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Résumeé

Le travail de cette these traite de la propagation d’impulsions optiques dans
les guides d’onde, dont la fibre optique, ainsi que des impulsions optiques station-
naires générées par les lasers tout-fibre. La propagation d’impulsions lumineuses
dans un milieu dispersif et non-linéaire est étudiée par la méthode des moments.
Une représentation claire des moments est élaborée, ce qui apporte une meilleure
compréhension de la physique de la propagation. En supposant que la phase tem-
porelle de I'impulsion est quadratique, trois invariants sont trouvés et une solution
analytique basée sur les moments d’ordre 2 est obtenue. Cette solution décrit a la fois
le comportement asymptotique de I'impulsion dans le régime de dispersion normale et
son comportement périodique dans le régime de dispersion anormale. Dans ces deux
cas, la solution analytique est comparée a diverses simulations numériques et montre
une excellente précision dans le régime de dispersion normale. Dans le régime de dis-
persion anormale, la solution analytique décrit bien qualitativement le comportement
de la solution. De plus, des expressions linéaires approximatives décrivant 1’évolution
non-linéaire de la propagation sur de petites et grandes distances sont déduites de la
solution analytique.

La solution analytique suppose cependant que la forme de l'impulsion est in-
variante lors de la propagation. Deux approches sont alors envisagées pour étudier
I’évolution de la forme de I'impulsion. La premiere de ces approches examine la pro-
pagation d’une impulsion gaussienne dans le régime de dispersion normale. Au moyen
des expressions linéaires approximatives et des solutions analytiques de la propaga-
tion dans des cas purement dispersif et purement non-linéaire, I’évolution de la forme
de I'impulsion est décrite de maniere purement analytique. La comparaison avec les
simulations numériques montre un tres bon accord. Pour pousser ’analyse au-dela de
la propagation d’une impulsion gaussienne dans le régime de dispersion normale, il
faut cependant une autre approche.

La seconde approche consiste a utiliser les moments d’ordre supérieur a 2; les
moments d’ordre 4 et les moments d’ordre 2 non-linéaires, les moments d’ordre 3
étant nuls puisque I'impulsion est supposée symétrique. Afin de résoudre les équations

des moments, il faut une modélisation plus précise de la phase qu'une dépendance



quadratique. Trois différentes formes approximatives de la phase sont étudiées, ainsi
qu'une forme approximative sur la norme du champ basée sur la distribution de
Pearson, qui permet de représenter différentes formes d’impulsions. Ces différentes
approximations sont comparées, d'une part, aux simulations numériques a travers
différents moments et, d’autre part, en intégrant directement le systeme d’équations
sur les moments décrivant la propagation de I'impulsion. Une analyse de points fixes
est également faite sur les équations régissant 1’évolution de I'impulsion. Il ressort
de ces études que la modélisation de la phase doit contenir un terme dispersif et un
terme non-linéaire pour décrire adéquatement 1’évolution de la forme des impulsions.

Les modeles développés sont ensuite appliqués a un probleme plus complexe que
la propagation dispersive et non-linéaire : les équations maitresses des lasers tout-
fibre. Dans ces équations, les différents effets des éléments optiques de la cavité sont
linéarisés et représentés sous forme différentielle. Selon les éléments optiques présents,
des solutions particulieres sur ’enveloppe complexe doivent étre déterminées, lors-
qu’elles existent. En appliquant la méthode des moments, une approche générale, qui
permet de transformer I’équation maitresse différentielle en un systeme d’équations
algébriques, est obtenue et les solutions étudiées. Les impulsions stationnaires des
lasers obtenues par cette approche sont comparées aux solutions analytiques sur
I’enveloppe complexe des équations maitresses dans trois cas de lasers : le laser a
verrouillage actif des modes, le laser a verrouillage passif des modes et le laser solito-
nique. La comparaison montre que 'approche générale développée fournit les mémes
relations entre les parametres de I'impulsion et ceux de la cavité laser. La forme de
I'impulsion est décrite avec une erreur inférieure a 5% pour trois différents types de
laser. Cette approche approximative est ensuite utilisée avec succes dans la résolution
de trois équations maitresses pour lesquelles aucune solution analytique n’existe. La
méthode que nous avons développée permet donc de décrire la propagation d’impul-
sions optiques dans un milieu dispersif et non-linéaire et ce, dans les deux régimes de
dispersion. Elle permet également d’étudier I’évolution de la forme des impulsions lors
de la propagation. Finalement, elle permet de s’attaquer a des équations maitresses
afin d’obtenir des solutions approximatives lorsque les solutions analytiques ne sont

pas connues.
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Abstract

This thesis is about the propagation of optical pulses in waveguides, such as optical
fibers, as the study of the steady-state optical pulses of all-fiber lasers. Pulse pro-
pagation in a nonlinear dispersive medium is analyzed in this thesis by the moment
method. A clear representation of the moments is developed which enables a better
understanding of the underlying physics of the propagation. Assuming that the pulse
has a quadratic time-dependent phase, three invariants were found which lead to an
analytical solution based on the second order moments. This solution describes both
the asymptotic behavior in the normal dispersion regime as well as the periodic be-
havior in the anomalous dispersion regime. In both cases, the analytical solution is
compared to numerous numerical simulations and shows an excellent agreement in the
normal dispersion regime. In the anomalous dispersion regime, the analytical solution
describes well the qualitative features of the propagation. Linear expressions are then
derived from the analytical solution to approximate the nonlinear propagation over
short and long distances.

The analytical solution assumes that the pulse shape remains invariant along pro-
pagation. Two different approaches are then considered to study the evolution of the
pulse shape. The first approach looks at the propagation of a gaussian pulse in the
normal dispersion regime. Using the linear expressions derived from the analytical
solution and the analytical solution of the purely dispersive and nonlinear propaga-
tion, the evolution of the pulse envelope is described analytically. Comparison to
numerical simulations shows a very good agreement. To go beyond the propagation
of a gaussian pulse in the normal dispersion regime, an other approach is needed.

The other approach makes use of higher order moments; either the fourth order
moments or the nonlinear second order moments (the third order moments being all
zero since the pulse is assumed symmetric). In order to solve the moments equations,
a model of the phase that goes beyond the quadratic phase approximation is requi-
red. Three such different approximate models are studied as well as an approximate
representation of the field amplitude based on the Pearson distribution, which can re-
present several pulse shapes. These different models are compared, on the one hand,

to numerical simulations through different moments and, on the other hand, by direct
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integration ot the approximated system of equations describing the evolution of the
moments. A fixed point analysis is also carried out on the equations describing the
evolution of the pulse shape. It arises from these analyses that a proper modeling of
the phase must consider a dispersive term and a nonlinear term in order to describe
the pulse shape evolution.

These models are then applied to the more complex problem of the master equa-
tions in all-fiber lasers. In these equations, the effects of the different optical elements
in the laser cavity are linearized and represented in their differential form. Then, de-
pending on which optical element is present, particular analytical solutions on the
complex envelope must be found, if they exist. By using the moments method, a
general approach that transforms the master equation into a set of algebraic equa-
tions is obtained and studied. The properties of the steady-state pulses obtained from
this method are then compared to the analytical solutions on the complex envelope
of the master equation in three cases: the actively mode-locked laser, the passively
mode-locked laser and the solitonic laser. The comparison shows that the general ap-
proach based on the moments yield the same relations between the pulse parameters
and cavity parameters and describes the pulse shape within 5%. This approach is
then successfully applied to three other master equations where no analytical solution
exists.

The analytical method developed in this thesis thus enables us to describe the
propagation of pulses in a nonlinear dispersive medium in both dispersion regime. It
also allows us to study the evolution of the pulse shape along propagation. Finally,
this method can be used to find approximate analytical solutions to master equations

where none are known.
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Chapitre 1
Introduction

Les problemes de design sont stirement parmi les plus intéressants du domaine de
I'ingénierie. Ces problemes consistent a trouver les parametres d’un composant, d’un
appareil, d'un instrument, afin d’obtenir un résultat prédéterminé. Il existe bien des
outils pour faciliter le design tels que des regles de design déterminées empiriquement,
des modeles théoriques et des programmes de simulation. Les méthodes empiriques
sont généralement longues et cotliteuses; elles sont toutefois tres rapides dans les
domaines ou les technologies sont bien établies. Les modeles théoriques permettent
d’exprimer clairement les relations entre les parametres de design et son résultat dans
la mesure ou les équations puissent étre résolues analytiquement. Autrement, il faut
résoudre numériquement.

La puissance sans cesse grandissante des ordinateurs a fait des simulations numéri-
ques un outils formidable pour tester les designs de toute sorte. Toutefois, tester des
designs est différent de créer un design. Les simulations nous permettent de connaitre
le comportement de I'appareil en fonction de ses parametres alors que le design est
le probléme inverse : déterminer les parametres pour un comportement donné. En
général, ce dernier est beaucoup plus difficile. La raison est qu’alors que le comporte-
ment se décrit par quelques variables, voire, une seule, il y a généralement plusieurs
parametres de design. Quand le nombre de parametres de design est faible, et que
les simulations associées au probleme se font rapidement, il est possible d’utiliser les
simulations numériques pour faire le design. Il suffit de cartographier I'espace des pa-
rametres afin de déterminer les comportements de chaque combinaison de parameétres.
Ce processus devient toutefois excessivement long quand le nombre de parametres est
grand ou que les simulations numériques sont longues a faire. Dans ce cas, il faut
avoir recours a d’autres méthodes.

Une de ces méthodes est de retourner aux modeles théoriques et tenter de les sim-
plifier judicieusement de telle sorte qu’ils puissent étre résolus analytiquement tout

en décrivant adéquatement le comportement du systeme. Le travail de cette these



consiste exactement en cela : mettre en place des modeles théoriques approximatifs
permettant de décrire suffisamment adéquatement le probleme considéré afin de faci-
liter le design de I’appareil correspondant. Le probleme de design auquel on s’intéresse
dans cette these est celui du design des lasers a impulsions, en particulier les lasers
a fibres. Plus précisément, nous cherchons a savoir quels doivent étre les parametres
de la cavité de laser afin d’obtenir une impulsion donnée. Pour ce faire, nous devons
résoudre les équations décrivant la propagation des impulsions dans la cavité laser. Les
lasers a impulsions sont des systemes complexes qui prennent un temps considérable
a simuler. En effet, afin de déterminer I'impulsion stationnaire d’un laser, il faut faire
la propagation de cette derniere a travers la cavité laser a plusieurs reprises jusqu’a
ce qu’on obtienne une impulsion propre de la propagation, c’est-a-dire que l'on re-
trouve la méme impulsions apres un cycle dans la cavité. Lorsque la propagation
est dispersive et non-linéaire, le calcul de la propagation est long, d’autant plus que
les impulsions se propageant ne sont pas «Fourier-limitées», c’est a dire qu’elles ont
une phase qui dépend du temps (ou des fréquences). Il faut donc trouver une fagon
approximative de décrire cette propagation.

Le probleme de la propagation dans une cavité laser étant relativement complexe,
nous commencons l’analyse par la propagation dans un milieu dispersif et non-linéaire
avant de passer aux lasers proprement dits. Ces milieux décrivent bien plusieurs com-
posantes technologiques dont, entre autres, les fibres optiques en font partie. Ainsi,
la propagation dans les systemes de communication, la compensation de dispersion
et la compression d’impulsions sont toutes décrites par des milieux dispersifs et non-
linéaires. Nous utilisons I’équation de Schrédinger non-linéaire (ESNL) pour décrire la
propagation d'une impulsion dans ces milieux. Cette équation est également utilisée
pour décrire le mouvement d’onde dans les fluides ainsi que les fonctions d’onde en
mécanique quantique. Notons toutefois que selon le probleme considéré, la dispersion
et la non-linéarité décrites peuvent étre spatiales ou temporelles. Dans les pages qui
suivent, nous considérons la propagation d’impulsions dans une fibre optique; nous
nous attardons donc au cas temporel, sachant que les résultats trouvés peuvent faci-
lement étre transposés dans le cas spatial. Cette équation décrit bien la propagation
dans les fibres optiques standard tant que I'impulsion n’est pas trop bréve (une durée
supérieure a quelques picosecondes).

Différentes solutions analytiques a 'ESNL existent, selon que la dispersion et la

non-linéarité du milieu s’additionnent ou s’opposent. Quand elles s’opposent, les so-



lutions de 'ESNL sont les solitons : des impulsions qui se propagent de maniere
invariante ou qui se déforment de maniere périodique. Ces solutions ne surviennent
cependant que dans des cas particuliers ou il y a compensation parfaite entre 1’am-
pleur de la non-linéarité et celle de la dispersion est entier. Quand ces deux effets
s’additionnent, une solution asymptotique de 'ESNL a été trouvée sous la forme
d’impulsions paraboliques. Ces impulsions ne surviennent que dans le cas limite ou
la non-linéarité est beaucoup plus grande que la dispersion ou pour des distances de
propagation infiniment longues. Notons aussi qu’il existe des solutions analytiques de
I’ESNL dans les cas purement non-linéaire et purement dispersif. Dans ce dernier cas,
la solution est gaussienne. Toutes ces solutions analytiques nous permettent d’avoir
une vue d’ensemble des comportements possibles des impulsions lors de la propaga-
tion dans les milieux dispersifs et non-linéaires. Elles ne permettent toutefois pas de
décrire de maniere générale la propagation d'une impulsion; la plupart des cas ne
sont pas traités par ces solutions. Par exemple, lorsque les effets s’additionnent, il
n’existe pas de solutions générales pour la propagation d’impulsions de forme quel-
conque. Il n’existe pas non plus de solutions générales dans les deux régimes lorsque
la non-linéarité et la dispersion n’ont pas la méme ampleur. Si nous voulons résoudre
le probleme inverse, il nous faut trouver un moyen de s’attaquer a ces difficultés.
Considérant la difficulté de ce probleme, il faut simplifier le probleme ou la so-
lution. Les solutions que nous venons de voir ont été trouvées en simplifiant le
probleme, c’est-a-dire en ne considérant que certains cas particuliers des parametres
de I’équation. La grande difficulté dans la résolution de I'ESNL vient du fait que
I’équation est une équation aux dérivées partielles; il faut la résoudre dans ’espace et
le temps ou puisque c’est une équation d’onde, dans I'espace et les fréquences. Nous
pouvons donc tenter l'analyse dans le domaine temporel ou spectral. Il se trouve
que la dispersion se résout tres facilement dans le domaine spectral ; par contre, la
non-linéarité se décrit bien dans le domaine temporel. Il nous serait donc plus facile
de travailler dans un espace hybride temps-fréquence ou les deux domaines seraient
représentés simultanément. L’impulsion serait représentée dans ce cas comme une
fonction du temps, des fréquences et de la distance de propagation. Ce genre de
représentation est cependant généralement lourd. Une autre facon est de simplifier
I’analyse est de faire en sorte qu’elle ne dépende ni du temps ni des fréquences. Une
facon d’y arriver est d’utiliser la méthode des moments qui consiste a réécrire '’ESNL

en termes des différents moments de ’enveloppe de I'impulsion.



Les moments, par définition, sont des quantités moyennes qui proviennent de
Iintégration d’un opérateur s’appliquant sur une distribution. Ils décrivent certaines
propriétés de la distribution (ici I'enveloppe de I'impulsion) de maniere générale
puisque les détails spécifiques sont perdus lors de l'intégration (ici dans le domaine
temporel ou spectral). Il existe une infinité d’opérateurs définissant autant de mo-
ments; il est important de bien les choisir en fonction de la physique du probleme
a résoudre. Par exemple, pour une impulsion, les opérateurs décrivant 1'énergie, la
largeur temporelle et la largeur spectrale de I'impulsion sont tres pertinents. En com-
binant les moments sur 'ESNL, nous nous retrouvons avec un systeme d’équations
différentielles ordinaires décrivant I’évolution de chacun des moments de ’enveloppe
de limpulsion au lieu d’une équation aux dérivées partielles décrivant la propaga-
tion de 'enveloppe de I'impulsion. Représenter I'impulsion sous forme de moments a
I'avantage d’enlever la dépendance temporelle (ou spectrale) de la solution et de la
reporter dans un ensemble de variables a trouver, les différents moments. Le prix a
payer est que nous avons un systeme de plusieurs équations a résoudre au lieu d’une
seule.

Une grande partie du travail de cette these consiste, d’'une part, a définir une nota-
tion claire des moments afin de simplifier I’analyse et, d’autre part, a approximer ces
moments afin de résoudre le systeme d’équations différentielles. En effet, le principal
probleme de la méthode des moments est la fuite vers I’avant des moments : I’équation
différentielle d’'un moment donné dépend de plusieurs autres moments ne faisant pas
partie du systeme d’équations a résoudre. Autrement dit, le systeme d’équations est
ouvert. Il faut donc approximer judicieusement les moments pour avoir un systéme
fermé et ainsi résoudre analytiquement le probleme en conservant suffisamment de
précision pour décrire adéquatement la propagation. Les approximations utilisées re-
posent soit sur des approximations sur la phase de 'enveloppe de I'impulsion, soit sur
la forme de ’enveloppe de I'impulsion. De plus, nous devons choisir des approxima-
tions suffisamment simples pour qu’elles facilitent la résolution, sans alourdir inutile-
ment les calculs. Pour ce faire, nous utilisons la distribution de Pearson qui permet
de représenter diverses formes de distributions en ne changeant qu’un seul parametre
dans la distribution (nous nous limitons aux distributions symétriques). Nous étudions
également différentes représentations de la phase de I'impulsion (afin de représenter
les moments).

En utilisant les méthodes des moments et grace a la distribution de Pearson, nous



pouvons étudier le probleme inverse des lasers. Les lasers different de la propaga-
tion simple car ils comportent différents composants ne pouvant étre représentés par
I’ESNL. L’équation la plus souvent utilisée pour représenter les lasers est 1’équation
de Ginzburg-Landau étendue (EGLE) qui contient, en plus des termes dispersifs et
non-linéaires, des termes de saturation, de gain, de déphasage et de filtrage temporel
et spectral. A Tinstar de I’ESNL, des solutions ont été trouvées pour 'EGLE selon
les parametres présents dans 1’équation. Nous retrouvons parmi ces solutions des im-
pulsions gaussiennes et solitoniques. Toutefois ces solutions n’existent que dans des
cas particuliers. Tout comme dans le cas de la propagation, il nous faut une méthode
pour déterminer des solutions, méme si elles sont approximatives, dans le cas plus
général ou les parametres de la cavité peuvent étre quelconques.

Il existe toutefois une différence importante entre le probleme de propagation et le
probleme des lasers. Contrairement a la propagation ou la forme initiale de I'impulsion
est connue, le probleme en général avec les lasers est que la forme de 'impulsion est
inconnue avant de résoudre le systeme. Il nous faut donc que la forme de I'impulsion
fasse partie des variables a trouver ; il faut donc la représenter a ’aide des moments.
Nous y arrivons, d'une part, en calculant des rapports entre certains moments et,
d’autre part, en utilisant la distribution de Pearson. La méthode que nous décrivons
dans les pages qui suivent permet pour la premiere fois, a notre connaissance, que la
forme de I'impulsion soit considérée comme un parametre indéterminé de la solution.
Puisque notre approche est analytique, en résolvant le probleme direct, nous trouvons
par le fait méme la solution inverse.

En résumé, pour déterminer les parametres d’une cavité laser afin d’obtenir une
impulsion donnée, nous utilisons la représentation par les moments. Dans le chapitre
3 nous examinons différentes définitions des moments et expliquons la signification
physique de chacun. Nous définissons également une notation claire afin de bien conce-
voir le probleme et d’interpréter facilement les relations entre les moments ainsi que
leur signification. Nous définissons également différentes autres quantités permettant
de décrire les distributions en utilisant les moments. Nous utilisons ces définitions
des moments dans le chapitre 4 afin de décrire la propagation d’une impulsion dans
un milieu dispersif et non-linéaire. Nous utilisons des quantités invariantes dans la
propagation qui nous permettent de simplifier le systeme d’équations. Toutefois pour
résoudre, il nous faut approximer un des moments du systeme, ce que nous faisons

en supposant une phase quadratique. La solution obtenue consiste en 1’évolution des



moments du second ordre lors de la propagation. Nous comparons 1’évolution de ces
moments avec les simulations numériques correspondantes. Dans le chapitre 5, nous
tentons de retrouver la forme de I’enveloppe de I'impulsion a partir de I’évolution des
moments calculée au chapitre précédent.

Nous nous attardons ensuite au chapitre 6 a lI’évolution des moments d’ordre
supérieur lors de la propagation dans un milieu dispersif et non-linéaire. Ces moments
permettent de décrire I’évolution de la forme de 'enveloppe de I'impulsion lors de la
propagation. Pour obtenir une forme intégrable du systeme d’équations définissant
la propagation, nous devons approximer plusieurs moments. Nous étudions dans ce
chapitre différentes approximation possibles de la phase ainsi que différents niveaux
d’approximations sur le systeme d’équations différentielles. Cette étude nous permet
de définir la limite d’applicabilité de la méthode des moments pour la résolution
des problemes de propagation. Les approximations développées et utilisées dans ce
chapitre sont reprises au dernier chapitre, le chapitre 7 afin de déterminer le régime
stationnaire des lasers a fibres. Plusieurs cavités laser sont étudiées dans ce chapitre.
Dans un premier temps, nous utilisons les moments pour vérifier si nous pouvons
obtenir les résultats théoriques obtenus précédemment par d’autres méthodes. Fina-
lement, nous utilisons les moments sur des cavités pour lesquelles il n’existe aucune
solution analytique connue.

Ces chapitres sont suivis de plusieurs annexes dans lesquelles ont retrouve des
définitions, des propriétés, des fonctions utiles, et des exemples de calculs permettant

de mieux comprendre et de compléter le travail de cette these.



Chapitre 2

Revue de littérature

2.1 La propagation et 1’équation de Schrodinger
non-linéaire

La premiere partie du travail de cette these utilise I’équation de Schrodinger non-
linéaire (ESNL). La littérature couvrant cette équation est considérable et nous n’en
donnons ici qu'un apercu, complété plus en détails dans chacun des chapitres. Pour
une introduction détaillée sur '’ESNL, nous recommandons le livre Nonlinear fiber op-
tics (Agrawal, 2001). Ce livre explique en détail la formulation de 'ESNL a partir des
équations de Maxwell. De plus, le cas purement dispersif de la propagation d’impul-
sions gaussiennes et le cas purement non-linéaire y sont traités. L’ESNL a été étudiée
abondamment et résolue analytiquement dans le cas bien connu ou la dispersion et
la non-linéarité se compensent parfaitement ou harmoniquement : le soliton (Zakha-
rov et Shabat, 1972). Lorsque la compensation des effets dispersifs et non-linéaires
est parfaite, I'impulsion solitonique se propage de maniere invariante ; ¢’est le soliton
d’ordre 1. Les solitons d’ordre supérieur montre une compensation périodique de ces
effets. 11 s’ensuit que I'impulsion se déforme périodiquement le long de la propaga-
tion. Des solutions ont également été trouvées lorsque différents effets sont ajoutés a
I'équation, comme un terme de gain par exemple (Bélanger et al., 1989).

Une autre solution analytique découverte plus récemment (Anderson et al., 1993a)
est 'impulsion parabolique qui est une solution asymptotique de 'ESNL lorsque les
effets de la dispersion et la non-linéarité s’additionnent au lieu de se compenser. Ce
cas limite survient lorsque la non-linéarité est beaucoup plus grande que la dispersion
ou encore quand un terme de gain est ajouté a 'ESNL. L’impulsion parabolique a
I'importante caractéristique qu’elle ne subit pas de rupture du front d’onde (wave-
breaking) lors de la propagation. Lorsque les impulsions se propagent dans les milieux
dispersifs et/ou non-linéaires, différentes fréquences se décalent dans le temps et/ou

sont créées. S’il advient que les fréquences se décalent plus rapidement que d’autres,



'enveloppe de I'impulsion se brise et présente des oscillations (Tomlinson et al., 1985).
Ce phénomene se produit lorsque la dérivée de la phase de I'impulsion n’est plus une
fonction monotone (Anderson et al., 1992). Puisque la phase induite par les effets
non-linéaires est proportionnelle a I’enveloppe, une enveloppe parabolique, la dérivée
de la phase est linéaire, donc monotone.

L’impulsion parabolique est un cas particulier de solutions auto-similaires de
I’ESNL. Les solutions auto-similaires sont des solutions qui conservent toujours la
méme forme lors de la propagation bien que leur phase, leur amplitude et leur durée
puissent changer. Le soliton d’ordre 1 est une solution auto-similaire puisque sa forme
ne change pas lors de la propagation. L'impulsion parabolique est une solution auto-
similaire asymptotique ; elle ne survient que pour de grandes distances de propagation,
lorsque la dispersion est présente mais négligeable par rapport a la non-linéarité ou en
présence de gain (Fermann, 2000), (Kruglov et al., 2000). Pour en savoir plus sur la
convergence d’impulsions paraboliques vers une solution auto-similaire, veuillez voir
(Hirooka et Nakazawa, 2004), (Wabnitz, 2007) et (Wabnitz et Finot, 2008). Les im-
pulsions auto-similaires forment une classe de solutions de 'ESNL ; la décomposition
auto-similaire s’applique a d’autres formes d’impulsions lors de la propagation, Un
traitement en détail dans le régime de dispersion normale est disponible pour des im-
pulsions super-gaussiennes (Forest et al., 1999), des impulsions Hermite-gaussienne
(Chen, 2005b) et des impulsions sécantes hyperboliques (Chen, 2005a). Notons aussi
que des solutions paraboliques ont été trouvées dans le cas ou la dispersion ou la
non-linéarité changent de maniere arbitraire le long de la propagation (Kruglov et al.,
2004), (Kruglov et Harvey, 2006) ; dans ce cas les parametres de I'impulsion dépendent
directement de ceux du milieu de propagation. Un traitement général des solutions
auto-similaires peut étre trouvé dans (Kruglov, 2003) et (Kruglov, 2005). Finalement,
les solutions auto-similaires se retrouvent également dans le cas spatial ou le profil
des faisceaux est parabolique (Chang, 2005), (Ponomarenko, 2006), (Ponomarenko,
2010). Un résumé de la propagation des impulsions auto-similaires est disponible dans
(Dudley et al., 2007).

Toutes ces solutions forment un ensemble de solutions exactes de 'ESNL dans
des conditions tres particulieres. Elles ne décrivent cependant pas la propagation
d’une impulsion donnée dans des conditions générales de propagation ou méme la
propagation d'une impulsion de forme quelconque dans un milieu spécifique. Pour y

arriver, il faut avoir recours a des méthodes approximatives ou la forme de I'impulsion



n’intervient qu’indirectement. Une de ses approches est d’utiliser la méthode varia-
tionnelle Rayleigh-Ritz (Anderson et al., 2001). Elle consiste dans un premier temps
a choisir 'ESNL comme étant une équation d’Euler-Lagrange et d’en déterminer le
lagrangien. Ensuite, une forme de solutions, ou «ansatz», est posée pour modéliser le
type de solutions recherchées, par exemple une impulsion gaussienne avec une phase
quadratique ou solitonique (Anderson et al., 1988). Puis, un calcul variationnel est ef-
fectué sur le lagrangien par rapport aux parametres de 'ansatz afin de déterminer les
équations décrivant leur évolution (Anderson, 1983). Finalement, il reste a résoudre
ces équations pour obtenir I’évolution des parametres. La méthode a ses avantages et
ses inconvénients. Lorsqu’il possible de déterminer le lagrangien, elle permet d’ajouter
différents termes a I'ESNL (par exemple un terme de gain/perte) et de trouver une
solution (Anderson, 1988). La méthode peut méme étre utilisée pour résoudre 'ESNL
incluant la diffraction du champ transverse (Desaix et al., 1991). Elle permet aussi de
considérer des parametres dépendants de la distance de propagation (Andalib et al.,
2008) ainsi que de permettre une approche par perturbation (Malomed, 1997). Tou-
tefois, il faut toutefois étre en mesure de déterminer un lagrangien dont I’équation
d’Euler-Lagrange soit ’équation de propagation, ce qui est relativement facile dans
le cas de 'ESNL, mais pas nécessairement le cas dans le cas des lasers. De plus, il
faut supposer une forme d’impulsion de I’ansatz pour résoudre, ce qui, dans le cas des
lasers, présuppose de connaitre la solution avant de résoudre. De plus, méme si des
équations décrivant la propagation des parametres de I'ansatz sont trouvées, il faut
encore étre capable de les résoudre, ou se résoudre a trouver des solutions sous des
formes de séries (Brandt-Pearce et al., 1999). Notons finalement, que cette méthode
est algébriquement compliquée, ce qui rend son application de maniere universelle
difficile.

La méthode variationnelle fait une approximation sur la forme de la solution a
travers l'anstaz, ce qui permet de trouver une solution approximative. Une autre
fagon de procéder est de faire une moyenne pondérée de la forme de la solution;
c’est la méthode des moments. Au lieu de faire propager une impulsion donnée, les
équations décrivant I’évolution des moments de cette impulsion sont dérivées a partir
de 'ESNL et ensuite résolues. Par exemple, en ne tenant compte que de la portion
dispersive de ’'ESNL, il est possible d’obtenir 1’évolution des moments d’impulsions
de forme arbitraire, c¢’est-a-dire en ne supposant rien sur la forme de I'impulsion

(Anderson et Lisak, 1986). Comme nous l’avons vu plus haut, la solution analytique



10

dans le cas purement dispersif n’existe que pour 'impulsion gaussienne. Ainsi, le
fait de faire une moyenne par les moments est une approximation suffisante pour
résoudre le cas purement dispersif. La propagation est décrite dans ce cas seulement
en termes des moments d’ordre 1 et d’ordre 2. Les moments d’ordre 1 représentent les
valeurs moyennes temporelles (le délai par rapport au temps d’origine) et spectrales
(la fréquence de la porteuse). Les moments d’ordre 2 représentent les variances de
I'impulsion ; la variance temporelle, la variance spectrale et la variance mixte temps-
fréquence qui est la covariance de I'impulsion (Cohen, 1994) et est proportionnelle
a la phase. Il faut cependant connaitre les moments initiaux pour résoudre dans
un cas pratique, ces derniers pouvant étre calculés a partir de I'impulsion initiale.
Une application similaire des moments a été faite sur les systemes diffractants plutot
que dispersifs, ce qui donne des résultats analogues (Bélanger, 1991). Dans ce cas,
la relation temps-fréquence est remplacée par la relation position-nombre d’onde.
Cette technique peut étre généralisée aux ordres supérieures de dispersion (Anderson,
1987) ou de diffraction (Weber, 1992), (Martinez-Herrero et al., 1992). Dans ce cas,
il faut inclure les moments d’ordre supérieur représentant indirectement la forme de
I'impulsion (Martinez-Herrero et al., 1995), (Martinez et al., 1997), ce qui permet de
décrire les aberrations par les moments (Ji et Lii, 2003).

Lorsque la non-linéarité est ajoutée, il est plus difficile d’obtenir des solutions
générales ne dépendant pas de la forme de 'impulsion ; des suppositions doivent étre
faites. Par exemple, en supposant seulement que I'impulsion est un créneau, il est pos-
sible de dériver un expression relativement précise a basse puissance (Marcuse, 1992).
La généralité peut toutefois étre conservée au prix d’obtenir un systeme d’équations
n’ayant pas de solutions analytiques. Dans ce cas, il est possible d’obtenir une solu-
tion approximative sous forme d'une série de Taylor qui est tres précise sur de courtes
distances (Bélanger et Bélanger, 1995), (Bélanger, 1996). D’autres stratégies peuvent
étre utilisées comme de procéder en alternant des propagations linéaire et non-linéaire
pour lesquelles la propagation analytique est calculable (Potasek et al., 1986), (Mar-
cuse et al., 1999) ce qui ne donne de bons résultats que pour de tres courtes distances.
Un autre stratégie consiste a utiliser les quantités invariantes du systeme, telle que
I’énergie. Ces quantités étant invariantes, elles peuvent étre utilisées pour réduire le
nombre d’équations a résoudre afin de déterminer la propagation des impulsions, ce
qui est particulierement utile dans les systemes a plusieurs dimensions (Freeman et
Saleh, 1988), (Martinez-Herrero et Mejias, 1997), (Dodonov et Man’ko, 2000).
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En utilisant les invariants et en choisissant un ansatz pour la solution, il est pos-
sible de déduire des équations de propagation pour les parametres de I’ansatz (Tsoy et
de Sterke, 2006). Ce faisant, I’évolution du systéme est décrit a travers les parametres
de I'ansatz au lieu des moments ; les deux sont reliés directement en calculant les mo-
ments de l'ansatz. Il est possible de considérer une variété de perturbations a I’'ESNL
(Maimistov, 1993) ou encore des termes asymétriques (Beech-Brandt et Smyth, 2001).
Notons finalement qu’il n’est pas nécessaire d’utiliser les invariants pour résoudre. Le
seul fait d’utiliser un ansatz permet d’éliminer tous les moments et de les remplacer
par les parametres. Dans ce cas, il faut bien choisir les moments utilisés pour décrire
les parametres de ’ansatz. Le choix des moments change évidemment la forme des
équations décrivant I’évolution des parametres (Santhanam et Agrawal, 2003). 11 est
généralement préférable d’utiliser les moments d’ordre le plus bas possible. Il est ainsi
possible d’inclure des termes non-linéaires d’ordre supérieur dans 'ESNL (Chen et al.,
2010). Ce faisant toutefois, il est rare de pouvoir trouver des solutions analytiques
autres que sous forme de séries de Taylor.

Notons finalement que les moments ont été utilisés avec succes dans d’autres cas,
tels que la gestion de la dispersion lors de la propagation solitonique (Bélanger et
Paré, 1999), la mesure de gigue non-linéaire (McKinstrie et al., 2002), ainsi que la
mesure de la cohérence des faisceaux (Du et al., 1992), (Yang et Fan, 1999). Les mo-
ments d’ordre supérieur ont également été utilisés pour déterminer la rupture du front
d’onde lors de la propagation (Rosenberg et al., 2007). En résumé, la méthode des mo-
ments a l'avantage de pouvoir décrire la propagation sans rien supposer sur la forme
de la solution dans le cas purement dispersif. En ajoutant les termes non-linéaires, il
faut toutefois poser un ansatz pour obtenir des équations de propagation sur les mo-
ments ou les parametres de I'anstaz, qui peuvent ou non étre résolues analytiquement.
Dans ce dernier cas, les solutions peuvent étre obtenues pour de courtes distances de
propagation ou de faibles non-linéarités sous forme de séries de Taylor. En ce sens, la
méthode variationnelle et la méthode des moments se ressemblent. Les deux méthodes
permettent également d’inclure des perturbations a I’'ESNL pour résoudre. Toutefois,
la méthode des moments permet d’'utiliser les quantités invariantes du systeme pour
en réduire la complexité. De plus, les calculs de la méthode des moments sont beau-
coup moins lourds que ceux de la méthode variationnelle. Finalement, la possibilité
de s’affranchir d’un ansatz s’avere intéressant pour ’étude des lasers ou la forme de

I'impulsion n’est pas connue a priori.
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2.2 Les lasers et ’équation de Ginzburg-Landau

Dans cette these, nous explorons seulement une facette de la modélisation des la-
sers a impulsions, soient les équations maitresses. La facon la plus précise de modéliser
la propagation du champ de I'impulsion est de décrire sa modification séquentiellement
a travers chaque composant optique présent dans le laser. Cette méthode implique
généralement de lourds calculs qui ne donnent généralement pas de solutions analy-
tiques. Une facon de procéder est de linéariser la propagation du champ a travers
chaque composant sous 'hypothese que le champ se déforme peu lors de sa propaga-
tion en régime stationnaire (Haus, 1975a), (Martinez et al., 1984). L’équation ainsi
obtenue décrit un milieu unique de propagation possédant toutes les caractéristiques
des composants présents dans le laser; c’est I’équation maitresse. Cette équation
différentielle décrit le changement que l'impulsion subit a chaque cycle dans la ca-
vité ; lorsque la variation est nulle (a une phase pres), nous trouvons le régime station-
naire. On distingue différents types d’équations maitresses selon le type de laser. Par
exemple, I’équation maitresse pour les lasers solitoniques a synchronisation passive des
modes (Haus et al., 1975), (Haus, 1975b) est différente de I’équation maitresse avec
une synchronisation active des modes. Une revue des types d’équations maitresses
peut étre trouvée dans (Nelson et al., 1997) et (Haus, 2000).

D’une fagon générale, les composants les plus souvent retrouvés dans les lasers
sont : un milieu de gain, des pertes, un élément dispersif, un élément filtrant dans le
domaine des fréquences, un élément non-linéaire, un absorbant saturable avec la puis-
sance, une modulation de phase et un filtre temporel (un modulateur par exemple).
Notons que dans cette these nous n’étudions que les composants ayant des effets
symétriques sur les impulsions, ce qui exclut, entre autres, la modulation en fréquence
de la porteuse (Siegman et Kuizenga, 1970), les dispersions d’ordre supérieur ainsi
que le gain Raman (Spence et Mildren, 2007). Une équation maitresse particuliere
a été étudiée abondamment, celle ou les deux derniers termes sont absents (aucune
phase temporelle ni filtrage temporel) ; c’est I’équation de Ginzburg-Landau (Hakim
et Rappel, 1992). Le laser qu'elle représente est le laser solitonique (Haus et al.,
1994) ou la dispersion de la fibre est compensée par sa non-linéarité, et le filtrage
spectral du milieu de gain par un absorbant saturable (Haus et al., 1991). Les impul-
sions/solutions dans ce cas sont des solitons montrant différents niveau de «chirp»

selon les parametres de la cavité. Le fait d’avoir une solution analytique nous permet,
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entre autres, de faire des études de stabilité des impulsions (Chen et al., 1994).

L’intérét suscité vient de la brieveté des impulsions pouvant étre générées pou-
vant atteindre de quelques centaines de femtosecondes a quelques dizaines de fem-
tosecondes quand la dispersion est gérée dans la cavité (Haus et al., 1995). Dans ce
dernier cas, la dispersion dans la cavité n’est pas uniforme; des sections sont nor-
males et d’autres anormales. Par conséquent, I'impulsion s’étire et se recompresse
dans la cavité d’ou 'appellation «stretched pulse». L’avantage de cette configuration
est d’éliminer la condition de résonance de I’énergie dissipée par I'impulsion lors de sa
propagation dans la cavité (Elgin et Kelly, 1993). Il faut, dans ce cas, avoir recours a
une équation maitresse quelque peu modifiée pour tenir compte de la grande fluctua-
tion de 'impulsion lors de son cycle dans la cavité, fluctuation qui est difficilement
considérée par 'effet moyen de la linéarisation.

L’équation de Ginzburg-Landau néglige cependant plusieurs effets se retrouvant
dans les lasers : entre autres, les dispersions d’ordre supérieur, le décalage Raman
auto-induit, ainsi que des termes de non-linéarité d’ordre supérieur (Bélanger, 2005).
Des solutions analytiques sont difficilement trouvées dans le cas ou tous ces effets sont
présents et il faut recourir aux solutions numériques (Kalashnikov et al., 2005). Tou-
tefois, des solutions analytiques intéressantes peuvent étre trouvées en ne considérant
que certains termes (Moores, 1993). Par exemple, en ne considérant qu’un ordre
de développement supplémentaire sur I’absorbant saturable et la non-linéarité (une
dépendance avec le carré de la puissance), nous obtenons ’équation de Ginzburg-
Landau quintique. Les solutions numériques de cette équation peuvent étre plutot ex-
centriques, donnant des comportements pouvant étre chaotiques, explosifs, palpitants
ou rampants (Akhmediev et al., 2001). Cette équation admet cependant différentes
solutions analytiques sous la forme de solitons qualifiés de «dissipatifs» (Akhmediev
et al., 1996). Certaines solutions s’averent avoir un intérét pratique, par exemple un
soliton dissipatif en dispersion normale ayant une amplitude fixe et s’élargissant avec
la puissance de pompage (Soto-Crespo et al., 1997). Ce type d’impulsion permet d’at-
teindre expérimentalement de hautes énergies par impulsions sans atteindre le seuil
de dommage des matériaux (par exemple, la silice) ni présenter une rupture du front
d’onde (Liu, 2010).

Parfois, ce sont les simulations numériques qui précedent I'expérience (Ilday et al.,
2003b). Ce fut le cas des lasers a impulsions auto-similaires ou lasers a similaritons

(Ilday et al., 2003a). Ces lasers ont la propriété de générer des impulsions pouvant
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atteindre plusieurs nanojoules (Chong et al., 2007). A Tlinstar des impulsions auto-
similaires, les similaritons sont résistants a la rupture du front d’onde (Ilday, 2004).
Il est méme possible de démontrer I'existence de ce type d’impulsions a partir de
I'équation de Ginzburg-Landau (Bale et al., 2008) (Bale, 2009). Ces lasers ont la
particularité d’émettre des impulsions «chirpées», c¢’est-a-dire dont le contenu spectral
est étalé dans le temps. En remettant ce contenu spectral en phase, des impulsions
de quelques femtosecondes peuvent étre obtenues (Ruehl et al., 2005). Une autre
caractéristique de ce type de laser est que la forme et la largeur de I'impulsion changent
lors de sa propagation (Ruehl et al., 2006). Différentes équations maitresses peuvent
étre utilisées pour modéliser ce type de laser. L’équation de Ginzburg-Landau étendue
en incluant I'auto-raidissement et le décalage Raman donne de tres bons résultats en
ce qui concerne la largeur des impulsions (Bélanger, 2006). Un autre approche est
d’ajouter des termes d’absorption saturable. Dans ce cas, la solution obtenue differe de
la sécante hyperbolique et se rapproche des formes d’impulsion et de spectre observées
expérimentalement (Renninger et al., 2008).

Il est également possible d’avoir recours aux moments pour résoudre I’'équation
de Ginzburg-Landau. Une facon de procéder est de considérer les équations décrivant
I’évolution des moments a travers I’équation de Ginzburg-Landau. Ces équations font
appel a des moments d’ordre plus ou moins élévé qui sont éliminés en posant un an-
satz, le plus souvent une sécante hyperbolique ou une gaussienne. Les équations sont
ensuite réécrites en terme des parametres de 'ansatz (Tsoy et Akhmediev, 2005). Les
équations ainsi écrites ne peuvent généralement pas étre résolues analytiquement mais
elles peuvent résolues numériquement (Mahdi et al., 2010) et ce, beaucoup plus rapi-
dement qu’en propageant numériquement le champ électrique (Usechak et Agrawal,
2005b). Des solutions stationnaires peuvent toutefois étre obtenues, puisque, dans
ce cas, le systeme d’équations différentielles devient un simple systeme d’équations
algébriques (non-linéaires!). Il est alors possible de faire une analyse de points fixes
sur ce nouveau systeme (Zhuravlev et Ostrovskaya, 2004) afin de déterminer les
zones de stabilité de 1’équation. L’avantage de cette technique est qu’elle permet de
considérer des effets qui ne donnent pas de solutions analytiques comme la modula-
tion en fréquence (Usechak et Agrawal, 2005a) et d’obtenir des résultats. Toutefois, la
solution obtenue est d’autant plus précise que ’anstaz utilisé s’approche de la solution
exacte, qui est, bien str, inconnue.

Notons finalement que la grande majorité des lasers étudiés par les équations
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maitresses s’articulent autour des lasers solitoniques, ou plus récemment auto-similaires
qui utilisent tous deux une synchronisation passive des modes. Ils sont plus faciles a
étudier car les solutions en sécantes hyperboliques de 1’équation de Ginzburg-Landau
proviennent d’un équilibre entre, d’une part la dispersion et la non-linéarité (dans le
laser solitonique) mais aussi, d’autre part, entre I’absorption saturable et I’étendue
finie du gain. Quand la synchronisation est active, le cas est différent. Pour obtenir
une solution analytique, il faut soit négliger la non-linéarité et la dispersion (Siegman
et Kuizenga, 1974) soit au moins la non-linéarité (Tamura et Nakazawa, 1996). Une
autre approche consiste a supposer que la dispersion est normale et que le laser opere
dans un régime solitonique stabilisé par la modulation active (Marti-Panameno et al.,
1994), (Kértner et al., 1995).

Notons finalement que les principales lacunes de ces méthodes sont d’une part
qu’elles ne peuvent traiter que des cas tres particuliers ou les effets considérés per-
mettent de trouver une solution analytique. Quand elles utilisent des méthodes d’ap-
proximations, comme la méthode des moments, il faut spécifier une forme d’impulsion
représentant suffisamment bien le résultat final pour que la méthode soit suffisam-
ment précise. Ce résultat n’est évidemment pas connu avant d’entreprendre le calcul,
a moins de le vérifier numériquement (ce qui réduit la pertinence d’avoir une solu-
tion analytique en premier lieu). Finalement, n’oublions pas que 'approximation a la
base des équations maitresses est que 'impulsion se déforme peu lors de son parcours
dans la cavité, ce qui n’est pas vrai dans bien des cas dont, entre autres, le laser a

dispersion gérée et le laser auto-similaire.
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Chapitre 3
Les moments

La méthode des moments permet de déterminer certaines propriétés d’une distri-
bution telles que sa position, sa largeur, son asymétrie. L’ensemble du travail de cette
these repose sur les moments ; au lieu de faire les calculs sur le champ électrique d’une
impulsion, nous les faisons sur les moments de cette impulsion. Il est donc essentiel
de bien définir les moments, de bien comprendre ce qu’ils représentent et de bien
en connaitre les limites. Dans ce chapitre, nous définissons d’abord trois catégories
de moments et en expliquons la signification mathématique et la signification phy-
sique. Certaines propriétés intéressantes sont également présentées dans chacune de
ces catégories. Le chapitre se termine par une évaluation des limites de la modélisation

d’une distribution par ses moments.

3.1 Moments d’une distribution réelle

Les moments d’une distribution réelle sont principalement utilisés dans la théorie
des probabilités pour caractériser les densités de probabilité. Supposons que nous
ayons une distribution réelle P(t) positive, fonction de la variable réelle ¢. Les moments

bruts d’ordre j de la distribution sont définis par

. 1 o &
') = —/ t'P(t)dt E = / P(t)dt (3.1)
EJ o0
si I'intégrale converge. Les moments sont normalisés par rapport a ’aire sous la courbe
de P(t) (pour les densités de probabilité £ = 1). Le moment (#/) représente donc une
moyenne pondérée de la distribution P(t) par la fonction de poids #/. Le moment
(t) donne la position du «centre de masse» de la distribution P(t). Si la distribution
est symmeétrique, (t) donne simplement la position du centre de la distribution. Pour
mieux comprendre ce que représentent les moments d’ordre supérieur, il est éclairant

d’exprimer la distribution comme la somme d’une distribution symétrique Ps(t) et
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antisymétrique P4 (t) (supposées centrées en t = 0).

. 1 S
() = + / H[Ps(t) + Pa(t)]dt (3.2)
Il apparait alors que les moments pairs (pour lesquels j est pair) ne dépendent que
de la partie symétrique de la distribution. Les moments impairs (pour lesquels j est
impair) ne dépendent que de sa partie antisymétrique. Puisque nous supposons que
la distribution P(t) est réelle et positive, il s’ensuit que |Pa(t)| < |Ps(t)|. Considérons

alors séparément les moments pairs et impairs.

3.1.1 Moments pairs

Considérons le cas plus général ot la distribution Pg n’est pas centrée en ¢t = 0. Il
est plus simple alors d’analyser les moments s’ils sont centrés par rapport au centre

de la distribution (t) ; les moments centrés sont ainsi obtenus.

() = é/w T P(t)dt —— (3.3)

—o0
Les moments (77) sont les moments de la distribution centrée P(T'). Les moments (T7)
pairs représentent la moyenne de Pg(t) pondérée par TV lorsque j est pair comme le
montre la figure 3.1. Chacun de ces moments est une mesure indirecte de la largeur de
la distribution Pg(t) ; par exemple (T?) est la variance de la distribution. Ces largeurs
peuvent étre comparées entre elles en en extrayant la racine jieme (les moments pairs

étant tous positifs),

AT = </(T9) (3.4)

ou ATj est une mesure de la demi-largeur de la distribution Pg(T), s’apparentant
a l'écart type (nous retrouvons ’écart type lorsque j = 2). Ces largeurs different
entre elles par un facteur qui dépend de la forme de la distribution. En effet, en
regardant attentivement la figure 3.1, nous voyons que l'importance accordée aux
ailes de la distribution augmente avec j. Inversement, le centre de la distribution pese
plus lourd dans le calcul de la largeur lorsque j est faible. Notons toutefois que la
valeur du centre de la distribution (7" = 0) ne compte pas dans le calcul de la largeur

puisque la fonction de poids T vaut zéro. La largeur de la distribution P(T') est la
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1,5

P(T)

FIGURE 3.1 Pondération de la distribution par la fonction de poids 77. La distribution
P(T) est une gaussienne. Il apparait que les ailes de la distribution prennent une
importance d’autant plus grande par rapport au centre que j est grand.

méme que celle de Ps(T'), puisque les moments pairs sont nuls pour P4 (7).

Les moments (T7) nous renseignent donc sur la forme de la distribution ; cette
information est toutefois indirecte di a l'effet moyennant de l'intégrale. Toutefois,
en comparant les différents moments entre eux, il est possible d’extraire une cer-
taine information sur la forme de la distribution. Par exemple, 'aplatissement de la
distribution ou kurtosis est défini en comparant les deux premiers moments pairs.

(T7)
Kt = =15 3.5
t <T2>2 ( )
Une facon générale d’extraire la forme de la distribution est d’utiliser les moments

standardisés, qui sont obtenus en normalisant le temps 71" par rapport a ’écart type
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AT, = \/(T7).

, 1 [> . t—(t) T
97:—/ 0’ P(t)dt 0= = 3.6
#)=5 | 8P e = a7, (36)
Les moments standardisés sont donc sans dimension ; I'information qu’ils représentent
se rapporte d’autant plus aux ailes de la distribution que j est grand. Il s’ensuit de
la définition que (6?) = 1 et (#*) = k;. Notons que de reconstruire la distribution &
partir des moments est un probleme complexe que nous n’envisageons pas dans cette

these.

3.1.2 Moments impairs

Les moments impairs représentent la moyenne de P4(t) pondérée par ¢/ lorsque j
est impair. Puisque Ps(t) n’intervient pas dans le calcul des moments impairs, ces der-
niers ne représentent donc que la largeur de la partie asymétrique de la distribution
P(t); en d’autres termes ils caractérisent I'asymétrie de la distribution. Contraire-
ment aux moments pairs, les moments impairs ne sont pas nécessairement positifs;
le signe du moment indique le sens de 'asymétrie. Le moment d’ordre 1 représentant
le centre de masse, son signe indique le sens du décalage de la distribution. Le signe
des moments d’ordre supérieur indique lequel des cotés de la distribution Pa(t) est
le plus raide. Un signe positif indique que le c6té gauche (vers t < 0) est plus raide
que le coté droit (vers ¢ > 0); un signe négatif indique le contraire. Les moments

standardisés décrivent la partie asymétrique de la forme de 'impulsion.

3.2 Moments d’une distribution complexe

Les moments d'une distribution réelle ne sont cependant pas suffisants pour ’ana-
lyse qui suit puisque nous nous étudions principalement 1’évolution de champs com-
plexes. Il nous faut donc un ensemble de moments pouvant décrire les distributions
complexes. Dans cette section, nous présentons un formalisme des moments d’une
distribution complexe qui forme la base de I'analyse qui suit dans cette these. Le
formalisme que nous utilisons est emprunter a la mécanique quantique. Supposons

que nous ayons une distribution complexe A(t) qui est une fonction du temps ¢ dont
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nous pouvons calculer la transformée de Fourier A(w) tel que

mmzéifﬁwwmwmu (3.7)

Les moments de cette distribution peuvent étre alors décrits a 'aide d’opérateur de
temps t et de pulsation w = i% . Les moments bruts complexes d’ordre n = j + k sont

définis par

. 1 o0 . d k oo
() = —/ A [i— ) A(t)dt E= / |A(t)|2dt  (3.8)
EJ dt e
et sont normalisés par E (pour une fonction d’onde, E = 1). Cette définition est
analogue aux opérateurs ne mécanique quantique; ¢t est analogue a l'opérateur de
position, w a la quantité de mouvement et le champ A & la fonction d’onde. No-
tons que nous avons utilisé le temps et les fréquences pour décrire la distribution
afin d’eétre cohérents avec les chapitres suivants. Ces moments ne décrivent toutefois
pas la distribution de maniere utile puisque leur valeur dépend de la position de la
distribution. Pour interpréter les moments plus facilement, nous pouvons les centrer
autour de la valeur moyenne. En centrant les moments autour de (t) et de (w), les

moments complezes centrés sont ainsi obtenus.

am%:%fﬂmmpﬁwci—@OA@a (3.9)

o dt

Bien que ces moments soient complexes, il est possible de démontrer que leur
partie réelle est suffisante pour décrire la distribution ; leur partie imaginaire pouvant
étre exprimée au moyen de la partie réelle de moments d’ordre inférieur (voir annexe
A). Nous ne considérons donc que la partie réelle de ces moments dans ce qui suit. Les
moments obtenus avec I’éq. (3.9) peuvent étre séparés en deux catégories : les moments
purs, pouvant étre uniquement par I'opérateur temps (k = 0) ou 'opérateur pulsation
(7 = 0), et les moments mixtes, devant étre décrits a l'aide des deux opérateurs.

Considérons séparément chacun de ces cas.
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3.2.1 Moments purs

Les moments purs sont toujours réels; c’est évident lorsque k£ = 0 car nous nous
retrouvons avec les moments (#/) de la section 3.1.1 avec P(t) = |A(t)|*. Dans le cas ou
j =0, éq. (3.9) définit dans le temps les moments (w*) qui décrivent la distribution
dans le domaine spectral et il n’est pas évident que ces moments soient toujours réels.
Pour s’en convaincre, il suffit de réécrire la définition des moments dans le domaine

spectral au lieu du domaine temporel.

) 1 [ . d\’ - oo
{HWFy = —/ Alw)w* [ i— ) A" (w)dw E = / |A(w)]Pdw  (3.10)
E J_ dw oo
Il devient alors clair que, lorsque j = 0, les moments (w*) sont réels. La signification
de ces moments est la méme que dans la section précédente, sauf qu’il y a mainte-
nant deux groupes de moments, (#/) et (w*), décrivant la norme de la distribution

respectivement dans le domaine temporel et dans le domaine spectral.

3.2.2 Moments mixtes

Les moments mixtes contiennent de l'information appartenant a la fois au do-
maine temporel et spectral. Ils décrivent donc des covariances. Alors que les mo-
ments purs décrivent la norme de la distribution, temporelle et spectrale, les mo-
ments mixtes décrivent sa phase temporelle et spectrale (qui ne sont évidemment pas
indépendantes). Pour s’en convaincre, il suffit d’exprimer la distribution en termes de

sa norme et de sa phase A(t) = |A(t)| explid(t)] et de considérer le cas ou k = 1.

- ——/ )7 t] (1)t (3.11)

L’indice r indique que seulement la partie réelle du moment est considérée. Le moment

(Hw), dépend directement de la fréquence instantanée, définie par

(1) = (1), (312)

et représente donc dans quelle proportion la fréquence instantanée varie selon #/. Nous
définissons également le chirp d’une impulsion comme la fréquence instantanée a la-

quelle la porteuse (w) (qui est également wi,s((t)) pour les distributions symétriques)
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a été soustraite. En procédant de maniere similaire dans le domaine spectral, le mo-

ment (tw"), est défini par

(k) = % /_ h \fl(w)]ka%@(w)dw (3.13)

oll ®(w) est la phase de A(w). Ce moment caractérise le délai fréquentiel tye, tel que

treq(w) = %@(w). (3.14)

Alors que la fréquence instantanée indique la fréquence de la distribution a un temps
donné, le délai fréquentiel donne le délai auquel une fréquence donnée se retrouve. Le
moment (tw*), indique alors & quel point tge, varie selon w®. 11 est & noter que les
moments donnent des corrélations moyennes, c¢’est-a-dire qu’il ne faut pas interpréter,
par exemple, le moment (#/w), comme étant proportionnel au «jieme» coefficient de
la série de Taylor de wy,g;. Il faut plutot le voir comme étant proportionnel a la courbe
de tendance #/ décrivant le mieux wipg.

Dans le cas général ou j # 1 et k # 1, les moments mixtes décrivent comment la
fréquence instantanée varie avec t/% ou encore comment le délai fréquentiel varie en
wk/3 . Toutefois, lorsque n = j + k est pair et supérieur & 2, le moment (tIwk), déerit
en plus indirectement la norme de la distribution. Par exemple, le moment (t?w?),
décrit non seulement la phase de maniere similaire a (tw), mais contient également
les opérateurs t? et w? qui décrivent la norme de la distribution.

La symétrie des moments mixtes est légerement différente des moments purs.
Les moments purs d’ordre pair caractérisent la partie symétrique de la norme et les
moments impairs la partie asymétrique. Les moments mixtes d’ordre pair sont non-
nuls pour une distribution symétrique avec une phase symétrique ou une distribution
asymétrique avec une phase asymétrique. Les moments mixtes d’ordre impair ont des
contributions provenant de la partie symétrique de la norme pondérée par la partie
asymétrique de la phase ainsi que de la partie asymétrique de la norme pondérée par
la partie symétrique de la phase.

Notons finalement que bien que les moments purs décrivent la norme de la dis-
tribution, ils décrivent également indirectement la phase; la norme de la distribution

dans le domaine temporel dépend de la phase dans le domaine spectral et vice-versa.
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3.3 Moments non-linéaires

Les moments présentés depuis le début du chapitre ponderent la distribution avec
- d
Vit
lesquelles la distribution puisse étre pondérée, il est intéressant de considérer la dis-

le monome # et/ou la dérivée ( )k Bien qu'il existe une infinité de fonctions avec
tribution elle-méme par le biais de I'opérateur P = |A(t)|*. 1l est alors possible de

définir les moments bruts non-linéaires qui sont également complexes.

(PPt — % /_ Z A*(t)|A(t)]2ptjikj—;A(t)dt o /_ Z ADPd (3.15)
Les moments non-linéaires sont différents des moment complexes a plusieurs niveaux.
Premierement, leur partie imaginaire ne peut pas étre exprimée de maniere générale
au moyen de moments d’ordre inférieur. Deuxiemement, ils ne présentent pas de
symétrie temps-fréquence, puisque l'opérateur P est défini dans le temps. La symétrie
temps-fréquence vient du fait que les opérateurs ¢ et w sont conjugués. Finalement,
ils n’obéissent pas aux relations de commutation décrites dans 'annexe A.

Il est difficile d’expliquer de fagon générale ce que représentent ces moments
puisque 'effet de 'opérateur P dépend explicitement de la forme de la distribution.
Toutefois pour les distributions en forme de cloches, 'effet de I'opérateur PP est de
mettre plus de poids sur le centre de la distribution que sur les ailes et ce, d’autant
plus que p est élevé. Ils ont donc l'effet contraire de I'opérateur #/ qui met un poids
plus important sur les ailes. De plus, 'effet de 'opérateur est d’autant moins prononcé
que la distribution se rapproche d’un créneau, pour lequel 'opérateur n’a aucun effet.

La partie imaginaire du moment non-linéaire doit étre interprétée différemment
de sa partie réelle. La partie réelle du moment conserve a peu pres le méme sens que
le moment complexe équivalent. Par exemple, (PQ?), est proportionnel & la largeur
de la norme de la distribution dans le domaine spectral, tout comme (©?), mais
elle est également proportionnelle & son amplitude. Toutefois, (PQ?); décrit la phase
de la distribution. De fagon générale, la partie imaginaire décrit la phase lorsque la
partie réelle décrit la norme et vice-versa. Ceci est également vrai pour les moments
complexes. Notons que les moments non-linéaires pour lesquels £ < 2 ont une partie

réelle pouvant étre exprimée en terme de moments non-linéaire d’ordre inférieur.
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3.4 Facteurs de forme

Nous avons vu que les moments, quel que soit leur ordre, dépendent indirectement
de la forme de la distribution. En les comparant entre eux, il est possible d’extraire
certaines informations sur la forme de l'impulsion. Le coefficient d’aplatissement a
déja été défini par I’Eq. (3.5) et peut étre étendu aux moments complexes et non-
linéaires.

(T7) (@) (P?)

Ky = B Ko = (G5 Kp = )2 (3.16)

Plus k; est faible, plus la norme de la distribution temporelle est pointue; k., décrit
de maniere similaire la distribution dans le domaine spectral. Le facteur de forme xp
décrit également I'aplatissement dans le domaine temporel de maniere similaire a k;
lorsque la distribution est en forme de cloche. Il est également possible de d’obtenir
des facteurs de formes en utilisant des moments de natures différentes.

(T%02), (PT?) (PQ?),

Imey T e B

Les facteurs de forme ky,, et kp, sont définis a la fois dans le domaine temporel et le
domaine spectral. L’asymétrie de la distribution peut étre définie a ’aide des moments

d’ordre impair.

(T%) (%) (Pt) (Pw)s

I T i PTG YT ()W)

(3.18)

ST =

nlw

Il existe une infinité de parametres de forme en utilisant les moments d’ordre supérieur.
Nous n’avons présenté ici que quelques exemples faisant intervenir les moments com-
plexes d’ordre n < 4 et les moments non-linéaire d’ordre n < 2. Pour mieux com-
prendre comment ces facteurs caractérisent la distribution, nous utilisons la distribu-

tion de Pearson.

3.4.1 Distribution de Pearson

Pour avoir une idée de ce que que représentent les facteurs de forme, nous pour-
rions les calculer pour différentes distributions, ce qui serait relativement long. Ou si

nous avions une distribution pouvant prendre différentes formes, il nous suffirait de
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calculer les facteurs de forme de cette derniere. La distribution de Pearson (Pearson,
1916), (Craig, 1936) est une telle distribution réelle qui permet de décrire différentes
formes de distributions. Alors que la distribution gaussienne est la meilleure approxi-
mation qu’on puisse faire d’une distribution connaissant seulement ses deux premiers
moments (la moyenne et la variance), la distribution de Pearson est I’approximation
utilisant les quatre premiers moments réels (I’asymétrie et ’aplatissement). Nous pou-
vons donc étudier facilement les facteurs de forme. Puisque la distribution de Pearson
peut prendre différentes formes, elle nous sera utile pour approximer les moments afin

de résoudre les équations de propagation et celles des lasers.

d+ 2am d+ 2at//b
\/ﬁ arctan ﬁ (319)

1
2a

Apn(t) = K (at2 + dVbt + b) B exp

Elle est alternativement décrite sous forme différentielle.

1 d mvVb —t

——A rsnt -
At e = i s

(3.20)

La distribution de Pearson peut donc étre vue comme le développement de Padé
d’ordre (1,2) sur une échelle logarithmique de la dérivée de la distribution. Les pa-
rametres a, d et m sont des parametres réels sans dimension. Les parametres K et b
sont des parametres réels et positifs; K est une constante de normalisation alors que
Vb représente la largeur de la distribution et a les dimensions de ¢. Les parametres a
et d dictent la forme de la distribution ; 'aplatissement et I’asymétrie respectivement.
Le parametre m est le mode, ou valeur maximale, de la distribution ou la dérivée est

nulle. Pour s’en convaincre, il suffit de calculer les moments réels de la distribution

P(t) = A2, ...(t), en supposant (t) = 0 pour fin de simplicité.
d+2m
= ———— = = —2
)= i—a) Vb =0 = d m
b 2 b 2 — 1-2 12m?b
<T2> _ 5, = m\/_ = 3( 3&)( CL) + 12m (321>
2—3a 2a — 1

(2 —5a)(1 —2a)

La largeur de la distribution, (72) est proportionnelle & b. L’asymétrie est propor-
tionnelle a d (puisque d = —2m quand (t) = 0). Finalement x; est donnée par a. Pour
que la distribution demeure intégrable, lorsque a < 0, il faut limiter la distribution a
I'intervalle r; <t < ry, oll 7 et 7 sont les racines de at? + dv/bt + b. La distribution
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est nulle a l'extérieur de cet intervalle.

La distribution de Pearson permet de représenter plusieurs distributions de pro-
babilité dont la distribution normale (gaussienne) (a = 0), beta, gamma et Student
Leon-Garcia (1994). Elle peut également représenter entre autres les fonctions symétri-
ques (d = m = 0) parabolique (a = —1), lorentzienne (a = 1) et créneau (a = —b =
—o0). Différentes distributions symétriques sont tracées a la figure 3.2 sur une échelle
logarithmique. La sécante hyperbolique est représentée approximativement soit par
a = 1/3, soit par a ~ 0.29 selon que la valeur soit obtenue par le développement en
série de Padé de la sécante hyperbolique, ou par la conservation de I'énergie (c’est-a-
dire en faisant en sorte que la distribution de Pearson et la sécante hyperbolique aient
la méme constante de normalisation). Cette derniére donne une meilleure approxima-
tion sur les ailes puisque la forme est pondérée sur tout le temps dans le calcul de
I’énergie alors que le développement de Padé se fait autour de 7" = 0.

La figure 3.3 montre les facteurs de forme s, kpr, kp, ko, kTo €t Kpq en fonction
de a pour une distribution symétrique (leur définition exacte est donnée a ’annexe D).
Les différents facteurs de forme permettent de caractériser la forme de I'impulsion de
différentes fagons en mettant I’accent sur le centre ou les ailes ; ainsi certains facteurs
de forme diminuent ou augmentent avec a. Cependant, pour certaines valeurs de a,

le facteur de forme diverge.

3.4.2 Limites des moments

La divergence possible de certains moments nous amene aux limites d’utilisation
des moments. Pour mieux comprendre ces limites, considérons la largeur temporelle

et spectrale de la distribution de Pearson symétrique.

b 1 (2—a
(T%) = 2—3a () = 4b (1 + a) (3:22)
Le moment (7%?) est la variance de la distribution de Pearson, une quantité positive
par définition. Que ce passe-t-il alors lorsque a > 2/37 Est-ce que la distribution
devient infiniment large lorsque a = 2/37 La réponse est non. Le probléme vient du
fait que les moments sont définis au moyen d’une intégrale définie (de —oo a 00) et
cette intégrale doit converger. Il n’est pas suffisant que la distribution soit intégrable ;

il faut aussi que l'opérateur du moment appliqué sur la distribution soit intégrable.
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2

Distribution 4

Fi1GURE 3.2 Différentes distributions pouvant étre représentées par la distribution de
Pearson. La gaussienne (¢ = 0), la parabole (¢ = —1), la lorentzienne (a = 1) et
le créneau (a — —o0) sont représentés exactement. Notons que b = —a pour avoir
un créneau défini —1 < T < 1. La sécante hyperbolique est représentée approxima-
tivement de deux manieres différentes selon une expansion de Padé (a = 1/3) ou la
conservation de énergie (a ~ 0.29).

Dans le cas de (T?) pour la distribution de Pearson, 'intégrale converge si a < 2/3;
au-dela de cette valeur, 'intégrale diverge et la valeur de la variance n’a plus de sens.
Il en va de méme pour (©2?) qui devient infini lorsque la distribution est parabolique
(a = 1). La distribution parabolique a un spectre tres large et oscillant puisqu’elle
est finie dans le domaine temporel. Il s’ensuit que l'intégrale définissant (Q?), qu’elle
soit dans le domaine temporel ou spectral, diverge pour a < 1. Un autre fait notable
est que (Q?) est nul lorsque a = 2. La largeur spectrale ne peut évidemment pas étre
nulle sans violer le principe d’incertitude. Le moment (©?) devient nul parce que la
constante de normalisation F diverge lorsque a = 2. La largeur spectrale n’est donc

définie qu’a I'intérieur de l'intervalle —1 < a < 2.



28

Facteur de forme

FI1GURE 3.3 Différents facteurs de forme décrivant la forme de la distribution de Pear-
son réelle en fonction du parametre de forme a. Certains facteurs de forme divergent
ou s’annulent indiquant que 'intégrale du calcul d’au moins un des moments rattaché
au calcul de ce facteur de forme diverge.

Il faut donc bien comprendre que les moments ne sont qu’un moyen de caractériser
une distribution ; d’autres moyens existent. Par exemple, comparons I'écart type AT,

de la distribution de Pearson avec sa largeur a mi-hauteur 67} ;.

AT, = (2 _bgg) ’ (3.23)

5Ty = 2 E(Qa - 1)} v (3.24)

Nous constatons que I’écart type possede un pole en a = 2/3 alors que largeur & mi-
hauteur est définie pour toutes les valeurs de a. Alors pourquoi utiliser les moments ?

Apres tout, la largeur a mi-hauteur est définie de maniere cohérente, pour toutes les
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valeurs de a contrairement a (7?) ! Les moments ont toutefois un avantage important :
ils se calculent indépendamment de la distribution. Plus exactement, 1’expression de
la largeur a mi-hauteur dépend explicitement de la forme de la distribution alors que
la définition (T?) est la méme quelle que soit la distribution. Ainsi, si les moments
sont utilisés pour modéliser une distribution dans un probléme donné, pour simpli-
fier la résolution par exemple, aucune supposition n’a besoin d’étre faite a priori
sur la forme de la distribution. Une fois le probleme résolu, les moments décrivent
la distribution recherchée (approximativement, bien entendu). Si nous voulions uti-
liser la largeur a mi-hauteur pour caractériser la distribution lors de la résolution
du probleme, il faudrait supposer au départ la forme de cette derniere. Cela revien-
drait a connaitre la solution du probleme avant de 'avoir résolu! Evidemment, si
la distribution recherchée ne peut étre représentée par les moments, ces derniers ne
sont d’aucun secours pour résoudre le probleme. Nous reviendrons plus en détails
sur ces considérations au chapitre 6. Il est possible d’imaginer d’autres moyens de
caractériser la distribution, en utilisant par exemple d’autres opérateurs de moments.
Les moments (t/w*) ont toutefois 'avantage d’étre faciles & interpréter, contraire-
ment a des opérateurs plus complexes. Certains opérateurs plus exotiques peuvent
cependant simplifier la résolution a l’occasion, surtout quand ils refletent la nature
du probleme a résoudre.

Dans ce premier chapitre, les principaux concepts de base des moments ont été
exposés. Trois catégories de plus en plus générales de moments ont été définies : les mo-
ments réels, complexes et non-linéaires. La signification de ces moments, par rapport
a la distribution qu’ils caractérisent, a été donnée dans les différents cas. La définition
des moments ne dépend pas directement de la forme de la distribution considérée,
ce qui est un grand avantage ; il faut toutefois que 'intégrale définissant le moment
considéré converge. La distribution de Pearson a également été présentée. Cette dis-
tribution permet de reconstruire approximativement une distribution a partir de ces
quatre premiers moments. Elle peut donc représenter différentes distributions. Tous
ces concepts sont employés dans les chapitres suivants pour décrire la propagation

d’impulsions dans un milieu dispersif et non-linéaire.
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Chapitre 4

Propagation non-linéaire et les

moments d’ordre 2

Regardons maintenant comment les moments présentés au chapitre précédent nous
permettent de résoudre ’équation décrivant la propagation d’une impulsion dans une
fibre optique dispersive et non-linéaire. Bien que nous nous intéressons dans le reste
de cette these a la propagation d’impulsion dans une fibre optique, 1’équation de
Schrodinger non-linéaire est utilisable pour décrire d’autres phénomenes physiques.
En plus de la propagation dans les fibres optiques, elle permet de décrire, entre autres,

la propagation d’ondes dans un fluide et la propagation d’ondes diffractantes.

4.1 L’équation de Schrodinger non-linéaire

Considérons une impulsion lumineuse se propageant dans une fibre optique. Nous
supposons que le champ électrique de cette impulsion conserve la méme polarisation

linéaire tout au long de la propagation. Le champ est donné par (Agrawal, 2001)

(\Ql
—~
~
SN—

I
| &

{F(z,y)A(z,t) exp [i (Boz — wot)] + complexe conjugué} . (4.1)

Le champ est décomposable en une partie transverse F'(z,y), donnée par le mode
de la fibre, et une partie longitudinale A(z,t), 'enveloppe de l'impulsion. Cette
décomposition se justifie dans le cadre de la théorie des modes scalaires. L’ampli-
tude du champ est normalisé de fagon que |F(z,y)[*> = 1 et |A(¢)|? est la puissance
du champ. Le champ est centré dans le domaine spectral autour de la porteuse wy et
se propage avec un nombre d’onde moyen [3(wg) = . Nous supposons également que
la durée de 'impulsion est supérieure a 1 picoseconde. Dans ce cas, la propagation de

I’amplitude du champ électrique est donnée par I’équation de Shrodinger non-linéaire
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(ESNL)

= — 222 L in]APA (4.2)

ou les parametres 3; et (5, proviennent du développement en série de Taylor de la
constante de propagation (w) autour de wy. Ils représentent respectivement I'inverse
de la vitesse de groupe de I'enveloppe de I'impulsion et la dispersion de la vitesse de
groupe. Le parametre v donne 'ampleur de ’auto-modulation de phase, une phase
non-linéaire proportionnelle a I'intensité du champ.

Il n’y a pas de solutions analytiques générales a I’équation de Schrodinger non-
linéaire. Elle admet par contre des solutions analytiques dans certains cas particuliers.
Il existe une solution analytique dans le cas purement dispersif (7 = 0) et purement
non-linéaire (3; = 0). Lorsque § # 0 et v # 0, il existe une solution périodique, le

soliton, et une solution asymptotique.

4.1.1 Solution dispersive

Dans le cas dispersif, 'ESNL se réduit a

0A i3y %A

0A _ ik "

0z 2 O0T?
ou T =t — [z représente un référentiel de temps se déplacant a la méme vitesse
que le centre de 'impulsion. Cette équation peut étre résolue lorsque 'impulsion se
propageant est une gaussienne en procédant par transformée de Fourier. Dans ce cas,

I’amplitude du champ de I'impulsion est donnée par

P T2 % T2
A(z,T) = <ﬁ) exp [—m} 4

ou Py est la puissance créte initiale en z = 0 et Ty la demi-largeur initiale a 1/e de
I'intensité. L’enveloppe de 'impulsion s’étale dans le temps pendant la propagation
Sa phase devient quadratique ce qui implique que la fréquence instantanée augmente
ou diminue linéairement avec le temps. La densité spectrale de I'impulsion ne change

pas pendant la propagation, la dispersion chromatique ne changeant que la phase
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dans le domaine spectral.

A(z,Q) = |A(0, Q)] exp (16.9°2) (4.5)

4.1.2 Solution non-linéaire

Le cas purement non-linéaire (3; = 0) est résolue analytiquement pour n’importe

la forme d’impulsion. La solution est toutefois implicite et s’écrit sous la forme
A(z,t) = A(0,t) exp (i7]A(0,¢)*2) (4.6)

ou A(0,t) est "amplitude initiale de I'impulsion. La puissance de I'impulsion demeure
constante lors de la propagation, seule une phase proportionnelle a la puissance aug-

mente. Dans le domaine spectral, la densité spectrale s’élargit avec la propagation.

4.1.3 Solution périodique

Dans le régime de dispersion anormale (8, < 0), la dispersion chromatique et
I’auto-modulation de phase peuvent se compenser pour former une impulsion qui
se propage sans se déformer lors de la propagation : c’est le soliton Agrawal (2001).
Lorsque la compensation est parfaite, nous avons un soliton d’ordre 1 qui est invariant
lors de la propagation. Lorsque la puissance est suffisamment élevée, la compensation
est périodique et 'impulsion retrouve périodiquement sa forme initiale. L’enveloppe

du champ du soliton d’ordre un est donnée par

A(z,T) = %sech (%) exp (_3&2/) (4.7)

L’enveloppe du soliton est décrite par une sécante hyperbolique. Les solitons d’ordres
supérieurs sont obtenus par la méthode de diffusion inverse (Zakharov et Shabat,
1972). La forme générale de leur amplitude est un rapport de sommes de cosinus

hyperboliques et trigonométriques.
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4.1.4 Solution asymptotique

Dans le régime de dispersion normale, la dispersion chromatique et I’auto-modula-
tion de phase ne peuvent se compenser. Dans ce régime, une impulsion possédant
initialement une tres grande puissance créte tend de maniere asymptotique en se pro-
pageant vers une impulsion tres «chirpée» dont I’enveloppe est parabolique (Anderson
et al., 1993b).

A(2,T) = /Po(2) [1 _ TZZ)} : exp {—ibé@T?} (4.8)

Cc

Les parametres P.(z), T.(z) et b(z) sont définis analytiquement de maniére explicite

par les relations suivantes dans le cas asymptotique :

1

b(z) ~ 5 (4.9a)
- 2K0K1PC\/ ]. - Klpc (49b)

I 9 By E%b%(0)
& - O 5T R (4.9
Y 450
T.(2)P.(2) = %E (4.9¢)
(4.9f)

ou E est I'énergie de 'impulsion. Le parametre P,.(z) est obtenu en résolvant 1’équation

implicite 4.9b. Le parametre T,(z) est obtenu en fixant I’énergie de I'impulsion.

4.2 Equations de propagation des moments

Utilisons maintenant les moments dans le but de déterminer une solution approxi-
mative générale de 'ESNL mais dans le cas ou il y a dispersion et non-linéarité. Nous
limitons ’analyse dans cette section au moments d’ordre 1 et 2. Les équations de pro-
pagation des moments sont obtenues en dérivant les définitions des moments données
au chapitre 3 et en y substituant 1’éq. (4.2). La constante de normalisation £ devient

alors 1'énergie de I'impulsion selon la définition (4.1). La propagation des moments
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d’ordre 1 est ainsi

d

d_<t> = b1 + Ba(w) (4.10a)
z

d

—(w) = 2y(Pw); = 0. (4.10b)

dz

Il faut faire attention ici a la définition de w qui n’est pas la fréquence (pulsation) du

champ puisque nous avons soustrait cette derniere dans I'expression (4.1) du champ

électrique. Le moment w représente dans ce cas 1’écart a la porteuse wy. Notons que

pour les distributions symétriques, cet écart est toujours nul. Ces deux équations sont

facilement intégrables et donnent

<t> = <t>0 + 612 + 52(0))02 (w) = <w>0 (411)

ou l'indice 0 représente la valeur en z = 0. En supposant, sans perte de généralité,
que (W) = 0 et (t)g = 0, les équations de propagation des moments d’ordre 2 peuvent
étre écrites sur les moments centrés. Les équations de propagation pour les moments

d’ordre 2 sont alors

d%(ﬂ = 26,(TQ), (4.12a)
& (r0), = 107+ ey (4.120)
d%m% = 29(PQ?); (4.12¢)

ouT =t—(t) et Q = w—(w). Il est également utile d’écrire I’équation de propagation

du moment non-linéaire d’ordre 0, (P) puisqu’il intervient dans le calcul de (T°2),.
—(P) = —20,(PQ?); (4.13)

Ce moment est proportionnel a la puissance créte de 'impulsion et dépend également
de la forme de 'impulsion ; il représente une puissance effective. Finalement, il est pos-
sible de montrer que 1'éq. (4.2) conserve ’énergie puisque dF/dz = 0. Les équations
de propagation des moments ne sont malheureusement pas fermées puisqu’il n’y pas
d’équation différentielle pour le moment (P?);. Si nous écrivions I’équation de pro-

pagation de cette derniere des moments d’ordre supérieur surviendraient. Il y a donc
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une fuite vers 'avant, c’est-a-dire que les équations de propagation de ces moments
d’ordre supérieur font intervenir a leur tour des moments d’ordre encore plus élevé.
Il faut donc approximer ces moments d’ordre supérieur pour résoudre.
L’approximation la plus simple a faire est de remplacer le moment (PQ?); par
une expression ne dépendant que de (T?), (T2),, (Q?) et (P). Une fagon d’y arriver
est de supposer que la phase du champ est quadratique dans le temps. Ainsi, si nous
substituons A(z,T) = |A(z,T)| exp (i¢) ot ¢ = hT? dans les définitions de (T2), et

(PQ?*);, nous obtenons

(TQ), = —— /ﬂo ) T@dT ~ —2h(T"?) (4.14)
Py, = —5p [ I = npy = S0 )

Cette approximation permet de résoudre les équations de propagation des moments
puisqu’il n’y a plus de fuite vers ’avant. Il est remarquable que le systeme d’équations
puissent se fermer en faisant seulement une approximation sur la phase de I'impul-
sion. Autrement dit, nous avons fermé le systeme en ne faisant aucune supposition
sur la forme de [tmpulsion. La résolution qui suit est donc valide pour des formes
arbitraires d’impulsions. Il y a toutefois deux restrictions a faire. Premierement, le
résultat final, I’évolution des moments d’ordre 2, ne nous informe que sur les différentes
largeurs de I'impulsion. Ainsi 'information de forme est plus ou moins absente des mo-
ments d’ordre 2 (il est possible d’y avoir acces indirectement, comme nous le verrons).
Deuxiemement, une des conséquences de supposer que la phase est quadratique est
que la forme de I'impulsion ne change pas lors de la propagation. Pour s’en convaincre,

il suffit d’écrire I’évolution du coefficient d’aplatissement.

Vde (TP, (T9),
" 0 %<@% )

) ~ —4f, (2h — 2h) = 0 (4.16)

Le fait que la forme de I'impulsion soit supposée invariante est une limitation im-
portante. Toutefois, notons que la forme de 'impulsion est invariante dans toutes les
solutions analytiques présentées précédemment dans la littérature (a 'exception des
solitons d’ordre supérieur ou elle change périodiquement). Pour obtenir I’évolution de
la forme de 'impulsion, il faut donc inclure 1’évolution des moments d’ordre supérieur

a 2. Pour les distributions symétriques, il faut considérer les moments d’ordre 4, ce
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que nous faisons au chapitre 6.
A Tordre 2, I’évolution des moments est ainsi approximativement décrite par le

systeme d’équations différentielles suivant :

%(T% ~ 206:(T), (4.17a)
%(TQ)T ~ (o(02) + %(P) (4.17b)
d o _ APHTQ),
L) e (4.17¢)
d, . (PY(TQ),
E<p> A — Gy T ) (4.17d)

Un des avantages d’utiliser les moments, au lieu du champ, pour exprimer le probleme
est que la physique de la propagation devient beaucoup plus limpide. Par exemple,
nous retrouvons par le biais de 1'éq. (4.17a) le résultat bien connu que la durée d’une
impulsion ne peut étre comprimée que si son «chirp» (proportionnel a (TQ2),) et la
dispersion ([32) sont de signes opposés. D’une maniére similaire, d’apres 1'éq. (4.17¢), la
largeur de bande ne peut étre réduite que si le chirp est négatif puisque vy est toujours
positif dans la silice. Cette compression spectrale est d’autant plus importante que
I'impulsion est courte et que sa puissance est grande. A partir de 'éq. (4.17d), il
apparait que plus I'impulsion est courte, plus sa puissance change rapidement, ce qui
est cohérent avec la notion de dispersion chromatique : plus 'impulsion est courte,
plus sa largeur de bande est grande et plus la dispersion chromatique est importante.
Il est évident selon I'éq (4.17b) qu’il y a deux contributions au chirp : une dispersive,
proportionnelle & la largeur de bande (£2?), et une non-linéaire, proportionnelle a
la puissance (P). La condition solitonique (pour un soliton fondamental) peut étre
retrouvée a partir de 1’éq. (4.17b) lorsque la dérivée est nulle, ¢’est-a-dire que les deux
contributions se compensent parfaitement. La condition s’écrit alors

Lp 1= v(P)

e LT AR 419

ol la longueur de dispersion Lp et la longueur non-linéaire Lyp, sont définies par

1 2
Lp = AN Lyt = it (4.19)
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Il est intéressant de remarquer qu’alors que la longueur de dispersion est habituelle-
ment définie par rapport a la durée de I'impulsion, elle est définie ici par rapport a
la largeur de bande, ce qui correspond mieux a la physique de la dispersion chroma-
tique. La longueur non-linéaire est habituellement définie par rapport a la puissance
créte, ce qui représente le maximum du déphasage non-linéaire par auto-modulation
de phase. Nous n’avons directement acces a la puissance créte par les moments; le

moment s’y approchant le plus est (P) qui donne le déphasage non-linéaire moyen.

4.2.1 Invariants

Une technique pour résoudre un systeme d’équations différentielles est de trouver
des quantités qui sont invariantes le long de la propagation. De plus, ces invariants
nous permettent de mieux comprendre la dynamique du systeme. En combinant les

égs. (4.17), trois invariants peuvent étre découverts.

Io = {6 +(P) = S0 4 2 (4.200)

I = (@P)(T?) — (TO)? (4:200)
(P) /(T

I = L (4.20¢)

Le premier de ces invariants [ est également un invariant du systeme non approximé
(4.12). Les deux autres invariants découlent de I'approximation (4.14). L’invariant I,
dit que la somme des effets dispersifs et non-linéaires est conservée. Dans le régime de
dispersion normale, cela signifie que la largeur de bande augmente lorsque la puissance
créte diminue. La puissance diminue a cause de la dispersion chromatique alors que
la largeur de bande augmente par l’auto-modulation de phase. Dans le régime de
dispersion anormale, la largeur de bande augmente avec la puissance créte, ce qui est
observable dans les solitons d’ordre supérieur.

L’invariant /; est une formulation directe du principe d’incertitude d’Heisenberg.
Puisque [; est invariant, il s’ensuit que la forme de I'impulsion reste inchangée lors
de la propagation ou, pour étre plus exact, I'information de forme obtenue au travers
des moments d’ordre 2 est invariante lors de la propagation. La distinction deviendra
claire a la section 4.3.1. Le dernier invariant montre tout d’abord la conservation
de D'énergie (le terme au numérateur). En divisant par 1’énergie (qui est également

invariante), I'invariant I, informe également sur la forme de I'impulsion qui est cons-
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tante. L’avantage de diviser par 1’énergie est que l'invariant Io demeure valable méme
si un terme d’absorption (ou de gain) est ajouté a 'ESNL. Les invariants I; et I, sont,
par définition, des quantités réelles et positives. Pour finir cette section, le tableau 4.1
présente les valeurs des invariants 1 et I, pour certaines formes typiques d’impulsions.

Les valeurs pour la parabole et le créneau ne peuvent étre calculées car (Q?) diverge.

4.2.2 Propriétés

Certaines propriétés intéressantes peuvent étre déduites du systeme en utilisant
les invariants avant de 'intégrer. En combinant les trois invariants et en isolant (7°Q2),.,

il est possible de trouver

1 LE 2
(o)) = |2 - 25T -1 (121)
o Ba
ou le signe de (TQ), demeure inconnu. Lorsque le moment (72), est nul, il en va
de méme pour la phase de I'impulsion; c’est le cas «Fourier limité» ou le produit

(T%)(Q?) est minimal. La largeur Fourier limitée de I'impulsion est alors

_ vl B n sgn(f2)

— 2
ATFL 2 <T >FL ]0 ]0

VPBE? 48,111, (4.22)

La largeur de bande Fourier limitée se déduit a partir de ’éq. (4.20b)

VT
AQpp, = 2¢/(Q2)pp, = 4 (4.23)

TABLEAU 4.1 Invariants I; et I pour des formes typiques d’impulsions

I I,
Gaussienne 1 ﬁ
Sécante hyperbolique 5 T

6v/3
Super Gaussienne (ordre 1) 0.3427 0.2697
Parabolique — 3

ot
HS
ot

Créneau —

5
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et la puissance en utilisant 1'éq. (4.20a) ou (4.20c).

2LE Iy 4Gl

B AT, B Y ’YATL%L

(P)rL (4.24)
L’éq. (4.22) permet d’observer le cas intéressant de la compression solitonique. La
compression solitonique permet de changer le produit (7%)(Q?) tout en conservant
une impulsion Fourier limitée. Ainsi pour diminuer ATgy. il faut que la dispersion
soit anormale (3 < 0).

En remplacant 1'éq. (4.21) dans I'éq. (4.17a), nous pouvons écrire I’équation de

propagation du moment (7?) sans faire intervenir les autres moments.

d{T?)
dz

— 28,(TQ), = 2sen ((TQ),) %(TQ) _ 7]5—22]5 T on| (a2

Le seul parametre inconnu est le signe de (7°(2),, ce qui n’empéche pas le systéme
d’étre intégré. Le résultat de l'intégration dépend évidemment de ce signe qui peut

étre déterminé ultérieurement.

4.3 Propagation des moments

L’équation (4.25) peut étre intégrée de fagon analytique pour obtenir

2080 ((TQ),) z + K :2[—602 {%(T% - 7;—2;; (T?) — Il} ’ (4.26)

VLE (@)5 . { 1 (210 fnyE)}
— — | arcsinh |— | —+/(T?) —
Iy \ Iy Az \ o ) Do

ou K est la constante d’intégration et A vaut

LI, ~2I2E? 1 2[2F2
A=gt0 T2 _—°<411—72 ) (4.27)
52 62 52 ﬂ2j(]

Nous trouvons la un résultat tres important : la solution obtenue ne dépend pas du
régime de dispersion. Autrement dit, 1’éq. (4.26) décrit a la fois des évolutions mono-
tones ET périodiques de (T?), selon l'argument de arc sinus hyperbolique. Si I'argu-

ment est imaginaire, arcsinh(ix) = iarcsin(z) et I’évolution est périodique ; autrement
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elle est monotone. La question est maintenant de savoir sous quelle(s) condition(s) la
propagation devient périodique. Le moment (T?) est toujours positif par définition ;
il s’ensuit que 'argument de ’arc sinus hyperbolique devient imaginaire que si A
est négatif. Nous avons déja mentionné que Iy, I5, v et E sont toujours positifs. Il
en résulte que c’est le signe de (G5l qui détermine le signe de A. Lorsque (2ly < 0,
nous avons A < 0 et si Golp > 0, A > 0 et ce quelle que soit la valeur des autres
parametres. Pour s’en convaincre, il suffit de réécrire A en fonction du parametre

non-linéaire standard N défini par

Lp v({P)
N? = = 4.28
L~ 25/ (42
et du parametre ¢
1
LE 4(1 TQ)? 2
q= el g2 (I + (T4)) . (4.29)

V| B2 |1+ sgn(B2)2N?|

Le parametre N indique la force des effets non-linéaires par rapport aux effets disper-
sifs. Le parametre ¢ est a peu pres proportionnel a N lorsque (3, > 0. Cela veut dire
qu’en régime tres non-linéaire ¢ > 1 et en régime dispersif ¢ < 1. Lorsque (5 < 0, il
y a une discontinuité en N? = 1/2 ol ¢ — o0; le régime demeure toutefois linéaire.
I1 apparait alors que lorsque (2ly > 0, B2 > 0 (d’apres (4.20a) et donc que A > 0
(en posant arbitrairement (7°Q2)o, = 0). Nous pouvons donc définir deux cas, selon le
signe (51, mais a quel régime de dispersion correspondent-ils ? Il semble a premiere
vue que (»1y > 0 réfere au régime de dispersion normal et Goly < 0 au régime de
dispersion anormale. Il en est ainsi sauf en régime de dispersion anormale a basse
puissance (N? < 1/2 d’apres 1'éq (4.20a)). Dans ce cas, Iy < 0 et 35 < 0 résultant en
Bo1y > 0. Le tableau 4.2 résume la situation. Nous traitons ces deux cas en détails
dans les sections qui suivent, mais auparavant il est instructif de considérer les cas

purement dispersif et purement non-linéaire.

TABLEAU 4.2 Signe de (351,

N?2<1/2 N?2>1/2
52>0 + +
+
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4.3.1 Cas purement dispersif et purement non-linéaire

Les cas purement dispersif (7 = 0) et purement non-linéaire (f; = 0) sont fa-
cilement intégrables, puisque les solutions sont polynomiales. Dans le cas purement

dispersif, I'intégration des éqs. (4.17) donne

(Q%) = (2% (4.30a)

(T, = (TQ)0 + B2(2%)02 (4.30b)

(T?) = (T?)0 + 202(TQ)roz + B3(Q%)02? (4.30c)
- (T%)o

(P) =~ (P)o T (4.30d)

L’indice 0 des moments indique leur valeur a z = 0. Les équations (4.30), a l'ex-
ception de (4.30d), sont valides quelle que soit la forme de I'impulsion. Une théorie
plus générale s’appliquant aux dispersions d’ordre supérieur a déja été développée
(Anderson, 1987). En combinant ces équations, il est possible de montrer que les
invariants (4.20) sont toujours valides. Pourtant, aucune supposition sur la phase
supplémentaire a celle de (4.30d) n’est nécessaire pour résoudre (4.30)! Il en ressort
que, dans le cas purement dispersif a l'ordre 2, il est implicitement supposé que la
phase est quadratique. Pourtant la phase n’est quadratique que dans le cas d’une
impulsion gaussienne. Comment expliquer cette contradiction apparente ? Une fagon
de linterpréter est que la différence entre la phase induite par la dispersion chroma-
tique et une phase quadratique ne peut étre décrite par les moments d’ordre 2; les
moments d’ordre 2 sont donc les mémes, peu importe la forme de 'impulsion. Toute-
fois, a l'ordre 4, la différence apparait. Nous avons montré que ’approximation de la
phase quadratique a pour conséquence que le coefficient d’aplatissement k;, et donc
la forme de I'impulsion, ne changent pas lors de la propagation. Dans le cas purement

dispersif a 'ordre 4, k; n’est pas invariant lors de la propagation.
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Dans le cas purement non-linéaire, 'intégration des éqs. (4.17) donne

(P) = (P)o (4.31a)
(T?) = (T%) (4.31Db)
(T9), = (TQ)0+ 3 (P> (4.31¢)
(92) = (@ + 1 (T + T2 (4310)

Il est remarquable que I’évolution dans le cas purement non-linéaire soit également
quadratique en z. Il est encore plus remarquable que le systeme soit en quelque sorte
inversé, c’est-a-dire que les moments constants dans un cas changent en z? dans 1’autre

cas et vice-versa. Le moment (T'Q2), est linéaire en z dans les deux cas.

4.3.2 Cas (1) > 0

Retournons maintenant au cas général ou la dispersion et la non-linéarité sont
présentes dans la fibre optique. L’éq. (4.26) peut étre écrite de maniere plus claire en
utilisant 1'éq. (4.21) et la relation arcsinh(z) = In (z + m) et en supposant que
Balo > 0

I(T?)

(T, = K + sgn (62(TQ),) Loz — sgn(ﬁg)g In [2(TQ),|+ 2

- Sgn(ﬁz)Q]
(4.32)

ol la constante d’intégration K est définie par

]0<T2>0

K = [(TQ),0] + sgn(g2)g In 5

2 (TQ)0| + 2

- Sgn(ﬁ2)<J] : (4.33)

Rappelons que (3, peut étre négatif si N? < 1/2. Pour avoir une solution compléte,
il faut maintenant connaitre le signe de (TQ),. Ce signe est lié a la distance de
propagation zpp, pour laquelle I'impulsion devient «Fourier limitéey, c¢’est-a-dire pour
laquelle (T?), = 0. La distance zp;, donc correspond également a la distance ou

le «chirp» change de signe. En isolant z dans 'éq. (4.32) et en posant (72), = 0,
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(T?) = (T?)g et sgn ((TQ),) = sgn ({TNQ),0), la distance zpy, est définie par

2o = sgn ((TQ),0) —& In (¢ +45)° ALY

2Io | 2T Qor| + (@ + AL + A(TQ)2,)? | ol

Une valeur négative de zpy, indique que la distance «Fourier limitée» se situe avant le
début de la propagation ; 'impulsion s’élargit dans ce cas de maniere monotone. Si zgy,
est positif, 'impulsion subit une contraction jusqu’a z = zpp, puis s’élargit de maniere
monotone. Lorsque I'impulsion initiale n’est pas initialement «chirpée», (T'Q)q, = 0
et zp, = 0. Le signe de (T'Q2), peut étre retrouvé connaissant zgy,, B2 et (T'Q2) 0. Si zpL
est négatif, (T'Q), a le méme signe que (T'Q),9. Si 2z, est positif, (TQ), a le méme
signe que (T'Q),o jusqu’a zpp, et change de signe apres. Dans le cas ou (T'Q),0 =0, le

signe de (T(2), est le méme que celui de (B5. Le tout peut étre résumé par
s =sgn ((TQ),) = sgn ([2) sgn [1 + sgn (B2 (T Qo) + sgn (z — zpp)] - (4.35)

En tenant compte de éq. (4.35), I’évolution du moment (7°Q2), donnée par 1'éq. (4.32)

devient

(TQ), = s |(TQ),| (4.36)
(TQ), + 5 (% + 41, + 4(TQ)2)?
(TQor + £ (¢° + AL + 4(TQ)2,)?

= (T, + oz — sgn(@)s% In

Les autres moments sont calculés a partir des invariants. Nous trouvons

1
2

iy = 1PV To [72<P>%<T2>0 PR <TQ>3)] (4.37)

21, 4]3 I
(T?)o
(P) =(P)o D) (4.38)
(Q2) = (%) + % ((P) = (P)o). (4.39)

Notons que 1'éq. (4.37) est obtenue a partir de ’éq. (4.21) en isolant y/(7?) (en ne
conservant que la racine positive). Nous avons ainsi I’évolution de tous les moments
d’ordre 2, ainsi que de (P), lors de la propagation. L’éq. (4.36) décrivant ’évolution

du moment (7€2),, d’ou tous les autres moments découlent, est implicite; il faut
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donc, a priori, la résoudre numériquement. Nous verrons a la section 4.4 qu’il est
possible d’obtenir des expressions analytiques approximatives permettant de contour-
ner ce probleme. Pour le moment, vérifions la validité du modele en comparant les
éqs. (4.36)—(4.38) a des simulations numériques décrivant la propagation de I'impul-
sion, ¢’est-a-dire la résolution de PESNL (éq. (4.2)).

Le modele est validé en comparant les moments obtenus de la résolution numérique
de I’équation implicite (4.36) avec les moments calculés a partir du champ propagé
numériquement. La propagation numérique du champ est faite a I’aide de la méthode
«Split-Step Fourier» qui est standard pour 'ESNL. La figure 4.1 montre cette com-
paraison pour les différents moments ainsi que pour les deux invariants approximatifs
I, et I, pour une impulsion super-gaussienne (A = exp{—T"}) sans «chirp» initial
((TQ),o = 0). La comparaison est faite pour différentes valeurs de N? comprise entre
0,01 et 10 afin de connaitre la validité du modele dans les régimes hautement et
faiblement non-linéaires.

Les différents graphiques de la figure 4.1 et 4.2 montrent un excellent accord entre
le modele et les simulations numériques. L’accord est aussi bon sur de courtes que sur
de longues distances (plusieurs longueurs de dispersion), que pour le régime faiblement
(N? < 1) et hautement (N? > 1) non-linéaire. Il y a toutefois de petits écarts. Ces
écarts viennent du fait que I; et I ne sont qu’approximativement invariants. L’écart
relatif sur les moments (72) et (T€2), est moins de 2% ce qui est excellent. L’erreur est
cependant plus grande sur les moments (Q?) et (P) voisinant 15%. L’erreur est plus
grande sur ces moments car ils dépendent indirectement des invariants par le biais
des égs. (4.39) et (4.38). L’erreur relative sur ces moments est d’ailleurs comparable a
la fluctuation de I5. Nous voyons toutefois que I et I deviennent constants de fagon
asymptotique pour de longues distances de propagation. La phase de I'impulsion
devient asymptotiquement parabolique dans le régime de dispersion normale et ainsi
I’approximation de la phase quadratique devient progressivement meilleure lorsque z
augmente. Cet effet est d’autant plus prononcé que N est grand, car la phase tend
d’autant plus rapidement vers une parabole. Les plus grands écarts se situent autour
de z = Lp/2 ou se trouve la plus forte variation de la forme d’impulsion (comme
nous le verrons au chapitre 6). Puisque I'approximation de la phase quadratique
suppose que la forme de 'impulsion est constante, il n’est pas surprenant de constater
que D'écart est plus grand quand cette derniere change fortement. Le bruit présent

sur I; lorsque N est grand est d’origine numérique. Le calcul de I; consiste en une
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F1GURE 4.1 Propagation des moments d’ordre 2 d’une impulsion super gaussienne
dans le régime de dispersion normale (3 > 0). Les différentes courbes représentent
différentes puissances crétes initiales ; du haut vers le bas N2 = 10, 5,2, 1,0.5,0.1,0.01
(sauf pour Iy). Les lignes pleines correspondent a la résolution numérique de ’ESNL
éq. (4.2) alors que les lignes pointillées avec les losanges proviennent de la résolution
numérique de 1'équation implicite (éq. (4.36)). Les deux invariants approximatifs I
et Iy, sont également tracés. Notons que 'ordre des courbes est inversé pour /.
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FI1GURE 4.2 Erreur relative entre les moments calculés numériquement et analytique-
ment. Les différentes courbes représentent différents puissances crétes initiales; du
gris pale vers le noir, N2=10, 5, 2, 1, 0.5, 0.1, 0.01. L’erreur relative sur les moments
(T?) et (TQ), est inférieure a 2%.
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différence tres faible entre deux termes tres grands (proportionnels a N), ce qui est
numériquement instable.

Le modele permet également de tenir compte d’une phase initiale sur I'impul-
sion. La figure 4.3 montre la propagation d’une impulsion gaussienne pour différentes
valeurs de phase initiale (TQ2),. La phase initiale est d’origine dispersive; c’est la
phase obtenue suite a la propagation dans une fibre dispersive sans non-linéarité. Les
différents cas ont tous N = 1 lorsque 'impulsion est «Fourier limitée». La comparai-
son est encore une fois excellente. La distance zpy, correspond au minimum de (7%?)
et au maximum de (P). Cette distance augmente avec le «chirpy initial puisqu’il faut
une distance de propagation plus grande pour annuler ce «chirp». Il y a un léger
écart autour de zpy, qui augmente avec (T2),. Cela vient du fait que plus la phase
initiale est grande, plus il y a une forte modification de la forme de I'impulsion par
auto-modulation de phase. Les points discutés pour le cas Fourier limitée présentés

précédemment s’appliquent également lorsque I'impulsion est chirpée.

4.3.3 Cas (1) <0

Considérons maintenant le cas ou (531y < 0 qui ne survient qu’en régime de dis-
persion normale lorsque N? > 1/2. Dans ce cas, I’évolution des différents moments
est périodique lors de la propagation; c’est le cas, entre autres, des solitons d’ordre
supérieur. 1.’éq. (4.26) montre un arc sinus trigonométrique dans ce cas. Il est toute-
fois plus aisé de travailler avec la fonction arc tangente car elle est définie pour tous

les arguments alors que pour 'arc sinus, il faut toujours s’assurer que l’argument est
situé dans l'intervalle [-1,1]. En utilisant la relation tan(z) = sin?(z)//1 — sin*(z),

I'éq. (4.26) devient
]_ I()<T2> . g
7). ( %] 2)] (440

(TQ),| = sgn ((TQ),) Ioz + K + g arctan

ol la constante d’intégration K est définie par

K =T | — 7 arctan |<T(12>07"| < IO|<;;2|>O - g)] : (4.41)

2
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F1GURE 4.3 Propagation des moments d’ordre 2 pour une impulsion gaussienne dans le
régime de dispersion normale. Les différentes courbes représentent des phases initiales
par le biais de (TQ),o = —10,—5, —2,—1,0, 1,2, 5, 10. Les lignes pleines correspondent
a la propagation numérique du champ alors que les lignes pointillées avec les carrés
proviennent de la résolution numérique de I’équation implicite. Les losanges vides
sont associés a un «chirp» positif et les losanges pleins a un «chirp» négatif. Le cas
«Fourier limitéy» est identifié par des cercles. Les moments sont normalisés par leur
valeur «Fourier limitée», dénotée par l'indice FL. Tous les impulsions ont N = 1

lorsqu’elles sont «Fourier limitéesy.
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Encore une fois, il faut déterminer le signe de (7°(2), afin de résoudre completement
'éq. (4.40). Pour ce faire, employons la méme méthode que pour le cas Gyly > 0 et
trouvons la distances zgy, ou la phase est nulle. Contrairement au cas ou 321y > 0, il
existe plusieurs distances zpp, ou I'impulsion est «Fourier limitée» puisque I’évolution
des moments est périodique. Ces distances sont obtenus en posant (72), = 0 dans
'éq. (4.40)

sgn ((T'QV)or) |qm K‘ L gmm

ZFm — ————F————— | —/— —
m 21,

Z 4.42
7 1 m e (4.42)

La période d’oscillation 7o est obtenue a partir de I'éq. (4.42) en considérant que la
fonction tan(x) passe deux fois par zéro par période.

=L (4.43)
En remplagant ¢ par 1'éq. (4.29) et Iy = [2(Q%*)o(1 + 2N?) dans 1'éq. (4.43), il
apparait que la période 7. est inversement proportionnelle a N lorsque N > 1.
Ainsi, la période d’oscillation diminue lorsque la puissance créte initiale de I'impul-
sion augmente, ce qui correspond bien au comportement de solitons d’ordre supérieur.
Notons un cas particulier lorsque N = 1 puisque 'argument de ’arctangente s’an-
nule. Pour s’en convaincre, il suffit de remplacer ¢ par I'éq. (4.29) et de noter que
B2(2%)g + v(P)/2 = 0 lorsque N = 1 dans le régime de dispersion anormale. En
notant que le «chirp» change de signe a chaque fois que (T'Q2), passe par zéro, le signe
de (TQ?), peut étre écrit

2(z — zrLm)

sm =sgn ((TQ),) =1 -2 ’ { Tose

J mod 2‘ (4.44)
ou les symboles | et | représentent la fonction plancher et mod est la fonction modulo
donnant le reste de la division par I’argument du modulo. Connaissant le signe du

moment (7)., I'évolution de ce dernier peut maintenant étre écrite en utilisant les
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éqgs. (4.40) et (4.44).
<TQ>T =5m |<TQ>7’| (445)

2(z — ZFL’m)J q 1 Io(T?) q
(TQ), G| 2

T + 5 arctan
1 10<T2>0 B g
(TQ)or | Bl 2

L’éq. (4.45) dépend a la fois de (T'Q), et de (T?). Elle peut étre toutefois exprimée

uniquement en fonction de (T?) en utilisant I'éq. (4.21). L’équation résultante est

:[OZ + <TQ>0T — % \‘

2

_14 arctan
2

également implicite et doit étre résolue numériquement. Les autres moments sont
obtenus a partir des éqgs. (4.21), (4.39) et (4.38). Pour vérifier la validité de ce modele,
nous le comparons avec les solutions de ’ESNL résolue numériquement par «force
brute».

La comparaison s’est faite a l'instar du cas précédent ; la résolution numérique
du modele a été comparée aux moments obtenus du champ propagé numériquement.
La comparaison pour une impulsion sécante hyperbolique avec différents niveaux de
puissance initiale est présentée a la figure (4.4). Les courbes sont décalées sur les
différents graphiques pour plus de clarté. De facon générale, I'accord est excellent
a basse puissance et se détériore progressivement lorsque N > 1. Contrairement
au régime de dispersion normale, la forme de I'impulsion change rapidement dans
le régime de dispersion anormale et ce, d’autant plus que N est grand. Le cas ou
N? = 0,5 est le cas limite entre les solutions ol B2ly < 0 et 321y > 0. Le cas
N =1 est le soliton d’ordre 1 et sa forme est invariante. Les cas N = 2 et N =
3 montrent la propagation des solitons d’ordre supérieur. Bien que la comparaison
soit loin d’étre parfaite, nous voyons que le modele prédit bien qualitativement le
comportement. La période prédite par le modele s’approche de celle du soliton et
diminue avec N. ’amplitude des variations des différents moments du soliton d’ordre
2 est adéquatement décrite par le modele; la comparaison est moins bonne pour le
soliton d’ordre 3. Le modele décrit également correctement comment les moments
varient avec la propagation, a savoir si la variation est sinusoidale ou en dents de scie.

Lorsque N2 vaut 2, 3 ou 5, le modele prédit une évolution périodique alors que les
simulations numériques montrent qu’il y a en plus une dérive plus ou moins polyno-

miale (particulierement visible sur N2 = 2). Lorsque N n’est pas entier, I'impulsion
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F1GURE 4.4 Propagation des moments d’ordre 2 d’une impulsion super gaussienne
dans le régime de dispersion anormale (3, < 0). Les différentes courbes représentent
différents puissances crétes initiales; du haut vers le bas N? = 9,5,4,3,2,1,0,5. Les
lignes pleines correspondent a la propagation numérique du champ alors que les lignes
pointillées avec les losanges proviennent de la résolution numérique de 1’équation im-
plicite. Les deux invariants approximatifs I et Iy, sont également tracés. Les courbes
sont décalées de deux unités (100 en échelle logarithmique) les unes par rapport aux

autres pour plus de clarté.
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n’a pas un comportement parfaitement périodique puisque sa puissance est trop pe-
tite (ou trop grande) pour compenser la dispersion. Dans ce cas, I'impulsion change
de forme, mais ne revient pas périodiquement a sa forme de départ car la propagation
est partiellement dispersive. Le modele dans le régime [Gly < 0 prédit toutefois un
comportement strictement périodique qui ne reflete pas cette évolution. Cela semble a
premiere vue surprenant ; apres tout, ce comportement était modélisé adéquatement
dans le cas ou (515 > 0! La réponse vient de modification de la forme d’impulsion.
Dans le régime de dispersion anormale, lorsque les effets dispersifs et non-linéaire ne
se compensent pas parfaitement, il y a formation d’un piédestal dans le profil de puis-
sance quand le centre de I'impulsion ne se déplace pas a la méme vitesse que les ailes.
Ce piédestal cause un élargissement «artificiel» de (T?). Le mot «artificiel» est entre
guillemets car 'augmentation de (7) est due plus au changement de forme de I'im-
pulsion qu’a une augmentation de sa durée (en réalité, 'impulsion centrale est plus
courte). Le moment (7)), demeure faible et () ne diminue pas, montrant bien que
'augmentation de (T?) est causé par un changement de forme. Rappelons-nous que
I'opérateur ¢ met plus de poids sur les ailes de I'impulsion (et donc sur le piédestal)
que sur son centre. Le modele ne peut prédire ce type de changement car il ne tient
compte que de la forme initiale de 'impulsion. C’est pour cette raison que le modele
donne des meilleurs résultats pour des valeurs entieres de N car, dans ce cas, la forme
de l'impulsion revient périodiquement a sa forme initiale. Ce probleme ne survient
pas dans le régime de dispersion normale puisque que la dispersion et la non-linéarité
sont de méme signe et qu’aucun piédestal ne se forme.

La variation des quantités I; et I, approximativement invariantes dans notre
modele, donne une bonne idée de la variation de la forme d’impulsion et donc de
la validité du modele. Dans le cas [yly > 0, invariant [; (celui relié au principe
d’incertitude) varie d’un facteur 2 lors de la propagation ; dans le cas 21y < 0 c’est de
pres d'un facteur 50 qu’il varie. Le changement pour I, est également plus élevé dans
ce cas. La périodicité de la forme de I'impulsion est par ailleurs tres visible lorsque NV
est entier. Il est intéressant de remarquer que les évolutions de ces quantités sont liées
entre elles. En écrivant les équations de propagation de [; et Iy a partir du systeme

d’équations de propagation des moments original (4.12), nous obtenons

dI dI
ﬁQd—; + 7E\/<T2>d—; = 0. (4.46)
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Ainsi, I’évolution des deux «invariants» est la méme lorsque la durée de 'impulsion est
constante. Les quantités I; et I, deviennent réellement invariantes que lorsque 5 = 0
ou~ = 0. Dans chacun de ces cas, nous avons vu a la section (4.3.1) que la propagation
est décrite par des polynomes en z2. Le cas intermédiaire est beaucoup plus complexe
et doit étre décrit a I'aide de fonctions hyperboliques ou trigonométriques implicites,
selon le signe de 35 1y. Regardons maintenant s’il est possible de simplifier ces équations

afin de les rendre explicites.

4.4 Approximation des solutions implicites

Bien que les éqs. (4.36) et (4.45) décrivent précisément la propagation des mo-
ments, il demeure que ces équations doivent étre résolues numériquement, ce qui est
un inconvénient. Les équations analytiques, implicites ou explicites, permettent de
mieux comprendre la physique d’un probleme qu’une résolution. Les équations expli-
cites peuvent étre plus facilement utilisées et sont généralement plus intuitives que les
équations implicites. Tentons donc de rendre explicites les équations de propagation
des moments. Lorsque la distance de propagation z est tres courte, I'éq. (4.12b) peut
étre linéarisée, c’est-a-dire intégrée en supposant les autres variables cosntantes, et

donne

(T, = (TQ)o, + (62<92>o + %<P>o> 2 (4.47)

ou lindice L signifie «lindarisé». Afin de déterminer (T?), il suffit de remplacer
'éq. (4.47) dans I'éq. (4.12a) et d’intégrer.
fy

(1)1 =(T)o + 202(Tor + B2 (B @)o + 5 (Pha) 2 (4.48)

Les moments (Q?) et (P) sont obtenus par le biais des éqs. (4.39) et (4.38) respective-
ment. Le modele linéarisé est le méme pour o1y > 0 et G21y < 0. Ce modele ne décrit
ni I’évolution asymptotique en régime de dispersion normale ni 1’évolution périodique
en régime de dispersion anormale. Une équation similaire a ’éq. (4.48) a été obtenue
précédemment ou la largeur de bande n’a pas été incluse. Le modele s’applique sur
de longues distances lorsque la puissance de l'impulsion est faible (N? < 1). Dans
un tel cas, la non-linéarité est faible et la densité spectrale de I'impulsion change peu

lors de la propagation ; Papproximation (%) & (Q2)y est donc justifiée. A la limite,



o4

lorsque v = 0, 1'éq. (4.48) décrit exactement la propagation dispersive de 1éq. (4.30c).
Lorsque la non-linéarité est importante, il faut de nouveau considérer deux cas selon

le signe de (B51,.

4.4.1 Cas (1) > 0

Dans ce régime, la durée, densité spectrale et phase augmentent de maniere mo-
notone avec la propagation. Lorsque la distance de propagation tend vers l'infini
(z — o0), le logarithme dans 1'éq. (4.36) devient négligeable; nous obtenons ainsi

I'expression asymptotique de (72),.

<TQ>7‘OO - <TQ>OT + IOZ (449)
(T?) oo = (T?)o + 262{T)0r2 + Bolp2”

Le «chirp» est donnée par 1'éq. (3.12) et s’exprime par le rapport (T'Q0),./(T?) lorsque

la phase est quadratique dans le temps.

(T oo

Qins 0 = “Tmov 4.
t, <T2>OO 522 ( 50)

Ce résultat est similaire au chirp linéaire des impulsions paraboliques oli une variation
en 1/z de la fréquence instantanée a été calculée (Anderson et al, 1993b). Il est
remarquable que (7)1, et (T'Q), soient tous deux linéaires avec z et que leur pente
ne differe que par 7(P)/2. Le logarithme de I'éq. (4.36) assure donc une transition
douce entre ces deux pentes. Une expression explicite peut étre trouvée pour cette
transition en supposant que I'impulsion s’est trés élargie, autrement dit (T%) > (T?),,
ce qui se produit lorsque I'impulsion est tres «chirpéey». Sous cette approximation,
'éq. (4.21) devient

[ RE ] s
(9| = | 2412 - T22 /T - 1

In(T?)
Oa

—san(f)y  (451)

ce qui est équivalent a supposer que (1), > I, q. En utilisant cette approximation

dans I'éq. (4.36), et en remplacant le moment (7(2), par 1'éq. (4.47) nous obtenons
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une équation décrivant la transition.

2T,

(T, + 51/ 20 _ son(3,)s4

(T, =(TQ oy + Loz — sgn(ﬁg)sg In (4.52)

L’indice G indique une solution sur une grande distance de propagation. Il aurait
également été possible de substituer (7(2), par I'éq. (4.49), mais puisque nous avons
déja supposé que (1), est tres grand, il est plus précis sur de courtes distances
d’utiliser I’éq. (4.47). Les autres moments sont obtenus a partir des éqgs. (4.37)— (4.38).
L’éq. (4.52) se réduit au cas asymptotique lorsque la distance de propagation est tres
grande mais ne se réduit pas au cas linéarisé lorsque cette derniere est tres courte. Il
faut donc déterminer la distance pour laquelle il faut passer du modele linéarisé donné
par I'éq. (4.49) a celui de 'éq. (4.52). Cette distance zg de transition est 1’endroit
ou la différence entre les deux modeles est la plus faible. Autrement dit, zg est la

distance minimisant la différence (T'Q),;, — (T'Q),¢.

_ <T2>0 <TQ>7‘O
G Baly - Iy — —7<§>° (4.53)

Si la distance de propagation est inférieure a zg, il vaut mieux utiliser 1'éq. (4.47);
au-dela de zg, 1'éq. (4.52) est plus précise. Puisque nous avons obtenu (T2), en
supposant que le chirp était grand, il n’est pas surprenant que la distance de transition
dépende de (T2),.

Pour vérifier la validité des éqs. (4.47) et (4.52), nous les comparons de nou-
veau avec les simulations numériques pour différentes valeurs de N? en utilisant la
méme procédure qu’a la section précédente. La comparaison est montrée a la figure
4.5. (TQ?),, représente bien 1’évolution pour de courtes distances et (72),¢ pour de
longues distances. L’écart est évidemment le plus grand autour du point de transition
2. Nous voyons qu’autour du point de transition, (T2),;, est plus précis que (TQ),¢,
ce qui suggere que de minimiser la distance entre les deux modeles pour obtenir zg
n’est pas la méthode optimale. Toutefois pour faire mieux, il faudrait connaitre a priori
la solution recherchée, ce qui n’est évidemment pas possible. Tentons maintenant de

simplifier les équations implicites du cas ou [Byly < 0.
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F1GURE 4.5 Comparaison des modeles explicites et des simulations pour moment
(TQ2), d’'une impulsion super gaussienne dans le régime de dispersion normale (G >
0). Les différentes courbes montrent différentes puissances crétes initiales; du haut
vers le bas N? = 10,5,2,1,0.5,0.1,0.01. Les lignes pleines représentent les simulations
numériques alors que les lignes pointillées avec les losanges représentent le modele
linéarisé lorsque z < zg et le modele pour de grandes distances lorsque z > 2. Le
point de transition vaut zg/Lp = 0.13,0.18,0.26,0.34,0.41,0.53,0.58 selon N2. La
figure de droite est un agrandissement de celle de gauche.

4.4.2 Cas 62]0 <0

I1 est plus difficile de déterminer une équation explicite dans ce cas car il n’est pas
possible de supposer que le «chirp» est tres grand. De plus, tous les parametres sont
du méme ordre de grandeur de sorte qu’aucune simplification n’est possible. Toute-
fois, si 'impulsion possede un «chirp» initial important, I'éq. (4.52) peut étre utilisée
puisque I'évolution est monotone dans ce cas. Il n’y a pas de méthodes évident pour
simplifier I’éq. (4.45) afin d’obtenir une forme explicite ; elle est toutefois raisonnable-

ment décrite par

_ 1o(T?)o g sin <QITOZ>
(TQ)q = ( 82| 2) 14+ (1— 1) cos (2{T02> (4.54)

qui est similaire a un développement de Pade-Fourier Geer (1995). La période en z du

moment (7€2),¢ est celle de I'éq. (4.43). Le parametre N au dénominateur détermine

la forme de la fonction périodique. Lorsque N = 1, I’évolution est approximativement
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sinusoidale. Elle devient en dents de scie lorsque N > 1. L’évolution suit une tangente
lorsque N < 1. Il est donc évident que le modele ne s’applique que pour des puissances
suffisamment élevées, c’est-a-dire N > 1 puisque 'évolution du moment (T2}, n’est
pas périodique lorsque N < 1. Il est toujours possible d’utiliser le modele linéarisé
(TQY),, a faible puissance N < 1. Puisque 1'éq. (4.54) n’est pas une solution valide de
I'éq. (4.25), 'éq. (4.37) ne peut étre utilisée pour déterminer I’évolution du moment

(T?). Pour y arriver, il est préférable d’intégrer directement 1’éq. (4.54).

1+ (1—+)cos <qu2>

Ip(1 — &) 2-% (4.53)

(T*)c = (T%)o —

Les autres moments sont donnés par les éqgs. (4.39) et (4.38). Pour vérifier la justesse
des éqgs. (4.54) et (4.55), comparons-les au modele implicite de ’éq. (4.45). 11 est plus
justifié de les comparer a cette derniere plutot qu’aux solutions numériques. Comme
nous l'avons vu, 1’éq. (4.45) ne modélise pas précisément les simulations numériques
a haute puissance. Le mieux que nous pouvons espérer des éqs. (4.54) et (4.55) est
de bien représenter ’éq. (4.45). La comparaison est présentée a la figure 4.6 pour
différentes valeurs de N. La correspondance est satisfaisante entre les modeles expli-

\TATATAVATATSY
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<T*>/<T?>,

2
7/ LD 7/ LD

FIGURE 4.6 Comparaison entre des moments (T2), et (1) obtenus par les modeles
implicites et explicites dans le régime de dispersion anormale (82 < 0). Le modele
explicite donné par les égs. (4.54) et (4.55) est tracé en ligne pointillée avec les losanges
et la solution implicite de 1'éq. (4.45) est tracée en lignes pleines pour N = 2,3, 4. Les
courbes sont décalées de trois graduations pour (7Q2) et de deux graduations pour
(T?) a des fins de clarté.
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cites et implicites, compte tenu du fait que les éqs. (4.54) et (4.55) sont trés approxi-
matives. L’écart entre les modeles diminue lorsque N augmente; malheureusement
I’écart entre le modele implicite et les simulations numériques augmente lorsque N

augmente, comme nous ’avons vu a la figure 4.4.

4.5 Conclusion

Dans ce chapitre, nous avons utilisé les moments pour résoudre l’équation de
Schrodinger non-linéaire. Nous avons limité 'analyse aux moments d’ordre 2 qui
décrivent la durée de I'impulsion, sa largeur de bande ainsi qu’une covariance don-
nant la phase. Un autre moment, (P), doit étre introduit pour décrire la puissance de
I'impulsion. Pour fermer le systeme et calculer I’évolution de ces moments, nous avons
supposé que la phase varie quadratiquement avec le temps. Cette approximation a
pour conséquence que la forme de I'impulsion est invariante lors de la propagation.
Cette approximation a également permis de déterminer trois quantités invariantes
décrivant respectivement la conservation des effets dispersifs et non-linéaires, le prin-
cipe d’incertitude d’Heisenberg et la conservation de 1’énergie.

Par le biais de ces trois invariants, une solution des équations de propagation a
été trouvée, valide autant dans le régime de dispersion normale qu’anormale. Selon
le signe de (21, la solution a un comportement monotone (821y > 0) ou périodique
(B21p < 0). Les solutions ainsi obtenues sont implicites. Dans le régime monotone, la
solution ainsi trouvée est tres proche de la solution trouvée par résolution numérique
directe autant pour de courtes que de longues distances de propagation, a faible et
a haute puissance. Dans le régime périodique, ’accord entre la solution implicite et
les simulations numériques se détériore avec la puissance créte initiale de 'impulsion.
Toutefois la solution décrit qualitativement bien la diminution de la période lorsque
N augmente ainsi que la forme du comportement périodique.

Nous avons finalement simplifié les deux solutions implicites afin d’obtenir des
expressions explicites. Nous avons d’abord trouvé une expression explicite pour de
courtes distances, valide dans les deux régimes de propagation (selon le signe de (351).
Dans le régime de propagation monotone, une expression pour de grandes distances
de propagation a été obtenue en supposant la durée de I'impulsion beaucoup plus
grande que sa durée initiale. Un point de transition entre le modele a courte et a

longue distance a également été défini. Les expressions explicites monotones sont en
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bon accord avec les simulations numériques. Dans le régime périodique, une expression
explicite décrit bien le modele implicite pour de grandes valeurs de V. Bien que d’une
utilité limitée, elle représente bien qualitativement la propagation, méme lorsque la

précision diminue avec N.
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Chapitre 5

Propagation d’une impulsion

gaussienne

Au chapitre précédent, des expressions analytiques implicites et explicites ont été
obtenues pour décrire la propagation d’une impulsion dans un milieu dispersif et
non-linéaire au moyen des moments d’ordre 2. Bien que ces expressions décrivent les
principales caractéristiques de 'impulsion, elles n’en décrivent pas la forme. Peut-on
espérer déduire la forme des impulsions a partir des moments d’ordre 27 La réponse
est non puisque nous avons supposé que la phase de I'impulsion est quadratique lors
de la résolution. La phase quadratique n’est en effet valide que pour les impulsions
gaussiennes dans un milieu dispersif, pour les impulsions paraboliques dans un milieu
non-linéaire et pour les solitons d’ordre 1, des impulsions qui sont toutes invariantes
lors de leur propagation.

Bien que I’évolution de la forme de I'impulsion ne puisse étre décrite de maniere
générale par les moments d’ordre 2, il est possible d’utiliser ces expressions afin de
perturber les solutions analytiques pour décrire la propagation d’une impulsion gaus-
sienne dans un milieu dispersif et non-linéaire. Dans ce chapitre, des expressions
analytiques implicites décrivant la propagation d’une impulsion dans un milieu dis-
persif et non-linéaire sont déduites a partir des cas purement dispersif et purement
non-linéaire ainsi que des moment d’ordre 2.

Dans ce chapitre, nous traitons seulement du cas ou B1y > 0, étant donné que
le cas ou 21y < 0 ne donne pas des résultats suffisamment précis pour permettre

I’analyse qui suit.

5.1 Propagations dispersive et non-linéaire

Commencons par rappeler les solutions dispersives et non-linéaires et exprimons-

les en fonctions des moments d’ordre 2.
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5.1.1 Propagation dispersive

La solution dispersive (4.4) peut se réécrire en terme des moments d’ordre d’ordre

2 comme

A(2,T) = |];—O|exp (— “}7 >T2) 0= 1—2i(TQ), (5.1)

ou Py est la puissance initiale qui est donnée par

1

9 2

Py=E (—<92>) : (5.2)
s

La propagation dispersive ne dépend donc que des moments E, (Q?) et (T2),. Notons

que la solution aurait pu s’écrire avec les moments (P) et (1), mais il est plus naturel

de I'exprimer avec E et (%) puisque ces derniers sont invariants lors de la propagation

purement dispersive.

5.1.2 Propagation non-linéaire

La solution non-linéaire (4.6) peut se réécrire en terme des moments d’ordre

d’ordre 2 comme

A(z,T) = \/P.exp (_%TQ?)) exp (i |A(z, T))? z) (5.3)

ou P, est la puissance créte qui est donnée par

P.=V2(P) = N (5.4)

et ott le facteur v/2 découle de la forme gaussienne de I'impulsion. Puisque I'intensité
de I'impulsion est invariante lors de la propagation non-linéaire, il est préférable d’uti-

liser les moments E, (P) et (T?) qui sont également invariants. Notons que I’équation

5.3) est implicite.
( p
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5.1.3 Perturbation des solutions analytiques

Maintenant que nous avons défini la propagation d’une impulsion gaussienne dans
un milieu dispersif et dans un milieu non-linéaire, nous pouvons les perturber pour
déterminer la propagation d’une impulsion gaussienne dans un milieu dispersif et non-
linéaire. L’idée est de remplacer les moments qui sont invariants dans les équations
(5.1) et (5.3) par les expressions des moments d’ordre 2 obtenus au chapitre 4. Les
équations perturbées doivent ensuite étre normalisées afin de conserver I’énergie. No-
tons finalement que les égs. (5.1) et (5.3) sont perturbées de manieres tres différentes

dans ce qui suit.

5.1.4 Perturbation de la propagation dispersive

Dans le cas de la propagation dispersive, il est intéressant de remarquer que le
seul parametre changeant lors de la propagation est le parametre n et donc (7).
Rappelons les deux expressions explicites trouvées au chapitre 4, (4.47) et (4.49),

décrivant le moment (7°92).

(TQ)rp = (TQ)or + (52(92% + %(P)o> 2 (5.5)
(TQ) o0 = (TQor + ({0 +¥(P)o) 2 (5.6)

Les deux expressions ne different que par un facteur 1/2 sur le terme non-linéaire

nous utilisons donc la valeur moyenne et supposons une phase initiale nulle.

(10), = (5020 + 2P ) - 5.7)

L’éq. (5.7) contient un terme proportionnel a (P) qui change la valeur du «chirp»
pour inclure I'auto-modulation de phase; ceci ne change cependant pas la forme de
I'impulsion, car le moment (P) n’est pas une fonction du temps. Pour modifier la
forme de I'impulsion, il faut ajouter cette dépendance temporelle. Remplacons ainsi
le moment (P) par la puissance |A(z,T)|* /v/2, ce qui revient & s’affranchir de l'effet

moyennant de l'intégrale dans la définition de (P). L’éq. (5.7) devient alors

2 3 2
{TQ}, =6 {0}z + m’y |A(z,T)|" = (5.8)
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ou les accolades indiquent que les moments sont maintenant des quantités qui dépen-
dent du temps. Ce ne sont donc plus des moments proprement dit mais continuent
a représenter le méme concept. L'indice 0 a été retiré de sorte que les moments ne
représentent plus des valeurs initiales. Le moment {Q?} est déterminé par I'invariant

Iy donné par I'éq. (4.20a).

2 o v F
{6 }_ B 52 = B2 \/_52 il
%_%%( [0 2}) n=1-2i{TQ}, (5.9)

Le moment (P) est substitué par la puissance créte et P. par 'éq. (5.2). La raison
pour laquelle (P) est substitué par des expressions différentes dans les égs. (5.8) et
(5.9) est que la phase non-linéaire est proportionnelle & la puissance instantanée alors
que l'invariant I lie la largeur spectrale a la puissance créte. La largeur de bande
{Q?} est donc définie si {TQ} est défini. La seule inconnue est la puissance |A(z, T)|?

qui est obtenue a travers 'amplitude complexe A(z,T).

A(z,T) = (2 5'22 {Qz}) l exp (—{?%T?) (5.10)

Puisque la puissance dépend de {Q?} et de {TQ} qui eux-mémes dépendent de la puis-
sance, 1’éq. (5.10) est définie de manieére implicite. La solution implicite est représentée
schématiquement a la figure 5.1. Bien que cette solution soit parfaitement définie ana-
lytiquement, elle doit étre résolue numériquement pour obtenir explicitement ’am-
plitude du champ. Cette résolue numérique est plus rapide que la simulation de la
propagation du champ et peut étre obtenue pour n’importe quelle valeur individuelle

de z.
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FIGURE 5.1 Représentation schématique de la solution implicite a la propagation non-
linéaire et dispersive d’une impulsion gaussienne. La variable a la queue de la fleche
doit étre connue afin de déterminer la variable a la téte de la fleche.

5.1.5 Perturbation de la propagation non-linéaire

Dans le cas non-linéaire, commencons par linéariser ’équation de Schrodinger

non-linéaire (éq. (4.2)) comme point de départ a la propagation
1 0A i3y 0% A N
- = = )
A 0z 2A 0T?

s 0% A
= A(z,T) = Apexp {<_2ZL?120 8T20 + iy |A0|2> Z:|

1A (5.11)

ou Ag = A(0,T) est le champ initial en z = 0. Utilisons maintenant 1’éq. (5.3) comme

champ initial, bien qu’il soit défini sur tous les z. La dérivée seconde est alors définie

par
1 924, 1 7?2 v | Ag)? 2 , 17 W, 17
- = - —i 2iry | A — 72 |A|* 2°
do 07 2T, T e, 2 A ey =AY Sy
(5.12)

Les termes réels dans la dérivée seconde sont des termes de phase; les termes ima-
ginaires agissent comme un filtre qui modifie la forme de 'impulsion. L’effet filtrant
des termes imaginaires contribue & changer la largeur I'impulsion de sorte que (T?%)g
ne représente plus la variance temporelle. De la méme maniere ce filtre atténue la

puissance créte de sorte que P, n’est plus la puissance créte. Ecrivons la puissance de
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'impulsion en changeant (T2)q par (T?);,; et P, par Py pour marquer la différence.

T2 6 A ’T 2,2 2T2
AT = Puesr (g ) o [‘ e ()

(5.13)

Pour avoir une expression utile de 'amplitude, il faut s’affranchir de Py et de (T2)y;.
A partir de 1'éq. (5.13), il est possible de déterminer la vraie puissance créte, en

évaluant la puissance autour de 7' = 0.

Pe = Ppiexp (—%;2—]?:2> (5.14)
La puissance s’écrit alors approximativement lorsque T2 < (T?)iu
|A(2,T)|> = P,exp (—T—Q) exp [—F (]A(z,T)\2 — P.)] (5.15)
2(T?)ini
ou F agit comme un filtre non-linéaire et s’écrit
2 2
F= e (1) 519

Pour déterminer (7?);,;, il suffit de calculer la variance de I’éq. (5.15). Il est toutefois
plus simple d’évaluer la largeur a 1/e et de noter que pour une gaussienne Tf/e =
2(T?) ; cela induit une légere erreur car I'impulsion n’est pas gaussienne. La variance

peut étre ainsi reliée & (T?);,; au moyen d'une équation quadratique.

1 A(T?)
T2V = (T2 P2(-—-1)(1- 5.17
En utilisant les égs. (5.15)—(5.17), nous obtenons une équation implicite qui décrit la
propagation d’une gaussienne dans un milieu dispersif et non-linéaire a condition que
I’évolution selon z des quantités (1) et P, soit connue. L’évolution du moment (7%?)

est donnée en intégrant 1'éq. (4.17a) au moyen de 1'éq. (5.7)

(T?) = (T?)o + B2 (Io - %) 2 (5.18)
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ot le moment (P) est remplacé par P./v/2 et le moment (Q?) est déterminé par
Iinvariant /. La seule quantité qu’il faut définir est la puissance créte P. qui peut

étre exprimée en termes de ’énergie, en supposant que I'impulsion est gaussienne.

E
Pe=——__ (5.19)

/21 (T?)
En résumé, en connaissant le moment (7?) et I'énergie, il possible de déterminer P,
(T?)i; et la puissance |A(z, T)|* au moyen des éqs. (5.19), (5.17) et (5.15) respective-
ment. Notons que, contrairement au cas précédent, la solution obtenue est explicite
et non implicite. Pour obtenir 'amplitude A(z,7") du champ de I'impulsion, il suffit

de considérer les termes imaginaires de 1'éq. (5.12). L’amplitude s’écrit alors
T2 F 9 :
A(2,T) = \/P.exp 1T exp | =5 (JA(z,T)|" = P.) | exp (i9) (5.20)
mi T2

b= YA T = + B2(02) (1 - W) (5.21)

ot le moment (Q?) a été introduit pour remplacer (4(7?))~! (le facteur de 4 est pour

une impulsion gaussienne). Bien qu’il n’y ait pas de différence entre les deux au début
de la propagation (puisque (T'2)y = 0), (Q2) est plus approprié car il reflete mieux la
physique de la dispersion que (T?). La phase est obtenue & partir des égs. (5.11) et

(5.12) ou le terme quadratique en 7 a été négligé.

5.2 Comparaison et validation

Pour valider les éq. (5.10) et (5.20), nous les comparons avec les champs obte-
nus par simulation numérique a l’aide d’un propagateur par transformée de Fou-
rier. Les comparaisons sont faites pour différentes longueurs de dispersion et pour
différents rapports N entre la longueur de dispersion et la longueur non-linéaire définis
a 'éq. (4.28). Spécifiquement, la comparaison est faite pour des valeurs de N = 1,
5, 10 correspondant a des effets non-linéaires égaux, cinq fois plus importants et dix
fois plus importants respectivement que les effets dispersifs. Les puissances, chirps et

spectres sont comparés aux figures 5.2-5.10 pour des distances de propagation allant,
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selon le cas, d'une fraction de la longueur de dispersion Lp a 4Lp.

De maniere générale, I’accord entre les deux modeles et les simulations numériques
est bon, ce qui est surprenant, considérant la nature tres approximative des deux
modeles analytiques. Les deux modeles donnent des résultats plus proches des simu-
lations numériques pour de faibles valeurs de N que pour de grandes valeurs de N.
Lorsque les effets non-linéaires sont importants, correspondant a une valeur élevée de
N, la modification de la forme de I'impulsion est importante. Il s’ensuit que la per-
turbation doit etre plus forte pour modifier la gaussienne, ce qui augmente ’erreur.
Les deux modeles donnent des résultats différents. Le modele dispersif évalue bien la
puissance créte de 'impulsion mais sous-estime sa durée. Le modele non-linéaire es-
time correctement la durée de I'impulsion mais surestime la puissance créte. Le méme
résultat se reflete dans le domaine des fréquences ou le modele dispersif sous-estime
la densité spectrale créte et surestime la largeur spectrale et le modele non-linéaire
fait le contraire.

Bien que les deux modeles estiment bien la pente du «chirp» autour de T' = 0, ils ne
représentent pas les oscillations rapides associées a la rupture de I'enveloppe («wave-
breaking ). Le modele dispersif décrit bien la courbure générale du «chirp», de sorte
que le «chirp» est bien décrit sur les ailes de I'impulsion, ce qui n’est pas surprenant
puisque la dispersion domine sur les ailes. Toutefois, le modele dispersif ne décrit pas le
chirp provenant de I'auto-modulation de phase. De plus, des instabilités apparaissent a
haute puissance. Ces instabilités proviennent de la résolution numérique de I’équation
implicite (5.10). L’effet de ces instabilités est visible sur la puissance de l'impulsion
par une légere modulation sur les ailes de I'impulsion. Ces instabilités ne sont pas
présentes sur le modele non-linéaire puisque ce dernier est explicite.

Le modele non-linéaire représente adéquatement le «chirp» non-linéaire autour de
T = 0 puisque la phase non-linéaire apparait explicitement dans 1’éq. (5.20). Toutefois
le «chirp» sur les ailes de I'impulsions est sous-estimé a haute puissance, puisque le
«chirp» sur les ailes est dominé par la dispersion. L’effet de la phase non-linéaire est
observée sur le spectre de I'impulsion ou des oscillations dues a ’auto-modulation de
phase sont visibles lorsque N = 10. La forme du spectre est de maniere générale un
bon indicateur se la qualité de 'approximation de la phase dans le temps.

La validité des deux modeles est bonne pour toutes les distances de propagation
simulées. Nous remarquons cependant que 1’accord est meilleur sur de longues dis-

tances lorsque la puissance est élevée. La raison est, comme nous le verrons dans le
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FIGURE 5.2 Comparaison des puissances obtenues par les simulations numériques et
par le modele basé sur une solution dispersive (haut) et le modele basé sur la solution
non-linéaire (bas) pour un rapport N = 1 entre les effets non-linéaires et dispersifs. Les
simulations numériques sont en traits pleins noirs et les modeles analytiques en cercles
rouges. Les courbes sont tracées pour des distances z/Lp = {0,1/4,1/2,1,2,4}. Le

temps est normalisé par (T2)5/”.
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F1GURE 5.3 Comparaison des «chirps» obtenus par les simulations numériques et par
le modele basé sur une solution dispersive (haut) et le modele basé sur la solution non-
linéaire (bas) pour un rapport N = 1 entre les effets non-linéaires et dispersifs. Les
simulations numériques sont en traits pleins noirs et les modeles analytiques en cercles
rouges. Les courbes sont tracées pour des distances z/Lp = {0,1/4,1/2,1,2,4}. Le

temps est normalisé par (T2)5/”.
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FI1GURE 5.4 Comparaison des spectres obtenus par les simulations numériques et par
le modele basé sur une solution dispersive (haut) et le modele basé sur la solution non-
linéaire (bas) pour un rapport N = 1 entre les effets non-linéaires et dispersifs. Les
simulations numériques sont en traits pleins noirs et les modeles analytiques en cercles
rouges. Les courbes sont tracées pour des distances z/Lp = {0,1/4,1/2,1,2,4}. Les

. . 1/2
fréquences sont normalisées par (QQ>O/ .
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FI1GURE 5.5 Comparaison des puissances obtenues par les simulations numériques et
par le modele basé sur une solution dispersive (haut) et le modele basé sur la solution
non-linéaire (bas) pour un rapport N = 5 entre les effets non-linéaires et dispersifs. Les
simulations numériques sont en traits pleins noirs et les modeles analytiques en cercles
rouges. Les courbes sont tracées pour des distances z/Lp = {0,1/4,1/2,1,2,4}. Le

temps est normalisé par (T2)5/”.
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F1GURE 5.6 Comparaison des «chirps» obtenus par les simulations numériques et par
le modele basé sur une solution dispersive (haut) et le modele basé sur la solution non-
linéaire (bas) pour un rapport N = 5 entre les effets non-linéaires et dispersifs. Les
simulations numériques sont en traits pleins noirs et les modeles analytiques en cercles
rouges. Les courbes sont tracées pour des distances z/Lp = {0,1/4,1/2,1,2,4}. Le

temps est normalisé par (T2)5/”.
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F1GURE 5.7 Comparaison des spectres obtenus par les simulations numériques et par
le modele basé sur une solution dispersive (haut) et le modele basé sur la solution non-
linéaire (bas) pour un rapport N = 5 entre les effets non-linéaires et dispersifs. Les
simulations numériques sont en traits pleins noirs et les modeles analytiques en cercles
rouges. Les courbes sont tracées pour des distances z/Lp = {0,1/4,1/2,1,2,4}. Les
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fréquences sont normalisées par (QQ>O/ .
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FiGURE 5.8 Comparaison des puissances obtenues par les simulations numériques
et par le modele basé sur une solution dispersive (haut) et le modele basé sur la
solution non-linéaire (bas) pour un rapport N = 10 entre les effets non-linéaires
et dispersifs. Les simulations numériques sont en traits pleins noirs et les modeles
analytiques en cercles rouges. Les courbes sont tracées pour des distances z/Lp =

{0,1/4,1/2,1,2,4}. Le temps est normalisé par (T2)y/.
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F1GURE 5.9 Comparaison des «chirps» obtenus par les simulations numériques et par
le modele basé sur une solution dispersive (haut) et le modele basé sur la solution non-
linéaire (bas) pour un rapport N = 10 entre les effets non-linéaires et dispersifs. Les
simulations numériques sont en traits pleins noirs et les modeles analytiques en cercles
rouges. Les courbes sont tracées pour des distances z/Lp = {0,1/4,1/2,1,2,4}. Le

temps est normalisé par (T2)5/”.
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F1GURE 5.10 Comparaison des spectres obtenus par les simulations numériques et par
le modele basé sur une solution dispersive (haut) et le modele basé sur la solution non-
linéaire (bas) pour un rapport N = 10 entre les effets non-linéaires et dispersifs. Les
simulations numériques sont en traits pleins noirs et les modeles analytiques en cercles
rouges. Les courbes sont tracées pour des distances z/Lp = {0,1/4,1/2,1,2,4}. Les
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fréquences sont normalisées par (QQ>O/ .
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chapitre suivant, que la forme de I'impulsion reprend un peu une forme gaussienne
sur de longues distances de propagation. Finalement, le modele non-linéaire montre
de meilleures performances que le modele dispersif sur les différentes distances de pro-
pagation et différentes puissances crétes simulées. Cela s’explique par le fait qu’une
linéarisation de I’équation de Schrodinger non-linéaire a été incluse dans le modele
non-linéaire, alors que le modele dispersif ne dépend que de I’évolution des moments
d’ordre 2.

Il est plus facile d’observer 1’évolution de la forme de I'impulsion en utilisant les
facteurs de forme. Les figures 5.11-5.13 montrent 1’évolution des facteurs de formes s,
kpr et kp des champs simulés en trait plein et modélisés en trait pointillé. Rappelons
que le facteur de forme k1 accorde un poids plus important aux ailes de la distribution
alors que kp place le poids sur le centre. Le facteur kpr est un compromis entre les
deux. En observant ces figures nous voyons d’abord que le modele découlant de la
solution non-linéaire prédit beaucoup plus adéquatement la forme de I'impulsion que
celui provenant de la solution dispersive. Les oscillations apparaissant dans la solution
dispersive proviennent de la résolution de I’équation implicite (5.10) qui est ardue
lorsque les distances de propagation sont courtes. Ce probleme ne se pose pas dans
le cas non-linéaire car le modele obtenu est explicite.

Les facteurs de formes montrent que les deux modeles représentent bien la modifi-
cation de la forme de 'impulsion lors de la propagation. Ils montrent également que la
précision est d’autant plus grande que N est faible, ce qui est compréhensible puisque
le changement de forme s’accentue avec N. Notons également que la différence entre
les différents « des champs simulés et modélisés n’est pas la méme. La différence est
beaucoup plus faible pour xp est plus faible que pour k7, kKpr se situant entre les
deux. Nous en déduisons que les deux modeles sont, de facon générale, plus précis
au centre de I'impulsion que sur ses ailes. Les deux modeles offrent une précision
surprenante sur la forme de I'impulsion, surtout lorsque nous considérons I’ampleur

des approximations faites dans leur élaboration.

5.3 Conclusion

Dans ce chapitre, nous avons étudié comment il est possible de déterminer 1’évolu-
tion de l’enveloppe du champ d’une impulsion gaussienne se propageant dans un

milieu dispersif normal et non-linéaire connaissant I’évolution des moments d’ordre 2.
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FIGURE 5.11 Comparaison entre les simulations numériques (lignes pleines) et le
modele (cercles) basé sur une solution dispersive (haut) et le modele basée sur la
solution non-linéaire (bas) pour un rapport N = 1 entre les effets non-linéaires et
dispersifs. Le trait noir montre le facteur de forme kr, le trait bleu kpr et le trait
rouge Kp.
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FIGURE 5.12 Comparaison entre les simulations numériques (lignes pleines) et le
modele (cercles) basé sur une solution dispersive (haut) et le modele basée sur la
solution non-linéaire (bas) pour un rapport N = 5 entre les effets non-linéaires et
dispersifs. Le trait noir montre le facteur de forme kr, le trait bleu kpr et le trait
rouge Kp.
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FIGURE 5.13 Comparaison entre les simulations numériques (lignes pleines) et le
modele (cercles) basé sur une solution dispersive (haut) et le modele basée sur la
solution non-linéaire (bas) pour un rapport N = 10 entre les effets non-linéaires et
dispersifs. Le trait noir montre le facteur de forme kr, le trait bleu kpr et le trait
rouge Kp.
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Une expression analytique implicite a été obtenue a partir de la solution analytique de
la propagation d'une impulsion gaussienne dans un milieu dispersif. Une expression
analytique explicite a été obtenue a partir de la solution analytique de la propagation
d’une impulsion gaussienne dans un milieu non-linéaire. Les deux expressions ont été
comparées a des simulations numériques afin d’en étudier la validité pour différentes
valeurs de N et pour différentes distances de propagation.

Les deux modeles se comparent bien aux simulations numériques, mais 'accord
diminue lorsque la non-linéarité croit (N élevé). Le modele non-linéaire montre une
plus grande précision sur ’ensemble de simulations que le modele dispersif. Bien que
les deux modeles développés dans ce chapitre permettent de suivre 1’évolution de
I’enveloppe du champ, ils sont limités au cas ou la dispersion est normale. De plus, ils
ne permettent pas de fournir un cadre systématique pour analyser I’évolution de la

forme de I'impulsion lors de la propagation dans un milieu dispersif et non-linéaire.
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Chapitre 6

Propagation non-linéaire et les

moments d’ordre supérieur

Les moments d’ordre 2 donnent une description adéquate des principales ca-
ractéristiques d’une impulsion mais omettent une caractéristique essentielle : sa forme.
Comme nous 'avons au chapitre 4, en supposant la phase quadratique, la forme de
I'impulsion est invariante. Pour décrire correctement la propagation d’une impul-
sion dans un milieu dispersif et non-linéaire, il faut étre en mesure de mieux décrire
adéquatement la phase. Lors de 'analyse a 1’aide des moments d’ordre 2, nous avons
supposé une phase quadratique, ce qui est 'approximation la plus simple que nous
pouvions faire. Dans ce chapitre, nous tentons d’obtenir une expression plus précise
pour décrire la phase et ainsi obtenir une description plus juste de la propagation
d’une impulsion dans un milieu dispersif et non-linéaire. Pour bien décrire la phase,
il est également important de bien décrire la puissance puisque la phase y est propor-
tionnelle par le biais de I’auto-modulation de phase.

Pour raffiner la description de 'amplitude de I'impulsion, il faut avoir recours
aux moments d’ordre supérieur a 2. Il est nécessaire d’avoir des moments d’ordre
supérieur car la forme de I'impulsion est déduite en comparant des moments d’ordres
différents entre eux. Nous nous limitons a des impulsions symétriques, de sorte que
tous les moments impairs sont nuls. Il est possible, en théorie, de considérer des
moments d’ordre arbitrairement élevé, mais ’analyse devient rapidement complexe
et ingérable. Nous limiterons donc notre analyse aux moments linéaires d’ordre 4 et
aux moments non-linéaires d’ordre 2.

Dans ce chapitre, nous établissons d’abord les équations de propagation des mo-
ments linéaires d’ordre 4 et des moments non-linéaires d’ordre 2. Ces équations
présentent la méme fuite vers I'avant vers les moments d’ordre supérieur. Nous étudions
donc ensuite différents modeles pour s’affranchir de cette fuite vers 'avant et ap-

proximer les équations de propagation. Ces modeles sont ensuite comparés, dans un
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premier temps, a des simulations numériques pour en analyser la validité. Dans un
second temps, ces modeles sont utilisés pour intégrer numériquement les équations de
propagation approximatives afin d’en tester la validité plus en détails. Ces analyses

nous permettront de déterminer quel modele est plus apte pour représenter le champ.

6.1 Equations de propagation

Les équations de propagation sont déterminées en intégrant I’équation de Schrédin-
ger non-linéaire, (éq. (4.2)), par rapport au temps en considérant 1'opérateur appro-
prié (les détails sont présentés a ’annexe B). Nous considérons ici les moments centrés

dans le référentiel se déplacant a la vitesse de groupe de I'impulsion.

6.1.1 Moments linéaires d’ordre 4

La propagation des moments linéaires est décrite par les équations suivantes

(1Y) = 45, (T°0), (6.1a)
L, =3 (0%, + 1) + T rT) (6.1b)
ST, = 2905(TO), +49(PTQ), +29(PT*?), (6.1c)
%(TQ% — Bo(Q) + 37(PO2), + 2y(PTO?), (6.1d)

%<94> = 29(PQY);. (6.1¢)

Le systeme d’égs. (6.1) n’est pas fermé ; il contient des moments d’ordre supérieur dont
les équations de propagation ne sont pas définies. Ces moments «externesy, similaires
au moments (PQ?); du systeme d’égs. (4.12) & 'ordre 2, sont de nature non-linéaire.
En effet, le systeme purement dispersif (7 = 0) est intégrable (voir annexe B). Il y
a six moments externes au systeme, trois d’ordre 2 et trois d’ordre 4. Pour résoudre
le systeme d’éqgs. (6.1), il faut représenter ces moments externes en fonctions des

moments linéaires.
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6.1.2 Moments non-linéaires d’ordre 2

La propagation des moments non-linéaires est décrite par les équations suivantes

dilz<PT2> = — 26,(PT*Q?), (6.2a)
da _ 3 2y 3y P 2 Tip?
e (PTQ), = — Zﬁg(PQ ) — 202(PTY); — 25 <8TTQ >7~ + 3(P ) (6.2b)
_2 pay QA" DPAN | 7 p
=3 (PSY), — 2[3 <T oT o2 ), + 3(P )
d n 1 OA* P A DA *A* 92
dz<PQ )r = — (PR, 262<(9T 8T3>i 52<8t aTQQ T+V<PQ>Z
(6.2¢)
d n 1 DA* P A DA 9 A*
@UDQ )i =P2(P7), + 23 <3_TW>T + B2 <8_T—8T2 Q i
0A

V(P >r+7<P 5

2> _7<P%>~ (6.2d)

Il est également utile d’écrire I’équation de propagation de (P?).

P = 3 (P0), (6.3
Le systeme d’éqgs. (6.2) n’est également pas fermé. Les opérateurs requis pour décrire
les moments externes sont plus compliqués que ceux dont nous calculons 1’évolution.
Toutefois, le formalisme des opérateurs permet de représenter succinctement ces mo-
ments en n’alourdissant pas la notation. Puisque le moment (P?) est d’ordre 0 (comme

E et (P)), son équation de propagation a été définie a 1'éq. (6.3).

6.2 Modélisation des moments d’ordre supérieur

Pour résoudre le systeme d’éqgs. (6.1) et/ou (6.2), il faut pouvoir écrire les moments
externes en fonction des moments des deux systemes. Dans le chapitre 4, le systéeme
a pu étre fermé en supposant que la phase de 'impulsion était quadratique. Cette
approximation n’est toutefois pas suffisante a l'ordre 4, comme nous le verrons plus
loin. De plus, certain des moments externes ne dépendent que de la puissance de

I'impulsion. Il faut donc pouvoir modéliser la puissance en plus de la phase.
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Une distinction importante doit étre faite maintenant au sujet de la modélisation.
Dans la méthode classique des moments, un ansatz est posé pour I'amplitude du
champ ; pour I’ESNL, une sécante hyperbolique est typiquement utilisée ou la puis-
sance créte, la durée et la phase sont des parametres. Ces parametres sont ensuite
reliés aux moments de sorte qu’il y a une correspondance directe entre les parametres
et les moments. Il est alors possible d’obtenir des équations de propagation pour les
parametres en ayant celles des moments. Bien que les équations décrivant 1’évolution
des moments contiennent des moments externes, ces derniers peuvent étre exprimés
en fonction des moments internes puisque la forme du champ est fixé par I’ansatz. 11
s’ensuit que la solution obtenue est confinée par ’ansatz choisi pour "amplitude. Si
un ansatz pouvant décrire la forme de I'impulsion est utilisé, il est alors possible de
décrire en partie I’évolution de la forme de I'impulsion. Toutefois, cette évolution est
toujours limitée a la forme de ’anstatz.

Pourtant si nous considérons ’ensemble des moments, il est possible de décrire
n’importe quelle amplitude. Il faut cependant un nombre infini de moments pour
décrire exactement I’amplitude du champ. Cela est dii au fait que les moments sont
des quantités moyennes dans le temps ; ainsi des amplitudes différentes peuvent avoir
un ou plusieurs moments en commun. Ce n’est qu’en connaissant tous les moments
qu’il est possible de déterminer exactement la norme et la phase du champ et ce
probléme demeure trés complexe (Talenti, 1987). Dans la méthode des moments, il
n’est pas nécessaire d’avoir plus de moments que de parametres d’ansatz; il suffit
d’avoir autant de moments que de parametres pour passer d'un a l'autre. Nous avons
cependant acces a bien plus de moments que nécessaire pour la méthode des moments.
Ces moments contiennent de I'information qu’il est possible d’exploiter.

L’idée alors est d’utiliser un ansatz pour 'amplitude uniquement pour les moments
externes et de considérer tous les moments internes pour décrire 1’évolution du champ.
Ainsi la description de 'amplitude du champ n’est pas limitée qu’a ’ansatz mais est
décrite par ’ensemble des moments considérés. La distinction est importante car les
moments décrivent alors une famille d’amplitudes limitée par la modélisation des
moments externes, au lieu d’étre limitée par 'ansatz de I'amplitude, résultant en une
description plus générale. Prenons comme exemple simple la modélisation faite au
chapitre 4. En ne modélisant que la phase du champ, et en ne supposant rien sur la
forme de I'impulsion, il a été possible de trouver les invariants approximatifs I et Iy

qui dépendent de la forme initiale de I'impulsion. Si la forme de 'amplitude avait été
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fixée, I; et I, n’auraient pu prendre qu’'une valeur.

En résumé, dans la méthode que nous utilisons ici et dans la méthode classique
des moments, 'amplitude du champ doit étre représentée par un ansatz. Dans la
méthode des moments, seuls les moments nécessaires pour représenter les parametres
sont considérés. Dans notre méthode, tous les moments sont considérés et I’anstaz ne
sert qu’a résoudre le probleme des moments externes. Autrement dit, ’ansatz sert a
représenter les termes dans la dérivée de 1’équation d’évolution du moment au lieu
du moment méme. De maniere plus générale, le niveau de précision de la méthode
peut étre ajustée en incluant plus ou moins de moments, d’ordre plus ou moins élevé.

Regardons maintenant quelles formes I'ansatz représentant 'amplitude peut prendre.

6.2.1 Modéliser 'amplitude ou la norme ?

Pour faire la modélisation, deux chemins peuvent étre empruntés ; soit de modéliser
directement ’amplitude complexe du champ, soit de modéliser la norme et la phase
du champ séparément. L’avantage de modéliser directement I’amplitude, c¢’est-a-dire
d’avoir un ansatz avec des parametres complexes dont la partie réelle dicte la norme et
la partie imaginaire la phase, est que ’ansatz décrivant la norme décrit également la
phase. Il est alors possible d’avoir une plus grande précision avec moins de parametres
de modélisation. Le champ s’écrit donc de maniere beaucoup plus simple. De plus,
la phase est potentiellement décrite par une fonction tres complexe, mais qui s’écrit
toutefois (relativement) simplement. Un exemple de ce genre de modélisation est la
gaussienne dispersive ou encore le modele implicite basé sur la solution dispersive
décrit au chapitre 5.

Le probleme toutefois avec cette avenue est que la norme et la phase sont intime-
ment couplées ensemble. Il est inévitable que la modélisation ne représente pas exac-
tement le champ (autrement, ce serait carrément une solution générale de I’ESNL) ;
il y aura des erreurs d’approximation sur le champ, soit en norme ou en phase. Le
couplage entre la norme et la phase dans le modele amplifie les erreurs d’approxi-
mation car les fluctuations de phase se transforment en fluctuations de norme et
vice-versa dans 'ESNL. Un autre probleme survient lors de 'intégration du modele
dans la définition des moments. Il peut étre difficile d’intégrer des fonctions avec des
parametres complexes (méme si la variable d’intégration est réelle) tout en s’assurant

que l'intégrale ne diverge pas ou que l'intégrale simplement existe. C’est pour ces
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raisons que nous privilégions une modélisation ou la norme et la phase du champ sont

décrites par des fonctions distinctes.

6.2.2 Modélisation de la puissance

Différentes avenues sont envisageables pour modéliser la puissance du champ. Nous
ne considérons dans I'analyse qui suit que des impulsions symétriques dans le temps;
les effets asymétriques étant ainsi négligés. La modélisation choisie doit respecter trois
criteres. Elle doit pouvoir représenter facilement les formes de «cloche» couramment
rencontrées. Elle doit pouvoir également s’intégrer facilement dans la définition des
moments. Finalement, la modélisation devra étre relativement simple; nous nous
limitons a un seul parametre pour représenter la forme. Ce parametre doit donc
pouvoir représenter la majorité des formes d’impulsions typiquement rencontrées.

Ces conditions limitent les modélisations possibles. Par exemple, une expansion de
Taylor ne permet pas de représenter facilement des formes de cloche. Une alternative
est de prendre une expansion de Padé, qui représentent bien la forme de cloche.
Toutefois, elle ne permet pas de bien représenter les principales formes d’impulsions

sans avoir recours a plusieurs termes. Une modélisation intéressante est la super-

T 20
) o

P(T) = P.exp (— ‘—

gaussienne

ol le parametre b est relié a la durée de la super-gaussienne, P, est la puissance créte
et £ est un parametre de forme. Lorsque £ est entier, les valeurs absolues peuvent étre
négligées. Lorsque ¢ = 1, nous retrouvons l'impulsion gaussienne. Quand la valeur
de ¢ augmente, la super-gaussienne devient de plus en plus carrée; elle devient un
créneau lorsque ¢ — oo. Les impulsions ont des ailes moins évanescentes pour des
valeurs de 0 < ¢ < 1. Toutefois, dans ce cas, il y a une discontinuité de la dérivée
de la puissance en T' = 0; de fagon générale, lorsque ¢ n’est pas entier, il y a une
discontinuité provenant de la dérivée de la fonction valeur absolue. A part le probleme
de la discontinuité en T' = 0, la super-gaussienne ne permet pas de représenter une
forme parabolique qui est une solution asymptotique de ’ESNL et certains moments
non-linéaires ne peuvent étre calculés. Autrement, la super-gaussienne est un modele

efficace qui a été parfois utilisées dans la description de la propagation non-linéaire
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d’impulsions.
La modélisation que nous employons dans le reste de ce chapitre utilise la distribu-
tion de Pearson. Cette distribution a été présentée au chapitre 3. Nous ne considérons

ici que la forme symétrique qui est beaucoup plus simple,

1
aT?\ @
P(T)=P.(1+ - lorsque a > 0 (6.5)
ou le parametre b est relié a la durée de I'impulsion, P, est la puissance créte et le
parametre a est un parametre de forme. Notons que de les parametres a, b et P. sont
réels. Pour que 1'éq. (6.5) demeure carrée intégrable sur I'intervalle lorsque a < 0, la

distribution est limitée & ses zéros.

Q=

PC<1+$>_ lorsque a > 0
PO =9 P(148) " siT< [Leta<o (6.6)

0 si]le,/I%‘eta<0

IS

Dans le cas ot a < 0, il y a une discontinuité dans la dérivée autour de T' = \/W ;
toutefois la puissance y est nulle, ce qui ne pose donc pas un probléeme lors de
I'intégration. Il semble a premiere vue contraignant d’avoir deux définitions de la
norme selon la forme de I'impulsion. Nous verrons plus loin que les expressions des
moments sont les mémes peu importe le signe de a. Comme nous l'avons vu au
chapitre 3, la distribution de Pearson permet de représenter, exactement ou approxi-
mativement, la plupart des impulsions ou spectres utiles, soit la gaussienne, la sécante
hyperbolique, la lorentzienne, la parabole et le créneau. De plus, elle permet de décrire
les formes d’impulsions intermédiaires puisque le parametre de forme a est continu.
La distribution de Pearson est particulierement bien adaptée aux moments car ces
derniers peuvent étre définis de maniere récursive en intégrant par partie la forme
différentielle de la distribution (éq. (3.20)), comme le montre ’annexe D. Il s’ensuit
que tous les moments peuvent étre définis en fonction des parametres du modele ou
d’autres moments.

A partir de la définition de la puissance du champ donnée par 'éq. (6.6), tous les
moments de la distribution de Pearson n’utilisant que les opérateurs T" et P peuvent

étre calculés, ainsi que I'énergie. Notons que les moments d’ordre impair (selon 7T')
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sont nuls car la puissance donnée par 1'éq. (6.6) est symétrique.

D (L — l) 1 lorsque a > 0
E=p, |22 .
“Vlal T (%) { cot (ﬁ) lorsque a < 0 (6.7)
NN T rEC .
I\ — [ 2 a
(T7) = NG (a) - (% = %) pour j pair, 0 autrement (6.8)
(PP — PPF (%1 — %) r (%) 1 lorsque a > 0 (6.9)
Cr(EHT(E-1) | tan (5) cot [T(p+1)] lorsque a < 0 '
- bj — 1)
Py — pi
(PT) = 5o P (6.10)

Le moment (PPT7) est défini de maniere récursive alors que les autres moments sont
définis par la fonction I'. Des expressions spécifiques pour certaines valeurs parti-
culieres de j et de p sont présentées a 'annexe D. Des expressions différentes sont
obtenues selon le signe de a. Bien que la fonction I' soit parfaitement bien définie, il
est plus facile de manipuler des expressions polynomiales. Pour ce faire, I’approxima-
tion de la fonction T" donnée par ’éq. (C.8) nous est utile pour simplifier les égs. (6.7)

et (6.9) lorsque a tend vers zéro.

E~Lfevm (S_CL) (6.11)

4 2—a
meda (] e

Ces équations approximatives sont valides peu importe le signe de a, ce qui simplifie
grandement 'analyse. Un des probleme des équations définies par morceaux est que,
lors de calculs analytiques, il faut savoir quel morceau s’applique avant la fin du calcul.
Par exemple, si dans un calcul le parametre a doit étre déterminé, son signe doit
étre connu pour savoir quelle définition utiliser. Il est donc plus simple d’avoir une
expression unique. Aucune approximation n’est nécessaire pour obtenir une forme
polynomiale pour le moment (77) car les fonctions I' se simplifient au moyen de
I'éq. (C.2), sauf T'[(j + 1]/2] qui ne dépend que de 'ordre du moment.

La validité de ces approximations est montrée a la figure 6.1 ou les éqs. (6.11) et
(6.12) sont comparées aux éqs. (6.7) et (6.9). La figure 6.1 montre que les équations

approximatives donnent un résultat tres précis sur l'intervalle de formes d’impulsion
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FIGURE 6.1 En haut : Comparaison entre la valeur théorique de ’énergie de la dis-
tribution de Pearson et la valeur approximative. En bas : Comparaison du moment
(PP) de la distribution de Pearson et la valeur approximative. Les quatre courbes
représentent du haut vers le bas p = 1,2, 3 et 4. Les valeurs théoriques sont en lignes
pleines alors que les valeurs approximatives sont représentées par des cercles.
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intéressantes —2 < a < 2. Notons que ’échelle de I'énergie est logarithmique, signi-
fiant que 'accord est bon sur plusieurs ordres de grandeur. Il est remarquable que
les équations approximatives (6.11) et (6.12) soient si précises. Il est d’autant plus
remarquable qu’elles le sont aussi bien lorsque a > 0 que lorsque a < 0. La précision
des approximations vient du fait que les éqgs. (6.11) et (6.12) sont les développements
en série de Padé des éqgs. (6.7) et (6.9). Puisque ces approximations sont tres précises,
simples a manipuler et ne different pas selon le signe de a, nous les préférons aux
équations exactes pour le reste de ’analyse, éliminant ainsi les fonctions gamma.
Les moments décrits par les égs. (6.7)-(6.9) (ou encore les égs. (6.11) et (6.12) )
permettent de décrire les facteurs de formes temporelles x décrit au chapitre 3. Ces

facteurs sont alors décrits seulement par le parametre a de la distribution de Pearson.

K =3 (2_3“) (6.13)

2 —ba
2 —3a
— 6.14
RPT = T3, (6.14)

2 (8—a\ (24—a)\ [4—a )\’ 2 [96—49a (6.15)
kp = — N —|—— .
P 3\2-a)\6—a)\16—a V3 \ 96 — 61a
L’approximation de kp est obtenue par un développement de Padé. Un autre pa-

rametre de forme intéressant est obtenu en comparant 1’énergie avec les moments (P)
et (T?).

E m<4—a>(8—a)2 (6.16)

- 6—a)\2—a

P 1

12 —a

Encore une fois, une valeur spécifique d’'un de ses parametres ne permet pas de
connaitre avec certitude la forme de 'impulsion ; différentes formes peuvent donner
la méme valeur de k. Ainsi, plus il y a de facteurs de forme considérés, plus la forme
de I'impulsion peut étre déterminée précisément. Toutefois, si nous supposons que la
forme de I'impulsion est décrite par la distribution de Pearson, n’importe quel des
facteurs de forme k est suffisant pour déterminer le parametre a et ce faisant, la forme

de I'impulsion.
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6.2.3 Modélisation de la phase

La modélisation de la phase temporelle est tres importante car elle détermine non
seulement la phase spectrale, mais également en partie la forme de la densité spectrale
du champ. Autrement dit, les moments contenant I'opérateur {2 dépendent fortement
de la phase temporelle. Notons que la modélisation pourrait étre faite dans le domaine
spectral. La distribution de Pearson peut autant servir a décrire la puissance que la
densité spectrale. La raison pour laquelle il est préférable de travailler dans le domaine
temporel est que les effets non-linéaires sont décrits plus facilement dans le domaine
temporel que dans le domaine spectral. Trois formes de phase sont envisagées dans
ce qui suit. La premiere est une phase quadratique, comme celle utilisée au chapitre
4, la seconde une phase quadratique avec une contribution non-linéaire et enfin une

phase logarithmique, couramment utilisée dans la modélisation des lasers.

Phase quadratique

Supposons que la phase du champ est quadratique et s’écrit
&(T, 2) = hT? +ifyz (6.17)

ou h est une constante réelle et le terme de droite donne 1’évolution de la phase
spatiale (qui n’apparait pas dans ’évolution des moments). Les différents moments
de T'amplitude A(T,z) = /P(T)expli¢p(T, z)] peuvent étre calculés, ou P(T) est
décrit par 1'éq. (6.6). Des expressions générales des moments utilisant les opérateurs
P, T et 2 sont toutefois difficiles a calculer a cause de la dérivée dans 'opérateur €.
Une liste des principaux moments de cette modélisation est cependant présentée a
I’annexe D.

Il est maintenant intéressant de revenir brievement sur l'analyse du chapitre 4
en supposant que le champ est exactement décrit par les égs. (6.6) et (6.17). Nous
procédons donc comme dans la méthode classique des moments. Comme nous 1’avons
mentionné, 'approximation de la phase quadratique a pour effet que le facteur de
forme kr est invariant lors de la propagation. En dérivant les deux autres facteurs
de forme temporelle, kpr et kp, par rapport a z et en remplacant les moments par
les parametres du modele, nous constatons qu’ils sont également invariants. Il est
intéressant de noter que les solutions analytiques connues de ’ESNL dont la forme est

invariante (le soliton d’ordre, I'impulsion parabolique asymptotique et la gaussienne
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dispersive) ont toutes une phase quadratique.
Il est également intéressant de réécerire les invariants approximatifs Iy et I, donnés

par les égs. (4.20b) et (4.20c) en fonction du parametre a.

I = (T?)(Q?) — (TQ)? = 1 i 3 (? . Z) ~ i (1 + gaQ) (6.18)

1 1 3a
=~ (1+Z 1
Ih=— 2\/%( +16) (6.19)

Les valeurs approximatives sont écrites en série de Taylor puisque le parametre a est
généralement pres de 0. Il se trouve que l'invariant I; dépend du parametre de forme
a a l'ordre 2, de sorte que I'approximation de la phase quadratique est similaire a une
approximation gaussienne de la forme (elle est légerement plus précise car I'invariant
peut prendre différentes valeurs). L’invariant /o montre une variation d’environ 20%
sur la plage des valeurs de a utiles. Notons toutefois que nous supposons que la forme
de l'impulsion peut toujours étre décrite par la distribution de Pearson, ce qui est

évidemment une approximation.

Phase quadratique et non-linéaire

Puisque de supposer que la phase est quadratique n’est pas suffisant pour décrire
I’évolution de la forme de I'impulsion lors de la propagation, il faut modéliser la phase
plus précisément. Puisque la phase quadratique représente a peu pres bien la partie
dispersive de la phase, ajoutons une contribution non-linéaire pour bien refléter la

physique du probleme.
o(T,z) = hT* + fP(T) +ifoz (6.20)

ou f est un parametre réel et P(T') est donné par 1’éq. (6.6). L’évolution du parametre

de forme kr s’écrit alors

% = —4ﬁ2£<P>in/<aT(1 +a) (6.21)

en supposant que le champ est adéquatement décrit par la distribution de Pearson.
Notons que dans 1'éq. (6.21) nous retrouvons a la fois des moments ((P) et indirec-

tement kpr et kr) et des parametres (a, b et f). Il serait plus propre de ne travailler
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qu’avec les moments ou qu’avec les parametres ; toutefois les expressions deviennent
rapidement tres lourde. Ainsi en se permettant d’utiliser a la fois les moments et les
parametres, les équations sont allégées. Il est possible de passer d'un a l'autre en
utilisant les éqgs. (6.8), (6.12), (6.13) et (6.14).

Il apparait selon 1’éq. (6.21) qu’il faut que la dispersion et f, donc indirectement la
non-linéarité, soit non-nuls pour que la forme de I'impulsion se modifie au long de la
propagation. Il est intéressant de regarder sous quelles conditions x devient invariant.
Il devient invariant lorsque la dispersion est nulle G, = 0 puisque 'auto-modulation
de phase ne cause qu'un déphasage dans le temps. Lorsque f = 0, nous sommes
dans le cas de I'approximation de la phase quadratique. Quand b — oo, 'impulsion
devient infiniment longue et se rapproche d’un faisceau continu qui ne subit pas l'effet
de la dispersion ou de 'auto-modulation de phase (du moins, si les fluctuations dues
au bruit sont négligées). Notons que pour traiter proprement le cas d'un faisceau
continu, le présent modele n’est pas adéquat. Ky devient invariant quand le moment
(P) = 0, et donc que la puissance créte est nulle. La propagation est purement
dispersive dans ce cas. Bien que la dispersion change la forme de I'impulsion lors de
la propagation de fagon générale (voir annexe B), la phase devient quadratique lorsque
(P) = 0, tout comme la phase d’une impulsion gaussienne dispersive dont la forme
est invariante. Les parametres kr et kppr deviennent artificiellement nuls pour a =
2/3 puisque l'intégrale définissant (T?) diverge. Finalement, la forme de I'impulsion
devient invariante lorsque a = —1, ce qui correspond a une impulsion parabolique, qui
est la solution asymptotique a ’ESNL. Notons que le soliton (a = 0.29) est également
invariant, mais cette condition n’apparait pas directement dans 1’éq. (6.21), puisque

I'invariance provient de 1’équilibre entre la dispersion et 'auto-modulation de phase.

Phase logarithmique

Une autre option intéressante est une phase proportionnelle au logarithme de la

forme de 'impulsion

o(T,z) =cln [\/ﬁ] + iy

__° AT,
= —5-In <1 + 5T ) + Bz (6.22)

ol c¢ est un parametre réel. Cette phase est en quelque sorte un compromis entre

une phase dispersive et non-linéaire. Elle intervient dans la solution de 1’équation
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de Ginzburg-Landau décrivant le soliton moyen dans les lasers a fibre. Dans ce cas

I’évolution de kr est donné par

d;_ZT = 18, s (6.23)
en supposant toujours que le champ est décrit par distribution de Pearson. Une
différence est notable si I'éq. (6.23) est comparée a ’éq. (6.21). Le facteur de forme
kr est invariant lorsque a = 0, donc quand I'impulsion est gaussienne, comme dans
le cas de la propagation purement dispersive. La forme devient également invariante
lorsque la phase ¢ est nulle, donc lorsqu’il n’y a ni dispersion ni non-linéarité. No-
tons que, contrairement au cas précédent, les phases dispersives et non-linéaires sont
condensées dans le méme terme. Nous n’observons pas dans le cas ici 'invariance de
la forme de 'impulsion ni dans le cas parabolique, ni dans le cas solitonique.

Il existe bien entendu d’autres modélisations possibles de la phase; toutefois les
trois présentées ici sont simples et descriptives. Malgré cela, notons que la représenta-
tion des moments contenant I'opérateur ¥ en fonction des parametres devient rapi-
dement lourde a cause des nombreux termes lorsque k£ > 2. Ces nombreux termes sont
générés par la dérivée temporelle d’ordre k. Un point important qu’il faut considérer
au sujet de la modélisation est la différence entre représenter I’amplitude d’une impul-
sion stationnaire et modéliser ’amplitude durant toute la propagation. Il est beaucoup
plus difficile de représenter 1’évolution de 'amplitude pendant toute la propagation
car la modélisation doit étre suffisamment précise pour que les erreurs d’approxima-
tion n’affectent pas significativement la propagation. Autrement dit, il faut étre en
mesure de modéliser raisonnablement toutes les formes de norme et de phase que I'im-
pulsion prend lors de la propagation. Dans le cas d’une solution stationnaire, il faut
seulement représenter la forme finale de la norme et de la phase. Par exemple, une
phase quadratique est suffisante pour décrire les solutions stationnaire (ou asymp-
totique) de I’ESNL, mais n’est pas suffisante pour décrire la propagation dans des
conditions arbitraires.

Un autre point a considérer est le choix des moments pour représenter les pa-
rametres, que ce soit dans la méthode classique des moments ou la méthode générale
des moments. Dans la méthode classique des moments, il nous faut choisir autant
de moments que de parametres. Il y a toutefois une infinité de combinaisons pos-

sibles. Dans la méthode générale des moments, il faut représenter les moments d’ordre
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supérieur en fonction des parametres et remplacer les parametres par des moments
faisant partie du systeme; le choix est également grand. Pour déterminer quels sont
les choix les plus efficaces, comparons les moments d’ordre supérieur d’un champ
propagé numériquement avec la reconstruction du méme moment obtenu a l’aide de
différentes combinaison de moments d’ordre inférieurs également calculés a partir de

la propagation numérique du champ.

6.3 Représentation des parametres par les moments

Si nous voulons approximer les moments ne faisant pas partie du systeme afin
de fermer ce dernier, il nous faut exprimer ces moments externes en fonction des
moments internes, non des parametres. Il s’ensuit que nous devons établir une corres-
pondance entre les parametres et les moments. Les choix possibles de moments pour
représenter les parametres a, b, ¢, f, h et P, sont tres nombreux et il est impensable de
tous les considérer. Pour restreindre les choix, nous prenons comme regle d’utiliser les
moments d’ordre le plus bas possible pour représenter les parametres. Nous favorisons
également les moments usant de I'opérateur 1" plutot que ceux utilisant 'opérateur 2
lorsque c’est possible puisque la modélisation est fait dans le domaine temporel. Fi-
nalement, nous cherchons a représenter les parametres avec le moins de moments pos-
sible. Dans cette section, nous étudions différentes facons d’exprimer les parametres
du modele en fonction des moments respectant ces conditions. Nous comparons en-
suite certains moments d’ordre supérieur clefs obtenus a partir de représentations
avec ceux obtenus directement du champ complecxe simulé numériquement afin de

déterminer la représentation la plus précise.

6.3.1 Parametres de norme

Pour représenter le parametre a dictant la forme de I'impulsion, nous avons recours
aux facteurs de formes k. Nous considérons seulement les facteurs sans I'opérateur €.
De plus, les facteurs kp et kg sont rejetés car ils ne sont pas facilement inversibles pour

obtenir le parametre a. Ils ne restent alors que xr et kpy. Le parametre a s’exprime
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alors
3 — RT
= e 6.24
“ <9 - 5KT) (6:24)
21— 2/€pT
== — 6.25
4Pt 3 ( 1— RprT ) ( )

ou les indices rappellent comment le parametre est obtenu. Dans le premier cas, le
parameétre a est obtenu en comparant (T*) & (T?) via k. Dans le second cas, a
provient de la comparaison de (PT?), (T?) et (P). Pour obtenir les parametres b et

P. les moments les plus naturels & utiliser sont respectivement (T?) et (P).

br = (2 — 3a)(T?) (6.26)
P.p = V2(P) (2 - Z) ( i-a ) (6.27)

16 — a

Les indices P et T réferent aux moments utilisés pour obtenir les parametres. Le
parametre a doit étre substitué par 1’éq. (6.24) ou (6.25). Il est également intéressant

de considérer I’énergie F, le moment d’ordre 0, pour déterminer b ou P..

1 [4E /2 —a\]?
S 2
bE m |:PcP (8_a>:| (6 8)
AE [(2—a
P = 6.29
R (8—a> (6.:29)

L’énergie est ainsi utilisée au lieu, ou en plus, du moment (7?) ou (P). 11 y a
ainsi quatre fagons différentes de représenter b et P, ensemble. Avec les deux fagons
différentes de représenter a, cela fait huit représentations différentes.

Il faut maintenant une méthode systématique pour déterminer laquelle de ces huit
représentations est la plus juste. Pour ce faire, nous calculons numériquement les mo-
ments entrant dans les différentes définitions de a, b, et P., soit (P), (T?), (PT?), (T*)
et E pour différentes propagations de I'amplitude du champ. Les parametres des huit
représentations peuvent alors étre évalués a partir du champ obtenu numériquement.
N’importe quel moment n’entrant pas dans les différentes définitions peut étre obtenu
a partir de I'une de ces huit représentations ou directement a partir du champ calculé
numériquement (ces moments doivent toutefois ne contenir que les opérateurs P et

T). En comparant les deux, nous obtenons la validité des différentes représentations.
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Nous utilisons donc les deux moments d’ordre le plus bas n’entrant pas dans les
définitions et de s’exprimant qu’au moyen de P et T pour valider les représentations,
soit (PT?) et (P*T?). Ces moments se décomposent de la maniere suivante en fonction

des parametres

3(P)b?
(4 —5a)(4 — 3a)

(PT*) = (P?T?) = g (6.30)
olt les moments (P) et (P?) doivent étre exprimés par 1'éq. (6.12). Le résultat des
différentes simulations dans le régime de dispersion anormale et normale, pour les huit
différentes représentations possibles des moments (PT*) et (P?T?) est présenté aux
figures 6.2-6.5. Nous utilisons également les moments (P), (T?) et E pour valider les
représentations quand ces derniers n’entrent pas dans les définitions des parametres.
Les figures 6.6-6.8 montrent le résultat des simulations dans les deux régimes de
dispersion dans ce cas.

Plusieurs constatations intéressantes ressortent de ces figures. Si nous comparons
les résultats entre ar et apr, il apparait que ce dernier donne en moyenne de bien
meilleurs résultats que ay pour la plupart des moments considérés, en particulier sur
les moments d’ordre inférieur E, (P) et (T?) de la propagation en dispersion anormale
ou la différence est frappante. La différence n’est pas cependant treés marquée dans le
régime de dispersion normal. Dans ce régime, nous voyons méme que ar est préférable
a apy pour le moment (PT?). La différence vient de la maniére dont les deux facteurs
de forme x caractérisent la forme de 'impulsion. Le facteur kK compare les moments
(T?) et (T*) qui tous deux caractérisent les ailes de I'impulsion ; ils n’accordent que
tres peu d’'importance au sommet de I'impulsion. Le facteur xpr utilise les moments
P, (T?) et (PT?). (T?) caractérise les ailes de I'impulsion, (P) caractérise plutot le
centre de I'impulsion (pour des impulsions en forme de cloche). Ainsi, kpr donne
une mesure plus globale de la forme de 'impulsion. Il est a noter toutefois que ar
donne un meilleur résultat de fagon générale pour (PT*) que apr et 'inverse pour le
moment (P?*T?). Cela vient du fait que (PT?) est similaire a (T) et (P?T?) a (PT?).

Dans le régime de dispersion normale, le centre de I'impulsion change peu lors de
la propagation, ce qui explique pourquoi les deux parametres donnent des résultats
similaires. Toutefois en régime de dispersion anormale, le centre de I'impulsion se
modifie considérablement et le facteur kr ne permet pas de le caractériser conve-

nablement. Cela explique d’ailleurs pourquoi l'efficacité de la modélisation dans le
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FIGURE 6.2 Comparaison numérique entre les différentes représentations du moment
(P?T?) normalisé d'une impulsion gaussienne se propageant dans le régime de disper-
sion anormale avec N = 2. Le moment calculé directement a partir de la propagation
numérique est en trait plein noir. La figure du haut en trait foncé présente le cas
ol ar est utilisé alors que apr a été utilisé dans la figure du bas en trait clair. Le
parametre by apparait en trait plein et bg en trait pointillé. Le parametre P.p est
représenté en cercle plein et P.g en cercle vide.
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FIGURE 6.3 Comparaison numérique entre les différentes représentations du moment
(PT*) normalisé d’une impulsion gaussienne se propageant dans le régime de disper-
sion anormale avec N = 2. Le moment calculé directement a partir de la propagation
numérique est en trait plein noir. La figure du haut en trait foncé présente le cas
ol ar est utilisé alors que apr a été utilisé dans la figure du bas en trait clair. Le
parametre by apparait en trait plein et bg en trait pointillé. Le parametre P.p est
représenté en cercle plein et P.g en cercle vide.
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FIGURE 6.4 Comparaison numérique entre les différentes représentations du moment
(P?T?) normalisé d'une impulsion gaussienne se propageant dans le régime de disper-
sion normale avec N = 2. Le moment calculé directement a partir de la propagation
numérique est en trait plein noir. La figure du haut en trait foncé présente le cas
ol ar est utilisé alors que apr a été utilisé dans la figure du bas en trait clair. Le
parametre by apparait en trait plein et bg en trait pointillé. Le parametre P.p est
représenté en cercle plein et P.g en cercle vide.
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FIGURE 6.5 Comparaison numérique entre les différentes représentations du moment
(PT*) normalisé d’une impulsion gaussienne se propageant dans le régime de disper-
sion normale avec N = 2. Le moment calculé directement a partir de la propagation
numérique est en trait plein noir. La figure du haut en trait foncé présente le cas
ol ar est utilisé alors que apr a été utilisé dans la figure du bas en trait clair. Le
parametre by apparait en trait plein et bg en trait pointillé. Le parametre P.p est
représenté en cercle plein et P.g en cercle vide.
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FIGURE 6.6 Comparaison numérique entre la représentation utilisant le parametres ap
(trait foncé) et apy (trait clair) de I’énergie E normalisée d’une impulsion gaussienne
se propageant dans le régime de dispersion normale (figure du bas) et anormale (figure
du haut) ou N = 2.



104

2,5
2,0
AS 1,5
L
Y
&
y 1,0
Simulation ||
0.5 S—b P a |
T c¢E T
: b. P a i i
I cE PT : :
0,0 ! !
0,0 0,5 1,0 1,5 2,0 2,5 3,0
z/L
d
1,0
Simulation
\) : : Cj b P a
3 T c¢E T
0,8 |-\ : b P a
T cE PT
AS o6l N T T I |
QL
\Q
&
> 0,4 | NG -
02 [ S T S — .
0,0 ‘
0,0 0,5 1,0 1,5 2,0 2,5 3,0
z/L
d

FI1GURE 6.7 Comparaison numérique entre la représentation utilisant le parametres ap
(trait foncé) et apr (trait clair) du moment (P) normalisé d’une impulsion gaussienne
se propageant dans le régime de dispersion normale (figure du bas) et anormale (figure
du haut) ou N = 2.
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FIGURE 6.8 Comparaison numérique entre la représentation utilisant le parametres ap
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régime de dispersion normale est de loin supérieure a celle dans le régime de disper-
sion anormale. La distribution de Pearson permet de bien modéliser toutes les formes
d’impulsions présentes pendant la propagation en dispersion normale. En dispersion
anormale, et en présence de fortes non-linéarités, les impulsions présentent des lobes
secondaires ou des piédestaux qui ne peuvent pas étre modélisés par la distribution
de Pearson. Notons toutefois que méme en régime de dispersion anormale, ’accord
est treés bon en utilisant le facteur de forme xpr.

La modélisation de la puissance créte P, semble dépendre surtout du parametre
a utilisé. Lorsque le parametre de forme est apr, la modélisation directe par le pa-
rametre P.p (cercles pleins) est plus précise que P.gp. C’est toutefois le contraire
lorsque le parametre de forme est ar. Nous pouvons voir sur les égs. (6.27) et (6.29)
que le parametre P.p dépend plus fortement de a que P.g. Ainsi, ’accord est meilleur
avec P.p qu’avec P.p lorsque ar est utilisé puisque la représentation de la forme de
I'impulsion est moins précise dans ce dernier cas. Lorsque apr est utilisé, la différence
entre P.p et P.g est tres faible. La modélisation du parametre b dépend également de
a. Lorsque le parametre apr est utilisé, le parametre by (ligne pleine) est plus adéquat
que le parametre by (ligne pointillée). L’inverse est vrai lorsque ar est utilisé. Notons
toutefois que by est également efficace dans ce cas lorsque la puissance est modélisée
par P.g.

En résumé, nous adoptons les parametres apr, by et P.p pour la modélisation de
ce qui suivra. Notons toutefois qu’en régime de dispersion normal, n’importe laquelle
des huit représentations est adéquate. Dans ce cas, il est possible d’adopter ar ou apr

pour analyser 1'évolution de la forme de I'impulsion.

6.3.2 Parametres de phase

Modéliser la phase est plus simple puisqu’il n’y a qu'un ou deux parametres a
représenter. Les moments de plus bas ordre représentant la phase sont (7)., (PT<),

et (T3Q),. Considérons pour commencer le cas oll ces moments sont exprimés en
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fonction des parametres h et f définis a 1'éq. (6.20).

(TQ), = —2ﬁ + £<P> (6.31)
h [ e

(PTQ), = —2m + §<P ) (6.32)

(T3Q)), = —6% + ¥<PT2> (6.33)

Il y a donc trois différentes fagons d’écrire h et f en utilisant deux de ces moments.
Nous ne considérons seulement que les deux fagons incluant le moment (7°(2), puisque

c’est le moment de plus bas ordre. Les parametres h et f s’écrivent alors :

6 [((PTQ), — kpr(P)(TQ),

frra = )2 ( Gy—— ) (6.34)
2 (T3Q), — kp(T*)(TAQ),

frao = (PY(T?) < Y —— > (6.35)

h = (1 - 37@) (g<p> _ (TQ>T) (6.36)

Pour valider ces représentations, nous comparons des moments calculés numériquement
avec les mémes moments obtenus en utilisant les éqgs. (6.31)—(6.33). Pour faire la
comparaison, trois moments sont considérés. Premicrement, il y a (PQ?);, le seul
moment d’ordre supérieur du systeme d’équations d’évolution des moments d’ordre
2. Deuxiemement, (PT??); puisqu’il intervient dans I’équation d’évolution du mo-
ment (PT?) qui lui-méme sert & définir le parametre a. Finalement, le moment (Q?)
est considéré puisqu’il est seul moment d’ordre 2 autre que (T'Q2), qui contienne de

I'information de phase. Ces moments sont définis a partir des parametres comme suit

(PQ?), = —%<P>+£<P2> (g;g) (6.37)
22y B f o [3+2a
(o), = 5 iry - e () (6.39)
o 1 (2—a 4h? hf f?, 5 (6—a
<Q>—@(1+a)+b(2—3a)_T<P>+%<P>(3+a> (6:39)

ott les moments (P) et (P?) sont définis par 1'éq. (6.12). La comparaison est montrée

aux figures 6.9-6.11 pour des propagations dans les deux régimes de dispersion.
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FI1GURE 6.9 Comparaison numérique entre la représentation utilisant les parametres
h, fprq (carré) et frsq (cercle) du moment (P?); d’une gaussienne se propageant
dans le régime de dispersion normale (figure du bas) et anormale (figure du haut)
ou N = 2 (ligne grasse noire). Les cercles vides indiquent que k7 entrant dans les
définitions est obtenu numériquement a partir de (T"*) et non a partir de apr.
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FI1GURE 6.10 Comparaison numérique entre la représentation utilisant les parametres
h, fpra (carré) et frsq (cercle) du moment (PT2Q?); d’une impulsion gaussienne se
propageant dans le régime de dispersion normale (figure du bas) et anormale (figure
du haut) ou N = 2 (ligne grasse noire). Les cercles vides indiquent que k7 entrant
dans les définitions est obtenu numériquement a partir de (T*) et non & partir de
apr.
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FI1GURE 6.11 Comparaison numérique entre la représentation utilisant les parametres
h, fpra (carré) et frsq (cercle) du moment (©?) d’une impulsion gaussienne se pro-
pageant dans le régime de dispersion normale (figure du bas) et anormale (figure du
haut) ou N = 2 (ligne grasse noire). Les cercles vides indiquent que k entrant dans
les définitions est obtenu numériquement a partir de (T) et non & partir de apr.
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Il ressort que le parametre fprq est de loin plus efficace que le parametre frsq,
particulierement dans le régime de dispersion anormale. Dans le régime de dispersion
normale, la différence entre les deux modeles est moins marquée, mais fprqo 1'em-
porte tout de méme. Dans 1'éq. (6.35), le facteur xr doit étre connu pour déterminer
fraa. Deux facons différentes ont été prises pour le calculer ; directement a partir de
(T*) calculé numériquement & partir du champ et a partir de 'éq. (6.13) et apr. Le
calcul direct a partir du champ donne une plus grande précision, ce qui n’est guere
surprenant puisqu’il y a moins d’approximations dans ce cas.

Encore une fois 'opérateur P permet de mieux quantifier la forme du champ. Le
moment (73Q), donne plus de poids & la phase lorsque T' est trés grand alors que
(PTQY), permet de répartir le poids plus uniformément dans le temps, donnant une
mesure plus juste de la phase. Dans le régime de dispersion normale, cette différence
de pondération apparait peu car la phase demeure plus ou moins quadratique lors
de la propagation, comme nous l’avons vu au chapitre 4. Toutefois la phase présente
plusieurs variations temporelles dans le régime de dispersion anormale. Dans ce cas,
il est important d’avoir une pondération permettant de bien considérer ces variations.

Un fait intéressant a noter est que la précision des différents modeles est moins
bonne pour le moment (9?) que la précision du modele quadratique du chapitre 4.
Cela est quelque peu surprenant puisque les égs. (6.34)—(6.36) sont plus générales
que 'approximation de la phase quadratique. La raison se trouve dans la différence
entre la méthode classique des moments et la méthode générale des moments. Dans
la méthode classique, il ne faut modéliser qu’autant de moments que de parametres.
Dans ce cas, il y a un moment redondant entre (T?), (T'Q), et (Q?) (en supposant
une forme connue d’'impulsion) et seulement les deux premiers seraient considérées
dans 'analyse, comme nous 'avons fait aux égs. (6.34)—(6.36). Toutefois, au chapitre
4, nous avons considéré les trois moments dans 1’analyse ce qui offre une plus grande
précision. Il est donc avantageux d’inclure le plus de moments possibles dans l'analyse
pour caractériser I’amplitude. Toutefois, plus de moments considérés veut aussi dire un
systeme plus lourd a gérer et plus de moments d’ordre supérieur dont I'approximation
doit étre faite; il y a donc un équilibre a rechercher.

Regardons maintenant le cas plus simple ou il n’y qu’un seul parametre de phase.

Le cas de la phase quadratique a été traité au chapitre 4. Le parametre ¢ de la phase
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logarithmique peut s’écrire & partir des moments (TQ),., (PTQ),. et (T3Q),..

_ L PTQ),
Cr3q = §<{T?>>r (6.42)

Afin de déterminer laquelle de cette facon est la meilleure, nous procédons de la méme
maniere que précédemment et les comparons avec des moments d’ordre supérieur. Les

moments utilisés pour la comparaison s’écrivent alors

(PQ?); = ki (4—_6‘) (6.43)

4b \2+4a
(PT202); = —C<f> (12125) (6.44)
o (1+¢%) (2—a
0 =" (1 - a) (6.45)

ou le moment (P) est donné par ’éq. (6.12). La comparaison entre les moments
calculés numériquement et ceux obtenus a partir de ¢ est présentée aux figures 6.12—
6.14.

De facon générale, I’accord est moins bon qu’avec la représentation utilisant les
parametres h et f, ce qui est attendu puisqu’il y a un parametre de moins dans cette
représentation. La représentation la plus précise parmi les trois valeur de ¢ est cprq.
Encore une fois, le moment (PT(Q), se révele étre une excellente mesure de la phase.
Notons cependant que dans le régime de dispersion normale, la différence entre les
représentations et les moments (Q?) et (T*Q?); est particulicrement importante. 11
faut donc trouver une autre facon de représenter ces moments. Il est facile d’inclure
(Q?) dans le systeme d’équations d’évolution puisque c¢’est un moment d’ordre 2. 11
est également possible d’utiliser I'invariant Iy et le représenter par le moment (P).

Pour représenter le moment (PT?Q?);, considérons ’approximation suivante

(PT?)(PQ?);

(PT"Q%); ~ — )

(6.46)

qui est tracée a la figure 6.13 en trait pale avec des croix. Cette approximation donne
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FI1GURE 6.12 Comparaison numérique entre la représentation utilisant les parametres
crq (cercles vides), cprq (carrés) et crsq (cercles pleins) du moment (PQ?); d’une
impulsion gaussienne se propageant dans le régime de dispersion normale (figure du
bas) et anormale (figure du haut) ou N = 2 (ligne grasse noire).
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FI1GURE 6.13 Comparaison numérique entre la représentation utilisant les parametres
crq (cercles vides), cpro (carrés) et crsq (cercles pleins) du moment (PT2Q?); d’une
impulsion gaussienne se propageant dans le régime de dispersion normale (figure du
bas) et anormale (figure du haut) ot N = 2 (ligne grasse noire). La ligne pale avec
les croix représente I'approximation de 1'éq. (6.46).
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FIGURE 6.14 Comparaison numérique entre la représentation utilisant les parametres
crq (cercles vides), cpro (carrés) et crsq (cercles pleins) du moment (©2?) d’une im-
pulsion gaussienne se propageant dans le régime de dispersion normale (figure du bas)
et anormale (figure du haut) ou NV = 2 (ligne grasse noire).



116

de bons résultat et de plus, peut étre intégrée de part et d’autres au moyen des

égs. (4.13) et (6.2a), ce qui mene a un invariant approximatif.

(P){PT?)

I3 = FoB

(6.47)
L’invariant I3 est normalisé en utilisant I’énergie pour ne dépendre que de a.

Il est clair, en regardant les figures 6.12-6.14, que la phase logarithmique est plus
appropriée dans le régime de dispersion anormale que dans le régime de dispersion
normale. Rappelons que la phase logarithmique est issue du soliton moyen dans les
équations maitresses des lasers opérant dans le régime de dispersion anormale. Il est
donc prévisible qu’il y ait un meilleur accord dans ce régime de dispersion.

Certaines observations intéressantes ressortent de ’ensemble des représentations
de la phase. Tout d’abord, le moment (PTY), est clairement le moment clef pour
représenter les parametres de phase. Il permet de représenter la phase plutot simple de
la propagation en régime de dispersion normale ainsi que de bien faire la moyenne des
motifs de la phase dans le régime de dispersion anormale. D’ailleurs, la représentation
est en générale meilleure dans le régime de dispersion normale, plutot qu’anormale,
puisque la phase est plus facile & modéliser. Ensuite, il est préférable d’utiliser les
parametres h et fprq pour représenter la phase, qui donne une bonne représentation
dans les deux régimes de dispersion. Toutefois, dans le régime de dispersion normale,
tous les h et f sont adéquats. Dans la représentation a un parametre seul cprq est
adéquat, et ce, seulement dans le régime de dispersion anormale.

Nous pouvons maintenant représenter tous les moments d’ordre supérieur présents
dans les systemes d’équations (6.1) et (6.2). Pour ce faire, nous supposons que les mo-
ments d’ordre supérieur du systeme peuvent étre remplacés par les moments d’ordre
supérieur correspondants de la distribution de Pearson. Ces moments peuvent donc
étre exprimés en termes des parametres de la distribution de Pearson a, b et P, et les
parametres de phase h et f ou c. Ces parametres peuvent a leur tour étre exprimés
en terme des moments internes. Le systeme d’équations se trouve alors fermé et il
devient possible de le résoudre.

Bien que 'accord entre les moments calculés numériquement et leur représentation
puisse étre bon, il est important que ’accord le soit autour de z = 0. Si nous voulons
intégrer les systemes d’égs. (6.1) et (6.2) fermés, il est capital que les erreurs soient

faibles autour de z = 0 pour éviter les divergences et la propagation d’erreurs. Il



117

s’ensuit qu’en résolvant les systémes d’éqgs. (6.1) et (6.2) des moments d’ordre 4 et
d’ordre 2 non-linéaire et en les comparant aux moments calculés directement a partir
du champ propagé numériquement, nous obtenons une mesure de la précision des
approximations de I’ensemble des moments d’ordre supérieur. C’est donc ce que le

reste de ce chapitre présente.

6.4 Intégration numérique

Dans cette section, les systemes d’équations sur les moments d’ordre 4 (éq. (6.1)),
d’ordre 2 non-linéaires (éq. (6.2)), ainsi que ceux a l'ordre 2 (éq. (4.12)) sont intégrés
en utilisant les différentes représentations du champ pour s’affranchir des moments
d’ordre supérieur. Puisque ces systemes comportent plusieurs équations et que ces
dernieres sont non-linéaires, I'intégration est faite numériquement. Le parametre a
est alors calculé a partir des moments intégrés et comparé avec le parametre a obtenu
a partir des moments «exacts» calculés a partir du champ propagé numériquement
par la méthode split-step Fourier. Cette comparaison nous donne une mesure glo-
bale de la précision des approximations des moments d’ordre supérieur. De plus, les
systemes sont intégrés en considérant toutes ou seulement quelques-unes des équations
différentielles. Autrement dit, la représentation du champ de Pearson est utilisée pour
approximer les moments faisant partie du systeme, réduisant ainsi la taille de ce der-
nier. Ceci nous permet de déterminer le point a partir duquel ajouter des moments
au systeme introduit plus d’erreurs d’approximation qu’il n’augmente la précision.

Les intégrations des systemes d’équations différentielles des moments représentent
évidemment la propagation d’une impulsion dans un milieu dispersif et non-linéaire.
Des intégrations (propagations) ont été effectuées dans les deux régimes de dispersion,
normale et anormale, pour trois différentes puissances crétes différentes donnant N =
1, 2 et 3, afin de vérifier la validité des différentes représentations du champ dans
différentes conditions. Notons qu'une gaussienne a été prise comme forme initiale de
I'impulsion. Pour chacune de ces six conditions, le systeme a l'ordre 4 et le systeme a
I'ordre 2 non-linéaire, décrits respectivement par les éqgs. (6.1) et (6.2) sont intégrés
avec trois différentes représentations de la phase; la phase logarithmique, quadratique
et quadratique avec un terme non-linéaire, donnant 18 configurations pour chaque
systeme.

Pour chacune de ces configurations, les équations du systemes sont considérés
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dans leur intégralité ou certaines sont éliminées. Dans ce cas, le moment décrit par
I’équation éliminée est approximé par la représentation du champ utilisé dans la
configuration. Spécifiquement, a ’ordre 4, le systeme est résolu soit en tenant compte
des 5 équations & ordre 4, soit en approximant le moment (%) et en laissant tomber
I’éq. (6.1e), soit en approximant le moment (T'Q3),. et en laissant tomber les éqgs. (6.1d)
et (6.1e) et soit finalement en approximant le moment (72Q?),. tout en laissant tomber
les éqgs. (6.1c)—(6.1e). Pour le systeme a l'ordre 2 non-linéaire, le systeme est intégré
avec les quatre éqgs. (6.2), puis en approximant le moment (PQ?); et en laissant tomber
I’éq. (6.2d) et finalement en approximant le moment (P?), et en laissant tomber les

égs. (6.2¢)—(6.2d). Le tableau 6.4 résume les différents cas se retrouvant dans chaque

configuration.
Moments approximés dans le systeme a l'ordre 4 Equations intégrées
(PT?), (PTQ),, (PT?*Q?);, (PQ?),, (PTQ?);, (PQY);, (PQ?), 6.1a—6.1e
(PT?), (PTQ),, (PT*Q?);, (PQ?),, (PTQ3);, (A1), (PQ?); 6.1a-6.1d
(PT?), (PTQ),, (PT?*Q?);, (TQ3),, (PQ?), 6.1a-6.1c
(PT?), (T?Q3?),, (PQ?), 6.1a-6.1b
Moments approximés dans le systeme a l'ordre 2 non-linéaire | Equations intégrées
(PT?Q2);, (PO2),, <T%/g; %> L (P2), (POY),, <fg;:‘ %> 6.2a-6.2d

(B580) (P02, (P, (558 . (5r5A0)
- 2 a2
(P02, (P|2A), (P35)

(PT02);, (PO2),, (TE-24) (P, (PO, (2-24) 6.2a 6.2c
(%e240) (P02, (PO2),
(PT2Q?),, (PQ2),, <T8£f gTA> | (P, (PQ2), 6.2a-6.2b

TABLEAU 6.1 Liste des différentes approximations avec lesquelles les systémes
d’équations a l'ordre 4 et a l'ordre 2 non-linéaire sont intégrés dans chaque confi-
guration.

Les différents parametres a obtenus de l'intégration des équations de propagation
sont présentées aux figures 6.15-6.20 dans les deux différents régimes de dispersion et
pour les différentes valeurs de N. Sur chacune de ces figures, le parametre a obtenu
de la simulation split-step est en trait plein noir. Les courbes avec les cercles pleins

représentent la phase logarithmique, celle avec les carreaux la phase quadratique et
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le trait sans marqueur représente la phase quadratique avec un terme non-linéaire.
Pour les systemes a 'ordre 4, les courbes en trait plein indiquent que les cinq mo-
ments d’ordre 4 sont inclus dans I'intégration et seuls les moments d’ordre supérieur
sont approximés. Les courbes en tirets indiquent que le moment (2*) est approximé
et qu’il n’y a que quatre équations d’ordre 4. Les courbes tiret-point et pointillées
représentent les cas ou le moment (TQ3), et (T*Q?), sont respectivement remplacés
par la représentation de Pearson. Dans le systeme a 1’ordre 2 non-linéaire, les courbes
en trait plein indiquent que seuls les moments d’ordre supérieur sont approximés. Les
courbes avec les tirets indique le cas ou le moment (P$?); est approximé par la dis-
tribution de Pearson et son équation différentielle est retirée du systeme. Les courbes
pointillées indiquent que les moments (PQ?), et (PQ?); sont remplacées par la distri-
bution de Pearson et leurs équations respectives sont retirées du systeme. Regardons

maintenant en détails les résultats présentés sur chacune de ces figures.

6.4.1 Dispersion normale

Dans le régime de dispersion normale, le parametre a diminue au début de la
propagation, indiquant que l'impulsion se rapproche d'une forme parabolique (et
éventuellement carrée, selon la puissance) jusqu’a atteindre un minimum correspon-
dant au point de rupture du font d’onde. L’impulsion reprend alors une forme de
cloche avec la dispersion des lobes générés par la rupture du front. La forme de I'im-
pulsion se stabilise ensuite de maniere asymptotique vers une impulsion parabolique.

Considérons dans un premier temps l'intégration des systemes a ’ordre 4.

Systeme a ’ordre 4

Dans le systeme a 'ordre 4, le systeme d’égs. (6.1) est intégré et le parametre a est
utilisé pour comparer les différents cas avec les simulations numériques. Le parametre
a dans ce cas est obtenu a partir du parametre de forme 7. Les trois différentes phases
présentées précédemment, la phase logarithmique, quadratique et non-linéaire, sont
étudiées lors de l'intégration.

La phase logarithmique est représentée par les cercles sur les figures du haut 6.15—
6.17 pour différents valeurs de N. L’intégration des éq. (6.1) donne en général un
résultat proche des simulations, ce qui signifie que les moments (PT),, (PT?Q?),,

(PTQ3);, (PQ?), et (PQY*); sont bien représentés. Quelques points sont remarquables.
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FIGURE 6.15 Parametre a obtenu de l'intégration des systemes a l'ordre 4 (haut) et
a lordre 2 non-linéaire (bas) pour N = 1 dans le régime de dispersion normale. Les
courbes rouges avec cercles représentent la phase logarithmique, les courbes bleues
avec carreaux la phase quadratique et les courbes grises foncées la phase quadratique
et non-linéaire. Les traits indiquent les termes inclus dans les systemes (voir texte). La
courbe noire pleine représente le parametre a obtenu par la propagation numérique.
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FIGURE 6.16 Parametre a obtenu de l'intégration des systemes a l'ordre 4 (haut) et
a lordre 2 non-linéaire (bas) pour N = 2 dans le régime de dispersion normale. Les
courbes rouges avec cercles représentent la phase logarithmique, les courbes bleues
avec carreaux la phase quadratique et les courbes grises foncées la phase quadratique
et non-linéaire. Les traits indiquent les termes inclus dans les systemes (voir texte). La
courbe noire pleine représente le parametre a obtenu par la propagation numérique.
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FIGURE 6.17 Parametre a obtenu de l'intégration des systemes a l'ordre 4 (haut) et
a lordre 2 non-linéaire (bas) pour N = 3 dans le régime de dispersion normal. Les
courbes rouges avec cercles représentent la phase logarithmique, les courbes bleues
avec carreaux la phase quadratique et les courbes grises foncées la phase quadratique
et non-linéaire. Les traits indiquent les termes inclus dans les systemes (voir texte). La
courbe noire pleine représente le parametre a obtenu par la propagation numérique.
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Premierement, la précision est plus grande pour de courtes distances de propagation.
Les erreurs d’approximation s’accumulent lors de 'intégration. Ainsi, la distance a
laquelle les moments intégrés different substantiellement des simulations est un indi-
cateur de la qualité des approximations. Deuxiemement, la phase logarithmique est
une meilleure approximation lorsque le parametre N est faible puisque la phase est
d’autant plus quadratique que la non-linéarité est faible. Finalement, la précision aug-
mente avec le nombre de moments considérés lors de 'intégration. Ce dernier point
est important car il signifie que la méthode classique des moments, ou le nombre de
moments considérés est égal au nombre de parametres de la représentation, est plus
approximative comparé au cas ou plus de moments sont inclus dans la représentation.
Autrement dit, le champ est représenté plus exactement avec un grand nombre de
moments au lieu de ne le représenter qu’avec les parametres de Pearson.

La phase quadratique, représentée par les carrés, montre des conclusions légere-
ment différentes. A courte distance, l'intégration est d’autant plus précise que le
nombre de moments est grand. Toutefois, a longue distance l'intégration diverge
lorsque tous les moments sont inclus ou lorsque (Q2*) est retiré (ou lorsque N > 1,
(T3), est retiré ). La divergence se produit parce que la phase quadratique est trop
simple pour représenter adéquatement les moments d’ordre supérieur. En retirant des
moments de 'intégration, le nombre de moments a approximer diminue et le systeme
ne diverge plus. Parmi les cas ne divergeant pas lorsque N = 1, l'intégration ou
(T3), et (Q*) sont retirés, est plus précise que U'intégration ot le moment (T2Q?),.
est également retiré. Cependant, dans ce dernier cas l'intégration se rapproche de la
simulation pour de longues distances. La raison est que dans le régime de dispersion
normale, la phase tend de maniere asymptotique vers une parabole.

La phase quadratique avec contribution non-linéaire est représentée avec des lignes
sans marqueurs sur les figures 6.15-6.17. Tous les différents cas divergent pour de
longues distances sauf celui ot les moments (TQ3), et (Q2*) sont retirés. Toutefois
dans ce cas, I'intégration donne le résultat le plus précis de toutes les représentations
pour toutes les différentes valeurs de N. Il est remarquable que dans le cas de la
phase quadratique, avec ou sans la contribution non-linéaire, l'intégration diverge
lorsque le systéme d’égs. (6.1) contient des moments contenant les opérateurs * ou
0*. Ces opérateurs font intervenir des dérivées d’ordre élevé du champ, et donc de la
phase. Bien que la phase soit représentée suffisamment précisément pour représenter

les dérivées de bas ordre, elle ne I'est pas suffisamment pour éviter que le systeme ne
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diverge en présence des dérivées d’ordre élevé.

Systeme a 'ordre 2 non-linéaire

La partie du bas des figures 6.15-6.17 montre I'intégration du systeme d’équations
(6.2) décrivant 1'évolution des moments d’ordre 2 non-linéaires dans le régime de
dispersion normal. Dans ce cas, le parametre a est obtenu a partir du parametre de
forme xkpr. Notons que les parametres a des simulations numériques provenant des
systemes a 'ordre 4 et 2 non-linéaire sont légerement différents. La différence vient
du fait que le champ calculé numériquement n’est pas exactement représenté par la
distribution de Pearson. Ainsi, le parametre a differe selon les moments utilisés pour
I’obtenir. L’allure générale des deux courbes est toutefois la méme, ce qui montre que
la distribution est une bonne approximation.

De maniere générale, ’accord entre les différentes intégrations, pour les différentes
phases est moins bon que dans le cas a 'ordre 4, ce qui est surprenant compte tenu
que le facteur de forme kpp représente mieux le parametre a dans les différents mo-
ments comme nous ’avons vu a la section précédente. La raison principale est que les
équations du systeme a l'ordre 2 non-linéaire contiennent plusieurs moments conte-
nant le produit de dérivées du champ (directement ou par le biais de I'opérateur (2).
En intégrant par partie, ces produits de dérivées peuvent étre ramenés a des sommes
de moments contenant les opérateurs €® ou Q*. Et a l'instar du systeme a 1'ordre 4,
ces moments ne sont pas suffisamment bien représentés pour éviter que l'intégration
ne diverge. On remarque toutefois que plus le nombre de moments est élevé, plus
I'intégration est précise sur de courtes distances.

Lorsque les moments dont les équations d’évolution contiennent des moments
définis par des dérivées d’ordre 3 ou supérieur (ou I’équivalent en produit de dérivées
d’ordre 1 ou 2) sont retirés du systeme, I'intégration converge pour les trois représenta-
tions de la phase et pour les différentes valeurs de IN. Dans ce cas, les trois représenta-
tions de la phase se comportent différemment. L’intégration de la phase logarithmique
suit la forme générale de la simulation numérique ; 'erreur est toutefois relativement
grande. L’erreur est d’ailleurs d’autant plus grande que N est élevé. L’'intégration de
la phase quadratique s’approche plus de la simulation numérique que la phase loga-
rithmique au début de la propagation. Toutefois, sa forme générale ne suit pas celle
de la simulation numérique car il n’y a pas d’inflexion autour de z/Lp = 0,4. Cet en-

droit est le point ou le front de I'impulsion se brise. Finalement, c’est encore une fois
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la phase quadratique avec contribution non-linéaire qui représente le mieux la phase
du champ. Pour les trois valeurs de N, I'intégration suit la simulation numérique avec
précision pour de courtes et longues distances. L’accord est cependant d’autant moins
juste apres le point de rupture du front d’onde que N est élevé. A cet endroit, I'im-
pulsion possede des lobes (qui disparaitront) et est donc moins bien représentée par
la distribution de Pearson. Ces lobes sont d’autant plus important que la puissance,
et donc N, est grande.

En résumé, dans le régime de dispersion normale, nous retenons que la phase
quadratique avec contribution non-linéaire est la représentation la plus précise du
champ parmi les phases considérées, que ce soit avec le systeme a l'ordre 4 ou a
lordre 2 non-linéaire. Il faut toutefois ne prendre en compte que les moments dont
les équations d’évolution ne contiennent pas de moments définis par des dérivées
d’ordre 3 ou 4 ou I’équivalent. Notons également que la phase logarithmique donne
des résultats raisonnables pour le systeme a l'ordre 4 lorsque tous les moments des
égs. (6.1) sont considérés. Les systemes a l'ordre 4 a 'ordre 2 non-linéaire donnent

des résultats de précision semblable dans ce régime de dispersion.

6.4.2 Dispersion anormale

Dans le régime de dispersion anormale, I'impulsion gaussienne se déforme pour
tendre vers une impulsion solitonique de forme sécante hyperbolique. Lorsque N = 1,
la simulation numérique en trait noir montre que I’évolution se fait asymptotiquement.
Toutefois a puissance plus élevé, N = 2 ou 3, I’évolution se fait de maniere oscillante.
La différence entre les simulations numériques est plus marquée que dans le cas ou
la dispersion est normale. La raison est que dans le régime de dispersion anormale
le front d’onde se brise tres tot lors de la propagation pour former un piédestal. Ce
piédestal (et éventuellement des lobes) est tres important dans le régime de dispersion
anormale, et il ne peut étre représenté adéquatement par la distribution de Pearson.
Toutefois, puisque les moments sont des quantités moyennes, la distribution de Pear-
son peut étre utilisée malgré tout. La conséquence est que le parametre a dépend des
moments utilisées pour le calculer, soit kK pour le systeme a 'ordre 4, soit kpr pour
le systeme a l'ordre 2 non-linéaire. Considérons chacun de ces systemes séparément
pour déterminer laquelle des trois représentation de la phase est la plus adéquate dans

ce régime de dispersion.
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FIGURE 6.18 Parametre a obtenu de l'intégration des systemes a l'ordre 4 (haut) et
a lordre 2 non-linéaire (bas) pour N = 1 dans le régime de dispersion anormale. Les
courbes rouges avec cercles représentent la phase logarithmiques, les courbes bleues
avec carreaux la phase quadratique et les courbes grises foncées la phase quadratique
et non-linéaire. Les traits indiquent les termes inclus dans les systemes (voir texte). La
courbe noire pleine représente le parametre a obtenu par la propagation numérique.
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FIGURE 6.19 Parametre a obtenu de l'intégration des systemes a l'ordre 4 (haut) et
a lordre 2 non-linéaire (bas) pour N = 2 dans le régime de dispersion anormale. Les
courbes rouges avec cercles représentent la phase logarithmique, les courbes bleues
avec carreaux la phase quadratique et les courbes grises foncées la phase quadratique
et non-linéaire. Les traits indiquent les termes inclus dans les systemes (voir texte). La
courbe noire pleine représente le parametre a obtenu par la propagation numérique.
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FIGURE 6.20 Parametre a obtenu de l'intégration des systemes a l'ordre 4 (haut) et
a l'ordre 2 non-linéaire (bas) pour N = 3 dans le régime de dispersion anormale. Les
courbes rouges avec cercles représentent la phase logarithmique, les courbes bleues
avec carreaux la phase quadratique et les courbes grises foncées la phase quadratique
et non-linéaire. Les traits indiquent les termes inclus dans les systemes (voir texte). La
courbe noire pleine représente le parametre a obtenu par la propagation numérique.
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Systeme a ’ordre 4

Les parametres a obtenus par l'intégration du systeme d’égs. (6.1) a l'ordre 4
dans le régime de dispersion anormale sont présentés dans la partie supérieure des
figures 6.18-6.20. Les différentes courbes suivent la méme convention qu’a la section
précédente. La précision des différentes représentations dépend beaucoup de la valeur
de N dans ce régime de dispersion. Dans le régime de dispersion anormale, I'impulsion
subit des changements de forme d’autant plus important que la valeur de N est élevée.
Nous analysons donc les différents modeles pour les trois valeurs de N.

Lorsque N = 1, l'intégration diverge pour les phases quadratiques et logarith-
miques lorsque tous les moments sont présents ou lorsque 1'éq. (6.1e) est retirée. En
retirant en plus I'éq. (6.1d), U'intégration ne diverge plus. Dans ce cas, 'erreur est
maximale autour de z/Lp ~ 0,6 et diminue avec la distance de propagation. Lorsque
’éq. (6.1c) est également retirée, I'erreur augmente avec la distance de propagation.
Pour ce qui est de la phase quadratique et non-linéaire, l'intégration diverge seule-
ment lorsque 1'éq. (6.1e) est retirée; autrement l'intégration converge. L’erreur est
minimale lorsque 1'éq. (6.1d) est également retirée. Nous voyons ici encore une fois
que la précision augmente avec le nombre de moments considérés tant que ces derniers
n’induisent pas des erreurs d’approximation importantes.

Dans le cas ou N = 2, I'intégration est en générale plus instable que pour le cas
N = 1. La phase quadratique n’est adéquate que sur de courtes distances de propa-
gation (z/Lp ~ 0.6). La phase logarithmique donne un résultat optimal lorsque les
égs. (6.1d)—(6.1e) sont retirées; en simplifiant davantage, la précision diminue. Il en
va de méme pour la phase quadratique avec une contribution non-linéaire. Notons
que dans certains cas, 'intégration diverge abruptement. Ce comportement se pro-
duit quand le parametre a prend une valeur telle que le dénominateur d’un terme
définissant un des moments approximés s’annule.

L’intégration redevient plus stable lorsque N = 3 que lorsque N = 2. La phase
quadratique ne donne toutefois pas de meilleurs résultats que dans le cas précédent.
La phase logarithmique diverge quand tous les moments sont considérés ou quand
les égs. (6.1d) et (6.1e) sont enlevées. Dans les deux autres cas, 'intégration sur-
ou sous-estime la simulation numérique, en réduisant ou exagérant les oscillations
du parametre a lors de la propagation. La phase quadratique avec contribution non-
linéaire se rapproche des simulations numériques lorsque les égs. (6.1d) et (6.1e) sont

retirées du systeme. Lorsque I'éq. (6.1c) est également enlevée, la précision est encore
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plus grande, mais il y a une discontinuité autour de z/Lp =~ 0.6.

Pour les trois valeurs de N étudiées, des points communs ressortent. Premierement,
tous les modeles sont précis sur de courtes distances de propagation, avant que les
erreurs d’approximation ne fassent diverger l'intégration. Deuxiemement, le modele
quadratique n’est pas adéquat pour décrire la déformation de I'impulsion lors de la
propagation. La phase de I'impulsion dans le régime de dispersion anormale n’est pas
monotone, d’autant plus que la non-linéarité est forte. La phase quadratique n’est
donc pas adéquate pour décrire la propagation d’autant plus que N est grand. Ainsi
s’explique que la phase quadratique donne une plus grande précision lorsque N = 1
que lorsque N = 2 ou 3. Troisiemement, la phase logarithmique est une représentation
plus efficace en dispersion anormale qu’en régime de dispersion normale. La phase lo-
garithmique est une solution stationnaire dans le régime de dispersion anormale de
I’équation de Ginzburg-Laudau qui est un cas plus général de 'ESNL car elle contient
des termes dissipatifs, comme nous le verrons au prochain chapitre. Il est donc raison-
nable qu’elle puisse étre une bonne approximation pour représenter les solutions tran-
sitoires de I’'ESNL. Quatriemement, la phase quadratique et non-linéaire se montre
de nouveau comme étant la représentation la plus efficace pour approximer la phase
du champ. Finalement, dans la plupart des cas, le systeme d’équations est optimal
quand les moments (%) et (T'Q3), sont remplacés par des moments faisant partie
du systeme. Dans le régime de dispersion normale, le systeme optimal approximait
également le moment (7%Q?),. La différence s’explique par le fait que les moments
mixtes sont de plus faible amplitude dans le régime de dispersion anormale puisque
la dispersion et la non-linéarité s’annulent partiellement. Il s’ensuit que les moments
mixtes d’ordre supérieur ayant des dérivées d’ordre 3 ou 4 deviennent négligeables

face aux autres moments de I’équation différentielle.

Systeme a ’ordre 2 non-linéaire

L’intégration du systeme d’éqs. (6.2) est représentée a travers le parametre a dans
le régime de dispersion anormale dans la partie inférieure des figures 6.18-6.20. Pour
le systeme a 1’ordre 2 non-linéaire, I'intégration change également grandement selon la
valeur de N. Dans I’ensemble, le systeme a I'ordre 2 non-linéaire est beaucoup moins
précis pour prédire I’évolution de la forme de 'impulsion que le systeme a ’ordre 4
dans le régime de dispersion anormale.

Dans le cas ou N = 1, la plupart des intégrations oscillent autour de la simulation
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numérique ou divergent. Pour la phase quadratique, seul le cas ou les égs. (6.2¢)—
(6.2d) sont retirées donne un résultat se rapprochant de la simulation numérique. Les
autres cas divergent apres une tres courte distance de propagation. L’intégration de
la phase logarithmique ne diverge pour aucune des simplifications. Quand toutes les
équations sont incluses, le parametre a oscille fortement. Dans les deux autres cas, ou
les égs. (6.2d) et/ou (6.2¢) sont enlevées, les parametres a obtenus oscillent autour de
la simulation numérique. La phase quadratique avec contribution non-linéaire diverge
quand tous les moments sont considérés et oscillent autrement. Le cas ou les deux
éqgs. (6.2¢)—(6.2d) sont retirées est plus précis seulement quand 1'éq. (6.2d) I'est. Dans
ces deux cas, le résultat est moins précis qu’avec la phase logarithmique.

Lorsque N = 2, toutes les intégrations divergent ou oscillent avec de grandes am-
plitudes. Tous les cas ou tous les moments sont inclus divergent. Tous les cas ou les
deux équations sont retirées oscillent. Seul le cas de la phase quadratique avec contri-
bution non-linéaire oscille lorsque 1'éq. (6.2d) est enlevée; les autres représentations
de la phase divergent. Notons que les diverses intégrations s’éloignent tres rapidement
de la simulation numérique.

Toutes les représentations de la phase donnent des intégrations qui divergent au-
tour de z/Lp = 0,3 lorsque N = 3, sauf pour la phase quadratique et uniquement dans
le cas ol les égs. (6.2¢)—(6.2d) sont retirées du systeme d’équations. Les différentes
intégrations donnent des parametres a qui s’éloignent aussi tres rapidement de la
simulation numérique lors de la propagation.

Ces observations sont surprenantes. Nous avons vu a la section précédente que la
modélisation utilisant kpp était plus précise que celle utilisant . Alors pourquoi le
systeme d’équations a l’ordre 2 non-linéaire est moins efficace que celui a ’ordre 4 7 La
réponse est que dans le régime de dispersion anormale, I'impulsion change beaucoup
de forme; il y a formation de lobes et de piédestal causés par la rupture du front
d’onde. Il s’ensuit que 'approximation de Pearson de I’enveloppe du champ devient
moins précise. Une conséquence indirecte est que l'erreur sur I'opérateur P augmente,
puisque que ce dernier, contrairement aux autres opérateurs, dépend directement
de la forme de I'impulsion. Dans le systeme a l'ordre 4, I'opérateur P intervient
dans certains des moments présents définissant les dérivées du systeme. A Tordre 2,
I'opérateur est présent dans tous les moments; autant ceux du systemes que ceux
définissant leurs dérivées. Il en résulte que l'erreur d’approximation prend beaucoup

plus d’importance et 'intégration diverge rapidement lors de la propagation. L’erreur
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est par ailleurs d’autant plus importante que N est élevé, puisque le changement de
forme de I'impulsion est plus important quand la non-linéarité est forte par rapport
a la dispersion.

En résumé, dans le régime de dispersion anormale, il existe une différence notable
entre les systemes a l'ordre 4 et a l'ordre 2 non-linéaire. Le systeme a 'ordre 4 donne
des résultats précis pour la phase logarithmique et pour la phase quadratique avec une
contribution non-linéaire. Toutefois le systeme a 'ordre 2 ne donnent des résultats
qualitativement précis que dans le cas ou N = 1 ou sur de tres courtes distances de

propagation pour toutes les représentations de la phase considérée.

6.5 Approximation de ’ESNL

Dans cette section, a I'instar de ce que nous avons fait au chapitre 4, nous utilisons
les approximations présentées précédemment pour analyser ESNL. Contrairement
ce que nous avons fait au chapitre 4, nous analysons ici la forme de 'impulsion. Apres
avoir analysé les différentes modeles possibles pour approximer les moments, nous ne
considérons ici que la représentation de la forme par le facteur de forme xpr ainsi que
la phase non-linéaire puisqu’ils donnent les résultats les plus précis. Nous regardons
aussi la phase logarithmique a des fins de comparaison. L’analyse prédécente nous
montre également qu’il est difficile de résoudre les équations de propagation des mo-
ments d’ordre élevé puisqu’il faut approximer bon nombre de moments. Dans cette
section, nous n’utilisons que le moment (P7?) comme moment d’ordre supérieur afin

de définir kprp.

6.5.1 Phase quadratique avec contribution non-linéaire

Ecrivons I’équation d’évolution du facteur de forme kpr en utilisant la phase
non-linéaire définie par 1'éq. (6.20). En utilisant le moment (7) pour remplacer le

parametre b, nous obtenons

depr L (PTO%  (PORAPT?)  (PT(TQ),
= Py T ey T P ey
=[Ba2kpr () [4 9= a3 kp—1 (6.48)

(T?) |3(2—3a)(3+a)



133

ol a est le parametre de Pearson et kp le facteur de forme donné par 'éq. (6.15).
Encore une fois, nous utilisons une représentation hybride entre les moments et les
parametres a des fins de clarté. Si nous nous attardons aux points fixes de 1'éq. (6.48),
c’est-a-dire les conditions ou la dérivée est nulle et donc que xkpr ne change pas,
nous trouvons différentes conditions. Remarquons tout d’abord que 1'éq. (6.48) est
tres similaire a 1’éq. (6.21) décrivant I’évolution de kp et que les deux ont plusieurs
points fixes en commun. Nous voyons tout d’abord que 1’éq. (6.48) ne dépend pas
du parametre de phase quadratique h. Ceci n’est gueére surprenant car, comme nous
I’avons vu au chapitre 4, une des conséquences de supposer la phase quadratique est
que la forme de I'impulsion est invariante. Ainsi seul le parametre de phase f change
la forme de 'impulsion ; il s’ensuit que la forme de I'impulsion est invariante lorsque
f = 0. Nous voyons également que la dérivée est nulle dans le cas purement non-
linéaire, lorsque (B = 0, ce qui est conséquent avec la solution analytique. Lorsque
le moment (P) est nul, la puissance est infiniment faible, ce qui revient a étre dans
un cas purement dispersif qui, a cause de 'approximation de la phase quadratique,
donne une forme invariante. De maniere similaire, une impulsion infiniment large est
invariante car nous retrouvons dans le cas d’une émission continue. Le terme dans les
crochets du membre de droite de 1'éq. (6.48) s’annule lorsque a = {—1;1,8}. Lorsque
a = —1, 'impulsion est parabolique qui est obtenue asymptotiquement lors le cas
d’une propagation tres non-linéaire. La valeur a = 1,8 provient de la divergence de
la définition des moments. Le facteur kpp est essentiellement positif.

Bien qu’il apparait que I’évolution de I'impulsion soit proportionnelle au parametre
de phase f, il serait intéressant de comprendre sous quelles conditions ce parametre
devient nul. En se limitant seulement au moments d’ordre 2, il est possible de réécrire

ce parametre en termes des moments (P), (T?), (Q?) et (TQ),.

e (152) )

s e (522) [ (152)

(6.50)

En regardant cette définition de f, il n’est pas évident de voir dans quelles conditions

nous avons f = 0. Il est toutefois clair que la seule possibilité pour avoir f = 0 est
que le terme (TQ), = VA = 0 et donc A = (TQ)? ou A = (TQ)? = 0 puisque le
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terme en Kp ne peut étre nul de maniere physiquement significative. Regardons s’il

est possible d’obtenir ces conditions en écrivant explicitement la premiere condition.

1 2—a
) T = ot (1) (6:51)
Cette condition n’est rien d’autre que la définition de I'invariant I; lorsque la phase
est quadratique selon 1'éq. (6.18). Cette condition est vérifiée dans deux cas; lorsque
la propagation est dispersive et donc f = 0 et lorsque I'impulsion n’est pas chirpée,
c’est-a-dire (TQ), = 0. Evidemment, I'invariance dans le cas dispersif ne s’applique
que pour I'impulsion gaussienne; c’est une approximation pour les autres formes
d’impulsions. La phase constante représentée par (TQ2), = 0 est le cas de 'impulsion
solitonique pour laquelle la propagation est invariante. Voyons si nous pouvons re-
trouver la forme de I'impulsion en sécante hyperbolique dans ce cas. Du fait que le
moment (7)), = 0, nous obtenons 1'équation suivante.

(TQ), = —ﬁ + £<P> =0 = h = £(2 — 3a)(P) (6.52)
En posant que la forme de I'impulsion et que 1’énergie demeurent constantes lors de
la propagation, il s’ensuit que (P) est également constant et donc que sa dérivée
est nulle. Puisque le seul moment présent dans la dérivée de (P) est (PQ?);, nous
en déduisons que ce dernier est nul, ce qui nous donne une autre relation entre les

parametres de la phase.

(PO2); = —%(P) + %(P% (6 - “) 0 = h=tup (6 - a) (P) (6.53)

3+a 3 3+a

En égalant les éqs. (6.52) et (6.53), nous obtenons une expression ne dépendant que du
parametre a et qui définit donc la forme de 'impulsion. En résolvant cette équation,
nous trouvons deux valeurs a = {—1,0595; —0,9405} qui sont bien approximées par
a ~ —1. La forme d’impulsion obtenue est parabolique alors que nous nous attendions
a obtenir une sécante hyperbolique. Comment expliquer cette différence ? La réponse
se cache dans la nature de I'invariance de 'impulsion solitonique. Le soliton demeure
invariant lors de sa propagation car la dispersion et la non-linéarité se contrecarrent.
Autrement dit, la phase issue de la non-linéarité annule celle provenant de la disper-

sion. Hors, dans notre modele, la dispersion est modélisée par une phase quadratique ;
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il s’ensuit que 'impulsion doit étre parabolique pour que la phase non-linéaire, ayant
la forme de I'impulsion, puisse ’annuler. Nous en déduisons donc qu'une modélisation

plus précise devrait s’attarder a mieux modéliser la phase dispersive.

6.5.2 Phase logarithmique

A des fins de comparaisons, regardons les points fixes de I’évolution de la forme
de I'impulsion en utilisant la phase logarithmique.
dkpr 10Bakpr (T,

dz  (2-3a)(2+a) (T?) (6:54)

La phase logarithmique permet de représenter I’évolution de la forme de I'impul-
sion dans certains cas. L’invariance de 'impulsion lorsque la phase est constante ou
lorsque la dispersion est absente est bien représentée. Nous voyons aussi que la forme
de I'impulsion cesse de changer lorsque la largeur de I'impulsion devient arbitraire-
ment grande. Toutefois certaines différences sont remarquables. Premierement, nous
ne voyons plus apparaitre le cas dispersif lorsque la puissance est tres faible. Ceci
vient du fait qu’il n’y a qu'un seul parametre de phase pour représenter la dispersion
et la non-linéarité. Du méme coup, de poser que (T'Q2), = 0 ne nous permet plus de
déterminer la forme de I'impulsion solitonique. Deuxiemement, la phase logarithmique
ne nous permet pas d’obtenir la forme asymptotique parabolique de 'impulsion. Fi-
nalement, notons que I’évolution de la forme de 'impulsion devient invariante lorsque
a = 0. Hors, ceci n’a de sens que pour une propagation purement dispersive. Ceci
suggere que la phase logarithmique pourrait étre un candidat intéressant a envisager

dans le futur pour mieux modéliser la phase dispersive.

6.5.3 Rupture du front d’onde

Le rupture du front d’onde est un phénomene important lors de la propagation
car il détermine le point a partir duquel 'impulsion n’a plus une forme de «clochey.
Elle est d’autant plus importante dans les lasers puisque seules les impulsions ne se
brisant pas peuvent exister dans un régime stable d’opération car I'impulsion doit
étre stationnaire d’un tour a l'autre dans la cavité. La rupture du front d’onde se
produit lors que la dérivée de la phase, le chirp, n’est plus une fonction monotone

(Anderson et al., 1992), autrement dit, lorsque la dérivée seconde de la phase a plus
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d’un zéro. Ainsi, si nous pouvons trouver plus d’une racine a la dérivée seconde de
la phase, nous savons que 'impulsion est sur le point de se briser. Ecrivons comment
cette condition se manifeste dans le cas de la phase quadratique avec contribution

non-linéaire et dans le cas de la phase logarithmique.

Phase quadratique avec contribution non-linéaire

La condition de rupture du front d’onde s’écrit de la maniere suivante,

0% a, o
5 = 2h+ 2P, <1+5T

)i (2+a)T?—b] _ 0 (6.55)

(aT? + b)?

en n’oubliant pas que si le parametre a est négatif, la fonction n’est définie que dans
I'intervalle T =] —+/a/b, \/a/b[. En remaniant, elle peut étre exprimée sous une forme

transcendante plus simple.

fP ot
n et T—\/l_) (6.56)

Si I’éq. (6.56) est vérifiée pour une valeur réelle et positive de 7, alors 'impulsion

(1 + CL7’2)2+é = th [1 — (2 + a)TQ} Ofl th =

est en train de se rompre. S’il n’existe pas de telle valeur, 'impulsion est stable. Par
exemple, si nous sommes dans un régime ou f = 0 (par exemple, purement dispersif),

Ky = 0 et donc I'équation se réduit a

Q=

(1+ar?)*te =0. (6.57)
Dans un tel cas, aucune valeur de a sur l'intervalle ou la fonction est définie ne peut
satisfaire cette équation et I'impulsion ne peut se briser, peu importe la valeur de a.
Notons que lorsque cette situation représente un cas purement dispersif, nous voyons
une autre limite de ’approximation de la phase quadratique car certaines formes
d’impulsions peuvent se briser dans lors d’une propagation purement dispersive.

La condition décrite par 1'éq. (6.56) est particuliere a la modélisation et non a
la propagation. Si & un moment donné lors de l'utilisation de cette modélisation, la
condition 6.56 est satisfaite, nous savons que I'impulsion est sur le point de se briser.
Ainsi, si nous voulons savoir la distance a laquelle I'impulsion se brise lorsqu’elle se
propage dans un milieu dispersif et non-linéaire, il faut résoudre la propagation et

vérifier quand la condition 6.56 devient satisfaite. Une autre facon de procéder est de
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linéariser 'ESNL, ce qui permet de découpler le temps et la distance de propagation
et de ce fait déterminer la distance de rupture du front d’onde (Anderson et al., 1992).
En supposant que I'impulsion n’est pas initialement chirpée, le point de rupture est

défini selon cette méthode par

1 [0%,] "
w==7 {a:rﬂ (6.58)
B O°
b1 :Tjﬂﬁ Al = A (6.59)

ou ¢, est la phase obtenue par la linéarisation de 'ESNL. Il est apparent a partir
de I'éq. (6.58) que la distance de rupture est négative tant que la dérivée seconde
demeure positive. Si cette derniere vient a étre nulle, la distance de rupture devient
infinie ; 'impulsion commence a se briser. Lorsque ¢, devient tres négatif, I'impulsion
se brise rapidement. En utilisant la distribution de Pearson comme forme initiale, la

condition pour voir apparaitre la rupture, soit ¢; = 0 s’écrit alors

vYP.b

B2
(6.60)

ar’5+6(1+a)(1 —ar?)] = —K [1 — 2+ a)7?] (1 +ar?)* ¢ on K =2

ou 7 prend la méme valeur que précédemment. Il existe une grande similitude entre
I'éq. (6.60) et 1'éq. (6.56) montrant ainsi que notre modélisation s’apparente a une
linéarisation de ’'ESNL. Toutefois, nous voyons quelques différences. Par exemple,

lorsque K = 0, la condition purement dispersive s’écrit
al5+6(1+a)(1—ar?)] =0 (6.61)

Cette condition est toujours satisfaite, peu importe la valeur de 7 lorsque 'impulsion
est gaussienne, c’est-a-dire lorsque a = 0, comme attendu. Nous voyons aussi que
I'impulsion ne se brise pas lorsque a €]—1, 0] et lorsque a < —11/6. Il serait intéressant
d’étudier plus a fond ces cas afin de savoir s’ils représentent bien des impulsions ne se
brisant pas lorsqu’elles se dispersent ou si ces cas sont des artefacts provenant de la
modélisation. La difficulté a répondre a cette question vient du fait que la largeur de
bande de ces impulsions est infiniment large puisqu’elles sont tronquées dans le temps

et donc difficile & analyser numériquement. Notons toutefois que la condition (6.61)
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montre bien que les impulsions ayant a > 0, dont le soliton, se brisent lorsqu’elles se

dispersent.

Phase logarithmique

En utilisant la modélisation logarithmique de la phase, la condition de rupture du

front d’onde devient

*¢  dacT?
orz  (aT? +0b)2

0 = 4acT? = 0. (6.62)

Il s’ensuit que l'impulsion dans ce cas ne se brise jamais car la seule racine du
systeme est T' = 0. La phase logarithmique n’est donc pas suffisamment précise pour
représenter la propagation linéaire et non-linéaire puisque les impulsions se dispersant
peuvent également se briser (Anderson et al., 1992). Toutefois, elle est utilisée avec

succes pour calculer les impulsions en régime stationnaire des lasers.

6.6 Conclusion

Dans ce chapitre, nous avons étudié I'utilisation des moments pour décrire I’évolution
de la forme de I'impulsion. La forme de I'impulsion est décrite en comparant des mo-
ments entre eux; il faut donc avoir recours a des moments d’ordre supérieur. Deux
options ont été considérées. La premiere consiste a prendre des opérateurs de temps
et de fréquences d’ordre plus élevé, ce qui donne les moments d’ordre 4 (puisque les
impulsions sont supposées symétriques et que 'ESNL est symétrique, les moments
d’ordre 3 sont nuls). L’autre option est de comparer avec des moments non-linéaires
a l'ordre 2, c’est-a-dire utilisant 'opérateur P. Dans chacun de ces cas, un systeme
d’équations différentielles est établi pour décrire I’évolution de tous ces moments lors
de la propagation.

A Tl'instar du systeme a l'ordre 2, les systemes d’équations différentielles d’ordre 4
et d’ordre 2 non-linéaires sont ouverts, c¢’est-a-dire qu’ils contiennent des moments qui
ne font pas partie du systeme. De plus, il y a maintenant plusieurs moments externes
qui ne peuvent étre représentés par des moments internes que par une approximation
sur la phase. Nous avons étudié trois formes de la phase du champ : une phase qua-
dratique, une phase logarithmique et une phase quadratique avec une contribution

non-linéaire. La phase quadratique est la méme que celle utilisée pour résoudre le
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systeme a ’ordre 2. La phase logarithmique est couramment utilisée dans les propa-
gations solitoniques. L’ajout d’une contribution non-linéaire a la phase quadratique,
proportionnelle a la puissance du champ, permet de mieux refléter la physique de
PESNL. Au moyen de ces représentations, il est possible d’exprimer tous les mo-
ments du systeme, internes ou externes, en fonction des parametres du modele. Les
parametres du modele peuvent par la suite étre exprimés en fonction des moments
internes du systeme pour le fermer. Différentes combinaisons de moments internes
ont été choisies sur la base de leur simplicité et ont été étudiées. La validation de ces
modeles s’est faite en les comparant avec des champs simulés numériquement.

Il ressort de cette comparaison que le paramétre a est représenté plus précisément
par le facteur de forme kpr que par le facteur de forme kr. Pour ce qui est des pa-
rametres de phase, les moments (T'Q2), et (PTS2), donnent une plus grande précision
que le moment (T3)),. Laraison est que les moments non-linéaires utilisent I’opérateur
P qui pondeére le centre de I'impulsion, ce que ne font pas les opérateurs linéaires.
Cela suggere que le systeme a 'ordre 2 non-linéaire est plus précis que le systeme a
I'ordre 4 pour décrire 1’évolution de la forme de I'impulsion. Pour vérifier que tel est
le cas, les deux systemes, une fois fermés en utilisant les diverses représentations, ont
été intégrés numériquement dans les deux régimes de dispersion. Il s’avere que dans
le régime de dispersion normale, les deux systemes sont d’égale précision. Toutefois,
dans le régime de dispersion anormale, le systeme a 'ordre 4 est plus précis car le
systeme a l'ordre 2 diverge, surtout lorsque N > 1. Ce résultat semble contradictoire
par rapport a la comparaison précédente. La clé est qu'une chaine n’est pas plus forte
que le plus faible de ses maillons. Ainsi, il suffit qu'un des moments du systeme soit
mal représenté pour que l'intégration de tous les moments du systeme divergent. Le
systeme a l'ordre 4 comporte moins de moments externes que le systeme a 'ordre
2. De plus, ces moments externes sont beaucoup moins non-linéaires. Il en résulte
que le systeme a ’ordre 2 non-linéaire est plus instable aux erreurs d’approximations
dans le régime de dispersion anormale ou la forme de I'impulsion change de maniere
significative lors de la propagation.

En général, le nombre d’équations a considérer dans le systeme dépend de la
précision de la représentation. Lorsque les moments externes sont en moyenne bien
représentés en fonction des moments internes, 1’évolution du parametre de forme
a est la mieux décrite lorsque toutes les équations différentielles du systéeme sont

considérées. Toutefois, pour éviter que le systeme ne diverge, il faut retirer les équations
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différentielles ou les moments externes ne sont pas correctement approximés et ap-
proximer le moment interne de ’équation différentielle retirée. Une régle approrima-
tive est de me pas approximer les moments définis par les opérateurs Q3 et Q*. Le
nombre minimal de moments considérés dans le systeme doit étre égal au nombre de
parametres, soit trois moments pour la norme et deux (ou un seul) pour la phase,
totalisant cinq. En employant la méthode des moments classiques, seulement cing
équations seraient nécessaires. Cependant en incluant plus de moments, la descrip-
tion faite du champ par les moments ne se limite plus a ’ansatz de la distribution de
Pearson pour décrire le champ et la description devient plus précise.

Nous avons donc établi différentes facons d’utiliser les moments d’ordre supérieur
pour obtenir la forme de I'impulsion, ainsi que les limitations d’une telle approche.
La modélisation employée dans ce chapitre peut maintenant étre appliquée a une
équation plus complexe, I’'équation de Ginzburg-Landau, utilisée pour décrire les im-

pulsions dans les lasers a fibre.
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Chapitre 7
Les moments et les lasers

Dans ce chapitre, les moments sont utilisés pour caractériser les impulsions pro-
duites par les lasers. Les impulsions a la sortie d'un laser dépendent de sa configu-
ration et des parametres de la cavité. Cette dépendance est exprimée sous la forme
d’équations différentielles partielles décrivant la propagation de I'impulsion dans la ca-
vité laser. Nous utilisons les moments dans ce chapitre afin de résoudre ces équations
de propagation. Nous nous attardons ici seulement au modele moyen pour décrire
les lasers. Dans un modele moyen, tous les éléments sont supposés étre linéaires et
présents simultanément dans la fibre de sorte que I'ordre dans lequel ces éléments sont
traversés par l'impulsion est ignoré (Haus, 2000). Par opposition, un modele discret
tient compte de chaque élément individuellement lors de la propagation. L’avantage
du modele moyen est sa simplicité car les équations de propagation sur un passage se
réduisent a une seule équation différentielle. Nous résolvons donc dans ce chapitre les
équations différentielles de différents modeles moyens décrivant divers lasers a 1’aide
du formalisme des moments.

Nous énumérons dans un premier temps les différents éléments optiques se retrou-
vant les lasers et nous donnons la modélisation utilisée pour représenter leur effet
sur la propagation du champ. Nous définissons ensuite I'équation différentielle du
modele moyen a l'aide de ces éléments. Par 'application de différents opérateurs,
I’équation différentielle est ensuite transformée en un systeme d’équations sur les mo-
ments. Ces équations sont ensuite résolues dans trois cas particuliers dont les solutions
analytiques sont connues pour valider I'approche utilisée et dans trois cas ou aucune

solution analytique exacte n’est connue.

7.1 Eléments optiques

Dans cette section, les composantes se retrouvant typiquement dans les cavités

laser sont présentées et leur effet est modélisé sous forme différentielle. Nous nous li-
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mitons ici aux effets pairs ; nous négligeons les effets impairs. Il en résulte que les effets
non-linéaires d’ordre supérieur tel I'auto-décalage Raman et I’auto-raidissement sont
négligés, ce qui limitent la validité du modele aux impulsions d’une durée supérieure
a la picoseconde. De plus, certain éléments couramment utilisés ou présents dans les

lasers tels les modulateurs de phase ou la dispersion de troisieme ordre sont ignorés.

7.1.1 Element dispersif

L’amplitude du champ a travers un élément montrant de la dispersion chromatique
est déformée puisque chaque fréquence dans I'impulsion se propage a une vitesse

différente. En supposant que la dispersion est quadratique en fréquence, elle s’écrit

0A Be 0*A
0.~ oor (1)

ou [, est le parametre de dispersion. Ce cas a été présenté a la section 4.3.1.

7.1.2 Filtre spectral

L’évolution de 'amplitude du champ a travers un filtre spectral gaussien passe-

bande s’écrit

0A o 0%A
9.~ 2972 (7:2)

ou o est inversement proportionnel a la largeur de bande au carré du filtre.

7.1.3 Déphasage non-linéaire

La propagation a travers un élément présentant de l’auto-modulation génere une
phase non-linéaire et un élargissement spectral. L’évolution de I'amplitude s’écrit dans

ce cas

A
L (7.3)

ou le facteur v donne 'ampleur de la non-linéarité.
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7.1.4 Absorbant saturable

L’évolution de I’amplitude du champ se propageant a travers un élément présentant
une saturation proportionnelle a la puissance, tels un absorbant saturable ou une ab-
sorption non-linéaire s’écrit :

0A 6 9

— =—|A|" A. 7.4

=14l (7.4)
Lorsque nous sommes en présence d'une absorption proportionnelle a la puissance,
telle 'absorption & deux photons, le facteur § est négatif. Il est positif dans le cas
d’une absorption saturable, c¢’est-a-dire qui diminue avec la puissance. Ce terme est

souvent accompagné d’un terme constant décrivant une perte ou un gain constant.

7.1.5 Déphasage quadratique
L’évolution de I’amplitude du champ se propageant a travers un élément induisant
une phase temporelle quadratique s’écrit

92 _ilr2a, (7.5)

Ce genre de phase est typique induite par le fonctionnement méme des modulateurs
électro-optiques ou l'indice de réfraction change avec la tension ou le courant appliqué

aux électrodes.

7.1.6 Filtre temporel

L’évolution de 'amplitude du champ se propageant a travers un élément indui-
sant un filtrage temporel dans le temps tel qu'un modulateur d’intensité acousto- ou

électro-optique s’écrit

€

ol le facteur € est inversement proportionnel au carré de la largeur du filtre temporel.
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7.1.7 Gain uniforme

L’évolution de 'amplitude du champ se propageant a travers un élément générant

un gain uniforme g s’écrit

0A g
5 §A. (7.7)

Notons que si g est négatif, nous obtenons une perte uniforme.

7.1.8 Gain saturable en énergie

L’évolution de I'amplitude du champ se propageant a travers un élément avec un

gain saturable lent en énergie s’écrit

0A
ga__H 4 (7.8)
0z 214 E/FEg)

ou gy est le gain petit signal, E est I'énergie de 'impulsion et Eg,; 'énergie de satu-

ration du milieu de gain.

7.1.9 (Gain saturable en puissance

L’évolution de I'amplitude du champ se propageant a travers un élément avec un

gain saturable lent en puissance s’écrit

3A 90
i A .
0z 2(1+ |A|?/Paa) (7.9)

ou go est le gain petit signal et Py, la puissance de saturation du milieu de gain.

7.1.10 Fibre optique

Comme nous 'avons vu aux chapitres précédents, la fibre optique peut étre modélisée
par un élément dispersif et un élément avec une phase non-linéaire, ce qui donne
ESNL.

0A [ 0°A 2

92 RO AR A 1
9: = ' gre T M (7.10)
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Bien qu’il soit possible d’ajouter les pertes de la fibre dans la modélisation, ce n’est
pas nécessaire puisque les longueurs de fibre sont typiquement courtes dans les lasers

et que les pertes sont faibles comparées aux pertes des autres composants.

7.1.11 Fibre de gain

Une fibre de gain peut étre modélisée de maniere réaliste par un gain saturable

ainsi qu'un filtre spectral représentant 1’étendue finie du gain.

%
0z

Jo 8214
(14+ E/Egy) 0T?

(7.11)

_O‘
2

7.2 Modele moyen

Dans les modeles moyens, le champ de I'impulsion est supposé changer tres peu lors
de la propagation a travers les différents éléments optiques. Dans ce cas, la propagation
a travers un élément optique décrit sous forme différentielle par H(A,T) peut étre
obtenu en intégrant de part et d’autre en supposant que le champ intervenant dans
la définition est invariant, c’est-a-dire H(A,T) = H(Ay, T), ce qui donne

‘2_‘4 = H(A,T)A = H(Ay,T)A = A = Agexp[H(Ap, T)z]. (7.12)
z

Ainsi le champ résultant de la propagation a travers M éléments optiques est obtenue

en multipliant les fonctions de transfert.

M
A= Agexp [Z Hi(Ay, T)z (7.13)

i=1

En supposant que la propagation a travers les différents éléments optiques se fait en
boucle, nous pouvons déterminer la variation du champ a chaque itération de la cavité
ainsi créée. Puisque les changements sont supposés faibles, le développement en série
de Taylor de la fonction exponentielle peut étre fait; la variation du champ s’écrit

alors

A=Ay Hi(AyT)z = — (7.14)
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ou ( est correspond a une unité de temps normalisée marquant un cycle dans la cavité.
Si nous considérons le cas général ou tous les effets sont présents, nous obtenons

dA (6 —if) O?A 5 2 g (€—1p) o

ou g est le gain net (gain moins perte) qui peut étre soit le gain petit signal, soit le
gain saturable en puissance, soit le gain saturable en énergie. Les quantités barrées
représentent les quantités nettes; nous entendons par quantités nettes la somme de
tous les éléments dans la cavité donnant un certain effet. Par exemple, la dispersion [,
est donnée en secondes carrées par metre alors que 3y = > i Bor Ly est Deffet total des
k éléments dispersifs dans la cavité, en secondes carrées. Si nous posons (€ = p = 0),
Déq. (7.15) se réduit & I'équation de Ginzburg-Laudau (EGL). L'éq. (7.15) est donc
une équation de Ginzburg-Landau étendue (EGLE), mais légerement différente de
ce qu'on retrouve dans la littérature (Akhmediev et al., 2001). L’EGLE retrouvée
le plus couramment contient des termes non-linéaires supplémentaires montrant des
phases et des absorptions saturables en |A|?, ce qui permet d’obtenir des solutions
analytiques dans le cas stationnaire (Akhmediev et al., 1996). Toutefois, toutes ces
solutions supposent que le mécanisme de synchronisation des modes dans la cavité
est passif et est décrit par le terme d’absorption saturable afin d’obtenir une solution
analytique. Lorsque le mécanisme de synchronisation des modes est actif, il n’existe
pas de solution analytiques de 'EGLE.

L’éq. (7.15) est I’équation maitresse du laser. Elle permet de décrire I’évolution de
I'impulsion dans la cavité laser. Lorsque nous voulons déterminer I'impulsion station-
naire dans la cavité laser, nous supposons que la dérivée du champ est nulle, a une

phase pres. L’équation maitresse devient alors dans le cas stationnaire :

(6 —iB2) A [6
2 0T 2

_ c_is

WA = ——— + 54—@'7) |A\2A+%A— MTQA (7.16)
ou v est un déphasage. Selon les termes qui sont supposés nuls, il existe différentes
solutions analytiques a 1’éq. (7.16); certaines combinaisons de termes n’en ont pas.
Il est difficile a priori de trouver ces solutions puisque le systéme est non-linéaire ;

plusieurs cas ont toutefois déja été étudiés. Nous essayons dans le reste de cette

section de trouver une solution générale de ’éq. (7.16) a I'aide des moments.
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7.2.1 Définition des équations sur les moments

Afin de résoudre a ’aide des moments, il nous faut décrire le champ de I'impul-
sion laser par différents moments. Tout comme au chapitre 4, nous favorisons les
moments les plus naturels pour décrire les impulsions : (T?), (TQ),, (Q?) et (P).
Nous appliquons donc les opérateurs définissant ces moments de part et d’autre de
'éq. (7.16), multiplions ensuite par A* et nous intégrons sur tout le temps afin d’ob-
tenir un ensemble d’équations sur les moments décrivant les propriétés de 'impulsion
stationnaire dans le laser. L’opérateur de plus bas ordre que nous appliquons est 1,

ce qui génere deux équations lorsque nous séparons les parties réelles et imaginaires.

0=—a(Q* +§(P)+g—&T? (7.17)

=200 +3(Py + L) (718)

L’éq. (7.17) montre la partie dissipative du régime stationnaire, c’est-a-dire que le gain
doit étre égal aux pertes. L’éq. (7.18) montre la partie conservative, soit la phase accu-
mulée sur un aller-retour dans la cavité. Nous procédons de méme pour I'opérateur 7
ce qui génere également deux équations. Notons que la partie imaginaire des moments

a été remplacée par sa partie partie réelle équivalente (voir Annexe A).

0= — 5(T?Q%), + 2Bo(TQ), + (PT?) + g(T*) — &(T*) (7.19)

(1) =%<T292>T+5<TQ>T+7<PT2>+ () (7.20)

N

Sinous divisons 1'éq. (7.19) et (7.20) par (T?), nous obtenons des équations représentant
également la conservation de I’énergie et le déphasage sur un aller-retour respective-
ment. Une différence est cependant remarquable; la présence d’un terme contenant
(B> dans I’équation dissipative et un terme contenant o dans 1’équation conservative.
Cela vient du fait que les équations représentent les variations des parties conser-
vatives et dissipatives relatives a la largeur de I'impulsion. L’équation conservative
indique comment la largeur de I'impulsions croit ou décroit; ainsi le terme en 3,
représente 1’élargissement di a la dispersion. L’équation dissipative représente le chan-
gement d’une composante quadratique moyenne de la phase. Ainsi le filtrage spectral
o crée une diminution du «chirp» de I'impulsion. Nous voyons apparaitre des mo-

ments d’ordre supérieur a 2; ces termes devront étre approximés pour résoudre le
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systeme d’équations.
De maniere similaire, en appliquant l'opérateur P, nous obtenons les équations

suivantes.

0= — a(PQ%), — B2(PQ%); + 6(P?) + g(P) — &(PT*?) (7.21)

w(P) =22(P), - Lpe2), +4(P) + LipT?) (7.22)

o | Qi
N

Il faut interpréter ici 1’éq. (7.21) comme le changement de la puissance créte et
I'éq. (7.22) comme le changement de la composante de la phase qui correle avec
la puissance créte, la phase non-linéaire.

En appliquant 'opérateur T2, les équations obtenues mélangent les informations

de déphasage et de gain net.

10 :;ﬁ2<92> - 6<TQ3>T + 2’7<P> + S<PTQ>T + g<TQ>r - €<TSQ>T - §<T2>
(7.23)
W), =2 ), + 202 +3(pro), - P+ L), - St (r2w)

Puisque 'opérateur T2 contient une partie réelle et une partie imaginaire, nous avons
ici un couplage entre les parties conservatives et dissipatives. Toutefois seulement la
partie réelle de 'opérateur T) a le sens d’une phase, la partie imaginaire étant une
constante. Le dernier opérateur représentant les moments d’ordre 0 et 2 est Q2. Les

équations obtenues de cet opérateur s’écrivent comme suit.

0=—a(QY +29(PQ?);

s
»(Q?) =3

S(PO?), + g(Q%) — &(T*0?), — 2p(TQ),  (7.25)

QY +3(PO?), — —(PO?); — &TN), + =(T*Q?), (7.26)

[N SRR
N

Encore une fois, il faut interpréter I’équation conservative (7.25) comme étant la
modification de la largeur de bande lors d’'un cycle dans la cavité a I’état stationnaire.
L’équation dissipative (7.26) décrit la modification de la composante de la phase qui
correle avec Q2 lors d’un cycle.

A ces 10 équations décrivant différentes relations entre les moments, nous en ajou-
tons finalement deux autres en utilisant I'opérateur PT%. Comme nous I’avons vu au

chapitre 6, ce moment donne une bonne approximation de la forme de I'impulsion



149

lorsqu’il est comparé aux moments (T?) et (P).

0 = — G(PT?*0?), — Bo( PT*Q?); + §(P*T?) + g(PT?) — &PT*)  (7.27)

V(PT?) :ﬁ—(PT292>T — %(PT2Q2>Z- + F{(P?*T?) + Z(PT*) (7.28)

N

%
2
Ces 12 équations permettent de déterminer les propriétés de I'impulsion laser station-
naire. Nous avons cependant encore le problemes des moments d’ordre supérieur; le
systeme fait intervenir 19 moments différents (en supposant que le gain peut poten-
tiellement dépendre de 1'énergie F) et seulement 11 équations (puisque le parametre
1 est décrit 'impulsion et non la cavité laser et est donc inconnu, nous lui dédions
'éq. (7.18) et la retirons des équations du systeme). Quatre de ces moments ne sont
présent que dans les deux dernieres équations. Méme en les omettant, il reste 15
moments pour 9 équations. Il faut approximer les moments d’ordre supérieur pour
résoudre le systéme. Finalement nous terminons cette section en écrivant (a la page

suivante) toutes les équations décrites ci-haut en y substituant le parametre 1) par
I'éq. (7.18).
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0=—a(Q* +§(P)+g—&T? (7.29a)
0 :%<Q2> +7(P) + g<T2> (7.29b)
(T€2)

B~ " 4 Skpp(P) + G — érxp(T?) (7.29¢)

0= (50— (T2, + 55700 4 0~ D(P) + Elmr (T (7.200)

@)
0=-— O'K,PQ<Q2> - 62 <E<)2>>Z + SHP<P> + g - E/QPT<T2> (7296)
0 :%(/ipg — 1){Q?) — % (igj% +Y(kp — 1){(P) + g(HPT — 1)(T?) (7.29f)
0 =3o(Q?) — 5(TQ%), + %(P) + §(PTQ), + g(TQ), — (T*Q), — p(T?)  (7.29g)
0 =5 erna ~ TR 2) + 50 47 (1 — 1) (PHT),

= 2P+ Lsran — 1)) (1), ~ S(7) (7.290)
0= j Fra (%) + 27“:5;21% + drpa(P) 4_‘9 — enra(T?) —2p <Z;§3ir (7.291)
0 =2 0 = 1(98) +300een — (P — § U — el 4 B 1))

(7.29§)

0=~ onrmale®) = o+ BpuralP) + — o T°) (7.29%)
0= (rrre = 1)(08) = GETE 4 Gmars = 1UP) + Ssers = 1177
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7.2.2 Approximation des moments d’ordre supérieur

Pour résoudre le systeme d’équations décrivant le laser, il nous faut simplifier les
moments d’ordre supérieur. Pour ce faire, nous utilisons la distribution de Pearson
pour modéliser la norme du champ dans la définition de ces moments. Nous de-
vons également choisir une modélisation pour la phase. Nous avons vu au chapitre
précédent que la phase décrivant le mieux la propagation dans ESNL est la phase
quadratique avec une contribution non-linéaire. Cette modélisation contient toute-
fois deux parametres h et f pour décrire la phase. Compte tenu du grand nombre
d’équations, nous simplifions la modélisation en utilisant une phase a un seul pa-
rametre, ce qui nous laisse le choix entre la phase quadratique et la phase logarith-
mique. Nous optons pour la phase logarithmique car elle est d'une part plus précise
que la phase quadratique et d’autre part, plusieurs solutions exactes des équations
maitresses ont une phase logarithmique et finalement elle ne présente pas de rupture
du front d’onde. De plus, nous n’analysons ici que les solutions stationnaires, qui sont
moins sensibles aux approximations que les solutions dynamiques. Rappelons donc la
modélisation de I'amplitude que nous utilisons pour simplifier les moments d’ordre

supérieur.

(1+:c)

A(T) = /P, (1 n %T2>7T (7.30)

ou P, est la puissance créte, b est proportionnel au carré de la durée de I'impulsion, ¢
est Pampleur de la phase et a est le parametre de forme. En substituant 1'éq. (7.30)
dans les moments externes, nous pouvons les exprimer a l'aide des parametres a, b,
c et P.. Le résultat de cette substitution est présenté a l’annexe D. Pour résoudre
le systeme d’équations, il faut par la suite exprimer ces parametres en fonction des
moments faisant partie du systeme. Un choix logique s’impose pour certains de ces
parametres. Par exemple la durée b, la phase c et la puissance créte P. se modélisent
bien par (T?), (TQ), et (P) respectivement. Nous avons vu au chapitre 6 qu’il y
a plusieurs facons différentes de représenter le parametre a; c’est pour cette raison
que nous préférons conserver ce parametre comme une variable du systeme et ne
pas le remplacer par son équivalent en moments. Ceci constitue une approximation
moins précise, mais simplifie considérablement 'analyse. Dans ’expression des mo-
ments en fonction des parametres, il ressort que les moments contenant I'opérateur 22

contiennent le parametre ¢2. Nous remplagons donc le parametre ¢ par (Q?), ce qui
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a plus de sens physique que (T'Q)2. 1l se trouve alors que le parametre ¢ est remplacé
par deux moments différents, (Q?) et (TQ), selon le contexte. Il serait possible de
procéder de méme pour d’autres parametres. Par exemple, P, pourrait étre remplacé
par E. En renversant ce raisonnement, pourquoi ne pas utiliser que les parametres au
lieu des moments ? Comme nous 'avons discuté au chapitre 6, utiliser les moments
permet d’extraire plus d’informations du systeme. Le choix des moments a utiliser
doit étre dicté par la physique du probleme, ce qui rend les approximations plus justes.

Ainsi, les changements de variables cités ci-haut s’écrivent comme suit.
b=(2 - 3a)(T? (7.31)
c =2(TQ), (7.32)

& —4(2 — 3q) (; - Z) (T2)(0?) — 1 (7.33)

P.=V2 (2 — Z) (146__“a) (P) (7.34)

Maintenant que nous pouvons exprimer les moments d’ordre supérieur en fonc-

tion des moments du systeme, il reste a savoir quels moments nous approximons.
L’approche la plus simple est de modéliser tous les moments d’ordre supérieur. Nous
perdons toutefois de la précision en procédant ainsi, puisqu’il n’est pas nécessaire
d’approximer autant ; cela toutefois diminue le nombre de variables a considérer. En
omettant les égs. (7.27) et (7.28), nous devons simplifier un minimum de 7 moments
pour résoudre (puisque a est maintenant considéré une variable du systéme) et un
maximum de 10 moments en ne conservant que les moments (T?), (TQ),., (Q?), (P) et
le parametre a. Nous avons vu précédemment que les moments purs temporels sont
tres bien représentés par la distribution de Pearson. Nous pouvons donc approxi-
mer les moments (T*), (PT?), (P?) et E sans trop d’erreurs. Les moments décrivant
la phase plutot dans le temps qu’en fréquence introduisent également peu d’erreurs
puisque 1'éq. (7.30) est définie dans le temps. Nous approximons donc (T3),., (PTS),
et (PQ?);, qui, bien qu’il contienne 'opérateur 2, s’apparente a (7)), comme nous
I’avons vu au chapitre 4. Nous avons ainsi 7 moments que nous pouvons retirer du
systeme. Réécrivons les égs. (7.21) a (7.28), en substituant la définition des moments
approximés, en remplagant g par I'éq. (7.17) et en remplagant ¢ par I'éq. (7.18). Le

résultat est 8 équations ne dépendant que des moments d’ordre 2 et de parametres
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de formes.

0 =—(kra — D{T?){Q?) + 26,(TQ), — 20(P)(T) 4g( L—a

) (T*?  (7.35a)

(4 — 3a) 2 —ba
0 =Bl — DTN + 25(19), - O v (o) s
0 == olispn — T2 - 20 (3220 4 dlse — D(PNTY + 1
(7.35¢)
0= (kpa = D)0 — 70 (550 2lke — DIPNT) - ol
(7.35d)
0= — o — 1(TQAD) + 5al2) + 1(P) — LPYTQ), - 2(T2)(T9), — p(T?)
(7.35¢)
0 =Balras — V(T (022) + 5(0%) — 2(P) — 1(PYTQ), + 20(T2)HTD), — &(T?)
(7.35f)
0= — ol = (0 + Slepn — )(PY) + L (324) S
— el — V(T30 — 25(T), _ (7.35)
0 =Falsa — D7 + 2x(npa — DPY) — 5o (20)
+ p(kra — D{(TH(Q?) — 28(TQ), (7.35h)

Nous procédons de la méme fagon avec les éqs. (7.27) et (7.28) en approximant les
moments relatifs au temps (P?T?) et (PT*) ainsi que le moment (PT?Q?);.

0= — aepra — 1)(T2)() + 2 (5o (5 ) o,
+6 {%” <42__3aa> - 1} PY(T?) — 2% (i - ?Z) (T2)2 (7.36)

{
0 =h(kpro — (T30 + 5 (;1 - gz) (12125) (TQ),

+25 {%P <42__3a“> - 1} (PY(T?) + 2 (i - §Z> (T2)? (7.37)




154

Les différents facteurs de forme ont été définis au chapitre 3. Nous les répétons ici

pour plus de clarté.

o, L, o

™ = ) ™ =170, () )
(P2, e,

o =Py P10 PN () (739

Nous avons ainsi quatre facteurs de forme et cing variables pour les neuf premieres
équations et un facteur de forme pour les deux équations provenant de 1’opérateur

PT?. Le facteur kp est défini explicitement en fonction du parametre a.

P :gz - % (2 - Z) (264—_aa) (146_—2)2 ~ V3 (32_—2(2) (7.39)

Notons qu’il se peut que certaines de ces équations soient redondantes selon les effets

présents dans la cavité laser, ce qui implique que des simplifications supplémentaires
devront etre faites. Ces équations forment un systeme qui est non-linéaire et doit
étre résolu selon le cas particulier étudié afin d’obtenir les parametres de I'impulsion
en régime stationnaire. Bien que le systeme soit relativement grand, il est toutefois
plus facile de résoudre ce systeme d’équations non-linéaires que de résoudre I’équation
différentielle particuliere de I’équation maitresse. De plus, il est possible de déterminer
une solution approximative la oti une solution analytique ne peut étre trouvée. Pour
se convaincre de la validité et de I'intéret de ces équations, procédons a I’étude de cas

particuliers.

7.2.3 Validation du modéle

Afin de valider notre modele moyen, nous le comparons a trois cas ou une solution
analytique est connue. C’est trois modeles sont le laser a verrouillage actif des modes,

le laser a verrouillage passif des modes et le laser solitonique.

Laser a verrouillage actif des modes (5, =6 =7 = p = 0)

Dans le cas du laser a verrouillage actif des modes, il n’y a pas de dispersion
chromatique (3, = 0), de non-linéarité (3 = 0), d’absorbant saturable (§ = 0) ou
de phase quadratique (p = 0) (Siegman et Kuizenga, 1974). Dans ce cas, le systéme
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d’équations (7.35) devient

0= — & (rrq — 1)(02) — 4¢ (21__5‘;) (T?) (7.40a)
0 =25 (TQ), (7.40D)
0=—a(kpa — 1){(Q%) + % (7.40c)
a(lT'Y), (4—a

T 4(2 — 3a) (2 + a) (7.40d)
0= — 3 (rras — (TN (Q?) — 2&(T*)(TQ), (7.40e)
0 =5 (%) — &(T?) (7.40f)
0=— (kg — 1)(Q?) — e(kigq — 1)(T?) (7.40g)
0 = — 26(T), (7.40D)

avec les deux équations supplémentaire provenant de P12

1—2a

=—5 — 1)(0?) — 2¢ T? A1
0=~ olprn ~ () - 26 ({20 ) (T (7.41)

o (4—3a 14 2a
0== T, 7.42
2(2—3@)(2—1—@)( ) (7.42)
Nous déduisons des éqs. (7.40b), (7.40d), (7.40e), (7.40d), (7.40h) et (7.42) que
(TQY), = 0, ce qui n’est guere surprenant puisqu’aucun élément optique de la cavité

n’induit de déphasage entre les différentes parties de 'impulsion. De ’éq. (7.40f), nous

déduisons une relation importante entre les filtrages temporels et spectraux.
o {Q?) = &(T?) (7.43)

Il s’ensuit qu’en régime stationnaire, il y a un équilibre entre le filtrage temporel et
spectral de sorte que les deux sont égaux. Nous voyons ici un avantage de conserver
les moments par rapport a n’utiliser que les parametres de la modélisation de Pear-
son. Nous pouvons tirer des conclusions sur la physique du systeme car les moments
permettent de travailler dans les domaines spectral et temporel simultanément. En
remplagant I’éq. (7.43) dans les éqs. (7.40a), (7.40c), (7.40g) et (7.41), nous trouvons
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4 équations reliant différents facteurs de forme entre eux.

kg =1 — 4 (21:56‘&) (7.44)
kpo =1+ 1—3q) (7.45)
Ko =2 — rrq = 1+ 4 (21__5‘;) (7.46)
Kpra =1 — 2 (i - EZ) (7.47)

Nous avons ainsi différents facteurs de forme qui dépendent du parametre de forme
a, mais aucune de ces équations ne nous renseigne directement sur la valeur de ce
parametre. Il nous faut donc approximer un des parametres de forme pour déterminer
a. La raison pour laquelle nous devons approximer davantage est que plus de la moitié
des équations nous informaient uniquement sur la phase de I'impulsion et non sur
la forme; nous nous retrouvons donc avec trop d’inconnues. En suivant la logique

d’approximer le moment de plus bas ordre, nous approximons le facteur x7q.

=3 (527) - e 74

Toutefois le facteur krq ne dépend pas que de a; il faut une autre approximation.
Pour ce faire, nous écrivons l’expression du principe d’incertitude en fonction des

moments pour I’approximation de la phase logarithmique.

e (L+HHTQ?2) (2—a) 1 2—a
() = 4(2 — 3a) <1+a)_4(2—3a)(1+a> (7.49)

Il s’ensuit que krq s’écrit alors

kra = — (1+ 4a) (22_ 3a> (7.50)

et ne dépend que du parametre a. Cela nous permet de déterminer la valeur de a au
moyen des éqgs. (7.50) et (7.44).

1-4 <21__5aa> = — (1+4a) <22__3a“> =  a= {o, %} (7.51)
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Nous trouvons ainsi deux valeurs du parametre a. Il est surprenant, quoique possible,
qu’il y ait deux valeurs de a. Pour vérifier qu’il n’y ait pas d’inconsistances sur ces
deux valeurs, nous évaluons le produit durée-largeur spectral pour chacune d’entre
elles.
1 5

T =< =, —— 7.52

e ={1 -5 (7.52)
Ce produit ne pouvant étre négatif, nous en déduisons que la solution a = 4/5 est
inconsistante. Il s’ensuit que la solution est a = 0, ce qui donne une forme d’impul-
sion gaussienne, ce qui est prédit par la solution analytique de Siegmann-Huizenga.

Connaissant le parametre a, il est possible de déterminer les autres moments du
systeme a l'aide des éqgs. (7.49), (7.43) et (7.17).

(T?) = %\/§ (Q?) = %\/E g =\0¢ (7.53)

Les facteurs de forme deviennent alors

3
kro =—1  Kpa= 5 he= 3 Kpra= 5 (7.54)

Nous déduisons entre autres de ces facteurs de forme que le spectre de I'impulsion est
également gaussien puisque kg = 3.

Nous avons maintenant déterminé les moments de I'impulsion en fonction des pa-
rametres généraux du laser. Pour déterminer les moments en fonction des parametres
spécifiques de la cavité laser, nous procédons aux substitutions suivantes. En suppo-
sant que le milieu de gain a une largeur de bande finie {2; un gain petit signal go,
que la cavité a une perte nette o et que le modulateur a une modulation égale de

VM), les constantes €, et g s’écrivent

o=>> =M, G=g—a (7.55)

ce qui est exactement le résultat obtenu en résolvant analytiquement I’équation maitresse
(Siegman et Kuizenga, 1974). Notons qu’a aucun moment 1’énergie ou la puissance
créte de I'impulsion stationnaire n’ont été spécifiées. Pour les déterminer, il faut pous-
ser I'analyse plus loin que le modele de Siegmann-Huizenga, ce qui est tres facile avec

le formalisme des moments. Il suffit de remplacer le gain gy par un gain saturable
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9o/ (14 (P)/{Psat)), ce qui fixe la puissance de I'impulsion stationnaire.

90

(P) = (rﬁ) (P)sat (7.56)

Laser a verrouillage passif des modes (3, =5 =¢=p = 0)

Nous avons retrouvé la forme gaussienne de I'impulsion stationnaire du laser a
verrouillage actif des modes a la section précédente. La forme gaussienne est un cas
particulier de la distribution de Pearson; il n’est pas surprenant que nous l’ayons
retrouvée. Un test de validation plus intéressant nous permettrait de voir si, en
résolvant, nous retrouvons une forme d’impulsion qui n’est qu’approximativement
représentée par la distribution de Pearson. Pour ce faire, nous étudions maintenant
le laser a verrouillage actif des modes qui a une sécante hyperbolique comme solution
stationnaire analytique (Haus et al., 1975). Comme nous 'avons vu au chapitre 3, la
sécante hyperbolique n’est pas représentée exactement par la distribution de Pearson.

Le laser a verrouillage passif des modes est modélisé en éliminant les termes qua-
dratiques (¢ = p = 0) et les autres termes de phases (8, = 7 = 0). Dans ce cas, les

éqgs. (7.35) se réduisent aux équations suivantes.

0=—0o(krg — 1){Q%) — (jgf—];l) (7.57a)
0 =25(T), (7.57h)
0=—a(kpa — 1){(Q% +6(kp — 1)(P) (7.57c)
0=- 4((72<T_93>a) (;l T Z) (7.57d)
0 = — acran — DTV, () — UPYTE), (7570
0 =6(Q%) — Z<P> (7.57f)
0=—a(ka — 1)(Q) + d(kpa — 1)(P) (7.57g)

5(P)  [(4—a\ (TQ),
V=" 3030 (2 n a) (T?) (7.57h)
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avec les deux équations supplémentaire suivantes

oz—ammn_nm%+5y§(t:?)_q<m (7.58)

o (4—-3a 1+ 2a
_7 TQ),. .
0 2(2—3@)(2+a)< ) (7.59)
Une fois de plus le moment (7'Q2), = 0 par les éqs. (7.57b), (7.57d), (7.57e), (7.57d),
(7.57h) et (7.59) puisqu’aucun élément dans la cavité ne crée de déphasage. L'éq. (7.57f)

nous donne une relation importante entre la largeur spectrale de I'impulsion et sa

puissance créte.
§(P) = 45(0?) (7.60)

Cette équation est analogue a 1'éq. (7.43). Elle dit que la perte par filtrage dans
le milieu de gain doit étre comparable a la perte dans ’absorbant saturable. Cette

relation permet de déterminer les relations entre les facteurs de forme.

8

=1-—- 7.61
e (4 - 3a) (7.61)
RpO =1+ 4(I€p — 1) (762)
RQ =1+ 4(:‘in - 1) =1+ 16(/‘113 — 1) (763)

kp (4 — 3a
=1+4|— -1 .64
kpro =1+ {3 (2—&) } (7.64)

Nous nous retrouvons devant le méme probleme qu’avec le laser a verrouillage actif
des modes. En procédant comme dans ce cas, nous obtenons deux valeurs pour le
parametre a,

8

2 —3a
1l————=—(1+14 = 2324: 1,434 )
(4= 3a) (1+ a)(2_a> = a = {0,2324;1,434} (7.65)

dont seulement la premiere valeur, a = 0,2324, donne un produit (72)(Q?) positif. A
partir de cette valeur de a, nous pouvons calculer les autres facteurs de forme. Pour
vérifier la validité de notre méthode, nous comparons ces facteurs de forme avec ceux

calculés a partir de la solution analytique exacte. La comparaison est présentée a la
table (7.2.3).
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Facteur de forme | a=0,2324 | sécante hyperbolique | erreur relative
Kp 1,194 1,2 0,50%
KT 4.664 4,2 11,04%
Kpr 0.3921 0,3945 0,61%
KTo -1,422 -1,432 0,70%
K pQ 1,776 1,8 1,33%
K 4,102 4,2 2,33%
KPpTQ -0,0256 -0.0238 7,56%

TABLEAU 7.1 Comparaison des facteurs de forme de la solution exacte et approxima-
tive du laser a verrouillage passif des modes.

Nous voyons a la table (7.2.3) que l'accord entre la solution obtenue par les mo-
ments et la solution analytique est excellent; nous avons une erreur moyenne de
3,44%. L’erreur est principalement sur le facteur de forme kr et kpprqo. La raison est
que kr met beaucoup de poids sur les ailes de la distribution, la ou la distribution
de Pearson et la sécante hyperbolique different le plus. Le facteur de forme kprq
fait intervenir trois opérateurs de nature différente ; il s’ensuit que l'erreur y est plus
grande. Il ne reste qu’a déterminer 'expression des moments (P), (Q?) et (T?) en
fonction des parametres de la cavité. Nous reprenons pour ce faire I'éq. (7.17) et le
principe d’incertitude (7.49).

(Q2) = —% (T?) = —0.82572 (7.66)

4

(P)=-3

Qi

Nous remarquons que contrairement au verrouillage actif des modes, il faut que le
gain net g soit négatif pour que les moments soient des quantités positives. Cela
signifie que les pertes non saturées doivent étre plus grandes que le gain pour que
les impulsions soient stables, ce qui reflete la conclusion du modele analytique (Haus,
2000). Autrement dit, le gain est plus grand que les pertes seulement quand ces
dernieres sont saturées. Les moments s’expriment en fonction des parametres de la

cavité au moyen des équations suivantes

6:& 5:80/Pabs J=¢go— a— S (7.67)

ou sq est la perte petit signal de ’absorbant saturable et P,,¢ est la puissance de sa-
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turation de ’absorbant saturable. Il est possible ici encore de tenir compte facilement

d’un gain saturable en puissance. Nous obtenons alors la puissance suivante :

2 a 1 a  1\? Jgo — «
P)=—-Pys |—+- =% — 4+ - 3 -1 7.68
< > 3 b So + 4 \/(SQ * 4) + ( S0 ) ( )

Laser solitonique (€ = p =0)

Nous avons montré avec le laser a verrouillage passif des modes que la distribution
de Pearson peut étre utilisée efficacement pour représenter la forme de I'impulsion,
méme si ce n’est qu’approximativement. Toutefois, nous n’avons pas encore étudié
un cas ou l'impulsion stationnaire avait une phase non nulle. Pour y remédier, le
dernier cas de validation que nous étudions est le laser solitonique ou l'impulsion
stationnaire est une sécante hyperbolique qui survient lorsque la largeur de bande
du gain est équilibrée par ’absorption saturable et que la dispersion nette anormale
3 est balancée par la non-linéarité 7 (Haus et al., 1991). Les équations régissant le

systeme s’écrivent alors

0 =—d(kpa — D{T*){Q?) + 26:(TQ), — % (7.69a)
0 =B3a(rkrq — L)(T?*)(Q?) + 25(TQ), — ij]i—@ (7.69b)
0=~ (e — (I - fjﬁ?a (352) + s - 0PI (1%
0 :%(mm — (T2 — 2 — 3@ <2 - a) +3(kp — 1)(P){T?) (7.69d)
0= — 5 (kras — DTN {(Q) + B2(02) + %<p> - g<P> (T, (7.69¢)
0 =0a(rras — I(TQ)HQ) +5(Q%) — §<P> — WP T, (7.69f)
0=~ (50— D{)? +3(spa — PN + ¢ 2__?@) <;l - Z) %{Z; (7.692)

0 =0a(rq — 1)(Q%)? 4+ 29(kpa — 1)(P)(Q%) — 2(5@3@ (;l J_r Z) TG, (7.69h)
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avec les deux équations supplémentaires provenant de P12

0= = st~ @) + 2 (5700 (2 (1,

2 \2-3a 2+a
9 {%P (42_—3;) - 1} (PYT?) (7.70)
0 =ulwers ~ DT + 5 (30 ) () (T
+25 {“—; <42__3a“) . 1} (PY(T?) (7.71)

Pour résoudre, nous procédons de maniere légerement différente que dans les deux
cas précédents. Nous utilisons la symétrie des équations, ce qui permet d’éliminer les
facteurs de forme des équations. En prenant chaque paire d’équations similaires, nous

éliminons le facteur par substitution, ce qui donne pour les éqgs. (7.69)

B, a) Q) - <§ N 26%) éf>_<€3 (7.72a)

0= (% + %) (éT_Qg;) (;1 ; Z)_ 9 (g + Z_Z) (kp — L)(PY(T?) (7.72h)
0= (% + %) (Q?) i %7 - %) (P) — % <§ + %Z) (PITQ), (7.72¢)
0=2 (§ + 27 o — (2008 + (2 - ﬂi) g (3e) (T, ()

et pour les égs. (7.70) et (7.71).

(85) (£3) (22) o
S REE) o o

Les éqgs. (7.72a) et (7.72b) nous permettent de définir le parametre a. En résolvant,

nous trouvons trois valeurs a = {—0,9790; 0, 2246; 1,394}. Pour déterminer I’admis-
sibilité de ces trois solutions, nous utilisons encore une fois le principe d’incertitude
(éq. (7.49)), en tenant compte cette fois-ci de la phase non nulle de I'impulsion. I
s’ensuit que seule la solution a = 0, 2246 est valide. Nous pouvons également résoudre

le parametre a a 'aide de 1'éq. (7.73); procédons ainsi afin de déterminer si nous
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obtenons des valeurs de a consistantes. En résolvant les éqs.(7.72a) et (7.73) en-
semble, nous trouvons une seule solution a = 0,2390. Les éqgs. (7.72b) et (7.73) donne
a = {0,2573;0.9823}, dont seulement a = 0,2573 est admissible. Il s’ensuit que les
seules valeurs de a admissibles sont a = {0, 2246; 0, 2390; 0, 2573}, ce qui donne une
valeur moyenne a = 0, 2403 ; nous reconnaissons ici la sécante hyperbolique que nous
avons trouvée précédemment. Les écarts relatifs entre les valeurs par rapport a la
valeur moyenne sont de Aa/a = 6,53%;0,54%,7,07%. Nous avons donc une varia-
tion inférieure a 10% sur la consistance des solutions. Cette valeur moyenne de a
est conforme a la solution analytique ; nous utilisons donc la valeur moyenne a pour
déterminer les autres moments de I'impulsion stationnaire.

Il y a plusieurs fagon de déterminer les autres moments de la solution. Une fagon
de procéder est de multiplier 'éq (7.72¢) par (1) et d’utiliser les égs. (7.72a) et (7.49)

pour n’avoir que le moment (72),..

0 =14 2,956x(TQ), — 1,910(T)? (7.74)
27035 — 66

y == 00 (7.75)
2790 + 03

A des fins de comparaison, si nous utilisons les éqs. (7.69a) et (7.69b), éliminons
le terme en (P)(T?) par substitution et explicitons le facteur de forme rrq, nous

obtenons une équation similaire.
0 =1+ 2,974\ (TQ), — 1,948(TQ)? (7.76)

La différence moyenne entre les coefficients n’est que de 1,29%. Pour simplifier les
expressions, nous arrondissons les coefficients aux entiers les plus proches, ce qui crée

une faible erreur, inférieure a 5%.

0 =1+ 3x(TQ), — 2(TN)? (7.77)
(TQ), _X 49X2 3 (7.78)

La durée s’exprime en fonction de (P) a partir de 1'éq. (7.72a) et la largeur de bande
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a partir du principe d’incertitude.

TQ>7" 5_22 + 6-2
T2 =3, 270 7 7.79
() (P) (270 + 003, (7.79)
P) 245 + 63
0% =0, 08457 ) + 4(TQ)? (—) 7.80
(2) oy, 0 400D (S (780)
Finalement la puissance effective est obtenue avec 1'éq. (7.17).
32 9
(P) (B2 4+ a*)(TQ), (7.81)

T 0.084575(1 + 4(TQ)2)(295 + 602) — 8(B” + 62)(T),

Les moments ainsi trouvés correspondent exactement au modele analytique développé

pour le laser solitonique.

7.2.4 Etude de cas sans solution analytique

Nous avons étudié jusqu’a maintenant des cas ou il existait des solutions ana-
lytiques. Nous analysons maintenant des lasers ou il n’existe pas de telle solution
analytique. Nous montrons que notre méthode approximative basée sur les moments
et la distribution de Pearson permet de déterminer des solutions dans ce cas. Pour
commencer, nous regardons le cas d’un laser sans linéarité, soluble analytiquement et

avec non-linéarité qui n’est soluble qu’approximativement.

Laser a verrouillage actif des modes accordable en dispersion (¢ = § = p = 0)

Pour tester 'intérét de cette méthode, nous analysons le cas du laser a verrouillage
actif des modes accordable en dispersion. Dans ce laser, la dispersion étale le contenu
fréquentiel dans le temps et un modulateur ne laisse passer qu'une partie de ce dernier.
Nous regardons le cas ol aucune non-linéarité n’est présente dans le laser, cas qui est
résolu analytiquement (Tamura et Nakazawa, 1996) et le cas ou l'auto-modulation

de phase est présente. Les équations décrivant le laser, en incluant la non-linéarité,
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s’écrivent

0 =26,(TQ), — 4¢ (21__5‘;) (T2)? (7.82a)
0=l - (1) - T (7.520)
 B(TQ), (4-a 26(T?)?
"= 34) (2—|—a) T 3a) (7.82c)
0 =22 (kp — (T2 + 30— 1)(P) (1) (7 820)
0 =F2(Q?) + %(P) — 28(T*\(TQ), (7.82¢)
0 =Ba(rras — 1)(TQ)(Q?) — H(PHTQ), — &T?) (7.82f)
0 =Ba(kg — D022 + 29(kpa — 1)(PY(Q?) — 26(TQ), (7.82h)
en incluant les deux équations suivantes.
0 :% (;l - 22) (1212;) (TQ), — 2 (1 - §Z> (T2)? (7.83)

0 =ulwera = T2 + 27 %7 (S220) <o ey as)

Il est facile de déterminer la valeur du parametre a a partir des éqgs. (7.82a), (7.82¢)
et/ou (7.83); nous trouvons a = 0. Nous avons donc une impulsion de forme gaus-
sienne, comme dans le cas du verrouillage actif des modes sans dispersion. Notons
que le terme non-linéaire n’influence pas la forme de I'impulsion, ce qui est une ap-
proximation. La non-linéarité change la forme spectrale de I'impulsion qui, a travers
la dispersion linéaire, transforme la forme temporelle de I'impulsion. Nous ne voyons
pas ici cet effet a cause de I'effet moyen de I’équation maitresse. Nous pouvons toute-
fois voir I'effet se répercuter sur les facteurs de forme et les moments. Pour résoudre,

nous supposons que le milieu de gain est saturable en puissance, et s’écrit

_ 9o go
=% __ P) = (Pl [ o— —1 .
! L+ oy i = t(€<T2>+04 ) (783)

Le tableau (7.2.4) compare les cas linéaire et non-linéaire.
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Moments | Cas linéaire (7 = 0) Cas non-linéaire (¥ 7é
<T2> \/ % 46 < > ﬂQ - 262’7 sat T2 ) 0
(T, sgn(fs) %\/ 1+ 22 (P)eut (T?) (€<Tg<;+a - 1)
z 1 Y
(%) 25 i + 35 (Pl (et — 1)

(P) | (P)sat <g—°+a — 1) (P)at (aﬁﬁ _ 1)

NGT
2
(T2)(%) 3 L+ 7 (P T) (7 — 1)
a 0 0
7(P)
KTQ 1 1+ 46’;(92) i,
1 + 30552
B2+2825(P)(T?)— & (2v/3-3)32(P)2(T2)?
Ko 3 1+2 [ﬂ2+ Ba71( ><(BQ>H?I<J><T2>)2>W (P)(T?) }
ras ! L+ e gy
KPTQ 1 14+2(1— 4\f (D)

B2(922)

TABLEAU 7.2 Comparaison des facteurs de forme de la solution exacte et approxima-
tive du laser a verrouillage actif des modes accordable en dispersion.

Nous voyons tout d’abord que la solution non-linéaire se réduit a la solution
linéaire lorsque la non-linéarité 4 = 0. Alors que les facteurs de formes sont constants
dans le cas linéaire, nous voyons qu’ils dépendent des parametres du laser dans le
cas non-linéaire. Nous voyons alors I'importance de garder le plus grand nombre de
facteurs de formes possible pour bien décrire I'impulsion. Nous voyons ainsi comment
la non-linéarité déforme la densité spectrale de 'impulsion. De plus, nous voyons
que la déformation générée par les effets non-linéaires est proportionnelle au rapport
/2. Ainsi une faible non-linéarité peut tout de méme avoir une effet remarquable
si la dispersion dans la cavité est faible. Nous déduisons aussi de ce rapport que le
signe de la dispersion influence l'effet de la non-linéarité. En dispersion nette nor-
male, 3 > 0, la largeur spectrale de I'impulsion ainsi que son «chirp» augmentent
avec la non-linéarité. En dispersion anormale, 8, < 0, ¢’est le contraire qui se produit,
comme la compression solitonique le prévoit. Notons finalement que la non-linéarité
n’influence pas la forme de I'impulsion dans le temps puisque, d’une part, celle-ci

est parfaitement définie par ’action du modulateur et, d’autre part, la non-linéarité
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n’agit qu’au premier ordre dans le modele linéarisé des équations maitresses et, de ce

fait, ne change pas la forme de 'impulsion.

Laser a verrouillage passif avec dispersion (6 =é=75=p=0)

Considérons maintenant un verrouillage passif des modes, au lieu d’un verrouillage
actif. Nous négligeons la non-linéarité dans ce cas, question de ne regarder que la
différence causée pas la nature du verrouillage des modes. Alors que le cas du ver-
rouillage actif avec dispersion avait une solution analytique lorsque la non-linéarité est
absente, ce n’est pas le cas ici. Dans le verrouillage passif sans dispersion, ’absorption
saturable et la largeur finie du gain se compensent pour former une impulsion sécante
hyperbolique, a la maniere d'une effet solitonique. Ce n’est pas possible ici car nous
avons supposé une largeur infinie du milieu de gain (6 = 0) ; la limitation de la largeur
de bande se faisant par le biais de la dispersion. Pour déterminer les parametres de

la solution stationnaire, regardons les équations définissant les moments.

O(P)(T?)
0 =0[2(T2), (4 3a) (7.86a)
0 :52(@ — I{T?)(Q?) (7.86b)
0=- f&@?&‘) (;‘ - Z) +3(kp — 1)(PYT) (7.86¢)
0 :72(@9 — 1)(T?)(Q?) (7.86d)
0 =3 (0% — g<P> (TQ), (7.86¢)
0 =Gh(rras — (T (2) — 2(P) (7.561)
0 =3(rp0 — 1)(P)(22) (7.862)
0 =fhlra = DI - 35 @3@) (;‘ - Z) @Qi (7.56h)

Nous procédons de la méme fagon avec les égs. (7.27) et (7.28) en approximant les

moments relatifs au temps (P?T?) et (PT?) ainsi que le moment (PT?Q?),.

02 (4 - 3“) (1 + 2a) (TQ), + 5 {%P (4 - 3“) - 1} (PYTY)  (7.87)

2 \2-3a 2+a 2—a
0 :BZ(K'PTQ — 1)<T2><QQ> (788)
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Il est facile de déterminer la forme de 'impulsion a l'aide des éqgs. (7.86a), (7.86¢) et
(7.87). En combinant ces équations deux a la fois, nous trouvons différents facteurs
de forme dont les seuls se croisant sont a = {0,2246;0,2390;0,2573} donnant une
valeur moyenne de a = 0.2403. Nous obtenons également dans ce cas une solution
sécante hyperbolique a cause de l'action de ’absorbant saturable. Le fait d’avoir
un milieu dispersif au lieu d’un milieu de gain filtrant afin de limiter la largeur de
bande ne semble pas affecter la forme de I'impulsion. Cela s’explique par le fait que
I’absorption saturable cause une décroissance exponentielle des ailes de I'impulsion
(Haus et al., 1994). Les autres moments décrivant I'impulsion peuvent étre facilement

calculés et sont décrits dans le tableau (7.2.4), en posant que le gain s’écrit selon
I'éq. (7.67).

Moments | Moments et facteurs de forme
<T<§<2£>22> e
2 _
(TQ), 0, 7231 sgn(fs)
(©2) | 0,366 (P (14 52)
(P) (P (1+252)
(T*)(0Q?) 0,8572
a 0,2403
RTQ 1
RpQ 1
KQ 2,4944
RTQ3 ]., 956
KPTQ 1

TABLEAU 7.3 Moments et facteurs de forme de la solution approximative du laser a
verrouillage passif en présence de dispersion.

Il y a quelques différences notables par rapport au cas actif et au cas non-dispersif.
En comparant avec le cas du verrouillage actif, nous voyons une correspondance entre
le role joué par le filtrage temporelle actif du modulateur (€) et celui passif de I’ab-
sorbant saturable (§). Les facteurs de forme ont également des valeurs similaires &
I'exception du parametre ko qui est légerement plus faible dans le cas passif que

dans le cas actif ol kg = 3 indique une densité spectrale gaussienne. En comparant
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maintenant au cas du verrouillage passif sans dispersion, nous voyons également une
différence car la valeur de ko = 4,2 signifie dans ce cas que la densité spectrale a
également une forme de sécante hyperbolique. Nous en déduisons que 'effet de la dis-
persion est d’atténuer les ailes spectrales de I'impulsion donnant une densité spectrale
s’approchant un peu plus d’une parabole. Une autre différence notable est la forme
de la phase décrite a travers le facteur krqs qui est deux fois plus grand dans le cas
passif que dans le cas actif ce qui reflete également le fait que la densité spectrale
est différente. Notons finalement que la méthode des moments présentée ici n’informe
pas sur la stabilité des impulsions. Dans le cas du laser avec verrouillage passif avec
dispersion, aucun élément ne fixe le taux de répétition dans la cavité, ce qui peut
avoir deux conséquences. Premierement, le spectre devient infiniment large, ce qui est
physiquement impossible a cause de ’étendue finie du gain. Deuxiemement, le laser ne
se verrouille pas car tous les longueurs d’onde ont des temps de propagation différents
dans la cavité. Pour remédier a ce probleme, il faudrait un verrouillage hybride des

modes.

Laser a verrouillage hybride des modes (3, =4 = p = 0)

Nous obtenons un verrouillage hybride des modes si nous considérons simul-
tanément un verrouillage actif et passif des modes. Puisqu’aucun terme n’induit un
déphasage, nous avons (T€2), = 0. Dans ce cas, les équations pertinentes décrivant

les autres moments du systeme s’écrivent

0 =—G(rra — I(T*NQ?) -

0=—a(kpo — I{T*)(Q?) +
0 =5(Q?) — §<P) — {17 (7.89¢)

0=— (kg — 1){(Q*? + 6(kpo — D{PYQ?) — &(krq — 1){T?)(Q?) (7.89d)

avec I’équation supplémentaire suivante.

0= —a(kpro — (T?)(Q?) +96 {%P (42__3aa) - 1] (P)(T?) — 2¢ (i = ig) (T?)?
(7.90)
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Nous avons 4 variables & déterminer : (P), (T?), (Q?) et a. En utilisant le principe
d’incertitude et 1'éq. (7.89c¢), il nous faut deux équations et donc deux facteurs de
forme a réduire. Nous prenons les égs. (7.89a) et (7.89b), ce qui signifie qu’il faut

simplifier les facteurs de forme kq et kKpq. Ces facteurs de forme s’écrivent alors

kro = — (1 + 4a) ( 22__3;) (7.91)

3/(4—a 14+a
=— 7.92
rra 2(2+a) (2—a> (7.92)

En résolvant nous trouvons trois valeurs pour la forme a = {—0,6856;0;0,2838}.

Ces trois valeurs de a sont admissibles puisqu’aucune ne donne une valeur négative
de (T?). Il y a deux facons d’interpréter ces trois valeurs. Premierement, les trois
formes d’impulsions sont des solutions du systeme d’équations. Deuxiemement, les
trois solutions proviennent en partie des approximations sur les moments d’ordre
supérieur et certaines d’entre elles ne sont pas des solutions valables. Il est clair que
toutes ces valeurs ne peuvent étre des solutions du systeme car le cas gaussien a = 0
qui est exactement représenté par la distribution de Pearson n’est pas une solution de
I’équation maitresse. Afin d’éliminer les valeurs de a donnant des solutions invalides,
nous approximons le facteur de forme rkpprq et résolvons le systeme a l'aide de ce

dernier. Nous obtenons

ko =2 ;Sa) (12;4;) ( ; i Z) (7.93)

qui donne, apres résolution les valeurs a = {0,2325;0,8707}. De ces deux valeurs,

la deuxieme est invalide par le principe d’incertitude. La premiere s’approche suf-
fisamment de 0,2838 pour que la différence entre les deux s’explique par les er-
reurs d’approximation sur les moments d’ordre supérieur. Nous obtenons donc une
forme d’impulsion qui s’approche plus d'une sécante hyperbolique que d’une gaus-
sienne. Par ailleurs les facteurs de formes sont, pour la valeur moyenne a = 0.2582,
kra = —1,4301 et kpo = 1,7954, ce qui correspond au cas du verrouillage passif a
une différence inférieure a 0.3%. Ce résultat correspond bien a ce que nous obser-
vons expérimentalement ou la modulation active sert a démarrer le verrouillage mais
éventuellement dominée par le filtrage passif de ’absorbant qui, ultimement, dicte la
forme de l'impulsion (Delfyett et al., 1992), (Weber et al., 1992).
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7.3 Conclusion

Les équations différentielles maitresses des lasers ne sont solubles que dans quelques
cas particuliers de maniere analytique; les moments nous permettent toutefois de
trouver des solutions approximatives dans la plupart des cas. En écrivant les équations
maitresses des lasers par I’entremise des moments, nous avons pu ramener 1’équation
différentielle décrivant I'impulsion laser en un systeme d’équations non-linéaires. Ces
équations expriment diverses relations entre des moments d’ordre différent. Pour
résoudre le systeme, il nous a fallu exprimer les moments d’ordre supérieur en fonction
des moments de plus bas ordre.

Nous avons utilisé la distribution de Pearson avec une phase logarithmique pour
ce faire. Bien que la phase logarithmique soit moins précise que la phase non-linéaire
avec une contribution quadratique pour la propagation dans les fibres optiques, elle
est fréquemment utilisée dans la plupart des solutions analytiques des lasers. En
réduisant les moments d’ordre supérieur aux moments (72), (TQ),, (%) et (P) ainsi
qu’a différents facteurs de forme, nous avons pu résoudre le systeme dans divers cas.
Nous avons considéré trois cas bien connus et résolus analytiquement pour valider
notre méthode : le laser a verrouillage actif, le laser a verrouillage passif et le laser
solitonique. Nous avons aussi étudié trois cas ou les solutions analytiques n’existent
pas : le laser a verrouillage actif accordable en dispersion incluant la non-linéarité, le
laser a verrouillage passif incluant la dispersion et le laser a verrouillage hybride.

Les trois cas de validation nous ont donné des résultats tres proches des solutions
analytiques. Dans le cas du verrouillage actif, nous obtenons le méme résultat que la
solution analytique. Dans le cas du verrouillage passif, nous avons une erreur moyenne
inférieure a 3,5% sur les facteurs de forme des impulsions. De plus, nous obtenons les
meémes relations entre les parametres des impulsions et les parametres de la cavité laser
que dans le cas analytique. Le laser solitonique nous donne un résultat similaire en
procédant de différentes facons pour faire le calcul ; toutes ces fagons donnent le méme
résultats avec une variation inférieure a 8%. Nous obtenons également dans ce cas les
mémes relations, a 'approximation de coefficients pres, entre les caractéristiques des
impulsions et les parametres de la cavité.

Nous avons finalement étudié trois cas n’ayant pas de solution analytiques. Le
premier de ces cas est le laser a verrouillage actif des modes accordable en dispersion. I1

existe une solution analytique a I’équation maitresse de ce laser lorsque la non-linéarité
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est absente. Lorsqu’elle est présente, aucune solution analytique exacte n’existe. Nous
avons résolu les équations maitresses par 'entremise des moments dans les deux cas et
les avons comparés. La solution linéaire s’exprime de maniere explicite et la solution
non-linéaire de maniere implicite ; a faible puissance, le cas non-linéaire converge vers
le cas linéaire. De plus, nous constatons que la forme de I'impulsion dans le temps ne
semble pas étre changée par la présence de la non-linéarité ; toutefois les facteurs de
forme décrivant la densité spectrale sont fortement influencés par cette derniere.

Le deuxieme cas étudié sans solution exacte est le verrouillage passif avec dis-
persion. Dans le cas passif sans dispersion, c’est la largeur finie du milieu de gain
qui limite la durée de I'impulsion temporelle et donne une solution stable. Dans ce
cas, il y a un effet «solitonique» entre la perte de I’absorbant saturable et le filtrage
spectral du milieu de gain. Qu’arrive-t-il si a 'instar du verrouillage actif accordable
en dispersion, nous remplagons le filtrage par la dispersion? La solution analytique
approximative alors trouvée est encore une sécante hyperbolique. La solution ainsi
obtenue ressemble par ailleurs énormément a la solution dans le cas actif ou le role
du filtrage temporel actif du modulateur a été remplacé par le filtrage temporel passif
de I'absorbant saturable.

Finalement le dernier cas analysé est le verrouillage hybride ou les filtrages tempo-
rels actif et passif sont présents dans la cavité. La résolution des équations donne une
forme d’impulsion en sécante hyperbolique, ce qui correspond bien a ce qui est ob-
servé expérimentalement. Le verrouillage actif, donnant une impulsion gaussienne, ne
sert qu’a amorcer le verrouillage qui est finalement dominé par I’absorbant saturable,

donnant I'impulsion sécante hyperbolique.
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Chapitre 8
Conclusion

Dans cette these, nous avons utilisé les moments afin d’étudier la propagation d’im-
pulsions dans un milieu dispersif et non-linéaire décrite par 1’équation de Schrodinger
non-linéaire. Pour ce faire, nous avons établi un formalisme de moments complexes,
utilisant des opérateurs linéaires et non-linéaires, ce qui a permis de représenter clai-
rement les équations ainsi que la physique sous-jacente. En supposant que la phase
temporelle du champ est quadratique et en utilisant les moments d’ordre 2, nous avons
dérivé une solution analytique décrivant pour la premiere fois, a notre connaissance,
I’évolution de I'impulsion a la fois dans le régime de dispersion normale et anormale.
Cette solution a été obtenue au moyen de trois invariants, dont deux proviennent
de 'approximation de la phase quadratique. Ces invariants représentent la conser-
vation de la somme des effets dispersif et non-linéaire, la conservation de ’énergie
et la conservation de la forme de I'impulsion. Dans le régime de dispersion normale,
I’évolution des moments est asymptotique alors qu’elle est périodique dans le régime
de dispersion anormale. Différentes quantités importantes ont pu étre obtenues, telles
que la distance pour avoir une impulsion « Fourier-limitée » ainsi que sa durée a ce
point. Afin de vérifier la validité de cette solution, elle a été comparée a la simulation
numérique de I’évolution de I'amplitude complexe du champ. La comparaison montre
un excellent accord entre la solution analytique et la solution numérique dans le régime
de dispersion normale. Bien que I’accord ne soit pas aussi bon dans le régime de dis-
persion anormale, le comportement des deux solutions est qualitativement le méme.
Des équations approximatives linéaires ont été obtenues pour décrire I’évolution non-
linéaire pour de tres courtes distances et pour de tres longues distances lorsque la
dispersion est normale ; on donne aussi la distance a laquelle la transition se fait entre
ces deux solutions approximatives.

Les moments d’ordre 2 ne décrivent que les principales caractéristiques de 1'im-
pulsion : sa durée, sa largeur spectrale, sa puissance effective et son « chirp ». Ils

ne décrivent pas directement la forme de l'impulsion. La solution obtenue en ne
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considérant que les moments d’ordre 2 ne permet pas non plus de décrire I’évolution
de la forme de I'impulsion puisque le second invariant dit que la forme de I'impul-
sion est constante. Afin de voir comment une impulsion gaussienne se déforme lors
de sa propagation dans un milieu dispersif normal et non-linéaire, nous avons utilisé
les équations linéaires approximatives et supposé que les moments de ces équations
étaient des fonctions du temps. En remplacant ces équations dans les solutions analy-
tiques des propagations purement dispersive et purement non-linéaire, nous avons ob-
tenu des solutions implicites. Lorsqu’elles sont comparées aux simulations numériques,
ces solutions implicites décrivent tres bien la propagation d’une impulsion gaussienne,
incluant sa déformation.

Afin d’avoir une facon systématique d’étudier 1’évolution de la forme de I'im-
pulsion lors de la propagation dans un milieu dispersif et non-linéaire, il faut al-
ler au-dela d’une simple approximation quadratique de la phase. Pour ce faire, il
faut non seulement une meilleure approximation de la phase, mais il faut également
pouvoir approximer la norme du champ complexe. Nous avons donc examiné trois
modélisations différentes de la phase temporelle : la phase quadratique, la phase qua-
dratique avec une contribution non-linéaire et la phase logarithmique. La norme a
été représentée par la distribution de Pearson. Celle-ci permet de représenter une
variété de formes d’impulsions dont la gaussienne, la parabole, la lorentzienne ainsi
que de passer continument de I'une a l'autre. Différents moments peuvent étre em-
ployés afin d’obtenir les parametres de ces modeles. Plusieurs simulations numériques
dans les deux régimes de dispersion ont été faites, d’une part, pour déterminer quelle
modélisation est la plus précise et, d’autre part, quels sont les moments les plus
adéquats pour représenter les parametres. Il ressort que la phase quadratique avec
contribution non-linéaire donne les résultats les plus précis, que les moments de plus
bas ordre donnent de meilleurs résultats et qu’il vaut mieux comparer les moments
d’ordre 2 avec les moments d’ordre 2 non-linéaires plutot qu’aux moments d’ordre
4 pour décrire la forme de I'impulsion. Différentes propagations numériques ont per-
mis de déterminer que les moments contenant les opérateurs Q® et Q% ne sont pas
bien décrits par les modeles étudiés et qu’il vaut mieux éviter de les inclure. Finale-
ment, une analyse de points fixes a montré que la modélisation basée sur la distri-
bution de Pearson et la phase quadratique avec contribution stationnaire permet de
décrire différentes formes d’impulsion stationnaires dont la gaussienne et la parabole,

la sécante hyperbolique ne pouvant toutefois pas étre obtenue par ce modele.
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La modélisation développée a ensuite été appliquée aux équations maitresses des
lasers tout-fibre qui décrivent 'impulsion stationnaire de la cavité laser sous forme
différentielle. Il existe de nombreuses équations maitresses selon les différents éléments
optiques présents dans la cavité; chacune de ces équations a une solution différente
qu’il faut déterminer. Puisque ces équations sont souvent non-linéaires, il n’existe pas
de moyen systématique d’obtenir une solution. En appliquant la méthode des moments
et en utilisant la distribution de Pearson ainsi que la phase logarithmique (couram-
ment obtenue dans les solutions des équations maitresses), les équations maitresses
peuvent étre ramenées a un systeme d’équations algébriques non-linéaires. Ce systeme
a été résolu dans trois cas ou une solution analytique a l’équation maitresse est
connue : le laser a verrouillage actif des modes, le laser a verrouillage passif des
modes et le laser solitonique. Dans le premier cas, nous avons obtenu la solution ana-
lytique a I’équation maitresse. Dans les deux autres cas, des solutions approximatives
qui ont été trouvées donnent les mémes relations physiques entre les parametres de
I'impulsion et ceux de la cavité et une forme d’impulsion qui s’approche a moins de
5% de la sécante hyperbolique, qui est la forme de la solution analytique dans ces
cas. Nous avons ensuite utilisé le méme modele pour décrire trois lasers pour lesquels
aucune solution n’est, a notre connaissance, connue : le laser a verrouillage actif des
modes accordable en dispersion (incluant la non-linéarité), le laser a verrouillage pas-
sif des modes accordable en dispersion et le laser a verrouillage hybride des modes.
Dans les trois cas, les solutions obtenues sont cohérentes avec ce qui a été observé
expérimentalement. La méthode que nous avons développée permet donc de s’atta-
quer a des équations maitresses afin d’obtenir des solutions approximatives lorsque
les solutions analytiques ne sont pas connues.

Finissons sur différentes avenues qui peuvent étre explorées a l'aide du travail
de cette these. Premierement, il est possible de s’attarder a d’autres modélisations
et représentations. La distribution de Pearson est probablement la fonction la plus
simple pour représenter différentes formes d’impulsion puisqu’elle n’a qu'un parametre
de controle. Différentes formes a deux ou plusieurs parametres sont envisageables,
pour représenter, entre autres, le centre et la base de I'impulsion individuellement.
La modélisation de la phase peut également étre améliorée, en essayant, entre autres,
d’obtenir une phase qui soit proportionnelle au carré de la fréquence, mais qui soit
exprimée dans le domaine temporel. Une autre option intéressante est d’introduire

de nouveaux opérateurs définissant de nouveaux moments. Par exemple, aucun des
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opérateurs utilisés ne permet de mesurer le centre de I'impulsion ; les opérateurs en
T7 n’accordent que du poids sur les ailes. L’opérateur P le fait seulement quand
I'impulsion est une cloche et le fait d’'une maniere relative a la forme de I'impulsion.
Des opérateurs de la forme 1/(1 + T%) ou de la forme (1 + T?)™7 permettraient
d’avoir une lecture fiable du centre de la distribution. Il faut toutefois se rappeler que
la plus grande difficulté avec la modélisation par les moments est de déterminer une
représentation de la norme, de la phase et des opérateurs qui sont intégrables dans la
définition des moments.

Une autre avenue est de considérer les effets asymétriques tels que la dispersion
d’ordre 3, l'auto-raidissement et ’auto-décalage Raman. Dans ce cas, la norme du
champ peut, par exemple, étre représentée par la distribution de Pearson incluant
I’asymétrie et la phase temporelle étendue en ajoutant un terme linéaire et un terme
cubique. La difficulté survenant avec les distributions asymétriques est que les mo-
ments centrés ne sont plus égaux aux moments bruts. Les expressions deviennent plus
lourdes et difficiles & gérer car les moyennes (moments d’ordre 1) changent avec les
effets asymétriques, ce qui a une répercussion sur tous les autres moments.

Il serait également intéressant d’appliquer les moments aux équations couplées
telles que les équations définissant le gain Raman ou le mélange a quatre ondes. La
difficulté dans ce cas est qu’il y aura différentes covariances; non seulement entre le
temps et les fréquences, mais entre les champs aux différentes longueurs d’onde. 11
faut également pouvoir tenir compte des phases relatives des champs aux différentes
longueurs d’onde a travers les moments afin de bien modéliser les accords de phases
qui sont critiques dans les processus non-linéaires.

Finalement, deux avenues peuvent etre envisagées dans le cas des lasers. Premiere-
ment, il serait intéressant d’utiliser d’autres modélisations de la phase et d’étudier
I'impact qu’elles ont sur les solutions obtenues par rapport a celles utilisées dans
cette these. Entre autres, le fait d’utiliser une contribution non-linéaire a la phase
donne-t-il d’autres formes d’impulsions 7 Si tel est le cas, il y aurait d’autres solutions
aux équations malitresses qui n’apparaissent pas avec les solutions analytiques tradi-
tionnelles. Finalement, ’avenue qui est certainement la plus intéressante a explorer
est I’étude des équations maitresses discrétes. Les équations maitresses que 1'on re-
trouve dans la littérature se basent toutes sur les modeles moyens ou tous les effets
sont supposés déformer peu les impulsions. Or, dans beaucoup de lasers ayant en ce

moment une grande importance technologie, tels que les lasers « stretched-pulse »
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et auto-similaires, I'impulsion se déforme considérablement dans la cavité et la non-
linéarité y joue un role clef. La non-linéarité est devient tellement importante qu’elle
cause la rupture du front d’onde, ce qui limite I'énergie des impulsions pouvant étre
générées par le laser. Ces effets ne peuvent étre analysés par les équations maitresses
moyennes. Un modele est difficilement envisageable dans bien des cas puisqu’il faut
trouver une fonction de transfert du champ complexe a travers chaque élément op-
tique de la cavité. Les moments s’averent un outil puissant pour calculer ces fonctions
de transfert et ainsi obtenir une équation maitresse discrete exprimée en termes des
moments. Ces équations pourraient présupposer une forme d’impulsion ou déterminer
une forme moyenne de I'impulsion ou encore suivre la déformation de I'impulsion a
travers chaque élément. Une modélisation adéquate de la phase permettrait d’étudier
la rupture du front d’onde apres chaque élément optique et ainsi déterminer les limi-

tations de ces cavités tout en optimisant leur design.
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Annexe A

Définitions et propriétés des

moments

Cette annexe présente différentes propriétés des moments et explicite certaines

des définitions des moments.

A.1 Propriétés des moments complexes

Considérons le moment (#/w*) d’ordre n = j + k défini dans le domaine temporel.

() = %/Z At (i%)k/ldt (A1)
E= /Z |A(t)|2dt. (A.2)

En faisant la transformée de Fourier de 'éq. (A.1), les moments peuvent étre définis

dans le domaine spectral.

Wty =3 [ At (%) () (A3)
B= [l (A1)

A.1.1 Définition des moments purs dans le domaine spectral

En posant j = 0 dans 1'éq. (A.3), les moments purs spectraux s’écrivent

W) = 5 / " AW)] d. (A.5)

—00

Il ressort de 1'éq. (A.5) que les moments purs spectraux sont bien réels.
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A.1.2 Définitions récurrentes

Il est possible d’exprimer le moment (t/w*) différemment en intégrant par partie
k fois la définition éq. (A.1).

(W) = (WFtd)* (A.6)

, i b ps
=2 —;)!(k—p)!w W (A7)

L’éq. (A.7) est intéressante car elle exprime le moment (t/w*) en fonction des mo-
ments d’ordre égal ou inférieur. Pour y voir plus clair, exprimons les parties réels et

imaginaires de (#w*) en fonction de ces moments d’ordre inférieur

(), =3 () + (P)") (A8)
- e Qe
(Puk)s = — = ((F) = (H)?) (A.9)
- Qe St

en fonction de ces moments d’ordre inférieur ou les indices r et ¢ dénotent respecti-
vement les parties réels et imaginaires. Nous voyons & I’éq. (A.8) que la partie réel
(tiwhk), dépend de la partie imaginaire et la partie réelle des moments d’ordre égal
ou inférieur. Il en va de méme pour la partie imaginaire (t/w*);. Il est donc pos-
sible , par substitution, d’exprimer les parties imaginaires des moments en fonction
des parties réelles des moments d’ordre inférieur. Une autre fagons d’écrire les par-

ties réelles et imaginaires des moments est d’utiliser les relations de commutation et



189

d’anti-commutation des moments.

kY — (kY = 2i (W), (A.10)
(k) + (WP = 2(tTWk),. (A.11)

i (") — (W)
{t/, W'} = {tPw") + (W)

|_,

Nous voyons & 1’éq. (A.10) que les opérateurs #/ et w* ne commutent que pour les

moments purs, c¢’est-a-dire lorsque 7 =0 ou k£ = 0.

A.2 Définitions explicites des moments

Les sous-sections suivantes contiennent les définitions des moments présentées de
manieres explicites en terme de 'amplitude de la distribution complexe, A(t) et A*(¢),
ainsi que sa norme et sa phase A(t) = r(t)exp [i¢(t)]. Les indices r et i dénotent
respectivement les parties réelle et imaginaire. Lorsqu’aucun indice n’est présente, le
moment n’a pas de partie imaginaire et est donc réel. Les dépendances temporelles

des quantités, (t), n’est pas explicitement affichées pour alléger la lecture.

A.2.1 Moments complexes
Ordre 0

Le moment d’ordre 0 est utilisé pour normalisée les moments d’ordre supérieurs.

E:/ |A|2dt:/ r2dt (A.12)

Ordre 1

Les moments d’ordre 1 représentent la position de la distribution dans le domaine

temporel et spectral.
(t) ! /OO t|Al2dt = ! /oot 2dt (A.13)
= — — r .
EJ E

() :%/wm—d ———/ (A.14)



190

Ordre 2

Les moments d’ordre 2 sont reliés a la largeur temporel et spectral de I'impulsion

ainsi qu’a I'ampleur de la phase.

(t?) = %/ 2| A]Pdt = %/ t2r2dt (A.15)
(1), {% / A*tcfi—tdt} - / %dt (A.16)
<tw>i:§{é / A*t%dt} 1 (A.17)

1 [~ . dPA 1 [ (dr\® do
E/_mAtﬁdt —E/_m (a) (dt> dt (A.18)
Ordre 3

Les moments d’ordre 3 caractérisent I'asymétrie de la norme et de la phase de la

distribution.
0y = L / T papa = L / T 2 (A.19)
EJ . EJ]
sy )t [T dA _l/oo22d¢
(t @_m{E/OOAt - dt} = [ e (A.20)
2 o x i * * QdA
(2w); \S{E/ e dt} () (A.21)
L, d2A < rdr\? , [(do\’
A
2y ) = L
(2, J{E/ A tdth} () (A.23)

i [ dBA Lo, (dr\do 3o

—0o0
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Ordre 4

La forme de 'impulsion est caractérisée en comparant les moments d’ordre 4 avec

les moments d’ordre 2.

) = %/ 3 Al2dt = %/ thr2dt (A.25)
(BPw), = {%/ A*t?’%dt} - —%/ r2t3d—fdt (A.26)
3.\, — i = *3ﬁ :—§t2 A2
(), \S{E/OOAt dtdt} () (A.27)
1 [ d2A 1 [~ [(dr\? do\?

2 2\ _ )t A2l a2 2= 2 == ) dt—1
(202, %{E/_oo tdtht} E/_Oot (dt)+ r(dt)
(A.28)
1 [ . d*A
. i [ . dPA 1 /°° dr\*do 3 ,d2¢ ., d¢
S ——dt y = — 3t — | =+ =L rit——dt
(tw’), %{E/OOA tdt3 dt} 5/ 3t ) a@ + 5" I +7r o
(A.30)
i [ dBA 3
o0 4
(W) = % / A*%dt (A.32)
1 [ [(d>r\> d>r dr\?| (do\®  , (do\'  , [(dp\’
=/ (%) ‘[W”(%) ] (&)« (@) - (@) «

(A.33)
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A.2.2 Moments non-linéaires
Ordre 1

Les moments d’ordre 1 non-linéaires décrivent 1’asymétrie de la norme de I'impul-

sion dans le domaine temporel et la position dans le domaine spectral.

(Pt) = %/ t|A[*dt = %/ tridt (A.34)
e dA 1o
(Pw), = 5}%{%/ |A|2A*Edt} _ _E/ r4d—fdt (A.35)
e y
<Pw)i=§)‘ﬁ{é/ |A|2A*Cfi—tdt} 0 (A.36)

Ordre 2

Les moments d’ordre 2 non-linéaires sont reliés a la largeur temporel et spectral

de I'impulsion ainsi qu’a I'ampleur de la phase.

(Pt?) = %/Z | Al*dt = %/Z t2r3dt (A.37)
(Pto), = R {é /_ : \A;?A*t%dt} - /_ Z r‘%%dt (A.38)
(Pto)i = S {% /_ Z \A[M*t%dt} _ —% (A.39)
(Pw?), = —R {% /Z |A|2A*%dt} = —% /C: 7“3% —rt <%)2dt (A.40)
(Pu?); — —R {% /_Z |A\2A*%dt} _ _% /_Z T—;%dt (A41)

A.3 Moments centrés

Dans cette section, les relations explicites entre les moments centrés et les moments

bruts sont présentées.



A.3.1 Moments complexes
Ordre 1

Les moments centrés sont par définition nuls.

(T) =0
(Q)=0
Ordre 2
(T?) = (") — (t)°
(T, = (tw), — (t){w)
(Q%) = (W) — (W)*
Ordre 3
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(A.44)
(A.45)
(A.46)
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Ordre 4

(T = (Y — 43 () + 6(t*) (t)* — 3(t)* (A.51)
(T%Q), = (FPw), — 3(t%w) () + 3{tw), ()% — (t*)(w) — 3(t*) () {w) + 3(t)* (w)
(A.52)
(T%0%), = (1%W?), — 2(t°w), (w) — 2(tw?), (t) + 4(tw),(t)(w)
+ (W (1) + () (w)? — 3(w)*(t)* (A.53)
(TQ) = (tw?), — 3(tw?), (W) + 3(tw), (W) — (1) {W?) = 3(wW?) (1) (w) + 3(t)(w)”
(A.54)
() = (W) = 4w’) (W) + 6(w?){w)® = 3(w)* (A.55)
A.3.2 Moments non-linéaires
Ordre 1
(PT) = (Pt) — (P){t) (A.56)
(PQ), = (Pw), — (P){w) (A.57)
Ordre 2
(PT?) = (Pt?) — 2(Pt){t) + (P)(t)* (A.58)
(PTQ), = (Ptw), — (Pt){w) — (Pw),(t) + (P)(t)(w) (A.59)
(PQ?), = (Pw?), — 2(Pw),(w) + (P){w)’ (A.60)
(PQ?); = (Pu?); (A.61)
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Annexe B

Détails de calculs

B.1 Résolution du systeme dispersif a ’ordre 4
Soit le systeme dispersif décrit par I’équation de propagation

0A 3 PA

Les équations d’évolution des moments complexes centrés d’ordre 4 s’écrivent dans

%<T4> = 46,(T°Q), (B.2)
%<TSQ> = 30, (% + <T292>r) (B.3)
%<T292> = 26,(TQ%), (B-4)
%<TQ3> — 52<Q4>r (B.5)

O 2 =0 (B.6)

dz
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Le systeme peut étre intégré en commencant par 'éq. (B.6) et en remontant jusqu’a
I'éq. (B.2). On obtient alors

(T = (T*)o + 452(T>Q) gz + 633 (% + <T2QQ>0) 22+ AB(TO) 2% + By () 2?

(B.7)

(T3Q) = (T3Q) + 355 (% + <T2Q2>0) 2+ 363(TQ) 2% + B (24)2" (B.8)
(T?Q%) = (T?Q%)o + 20:(T Q)02 + 55 ()02 (B.9)
(TQ?) = (T)o + Ga{2)02 (B.10)
QY = (QY),. (B.11)

Le changement de forme d’impulsion peut étre exprimé par le facteur de forme rp
a 'aide des égs. (B.7) et (4.30c).

(1)

(1)

(T*)0 4+ 482(T3Q)oz + 6533 (5 + (T2Q%)g) 2% + 4G5 (T3 o2% + B3 (Q*)o2?
((T?)g + 262 (T Qo2 + B2(02)22)

(B.12)

R =




Annexe C

Fonctions utiles

C.1 Fonction Gamma

Cette annexe présente quelques propriétés utiles de la fonction Gamma.

C.1.1 Définition

F(:):):/ t" e tdt
0

Le cas ot x < 0 est calculé en utilisant les propriétés suivantes.

C.1.2 Propriétés

[(z+1)=2l'(z) = 2!

n—1

L(nz) = (27) = n" 2 [T (

k=0
™

MN—2z)=—-———"+—=—

~ #D(z) sin(mz)

92z _ 2/l (2z)

(@) (v + 3)

) neN
n

[(x + 1) sin(7x)
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(C.1)
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C.1.3 Approximation asymptotique (x — o)

—1 _a 1 1 139 571
D(z) = vama™ e (1 T 127 T 2882 5184047  24883200° | ) (C6)
I (z+3) 1 1 5 21 1
T(z) Ve (1 T8 282 T 1024° 3276840 ) ~ Ve <1 a 87;)
(C.7)
[(z—1 1 —1
[(x) 4/x \ 2z — 1
L(r+a) _ (a—b)(a+b—1)
T(z+b) L 2 (C.9)
C.1.4 Valeurs particulieres
1
L(G)=vm (C.10)
3 1
F(§) = §ﬁ (C.11)
C.2 Fonction Beta
Cette annexe présente quelques propriétés utiles de la fonction Beta.
C.2.1 Définition
1
B(z,y) = / "1 — )yt x>0, y>0 (C.12)
0
© ! I'(@)I'(y)
— - dt=—L 7 C.13
/0 (1+¢t)=ty [(zx+y) ( )

Les valeurs négatives de = et y sont déterminés a partir de la relation de récurrence

C.2.
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C.2.2 Propriétés

B(x,y) = W(1+b)°* /01 %dt (C.14)
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Annexe D

Définition des moments de la

distribution de Pearson

Dans cette annexe, les différents moments sont exprimés en fonction des pa-
rametres des deux représentations de Pearson utilisées au cours de ce travail. Ces

deux représentations sont

_ (1+ic)

A(T) = /P, (1 + %T2> ” (D.1)

Anf(T) = \/P. (1 + %TQ)_;"' exp (BT + f|Ans (1)) (D.2)

Les deux représentations ne different que dans la définition de la phase. Ainsi, elles
partagent les mémes définitions des moments ne contenant pas 1’opérateur ) puisque

la phase est définie dans le domaine temporel.

D.1 Relations de récurrence

La distribution de Pearson peut étre réécrite sous forme différentielle en dérivant

par rapport au temps les égs. (D.1) et (D.2).

d
(aT? + b)d—TAC =—(1+ic)AT (D.3)
d d
(aT? + b)d—TAhf = — AT+ (aT? +b) (2hT + fd—T|Ahf|2) Apg (D.4)

Il est facile d’obtenir des relations de récurrence entre certains moments en multi-

pliant par l'opérateur ¢/ ou PP ou en appliquant I'opérateur w”

ou n’importe quelle
combinaison de ces dernier, en mulitpliant par A* et en intégrant de part et d’autre

I'éq. (D.3) ou (D.4). Par exemple, appliquons l'opérateur w de part et d’autre de
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I'éq. (D.3), multiplions par A} et intégrons par rapport a 7. Nous obtenons alors
a(T?Q%) + b(Q0?) + 2ia(TQ) = 1 +ic+ (c — i){(TQ) (D.5)

qui se sépare en partie réelle et imaginaire pour donner

R = a(T?Q?), + () + a = c(TQ), + % (D.6)
3 = 0= g —(TQ),. (D.7)

D.2 Calcul typique d’un moment

Considérons le calcul du moment (PPT71Q), avec une phase quadratique.

. ) T+ . A
(PPTI1Q), = R {%/ |Ah|2pA*TJ‘1%dT} (D.8)
2h [+ ~E
- —b—g prt (1 + %T2> TidT (D.9)

Les racines 1"y et T sont les valeurs de 7' ou la distribution s’annule ; ces valeurs sont

+o0 lorsque a > 0
T, = 3 : (D.10)
=+, /m lorsque a < 0
Il est plus simple de réécrire 1'éq. (D.9) en faisant le changement de variable suivant

0= %TQ df = #TdT (D.11)

et en exploitant la symétrie de la distribution de Pearson pour obtenir

j—1
+oo 6 2 de

i+l lorsque a > 0
. b 2 0 (p+1) =
<PpT]719>r — _E_ZPCIH*l (_) (}4‘91 a -1 . (D12)
a i(—1)2 [, —F5df lorsque a <0
(

1-0) o
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En remplagant I'expression de 1'énergie par 1'éq. (D.18), on obtient

j “+o0o 2] .
- 2nP? (b\? T (1) 0 —192(p+>d9 sia>0
(PPT77Q)), = — (1+6) )
Vb r(G-3) —(-1 2tan( )fo%dG sia <0
(D.13)
L’intégrale définit directement la fonction beta définie a I'annexe C.
; (£ p-;lf(ijl) )
(Prriciqy, — 2 (b) r(z) = )F((T = sa =0
r = /1 1\ ) J+1 _(p+1 .
/b P(Z=3) | —(~1)%tan (=) F(qur_[l 2] I sia<o
(D.14)

Il est possible de simplifier d’avantage ’éq. (D.14) en multipliant 'argument de la
fonction gamma de 1'expression o a < 0 en utilisant la propriété éq. (C.4) de la

fonction gamma.

3 ] ptl _ G+
(prriciqy, — _2hE2 (9)2F<3>F(%)F(a )
N NCEERRCS
1 sia>0
N (11 o (= SIn[n(%)f§<a ] sa<o (D.15)
( ) ( ) sin W(L)]

<pijle> 2\/h_Pp (b);r i)r(]%l)r(p_l_]%l)
" b

1 sia >0
. { tan (Z) cot [Z(p+1)] sia<0 (D-16)

Il est possible de 'exprimer plus simplement en fonction du moment (PPTV)

(PPTII), — Qbh (PPTY) (D.17)
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D.3 Moments d’ordre O

1_1
E—p /w_bF(a : 2) 1 | lorsque a > 0 (D.18)
a T (5) —1i cot (%) lorsque a < 0
P. 8—a
N7 7rb<2_a> (D.19)
ptl 1 1
(pry — prit o )IG) [ lorsque a 20y o5
D(ET(2—3) | tan(Z)cot [Z(p+1)] lorsque a < 0
PP 2—a 8(p+1)—a}
~ ¢ D.21
vp+1(8—a) [2(p+1)—a ( )



D.4 Moments d’ordre 2

D.4.1 Phase en ¢

(%) = (2 —b 3a)
(1), = 3
=5 (1)
(PT") (4b<_P3>a)
(pra), = 40
o, 55101 (12
(P} = 3?5}122)
(PPTQ), = 2?:’51—3:2)
o= (575)
P
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(D.22)
(D.23)

(D.24)
(D.25)

(D.26)

(D.27)
(D.28)
(D.29)
(D.30)
(D.31)

(D.32)
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D.4.2 Phase en h et f

(T?) = e _b %) (D.33)
(T, = — e 3h3a> + §<P> (D.34)
@ =5 (50t e (5re) 0
(PT?) = % (D.36)
(PTQ), = — (ih_u;z) +f <§2> (D.37)
(PQ?); = —%<P> + fg:) (2 1 Z) (D.38)
T B R
(P?Q?); = —%%(P% - %]j) (i—j) (D.40)

2 (52) ] £ (2) o
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D.4.3 Moments d’ordre 4

D.4.4 Phase en ¢

(T") = = 36‘?;)(22 " (D.42)
(T3Q), = ; 5 EC?)a) (D.43)
(T°0%), = —}l <1_13i#> (D.44)
e
RIS PR
P == gf)ii 5] (D-47)
(PT?Q), = 2 (:CEP;L) (D.48)
(PT?*Q?); = —@ (124;—2;) (D.49)
(PTG, - <];> 3(1 + ci)erZ()l +2a))] (D50)
(PTO), — 3% <1;> (4— a)[c<22(1+—a)23);5)(1 + 2a)] (D.51)
(PTQ?), = 3%0<f> (CQ(J; ia;)r 5) (;l . Z) (D.52)
(PO, — 3 (P) (16 — a?) [da(c® +3)(2 + a) + c* + 22 + 9] (D.54)

T 64 12 (24 3a)(2+a)(1 +a)
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D.4.5 Phaseen h et f

=G 35)5(22 —5a) (D.55)
T, == 2 - 3@6)6(2 “5a) T %(2]:(2) (D.56)
T2, == i (11145) - 333?22 “Ba) (64hf<?i>) {32 f;; (D.57)

=3[ - ] o ()
- 18b?jji<§i) - 62(];,21]33 i 25;?52 (i - Z) (D.58)

3 4 — a? 1+ 2a 1—2a 256h%
4\ _ 2 —
<Q>_16172 [(1+3a)(1+a)+32h (1+a> (2—3@)(2—5a)}

9 hf<P> (4—(1)_48 h3f<P> 12h2f2<P2>

_552(1+a) 2+ a m—i— m
f2<P2> (36_(12)(4a2+12a—|—11) B hf3<P3> (S—CL)
122 (34 2a)(3+a)(1+a) D22 +a) \4+a
3 f1(P) (100 — a?)

5 02 (5+3a)(5+24)(5+a) (D.59)



(PT") =

<PT3Q>7’ -

<PT292>1 —

(PT?Q%), =

(PTO?);

<PTQ3>7’ -

(PQY),;

<PQ4>7’ = -
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302(P)

(4= 30)(4—5q) (D-60)
6(4 — :?Z)((?— 50 + f(P?T?) (D.61)
(4hip3>a) - f<§2> (3312;) (D-62)
-~ (55%) * aswian) 3o g OO
_332 <IZ> {(ﬁh;a) -3 (111260@) <;L T Z)} (D-64)
i1 () ()
Gl oz ()l S (D-65)
a5 b2 SP:; * f<4b : (131++24aa) (g T Z) * gb{;fgi) (150+_aa>

0 [t ] - () (59)

REF(P2)  f(P) (36 — a?)(2a® + 6a + 7)
b’ (3+a) 602 (1+a)(3+a)(3+2a)
6 f3(P*) (100 — a?)

5 v (5+a)5+2a)(5+ 3a)

3(P)[. (16 —a2\ [(1+2a , (1—14a 1024k
ab_z[3<2+a)(1+a)+64h (2+ >+(4—3a)(4—5a)}
hf(P) (1+4a\ (6—a)\ 32RK3f(P?) 24  hf3(PY

b? (3+2a) (3—{—&) 3022—a) 5 (5+2a)5+a)

+24

(D.66)

10

h2F2(P%)  f2(P% (64 — a?)(12a — 48a — 51)
R(A+a) 320 (4+a)d+3a)2+a)
fHP%) (144 — a®)

TR G+a)Bra@+a) (D.67)

+9




D.5 Moments d’ordre 6

D.5.1 Phase en ¢

150°
(2 —3a)(2 —5a)(2 —Ta)
15 cb?

) =5 530 @ —5a)

42y 3b 5(1+02)_
<TQ>’"‘(2—3G>{Z<1+a) 2}
5 (14

(T°Q%), =3¢ {é (1+a)(1+2a) 1}

(T°) =
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(D.68)
(D.69)
(D.70)

(D.71)
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D.6 Moments non-linéaires d’ordre arbitraire

D.6.1 Phase en h

o ()5 (o)
- bmkﬁl 2 —(2(];16_ +1 )l)a] (D-73)
- (0) () S
) _%bm_l;ﬁl pRies FERA S D79
o () (oD o
(T*™0?); = —2m(T*™ Q). (D.77)

3 (@) (1)
(T?)2(14a)(2 — 3a)
(T, (T*™)  (2m+1)
4T?)2(1+a)[2— (2m + 3)d]
(T 1+ 2m
~ 8(T2)(2 — 3a) ( l+a
3(TQ)(T*™)  (2m+1)

S B o 3 M2 B0 (T (@) (2~ a)

2 — (2m — 1)(1 + 2a)][2 — a(2m + 1)] (D.78)

[4(2 = 3a)(1 + a){T*)(Q7) — (2 — a)]

) 2m(1 +4a) —3][2—a(2m+1)] (D.79)

(PT?™) = H1 2]; k_ +11 ol (D.80)
(PT?™ 1)), <b> (m + %) L (1“5(_2 i_%)m) (D.81)
= —2nb™ Y H 2];; +1 e %%iWPTm) (D.82)
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(PPT*™) = b™(PP) H

1

(2k — 1)
2(p+ 1) — (2k + 1)a]

(D.84)

pr2mo1 2y PpTQm 2m + 1 (1+a)(2—3a)(T*){Q* — (2 —a)
(PrTer) (1+a )[ p+1> @m +3)a
(D.85)
N (PPT2™) 2(p+ 1) — (2m + D)d][2(p + 1) — 2m(1 + 2a) — 1]
4(T?) (p+1)(p+1+a)?2—3a)
pr2m )2 A__<TQ>T pr2m 2m —p
(PPT*™ (%), = ) (PPT )(p+1) (D.86)
D.7 Autres moments
D.7.1 Phase en ¢
< 6T2>: <3+a> (D-87)

(s

<8A DA

(1 +c a
D.88
12b 3—|—a> ( )

(1+¢*)(16 — a®) [4a(2 + a) + ¢+ 3]
128 b2 (14+a)(2+a)(2+ 3a)

DA* DA (1+c*)(16 — a?)
OT 9T 64 b2 (1+a)( 2—|—a(2+3a

B
<8£ 227’129> 16 b2 11+C (24j3aa 2+a) (D.91)
).-
)~
)~

aT oT> (D-89)

(D.90)

0A* %A 5 (1—|—c 4+a
< ot o1? 6_46_2 (8c (1+a) <2+3a> (2—1—@) (D-92)
(1 + 3c? —2a a
S 16b(1 +a) >(2+a> (D-93)

< TO?
2 _ _
8A 0“A (1+c?) 1—2a 4—a (D.94)
32b l1+a 24a

8T oT1?




212

D.7.2 Phase en h et f

(P50 -3 (4
() - 2 () 2] -t £ (52)
(D.96)

<8A*83_A> _ 3 [(16—a2> <1+2a> 1982 <1—a) N 1024h* }
oT 013/, 64 b2 2+a l+a 2+a (4 —3a)(4 — ba)
+2hf(P2) (3—@) (6—a> _}_% hf3(P*) (10—&)

b? 3+2a) \3+a 50(5+2a) \ 5+a

R2PAPY) 32 WF(PY) 3 fA(P3)(64— a?)

et TS R2 ) 1PA T 3)Ata)2+a)

M) (- a)
1202 (64 a)(34+a)(2+a)

dA*PA\ 3 h 3283 1-2a\ (4—a h2f(P2?)
<8T ﬁ>i_§b_2<P> [(4—3@ - < 1+a) (2%)} _12b2(3+a)

L OhP(P) (8—a) (1+2a) L J(P?) (36 — a®)(1 + 6a + 20?)

(D.97)

4 b2 44+a 2+a 1202 (1+a)(3+a)(3+ 2a)
3 f3(PY) (100 — a?)
5 12 (5+30)(5+2a)(5+a) (D-98)
0A* 9*A _1h 32h? 1—2a\ (4—a h? f(P?)
<WWQ>T =i {(4 30 " ( 1+a ) (2 + a>] * 8b2(3 +a)
_ 3 AP (8 - a) n f(P?) (36 —a?)
202(2+a) \4+a 6b> (3+a)(3+2a)(1+a)
2 f3(PY) (100 — a?) (D.99)

5 8 (5+a)(5+2a)(5+ 3a)

<%%Q> = <(§L> {_ i+ a)((126—1—_ j(é T3y O (1214;) = fg?f - 5@]

BF(PY) (6-11a\ (6—a\ 24 hf3(PY) (10 -a
- 2<b2 > (3+2a) (3+a) _€b2(5i2c>1) (5+a>
CREHPY | RPPY 5 PP e )

3 0%(2—a) b2(4+ a) b2(4+a)(4+3a)(2+a)

PP (44 — a?)
120%2(6 + a)(3+a)(2+ a)

5
8

+

(D.100)



213

<g_1;TQZ>T - <11;2 (49Eh;a) + (11_—1—2:) (;L . Z)} + 4&?53 (D-101)
iy ()
sy (0 (o) s o

3
d*(P?) (1+2a)\ (8—a
160 2+4a 4+a




