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Abstract Several MRI measures have been proposed as in vivo biomarkers of myelin, each with
applications ranging from plasticity to pathology. Despite the availability of these myelin-sensitive
modalities, specificity and sensitivity have been a matter of discussion. Debate about which MRI
measure is the most suitable for quantifying myelin is still ongoing. In this study, we performed a
systematic review of published quantitative validation studies to clarify how different these
measures are when compared to the underlying histology. We analyzed the results from 43 studies
applying meta-analysis tools, controlling for study sample size and using interactive visualization
(https://neurolibre.github.io/myelin-meta-analysis). We report the overall estimates and the
prediction intervals for the coefficient of determination and find that MT and relaxometry-based
measures exhibit the highest correlations with myelin content. We also show which measures are,
and which measures are not statistically different regarding their relationship with histology.

Introduction

Myelin is a key component of the central nervous system. The myelin sheaths insulate axons with a
triple effect: allowing fast electrical conduction, protecting the axon, and providing trophic support
(Nave and Werner, 2014). The conduction velocity regulation has become an important research
topic, with evidence of activity-dependent myelination as an additional mechanism of plasticity
(Fields, 2015; Sampaio-Baptista and Johansen-Berg, 2017). Myelin is also relevant from a clinical
perspective, given that demyelination is often observed in several neurological diseases such as mul-
tiple sclerosis (Héftberger and Lassmann, 2018).

Given this important role in pathology and plasticity, measuring myelin in vivo has been an ambi-
tious goal for magnetic resonance imaging (MRI) for more than two decades (MacKay et al., 1994;
Rooney et al., 2007; Stanisz et al., 1999). Even though the thickness of the myelin sheath is in the
order of micrometres, well beyond the MRI spatial resolution, its presence influences several physical
properties that can be probed with MRI, from longitudinal and transversal relaxation phenomena to
water molecule diffusion processes.

However, being sensitive to myelin is not enough: to study how and why myelin content changes,
it is necessary to define a specific biomarker. Interestingly, the quest for measuring myelin has
evolved in parallel with an important paradigm shift in MRI research, where MRI data are no longer
treated as just ‘pictures’, but as actual 3D distributions of quantitative measures. This perspective
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has breathed new life into an important field of research, quantitative MRI (QMRI), that encompasses
the study of how to measure the relevant electromagnetic properties that influence magnetic reso-
nance phenomena in biological tissues (Cercignani et al., 2018; Cohen-Adad and Wheeler-King-
shott, 2014). From the very definition of gMR], it is clear that its framework applies to any approach
for non-invasive myelin quantification.

Similarly to other gMRI biomarkers, MRI-based myelin measurements are indirect, and might be
affected by other microstructural features, making the relationship between these indices and myeli-
nation noisy. Assessing the accuracy of such measurements, and their sensitivity to change, is essen-
tial for their translation into clinical applications. Validation is therefore a fundamental aspect of their
development (Cohen-Adad, 2018). The most common approach is based on acquiring MR data
from in vivo or ex vivo tissue and then comparing those data with the related samples analyzed using
histological techniques. Despite being the most realistic approach, this comparison involves several
methodological choices, from the specific technique used as a reference to the quantitative measure
used to describe the relationship between MRI and histology. So far, a long list of studies have
looked at MRI-histology comparisons (Cohen-Adad, 2018; Laule and Moore, 2018; MacKay and
Laule, 2016; Petiet et al., 2019), each of them focusing on a specific pathology and a few MRI
measures.

Despite these numerous studies, there is still an ongoing debate on what MRl measure should be
used to quantify myelin and as a consequence there is a constant methodological effort to propose
new measures. This debate would benefit from a quantitative analysis of all the findings published
so far, specifically addressing inter-study variations and prospects for future studies, something that
is currently missing from the literature.

In this study, we systematically reviewed quantitative MRI-histology comparisons and we used
meta-analysis tools to address the following question: how different are the modalities for myelin
quantification in terms of their relationship with the underlying histology?

Results

Literature survey

The screening process is summarized in the flowcharts in Figure 1 and Appendix 1—figure 1. The
keywords as reported in the appendix returned 688 results on PubMed (last search on 03/06/2020).
These results included 50 review articles. From the 50 review articles, six were selected as relevant
for both the topics of myelin and related MRI-histology comparisons (Cohen-Adad, 2018; Laule and
Moore, 2018; Laule et al., 2007, MacKay and Laule, 2016; Petiet et al., 2019; Turner, 2019).
After the assessment, 58 original research studies were considered eligible, as shown in Appen-
dix 1—table 1 (in the appendix) and Figure S2. All the data collected are available in the supple-
mentary materials (Source data 1).

In terms of specific modalities, the survey shows that the most common MRI approach compared
with histology was diffusion-weighted imaging (used in 28 studies), followed by magnetization trans-
fer (MT, 27 studies), T2 relaxometry (19 studies) and T1 relaxometry (10 studies). Only 20 studies
considered more than one approach: among the others, 20 focused exclusively on diffusion, 12 on
MT, and six on T2 relaxometry.

From these 58 studies, we then focused only on brain studies and we further excluded studies
not reporting either the number of subjects or the number of ROIs per subject. We also excluded
one single-subject study that relied on voxels as distinct samples, whereas the other studies in this
review are based on ROls (i.e. including more than one voxel). In the end, 43 suitable studies were
identified for the subsequent analyses.

Meta-analysis

To compare the studies of interest, we first organized them according to the MRl measure used. Fig-
ure 2 and Figure 3 (and also Figure S3-S4) show the R? values for the selected studies across meas-
ures: the highest values (R? >0.8) are obtained mostly from MT measures, but they are associated
with small sample sizes (with an average of 32 sample points). The studies with largest sample sizes
are associated with R? values between 0.6 and 0.8 for MT and T2 relaxometry, but with lower values
for T1 relaxometry and other approaches.
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Figure 1. Sankey diagram representing the screening procedure (PRISMA flow chart provided in the appendix). To see the interactive figure: https://

neurolibre.github.io/myelin-meta-analysis/01/selection.html#figure-1.

To combine the results for each measure, we then used a mixed-effect model: in this way we
were able to express the overall effect size in terms of a range of R? values within a confidence inter-
val, but also to assess prediction intervals and inter-study differences. The results are shown as forest
plots in Figure 4 (and also Figure S5).

Apart from MPF and MWF, all the measures showed R? overall estimates in the range 0.21-0.53.
To investigate the significance of the differences between measures, we conducted a repeated
measures meta-regression on every R? estimate recorded (98 in total over 43 studies). As shown in
Figure 5 (and also Figure Sé), the measures can be roughly subdivided in two groups: MT- and
relaxometry-based measures gave significantly higher R? estimates compared to diffusion-based
measures. Within the diffusion-based measures, FA shows slightly higher estimates than the others,
with marginal significance over RD and AD or no significance in case of MD.

Within MT- and relaxometry-based measures, the trends follow those in the forest plots (Fig-
ure 4), but most differences are not significant (Figure 5). However, the results in terms of z-score
give a measure of distance between the R? distributions. From this perspective, MPF has higher R?

Table 1. Results from the mixed-effect models: for each measure we reported the number of
studies, the estimate and standard error of the overall R? distribution, the 12 and the I2.

Measure Number of studies Estimate Standard error Tau? 1?

MTR 16 0.508 0.0691 0.07 96.03%
MPF 10 0.7657 0.0455 0.0128 83.18%
FA 17 0.3766 0.0663 0.0652 87.49%
RD 15 0.3364 0.0679 0.0615 92.30%
MD 12 0.2639 0.0679 0.044 87.35%
T 8 0.5321 0.0692 0.0328 86.51%
AD 9 0.2095 0.0802 0.048 97.69%
T2 7 0.3938 0.1023 0.0651 84.49%
MWF 4 0.6997 0.0432 0.0041 73.19%
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Figure 2. Bubble chart of R? values between a given MRI measure and histology for each study across MRI measures, with the area proportional to the
number of samples. To see the interactive figure: https://neurolibre.github.io/myelin-meta-analysis/02/closer_look.html#figure-3.

estimates compared to all the other measures, but it is only marginally higher than MWF (z-
score = 0.77; p-value=1) so we cannot claim that one is superior to the other. Following the same
reasoning, MTR and T1 are not statistically different (z-score = 0.47; p-value=1).

When considering the prediction intervals calculated using 12 (the variance of the effect size
parameters across the population of studies), for most measures the interval spanned from 0.1 to
0.9 (Figure 4 and Figure S5). This implies that future studies relying on such measures can expect,
on the basis of these studies, to obtain any R? value in this broad interval. The only exceptions were
MPF (0.49-1) and MWF (0.45-0.95), whose intervals were narrower than the alternatives. Finally, 1 (a
measure of how much of the variability in a typical study is due to heterogeneity in the experimental
design) was generally quite high (Table 1). MWF showed the lowest I?> across measures
(17 = 73.19%), but this may be misleading considering that it was based on only four studies, while
the other measures included around 10 studies. Excluding MWF, MPF also showed a relatively low |2
(1> = 83.18%). Qualitative comparisons across experimental conditions and methodological choices
highlighted differences across pathology models, targeted tissue types and reference techniques
(Figure 6 and Figure S7). Other factors such as magnetic field, co-registration, specific tissue and
the related conditions (Figure S8) showed comparable distributions.

Discussion

Indirect measures are the most popular (for better or worse)

The literature survey offers an interesting perspective on popular research trends (Figure S2). The
first consideration one can make is that every myelin imaging technique achieves myelin sensitivity
through different means. A clear example is offered by the two most common approaches in this
meta-analysis, DWI and MT: the MT effect is driven by saturation pulses interacting with myelin
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Figure 3. Treemap chart of the studies considered for the meta-analysis, organized by MRI measure. The color of each box represents the reported R?
value while the size box is proportional to the sample size. To see the interactive figure: https://neurolibre.github.io/myelin-meta-analysis/02/closer

look.html#figure-4.

macromolecules that transfer their magnetization to water, whereas in diffusion experiments myelin
is just not part of the picture. Diffusion acquisitions are blind to direct myelin measurement because
the TEs used are too long (~100 ms) to be influenced by the actual macromolecules — with T2
of ~ 10 us (Stanisz et al., 1999) — or even the water molecules trapped in the myelin sheath — with
T2 of ~ 30 ms (MacKay et al., 1994). To infer myelin content, one needs to rely on the interaction
between intracellular and extracellular water compartments. The majority of diffusion studies
included in this analysis used tensor-based measures (with fractional anisotropy being the most com-
mon), but some also used kurtosis-based analysis. The main issue with this approach is that other
factors affect those measures (Beaulieu, 2002; Beaulieu, 2009), making it difficult to specifically
relate changes in water compartments to changes in myelin.

Despite this issue, the use of diffusion as a proxy for myelin is quite widespread, specifically out-
side the field of quantitative MRI. This is probably a consequence of how popular DWI has become
and how widely available are the related acquisition sequences. MT, the second most popular tech-
nique for quantifying myelin, estimates myelin by acquiring data with and without saturating the
macromolecular proton pool. The simplest MT measure, MT ratio (MTR), incorporates non-myelin
contributions in the final measurement. Recent acquisition variations include computing MTR from
acquisitions with ultra-short echo times (Du et al., 2009; Guglielmetti et al., 2020; Wei et al.,
2018) or relying on inhomogeneous MT (Duhamel et al., 2019; Varma et al., 2015). More complex
experiments, for example quantitative MT, are based on fitting two compartments to the data, the
free water and the macromolecular compartments, or pools. In this way, one is able to assess myelin
through MPF with higher specificity, although still potentially including contributions from other
macromolecules. Additional measures have also been considered (including the T2 of each pool, the
exchange rate between the pools). The drawback of gMT is the requirement for a longer and more
complex acquisition. Recently, there have been alternative techniques to estimate only MPF,
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resulting in faster acquisitions with similar results (Khodanovich et al., 2019, Khodanovich et al.,
2017, Yarnykh, 2012). Despite being focused on macromolecular contributions, these approaches
are not strictly specific to myelin (Sled, 2018): in this sense, an important limitation is that MT effects
are sensitive to the pH of the targeted tissue and therefore changes in the pH (caused for example
by inflammation processes) will affect MT-based measures of myelin (Stanisz et al., 2004).

Following diffusion and MT, the most popular approach is T2 relaxometry. Unlike diffusion and
MT, in T2 relaxometry experiments one can directly observe the contribution from the water trapped
between the myelin bilayers, and can therefore estimate the myelin water fraction. A simpler but
less specific approach consists in estimating the transverse relaxation time considering the decay to
be mono-exponential. A historical and practical drawback of these approaches is that they require
longer acquisitions, although faster alternatives have been developed (Does and Gore, 2000;
Prasloski et al., 2012). A more subtle but nevertheless important limitation lies in the multi-com-
partment model used in multi-exponential T2 relaxometry (Does, 2018): this model generally
assumes slow water exchange between compartments, but it has been showed that water exchange
actually contributes to T2 spectra variations (Dula et al., 2010; Harkins et al., 2012).

Finally, other studies used a diverse collection of other measures, including T1 relaxometry,
apparent transversal relaxation rate (R2*), proton density (PD), macromolecular tissue volume (MTV),
relaxation along a fictitious field (RAFF), and quantitative susceptibility mapping (QSM).

After this general overview, it is clear that each modality could be a suitable candidate for a quan-
titative myelin biomarker. To then make a choice informed by the studies here reported, it becomes
necessary to consider not only effect sizes in terms of correlation, but also sample sizes and acquisi-
tion times.

There is no myelin MRI measure true to histology

When looking at the R? values across the different measures, the first detail that catches one’s eye is
how most measures present a broad range of values (Figure 2 and Figure 3). When taking into
account the sample size, the largest studies show higher correlations for MT and T2 relaxometry
studies than any other approach (Figure S3 and Figure S4). In quantitative terms, the meta-analysis
corroborates this idea, showing that MPF and MWF tend to be more specific to myelin compared to
the other measures (respectively with R? = 0.7657 and R? = 0.6997), in line with the underlying
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Figure 6. Experimental conditions and methodological choices influencing the R? values (top: reference techniques; middle: pathology model; bottom:

tissue types). To see the interactive figure: https://neurolibre.github.io/myelin-meta-analysis/04/other_factors.html#figure-7.
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theory. Notably, diffusion-based measures show the lowest overall estimates (with values between
R2 = 0.3766 for FA and R? = 0.2095 for AD): this could be due to the fact, as already mentioned,
that DWI does not specifically measure myelin properties, and despite FA and RD being influenced
by the myelin content, they are also influenced by other factors that make them unsuitable as meas-
ures of myelin. The repeated measure meta-regression confirms this overall picture, clearly distin-
guishing MT- and relaxometry-based measures from diffusion-based ones (Figure 5).

Despite these considerations on the advantages of MPF and MWF, one should refrain from con-
cluding that they are the ‘true’ MRI measures of myelin. The reason for this caution is given not by
the overall effect sizes observed here, but by the collateral outcomes of the meta-analysis. The first
one is given by the prediction intervals: most measures exhibit large intervals (Figure 4), not sup-
porting the idea of them being robust biomarkers. MPF and MWF seem to be again the most suit-
able choices for future studies, but a range between 0.5 and 1 is still quite large.

The second important aspect to consider is given by the differences across studies: the meta-
analysis showed how such differences strongly limit inter-study comparisons for a given measure
(Figure 6). This result should be expected, given that the studies here examined are inevitably influ-
enced by the specific experimental constraints and methodological choices. Given the limited num-
ber of studies, it is not possible to quantitatively study interactions between MRI measures and the
other factors (e.g. modality used as a reference, tissue types, magnetic field strength). For further
qualitative insights, we invite the reader to explore the interactive figures S7-S8. A first important
factor to consider is the validation modality used as a reference, which will be dictated by the equip-
ment availability and cost. However, such a choice has an impact on the actual comparison: histology
and immunochemistry, despite being specific to myelin, do not offer a volumetric measure of myelin,
but rather a proxy based on the transmittance of the histological sections. So far, the only modality
able to give a volumetric measure would be electron microscopy, which is an expensive and
resource-consuming approach. Also, electron microscopy has several limitations, including tissue
shrinkage, degradation of the myelin sheath structure due to imperfect fixation, imperfect penetra-
tion of the osmium stain, polishing, keeping focus over large imaging regions. All these effects con-
tribute to the lack of precision and accuracy when quantifying myelin content with EM-based
histology (Cohen-Adad, 2018). Another important observation is that none of the studies here
reviewed considered histology reproducibility, which is hard to quantify as a whole given that a sam-
ple can be processed only once: collateral factors affecting tissue processing (e.g. sectioning distor-
tions, mounting and staining issues) constitute an actual limitation for histology-based validation. A
further example of influential factor often dictated by equipment availability is the magnetic field
strength of the MRI scanner: figure S8 shows that most studies were conducted at 7T and 9.4T, with
some pioneering studies at 1.5T and even fewer ones at other field strengths.

In addition to differences in experimental and methodological designs, there are also several con-
siderations that arise out of the lack of shared practices in MRI validation studies. The first evident
one is the use of correlations: despite being a simple measure that serves well the purpose of
roughly characterizing a relationship, Pearson correlation is not the right tool for quantitative bio-
markers, as it does not characterize the actual relationship between histology and MRI. Linear
regression is a step forward but has the disadvantage of assuming a linear relationship. Despite
Pearson correlation and linear regression being the most common measures used in the studies here
reviewed, it is still not clear if the relationship is actually linear. Only one study among the consid-
ered ones computed both Pearson and Spearman correlation values (Tardif et al., 2012), and
reported higher Spearman correlations, pointing out that non-linear relationships should actually be
considered. One last consideration regarding the use of correlation measures for validating quantita-
tive biomarkers is about the intercept in the MRI-histology relationship. Notably, only MWF is
expected to assume a value equal to zero when myelin is absent (West et al., 2018). For the other
measures, it would be necessary to estimate the intercept, which leads to the calibration problem in
the estimate of myelin volume fraction. Notably, calculating Pearson correlation does not provide
any information for such calibration. Another arbitrary practice that would benefit from some harmo-
nization is the choice of ROIs. The studies reported here examined a diverse list of ROls, in most
cases hand-drawn on each modality, encompassing different types of tissue, and the most common
approach is to report a single, pooled correlation. This is problematic, as different types of tissue
(e.g. grey matter and white matter) will show different values for MRI-based measures but also for
histology-based ones, making linearity assumptions about the two modalities. However, with this
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approach gross differences between tissues drive the observed correlation, without actually showing
if the MRI-based measure under analysis is sensitive to subtle differences and therefore a suitable
quantitative biomarker for myelin. The effect of considering different types of tissues is showed in
Figure 6 and Figure S7, where correlation ranges change when considering different types of tissue.
However, the large correlation range in white matter, the most common tissue studied, suggests
that other factors also affect the correlation.

It should be clear at this point that any debate about a universal MRI-based measure of myelin is
pointless, at least at the moment, as the overall picture provided by previous studies does not point
to any such ideal measure. Nevertheless, is debating about a universal measure helpful for future
studies?

Better biomarkers require more reproducibility studies

We hope this meta-analysis convinces the reader that a holy grail of myelin imaging does not exist,
at least as long as we consider histology to be the ground truth. Given that we all have to pick our
poison, the upside is that measures based on MT and relaxometry are not statistically different, and
therefore, future studies have an actual choice among candidate measures. For further progress,
rather than debating about a perfect measure, we would argue that what is missing at the moment
is a clear picture of what can be achieved with each specific MRl modality. The studies examined
here focus on a large set of different measures, and more than half of them considered at most two
measures, highlighting how the field is mostly focused on formulating new measures. While it is
understood that novel measures can provide new perspectives, it is also fundamentally important to
understand the concrete capabilities and limitations of current measures. From this meta-analysis,
what the literature clearly lacks is reproducibility studies, specifically answering two main questions:
(1) what is the specificity of each measure? We should have a practical validation of our theoretical
understanding of the relevant confounds; (2) what is the ‘parameter sensitivity’ of each measure?
Here, we refer to parameter sensitivity in a broad sense, that includes also experimental conditions
and methodological choices. The results here presented show how certain conditions (e.g. pathol-
ogy) seem to affect the coefficient of determination more than others but given the limited number
of studies for each modality, we refrained from additional analyses to avoid speculation. A warning
message that is evident from these results is the inherent limitation of DWI for estimating myelin
content: this is not by any means a novel result (Beaulieu, 2002; Beaulieu, 2009), but it is neverthe-
less worth reiterating given the outcomes of our analysis. If estimating myelin content is relevant in a
diffusion study, it is important to consider complementing the diffusion measure with one of the
modalities here reviewed; in this way, it would be possible to decouple the influence of myelin con-
tent from the many other factors that come into play when considering diffusion phenomena.

Finally, an important factor to take into account when choosing a biomarker of myelin is the
actual application. For animal research, long acquisitions are not a major issue. However, when con-
sidering biomarkers for potential clinical use, the acquisition time can become a relevant issue. An
example is the well-established multi-echo spin-echo implementation of MWF, that can only be used
for a specific slice in a hypothetical clinical scenario. Faster techniques have been proposed for esti-
mating it with gradient- and spin-echo (GRASE) sequences (Does and Gore, 2000; Feinberg and
Oshio, 1991; Prasloski et al., 2012). Even in this case, the acquisition time still reaches 15 min for
acquiring roughly the whole brain with an isotropic resolution of 2 mm. Complex MT acquisitions
such as gMT suffer from the same problem, although it is possible to use optimized and faster pro-
tocols to focus specifically on MPF (Khodanovich et al., 2019, Khodanovich et al., 2017,
Yarnykh, 2012).

Conclusions

Several MRI measures are sensitive to myelin content and the current literature suggests that most
of them are not statistically different in terms of their relationship with the underlying histology.
Measures highly correlated with histology are also the ones with a higher expected specificity. This
suggests that future studies should try to better address how specific each measure is, for the sake
of clarifying suitable applications.
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Materials and methods

Review methodology

The Medline database (https://pubmed.ncbi.nlm.nih.gov) was used to retrieve the articles. The key-
words used are specified in the appendix. We followed the PRISMA (Preferred Reporting ltems for
Systematic Reviews and Meta-Analyses) guidelines for record screening and study selection. The
results were first screened to remove unrelated work. Specifically we discarded: work relying only on
MRI; work relying only on histology or equivalent approaches; work reporting only qualitative com-
parisons. After this first screening, the remaining papers were assessed. At this stage, we discarded:
studies using MRI-based measures in arbitrary units (e.g. T1-weighted or T2-weighted data); studies
using measures of variation in myelin content (defined either as the difference between normal and
abnormal myelin content) either for MRI or for histology; studies using arbitrary assessment scales;
studies comparing MRI-based absolute measures of myelin with histology-based relative measures
(e.g. g-ratio); studies reporting other quantitative measures than correlation or R? values; studies
comparing histology from one dataset and MRI from a different one. As an additional source for
potential candidate studies, we screened the review articles in the initial results, and we selected the
relevant studies that were not already present in the studies already selected.

From the final papers, we collected first the following details: the DOI; which approach was used
(diffusion, MT, T1 relaxometry, T2 relaxometry, or other); which specific MRl measures were com-
pared to histology or equivalent techniques; the magnetic field; the technique used as a reference
(histology, immunochemistry, microscopy, electron microscopy); the focus of the study in terms of
brain, spinal cord or peripheral nerve; if the subjects were humans or animals, and if the latter which
animal; if the tissue under exam was in vivo, in situ or ex vivo, and in the latter case if the tissue was
fixed or not; if the tissue was healthy or pathological, and if the latter which pathology; the specific
structures examined for correlation purposes; which comparison technique was used (e.g. Pearson
correlation, Spearman correlation, linear regression); the number of subjects; the number of ROIs
per subject; the male/female ratio; if registration procedures were performed to align MRI and his-
tology; in case of pathological tissue, if control tissue was considered as well; other relevant notes. If
before calculating the correlations the data were averaged across subjects, the number of subjects
was considered to be one. The same consideration was made for averaging across ROls. This is
because the numbers of subjects and ROIs were used to take into account how many sample points
were used when computing the correlation. We set each of those numbers to one for all the studies
where the data were averaged respectively across subjects and across ROls. Finally, in those cases
where the number of ROIs or the number of subjects were given as a range rather than specific val-
ues, we used the most conservative value and added the related details to the notes.

We then proceeded to collect the quantitative results reported for each measure and for each
study in the form of R2. Given that different studies may rely on a different strategy when reporting
correlations, we adopted the following reasoning to limit discrepancies across studies while still
objectively representing each of them. In case of multiple correlation values reported, for our analy-
sis we selected the ones referring to the whole dataset and the entire brain if available, and consid-
ering each ROl in a given subject as a sample if possible; if only correlation values for specific ROls
were reported, the one for the most common reported structure would be chosen. In the case of
multiple subjects, if data were provided separately for each group, the correlation for the control
group was used. When different comparison methods were reported (e.g. both Pearson and Spear-
man correlation) or if the MRI data was compared with multiple references (e.g. both histology and
immunohistochemistry), the correlations used were chosen on the basis of the following priority
orders (from the most preferable to the least): for multiple comparison methods, linear regression,
Spearman correlation, Pearson correlation; for multiple reference techniques, electron microscopy,
immunohistochemistry, histology. Finally, in any other case where more than one correlation value
was available, the most conservative value was used. Any other additional value was in any case
mentioned in the notes of the respective study.

Meta-analysis
For the quantitative analysis, we restricted our focus on brain studies and only on the ones providing
an indication of both the number of subjects and the number of ROIs. For each study, we computed
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the sample size as the product between the number of subjects and the number of ROIs per subject.
In this way, we were able to compare the reported R? values across measures taking into account
the related number of points actually used for correlation purposes. We note that correlation or
regression analyses run on multiple ROIs and subjects represents a repeated measures analysis, for
which the degrees of freedom computation can be complex; however, most papers neglected the
repeated measures structure of the data and thus the sample size computation here represents a
very approximate and optimistic view of the precision of each R? value.

To estimate the variance of each R? value, we relied on the correlation properties and the delta
method (Lehman, 1999). Let us consider the Pearson’s correlation r of two variables X and Y with
population correlation p. If r is calculated from N random samples, the sampling variance is (1-p%)%/
N. Applying the delta method, we then approximated the variance of R? as 4 R¥(1 RH)?/N, assuming
RZ~p?. As we recognise that some papers computed Spearman correlation, this calculation is again
optimistic and may underestimate the sampling variability of the squared Spearman correlation.

To estimate the overall effect size in terms of R?, we have to choose how to model the distribu-
tion of true effects given by the data collected from the literature. The two most common
approaches are fixed-effects and mixed-effects models. While the underlying mathematical model is
the same as the one used for linear regression (more details in the appendix), the assumptions are
different: fixed-effects models assume that all the studies share a common effect size, while mixed-
effects models assume that the effect size across studies is similar but not identical (Rauden-
bush, 2009). In our case, as the studies have several factors that influence the R? values (e.g. histol-
ogy/microscopy reference, magnetic field strength, pathology model), we expect a distribution of
effect sizes due to inter-study differences. This is why we proceeded to fit a mixed-effects model to
each measure that was featured in more than two studies. Apart from the effect size distributions,
we reported two additional measures, 12 and 1?: the former expresses as a percentage how much of
variability in a typical study is due to heterogeneity (i.e. the variation in study outcomes between
studies) rather than chance (Higgins and Thompson, 2002), while the latter can be used to calculate
the prediction interval (Raudenbush, 2009), which gives the expected range for the measure of
interest in future studies. We used forest plots to represent the outcomes, and both the mixed
effects estimate of the population estimated R?, with both a 95% confidence and a (larger) 95% pre-
diction interval.

For the explicit purpose of comparing the effect sizes between different MRl measures, we con-
ducted a repeated measures meta-regression on every R? value recorded. We associated each R?
value with three additional details: (i) the related variance, as done in the measure-specific mixed-
effects models; (ii) the related study, used as the random intercept (i.e. random variable) to incorpo-
rate potential inter-study variability; and (iii) the related MRl measure, used as the moderator (i.e.
categorical variable) to estimate the differences between measures. In this way, the meta-regression
leads to R? intervals for each MRI measure, with the same trend as measure-specific mixed-effects
models but with subtle differences. This is because the meta-regression makes two additional
assumptions: first, R? estimates within the same study share the same random effects and second,
the between-study variance is the same for all observations. We then used the meta-regression R?
estimates to compute every possible pairwise comparison between MRI measures and to identify
significantly different pairs using Tukey’s test, while controlling the error rate over all the possible
comparisons (Bonferroni correction).

This additional model is necessary, as direct comparisons are not possible with measure-specific
analyses. While the repeated measures meta-regression makes direct comparisons straightforward,
we reported the main R? estimates based on the measure-specific mixed-effects models, as they
make weaker assumptions.

For visual comparisons, we used the Jupyter notebook provided in the supplementary materials.
For model fitting, we used the Metafor package, version 2.4-0 (Viechtbauer, 2010).
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Appendix 1

Search keywords

(myelin[Title/Abstract] AND ((magnetic[Title/Abstract] AND resonance[Title/Abstract]) OR mr[Title/
Abstract] OR mri[Title/Abstract]) AND (histology[Title/Abstract] OR histopathology[Title/Abstract]
OR microscopy[Title/Abstract] OR immunohistochemistry[Title/Abstract] OR histological[Title/
Abstract] OR histologically[Title/Abstract] OR histologic[Title/Abstract] OR histopathological[Title/
Abstract] OR histopathologically[Title/Abstract] OR histopathologic[Title/Abstract]).

Results obtained from the Medline database: 688 (03/06/2020).

Records identified through Additional records identified
database searching through other sources
(n = 688) (n=1)

 J 4
Records after duplicates removed

(n = 689)

y
Records screened Records excluded

(n = 689) - (n=597)

Y
Full-text articles assessed Full-text articles excluded,
for eligibility with reasons
(n=92) (n=34)

y

Studies included in qualitative synthesis
(n=58)

y
Studies included in
quantitative synthesis
(meta-analysis)
(n=43)

Appendix 1—figure 1. PRISMA flowchart for the meta-analysis.

Fixed- and mixed-effects models

While a traditional linear regression model estimates the error variance from residuals, in a fixed
effects meta-analysis model, each paper’s response and standard errors, as well as the error variance
of the regression model can be directly computed from the supplied response standard deviations.
Specifically, for a (non-meta) regression model we have the i-th response y; modeled with covariate
values x;, y; = x;8 + ¢;, where random error has unknown variance Var(g;) = 0. In a fixed-effects
meta-analysis, we are given y; but also s;, the standard error of y;, and the regression model has the
same form except the variance is known, Var(e;) = 52, and the weighted least squares regression can
be computed, estimating beta and its standard error. A mixed-effects meta-analysis accounts for
more variance than what can be ascribed to the sampling error of the reported outcome. The
regression model has again the same form, except now the variance is Var(e;) = s? + 72, the sum of
the reported squared standard error and the unknown between-study variance 72. Iterative methods
are used to estimate 72 and, once estimated, a weighted least squares regression can be computed.
The parameter 72 can be interpreted as the variance of noise-free (hypothetical, zero standard error)
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results from the population of all possible studies. The importance of 72 can also be gauged by 12,

the proportion of variance due to random inter-study differences (i.e. 1 — I? is the proportion attrib-
utable to random sampling error of each study) (Higgins and Thompson, 2002).

Abbreviations and mathematical symbols

AD - axial diffusivity

AK - axial kurtosis

AWF — axonal water fraction

FA - fraction anisotropy

ihMTR - inhomogeneous magnetization transfer ratio

k_fm — free water-macromolecular exchange rate

k_mf — macromolecular-free water exchange rate

MOm — macromolecular pool magnetization fraction

MD — mean diffusivity

MK — mean kurtosis

MPF — macromolecular pool fraction

MT — magnetization transfer

MTR - magnetization transfer ratio

MTR-UTE - magnetization transfer ratio (using ultra-short echo time)
MTV — macromolecular tissue volume

MVEF-MT - myelin volume fraction (estimated from MT)

MVF-T2 — myelin volume fraction (estimated from T2)

MWF — myelin water fraction

PD - proton density

PN - peripheral nerve

PRISMA - Preferred Reporting ltems for Systematic Reviews and Meta-Analyses
QSM - quantitative susceptibility mapping

R1f — free water pool longitudinal relaxation rate

R2* — apparent transverse relaxation rate

RAFF - relaxation along a fictitious field

RD - radial diffusivity

RD-DBSI - radial diffusivity (from diffusion basis spectrum imaging)
RDe - extra-cellular compartment radial diffusivity

RK - radial kurtosis

rSPF - relative semi-solid proton fraction

SC - spinal cord

T1 - longitudinal relaxation time

T1p - adiabatic longitudinal relaxation time

T1sat - longitudinal relaxation time under magnetization transfer irradiation
T2 - transverse relaxation time

T2f - free water pool transverse relaxation time

T2int — transverse relaxation intermediate component

T2m — macromolecular pool transverse relaxation rate

T2p - adiabatic transverse relaxation time

Appendix 1—table 1. Selected studies for qualitative analysis.

Histology/microscopy

Study MRI measure(s) measure Tissue Condition Focus

Schmierer et al., T1, MTR Histology - LFB Human Multiple sclerosis Brain

2004

Odrobina et al., T1, T2, T2int, Microscopy - Myelin Animal - Demyelination - Tellurium PN

2005 MWEF, MOm, MTR fraction Rat

Pun et al., 2005 T1, T2int, MWF  Microscopy - Myelin Animal - Demyelination - Tellurium PN
fraction Rat

Continued on next page
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Appendix 1—table 1 continued

Histology/microscopy

Neuroscience

Study MRI measure(s) measure Tissue Condition Focus
Laule et al., 2006 MWF Histology - LFB Human Multiple sclerosis Brain
Schmierer et al., T1, MTR, MPF, Histology - LFB Human Multiple sclerosis Brain
2007a T2m
Schmierer et al., FA, MD Histology - LFB Human Multiple sclerosis Brain
2007b
Jito et al., 2008 FA Microscopy - Myelin Animal - Healthy Brain
sheath area Mouse
Kozlowski et al., MWEF, FA, AD, Immunohistochemistry - Animal - Injury - Dorsal columnar SC
2008 RD, MD MBP Rat transection
Laule et al., 2008 MWF Histology - LFB Human Multiple sclerosis Brain
Schmierer et al., T1, T2, MTR, Histology - LFB Human Multiple sclerosis Brain
2008 MPF,
MD, FA, AD, RD
Wu et al., 2008 T2 Histology - LFB Animal - Demyelination - Cuprizone Brain
Mouse
Zaaraoui et al., MTR Immunohistochemistry - Animal - Demyelination - Cuprizone Brain
2008 MBP Mouse
Takagi et al., 2009 FA, AD EM - Myelin thickness ~ Animal - Degeneration - Contusive PN
Rat injury
Wang et al., 2009 FA, RD Histology - LFB Animal - Ischemia - Induced Brain
Rat hypoxia
Zhang et al., 2009 RD Histology - LFB Animal - Injury - Dorsal columnar ~ SC
Rat transection
Schmierer et al., MTR, T2 Histology - LFB Human Multiple sclerosis Brain
2010
Fatemi et al., 2011 MTR Immunohistochemistry - Animal - Ischemia - Induced Brain
MBP Mouse hypoxia
Laule et al., 2011 MWF Immunohistochemistry - Human Multiple sclerosis Brain
MBP
Underhill et al., MPF Histology - LFB Animal - Healthy Brain
2011 Mouse
Chandran et al., FA, RD Immunohistochemistry - Animal - Demyelination - Cuprizone Brain
2012 MBP Mouse
Tardif et al., 2012  T1, T2, MTR, PD  Immunohistochemistry - Human Multiple sclerosis Brain
MBP
Fjaer et al., 2013 MTR Immunohistochemistry - Animal - Demyelination - Cuprizone Brain
PLP Mouse
Harkins et al., 2013 MWEF, MPF Microscopy - Myelin Animal - Edema - Hexaclorophene SC
fraction Rat
Janve et al., 2013  MPF, R1a, k_ba, Histology - LFB Animal - Demyelination - Brain
FA, RD, MD, AD Rat Lipopolysaccharide
Thiessen et al., MPF, R1f, k_fm, EM - Myelin thickness ~ Animal - Demyelination - Cuprizone Brain
2013 k_mf, Mouse
T2f, T2m, MD,
RD,
AD, FA, T1, T2
Kozlowski et al., MWF Immunohistochemistry - Animal - Injury - Dorsal SC
2014 MBP Rat columnar transection
Wang et al., 2014  RD, RD-DBSI Immunohistochemistry - Animal - Demyelination - SC
MBP Mouse Autoimmune
encephalomyelitis
Continued on next page
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Appendix 1—table 1 continued

Histology/microscopy

Study MRI measure(s) measure Tissue Condition Focus
Fjaer et al., 2015 MTR Immunohistochemistry - Animal - Demyelination - Brain
PLP Mouse Autoimmune
encephalomyelitis
Seehaus et al., 2015 FA, RD, MD Histology - Silver Human Healthy Brain
Turati et al., 2015 MPF Immunohistochemistry - Animal - Demyelination - Cuprizone Brain
MBP Mouse
Wang et al., 2015 RD-DBSI Histology - LFB Human Multiple sclerosis sC
Aojula et al., 2016 FA, AD, RD, MD Immunohistochemistry - Animal - Hydrocephalus Brain
MBP Rat
Hakkarainen et al., T1,T2, MTR, T1p, Histology - Gold Animal - Healthy Brain
2016 T2p, RAFF chloride Rat
Jelescu et al., 2016 RD, RK, AWF, EM - Myelin fraction Animal - Demyelination - Cuprizone Brain
Rde, T2, MTR Mouse
Kelm et al., 2016 MD, RD, MK, EM - Myelin fraction Animal - Demyelination - Knockout Brain
RK, AWF Mouse
Reeves et al., 2016 T1, T2 Immunohistochemistry - Human Epilepsy Brain
MBP
Tu et al., 2016 FA, AD, RD, MD, Immunohistochemistry - Animal - Traumatic brain injury Brain
MTR MBP Rat
Chang et al., 2017 FA, AD, RD, MD Immunohistochemistry - Animal - Healthy Brain
MBP Mouse
Chen et al., 2017 MWF EM - Myelin fraction Animal - Injury - Dorsal columnar SC
Rat transection
Khodanovich et al., MPF Histology - LFB Animal - Demyelination - Cuprizone Brain
2017 Mouse
Lehto et al.,, 2017a RAFF, MTR, Histology - Gold Animal - Demyelination - Brain
T1sat, chloride Rat Lipopolysaccharide
FA, MD, AD, RD
Lehto et al.,, 2017b MTR Histology - Gold Animal - Traumatic brain injury Brain
chloride Rat
van Tilborg et al., FA Immunohistochemistry - Animal - White matter injury Brain
2018 MBP Rat
Beckmann et al., MTR Histology - LFB Animal - Demyelination - Cuprizone Brain
2018 Mouse
Berman et al., 2018 MTV EM - Myelin fraction Animal - Demyelination - Knockout Brain
Mouse
Hametner et al., R2*, T1, QSM Histology - LFB Human Vascular diseases Brain
2018
Praet et al., 2018 MK, RK, AK, FA, Immunohistochemistry - Animal - Amyloidosis Brain
MD, RD, AD MBP Mouse
Wendel et al., 2018 FA, AD, RD, MD Immunohistochemistry - Animal - Traumatic brain injury Brain
MBP Mouse
West et al., 2018 MPF, MWF, EM - Myelin fraction Animal - Demyelination - Knockout Brain
MVF-T2, Mouse
MVF-MT
Yano et al., 2018 FA, RD, MD Immunohistochemistry - Animal - Demyelination - Cuprizone Brain
PLP Mouse
Abe et al., 2019 FA, RD, AD Microscopy - Myelin Animal - Optogenetic stimulation  Brain
thickness Mouse
Duhamel et al., ihMTR, MTR Microscopy - Animal - Healthy Brain
2019 Fluorescence Mouse

Continued on next page
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Appendix 1—table 1 continued

Histology/microscopy

Neuroscience

Study MRI measure(s) measure Tissue Condition Focus
Khodanovich et al., MPF Immunohistochemistry - Animal - Demyelination - Cuprizone Brain
2019 MBP Mouse
Mollink et al., 2019 FA Immunohistochemistry - Human Amyotrophic lateral Brain
MBP sclerosis
Peters et al., 2019 FA, MD Histology - LFB Human Tuberous sclerosis Brain
complex
Pol et al., 2019 QSM, FA, MD Histology - Solochrome ~ Animal - Healthy Brain
Mouse
Soustelle et al., MPF, RD, MWF,  Immunohistochemistry - Animal - Demyelination - Cuprizone Brain
2019 rSPF MBP Mouse
Guglielmetti et al., MTR, MTR-UTE  Immunohistochemistry - Animal - Healthy Brain
2020 MBP Mouse
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