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ABSTRACT In this paper, a strategy to modify each micro-droplet’s volume and synchronously adjust its
pH value as required based on the electrolysis reaction in silicone oil is demonstrated. A pair of platinum
electrodes fixed onto the jaws of a vernier caliper was used to modify the micro-droplet’s volume and
adjust its pH value by simply adjusting the distance between the two electrodes. To get a micro-droplet
with desirable volume and pH values, three models, the relationship between the droplet’s volume and its
diameter when the droplet was placed on a fluorinated ethylene propylene (FEP)–covered glass substrate,
the relationship between the distance of the two electrodes and the size of the resulted micro-droplet, and
the relationship between the pH value and the micro-droplet’s consuming rate, were built through the least
square method. In our experiments, a droplet (5% sodium chloride solution, 1.4 uL, pH = 7) could consume
98.9% of its initial volume and form a new droplet with a volume of 0.016 µL and pH of 12.2. In addition,
to validate that this method is also suitable in the acid and alkaline solutions, 0.001 mol/L NaOH and H2SO4

solutions were, respectively, operated using the same procedure. Both the volume and pH values could be
controlled, which proved the potential application of our proposed method in analytical chemistry, precision
engineering, and so on.

INDEX TERMS Microdroplet, electrolysis, pH value.

I. INTRODUCTION

Micro-sized water droplets have been widely used in
multiple research fields, such as analytical chemistry [1], [2],
precision engineering [3]–[7], biological sciences [8]–[12],
etc. [13]–[17]. In these droplet-based applications, for
smoothing the edge of a substrate processed by wet etch-
ing [18], digitally studying pH-sensitive enzymatic activi-
ties [19], [20] and precisely actuating intelligent structures
made up of hydrogel and graphene [21]–[26], it is critical to
produce ultra-mono-sized droplets with an exact pH value.
However, currently, it is still a big challenge to achieve

the goal explained above. Generally, to form size-controllable
and pH-desirable microdroplets, the current methods mainly
rely onmaking the desired pH solution and then cutting it into

The associate editor coordinating the review of this manuscript and
approving it for publication was Sanket Goel.

smaller parts. To cut a droplet from a liquid phase, energy
needs to be introduced to the cut-off point of the droplet
surface so that some of the energy can be converted into
the surface energy. Numerous principles have been proposed
to generate the needed energy in order to precisely control
the cut-off point [27]–[30]. The common energy that has
been used to achieve the ‘‘break’’ function contains internal
energy of liquids, such as hydrodynamic pressure [31]–[33],
and external energy, such as electric energy [34], [35], mag-
netic energy [36], [37], thermal energy [38], [39], mechanical
energy [40]–[43], etc. [44], [45]. According to different phys-
ical principles, each of these methods has its own advantages.
In the control method relying on the internal energy of the
liquid, such as hydrodynamics, the needed devices can have
a simple structure, thereby making them low-cost [31]–[33].
However, due to the fact that liquids are subjected to friction
forces when flowing through the inner wall of the tubes,
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it is very difficult to control the break-off point of liquids
precisely [31], [45]. In the electric control, the size of the
produced micro-droplet is easily controlled by simply tuning
the magnitude of power voltage [34], [35]. However, for this
method, the manipulated solution is often limited to conduc-
tive liquids [45]. The magnetic control is only suitable to
cut ferrofluids [36], [37], [45]. The thermal control method
relies on micro-heater and temperature sensor to precisely
change the viscosity and interfacial tension of liquids, which
makes the fabrication complex and high-cost [38], [39], [45].
Although the laser has been tested to replace the micro-
heater and temperature sensor in the thermal control method,
the high-cost laser devices are difficult to be afforded for a
common lab [45], [46]. The mechanical control method usu-
ally relies on pneumatically or hydraulically driving valves
to cut the continuous liquid in the micro-fluidic devices.
The principle makes this method suitable to most liquids
[42], [43]. However, due to the fact that the gas is easy to be
compressed in the valve and the liquid is suffered to friction
forces when flowing through the inner wall of the valve, it is
very difficult to control the break-off point precisely [45].
The acoustic pressure has also been tested to control the
break-off point of liquids. In this method, the acoustic wave,
excited by an interdigitated transducer (IDT), is used to cut
the liquid contactlessly, which makes this method suitable
in biology [40], [41]. However, the fabrication of IDT is
very complicated, which hinders the wide use of this tech-
nology [45]. In summary, the cutting methods available lack
the ability to form high-precision microdroplets in a common
lab. Moreover, these methods are not capable of adjusting pH
values and sizes after droplet formation.
In this paper, we propose and investigate a strategy to

modify the size of droplets while simultaneously adjusting
their pH value based on the electrolysis of water droplets in
silicone oil. Considering the fact that, generally, making a
bigger droplet can have a better control accuracy than forming
a smaller microdroplet, our experimental hypothesis is that a
size-controllable, pH-desirable microdroplet can be obtained
through electrolysis of a big droplet. Here, there were still two
monumental obstacles before this research: 1) How to acquire
the volume of a droplet during electrolysis reactions, which
is used to judge if the droplet has reached the desired volume;
2) How to know the initial droplet volume in order to make
satisfying sizes and pH values in our demand. To solve these
two questions, we built three mathematical models: 1) Based
on the experimental results, a mathematical model (Model1)
was built to calculate the current droplet volume using the
droplet’s diameter observed from an optical microscope;
2) Based on Model#1, we derived the relationship (Model#2)
between the electrodes’ distance and the resulted droplet
volume. 3) Through the demanded droplet’s sizes and pH
values, the third model (Model#3) was used to calculate
the required initial droplet volume. Thus, to form a micro-
droplet with a specific size and pH value, Model3 can be
used to calculate the initial volume, and then, we need to
set the appropriate electrodes’ distance which is calculated

FIGURE 1. Experimental setup for modifying the droplet volume and pH
values in silicone oil based on the electrolysis of the sodium chloride
solution. (a) Experimental setup. (b) Size and composition of each
electrode.

by Model#2. When the desired droplet was obtained, elec-
trolysis reactions stopped automatically, because the droplet
was then too small to connect the two electrodes.

II. EXPERIMENT AND PHENOMENON

A. STRUCTURE

The experiment is conducted under an optical microscope
(Microscopy system: Micromate 3X, Navitar, USA, Objec-
tive lens: Mitutoyo, Japan). The setup is shown in Fig. 1(a).
In our experiments, a vernier caliper is fixed onto a 3D
position system to adjust the spatial position easily. Then, two
identical electrodes are fixed onto two ends of jaws which
can precisely adjust the relative distance between the two
electrodes. The structure and composition of each electrode
are shown in Fig. 1(b). For each electrode, a platinum wire
(length: l = 10 mm, electrical resistivity: ρ = 105 n�/m)
is connected to a copper wire (diameter: D = 0.5 mm,
l = 12 mm, ρ = 17.2 n�/m). The connected part of these
two wires above, coated with insulated tubes, has a length
of 5 mm. The two copper wires are respectively connected
to the positive and negative terminals of a DC power supply
(UPT3305, UNI-T, China). The tip of each platinum wire
is bent perpendicularly with a bent length of 1 mm. Before
being inserted into a droplet, the platinum wires are cleaned
sequentially by a hydrochloric acid solution (5 mol/L), dis-
tilled water, acetone (Guangzhou reagent chemical factory,
China) and isopropyl alcohol (Chengdu Jinshan Chemical
Reagent Company Ltd., China) in an ultrasonic bath, and
finally dried by nitrogen gas.

B. PHENOMENON AND THEORY

Fig. 2(a) is an illustration of the steps as explained above.
Before our experiments, the electrodes were moved over a
droplet and then moved down until they were inserted into
the droplet with a set depth (about 400 µm). After switching
on the power supply, numerous bubbles were generated on
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FIGURE 2. Illustration of the experiment. (a) Diagram of the setup.
(b) Top-view images showing the steps involved in the modifications
of the droplet’s size in silicone oil before (left, 813 µm), during
(middle, 631 µm) and after (right, 542 µm) the experiment.

the anode and cathode due to the electrochemical reaction as
(1) in the droplet. As the generated hydrogen (on the cathode)
and chlorine bubbles (on the anode) constantly went up to the
liquid surface, the droplet size slowly expanded when new
bubbles were generated and rapidly shrank when the bubbles
were released into the air, as shown in Fig. 2(b). The pH value
of the droplet was expected to increase during the experi-
ment, due to the generation of a sodium hydroxide solution,
which can be seen in (1).

Anode : 2Cl− + 2OH−
↔ 2e−

+ Cl2(g) + 2OH−

Cathode : 2Na+
+ 2H+

+ 2e−
↔ H2(g) + 2Na+

Net : 2NaCl(l) + 2H2O(l) ↔ 2NaOH(l) + H2(g) + Cl2(g)

(1)

After the droplet was modified to the required size, switched
off the power supply and transferred the droplet to a
neutral/stable place bymoving the pair of electrodes. Fig. 2(b)
shows a series of snapshots to demonstrate the different stages
when modifying the droplet’s size in silicone oil. During
the experiments, the ambient temperature and pressure were
25 C◦ and 1 atm, respectively.

III. RESULT AND DISCUSSION

A. DROPLET’S DIAMETERS VS. ITS DIAMETER (Dd)

When a small droplet is in oil and on a substrate, it is
difficult to measure the droplet’s volume directly. Here,
a mathematical model (Model # 1) was built to calculate
the droplet’s volume using its diameter observed microscop-
ically (Microscopy system: Micromate 3X, Navitar, USA,
Objective lens: Mitutoyo, Japan).
In the experiment, a droplet (5% sodium chloride solution)

was generated through a microliter syringe (Shanghai Anting
microliter syringe factory, China). The droplet was covered
by a silicone oil (Tianjin Fuchen chemical reagents factory,

FIGURE 3. The side-view image of a 2 µL droplet and the relationship
between the droplet’s volume and its diameter after being placed on the
FEP-covered glass substrate. (a) The setup for observing the droplet (left)
and the obtained image (right). (b) Experimental results and a fitted curve
showing the relationship between the droplet’s volume and its diameter.

China) film after being placed on a FEP-coved glass sub-
strate. The contact angle meter (JC2001D, Shanghai Pow-
ereach Digital Technology Equipment Company Ltd.) was
used to measure the droplet’s contact angle (π - θ ) with
the substrate surface. Fig. 3(a) shows the side-view image
of a 2 µL droplet after being placed on the glass substrate.
To avoid the light distortion induced by the curved surface of
the oil film, a cover glass was vertically adhered onto the FEP-
covered glass subtract, as shown in Fig. 3(a). It can be clearly
seen that the shape of the droplet looks like an asymmetric
spherical cap.

Then, we set the droplet volume between 0.4 µL and
2.0 µL with increments of 0.4 µL. To build the relationship
between the droplet’s volume (Vd ) and its diameter (Dd , top
view, see Fig. 2), the least square method was used. The fitted
curve is shown in Fig. 3(b) and the equation is as follows,

Vd = 0.138∗π∗D3
d (2)

where Vd is the volume of the droplet and Dd is its diameter.

B. CONTROL OF THE DROPLET’S VOLUME BY TUNING

THE DISTANCE BETWEEN THE TWO ELECTRODES

The possibility of controlling the droplet’s volume was tested
by tuning the distance between the two electrodes. With
the progress of the electrolysis reaction, the droplet’s size
becomes smaller. When the size is smaller than that of the
two electrodes, the droplet will be disconnected from the
electrodes, resulting in the termination of the electrolysis
reaction. Thus, by controlling the distance between the two
electrodes, the droplets of desirable volume can be expected.
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FIGURE 4. Controlling the volume of the resulted droplet by setting the
distance of two electrodes. (a) Images showing the steps of modifying the
droplet’s size. (b) Electrodes’ distance vs. droplets’ diameter.

To validate our hypothesis above, two electrodes with a
distance of 900 µm were inserted into a droplet (1.4 uL,
1490 µm) in a symmetrical manner (see image A1 in
Fig. 4(a)). In Fig. 4(a), images A1-A6 show the droplet
before and after being disconnected from one electrode. Here,
an important phenomenon needs to be listed and explained
here. Before a droplet is disconnected from the electrodes,
the droplet does not have a circular shape but an oval shape
(top-view). The ‘‘elongating effect’’ is probably induced by
the intermolecular attraction between liquids and electrodes.
Fig. 4(a) A2-A5 shows the elongating droplet returned to

the circle shape in 1.4 s. After removing the negative electrode
from the droplet, the Vd can be calculated by measuring
Dd and using (2). To compare the relationship between Dd
and the De, in our experiments, seven droplets (1.4 uL,
1490 µm) were electrolyzed and the corresponding De was
set to 700 µm-1300 µm with increments of 100 µm. The
results are shown in Fig. 4(b). This figure shows that the
obtained droplets always had a smaller size than De. How-
ever, these two parameters have a strong linear dependency
(Model2), which validates our hypothesis that, by controlling
the distance between electrodes, droplets with desirable vol-
umes can be obtained.

FIGURE 5. (a) The pH value and size of modified droplets (original
diameter is 1.49 mm) vs. time. (b) The relationship between the resulted
pH value and Xv.

C. SIMULTANEOUS CONTROL OF THE DROPLET SIZES

AND pH VALUES

The pH values of 6 droplets (1.4 uL, 1490 µm) were tested
using pH tested papers (Shanghai SSS Reagent Company
Ltd, China) after being electrolyzed for 10-60 mins with
increments of 10 mins. During the experiments, the distance
between the two electrodes was set to100 µm. In the mea-
surements, the lower end of the pH paper was inserted into the
oil film, and then electrolyzed droplets were dragged by the
electrodes until contact with the papers. The results are shown
in Fig. 5(a). It can be clearly seen that the pH value increases
when the consuming volume of the droplet increases. For
the particle that was electrolyzed for 60 mins, the pH value
reached 12.2 and the droplet size was 340µm. The volume of
this droplet was only 0.016 µL (1.1% of the initial volume)
when calculated using (2). The experiment reveals that this
method is capable of adjusting the pH values and sizes for a
droplet at the same time.

In Fig. 5(b), by using the least square method, the relation-
ship (Model3) between the resulted pH value and χv (the ratio
of the consuming volume of a solution based on electrolysis to
the initial volume) was built based on our experimental results
shown in Fig. 5(a), which could be expressed as:

pH = 11.82 + 3.744 ∗ lg(χv + 0.05) (3)

The χv is expressed as:

χv = (Vi − Vs)/Vi (4)
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TABLE 1. The time required to modifying to a droplet to the specific sizes.

where Vi and Vs are the initial and desired volume of micro-
droplets, respectively.
According to (2), (3), (4) and model # 2, when Vi is fixed,

the pH value of micro-droplet can be controllable just by
setting the distance between two electrodes. To get a micro-
droplet with the desirable pH value, the distance should be
set:

De = [V ∗

i [1.05 − 10(pH−11.82)/3.744]/(0.138 ∗ π )]1/3/0.854

(5)

In addition, based on (3) and (4), to get a specific droplet
with the desirable pH and volume, the needed Vi before the
electrolysis reaction should be

Vi = Vs/[1.05 − 10(pH−11.82)/3.744] (6)

D. VALIDATION OF THE MODODEL # 1, 2 AND 3 IN

ALKALINE AND ACID SOLUTION (NaOH SOLUTION

H2SO4 SOLUTION)

In the validation of these models, the experiment used the
same setup, operational processes and experimental condi-
tions, as what we did in section A, B and C above. The
parameters of the used droplets are listed in table 1. However,
in the model#3, different from the sodium chloride solution,
these two solutions only consume water under electrolysis
reactions, thus theNaOH solution results into an increased pH
value while the H2SO4 solution concludes into a decreased
pH liquid.

NaOH : pH = 14 + lg[cNaOH/(1 − χv)] (7)

H2SO4 : pH = −lg[(1 + η)∗cH2SO4/(1 − χv)] (8)

where cNaOH is the initial molar concentration of NaOH,
cH2SO4 is the initial molar concentration of H2SO4 and η is
the ionization rate of HSO−

4 in DI water.
When Vi is fixed, for these two solutions, to get a micro-

droplet with desirable pH value, the distance between the two
electrodes should be set:

De = [Vi/10
pH−14

∗ cNaOH/(0.13 ∗ π )]1/3/0.862 (9)

De =[Vi/10
−pH

∗ (1+η)cH2SO4/(0.13 ∗ π)]1/3/0.847 (10)

In addition, to get a desirable droplet for these two solutions,
the needed Vi should be:

Vi = V ∗

s 10
pH−14/cNaOH (11)

FIGURE 6. Demonstration of model #1, 2 and 3 in NaOH solution
(0.001mol/L). (a) Relationship between the droplet’s volume and its
diameter. (b) Electrodes’ distance vs. droplets’ diameter. (c) The
relationship between the resulted pH value and Xv.

Vi = V ∗

s 10
−pH/(1 + η)cH2SO4 (12)

E. COMPARISON OF THREE MODELS IN THE THREE

DIFFERENT SOLUTIONS ABOVE

In Fig. 8(a), the theoretical model# 1 obtained in Fig. 3,
Fig.6(a) and Fig. 7(a) was listed and compared with each
other. Clearly, these three models have a similar linear
relationship.
Then, from Fig. 8(b), we demonstrated that model# 2 was

also almost the same in the three different solutions.
Although the model# 3 has the different formula when

using different solutions (Fig. 8(c)), as what we did above,
a new model # 3 can be built based on the composition and
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TABLE 2. Parameters of droplets used for electrolysis reactions.

FIGURE 7. Demonstration of model# 1, 2 and 3 in the H2SO4 solution
(0.001mol/L). (a) Relationship between the droplet’s volume and its
diameter. (b) Electrodes’ distance vs. droplets’ diameter. (c) The
relationship between the resulted pH value and Xv.

mass ratio of the solution before and after the electrolysis
reaction even if other solutions are used. Here, the H2SO4
solution used in the experiments has an initial concentration
of 0.001 mol/L. With this value, the pH value is about 3.
We did not further continue to electrolyze the droplets when

FIGURE 8. Comparison of model# 1, 2 and 3 in the sodium chloride
solution (5%), NaOH solution (0.001 mol/L) and H2 SO4 solution
(0.001 mol/L). (a) The droplet’s volume vs. its diameter. (b) Electrodes’
distance vs. droplets’ diameter. (c) The relationship between the resulted
pH value and Xv.

the pH value is close to 1.2.With the pH value, the left volume
is only 1.1% of the initial value. If we want to get a droplet
with the pH value close to 0, the better way is to make a
new H2SO4 solution with a higher concentration and then to
electrolyze it. To NaOH solution, if we want to form a droplet
with the pH value close to 14, the above method also can
be used. However, to the NaCl solution, the above method
loses effect. To form a droplet with the pH value higher than
12.2, we need to continue to electrolyze it which means to
consume more solutions and take much more time. Thus,
to the different solutions, forming a solution with desired
pH values in the model#3, we need to select an effective
method and simultaneously make a balance among the χv,
reaction time and the initial and the resulted pH values. The
operations above need to be conducted to the solutions with
good electrical conductivity.
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IV. CONCLUSION

This paper proposed a low-cost, high-efficient strategy capa-
ble of modifying the size of droplets and synchronously
adjusting their pH values as demand based on the electrolysis
reactions in silicone oil, which is unable or very difficult to
be achievable before our study. Threemodels, the relationship
between the droplet’s volume and its diameter, the relation-
ship between the distance of two electrodes and the size of
the resulted micro-droplet, and the relationship between the
pH value of the micro-droplets consuming rate, were built.
Our experiments demonstrated that the models ensured that
the electrolysis relations can stop automatically when the
resulted droplet has reached the desired volume and pH value.
In the future, we intend to promote the proposed method

to many different types of conductive solutions, increasing
its application fields, such as analytical chemistry, precision
engineering, etc.
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