
Titre:
Title:

Efficient realization of BCD multipliers using FPGAs

Auteurs:
Authors:

Shuli Gao, Dhamin Al-Khalili, J. M. Pierre Langlois, & Noureddine
Chabini

Date: 2017

Type: Article de revue / Article

Référence:
Citation:

Gao, S., Al-Khalili, D., Langlois, J. M. P., & Chabini, N. (2017). Efficient realization of
BCD multipliers using FPGAs. International Journal of Reconfigurable Computing,
2017, 1-12. https://doi.org/10.1155/2017/2410408

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/4877/

Version: Version officielle de l'éditeur / Published version
Révisé par les pairs / Refereed

Conditions d’utilisation:
Terms of Use: CC BY

Document publié chez l’éditeur officiel
Document issued by the official publisher

Titre de la revue:
Journal Title:

International Journal of Reconfigurable Computing (vol. 2017)

Maison d’édition:
Publisher:

Hindawi

URL officiel:
Official URL:

https://doi.org/10.1155/2017/2410408

Mention légale:
Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://doi.org/10.1155/2017/2410408
https://publications.polymtl.ca/4877/
https://doi.org/10.1155/2017/2410408

Research Article

Efficient Realization of BCD Multipliers Using FPGAs

Shuli Gao,1 Dhamin Al-Khalili,1 J. M. Pierre Langlois,2 and Noureddine Chabini1

1Department of Electrical and Computer Engineering, Royal Military College of Canada, Kingston, ON, Canada
2Department of Computer Engineering, École Polytechnique de Montréal, Montréal, QC, Canada

Correspondence should be addressed to Dhamin Al-Khalili; alkhalili-d@rmc.ca

Received 22 October 2016; Revised 2 February 2017; Accepted 9 February 2017; Published 6 March 2017

Academic Editor: Seda Ogrenci-Memik

Copyright © 2017 Shuli Gao et al.This is an open access article distributed under theCreativeCommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, a novel BCD multiplier approach is proposed. The main highlight of the proposed architecture is the generation of
the partial products and parallel binary operations based on 2-digit columns. 1 × 1-digit multipliers used for the partial product
generation are implemented directly by 4-bit binary multipliers without any code conversion. The binary results of the 1 × 1-digit
multiplications are organized according to their two-digit positions to generate the 2-digit column-based partial products. A binary-
decimal compressor structure is developed and used for partial product reduction. These reduced partial products are added in
optimized 6-LUT BCD adders. The parallel binary operations and the improved BCD addition result in improved performance
and reduced resource usage. The proposed approach was implemented on Xilinx Virtex-5 and Virtex-6 FPGAs with emphasis on
the critical path delay reduction. Pipelined BCD multipliers were implemented for 4 × 4, 8 × 8, and 16 × 16-digit multipliers. Our
realizations achieve an increase in speed by up to 22% and a reduction of LUT count by up to 14% over previously reported results.

1. Introduction

The traditional approach of using binary number system
based operations in a decimal system requires frontend and
backend conversion.These conversions can take a significant
amount of processing time and consume large area. A
more important problem with fractional decimal numbers
expressed in a binary format may result in lack of accuracy.
This can have major impact in finance and commercial
applications. To solve these problems, interest in hardware
design of decimal arithmetic is growing. This has led to the
incorporation of specifications of decimal arithmetic in the
IEEE-754 2008 standard for floating-point arithmetic [1].
The development of decimal operations in hardwired designs
with high performance and low resource usage is expected to
facilitate the implementation of various applications [2].

Multiplication is a complex operation among decimal
computations. To speed up this operation, early decimalmul-
tipliers were designed at the gate level targeting ASICs. The
authors in [3] proposed an improved iterative decimal mul-
tiplier approach to reduce the number of iteration cycles. To
avoid a large number of decimal to binary conversions, a two-
digit stage was used as the basic block for the iterative Binary

Coded Decimal (BCD) multiplier. To further speed up the
multiplication, parallel decimal multipliers were proposed.
Binarymultiplier and binary to BCDconversionwere utilized
to implement 1 × 1-digit multipliers, and different binary
compressors were employed for the result of the multiplier
[4–6]. To avoid the binary to decimal conversion, recoding
methods were used to generate the partial products of the
BCD multiplier [7, 8]. A Radix10 combinational multiplier
was introduced in [7] and Radix4 and Radix5 recoding
methods were presented in [8]. In [9], Radix5 recoding was
combined with BCD code converters using BCD4221 and
BCD5211 codes to simplify the partial product generation and
reduction. In the recent two years, some ASIC-based designs
for the realization of decimal multiplication were proposed
in [10–14].The recoding methods and BCD code conversions
were used in these designs for efficient implementation in
ASIC.

Although there are a number of approaches to implement
decimal multipliers in ASICs, utilizing the same methods
in FPGA devices is not necessarily efficient. With recent
advancements in FPGA technology, enhanced architectures,
and availability of various hardware resources, the FPGA

Hindawi
International Journal of Reconfigurable Computing
Volume 2017, Article ID 2410408, 12 pages
https://doi.org/10.1155/2017/2410408

https://doi.org/10.1155/2017/2410408

2 International Journal of Reconfigurable Computing

platform is recognized as a viable alternative to ASICs in
many cases. To make efficient use of FPGA resources in the
implementation of decimal multiplication, new algorithms
and approaches have been developed. The authors in [15]
implemented decimal multipliers using embedded binary
multiplier blocks in FPGAs. The binary-BCD conversion
was implemented using base-1000 as an intermediate base,
and the result was converted to BCD using a shift-add-
3 algorithm. In [16], the authors presented a double-digit
decimal multiplier technique that performs 2-digit multipli-
cations simultaneously in one clock cycle; then the overall
multiplication was performed serially. In [17, 18], a 1 × 1-digit
multiplier was designed directly with BCD inputs/outputs
and implemented using 6-input or 4-input LUTs. To sum the
results of 1 × 1-digit multipliers, a fast carry-chain decimal
adder was also proposed in [18]. These decimal-operation-
based approaches avoided the conversions but also impacted
the speed. Vázquez and De Dinechin implemented a BCD
multiplier using a recoding technique [19]. Signed-Digit (SD)
Radix5 was employed to recode one of the input operands of
the multiplier for the generation of the partial products. 6-
input LUTs and fast carry chains in Xilinx FPGAs were used
to generate the building blocks and the decimal adders. To
increase the performance, the authors in [20] implemented
a parallel decimal multiplier based on Karatsuba-Ofman
algorithm. The building blocks used in Karatsuba-Ofman
algorithm were deigned based on the approach proposed
in [19]. Another SD-based decimal multiplier approach was
proposed in [21]. The recoding was based on SD Radix10.
BCD4221, 5211, and 5421 converters were used for the partial
product generation. BCD4221-based compressors and adders
were utilized in this approach. Although the BCD4221-based
operations are similar to binary operation, the recoding and
the different code conversions still lead to delay and resource
cost.

In this paper, we propose a newparallel binary-operation-
based decimal multiplier approach. Binary operations are
performed for the 1 × 1-digit multiplication and the partial
product reduction based on the columns with two digits in
each column. The operations for all columns are processed
in parallel. After the column-based binary operations, binary
to decimal conversions are required but the bit sizes of the
operands to be converted are limited based on the columns.
In this paper, an improved 6-LUT-based BCD adder and a 2-
digit column-based binary-decimal compressor are also pre-
sented. Our proposed approach was implemented in Xilinx
Virtex-5 and Virtex-6 FPGAs. The results are compared with
Radix-recoding-based approaches using a BCD4221 coding
scheme. The proposed approach achieves improved FPGA
performance in part because of the parallel binary operations
and small size conversions.

The organization of this paper is as follows. Section 2
presents optimized building blocks required by the BCD
multiplication. The proposed multiplier architecture and the
schemes of the partial product generation and reduction are
presented in Section 3. The implementation results of 𝑛 × 𝑛-
digit BCD multipliers are depicted in Section 4. Conclusions
are given in Section 5.

2. Proposed Building Blocks for
the Realization of BCD Multiplication

In this section, proposed schemes for an improved 6-input
LUTs-based BCD adder and a mixed binary-decimal com-
pressor are presented. These schemes will be utilized as
the basic building blocks to construct our proposed BCD
multipliers presented in Section 3.

2.1. 6-Input LUTs-Based 1-Digit BCD Adder. The 6-input
LUTs-based 1-digit BCD adder is based on the use of 6-input
LUTs and MUX-XOR networks in FPGAs. It is an improved
version of the architecture presented in [19].

Assume that the input operands of the adder are 𝐴 =[𝑎3 𝑎2 𝑎1 𝑎0] and 𝐵 = [𝑏3 𝑏2 𝑏1 𝑏0] in BCD8421 format. The
input operands are decomposed as

𝐴 = [𝑎3 𝑎2 𝑎1] × 2 + 𝑎0 = 𝐴1 × 2 + 𝑎0,
𝐵 = [𝑏3 𝑏2 𝑏1] × 2 + 𝑏0 = 𝐵1 × 2 + 𝑏0. (1)

Then, the addition is presented as

𝐴 + 𝐵 + 𝐶in = (𝐴1 × 2 + 𝑎0) + (𝐵1 × 2 + 𝑏0) + 𝐶in

= (𝐴1 + 𝐵1) × 2 + (𝑎0 + 𝑏0 + 𝐶in)
= [𝐹4 𝐹3 𝐹2 𝐹1] × 2 + [𝐶0 × 2 + 𝑆0] .

(2)

In (2), 𝐴1 or 𝐵1 has the binary set {000, 001, 010, 011, 100},
and the full adder [𝑎0+𝑏0+𝐶in] has two outputs, the carry𝐶0
and the sum 𝑆0. The function 𝐹 = [𝐹4 𝐹3 𝐹2 𝐹1] is a three-
bit adder with the add-3 correction merged, which can be
expressed as

𝐹 = [𝐹4 𝐹3 𝐹2 𝐹1] = {{{
𝐴1 + 𝐵1 if 𝐴1 + 𝐵1 < 5,
𝐴1 + 𝐵1 + 3 if 𝐴1 + 𝐵1 ⩾ 5. (3)

In (3), the 𝐹 cannot be [0101]2, [0110]2, or [0111]2 because of
the +3 correction. Also, since themaximal value of𝐴1 and 𝐵1
is [100]2, the maximal value of 𝐹 is [1011]2. The function 𝐹
has 6 inputs; therefore, it can be efficiently mapped in a single
level of 6-input LUTs.

To calculate the final result in BCD format, the carry 𝐶0
of the full adder must be added to 𝐹. As a special case, an
add-3 correction must be considered if 𝐹 = 4 and 𝐶0 = 1 to
achieve a correct final result. Table 1 is the truth table for the
final correction.

Therefore, the proposed scheme requires the following
steps:

(i) Decompose the addition as two adders: one is a full
adder for adding the two least significant bits of the
input operands with the incoming carry, and another
is a 3-bit adder with add-3 correction merged for
the remaining bits. This function decomposition is
presented in (2).

(ii) Implement the full adder and the 3-bit adder merged
with an add-3 correction as presented in (3).

International Journal of Reconfigurable Computing 3

Table 1: Final correction for the BCD adder.

𝐹 = 𝐹4 𝐹3 𝐹2 𝐹1 𝐶0 = 0 𝐶0 = 1
Comments𝐶

out
𝑆3 𝑆2 𝑆1 𝐶

out
𝑆3 𝑆2 𝑆1

0 0 0 0 0 0 0 0 0 0 0 1 “+3” is not required

0 0 0 1 0 0 0 1 0 0 1 0 “+3” is not required

0 0 1 0 0 0 1 0 0 0 1 1 “+3” is not required

0 0 1 1 0 0 1 1 0 1 0 0 “+3” is not required

0 1 0 0 0 1 0 0 1 0 0 0 at C0 = 1, “+3” is required

0 1 0 1 x x x x x x x x

0 1 1 0 x x x x x x x x

0 1 1 1 x x x x x x x x

1 0 0 0 1 0 0 0 1 0 0 1 “+3” has been performed

1 0 0 1 1 0 0 1 1 0 1 0 “+3” has been performed

1 0 1 0 1 0 1 0 1 0 1 1 “+3” has been performed

1 0 1 1 1 0 1 1 1 1 0 0 “+3” has been performed

1 1 0 0 x x x x x x x x

1 1 0 1 x x x x x x x x

1 1 1 0 x x x x x x x x

1 1 1 1 x x x x x x x x

6-LUT 6-LUT 6-LUT 6-LUT

“0” “0”

+

0

1

0

1

0

1

B(3:1)

A(3:1)
A(0) B(0)

XOR1

MUX1MUX2
MUX3

XOR2XOR3

F0

F1F2F3F4 C0

C1C2

S0S1S2S3

Cin

Cout

R3 R2 R1

Figure 1: Improved 1-digit BCD adder using 6-LUTs and MUX-XOR network in FPGA.

(iii) Add the carry of the full adder with the output
of the 3-bit adder using MUX-XOR networks. The
multiplexers generate the propagated carries and the
XOR gates output the sum bits.

(iv) Perform a final correction for the case of the carry of
the full adder equal to “1” and the sum of the 3-bit
adder equal to “4” to obtain the final result.

Figure 1 shows the architecture of this approach.
In this design, if the carry of the full adder,𝐶0, is “0”; there

is no change to the result of the 3-bit adder and no carry is
propagated. The output of the BCD adder is the same as that

of the 3-bit adder, which is [𝐶out 𝑆3 𝑆2 𝑆1] = [𝐹4 𝐹3 𝐹2 𝐹1].
However, if 𝐶0 is “1,” the carry must be added to the result
of the 3-bit adder. First, XOR1 and MUX1 add 𝐶0 to 𝐹1 and
generate the sum 𝑅1 = (𝐹1 XOR 𝐶0) and the carry 𝐶1 = (𝐹1
AND 𝐶0). If 𝐶0 = 1 and 𝐹1 = 0, the sum 𝑅1 is equal to “1” and
no carry (𝐶1 = 0) is propagated. However, if 𝐶0 = 1 and 𝐹1 =1, the sum𝑅1 is equal to “0,” and the carry is propagated to𝐶1.
The same procedure applies to XOR2 andMUX2. For MUX3,
it produces the output carry, 𝐶out. Based on the truth table
listed in Table 1, the output carry 𝐶out is the same as 𝐹4 when𝐹3 = 0 and the same as 𝐶0 when 𝐹3 = 1, which is realized
byMUX3. In this case, propagating𝐶0 from the output of the

4 International Journal of Reconfigurable Computing

10n−2 102 100

Xn/2−1,0

Xn/2−1,i X1,i X0,i

X1,0 X0,0

Xn/2−1,m−1 X1,m−1 X0,m−1

P0

Pi

Pm−1

· · ·

· · ·

· · ·

· · ·

· · ·

(a)

10n−1 103 101

Xn/2−1,0

Xn/2−1,i X1,i X0,i

X1,0 X0,0

Xn/2−1,m−1
X1,m−1 X0,m−1

P0

Pi

Pm−1

· · ·

· · ·

· · ·

· · ·

· · ·

(b)

Figure 2: Two-group operands with the mixed binary-decimal format.

Table 2: Comparison of the implementation results for the BCD
adders.

Improved 6-LUT Reference [19]

Delay (ns) LUTs Delay (ns) LUTs

1.372 10 1.397 10

full adder directly to the input of MUX3 reduces this critical
path delay.This has a significant performance impact on large
size BCD ripple adders required by BCD multipliers.

To achieve a correct final result, a final correction in the
cases of 𝐶0 = 1 and 𝐹 = 4 must be performed to the sum.
Since, before the final correction, the sumof the adder is equal
to

([𝐹4 𝐹3 𝐹2 𝐹1] + 𝐶0) × 2 + 𝐹0 = (0100 + 1) × 2 + 𝐹0
= (101 𝐹0)2 = (𝑅3 𝑅2 𝑅1 𝐹0)2 , (4)

therefore under the condition of 𝐶0 = 1 and 𝐹 = 4, the final
add-3 correction is performed to (𝑅3 𝑅2 𝑅1), and the final
result is equal to

[𝐶out 𝑆3 𝑆2 𝑆1 𝐹0] = (1 000 𝐹0)BCD . (5)

In this case, the outputs, 𝑆3 and 𝑆1, have to be forced to “0.”
Otherwise, 𝑆3 and 𝑆1 are the same as 𝑅3 and 𝑅1, respectively.
Thus, the final correction performed to 𝑆3 and 𝑆1 is equal to

𝑆3 = 𝑅3 ⋅ 𝑅3 ⋅ 𝑅1 = 𝑅3 ⋅ 𝑅1,
𝑆1 = 𝑅1 ⋅ 𝑅3 ⋅ 𝑅1 = 𝑅3 ⋅ 𝑅1. (6)

The proposed 1-digit BCD adder was coded in VHDL and
implemented in a Virtex-6 6vlx75tff784 Xilinx FPGA with a−3 speed grade using ISE13.1 [23]. The results are compared
with the carry-ripple BCD adder approach proposed in
[19] using the same FPGA. The delays were extracted from
Postplacement-and-Routing Static Timing Report and the
LUTs usage was obtained from Place-and-Routing Report.
Table 2 lists the implementation results.

Table 2 shows that the improved 6-LUT-based BCDadder
approach achieves better performance compared with the
reference BCD adder. Although the improvement in delay is
approximately 2%, for large size adders the cumulative effect
can be significant.

2.2. Binary-Decimal Compression. The binary-decimal (BD)
compression performs 2-digit column-based binary opera-
tions and binary to decimal conversions. The input operands
of the BD compression are the results of 1 × 1-digit BCD
multipliers presented in binary format, and the output of the
BD compression is in BCD format. Since a 1 × 1-digit BCD
multiplier results in a 2-digit decimal number, the binary
inputs are based on 2-digit decimal positions. The input
operands of the BD compression are

𝑃𝑖 = 𝑛/2−1∑
𝑘=0

𝑋𝑘,𝑖 × 102𝑘 for 𝑖 = 0, 1, 2, . . . , 𝑚 − 1 (7)

or 𝑃𝑖 = 𝑛/2−1∑
𝑘=0

𝑋𝑘,𝑖 × 102𝑘+1 for 𝑖 = 0, 1, 2, . . . , 𝑚 − 1, (8)

where 𝑚 is the number of operands to be compressed, and
n is the number of digits in each operand. The variable𝑋𝑘,𝑖 is expressed in a binary format but placed in a 2-digit
decimal position. Since 𝑋𝑘,𝑖 is the result of a 1 × 1-digit BCD
multiplier, it has 7 binary bits. Figure 2 illustrates these two-
group operands, where (a) and (b) correspond to (7) and (8),
respectively. The difference between Figures 2(a) and 2(b) is
the decimal positions of the columns.

The binary-decimal compression performs the following
steps:

(i) Aligning the input operands based on 2-digit decimal
position. All operands in the same column should
have the same 2-digit decimal position

(ii) Compressing all operands in each of the columns
using binary compressors

(iii) Adding the compressed binary operands in each
column using binary adders

(iv) For each column, converting the binary sum to
decimal with two digits as the sum and other digits
as the carry

(v) Saving the decimal sums and carries in carry-save for-
mat for all columns based on their decimal positions

As an example, Figure 3 illustrates the BD compression
with m input operands for the case presented in Figure 2(a).
This procedure can also be used for the case in Figure 2(b).

In this case, the BD compression first compresses the m
binary operands to one binary sum using binary compressors

International Journal of Reconfigurable Computing 5

D-sum

D-carry1

D-carry2

B-sum

Aligned input operands

Binary compression/addition

Binary to decimal conversion

102(i+1)

102(i+1)

102i

102i

102(i−1)

102(i−1)

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

P0

Pm−1

Binary Binary Binary

BinaryBinaryBinary

Binary-sum Binary-sum Binary-sum

Sum(i + 1) Sum(i) Sum(i − 1)

Carry(i + 1)1 Carry(i)1 Carry(i − 1)1

Carry(i + 1)2 Carry(i)2 Carry(i − 1)2

Figure 3: Binary-decimal compression.

and binary adders. In this step, the binary compressors reduce
m binary operands to 𝑘 = (⌊log2𝑚⌋ + 1) operands; then the
binary adders add these 𝑘 operands to produce a binary sum.

Then, the binary sum is converted to a decimal number.
The decimal number has a two-digit decimal sum,𝐷-sum(𝑖),
and the decimal carries,𝐷-carry(𝑖)t (for 𝑡 = 1, 2, . . .). Each of
the decimal sums or decimal carries takes two-digit position.

The 𝐷-sum(𝑖) is located at the 102𝑖 column and the carries
are located at the columns of 102𝑖+1, 102𝑖+2, and so on. Then,
the decimal sum and carries for each column are saved as
carry-save format based on their digit positions. Therefore,
only (𝑡 + 1) decimal operands are generated after the BD
compression. The value of 𝑡 is dependent on the value of 𝑚.
If𝑚 is between 2 and 123, the maximal decimal result in each
column is 81 × 123 = 9963, for which𝐷-sum= 63 and𝐷-carry
= 99. In this case, only 𝑡 (=1) decimal carry is generated.Thus,
123 such binary operands can be compressed to two decimal
operands, one for the 𝐷-sum and the other for the 𝐷-carry.
This arrangement results in a fast way to reduce the number
of partial products for a BCD multiplier.

3. Proposed BCD Multiplier Approach

In this section, we present a binary-decimal compression
(BDC) based BCD multiplier. The proposed approach con-
sists of 1 × 1-digit binary multiplication, partial product gen-
eration, binary-decimal compression, and decimal addition.
Figure 4 shows a block diagram which captures all the steps
for this approach.

3.1. 1 × 1-Digit Binary Multipliers. The 1 × 1-digit binary
multiplier receives two 1-digit BCD operands and outputs a
binary result. The maximal output is 9 × 9 = 81 = [1010001]2,
which is a 7-bit binary number. Since 1-digit 8421BCD
number is the same as a 4-bit binary number, a 4 × 4-bit
binary multiplier is used to perform the 1 × 1-digit binary
multiplier. In our approach, the 4 × 4-bit binary multiplier
is simply coded as𝑋×𝑌, where𝑋 and 𝑌 are 1-digit 8421BCD
numbers.

Column-based binary to

decimal compression

X

BCD inputs

Decimal addition for all columns

Y

BCD output

(1) Align columns

(2) Binary compression

(3) Binary addition

(4) Binary to decimal

conversion

1 ∗ 1-digit binary multiplication
[xi ∗ yj]

 Partial product generation based
on the results of [xi ∗ yj]

Figure 4: Block diagram of the proposed BDC-based BCD multi-
plier.

3.2. Partial Product Generation (PPG). The partial product
generation is based on 1 × 1-digit binary multipliers. These
binary outputs of the 1 × 1-digit binary multipliers are
grouped according to their decimal positions. A triangular
organization of the partial products is used for the BCD
multiplier, which is similar to our previous work proposed
in [24] for a binary multiplier. For the BCD multiplication,
let us assume that the input operands of the multiplier are 𝑋
and 𝑌. They are in BCD format and can be expressed as

𝑋 = 𝑛−1∑
𝑖=0
𝑋𝑖 × 10𝑖,

𝑌 = 𝑛−1∑
𝑗=0
𝑌𝑗 × 10𝑗.

(9)

6 International Journal of Reconfigurable Computing

102n 102n−1 105 104 103 102 101 100

X(n−1) ∗ Y(n−1) X(n−2) ∗ Y(n−2) · · ·

· · ·

· · ·

· · ·

· · ·

X2 ∗ Y2 X1 ∗ Y1 X0 ∗ Y0 P0

X(n−1) ∗ Y(n−2) X(n−2) ∗ Y(n−3) X2 ∗ Y1 X1 ∗ Y0 P1

Y(n−1) ∗ X(n−2) Y(n−2) ∗ X(n−3) Y2 ∗ X1 Y1 ∗ X0 P2

X(n−1) ∗ Y(n−3) X3 ∗ Y1 X2 ∗ Y0 P3

Y(n−1) ∗ X(n−3) Y3 ∗ X1 Y2 ∗ X0 P4

X(n−1) ∗ Y1 X(n−2) ∗ Y0 P(2n−5)

Y(n−1) ∗ X1 Y(n−2) ∗ X0 P(2n−4)

X(n−1) ∗ Y0 P(2n−3)

Y(n−1) ∗ X0 P(2n−2)

...

Figure 5: Triangular organization of the partial products of the BCD multiplier.

Group1 columns n − 1 n − 2 n − 3 · · · n/2 + 1 n/2 n/2 − 1 n/2 − 2 · · · 2 1 0

of ops in
each column

of ops in
each column

1 3 5 · · · n − 3 n − 3n − 1 n − 1 · · · 5 3 1

Group2 columns n − 2 n − 3 n − 4 · · · n/2 + 1 n/2 n/2 − 1 n/2 − 2 n/2 − 3 · · · 2 1 0

2 4 6 · · · n − 4 n − 2 n n − 2 n − 4 · · · 6 4 2

Figure 6: Number of operands in each of the columns.

By multiplying𝑋 and 𝑌 in (9), the product becomes

𝑍 = 𝑋 × 𝑌 = (𝑛−1∑
𝑖=0
𝑋𝑖 × 10𝑖) × (𝑛−1∑

𝑗=0
𝑌𝑗 × 10𝑗)

= 𝑛−1∑
𝑖=0
𝑋𝑖 × 𝑌𝑖 × 102𝑖

+ 𝑛−1∑
𝑖=1
(𝑛−1−𝑖∑
𝑗=0
𝑋𝑖+𝑗 × 𝑌𝑗 × 10(𝑖+2𝑗))

+ 𝑛−1∑
𝑖=1
(𝑛−1−𝑖∑
𝑗=0

𝑌𝑖+𝑗 × 𝑋𝑗 × 10(𝑖+2𝑗)) ,

(10)

where𝑋𝑖×𝑌𝑖,𝑋𝑖+𝑗×𝑌𝑗, and𝑌𝑖+𝑗×𝑋𝑗 are the products from 1×
1-digit binary multipliers. These 1 × 1-digit binary multipliers
are organized based on their decimal positions, and the
architecture of the BCD multiplier is shown in Figure 5.

Based on the decimal positions of the results of 1 ×
1-digit binary multipliers, these partial products are sep-
arated into two groups. The first group is composed of𝑃0, 𝑃3, 𝑃4, . . . , 𝑃(2𝑛−3) and 𝑃(2𝑛−2). The second group is com-
posed of 𝑃1 and 𝑃2, . . . , 𝑃(2𝑛−5) and 𝑃(2𝑛−4). The number of
operands in each of the columns is shown in Figure 6. The
maximal number of operands in the first group is (𝑛 − 1)
that is located at the column (𝑛/2) and column (𝑛/2 − 1). The
maximal number of operands in the second group is n that is
located at the column (𝑛/2 − 1).

As an example, Figure 7 shows the organization of a 4× 4-
digit BCD multiplier. In this example, the operands in group

1 are located at the decimal positions 102𝑖 with 𝑖 = 0, 1, 2, 3,
and the number of operands in each column is 1, 3, 3, and
1, respectively. The operands in group 2 are located at the

decimal positions 102𝑖+1 with 𝑖 = 0, 1, 2, and the number of
operands in each column is 2, 4, and 2.

3.3. Partial Product Reduction. Based on the architecture of
the BCDmultiplier, the partial products are in mixed binary-
decimal format. To reduce the number of partial products,
two steps are performed: partial product compression and
partial product conversion.

Partial Product Compression. The partial product compres-
sion performs (𝑚 : 1) compression for the binary operands in
each column using efficient binary compression and addition

methods. The binary compressors first reduce 𝑚 = (2𝑘 to2𝑘+1 − 1) binary operands to (𝑘 + 1) binary operands in each
column. For example, for 𝑘 = 3 the number of operands to be
compressed is 𝑚 = (8 to 15). After the compression, 4 binary
operands are generated.

Then, these binary operands after the compression are
added in binary to obtain a binary sum.Thus, them operands
are compressed to a single one for all columns.

Partial Product Conversion. The partial product conversion
converts the binary sum to decimal operands.Double-Dabble
(DD) converters [25] can be used in this step. Since the

International Journal of Reconfigurable Computing 7

X3 X2 X1 X0

Y3 Y2 Y1 Y0

108 106 104 102 101 100

X3 ∗ Y3 X2 ∗ Y2 X1 ∗ Y1 X0 ∗ Y0 P0

X3 ∗ Y2 X2 ∗ Y1 X1 ∗ Y0 P1

X2 ∗ Y3 X1 ∗ Y2 X0 ∗ Y1 P2

X3 ∗ Y1 X2 ∗ Y0 P3

X1 ∗ Y3 X0 ∗ Y2 P4

X3 ∗ Y0 P5

X0 ∗ Y3 P6

(a) Triangular organization

X3 ∗ Y3 X2 ∗ Y2 X1 ∗ Y1 X0 ∗ Y0 P0

X3 ∗ Y1 X2 ∗ Y0 P3

X1 ∗ Y3 X0 ∗ Y2 P4

Group1

X3 ∗ Y2 X2 ∗ Y1 X1 ∗ Y0 P1

X2 ∗ Y3 X1 ∗ Y2 X0 ∗ Y1 P2

X3 ∗ Y0 P5

X0 ∗ Y3 P6
Group2

(b) Two groups of the partial products

Figure 7: A 4 × 4-digit BCD multiplier.

column-based operations produce limited size binary sums
in each column, the conversions introduce only a small delay
overhead.

After the binary to decimal conversion, normally only 3
or 4 decimal operands are generated. If there are 12 binary
operands or less in one column, the maximal sum is 81× 12 = 972, which is a 3-digit decimal number. Thus, the
decimal sum has two digits and the decimal carry has only
one digit. Moreover, the decimal carries in two groups are
located at different digital positions.Therefore, the carries can
be combined as one decimal operand. Figure 8 illustrates this
situation for the 4 × 4-digit BCD multiplier example. Only
three decimal operands are generated after the partial product
reduction.

However, if there are more than 12 operands in one col-
umn, at least four digits are required in this columnbecause 81× 13 = 1053.Thus, the decimal carry has twodigits. In this case,
4 decimal operands will be generated after the partial product
reduction. For example, based on the number of operands in
each column for a 16 × 16-digit BCD multiplier, as shown in
Figure 9(a), the columns at 6, 7, 8, and 9 in the first group
create 4-digit decimals for each column, and the columns
at 6, 7, and 8 in the second group also generate 4-digit
decimals for each column. The decimal operands after the
conversion are shown in Figure 9(b), where 𝐷𝑆1 and 𝐶1 are
the decimal sum and carry for group 1 and𝐷𝑆2 and𝐶2 are the

decimal sum and carry for group 2. By combining the decimal
carries in two groups, Figure 9(c) shows the decimal operand
organization. 𝐶𝐶1 combines the first digit of the carries
for all columns, and 𝐶𝐶2 combines the second digit of the
carries for the related columns. After partial product reduc-
tion, four decimal operands are generated for the 16 × 16-
digit BCD multiplier as shown in Figure 9(c).

3.4. Final Decimal Addition (FDA). To obtain the final result
of the BCD multiplier, the decimal operands generated after
the partial product reduction must be added to decimal
adders. BCD ripple adders are used in our approach. These
BCD ripple adders are built using our improved 6-LUTs-
based BCD adders. Since only 3 or 4 decimal operands
need to be added, two-level BCD ripple adders are required.
Figure 10 shows the final addition of the BCDmultiplication.
If there are only three decimal operands to be added, the BCD
adder2 in this figure is removed.

3.5. Pipelined Multipliers. Based on the architecture of the
BCD multiplier, a 4-stage pipelined BCD multiplier is illus-
trated in Figure 11.

In this pipelined multiplier, the 1 × 1-digit (4 × 4-bit)
binary multiplication and binary compression and addition
are combined in the first stage. In this stage, all operations
in each column are in binary format. The second stage

8 International Journal of Reconfigurable Computing

X3 ∗ Y3 X2 ∗ Y2 X1 ∗ Y1 X0 ∗ Y0 P0

X3 ∗ Y1 X2 ∗ Y0 P3

X1 ∗ Y3 X0 ∗ Y2 P4
Group1

X3 ∗ Y2 X2 ∗ Y1 X1 ∗ Y0 P1

X2 ∗ Y3 X1 ∗ Y2 X0 ∗ Y1 P2

X3 ∗ Y0 P5

X0 ∗ Y3 P6 Group2

D-sum1

C12 C11 D-carry1

D-sum2

C23 C22 C21 D-carry2

D-carry

D-sum1

D-sum2

C23 C12 C22 C11 C12

Figure 8: Partial product reduction for a 4 × 4-digit BCD multiplier.

15 14 13 12 11 810 9 7 6 5 4 3 02 1Group1columns

1 3 5 7 9 11 13 15 15 13 11 9 7 5 3 1

14 13 12 11 10 79 8 6 5 4 3 2 1 0Group2 columns

2 4 6 8 10 12 14 16 14 12 10 8 6 4 2

of ops in each column

of ops in each column

(a)

15 14 13 12 11 810 9 7 6 5 4 3 02 1

14 13 12 11 10 79 8 6 5 4 3 2 1 0

14 13 12 11 10 79 8 6 5 4 3 2 1

14 13 12 11 10 79 8 6 5 4 3 2 1 0

DS1
C1

DS2

C2

(b)

15 14 13 12 11 810 9 7 6 5 4 3 02 1

14 13 12 11 10 79 8 6 5 4 3 2 1 0

DS1

DS2

CC1

CC2

(c)

Figure 9: Partial product reduction for a 16 × 16-digit BCD multiplier.

converts the binary numbers to decimal using the Double-
Dabble (DD) converter [25]. Since the input operand of the
conversion is based on each column, the number of bits in
the input operands is limited. Therefore, the delay for the
conversions is relatively small. After the binary to decimal
conversion, 3 or 4 decimal operands are generated and need
to be added. To add these decimal operands, two levels of
additions are performed. For a larger size multiplier, more

pipeline stages may be required. Figure 12 shows an 8-stage
pipeline strategy.

4. Implementation Results

The proposed BCD multiplier approach was implemented in
Xilinx Virtex-5 and Virtex-6 FPGAs for 4 × 4, 8 × 8, and
16 × 16-digit pipelined BCD multipliers. The ISE 13.4 tool

International Journal of Reconfigurable Computing 9

BCD
adder1

BCD

adder3

Final result

Concatenation

D-sum1 (3 down to 0)

BCD

adder2

D-sum1 D-sum2 D-carry1 D-carry2

S1 S2

S1 (11 down to 4)

Figure 10: The final addition for a BCD multiplier.

Column-based binary to decimal

conversion

BCD addition_level 1

Column-based binary
compression and addition

BCD addition_level 2

Output

Inputs

1 ∗ 1-digit binary multiplication

Figure 11: 4-stage pipelined BCD multiplier.

suite [23] was used for the synthesis and implementation.
4 × 4-bit binarymultipliers were used for the partial products
generation. The mixed binary-decimal compressors were
employed for partial product reduction. The improved 6-
LUTs-based BCD adders were connected as ripple adders and
used to sum the compressed partial products and generate the
final result. Our multipliers were implemented targeting Xil-
inx xc5vlx330ff1760-2 and xc6vlx760ff1760-2 FPGA devices.
The results of the total delay and number of LUTs usage
were extracted after the synthesis and implementation and
compared with those of the multipliers proposed in [21, 22].

Binary to decimal conversion_Level1

BCD addition_Level 1

Column-based binary addition

Output

BCD addition_Level 3

Column-based binary compression

Binary to decimal conversion_Level1

BCD addition_Level 2

1 ∗ 1-digit binary multiplication

Inputs

Figure 12: An 8-stage pipeline multiplier.

Figures 13 and 14 illustrate timing information and LUTs
utilized for 4 × 4, 8 × 8, and 16 × 16-digit pipelined BCD
multipliers based on our proposed approach and on the
architecture presented in [21]. The implementation targeted
Virtex-5 and Virtex-6 FPGAs, which are the exact same
devices used in [21]. The number of pipeline stages was
selected based on the best implementation result for each of
the multipliers. The total delay, clock cycle time, and LUT
usage were depicted in these two figures labeled as (a), (b),
and (c), respectively.

Compared with the results presented in [21], our pro-
posed approach achieves improvements in all cases as shown
in these figures. On average, the total delay reductions are
22.5% and 14.3% with 14.6% and 16.6% LUT savings when
targeting Virtex-5 and Virtex-6 FPGAs, respectively.

The 16 × 16-digit multiplier with 5, 6, and 7 pipeline
stages was implemented targeting Virtex-5 FPGA.The results
were compared with the architecture in [22] and presented in
Table 3. The total delay of all pipeline stages and the worst-
case clock cycle for one pipelined stage were extracted and
used for speed comparison.

Compared with the result proposed in [22], our approach
achieves faster performance in terms of the total delay
and worst-case minimum clock period. On average, the
improvement in total delay reduction is 20.2% and in clock
cycle reduction is 21.0%, with 8.7% LUTs penalty.

10 International Journal of Reconfigurable Computing

Ref [21]_v5

Proposed_v5

8

12

16

20

24

28
�

e
to

ta
l d

el
ay

 (
n

s)

2 4 6 8 10 12 14 16 180

Number of digits in each of input operands

(a) Total delay

Ref [21]_v5

Proposed_v5

2

3

4

�
e

cl
o

ck
 c

yc
le

 (
n

s)

2 4 6 8 10 12 14 16 180

Number of digits in each of input operands

(b) Clock cycle

Ref [21]_v5

Proposed_v5

0

2000

4000

6000

8000

N
u

m
b

er
 o

f
L

U
T

s

2 4 6 8 10 12 14 16 180

Number of digits in each of input operands

(c) Number of LUTs used

Figure 13: Implementation results using Virtex-5 FPGA.

Table 3: Results compared with [22] for the 16 × 16-digit pipelined multiplier.

of
pipeline
stages

[22] Proposed Comparison

Total delay
(ns)

Clock
cycle (ns)

#LUTs
Total delay

(ns)
Clock

cycle (ns)
#LUTs

Delay
reduction

(%)

Clock
cycle time
reduction

(ns)

of LUT
saving (%)

5 27.400 5.480 6438 19.025 3.805 6843 30.57 30.57 −6.29
6 28.740 4.830 6664 22.242 3.707 6918 22.61 23.25 −3.81
7 30.660 4.460 5992 28.392 4.056 6953 7.40 9.06 −16.04

Thus, our approach compares favorably with the archi-
tectures in [21, 22]. The improvement comes in part from
the use of parallel and binary operations, as well as our fast
BCD additions. By using 1 × 1-digit binarymultipliers and the
2-column-based binary-decimal compressors, fast parallel
operations are performed with small size binary numbers.
These binary-decimal compressors efficiently reduce the
number of partial products to 3 or 4 decimal operands, which
simplifies the decimal additions required by the multiplica-
tion. Moreover, in the decimal addition, our fast BCD adder

decreases the propagation delay for BCD ripple adders. All
these lead to superior multiplier architecture.

5. Conclusions

In this paper, a new 𝑛 × 𝑛-digit BCDmultiplier approach was
proposed. This approach uses 1 × 1-digit binary multipliers
for the partial product generation. 2-digit column-based
binary operations are used for partial product reduction.
This proposed binary-decimal compression scheme makes

International Journal of Reconfigurable Computing 11

Ref [21]_v6

Proposed_v6

8

10

12

14

16

18

20

22

24

�
e

to
ta

l d
el

ay
 (

n
s)

2 4 6 8 10 12 14 16 180

Number of digits in each of input operands

(a) Total delay

Ref [21]_v6

Proposed_v6

2

3

4

�
e

cl
o

ck
 c

yc
le

 (
n

s)

2 4 6 8 10 12 14 16 180

Number of digits in each of input operands

(b) Clock cycle

Ref [21]_v6

Proposed_v6

0

2000

4000

6000

8000

N
u

m
b

er
 o

f
L

U
T

s

2 4 6 8 10 12 14 16 180

Number of digits in each of input operands

(c) Number of LUTs used

Figure 14: Implementation results using Virtex-6 FPGA.

efficient use of a parallel strategy and of fast binary operation
schemes to reduce the number of partial products of the
multiplier. After the binary-decimal compression, only 3 or
4 operands in general need to be added in decimal to receive
the final result of a BCD multiplier. To perform the decimal
additions, a fast 6-LUTs-based BCD adder was proposed to
realize BCD ripple adders required for themultiplication.The
proposed BCD multipliers were pipelined and implemented
on Xilinx Virtex-5 and Virtex-6 FPGAs. Compared with
existing architectures, improved results have been achieved.

Competing Interests

The authors declare that they have no competing interests.

References

[1] IEEEComputer Society, “IEEE 754-2008 Standard for Floating-
PointArithmetic,”August 2008 http://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=4610935.

[2] B. Hickmann, M. Schulte, and M. Erle, “Improved combined
Binary/Decimal Fixed-Point multipliers,” in Proceedings of the
26th IEEE International Conference on Computer Design (ICCD
’08), pp. 87–94, Lake Tahoe, Calif, USA, October 2008.

[3] R. D. Kenney, M. J. Schulte, and M. A. Erle, “A high-frequency
decimal multiplier,” in Proceedings of the IEEE International
Conference on Computer Design: VLSI in Computers and Pro-
cessors (ICCD ’04), pp. 26–29, October 2004.

[4] J. Bhattacharya, A. Gupta, and A. Singh, “A high performance
Binary to BCD converter for decimal multiplication,” in Pro-
ceedings of the IEEE International Symposium on VLSI Design
Automation and Test (VLSI-DAT ’10), pp. 315–318, Hyderabad,
India, 2010.

[5] G. Jaberipur andA.Kaivani, “Binary-coded decimal digitmulti-
pliers,” IET Computers and Digital Techniques, vol. 1, no. 4, pp.
377–381, 2007.

[6] G. Jaberipur and A. Kaivani, “Improving the speed of parallel
decimal multiplication,” IEEE Transactions on Computers, vol.
58, no. 11, pp. 1539–1552, 2009.

[7] T. Lang and A. Nannarelli, “A radix-10 combinational multi-
plier,” in Proceedings of the 40th Asilomar Conference on Signals,
Systems, and Computers (ACSSC ’06), pp. 313–317, November
2006.

[8] A. Vázquez, E. Antelo, and P. Montuschi, “A new family of
high—performance parallel decimalmultipliers,” inProceedings
of the 18th IEEE Symposium on Computer Arithmetic (ARITH
’07), pp. 195–204, Montpellier, France, June 2007.

[9] A. Vázquez, E. Antelo, and P. Montuschi, “Improved design of
high-performance parallel decimal multipliers,” IEEE Transac-
tions on Computers, vol. 59, no. 5, pp. 679–693, 2010.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4610935
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4610935

12 International Journal of Reconfigurable Computing

[10] A. Vazquez, E. Antelo, and J. D. Bruguera, “Fast radix-10 multi-
plication using redundant BCD codes,” IEEE Transactions on
Computers, vol. 63, no. 8, pp. 1902–1914, 2014.

[11] A. Kaivani, L. Han, and S.-B. Ko, “Improved design of high-
frequency sequential decimal multipliers,” Electronics Letters,
vol. 50, no. 7, pp. 558–560, 2014.

[12] M. Zhu, A.M. Baker, and Y. Jiang, “On a parallel decimal multi-
plier based on hybrid 8421–5421 BCD recoding,” in Proceedings
of the IEEE 56th International Midwest Symposium on Circuits
and Systems (MWSCAS ’13), pp. 1391–1394, IEEE, Columbus,
Ohio, USA, August 2013.

[13] M. Zhu and Y. Jiang, “An area-time efficient architecture for 16
x 16 decimal multiplications,” in Proceedings of the 10th Interna-
tional Conference on Information Technology: New Generations
(ITNG ’13), pp. 210–216, April 2013.

[14] L. Han and S.-B. Ko, “High-speed parallel decimal multiplica-
tion with redundant internal encodings,” Institute of Electrical
and Electronics Engineers. Transactions on Computers, vol. 62,
no. 5, pp. 956–968, 2013.

[15] H. C. Neto and M. P. Véstias, “Decimal multiplier on FPGA
using embedded binary multipliers,” in Proceedings of the Inter-
national Conference on Field Programmable Logic and Applica-
tions (FPL ’08), pp. 197–202, September 2008.

[16] R. K. James, K. P. Jacob, and S. Sasi, “Performance analysis of
double digit decimalmultiplier on various FPGA logic families,”
in Proceedings of the 5th Southern Conference on Programmable
Logic (SPL ’09), pp. 165–170, IEEE, São Carlos, Brazil, April
2009.

[17] O.D. Al-Khaleel, N.H. Tulić, andK.M.Mhaidat, “FPGA imple-
mentation of binary coded decimal digit adders and multi-
pliers,” in Proceedings of the 8th International Symposium on
Mechatronics and its Applications (ISMA ’12), Sharjah, United
Arab Emirates, April 2012.

[18] G. Sutter, E. Todorovich, G. Bioul, M. Vazquez, and J.-P.
Deschamps, “FPGA implementations of BCD multipliers,” in
Proceedings of the International Conference on ReConFigurable
Computing and FPGAs (ReConFig ’09), pp. 36–41, Quintana
Roo, Mexico, December 2009.

[19] Á. Vázquez and F. De Dinechin, “Efficient implementation of
parallel BCDmultiplication in LUT-6 FPGAs,” in Proceedings of
the International Conference on Field-Programmable Technology
(FPT ’10), pp. 126–133, December 2010.

[20] M. Véstias and H. Neto, “Parallel decimal multipliers and
squarers using Karatsuba-Ofman’s algorithm,” in Proceedings of
the 15th Euromicro Conference on Digital System Design (DSD
’12), pp. 782–788, Izmir, Turkey, September 2012.

[21] C. E. M. Guardia, “Implementation of a fully pipelined BCD
multiplier in FPGA,” in Proceedings of the 8th Southern Pro-
grammable Logic Conference (SPL ’12), pp. 1–6, March 2012.

[22] M. Baesler, S.-O. Voigt, and T. Teufel, “An IEEE 754-2008
decimal parallel and pipelined FPGA floating-point multiplier,”
in Proceedings of the 20th International Conference on Field
Programmable Logic and Applications (FPL ’10), pp. 489–495,
Milano, Italy, September 2010.

[23] Xilinx Inc, “Virtex-6 User Guide,” February 2012, http://www
.xilinx.com/support/documentation/user guides/ug364.pdf.

[24] S. Gao, D. Al-Khalili, and N. Chabini, “FPGA realization of
high performance large size computational functions: multi-
pliers and applications,” Analog Integrated Circuits and Signal
Processing, vol. 70, no. 2, pp. 165–179, 2012.

[25] Binary-to-BCD Converter, Double-Dabble Binary-to-BCD
ConversionAlgorithm, http://www.tkt.cs.tut.fi/kurssit/1426/S12/
Ex/ex4/Binary2BCD.pdf.

http://www.xilinx.com/support/documentation/user_guides/ug364.pdf
http://www.xilinx.com/support/documentation/user_guides/ug364.pdf
http://www.tkt.cs.tut.fi/kurssit/1426/S12/Ex/ex4/Binary2BCD.pdf
http://www.tkt.cs.tut.fi/kurssit/1426/S12/Ex/ex4/Binary2BCD.pdf

International Journal of

Aerospace
Engineering
Hinda wi Publishing Corporation
http:// w w w.hinda wi.co m Volu me 2 0 1 4

R o b oti cs
J o ur n al of

Hi n d a wi P u bli s hi n g C or p or ati o n
htt p:// w w w. hi n d a wi. c o m V ol u m e 2 0 1 4

Hi n d a wi P u bli s hi n g C or p or ati o n
htt p:// w w w. hi n d a wi. c o m V ol u m e 2 0 1 4

 A cti v e a n d P assi v e
El e ctr o ni c C o m p o n e nts

C o ntr ol S ci e n c e
a n d E n gi n e eri n g

J o ur n al of

Hi n d a wi P u bli s hi n g C or p or ati o n
htt p: / / w w w. hi n d a wi. c o m V ol u m e 2 0 1 4

I nt er n ati o n al J o ur n al of

R o t a t i n g
M a c h i n e r y

Hi n d a wi P u bli s hi n g C or p or ati o n
htt p: / / w w w. hi n d a wi. c o m V ol u m e 2 0 1 4

Hi n d a wi P u bli s hi n g C or p or ati o n
htt p:// w w w. hi n d a wi. c o m

 J o u r n al of

E ngi neeri ng
V ol u m e 2 0 1 4

S u b mit y o ur m a n us cri pts at
htt ps:// w w w. hi n d a wi. c o m

V L SI D e si g n

Hi n d a wi P u bli s hi n g C o r p o r ati o n
htt p: / / w w w. hi n d a wi. c o m V ol u m e 2 0 1 4

Hi n d a wi P u bli s hi n g C or p or ati o n
htt p:// w w w. hi n d a wi. c o m V ol u m e 2 0 1 4

S h o ck a n d Vi br ati o n

Hi n d a wi P u bli s hi n g C or p or ati o n
htt p:// w w w. hi n d a wi. c o m V ol u m e 2 0 1 4

Ci vil E n gi n e eri n g
A d v a n c e s i n

A c o usti cs a n d Vi br ati o n
A d v a n c es i n

Hi n d a wi P u bli s hi n g C or p or ati o n
htt p:// w w w. hi n d a wi. c o m V ol u m e 2 0 1 4

Hi n d a wi P u bli s hi n g C or p or ati o n
htt p:// w w w. hi n d a wi. c o m V ol u m e 2 0 1 4

El e ctri c al a n d C o m p ut er
E n gi n e eri n g

J o ur n al of

A d v a n c e s i n
O pt o El e ctr o ni c s

H in d a w i Pu b lis h in g Co rp o ra tio n
h ttp :/ / w w w .h in d a w i.c o m

V o lu m e 20 1 4

T h e S ci e nti fi c
W orl d J o ur n al
Hi n d a wi P u bli s hi n g C or p or ati o n
htt p:// w w w. hi n d a wi. c o m V ol u m e 2 0 1 4

S e ns ors
J o ur n al of

Hi n d a wi P u bli s hi n g C or p or ati o n
htt p:// w w w. hi n d a wi. c o m V ol u m e 2 0 1 4

M o d elli n g &
Si m ulati o n
i n E n gi n e eri n g
H in d a w i Pu b lis h in g Co rp o ra tio n
h ttp ://w w w .h in d a w i.c o m V o lu m e 20 1 4

Hi n d a wi P u bli s hi n g C or p or ati o n
htt p:// w w w. hi n d a wi. c o m V ol u m e 2 0 1 4

C h e mi c al E n gi n e eri n g
I nt er n ati o n al J o ur n al of A nt e n n as a n d

Pr o p a g ati o n

I nt er n ati o n al J o ur n al of

Hi n d a wi P u bli s hi n g C or p or ati o n
htt p:// w w w. hi n d a wi. c o m V ol u m e 2 0 1 4

Hi n d a wi P u bli s hi n g C or p or ati o n
htt p:// w w w. hi n d a wi. c o m V ol u m e 2 0 1 4

N a vi g ati o n a n d
 O bs er v ati o n

I nt er n ati o n al J o ur n al of

Hi n d a wi P u bli s hi n g C or p or ati o n
htt p:// w w w. hi n d a wi. c o m V ol u m e 2 0 1 4

Distri b ut e d
S e ns or N et w or k s

I nt er n ati o n al J o ur n al of

	2017_Gao_Efficient_realization_BCD_multipliers_using_1

