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ABSTRACT This paper presents a cooperative distributed model for the control of product flow in a network
of cooperative inventory systems (ISs). In each IS, a linear input/output equation describes the balance
between product demand vs production, as well as the product flows among ISs. The peculiarity of the
problem is that both the production and demand are stochastic and cannot be controlled. In addition, each
IS has just deterministic information on its inventory level (i.e., the quantity of stored product) which is not
shared in the network. Other information is available in each IS regarding the forecast of both its related
production and demand. The goal of the proposed model, on the overall network, is to keep both the product
stored in each IS and the product exchanged among ISs, around given values as planned a priori. The only
available control is related to the product flow between neighboring ISs, which has to be locally computed.
Section II describes the proposed approach, which is based on the dual decomposition of the problem, which
enables reaching the optimal control. This problem can represent the abstraction of a series of problems,
which are not just related to logistics. As examples, section III presents two case studies: a network of
virtual power utilities; and the control of risk in the transport of dangerous goods by road.

INDEX TERMS Inventory systems, distributed control, dual decomposition, logistics, virtual power utilities,

dangerous goods transport.

I. INTRODUCTION

Different large-scale complex systems, as logistics net-
works [1]-[3], water resources [4], and power grids [5], [6]
can be modelled as a network of interacting inventory sys-
tems (IS) subject to local dynamics. Specifically, each IS can
produce, stock, and locally distribute the same kind of prod-
uct. Some of such large-scale complex systems may have the
peculiarity that their production, as their customer demand,
cannot be controlled. So, the control is limited to the exchange
of product either among themselves or with external ven-
dor/customers. The control objective is to track a desired
level in each local inventory, satisfying local demand. In this
paper, the IS network is taken into account as cooperative,
balancing the divergences between demand and available

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhengbing He.

resources in each IS, in order to reduce inventory costs as
well as improving service levels for the whole network [7].
Controlling the product and information flows among such
subsystems represents a critical problem [8].

While reference values, either for product flow or for
inventory levels, may be planned a priori, at the operational
level, it is important to control product flows in the network
and inventory levels such that they are close to the agreed
reference planned values. As an example, a microgrid power
system can be modelled as an IS, whose product is the power
coming by renewable energy sources, that in case of sources
as wind and sun depend on the uncontrolled weather condi-
tions [9]. Power overproduction (or shortage) can be solved
both by the use of local energy storage (e.g., batteries) and by
exchanging power either with other cooperating microgrids
or with an external power grid. The operational problem is
to control power exchanges with other grids, with the aim

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.
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of staying close to the agreed power exchange value (i.e.,
the control reference value) while satisfying local power
demand, and leaving the local energy storage at the required
level (i.e., the state reference value).

Hereinafter, these systems are referred to as a cooperative
network of inventory systems (CNISs) composed of a set of
input-output inventory systems (ISs) and a set of connecting
links. Each IS is represented by a local linear model and
characterized by a specific cost function to be minimized.
In the general case, the IS model may include the inventory
level (i.e., the state variable), a local production/demand mod-
elled as an uncontrolled stochastic process, and the product
input/output flows (i.e., the control variables), which are
used to achieve each local objective. The links represent the
infrastructure used both for the product flow and for the infor-
mation communication between two neighbouring ISs. Some
studies [10]-[13] have successfully shown that large-scale
complex systems in different domains can be described by a
CNIS, specifically, modeling their dynamics as linear systems
and considering quadratic cost functions for each IS. Standard
centralized control techniques may entail severe limitations
mainly due to the lack of adaptability to a variable scenario
where some ISs and/or related links may be either available
or not (e.g. due to communication failure) in the evolution
of processes. Therefore, for large-scale networked systems,
a centralized control scheme may be inappropriate.

Various distributed model predictive control [14] strategies
have been proposed where the computation of the optimal
control is supported by the prediction of the stochastic vari-
ables. A potential way to classify them is to distinguish
between cooperative and non-cooperative approaches. In a
cooperative distributed model predictive control strategy,
each agent optimizes a central objective function while con-
sidering the effect of all control actions on all subsystems of
the network. In a non-cooperative distributed control strategy,
each agent makes decisions on its own subsystem while con-
sidering the effect of network interactions only locally [15].
The performance of the network in this case converges to
a Nash equilibrium [16]. Fundamental literature describing
distributed model predictive control methods can be found
in [17]-[24].

A relevant case study of distributed control applications is
the power distribution field. Mehleri et al. [25] presented a
mathematical programming approach for the optimal design
of distributed energy systems. The objective is the optimal
selection of distributed energy resource technologies and heat
exchange connections among buildings, which minimizes the
investment and operational cost of the overall distributed
energy system. Guo et al. [26] developed a Lyapunov-based
cost minimization algorithm that considers energy and
demand management decisions. The authors performed a
collaborative decentralised energy consumption scheduling
algorithm in multiple households. Mudumbai et al. [27] pro-
posed a distributed control algorithm for the frequency
control and the optimal economic dispatch of power gen-
erators, where each generator independently adjusts its
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power-frequency set points only using the aggregate power
imbalance in the network. In [28], the problem of sending
information packets from a source node to a destination node
using a network of cooperative wireless relays to minimize
the total energy consumption is considered.

Distributed control of cooperative systems can optimize
the operations of a group of decision makers (DMs) that
share a single global objective. The difficulty in optimally
solving such problems arises when the global state of
the system is either fully or partially nested in the dif-
ferent systems [29]. Dual decomposition is a method for
splitting a large-scale optimization problem into multiple
small-scale optimization subproblems. Although information
exchange among the subsystems is required, the decomposi-
tion method is useful for the improvement of computational
efficiency in distributed computing environments. Moreover,
the method received renewed attention for distributed con-
trol [30]. In [31], dual decomposition has been used as a dis-
tributed iterative procedure that allows the agents to be aware
of the impact of their actions on the global objective. Other
approaches based on dual decomposition have been proposed
for application in dangerous goods (DG) transport optimiza-
tion [11], utility maximization in energy systems [12], [32]
and flight transport [33].

The main contribution of this paper is to extend the
current state-of-the-art of the distributed control of coop-
erative inventory systems through the application of the
dual decomposition approach, defining optimal consensus
between subsystems when their production and demand rate
are stochastic variables. The distributed optimal consensus
control about the desired values of product flows within the
network depends on the minimization cost of each ISs under
a cooperative strategy. An important aspect of the paper is
that the proposed approach is described with the required
abstraction to allow its application in different domains.

The rest of the paper is structured as follows.
Section 2 describes the mathematical formulation of the
CNIS model. Section 3 shows the application of the proposed
strategy to two different case studies associated with transport
networks and virtual power utilities. Section 4 concludes the
paper, discussing the performance of the proposed approach,
and illustrating interesting challenges for future research.

Il. MODEL DEFINITION
A. THE GENERAL PROBLEM
A CNIS is modelled as a directed graph G (V, L). V is the set
of nodes modeling the IS, whose cardinality N = |V|. L is
the set of links whose cardinality is M = |L|, connecting each
couple of adjacent nodes in V. The link direction has the role
of defining positive values, that, as a convention, are from i
to j where j > i (negative in the opposite direction).

The following minimization problem P, in a discrete time
horizont =0, ..., T, can be defined:

T
H* = min
u(®) =5

[ (x0. e .£0)]
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T
=r3(itr)1ZZHi (i (1), u (1), & (1)) ey
- t=0 ieV
stx(@+1)=x@)+Bu@)+§@)
t=0,...,T -1
x(0) =x° )

In (1) H* is optimal values of the cost function H(-). where:

- x(t) e RV is the system state vector, whose i-th element
xi(t) represents the i-th IS state at time ¢. In this approach
the state variables are referred to the inventory values at
the nodes.

- u(t) € RY is the control vector, representing the con-
stant generic flow exchanged between a pair of adja-
cent ISs during the time interval (¢, ¢ 4+ 1]; the control
vector is solved for each time interval over a finite time
horizon T'.

- &(MRY is a noise vector defined for the time inter-
val (1,1 + 1], whose i-th element &; (1) represents the
random fluctuation between production and demand
present in the i-th IS.

Besides, H(-) is separable in terms of functions H;(-) which
are related to each i-th subsystem, as a function of each
subsystem state x; (¢), and of the shared control u (¢).

Equation (2) represents the discrete time state equation that
describes the evolution over time of the inventory stored in
each IS of the network and where

- A € RV is a diagonal matrix whose diagonal elements

weights the efficiency of the ISs.

- B € R™M incidence matrix, representing the network

topology.
- x¥ is the vector of the initial conditions associated to the
state variables at the instant 0.

- (t,t + 1] is the time discretization interval.

B. DUAL DECOMPOSITION APPROACH
In the proposed distributed approach, the problem P, has been
decomposed in several subproblems solved by each node
sharing local control decisions with the neighbour nodes.
In the following subsection, the problem is so reformulated,
as shown in the following theorem.
Problem P has some important peculiarities:
- The function H (-) can be separated into different func-
tions H; (-), one for each IS, with independent states
x; (¢) but shared control u (¢), affecting two adjacent ISs
in each component.
- The matrix A is diagonal, as it is supposed that the state
of one IS does not affect that of the others.
- In addition, let the function H (-) and H; (-) be strictly
convex.!
These peculiarities allow solving the problem in a decen-
tralised approach, summarized in the following theorem.
Theorem: Let P be the problem described by (1) and (2).

I This assumption can be relaxed into a convex requirement using specific
methods, such as the alternating direction method of multipliers which can
also provide reliable and accurate solutions with more efficiency [34]

22488

The optimization problem can be separated into N + M
problems by the following formulation. Specifically, N prob-
lems are defined, one for each IS:

Hi (xi (1), w; (1), v; (1) , & (D))
r + ) e @ wij 0+

Hf = min Jesty
will), U
B =0 = Y i@ vip @)
peP(i)
St (t+ 1) =Ax () + Y vip(©) 3)
PEP(i)
=Y Wi+ &
Jjes)
x(0)=x i=1...N )
where:
- H[ are the optimal values of the minimization problem
solved by each IS;

- wi(t) € RM and y,(t) € RM, are the control variables
representing the outgoing and incoming product flows
from the i-th IS, respectively. Specifically, the generic
component j of w;(¢), w; j(t), represents the desired out-
going flow from the i-th towards the j-th IS. Similarly,
the generic component of the vector v;(t), v;i(t), repre-
sents the desired incoming flow from the j-th towards the
i-th IS.

- c(r) € RY is a cost vector, where the component ¢; j(t)
represents the price to create a consensus on the control
shared by the i-th and j-th IS.

- P(@) Cc Vand S (i) C V are the set of predecessor and
successor nodes of the i-th IS, respectively.

In addition, M problems are defined one for each link (i,j):

K(’;j) = "Z_iajx [cij(®)wij() — vj,i(1))]

V@i, jeL, t=0,....,T—1 (5
where
- K (f j are the optimal values of the maximization prob-
lem.
Proof

The shared control u(t) is redefined with the new variables
w;(t) and gj(t), with additional constraints:

wij (@) —vii () =0 VY@, j)eLlt=0,..T—1 (6

Under standard assumptions for strong duality, the problem
is rewritten as:

D [Hi (i @), w; (), v (1), & (1)

K eV
B — maxminz + Z cij (1) (wij (1) = vij (1))
o) win) T JES()
xi(t) + Y i (6) (wpi (1) = vip ()]
peP@)

@)

For fixed ¢;j(t) and cp; (t), the inner maximization
decomposes into N separate optimization problems as
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described in (3) subject to (4). According to the saddle point
algorithm or Usawa’s algorithm [35], the prices ¢;; (t) and
Cp,i (t) can be locally traded and updated in a distributed man-
ner using the gradient method, resulting in the M different
problems as described in (5). The interested reader may refer
to [36] and [37] for more details.

Optimization Procedure:

The possibility of solving the problem in a distributed way
strongly depends on the possibility of efficiently minimizing
function (3) subject to (4), while also taking into account the
characteristics of the noise &; (). Under the hypothesis that
an efficient way to minimize (3) is available, the following
iterative algorithm can be applied to solve problems (3), (4),
and (5):

1. each IS solves its corresponding problem (3) and (4),

considering an initial fixed vector c(t);

2. the components w; (1) , v; (¢) that are solutions of prob-
lems (3), (4) are sent to the respective shared links,
where a link trader agent (LTA) aims to improve the
solution of each maximization problem (5) by varying
the related component in ¢(¢);

3. each LTA sends the updated component c(¢) to the
adjacent ISs for a new computation of H*, optimized
inw; (1), v; (1);

4. the algorithm terminates when a satisfactory conver-
gence is reached, e.g., when |w;j(t) — v;i(t)| < &,
V(i,j) € L and ¢;; is a given very small value. This
stopping criterion can also be achieved in a distributed
way, freezing a stable solution obtained by each LTA,
that is, when the above condition is satisfied for a given
number of instants.

The maximization in (5) can be approached with
well-known control techniques (e.g., a gradient search
method as in [38]). To reduce the number of iterations, more
recent specific methodologies [39] can be applied.

Note 1:

A particular case for (1) is the cost function of a linear
quadratic stochastic tracking problem:

7t = mind (1@, u(0).£ )
K

=min )" [ () —2"0)" 0 (x () —x* )]
t=1

3w - ) R ()~ 0) ®
st x(t+1)=Ax () +Bu@)+§ @)
t=0...T -1
x(0) =x ©)

where:
- x*(¢t) and u* (¢) are the reference values for the inven-
tory and flow, respectively;
- Q; € RVN 9. > 0; hereinafter Q; are supposed to be
diagonal;
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- R, e RMXM 'R~ 0; hereinafter R, are supposed to be

diagonal;

- AeRVN jga diagonal matrix;

- B € RV*M s the CNIS incidence matrix.

- & (1) is the process noise or disturbance at time 7.

While this problem can be solved in a centralized way [40],
this approach may be impractical for very large and time vary-
ing networks, where communication, infrastructural links or
the same IS may fail in time.

It is worthwhile to underline that the presented model can
represent the abstraction of several problems, which may be
also apparently distant from distributed inventory manage-
ment problems. Specifically, in the following section, two
different applications of the proposed dual decomposition
approach are presented.

The first case study is related to a network of cooperating
virtual power utilities. In this case, the product is power that
can be generated by renewable energy sources, and that is
consumed locally by customers. Such power can be either
locally stored or exchanged with other virtual power utilities.

The second case study concerns the deliveries of DG trans-
port by a road network. The road infrastructure is divided in
regions (which are the ISs) where a certain number of DG
trucks (whose risk is refereed in the abstraction of the model
as the product) are expected to travel in the road infrastructure
according to a prescheduled plan.

In both cases the aim is to find a control minimizing the
divergence of the current IS state and flow with respect to the
planned one. The two instances also reflect the peculiarity of
the proposed problem where the DMs cannot control the pro-
duction and demand rate. Meanwhile, the aim of the problem
is to achieve a global objective on the network balancing only
the flow values between adjacent subsystems through local
control strategies.

Ill. APPLICATION EXAMPLES

A. CASE STUDY 1: NETWORK OF COOPERATING

VIRTUAL POWER UTILITIES (NCVPU)

In a network of cooperating virtual power utilities (NCVPU),
virtual power utilities (VPUs) are distributed over geographi-
cally extensive areas. It is assumed that each VPU represents
a cluster of distributed generators (e.g., wind turbines and
photovoltaic plants) whose production cannot be controlled
but depends on the availability of renewable energy sources.
In each VPU a set of customers is also present, whose
power demand cannot be controlled, as depending on real-
time needs. Each VPU represents a node of the network.
A VPU has an energy storage system (ESS) and can control
the exchange of power in real time with other VPUs and
with the energy market (EM). An LTA operates over each link
of the network. The LTA has the task of finding an agreement
between the two VPUs that are adjacent to that link. The
objective is to cooperate to make the overall VPUs have
the state and the control working around a reference level.
The control is agreed on by information exchange with other
adjacent VPUs. Each VPU is numbered from 1 to N — 1, and
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the EM, which is connected to at least one VPU, is assigned
the index N. Time is discretized in time intervals of 1 h.

Referring to P, the variables and the parameters are as
follows:

- x; (1), [kWh], is the state variable of each VPU in terms
of energy stored in the local ESS at instant ;

- x;" (1), [KkWh], is the reference value of the state with
respect to an optimal EES load at instant ¢;

- control vector u (t) which consists of w; j (¢) and v; j (1),
[kW], which are, respectively, the power exchange out-
going from the i-th to the j-th VPU (or to the EM) on link
(i, j), and incoming from the k-th VPU (or from the EM)
to the i-th VPU on link (k, i), during the time interval
(t,t+1];

- w;.f ; (t) and v;’j j(t) are reference values for the power
exchange during the time interval (¢, ¢t + 1];

- & (1), [kW], represents a stochastic power balance dur-
ing the time interval (¢,¢+ 1], i.e., the difference
between the demand and the produced power in each
VPU;

- g; and r;, parameters are weights which are here taken
as constant in time, related to the state and the different
control components;

- 0 < a;<1 is an efficiency factor related to the ESS.

This problem has been applied between Italy and Morocco,
assuming that two VPUs are available in each country. Wind
turbines are the generators available in the four VPUs. They
are connected according to the topology shown in Fig. 1,
where VPU; is available in Monte Settepani (i = 1), Tanger
(i = 2), Capo Vado (i = 3) and Essaouira (i = 4). The
wind power potential available in the four regions is based on
the statistics given in the literature [41]. The computation of
the optimal control is performed on a horizon of seven days,
so K = 168.

LTA4
LTA2

LTAl
LTA3

LTAS

FIGURE 1. The NCVPU model including an energy market (EM).

The ESS reference values have been set to xl.* (1) = 0V,
while the control reference values have been set to WZ ()=0
and v?:]. (t) = 0, Vr. For the proposed case study, the &; (¢)
values are shown in Fig. 2. The characteristics of &; (z) can be
separated in a deterministic component (for example, a pre-
diction of power production and demand can be available

22490

1000 - = == Capo Vado (Italy)
Tanger (Morocco)
800 - ~
Monte Settepani (Italy), '
600 - Essaouira (Morocco) \
400 - I | ﬂ
200 - | | ,
~ »
o~ \ hes,, | ’
0 7WWITTW 1+ I ULl RIJRMIETITTTTTT T VTWWJWITFH
Hmr\mmﬂih—mﬁwr\mm‘ﬁgl\
- N < n 0 0 OO N ™
200 - Time (min) = a;/‘_' -

FIGURE 2. The values of §;(t) for the four VPUs of Fig. 1.

by forecast models) and a stochastic component (due to the
errors in forecasting).

Ateach time step 7, an LTA communicates with its adjacent
VPUs, proposing an improvement of ¢; j(¢) parameters. Each
VPU can compute its optimal desirable flows w; (¢) , v; (1)
according to a local LQ stochastic tracking algorithm and
send them back to each respective LTA. The iteration lasts
until an acceptable convergence is reached.

O ~

100 — c2(k=4)
R c3(k=4)
-200 ca(k=4)

-300

NS o 0!
"GN A N
NANNN®m®
Iterations

379
406
433
460
487

-400 -
-500

-600

-700 -+

-800 -

FIGURE 3. The trend of the costs 5 5(t), ] 5(t) and ;4 during the
agreement process. ’ ’ ’

Fig. 3 displays the convergence of cj3(f), c2,3(¢), and
c3.4(t). The agreement is reached after approximately
400 iterations. Fig. 4 shows the cost function for the four
VPUs. It is worth highlighting that the EM has no state
variable, and it is supposed to comply with the controls of
the VPUs. It is also worthwhile to observe that the local cost
function (to be minimized) increases with the search for the
overall cooperative agreement. Fig. 5 shows the power agreed
on between VPUs, at instant ¢t = 4, where u; is related to
the power exchanged by LTA; computed as y; — w;. It can
be observed that negative values of c3 4(4) are reflected in a
positive u4(4) value as outgoing flow with respect to 3. The
same can be said for ¢ 3(4) and ¢y 3(4). It is relevant to note
that the disturbance &3 (¢) for values of ¢ around 20 (Fig. 2)
is only partially sent to EM on us, while the rest is used to
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-------- J1 (Monte Settepani)
J3 (Capo Vado)

J2 (Tanger)

J4 (Essaouira)
005 -
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001
000 -
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R T . T v T T
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T NN AN M
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FIGURE 4. The cost functions for the VPUs using the distributed control.

500 -

— Ul u2 u3
400 - ugd  ceeeeeee u5 :
300 -
200 - R :
JOT /
100 | i | SR
0 ,;:4!1'.' v‘* &m.:%,gf'g*/ﬁ
-100 0 50 . .100 150
time (min)
-200 -

FIGURE 5. Trends of the optimal values for the u;.‘,i =1,...,5elements

of the control variables under the distributed control.

feed the internal demand and other VPUs in the network.
The disturbance & (¢) for values of ¢ around 100 (Fig. 2) is
reflected in a greater flow in us.

B. CASE STUDY 2: DANGEROUS GOODS TRANSPORT
BY ROAD
A risk-based approach to define deliveries in DG transport
by road is taken into account. The original model has been
introduced in [11], and a preliminary version of this work
has been proposed in [42], where moderate exchange of
information in the whole network among the DMs is allowed.
The model is focused on a central DM that aims to rear-
range a predefined scheduled plan of DG deliveries from one
depot (origin) to D service stations (destinations) to minimize
both the risk due to possible accidents and the cost due to
delays in deliveries. It is assumed that an initial planned
schedule for deliveries is given. The motivation to modify it
is twofold. First, the planning is usually computed accord-
ing to an economic objective (e.g., shortest path). Second,
in real time, the updated information about traffic and possi-
ble exposure of the population along the roads to the DG risk
can be available with better precision. The average planned
speeds of the vehicles (e.g., tank trucks) are also known (e.g.,
computed using a prediction model for traffic conditions).
Therefore, the main objective of the DM (e.g., a national
or regional authority) is to modify the scheduled route of
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vehicles, taking into account the DG quantities travelling
through a specific area and considering the related exposure
and risk. This approach is formulated to balance two different
objectives that are commonly referred to by different stake-
holders involved in DG transport: the total risk on the road
network, of main interest to national or regional authorities,
and the compliance between the real delivery times with
respect to the planned ones, of main interest to transportation
companies. As a simplifying assumption, the DG flow in the
network is modeled as continuous and not as discretized.
The optimization problem can be stated as follows:

mma ZZZ( ) — ))Z(rnl(—;))z

t=0 deD neN

PN ACE d(T))z—(r"(,?)2

deD neN

T—1
YYD Y (dnoh - o, (t)>2 (10)
t=0 deD neN meS(n)
st. 4@+ 1) =)+ Z O Z g (O+ELD),

meP(n) meS(n)
4oy=1, t=0,....,T—1,VneN,VdeD (1)

where:

- iﬁ () [gasoline tonne equivalent (GTE)] is the state vec-
tor for each IS, which represents the DG mass quantity
present at the n-th node at instant ¢ directed to destination
d,d € D, where D C V is the set of planned (IS)
destinations.

- gz(t) [GTE] is an input variable related to the planned
quantity present at the n-th node directed to destination
IS d at time ¢; in this case study, they are assumed to be
positive only at the origin and at the destination nodes,
being zero at the transition nodes, meaning that there
is a required low exposure level of the transition nodes
during the DG transfer.

- rp(t) [inh] is an input variable related to the
time-dependent value of risk on the i-th region at instant
t (e.g., the overall number of inhabitants that are present
at instant ¢ in a buffer of 100 m of the road segment
associated with IS n).

- 1, [km] is an input parameter representing the size of the
n-th IS.

- qim (t) [GTE] is a decision variable related to the opti-
mal DG flows in link (n, m) directed to destination IS d
during the time interval (¢, ¢ + 1].

- f);ln (#) [km] is a decision variable related to the optimal
speed (expressed as the space covered in one time inter-
val) for DG vehicles that are in transit towards link (n, m)
directed to destination IS d during the time interval
(r,t+1].

- é,‘f (t) [GTE] is a stochastic variable defining the planned
arrivals of DG at IS n from the outside of the network
directed to destination IS d during the time interval
(t,t+1].
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The aim of the first two terms of the cost function are as
follows:

- in case 2ﬂ (t) = 0 (meaning that the IS n is only a tran-
sition node towards destination d), the ISs characterized
by a higher risk are penalized;

- otherwise, if gg(t) > 0 (set only if n = d, thus when
n is the destination of the shipment), the optimizer will
try to obtain values as close as possible to the planned
inventory level.

On the other hand, the third term is a penalty term intro-
duced to respect the desired planned speed for each specific
DG shipment, considering that the classical relationship of
macroscopic traffic models among traffic density, speed and
flow holds [34]. The dynamic equation is in the form of
a classic conservation law for each IS. Interested readers
can find a more detailed description of this model in [11].
This model can be assimilated as one considering a CNIS
introduced in (1), where the state vector x (¢) contains all
inventories ig (t) for each n and d, whereas control vector
u () contains DG flows qim (t) for all links (n, m). Each
node, which identifies each IS, may obviously represent an
origin node, a destination node, or simply a transition node.
The optimization problem to be solved by each DM could
be again brought back to an LQ tracking problem. Thus,
the solution can be efficiently computed for each IS n.

This optimization algorithm has been applied to a small
demonstrative network composed of 5 ISs and 6 links repre-
senting logistic areas. The unit time step is Ar=10 minutes.
At the initial instant, it is supposed that a known quantity of

DG is stored in node 1. The destinations are represented by
ISs 4 and 5.

link4
erl
link6
4
link5

FIGURE 6. The network with 5 ISs and 6 LTA links.

Fig. 6 shows the network topology. The values ?Z(t) are all
set equal to zero, except for: 2‘1‘(0) = ;? (0) = 100; ?j(f):lOO,
for r > 10; fg(f)zloO, for > 14. The risk values r; () are
all set to 1, except for: ry (7) =100; ry4 (¢) =25, and for 6 <
7t < 13. The dimension is set to d; = 10 for each region.

A reasonable global optimum has been achieved in fewer

than 200 iterations, as shown in Fig. 7, showing the conver-
gence of the values ¢; j(t).
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FIGURE 8. The values of inventory at the destination nodes, IS 4 and IS 5.
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FIGURE 9. Risk value and Inventory value at IS 2.

By applying the gradient method proposed in [39] to the
dual problem, the convergence rate of the parameters ¢; ;() is
accelerated and it guarantees to reach the consensus between
the decisional variables related to the optimal DG flows in
the links in a minor number of iterations. This convergence
has shown an important improvement with respect to both
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the previous case study and to a previous work [43]. At the
end of the simulation, the objective of delivering the planned
product to each destination node has been achieved. As shown
in Fig. 8, the IS level values for destination nodes 4 and 5
reached the optimal planned amounts in 20 time steps. Each
DM also attempts to avoid the time intervals characterized
by a higher value of risk, as shown in Fig. 9 for node 2.
In fact, by setting a high value of r; (¢), an agreement could
be reached that the visit of a node is anticipated, postponed,
or even avoided.

IV. CONCLUSION

In this paper, a distributed optimal control problem has been
introduced for a CNIS, presenting a solution algorithm based
on the dual decomposition technique. Although the technique
is quite classic, it has recently received renewed attention
due to its ability to decompose a problem into a team of
cooperative agents [31].

Two different examples have been implemented, which
refer to the special case of linear quadratic (LQ) problems,
specifically applied to power exchange in an NCVPU and to
DG transport.

In each instance, local sub-problems were solved at each
node under a cooperative vision of the problem; supposing
that each subsystem is sharing control with the adjacent
subsystem without knowledge about its state.

The considered class of CNIS problems that can be found
in a wide number of application areas, as resulting from the
two examples, presents completely decoupled states, despite
being coupled at the links connecting two ISs.

Therefore, in the authors’ opinion, a CNIS seems to be an
interesting class of problems that requires further investiga-
tions for at least two main reasons: first, a CNIS seems to
be representative of a wide set of relevant new applications;
second, the CNIS problem has a basic structure that can
presumably be exploited to further design even more efficient
distributed control algorithms.

Despite the proposed methodological simplicity, which has
been intentionally adopted in this paper for demonstrative
purposes, the CNIS model can be the starting point of several
extensions, aimed at neglecting some simplifying assump-
tions. In addition, further improvements can be adopted to
reach the algorithm convergence, which may be more suitable
for a specific problem [44], [45].

In conclusion, the main contribution of the paper is
twofold. First, it introduces a class of problem related to the
control of complex systems composed by subsystems which
share control decisions in a cooperative way when in each
system the knowledge of the state of the other subsystems is
unavailable.

Secondly, it presents a unifying view of different
applications modeled as a CNIS, which can be efficiently
implemented and optimized in a distributed way. The main
peculiarity is that the limited exchange of information is
related to the optimal input-output flow for each IS sent
to connected agent links. This sort of privacy feature may

VOLUME 7, 2019

become relevant when the confidentiality on the state and its
dynamics become a system requirement.
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