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is paper presents a new procedure to solve multiobjective problems, where the objectives are distributed to various working
groups and the decision process is centralized. e approach is interactive and considers the preferences of the working groups.
It is based on two techniques: an interactive technique that solves multi-objective problems based on goal programming, and a
technique called “linear physical programming” which considers the preferences of the working groups. e approach generates
Pareto-optimal solutions. It guides the director in the determination of target values for the objective functions. e approach was
tested on two problems that present its capacity to generate Pareto-optimal solutions and to show the convergence to compromise
solutions for all the working groups.

1. Introduction

e process of product design is oen organized in a hier-
archical structure where the specialists are separated by dis-
cipline in several working groups. As shown in Figure 1, the
working groups are supervised by a director who coordinates
the design activities.e role of the director is to collect infor-
mation provided by the groups and to use computational
method to �nding an optimal design.eworking groups are
considered as experts that have the technical knowledge in
their proper discipline.

According to their competencies, each working group is
responsible of achieving speci�c design objectives expressing
the customer’s requirements. Oen these objectives are func-
tions of the same set of design variables and in certain cases,
theymay be con�icting. For that reason, it is necessary to �nd
an optimization procedure that takes into consideration that
knowledge and includes it in the solution.

In this paper, we develop a new InteractiveMultiobjective
approach taking into account theworking group’s Preferences

(IMOP). e original contributions of the IMOP algorithm
are the as follows.

(i) It has the ability to de�ne a reduced set of target
values that can be divided into degrees of desirability
to capture the working groups’ preferences. is is
an important contribution because it is a challenging
issue in multi-objective optimization.

(ii) It generates Pareto-optimal solutions corresponding
to the working groups’ preferences.

(iii) It subtracts the stability set from the reduced set
of target values at each iteration, thus ensuring a
different Pareto-optimal solution each time.

e proposed approach is particularly interesting when the
decision process is centralized and involves many working
groups who are collaborating in order to �nd a best compro-
mise solution.
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F 1: Organizational structure in product design.

2. Multiobjective Problem and
Pareto-Optimal Concept

e purpose of a general multi-objective optimization prob-
lem is to �nd the design variables that optimize a vector objec-
tive function 𝐹𝐹(𝑋𝑋) 𝑟 𝑋𝑓𝑓1(𝑋𝑋), 𝑓𝑓2(𝑋𝑋),𝑟 , 𝑓𝑓𝑘𝑘(𝑋𝑋)𝑋 over the
feasible design space.eminimization problem formulation
in standard form is as follows [1]:

Minimize 𝐹𝐹 (𝑋𝑋) 𝑟 𝑓𝑓1 (𝑋𝑋) , 𝑓𝑓2 (𝑋𝑋) ,𝑟 , 𝑓𝑓𝑘𝑘 (𝑋𝑋)
subject to ℎ𝑠𝑠 (𝑋𝑋) 𝑟 0, 𝑠𝑠 𝑟 1,𝑟 , 𝑡𝑡,𝑔𝑔𝑟𝑟 (𝑋𝑋) ≥ 0, 𝑟𝑟 𝑟 1,𝑟 ,𝑟𝑟,𝑋𝑋𝑙𝑙 ≤ 𝑋𝑋 ≤ 𝑋𝑋𝑢𝑢𝑋 (1)

e aim of solving a multi-objective problem is to get a
Pareto-optimal solution or a set of Pareto-optimal solutions.
Conceptually, a Pareto-optimal solution is one which is not
dominated by any other feasible solution.Mathematically, for
a minimization problem with 𝑘𝑘 objective functions 𝑓𝑓𝑖𝑖, 𝑖𝑖 𝑟1,𝑟 , 𝑘𝑘, a vector 𝑋𝑋∗ is Pareto-optimal if there is no other
feasible 𝑋𝑋 such that 𝑓𝑓(𝑋𝑋) ≤ 𝑓𝑓(𝑋𝑋∗), meaning that 𝑓𝑓𝑖𝑖(𝑋𝑋) ≤𝑓𝑓𝑖𝑖(𝑋𝑋∗) for all 𝑖𝑖 𝑟 1,𝑟 , 𝑘𝑘 with strict inequality for at least
one i [2]. In general, the optimal solutions obtained by the
individual optimization of the objectives are not the same.
It is then necessary to �nd solutions to the multi-objective
problem which are Pareto-optimal.

ere are several techniques for solving multi-objective
optimization problems. Some methods have been developed
to �nd an exact Pareto set, or an approximation of it, inside of
which one of the generated Pareto optimal solutions is chosen
for implementation. ese methods include compromise
programming [3], the weight method, and the constraints
method [4]. Several metaheuristics approaches have also
been used to solve multi-objective problems like simulated
annealing [5, 6] particles swarm optimization [7] and evolu-
tionary algorithms [8–10].

However, as the number of competing objectives
increases, the problem of �nding the best compromise solu-
tion becomes increasingly complex. Hence, it can become
overwhelming to analyze the entire Pareto-optimal solution
set to select one solution for implementation. It becomes
attractive to reduce the size of the solution set, and to
assist the decision maker in selecting a �nal solution [11].
Some methods attempt to quantify the decision maker’s
preferences, and with this information, the solution that best
satis�es the decision maker’s preferences is then identi�ed.
ese methods include among others goal programming,

and linear physical programming [12]. Linear physical pro-
gramming is a method for generating a preferred Pareto
solution during multi-objective optimization. It is an
extension of goal programming. e initial development
of the physical programming methodology is presented
in Messac et al. [12]. Physical programming captures the
decision maker’s preferences, a priori, in a mathematically
consistent manner using a preference function. e decision
maker (DM) classi�es each objective function into the four
so and the four hard classes as shown in Table 1.

e DM speci�es the degrees of desirability (𝑡𝑡−𝑖𝑖𝑖, 𝑡𝑡−𝑖𝑖𝑖, 𝑡𝑡−𝑖𝑖3,𝑡𝑡−𝑖𝑖2, 𝑡𝑡−𝑖𝑖1 and/or 𝑡𝑡𝑛𝑖𝑖1, 𝑡𝑡𝑛𝑖𝑖2, 𝑡𝑡𝑛𝑖𝑖3, 𝑡𝑡𝑛𝑖𝑖𝑖, 𝑡𝑡𝑛𝑖𝑖𝑖) for each objective function 𝑓𝑓𝑖𝑖
in the so category. For classes 1S through 4S, there are,
respectively, �ve, nine, and ten such values as shown in Tables
2, 3, 4, and 5.

For classes 1H through 4H, these values are, respectively,𝑡𝑡𝑙𝑙𝑋 max, 𝑡𝑡𝑙𝑙,min, 𝑡𝑡𝑙𝑙,val, and 𝑡𝑡𝑙𝑙,min and 𝑡𝑡𝑙𝑙𝑋 max. e physical program-
ming method involves converting a multi-objective problem
into a single objective problem by using preference functions
that capture the DM’s preferences. Given the DM’s input in
the form of range boundaries (or targets) for each objective,
Messac et al. [12] suggest an algorithm to generate theweights𝑤𝑤 −𝑖𝑖𝑠𝑠 and 𝑤𝑤 𝑛𝑖𝑖𝑠𝑠.e following problem is then solved (𝑑𝑑−𝑖𝑖𝑠𝑠 and 𝑑𝑑𝑛𝑖𝑖𝑠𝑠
are the deviational variables):

𝑖in𝑑𝑑−𝑖𝑖𝑠𝑠 ,𝑑𝑑𝑛𝑖𝑖𝑠𝑠 ,𝑋𝑋 𝑟𝑟 𝑟 𝑘𝑘𝑖𝑖𝑟1 𝑖𝑠𝑠𝑟2 𝑤𝑤 −𝑖𝑖𝑠𝑠𝑑𝑑−𝑖𝑖𝑠𝑠 𝑛 𝑤𝑤 𝑛𝑖𝑖𝑠𝑠𝑑𝑑𝑛𝑖𝑖𝑠𝑠
subject to 𝑓𝑓(𝑋𝑋)𝑖𝑖 − 𝑑𝑑𝑛𝑖𝑖𝑠𝑠 ≤ 𝑡𝑡𝑛𝑖𝑖(𝑠𝑠−1)∀𝑖𝑖 𝑋 classes 1S, 3S, 𝑖S𝐻 𝑖𝑖 𝑟 1, 2,𝑟 , 𝑘𝑘𝐻𝑠𝑠 𝑟 2,𝑟 , 𝑖,𝑑𝑑𝑛𝑖𝑖𝑠𝑠 ≥ 0 ∀𝑖𝑖 𝑋 classes 1S, 3S, 𝑖S𝐻𝑖𝑖 𝑟 1, 2,𝑟 , 𝑘𝑘𝐻 𝑠𝑠 𝑟 2,𝑟 , 𝑖𝑓𝑓𝑖𝑖 (𝑋𝑋) ≤ 𝑡𝑡𝑛𝑖𝑖𝑖 ∀𝑖𝑖 𝑋 classes 1S, 3S, 𝑖S𝐻𝑖𝑖 𝑟 1, 2,𝑟 , 𝑘𝑘,𝑓𝑓𝑖𝑖 (𝑋𝑋) 𝑛 𝑑𝑑−𝑖𝑖𝑠𝑠 ≥ 𝑡𝑡−𝑖𝑖(𝑠𝑠−1), ∀𝑖𝑖 𝑋 classes 2S, 3S, 𝑖S𝐻𝑖𝑖 𝑟 1, 2,𝑟 , 𝑘𝑘𝐻 𝑠𝑠 𝑟 2,𝑟 , 𝑖,𝑑𝑑−𝑖𝑖𝑠𝑠 ≥ 0, ∀𝑖𝑖 𝑋 classes 2S, 3S, 𝑖S𝐻𝑖𝑖 𝑟 1, 2,𝑟 , 𝑘𝑘𝐻 𝑠𝑠 𝑟 2,𝑟 , 𝑖,𝑓𝑓𝑖𝑖 (𝑋𝑋) ≥ 𝑡𝑡−𝑖𝑖𝑖, ∀𝑖𝑖 𝑋 classes 2S, 3S, 𝑖S𝐻𝑖𝑖 𝑟 1, 2,𝑟 , 𝑘𝑘,𝑓𝑓𝑙𝑙 (𝑋𝑋) ≤ 𝑡𝑡𝑙𝑙,max, ∀𝑙𝑙 𝑋 class 1𝐻𝐻𝐻𝑙𝑙 𝑟 1, 2,𝑟 , 𝑙𝑙,𝑓𝑓𝑙𝑙 (𝑋𝑋) ≥ 𝑡𝑡𝑙𝑙,min, ∀𝑙𝑙 𝑋 class 2𝐻𝐻𝐻𝑙𝑙 𝑟 1, 2,𝑟 , 𝑙𝑙,𝑓𝑓𝑙𝑙 (𝑋𝑋) 𝑟 𝑡𝑡𝑙𝑙,val, ∀𝑙𝑙 𝑋 class 3𝐻𝐻𝐻𝑙𝑙 𝑟 1, 2,𝑟 , 𝑙𝑙,



Journal of Industrial Engineering 3𝑡𝑡𝑙𝑙,min ≤ 𝑓𝑓𝑙𝑙 (𝑋𝑋) ≤ 𝑡𝑡𝑙𝑙,max, ∀𝑙𝑙 𝑋 class 𝑖𝐻𝐻𝐻𝑙𝑙 𝑟 1, 2,𝑟 , 𝑙𝑙,𝑋𝑋min ≤ 𝑋𝑋 ≤ 𝑋𝑋max𝑋
(2)

e limitation of the physical programming is that it requires
a priori selection of range parameters for each of the objective
functions and provides information for only one design
scenario (i.e., a single Pareto solution). Tappeta et al. [13] have
twinned linear physical programming with an interactive
algorithm [1]. eir algorithm �nds a Pareto solution and
can generate other Pareto designs in the neighbourhood of
the current Pareto solution. No means are provided to help
the DM to specify his/her initial preferences in the form of
region limits de�ned in physical programming.

Some authors have suggested several interactive multi-
objective optimization methods [1, 14–16]. ese methods
allow the decision maker to express his/her preferences by
using a reference point or by classifying the objectives, func-
tions. e disadvantages of using traditional multi-objective
methods are as follows [1]: (1) require a priori selection of
weights or targets for each of the objective functions, (2)
provide only a single Pareto-optimal solution, and (3) are
unable to generate proper Pareto-optimal points for non
convex problems (the weights method). Abdel Haleem [17]
developed an interactive nonlinear goal programming algo-
rithm (INLGP) that helps the decision maker to determine
reference points for the goals. e decision maker does
not need to do any ranking of classi�cation of these goals.
e advantages of this INLGP algorithm are as follows:
(1) it reduces the parametric space of the target values
by limiting each parameter with minimum and maximum
values rather than by choosing any random values from the
whole parametric space, and (2) the algorithm is guaranteed
to generate Pareto-optimal solutions at each iteration. e
INLGP algorithm was used for the design of a low-pass elec-
trical circuit [18]. However, no means are provided to divide
the reduced parametric space. Realizing these limitations,
an interactive multi-objective approach is proposed which
attempts to address the issues mentioned above.

3. An Interactive Multiobjective Approach
Taking into Account theWorking Groups’
Preferences (IMOP Approach)

e IMOP approach is based on the interactive nonlinear
goal programming algorithm (INLGP) of Abdel Haleem [17]
combined to the linear physical programming introduced by
Messac et al. [12]. e IMOP approach has the following
advantages: (1) it provides means to capture the working
group’s preferences, (2) it offers the possibility of interaction
between the director and his/her working groups, (3) it
generates several Pareto-optimal solutions (several design
scenarios), and (4) it �ts with the industries organizational
structure.

Before using the IMOP approach, it is necessary to
distribute the objective functions among the working groups

T 1: Objective function classi�cation.

Class 1S Small is better (minimization)
So Class 2S Larger is better (maximization)

Class 3S Value is better
Class 4S Range is better
Class 1H Must be smaller (𝑓𝑓𝑙𝑙 ≤ 𝑡𝑡𝑙𝑙,max)

Hard Class 2H Must be larger (𝑓𝑓𝑙𝑙 ≥ 𝑡𝑡𝑙𝑙,min)
Class 3H Must be equal (𝑓𝑓𝑙𝑙 𝑟 𝑡𝑡𝑙𝑙,val)
Class 4H Must be in range(𝑡𝑡𝑙𝑙,min ≤ 𝑓𝑓𝑙𝑙 ≤ 𝑡𝑡𝑙𝑙,max)

according to their respective disciplinary competencies.More
than one objective can be assigned to the same working
group. e multi-objective optimization process is central-
ized at the director level. e director coordinates the activi-
ties between the working groups.e working groups collab-
orate to the resolution process by de�ning their preferences
and providing the target values for their objective functions.
e following are the steps involved in the application of the
new interactive multi-objective approach.

Step 1. Each working group classi�es his objective functions
into four classes (Table 6).

Step 2. For the 𝑘𝑘 objective functions, each working group
solves its objective optimization problem individually
according to a category chosen in 1. e optimal solutions
are 𝑋𝑋∗𝑖𝑖, 𝑖𝑖 𝑟 1,𝑟 , 𝑘𝑘. e optimal values of the objective
functions are 𝑓𝑓∗𝑖𝑖 , 𝑖𝑖 𝑟 1,𝑟 , 𝑘𝑘. e working groups know the
best possible values of each objective function under their
control. ese values are returned to the director.

Step 3.e director evaluates the value of the other 𝑘𝑘−1 objec-
tive functions at the 𝑘𝑘 optimal solutions 𝑋𝑋∗𝑖𝑖, 𝑖𝑖 𝑟 1,𝑟 , 𝑘𝑘,
and constructs 𝑘𝑘𝜌𝑘𝑘 table of the objectives values as shown in
Table 7. From this table, the director will know the best and
the worst possible values of each objective function 𝑓𝑓∗𝑖𝑖 , 𝑖𝑖 𝑟1,𝑟 , 𝑘𝑘 that corresponding to 𝑏𝑏𝑖𝑖 min, 𝑏𝑏𝑖𝑖 max, 𝑖𝑖 𝑟 1,𝑟 , 𝑘𝑘 of
each objective function (for a minimization problem). e
approach proceeds by determining the reduced solvability set
denoted by 𝑏𝑏′ where 𝑏𝑏′ 𝑟 𝑋𝑏𝑏 ∣ 𝑏𝑏𝑖𝑖 min ≤ 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖 max, 𝑖𝑖 𝑟1,𝑟 , 𝑘𝑘𝑋 and 𝑏𝑏 is the set of parameter values for which the
problem is solvable. e reduced solvability set will be used
by the working groups to de�ne their preference according to
their competencies.

Step 4. e director presents the reduced solvability set 𝑏𝑏′
to the working groups to seek preferences for each objective
function.

(i) For class 1S (minimization), the preferences are
highly desirable (𝑡𝑡𝑛𝑖𝑖1), desirable (𝑡𝑡𝑛𝑖𝑖2), tolerable (𝑡𝑡𝑛𝑖𝑖3),
undesirable, and (𝑡𝑡𝑛𝑖𝑖𝑖) and highly undesirable (𝑡𝑡𝑛𝑖𝑖𝑖).

(ii) For class 2S (maximization), the preferences are
highly desirable (𝑡𝑡−𝑖𝑖1), desirable (𝑡𝑡−𝑖𝑖2), tolerable (𝑡𝑡−𝑖𝑖3),
undesirable (𝑡𝑡−𝑖𝑖𝑖), and highly undesirable (𝑡𝑡−𝑖𝑖𝑖).
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(iii) For class 3S (value is better), the preferences are highly
desirable (𝑡𝑡𝑖𝑖1), desirable (𝑡𝑡−𝑖𝑖2 and 𝑡𝑡𝑛𝑖𝑖2), tolerable (𝑡𝑡−𝑖𝑖3 and𝑡𝑡𝑛𝑖𝑖3), undesirable (𝑡𝑡−𝑖𝑖𝑖 and 𝑡𝑡𝑛𝑖𝑖𝑖) and highly undesirable
(𝑡𝑡−𝑖𝑖𝑖 and 𝑡𝑡𝑛𝑖𝑖𝑖).

(iv) For class 4S (range is better), the preferences are
highly desirable (𝑡𝑡−𝑖𝑖1 and 𝑡𝑡𝑛𝑖𝑖1), desirable (𝑡𝑡−𝑖𝑖2 and 𝑡𝑡𝑛𝑖𝑖2),
tolerable (𝑡𝑡−𝑖𝑖3 and 𝑡𝑡𝑛𝑖𝑖3), undesirable (𝑡𝑡−𝑖𝑖𝑖 and 𝑡𝑡𝑛𝑖𝑖𝑖), and
highly undesirable (𝑡𝑡−𝑖𝑖𝑖 and 𝑡𝑡𝑛𝑖𝑖𝑖).

For multi-objective problem, the director has not all the
necessary competencies to choose these values. It is why
the collaboration of the working groups is important. For
example, the following scenario can be used to de�ne the
degrees of desirability for a pure mathematical minimization
problem. Supposing that 𝑡𝑡𝑛𝑖𝑖1 𝑟 𝑏𝑏𝑖𝑖𝑖in, 𝑡𝑡𝑛𝑖𝑖𝑖 𝑟 𝑏𝑏𝑖𝑖𝑖ax and (𝑏𝑏𝑖𝑖𝑖ax −𝑏𝑏𝑖𝑖𝑖in) ∕ 𝑖 𝑟 𝑣𝑣𝑖𝑖, the reduced solvability set 𝑏𝑏′ can be divided
as follows: 𝑡𝑡𝑛𝑖𝑖1 𝑟 𝑏𝑏𝑖𝑖𝑖in, 𝑡𝑡𝑛𝑖𝑖2 𝑟 𝑡𝑡𝑛𝑖𝑖1 𝑛 𝑣𝑣𝑖𝑖, 𝑡𝑡𝑛𝑖𝑖3 𝑟 𝑡𝑡𝑛𝑖𝑖2 𝑛 𝑣𝑣𝑖𝑖, 𝑡𝑡𝑛𝑖𝑖𝑖 𝑟𝑡𝑡𝑛𝑖𝑖3 𝑛 𝑣𝑣𝑖𝑖, and 𝑡𝑡𝑛𝑖𝑖𝑖 𝑟 𝑏𝑏𝑖𝑖𝑖ax. For design problem, these values
are set according to the working groups’ competencies and
customer’s requirements.

Step 5. Set solution 𝑗𝑗 𝑟 1. Each working group selects
the target value 𝑏𝑏𝑖𝑖 for each of their objective functions and
transfers these values to the director.

Step 6. e director uses the algorithm proposed by Dauer
and Krueger [19] to solve the following multiobjective goal
programming problem and to obtain the Pareto-optimal
solution 𝑋𝑋𝑗𝑗. is algorithm is detailed in Appendix A. e
last attainment problem for goal 𝑘𝑘 twinned with the linear
physical programming is (𝑃𝑃𝑘𝑘)
Minimize 𝑑𝑑𝑘𝑘
subject to 𝑀𝑀(𝑏𝑏)𝑟𝑋𝑋 𝑋 𝑋𝑋𝑛𝑛 ∣ 𝑔𝑔𝑟𝑟 (𝑋𝑋)≤𝑏𝑏𝑟𝑟, 𝑟𝑟𝑟1,𝑟 ,𝑟𝑟,𝑋𝑋≥0

(3)

and for classes 1S, 3S, and 4S𝑔𝑔𝑟𝑟𝑛𝑖𝑖 (𝑋𝑋) ≡ 𝑓𝑓𝑖𝑖 (𝑋𝑋) − 𝑑𝑑𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘,𝑑𝑑𝑖𝑖 𝑟 𝑑𝑑∗𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘 − 1,𝑓𝑓𝑖𝑖 (𝑋𝑋) ≤ 𝑡𝑡𝑛𝑖𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘,𝑑𝑑𝑘𝑘 ≥ 0 (4)

and for classes 2S, 3S, and 4S𝑔𝑔𝑟𝑟𝑛𝑖𝑖 (𝑋𝑋) ≡ 𝑓𝑓𝑖𝑖 (𝑋𝑋) 𝑛 𝑑𝑑𝑖𝑖 ≥ 𝑏𝑏𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘,𝑑𝑑𝑖𝑖 𝑟 𝑑𝑑∗𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘 − 1,𝑓𝑓𝑖𝑖 (𝑋𝑋) ≥ 𝑡𝑡−𝑖𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘,𝑑𝑑𝑘𝑘 ≥ 0𝑋 (5)

For all classes 𝑋𝑋min ≤ 𝑋𝑋 ≤ 𝑋𝑋max𝑋 (6)

Note. e constraints 𝑔𝑔𝑟𝑟𝑛𝑖𝑖(𝑋𝑋) are called the goals con-
straints.

is step permits to �nd a solution that meets as much as
possible the working group’s preferences.

Step 7. If the working groups are satis�ed with this solution,
stop and go to Step 13, if not, go to Step 8. It is suggested
to generate a certain number of optimal solutions, which are
Pareto optimal before stopping.

Step 8. e director formulates the KKT conditions of the
problem (𝑃𝑃𝑘𝑘) and determines the values of the Kuhn Tucker
multipliers associated with the goals constraints: 𝑢𝑢𝑟𝑟, 𝑟𝑟 𝑟 1,𝑟 , 𝑘𝑘 𝑛 𝑟𝑟.

Step 9. According to the values 𝑢𝑢𝑟𝑟 and by using the algorithm
presented inAppendix B, the director determines the stability
set of the �rst kind𝐺𝐺(𝑋𝑋𝑗𝑗)which is the set of parameter values
for which the optimal solution remains optimal.

Step 10. e director uses the sets subtraction algorithm pre-
sented in Appendix C to obtain the new reduced solvability
set 𝑋𝑏𝑏′−⋃𝑗𝑗𝑝𝑝𝑟1𝐺𝐺(𝑋𝑋𝑝𝑝)𝑋which excludes the stability set. Steps 8,
9, and 10 are necessary to ensure that the work groups will
choose target values leading to other Pareto-optimal solution.

Step 11. If no values can be chosen in 𝑋𝑏𝑏′−⋃𝑗𝑗𝑝𝑝𝑟1𝐺𝐺(𝑋𝑋𝑝𝑝)𝑋, stop
and go to Step 13, otherwise go to Step 12.

Step 12. Set 𝑗𝑗 𝑟 𝑗𝑗 𝑛 1. e working groups select other target
values 𝑏𝑏𝑖𝑖 𝑋 𝑋𝑏𝑏′ − ⋃𝑗𝑗−1𝑝𝑝𝑟1𝐺𝐺(𝑋𝑋𝑝𝑝)𝑋 and go to Step 6. One can
use these rules to select the values and to obtain other Pareto
optimal solutions.

(i) Rule no. 1: It is always necessary to improve the
objective function having the worst value by choosing
its target value in a better zone and by sacri�cing
the other objectives by choosing their target values
in a less desirable zone. e aim of these choices is
to obtain, if possible, all the objective’s values in the
tolerable zone (or better).

(ii) Rule no. 2: Once in the tolerable zone, try other values
in this zone in order to obtain other Pareto-optimal
solutions. e selected values should cover all the
zone. For example, choose a value at one end of the
tolerable zone and the other values at the other end.
One can also try to choose one of the target values
in the desirable zone while leaving the other target
values in the tolerable zone.

(iii) Rule no. 3: if it is impossible to follow the �rst rule due
to the reduced solvability set, try all the possibilities to
�nd the best choice.

Step 13.e director presents all the Pareto-optimal solutions
to the working groups and tries to get consensus for the best
compromise. If other solutions are necessary, go to Step 12.
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T 2: Degrees of desirability for class 1S.

Class 1S—smaller is better (i.e., minimization)𝑓𝑓𝑖𝑖 ≤ 𝑡𝑡𝑛𝑖𝑖1 𝑡𝑡𝑛𝑖𝑖1 < 𝑓𝑓𝑖𝑖 ≤ 𝑡𝑡𝑛𝑖𝑖2 𝑡𝑡𝑛𝑖𝑖2 < 𝑓𝑓𝑖𝑖 ≤ 𝑡𝑡𝑛𝑖𝑖3 𝑡𝑡𝑛𝑖𝑖3 < 𝑓𝑓𝑖𝑖 ≤ 𝑡𝑡𝑛𝑖𝑖𝑖 𝑡𝑡𝑛𝑖𝑖𝑖 < 𝑓𝑓𝑖𝑖 ≤ 𝑡𝑡𝑛𝑖𝑖𝑖
Highly desirable Desirable Tolerable Undesirable Highly undesirable

T 3: Degrees of desirability for class 2S.

Class 2S—larger is better (i.e., maximization)𝑡𝑡−𝑖𝑖𝑖 ≤ 𝑓𝑓𝑖𝑖 < 𝑡𝑡−𝑖𝑖𝑖 𝑡𝑡−𝑖𝑖𝑖 ≤ 𝑓𝑓𝑖𝑖 < 𝑡𝑡−𝑖𝑖3 𝑡𝑡−𝑖𝑖3 ≤ 𝑓𝑓𝑖𝑖 < 𝑡𝑡−𝑖𝑖2 𝑡𝑡−𝑖𝑖2 ≤ 𝑓𝑓𝑖𝑖 < 𝑡𝑡−𝑖𝑖1 𝑡𝑡−𝑖𝑖1 ≤ 𝑓𝑓𝑖𝑖
Highly undesirable Undesirable Tolerable Desirable Highly desirable

T 4: Degrees of desirability for class 3S.

Class 3S—value is better (i.e., seek value)𝑡𝑡−𝑖𝑖𝑖 ≤ 𝑓𝑓𝑖𝑖 < 𝑡𝑡−𝑖𝑖𝑖 ≤ 𝑓𝑓𝑖𝑖 < 𝑡𝑡−𝑖𝑖3 ≤ 𝑓𝑓𝑖𝑖 < 𝑡𝑡−𝑖𝑖2 ≤ 𝑓𝑓𝑖𝑖 < 𝑡𝑡𝑖𝑖1 < 𝑓𝑓𝑖𝑖 ≤ 𝑡𝑡𝑛𝑖𝑖2 < 𝑓𝑓𝑖𝑖 ≤ 𝑡𝑡𝑛𝑖𝑖3 < 𝑓𝑓𝑖𝑖 ≤ 𝑡𝑡𝑛𝑖𝑖𝑖 < 𝑓𝑓𝑖𝑖 ≤ 𝑡𝑡𝑛𝑖𝑖𝑖
Highly undesirable Undesirable Tolerable Desirable Highly desirable Desirable Tolerable Undesirable Highly undesirable

T 5: Degrees of desirability for class 4S.

Class 4S—range is better (i.e., seek range)𝑡𝑡−𝑖𝑖𝑖 ≤ 𝑓𝑓𝑖𝑖 < 𝑡𝑡−𝑖𝑖𝑖 ≤ 𝑓𝑓𝑖𝑖 < 𝑡𝑡−𝑖𝑖3 ≤ 𝑓𝑓𝑖𝑖 < 𝑡𝑡−𝑖𝑖2 ≤ 𝑓𝑓𝑖𝑖 < 𝑡𝑡−𝑖𝑖1 ≤ 𝑓𝑓𝑖𝑖 ≤ 𝑡𝑡𝑛𝑖𝑖1 < 𝑓𝑓𝑖𝑖 ≤ 𝑡𝑡𝑛𝑖𝑖2 < 𝑓𝑓𝑖𝑖 ≤ 𝑡𝑡𝑛𝑖𝑖3 < 𝑓𝑓𝑖𝑖 ≤ 𝑡𝑡𝑛𝑖𝑖𝑖 < 𝑓𝑓𝑖𝑖 ≤ 𝑡𝑡𝑛𝑖𝑖𝑖
Highly undesirable Undesirable Tolerable Desirable Highly desirable Desirable Tolérable Undesirable Highly undesirable

T 6: Classi�cation of the objective functions.

Class 1S Small is better (minimization)
Class 2S Larger is better (maximization)
Class 3S Value is better (seek value)
Class 4S Range is better (seek range)

T 7: Table of objectives values.

Optimal solutions Objective functions𝑋𝑋∗1 𝑓𝑓∗1 𝑋𝑋∗1 𝑓𝑓∗2 𝑋𝑋∗1 ⋯ 𝑓𝑓∗𝑖𝑖 𝑋𝑋∗1𝑋𝑋∗2 𝑓𝑓∗1 𝑋𝑋∗2 𝑓𝑓∗2 𝑋𝑋∗2 ⋯ 𝑓𝑓∗𝑖𝑖 𝑋𝑋∗2⋯ ⋯ ⋯ ⋯ ⋯𝑋𝑋∗𝑖𝑖 𝑓𝑓∗1 𝑋𝑋∗𝑖𝑖 𝑓𝑓∗2 𝑋𝑋∗𝑖𝑖 ⋯ 𝑓𝑓∗𝑖𝑖 𝑋𝑋∗𝑖𝑖
4. Numerical Examples

In this section, the interactive multi-objective procedure is
applied to two design problems. e �rst problem consists
of a set of simple analytical expressions for its objective and
constraint functions and was presented by Tappeta et al.
[13]. is problem is chosen to illustrate the key features of
the approach and to compare with the results obtained by
those authors. e second problem is the design of a two-
bar structure that is subjected to a force, F, at a point that
vertically de�ects by an amount 𝑑𝑑. In both cases, the IMOP
approach is implemented in Matlab 7.0.4.365 (R14) and the
optimization process was conducted on Pentium D duo core
3.4GHz and 2GB RAM.e computational time is less than
1 minute.

4.1. Test Problem 1. is problem was introduced by Tappeta
et al. [13] and has three design variables, three objective func-
tions, and a constraint. e problem de�nition in standard
formand the application of the IMOPapproach are as follows:

Minimize 𝐹𝐹 (𝑋𝑋) 𝑟 𝑓𝑓1 (𝑋𝑋) , 𝑓𝑓2 (𝑋𝑋) , 𝑓𝑓3 (𝑋𝑋)
subject to 𝑔𝑔1 (𝑋𝑋) 𝑟 12 − 𝑥𝑥21 − 𝑥𝑥22,𝑋𝑋 ≥ 0, (7)

where𝑓𝑓1 (𝑋𝑋) 𝑟 10 − 𝑥𝑥31 𝑛 𝑥𝑥21 1 𝑛 𝑥𝑥2 𝑛 𝑥𝑥3 𝑛 𝑥𝑥32 𝑛 𝑥𝑥3310 ,𝑓𝑓2 (𝑋𝑋) 𝑟 1𝑖 − 𝑥𝑥31 𝑛 2𝑥𝑥32 𝑛 𝑥𝑥22 2 𝑛 𝑥𝑥1 𝑛 𝑥𝑥3 𝑛 𝑥𝑥3310 ,𝑓𝑓3 (𝑋𝑋) 𝑟 20 − 𝑥𝑥31 𝑛 𝑥𝑥32 𝑛 3𝑥𝑥33 𝑛 𝑥𝑥23 3 𝑛 𝑥𝑥1 𝑛 𝑥𝑥210 𝑋 (8)

For this example, we suppose that 𝑓𝑓1(𝑋𝑋) and 𝑓𝑓2(𝑋𝑋) needed
speci�c competencies so they are assigned to a working
group and 𝑓𝑓3(𝑋𝑋) need other competencies so it is assigned
to another group. erefore, the procedure proceeds with a
director and two working groups.

Step 1. Each working group classi�es its objective functions:
Working group 1 classi�es 𝑓𝑓1(𝑋𝑋) in class 1S,
Working group 1 classi�es 𝑓𝑓2(𝑋𝑋) in class 1S,
Working group 2 classi�es 𝑓𝑓3(𝑋𝑋) in class 1S.

Step 2. For the 𝑘𝑘 objective functions, each working group
solves its single optimization problem individually according
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T 8: Optimal values for the objective functions of test Problem
1.𝑋𝑋∗𝑖𝑖 𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑓𝑓∗𝑖𝑖
Working group 1 3.2539 0.8402 0.8402 3.5980
Working group 1 0.4651 3.4011 0.4651 3.7221
Working group 2 0.3169 0.3169 3.4350 3.5471

to the category chosen in 1. e optimal solutions are𝑋𝑋∗𝑖𝑖, 𝑖𝑖 𝑟 1,𝑟 , 𝑘𝑘. e optimal values of the objective
functions are noted to be 𝑓𝑓∗𝑖𝑖 , 𝑖𝑖 𝑟 1,𝑟 , 𝑘𝑘 and are presented
in Table 8.

Step 3. e director evaluates the value of the other 𝑘𝑘 − 1
objective function at the 𝑘𝑘 optimal solutions and constructs
the 𝑘𝑘 𝜌 𝑘𝑘 table of the objective values. From Table 9, the
director knows the best and the worst values for each objec-
tive function. ese values are noted to be 𝑏𝑏𝑖𝑖 min, 𝑏𝑏𝑖𝑖 max, 𝑖𝑖 𝑟1,𝑟 , 𝑘𝑘. e approach proceeds by determining the reduced
solvability set 𝑏𝑏′ 𝑟 𝑋𝑋𝑏𝑏𝑋 ∣ 𝑏𝑏𝑖𝑖 min ≤ 𝑏𝑏𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖 max, 𝑖𝑖 𝑟 1,𝑟 , 𝑘𝑘𝑋
where 𝑏𝑏 is the set of parameters for which the problem is
solvable.

e reduced solvability set is3𝑋𝑖980 ≤ 𝑏𝑏1 ≤ 𝑖𝑋9𝑖0𝑖,3𝑋7221 ≤ 𝑏𝑏2 ≤ 10𝑋9𝑖6𝑖,3𝑋𝑖𝑖71 ≤ 𝑏𝑏3 ≤ 1𝑖𝑋8771.
Step 4. e director presents the reduced solvability set 𝑏𝑏′
to the working groups to seek their preferences for each
objective function. ese values are set according to the
working groups’ knowledge and experience. For class 1S,
each working group determines the degrees of desirability𝑡𝑡𝑛𝑖𝑖1, 𝑡𝑡𝑛𝑖𝑖2, 𝑡𝑡𝑛𝑖𝑖3, 𝑡𝑡𝑛𝑖𝑖𝑖, 𝑡𝑡𝑛𝑖𝑖𝑖𝑀. Table 10 shows the degrees of desirability
�xed by Tappeta et al. [13]. ese degrees of desirability are
used to be able to compare the results.

It is obvious that the degrees of desirability 𝑡𝑡𝑛𝑖𝑖2 for the
objective functions 𝑓𝑓1 and 𝑓𝑓2 could never be reached, since
they are not included in the reduced solvability set: the
minimal value for the objective function 𝑓𝑓1 is 3.5980 and
for 𝑓𝑓2 is 3.7221. is example shows that the degrees of
desirability should not be given blindly to prevent the choice
of scenarios which are not feasible. Table 11 shows more
realistic degrees of desirability. ese degrees of desirability
are obtained by dividing the solvability set 3𝑋𝑖980 ≤ 𝑏𝑏1 ≤𝑖𝑋9𝑖0𝑖, 3𝑋7221 ≤ 𝑏𝑏2 ≤ 10𝑋9𝑖6𝑖 and 3𝑋𝑖𝑖71 ≤ 𝑏𝑏3 ≤ 1𝑖𝑋8771
according to this scenario: we suppose that the worst value is
undesirable (𝑡𝑡𝑛𝑖𝑖𝑖 𝑟 𝑏𝑏𝑖𝑖𝑖ax) and we calculate (𝑏𝑏𝑖𝑖𝑖ax −𝑏𝑏𝑖𝑖𝑖in)/𝑖 𝑟𝑣𝑣𝑖𝑖 to �nd the following degrees of desirability: 𝑡𝑡𝑛𝑖𝑖1 𝑟 𝑡𝑡𝑛𝑖𝑖2 − 𝑣𝑣𝑖𝑖,𝑡𝑡𝑛𝑖𝑖2 𝑟 𝑡𝑡𝑛𝑖𝑖3 − 𝑣𝑣𝑖𝑖, 𝑡𝑡𝑛𝑖𝑖3 𝑟 𝑡𝑡𝑛𝑖𝑖𝑖 − 𝑣𝑣𝑖𝑖, 𝑡𝑡𝑛𝑖𝑖𝑖 𝑟 𝑏𝑏𝑖𝑖𝑖ax, and 𝑡𝑡𝑛𝑖𝑖𝑖 𝑟 𝑡𝑡𝑛𝑖𝑖𝑖 𝑛 𝑣𝑣𝑖𝑖.

We assume that preferences are uniformly distributed
across the solvability set but it is not necessarily always the
case.

Step 5. Set solution 𝑗𝑗 𝑟 1. e working groups select the
target values 𝑏𝑏𝑖𝑖 for each objective function. It is obvious that

T 9: Objective function values table for test Problem 1.𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑓𝑓1 𝑓𝑓2 𝑓𝑓3𝑋𝑋∗1 3.2539 0.8402 0.8402 3.5980 10.9465 15.8166𝑋𝑋∗2 0.4651 3.4011 0.4651 5.9405 3.7221 15.8771𝑋𝑋∗3 0.3169 0.3169 3.4350 5.8929 10.8797 3.5471

T 10:e degrees of desirability speci�ed by Tappeta et al. [13].

Criteria Class HD D T U HU𝑡𝑡𝑛𝑖𝑖1 𝑡𝑡𝑛𝑖𝑖2 𝑡𝑡𝑛𝑖𝑖3 𝑡𝑡𝑛𝑖𝑖𝑖 𝑡𝑡𝑛𝑖𝑖𝑖𝑓𝑓1 1S 3.0 4.25 6.0 7.5 9.0𝑓𝑓2 1S 3.7 7.0 9.25 11.8 12.5𝑓𝑓3 1S 6.0 12.0 15.0 18.0 20.0
HD: (highly desirable ≤ 𝑡𝑡𝑛𝑖𝑖1), D: (𝑡𝑡𝑛𝑖𝑖1 < desirable ≤ 𝑡𝑡𝑛𝑖𝑖2), T: (𝑡𝑡𝑛𝑖𝑖2 < tolerable ≤𝑡𝑡𝑛𝑖𝑖3), ID: (𝑡𝑡𝑛𝑖𝑖3 < undesirable ≤ 𝑡𝑡𝑛𝑖𝑖𝑖), IA: (𝑡𝑡𝑛𝑖𝑖𝑖 < highly undesirable ≤ 𝑡𝑡𝑛𝑖𝑖𝑖).

T 11: e working group’s preferences for test Problem 1.

Criteria Class I D T ID IA𝑡𝑡𝑛𝑖𝑖1 𝑡𝑡𝑛𝑖𝑖2 𝑡𝑡𝑛𝑖𝑖3 𝑡𝑡𝑛𝑖𝑖𝑖 𝑡𝑡𝑛𝑖𝑖𝑖𝑓𝑓1 1S 4.1836 4.7693 5.3549 5.9405 6.5261𝑓𝑓2 1S 5.5282 7.3343 9.1404 10.9465 12.7526𝑓𝑓3 1S 6.6296 9.7121 12.7946 15.8771 18.9596
HD: (highly desirable ≤ 𝑡𝑡𝑛𝑖𝑖1), D: (𝑡𝑡𝑛𝑖𝑖1 < desirable ≤ 𝑡𝑡𝑛𝑖𝑖2), T: (𝑡𝑡𝑛𝑖𝑖2 < tolerable ≤𝑡𝑡𝑛𝑖𝑖3), ID: (𝑡𝑡𝑛𝑖𝑖3 < undesirable ≤ 𝑡𝑡𝑛𝑖𝑖𝑖), IA: (𝑡𝑡𝑛𝑖𝑖𝑖 < highly undesirable ≤ 𝑡𝑡𝑛𝑖𝑖𝑖).
each working group wants to obtain the better value for their
objective functions. So they will choose target values in the
highly desirable zone. We assume that the approach starts
with the target values corresponding to 𝑡𝑡𝑛𝑖𝑖1:

Working group 1 sets the target value of 𝑏𝑏1 at 4.1836
(highly desirable),
Working group 2 sets the target value of 𝑏𝑏2 at 5.5282
(highly desirable),
Working group 3 sets the target value of 𝑏𝑏3 at 6.6296
(highly desirable).

Step 6. With the target values supplied by the working
groups, the director uses the algorithm proposed by Dauer
and Krueger [19] given in Appendix A to solve the multi-
objective goal programming problem and to obtain a �rst
Pareto optimal solution𝑋𝑋1:𝑋𝑋1 𝑟 (2𝑋8𝑖68, 1𝑋877𝑖, 0𝑋𝑖𝑖98),𝑓𝑓1 𝑟 𝑖𝑋1836 (the value of 𝑓𝑓1 is in the highly desirable

zone),𝑓𝑓2 𝑟 9𝑋𝑖178 (the value of 𝑓𝑓2 is in the undesirable
zone),𝑓𝑓3 𝑟 16𝑋711𝑖 (the value of 𝑓𝑓3 is in the highly
undesirable zone).

Step 7. If the working groups are satis�ed with this solution,
stop and go to Step 13, if not, go to Step 8. For this case,
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we assume that the working groups 1 and 2 are not satis�ed
since the values of their objective functions 𝑓𝑓2 and 𝑓𝑓3 are
in the undesirable and highly undesirable zones, respectively,
and want to generate another solution. Go to Step 8. Steps 8,
9, and 10 are necessary to ensure that the work groups will
choose target values leading to other Pareto-optimal solution.

Step 8. e director formulates the KKT conditions of the
problem and determines the values of the Kuhn Tucker
multipliers associated with the goal constraints 𝑢𝑢𝑟𝑟, 𝑟𝑟 𝑟 1,𝑟 ,𝑘𝑘 𝑛 𝑟𝑟,𝑢𝑢2 𝑟 1𝑋2771 𝜌 10𝑖, 𝑢𝑢3 𝑟 𝑖𝑋6776 𝜌 10𝑖, 𝑢𝑢𝑖 𝑟 1𝑋 (9)

Step 9. According to the values 𝑢𝑢𝑟𝑟, and by using the algorithm
of Osman [20] given in Appendix B, the director determines
the stability set 𝐺𝐺(𝑋𝑋1)

Given 𝑢𝑢2 > 0 and 𝑔𝑔2 = 4.1836 then 𝑏𝑏1 = 4.1836,

Given 𝑢𝑢3 > 0 and 𝑔𝑔3 = 5.5282 then 𝑏𝑏2 = 5.5282,

Given 𝑢𝑢𝑖 > 0 and 𝑔𝑔𝑖 = 6.6296 then 𝑏𝑏3 = 6.6296.

Step 10. e director uses the sets subtraction algorithm
proposed by Abdel Haleem [17] given in Appendix C to
obtain the new reduced solvability set 𝑋𝑏𝑏′ − ⋃𝑗𝑗𝑝𝑝𝑟1𝐺𝐺(𝑋𝑋𝑝𝑝)𝑋
given in Table 12.

Step 11. If no values can be selected in 𝑋𝑏𝑏′−⋃𝑗𝑗𝑝𝑝𝑟1𝐺𝐺(𝑋𝑋𝑝𝑝)𝑋 stop
and go to Step 13, otherwise go to Step 12. In this case, other
values can be chosen in Table 10 so go to Step 12.

Step 12. Set 𝑗𝑗 𝑟 𝑗𝑗 𝑛 1. e working groups select other target
values for their objective function in 𝑏𝑏𝑗𝑗 𝑋 𝑋𝑏𝑏′ −⋃𝑗𝑗−1𝑝𝑝𝑟1𝐺𝐺(𝑋𝑋𝑝𝑝)𝑋
and go to Step 6.e solutions obtained are presented inTable
13.

e third Pareto-optimal solution seems to be the best
one because all the objective values match the target values
according to Table 10. is solution can be considered
satisfactory and a good compromise for all the working
groups.

Step 13. e director presents the Pareto-optimal solutions
obtained to the working groups to select the best one for
everyone (stop). If other solutions are necessary go to Step 12.
Although the solutions obtained in the six iterations are
Pareto optimal, the best Pareto-optimal solutions according
to the working group’s preferences (desirability) are solutions
3 and 4.ese solutions can be retained for implementation.

Finally, it is also interesting to know if the solutions
(Pareto points) obtained by this approach are close to certain
targeted aspiration points. To do this, we compare the
obtained results with the Pareto-optimal results obtained by

T 12: e reduced solvability set for test Problem 1.

Set
number 𝑏𝑏1min 𝑏𝑏1max 𝑏𝑏2min 𝑏𝑏2max 𝑏𝑏3min 𝑏𝑏3max
1 3.5980 4.1836 3.7221 10.9465 3.5471 15.8771
2 4.1836 5.9405 3.7221 10.9465 3.5471 15.8771
3 4.1836 4.1836 3.7221 5.5282 3.5471 15.8771
4 4.1836 4.1836 5.5282 10.9465 3.5471 15.8771
5 4.1836 4.1836 5.5282 5.5282 3.5471 6.6296
6 4.1836 4.1836 5.5282 5.5282 6.6296 15.8771

T 13: Pareto-optimal solutions generated by the approach.

Solution j Target values 𝑏𝑏𝑖𝑖 Objective function values𝑓𝑓𝑖𝑖𝑏𝑏1 𝑟 𝑖𝑋1836
(highly desirable)

𝑓𝑓1 𝑟 𝑖𝑋1836
(highly desirable)

1 𝑏𝑏2 𝑟 𝑖𝑋𝑖282
(highly desirable)

𝑓𝑓2 𝑟 9𝑋𝑖178
(undesirable)𝑏𝑏3 𝑟 6𝑋6296

(highly desirable)
𝑓𝑓3 𝑟 16𝑋711𝑖

(highly undesirable)𝑏𝑏1 𝑟 𝑖𝑋𝑖 (desirable) 𝑓𝑓1 𝑟 𝑖𝑋𝑖 (desirable)
2 𝑏𝑏2 𝑟 8 (tolerable) 𝑓𝑓2 𝑟 8𝑋6799 (tolerable)𝑏𝑏3 𝑟 13 (undesirable) 𝑓𝑓3 𝑟 16𝑋8𝑖79

(highly undesirable)𝑏𝑏1 𝑟 𝑖𝑋2 (tolerable) 𝑓𝑓1 𝑟 𝑖𝑋2 (tolerable)
3 𝑏𝑏2 𝑟 9 (tolerable) 𝑓𝑓2 𝑟 9 (tolerable)𝑏𝑏3 𝑟 1𝑖 (undesirable) 𝑓𝑓3 𝑟 1𝑖𝑋8087 (undesirable)𝑏𝑏1 𝑟 𝑖𝑋3 (tolerable) 𝑓𝑓1 𝑟 𝑖𝑋3 (tolerable)
4 𝑏𝑏2 𝑟 9𝑋1 (tolerable) 𝑓𝑓2 𝑟 9𝑋1 (tolerable)𝑏𝑏3 𝑟 12𝑋𝑖 (tolerable) 𝑓𝑓3 𝑟 1𝑖𝑋𝑖381 (undesirable)𝑏𝑏1 𝑟 𝑖𝑋9 (undesirable) 𝑓𝑓1 𝑟 𝑖𝑋9 (undesirable)
5 𝑏𝑏2 𝑟 8𝑋9 (tolerable) 𝑓𝑓2 𝑟 8𝑋9 (tolerable)𝑏𝑏3 𝑟 12𝑋6 (tolerable) 𝑓𝑓3 𝑟 13𝑋01𝑖7 (undesirable)𝑏𝑏1 𝑟 𝑖 (tolerable) 𝑓𝑓1 𝑟 𝑖 (tolerable)
6 𝑏𝑏2 𝑟 10 (undesirable) 𝑓𝑓2 𝑟 10 (undesirable)𝑏𝑏3 𝑟 12 (tolerable) 𝑓𝑓3 𝑟 13𝑋9899 (undesirable)
Tappeta et al. [13] at speci�c aspiration points. e com-
parison is presented in Table 14.

For a minimization problem, we want to �nd a better
(smaller) solution than or equal the aspiration values. e
symbol (+) indicates that the solution obtained by our
approach is worse (bigger) than the aspiration values, the
symbol (𝑟) indicates that the solution obtained is the same
(equal) as the aspiration values, and the symbol (−) indicates
that the solution obtained is better (smaller) than the aspi-
ration values. e solutions obtained with our algorithm are
considered better than or equal to those found by Tappeta
et al. [13] if the number of symbols (−) and (𝑟) exceeds the
number of symbols (+). For the �rst solution, the number of
symbols (−) and (𝑟) is 2 for the IMOP algorithm and the
number of symbols (−) and (𝑟) is 1 for Tappet et al. [13].
ese results are very encouraging because they demonstrate
that our approach can �nd solutions closer to the working
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T 14: Aspiration points and Pareto data from Tappeta et al. [13].

Aspiration values (target values) Pareto points Tappeta et al. [13] Pareto points IMOP approach
1 2 3 1 2 3 1 2 3
7.483 6.788 11.285 6.956 (−) 7.437 (+) 11.496 (+) 6.9722 (−) 6.7880 (=) 12.3239 (+)
5.400 6.788 16.927 5.413 (+) 6.916 (+) 16.218 (−) 4.4679 (−) 5.1878 (−) 16.3795 (−)
6.016 10.183 11.285 3.994 (−) 10.095 (−) 16.130 (+) 6.0002 (−) 9.9646 (−) 10.7528 (−)
3.933 10.183 16.927 4.708 (+) 8.689 (−) 16.259 (−) 3.9235 (−) 10.0191 (−) 16.4693 (−)

ww

h

F

F 2: Two-bar truss example.

group’s requirements (aspiration values) than algorithms
available in the literature.

4.2. Test Problem 2. e second problem is the design of a
two-bar structure that is subjected to a force, F, at a point
that vertically de�ects by an amount, d. is optimization
problem involves the minimization of the mass, m, the
normal stress, s, and the vertical de�ection, d, of a two-bar
truss. e design variables are the diameter of the member,𝑥𝑥1 = a, and the height, 𝑥𝑥2 = h. Normal stress must be less than
the buckling stress, as a constraint. A graphical representation
of the truss is shown in Figure 2 [21]. e speci�c parameter
values are as follows: 𝐹𝐹 𝑟 1𝑖0 kN, 𝑡𝑡 𝑟 2𝑋𝑖mm, structure
width 𝑤𝑤 𝑟 7𝑖0mm, mass density 𝜌𝜌 𝑟 7𝑋8 𝜌 10−3 g/mm3, and
elastic modulus 𝐸𝐸 𝑟 210000N⋅mm2.

e problem’s formulation is as follows:

Minimize 𝑓𝑓1 (𝑋𝑋) 𝑟 𝑟𝑟 𝑟 2𝑚𝑚𝜌𝜌𝑡𝑡𝑥𝑥1𝑤𝑤2 𝑛 𝑥𝑥22,𝑓𝑓2 (𝑋𝑋) 𝑟 𝑠𝑠 𝑟 𝐹𝐹2𝑚𝑚𝑡𝑡𝑥𝑥1𝑥𝑥2𝑤𝑤2 𝑛 𝑥𝑥22,𝑓𝑓3 (𝑋𝑋) 𝑟 𝑑𝑑 𝑟 𝐹𝐹𝑤𝑤2 𝑛 𝑥𝑥223/22𝑚𝑚𝑡𝑡𝐸𝐸𝑥𝑥1𝑥𝑥22
subject to 𝑔𝑔1 (𝑋𝑋)𝑟 𝐹𝐹2𝑚𝑚𝑡𝑡𝑥𝑥1𝑥𝑥2𝑤𝑤2𝑛𝑥𝑥22− 18𝑚𝑚2𝐸𝐸 𝑡𝑡2 𝑛 𝑥𝑥21𝑤𝑤2 𝑛 𝑥𝑥22 ≤0,1 ≤ 𝑥𝑥1 ≤ 100,10 ≤ 𝑥𝑥2 ≤ 1000𝑋

(10)

T 15: Optimal values for the objective function of test Problem
2.𝑋𝑋∗𝑖𝑖 𝑥𝑥1 𝑥𝑥2 𝑓𝑓∗𝑖𝑖
Working group 1 39.2944 335.6810 3956
Working group 2 100 1000 119.3662
Working group 3 100 1000 0.8881

T 16: Objective function values table for test Problem 2.𝑥𝑥1 𝑥𝑥2 𝑓𝑓1 𝑓𝑓2 𝑓𝑓3𝑋𝑋∗1 39.2944 335.6810 3956 595 6𝑋𝑋∗2 100 1000 15315 119.3662 0.8881𝑋𝑋∗3 100 1000 15315 119.3662 0.8881

For this example, we assume that each objective function
needs speci�c competencies so one objective function is
assigned to a working group. e procedure proceeds with
a director and three working groups.

Step 1. Each working group classi�es its objective function:

Working group 1 classi�es 𝑓𝑓1(𝑋𝑋) in class 1S,
Working group 2 classi�es 𝑓𝑓2(𝑋𝑋) in class 1S,
Working group 3 classi�es 𝑓𝑓3(𝑋𝑋) in class 1S.

Step 2. Each working group solves its single optimization
problem according to the category chosen in 1. e optimal
solutions are 𝑋𝑋∗𝑖𝑖, 𝑖𝑖 𝑟 1,𝑟 , 3. e optimal values of the
objective functions are noted to be 𝑓𝑓∗𝑖𝑖 , 𝑖𝑖 𝑟 1,𝑟 , 3 and are
presented in Table 15.

Step 3. e director evaluates the two other objective func-
tions at the three optimal solutions and constructs the 3 𝜌 3
table of the objective functions’ values. From Table 16, the
director knows the best and the worst values for each objec-
tive function. ese values are noted to be 𝑏𝑏𝑖𝑖 min, 𝑏𝑏𝑖𝑖 max, 𝑖𝑖 𝑟1,𝑟 , 3. e approach proceeds by determining the reduced
solvability set denoted by 𝑏𝑏′ where 𝑏𝑏′ 𝑟 𝑋𝑏𝑏 ∣ 𝑏𝑏𝑖𝑖 min ≤ 𝑏𝑏𝑖𝑖 ≤𝑏𝑏𝑖𝑖 max, 𝑖𝑖 𝑟 1,𝑟 , 3𝑋 and 𝑏𝑏 is the set of parameters for which
the problem is solvable.

e reduced solvability set is39𝑖6 ≤ 𝑏𝑏1 ≤ 1𝑖31𝑖,119𝑋3662 ≤ 𝑏𝑏2 ≤ 𝑖9𝑖,0𝑋8881 ≤ 𝑏𝑏3 ≤ 6.
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T 17: Working group’s preferences for test Problem 2.

Function Class HD D T U HU𝑡𝑡𝑛𝑖𝑖1 𝑡𝑡𝑛𝑖𝑖2 𝑡𝑡𝑛𝑖𝑖3 𝑡𝑡𝑛𝑖𝑖𝑖 𝑡𝑡𝑛𝑖𝑖𝑖𝑓𝑓1 1S 4450 4550 4650 4750 4850𝑓𝑓2 1S 370 390 400 450 500𝑓𝑓3 1S 2 2.5 3 3.5 4
HD: (highly desirable ≤ 𝑡𝑡𝑛𝑖𝑖1), D: (𝑡𝑡𝑛𝑖𝑖1 < desirable ≤ 𝑡𝑡𝑛𝑖𝑖2), T: (𝑡𝑡𝑛𝑖𝑖2 < tolerable ≤𝑡𝑡𝑛𝑖𝑖3), ID: (𝑡𝑡𝑛𝑖𝑖3 < undesirable ≤ 𝑡𝑡𝑛𝑖𝑖𝑖), IA: (𝑡𝑡𝑛𝑖𝑖𝑖 < highly undesirable ≤ 𝑡𝑡𝑛𝑖𝑖𝑖).
Step 4. e director presents the reduced solvability set 𝑏𝑏′
to the working groups to seek their preferences for each
objective function. ese values are set according to the
working groups’ knowledge and experience. For class 1S, each
working group determines 𝑡𝑡𝑛𝑖𝑖1, 𝑡𝑡𝑛𝑖𝑖2, 𝑡𝑡𝑛𝑖𝑖3, 𝑡𝑡𝑛𝑖𝑖𝑖, 𝑡𝑡𝑛𝑖𝑖𝑖. Table 17 shows
the degrees of desirability determined by Messac and Ismail-
Yahaya [21]. ese degrees of desirability are used to be
able to compare the results. ese degrees of desirability are
realistic because they are inside the reduced solvability set
determined in Step 3.

Step 5. Set solution 𝑗𝑗 𝑟 1. Each working group selects the
target values 𝑏𝑏𝑖𝑖 for its objective function. We assume that
the working groups will not make a compromise, and they
will choose target values in the highly desirable zone. e
approach starts with the target value corresponding to 𝑡𝑡𝑛𝑖𝑖1:

Working group 1 sets target value 𝑏𝑏1 at 4450 (highly
desirable),
Working group 2 sets target value 𝑏𝑏2 at 370 (highly
desirable),
Working group 3 sets target value 𝑏𝑏3 at 2 (highly
desirable).

Step 6. With the target values supplied by the working
groups, the director uses the algorithm proposed by Dauer
and Krueger [19] given in Appendix A to solve the multi-
objective goal programming problem and to obtain a �rst
Pareto optimal solution𝑋𝑋1:𝑋𝑋1 𝑟 (37𝑋8392 𝑖99𝑋0083),𝑓𝑓1 𝑟 𝑖𝑖𝑖0 (the value of 𝑓𝑓1 is in the highly desirable

zone),𝑓𝑓2 𝑟 𝑖0𝑖𝑋3889 (the value of 𝑓𝑓2 is in the undesirable
zone),𝑓𝑓3 𝑟 2𝑋9618 (the value of 𝑓𝑓3 is in the tolerable zone).

Step 7. If the working groups are satis�ed with this solution,
stop and go to Step 13, if not, go to Step 8. For this problem,
we assume thatworking group 2 is not satis�ed since the value
of its objective function is in the undesirable zone and wants
to generate another solution. Go to Step 8. Steps 8, 9, and 10
are necessary to ensure that the working groups will choose
target values leading to other Pareto-optimal solution.

T 18: e reduced solvability set for test Problem 2.

Set no: 𝑏𝑏1min 𝑏𝑏1max 𝑏𝑏2min 𝑏𝑏2max 𝑏𝑏3min 𝑏𝑏3max
1 3956 4450 119 595 1 6
2 4450 15315 119 370 1 6
3 4450 15315 370 595 1 2

T 19: Pareto-optimal solutions generated for Problem test 2.

Solution Target values 𝑏𝑏𝑖𝑖 Objective function
values 𝑓𝑓𝑖𝑖𝑏𝑏1 𝑟 𝑖𝑖𝑖0

(highly desirable)
𝑓𝑓1 𝑟 𝑖𝑖𝑖0

(highly desirable)

1 𝑏𝑏2 𝑟 370
(highly desirable)

𝑓𝑓2 𝑟 𝑖0𝑖𝑋3889
(undesirable)𝑏𝑏3 𝑟 2

(highly desirable)
𝑓𝑓3 𝑟 2𝑋9618
(tolerable)𝑏𝑏1 𝑟 𝑖600

(tolerable)
𝑓𝑓1 𝑟 𝑖600
(tolerable)

2 𝑏𝑏2 𝑟 39𝑖
(tolerable)

𝑓𝑓2 𝑟 386𝑋1𝑖90
(desirable)𝑏𝑏3 𝑟 1𝑋8

(highly desirable)
𝑓𝑓3 𝑟 2𝑋7917
(tolerable)𝑏𝑏1 𝑟 𝑖𝑖6𝑖

(tolerable)
𝑓𝑓1 𝑟 𝑖𝑖6𝑖
(tolerable)

3 𝑏𝑏2 𝑟 369
(highly desirable)

𝑓𝑓2 𝑟 390𝑋0621
(tolerable)𝑏𝑏3 𝑟 2𝑋8

(tolerable)
𝑓𝑓3 𝑟 2𝑋8269
(tolerable)

Step 8. e director formulates the KKT conditions for the
problem and determines the values of the Kuhn Tucker
multipliers associated with the goal constraints 𝑢𝑢𝑟𝑟, 𝑟𝑟 𝑟1,𝑟 , 𝑘𝑘 𝑛 𝑟𝑟 𝑢𝑢2 𝑟 0, 𝑢𝑢3 𝑟 0, 𝑢𝑢𝑖 𝑟 0𝑋 (11)

Step 9. According to the values 𝑢𝑢𝑟𝑟, and by using the algorithm
of Osman [20] given in Appendix B, the director determines
the stability set 𝐺𝐺(𝑋𝑋𝑗𝑗):

Given 𝑢𝑢2 = 0 and 𝑔𝑔2 = 4450 then 𝑏𝑏1 ≥ 𝑖𝑖𝑖0,
Given 𝑢𝑢3 = 0 and 𝑔𝑔3 = 370 then 𝑏𝑏2 ≥ 370,
Given 𝑢𝑢𝑖 = 0 and 𝑔𝑔𝑖 = 2 then 𝑏𝑏3 ≥ 2.

Step 10. e director uses the sets subtraction algorithm
proposed by Abdel Haleem [17] given in Appendix C to
obtain the reduced solvability set 𝑋𝑏𝑏′ − ⋃𝑗𝑗𝑝𝑝𝑟1𝐺𝐺(𝑋𝑋𝑝𝑝)𝑋 given
in Table 18.
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T 20: Results’ comparison.

Two-bar structure
characteristics

Results
IMOP approach

Results of Messac
and Ismail-Yahaya

[21]
Diameter 𝑥𝑥1 3.80 cm 3.80 cm
Height 𝑥𝑥2 64.2 cm 63.26 cm

Mass 𝑓𝑓1 4.600 kg
(Tolerable)

4.565 kg
(Tolerable)

Normal stress 𝑓𝑓2 386 N (desirable) 390 N (tolerable)
Vertical de�ection𝑓𝑓3 2.7917 (tolerable) 2.826 (tolerable)

Step 11. If no target values can be chosen in 𝑋𝑏𝑏′−⋃𝑗𝑗𝑝𝑝𝑟1𝐺𝐺(𝑋𝑋𝑝𝑝)𝑋
stop and go to Step 13, otherwise go to Step 12. In this case,
other values can be chosen in Table 18 so go to Step 12.

Step 12. Set 𝑗𝑗 𝑟 𝑗𝑗 𝑛 1. e working groups select other target
values for the goal vector 𝑏𝑏𝑗𝑗 𝑋 𝑋𝑏𝑏′ − ⋃𝑗𝑗−1𝑝𝑝𝑟1𝐺𝐺(𝑋𝑋𝑝𝑝)𝑋 and go to
Step 6. Some solution results are presented in Table 19.

e second Pareto-optimal solution seems to be the best
one because all the objective values are in the tolerable or
desirable zone according to Table 17. is solution can be
considered satisfactory and a good compromise for all the
working groups.

Step 13. e director presents the Pareto-optimal solutions to
the working groups to select the best solution for everyone
(stop). If other solutions are necessary go to Step 12.

Table 20 shows the results obtained for the characteristics
of the two-bar structure.

For the normal stress function, the result obtained with
the IMOP approach is in the desirable zonewhile the solution
obtained by Messac et Ismail-Yahaya [21] is in the tolerable
zone according Table 17. is means that working group 2
is better satis�ed with our solution. For the other functions,
both results are in the same zone according Table 17. e
difference between the results is that our solution is obtained
by an interactive and collaborative process between the
DM and the working groups and it is possible to generate
several design scenarios (Pareto-optimal solutions) without
changing the degrees of desirability. Messac and Ismail-
Yahaya [21] provide information for only one design scenario
(i.e., a single Pareto solution). If we want another solution
we have to change the degrees of desirability. is IMOP
algorithm has permitted to convergence to a solution that
is acceptable for all the working groups. As shown, this
procedure offers more �exibility for the director and his/her
working groups.

5. Conclusion

e IMOP approach developed in this paper is an extension
of the interactive nonlinear goal programming algorithm
of Abdel Haleem [17]. e �rst contribution of the IMOP

algorithm is the ability to de�ne a reduced set of target
values that can be divided into degrees of desirability to
capture the working groups’ preferences.is is an important
contribution because it is a challenging issue in multi-
objective optimization. It also subtracts the stability set from
the reduced set of target values at each iteration, thus ensuring
a different Pareto-optimal solution each time. Also, the
distribution of the objective functions amongworking groups
is bene�cial to consider disciplinary knowledge and experi-
ence in determining the degrees of desirability. e IMOP
approach generates as many new Pareto optimal solutions
(design alternatives) as needed.ese solutionsmeet asmuch
as possible the requirements of the working groups. Also, the
application of the decision that rules for choosing the target
values permits the convergence to Pareto-optimal solutions
in the same desirability zone (or better) for all the objectives.
e approach has been successfully applied to two problems.
It is true that these problems are simple but they make the
application of the IMOP approach clear. In this paper, the
multi-objective optimization process is centralized. Future
work is also planned to use the IMOP algorithm in the case
where the multi-objective optimization process is not under
the control of the director but distributed to the working
groups. We will be interesting by multidisciplinary opti-
mization. Multidisciplinary optimization is a methodology
used for designing complex systems that must satisfy many
constraints and that must be carried out in a decentralized
environment. Multidisciplinary optimization assumes a form
of collaboration between the working groups because the
decision variables are under the control of several working
groups. e multidisciplinary optimization approaches are
Concurrent subspace optimization [22–24] Bilevel integrated
system synthesis [24, 25] Collaborative optimization [22, 24,
26] and Analytical Target Cascading method [27]. We are
working to combine the IMOP algorithm with one of these
optimization approaches.

Appendices

A. Algorithm of Dauer and Krueger [19]

We consider the classical nonlinear goal programming prob-
lem with 𝑘𝑘 goals (objective functions), subject 𝑜𝑜 a set of
constraints 𝑋𝑀𝑀𝑋𝑀:(NLGP): 𝑓𝑓1 (𝑋𝑋) ≤ 𝑏𝑏1𝑓𝑓2 (𝑋𝑋) ≤ 𝑏𝑏2⋮𝑓𝑓𝑘𝑘 (𝑋𝑋) ≤ 𝑏𝑏𝑘𝑘
subject to 𝑀𝑀𝑟𝑋𝑋𝑋𝑋𝑋𝑛𝑛 ∣ 𝑔𝑔𝑟𝑟 (𝑋𝑋)≤0, 𝑟𝑟𝑟1,𝑟 ,𝑟𝑟, 𝑋𝑋≥0 ,

(A.1)

where 𝑋𝑋 is the vector of decision variables 𝑋𝑥𝑥1, 𝑥𝑥2,𝑟 , 𝑥𝑥𝑛𝑛𝑋
and 𝑏𝑏𝑖𝑖, 𝑖𝑖 𝑟 1,𝑟 , 𝑘𝑘 represent aspiration levels for objectives𝑓𝑓𝑖𝑖(𝑋𝑋), 𝑖𝑖 𝑟 1,𝑟 , 𝑘𝑘. e goals are arranged according to their
priority levels, that is, if 𝑖𝑖 ≤ 𝑗𝑗 then goal 𝑖𝑖, 𝑓𝑓𝑖𝑖(𝑋𝑋) ≤ 𝑏𝑏𝑖𝑖 has a
higher priority level than goal 𝑗𝑗,𝑓𝑓𝑗𝑗(𝑋𝑋) ≤ 𝑏𝑏𝑗𝑗. It is well known
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that the fundamental premise of goal programming is that
goal 𝑖𝑖 is sought to attain without regard to the attainability of
the goals with lower priority level 𝑗𝑗. is idea has been used
by Dauer and Krueger to develop an algorithm for solving
linear, nonlinear, and integer goal programming problems.
e algorithm solves 𝑘𝑘 singles objective function problems
successively. e �rst and last problems are as follows:

Solving the attainment problem for goal 1, 𝑃𝑃1 is:𝑃𝑃1: Minimize 𝑑𝑑1
subject to 𝑓𝑓1 (𝑋𝑋) − 𝑑𝑑1 ≤ 𝑏𝑏1𝑔𝑔𝑟𝑟 (𝑋𝑋) ≤ 0, 𝑟𝑟 𝑟 1,𝑟 ,𝑟𝑟𝑑𝑑1 ≥ 0, 𝑋𝑋 ≥ 0, (A.2)

where 𝑑𝑑1 is the positive deviation for objective𝑓𝑓1(𝑋𝑋) from its
goal 𝑏𝑏1. e solution of this problem is 𝑑𝑑∗1 , which is the over
attainment of goal 1.

e last attainment problem for goal k, 𝑃𝑃𝑘𝑘 is𝑃𝑃𝑘𝑘: Minimize 𝑑𝑑𝑘𝑘
subject to 𝑓𝑓𝑖𝑖 (𝑋𝑋) − 𝑑𝑑𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘𝑑𝑑𝑖𝑖 𝑟 𝑑𝑑∗𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘 − 1𝑔𝑔𝑟𝑟 (𝑋𝑋) ≤ 0, 𝑟𝑟 𝑟 1,𝑟 ,𝑟𝑟,𝑑𝑑𝑘𝑘 ≥ 0,𝑋𝑋 ≥ 0𝑋

(A.3)

By letting 𝑑𝑑𝑖𝑖 𝑟 𝑥𝑥𝑛𝑛𝑛𝑘𝑘, 𝑖𝑖 𝑟 1,𝑟 , 𝑘𝑘 the last attainment
problem can be written in the form𝑃𝑃′(𝐺𝐺): Minimize 𝑥𝑥𝑛𝑛𝑛𝑘𝑘

subject to 𝑔𝑔𝑟𝑟 (𝑋𝑋) ≤ 𝑏𝑏𝑟𝑟, 𝑟𝑟 𝑟 1,𝑟 ,𝑟𝑟𝑥𝑥𝑎𝑎 𝑟 𝑥𝑥∗𝑎𝑎 , 𝑛𝑛 𝑛 1 ≤ 𝑎𝑎 ≤ 𝑛𝑛 𝑛 𝑘𝑘 − 1𝑥𝑥𝑛𝑛𝑛𝑘𝑘 ≥ 0, 𝑥𝑥𝑖𝑖 ≥ 0, 𝑖𝑖 𝑟 1,𝑟 , 𝑛𝑛,
(A.4)

where 𝑋𝑋 𝑋 𝑋𝑋𝑛𝑛𝑛𝑘𝑘 and 𝑑𝑑∗𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘 − 1 is replaced by𝑥𝑥∗𝑎𝑎 , 𝑛𝑛 𝑛 1 ≤ 𝑎𝑎 ≤ 𝑛𝑛 𝑛 𝑘𝑘 − 1. e solution of this problem
denoted by 𝑋𝑋 𝑟 (𝑥𝑥1, 𝑥𝑥2,𝑟 , 𝑥𝑥𝑛𝑛𝑛𝑘𝑘) is the optimal solution
for the NLGP problem under consideration. Problem 𝑃𝑃′(𝐺𝐺)
can be considered as a parametric programming problem
having parameters 𝑏𝑏𝑟𝑟 in the RHS of the constraints and can
be written in the form𝑃𝑃(𝐺𝐺): Minimize 𝑓𝑓 (𝑋𝑋) ≡ 𝑥𝑥𝑛𝑛𝑛𝑘𝑘

subject to 𝑀𝑀(𝑏𝑏) 𝑟 𝑋𝑋 𝑋 𝑋𝑋𝑛𝑛𝑛𝑘𝑘 ∣ 𝑔𝑔𝑟𝑟 (𝑋𝑋) ≤ 𝑏𝑏𝑟𝑟,𝑟𝑟 𝑟 1,𝑟 , 𝑘𝑘 𝑛 𝑟𝑟,𝑋𝑋 ≥ 0 ,
(A.5)

where 𝑏𝑏𝑟𝑟 is any arbitrary real number, and 𝑥𝑥∗𝑎𝑎 , 𝑛𝑛 𝑛 1 ≤ 𝑎𝑎 ≤𝑛𝑛 𝑛 𝑘𝑘 − 1 have been directly substituted in the inequality
constraints of𝑃𝑃′(𝐺𝐺).e solution of problem𝑃𝑃(𝐺𝐺) is thus the
same as the solution of the 𝑃𝑃′(𝐺𝐺) and NLGP, and the stability
sets of problem 𝑃𝑃(𝐺𝐺) can be calculated.

B. The Determination of the Stability Set

Osman (1977) presented the following algorithm for the
determination of the stability set of the �rst kind:

(1) Select an arbitrary 𝑏𝑏 𝑋 𝑏𝑏 and solve 𝑃𝑃(𝐺𝐺) to obtain𝑋𝑋
and formulate the K.K.T. conditions.

(2) Determine the values of 𝑢𝑢𝑟𝑟 using any available algo-
rithm.

(3) According to the values of 𝑢𝑢𝑟𝑟, the stability set of the
�rst kind 𝐺𝐺(𝑋𝑋) can be determined as follows:

(a) For 𝑢𝑢𝑟𝑟 𝑟 0, 𝑟𝑟 𝑟 1,𝑟 , 𝑘𝑘 𝑛 𝑟𝑟, 𝐺𝐺1(𝑋𝑋) 𝑟 𝑋𝑏𝑏 ∣ 𝑏𝑏𝑟𝑟 ≥𝑔𝑔𝑟𝑟(𝑋𝑋)𝑋
(b) For 𝑢𝑢𝑟𝑟 > 0, 𝑟𝑟 𝑟 1,𝑟 , 𝑘𝑘 𝑛 𝑟𝑟, 𝐺𝐺2(𝑋𝑋) 𝑟 𝑋𝑏𝑏 ∣ 𝑏𝑏𝑟𝑟 𝑟𝑔𝑔𝑟𝑟(𝑋𝑋)𝑋
(c) For 𝑢𝑢𝑟𝑟 𝑟 0, 𝑟𝑟 𝑋 𝑟𝑟 𝑟 𝑋1,𝑟 , 𝑘𝑘 𝑛 𝑟𝑟𝑋, 𝑢𝑢𝑟𝑟 > 0, 𝑟𝑟 𝑟 𝑟𝑟,𝐺𝐺𝑟𝑟(𝑋𝑋) 𝑟 𝑋𝑏𝑏 ∣ 𝑏𝑏𝑟𝑟 ≥ 𝑔𝑔𝑟𝑟(𝑋𝑋), 𝑟𝑟 𝑋 𝑟𝑟, 𝑏𝑏𝑟𝑟 𝑟 𝑔𝑔𝑟𝑟(𝑋𝑋), 𝑟𝑟 𝑋𝑟𝑟𝑋, 𝐺𝐺3(𝑋𝑋) 𝑟 ⋃possible𝑟𝑟𝐺𝐺𝑟𝑟(𝑋𝑋).

C. The Sets Subtraction Algorithm [17]

Let 𝑏𝑏𝑖𝑖, 𝑖𝑖 𝑟 1,𝑟 , 𝑘𝑘 be the elements of the universal set 𝑉𝑉
in the 𝑘𝑘 dimensional space. V is considered a universal set
from which some other sets 𝑆𝑆𝑖𝑖, 𝑖𝑖 𝑟 1,𝑟 , 𝑖𝑖 are subtracted.
Let 𝑉𝑉𝑠𝑠 𝑟 𝑋⋃𝑖𝑖𝑖𝑖𝑟1 𝑆𝑆𝑖𝑖, 𝑖𝑖 𝑟 1,𝑟 , 𝑖𝑖𝑋 be the subtracted set. e
elements contained in the universal set and the subtracted
sets are used to determine the lower and the upper bounds for
each set in each dimension. ese values represent the input
to the sets subtraction algorithm. Each set is represented as
a record containing the lower and the upper bounds for each
dimension as shown in Table 2.

e function of the algorithm is to get the difference
between the universal set and the subtracted set 𝑋𝑉𝑉−𝑉𝑉𝑠𝑠𝑋.is
difference is de�ned as those elements that are contained in
the set𝑉𝑉 and not contained in𝑉𝑉𝑠𝑠. e subtraction is done in
steps. First, the algorithm gets the difference between 𝑉𝑉 and𝑉𝑉𝑠𝑠, where 𝑉𝑉𝑠𝑠 𝑟 𝑆𝑆1, thus getting 𝑋𝑉𝑉 − 𝑆𝑆1𝑋. en the set 𝑆𝑆2 is
subtracted from 𝑋𝑉𝑉 − 𝑆𝑆1𝑋, thus getting 𝑋𝑋𝑉𝑉 − 𝑆𝑆1𝑋 − 𝑆𝑆2𝑋 and𝑉𝑉𝑠𝑠 𝑟 ⋃2𝑖𝑖𝑟1 𝑆𝑆𝑖𝑖, and so on.
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