
Titre:
Title:

LTTng CLUST: A system-wide unified CPU and GPU tracing tool for 
OpenCL applications

Auteurs:
Authors:

David Couturier, & Michel Dagenais 

Date: 2015

Type: Article de revue / Article

Référence:
Citation:

Couturier, D., & Dagenais, M. (2015). LTTng CLUST: A system-wide unified CPU 
and GPU tracing tool for OpenCL applications. Advances in Software Engineering, 
2015, 1-14. https://doi.org/10.1155/2015/940628

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/4834/

Version: Version officielle de l'éditeur / Published version 
Révisé par les pairs / Refereed 

Conditions d’utilisation:
Terms of Use: CC BY 

Document publié chez l’éditeur officiel
Document issued by the official publisher

Titre de la revue:
Journal Title:

Advances in Software Engineering (vol. 2015) 

Maison d’édition:
Publisher:

Hindawi

URL officiel:
Official URL:

https://doi.org/10.1155/2015/940628

Mention légale:
Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://doi.org/10.1155/2015/940628
https://publications.polymtl.ca/4834/
https://doi.org/10.1155/2015/940628


Research Article
LTTng CLUST: A System-Wide Unified CPU and GPU Tracing
Tool for OpenCL Applications

David Couturier and Michel R. Dagenais

Department of Computer and Software Engineering, Polytechnique Montreal, P.O. Box 6079,
Station Downtown, Montreal, QC, Canada H3C 3A7

Correspondence should be addressed to David Couturier; david.couturier@polymtl.ca

Received 14 April 2015;Accepted 1July 2015

Academic Editor: Moreno Marzolla

Copyright © 2015D. Couturier and M. R. Dagenais. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

As computation schemes evolve and many new tools become available to programmers to enhance the performance of their
applications, many programmers started to look towards highly parallel platforms such as Graphical Processing Unit (GPU).
Offload g computations that can take advantage of the architecture of the GPU is a technique that has proven fruitful in
recent years. This technology enhances the speed and responsiveness of applications. Also, as a side effect, it reduces the power
requirements for those applications and therefore extends portable devices battery life and helps computing clusters to run more
power effici tly. Many performance analysis tools such as LTTng, strace and SystemTap already allow Central Processing Unit
(CPU) tracing and help programmers to use CPU resources more effici tly. On the GPU side, different tools such as Nvidia’s
Nsight, AMD’s CodeXL, and third party TAU and VampirTrace allow tracing Application Programming Interface (API) calls and
OpenCL kernel execution. The e tools are useful but are completely separate, and none of them allow a unifie CPU-GPU tracing
experience. We propose an extension to the existing scalable and highly effici t LTTng tracing platform to allow unifie tracing
of GPU along with CPU’s full tracing capabilities.

1. Introduction

Tracing programs has been a common technique from the
beginning. Tracers such as DTrace [1], strace [2], SystemTap
[3], and LTTng [4] have been around for many years.
Not only do they allow recording kernel trace events but
some also allow recording user space events. This is a very
good alternative to debuggers for finding software bugs
and especially performance related issues that concern the
execution on the CPU side. Th rapid changes in computation
never stop to bring new challenges. As part of those rapid
changes, we have seen GPU acceleration become a more
common practice in computing. Indeed, the different highly
parallel architectures of the graphic accelerators, compared
to the conventional sequential oriented CPU, represent a
very attractive tool for most of the graphical work that can be
achieved on a computer. This became the standard in recent
years. Most operating systems have even added a graphic
accelerator as a hardware requirement. Indeed, its processing

power is being harnessed in many of the operating system’s
embedded tools and helps make computations more fluid,
therefore enhancing user experience. Th evolution of
classical graphical acceleration in games and user interfaces
brought architecture changes to the GPU. The graphical
accelerators evolved from the graphical pipeline to a more
programmable architecture. Programmers quickly figured
how to offload raw computations to the graphical accelerator
and GPU computing, also referred as General Purpose
Graphical Processing Unit (GPGPU), was born. APIs such as
Nvidia (http://www.nvidia.com/), Compute Unified Device
Architecture (CUDA) (https://developer.nvidia.com/cuda-
zone/), and Apple’s open standard Open Computing
Language (OpenCL) [5] (developed by the Khronos Group)
were created and adapted to standardize the usage of
GPUs as GPGPUs. As part of this change, many tools were
implemented to help programmers better understand how
the new architecture handles the workloads on the GPGPU.
Th two major manufacturers, Advanced Micro Devices

Hindawi Publishing Corporation
Advances in SoJware Engineering
Volume 2015, Article ID 940628, 14 pages
http://dx.doi.org/10.1155/2015/940628



2 Advances in Softw re Engineering

(AMD) (http://www.amd.com/en-us/products/graphics/)
and Nvidia provided their analysis, tracing and debugging
tools: CodeXL (http://developer.amd.com/tools-and-sdks/
opencl-zone/codexl/) and Nsight (http://www.nvidia.com/
object/nsight.html), respectively.

Unfortunately, none of the GPGPU tracing tools are cur-
rently capable of seamlessly providing both a comprehensive
GPU trace alongside with a fully capable CPU oriented
trace that tracers such as DTrace, strace, SystemTap, or
LTTng already provide. Also, current tools do not allow
for a system-wide tracing of all processes using the GPU:
current techniques require the user to manually specify what
processes to trace.

In this paper, we present a solution to acquire a system-
wide trace of OpenCL GPGPU kernel executions for a better
understanding of the increasingly parallel architecture that
GPUs provide. Thi solution is also presented as an extension
of the already existing CPU tracer LTTng to allow for unifi d
CPU-GPU trace gathering and analysis capabilities.

In addition, we take a look at kernel trace point anal-
ysis for the open source Intel i915 drivers that support
OpenCL, and for which an open source library for OpenCL,
called Beignet (https://wiki.freedesktop.org/www/Software/
Beignet/), is provided.

Thi paper is divided in four main parts. First, in
Section 2, we explore the CPU and GPU tracing options
and methods that are currently available. Then, in Section 3,
the architecture, implementation choices and algorithms are
explained, followed by a performance analysis of the solution
proposed in Section 4. Finally, we conclude and outline
possible future work in Section 5.

2. Related Work

Tracing is the act of recording events during the execution of
a program at run-time. This is commonly used with not only
GNU’s Not Unix (GNU)/Linux [3, 4, 6] but also all major
operating systems such as Unix [1] and Windows (https://
msdn.microsoft.com/en-us/library/windows/desktop/bb96-
8803.aspx). Th main purpose is to provide a tool for the de-
velopers to record some logs about the execution of programs
and detect complex problems such as race conditions.

In this section, we fi st present the different available
tracing platforms that are available. Secondly, we discuss
what kind of information trace analysis provides, followed
by current GPU tracing architectures, tracing tools, and
OpenCL tracing capabilities. Then the topic of time keeping
is discussed: many different timing metrics are available
and they need to be explored. Moreover, the device timing
metrics that can be accessed from the OpenCL library on
the GPU may not be using the same source as the host:
synchronization methods to help match those two separate
sources will be discussed (Section 2.4). Finally, we talk about
tracing in the device drivers as a complementary measure of
OpenCL tracing.

2.1.CPU Tracing. Tracing on GNU/Linux is somewhat easier
than doing it on Windows or other proprietary operating

systems. One good reason for that is because we have access
to its source code. Since our work focuses on the GNU/Linux
operating system, we will direct our attention to this environ-
ment and explore available tools on this platform. The major
tools identifi d are strace [2], DTrace [1], SystemTap [3], and
LTTng [4].

2.1.1.Strace. Th main benefit of strace [2] is its ease of use
and the fact that it has been around since the early 90s. Th
strace functionality allows the user to record all or some
specifi system calls of a given program or a list of processes.
Th output is either sent to stderr or redirected to a file. The
content of the output is the name of the recorded system
call with its parameters and the return value of the call. For
instance, recording only the file open and close operations
of a program can be done by executing the following
command: strace -e open, close./myProgram.

Despite the fact that strace is easy to use, its most obvious
limitation lies in the fact that it uses a single output file for
trace recording and therefore degrades performance when
tracing multithreaded applications since it has to use mutexes
to write from the multiple threads to the single file. Thi issue
is discussed in [7].

Strace also has a hidden performance weakness: when
tracing an application, the API used to get the system call
information (ptrace) adds an overhead of two system calls
per system call that the traced program performs [8]. Thi
can have a dramatic impact on the system due to the known
overhead of system calls. The efore, the strace approach does
not seem to be suitable in the long run.

2.1.2. DTrace. DTrace [1] originated from the Solaris oper-
ating system. Solaris is a Unix variant developed by Sun
Microsystems which was later bought by Oracle. Aft r the
acquisition of Sun Microsystems, Oracle ported the tracing
tool to the GNU/Linux Operating System (OS) [9]. DTrace
relies on hooking scripts to probes that are placed in the
operating system kernel. Tho e scripts can then process and
record system calls or other information. A script is compiled
into bytecode in order to allow fast execution through a
small and effici t kernel based virtual machine. DTrace
also provides a library called User Statically Defined Tracing
(USDT) that programmers can use to instrument the code of
their applications and perform user space tracing [1].

One major issue with DTrace is its usage of synchroniza-
tion mechanisms that produce a large tracing overhead when
tracing heavy workloads such as multithreaded applications
[7]. Since programs nowadays are mostly multithreaded, this
is a serious limitation.

2.1.3. SystemTap. Like DTrace, SystemTap [3] provides a
framework for hooking scripts to probes in the kernel. It also
offers user space tracepoint capabilities and may qualify as a
system-wide tracing tool. The main difference with DTrace is
that it originated on GNU/Linux and the scripts are compiled
to native code instead of bytecode.

While SystemTap allows for user space tracing, a feature
needed for OpenCL tracing, the compiled tracepoint script



Advances in Softw re Engineering 3

is executed in kernel space. Th s forces the system to go back
and forth from user space to kernel space in order to execute
the script. Thi adds signific ntly to the cost of executing
tracepoints and leads to higher overhead.

Again, like DTrace, SystemTap suff rs considerably from
the synchronization mechanisms used: creating a large over-
head when tracing heavy applications [7]. For the same
reason as DTrace, heavily multithreaded applications will
suff r from a very large overhead with SystemTap.

2.1.4.LTTng. Kernel space tracing for LTTng [4] is also based
on hooking to kprobes and trace points. The approach to
get the information is different from DTrace and SystemTap:
modules are written in native 𝐶 and compiled to executable
code. LTTng was designed with the idea of tracing multi-
threaded applications with low overhead: each CPU thread
has separate output buffers in order to minimize the need
for synchronization methods when writing the trace events.
As they are generated, before being written to disk, the trace
events are stored in a circular buff r that has a specified capac-
ity. In the worst case, if the event data throughput exceeds
the disk throughput, events are intentionally discarded, rather
than blocking the traced application, in order to minimize the
tracing overhead.

User space event tracing is also provided with the LTTng-
UST library and, unlike SystemTap, the user space tracepoint
is recorded in a different channel entirely in user space.
This allows for minimal tracing overhead [10]. As it will be
discussed in Section 2.3.3, tracing OpenCL can be achieved at
the user space level. Th advantages of LTTng over the other
available options justifie its choice as a tracing platform for
this project.

2.2. Trace Analysis. Getting the trace information is only
one part of the tracing procedure. The encoding used to
record traces and the potentially huge size of traces impose
strict requirements on the analysis tools. For instance, LTTng
provides viewing tools such as babeltrace (https://www.effi-

cios.com/babeltrace/) andTraceCompass (http://projects.ecl-
ipse.org/projects/tools.tracecompass/) that allow decoding
binary traces to human readable format (babeltrace) and
interactive visualization and navigation (Trace Compass).

Visualization tools provide a very good understanding of
program execution and allow for quick overall understand-
ing of potential execution bottlenecks and synchronization
issues. More advanced analysis can also be performed on
traces, for example, pattern searching algorithms for uncov-
ering specifi execution patterns within traces [11, 12], model
checking [13], and statistics computation [14, 15].

2.3. GPU Tracing. Research teams around the world have
spent a great amount of time developing applications to
enable programmers to have a better understanding of the
GPU kernel execution [16, 17]. It is thus relevant to examine
GPU architectures. GPUs started as specialized hardware
designed to deal with the display monitor. It first evolved into
a graphical pipeline of operations and then towards the more

programable highly parallel architecture that we have today
[18].

Many programming APIs were implemented to support
GPGPU but Nvidia’s CUDA and the open standard API
OpenCL (supported on several different hardware architec-
tures) were the result of need for high level API [18]. Both
APIs provide functions to harness the computing power of
graphics cards.

Th GPU highly parallel architecture allows not only
faster but also more energy effici t operations. This charac-
teristic leads to longer battery life for portable devices and
better performance per watt (http://top500.org/list/2014/11/).

2.3.1. GPU Architecture. Th reason behind the efficie y
of GPUs compared to CPUs in highly parallel situations
is that the GPU offers hundreds and even thousands of
smaller computation cores built under the Single Instruction
Multiple Data (SIMD) architecture. Not all computations can
take advantage of such architecture. Thi is why only parts
of programs can be run on GPUs. The SIMD architecture
allows multiple different data elements to be processed
simultaneously under the same computing instruction [18].

Diff rent form factors are available: integrated graphics
are very popular in the portable computing world but
dedicated graphics cards still hold a signific nt computing
power advantage. AMD and Nvidia both off r integrated
graphics and dedicated graphics devices, while Intel only
offers integrated graphics. All architectures differ a lot from
one companie to another and also between models. The
performance may vary depending on the application: some
architectures are better suited for some kind of computations
and vice versa.

Computing on GPUs is a technique that derived from a
workaround on the existing capabilities of available hardware.
Th library that makes OpenCL work on GNU/Linux is
a library that positions itself between the program and
the drivers but still operates in user space. Figure 1 shows
the position of Intel’s open source OpenCL library for
GNU/Linux called Beignet. Computing on the GPU with
OpenCL is done asynchronously: commands are sent to the
GPU driver command queue and when the device is ready to
receive commands, they are transferred from the host driver
command queue to the device command queue. Th driver is
notified when the commands are done executing.

2.3.2. Available Tools. As discussed in [18], tracing tools
for GPUs are primarily proprietary tools provided by the
manufacturers:

(1) AMD: CodeXL,
(2) Nvidia: Nsight,
(3) Intel: VTune.

Thi d party tools such as TAU (https://www.cs.uoregon
.edu/research/tau/home.php) and VampirTrace (http://tu-dr-
esden.de/die tu dresden/zentrale einrichtungen/zih/forsch-
ung/projekte/vampirtrace/) provide much of the same infor-
mation as the proprietary ones but also add support for other
computing APIs such as Message Passing Interface (MPI).



4 Advances in Softw re Engineering

User space

OpenCL program Beignet OpenCL API

Kernel space

Operating system Drivers (· · · )

Hardware

CPU Disks Eth GPU · · ·

Figur e 1:Beignet OpenCL library position in the system.

Th information that these tools can provide is the
arguments and timing of the API calls to the OpenCL
library, as well as some instrumentation that [19] presents in
order to get timing for the execution of the events on the
graphics card, using profiling tools that OpenCL can provide.
CodeXL, Nsight, VTune, TAU, and VampirTrace provide a
visualization of the API calls, with related OpenCL context
and GPU activity (memory transfers and kernel execution on
the device) underneath the API calls.

None of these tools provide a system-wide analysis of all
activities related to a specific device (GPU). Also, they do not
feature system tracing information that could help provide
a more accurate picture of the execution context when
debugging. Our solution addresses this issue by proposing a
system-wide tracing technique that integrates with LTTng for
simultaneous GPU and system tracing.

2.3.3. OpenCL Profiling Capabilities. As described by [19],
tracing the execution of a program is fairly straightforward.
OpenCL provides a function to gather information about the
execution of a kernel or a data transfer: we will refer to those
events as asynchronous commands.This information has to be
accessed asynchronously after the asynchronous command
completion. The easiest way to collect this information is
to subscribe to a callback function that is defin d for the
event associated with the asynchronous command, using the
clSetEventCallback function. As Figure 2 shows, the timing
information that concerns the start and end of the kernel exe-
cution can be accessed after the end of the kernel execution (at
point (5) in Figure 2). For the information to be accessed, the
programmer shall use the clGetEventProfilingInfo function.
Many different timing metrics can be accessed from this
function. Here is a list of available information and their
description from the open source specification [20]:

(1) Command queued:

the command has been added to the host queue.

(2) Command submitted:

the command has been transferred from the host
queue to the device queue.

(3) Command execution start:
the command started executing on the device.

(4) Command execution end:
the command is done executing on the device.

All of those metrics allow access to a 64-bit integer device
time counter at the moment specifi d [20].

Knowing these four time specific tions, we are now able
to defin precisely the content of the three waiting zones
where the commands can reside:

(1) On the host driver waiting queue.
(2) On the device waiting queue.
(3) Executing on the device.

Being able to understand the content of the queues
allows the programmer to understand his program resource
usage. Then he can modify how his program interacts with
the device and enqueues commands in order to maximize
computation resources usage. For instance, instead of waiting
during data transfers, it is often feasible to overlap computa-
tions on one set of data with the transfers for retrieving the
previous set and sending the next set.

2.4. Time Keeping. Th importance of the source time
clock selection is exposed in [4]. Not all clocks have
the monotonic property and in order to ensure that all
events are recorded sequentially as they happen, the use
of a monotonic clock is the key. The real time clock,
for instance, can get set to an earlier time by an admin-
istrator or by Network Time Protocol (NTP). Using the
𝐶 function clock gettime (CLOCK MONOTONIC, [. . .]);
to access the time reference helps preserve the monotonicity
of the trace.

It is important to understand that this clock does not have
an official start point. It only guarantees that a reading will
not have a timestamp that precedes past readings. Its usage
is restricted to comparing events timing within the same
computer session, since the timer is reset to an unspecifi d
value at reboot time.

Th same principle is also valid for GPU time stamps:
they rely on on-chip hardware to get the time and as the
CPU monotonic clock, this time stamp only allows for the
computation of the difference between two time stamps (the
time delta) taken from the same device. Again, this time
stamp origin does not refer to any specific time and is there-
fore diff rent from the CPU time stamp. Synchronization
methods are required to match the CPU event time stamp
to the GPU time stamp. Thi problem was already discussed
and a synchronization solution was suggested by [21] for
synchronizing network traces. The same method may be
applied to GPU tracing.

2.5. i915 Tracing. Another way to trace GPU activity is to
record already existing trace points that are present in the
Intel i915GPU drivers. This approach allows monitoring the
commands on the host queue and sent to the device, without
the need for an interception library such as the solution



Advances in Softw re Engineering 5

Host Th.

Host Th.

Device

(1) (2)

(3)

OpenCL Kernel Exec.

(4)
(5)

(3) Start time of the computation on the device
(4) End time of the computation on the device
(5) Callback function that records the information ((3), (4) and other)

· · ·

(1) clEnqueueNDRangeKernel(. . . , &event) ; (computing kernel launch)
(2) clSetEventCallback(event, . . . ); (subscription to a callback for the end of the kernel execution)

clFinish();

Figur e 2: OpenCL API profiling.

Ta ble 1: Recording capabilities differences between CLUST
and GPU driver monitoring.

CLUST i915 monitoring
Host side command queue ✓ ✓
Device side command queue ✓ ∗
Command-specifi metrics ✓ ×
∗: We know that a command is either in the device’s command queue or
currently executing on the device.

presented in this paper: OpenCL User Space Tracepoint
(CLUST). The upside of this technique is that it monitors all
the GPU activity, including graphics (Open Graphics Library
(OpenGL)).

One disadvantage of this technique is that it does not
allow modifying the applications execution and as Table 1
shows, the only data available is the current content of the
host side and device side queues, as well as commands that
are being executed on the device.

Th reason why i915monitoring does not allow getting
command-specifi timing metrics is because in CLUST, in
order to access a command start and end time, a profiling
fla is enabled when a command queue is created. This leads
to extra event data being pushed to the GPU and filled with
timing data on the GPU side (events that are invisible to the
GPU drivers).

Therefore, tracing i915drivers would be more benefici l
as a complement of tracing with CLUST. Thi would allow
getting a trace that monitors all GPU activity on the host
side and also getting the more detailed information regarding
OpenCL that CLUST provides.

3. Implementation

In this section, we present the implementation details of our
solution that addresses the identifi d challenges, followed
by a system-wide tracing solution and ways to visualize the
OpenCL trace.

User space

OpenCL program CLUST OpenCL API

Figur e 3: CLUST position within the user space.

3.1. CLUST Implementation. As discussed in Section 2.3.3,
the OpenCL API can be divided into two separate function
types: synchronous and asynchronous:

(1) Synchronous API calls:
calls that do not enqueue tasks on the GPU.

(2) Asynchronous API calls:
calls that enqueue tasks on the GPU

Tho e two types of functions require a different approach for
recording relevant tracing metrics.

3.1.1.Synchronous OpenCL Tracing. As seen in Section 2.3.1,
the OpenCL library operates in user space. Th purpose
of CLUST is to trace an application without the need for
recompiling it from its source code. Therefore, CLUST is a
library that wraps all function calls of the OpenCL library and
automatically instruments all the calls to the API. Figure 3
shows how the API calls are intercepted by the CLUST library.
The library file, named libCLUST.so, has to be preloaded
using LD PRELOAD before launching the program. In the
constructor of the library, the OpenCL symbols are loaded
from the real OpenCL library and assigned to function
pointers that have the same name with the reallib prefix
Then, all OpenCL functions are redefined, and the start
and end of the API calls are recorded using Linux Trace
Toolkit next generation (LTTng)-User-Space Tracing (UST)
(see Listing 1).

3.1.2.Asynchronous OpenCL Tracing. Thi type of recording
works well for synchronous function calls. However, for asyn-
chronous function calls such as kernel command enqueue
and data transfer command enqueue, a different approach



6 Advances in Softw re Engineering

(1) cl int clWaitForEvents(cl uint num events, const cl event *event list) {
(2) tracepoint(clust provider, cl clWaitForEvent start, num events);

(3) cl int ret = reallib clWaitForEvents(num events, event list);

(4) tracepoint(clust provider, cl clWaitForEvent end);

(5) return ret;

(6) }

List ing 1

(1) cl int clEnqueueWriteBuffer(cl command queue[⋅ ⋅ ⋅ ], cl event * event) {
(2) // Check if device tracing enabled?

(3) const bool trace =

tracepoint clust provider

clust device event.state;

(4) bool toDelete = event == NULL;

(5) if(caa unlikely(trace)) {
(6) if(toDelete) { // Dynamic eventallocation

(7) event = malloc(sizeof(cl event));

(8) }
(9) }
(10)

(11) tracepoint(clust provider,

cl clEnqueueWriteBuffer start, [. . .relevant
arguments to record. . .]);

(12) cl int ret = reallib clEnqueueWriteBuffer(command queue, buffer, blocking write,

offset, cb, ptr, num events in wait list, event wait list, event);

(13) tracepoint(clust provider, cl clEnqueueWriteBuffer end);

(14)

(15) if(caa unlikely(trace)) {
(16) int r = reallib clSetEventCallback(*

event, CL COMPLETE, &eventCompleted, (toDelete)?&ev delete:&ev keep);

(17) if(r != CL SUCCESS) { [. . .errormanagement. . .] }
(18) }
(19)

(20) return ret;

(21) }

List ing 2

must be considered. All of the asynchronous commands
have an event provided as parameter. This parameter may
be NULL, when the caller does not intend to use an event.
When being NULL, because CLUST internally needs it, an
event has to be allocated and later freed in order to avoid
memory leaks. Here is an example with the asynchronous
function clEnqueueWriteBuffer (see Listing 2).

Since this function only enqueues a command in the
command processor of the driver, we have to wait until the
end of the command execution to get access to more valuable
timing metrics. Th callback function eventCompleted will
be called at the end of the command execution. This is
where the interesting timing metrics can be accessed. We
access the four timing metrics discussed in Section 2.3.3using
the reallib clGetEventProfilingInfo function and since we do
not know which queue and command type the callback is
referring to, we also access the command type id and the

command queue id that are associated with the event, using
the reallib clGetEventInfo function. All collected information
is then recorded in a LTTng UST trace point and the event is
freed, if the callback parameter specifies that it has to be.

Unfortunately, the timing data collected in this way
cannot be written to the trace in sequential time order, since
this information was accessed after the execution of the
command. Thi leads to problems at trace analysis time since
existing tools assume that the events are written to the trace
in a sequential time order.

In addition to recording API function call start and end
times, the tracepoints can include relevant metrics to allow
the analysis of other important information. This relevant
data can be important for later analysis and allow for derived
analysis, such as calculating the throughput of data transfers
by saving the size in bytes of the data being transferred. By
associating this measurement with the timing data recorded



Advances in Softw re Engineering 7

by the asynchronous method described previously, we can
obtain the throughput of each data transfer. Other metrics
such as the queue id can allow for a better understanding of
the queues content.

3.2. System-Wide OpenCL Profiling. One of the main advan-
tages of CLUST over existing tracing tools is that it can be
used to profile not only one process at a time but also all
concurrent OpenCL activity simultaneously.

Thi can be achieved by forcing LD PRELOAD of the
libCLUST.so library directly from the /etc/environment vari-
able defin tion file. Every program will inherit the overrid-
den OpenCL symbols and then all OpenCL applications
would automatically be traced when LTTng’s CLUST tracing
is enabled. Th results section (Section 4) show that the
overhead of CLUST when the library is preloaded but not
tracing is very small. Therefore, this could even be used in
production, for 24/7 operation, without significant impact on
system performance.

3.3. Nonmonotonic Tracepoint Management. Previously, we
identifi d two different types of CLUST events: the syn-
chronous and asynchronous events. As seen in Section 3.1.1,
tracing synchronous events is simple and the timestamp
linked to the events is added by LTTng-UST using the
monotonic clock at the time of the tracepoint execution.

Th challenge lies in collecting asynchronous timestamp
data; since the device event timing metrics are accessed after
the execution of the command, the timestamp linked with
the LTTng-UST event shall not be used to display the device
event timing. Th timestamps reside in the payload of the
tracepoint and the payload timing data that has to be used.

The trace analysis tools, by default, use the tracepoint
timestamp for display and analysis. Special treatment would
thus be required to indicate that in fact an event contains
information about four asynchronous events, each with
its own timestamp. Furthermore, these embedded asyn-
chronous event timestamps may not appear sequentially in
the trace and use a different time source. Analysis tools such
as Trace Compass (http://projects.eclipse.org/projects/tools
.tracecompass/) are designed to deal with very large traces
and process events for display and analysis in a single pass,
assuming a monotonic progression of timestamps. Different
approaches can be used to solve this problem; their imple-
mentation is discussed in the next section.

3.3.1. Writing in Different Trace Channels. LTTng records
traces in different channels, depending on the logical CPU
id, in order to record traces with low overhead. Using
additional channels for asynchronous OpenCL events would
be possible. The delay between the synchronous events and
the asynchronous events could be tolerated in this way.
However, this would only work if the asynchronous events
are always executed in submission order. One channel would
be created for each time value type (Kernel queued, Kernel
submitted, Kernel execution start, and Kernel execution end).
If the submission order is always followed and asynchronous
callback events are received in the same order, the events

could be written in each channel when the callback is received
and would remain in sorted time order in each channel.
However, since the command scheduling on the device is not
necessarily first-in fi st-out, this technique cannot be used.

3.3.2. Sorting. If there is an upper bound on the extent of
reordering needed among commands, it is possible to buff r
the events in memory and not output events before every
preceeding event has been seen. When information about an
asynchronous command is obtained through a callback, four
events are described. By correlating this information with
the clEnqueueNDRangeKernel calls, it would be possible to
determine when all data from earlier events has arrived and
it is safe to write some of these events to the trace.

Figure 2 depicts the execution of a call to enqueue an
OpenCL kernel and its execution on the device. Ignoring
the calls to clSetEventCallback that are not traced (action
performed by CLUST), the order in which the trace is written
to the file is the following:

(1) clEnqueueNDRangeKernel start,
(2) clEnqueueNDRangeKernel end,
(3) clFinish start,
(4) clFinish end,
(5) Kernel execution timing metrics: queued time, sub-

mit time, start time, and end time.

Th reprocessing of the trace would extract the four
events and require reordering the tracepoints as follows:

(1) clEnqueueNDRangeKernel start,
(2) Kernel queued to the host’s driver,
(3) Kernel submitted to the GPU,
(4) clEnqueueNDRangeKernel end,
(5) clFinish start,
(6) Kernel execution start,
(7) Kernel execution end,
(8) clFinish end time.

When a command is queued with clEnqueueNDRangeK-
ernel, the corresponding event can be used to mark the
appearance of that kernel, 𝑘𝑖. The callback event for 𝑘𝑖 is
received later with the execution timing metrics. Th latest
kernel queued with clEnqueueNDRangeKernel at that time,
𝑘𝑗, where 𝑗 > 𝑖, is noted. The four embedded events in the 𝑘𝑖
callback (Kernel queued, Kernel submitted, Kernel execution
start, and Kernel execution end) are then buffered until they
can be written safely to the trace because it can be verifie
that all information about earlier events has been received.
Thi happens when all callbacks for events up to 𝑘𝑗 have been
received. Indeed, any kernel starting after 𝑘𝑗 cannot have any
of its four embedded events with timestamps earlier than
those in 𝑘𝑖.

Th number of such events that can be in fli ht is
bounded by the total size of the queues (in the library,
in the driver, and on the card). This buffering and proper



8 Advances in Softw re Engineering

Figur e 4: Trace Compass GPU trace integration example.

sorting could be achieved at trace generation time, when
receiving callbacks in CLUST. Alternatively, it could be a
separate postprocessing step or be performed at trace reading
time in Trace Compass as an input filter. Doing this at trace
generation time, rather than as a separate step, may be more
effici t overall, because it avoids writing and later reading
and reprocessing. However, minimizing the traced system
perturbation is the first priority, which makes this solution
less attractive.

If the upper bound on the number of events to buffer for
sorting is too large, one can decide to resort to general sorting,
using one of the available algorithms for external sorting,
such as fusion sort. The downside is then having to reprocess
the whole trace file before being able to visualize it. This also
does not comply with live trace analysis requirements. At
least, the asynchronous events should be recorded in their
own channel, to separate them from the other sorted events
and minimize the size of the trace fil needing a reordering
step.

3.4. GPU-CPU Trace Synchronization. As explored in
Section 2.4, the timing sources of the CPU trace and the GPU
trace are not the same. For this reason, the time relation
between both time sources needs to be evaluated. This will
allow aligning properly the CPU trace with the GPU timing
metrics collected.

To compute the time relation, we must find the OpenCL
API enqueue functions within the CLUST LTTng-UST trace
and determine the most closely related device event trace-
point:

(1) The queued time (GPU) of the asynchronous com-
mand is after the event time of the OpenCL enqueue
API call (CPU).

(2) The end time of the asynchronous command (GPU)
is before the event time (CPU) for the callback
providing the device events timing metrics.

These two inequalities can then be used to obtain the lin-
ear relation between the two timing sources by applying the
Convex Hull synchronization algorithm, as proposed in [21],
or the more effici t improvement, suitable for live streaming,
proposed in [22]. In order to perform trace synchronization,
we will need to ensure that all relevant information is
gathered in the trace. LTTng-UST already records the cpu id
and time stamp (CPU) linked to the OpenCL API call start
and end tracepoints as well as the callback event tracepoint.
Th additional information required in the tracepoint event
payloads is the callback event pointer in order to properly
match the clEnqueueNDRangeKernel start tracepoint with the
corresponding callback event tracepoint.

3.5. OpenCL Trace Visualization. Th main visualization tool
for LTTng is Trace Compass (previously known as the
Tracing and Monitoring Framework plugin within the Eclipse
Linux Tools project). This tool already provides visualization
for LTTng kernel space tracing and user space tracing. As
shown in Figure 4, the left tree displays a hierarchy of
processes. The principle is to link the OpenCL activity as a
child to the associated process. Thi implies that there should
be one child per thread performing API calls to OpenCL
and two additional children per context linked to the parent:
one for displaying data transfers between the host and the
device and the other one for displaying the OpenCL kernel
execution. Figure 4 shows how the trace unification enhances
the information shown to users.

In addition to the Control Flow view, the Resources view
can be used to display GPU usage: two lines per GPU: one for



Advances in Softw re Engineering 9

Ta ble 2: Synchronous OpenCL API function overhead benchmark.

Loop
Size

Base
ave.

(ns/call)

Base
Std. dev.
(ns/call)

Preload
ave.

(ns/call)

Preload
Std. dev.
(ns/call)

Trace
ave.

(ns/call)

Trace
Std. dev.
(ns/call)

Preload
overhead
(ns/call)

Trace
overhead
(ns/call)

1 16 3 18 3 383 8 2 367
10 5.2 0.5 7.8 0.6 366.5 2.2 2.6 361.3
102 4.64 0.04 6.66 0.05 365.68 6.38 2.02 361.04
103 4.291 0.006 6.058 0.028 365.168 2.88 1.767 360.877
104 4.277 0.012 6.283 0.036 359.780 13.425 2.006 355.503
105 4.526 0.005 6.484 0.101 359.379 1.055 1.958 354.853
106 4.531 0.029 6.467 0.097 363.313 5.138 1.936 358.782
107 4.537 0.018 6.499 0.150 361.145 2.791 1.962 356.608
108 4.535 0.022 6.460 0.026 361.108 1.966 1.925 356.573

Sample size = 100.

the data transfers and the second one for OpenCL kernel
execution.

It is important to consider that the architecture of modern
GPUs allow for concurrent multikernel execution on the
same device, via different streams. If the GPU has multiple
streams, it then requires more than one row for displaying
OpenCL kernel execution.

4. Results

In this section, we discuss the results and primarily the
overhead of using the OpenCL tracing library CLUST. First,
we expose the details of our test platform and the different
tests configurations that will be exercised. Then, we measure
the library’s overhead for both types of tracepoints. Secondly,
we measure the impact of tracing on a real OpenCL program.
Finally, examples of how the combined CPU and GPU
traces can help troubleshoot issues and enhance application
performance will be presented and discussed.

4.1.Test Setup. To demonstrate the low impact of CLUST and
LTTng-UST tracepoints, we benchmarked different scenarios
of execution with the following different factors considered:

(1) Sample size:
we measured 100 samples of diff rent sizes ranging
from 1call to 108 calls. Th need for different sample
sizes is to test whether the recording of many tra-
cepoints overwhelm the system or if the design of
LTTng really allows for maximum performance.

(2) Benchmark configur tion:
in order to establish a baseline and isolate the impact
of the different components, we measured three
different execution configur tions:

(a) Base: tracing disabled, without CLUST.
Thi will serve as the reference for our overhead
tests.

(b) Preload: tracing disabled, with CLUST pre-
loaded.

When replacing the symbols of the OpenCL
library, an overhead is added: the two disabled
LTTng-UST tracepoints and the indirection of
the pointer to the actual OpenCL function.

(c) Trace: tracing enabled with CLUST preloaded.
Thi is the same as the preload but with tracing
enabled: the overhead of storing and recording
to disk the events will be added to the preload
overhead.

(3) Traced element type:
as discussed earlier, there are two types of functions
in the OpenCL API: the synchronous API functions
that do not require any GPU interaction and the
asynchronous API functions that enqueue commands
to interact with the GPU. We suspect that the impact
of CLUST for asynchronous functions is higher since
a callback is hooked to every asynchronous OpenCL
function calls.

We show in Tables 2, 3, and 4 the average time in nanosec-
ond for each benchmark configurations (Base, Preload, and
Trace) as well as the standard deviation. Th overhead
displayed is the difference between the measurement and the
Base.

Th benchmarks were performed on our test platform
running an Intel i7-4770, 32 GB of memory and using
the integrated GPU (HD4600) with the Beignet OpenCL
development drivers. Tracing was done with LTTng (v2.6.0)
and run on Ubuntu Desktop 14.04 LTS with an upgraded
kernel (v3.18.4).

4.2. Synchronous Function Tracing Overhead. For the syn-
chronous API calls, the data is displayed in Table 2. The con-
clusions we can observe from these results are the following:

(1)The average base time (𝐵𝑎𝑠𝑒𝐴V𝑒𝑟𝑎𝑔𝑒) for a call to
clGetPlatformID is about 4.5 ns.

(2) The average “preloaded” time (𝑃𝑟𝑒𝑙𝑜𝑎𝑑𝐴V𝑒𝑟𝑎𝑔𝑒) for
a call to clGetPlatformID is about 6.5 ns.



10 Advances in Softw re Engineering

Ta ble 3: Asynchronous OpenCL API function overhead benchmark.
Buff r
Size
(Byte)

Base
ave.

(ns/call)

Base
Std. dev.
(ns/call)

Preload
ave.

(ns/call)

Preload
Std. dev.
(ns/call)

Trace
ave.

(ns/call)

Trace
Std. dev.
(ns/call)

Preload
overhead
(ns/call)

Trace
overhead
(ns/call)

4 149.51 1.47 164.7 1.1 7000.6 261.8 15.2 6851.1
40 158.99 0.92 168.7 1.3 7026.8 289.5 9.7 6867.8
400 156.15 1.50 174.7 1.3 7269.3 240.6 18.5 7113.2
4 × 103 188.44 1.14 226.7 1.3 7043.6 244.2 38.3 6855.2
4 × 104 1499.76 5.47 1503.3 5.6 8393.0 227.2 3.6 6893.3
4 × 105 17805.67 134.31 17862.1 16.1 25404.7 276.3 56.4 7599.0

Sample size = 100; loop size = 1000.

Ta ble 4: Real application tracing timing.

Width
(pixel)

Height
(pixel)

Base
ave.

(ns/iter.)

Base
Std. dev.
(ns/iter.)

Preload
ave.

(ns/iter.)

Preload
Std. dev.
(ns/iter.)

CLUST
ave.

(ns/iter.)

CLUST
Std. dev.
(ns/iter.)

CLUST +
LTTng

ave.
(ns/iter.)

CLUST +
LTTng

Std. dev.
(ns/iter.)

1 1 35198 2162 36399 1941 50890 2297 58838 3364
10 1 35183 1916 35702 821 51883 2315 58265 3135
10 10 36031 1936 36890 1941 50758 1931 59619 3531
10 100 37937 1868 39067 169 55820 2731 61108 2645
100 100 56770 2440 59709 2135 75073 2661 84746 2232
1000 100 250694 3371 251165 3268 268726 3388 280299 4534
1280 720 1951826 4104 1951965 4443 1976916 4528 1988445 4747
1920 1080 4466096 6345 4466777 5597 4491589 5636 4511394 5509

Sample size = 1000; loop size = 100.

(3) Since each “preloaded” call makes two UST tra-
cepoint calls (without recording anything), we can
calculate that the average time for a disabled UST
tracepoint (𝑇1) is only 1nanosecond:

𝑇1 =
𝑃𝑟𝑒𝑙𝑜𝑎𝑑𝐴V𝑒𝑟𝑎𝑔𝑒 − 𝐵𝑎𝑠𝑒𝐴V𝑒𝑟𝑎𝑔𝑒

2 = 1 ns. (1)

(4) Looking at the “traced” time (𝑇𝑟𝑎𝑐𝑒𝐴V𝑒𝑟𝑎𝑔𝑒), we can
see that no matter how many tracepoints we generate,
the performance per tracepoint is not aff cted and
remains steady.

(5) The “traced” metrics show that the overhead of
tracing synchronous OpenCL API calls is about
361ns minus the base call time of 4.5 ns, which give
us 356.5 ns for recording two UST tracepoints, or
178.2 ns per tracepoint.

4.3. Asynchronous Function Tracing Overhead. As displayed
in Figure 2, recording asynchronous event timing metrics on
OpenCL requires hooking a callback function to the event.
Th call to an enqueuing function will have the API function’s
enqueue start and end tracepoints recorded and when the
command is done processing by the GPU, another custom
tracepoint that contains the timing metrics will be created.
Th overhead of such event is expected to be larger than any
other synchronous API call since it contains a tracepoint with

44 bytes of payload. This payload has to be generated from 4
calls to clGetEventProfilingInfo and 2 calls to clGetEventInfo.
Thi adds up to the overhead of tracing but it is important
to keep in mind that the asynchronous calls are generally
performed only a limited number of times per iteration in
a computation as compared to synchronous calls. Table 3
shows the average time and standard deviation for various
executions of data read from the device to the host using the
clEnqueueReadBuffer function, configured for blocking read
as a benchmark. Since we have previously shown in Table 2
that the performance of tracing is unaffected by the number
of tracepoints to record, this table will show the performance
for a fi ed number of iterations with different buffer sizes in
order to compare the overhead of tracing as a function of the
size of the data transferred.

This approach shows that the weight of tracing such
calls is constant as a function of the size of the buff r
being transferred, and the tracing overhead impact per tra-
cepoint is lowered when using larger buffers. Unfortunately,
the OpenCL read command time is greatly increased and
small buffer reads suffer the most in relative terms. On
our test bench, with the Beignet OpenCL drivers, the
time measurements are more accurate since the PCI-Express
communication latency is not present for integrated graphics.

Measurements have shown that this overhead is caused
by two different sources: the calls to the clGetEventProfil-
ingInfo function for gathering the start and end times on



Advances in Softw re Engineering 11

the device (approximately 1600 ns per call) and the overhead
of providing an event to the OpenCL enqueue function
(again, twice the same 1600 ns ioctl syscall). The Beignet
library performs a heavy syscall to access and write the
recorded start and end time of asynchronous functions: this
results in a cost of four times 1600 ns, more than 90% of
the overall tracing overhead. Th recording of the events
with LTTng-UST has been measured to be insignific nt, as
shown in Table 2.Therefore, when tracing is disabled, the data
gathering is not performed and the call to the UST tracepoint
is also not performed. Avoiding the callsoverwhelm to extract
information when tracing is disabled keeps the CLUST
library overhead as low as possible when not active.

Thi very high overhead for retrieving two long integers
from the GPU may be reduced by modifying the driver and
possibly the GPU microcode to automatically retrieve this
information at the end of the execution of the asynchronous
command, when OpenCL profiling is enabled.

4.4. Real OpenCL Program Tracing Overhead. Knowing the
cost of tracing individual synchronous and asynchronous
OpenCL calls does not represent the typical overhead of
tracing an OpenCL program. For testing purposes, we used a
synthetic benchmark that performs 14 synchronous OpenCL
calls and 2 asynchronous calls per iteration. The program
generates an image of variable width and height, from one
simple run of a very light OpenCL kernel.

We measured the performance for CLUST tracing alone
and then the overhead of tracing the operating system kernel
with LTTng, for a unified trace overhead measurement.
Results are displayed in Table 4.

4.4.1.CLUSTTracing. Th expected CLUST tracing overhead
is at least 14× ∼ 359 ns + 2× ∼ 7030 ns =∼ 19086 ns per
iteration. The results are displayed in Table 5.

As we can see, the overhead of tracing has a signific nt
impact on small sized computation tasks. However, when
the program is working on bigger images, for more typical
resolutions such as 720 p and 1080 p, the relative tracing
overhead factor is considerably reduced as compared to the
complexity of the calculation itself. GPGPU applications
are usually more effici t on larger data sets anyway, again
because of the fi ed startup costs of sending the commands
to the GPU. Figure 5 shows the relative overhead (𝑅𝑂 from
(2)) of tracing with CLUST as a function of the workload:

𝑅𝑂 =
𝑇𝑟𝑎𝑐𝑒𝐴V𝑒𝑟𝑎𝑔𝑒 − 𝐵𝑎𝑠𝑒𝐴V𝑒𝑟𝑎𝑔𝑒

𝐵𝑎𝑠𝑒𝐴V𝑒𝑟𝑎𝑔𝑒 . (2)

We can also verify the expected tracing overhead com-
puted at the beginning of this section (∼19086 ns overhead
per call); we can see that the measured tracing overhead for
the real OpenCL programs varies from 14727 ns to 25494 ns
and averages at 18990 ns, a measurement that is within 0.5%
of the expected tracing overhead.

4.4.2. CLUST Tracing + LTTng Kernel Tracing. Th main
advantage of our solution, as compared to existing CPU
tracing and GPU tracing approaches, is the unifie tracing

Ta ble 5: Overhead of using CLUST and CLUST + LTTng.

Width
(pixel)

Height
(pixel)

Preload
overhead
(ns/iter.)

CLUST
overhead
(ns/iter.)

CLUST +
LTTng

overhead
(ns/iter.)

1 1 1201 15692 23640
10 1 520 16700 23082
10 10 859 14727 23588
10 100 1131 17883 23171
100 100 2939 18303 27976
1000 100 471 18032 29605
1280 720 139 25090 36619
1920 1080 681 25493 45298

Sample size = 1000; loop size = 100.

0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

Workload (megapixels)

Re
lat

iv
e t

ra
ci

ng
 o

ve
rh

ea
d 

(%
)

CLUST
CLUST + LTTng

Figur e 5: Overhead of CLUST tracing and unifi d CLUST +
LTTng tracing relative to the workload size.

capabilities. Our solution allows recording the CPU trace as
well as the GPU trace in the same trace format. The gathered
performance data is displayed in Table 4 under the CLUST +
LTTng columns.

As Figure 5 shows, the tracing overhead of the unifi d
CPU + GPU tracing is yet again very low for larger computa-
tions. One of the reasons why the unifi d tracing overhead
does not signific ntly differ from the CLUST tracing over-
head is because the GPU execution speed is not affected by
CPU tracing. The overhead is therefore a bit higher than the
CLUST tracing overhead alone but this difference fades as the
workload size gets larger.

It is interesting to point out that the longer the iterations
are, the more LTTng kernel events are recorded. This can be
observed by the growth of the overhead per iteration in the
CLUST + LTTng Overhead column of Table 5.

Th addition of LTTng kernel tracing to the GPU trace
allows programmers to find links between the system state
and the GPU execution speed. This can lead to performance
improvements and bug solving via trace analysis.



12 Advances in Softw re Engineering

Figur e 6: Unifie CPU-GPU trace view that depicts latency induced by CPU preemption.

Figur e 7: Unifie CPU-GPU trace view that depicts latency induced by GPU sharing.

4.5. CLUSTUseCases. Th biggest advantage of CLUST is not
only its low overhead characteristics but also the new kind of
information it provides to the programmers. Having access
to a unifi d CPU-GPU trace and its analysis tools can help
troubleshootdifferent types of problems or even help enhance
application performance through GPU pipeline analysis.

Examples that depict this kind of troubleshooting scenar-
ios and enhancements will be demonstrated in this section.

4.6. Typical Execution. As a reference for the following use
cases, Figure 4 shows a close-up view of one iteration of the
program that will be analyzed. It consists of a trace of the
program that was presented in Section 4.4 and used to gather
performance data. Thi iteration showed no abnormality and
will therefore serve as a base for the upcoming use cases.

4.7. Abnormal Execution. There are two primary types of
abnormal executions. The first type occurs when the CPU is
preempted, the second occurs when the GPU is being used
by different processes.

4.7.1. CPU Preemption. CPU preemption occurs when the
scheduler gives CPU time to another process. For GPU inten-
sive applications, this can lead to catastrophic performance
because the CPU constantly gets interrupted and put on wait
for device (GPU in our case) when executing calculations or
communicating with the device. Figure 6 shows an example
of how a unified trace visualization tool would help spot this
kind of latency. Th orange section of the system kernel trace
shows that the CPU is in the WAIT FOR CPU state while the
call to a read buffer OpenCL function was completed. Also,
the sections on the right and the left of the orange section
show normal iteration times. A programmer could fix this
problem by making sure that the thread that manages the

OpenCL calls has a higher priority than normal and making
sure that no other process uses all other available resources.

4.7.2. Shared GPU Resources. A second issue that can be
observed is when the GPU device is shared between multiple
processes. Th GPU’s primary task is to deal with rendering
the screen.This process can interfere with the OpenCL kernel
execution, and data transfers between the host and the device.
Figure 7 shows a great example and its effect on the system. In
yellow, we can see that the system is in stateWAIT BLOCKED
for a long time before being preempted (in orange). On
the right side of Figure 7, we can see that the process is
running normally. This can be caused by the execution of a
concurrent application that uses the GPU resources. If the
OpenCL program analyzed is critical, making sure that no
other process interferes with it can fix this problem.

4.8. Nonoptimized Execution. Another kind of flaw that
OpenCL analysis can outline is nonoptimized OpenCL
programs. Due to the different architectures of the GPUs,
adapting to the device characteristics is a very important
feature of OpenCL programs. Pipeline enhancement and
kernel occupancy are just two of the main focuses for
optimization. In both cases, the goal is to maximize the device
and host resources utilization.

4.8.1. OpenCL Pipeline Enhancement. One of the best ways
to optimize the speed of an OpenCL application is to
properly use its pipeline. OpenCL has the capability to
process simultaneously device communications and OpenCL
kernel executions. Using OpenCL’s asynchronous command
enqueuing functions, it is possible to maximize the GPU
resources usage. As we can see in both Figures 6 and 7, the
gray area of the GPU Act. represents idle time for the GPU.



Advances in Softw re Engineering 13

These views show that most of the computing and communi-
cation time is not being used.

Depending on the application type, the idle time can
be reduced by dividing the calculations when possible and
enqueuing multiple commands in different command queues
to ensure that the device always has work to do. As an
example, we divided the workload of our application bench-
mark and noticed a 28% speedup when running 13 command
queues instead of one (with one pthread per command
queue). We also measured a speedup of up to 72% for 12
command queues on a different dedicated GPU. The bigger
speedup on the dedicated GPU can be explained by the
larger overhead of interacting with the device: the latency
to communicate with a dedicated GPU is higher than for an
integrated graphics GPU. Therefore, dedicated GPU configu-
rations are well suited for pipeline enhancement. Aft r 12 and
13command queues and threads, we started to notice a slow
down when we reached the device saturation point.

CLUST records the required information to allow the
analysis and visualization of this kind of behaviour.

4.8.2. OpenCL Kernel Occupancy. Unfortunately, CLUST
cannot currently extract and record the required metrics on
the device regarding kernel occupancy since this information
is not available in the OpenCL standard. However, having
a record of the clEnqueueNDRangeKernel parameters and
knowing the device architecture, can help evaluate how
the computation was divided and if compute blocks were
executed while using a maximum of available resources on
the GPU.

5. Conclusion and Future Work

In this paper, we explored the GPU tracing challenges and
addressed the need for a unifi d CPU-GPU tracing tool.
This allows programmers to have a better global overview of
the execution of OpenCL powered applications within the
whole system. We demonstrated the very low overhead of
intercepting OpenCL calls to insert LTTng-UST tracepoints,
not only when tracing is inactive, but also when tracing
is enabled. Thi minimizes the impact on the system and
maintains the spirit of LTTng as a very low overhead tracing
tool. To our knowledge, we presented the only unifi d GPU-
CPU tracing tool available in the open literature.

In complement to this, we demonstrated the analysis and
visualization capabilities that a unifie trace can provide, and
the type of problems that it can help uncover.

As this is a valid solution for OpenCL tracing, future
enhancements would be to implement OpenGL and CUDA
UST tracing in order to have a global understanding of
all GPU activity. Kernel space driver tracing could also be
a great improvement for understanding the host’s queue.
Trace Compass’s unified views also need to be fine-tuned.
Thi tracing model not only can serve for GPU tracing
but also paves the road for other heterogeneous computing
analyses.

Th code for this project is open source and available on
https://github.com/dcouturier/CLUST.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

Th authors would like to thank Ericsson, Natural Sciences
and Engineering Research Council of Canada (NSERC), and
Effici for making this research possible.

References

[1] B. Gregg and J. Mauro, DTrace; Dynamic Tracing in Oracle
Solaris,MacOSX, andFreeBSD, vol. 26, Book News, 2011, http://
search.proquest.com/docview/869984396.

[2] S. E. Fagan, “Tracing BSD system calls,” Dr. Dobb’s Journal, vol.
23, no. 3, p. 38, 1998, http://search.proquest.com/docview/2027-
19549.

[3] W. C. Don Domingo, SystemTap 2.7—System-Tap Beginners
Guide: Introduction to SystemTap, 2013.

[4] M. Desnoyers, Low-impact operating system tracing [Ph.D.
thesis], École Polytechnique de Montréal, 2009.

[5] OpenCL—the open standard for parallel programming of het-
erogeneous systems, 2015,https://www.khronos.org/opencl/.

[6] Strace project: strace(1)Linux Manual Pages, 2010,http://man7
.org/linux/man-pages/man1/strace.1.html.

[7] M. Desnoyers and M. R. Dagenais, “Lockless multi-core high-
throughput buffe ing scheme for kernel tracing,” ACM SIGOPS
Operating Systems Review, vol. 46, no. 3, pp. 65–81, 2012.

[8] B. Gregg, “Strace wow much syscall,” 2014, http://www.brenda-
ngregg.com/blog/2014-05-11/strace-wow-much-syscall.html.

[9] B. Gregg, Tracing Summit 2014: FromDTrace To Linux, Brendan
Gregg (Netix), 2014.

[10] D. Goulet, Unified kernel/user-space e�cient Linux tracing
architecture [M.S. thesis], École Polytechnique de Montréal,
Montréal, Canada, 2012.

[11] H. Waly and B. Ktari, “A complete framework for kernel trace
analysis,” in Proceedings of the 24th Canadian Conference on
Electrical and Computer Engineering (CCECE ’11), pp. 001426–
001430, May 2011.

[12] N. Ezzati-Jivan and M. R. Dagenais, “A stateful approach to
generate synthetic events from kernel traces,” Advances in
Software Engineering, vol. 2012, Article ID 140368, 12 pages,
2012.

[13] A. Palnitkar, P. Saggurti, and S.-H. Kuang, “Finite state machine
trace analysis program,” in Proceedings of the International
Verilog HDL Conference, pp. 52–57, IEEE, Santa Clara, Calif,
USA, March 1994.

[14] N. Ezzati-Jivan and M. R. Dagenais, “A framework to compute
statistics of system parameters from very large trace files,” ACM
SIGOPSOperating Systems Review, vol. 47, no. 1, pp. 43–54, 2013.

[15] N. Ezzati-Jivan and M. R. Dagenais, “Cube data model for
multilevel statistics computation of live execution traces,” Con-
currency and Computation: Practice and Experience, vol. 27, no.
5, pp. 1069–1091, 2015.

[16] R. Dietrich, F. Schmitt, R. Widera, and M. Bussmann, “Phase-
based profili g in GPGPU kernels,” in Proceedings of the
41st International Conference on Parallel Processing Workshops
(ICPPW ’12), pp. 414–423, September 2012.



14 Advances in Softw re Engineering

[17] P. Mistry, C. Gregg, N. Rubin, D. Kaeli, and K. Hazel-Wood,
“Analyzing program flow within a many-kernel OpenCL appli-
cation,” in Proceedings of the Fourth Workshop on General
Purpose Processing on Graphics Processing Units, GPGPU-4, pp.
10:1–10:8,ACM, New York, NY, USA, 2011.

[18] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J.
C. Phillips, “GPU computing,” Proceedings of the IEEE, vol. 96,
no. 5, pp. 879–899, 2008.

[19] G. Juckeland, “Trace-based performance analysis for hardware
accelerators,” in Tools for High Performance Computing 2011, H.
Brunst, M. S. Mller, W. E. Nagel, and M. M. Resch, Eds., pp. 93–
104, Springer, Berlin, Germany, 2012.

[20] Khronos Group,OpenCLReference Pages, Khronos Group, 2011,
https://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/.

[21] B. Poirier, R. Roy, and M. Dagenais, “Accurate offli synchro-
nization of distributed traces using kernel-level events,” ACM
SIGOPS Operating Systems Review, vol. 44, no. 3, pp. 75–87,
2010.

[22] M. Jabbarifar, “On line trace synchronization for large scale
distributed systems,” ProQuest, UMI Dissertations Publishing,
2013,http://search.proquest.com/docview/1561560787.



Submit your manuscripts at

http://www.hindawi.com

Computer Games
Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 201

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation
in Engineering

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201


	2015_Couturier_Lttng_CLUST_A_system-wide_unified_article

