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AN OPTIMAL CONTROL PROBLEM FOR A WIENER PROCESS
WITH RANDOM INFINITESIMAL MEAN

MARIO LEFEBVRE a ∗ AND ABDERRAZAK MOUTASSIM a

ABSTRACT. We consider a stochastic optimal control problem for one-dimensional diffu-
sion processes with random infinitesimal mean and variance that depend on a continuous-
time Markov chain. The process is controlled until it reaches either end of an interval. The
aim is to minimize the expected value of a cost criterion with quadratic control costs on
the way and a final cost. A particular case with a Wiener process will be treated in detail.
Approximate and numerical solutions will be presented.

1. Introduction

We consider a one-dimensional controlled diffusion process {X(t), t ≥ 0} defined by the
stochastic differential equation

dX(t) = f [X(t)]dt +b0u[X(t)]dt +
√︁

v[X(t)]dW (t), (1)

where b0 ̸= 0 is a constant, v(·)> 0 and {W (t), t ≥ 0} is a standard Brownian motion. Our
aim is to minimize the expected value of the cost function

J(x) =
∫︂ T (x)

0

{︃
1
2

q0u2[X(t)]+λ

}︃
dt +K[X(T (x))], (2)

where q0 (> 0) and λ are constants, K is a general termination cost function and T (x) is a
random variable defined by

T (x) = inf{t ≥ 0 : X(t) = a or b | X(0) = x ∈ [a,b]}. (3)

Notice that if the parameter λ is positive (respectively negative), then the optimizer wants
to leave the interval [a,b] as soon (respectively late) as possible, while taking the quadratic
control costs into account.

Whittle (1982) considered this type of problem, which he called "LQG homing", in n
dimensions. He showed that, in some cases, it is possible to express the optimal control
in terms of a mathematical expectation for the uncontrolled process that corresponds to
{X(t), t ≥ 0}. In practice, the problems that can be solved explicitly are generally for the
case when n = 1, or the one for which we can use symmetry to reduce the problem from n
to only one dimension.

http://dx.doi.org/10.1478/AAPP.97S2A1
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A1-2 M. LEFEBVRE ET AL.

Lefebvre has published many papers on LGQ homing; (Ionescu et al. 2016; Lefebvre
and Ionescu 2016; Lefebvre and Zitouni 2016, see, for instances) for recent papers. (Kuhn
1985) has treated the case when the cost function takes the risk-sensitivity of the optimizer
into account. Makasu has also published various papers on homing problems. He was able,
in particular, to solve explicitly a two-dimensional problem; see (Makasu 2013).

In this paper, we will consider the case when the infinitesimal parameters of the controlled
process {X(t), t ≥ 0} are random and vary according to the values taken by a continuous-
time Markov chain. In the above formulation, to solve our problem we can first derive the
dynamic programming equation that the value function

F(x) := inf
u[X(t)], 0≤t≤T (x)

E[J(x)] (4)

satisfies. To obtain an explicit expression for F(x), we must solve a second-order non-linear
differential equation. However, when the infinitesimal parameters are random, we will
have to solve a system of equations that are second-order non-linear differential-difference
equations.

Next, we will try to find approximate analytical solutions in the particular case when the
uncontrolled process is a Wiener process with non-zero drift. These approximate solutions
will be compared to a numerical solution to assess their quality.

2. Random infinitesimal parameters

Let {Y (t), t ≥ 0} be a continuous-time Markov chain with state space E = {1, . . . ,k}.
The process spends a random exponential time with parameter νi in state i before making a
transition to state j ̸= i with probability pi j.

We now consider the controlled process {(X(t),Y (t)), t ≥ 0} defined by

dX(t) = f [X(t),Y (t)]dt +b0u[X(t),Y (t)]dt +
√︁

v[X(t),Y (t)]dW (t). (5)

The final time becomes the first-passage time

T (x, i) = inf{t ≥ 0 : X(t) = a or b | X(0) = x ∈ [a,b],Y (0) = i}, (6)

for i = 1, . . . ,k, and the aim is to find the control u∗[X(t), i] that minimizes the expected
value of

J(x, i) :=
∫︂ T (x,i)

0

{︃
1
2

q0u2[X(t), i]+λi

}︃
dt +Ki[X(T (x, i))]. (7)

Let

F(x, i) := inf
u[X(t),i], 0≤t≤T (x,i)

E[J(x, i)]. (8)
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By making use of Bellman’s principle of optimality, we can write that

F(x, i) = inf
u[X(t),i], 0≤t≤∆t

E
[︃∫︂

∆t

0

{︃
1
2

q0u2[X(t), i]+λi

}︃
dt

+F
(︁
x+[ f (x, i)+b0u(x, i)]∆t +

√︁
v(x, i)W (∆t),Y (∆t)

)︁
+o(∆t)

]︃
= inf

u[X(t),i], 0≤t≤∆t
E
[︃

1
2

q0u2(x, i)∆t +λi∆t

+F
(︁
x+[ f (x, i)+b0u(x, i)]∆t +

√︁
v(x, i)W (∆t), i

)︁
(1−νi∆t)

+∑
j ̸=i

F
(︁
x+[ f (x, j)+b0u(x, j)]∆t +

√︁
v(x, j)W (∆t), j

)︁
νi∆t pi j

+o(∆t)
]︃
. (9)

Next, with W (0) = 0, we can write that

E[W (∆t)] = 0 (10)

and that
E[W 2(∆t)] =V [W (∆t)] = ∆t. (11)

Hence, assuming that F is twice differentiable with respect to x, we deduce from Taylor’s
formula that, for any i ∈ E,

E
[︁
F
(︁
x+[ f (x, i)+b0u(x, i)]∆t +

√︁
v(x, i)W (∆t), i

)︁]︁
= F(x, i)+ [ f (x, i)+b0u(x, i)]∆t

dF(x, i)
dx

+
1
2

v(x, i)∆t
d2F(x, i)

dx2

+o(∆t). (12)

It follows that (because ∑ j ̸=i pi j = 1)

0 = inf
u[X(t),i], 0≤t≤∆t

{︃
1
2

q0u2(x, i)∆t +λi∆t

+[ f (x, i)+b0u(x, i)]∆tF ′(x, i)+
1
2

v(x, i)∆tF ′′(x, i)

+∑
j ̸=i

[F(x, j)−F(x, i)]νi∆t pi j +o(∆t)
}︃
. (13)

Finally, dividing both sides of the previous equation by ∆t, and letting ∆t decrease to 0,
we obtain the following dynamic programming equation (DPE):

0 = inf
u(x,i)

{︃
1
2

q0u2(x, i)+λi +[ f (x, i)+b0u(x, i)]F ′(x, i)

+
1
2

v(x, i)F ′′(x, i)+∑
j ̸=i

νi pi j [F(x, j)−F(x, i)]
}︃
. (14)

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 97, No. S2, A1 (2019) [9 pages]



A1-4 M. LEFEBVRE ET AL.

Now, differentiating with respect to u(x, i), we deduce that the optimal control u∗(x, i) is
given by

u∗(x, i) =−b0

q0
F ′(x, i). (15)

Notice that we only need to find the derivative F ′(x, i) to obtain the optimal control. Substi-
tuting this expression into the DPE, we find that we must solve the system of non-linear
second-order differential-difference equations

0 = λi + f (x, i)F ′(x, i)− 1
2

b2
0

q0

[︁
F ′(x, i)

]︁2
+

1
2

v(x, i)F ′′(x, i)

+ ∑
j ̸=i

νi pi j [F(x, j)−F(x, i)] (16)

for i = 1, . . . ,k.

3. Particular case

We will consider the particular case when E = {1,2}, so that the system (16) is reduced
to

0 = λ1 + f (x,1)F ′(x,1)− 1
2

b2
0

q0

[︁
F ′(x,1)

]︁2
+

1
2

v(x,1)F ′′(x,1)

+ν1 [F(x,2)−F(x,1)] , (17)

0 = λ2 + f (x,2)F ′(x,2)− 1
2

b2
0

q0

[︁
F ′(x,2)

]︁2
+

1
2

v(x,2)F ′′(x,2)

+ν2 [F(x,1)−F(x,2)] . (18)

We will treat the case when {X(t), t ≥ 0} is a controlled Wiener process.
We assume that f (x,1) = 1, f (x,2) = −1 and v(x,1) = v(x,2) = 1, so that only the

infinitesimal mean of the controlled process is random. Moreover, we take λi = νi = 1
and Ki[X(T (x, i))]≡ 0, for i = 1,2. That is, there is no termination cost. Finally, we take
a =−1 and b = 1 in the definition of T (x, i).

Letting

c2 :=
b2

0
2q0

, (19)

the system that we must solve is then

0 = 1+F ′(x,1)− c2 [︁F ′(x,1)
]︁2
+

1
2

F ′′(x,1)

+ [F(x,2)−F(x,1)] , (20)

0 = 1−F ′(x,2)− c2 [︁F ′(x,2)
]︁2
+

1
2

F ′′(x,2)

+ [F(x,1)−F(x,2)] . (21)

The boundary conditions are F(−1, i) = F(1, i) = 0 for i = 1,2.
Notice that in this particular case, using symmetry we can write that

F(x,2) = F(−x,1). (22)
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Hence, the above system can be rewritten as follows:

0 = 1+F ′(x,1)− c2 [︁F ′(x,1)
]︁2
+

1
2

F ′′(x,1)

+ [F(−x,1)−F(x,1)] , (23)

0 = 1−F ′(−x,1)− c2 [︁F ′(−x,1)
]︁2
+

1
2

F ′′(−x,1)

+ [F(x,1)−F(−x,1)] . (24)

Since the two equations are equivalent, we only have to solve the differential-difference
equation

0 = 1+F ′(x,1)− c2 [︁F ′(x,1)
]︁2
+

1
2

F ′′(x,1)+ [F(−x,1)−F(x,1)] . (25)

Three methods will be used to solve the above equation:
(1) First, we will try to find approximate solutions of the equation by making use of

Taylor’s formula to simplify the term F(−x,1)−F(x,1). A special case will be
considered.

(2) We will also appeal to the method of series solutions.
(3) Finally, a numerical method will be used to solve a particular problem. We will use

the numerical solution to check whether the approximate solutions are satisfactory.

3.1. Taylor’s formula. We deduce from Taylor’s formula:

F(−x,1) = F(x,1)+F ′(x,1)(−2x)+
1
2

F ′′(x,1)(4x2)+o(x2) (26)

that Eq. (25) can be approximated as follows:

1
2
(︁
4x2 +1

)︁
G′(x,1)− c2G2(x,1)− (2x−1)G(x,1) =−1, (27)

where G(x,1) := F ′(x,1). The mathematical software Maple is able to solve this equation.
The solution is in terms of the special function HeunC. As mentioned above, we only
need F ′(x,1) to obtain the optimal control u∗(x,1). However, the boundary conditions are
in terms of F(x,1). Therefore, we must either integrate the function G(x,1) and use the
boundary conditions F(1,1) = F(−1,1) = 0, or find a condition on the function G(x,1).

3.1.1. A special case. By definition, c2 = b2
0/(2q0) is a constant. If we assume instead that

c is a function of x given by

c2(x) = α

(︃
2x2 +

1
2

)︃
, (28)

where α > 0 is a constant, then we find that the transformation

Φ(x,1) = e−αF(x,1) (29)

linearises Eq. (27). Indeed, the function Φ(x,1) satisfies the second-order linear differential
equation

1
2
(︁
4x2 +1

)︁
Φ

′′(x,1)− (2x−1)Φ′(x,1) = αΦ(x,1). (30)

The boundary conditions become Φ(1,1) = Φ(−1,1) = 1.
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A1-6 M. LEFEBVRE ET AL.

Again, Maple is able to solve Eq. (30). The solution is in terms of the generalized
hypergeometric function. Moreover, we can determine the value of the two arbitrary
constants in the general solution of the equation.

3.2. Series solutions. We can try to find series solutions of the original difference-differential
equation (25) when c is a constant. However, to compare the various approximate solutions,
we will consider the case when c2 = α(2x2 + 1

2 ), with α = 1, so that the equation becomes

0 = 1+F ′(x,1)−
(︃

2x2 +
1
2

)︃[︁
F ′(x,1)

]︁2
+

1
2

F ′′(x,1)+ [F(−x,1)−F(x,1)] . (31)

We assume that the function F(x,1) can be expressed as

F(x,1) =
∞

∑
k=0

akxk, (32)

so that

F ′(x,1) =
∞

∑
k=1

kakxk−1 and F ′′(x,1) =
∞

∑
k=1

k(k+1)ak+1xk−1. (33)

Substituting these expressions into Eq. (31), we find that the equation that we must solve
is

0 = 1+
∞

∑
k=1

kakxk−1 −
(︃

2x2 +
1
2

)︃[︄
∞

∑
k=1

kakxk−1

]︄2

(34)

+
1
2

∞

∑
k=1

k(k+1)ak+1xk−1 +

[︄
∞

∑
k=0

(−1)kakxk −
∞

∑
k=0

akxk

]︄
.

We will find the approximate solutions expressed as a polynomial of degree 5, and of
degree 6. The coefficients of the polynomial of degree 5 (respectively 6) are determined
by taking into account the boundary conditions F(−1,1) = 0 and F(1,1) = 0, and are the
solutions of the following system (35) (resp. (37)).

• Polynomial of degree 5.

0 = 2
3 + 5

3 a1 − a2
1 + 1

3 a3
1,

a2 =−1 − a1 + 1
2 a2

1,

a3 =
2
3 + 2

3 a1 − a2
1 + 1

3 a3
1,

a4 =
2
3 a1 + 4

3 a2
1 − 5

6 a3
1 + 1

4 a4
1,

a5 =−a1 − a3,

a0 =−a2 − a4.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(35)

The first equation of the above system is non-linear. We can determine its root a1 by
using one of the iterative methods to solve non-linear equations, for example the bisection
method (see (Fortin 2016)). Once a1 is determined, the other coefficients are computed
easily using the other equations. Thus, the explicit form of the polynomial is

P5(x) =
579

1039
− 541

1397
x− 235

437
x2 +

287
1200

x3 − 120
6151

x4 +
97

655
x5. (36)
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• Polynomial of degree 6.

0 = 2
5 − 9

5 a2
1 + 34

15 a3
1 − a4

1 − 1
5 a5

1,

a2 =−1 − a1 + 1
2 a2

1,

a3 =
2
3 + 2

3 a1 − a1
2 + 1

3 a3
1,

a4 =
2
3 a1 + 7

6 a2
1 − a3

1 + 1
4 a4

1,

a5 =−a1 − a3,

a6 =
34
45 + 2a1 − 46

45 a2
1 − 109

45 a3
1 + 227

90 a4
1 − a5

1 + 1
6 a6

1,

a0 =−a2 − a4 − a6.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(37)

In the same way, we can determine the coefficients of the polynomial of degree 6, and its
explicit form is

P6(x) =
1018
1947

− 541
1397

x− 235
437

x2 +
287

1200
x3 − 120

6151
x4 +

97
655

x5 +
115
3342

x6. (38)

3.3. Numerical method. Finally, to evaluate the accuracy of the above approximate solu-
tions, we will compute a numerical solution, which is considered here to be the most precise
solution of the original differential-difference equation (31).

Because we have a differential-difference equation and the problem is a Boundary Value
Problem (BVP), the finite difference method (see (Fortin 2016)) is the suitable numerical
technique to choose, rather than the shooting method.

The principle of the finite difference method is based on the discretization of the
differential-difference equation (31) in the interval [−1,1] . More precisely, if we con-
sider the numerical solution F̃ computed with this method, the vector (Fĩ)1≤i≤n+1, whose
elements are given by

F̃ i = F(xi,1) for i = 1, . . . ,n+1, (39)

is the solution of the following system

F̃ i =
h2

h2 +1

(︄
1+

F̃ i+1 − F̃ i−1

2h
−

1
2 +2x2

i

4h2

(︁
F̃ i+1 − F̃ i−1

)︁2

+
F̃ i+1 + F̃ i−1

2h2 + F̃n−i+1

)︃
(40)

for i = 2, . . . ,n, where h denotes the discretization time step of the interval [−1,1] and
satisfies h = x j − x j−1 = 2

n for j = 2, . . . ,n+ 1. Moreover, xi = x1 + (i− 1)h, for i =
1, . . . ,n+1, are the equidistant points of this interval, such that

−1 = x1 < x2 < .. . < xn < xn+1 = 1. (41)

The approximate solutions are shown in Fig.1. As we can see, the accuracy of these three
approximate solutions is roughly the same. Indeed, the solution based on Taylor’s formula
does well near the boundaries of the interval [−1,1] (particularly when x ∈ [−1;−0,6]), but
not so well near the origin. In the case of the polynomials, that of degree 5 (respectively 6)
provides a good approximation when x is positive (resp. negative).

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 97, No. S2, A1 (2019) [9 pages]



A1-8 M. LEFEBVRE ET AL.

FIGURE 1. Curves of the approximate solutions of the function F .

4. Concluding remarks

In this paper, we considered an LQG homing problem for a one-dimensional diffusion
process whose infinitesimal parameters depend on a continuous-time Markov chain. This
type of problem is useful in financial mathematics. Indeed, the stock markets move from
a "bull" to a "bear" market (or vice versa) at random times. We obtained analytical ap-
proximate solutions in the simplest case possible, and we compared these approximate
solutions to a numerical solution. We saw that the approximate solutions were relatively
good. We would like to obtain an exact solution to such a problem in a special case. This
could be achieved by assuming that the function F(x, i) is of a given form (for instance, a
quadratic function), and by determining whether this solution is valid for a certain choice of
the parameters in the problem.
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