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Fine-grained preemption analysis for latency
investigation across virtual machines
Mohamad Gebai*, Francis Giraldeau and Michel R Dagenais

Abstract

This paper studies the preemption between programs running in different virtual machines on the same computer.

One of the current monitoring methods consist of updating the average steal time through collaboration with the

hypervisor. However, the average is insufficient to diagnose abnormal latencies in time-sensitive applications.

Moreover, the added latency is not directly visible from the virtual machine point of view. The main challenge is to

recover the cause of preemption of a task running in a virtual machine, whether it is a task on the host computer or in

another virtual machine.

We propose a new method to study thread preemption crossing virtual machines boundaries using kernel tracing.

The host computer and each monitored virtual machine are traced simultaneously. We developed an efficient and

portable trace synchronization method, which is required to account for time offset and drift that occur within each

virtual machine. We then devised an algorithm to recover the root cause of preemption between threads at every

level. The algorithm successfully detected interactions between multiple competing threads in distinct virtual

machines on a multi-core machine.

Keywords: Virtual machine; Tracing; KVM; LTTng; Performance; CPU

Introduction
Cloud environments present advantages of increased flex-

ibility and reduced maintenance cost through resource

sharing and server consolidation [1]. However, virtual

machines (VMs, or guests) on the same host computer

may compete for shared resources, introducing unde-

sirable latency. Previous study found that jitter impacts

response time of programs on popular commercial cloud

environment [2]. In cloud environments, virtual machines

have the illusion of absolute and exclusive control over the

physical resources. However, the host’s resources aremore

often than not overcommitted, whereas they appear to

guest operating systems as being more available than they

actually are [3]. As a result, virtual machines on the same

host computer may interfere with each other without their

knowledge, inducing invisible yet real latency.

The diagnosis is more complex when the guest is iso-

lated from its external environment and an additional

virtualization layer is introduced. It is therefore necessary
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to have powerful and efficient tools to diagnose the root

cause of unexpected delays at low granularity when they

occur in a virtualized environment. To our knowledge, no

such tool was available.

This study focuses on processor multiplexing across

virtual machines. In particular, we are interested in auto-

matically identifying the root cause of task preemption

crossing virtual machines boundaries. The approach we

propose is based on kernel tracing, which is an effective

and efficient way to investigate latency problems [4]. The

method we propose consists of aggregating kernel traces

recorded simultaneously on the host and each virtual

machine. However, more often than not, timekeeping is a

task left to each of the operating systems. In such cases,

timestamps from different traces are not issued using the

same clock reference. As a result, trace merging with-

out an appropriate synchronizationmethod to account for

clock differences would produce incoherent results.

The challenge is to consider the system as a whole, while

preserving virtual machine isolation. Flexibility and porta-

bility constraints are also important for practical con-

siderations. The approach should be independent from

the underlying architecture and the operating system to

© 2014 Gebai et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
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account for portability, whereas flexibility requires inde-

pendence from the hypervisor and the tracer.

Three main contributions are presented in this paper.

First, we propose an approach for trace synchronization.

At the trace merging step, we propose an algorithm that

modifies timestamps of the guests’ traces to bring them

back to the same timespan as the host. Secondly, we

implemented an analysis program that transforms aggre-

gated kernel traces to a graphical view that shows the

states of the virtual machines and their respective virtual

CPUs (vCPUs) through time while taking into consid-

eration virtualization and its impact. Thirdly, we imple-

mented an additional analysis program that presents the

interactions of threads across different systems. Such an

analysis can be performed by recovering the execution

flow centered around a particular thread.

The rest of this paper is structured as follows:

Section ‘Related work’ goes through different approaches

currently used for virtual machine monitoring. Section

‘Problem statement and definitions’ introduces the

required concepts in virtualization and tracing, and states

the problem addressed by this paper. Section ‘Trace

synchronization’ explains our approach for trace syn-

chronization at the aggregation step. Each of sections

‘Multi-level trace analysis’ and ‘Execution flow recov-

ery’ introduces an analysis module and its inner work-

ing. Section ‘Use cases’ shows some representative use

cases and their analysis results. Section ‘Flexibility and

portability’ reiterates over flexibility and portability.

Section ‘Conclusion’ concludes.

Related work
On Linux kernels supporting paravirtualization, top

reports a metric specific to virtual machines, named steal

time. This metric shows the percentage of time for which

a vCPU of the VM is preempted on the host. While this

information can give a general idea or a hint of overcom-

mitment of the CPU, it does not report the actual impact

on the running threads nor the source cause of preemp-

tion. Additionally, this approach is specific for Linux par-

avirtualized systems and thus limits portability. Moreover,

top adds significant overhead as it gathers information by

reading entries in the proc pseudo-filesystem, and offline

analysis or replay of the execution flow are not possible.

Perf has been extended to support profiling and tracing

specifically for KVM. Using its “kvm” subcommand, one

can use Perf to get runtime statistics and metrics about

each virtual machine. Common metrics include the num-

ber of traps caught by the hypervisor, their cause and the

time to process each of them. The information reported

by Perf also includes CPU time for the guest kernel,

host kernel and the hypervisor, which are good indicators

about the overhead introduced by virtualization. Perf also

reports information about the Performance Monitoring

Unit (PMU), which is a set of counters that keep track

of particular events such as cache misses, TLB misses,

CPU cycles, etc. However, these performance counters

aren’t available for virtual machines. In [5], an approach

for PMU virtualization is proposed, which are then used to

monitor the runtime behavior of virtual machines in more

detail. In [6] and [7], the authors also use Perf for virtual

machine profiling and resource utilization. Such methods

may also require exporting the symbol table of the guest

kernel to the host to resolve. While it is possible to detect

performance degradation due to resource sharing among

virtual machines, the analysis doesn’t cover detailed fine-

grained information about the root causes of preemption.

However, the interactions between the virtual machines

through the usage of shared resources are essential to

understand performance degradations and easily pinpoint

their cause in order to remedy them. Finally, the approach

using perf kvm is dependent on both the operating sys-

tem and the hypervisor, which doesn’t meet the portability

requirement.

Shao et al. use an approach based on tracing within Xen

to generate useful metrics for virtual machines [8]. Based

on scheduling events, latency due to virtual CPU preemp-

tion can be easily calculated. Other metrics of interest are

also presented such as the wake-to-schedule time. How-

ever, these metrics are mostly useful for analyzing Xen’s

scheduler itself. Such an analysis would be less relevant

in the case of KVM (or some other hypervisors) as it is

a an “extension” to the Linux kernel via loadable kernel

modules and thus uses its scheduler. Moreover, the impact

of the applications running inside the virtual machines

on the system as a whole can not be retrieved from Xen

traces. Differently put, perturbations caused by userspace

applications across different virtual machines cannot be

analyzed or quantified using solely Xen traces.

As for trace synchronization, previous studies [8,9] have

used the TSC (TimeStamp Counter) as a common time

reference to approach timekeeping and clock drift issues

among VMs. The TSC is a CPU register on x86 archi-

tectures which counts CPU cycles since the boot of the

system (uptime). When read from a virtualized system,

the TSC is usually automatically offset in hardware to

reflect the uptime of the guest operating system. The

value of the offset is specified by the TSC_OFFSET field

in the Virtual Machine Control Structure (VMCS). Each

VM has its own TSC_OFFSET value, and reading the

TSC from different systems always returns a coherent

value with respect to their respective uptime. Once traces

are recorded on different systems, converting guest TSC

values to host TSC values comes down to subtracting

the value of TSC_OFFSET from each timestamp. How-

ever, the TSC offset may have to be adjusted during

the execution of the VM upon certain events, such as

virtual machine migration. As a result, TSC_OFFSET
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adjustments have to be tracked down by the tracer at run-

time. If tracing is not enabled before the creation of the

virtual machine, the initial value of the TSC offset can-

not be obtained, unless explicitly requested by the tracer.

Additionally, this approach does not allow for the possi-

bility of lost events since a TSC adjustment event could

be lost. In any manner, even if the TSC isn’t virtualized

and is unique across all systems, synchronization using the

TSC does not meet our requirement of portability, as it is

an x86-specific register. Moreover, TSC offsetting is spe-

cific to hardware-assisted virtualization, thus it cannot be

used with other virtualization methods, which does not

meet our flexibility requirement. Finally, the TSC register

only counts CPU cycles since boot time, which is not as

meaningful as an absolute wall clock time, especially on

computers with a non-constant TSCwhere the conversion

from TSC to real time would be an additional challenge

(CPU flag constant_tsc can be queried to verify this

property).

Problem statement and definitions
Addressed problem andmotivation

We noticed that one of the main limitations of current

approaches for virtual machine monitoring is the lack of a

general approach, which takes into account in-depth anal-

ysis of all the involved systems. Most of the monitoring

tools are designed to be centered either around the hyper-

visor or the guest OS. In the former case, only an analysis

from the host point of view, abstracted by the virtualiza-

tion layer, is possible. In the latter case, the analysis is

too restricted inside the guest OS and doesn’t consider

the outside environment for detecting the root causes of

performance degradations.

As mentioned in section ‘Introduction’, investigating

latency problems in virtualized systems is a non-trivial

task. The isolation of virtual machines from their envi-

ronments imposes limits on the scope of traditional anal-

ysis tools. Moreover, the virtualization layer itself adds

overhead due to the involvement of the hypervisor for

privileged operations [10]. Furthermore, the assumption

of exclusive access to the hardware layer by each vir-

tual machine inevitably induces hidden latency due to the

overcommitment of resources, particularly the CPU. As

a result, the CPU becomes a scarce resource, which has

to be shared among running VMs. As we presented in

the previous section, there is no obvious way for a VM to

detect runtime perturbation caused by the “outside world”.

While a guest OS may perceive one of its processes taking

full use of the CPU for a certain amount of time, this might

not be effectively the case on the actual hardware. Indeed,

when a process is allocated a limited amount of vCPU time

in a guest OS, it might get deprived of this resource by

the host’s scheduler which might elect a different VM for

execution at any moment. Analyzing preemption across

virtual machines boundaries (inter-VM) allows the user

to detect such perturbations and take actions to remedy

them.

In this paper, we explain how we used kernel traces

recorded in each VM and on the host simultaneously

to investigate such problems. As we present in section

‘Use cases’, the tools resulting from our study help the

users to easily find the latency cause due to CPU sharing

among virtual machines, as well as the actual threads that

affect the completion time of a certain workload. How-

ever, merging distributed traces is a problem in itself as

each operating system is solely responsible for its own

timekeeping. The next sections present prerquisites in

order to understand all of the parts used in our final

solution.

Hypervisor

CPU vendors introduced extensions at the hardware level

which allow for efficient architecture virtualization and

overcome design issues, as presented in [10] for x86. On

Intel hardware, this CPU extension is called VMX (Virtual

Mahine eXtension), while AMD-V is its counterpart from

AMD. On hardware-assisted virtualization, the CPU tran-

sits between non-root and root modes. On Intel CPUs,

these modes are respectively called VMX non-root and

VMX-root. The former is entered using the vmentry

instruction by the hypervisor, giving control to the VM’s

native code. The later is reached when the VM executes

an instruction that triggers a trap, called vmexit. A trap

is usually a sensitive instruction such as writing to a priv-

ileged register, and allows the hypervisor to take control

of the execution and react to the trapped instruction, usu-

ally through emulation. Vmexit can be thought of as

a reaction, as opposed to vmentry which is an actual

instruction. Moreover, a data structure called VMCS (Vir-

tual Machine Control Structure) [11] contains runtime

information about a virtual machine. This data structure

is used as an interaction mechanism between the VM

and the hypervisor [12] (i.e. between non-root and root

modes), as well as a way to define behavioral elements,

such as enabling or disabling hardware TSC offsetting.

The software that interacts with these hardware exten-

sions is called a hypervisor. KVM [13] is an example

of such software and is included in Linux as a loadable

kernel module. Its role is to exploit and manage the vir-

tualization capabilities of the hardware, and provide easy

access to these capabilities to any userspace component

via the ioctl interface. As a result, many userspace emu-

lators can be built atop KVM without reimplementing

hardware-specific functionalities. We use QEMU as this

userspace component that interacts with KVM to take

advantage of hardware assistance. Moreover, as KVM is

an extension to the Linux kernel, it can take advantage of

its basic functionalities, such as the scheduling, NUMA
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node management, and even its tracing infrastructure.

Thus, KVM is instrumented with tracepoints which can

be traced using any kernel tracer. In QEMU/KVM, each

virtual machine is a QEMU process, and each of its vir-

tual CPUs (vCPUs) is emulated by a separate thread that

belongs to that process.

In this article, the terms hypervisor and VMM (Virtual

MachineMonitor) will be used interchangeably. The same

applies for the terms VM, guest system and virtualized

system.

Trace indexing

We implemented our trace analysis algorithm using the

Trace Compass trace viewer (previously TMF - Tracing

andMonitoring Framework) [14]. Trace Compass is a Free

and Open tool for viewing traces in different graphical

views. Views are usually designed for specific kind of anal-

yses. The most common views in Trace Compass are the

Control Flow view and the Resource view. The former

shows the states of all threads on a system throughout

the tracing session (Running, Idle, Preempted, Blocked),

whereas the latter shows the states of different resources

such as the CPU and IRQ lines. This project resulted

in two additional views integrated to Trace Compass,

which can be used for Virtual Machine runtime analysis of

inter-VM preemption.

Trace Compass indexes the trace using a State His-

tory Tree (SHT) [15]. The SHT represents the state of

the whole system, and is updated at each event to define

time intervals [16]. This index allows efficient stabbing

queries, returning the complete state of the system at a

given time. A node of the tree is a key-value pair, where

the key is a path component, and the value is an attribute

associated with a duration, that gets updated as the trace

is being processed. The rules, by which attributes are

updated, are established by our algorithm presented in

section ‘Multi-level trace analysis’.

Our algorithm requires kernel traces from all systems

in the setup, i.e., the host and guests operating systems.

Events from these traces are then merged and sorted by

chronological order for processing. Trace Compass reads

the trace one event at a time and modifies the SHT

attributes. Figure 1 shows a part of our SHT. For instance,

the path “/Virtual Machines/Ubuntu/CPUs/

CPU0/Current Thread” contains the thread ID exe-

cuting on CPU 0 of the VM named “Ubuntu”. When

a scheduling event such as sched_switch from the VM’s

trace is processed, the value of the attribute is changed

from the TID of the former thread to the latter’s. Sim-

ilarly, the attribute at path “/Host/Threads/Thread

1234/Status” holds the status of the thread whose TID

is 1234 on the host. This attribute may be modified when

a context switch event involving the thread 1234 is being

processed.

Figure 1 Example of a state history tree.

Relevant tracepoints

In this study, we use LTTng as a kernel tracer. LTTng

was designed for high throughput tracing while reduc-

ing as much as possible its impact on the traced sys-

tem [17]. We now introduce the key tracepoints for our

analysis. We present their significance, as well as the

content of their respective payload. This section is com-

plementary to section ‘Multi-level trace analysis’ which

explains how these tracepoints are used to update the

SHT.

The sched_switch tracepoint indicates a context

switch on the CPU which recorded the event. Useful pay-

load fields are the names and the TIDs (Thread Identifiers)

of the former and new threads involved in the context

switch. Since all events are timestamped using the system’s

time at the nanosecond scale, the amount of time spent on

each CPU by a specific thread is easily computed by sub-

tracting the timestamps of the sched_switch events

involving a particular thread.

Tracepoint sched_migrate_task indicates the

migration of a thread from one CPU to another. Its

payload holds the TID of the migrated task, as well

as the origin and the destination CPU identifiers.

Tracepoint sched_process_ fork indicates the cre-

ation of a new process, and exposes the names, PIDs

(Process Identifiers) and TIDs of the newly created pro-

cess as well as its parent’s. Its complementary event,

sched_process_exit, records the end of life of a

thread. The payload contains the name and TID of the

process.
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VMX mode transitions by KVM can be tracked by

enabling the kvm_entry and kvm_exit events. Tra-

cepoint kvm_entry indicates a transition from root to

non-root modes, and thus the beginning of the execu-

tion of the VM’s native code. On the other hand, trace-

point kvm_exit indicates the opposite transition, which

interrupts the execution of the VM and gives control to

KVM. Elapsed time between consecutive kvm_exit and

kvm_entry events represents overhead introduced by

the hypervisor.

Trace synchronization
System timekeeping

LTTng uses the monotonic clock of the kernel for times-

tamping events, rather than the raw TSC. It avoids

architecture-dependent limitations inherent to the TSC,

such as TSC synchronization between cores and non-

constant TSC on variable frequency CPUs. Even in the

case of an ideal TSC (invariant and synchronized between

cores), the value is based on the processor frequency,

and thus needs to be scaled, or translated, for the user.

Moreover, the TSC is an x86-specific register and using

it as a clock source does not meet our requirement of

portability. However, it is worth mentionning that the

monotonic clock internally scales the TSC to nanosec-

onds and applies an offset to represent the current time,

as shown in Equation 1:

t = T + f (TSC) (1)

where T is a coarse-grained value updated on system

timer interrupts. For a finer timekeeping, T needs to be

adjusted using the TSC to account for the elapsed time

since the last update (last timer interrupt). This is done

using function f(), which translates the TSC to an actual

time value that can be used for fine-grained timekeeping.

In addition, the monotonic clock guarantees total order-

ing, even in the case of modification of the system’s wall

clock time while tracing, and therefore is an ideal source

for event timestamps.

Although the TSC is paced at the same rate across the

different virtual systems, the offset values T of each sys-

tem are not, and thus are subject to drifting apart as time

goes by. In fact, modern tickless operating systems dis-

able timer interrupts on idle processors to reduce energy

consumption. As a result, the update period of T is vari-

able, which may contribute to increase the time difference

between systems. Furthermore, virtual machines may be

set to different timezones, introducing even more inco-

herent timestamping when traces are merged together,

which would make them appear as being recorded at dif-

ferent moments. As a result, high precision timestamping

and clock drifting do not allow for simple clock offsetting

to ensure coherency between traces, and require a spe-

cific synchronization method. The next section presents

our approach to ensure coherent trace merging.

Event matching

We use the fully incremental convex hull synchroniza-

tion algorithm to achieve offline trace synchronization,

introduced by [18] for distributed traces synchronization.

Each guest trace is processed individually and synchro-

nized according to the host’s trace whose timeline is taken

as a reference. This approach is based on event matching

between two traces. In order to use the synchronization

algorithm, an event a from one tracemust be associated to

another complement event b from the other. Each couple

of events {a, b} must respect the following equation:

aT1

k
−→ bT2 (2)

More formaly, the following requirements have to be met:

1. Causality: amust (quickly) trigger b;

2. Bijection: a and bmust share a common and unique

key k in their payloads;

3. Every event bmust be matched to at most one event

a (one-to-one). Unmatched events b are ignored.

The key k is used to ensure a one-to-one relation

between a and b. A lower delay between events a and

b results in a more precise synchronization scheme. A

synchronization formula is then derived by the algorithm

which is a function of clocks offset and time drift. This

formula is then applied to all timestamps of the guest’s

trace, bringing them to the same timebase as the host.

By using the relation “a triggers b”, a lower bound is

imposed on the timestamps of events b as they cannot

appear before their matching event a. Events between two

consecutive events b are then adjusted to respect this

constraint. With that being said, an upper bound has to

be imposed as well to events b. To set an upper bound

on events b, we use the same matching approach in the

opposite direction between systems. If a is an event in

the guest OS that triggers b on the host, then an event

c on the host that triggers an event d on the guest is

needed. Figure 2 shows events a, d, b, c from the original

traces correctly reordered as a, b, c, d after synchroniza-

tion. The next section explains how we used and adapted

this method for virtual machines.

Implementation in virtualized systems

Previous section ‘Event matching’ explained the theory

of the fully incremental convex hull algorithm for trace

synchronization. However, the requirements for this algo-

rithm are not directly met in the case of virtual machines.

Originally, the algorithm was built based on TCP packet

exchange events, where send and receive events are
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Figure 2 Lower and upper time bounds with matching events are used to synchronize traces.

respectively a and b: send triggers receive and the

TCP packet number is the key k. In Cloud environments,

virtual machines do not necessarily exchange TCP pack-

ets with each other or with the host, as VMs are usually

provided to different clients. As a result, we need to

customize the setup of the virtual machines to generate

events both in the VMs and on the host that would respect

the requirements established earlier. This section intro-

duces our approach to obtain events that can be used to

achieve trace synchronization.

We added tracepoints to the kernel through a load-

able module for flexibility, so no modification to kernel

code would be required to perform trace synchronization.

Upon loading, this module registers a probe to the system

timer’s interrupt. In other words, every time the system

timer issues an interrupt to the CPU, our synchronization

routine will be invoked. The synchronization routine can

be summed up as follows:

• Guest: Trigger hypercall (event a)

• Host: Acknowledge hypercall (event b)

• Host: Give control back to the VM (event c)

• Guest: Acknowledge control (event d)

The first pair of events (a, b) can be simulated by issu-

ing a hypercall. When executing the vmcall instruction

from the guest OS (event a), a trap is generated by the

CPU and control is given to the hypervisor, which in turn

acknowledges the trap (event b). A counter X is passed

to the host OS as a parameter to the hypercall. This

parameter will serve as the shared key required by the syn-

chronization algorithm. As a result, events a and b are

both recorded in a short period of time on the guest and

host OS respectively, both holding the same value X as

their payload.

Simulating the pair of events (c, d) is not as trivial since

different constraints are imposed on the host-to-guest

communication, as no mechanism of parameter transmis-

sion is easily accessible. Implementing shared memory

between the guest and host is too intrusive as it would add

toomuch complexity to both systems, and would probably

require modification to both kernels. However, the trap

generated by the hypercall is virtually invisible to the guest

OS, which continues execution “normally” after involve-

ment from the hypervisor. We can take advantage of this

property to simulate a parameter transmission when the

hypercall handling returns. Event c is recorded on the host

right before it finishes the synchronization routine and

gives control back to the VM. Event d is recorded on the

guest right after the hypercall, which effectively is as soon

as the guest OS resumes execution. This model simulates

property (1) as c indicates that the host is giving control

to the VM and d represents its acknowledgement. Both

these events hold X + 1 in their payloads to respect the

one-to-one relationship.

The downside of this approach is the overhead intro-

duced by the hypercall. Table 1 shows overhead measure-

ments added by the hypercall, with and without tracing.

However, registering to the system timer interrupt takes

advantage of tickless kernels as they aim to reduce energy

consumption by disabling interrupts on idle CPUs. In

other words, the synchronization routine is not invoked

on idle virtual machines, which otherwise would trigger a

costly context switch on the host for no actual work.

Once traces are generated on both systems, the fully

incremental convex hull algorithm is applied, which

derives a synchronization function applied on all of the

guest’s timestamps. This approach is resistant to clock

drifts as the convex hull algorithm considers this issue and

compensates for it in the generated formula. Additionally,

it does not require TSC_OFFSET tracking or any other

architecture-specific configuration.

Synchronization results

To show the results of our trace synchronization

algorithm, we traced simultaneously a running virtual

Table 1 Overhead induced by the hypercall

Time (ns)

Without With Relative

tracing tracing

One synchronization tracepoint 102 153 50.0%

Hypercall round-trip 5168 5565 7.7%
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machine and its host. We thenmerged the traces recorded

from both systems and used Trace Compass to view the

result.

We show in Figure 3 the state of threads on different

systems (the color legend is shown in Table 2). Thread

qemu:Debian with TID 7030 serves as a virtual CPU

of the VM as seen from the host. Events from the host’s

trace are used to recreate its state. Thread wk-pulse is

a periodic CPU workload (in a pulse-like manner) run-

ning inside the VM. Therefore, events from the VM’s trace

are used to show its state. We can already expect that

the vCPU of the virtual machine will follow a pulse-like

pattern, as the guest system is mostly idle. On Figure 3,

the staggered start of wk-pulse indicates a time gap of

about 6 seconds between the host’s and guest’s clocks.

We then used our synchronization algorithm to correct

the guest trace’s timestamps and reused the same view in

Trace Compass to view the result, as shown in Figure 4.

We clearly see that wk-pulse is running on vCPU

qemu:Debian because of their simultaneous state tran-

sitions. It is worth mentioning that the states of threads

qemu:Debian and wk-pulse are computed indepen-

dently from each other, yet they appear almost in perfect

sync after applying the synchronization formula.

Multi-level trace analysis
This section presents how the state of each virtual CPU

of a VM is recovered and rebuilt by analyzing the merged

traces. The purpose of the analysis is to show the state

of the vCPU throughout the trace as seen from the host.

Our module parses the resulting trace and updates the

attributes of the state system after each processed event.

Moreover, we want to show the impact of preemption on

the threads running within a VM. This analysis is useful

as it shows the effective running time and execution of a

thread compared to what is visible to the guest operating

system. A vCPU at any time can be in one of the following

states: VMM, RUNNING, IDLE or PREEMPTED. The state

attribute of each vCPU can be found in the state system at

path “/Virtual Machines/VM Name/CPUs/vCPU

ID/Status. Figure 5 is a FSM (finite state machine) that

shows transitions between these states. All of the events

that trigger transitions originate from the host. Although

not included in Figure 5, events from the virtual machines’

traces are used to rebuild the states of the threads running

on each vCPU within a VM. These threads can be found

in the state system at paths “/Virtual Machines/

VM Name/Threads/TID/Status”. Following section

‘Virtual CPU states’ explains these states as well as the

transitions by which they can be reached.

For clarity, we introduce the term pCPU which desig-

nates a physical CPU, as opposing to a vCPU which is in

reality a QEMU thread emulating the CPU of a VM.

Virtual CPU states

VMM

State VMM represents the state when a QEMU thread is

running hypervisor code instead of virtual machine code.

In other words, it represents participation or involve-

ment from the VMM, as to provide emulation, inject

an interrupt into the guest’s OS, or any other instruc-

tion requiring the external help of KVM. As explained in

section ‘Hypervisor’, CPU transitions between non-root

and root are instrumented with tracepoints kvm_entry

and kvm_exit respectively. When a kvm_exit event

is reached, the vCPU’s state is set to VMM (transition 2).

On the other hand, it leaves this state on a kvm_entry

event, returning to the state it was in prior to the ’s

involvement (transition 1). This state serves as an interme-

diate between any two states, as hypervisor cooperation is

required for QEMU threads scheduling.

We also noticed that this state is reached everytime a

QEMU thread is involved in a context switch, i.e., when

a vCPU is scheduled out of a pCPU. Interestingly, when

a QEMU thread is selected by the scheduler to run again,

it first executes in the VMM state before explicitly invoking

the vmentry instruction to give control to the guest’s OS.

This procedure is required because KVMneeds to execute

specific operations related to the Virtual Machine Control

Structure of the VM. KVM uses Linux’s notifier chains to

“register” on context switches involving a vCPU. When a

vCPU reaches this state, its current thread’s status is set to

PROCESS_VIRT_PREEMPTED, which designates wasted

time due to the virtualization layer (we see it as preemp-

tion to execute hypervisor code, the thread is marked as

“virtually preempted”).

RUNNING

RUNNING shows execution of the VM’s code.When in this

state, a virtual CPU is considered as running without any

involvement from the hypervisor, and instructions dedi-

cated to a specific vCPU are running directly on one of

Figure 3Merged traces without synchronization.
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Table 2 Virtual Machine Analysis Color legend

Color State

Green Running

Yellow Blocked

Orange Preempted

Grayed out green PROCESS_VIRT_PREEMPT

the host’s pCPUs. For this state to be reached, two condi-

tions must be satisfied. First, the QEMU thread emulating

a vCPU must be in a running state on the host operating

system. Secondly, in the guest operating system, the CPU

associated with the specified QEMU threadmust be in the

running state as well, meaning that any process other than

the idle task (swapper) is executing on the CPU.

IDLE

IDLE represents a state when a vCPU is not executing

any code, and thus voluntarily yields the physical CPU.

This state is reached when the QEMU thread emulating a

vCPU is scheduled out of a pCPU, and if no thread other

than the idle task is scheduled to run on this vCPU

in the guest OS (transition 4). On Linux, the purpose of

swapper (the idle task) is to invoke the scheduler to

choose potential threads ready for execution, or to halt the

CPU in case no thread is ready to run. The vCPU goes

out of this state as soon as the thread emulating it gets

scheduled back on the host (transition 3).

PREEMPTED

PREEMPTED is the state that indicates direct latency to the

execution of a virtual machine. This state is reached when

a vCPU is scheduled out of the pCPU by the host’s sched-

uler (transition 5), while the vCPU was effectively serving

a thread. Note that the running process on the vCPU

stays in the PROCESS_VIRT_PREEMPTED state, which

indicates that the vCPU on which the thread is running

was preempted on the host operating system. Usually, this

kind of information is not visible to a virtual machine,

though it directly impacts the completion time of a task by

introducing delays throughout the execution. As a result, a

task may seem to complete in much longer than the effec-

tive time during which it was running. When scheduled

back in (transition 6), the vCPU passes by the VMM state

again to finally reach the RUNNING state and resume VM

code execution.

Illustrative example

We launched a thread that computes a Fibonacci sum

on what appeared to be an idle virtual machine. The

computer used was an Intel i7 (Nehalem) with 4 hyper-

threaded cores (8 logical CPUs), 8 GB of RAM, 1 TBHDD,

and running Debian GNU/Linux. Using top, no CPU-

intensive thread was reported in the VM, and the steal

time column showed a 0% vCPU preemption. Figure 6

shows the state of the Fibonacci task (thread fibo) as

seen from the guest operating system. This view shows a

monopoly of the CPU and a 100% utilization by the fibo

task for the whole duration of the trace. This state has

been reconstructed by processing only the trace recorded

on the guest.

Figure 7 shows the result of our analysis module for

the same experiment, after the host’s and guest’s traces

merging and synchronization. We notice that vCPU 0

of the “Debian” VM is constantly transitioning between

states RUNNING (green) and PREEMPTED (purple). With

proper zooming, we can see VMM state as an interme-

diate for every transition. These transitions have direct

repercussions on the execution of the fibo task, which

is in turn moving between states RUNNING (green) and

PROCESS_VIRT_PREEMPTED (grayed out green). With

a quick look at the graphical view, we can see that the

Fibonacci sum could potentially execute approximately

twice as fast on a fully available pCPU, or less loaded host

system.

The reason why top reported a 0% vCPU preemption

(steal time), before starting the Fibonacci task, is because

the vCPU was mostly idle. As a result, when it asks for

CPU time, its request is immediately answered by the

host’s scheduler as it has the “highest priority” due to its

idle nature. We can see that using such a tool to mea-

sure resource availability can actually be misleading. The

only way to detect vCPU preemption using top would

be to actively monitor the steal time while running the

Fibonacci task.

Execution flow recovery
We now reach the second part of the analysis, which is to

reconstruct the execution flow for a specific task of one of

the virtual machines. The execution flow with regard to

Figure 4Merged traces with synchronization.
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Figure 5 vCPU state transitions.

a certain task A is defined as the ordered set of execution

intervals of all the tasks affecting the completion time of

A. The purpose of the execution flow is to show detailed

information about the execution of a certain thread as well

as its interactions with other threads.

In the scenario shown in Figure 8, the execution flow

is computed with regard to task A. The timeline shows

the start and the end of the lifespan of this task, thus the

analysis is time-bounded. In this example, it is clear that

task A yields the CPU to allow execution of other tasks B

and C. The scheduler then selects A after a certain amount

of time, letting it complete its execution. Therefore, the

completion of A was affected by the execution of B and C.

When flattened, the execution intervals of all the threads

form one continuous execution interval which represents

a busy CPU for the duration of the trace. Although this

kind of information could be vaguely suspected from top-

like tools, this level of detailed information is necessary for

an advanced analysis of latency sources.

For a task executing inside a virtual machine, the com-

putation of the execution flow should be adjusted to take

into consideration interactions between different operat-

ing systems through the usage of shared resources. The

objective of such an analysis is to provide detailed infor-

mation not only about the execution of a certain task,

but also about its interactions with other threads, whether

they belong to the same VM, the host, or even a differ-

ent VM.With such information, major causes of overhead

can be easily tracked down by the host’s administrator, and

adjustments can be made to resolve the issues. Recovering

the execution flow comes down to tracking all preemption

events involving A. Causes of preemption can be within

the same operating system and thus easier to investigate,

or from a different systemmaking them almost completely

hidden. In this section, we show that the execution flow

recovery can be computed simply by querying the state

system for key attributes modifications, without having to

read the trace again.

Implementation

In this section, we call A the thread around which

we want to recover the execution flow. The first step

of the algorithm is to find all the entries involved in

the execution flow according to task A. In Figure 8,

each of tasks A, B and C represents an entry. First, all

the threads of all the systems are inserted as entries

in the execution flow. This list of all the threads

across systems can be recovered by parsing through

attributes “/Virtual Machines/*/Threads/*”

and “/Host/Threads/*” in the SHT. The second step

of the algorithm is to compute the execution intervals

of each entry with regard to task A. As a final step,

Figure 6 View of Fibonacci experiment with traditional analysis.
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Figure 7 View of Fibonacci experiment with virtual machine analysis.

we remove the entries that have minimal or no impact

on the analyzed thread according to a minimal impact

threshold. The selection of the threshold doesn’t affect

the computing time of the algorihtm, as it is performed

only after the whole algorithm has executed and all

the durations have been computed. The impact of each

thread can be measured using Equation 3, as explained in

section ‘Investigation of execution anomalies’.

To respect the relationship of affiliation between a

thread and its system (host or VM), entries are stored in a

tree-like structure with a depth of 2, where each node on

the first level represents a system, and its children on the

second level represent its threads.

As mentioned earlier, the execution flow can be rep-

resented with an ordered list of intervals, where each

interval contains a start time, end time, a state, and the

TID of the thread executing for the said interval. Algo-

rithms 1 and 2 explain how this list can be built, recovering

the execution flow with regard to task A.

Algorithm 1 is used to insert all intervals of A holding

the “RUNNING” state. As a first step, we query the SHT

to retrieve all modifications to the “Status” attribute of

thread A. The SHT returns a list of intervals for differ-

ent values of this attribute. Algorithm 1 parses this list

and each interval holding the “RUNNING” state is directly

inserted in the result list. However, for each inter-

val holding the “PREEMPTED” value, a separate function

is invoked to find which thread is preempting A. This

function is shown in Algorithm 2.

Algorithm 1: Recovering the execution flow: inserting

intervals in the RUNNING state
Input: StateHistoryTree s

List result; // the list of execution intervals

StatusIntervals intervals = Query status intervals of A

from s;

for each interval in intervals do

currentPCpu = Query current pCPU of A;

if interval.state == RUNNING then

result.insert(interval);

else
result.insertAll(resolve(s, interval,

currentPCpu));

end

end

return result;

Figure 8 Simple example of an execution flow.
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The resolve function requires an interval as well as

a pCPU Id as input values. The work done by this rou-

tine is to find which threads are running on the pCPU for

the duration of the interval. In the case where the running

thread is the vCPU of another VM, this function will then

query the state system to get the running thread inside this

VM. Once the running thread preempting A is deduced,

it is returned to Algorithm 1 which will insert it in the

result list.

Algorithm 2: Function resolve(): Querying the

state history tree to get the running threads while A is

preempted

Input: interval

Input: pCpu

Output: outList

start = interval.start;

end = interval.end;

ThreadIntervals = Query “Current Thread” intervals

of pCpu between start and end;

for each interval t in ThreadIntervals do

if t.tid is a vCPU then
intervals = Query “Current Thread” intervals

of t between t.start and t.end

outList.addAll(intervals);

else

outList.add(t);

end

end

/* All intervals inserted in outList are in RUNNING

state */

return outList;

Finally, in the result list returned by Algorithm 1,

each interval “interval” of the list respects the follow-

ing rules:

prevInterval.end = interval.start − 1

interval.end + 1 = nextInterval.start

Where prevInterval and nextInterval are

respectively the previous and next intervals of interval

in the ordered list result from Algorithm 1.

Use cases
This section shows how our work can be used in real-life

cases to investigate latency in virtual machines. We start

with a follow-up on the Fibonacci example introduced ear-

lier (section ‘Follow-up on the Fibonacci Case’). We then

present different use cases that show either how to inves-

tigate a known issue (section ‘Investigation of execution

anomalies’), or a general analysis to verify normal exe-

cution of the system as a whole (Investigating a residual

timer).

Follow-up on the Fibonacci Case

Figure 7 showed that the Fibonacci took longer to execute

due to preemption of the vCPU on which it was running.

We follow-up on the matter by recovering the execution

flow of the experiment. Figure 9 shows the result; we can

see that the preemption is due to a single CPU-intensive

process on the host called burnP6.

Investigation of execution anomalies

We now show a use case of a performance issue

which can be easily tracked down using our graphi-

cal views. We developed a CPU-intensive task, named

critical_task which computes for approximately

280 ms. A script spawns a critical_task thread in

a periodic fashion, asynchronously every second (without

waiting for completion). We traced the host and the guest

operating systems simultaneously. Figure 10 shows only

the guest’s trace over 7 seconds, for 7 critical_task

threads. We can see the rate of thread forking at one

thread per second. However, executions 3, 4, 5 and slightly

6 (threads 3523, 3525, 3527 and 3529) show abnormal

computing duration although they appear as running

(green) without interruption.

We then merged and synchronized kernel traces, and

used our first graphical view to analyze the execution,

as shown in Figures 11, 12 and 13. In Figure 11, the

vCPU 0 line shows transitions between states IDLE (gray)

and RUNNING (green) which indicates that the VM is

mostly idle, except when critical_task threads are

spawned. Additionally, still by looking at the vCPU 0

line, we can clearly see vCPU preemption (purple) for

executions 2, 3, 4 and 5. These vCPU preemptions trans-

late into unexpected latency on threads 3523, 3525, 3527

and 3529, as shown by their respective lines in the view

Figure 9 Execution flow recovery of previous Fibonacci experience.
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Figure 10 Execution of a periodic task as perceived by the VM. In some cases, the execution inexplicably takes longer to compute although the

task appears as running.

(greyed out green). This is an indicator that the VM is

not allocated enough CPU time by the host’s scheduler,

which is time slicing the pCPUmore or less equally among

the host processes. We also notice that vCPU0 of the VM

Ubuntu woke up from the IDE state into the RUNNING

state for this period of time, which might be the rea-

son for the latencies on the critical tasks running in VM

Debian. Figure 12 shows the state of two vCPUs of differ-

ent virtual machines, respectively Debian andUbuntu. For

simplicity reasons, the Figure shows only the timeframe

for the lifespan of critical_task with PID 3525. The

Figure suggests that these two vCPUs are complimentary

in their execution, as when one of them is running, the

other one is preempted. This is a strong indicator of a

shared resource between these two vCPUs. Moreover, the

Figure also shows that both vCPUs are simultaneously

being preempted for small amounts of time, which sug-

gests that another thread, outside of the scope of these

VMs, is also competing over the same resource. Figure 13

is a magnified view of Figure 11 over the lifespan of

critical_task 3525, showing how the preemption of

vCPU0 is perturbating its execution.

Finally, as a last step, we recovered the execution flow

to investigate the source of this latency. The result is

shown in Figure 14. The execution flow is centered

around thread 3525, which seems to be the execution of

the critical_task with the most latency. For clar-

ity reasons, we only show a part of the lifespan of the

critical_task. The view shows that the pCPU is

shared amongst three operating systems: Debian (the VM

in which the critical tasks are running), Ubuntu (which

is another virtual machine) and the host. We notice

that threads burnP6 from the host and cc from the

Debian VM both strongly preempt the critical task, which

explains its excessive duration. The “Duration” column

shows the duration of the preemption of each process

for the lifespan of thread 3525. For system entries (non-

leaf nodes), the “Duration” number indicates the sum of

all their threads, ie. the time for which the whole system

preempted the analyzed task.

We can see that the critical task ran for 274 ms (as

expected, however it was over a longer period), the

Ubuntu virtual machine ran for 270 ms and the host ran

for 260 ms. These numbers indicate approximately a 33%

usage of the CPU for each system, which indicates that

the pCPU is strongly shared amongst them. Moreover, we

see that process irq/46-iwlwifi executes for 296 us,

indicating heavy network usage and packet processing.

For each thread T , the proportion of time for which it

preempted A is computed using Equation 3, where Tout is

Figure 11We can see that the vCPU on which the critical task is running is actually being preempted on the host, which impacts the

execution of the running thread.
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Figure 12 vCPU0 of Debian and vCPU1 of Ubuntu are taking turns in exection, which indicates competition over a shared resource. The

figure also shows some timeframes in which both vCPUs are preempted, most probably by a different thread on the host system.

the timestamp indicating a scheduling out and Tin is the

timsetamp indicating a scheduling in.

D(T) =

∑A.end
A.start Tout −

∑A.end
A.start Tin

A.end − A.start
(3)

Investigating a residual timer

We now present a use case that helped us investigate an

unexpected operating systems problem. Figure 15 shows

the result of our analysis for a workload similar to the one

presented in the previous use case (section ‘Investigation

of execution anomalies’). We first see that the analyzed

task is sharing the CPU with threads cc from the VM

“Ubuntu” and burnP6 from the host. However, for the

second half of the analysis, the ciritcal task is being pre-

empted by swapper, the idle task, from “Ubuntu”. Such

a behavior seems problematic as control is taken away

from the analyzed thread to serve an idle thread. With

a quick look at the trace when swapper is scheduled,

we noticed events indicating the expiration of a timer. It

turns out that a periodic timer was scheduled in the virtual

machine, which would require CPU time for a very short

period to acknowledge each timer expiration. This behav-

ior introduces significant overhead as context switches are

somewhat costly on the host system. We clearly see the

use of such an analysis specifically for virtualized systems.

While acknowledging an expired timer on an idle phys-

ical machine only consumes a few CPU cycles and little

energy, it is muchmore costly in a virtualized system since

it generates a context switch on the host. To sum up this

example, we saw how a “forgotten” timer in one virtual

machine can affect the execution of others. Such a prob-

lem can be easily fixed by the system administrator once

it is located.

Flexibility and portability
Throughout this project, we set different constraints to

ensure for a portable and flexible solution to our initial

problem. First, we used the State History Tree as an

abstraction for the traces. The SHT not only delivers per-

formance enhancement for event querying in the trace

[15], but allows to dissociate the analysis step from the

trace itself. In other words, multiple trace parsers can

be used to handle the kernel traces, regardless of the

operating system on which they were recorded, or the

tracer used, as long as the trace format is open. As long

as the backend used for trace representation is the SHT,

and given that the required events are reported in the

trace, our proposed algorithms will produce the expected

results, which accounts for both portability (independant

from the OS) and flexibility (independant from the tracers

and trace formats). It is worth mentioning that although

we used LTTng as a kernel tracer for this project, any

other kernel tracer could have been potentially used as

long as a trace parser is available.

Moreover, as we explained in previous sections,

although a TSC-based approach for trace synchronisation

is potentially simpler to use under certain conditions, the

TSC is an x86-specific CPU register. Using a higher-level

algorithm such as the fully incremental convex hull algo-

rithm provides portability to the synchronisation solu-

tion. And, although using hypercalls as a communication

Figure 13Magnified view of the execution of critical_task 3525.
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Figure 14 Execution flow recovery of problematic critical_task.

mechanism between the host and its guests is specific to

hardware virtualization, any pair of events across systems

with a causality relation can be a potential replacement,

such as network packets exchange.

Finally, it is worth mentioning that the only KVM-

specific tracepoints are kvm_entry and kvm_exit,

which represent VMX mode transitions. Since these

transitions are common to all hypervisors supporting

hardware-assisted virtualization, our approach is there-

fore not specific to KVM. And, although these trace-

points are already included in Linux’s source tree, they

can be added in any hypervisor by simply instrument-

ing all calls to vmentry and vmexit instructions which

requires very little effort, thus allowing this model to be

used with any hypervisor. Moreover, if the administrator

chooses not to instrument these transitions, little infor-

mation would be lost, as the only state lost in Figure 5

would be VMM. Preemption and execution recovery would

still be possible with little analysis precision lost (hyper-

visor involvement would account as effective CPU time

instead of overhead due to virtualization). Furthermore,

kernel traces generated from other operating systems

can be used as well with minimal effort. As long as the

events required to cover the FSM presented in section

‘Multi-level trace analysis’ are available, the model can be

ported by simply specifying the names of these events.

Moreover, in the case of microcomputers without hard-

ware virtualization, the synchronization approach could

potentially be extended to any other type of communica-

tion between the guest and the host, such as a TCP packet

exchange. The rest of the analysis is based on the state sys-

tem built, and thus does not depend on the details of the

underlying traces.

Conclusion
Cloud computing and virtualization are evolving at a rapid

pace. These emerging technologies created a need for

analysis tools that can live up to the technological advance.

In this paper, we showed that kernel tracing can be used

to analyze the execution of virtual machines under such

conditions. We first proposed an approach to resolve the

problem of clock drift and offset between operating sys-

tems. We then showed how the merged traces can be

processed to rebuild the state of the virtual machines,

as well as their vCPUs, throughout the trace. Finally, we

explained how the execution flow with regard to a cer-

tain thread can be rebuilt for an in-depth analysis of

its execution and interactions with other systems. All

Figure 15 Execution flow recovery of problematic critical_taskwith a periodic timer in another VM.
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the solutions proposed in this paper were designed with

requirements of portability and flexibility in mind. As a

result, all the approaches explained are portable across

operating systems, computer architectures, and comple-

mentary software (tracer and hypervisor).
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