os05)

X: = X/l

L’équation 3.19 s’adimensionalise directement :

1 1
_uS — - s
U Uy lo X"

u; = X:,t*

Pour I'équation de Cauchy 3.18 en utilisant :

Ev FE

A= EnW) = gy o e Bl =5

on obtient :

L (prttae + V- (PN + 2] +£, = 0)
prUs
&l_ous’t + !

0
prUs Uo — psUS psUG

Eg E
Mflexu:t*+V*~(F{ g(z) ir(B) + 220 >ED+f; =0
7 0 psUs
1

E) + 2 CST)EDH; = 0

V™ (F Mstr(E)I+ 2u,E]) + f, = 0

psU,
Mjiepu e + V- ( {
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(3.44)

(3.50)

(3.51)
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Ainsi on passe des équations dimensionnelles aux équations adimensionnelles en utilisant :

Ps = Myiex (3.52)
. oaly) 1 v
NS TGO w) (3:53)
* 92(1/) 1 1
- - 54
Hs Cr  Cr2(1+v) (3:54)

En divisant les équations 3.21 par (p;UZ) et 3.22 par Iy on obtient les conditions aux

limites adimensionnelles pour la structure :

F gl(lj) t’f’(E)I + 292(V)E n = f: sur F?V (355)
CT CT
X: = x,° surl% (3.56)

A Texception des efforts du fluide a linterface, la structure n’est pas soumise a d’autres
. s , . . Tk - .
contraintes dans la présente étude. Ainsi, t, = t; = 0. Par contre, on peut imposer un

mouvement a la structure sur sa frontiere non-mouillée par des conditions de Dirichlet.

Dans le cas d’un profil oscillant, ce mouvement est décrit par les équations présentées a

la section 2.1.2 :

0(t) = 0O, + Opsin (27 fot + ¢)  rotation
h(t) = hgsin (27 fot) battement

On impose ainsi a chaque point de la frontiere de coordonnées initiales (x.,y.) les conditions

suivantes :
_ | cos(0(t)) —sin(0(t)) Te 0
X Lm(e(t)) cos(®(t) ] [y ’ h(t)] 0
Ainsi en divisant par [y on obtient :
s cos(6(t*)) —sin(6(t*)) xl 0
= 3.58
X:(F) [sm(e(t*)) cos(8(#)) ”y * h*(t*)] (3.38)
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avec :
O(t") = 0Ou + Opsin <27Tf0[l]—0t* + qﬁ) = Opp + O sin 27 f*t" + ¢) (3.59)
0
R*(t") = hisin (27TfolU—0t*) = hgsin (27 f*t7) (3.60)
0

On observe alors que les conditions aux limites de Dirichlet seront similaires si et seulement

si on a égalité des grandeurs adimensionnelles suivantes :

0., = 0 dans les cas étudiés (3.61)
b = 0o (3.62)
o = —g dans les cas étudiés (3.63)

l

o= 07{)0 (3.64)

by = flL_OO (3.65)

Equations d’interface

Pour adimensionnaliser les équations d’interface, il est tres important de s’assurer de
la compatibilité avec les équations fluides et structurelles adimensionnalisées. Comme on
a procédé de facon similaire pour les équations du fluide et de la structure, on en déduit
facilement les équations adimensionnelles suivantes en divisant respectivement les équations

par Uy, p;UZ et Iy :

u; = u; surly (3.66)

F | 20U (E)+ 222E| FT LN
¥ ‘ng, = — @C (u}) —pT) -0y Ty (3.67)
X; = x: surly (3.68)

La composition linéaire pour passer aux équations d’interface adimensionnelles se fait

avec les coefficients suivantes :

W= — (3.69)

voooaw 1 v (3.70)

o= 20— (3:71)
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Notons que dans le cas d’un profil oscillant rigide (sans équations structurelles), les
équations d’interface se résument a des conditions de type Dirichlet afin d’imposer le mou-

vement sur l'interface-frontiere :

u; = u, surly, (3.72)

X; = X, surly, (3.73)

Le mouvement adimensionné : est alors défini par 1’équation 3.58 et la vitesse u; par

I’équation suivante obtenue de la méme maniere en divisant par Uy :

0

e ey | SOE)  cos(B(t) | |
W) = 6t ” | pees

’ cos(f(t*)) —sin(6(t*)) Ye

] (3.74)

Ces conditions seront alors similaires si les grandeurs adimensionnelles suivantes sont

conservées :

lo fo
= = 3.76
ro- (3.76)

h.
e o= 2 (3.77)

lo

Equations de la masse ponctuelle
Enfin, en posant :

u,, = Uu/U (3.78)
f;;t = fext/ (pflgUg) (380)
(3.81)

les équations de la masse ponctuelle s’adimensionnalisent simplement en divisant

'équation 3.27 par (p,I3UZ) et I'équation 3.28 par U :

* _ *
Mm’gide ump,t* - femt

Wy = X (3.83)

Les problemes impliquant une masse ponctuelles seront alors similaires si le nombre de
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masse est conserveé :

m

— 3.84
prl (3:84)

*
m = Mrigide =

On note que cette adimensionnalistion est compatible avec ’équation 3.29 qui devient :

£ / o . dF+/ o. . dI
o — —_— N — _ . ns_
! Iy, prg ! l% Iy, prg l%

-

Similitude des problemes

of - fpdl™ + / 0" - idl (3.85)

Iy Iy

L’adimensionalistion des équations confirme ’analyse dimensionnelle des problemes d’in-
teraction fluide-structure et on retrouve les parametres adimensionnels comme coefficients de
similarité. Le tableau 3.2 résume les nombres adimensionnels caractéristiques, selon le type

de structures étudiée.

Types de structures Re | Myiex | Cy | v | Myigige | 0o | hg | f5 | U
Rigide statique X - -] - - -l -] -1
Rigide oscillante X - - | - - X | x| x | 1.
Flexible encastrée X X X | X - - - - | 1
Flexible oscillante X X X | x - X | x| x| 1.
Rigide autopropulsée X - - - X X | x| 1.] X
Flexible autopropulsée || x X X | x X X | x| 1.] X

Tableau 3.2 Nombres adimensionnels caractéristiques de similitude pour différents problemes
d’TF'S.

3.3 Déformation du domaine fluide

Lorsqu’on étudie les interactions fluide-structure, on remarque que ’approche ALE rend
incompatibles les deux formulations utilisées pour le fluide (eulérienne) et le solide (lagran-
gienne). En effet, lors de la résolution, les déformations du solide ou les mouvements d’une
frontiere fluide nécessitent la déformation du domaine fluide a chaque pas de temps. Or,
dans une approche eulérienne ceci est impossible car le volume de controle est fixe. On doit

donc déformer la partie fluide pour rendre les deux formulations compatibles a ’aide d’une
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approche pseudo-solide [121]. L’approche pseudo-solide classique décrite dans la premiere sec-
tion utilise des équations d’élasticité linéaire qui permet de déformer correctement le domaine
fluide dans la plupart des problemes d’interaction fluide-structure [174]. Toutefois, pour de
tres grands déplacements, on doit adapter cette méthode, soit en utilisant un zonage du
domaine comme exposé dans la seconde partie, soit en utilisant des équations non-linéaires

comme présentée dans la troisieme section.

3.3.1 Approche pseudo-solide

Afin de déformer le domaine fluide selon les mouvements et les déformations solides,
I’approche pseudo-solide identifie le domaine fluide & une structure élastique. Dans ’approche
classique, la déformation du maillage x; = xps est alors régie par les équations habituelles
d’élasticité linéaire stationnaires. Ainsi, a chaque pas de temps, la forme du domaine fluide
épouse la nouvelle géométrie solide. En utilisant une forme linéaire du tenseur de Green-
Lagrange E,; et une loi de comportement de Saint-Venant Kirchhoff, on obtient les équations

d’élasticité linéaire suivantes :

V.o = 0 dans Q (3.86)

avec 1 o7 =0y = Apstr (Eps) I + 24, Eps (3.87)
1

By = 5 (VX + VIX,) (3.88)

ol 7ps €t pp,s sont les coefficients de Lamé propres au pseudo-solide. Ils peuvent alors étre
considérés comme unitaires partout dans le domaine fluide ou alors étre adaptés dans les zones
de grands déplacements (proche des frontieres en mouvement et interfaces) afin d’éviter des
déformations néfastes des mailles. En pratique, on augmente le module d’Young localement
des éléments concernés afin de prévenir des déformations trop importantes menant au replie-
ment du maillage.

L’équation d’équilibre de Cauchy pour le pseudo-solide est complétée par les conditions

aux frontieres suivantes :

Xps = Xops sur F%SO - Iy, (3.89)
o]’ -np= t, sur Iy — Ty, (3.90)

ol X, €t t,s sont respectivement les déplacements et les forces imposés au pseudo-solide.

Sur l'interface fluide-solide, I’équation de continuité des déplacements présentée a la sec-
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tion 3.2.3 prends alors tout son sens :

Xf = Xps = Xs sur 1—‘IO (391)

On note alors qu’on n’impose pas la continuité des contraintes a l'interface entre le solide
et le pseudo-solide. Ceci permet au pseudo-solide de se déformer librement tout en n’offrant
aucune résistance au déplacement du solide. Il ne s’agit en fait que d’un artifice de calcul
qui n’influence pas la physique du probleme. En outre, cela permet un libre choix de lois de

comportement du pseudo-solide (on pourrait considérer une loi non-linéaire).

3.3.2 Zonage du maillage

L’approche pseudo-solide classique permet de traiter de grands déplacements de la struc-
ture. Toutefois, pour des amplitudes extrémes, il peut étre avantageux de faire un zonage
du domaine et d’'imposer le déplacement des frontieres de certaines zones. On ne parle donc
pas ici des grandes déformations liées aux structures flexibles mais plutot des grands mou-
vements de corps rigides (rotations et translations) imposés aux frontieres solides. Un profil
rigide oscillant est un excellent exemple.

Ainsi, pour de tres grandes amplitudes de rotation (i.e. 65 > 70°), on peut introduire
une zone pseudo-solide circulaire autour du profil (maillage plus clair sur la figure 3.2) qui
est 'aire d’intérét. On impose a ses frontieres le méme mouvement que celui du profil de
sorte que I’ensemble du maillage de cette zone subisse un mouvement de corps rigide. Ainsi,
les mailles autour du profil rigide ne se déforment pas. A 'extérieur du disque, la deuxieme
zone pseudo-solide se déforme plus facilement puisque les mailles sont de plus grandes tailles
comme le montre la figure 3.2 ce qui empeéche le repliement. Certes, la qualité du maillage est
alors moindre dans cette zone mais, se trouvant a ’extérieur du domaine qui nous intéresse
le plus, 'impact négatif sur les résultats est réduit.

L’utilisation d’une approche pseudo-solide facilite grandement le zonage du domaine de
calcul. Il n’y a aucune modification a effectuer aux frontieres des zones puisqu’on applique
simplement des conditions de non-glissement. Ainsi, les différentes zones fluides sont traitées
implicitement comme un seul domaine fluide. Les noeuds de calcul sur les frontieres ne sont
donc pas dédoublés et appartiennent aux zones de part et d’autre de I'interface fluide-fluide. Il
n’est donc pas nécessaire de faire glisser le maillage ou de s’occuper des conditions d’interfaces,
tout ceci est implicite. Bien entendu, si les mouvements relatifs entre deux zones sont trop
importants le maillage va se déchirer et il faudra alors songer a utiliser des techniques de
remaillage en parallele. Une approche adaptative permettrait d’utiliser en majeur partie un

pseudo-solide pour déformer le maillage et de remailler le domaine lorsque les mouvements
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Figure 3.2 Maillage déformé pour un angle de rotation 6, = 90 .

des frontieres sont trop importants.

3.3.3 Approche non-linéaire

L’approche pseudo-solide classique possede 'avantage majeur d’étre linéaire et donc peu
couteuse. Toutefois, dans le cadre des problemes d’IFS en grands déplacements, il existe
deux grandes limitations. Premierement, comme on I’a vu, on doit adapter les propriétés
du pseudo-solide afin de gérer au mieux la déformation du maillage. Mais cette technique
n’est pas automatique ni évolutive. On doit en effet définir par ”expérience” les zones (du
domaine non-déformé) ou le risque de déformation du maillage est le plus élevé. Il n’y a
donc aucun critere objectif concernant la qualité du maillage. De plus, cette approche ne
s’adapte pas bien aux problemes instationnaires ou les zones de grandes déformations varient
avec le temps, pouvant passer d’une forte compression a un fort étirement. La deuxieme
limitation est directement liée a la nature linéaire de ’approche restreignant les déformations
du pseudo-solide a sa zone "élastique” sous peine de repliement lorsque les ”contraintes”
(dues aux grands déplacements) sont trop fortes.

On propose deux adaptations de la méthode classique afin d’éliminer ces deux limitations.
Tout d’abord, en développant une approche automatisée évolutive non-linéaire utilisant des
criteres de qualité pour le maillage. Ensuite, en linéarisant cette approche pour tenter de

réduire les cotits de calcul dus a la non-linéarité des équations précédents.

A. Equations non-linéaires

Afin d’obtenir une approche automatique et évolutive, on adapte I’approche classique en
ajoutant un critere sur la qualité du maillage. En pratique, on adapte le module d’Young

local d'un élément grace a une fonction f dont I'argument est un critere de qualité C; au
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temps ¢ :
Elocal(t) - Elocal(o)f (Cq(t)) (392)

Ce critere supplémentaire doit empécher une trop forte déformation des éléments de maniere
automatique (on ne cherche pas ici a évaluer la forme optimal de 1’élément en fonction de
la solution & obtenir). Dans leur rapport, Duval et Guillard [175] définissent un critere de
qualité géométrique pour les éléments triangulaire afin de localiser les éléments présentant une
déformation importante. C’est le rapport entre les rayons des cercles inscrit r et circonscrit

R a chaque élément :
r(t)
R(t)

Selon ce critere, I'élément optimal est le triangle équilatéral avec C, = 1/2. Un élément tres

Coeo(t) =

déformé sera alors caractérisé par un C, tendant vers 0. Les auteurs adoptent toutefois une
stratégie de remaillage (global puis local) qu'on tente d’éviter ici car trop couteuse dans le
cadre de simulations instationnaires.

On va utiliser ce critere en considérant que le maillage non-déformé a une bonne qua-
lité géométrique. On veut donc au moins préserver la qualité de chaque maille malgré les

déformations. On pose alors :

C1geo (0)
Cgeo(t)

Elocal(t) = Elocal(o)f (Cq(t)) - Elocal(o)

Ainsi, si Cyeo(t) = Cyeo(0), le module d’Young reste inchangé, si Cy,(t) — 0, £ augmente
pour diminuer la déformation et enfin si Cye,(t) — 1/2, E diminue de maniere a ce que la
maille puisse tendre vers un triangle équilatéral. Si en outre on pose : Ejeqi(0) = 1/Cye0(0),

on obtient : )

Coeolt)

Comme C, dépend de la déformation au temps ¢, cette méthodologie rend ’approche non-

Elocal (t) -

linéaire mais automatique, plus besoin de spécifier le module d’Young des éléments, et
évolutive, plus 1’élément se déforme et plus son module d’Young augmente, empéchant les

repliements du domaine fluide sur lui-méme.

B. Equations linéarisées

[’adaptation proposée fonctionne tres bien mais, par sa non-linéarité, augmente le temps
de calcul de maniere importante (pratiquement le double)! On recherche donc une maniere
linéaire de déformer le maillage tout en s’appuyant sur l'instationnarité du probleme. On

peut linéariser I’équation (3.92) en procédant de maniere explicite. Pour calculer le module
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d’Young au temps ¢ on utilise le critere de qualité au temps précédent (¢ — 1) :

Elocal@) = Elocal(o) X f (Cq(t - 1)) (393)

Toutefois, cette approche linéarisée crée une oscillation des modules d"Young lorsqu’on avance
dans le temps. Si les déplacements de la structure sont trop grands, ces oscillations divergent
au bout d'un moment ce qui mene au repliement. En effet, si on arrive a limiter fortement la
déformation d’une maille grace a un fort module d’Young, le module d’Young a t,,,1 devient
plus petit puisque la déformation est tres faible. Or, la maille subit toujours des ” contraintes”
tres fortes dues a la physique de 1’écoulement. Donc, un faible module d’Young E couplé a
une grande contrainte induisent une déformation importante du maillage. Au temps suivant,
on a alors un module d"Young grand et donc une petite déformation. Ce phénomene se répete
alors jusqu’a mener en général au repliement de la maille comme le décrit la table 3.3.

Cette approche linéarisée a l'avantage d’étre automatique contrairement a l’approche
classique. Toutefois, le décalage en temps (formulation explicite) crée une instabilité de la
méthode pour les problemes raides, c’est a dire lorsqu’il y a de grandes déformations dues a
de grands déplacements structurels.

L’utilisation d'une approche non-linéaire apparait ainsi inévitable si on veut traiter des
problemes d'TF'S en grands déplacements sans remailler le domaine a chaque pas de temps.
Mais alors, bien qu’il n’y ait pas d’interpolation de la solution a effectuer, ’approche n’est

plus forcément plus économique en termes de temps de calcul.

3.4 Intégration en temps

La simulation numérique des phénomenes d’interaction fluide-structure instationnaires
nécessite une résolution en temps des variables. La méthode d’intégration en temps doit
étre efficace et robuste afin de faire face aux problemes raides que représentent les IFS en

grands déplacements. On présentera ainsi dans un premier temps, les schémas habituellement

Temps . tl tg t3 t4 t5
Déformation physique : o\ N+ | |++ ~ |+++| 7 | ++++
Déformation du maillage : | 0 | 2| + [\l 0 | 2| ++ N\ 0
TN NN ) N\ )
Module d’Young : Eo| = \||Eo| /| + | \ Ey |/ ++

Tableau 3.3 Evolution du module d’Young pour ’approche linéarisée
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utilisés d’Euler implicite et de Crank-Nicolson. On verra ensuite la nécessité d’utiliser des
schémas d’ordres supérieurs comme ceux de Runge-Kutta implicites. Enfin, on exposera la
formulation adéquate des intégrateurs en temps permettant le respect de la loi de conservation
géométrique (GCL).

On note que pour rester consistant, on utilise le méme schéma d’intégration en temps

pour le fluide, la structure, le pseudo-solide et la masse ponctuelle.

3.4.1 Schémas d’Euler et de Crank-Nicolson implicites

Comme souligné dans la revue de littérature, les schémas d’intégration en temps d’ordre
inférieur a 2 sont les plus répandus dans le cadre des problemes d’TFS. Ils ne nécessitent pas
I'introduction de sous-pas de temps implicites entre les pas de temps de calcul. Ceci facilite
leur implémentation. Nous considérons ici les schémas implicites d’Euler (ordre At!) et de
Crank-Nicolson (ordre At?), plus stables que les schémas explicites.

La méthode d’Euler implicite ( Backward Euler) repose sur une approximation des dérivées
d’une fonction y par une différence finie décentrée :

, y(t) —y(t — At)
y'(t) = A7

Ainsi, appliquée a une simple équation différentielle ordinaire (EDO) ¢ = ¢(t, y), on obtient :

y(t) = yt— Al) + Ato(t,y(t))
d’ou y(n-‘rl) _ y(n)—l—At¢(t(n+l),y(n+l)) (394)

ot t D) =) 4 Aty = y(¢) et y"*tY = y(t + At). Le schéma d’Euler implicite est alors
d’ordre 1 en temps. Le schéma de Crank-Nicolson permet d’augmenter la précision en temps

a l'ordre 2 [174, 176] en moyennant la méthode d’Euler implicite et d’Euler explicite :

y(t) —y(t = At)

y'(t) = At Euler implicite
y'(t— At) = y(t) = yA(f —4Y) Euler explicite

y() —y(t =AY y'(t) +y'(t - Ab)

Al = 5 Crank Nicolson
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Appliqué a 'EDO vy’ = ¢(t,y), le schéma de Crank-Nicolson s’écrit :

2
Pty D) 4 () )
2

y(t) =yt —At) +At

dotr gyt = y™ +At (3.95)

Le schéma de Crank-Nicolson étant implicite, il possede de bonnes propriétés de stabilité.
Toutefois, la solution numérique peut contenir des oscillations parasites si le probleme est
trop raide (et le pas de temps trop grands) comme indiqué a la section 2.3. C’est pour
cette raison, que beaucoup de chercheurs préferent utiliser le schéma d’Euler implicite pour
les problemes raides d’interaction fluide-structure en grands déplacements. En effet, méme
si sa précision en temps est moindre, il est inconditionnellement stable et ne génere pas
d’oscillations parasites. Si on souhaite utiliser des schémas d’intégration en temps d’ordre
supérieur, on doit donc chercher des modeles présentant les mémes propriétés de stabilité

que celles du schéma d’Euler implicite.

3.4.2 Schémas de Runge-Kutta

La revue de littérature (voir section 2.3) a mis en lumiere les trés bonnes propriétés de
stabilité des schémas de Runge-Kutta Radau-IIA pour faire face a des problemes raides. On
retrouve naturellement ces propriétés avec le schéma d’Euler implicite puisque ce dernier est
en fait le schéma de Radau-ITA d’ordre 1. On utilise trois schémas implicites d’intégration
en temps de Runge-Kutta : les schémas de Radau-IIA du premier (IRK1), troisieme (IRK3)
et cinquieme (IRK5) ordres. Ces schémas sont respectivement précis aux 1¢", 3¢ et 5¢ ordres
pour la vitesse et les déplacements et aux 17, 2¢ et 3° ordres pour la pression. D’apres
Hairer et al. [1], comme la pression est un multiplicateur de Lagrange pour l'incompressibi-
lité, les équations de Navier-Stokes pour les écoulements incompressibles sont des systemes
d’équations différentielles algébriques (EDA) d’index 2. Cela induit une précision en temps
réduite pour le champ de pression.

Pour mieux comprendre les effets des schémas IRK d’intégration en temps, on illustre leur
utilisation sur ’exemple d’EDO suivante : ' = ¢(t,y). Un schéma IRK général s’applique a

cette équation de la fagon suivant :

yin-ﬁ-ci) =™ 4+ At Z aij¢(t(n+cj)’ yin-i-cj)), fori=1,...,s (3.96)
j=1
YD =y ALY b (1) ) (3.97)

i=1
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ot t("*¢) signifie ™) 4 c;At. Ce systeme est alors résumé de maniere compacte sous la forme

d’un Tableau général de Butcher :

C1 ayr ... QA1g
Cg Qg1 ... Qgg
by ... bs

Suivant Hairer [1], pour tous les schémas IRK, on a ay = b;, pour @ = 1...s afin d’assurer
la L-stabilité. Ainsi, I’étape de projection définie par I’équation (3.97) peut étre mise de
coté. Remarquons aussi que les schémas TRK sont construits de maniere a avoir la propriété

suivante : ¢; = Y 1, i, fori =1...s.

A. IRK a l’ordre 1
Le Tableau de Butcher pour le schéma IRK du premier ordre s’écrit comme suit :

1 1
IRK1 1

Ainsi, on peut résumer le schéma IRK1 (Euler implicite) en une seule ligne :
y "D =y 4 Aty D) (3.98)

B. IRK a l'ordre 3
Pour I'IRK3, le Tableau de Butcher se présente sous la forme suivante :

1/3 | 5/12 -1/12
1 3/4  1/4
IRK3 | 3/4 1/4

ce qui se traduit par la formulation suivante :

At

. . DAL n n n n
y( +1/3) — ( )_|_ 5 (b(t( +1/3)’y( +1/3)) _ E¢( ( —I—l)’y( +1)) (399)
3At At
y(n-i-l) _ y(n) + ; ¢(t("+1/3),y("+1/3)) + I¢(t(n+l)’y(n+l)) (3.100)

On note alors que deux pas de temps implicites sont couplés. Comparé a IRK1, on double

alors le nombre d’inconnues lors de la résolution du probléme instationnaire de ¢t & ¢t(*+1).
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C. IRK a l’ordre 5

Enfin, le schéma Radau-IIA5 peut se résumer ainsi :

(4-v/6)/10 (88-7v/6)/360  (296-169+/6)/1800 (-2+3v/6)/225
(44+/6)/10 | (296+169/6)/1800  (88+7v/6)/360  (-2-31/6)/225
1 (16-1/6) /36 (16++/6)/36 1/9

IRK5 (16-1/6)/36 (164+V/6)/36 1/9

ce qui se traduit en :

3
y ) =y £y a Atg () y ) (3.101)
=1
3
YD =y 13 gy Atg(t0e) ) (3.102)
=1
3
y ) =y 1y g Aty ) (3.103)
j=1

Trois pas de temps implicites sont alors couplés, triplant le nombre d’inconnues par rapport
a IRKI1.

D. IRK a l’ordre 7

Il est intéressant d’étudier des schémas IRK d’ordres encore plus élevés pour deux raisons
principales. Tout d’abord, passer d’un schéma d’ordre ¢ a un schéma d’ordre ¢ + 2 requiert
une augmentation de I’espace mémoire de plus en plus petite quand ¢ croit, pour tendre vers
1. En effet, 'espace mémoire nécessaire au calcul est proportionnel au carré du nombre de

pas de temps couplés : Mem(q) x s* = (¢ + 1)*/4. On a ainsi :

2
Memlg +2) (q+3) ' 1 (3.104)
q—00

Mem(q) q+1

Ensuite, il est intéressant d’utiliser des IRK d’ordres élevés pour simuler précisément des
comportements a basses fréquences induits par des phénomenes hautes fréquences. En effet,
une grande précision en temps permet de résoudre avec exactitude les phénomenes hautes
fréquences tout en ne résolvant le probleme qu’a intervalles de temps grands correspondant au
comportement basses fréquences étudiés. L’étude du galop d’un cylindre dans un écoulement
en est un parfait exemple. La période du galop est longue mais la résolution nécessite une
bonne précision temporelle pour capter les lachers tourbillonnaires, a plus hautes fréquences,

responsables du galop. Toutefois, il n’est pas nécessaire d’avoir la solution du probleme a ces
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hautes fréquences mais seulement en quelques points de la période de galop. D’ou 'utilité de
schémas de IRK d’autres tres élevés. Dans cette optique, on a déterminé les coefficients du

tableau de Butcher constituant I'RK d’ordre 7 avec 4 pas de temps implicites :

C1 11 Q12 a13 Q14
Co (21 Q22 A23 A4
C3 az1 a3z az3 (34
1 Qg1 Q42 Q43 Q44
IRK7 by by b3 bs

avec les ¢; suivants pour le calcul des temps implicites :

1 1

— arccos = arccos =
c1 = Y ﬂi cos <\/%) +\/§sin ( 50) +4—5
! 7 245 3 3 105

(/%) (/)
arccos | —— arccos | ——
Co = ’ @l — COSs 50 —l—\/gsin \/% —|—4—5
2 7 245 3 3 105
(/%)
arccos | ——

50 2 45
c3 = ' £—Cos o0 + —

7 245 3 105
Cy = 1

Les coefficients b; vérifient le systeme linéaire suivant faisant intervenir une matrice de

Vandermonde V :

1 1 1 1 by 1

C1 Cp C3 C4 by | | 1/2

A & A& a bs | | 1/3

A o d by 1/4
N, y >

Les b; s’obtiennent ainsi aprés inversion de la matrice de Vandermonde V' :

d1 0 0 0 CoC3 —(02 + c3 + 0203) Co + C3 + 1 -1
V_l - 0 d2 0 0 —C1C3 c1 + Cc3 + cic3 —(Cl + c3 + 1) 1
0 0 dg 0 C1Co —(Cl + o+ 0102) Cc1 + cy + 1 —1

0 0 0 d4 —C1C9C3 C1Co + CoC3 + C1C3 —(Cl + co + Cg) 1



ol les coefficients de la matrice diagonale D s’écrivent :

1
R PRy oy
g = 1
’ (1 —c2)(es = ca)(e2 — 1)
g = 1
’ (1 —c3)(cs —ca)(ez — 1)
d4 - 1

(1 — Cl)(l — 02)(1 — Cg)

Ainsi les b; s’expriment :

1 1—2(c2+c3) + beacs

b, —
! 12(1 = ¢1)(cs — 1) (ca — 1)
b — 1 1-2(c1 +c3) +6eics
? 12 (1 — ¢3)(c5 — 2)(co — 1)
1 1— 2(01 + 02) + 60102
bg - -
12 (1 — 63)(03 — 02)(03 - Cl)
b 1 3—4(c1 + o+ c3) + 6(crea + cacz + c3¢1) — 12¢1¢9¢3
4 = 5

12 (1 — Cl)(l — 02)(1 — 03)

On vérifie que S27b; = 1.

Enfin, les coefficients a;; du tableau de Butcher se déduisent de la formule suivante :

Q51 Ci
;2 _ V_l 012/2
;s /3
Qg ct/4
[ cf c} ‘i
ay; = dl C1C9C3 — 5(02 + C3 + 0203) + g(CQ + C3 + 1) — Z
.4 ¢ t
19 = dg —cic3 + E(Cl + c3 + 0103) — 3(01 “+c3 + 1) + Z

=~ el it _a
a3 = 3 |C1C2 2(01+02+0102)+ 3(Cl+02+1) 1

_ s C_% B C_if c_i‘
a1y = d4 C1CaC3 + 9 (6102 -+ CoC3 + 0103) 3 (Cl + (&) -+ 03) + 4



21

22

23

(24

a3

32

a33

34

(€751

42

43

Qa4

dy

da

ds

G & c3
CyC3 — E(CQ + C3 + 0203) -+ 3(02 + C3 -+ 1) — Z

i & c &
—C1C2C3 + E(Cl +c3+ 0163) — g(cl +c3+ 1) + Z

[ 2 G A c
C1Cy — E(Cl + Co + 6102) + 3(01 + Co + 1) — Z

da

ds

T c c
—C1C5C3 + 5(6102 -+ CoC3 + 0103) — 3(01 + (&) -+ 03) + Z

[ 2 G g c
C2C3 — 5(02 + C3 + 6203) + 3(02 + C3 + 1) — Z

TG g c
—C1C5 -+ 5(01 + C3 + 0103) — 5(01 + C3 + 1) +

4
[ c2 3 A
C1C2C3 — 53(01 + o + clcg) + gg(cl + coy + 1) — 23]

r 2 3 4
3

da

c c
—c1co0h + 53(0102 + cac3 + cc3) — 53(01 +ceo+c3)+ Z]

i 1 1 1
CoC3 — 5(02 —|—C3 + 0203) + g(Cg —|—C3 -+ 1) — Z

i 1 1 1
—C1C3 -+ 5(01 + C3 + 0103) — §(01 -+ C3 + 1) -+ Z

[ 1 1 1
C1Cy — 5(01 + co + 0102) + 5(01 + co + 1) — Z:|

i 1 1 1
—C1C2C3 + 5(0162 + CoC3 + 0163) — 5(01 + (&) -+ 03) + Z

E. Vérification sur un probleme simplifié

83

Afin de vérifier les valeurs des tableaux de Butcher pour les schémas implicites de Runge-
Kutta (et surtout IRKT7), on considere le probleme raide de Curtiss et Hirschfelder (1952)

présenté dans le livre d’Hairer et Wanner [1] :

1
y' = —=(y — cos(t)), avec : e = 0.0005
€

(3.105)
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Ce probleme a pour solution exacte la fonction suivante :

1+e) _ cos(t)  esin(t)
(t) = {y(0) — te 3.106
) = (40 = 15 ) e 350+ (3.106)

On simplifie la résolution du probleme, en remplacant y par sa solution exacte dans
I’équation 3.105 :

V= [(y@) HE)"”&* ool S costr (3.107)

€ 142 1+e ' 14e

ou y(0) = 0. On résout I’équation sur l'intervalle [0,1.5] avec 12 pas de temps différents :
8t; = 1.5/2°. Vi € [1 : 12] et les différentes méthodes d’intégrations présentées. La figure 3.3
présente les résultats obtenus en considérant I'erreur eRMS de la solution interpolée par une

spline cubique par rapport a la solution exacte :

eRMS =Y (y(t:) —N ye(t:)”

ou N est le nombre de pas temps t;.

T
100 - -
100 - -
10° - -
0w 107 :
E 10°° | -~ Euler explicite, |
o ——Euler implicite
10°+ ---CN -
—|RK3
—10
10 —=—|RK5 i
162 - IRK7 |
~14
10 L L Ll L L L] L L L] L L L
10" 10° 10° 10" 10°

Pas de temps

Figure 3.3 Convergence des méthodes d’intégration en temps pour une probleme simplifié.
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Lorsque la zone asymptotique est atteinte, on obtient bien les ordres de convergence
théoriques des différents schémas d’intégration en temps, notamment une convergence d’ordre
7 pour IRK7. On remarque d’ailleurs le début de phénomene de saturation de I’erreur puisque
le schéma IRK7 atteint le zéro machine (et on remarque que pour les grands pas de temps,
I'interpolation de la solution par une spline cubique induit une erreure prépondérante ce qui

provoque une augmentation de Ierreur).

3.4.3 Formulation respectant la GCL

La section 2.3 de la revue de littérature a souligné I'importance d’avoir une formula-
tion ALE respectant la loi de conservation géométrique (GCL), notamment au niveau de
I'intégration en temps. Parmi les approches existantes, nous reprenons celle présentée par
Etienne et al. [128] qui consiste & évaluer séparément la vitesse de maille u,, et sa divergence
V - u,, afin de respecter la GCL.

La forme faible des équations de Navier-Stokes est obtenue en multipliant 1’équation (3.14)
par une fonction test w et en intégrant le tout sur le domaine de calcul Q(t) se déformant

avec le temps ¢ :

d
w- pf%dﬁ (3.108)
Q)
+ W~{pf[(uf—um)~V]uf—i—VW:af}dQ:/ w - (o -n)dl’
Q(t) I (t)

Cette formulation est dite non-conservative car elle ne permet par I'application directe du
théoreme de la divergence. Si on considere la transformation 7®) de Q(0), le domaine de
référence, a (t), le domaine de calcul, comme réguliere pour tout temps ¢, i.e. de classe '),
injective et telle que son déterminant J(t) # 0 sur ©(0), on reformule I’équation 3.108 sous

sa forme conservative :

d
%/ w - ppupdQ) — / w - (V- up,)prupdQ (3.109)
Q(t) Q(t)

+ w-{pf[(uf—um)-V]uf+Vw:0'f}dQ:/ w- (o -n)dl
Qt) I (t)

Bien que ces deux formulations faibles conservatives et non-conservatives sont totalement
équivalentes d’un point de vue mathématique, elle ne le restent pas nécessairement lorsqu’on
procede a une discrétisation numérique des équations. La forme conservative correspond
a la forme générale des lois de conservation puisque son intégration sur un volume fixe €2

rend l'application du théoreme de la divergence possible, et produit un terme impliquant
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une intégrale surfacique. L’intégrale de surface représente alors le flux de masse sortant
du volume 2. Ainsi, I'importance de la forme conservative dans un schéma numérique
discret repose sur le fait que, si correctement prise en compte, la discrétisation de la forme
conservative mene a un schéma dans lequel tous les flux de masse a travers les frontieres
d’une maille vont s’annuler les uns les autres de sorte que le schéma numérique conservera

une masse totale constante. Ce traitement n’est pas possible avec une forme non-conservative.

Sur un volume Q(t) se déformant avec le temps, la divergence de la vitesse de maille
apparaissant dans la formulation conservative 3.109 doit en plus étre évaluée de maniere
A satisfaire la loi de conservation géométrique (GCL). Etienne et al. [128] ont développé
une construction systématique de cette divergence en imposant le respect des deux premiers
niveaux de la GCL sur la formulation conservative et obtiennent I’expression suivante pour

les schémas d’intégration implicites de Runge-Kutta :

wre) _ N o T — 0

1=1

si le maillage est constitué de triangles (ou tétraedres en 3D) a arretes droites se déformant

linéairement.

Concernant la vitesse maille, elle est construite de maniere a satisfaire le troisieme niveau
de conformité de la GCL a savoir assurer la méme précision en temps de 'intégrateur sur un
maillage se déformant que sur un domaine fixe. Cette construction se fait indépendamment

de celle de la divergence de la vitesse de maille et s’écrit pour les intégrateurs IRK :

s X("+Ci) — X(n)

(n+cj) — 0 et S S
ulr ) (x) =Y [ay] ~ j=1.s (3.111)

=1

si le maillage est constitué de triangles (ou tétraedres en 3D) a arrétes droites se déformant

linéairement.

L’utilisation de schémas implicites de Runge-Kutta d’ordres élevés va permettre la
résolution précise de problemes raides d’interaction fluide-structure en grands déplacements.
La grande stabilité des schémas de Radau-IIA élimine toutes oscillations parasites sans
induire d’amortissement numérique. En outre, la formulation respectant la GCL conserve la
grande précision de ces schémas (méme dans le cas d’écoulements incompressibles), induisant

un gain de temps de calcul notable.
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3.5 Stratégie de résolution

Le probleme d’interaction fluide-structure fortement couplé est résolu de maniere impli-
cite a ’aide d’une procédure éléments finis de Newton-Raphson. La stratégie de résolution est
donc basée sur une formulation monolithique totalement implicite adaptée de notre travail de
maitrise [109]. On fait donc ici un bref rappel des caractéristiques de la méthode d’éléments fi-
nis (MEF) utilisée, un résumé de I’approche monolithique implicite et une courte présentation

du solveur utilisé.

3.5.1 Méthode des éléments finis

La résolution numérique des systemes d’équations aux dérivées partielles présentées aux
sections 3.2 et 3.3 s’effectue a l'aide de la méthode des éléments finis (MEF). Elle repose sur
une formulation faible des équations qu’on discrétise sur des sous-domaines de calcul simples
appelés éléments.

La formulation faible des équations est semblable a celle présentée dans notre tra-
vail de maitrise [109]. On doit toutefois porter une attention particuliere au respect de
la loi de conservation géométrique (GCL) comme expliqué a la section 3.4.3. De plus,
la méthode des réactions [177] permet d’appliquer les forces fluides sur la structure
(flexible ou masse ponctuelle) de maniére implicite sans alourdir ni ralentir la phase de
résolution et ce indépendamment du type d’élément retenu. On récupere également les ef-
forts aérodynamiques totaux sans post-traitement des données grace au calcul implicite des
réactions nodales sur l'interface r".

Tres brievement on obtient les équations éléments finis en discrétisant la forme va-
riationnelle des équations obtenue précédemment. On découpe le domaine de calcul en
sous-domaines simples appelés éléments. On utilise la méthode de Galerkin qui consiste a
discrétiser la forme faible et a prendre comme fonctions tests les fonctions d’interpolation
de la solution. La discrétisation du domaine de calcul repose sur un maillage non-structuré
avec des éléments de type Taylor-Hood & 6 noeuds (P-P;). Cet élément est linéaire en pres-
sion et quadratique en vitesse et en déplacement comme illustré sur la figure 3.4. Il est a
noter que la pression est continue par morceaux. En outre, dans le cadre d’une approche
monolithique, un traitement implicite de toutes les conditions frontieres y compris celles a
I'interface est nécessaire. On utilise ainsi une discrétisation spéciale a I'aide d’éléments unidi-
mensionnels d’épaisseur nulle appelés éléments d’interface présentés sur la figure 3.4. Ils ont

pour fonction de communiquer les forces fluides au solide et d’imposer les déplacements du
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solide au pseudo-solide de maniere implicite. Ces éléments sont eux aussi quadratiques pour
les vitesses, les déplacements et les réactions nodales.

Ils assurent un couplage le plus intime possible entre le fluide et le solide comme c’est
illustré sur la figure 3.4. L’élément d’interface a gauche impose les relations de mouvement
Xps = X €t uy = u,. Autrement dit, il transmet le mouvement du solide (x, u,) au domaine
fluide, via la déformation du pseudo-solide x,, pour le déplacement. L’élément de droite
garantit 1’équilibre des forces de part et d’autre de I'interface grace aux réactions nodales :
rint = rje”t. Ainsi, les forces induites par I’écoulement du fluide sont transférées au solide qui
va subir des déformations. Cette boucle illustre tres bien le couplage implicite a I'interface.
Dans le cas d'un solide rigide modélisé par une masse ponctuelle, la boucle de couplage est
similaire. La seule différence réside dans le mouvement du solide rigide qui est uniforme tant

a sa frontiere I' qu’en son sein.

Domaine /_\,
Fluide Pseudo-solide Navier-Stokes
X ps (u f;pf)
Eléments Couplage Q--==0----@ Q----0----9Q Couplage
d’interface (g, )'(Xs:us)d',,____o____é dl>-----o----c:> rfmt' "

J J

Structure

o : Interpolant quadratique pour les vitesses et les déplacements
[]: Interpolant linéaire pour la pression

Figure 3.4 Maillage non-structuré : éléments de Taylor-Hood et couplage implicite a I'interface
fluide-structure.

3.5.2 Calcul des réactions pour les IRK

Avant d’assembler le systeme global, on introduit une variante implicite de la méthode
des réactions[177, 109]. On rappelle que cette méthode s’appuie sur une reformulation des

formes faibles des équations 3.14 et 3.18 pour faire apparaitre deux nouvelles inconnues, les
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condition de Neumann
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Cette méthode est la clef de voute de I'approche monolithique implicite. En effet, réc"t et r
permettent d’appliquer les forces fluides sur la structure de maniere implicite sans alourdir

ni ralentir la phase de résolution et indépendamment du type d’élément retenu.

Dans le cadre des schémas d’intégration en temps de Runge-Kutta, les réactions r" "< sont
calculées pour chaque sous-pas de temps implicites "¢, Or, ce ne sont pas des inconnues du
probleme mais des variables secondaires (issues des conditions naturelles de Neumann). C’est

"+1 ne correspond pas a la condition de Neumann de I’équation de mouvement au

pourquoi r
temps t"T! mais & une variable secondaire d’'un systéme d’équations couplées aux différents

sous-pas de temps implicites t"*¢. Plus précisément, r" "¢ est la réaction au temps :

S
ntc; __ LNt
ty —g a;;t
=1

Ln—l—l tn—l—l

Ainsi, pour extraire les efforts au temps on doit les reconstruire a partir de ces
réactions calculées r"*t¢. On “découple” en quelque sorte ces variables secondaires grace

au tableau de Butcher inversé. Par exemple, on obtient les efforts selon ¥ avec la formule
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suivante :
[ 171 n+c ]
all “ e ali .. als TI 1
1 .
LZ+ — all e a“ P ais 71;7/""02 (3113)
n—+c
_asl T Qg a'ss_ _Tz 5_

ou s est le nombre d’étages du schéma IRK et a;; représentent les coefficients du tableau de

Butcher associé.

3.5.3 Approche monolithique

La stratégie de résolution des équations présentées aux sections 3.2 et 3.3, repose sur une
approche monolithique [109]. Tous les degrés de liberté du probléeme de tous les sous-pas de
temps implicites sont ainsi couplés dans un seul systeme matriciel :

— vitesses et pressions dans le domaine fluide (uy,p);

— déplacements pseudo-solide dans le domaine fluide (x,,) ;

— vitesses et déplacements dans le solide (us, Xx,);

— vitesses et déplacements de la masse ponctuelle (Wyp, Xmp) ;

int) :

— réactions nodales sur 'interface fluide-solide (r

— réactions nodales sur la masse ponctuelle (r").

A chaque pas de temps, toutes les équations discrétisées, y compris celles correspondant
aux conditions d’équilibre a l'interface, sont donc assemblées dans un seul et méme systeme
global non-linéaire R (U(t)) = 0. Ce systeme est schématisé pour les trois principaux cas
étudiés sous forme d’une matrice globale : profil flexible (encastré ou oscillant) sur la figure 3.5,

profil rigide autopropulsé sur la figure 3.6 et profil flexible autopropulsé sur la figure 3.8.

A. Cas d’un profil flexible (encastré ou oscillant)

Pour les problemes d’interaction fluide-structure sans mouvement libre de corps rigide
(cas d'un profil flexible encastré ou oscillant), 11 inconnues forment le vecteur d’état : U =
[wg, pp WP P e X x I e, ui”t,xs,us}T, ot (") dénote une valeur sur U'interface.
Pour calculer ces variables, on dispose des équations présentées précédemment qui forment le
systeme global d’équations résiduelles R (U) = 0 illustré sur la figure 3.5. Les zones ombragées
indiquent la contribution de la forme faible correspondante et le symbole I, correspondant a

la matrice identité, traduit la continuité des inconnues a l'interface.
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Figure 3.5 Matrice globale pour le cas d’un profil flexible (encastré ou oscillant)

Ainsi, les lignes 1 et 2 correspondent aux équations de Navier-Stokes, les lignes 5 et 10
traduisent respectivement les équations de Cauchy pour le pseudo-solide et pour le solide et
la ligne 11 représente les équations des vitesses du solide. Ensuite, a Uinterface, les lignes
3 et 6 expriment respectivement la continuité des vitesses et des déplacements et la ligne
8 reflete la condition d’équilibre des forces fluides et solides. Enfin, la ligne 4 représente la
relation implicite entre les réactions du fluide et les autres inconnues alors que les lignes 7 et
9 expriment la méme sorte de relation implicite pour les réactions du solide.

La différence entre un profil encastré et un profil oscillant apparait seulement sur les
équations de conditions aux frontieres du solide (voir section 3.5.4).

Remarque : Malgré I'adimensionnalisation des équations présentée a la section 3.2.5,
les coefficients des équations structurelles et pseudo-solide peuvent prendre des valeurs tres
élevées qui déséquilibrent le systeme d’équations. Ainsi il arrive que le solveur diverge dans
les cas ou les modules d’Young sont importants (nombre de Cauchy tres faibles). Afin de
pré-conditionner le systeme d’équations, on propose de diviser les équations structurelles et
pseudo-solides par la valeur maximale du module d’Young, ce qui ne change en rien a la valeur
de la solution. Il n’est donc pas nécessaire de répercuter ces changements sur les équations

d’interface. En pratique, on note une nette amélioration de la convergence du solveur.
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B. Cas d’un profil rigide autopropulsé

Dans le cas d'un profil rigide autopropulsé, on considere le mouvement libre de
corps rigide d’un solide soumis aux forces fluides. On introduit donc une masse ponc-
tuelle pour modéliser le solide. Le vecteur d’état est alors formé de 9 variables : U =
[uf,pf,ul;,rg,xps, ng,rglp,ump,xmpf, ott (') dénote une valeur sur la frontiere mouillée

du solide rigide. La figure 3.5 présente le systeme global d’équations résiduelles a résoudre
R(U)=0.
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Figure 3.6 Matrice globale pour le cas d’un profil rigide autopropulsé

Tout d’abord, comme pour le cas A, les équations de Navier-Stokes sont représentées sur
les lignes 1 et 2, la ligne 5 traduit 1’équation de Cauchy pour le pseudo-solide et la ligne 4
représente la relation implicite entre les réactions du fluide et les autres inconnues. Ensuite,
les lignes 8 et 9 représentent les équations de la masse ponctuelle modélisant le mouvement
libre du solide. Enfin, les lignes 3, 6 et 7 expriment respectivement la continuité des vitesses,
des déplacements et des efforts a la frontiere mouillée du solide.

On doit ici noter I'importance de respecter 'ordre des équations de la masse ponctuelle
afin que la matrice résultante reste inversible (lignes 8 et 9). Les équations 3.27 et 3.28

gouvernant le mouvement de la masse ponctuelle se discrétisent avec un pas de temps At
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comme suit :

A
Uy = % SUL Xomp (3.114)
Aty
foero = may,, = m th SUT Uy (3.115)

Afin d’avoir une matrice inversible, I'implantation des équations précédentes doit se faire
_ | Y
o r

En effet, si on n’y prend pas garde, on peut former le systeme non-inversible suivant :

comme suit ;

N

avec foero = Ty

1
0 At Au,,, B [ U ]
m A - r
E 0 Xm;n rmp

C. Cas d’un profil flexible autopropulsé

Si on ajoute une partie flexible au solide constituant le profil autopropulsé, de nouvelles
relations d’interface doivent étre prises en compte. On considere ici seulement le cas ou la
partie rigide du solide est entourée entierement par la partie flexible comme représenté sur la
figure 3.7. Deux interfaces doivent donc étre considérées : l'interface IFS I'™ entre le fluide

et la structure flexible et la frontiere I' entre la structure flexible et la partie rigide.

On considere ainsi 17 variables pour former le vecteur d’état : U =
int sint int int Lint int T ' Lint LI T N int
[uf7pf7uf 7rf >Xps7Xp5 y Xs »Ts HUg 7y X, Us, Ugy X, Ty ,I'mp,ump,me} ) ou ( )

dénote une valeur sur l'interface IFS et ( ) sur la frontiere mouillée du solide rigide. Le
systeme global R (U) = 0 est schématisé sur la figure 3.8.

Dans ce cas, la matrice globale comprends trois blocs diagonaux correspondant aux
équations régissant le domaine fluide (lignes 1, 2, 4 et 5), la structure flexible (lignes 7,
9, 10, 11 et 14) et la masse ponctuelle (lignes 16 et 17). Les relations d’interface s’ex-
priment par les termes en dehors de ces blocs diagonaux : lignes 3, 6 et 8 pour 1’équilibre
a l'interface fluide-structure et lignes 12, 13 et 15 pour la continuité sur la frontiere I' du

solide rigide.
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Figure 3.7 Modélisation pour une structure flexible autopropulsée.

3.5.4 Imposition des conditions aux limites

Les conditions aux limites de Dirichlet imposent des valeurs connues sur certaines
frontieres du domaine. Les matrices globales R présentées précédemment peuvent donc tenir
compte directement des conditions aux limites. Ainsi, les vecteurs d’inconnues U ne font
pas apparaitre ces conditions aux limites U. Toutefois, ¢’est une maniere explicite d’imposer
ces conditions aux limites. Par conséquent, ’approche monolithique n’est plus entierement

implicite ce qui peut poser des problemes de stabilité.

En effet, si on impose de cette maniere le déplacement x, du profil oscillant, les frontieres
sont explicitement déplacées avant méme de résoudre le systeme. Ainsi, les autres points du
domaine n’étant pas déplacés, la résolution se fait sur un domaine replié si le déplacement du
solide est trop grand comme le montre la figure 3.9. On remarque alors que le pas de temps
At de l'intégrateur est alors limité par la taille du maillage Ah pour éviter le repliement.
Contrairement a une formulation implicite, la longueur pas de temps n’est plus alors dictée

par la précision désirée mais pas une relation de stabilité de la forme :
Xs(t+ At) — x,(t) < Ah (3.116)

Pour éviter ces problemes de stabilité, les conditions aux limites doivent étre imposées de

maniere implicite. Pour ce faire, on utilise une méthode directe en introduisant les conditions
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1 uy 0
2 Dy 0
3 I -1 ug 0
4 —I r}nt 0
5 X s 0
6 1|1 Xl =10
7 -1 X" 0
8 I I rint 0
9 -1 < ul"t 0
10 X 0
11 u, 0
12 I -I ul 0
13 I -1 x! 0
14 -1 rl 0
15 IlI rh, 0
16 u,, 0
17 \ me) \ 0 y,

Figure 3.8 Matrice globale pour le cas d’un profil flexible autopropulsé.

aux limites dans le vecteur des inconnues :

we[2 ][5

ott U' représente les degrés de liberté sur lesquels s’appliquent les conditions aux limites U.

F

- (3.117)

En regle générale R = I. On réduit alors ce systeme en un systéme équivalent afin de réduire

le nombre d’équations :

RU = F (3.118)
F = F-RU'=F-R'R 'T (3.119)
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Figure 3.9 Repliement du maillage avec des conditions aux limites explicites.

3.5.5 Meéthode de Newton-Raphson

Pour résoudre ce systeme global creux R (U(t)) = 0 a chaque pas de temps, on initia-
lise toutes les variables grace a la solution au temps précédent U(t — 1). On dispose alors
d’une bonne estimation initiale de la solution pour assurer la convergence de la méthode de
Newton-Raphson. Cette derniere utilise une évaluation de la matrice jacobienne J qui décrit
la sensibilité des équations par rapport a chacune des inconnues pour déterminer les vecteurs

de correction successifs U (t) :

J(U™()6U™t) = —R(U"(t)) (3.120)
U™tit) = U™(t)+6U"{1) (3.121)
o L _OR(U"(1))
Y auU(t)

On utilise Papproche du jacobien numérique [148] qui approxime les dérivées par

différences finies en perturbant la solution d’une petite quantité o :

L _OR (UMW) R (UP().UR(). U0 46 Uk() — Ri(U"(0)
Yoau(t) 5

(3.122)

Cette technique de linéarisation des équations couplées permet de prendre en compte toutes
les dépendances implicites. Ainsi, la stratégie monolithique adoptée ici permet d’atteindre
une convergence quadratique de la méthode de Newton-Raphson. Ceci se fait aux dépens du
nombre de variables et de la taille du systeme qui augmentent par rapport a une approche
découplée. Toutefois, cet inconvénient est largement compensé par la réduction significative
du nombre d’itérations de Newton, i.e. : du temps de calcul. De plus, l'utilisation de la

factorisation conditionnelle [109] permet un gain notable de temps de calcul en évitant de
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recalculer a chaque itération de Newton la matrice inverse de 7. En pratique, les résolutions
numériques successives de U"(t) se font a 'aide du logiciel PARDISO [178, 179].

Ce chapitre a présenté la méthodologie adoptée pour simuler les interactions
fluide-structure instationnaires en grands déplacements. On a souligné les principaux
développements nécessaires effectués pendant ce projet de recherche. Les deux chapitres sui-
vants traitent de la mise en pratique de ces développements dans le cadre de simulations
numériques. Tout d’abord, on expose des cas de vérification des différents volets composant
cette étude. Ensuite, on applique notre méthodologie a des cas pratiques faisant intervenir

tout ou partie des concepts théoriques développés jusque la.
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CHAPITRE 4

VERIFICATIONS

Ce chapitre présente des cas intéressants permettant la vérification du code de calcul.
Il est en effet important de vérifier la bonne implémentation des schémas de résolution des
équations, des schémas d’intégration en temps et du solveur avant d’aborder les problemes
d’application qui feront 'objet du dernier chapitre. Contrairement a la wvalidation qui
compare les modeles mathématiques avec le phénomene naturel qu’il tente de décrire, la
vérification se réfere a la comparaison d'une solution connue (exacte) tirée des équations
qui nous intéressent avec la solution numérique obtenue par le code de calcul en résolvant
ces meéme équations. Cette solution connue doit étre suffisamment complexe pour activer
tous les termes des équations et pour s’assurer qu’ils sont bien traités par le code. Une
analyse de convergence sur un probleme dont la solution est connue permet alors d’évaluer

la performance du solveur.

Le code de calcul reposant sur la méthodologie décrite au chapitre 3 a déja fait I'objet
de vérifications rigoureuses pour certains cas particuliers. Ainsi, la précision temporelle et
spatiale de 'algorithme implicite monolithique a été vérifiée pour le schéma d’intégration en
temps de Crank-Nicolson par Etienne et al. [174, 176]. En outre, dans une autre publica-
tion [128], la précision en temps des intégrateurs implicites de Runge-Kutta (IRK), respectant
la GCL, a été vérifiée pour des écoulements instationnaires (sans structure) sur des domaines
de calcul fixes et déformables. La vérification a été faite sur des écoulements simples grace
a une solution analytique puis sur une solution manufacturée activant tous les termes des

équations de Navier-Stokes grace a une étude de convergence par raffinement du pas de temps.

Pour une vérification du code de calcul dans le cadre plus général des interactions fluide-
structure en grands déplacements, on étudie ici deux problemes de référence. Tout d’abord, ce-
lui d'un profil rigide oscillant induisant d’importante déformation du maillage. On s’intéresse
en particulier a la précision temporelle des schémas IRK1, IRK3 et IRK5 grace a une étude de
convergence des forces aérodynamiques par raffinement du pas de temps. Dans un deuxieme
temps, on étudie le cas d'une languette flexible fixée a I’arriere d’un cylindre carré (cas de
Wall [162]). La précision temporelle des schémas implicites de Runge-Kutta sera démontrée
par une étude de convergence du déplacement du bout libre de languette en raffinant le pas de

temps utilisé. Avant d’attaquer les cas de vérification, on définie les normes d’erreur utilisées
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dans le cadre instationnaire pour vérifier la précision de notre méthodologie.

4.1 Définitions des normes d’erreur

Afin d’étudier correctement la précision temporelle des schémas en temps, on doit définir
des normes d’erreurs adaptées aux phénomenes instationnaires. Tout d’abord, afin de mi-
nimiser l'erreur intrinseque de la discrétisation en temps, on interpole la solution discrete
obtenue par des splines cubiques sur l'intervalle de temps étudié. On peut alors définir une
norme d’erreur temporelle basée sur une estimation d’erreur par une moyenne quadratique
(Root Mean Square, (RMS)). De plus, lorsque les phénomeénes vibratoires sont importants, la
précision du modele se mesure non seulement sur 'amplitude des variables dépendantes mais
aussi et surtout sur leur fréquence. On définit donc également une norme dans le domaine
spectral. Enfin, on rappelle les définitions des normes d’erreur énergie, [2p et hi1p pour étudier

Ierreur du calcul sur tout le domaine de calcul a un temps ¢ donné.

4.1.1 Interpolation temporelle de la solution

Pour comparer correctement les résultats obtenus par différentes discrétisations en temps
Aty, on interpole les solutions UZ avec des splines cubiques générées par MATLAB sur N
points d’interpolation : [t1,ty]. Ainsi, on utilise la précision des schémas d’intégration en
temps (TRK3 et IRK5) pour générer des approximations U(t;) de la solution entre deux
temps ou la solution est calculée afin de jouir d’une plus grande flexibilité pour le calcul
d’erreur. Ceci nous permet de comparer les solutions obtenues par deux calculs avec deux
pas de temps différents At; et Aty méme si les temps ou les calculs sont effectués sont

différents, i.e. Aty # qAty,Vq € N (voir 'exemple présenté sur la figure 4.1).

4.1.2 Domaine temporel

Pour une solution de référence donnée Uy, on définit une norme d’erreur de convergence
comme la moyenne quadratique (RMS) de la différence entre la solution calculée interpolée

U et la solution de référence a chaque temps de calcul ¢; de U'intervalle [t;;tn] :

eRMS = i (U(t) = Ureg )" (4.1)

Afin vérifier le plus rigoureusement possible le code de calcul, la solution de référence
devrait étre la solution exacte, analytique, des équations utilisées. Toutefois, si on ne dispose

pas d’une telle solution a cause de la complexité du probleme étudié, on utilise la solution
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la plus précise que 'on peut obtenir. Dans le cadre d’'une étude de précision en temps, on
considere la solution obtenue avec la pas de temps le plus petit et le schéma d’intégration
d’ordre le plus élevé. Dans ce cas, il n'y a pas d’interférences dies a la taille du maillage puis-
qu’un meéme maillage sera utilisé pendant le processus de vérification. On fait ici ’hypothese
que cette solution précise est tres proche de la solution exacte. L’hypothese sera vérifiée si
les courbes de convergence vers cette solution ont des taux de descente prévue par la théorie.
Si ce n’est pas le cas, soit le code de calcul n’est pas vérifié, soit la solution précise n’est
pas assez proche de la solution exacte. On se heurte alors a un phénomene de saturation de
I’erreur.

Cette mesure de 'erreur est appropriée aux problemes ot la fréquence dominante est fixée,
par exemple par l'oscillation d'un profil. I.’écoulement est alors forcé par la solide, notamment
lorsque le phénomene de lock-in se produit. Toutefois, les fréquences structurelles et celles
des lachers tourbillonnaires intervenant dans les interactions fluide-structure doivent le plus
souvent étre résolues par le solveur. Ainsi, la précision du schéma d’intégration en temps va

aussi s’évaluer dans le domaine spectral.

4.1.3 Domaine spectral

Le passage du domaine temporel au domaine spectral se fait au moyen d’une transforma-
tion en série de Fourrier a 'aide de la fonction FFT (Fast Fourier Transform) de MATLAB.
On utilise des splines cubiques pour interpoler la solution sur N = 29 points de 'intervalle de
temps considéré et effectuer la décomposition FFT. On dispose alors de N/2 = 2(a=1) points
de discrétisation dans I'espace des fréquences pour la transformée de Fourier F'F'T (U).

On utilise la méme approche de moyenne quadratique (RMS) pour définir la norme d’er-
reur dans le domaine spectral. L’erreur spectrale est ainsi calculée sur I'intervalle de fréquence

[f1; fny2] comme suit

(FFT (U)(f;) = FFT (Usey) (£:))?
N/2

4.1.4 Normes Energie, L2p et Hip

Pour finir, on rappelle les définitions des normes d’erreur Energz’e, L2p et Hlp afin
d’étudier ’erreur du calcul sur tout le domaine de calcul a un temps ¢t donné. En considérant
une solution de référence au temps ¢, Uef(t) = [Wref, Dres|, on définit les normes comme

suit :
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— Norme FEnergie : pour la vitesse

lewl, = ey = willf = A (Vg = V) + (Ve = V)| (43)

[(Vuref — V) + (Ve — Vuh)T] Q)

— Norme L2p : pour la pression

|Mﬁfﬂ%rﬁﬂi24@w—mﬂm (4.4)

— Semi-norme HIp : pour la pression

leall s, = pres — pallyy, = /QV (Pres = pn) - V (Dref — pn) (4.5)

ou l'indice h définit les solutions éléments finis.

4.2 Profil rigide oscillant

On vérifie tout d’abord le code de calcul sur un cas avec des frontieres en mouvement
provoquant une déformation du maillage. On considere simplement un profil rigide oscillant
en 2D dont les mouvements sont forcés. Il n’existe pas de solution analytique (exacte) a
ce probleme complexe. On utilise donc une solution obtenue avec la meilleure précision en
temps comme solution de référence. Plus précisément, on cherche a vérifier I'implémentation
des schémas TRK1, IRK3 et IRK5 par une étude de raffinement du pas de temps. Si I'erreur
par rapport a la solution de référence décroit avec des taux égaux aux ordres théoriques des

schémas IRK, la vérification sera faite.

4.2.1 Description du cas

On considere une aile rigide oscillante dont la géométrie est décrite par un profil
NACAO0015 avec une corde unitaire ¢ = 1.. Comme souligné dans la revue de littérature,

on lui impose 'habituel mouvement périodique de battement et de rotation :

0(t) = 6pcos(wt)
h(t) = hgsin(wt)

ol w est la pulsation telle que la période s’écrive T' = 27 /w = 5.55s et la fréquence f = 0.18Hz.

L’angle de rotation moyen 6,, est considéré comme nul, 'amplitude de la rotation est définie
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par 6y = 7/3. et 'axe de rotation est situé au tiers de la corde :z. = 1/3. Enfin, le battement
a une amplitude unitaire hy = 1.. On utilise une fonction lissante jusqu'a t = 0.6s (e = 2.0)
afin de débuter le mouvement avec une vitesse et une accélération nulles (voir annexe A).
Concernant les propriétés du fluide, on a py = 1. pour sa densité, Uy = Uy, = l.corde/s
pour sa vitesse en entrée et un nombre de Reynolds Re=pcU,/ps=1100. Les conditions aux

limites sont précisées sur la figure 4.2.

30. N
u=libre, v=0. B
u=1., x=0. x=libre, n=0. u=libre, x=0. |
v=0., n=libre v=libre, n=libre;
10. i
< > 1.00

0¢

b

Y u=libre, v=0.
= x=libre, n=0. N

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Y

e |
uzusager, X:usageri
3 N0 NACA0015 {V:usager, X eager.

Figure 4.2 Conditions aux limites pour le profil rigide oscillant.

Le maillage utilisé tout au long de cette vérification comporte 10 513 noeuds répartis
sur deux zones fluides comme présenté sur la figure 4.3. En effet, comme souligné dans la
section 3.3.2, I'approche pseudo-solide permet un zonage du domaine de calcul facilitant les
déformations du maillage. Ainsi, on introduit un zone circulaire autour du profil (décrite par
le maillage bleu-clair sur la figure 4.3) dont les frontieres subissent le méme mouvement de
corps rigide que le profil afin d’éviter le repliement du maillage. Notons que le petit nombre
de noeuds utilisés permet 1’étude d'une large gamme de pas de temps en un temps de calcul

raisonnable.

4.2.2 Taux de convergence

Afin de mener I’étude de raffinement en pas de temps, on utilise 9 pas de temps différents :
Aty = Aty /2% k € [0, 8] ott Aty = 0.08s ~ T'/70 et 3 schémas d’intégration en temps : IRK1,
IRK3 et IRK5. L’intervalle d’étude est [0 : 10s] afin d’étudier une période d’oscillation
apres le régime transitoire tout en gardant un temps de calcul raisonnable avec les pas de

temps les plus petits. Les résultats de la simulation utilisant le schéma IRK5 et un pas de
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Figure 4.3 Maillage non-déformé - 10 513 nceuds - 2 zones.

temps At; = Aty/27 sont utilisés comme solution de référence, représentant la solution exacte.

Efforts aérodynamiques

On étudie la convergence des efforts aérodynamiques s’appliquant sur le profil grace a la
norme d’erreur temporelle eRMS. Ainsi, la figure 4.4 présente 1’évolution de la norme eRMS
de la force verticale F; sur 'intervalle de temps [8 — 10s] pour les différents pas de temps et
les 3 schémas d’intégration (les courbes concernant la force horizontale F, et le moment M
autour de z, ont la méme allure et ne sont pas reproduites pour alléger la figure).

On constate sur la figure 4.4 que les courbes de convergence pour les trois schémas
IRK ont une pente constante des les premiers pas de temps, la zone asymptotique est donc
atteinte tres rapidement. On peut donc facilement constater que les courbes d’erreur ont des
pentes de 1, 2 et 3 respectivement pour les schémas IRK1, IRK3 et IRK5. Ces résultats sont
en parfait accord avec les ordres réduits de convergence pour la pression (ordre s), présentés
dans la section 3.4.2. En effet, les forces aérodynamiques sont induites tant par le gradient
des vitesses que par la différence de pression. Dans 'approche adoptée (voir section 3.5.3),

les forces sont calculées implicitement grace a la méthode des réactions. Ces dernieres sont
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Figure 4.4 Convergence de erreur temporelle eRMS sur la force verticale F, pour ¢t € [8—10s].
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donc résolues par couplage avec les vitesses du fluide et le champ de pression. D’un point
de vue numérique, il semble donc aussi cohérent de retrouver les taux de convergence de la

pression.

En outre, on a remarqué une légere variation des taux de convergence des courbes d’erreur
selon l'intervalle de temps considéré. Le tableau 4.1 résume les ordres de convergence observés
pour les 3 schémas de Runge-Kutta étudié pour 5 intervalles de temps différents. On voit une
convergence des ordres tres rapide vers les valeurs qu’on vient d’exposer pour U'intervalle [8 —
10s]. Seul le schéma IRK5 a des ordres de convergence qui varient fortement sur les 2 premiers
intervalles de temps présentés, qui contiennent le régime transitoire. On pourrait supposer
que le probleme devient plus raide a cause des phénomenes transitoires et qu’on a donc une
réduction d’ordre mais c’est le contraire qui se produit pour le 2e intervalle. Par contre, on
note que la variation de I'ordre de IRK5 en fonction des intervalles en temps est semblable a
celle en fonction du pas de temps présenté par la figure 4.4. Ainsi, on peut supposer que la
zone asymptotique de IRK5 n’est pas atteinte avec les pas de temps étudiés pour le régime
transitoire générant des phénomenes de plus hautes fréquences. Le 2e intervalle de temps
coupant une partie du régime transitoire par rapport au premier, il est normal qu’'on se
rapproche de la zone asymptotique avec les méme pas de temps et qu’on obtienne donc
un ordre de convergence autour de 4 comme sur la figure 4.4. A partir du 3e intervalle, le
régime transitoire est passé et on se retrouve donc dans la zone asymptotique avec un ordre
de convergence de 3. Cette explication a ’avantage de s’appliquer aussi aux schémas IRK1
et IRK3 qui voient leurs taux de convergence restaient sensiblement constants alors que la

figure 4.4 montre qu’ils atteignent leurs zones asymptotiques des le premier pas de temps.

Intervalle | 0-10s | 2-10s | 4-10s | 6-10s | 8-10s
IRK1 0.96 | 095 | 095 | 0.98 | 1.00
IRK3 2.02 | 2.09 | 2.01 | 2.01 | 2.05
IRK5 1.57 | 4.05 | 3.09 | 3.10 | 3.12

Tableau 4.1 Ordres de convergence de l'erreur eRMS(F,) des schémas IRK.

Variables de 1’écoulement

Pour confirmer le role de la pression sur la précision des schémas IRK, on s’intéresse
a la convergence des variables de ’écoulement : champs de vitesses et de pression dans le
domaine fluide. Les variables sont évaluées au temps final ¢ = 10s et on utilise les normes

d’erreur présentées a la section 4.1.4. Les courbes de convergence de ’erreur spatiale pour les
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normes Energie, L2 et H1p sont présentées sur la figure 4.5. On remarque tout d’abord le
faible taux de convergence des courbes d’erreur pour le schéma IRK1, mais les trois normes
ont un comportement similaire comme prédit par la théorie : premier ordre pour les vitesses
et la pression. Les courbes concernant les schémas TRK3 et IRK5 sont plus intéressantes
pour évaluer le role de la pression sur la précision des schémas d’intégration en temps. On
observe en effet que les normes d’erreur concernant la pression (L2p et H1p) décroissent moins
rapidement que la norme Energie pour la vitesse dans les zones asymptotiques respectives des

schémas IRK, identiques a celles trouvées pour lors de I’étude des efforts aérodynamiques.

Normes | Energie | L2p Hip

0.6899 | 0.7196 | 0.7026
IRK1 0.5904 | 0.5985 | 0.5861
0.5069 | 0.5249 | 0.4861
2.9995 | 2.2950 | 2.1304
IRK3 | 2.9991 | 2.4505 | 2.2231
2.9980 | 2.5832 | 2.3461
5.0386 | 3.1309 | 3.1699
IRK5 | 5.0130 | 3.2481 | 3.1013
4.9967 | 3.6339 | 3.1228

O T ® o0 T o6 o

Tableau 4.2 Ordres de convergence de 'erreur spatiale pour les normes Energie, L2p et Hip
pour les schémas IRK a t = 10s.

Plus précisément le tableau 4.2 résume les taux de convergence des courbes calculés entre
le dernier point de chaque courbe et : a) 'avant-dernier point, b) "antépénultieme point et
¢) lavant-avant-avant dernier point. On note ainsi des ordres de précisions optimums pour
la norme Energie & la fois pour IRK3 et IRK5 avec des taux de convergence trés proches
de 3.0 et 5.0 respectivement. La précision en temps des schémas IRK sur la vitesse est donc
vérifiée. En outre, les normes d’erreur L2p et HIp font apparaitre clairement la réduction
d’ordre pour la pression (multiplicateur de Lagrange) soulignée a la section 3.4.2. On obtient
ainsi des taux de convergence d’environ 2.3 pour le schéma IRK3 et d’environ 3.2 pour le
schéma IRKb5. La précision en temps théorique des schémas implicites de Runge-Kutta est
donc vérifiée a la fois pour les vitesses et pour la pression. De plus, le role de la pression est
ainsi confirmé dans la réduction de la précision des schémas d’intégration en temps pour les

efforts aérodynamiques.

4.2.3 Efficacité des schémas IRK

L’implémentation du code est ainsi vérifiée sur le cas du profil oscillant présentant des

frontieres en mouvement et de fortes déformations du maillage. Le 3e niveau de respect
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de la loi de conservation géométrique (GCL) présenté a la section 2.3 est donc vérifié. On
obtient bien les ordres élevés de précision en temps prévus par la théorie pour les schémas
implicites de Runge-Kutta. En pratique toutefois, I’évaluation de la solution a chaque pas de
temps requiert plus de mémoire pour les schémas d’ordres élevés. En effet, I’espace mémoire
requis pour IRK3 est doublé par rapport a IRK1 et triplé pour IRK5. Le nombre d’inconnues
augmentant, chaque évaluation est aussi plus chere en termes de temps CPU si on utilise des
schémas d’ordres élevés. Cependant, la grande précision en temps apportée par des schémas
d’ordres élevés permet d’utiliser des pas de temps plus grands pour le méme niveau de
précision et ainsi de diminuer le nombre total d’évaluations sur un intervalle de temps donné.
Pour comparer 'impact des ces deux effets contradictoires, on a évalué le temps de calcul réel
(sur une méme machine) nécessaire pour effectuer les calculs présentés jusqu'ici. Les temps
résultants sont tracés sur la figure 4.6 en fonction de la précision obtenue sur I'intervalle de
temps [2—10s]. On observe ainsi que les schémas IRK3 et IRK5 sont moins couteux que IRK1
en termes de temps de calcul quelque soit la précision désirée. D’ailleurs, on voit clairement
les limites du schéma IRK1 qui rend impossible des calculs précis en un temps raisonnable.
Ainsi, pour une précision de 1079, le calcul avec IRK3 nécessite un peu moins d’un jour et
demi alors qu’on peut estimer par extrapolation que le calcul avec IRK1 nécessiterait pres de
deux ans! Enfin, le schéma d’ordre 5, IRK5, devient intéressant comparé a IRK3 pour des
simulations précises, si on dispose d'un espace mémoire suffisant.

L’étude du cas d’'un profil rigide oscillant a permis de vérifier la bonne implémentation
du code de calcul et de confirmer la grande efficacité des schémas implicites de Runge-Kutta
d’ordres élevés pour les simulations précises, méme avec des frontieres en mouvement et de
fortes déformations du maillage. Le 3e niveau de respect de la loi de conservation géométrique

(GCL) est donc aussi vérifié.
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4.3 Languette flexible encastrée

Le couplage monolithique du fluide avec une structure flexible est ici vérifié sur le cas
d’'une languette flexible encastrée a l'arriere d’un cylindre carré. Ce probleme présente une
forte interaction entre le fluide et la structure qui se déforme grandement. Comme pour le cas
précédent, la complexité des phénomenes mis en jeux requiert la substitution de la solution
exacte par une solution calculée avec précision. Une étude de raffinement du pas de temps
permet de vérifier la bonne implémentation du couplage IFS et des schémas IRK, si I'erreur
par rapport a la solution de référence décroit avec des taux égaux aux ordres théoriques des
schémas IRK (voir section 3.4.2).

4.3.1 Description du probleme

On reprend ici 'exemple de référence présenté par Wall en 1999 [162] et décrit plus en
détail a la section 5.1. Il s’agit d'une languette flexible encastrée a ’arriere d’un cylindre carré
soumis a un écoulement fluide uniforme. A cause des lachers tourbillonnaires du cylindre, la
languette subit de fortes oscillations induites par le fluide. La géométrie du probleme et les
conditions aux limites utilisées sont décrites sur la figure 4.7. Sur les frontieres du cylindre,
on peut autoriser un glissement libre du pseudo-solide afin de faciliter la déformation du

maillage (soit 0, soit libre). Les conditions d’interface sont traitées de maniere implicite.

e T Ry S Y K
. 0 u=libre, v=0. ;
u=1., y=0. libre. p—
v=0., n=libre x=libre, n=0.
3 0.90  0.20 0.80 N
y AN
u=impl., x=impl. * 0.0012 5
/ v=impl., n=impl.
u=0., ¥=0./libre u=libre. v—0. |
’ : — y X=: :
Y v=0., n=0./libre u=libre, v=0. v=libre, n=libre:
x x=libre, n=0. M

Figure 4.7 Géométrie et conditions aux limites pour la languette flexible encastrée.

Les parametres du probleme sont adimensionalisés de maniere consistante (voir section 5.1

pour plus de détails) et ont les valeurs suivantes :
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Longueurs Fluide Structure
Carré : d=0.20 | Vitesse : Uy, = 1.00 Poisson : v =0.35
Totale : L =1.00 | Densité :  p; = 1.00 Densité :  ps =1 695
Epaisseur : e=0.012 | Viscosité : pu; =98.107* | Young: FE =1 708 153

Le nombre de Reynolds est donc : Re=204. La structure est modélisée par la loi de com-
portement de Saint-Venant Kirchhoff pour modéliser correctement les grands déplacements.
Le calcul instationnaire démarre a partir d'une solution stationnaire. Enfin, le maillage utilisé
comporte 10 179 noeuds et est présenté sur la figure 4.8. Encore une fois, le faible nombre
de nceuds permet une bonne étude de raffinement en pas de temps en un temps de calcul

raisonnable.

Figure 4.8 Maillage non-déformé pour la languette flexible encastrée - 10179 noeuds.

4.3.2 Taux de convergence

Ce probleme va permettre de vérifier I'implémentation des schémas d’intégration de
Runge-Kutta du premier au cinquieme ordre pour les interactions fluide-structure en grands
déplacements. On étudie la convergence des déplacements horizontaux et verticaux de
I'extrémité libre de la languette, représentatifs des forts effets de couplage entre le fluide
et la structure. Comme les déformations structurelles de la languette sont uniquement le
fruit des interactions avec le fluide (aucune imposition de mouvement), tant ’amplitude que
la fréquence des déplacements de I'extrémité libre vont étre calculés par le code. Ainsi, la
vérification se fera tant dans le domaine temporel, avec la norme eRMS, que spectral, avec
la norme eFFT.

On considere trois intervalles de temps pour effectuer 1'étude du taux de convergence
des IRK : I} = [10s;25s], I = [0;10s] et I3 = [0;15s]. Le premier correspond a celui
communément utilisé dans les précédents travaux portant sur ce probleme IFS [3]. Les deux

autres intervalles, plus courts, sont utilisés pour étudier l'ordre de convergence du schéma
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IRK du 5¢ ordre et les possibles effets de saturation. Selon les intervalles, on utilise jusqu’a 7
pas de temps différents tels que : Vi € [1,6], At; = Aty/2"7 avec Aty = 4.1072%s et Aty = 5.

10~%s. La solution de référence va alors aussi variée selon 'intervalle d’étude.

Vérification de IRK1 et IRK3 sur [;

La figure 4.9 présente l’évolution des normes d’erreurs eRMS et eFFT pour les
déplacements (x,y) de 'extrémité libre de la languette sur 'intervalle de temps I; = [10s; 25s].
La solution de référence est obtenue avec un schéma en temps IRK3 et le pas de temps
At; = 5. 107%s. On prend N; = 26 points de discrétisation pour calculer l'erreur eRMS
et la transformée de Fourrier des solutions calculées avec les différents pas de temps. Sur
la gamme de pas de temps étudiés, le schéma IRK du premier ordre délivre un taux de
convergence vraiment faible, méme plus petit que le taux théorique de 1. Ainsi, on peut
supposer que la zone asymptotique de ce schéma IRK1 commencer pour des pas de temps At
bien inférieurs & 1073s. De plus, lerreur est vraiment importante dans le domaine spectral
(figure 4.9.b) et semble rester constante parce que cet intégrateur en temps IRK1 capture la

mauvaise fréquence de vibration structurelle comme souligné dans le section 5.1.

Pour le schéma IRK du 3¢ ordre, on note que la zone asymptotique de convergence
commence vers At = 5. 107%s (notamment avec la norme eRMS) et le taux de convergence
est alors trés proche du taux théorique de 3. Toutefois, dans le domaine spectral, on observe
un taux réduit autour de 2.5. Ceci pourrait s’expliquer par le fait que le schéma IRKS3
n’est que du second ordre pour la pression, bien qu’il soit du 3e ordre pour la vitesse et les
déplacements. En effet, les déplacements de I'extrémité libre sont dus en partie aux forces de
pression agissant sur la structure, ce qui pourrait détériorer le taux de convergence observé.
En conclusion, le schéma IRK3 est correctement implémenté et offre un avantage indéniable

de précision en temps sur le schéma d’Euler implicite (IRK1).

Vérification de IRK3 et IRKS5 sur I, et I3

L’utilisation de l'intégrateur en temps IRK du 5° ordre améliore tres visiblement les
résultats obtenus. Les figures 4.10 et 4.11 montrent I'erreur de calcul sur les déplacements
(x,y) de lextrémité libre respectivement pour les intervalles I, = [0; 10s] et I3 = [0; 15s]. On
utilise dans les deux cas, les résultats d'une simulation obtenus avec le schéma IRK5 et le
pas de temps : Atg = 1.25 1073s. On considere en outre, Ny = 2% et Ny = 217 points de

discrétisation sur chaque intervalle de temps. On observe que le taux de convergence de IRK3
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Figure 4.9 Convergence des déplacements (x,y) de I'extrémité libre pour t € [10; 25s].
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est globalement confirmé sur les deux intervalles de temps méme si des effets de saturation
semblent apparaitre sur le dernier point (pas de temps le plus petit). On peut tres clairement
voir cet effet de saturation avec la norme eRMS sur U'intervalle de temps le plus court Iy (voir
figure 4.10.a) tandis que le taux de convergence reste égal a 3 jusqu’au dernier pas de temps
sur U'intervalle I3 dans le domaine spectral (voir figure 4.11.b). Cet effet peut venir du manque
de précision de la solution de référence, substitut de la solution exacte. Cette hypothese tend
a étre confirmée par d’autres calculs (non présentés ici), puisque l'effet de saturation em-

pire lorsqu’on utilise les résultats obtenus avec un schéma IRK3 comme solution de référence.

Concernant le schéma du 5¢ ordre, son taux de convergence est vraiment proche de 5,
tout comme prévu par la théorie, sur U'intervalle de temps I = [0;10s]. Contrairement au
schéma IRK3, c¢’est sur 'intervalle I3 qu’'une saturation apparait sur le dernier point. De plus,
le taux de convergence sur cet intervalle est plus proche de 4.5 que de 5. Ceci peut facilement
étre expliqué par les effets des forces de pression qui sont résolues avec un ordre réduit de 3
pour les schémas IRK5. Ce schéma IRK d’ordre élevé reste toutefois tres efficace puisque sa
zone asymptotique est atteinte deés le premier pas de temps étudié (At = 2.1072s). De plus,
sa précision est 4 fois meilleure que celle de IRK3 des le début de la zone asymptotique (i.e.
Aty = 1072). Avec ce pas de temps, le schéma IRK5 est aussi précis que le schéma IRK3
avec un pas de temps At = 5. 1073s. A partir de 13, dans la zone asymptotique, 1'écart de

précision s’accroit avec un taux de 5/3.

4.3.3 Discussion

Les taux de convergence des schémas IRK de 3° et 5¢ ordres, obtenus pour le probleme
IF'S étudié ici, sont vraiment proches de ceux prévus par la théorie ce qui vérifie le code de
calcul pour les interactions fluide-structure en grands déplacements. Ces schémas d’ordre
élevés en temps apportent une amélioration significative sur la précision des calculs méme
si I’évaluation de la solution pour un pas de temps est plus cotuteuse. Ainsi, pour un méme
niveau de précision en temps, les schémas d’ordres élevés utilisent des At de plus en plus
grands et donc le nombre d’évaluations de la solution diminue d’autant, surcompensant le
cout plus important pour une évaluation. Le résultat net est une réduction du temps de
calcul total.

Toutefois, le taux de convergence peut se dégrader dans certains cas. On suppose qu’il y
a deux origines possibles : le manque de précision de la solution de référence (ce qui dans
ce cas n'influence pas l'ordre réel du schéma d’intégration en temps) et le role des forces
de pression sur les mouvements de la languette. Pour confirmer la premiere hypothese, des

simulations avec une plus grande précision devraient étre menées bien que cela nécessite
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Figure 4.11 Convergence des déplacements (x,y) de l'extrémité libre ¢ € [0; 15s].

117



118

un temps de calcul de plus en plus important. La seconde origine est plus complexe a
vérifier car impliquant les fondements théoriques de la méthodologie de calcul (et non la
méthode de vérification). On doit en effet déterminer I'impact de I'ordre réduit de précision
en temps pour la pression (seulement 2 pour IRK3 et 3 pour IRK5) sur la précision pour
les déplacements de I'extrémité libre de la languette. Il semble évident que physiquement la
pression joue un role majeur dans la déformation de la languette mais numériquement les
taux de convergence des erreurs sur les déplacements de I'extrémité libre ne sont pas réduits

a ceux de la pression.
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4.4 Profil autopropulsé

Pour compléter la vérification du code de calcul, il reste a mettre en ceuvre les équations
de masse ponctuelle. On s’intéresse alors au cas d’un profil autopropulsé, i.e. qui avance
librement grace a la poussée aérodynamique produite par son mouvement oscillant. Une étude
préliminaire de raffinement du pas de temps permet de vérifier la bonne implémentation des
équations de masse ponctuelle couplées avec celles de 'écoulement fluide pour le schéma
IRK3. La convergence de 'erreur par rapport a une solution précise prise comme référence

confirmera 'ordre de précision en temps du code de calcul.

4.4.1 Description du probleme

Le probleme étudié est semblable a celui présenté a la section 4.2 avec f = 0.18Hz et
0y = m/3.. La seule différence consiste en l'introduction d’'une masse ponctuelle, située sur
l'axe de rotation, permettant le mouvement libre du profil selon ’axe horizontal (aucune
liberté sur 'axe vertical). Ainsi, les mouvements de battement et de rotation sont identiques
mais dans un repere en mouvement avec une vitesse u,,, et li¢ a la position z,,, de la masse
ponctuelle. Les coordonnées (z(t),y(t)) et la vitesse (u(t),v(t)) d’un point du profil au temps ¢
s’écrivent, a partir de ses coordonnées initiales (z.,y.), par combinaison d’un mouvement

imposé et d’'un mouvement libre :

x(t) = xpmp(t)+ (cos(0(t))z. —sin(0(t))ye)
y(t) = (cos(B(t))ye + sin(6(t))z.) + h(t)

ut) = unplt)= 5 GO0z, + con(O(6))uc)

i dh(t)
(= sin(0(1))ye + cos(0(t))ze) + — =

do(t)
dt

Tmp €t Uy, sont les variables dépendantes de la masse ponctuelle qui doivent étre résolues.
Pour le mouvement imposé, on utilise la méme fonction lissante jusqu’a ¢ = 0.6s (voir an-

nexe A) et on considere :

f = 018Hz, T = 5555, hy = 1/5¢
by = 7/8, Oy = 0, r. = 1/3c

Le solide est modélisé par la masse ponctuelle telle que m = 0.30 (i.e. la densité du solide
est environ 2.5 fois py) et pour le fluide on conserve py = 1. et up=1./1100. Par contre, les

conditions aux limites changent afin de prendre en compte le mouvement du profil. Ainsi, on
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considere ici Uy = Uy = 0. pour la vitesse du fluide en entrée et on autorise le mouvement

horizontal de toutes les frontieres fluides comme indiqué sur la figure 4.12.

. 30. N
- u=libre,v=0. K
u=0., x=libre x=libre, n=0. u=libre, X:libre§
v=0., n=libre v=libre, n=libre
10.
< > 1.00 R
4 B
Hasse /Q u=usager )(—us.ageri =
ponctuelle (1/3> et é\)TACA0015 {V:usager: n:usageri
Y u=libre, v=0.
,, L» e XTHDER MZ0. b

Figure 4.12 Conditions aux limites pour le profil autopropulsé.

On utilise le méme maillage comportant 10 513 noeuds présenté sur la figure 4.3 mais avec

une seule zone fluide car 'angle de rotation est assez faible.

4.4.2 Taux de convergence

On a mené une étude préliminaire de raffinement du pas de temps pour le schéma
d’intégration en temps IRK3. On utilise 6 pas de temps différents : At € [Aty/2°, At
ou Aty = 97/125 ~ T'/14. L’intervalle d’étude est I = [0 : 100s] = [0 : 187]. Les résultats de
la simulation utilisant le plus petit pas de temps At = 97'/4000 sont utilisés comme solution

de référence, représentant la solution exacte.

Mouvement de la masse ponctuelle

On étudie la convergence des deux variables dépendantes spécifiques aux mouvements
de la masse ponctuelle z,,, et u,,, grace aux normes d’erreur temporelle eRMS et spec-
trale eFFT. Le déplacement x,,, et la vitesse u,,, de la masse ponctuelle (i.e. du centre de
rotation du profil) sont représentés sur la figure 4.13. On note U,y la vitesse moyenne de la
masse ponctuelle (en régime établi) et x,,., la distance maximale parcourue depuis t = 0.
Le tableau 4.3 expose la convergence du calcul sur u,,, (en corde/s) et z,,q, (en corde) es-
timés sur 'intervalle I=[20 : 50s] grace & N=2'7 points d’interpolation. Les erreurs relatives
(erreur rel.) sont calculées par rapport a la solution obtenue pour Aty/32. On trace les erreurs

relatives sur la vitesse et le déplacement sur la figure 4.14 avec une échelle logarithmique.
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Figure 4.13 Déplacement x,,, et vitesse u,,, de la masse ponctuelle pour t € [0 : 50s] et
At = 97'/4000.
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On observe alors que les deux erreurs convergent avec une pente d’ordre 3, i.e. en O(At?).
On retrouve ainsi le taux de convergence théorique du schéma d’intégration en temps IRK3
pour les vitesses et déplacements.

Concernant les variables instationnaires tuy,,,(t) et x,,,(t), on constate aussi, sur la fi-
gure 4.15, que l'ordre théorique de précision en temps du schéma IRK3 est maintenu sur
intervalle I = [20 : 50s] (N=2'T points d’interpolation). En effet, les courbes de convergence
des erreurs temporelle et spectrale ont une pente de 3 aussi bien pour le déplacement que
pour la vitesse. La zone asymptotique est atteinte des le premier pas de temps et les taux de
convergence sont conservés sur les différents intervalles de temps considérés comme le montre

le tableau 4.4, ou ils sont calculés sur les 3 derniers pas de temps.

Efforts aérodynamiques

Comme lors de I'étude du profil oscillant (voir section 4.2), on observe un ordre de précision
en temps réduit du schéma IRK3 pour les efforts aérodynamiques comme l'indique la fi-
gure 4.16. Les courbes de convergence des erreurs temporelle et spectrale semblent en effet
avoir un ordre plus proche de 2. que de 3., aussi bien pour F, que pour F},. En effet, I'influence
de la précision réduite sur la pression engendre des taux de convergence réduits autour de 2.2
pour les efforts aérodynamiques. La zone asymptotique est encore atteinte des le premier pas
de temps sauf pour I'erreur spectrale sur F, ou elle démarre au deuxieme pas de temps. Les
taux de convergence sont ici aussi constants sur les différents intervalles de temps considérés

comme le montre le tableau 4.5, ou ils sont calculés sur les 3 derniers pas de temps.

4.4.3 Discussion

Le probleme du profil autopropulsé a permis une vérification préliminaire de la bonne

implémentation des équations de masse ponctuelle couplées avec celles de 1’écoulement fluide.

At Ugug erreur rel. [ erreur rel.

Aty 28466159 | 0.42557% | 13.219092 | 0.45418%
Ato/2 | .28362474 | 0.05978% | 13.168144 | 0.06701%
Ato/4 | 28347996 | 0.00870% | 13.160611 | 0.00977%
Ato/8 | .28345860 | 0.00116% | 13.159496 | 0.00130%
Aty/16 | .28345568 | 0.00013% | 13.159344 | 0.00015%
Aty/32 | .28345530 0% 13.159325 0%

Tableau 4.3 Convergence de la distance parcourue z,,q, et de la vitesse moyenne 4, de la

masse ponctuelle pour ¢ € [20 : 50s].
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Figure 4.14 Convergence des erreurs relatives sur 2,4, et 4,y de la masse ponctuelle pour
t € [20 : 50s].
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Figure 4.15 Convergence des erreurs temporelle et spectrale sur le déplacement z,,, et la
vitesse un, de la masse ponctuelle pour ¢ € [20 : 50s].
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Figure 4.16 Convergence des erreurs temporelle et spectrale sur les efforts pour ¢ € [20 : 50s].



Intervalle | 0-50s | 20-50s | 0-100s | 20-100s | 50-100s
eRMS(x) | 3.0290 | 3.0280 | 3.0218 | 3.0216 | 3.0206
eRMS(u) | 3.0307 | 3.0172 | 3.0235 | 3.0157 | 3.0148
eFFT(x) | 3.0299 | 3.0283 | 3.0225 | 3.0221 | 3.0208
eFFT(u) | 3.0278 | 3.0172 | 3.0216 | 3.0156 | 3.0147

Intervalle | 0-50s | 20-50s | 0-100s | 20-100s | 50-100s
eRMS(F;) | 2.2640 | 2.1969 | 2.2564 | 2.1957 | 2.1949
eRMS(F,) | 2.1875 | 2.1835 | 2.1873 | 2.1834 | 2.1833
eFFT(F,) | 2.2851 | 2.1858 | 2.2543 | 2.1849 | 2.1846
eFFT(F,) | 2.1948 | 2.2300 | 2.1956 | 2.2298 | 2.2303
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Tableau 4.4 Ordres de précision sur le mouvement de la masse ponctuelle pour différents
intervalles de temps.

Tableau 4.5 Ordres de précision sur les efforts aérodynamiques pour différents intervalles de
temps.

Malgré de fortes déformations du maillage dues aux mouvements libre et forcé du profil, on
obtient bien les ordres de précision en temps théoriques prévus l'intégrateur en temps de
Runge-Kutta du 3¢ ordre (IRK3). Seul le schéma IRK3 a été utilisé et la vérification pour
IRK1 et IRKb5 reste a compléter. Les résultats préliminaires pour IRK3 sont toutefois assez
prometteurs pour espérer vérifier le code de calcul avec les schémas IRK1 et IRKS5.

Comme sur le cas similaire du profil oscillant présenté a la section 4.2, la réduction de
précision observée sur les efforts aérodynamiques s’explique logiquement par 'influence di-
rect de la pression pour laquelle les schémas IRK ont un ordre de précision en temps réduit
dans le cadre d’écoulements incompressibles (multiplicateur de Lagrange). Par contre, concer-
nant la vitesse et le déplacement de la masse ponctuelle, le schéma IRK3 conserve son ordre
de précision optimal ce qui vérifie le code de calcul.

Enfin, on note que contrairement aux cas de vérification précédents, il n’y a pas dépendance
du taux de convergence par rapport a l'intervalle de temps étudié, notamment lors du
régime transitoire. Le mouvement libre du profil peut expliquer ce phénomene car il rend
le déplacement plus naturel et le régime transitoire moins brutal. Le probleme est ainsi

moins raide a résoudre lors de la phase transitoire.
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4.5 Conclusion

La conclusion générale de cette étape de vérification est que l'approche numérique
adoptée avec les schémas d’intégration en temps IRK produit des résultats dont la précision
est tres proche de celle prédit par la théorie pour des problemes d’interaction fluide-structure
en grands déplacements. A cause de 'ordre de précision réduit pour la pression (multi-
plicateur de Lagrange), il semble évident d’obtenir une détérioration de la précision en
temps pour les forces aérodynamiques et les déplacements de la structure. Toutefois, comme
souligné par St-Amand [157], un probléme raide, comme ceux concernant les IFS fortement
couplés, peut réduire I'ordre théorique global a celui, plus petit, d'un étage (temps implicites
intermédiaires). Pour les méthodes de Radau-IIA, le schéma IRK3 peut voir son ordre
de précision passer de 3 a 2 et de 5 a 3 pour IRK5. Une étude plus étendue devrait étre
menée pour comprendre plus précisément ce phénomene de réduction d’ordre et essayer de

le minimiser comme indiquer a la section 2.3 de la revue de littérature.

On doit ici souligner le role prépondérant du choix de la solution initiale a chaque pas
de temps pour les intégrateurs en temps IRK a plusieurs étages. En effet, il est possible

d’initialiser la solution U™ de trois manieres différentes :
1. Vi€ [l,s], U™ =U";
2. Vi €[l,s],Up" = Uln=be
3.Vie[l,s],U" =g (U(”‘I)Jrci), avec g une fonction d’extrapolation.

Seule la premiere maniere de procéder induit une méthode auto-démarrante et initialise les
inconnues avec des valeurs plus proches de la solution que la 2¢ option. Toutefois, pour
un probleme non-forcé (cas de la languette flexible encastrée), on s’est heurté a quelques
problemes de convergence numérique de la méthode de Newton-Raphson a chaque pas de
temps. L’utilisation de la deuxieme option a résolu ce probleme. En effet, avec la premiere
méthode, tous les niveaux de temps ont la méme valeur initiale U" comme si la solution
recherchée était permanente. Or, pour un probleme non-forcé d’interaction fluide-structure
instationnaire, toute la solution initiale semble permanente pour le solveur, méme les condi-
tions aux limites qui ne forcent pas le probleme. Ainsi, le solveur ne peut pas facilement
trouver la solution instationnaire. Par contre, pour les problemes forcés comme un profil os-
cillant, les conditions aux limites rendent la solution initiale instationnaire a certains points,
méme avec la premiere option. Cette derniere permet en plus de considérer des pas de temps
plus importants et accélere la convergence des itérations de Newton-Raphson puisque la so-
lution initiale est plus proche de la solution recherchée. Enfin, la troisieme option initialise le

vecteur des inconnues avec des valeurs extrapolées grace aux solutions des temps précédents.
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Cette méthode n’est pas auto-démarrante mais permet d’améliorer la solution initiale, sans
dénaturer la nature instationnaire du probleme IFS, en ajoutant un faible cout de calcul

d’extrapolation. Cette méthode doit encore étre testée plus précisément.
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CHAPITRE 5

RESULTATS

Quand tu rédigeras ton traité de la Science des mouvements de l’eau, souviens-toi de
mentionner, sous chaque proposition, quelles applications elle a, afin que cette science ne
soit pas inutile.

Léonard de Vinci

Le code de calcul ayant été vérifié, on expose dans ce chapitre les différentes applications
numériques de la méthodologie développée dans ce mémoire. Trois principaux problemes d’in-
teraction fluide-structure ont été étudiés. Le premier, appelé cas de Wall [162] présente 1'étude
vibratoire d'une languette flexible encastrée a l'arriere d’un cylindre carré. Le deuxieme
probleme explore les possibilités énergétiques d’un profil oscillant, rigide ou flexible, pour
I'extraction de puissance et la propulsion. Enfin, la troisieme partie de ce chapitre expose des

résultats préliminaires d’un profil oscillant autopropulsé.

5.1 Etude du probleme de Wall

En 1999, Wall [162] présentait un probléme test impliquant une languette flexible en-
castrée a 'arriere d’'un cylindre carré soumis a un écoulement fluide uniforme. A cause des
lachers tourbillonnaires du cylindre, la languette flexible subit des déformations induites
par le fluide. Ce probleme bidimensionnel a été largement étudié a plusieurs reprises par
de nombreux auteurs pour évaluer la qualité de leur approche numérique pour résoudre
les interactions fluide-structure, dans sa configuration initiale par Dettmer et al. [163], Oli-
vier et al. [150], Valdés Véasquez [168] et Wood et al. [152], ou avec quelques changements
par De Nayer [3], Hiibner et al. [149] et Valdés Vasquez [168].

A partir d’'une valeur critique du nombre de Reynolds, un écoulement passant autour d’un
corps non-profilé génere des tourbillons (vortex) qui sont lachers & partir des angles du carré
a une fréquence constante. C’est le fameux lacher tourbillonnaire de von Kdarman. Toutefois,
la languette flexible encastrée derriere le cylinde carré modifie ce lacher de vortex. En effet,
le comportement oscillatoire du fluide induit des forces aérodynamiques (poussée et trainée)
dépendantes du temps, ce qui excite la languette flexible et mene a un mouvement oscil-
latoire de la structure. Ce mouvement, interagissant avec les tourbillons, perturbe alors le

comportement de 1’écoulement comme le montre la figure 5.1. C’est donc un probleme IFS



130

tres fortement couplé qui altere 1’allée initiale de von Karméan.

., &

t~T/4 t~T

Figure 5.1 Champs de vorticité obtenus avec IRK3 - At = 5. 1073s et 79 850 nodes.

5.1.1 Description du cas
A. Analyse dimensionnelle

Le choix des parametres et des données du fluide et de la structure va déterminer la
nature de ce probleme oscillatoire. Grace a I'analyse dimensionnelle des interactions fluide-
structure présentée a la section 3.1, on peut identifier les parametres adimensionnels qui
caractérisent ce probleme physique. Ceci permet une meilleure compréhension du probleme
en réduisant le nombre de parametres le décrivant en totalité. On pourra ainsi classer les
études précédentes plus facilement et comparer correctement nos résultats obtenus avec une
configuration adimensionnalisée. D’apres l'analyse dimensionnelle d’une structure flexible
encastrée (voir section 3.1.4), 7 nombres adimensionnels caractérisent le comportement du
systeme :

U*:f(x*,t*,Re,Mﬂem,CT,l/) (51)

En effet, on pose habituellement py = p;UZ et § = L de sorte que Eu =1 et D = 1 ne sont
plus caractéristiques du probleme.

Grace a ces nombres adimensionnels, on peut classer les précédentes études en deux cas : le
cas de Wall et le cas de Hiibner dont les parametres sont résumés dans le tableau 5.1. Comme
on peut le voir, bien que les auteurs abordent des problemes géométriquement identiques,
les deux cas correspondent a deux problemes physiques différents. En outre, contrairement
aux notations trouvées dans les travaux précédents, le coté du carré semble étre une échelle
plus appropriée que la longueur totale du systéeme pour caractériser le probleme puisque le

cylindre est responsable des lachers tourbillonnaires, induisant les vibrations de la structure.
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C’est pourquoi, on définit deux échelles de temps et deux nombres de Reynolds par rapport
a la longueur totale 7, et Re; d’un coté puis par rapport au coté du carré d’autre part 74 et

Re,4. Ainsi, on définit les pas de temps adimensionnels par At} = At/7, et At = At/7,.

. Cas de Wall Cas d’Hiibner
Parametres - - -
dim dim adim
Coté du carré : d 0.01m 0.01m 0.2
Longueur totale : L 0.05m 0.05m 1
Epaisseur de la languette : e 0.0006m 0.0006m 0.012
Echelle [ 7, =L/U 1/10.26 s 1/6.3 s 1
de temps { T4 =d/Uy 1/51.3 s 1/31.5 s 0.2
Module d’Young : E 2.5MPa 0.2M Pa 1708 153
Densité de la structure : p, 100kg/m? 2000kg/m? 1 694.91525
Viscosité du fluide : p; 1.82 10°Pa.s | 1.8210 107°Pa.s | 98.04 1074
Densité du fluide : p; 1.18kg/m? 1.18kg/m? 1
Vitesse du fluide : Uy, 0.513m/s 0.315m/s 1
Nombre de Reynolds : { ZZ 36373 24014
Coefficient de Poisson : v 0.35 0.35
Nombre de Cauchy : Cy 12.4216 1077 5.85427 1077
Nombre de Masse : Mye, 0.01180 0.00059

Tableau 5.1 Parametres dimensionels et adimensionnels pour les cas de Wall et d’'Hiibner.

B. Cas d’Hiibner

On choisit d’étudier le second cas, initialement décrit par Hiibner et al. [149], dans sa forme
adimensionnelle décrite dans la derniere colonne du tableau 5.1. Comme dans 'exemple de
vérification, la géométrie et les conditions aux limites sont spécifiées sur la figure 5.2. La
structure est modélisée par la loi de comportement de Saint-Venant Kirchhoff pour modéliser
correctement les grands déplacements. Le calcul instationnaire démarre a partir d’une solu-
tion stationnaire.

L’application de la méthodologie au cas d’Hiibner a pour but d’analyser le comportement
vibratoire de la languette et de comparer les résultats avec ceux trouvés dans le littérature
pour valider I'approche numérique. On note que tous les résultats présentés sont redimen-

sionnalisés grace au tableau 5.1 afin de faciliter la comparaison avec les précédentes études.
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Figure 5.2 Géométrie et conditions aux limites pour le cas de Wall.

C. Convergence en maillage

Afin de vérifier la convergence

en maillage du code de calcul (la convergence en temps

a déja été étudiée en détails au chapitre 4), on a effectué des simulations avec 4 maillages

différents présentés sur les figures 5.3 et 5.4 avec des éléments de Taylor-Hood (voir sec-

tion 3.5). Les nombres de nceuds sont a peu pres doublés a chaque fois : 10 179, 19 410, 41

913 et 79 850 noecuds.

a) 10 179 nceuds

b) 19 410 noeuds

c) 41 913 noeuds

d) 79 850 noeuds

Figure 5.3 Maillages utilisés pour le probleme de Wall.

Le processus de raffinement de maillage se fait manuellement en essayant de prendre

en compte les zones de déformati

L’instationnarité des phénomenes

ons de la structure ainsi que les lachers tourbillonnaires.

rend difficile la construction d’'un maillage initial adapté

a la physique de chaque pas de temps. Il serait nécessaire de remailler pour améliorer ce

processus. En outre, les fortes déformations de la lamelle flexible ont nécessité 1'utilisation
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d’un pseudo-solide non-linéaire (voir section 3.3.3) pour éviter des repliements de mailles sur
le maillage le plus fin de 79 850 nocuds. Ce choix a évité tout remaillage mais a requis des

temps de calcul beaucoup plus longs (doublés par rapport a un pseudo-solide linéaire).
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Figure 5.4 Détails des maillages utilisés pour le probleme de Wall.

Afin d’effectuer les simulations en un temps de calcul raisonnable, on a opté pour un
schéma IRK3 avec un pas de temps At = 1073s (At = 0.0315 pour mener les simulations sur
I'intervalle [0;25s]. Les résultats présentés sur la figure 5.6 montrent clairement un décalage
temporel selon la finesse du maillage. Il parait donc plus adéquat d’étudier la convergence
en maillage avec la norme d’erreur spectrale eF'F'T', définie au chapitre 4, sur l'intervalle
[15;25s]. En prenant comme solution de référence les résultats obtenus avec le maillage a
79 850 nceuds, on obtient les courbes de convergence présentées sur la figure 5.7. Les taux
de convergence des erreurs sont proches de la valeur théorique d’ordre 1 a la fois sur les
déplacements et sur les efforts. En effet, si on note h, la taille des éléments, la décroissance de
I'erreur devrait étre quadratique avec les éléments utilisés : O (h?). Or, le nombre de nceuds
Ny est approximativement proportionnel a 1/h%. On prévoit donc une erreur inversement
proportionnelle au nombre de noeuds, tel qu’observé. Le solveur est ainsi vérifié au sens de
Roache[180].

Finalement, 'erreur relative du maillage le plus grossier par rapport au maillage de

référence le plus fin étant déja relativement faible, on a opté pour le maillage comportant
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Figure 5.5 Maillage non-déformé pour le cas de Wall - 10179 noeuds.

10 179 nceuds, présenté sur la figure 5.5. Ceci autorise en effet de nombreuses simulations
dans un temps de calcul raisonnable. De plus, le faible nombre de noeuds, et donc d’inconnues,
permet 'utilisation de schémas d’intégration d’ordres élevés IRKS malgré les faibles espaces

mémoires disponibles.

5.1.2 Comportement vibratoire

Les figures 5.9 a 5.12 présentent le comportement vibratoire de la languette obtenu avec
différents pas de temps et trois schémas d’intégration en temps IRK1, IRK3 et IRK5 (voir
aussi la figures 5.13). La force verticale F; agissant sur la languette est exprimée en Newton

grace a I’adimensionnalisation suivante :
Cr =2F,/(p;DU)

Le spectre de Fourier est calculé pour ¢ € [10s : 25s] avec N = 2! points d’échantillonnage.
On utilise des splines cubiques pour interpoler, a ces points d’échantillonnage, les résultats

obtenus avec les différents schémas d’intégration en temps et les différents pas de temps.

A. Théorie linéaire

La théorie des poutres (linéaire) fournit une premiere approximation pour analyser et
comparer le comportement vibratoire de la lamelle flexible. Les fréquences modales de la

structure s’expriment alors ainsi :

. R Ee? 207 e M 1
fi=t ) —— =2y — (5.2)
2w \| 12psL 2r L%, LN 12Cy 1,

strip strip
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en prenant I, = be3/12 pour U'inertie de la languette, A = be pour son aire et b étant son
envergure. Avec Ry = 1.875099, Ry, = 4.694084, Ry = 7.85476, Ry = 10.99554 et Ry =
14.13717, on obtient pour le cas d’'Hiibner (Lg;,/L = 0.8, 1/7, =6.3 Hz) :

fi f3 f3 i /3
0.606 Hz | 3.796 Hz | 10.63 Hz | 20.83 Hz | 34.43 Hz

B. Etude fréquentielle

Pour la languette au repos (pas de déformation), Hiibner et al. [149] et De Nayer [3]
ont trouvé sur le cylindre carré des fréquences de lachers tourbillonnaires d’environ 3.7 Hz.
Cette fréquence est tres proche de la seconde fréquence modale de la structure f5 = 3.796 Hz.
Quand la languette est libérée, il parait alors évident d’observer un mouvement correspondant
a l'excitation du second mode structurel avec de larges déplacements comme représenté sur
la figure 5.8. Toutefois, I'analyse spectrale des déplacements de I'extrémité libre et des forces
verticales agissant sur la languette (voir tableaux 5.3 et 5.2) met en évidence une fréquence
de vibration dominante d’environ 3.1 Hz pour le probleme couplé. De plus, la lamelle flexible
vibre selon une superposition de plusieurs modes avec le mode principal. Le fort couplage
IF'S et les grands déplacements de la structure rendent le probleme fortement non-linéaire ce
qui limite ici 'application de la théorie des poutres.

S0 A T VAT
3.067 [ 9.134 | 1513 | - | - | - -

Tableau 5.2 Fréquences modales du déplacement vertical y (en Hz) avec IRK3 - At = 5. 10~ %s.

Auteur i s 5 i ] Jn
Hiibner [149] 3.1 - - - - -
De Nayer [3] 3.07-3.20 | 9.20-9.52 | 15.16-15.85 - - -
Valdes Vasquez [168] 3.22 9.-10. 15.-17. - - -
Présente étude 3.067 9.201 15.27 21.27 | 27.40 -
IRK3 - At = 5.1073s

Présente étude 3.067 9.134 15.13 21.13 | 27.14 | 89.67
IRK3 - At = 5.107%s

Tableau 5.3 Comparaison des résultats obtenus pour les fréquences de la force verticale (en
Hz) avec ceux de la littérature.
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(c) t~T/8 (d) t ~ 5T/8
-
-
=E—., B
. -
(e) t = T/4 (f) t ~27T/3
-
. :
&\, ¢ g
.
(o) t ~ 3T/8 (W) t~T

Figure 5.8 Champs de vorticité obtenus avec IRK3 - At = 5.1073s et un maillage plus fin :
79 850 noeuds.
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C. Validation

Les figures 5.9 a 5.12 montrent que les résultats pour le déplacement vertical du
I'extrémité libre de la languette sont semblables a ceux obtenus par De Nayer, Hiibner et
Valdés Vésquez [3, 149, 168] excepté avec U'intégrateur en temps IRK du premier ordre et un
grand pas de temps. En effet, la languette oscille principalement selon son deuxieme mode
de vibration (voir figure 5.8) avec une amplitude maximale d’environ 0.8cm. Or, le schéma
IRK1 (Euler implicite) ne peut pas capturer ce 2¢ mode avec un pas de temps trop grand
(voir figure 5.9). A contrario, il obtient un mouvement correspondant au premier mode
structurel (fréquence couplée : f¢ =~ 0.8 Hz) avec de tres grandes amplitudes (Y, &~ 1.2 cm).
Toute I’énergie se concentre en effet dans ce mode unique. Avec un pas de temps plus
petit (voir figure 5.10), le schéma IRK1 capte le bon mode de déformation avec toutefois
des amplitudes réduites par rapport aux résultats trouvés dans la littérature. Les schémas
implicites de Runge-Kutta d’ordres supérieurs peuvent supporter ce comportement non-

linéaire et sont suffisamment précis pour reproduire plusieurs modes structurels avec justesse.

Plus précisément, les fréquences couplées f£ de ce probleme IFS sont résumées dans
le tableau 5.3 et se comparent avantageusement aux résultats obtenus par les précédentes
études pour les trois premiers modes. Toutefois, les modes de fréquences supérieurs a 20Hz
ne sont pas retrouvés dans les résultats des travaux précédents. De méme, les résultats
obtenus pour le déplacement vertical de 'extrémité libre de la languette et pour le spectre
de la force verticale F), sont tres proches de ceux obtenus par De Nayer [3] avec un schéma
de Newmark amorti présentés sur la figure 5.14 pour les modes principaux mais different
pour les vibrations de hautes fréquences. On le voit en effet clairement sur la figure 5.13
présentant les résultats des simulations pour le cas d’Hiibner avec IRK5 - At = 6.25 10~ *s.
Cette différence dans les résultats pour les modes de hautes fréquences sera discutée a la

section 5.1.3.

Enfin, la figure 5.15 montre les champs de pression obtenus autour de la languette au
cours d'une demi-période (déterminée par le premier mode couplé). Ils sont semblables a
ceux présentés par De Nayer [3] sur la figure 5.16. Ainsi, les résultats obtenus sont en tres
bon accord avec ceux trouvés dans la littérature. De plus, les schémas en temps utilisés sont

tres robustes méme avec une approche monolithique et de "grands” pas de temps.
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(e) t = 25.3255s ~ T/3 (f) t = 25.3815s ~ T/2

Figure 5.15 Champs de pression & différents temps ¢, obtenu avec IRK3 - At = 5.107%s.
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5.1.3 Discussion

On doit souligner le fait que, grace a la précision des schémas de Runge-Kutta
d’ordres élevées, on a mis en lumiere plusieurs modes structurels dans le domaine des
hautes fréquences [20Hz,100Hz| pour la force verticale qui ne sont pas mentionnés par
les précédentes études trouvés dans la littérature (voir figure 5.13 et tableau 5.3). En
effet, il n'y a aucun amortissement physique dans le modele structurel utilisé. Il n’y a pas
non plus d’amortissement numérique induit par les intégrateurs en temps IRK d’ordres
élevés qui ne sont pas stabilisés, contrairement aux schémas amortis habituellement uti-
lisés [164, 163, 168, 152, 3|. Ainsi, la grande stabilité de I"approche présentée pour simuler
les interactions fluide-structure instationnaires permet de capturer les hautes fréquences
structurelles sans induire d’oscillations parasites numériques.

On note que les spectres de Fourier des déplacements verticaux de 'extrémité libre et des
forces verticales n’ont que les trois premieres fréquences modales en commun. D’ailleurs,
il n'y a aucune fréquence modale au-dela de 20Hz pour les déplacements comme on peut
le voir sur la figure 5.9 et les tableaux 5.3 et 5.4. On peut expliquer cela en considérant
que l'on a a faire a des efforts structurels internes qui n’interagissent pas avec le fluide
a hautes fréquences de sorte que le comportement vibratoire de l'extrémité libre n’en est
pas affecté. En effet, si on utilise la vitesse réduite Ur = Tstructure/T fruia = Uo/Cs, OU €5
représente la vitesse des ondes dans la structure, on peut estimer la force du couplage
IFS des différents modes. Pour les modes structurels de hautes fréquences, la vitesse des
ondes est grande et ainsi la vitesse réduite est petite (donc couplage faible). Dans ce cas
particulier, on a Ugr = Uy/cs ~ Uy/(Lfs) = 6.3/ fs. Ainsi, pour des fréquences couplées
hautes f. = f; >> 20Hz, on a Uz << 0.315 < 1. Donc, le fluide et la structure ont deux
échelles de temps tres différentes : Tsyryerure << Tpiuia comme on peut le voir graphiquement
sur la figure 5.17. Autrement dit, au-dela des basses fréquences, du point de vue de la
structure, le fluide semble statique. Le couplage IFS est ainsi vraiment faible de sorte
que les modes structurels internes de hautes fréquences ne sont pas couplés directement a
I’écoulement fluide et n’influencent donc pas le mouvement de la languette flexible.

Comme la loi de comportement de la structure est non-linéaire, tous les modes sont couplés
et un échange d’énergie s’opere librement entre eux. Sans amortissement structurel, ce

transfert peut exciter un nombre infini de modes structuraux puisque seulement les modes

Nl | s A S| fis
3.067 9134|1513 | - | - | - | -

Tableau 5.4 Fréquences modales du déplacement vertical (en Hz) avec IRK3 - At = 5. 10™s.
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Figure 5.17 Evolution de la force verticale F, appliquée a la structure comparée a celle du
déplacement vertical de 'extrémité libre.

de basses fréquences sont amortis par le fluide a cause d’un fort couplage IFS. Dans ces
conditions, le comportement vibratoire ne deviendra sans doute jamais périodique. Pour étre
plus réaliste, on devrait introduire une forme d’amortissement structurelle pour les modes

de hautes fréquences.
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5.2 Performances d’un profil oscillant

La méthodologie développée dans ce mémoire pour simuler les interactions fluide-structure
en grands déplacements a pour but pratique d’explorer numériquement des processus d’ex-
traction de puissance d’un écoulement fluide et de propulsion grace a un profil flexible en
grands déplacements. C’est ainsi que cette deuxieme application présente I’étude des per-
formances d’un profil NACAO0015 oscillant tant pour I'extraction de puissance que pour la
propulsion. Dans un premier temps, I’'étude du régime d’extraction de puissance permettra
de comparer les résultats obtenus avec ceux de Kinsey et al. [4]. Dans un second temps, on
explorera le domaine de la propulsion avec une approche classique supposant une vitesse fixée
Uso de I’écoulement (voir section 5.3 pour le profil autopropulsé). Enfin, on présentera ’effet

de la flexibilité du profil sur les rendements.

5.2.1 Description du probleme
A. Analyse dimensionnelle

On étudie un cas semblable a celui présenté a la section 4.2 dans le cadre de la vérification
du code de calcul. Grace a I’analyse dimensionnelle des interactions fluide-structure présentée
a la section 3.1, on peut identifier 6 nombres adimensionnels caractérisant le cas d'un profil

rigide oscillant :
U* = f (ZE'*,E*,RE,Q(), 8>.f*) (53)

En effet, on pose habituellement py = p;UZ de sorte que Eu = 1 n’est plus caractéristique du
probleme. De plus, on considere des échelles de temps définies par la fréquence de battement
avec le temps adimensionnel t* = t*f* et le nombre de Strouhal St = wh/(7lj). L’échelle

de longueur [y est bien sur fixée par la corde ¢ du profil.

B. Parameétres du probléme

L’aile rigide est décrite par un profil NACAO0015 de corde unitaire ¢ = 1. et subit un mou-
vement périodique de battement et de rotation représenté sur la figure 5.18. Ce mouvement

est régi par les équations suivantes :

0(t) = 6pcos(wt)
h(t) = hgsin(wt)

ol w est la pulsation telle que la période s’écrive T' = 27 /w. L’angle de rotation moyen 6,
est considéré comme nul, 'amplitude de la rotation est définie par 6, et 'axe de rotation est

situé au tiers de la corde : z. = 1/3. Enfin, le battement a une amplitude unitaire hj = 1..
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On a donc deux parametres variables pour le mouvement : 6y et f*. On utilise une fonction
lissante jusqu’a tox = 0.5 (e = 3.0) afin de débuter le mouvement avec une vitesse et une

accélération nulles (voir annexe A).

-

\

Mouvement de montée

‘,'
-

-

Mouvement de descente

Figure 5.18 Champs de vorticité pour (6y = 60, f* = 0.18), obtenus avec IRK3 - At = Aty/2
et 120 386 nceuds.

Concernant les propriétés du fluide, on utilise p; = 1. pour sa densité, Uy = Uy =
1.corde/s pour sa vitesse en entrée et un nombre de Reynolds Re=pcUy/1;=1100 (avec une

viscosité py = 1/1100). Les conditions aux limites sont précisées sur la figure 5.19.

C. Choix du maillage

Le maillage est identique a celui utilisé pour 1’étape de vérification avec 10 513 nceuds
répartis sur deux zones fluides (voir figure 5.20). Toutefois, pour les angles faibles (i.e. 6y <
70 °), 'approche pseudo-solide permet une déformation du maillage sans repliement avec une
seule zone fluide. C’est cette configuration qui est utilisée pour les faibles angles dans ’étude
d’extraction de puissance. En outre, le faible nombre de noeds permet d’effectuer des études

paramétriques des performances d’un profil oscillant avec des temps de calcul raisonnables.
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5.2.2 Performances d’un profil oscillant
A. Extraction de puissance

On étudie le profil NACAO0015 rigide oscillant & un nombre de Reynolds Re = 1100 dans
son régime d’extraction de puissance afin de valider les résultats obtenus lors des simulations
avec ceux présentés par Kinsey et al. [4]. On mene une étude paramétrique pour explorer
I'espace “angle de rotation/fréquence réduite” défini par 6, € [0: 90| et f* € [0;0.25]. Les
simulations ont été menées avec un schéma IRK du premier ordre et différents pas de temps
tels qu’on ait toujours At < 7'/2000.

Les puissances extraites et les rendements sont calculés sur la troisieme période de batte-

ment. On utilise ici la notion d’efficacité totale définie par I’équation 2.1 ainsi :

P, + P

e =2—7—
1 pU3 d

L’efficacité est alors théoriquement bornée par la limite de Betz : mye. ~ 59%.

3 , . : |
_ Puissance totale——
Puissance de couple-------
N Cyoroveo .
AV 074 § pe—
1 7777777777777777777777777777777777777777777777777777777777777777777 ','ff',',",:',-,,._,';,; 77777777777777777 ]
S '°'-..
% ; . . : "-..‘%’
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&
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Figure 5.21 Evolution des puissances sur une période pour le cas : (6p = 60", f* = 0.18).

Pour le cas de référence (6p = 60", f* = 0.18), on obtient une efficacité assez faible de
12.0% proche de celle de 11.4% trouvée par Kinsey et al. [4]. L’évolution des puissances sur

une période (voir figure 5.21) est également semblable a celle présentée par Kinsey et al..
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On observe d’ailleurs que le manque de synchronisme entre les efforts verticaux C), et la
vitesse verticale V, engendre des puissances transversales P, négatives sur une grande partie
de la période. La puissance moyenne extraite est donc faible, induisant un faible rendement
d’environ 12.0%.

La figure 5.22 représente la cartographie de l'efficacité d’extraction de puissance 7, dans
I'espace paramétrique (f*,6p). Les cas simulés sont indiqués par les ronds noirs et les contours
d’efficacité sont interpolés sous MATLAB. La cartographie obtenue se compare favorablement
avec celle obtenue par Kinsey et al. [4] (voir figure 5.23) et dévoile la méme zone de hauts
rendements : 0y =~ 70 — 90" et f* ~ 0.12 — 0.18. Les résultats des simulations s’en trouvent
ainsi validés. Toutefois, pour de forts angles de rotation (au-dela de 80°), nos résultats
n’indiquent pas de baisse d’efficacité mais restent cohérents sur I’espace paramétrique. Il est
alors difficile de dire quelle solution est la plus juste. Cette cartographie exhibe en outre la
délimitation entre les domaines de I'extraction de puissance et celui de la propulsion. On voit

alors que le courbe de plumage (y = 1) est une tres bonne approximation de cette limite.

Angles 6o (°)

PROPULSION /

Figure 5.22 Cartographie de lefficacité d’extraction de puissance 7. dans l'espace pa-
ramétrique (f*,6p).

25

A

L’utilisation de schémas implicites de Runge-Kutta d’ordres élevés améliore la précision
des calculs comme I’a clairement montré le chapitre 4 portant sur la vérification du code de

calcul. Ainsi, une étude de raffinement en pas de temps a été menée avec un schéma IRK3
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Figure 5.23 Cartographie de l'efficacité d’extraction de puissance 7. obtenue par Kinsey et
al. [4] .

au point de meilleur rendement pour Uextraction de puissance : (f* = 0.14, 6y = 76.33 *)[4].
Comme la variation des valeurs caractéristiques entre les cycles de battement 8 et 9 est
inférieure a 0.1%, les calculs se feront sur la 8¢ période de battement. Les résultats sont
consignés dans le tableau 5.5 pour les principales valeurs caractéristiques. On a utilisé quatre
valeurs de pas de temps : 7'/50, 7/100, 7'/200 et T7'/400 et les résultats de Kinsey et al. [4]
avec 253 000 éléments et At = T'/4000 sont présentés dans la seconde colonne et valident
nos résultats. La derniere colonne du tableau présente l'erreur relative entre les résultats
obtenus pour des pas de temps At = 7'/200 et At = T'/400.

On observe dans la derniere colonne du tableau que I'erreur relative reste inférieure a 0.25%

At Kinsey [4] | T/50 | T/100 | T'/200 | T'/400 | Erreur relative
—Cr 2.019 2.17530 | 2.16254 | 2.15150 | 2.14876 0.13 %
max Cy 1.942 1.98664 | 1.99382 | 2.01325 | 2.01371 0.023 %
max Cyy 0.664 0.64114 | 0.61447 | 0.61457 | 0.61606 0.24 %
e 33.9% 36.37% | 36.09% | 35.93% | 35.89% 0.11 %

Tableau 5.5 Résultats du raffinement en pas
(f*=0.14,00 = 76.33 ).

de temps pour un profil oscillant avec

pour toutes les valeurs caractéristiques. On choisit donc un pas de temps At = 7'/200 pour
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mener les simulations. Enfin, a partir de la figure 4.4 présentée a la section 4.2 pour un cas
légerement différent, on peut déduire que pour At = 7'/200 =~ 3.1072, on a une erreur eRMS
sur F, de l'ordre de 1073, Pour ce niveau de précision, la figure 4.6 montre que le schéma

IRK3 est plus rapide que le IRK5 et requiert moins de mémoire.

B. Propulsion

Grace aux schémas implicites de Runge-Kutta d’ordres élevés, il est possible de calculer
I'efficacité propulsive d'un profil oscillant pour une large gamme de mouvements. Suite a
I’étude faite précédemment pour le cas de rendement optimal d’extraction de puissance, on va
considérer un schéma IRK3 et un pas de temps At = 7'/200 pour mener I’étude paramétrique
explorant le domaine défini par 6y € [0: 60 "] et f* € [0;0.25].

*

o | 010 | 0.14 | 018 [ 0.22 | 0.25

0° <0 1.39 | 4.38 | 4.65 | 4.83
20° | 17.71 | 35.72 | 33.03 | 29.25 | 26.71
30° | <0 |44.00 | 32.70 | 40.37 | 37.69
40° | <0 <0 |43.21 | 43.64 | 26.37
50° | <0 <0 <0 |27.08 | 38.87
60° | <0 <0 <0 <0 <0

Tableau 5.6 Efficacité de propulsion 7, (en %) dans 'espace paramétrique (f*,6p).

On considere ici la définition classique de lefficacité de propulsion donnée par

: C .
I'équation 2.3 : n, = —T . Le tableau 5.6 présente l'efficacité n, (en %) obtenue pour
P
différents parametres du mouvement. Des efficacités négatives ("< 0’) sont évidemment ob-

tenues pour les paires (f*,6p) se situant dans le domaine d’extraction de puissance indiqué
sur la figure 5.24. La plus grande efficacité de propulsion 7" a2 44% est obtenue pour des
amplitudes de rotation modérées, #y ~ 30 — 40" et pour des fréquences réduites dans la
gamme f* =~ 0.18 — 0.22.

Toutefois, les efficacités les plus élevées ne garantissent pas les plus grandes forces de poussée.
En effet, la figure 5.24 présente la cartographie du coefficient de poussée Cr dans l'espace
paramétrique (f*,6y) ou les ronds noirs représentent les cas simulés. Contrairement a 1'ef-
ficacité, la poussée maximale est obtenue pour les hautes fréquences (f* > 0.25). Afin de
délimiter la zone de poussée maximale, il faudrait prolonger I’étude a des fréquences d’oscil-

lation supérieures.



157

60 T T —* '/, T A \ 0.2
“EXTRACTION - 08
° DE PUISSANCE 2
S \ 1.4
’ . 1.6
L ] L ] L ]
< . 1.8
D
3 .
&
g
L]
0 a [ o " Py
0 0.05 0.1 f* 0.15 0.2 0.25 0.3

Figure 5.24 Cartographie du coefficient de poussée Cr dans 'espace paramétrique (f*, 6p).



158

C. Profil flexible oscillant

Analyse dimensionnelle : Afin d’explorer les effets de la flexibilité sur les perfor-
mances d’un profil oscillant, on introduit une composante structurelle flexible dans le profil
NACAO0015 représentée par la zone noire sur les images situées dans la colonne de droite de la
figure 5.26. L’analyse dimensionnelle differe alors de celle d'un profil rigide oscillant comme
souligné dans la section 3.1.4. Les parametres physiques de la structure induisent en effet
4 nombres adimensionnels supplémentaires de sorte que le probleme étudié est désormais

caractérisé par 11 parametres adimensionnels :
U* = f (LL’*, ll:*, Re, Mflema CT, v, Eu, D, 90, ha, f*) (54)

On considere une structure avec une densité ps; = 1. et un coefficient de Poisson v = 0.1.
Les effets de la variation de sa flexibilité seront étudiés en changeant son module d’Young
E. Les conditions aux limites sont identiques a celles indiquées sur la figure 5.19 excepté en
ce qui concerne le profil. Le mouvement (usager) est imposé sur les frontieres intérieures de
la structure, tandis que l'interface fluide-structure est traitée de maniere implicite sans avoir

a imposer de conditions aux limites explicites.

Extraction de puissance : L’impact de l'introduction d’une partie flexible est étudiée
pour le cas de référence défini par (6y =60", f* =0.18, hy = 1.0). On se trouve alors
dans le domaine de l'extraction de puissance. Différentes valeurs du module d’Young
adimensionnalisé sont étudiées : E* = [2.10%,2.10%,2.10%,2.10°] avec un schéma IRK du 1¢
ordre et un pas de temps At = 0.002 ~ T'/2800, assez petit pour avoir une bonne précision

méme avec des interactions fluide-structure.

La figure 5.26 présente les champs de pression autour de I’aile rigide et du profil le plus

E” Py Py Pot Ne
2.107 0.1868 | -0.03996 | 0.1407 | 11.73%
2.10° 0.2113 | -0.05998 | 0.1513 | 12.61%
2.10% 0.2137 | -0.06540 | 0.1483 | 12.36%
2.10° 0.2137 | -0.06611 | 0.1476 | 12.31%

RIGIDE | 0.2045 | -0.06064 | 0.1439 | 11.99%

Tableau 5.7 Comparaison des puissances et des efficacités d’extraction de puissance entre des
profils rigide et flexible.
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flexible étudié (E* = 200). On voit clairement la déformation du bord de fuite due a la flexi-
bilité de la structure sur la figure 5.26. L’effet sur le champ de pression est aussi évident avec
sensiblement la méme chose au bord d’attaque mais une réduction des gradients de pression
au bord de fuite dans le cas flexible. Il est toutefois difficile d’en évaluer les conséquences
sur l'extraction de puissance. La figure 5.25 propose une comparaison de la puissance totale
(dimensionnelle) pour différentes flexibilités du profil. L’amplitude de méme que la puis-
sance de créte diminuent avec la flexibilité. Toutefois, la puissance moyenne extraite peut
étre améliorée par 'introduction d’une flexibilité comme le montre le tableau 5.7. Ainsi, si
on évalue lefficacité de la méme manieére que pour le profil rigide (méme amplitude d), il
existe un module d"Young optimal autour de E* = 2.10% qui délivre un meilleur rendement

Ne = 12.61% pour l'extraction de puissance que celui du profil rigide 7, = 11.99%.

|
RIGIDE

[\ E=2d6 ------- -
E=2d4 weeeeee

E = 2d13 -
7Y E=2d2 —mmm

s

0.8 1 1.2 1.4 1.6 1.8
t/T

Figure 5.25 Comparaison de la puissance totale instantanée entre des profils rigide et flexibles
sur une période de battement.

Propulsion :  Enfin, on a obtenu quelques résultats préliminaires de simulation d’un pro-
fil flexible oscillant en régime de propulsion pour un cas a haut rendement de propulsion
(0o = 40°, f* = 0.20). Par rapport a I’étude précédente, on utilise ici un schéma d’intégration
en temps d’ordre 3, IRK3. Le pas de temps reste identique At = T/200 et on étudie 4
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Figure 5.26 Comparaison des champs de pression entre un profil rigide a gauche et un profil
flexible (E = 200) a droite pour (f* = 0.18,6, = 60" ).
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modules d’Young différents : E* = [2.10% 4.10%,103,10°]. Dans le cas de la propulsion, on
observe aussi sur la figure 5.27 que les valeurs de créte pour la puissance ainsi que pour la
poussée diminuent avec la flexibilité. De plus, pour le mouvement considéré, le coefficient de
poussée diminue avec la flexibilité puisque les valeurs minimales ne sont que peu affectées

alors que les valeurs maximales de poussée sont fortement diminuées.

5.2.3 Conclusion

Dans cette seconde application, on a étudié les performances d'un profil oscillant tant
dans le domaine de 'extraction de puissance que dans la propulsion. Un faible nombre de
neeuds dans le maillage et des schémas d’intégration en temps performants nous ont permis

de mener plusieurs études paramétriques.

Tout d’abord, I'étude des performances d’extraction de puissance d’une aile rigide
(NACAO0015) oscillante a donné des résultats en trés bon accord avec ceux trouvés dans
la littérature. La modélisation adoptée est ainsi validée. Ensuite, une seconde étude pa-
ramétrique, utilisant des schémas d’intégration en temps d’ordre 3, a permis d’identifier de
grandes efficacités de propulsion avec un mouvement optimal du profil. La zone de poussée
optimale semble toutefois se situer au-dela des fréquences étudiées (f* > 0.3). Une étude
complémentaire semble donc nécessaire pour parachever cette étude paramétrique. Enfin,
I'influence de la flexibilité du profil a été explorée sur deux mouvements différents, I'un dans
le régime de l'extraction de puissance, 'autre dans le domaine de la propulsion. Une flexibi-
lité optimale semble améliorer I'efficacité d’extraction de puissance pour le mouvement choisi.
Dans le domaine de la propulsion, on a seulement présenté des résultats préliminaires utili-
sant un schéma IRK3. La flexibilité tend a diminuer la poussée disponible mais également la
puissance totale. Une étude paramétrique complete de 'impact de la flexibilité sur 'efficacité
de propulsion et d’extraction de puissance serait bénéfique pour avoir une vision plus générale

des performances de profils flexibles oscillants.
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Figure 5.27 Comparaison des coefficients de puissances totales instantanées et de poussée sur
une période de battement pour différentes flexibilités du profil : (f* = 0.20, 6, = 40°).



163

5.3 Profil autopropulsé

Comme derniere application de la méthode développée pour simuler les interactions fluide-
structure en grands déplacements, on présente les résultats préliminaires obtenus sur un profil
autopropulsé grace a ces mouvements de battement et de rotation a I'instar d'une aile d’oiseau
ou d’une nageoire de baleine. Introduire un mouvement libre du profil (et non plus imposé
par une vitesse fictive Uy, en entrée) rend bien plus réaliste 1’étude de la propulsion par
un profil oscillant. Toutefois, 'approche classique doit alors étre adaptée afin de définir des
parametres adimensionnels et des rendements appropriés, tenant compte de la masse du profil
et du fait que la vitesse du fluide a l'infini du fluide Uy, n’est plus caractéristique du probleme

puisqu’elle peut étre nulle.

5.3.1 Description du cas
A. Analyse dimensionnelle

Suite a I'étude de vérification de la méthodologie sur un profil autopropulsé présentée a la
section 4.4, on a appliqué le code numérique développé sur des cas similaires avec différents
parametres de mouvement. Grace a ’analyse dimensionnelle des interactions fluide-structure
présentée a la section 3.1, sept nombres adimensionnels caractérisent le cas d’un profil rigide

autopropulsé :
U* = f (x*7£*>Re>Mrigide>90>haaﬁ) (55)

En effet, on pose habituellement py = p;UZ de sorte que Eu = 1 n’est plus caractéristique
du probléme. On rappelle que le nombre de Reynolds s’exprime alors comme Re=p; fol2/ ff
et ¥ définit I’échelle des vitesses : ¥ = Uy /(foLo).

B. Parameétres du probléme

On reprend les mémes parametres de mouvement que ceux décrit dans la section 5.2
concernant les profils oscillants. Ainsi, méme si le nombre de Reynolds est désormais défini
de fagon différente, on considere le méme fluide (méme masse volumique et méme viscosité).
Par contre, la vitesse d’entrée (U, ) peut désormais varier, et éventuellement étre prise comme
nulle. C’est en effet, la vitesse d’avancée du profil autopropulsé qui compte désormais. Ce
dernier possede en effet un degré de liberté selon 'axe horizontal lui permettant d’avancer

selon I’équation 3.27 (voir figure figure 5.28).
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C. Choix du maillage

Pour faire des comparaisons futures, le maillage est identique a celui utilisé pour 1’'étape
de vérification avec 10 513 nceuds présenté a la section 4.4. Par contre, il est désormais libre
de “glisser” avec le profil qui avance. Ainsi, les déplacements horizontaux du pseudo-solide
sont libres sur les quatre frontieres du domaine comme l'indique la figure 5.28. Ceci permet

une déformation du maillage sans aucun repliement.

. 30. N
- u=libre,v=0. K
u=0., x=libre x=libre, n=0. u=libre, X:libre§
v=0., n=libre v=libre, n=libre
10.
> 1.00 R
4 B
HIASSE /Q u=usager )(—us.ager3 -
ponctuelle U3 e (Xomn é\)IACAOOB {v:usager: n=usager
Y u=libre, v=0.
,, [ > o xslbren=0.

Figure 5.28 Conditions aux limites pour le profil autopropulsé.

5.3.2 Résultats préliminaires
A. Premiers résultats

Les premiers résultats obtenus pour un profil oscillant autopropulsé ont été présentés
lors de la vérification du code a la section 4.4 avec m = 0.30, ho/c = 1., f = 0.18Hz et
0o = /3. Avec un schéma d’intégration en temps IRK3 et un pas de temps At = 0.1s, la
figure 5.29 expose 'avancée du profil durant 12 périodes de battement avec les isolignes de

vitesse horizontale.

B. Influence de la masse

Dans un second temps, on a commencé a étudier I'influence de la masse du profil sur la
dynamique du systeme avec un probleme simple. On a considéré un mouvement de battement
pur (y = 0) avec hg/c = 0.5 et f = 1.Hz. Pour le fluide, on a considéré py = 4. et
piy = 0.04 ainsi Re=p; fola /11 = 100. Pour les profils, deux masses ont été étudiées : m = 0.30

et m = 1.20. La figure 5.30 présente 1’évolution de la vitesse pour ces deux profils. On
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Figure 5.29 Avancée du profil - isolignes de vitesse horizontale U,,, pour t=T/4, T/2, 3T /4,
T, 5T/4, 2T, 6T, 12T.
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remarque que, malgré des vitesses de pointe plus élevées, le profil le plus lourd se déplace
plus rapidement que le profil avec une masse de m = 0.30. Ainsi, méme en régime établi, la

masse joue un role dans la dynamique du profil autopropulsé.
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Figure 5.30 Vitesse Uy, (en corde/période) des deux profils de masse m = 0.30 et m = 1.20.

La figure 5.31 représentant les déplacements x,,, des deux profils permet de mieux
appréhender le régime transitoire. On constate en effet que le profil le plus léger se déplace en
premier mais il est rapidement rejoint dans sa course par I’autre profil. Finalement, le profil

le plus lourd avance plus vite une fois le régime périodique établi.

5.3.3 Discussion

Cette derniere application de la méthodologie développée a donné les premiers résultats
sur 'autopropulsion d’un profil oscillant. Elle ouvre une nouvelle voie de simulation, plus
proche des conditions réelles, pour étudier les performances de propulsion. Le déplacement
induit du profil est en effet calculé au lieu d’étre imposé par une vitesse d’entrée U,,.
Ceci implique une nouvelle maniere d’appréhender les études sur les performances de
propulsion. En effet, la définition du nombre de Reynolds doit étre revue car U, n’est plus
caractéristique du probleme. De méme, lefficacité de propulsion ne peut plus s’appuyer

sur I’évaluation de la force de poussée qui est équilibrée en régime établi. Par contre, on a
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Figure 5.31 Déplacement x,,, (en corde) des deux profils de masse m = 0.30 et m = 1.20.

vu que la masse du profil a une influence sur sa dynamique, méme en régime établi. C’est
pourquoi, une nouvelle définition du rendement de propulsion devrait désormais prendre en

compte la masse du profil.

Ces premiers résultats posent les bases d’une fagon plus réaliste de simuler et de quan-
tifier la propulsion d’un profil oscillant. Des études paramétriques pourront alors servir a la
comparaison des performances propulsives par rapport a la maniere classique présentée a la
section 5.2. De plus, il sera intéressant d’étudier I'impact de l'introduction d’une flexibilité

du profil dans ce contexte.
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CHAPITRE 6

CONCLUSION

Le but de ce projet de these était de simuler numériquement des processus d’extraction
de puissance d'un écoulement fluide visqueux et de propulsion grace a un profil flexible en
grands déplacements. Pour atteindre ce but, on a mené des travaux originaux en améliorant
les techniques de résolution de problemes d’interaction fluide-structure instationnaires en
grands déplacements. Cette étude par ses limitations, d’ordres théorique et pratique, laisse
aussi la porte ouverte a certaines améliorations tout en posant des maintenant les bases de

travaux futurs tres prometteurs.

6.1 Syntheése des travaux

On a tout d’abord développé une méthodologie complete pour la simulation numérique
d’interactions fluide-structure en grands déplacements basée sur un code informatique
de CEFD (Computational Fluid Dynamics) préexistant. Afin de mieux appréhender les
problemes d’IFS, on a commencé notre projet par une analyse dimensionnelle détaillée
permettant d’obtenir les parametres caractéristiques des cas étudiés. On a ensuite prolongé
une formulation monolithique implicite stationnaire des interactions fluide-structure[109] au
régime instationnaire. On a ainsi amélioré I'imposition des conditions aux limites pour les
frontieres en mouvement afin de garantir le traitement totalement implicite du probleme.
De plus, on a perfectionné la gestion de la déformation du maillage due aux grands
déplacements de la structure via une approche pseudo-solide. L’introduction des équations
de masse ponctuelle a permis de prendre en compte le mouvement d’ensemble de la structure
du aux forces extérieurs. Enfin, des schémas implicites de Runge-Kutta ont été implémentés

afin d’améliorer la stabilité et la précision de l'intégration en temps du systeme d’équations.

Cette méthodologie a donc été implémentée dans un code numérique reposant sur une
formulation monolithique directe couplée a des intégrateurs en temps d’ordres élevés. Les
équations sont décrites grace a une formulation d’Euler-Lagrange arbitraire (ALE) congue
pour satisfaire la loi de conservation géométrique (GCL) et ainsi garantir les ordres élevés
de précision en temps des intégrateurs, méme sur des domaines fluides se déformant. Les
équations visqueuses incompressibles de Navier-Stokes pour le fluide, hyperélastiques de

Saint-Venant Kirchhoff pour la structure, de Newton pour la masse ponctuelle et d’équilibre
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pour les termes de couplage forment un large systeme monolithique a résoudre. L’approche
[F'S implicite monolithique utilise des noeuds coincidents sur les interfaces fluide-structure
afin que les efforts, les déplacements et les vitesses soient évaluées au méme endroit en un
temps identique. Le probleme global est résolu de maniere implicite grace a une approche
éléments finis de Newton-Raphson utilisant un pseudo-solide. Des intégrateurs en temps
implicites de Runge-Kutta (IRK) d’ordres élevés (jusqu’a au 5¢ ordre) ont été implémentés
pour améliorer la précision et réduire le cout du calcul numérique. Dans le contexte de
problemes raides d’IFS, la présente approche implicite a pas de temps unique est une
alternative originale aux formulations traditionnelles a pas multiples ou explicites qui

souffrent parfois d’'un manque de stabilité.

Le code numérique développé a ensuite été vérifié grace a 3 études de convergence selon
le pas de temps pour : un profil rigide oscillant avec un domaine fluide en déformation, un
probleme de vibrations induites par 1’écoulement d’une lamelle flexible et un profil oscillant
autopropulsé. Ces trois études ont montré la stabilité de 'approche proposée méme avec de
grands pas de temps, I'absence d’oscillations parasites sans ajout de raideur numérique et la

conservation de la précision théorique des schémas IRK.

Enfin, on appliqué cette approche numérique performante a trois applications
intéressantes. Premierement, on a étudié les caractéristiques vibratoires d’'un probleme d’in-
teraction fluide-structure tres documenté : une lamelle flexible fixée derriere un cylindre carré
rigide. Les résultats obtenus se comparent favorablement avec les précédentes études. La
précision des schémas d’intégration IRK (méme pour le champ de pression des écoulements
incompressibles), leur stabilité inconditionnelle et leur nature non-dissipative ont révélé de
nouveaux modes structurels dans les hautes fréquences, faiblement couplés avec 1’écoulement.
Dans une seconde application, les caractéristiques d’extraction de puissance et de propulsion
de profils oscillants rigide et flexible ont été explorées. L’étude des performances d’extraction
de puissance d’une aile rigide (NACA0015) oscillante a donné des résultats en tres bon accord
avec ceux trouvés dans la littérature. Une seconde étude paramétrique a permis d’identifier
de grandes efficacités de propulsion avec un mouvement optimal du profil. Une flexibilité
optimale semble également améliorer 'efficacité d’extraction de puissance. Enfin, une étude
sur 'autopropulsion d’un profil oscillant a donné des résultats préliminaires et a ouvert une
nouvelle voie de simulation, plus proche des conditions réelles, pour étudier les performances

de propulsion.
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6.2 Limitations de ’étude

Malgré la performance de ’approche numérique développée, ’étude menée présente des
limitations de deux ordres : théoriques et pratiques. Des le début de 1’étude, on a en effet
posé deux hypotheses : I’écoulement considéré est laminaire et en 2D. Bien que justifiées pour
certaines applications, ces hypotheses réduisent le champ d’application de la méthodologie
développée. L’introduction de modeles de turbulence dans la théorie ainsi que I'extension a
la 3D permettraient une étude plus réaliste des phénomenes, notamment dans le cadre des
études de propulsion animale ot des phénomenes complexes apparaissent en bout d’aile ou

de nageoire.

Des contraintes pratiques restreignent également la portée des résultats de cette étude.
Tout d’abord, le manque d’espace mémoire n’a pas permis d’utiliser les schémas IRK d’ordres
supérieurs a 3 avec des maillages fins (supérieurs a 10 000 nceuds). C’est une des limi-
tations d’une approche totalement implicite lorsqu’on ne dispose pas d’assez de mémoire.
Ensuite, on a choisi d’utiliser des cas tests bien documentés pour vérifier le code numérique
développé. Ceci a permis en pratique de comparer avantageusement nos résultats avec les
études précédentes mais a empeché la comparaison avec une solution exacte dans le processus
de vérification. Enfin, les contraintes de temps et de puissance de calcul ont limité les études
paramétriques qui nécessitent un grand nombre de calcul. Ainsi, la cartographie des perfor-
mances propulsives est limitée aux basses fréquences tandis que les études paramétriques

pour les profils flexibles et autopropulsés restent encore a faire.

6.3 Travaux et améliorations futures

La présente étude, par ses limitations, laisse la porte ouverte a de nombreuses
améliorations mais pose aussi des maintenant les bases de travaux futurs tres prometteurs.
La méthodologie pourrait ainsi étre améliorée dans trois domaines. Tout d’abord, la
modélisation du fluide serait plus réaliste en prenant en compte les phénomenes turbulents
et les effets 3D. De méme pour la structure, l'introduction d’un amortissement des hautes
fréquences rendrait son comportement plus réaliste. Enfin, 'amélioration de la précision des
intégrateurs en temps IRK est encore possible, soit en augmentant 'ordre des schémas, soit
en améliorant la précision sur la pression (multiplicateur de Lagrange) par modification des
coeflicients de Butcher [159].

Malgré ces améliorations qu’on pourra apporter plus tard a la méthodologie, on peut

deés maintenant mener de nombreux travaux de simulation dont les conclusions auront une
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grande portée. Tout d’abord, on pourra compléter les études paramétriques pour les profils
rigides, notamment aux fréquences élevées dans le domaine de la propulsion. Ensuite, bien
que les schémas IRK d’ordres élevés aient été vérifiés avec d’une part un profil en mouvement
et d’autre part une languette déformable, il serait souhaitable de vérifier leur implémentation
sur un profil flexible en mouvement. Ainsi, il sera possible de mener une étude paramétrique
complete des performances des profils flexibles oscillants. De méme, les résultats obtenus
pour les profils autopropulsé pourront étre étendus a une large gamme de mouvements.
Finalement, on pourra comparer précisément les effets de la flexibilité sur les performances
des profils oscillants tant en propulsion qu’en extraction de puissance. De méme, on étudiera
en détails I'influence du mouvement des profils autopropulsé sur I’évaluation de D'efficacité

de propulsion.

Enfin, la méthodologie présentée sera une base solide a 'optimisation et au controle
des phénomenes d’interaction fluide-structure impliqués dans les processus de propulsion
ou d’extraction de puissance engendrés par un profil oscillant. L’amélioration du temps de
calcul grace a des intégrateurs en temps performants facilitera grandement 1’optimisation et
le controle. Il restera toutefois a estimer les gradients des fonctions cotits de maniere précise

et fiable, notamment grace a la méthode des sensibilités.
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ANNEXE A

Fonction lissante du mouvement

Afin d’éviter les problemes numériques, on a besoin d'un mouvement d’oscillation du
profil régulier et tres continue (i.e. C?) afin de lisser les accélérations au départ. On construit
par prolongement une fonction C? variant rapidement de 0 & 1 lorsque le temps varie de 0 &
I'infini et ayant des dérivées premiere et seconde nulles au départ du mouvement et tendant
rapidement vers 0. Pour une fréquence d’oscillation f, et un temps adimmensionel t* = fyt,

on définit cette fonction g par morceaux (voir figure A.1 ) :

w49 = a(t*)? si <t
e 9> = btanh(et* +¢) + (1 — b) sinon

1
¢ = atanh (——) — ety
et()

a = tanh(et + ¢)

avec

3
eto(1 —a?) —3(a—1)

bla—1)+1

a g
3
tO

On a en outre les dérivées par rapport au temps dimmensionnel ¢ s’exprimant :

(t) = gi = 3afo(t)? si <t
g gy = befo (1 — tanh(ef* + 0)2) sinon
//(t) . gil = 6af02(t~*) si t* < ts
I g5 = —2b(efy)? tanh(et* + ¢) (1 — tanh(et* + ¢)?) sinon

Le mouvement du foil ainsi imposé, se décompose en une translation vertical (heaving)
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Figure A.2 Dérivées premiere et seconde de la fonction g de raccord C2.
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et une rotation (pitching) lissées au départ grace a la fonction g :

hosin(wt)g(t)  translation verticale

o cos(wt)g(t) rotation

La figure A.3 présente 'évolution du battement h(t) et de 'angle de rotation 6(¢) ainsi que
de leurs dérivées pour hy = 1.0, 6y = 7/3, f = 0.18, e = 2.0 et tpx = 0.108. Le lissage
du mouvement au départ, donne un déplacement plus lent et progressif du profil comme

représenté sur la figure A.4.

yd,.
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Figure A.3 Evolution de Pamplitude de translation et de I'angle de rotation.

La figure A.3 montre I'impact de la fonction de raccord sur les accélérations du profil au
départ. Méeme si elles sont continues et nulles au départ, les dérivées secondes de I'amplitude
de battement changent brutalement de signe peu apres ¢t = 0 ce qui pourrait rendre le
probléme plus raide (simulation numérique plus complexe) et entrainer un régime transitoire

important.
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Figure A.4 Mouvement du profil NACA0015 au départ.
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