The addition of the collagen binding domain of fibronectin potentiates the biochemical availability of basic fibroblast growth factor for the culture of induced pluripotent stem cells

Cyril Addi, Frédéric Murschel, Benoît Liberelle, Nesrine Riahi, Olivier Feraud, & Gregory De Crescenzo

2016

Communication de conférence / Conference or Workshop Item

Addi, C., Murschel, F., Liberelle, B., Riahi, N., Feraud, O., & De Crescenzo, G. (mai 2016). The addition of the collagen binding domain of fibronectin potentiates the biochemical availability of basic fibroblast growth factor for the culture of induced pluripotent stem cells [Affiche]. 10th World Biomaterials Congress, Montréal, Québec. Publié dans Frontiers in Bioengineering and Biotechnology, 4. https://doi.org/10.3389/conf.fbioe.2016.01.00338

URL de PolyPublie: https://publications.polymtl.ca/4835/

Version officielle de l'éditeur / Published version

Révisé par les pairs / Refereed

CC BY

Nom de la conférence: 10th World Biomaterials Congress

Date et lieu: 2016-05-17 - 2016-05-22, Montréal, Québec

Maison d'édition: Frontiers Media S.A.

URL officiel: https://doi.org/10.3389/conf.fbioe.2016.01.00338

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal

This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca
The addition of the collagen binding domain of fibronectin potentiates the biochemical availability of basic fibroblast growth factor for the culture of induced pluripotent stem cells

Cyril Addi¹,², Frederic Murschel¹, Benoit Liberelle¹, Nesrine Riahi¹, Olivier Feraud² and Gregory De Crescenzo¹

¹ Ecole Polytechnique de Montreal, Department of Chemical Engineering, Canada
² Université Paris-Sud, Hôpital Paul Brousse, INSERM U935, ES Team Paris-Sud, France

Introduction: The variety of various cell types including induced pluripotent stem cells (iPSC), requires the use of growth factors such as bFGF (Basic Fibroblast Growth Factor)¹². These factors are generally added to the medium in their diffusive form and have a very short half-life³; they disappear quickly from the culture medium and must be replaced at high cost. We here explore the stable and oriented tethering of bFGF on a cell culture substrate, namely gelatin (denatured collagen). Our strategy relies on the expression of two fusion proteins being labelled with two distinct peptides (the E and Kcoils) that bind to each other with great affinity and specificity⁴. That is, a chimera corresponding to bFGF fused to the Ecoil peptide on the one hand, and the collagen-binding domain (CBD) of fibronectin fused to the Kcoil peptide on the other hand (Fig. 1).

![Schematic Illustration of Ecoil-bFGF tethered on a gelatin-coated surface functionalized with CBD-Kcoil.](image)

Materials and Methods: The Ecoil-bFGF fusion protein was produced in E. coli and purified by Ni-NTA affinity chromatography followed by TFF protease cleavage and ion exchange chromatography. The CBD-Kcoil fusion protein was produced in E. coli and purified by solubilizing inclusions bodies in an 8 M urea buffer, dialyzing against PBS, and then followed by a Ni-NTA affinity chromatography. The ability of Ecoil-bFGF protein to bind to Kcoil was assessed by surface plasmon resonance (SPR), using a Kcoil-coated chip while its ability to bind to its cognate receptor was tested by subsequent injections of a recombinant chimera of the FGF Receptor (FGFR1-Fc). Finally, the suitability of the proposed approach for cell culture will be soon assessed by cultivating iPSCs on a gelatin-coated substrate to be functionalized with CBD-Kcoil/Ecoil-bFGF.

Results and Discussion: Both fusion proteins were produced and purified with high purity. The yield of the purification of Ecoil-bFGF was assessed by ELISA and reached 1.1 mg per liter of bacteria. On the one hand, SPR analyses (Fig. 2) demonstrated that Ecoil-bFGF specifically bound to a Kcoil-coated chip, and subsequently interacted with FGFR1-Fc with high affinity (KD = 1.8 nM), in good agreement with the literature⁵. On the other hand, the bioactivity of CBD-Kcoil was assessed via an Enzyme-Linked Immunosorbert Assay (ELISA) against bFGF: gelatin-coated substrates were incubated with CBD-Kcoil then Ecoil-bFGF, and the formation of the gelatin/CBD-Kcoil/Ecoil-bFGF complex was demonstrated by the specific recruitment of anti-bFGF antibodies. Altogether, the data indicated that our novel strategy enabled the specific capture of bioactive bFGF via collagen/CBD and coiled-coil interactions.

![Graph demonstrating the biochemical availability of Ecoil and Kcoil proteins.](image)

Conclusion: Providing iPSCs with bioactive bFGF in a non-diffusible form may significantly decrease expenses related to cell culture. Furthermore, the modular approach we undertook may make this strategy amenable to the development of more complex scaffolds combining several growth factors (bFGF, EGF, VEGF ...), and thus pave the way to the development of novel approaches in the field of tissue engineering.
This project was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), CREATE program - MEDITIS scholarship.

References:


Keywords: stem cell, biosensing, growth factor, biofunctionalization. Conference: 10th World Biomaterials Congress, Montréal, Canada, 17 May - 22 May, 2016.

Presentation Type: Poster Topic: Protein Interactions with biomaterials


Copyright: The abstracts in this collection have not been subject to any Frontiers peer review or checks, and are not endorsed by Frontiers. They are made available through the Frontiers publishing platform as a service to conference organizers and presenters.

The copyright in the individual abstracts is owned by the author of each abstract or his/her employer unless otherwise stated.

Each abstract, as well as the collection of abstracts, are published under a Creative Commons CC-BY 4.0 (Attribution) licence (https://creativecommons.org/licenses/by/4.0/) and may thus be reproduced, translated, adapted and be the subject of derivative works provided the authors and Frontiers are attributed.

For Frontiers' terms and conditions please see https://www.frontiersin.org/legal/terms-and-conditions. Received: 27 Mar 2016; Published Online: 30 Mar 2016.