

Titre: Title:	Comparison of organic materials for the passive treatment of synthetic neutral mine drainage contaminated by nickel: Short- and medium-term batch experiments
Auteurs: Authors:	Dominique Richard, Alfonso Mucci, Carmen Mihaela Neculita, & Gérald J. Zagury
Date:	2020
Туре:	Article de revue / Article
Référence: Citation:	Richard, D., Mucci, A., Neculita, C. M., & Zagury, G. J. (2020). Comparison of organic materials for the passive treatment of synthetic neutral mine drainage contaminated by nickel: Short- and medium-term batch experiments. Applied Geochemistry, 123, 104772 (11 pages). https://doi.org/10.1016/j.apgeochem.2020.104772

Document en libre accès dans PolyPublie Open Access document in PolyPublie

URL de PolyPublie: https://publications.polymtl.ca/46488/

Version:	Matériel supplémentaire / Supplementary material Révisé par les pairs / Refereed
Conditions d'utilisation: Terms of Use:	CC BY-NC-ND

Document publié chez l'éditeur officiel Document issued by the official publisher	
Titre de la revue:	

Journal Title:	Applied Geochemistry (vol. 123)
Maison d'édition: Publisher:	Elsevier Ltd
URL officiel: Official URL:	https://doi.org/10.1016/j.apgeochem.2020.104772
Mention légale: Legal notice:	

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

Comparison of organic materials for the passive treatment of synthetic neutral mine drainage contaminated by nickel: Short- and medium-term batch experiments

Dominique Richard¹, Alfonso Mucci², Carmen Mihaela Neculita³, Gérald J. Zagury^{1*}

¹ Research Institute on Mines and Environment (RIME), Department of Civil, Geological, and Mining

Engineering, Polytechnique Montréal, Montreal (QC), Canada, H3C 3A7

² GEOTOP and Department of Earth and Planetary Sciences, McGill University, Montreal (QC), Canada,

H3A 2A7

³ RIME, Université du Quebec en Abitibi-Temiscamingue (UQAT), Rouyn-Noranda (QC), Canada, J9X 5E4

*corresponding author Email: <u>gerald.zagury@polymtl.ca</u>, Tel: +1 514 320 4711 ext: 4980, Fax: +1 514 340-4477

Electronic Supplementary Material

Table S1 Number and distribution of reactors during short-term and medium-term batch experiments.

Short-term experiment				Medium-term experiment			
	Natural pH	nЦ	nЦ	μ		Experimental	Sacrificial
	of the	рп 6	рп	νΠ		duplicate	triplicate
	substrate	0	/	0		reactors	reactor ²
Number of Algae reactors	2	2	2	2	Number of Wood ash reactors	2	1
Number of Sawdust reactors	2	2	2	2	Number of Compost reactors	2	1
Number of Wood ash reactors	2	2	2	01	Number of HD-peat reactors	2	1
Number of Compost reactors	2	2	01	2	Number of LT-peat reactors	2	1
Number of HD-peat reactors	2	2	2	2			
Total number of reactors	36				Total number of reactors	1	12

¹The natural pH of compost and wood ash was 7 and 8, respectively, and thus, no pH 7 and pH 8 experiments were conducted for these substrates. ²These reactors were sampled at t = 21 days to measure the parameters used in geochemical modeling.

Fig. S1 Experimental conditions during (A) short-term and (B) medium-term batch experiments (experimental duplicate reactors).

Table S2 Composition of filtered solutions following 21 days of equilibration in medium-term batch reactors used as input to VMINTEQ geochemical equilibrium model. Eleven elements (AI, Be, Bi, Cd, Sn, Fe, Pb, Se, Ti, Br, NO₂) were not included in the models because they were below their respective detection limits ($10 \mu g/L$, $2 \mu g/L$, $1 \mu g/L$, $0.2 \mu g/L$, $2 \mu g/L$, $60 \mu g/L$, $0.5 \mu g/L$, $3 \mu g/L$, $10 \mu g/L$, 0.1 mg/L, 0.2 mg/L) in all reactor solutions.

Parameter	Unit	DL	Wood-ash	Compost	HD-peat	LT-peat
рН	-	-	8.08	7.24	7.60	7.58
Eh	mV	-	560	560	560	560
Alkalinity	mg/L CaCO3	4	64	10	32	34
DOC	mg/L	3	8.6	23	42	33
Temperature	°C	-	22	22	22	22
ICP-MS						
Са	mg/L	5.0	250	250	250	320
Mg	mg/L	0.1	74	68	67	50
Na	mg/L	0.5	89	83	90	77
К	mg/L	0.5	51	63	6.0	7.4
Ni	μg/L	2.0	450	320	75	300
Zn	μg/L	7.0	<dl< td=""><td>18</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	18	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Mn	μg/L	1.0	130	170	220	320
Со	μg/L	1.0	97	150	53	210
Cu	μg/L	1.0	<dl< td=""><td>3.8</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	3.8	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Мо	μg/L	1.0	25	7.3	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Cr	μg/L	5.0	5.3	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
As	μg/L	1.0	16	15	<dl< td=""><td>2.6</td></dl<>	2.6
В	μg/L	50	550	180	60	<dl< td=""></dl<>
Ва	μg/L	2.0	52	6	145	25
Sb	μg/L	1.0	2.2	1.9	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Ion chromatography						
SO4 ²⁻	mg/L	0.2	983	946	976	950
NO ₃	mg/L	0.2	<dl< td=""><td>25.5</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	25.5	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Cl	mg/L	0.5	95	104	93	89
PO4 ³⁻	mg/L	0.1	0.1	1.6	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
F	mg/L	0.1	<dl< td=""><td><dl< td=""><td>330</td><td>460</td></dl<></td></dl<>	<dl< td=""><td>330</td><td>460</td></dl<>	330	460

Fig. S2 Temporal evolution of solution pH during short-term batch experiments for the five materials tested

Fig. S3 A) Surface sphagnum peat moss (LT-peat), manually crumbled B) Horticultural sphagnum peat moss (HD-peat) purchased from a local retailer (Home Depot, Montreal), sieved to less than 5 mm.

	Charge imbalance (%)	lonic strength (M)	Solids	Oversaturated species (SI) ¹
Wood ash	1.23	0.0324	Calcium carbonates	Calcite (0.39), Aragonite (0.24), Dolomite (disordered) (0.021), Dolomite (ordered) (0.58)
			Nickel carbonate	NiCO ₃ (s) (0.10)
			Cobalt oxide	Co ₃ O ₄ (s) (10.5)
			Manganese oxides	Birnessite (1.72), Bixbyite (4.76), Hausmannite (3.71), Manganite (2.37), Nsutite (2.31), Pyrolusite (3.50)
			Barium sulfate	Barite (0.79)
			Manganese phosphate	MnHPO ₄ (s) (0.35)
			Calcium phosphate	Hydroxyapatite (6.50)
Compost	0.29	0.0315	Cobalt oxide Manganese oxide Manganese Phosphate Calcium phosphate	Co₃O₄(s) (4.45) Pyrolusite (0.26) MnHPO₄(s) (1.58) Hydroxyapatite (6.45)
HD post calcito	4 70	0 0200	Cobalt oxido	(0, 0, (c)) (5, 01)
	4.75	0.0309	Manganese oxides	Birnessite (0.010), Bixbyite (2.300), Hausmannite (0.50), Manganite (1.14), Nsutite (0.60), Pyrolusite (1.78)
			Barium sulfate	Barite(1.24)
LT-peat-calcite	2.15	0.0313	Cobalt oxide	Co ₃ O ₄ (s) (7.60)
			Manganese oxides	Birnessite (0.12), Bixbyite (2.561), Hausmannite (0.91), Manganite (1.27), Nsutite (0.71), Pyrolusite (1.89)
			Barium sulfate	Barite (0.45)

Table S3 VMINTEQ equilibrium model results for solutions in batch reactors at t=21 days

 ${}^{1}SI = -\log (IAP/K^{\circ}_{sp})$, where IAP is the ion activity product of the ionic constituents of the solid and K°_{sp} is the thermodynamic solubility of the solid at the experimental temperature and 1 atm total pressure.