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Résumé

Le travail de cette thèse traite de la propagation d’impulsions optiques dans

les guides d’onde, dont la fibre optique, ainsi que des impulsions optiques station-

naires générées par les lasers tout-fibre. La propagation d’impulsions lumineuses

dans un milieu dispersif et non-linéaire est étudiée par la méthode des moments.

Une représentation claire des moments est élaborée, ce qui apporte une meilleure

compréhension de la physique de la propagation. En supposant que la phase tem-

porelle de l’impulsion est quadratique, trois invariants sont trouvés et une solution

analytique basée sur les moments d’ordre 2 est obtenue. Cette solution décrit à la fois

le comportement asymptotique de l’impulsion dans le régime de dispersion normale et

son comportement périodique dans le régime de dispersion anormale. Dans ces deux

cas, la solution analytique est comparée à diverses simulations numériques et montre

une excellente précision dans le régime de dispersion normale. Dans le régime de dis-

persion anormale, la solution analytique décrit bien qualitativement le comportement

de la solution. De plus, des expressions linéaires approximatives décrivant l’évolution

non-linéaire de la propagation sur de petites et grandes distances sont déduites de la

solution analytique.

La solution analytique suppose cependant que la forme de l’impulsion est in-

variante lors de la propagation. Deux approches sont alors envisagées pour étudier

l’évolution de la forme de l’impulsion. La première de ces approches examine la pro-

pagation d’une impulsion gaussienne dans le régime de dispersion normale. Au moyen

des expressions linéaires approximatives et des solutions analytiques de la propaga-

tion dans des cas purement dispersif et purement non-linéaire, l’évolution de la forme

de l’impulsion est décrite de manière purement analytique. La comparaison avec les

simulations numériques montre un très bon accord. Pour pousser l’analyse au-delà de

la propagation d’une impulsion gaussienne dans le régime de dispersion normale, il

faut cependant une autre approche.

La seconde approche consiste à utiliser les moments d’ordre supérieur à 2 ; les

moments d’ordre 4 et les moments d’ordre 2 non-linéaires, les moments d’ordre 3

étant nuls puisque l’impulsion est supposée symétrique. Afin de résoudre les équations

des moments, il faut une modélisation plus précise de la phase qu’une dépendance
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quadratique. Trois différentes formes approximatives de la phase sont étudiées, ainsi

qu’une forme approximative sur la norme du champ basée sur la distribution de

Pearson, qui permet de représenter différentes formes d’impulsions. Ces différentes

approximations sont comparées, d’une part, aux simulations numériques à travers

différents moments et, d’autre part, en intégrant directement le système d’équations

sur les moments décrivant la propagation de l’impulsion. Une analyse de points fixes

est également faite sur les équations régissant l’évolution de l’impulsion. Il ressort

de ces études que la modélisation de la phase doit contenir un terme dispersif et un

terme non-linéaire pour décrire adéquatement l’évolution de la forme des impulsions.

Les modèles développés sont ensuite appliqués à un problème plus complexe que

la propagation dispersive et non-linéaire : les équations mâıtresses des lasers tout-

fibre. Dans ces équations, les différents effets des éléments optiques de la cavité sont

linéarisés et représentés sous forme différentielle. Selon les éléments optiques présents,

des solutions particulières sur l’enveloppe complexe doivent être déterminées, lors-

qu’elles existent. En appliquant la méthode des moments, une approche générale, qui

permet de transformer l’équation mâıtresse différentielle en un système d’équations

algébriques, est obtenue et les solutions étudiées. Les impulsions stationnaires des

lasers obtenues par cette approche sont comparées aux solutions analytiques sur

l’enveloppe complexe des équations mâıtresses dans trois cas de lasers : le laser à

verrouillage actif des modes, le laser à verrouillage passif des modes et le laser solito-

nique. La comparaison montre que l’approche générale développée fournit les mêmes

relations entre les paramètres de l’impulsion et ceux de la cavité laser. La forme de

l’impulsion est décrite avec une erreur inférieure à 5% pour trois différents types de

laser. Cette approche approximative est ensuite utilisée avec succès dans la résolution

de trois équations mâıtresses pour lesquelles aucune solution analytique n’existe. La

méthode que nous avons développée permet donc de décrire la propagation d’impul-

sions optiques dans un milieu dispersif et non-linéaire et ce, dans les deux régimes de

dispersion. Elle permet également d’étudier l’évolution de la forme des impulsions lors

de la propagation. Finalement, elle permet de s’attaquer à des équations mâıtresses

afin d’obtenir des solutions approximatives lorsque les solutions analytiques ne sont

pas connues.
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Abstract

This thesis is about the propagation of optical pulses in waveguides, such as optical

fibers, as the study of the steady-state optical pulses of all-fiber lasers. Pulse pro-

pagation in a nonlinear dispersive medium is analyzed in this thesis by the moment

method. A clear representation of the moments is developed which enables a better

understanding of the underlying physics of the propagation. Assuming that the pulse

has a quadratic time-dependent phase, three invariants were found which lead to an

analytical solution based on the second order moments. This solution describes both

the asymptotic behavior in the normal dispersion regime as well as the periodic be-

havior in the anomalous dispersion regime. In both cases, the analytical solution is

compared to numerous numerical simulations and shows an excellent agreement in the

normal dispersion regime. In the anomalous dispersion regime, the analytical solution

describes well the qualitative features of the propagation. Linear expressions are then

derived from the analytical solution to approximate the nonlinear propagation over

short and long distances.

The analytical solution assumes that the pulse shape remains invariant along pro-

pagation. Two different approaches are then considered to study the evolution of the

pulse shape. The first approach looks at the propagation of a gaussian pulse in the

normal dispersion regime. Using the linear expressions derived from the analytical

solution and the analytical solution of the purely dispersive and nonlinear propaga-

tion, the evolution of the pulse envelope is described analytically. Comparison to

numerical simulations shows a very good agreement. To go beyond the propagation

of a gaussian pulse in the normal dispersion regime, an other approach is needed.

The other approach makes use of higher order moments; either the fourth order

moments or the nonlinear second order moments (the third order moments being all

zero since the pulse is assumed symmetric). In order to solve the moments equations,

a model of the phase that goes beyond the quadratic phase approximation is requi-

red. Three such different approximate models are studied as well as an approximate

representation of the field amplitude based on the Pearson distribution, which can re-

present several pulse shapes. These different models are compared, on the one hand,

to numerical simulations through different moments and, on the other hand, by direct
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integration ot the approximated system of equations describing the evolution of the

moments. A fixed point analysis is also carried out on the equations describing the

evolution of the pulse shape. It arises from these analyses that a proper modeling of

the phase must consider a dispersive term and a nonlinear term in order to describe

the pulse shape evolution.

These models are then applied to the more complex problem of the master equa-

tions in all-fiber lasers. In these equations, the effects of the different optical elements

in the laser cavity are linearized and represented in their differential form. Then, de-

pending on which optical element is present, particular analytical solutions on the

complex envelope must be found, if they exist. By using the moments method, a

general approach that transforms the master equation into a set of algebraic equa-

tions is obtained and studied. The properties of the steady-state pulses obtained from

this method are then compared to the analytical solutions on the complex envelope

of the master equation in three cases: the actively mode-locked laser, the passively

mode-locked laser and the solitonic laser. The comparison shows that the general ap-

proach based on the moments yield the same relations between the pulse parameters

and cavity parameters and describes the pulse shape within 5%. This approach is

then successfully applied to three other master equations where no analytical solution

exists.

The analytical method developed in this thesis thus enables us to describe the

propagation of pulses in a nonlinear dispersive medium in both dispersion regime. It

also allows us to study the evolution of the pulse shape along propagation. Finally,

this method can be used to find approximate analytical solutions to master equations

where none are known.
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Chapitre 4 Propagation non-linéaire et les moments d’ordre 2 . . . . . . . . 30
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5.1 Propagations dispersive et non-linéaire . . . . . . . . . . . . . . . . . 60

5.1.1 Propagation dispersive . . . . . . . . . . . . . . . . . . . . . . 61
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versé pour I2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



xiv

Figure 4.2 Erreur relative entre les moments calculés numériquement et
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La variable à la queue de la flèche doit être connue afin de
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en cercles rouges. Les courbes sont tracées pour des distances

z/LD = {0, 1/4, 1/2, 1, 2, 4}. Les fréquences sont normalisées

par �Ω2�1/2
0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 5.5 Comparaison des puissances obtenues par les simulations numériques
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rapport N = 1 entre les effets non-linéaires et dispersifs. Le
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anormale (figure du haut) où N = 2 (ligne grasse noire). . . . 113

Figure 6.13 Comparaison numérique entre la représentation utilisant les
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ligne pâle avec les croix représente l’approximation de l’éq. (6.46).114
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Chapitre 1

Introduction

Les problèmes de design sont sûrement parmi les plus intéressants du domaine de

l’ingénierie. Ces problèmes consistent à trouver les paramètres d’un composant, d’un

appareil, d’un instrument, afin d’obtenir un résultat prédéterminé. Il existe bien des

outils pour faciliter le design tels que des règles de design déterminées empiriquement,

des modèles théoriques et des programmes de simulation. Les méthodes empiriques

sont généralement longues et coûteuses ; elles sont toutefois très rapides dans les

domaines où les technologies sont bien établies. Les modèles théoriques permettent

d’exprimer clairement les relations entre les paramètres de design et son résultat dans

la mesure où les équations puissent être résolues analytiquement. Autrement, il faut

résoudre numériquement.

La puissance sans cesse grandissante des ordinateurs a fait des simulations numéri-

ques un outils formidable pour tester les designs de toute sorte. Toutefois, tester des

designs est différent de créer un design. Les simulations nous permettent de connâıtre

le comportement de l’appareil en fonction de ses paramètres alors que le design est

le problème inverse : déterminer les paramètres pour un comportement donné. En

général, ce dernier est beaucoup plus difficile. La raison est qu’alors que le comporte-

ment se décrit par quelques variables, voire, une seule, il y a généralement plusieurs

paramètres de design. Quand le nombre de paramètres de design est faible, et que

les simulations associées au problème se font rapidement, il est possible d’utiliser les

simulations numériques pour faire le design. Il suffit de cartographier l’espace des pa-

ramètres afin de déterminer les comportements de chaque combinaison de paramètres.

Ce processus devient toutefois excessivement long quand le nombre de paramètres est

grand ou que les simulations numériques sont longues à faire. Dans ce cas, il faut

avoir recours à d’autres méthodes.

Une de ces méthodes est de retourner aux modèles théoriques et tenter de les sim-

plifier judicieusement de telle sorte qu’ils puissent être résolus analytiquement tout

en décrivant adéquatement le comportement du système. Le travail de cette thèse
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consiste exactement en cela : mettre en place des modèles théoriques approximatifs

permettant de décrire suffisamment adéquatement le problème considéré afin de faci-

liter le design de l’appareil correspondant. Le problème de design auquel on s’intéresse

dans cette thèse est celui du design des lasers à impulsions, en particulier les lasers

à fibres. Plus précisément, nous cherchons à savoir quels doivent être les paramètres

de la cavité de laser afin d’obtenir une impulsion donnée. Pour ce faire, nous devons

résoudre les équations décrivant la propagation des impulsions dans la cavité laser. Les

lasers à impulsions sont des systèmes complexes qui prennent un temps considérable

à simuler. En effet, afin de déterminer l’impulsion stationnaire d’un laser, il faut faire

la propagation de cette dernière à travers la cavité laser à plusieurs reprises jusqu’à

ce qu’on obtienne une impulsion propre de la propagation, c’est-à-dire que l’on re-

trouve la même impulsions après un cycle dans la cavité. Lorsque la propagation

est dispersive et non-linéaire, le calcul de la propagation est long, d’autant plus que

les impulsions se propageant ne sont pas «Fourier-limitées», c’est à dire qu’elles ont

une phase qui dépend du temps (ou des fréquences). Il faut donc trouver une façon

approximative de décrire cette propagation.

Le problème de la propagation dans une cavité laser étant relativement complexe,

nous commençons l’analyse par la propagation dans un milieu dispersif et non-linéaire

avant de passer aux lasers proprement dits. Ces milieux décrivent bien plusieurs com-

posantes technologiques dont, entre autres, les fibres optiques en font partie. Ainsi,

la propagation dans les systèmes de communication, la compensation de dispersion

et la compression d’impulsions sont toutes décrites par des milieux dispersifs et non-

linéaires. Nous utilisons l’équation de Schrödinger non-linéaire (ESNL) pour décrire la

propagation d’une impulsion dans ces milieux. Cette équation est également utilisée

pour décrire le mouvement d’onde dans les fluides ainsi que les fonctions d’onde en

mécanique quantique. Notons toutefois que selon le problème considéré, la dispersion

et la non-linéarité décrites peuvent être spatiales ou temporelles. Dans les pages qui

suivent, nous considérons la propagation d’impulsions dans une fibre optique ; nous

nous attardons donc au cas temporel, sachant que les résultats trouvés peuvent faci-

lement être transposés dans le cas spatial. Cette équation décrit bien la propagation

dans les fibres optiques standard tant que l’impulsion n’est pas trop brève (une durée

supérieure à quelques picosecondes).

Différentes solutions analytiques à l’ESNL existent, selon que la dispersion et la

non-linéarité du milieu s’additionnent ou s’opposent. Quand elles s’opposent, les so-
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lutions de l’ESNL sont les solitons : des impulsions qui se propagent de manière

invariante ou qui se déforment de manière périodique. Ces solutions ne surviennent

cependant que dans des cas particuliers où il y a compensation parfaite entre l’am-

pleur de la non-linéarité et celle de la dispersion est entier. Quand ces deux effets

s’additionnent, une solution asymptotique de l’ESNL a été trouvée sous la forme

d’impulsions paraboliques. Ces impulsions ne surviennent que dans le cas limite où

la non-linéarité est beaucoup plus grande que la dispersion ou pour des distances de

propagation infiniment longues. Notons aussi qu’il existe des solutions analytiques de

l’ESNL dans les cas purement non-linéaire et purement dispersif. Dans ce dernier cas,

la solution est gaussienne. Toutes ces solutions analytiques nous permettent d’avoir

une vue d’ensemble des comportements possibles des impulsions lors de la propaga-

tion dans les milieux dispersifs et non-linéaires. Elles ne permettent toutefois pas de

décrire de manière générale la propagation d’une impulsion ; la plupart des cas ne

sont pas traités par ces solutions. Par exemple, lorsque les effets s’additionnent, il

n’existe pas de solutions générales pour la propagation d’impulsions de forme quel-

conque. Il n’existe pas non plus de solutions générales dans les deux régimes lorsque

la non-linéarité et la dispersion n’ont pas la même ampleur. Si nous voulons résoudre

le problème inverse, il nous faut trouver un moyen de s’attaquer à ces difficultés.

Considérant la difficulté de ce problème, il faut simplifier le problème ou la so-

lution. Les solutions que nous venons de voir ont été trouvées en simplifiant le

problème, c’est-à-dire en ne considérant que certains cas particuliers des paramètres

de l’équation. La grande difficulté dans la résolution de l’ESNL vient du fait que

l’équation est une équation aux dérivées partielles ; il faut la résoudre dans l’espace et

le temps ou puisque c’est une équation d’onde, dans l’espace et les fréquences. Nous

pouvons donc tenter l’analyse dans le domaine temporel ou spectral. Il se trouve

que la dispersion se résout très facilement dans le domaine spectral ; par contre, la

non-linéarité se décrit bien dans le domaine temporel. Il nous serait donc plus facile

de travailler dans un espace hybride temps-fréquence où les deux domaines seraient

représentés simultanément. L’impulsion serait représentée dans ce cas comme une

fonction du temps, des fréquences et de la distance de propagation. Ce genre de

représentation est cependant généralement lourd. Une autre façon est de simplifier

l’analyse est de faire en sorte qu’elle ne dépende ni du temps ni des fréquences. Une

façon d’y arriver est d’utiliser la méthode des moments qui consiste à réécrire l’ESNL

en termes des différents moments de l’enveloppe de l’impulsion.
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Les moments, par définition, sont des quantités moyennes qui proviennent de

l’intégration d’un opérateur s’appliquant sur une distribution. Ils décrivent certaines

propriétés de la distribution (ici l’enveloppe de l’impulsion) de manière générale

puisque les détails spécifiques sont perdus lors de l’intégration (ici dans le domaine

temporel ou spectral). Il existe une infinité d’opérateurs définissant autant de mo-

ments ; il est important de bien les choisir en fonction de la physique du problème

à résoudre. Par exemple, pour une impulsion, les opérateurs décrivant l’énergie, la

largeur temporelle et la largeur spectrale de l’impulsion sont très pertinents. En com-

binant les moments sur l’ESNL, nous nous retrouvons avec un système d’équations

différentielles ordinaires décrivant l’évolution de chacun des moments de l’enveloppe

de l’impulsion au lieu d’une équation aux dérivées partielles décrivant la propaga-

tion de l’enveloppe de l’impulsion. Représenter l’impulsion sous forme de moments a

l’avantage d’enlever la dépendance temporelle (ou spectrale) de la solution et de la

reporter dans un ensemble de variables à trouver, les différents moments. Le prix à

payer est que nous avons un système de plusieurs équations à résoudre au lieu d’une

seule.

Une grande partie du travail de cette thèse consiste, d’une part, à définir une nota-

tion claire des moments afin de simplifier l’analyse et, d’autre part, à approximer ces

moments afin de résoudre le système d’équations différentielles. En effet, le principal

problème de la méthode des moments est la fuite vers l’avant des moments : l’équation

différentielle d’un moment donné dépend de plusieurs autres moments ne faisant pas

partie du système d’équations à résoudre. Autrement dit, le système d’équations est

ouvert. Il faut donc approximer judicieusement les moments pour avoir un système

fermé et ainsi résoudre analytiquement le problème en conservant suffisamment de

précision pour décrire adéquatement la propagation. Les approximations utilisées re-

posent soit sur des approximations sur la phase de l’enveloppe de l’impulsion, soit sur

la forme de l’enveloppe de l’impulsion. De plus, nous devons choisir des approxima-

tions suffisamment simples pour qu’elles facilitent la résolution, sans alourdir inutile-

ment les calculs. Pour ce faire, nous utilisons la distribution de Pearson qui permet

de représenter diverses formes de distributions en ne changeant qu’un seul paramètre

dans la distribution (nous nous limitons aux distributions symétriques). Nous étudions

également différentes représentations de la phase de l’impulsion (afin de représenter

les moments).

En utilisant les méthodes des moments et grâce à la distribution de Pearson, nous
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pouvons étudier le problème inverse des lasers. Les lasers diffèrent de la propaga-

tion simple car ils comportent différents composants ne pouvant être représentés par

l’ESNL. L’équation la plus souvent utilisée pour représenter les lasers est l’équation

de Ginzburg-Landau étendue (EGLE) qui contient, en plus des termes dispersifs et

non-linéaires, des termes de saturation, de gain, de déphasage et de filtrage temporel

et spectral. À l’instar de l’ESNL, des solutions ont été trouvées pour l’EGLE selon

les paramètres présents dans l’équation. Nous retrouvons parmi ces solutions des im-

pulsions gaussiennes et solitoniques. Toutefois ces solutions n’existent que dans des

cas particuliers. Tout comme dans le cas de la propagation, il nous faut une méthode

pour déterminer des solutions, même si elles sont approximatives, dans le cas plus

général où les paramètres de la cavité peuvent être quelconques.

Il existe toutefois une différence importante entre le problème de propagation et le

problème des lasers. Contrairement à la propagation où la forme initiale de l’impulsion

est connue, le problème en général avec les lasers est que la forme de l’impulsion est

inconnue avant de résoudre le système. Il nous faut donc que la forme de l’impulsion

fasse partie des variables à trouver ; il faut donc la représenter à l’aide des moments.

Nous y arrivons, d’une part, en calculant des rapports entre certains moments et,

d’autre part, en utilisant la distribution de Pearson. La méthode que nous décrivons

dans les pages qui suivent permet pour la première fois, à notre connaissance, que la

forme de l’impulsion soit considérée comme un paramètre indéterminé de la solution.

Puisque notre approche est analytique, en résolvant le problème direct, nous trouvons

par le fait même la solution inverse.

En résumé, pour déterminer les paramètres d’une cavité laser afin d’obtenir une

impulsion donnée, nous utilisons la représentation par les moments. Dans le chapitre

3 nous examinons différentes définitions des moments et expliquons la signification

physique de chacun. Nous définissons également une notation claire afin de bien conce-

voir le problème et d’interpréter facilement les relations entre les moments ainsi que

leur signification. Nous définissons également différentes autres quantités permettant

de décrire les distributions en utilisant les moments. Nous utilisons ces définitions

des moments dans le chapitre 4 afin de décrire la propagation d’une impulsion dans

un milieu dispersif et non-linéaire. Nous utilisons des quantités invariantes dans la

propagation qui nous permettent de simplifier le système d’équations. Toutefois pour

résoudre, il nous faut approximer un des moments du système, ce que nous faisons

en supposant une phase quadratique. La solution obtenue consiste en l’évolution des
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moments du second ordre lors de la propagation. Nous comparons l’évolution de ces

moments avec les simulations numériques correspondantes. Dans le chapitre 5, nous

tentons de retrouver la forme de l’enveloppe de l’impulsion à partir de l’évolution des

moments calculée au chapitre précédent.

Nous nous attardons ensuite au chapitre 6 à l’évolution des moments d’ordre

supérieur lors de la propagation dans un milieu dispersif et non-linéaire. Ces moments

permettent de décrire l’évolution de la forme de l’enveloppe de l’impulsion lors de la

propagation. Pour obtenir une forme intégrable du système d’équations définissant

la propagation, nous devons approximer plusieurs moments. Nous étudions dans ce

chapitre différentes approximation possibles de la phase ainsi que différents niveaux

d’approximations sur le système d’équations différentielles. Cette étude nous permet

de définir la limite d’applicabilité de la méthode des moments pour la résolution

des problèmes de propagation. Les approximations développées et utilisées dans ce

chapitre sont reprises au dernier chapitre, le chapitre 7 afin de déterminer le régime

stationnaire des lasers à fibres. Plusieurs cavités laser sont étudiées dans ce chapitre.

Dans un premier temps, nous utilisons les moments pour vérifier si nous pouvons

obtenir les résultats théoriques obtenus précédemment par d’autres méthodes. Fina-

lement, nous utilisons les moments sur des cavités pour lesquelles il n’existe aucune

solution analytique connue.

Ces chapitres sont suivis de plusieurs annexes dans lesquelles ont retrouve des

définitions, des propriétés, des fonctions utiles, et des exemples de calculs permettant

de mieux comprendre et de compléter le travail de cette thèse.
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Chapitre 2

Revue de littérature

2.1 La propagation et l’équation de Schrödinger

non-linéaire

La première partie du travail de cette thèse utilise l’équation de Schrödinger non-

linéaire (ESNL). La littérature couvrant cette équation est considérable et nous n’en

donnons ici qu’un aperçu, complété plus en détails dans chacun des chapitres. Pour

une introduction détaillée sur l’ESNL, nous recommandons le livre Nonlinear fiber op-

tics (Agrawal, 2001). Ce livre explique en détail la formulation de l’ESNL à partir des

équations de Maxwell. De plus, le cas purement dispersif de la propagation d’impul-

sions gaussiennes et le cas purement non-linéaire y sont traités. L’ESNL a été étudiée

abondamment et résolue analytiquement dans le cas bien connu où la dispersion et

la non-linéarité se compensent parfaitement ou harmoniquement : le soliton (Zakha-

rov et Shabat, 1972). Lorsque la compensation des effets dispersifs et non-linéaires

est parfaite, l’impulsion solitonique se propage de manière invariante ; c’est le soliton

d’ordre 1. Les solitons d’ordre supérieur montre une compensation périodique de ces

effets. Il s’ensuit que l’impulsion se déforme périodiquement le long de la propaga-

tion. Des solutions ont également été trouvées lorsque différents effets sont ajoutés à

l’équation, comme un terme de gain par exemple (Bélanger et al., 1989).

Une autre solution analytique découverte plus récemment (Anderson et al., 1993a)

est l’impulsion parabolique qui est une solution asymptotique de l’ESNL lorsque les

effets de la dispersion et la non-linéarité s’additionnent au lieu de se compenser. Ce

cas limite survient lorsque la non-linéarité est beaucoup plus grande que la dispersion

ou encore quand un terme de gain est ajouté à l’ESNL. L’impulsion parabolique a

l’importante caractéristique qu’elle ne subit pas de rupture du front d’onde (wave-

breaking) lors de la propagation. Lorsque les impulsions se propagent dans les milieux

dispersifs et/ou non-linéaires, différentes fréquences se décalent dans le temps et/ou

sont créées. S’il advient que les fréquences se décalent plus rapidement que d’autres,
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l’enveloppe de l’impulsion se brise et présente des oscillations (Tomlinson et al., 1985).

Ce phénomène se produit lorsque la dérivée de la phase de l’impulsion n’est plus une

fonction monotone (Anderson et al., 1992). Puisque la phase induite par les effets

non-linéaires est proportionnelle à l’enveloppe, une enveloppe parabolique, la dérivée

de la phase est linéaire, donc monotone.

L’impulsion parabolique est un cas particulier de solutions auto-similaires de

l’ESNL. Les solutions auto-similaires sont des solutions qui conservent toujours la

même forme lors de la propagation bien que leur phase, leur amplitude et leur durée

puissent changer. Le soliton d’ordre 1 est une solution auto-similaire puisque sa forme

ne change pas lors de la propagation. L’impulsion parabolique est une solution auto-

similaire asymptotique ; elle ne survient que pour de grandes distances de propagation,

lorsque la dispersion est présente mais négligeable par rapport à la non-linéarité ou en

présence de gain (Fermann, 2000), (Kruglov et al., 2000). Pour en savoir plus sur la

convergence d’impulsions paraboliques vers une solution auto-similaire, veuillez voir

(Hirooka et Nakazawa, 2004), (Wabnitz, 2007) et (Wabnitz et Finot, 2008). Les im-

pulsions auto-similaires forment une classe de solutions de l’ESNL ; la décomposition

auto-similaire s’applique à d’autres formes d’impulsions lors de la propagation, Un

traitement en détail dans le régime de dispersion normale est disponible pour des im-

pulsions super-gaussiennes (Forest et al., 1999), des impulsions Hermite-gaussienne

(Chen, 2005b) et des impulsions sécantes hyperboliques (Chen, 2005a). Notons aussi

que des solutions paraboliques ont été trouvées dans le cas où la dispersion ou la

non-linéarité changent de manière arbitraire le long de la propagation (Kruglov et al.,

2004), (Kruglov et Harvey, 2006) ; dans ce cas les paramètres de l’impulsion dépendent

directement de ceux du milieu de propagation. Un traitement général des solutions

auto-similaires peut être trouvé dans (Kruglov, 2003) et (Kruglov, 2005). Finalement,

les solutions auto-similaires se retrouvent également dans le cas spatial où le profil

des faisceaux est parabolique (Chang, 2005), (Ponomarenko, 2006), (Ponomarenko,

2010). Un résumé de la propagation des impulsions auto-similaires est disponible dans

(Dudley et al., 2007).

Toutes ces solutions forment un ensemble de solutions exactes de l’ESNL dans

des conditions très particulières. Elles ne décrivent cependant pas la propagation

d’une impulsion donnée dans des conditions générales de propagation ou même la

propagation d’une impulsion de forme quelconque dans un milieu spécifique. Pour y

arriver, il faut avoir recours à des méthodes approximatives où la forme de l’impulsion



9

n’intervient qu’indirectement. Une de ses approches est d’utiliser la méthode varia-

tionnelle Rayleigh-Ritz (Anderson et al., 2001). Elle consiste dans un premier temps

à choisir l’ESNL comme étant une équation d’Euler-Lagrange et d’en déterminer le

lagrangien. Ensuite, une forme de solutions, ou «ansatz», est posée pour modéliser le

type de solutions recherchées, par exemple une impulsion gaussienne avec une phase

quadratique ou solitonique (Anderson et al., 1988). Puis, un calcul variationnel est ef-

fectué sur le lagrangien par rapport aux paramètres de l’ansatz afin de déterminer les

équations décrivant leur évolution (Anderson, 1983). Finalement, il reste à résoudre

ces équations pour obtenir l’évolution des paramètres. La méthode a ses avantages et

ses inconvénients. Lorsqu’il possible de déterminer le lagrangien, elle permet d’ajouter

différents termes à l’ESNL (par exemple un terme de gain/perte) et de trouver une

solution (Anderson, 1988). La méthode peut même être utilisée pour résoudre l’ESNL

incluant la diffraction du champ transverse (Desaix et al., 1991). Elle permet aussi de

considérer des paramètres dépendants de la distance de propagation (Andalib et al.,

2008) ainsi que de permettre une approche par perturbation (Malomed, 1997). Tou-

tefois, il faut toutefois être en mesure de déterminer un lagrangien dont l’équation

d’Euler-Lagrange soit l’équation de propagation, ce qui est relativement facile dans

le cas de l’ESNL, mais pas nécessairement le cas dans le cas des lasers. De plus, il

faut supposer une forme d’impulsion de l’ansatz pour résoudre, ce qui, dans le cas des

lasers, présuppose de connâıtre la solution avant de résoudre. De plus, même si des

équations décrivant la propagation des paramètres de l’ansatz sont trouvées, il faut

encore être capable de les résoudre, ou se résoudre à trouver des solutions sous des

formes de séries (Brandt-Pearce et al., 1999). Notons finalement, que cette méthode

est algébriquement compliquée, ce qui rend son application de manière universelle

difficile.

La méthode variationnelle fait une approximation sur la forme de la solution à

travers l’anstaz, ce qui permet de trouver une solution approximative. Une autre

façon de procéder est de faire une moyenne pondérée de la forme de la solution ;

c’est la méthode des moments. Au lieu de faire propager une impulsion donnée, les

équations décrivant l’évolution des moments de cette impulsion sont dérivées à partir

de l’ESNL et ensuite résolues. Par exemple, en ne tenant compte que de la portion

dispersive de l’ESNL, il est possible d’obtenir l’évolution des moments d’impulsions

de forme arbitraire, c’est-à-dire en ne supposant rien sur la forme de l’impulsion

(Anderson et Lisak, 1986). Comme nous l’avons vu plus haut, la solution analytique



10

dans le cas purement dispersif n’existe que pour l’impulsion gaussienne. Ainsi, le

fait de faire une moyenne par les moments est une approximation suffisante pour

résoudre le cas purement dispersif. La propagation est décrite dans ce cas seulement

en termes des moments d’ordre 1 et d’ordre 2. Les moments d’ordre 1 représentent les

valeurs moyennes temporelles (le délai par rapport au temps d’origine) et spectrales

(la fréquence de la porteuse). Les moments d’ordre 2 représentent les variances de

l’impulsion ; la variance temporelle, la variance spectrale et la variance mixte temps-

fréquence qui est la covariance de l’impulsion (Cohen, 1994) et est proportionnelle

à la phase. Il faut cependant connâıtre les moments initiaux pour résoudre dans

un cas pratique, ces derniers pouvant être calculés à partir de l’impulsion initiale.

Une application similaire des moments a été faite sur les systèmes diffractants plutôt

que dispersifs, ce qui donne des résultats analogues (Bélanger, 1991). Dans ce cas,

la relation temps-fréquence est remplacée par la relation position-nombre d’onde.

Cette technique peut être généralisée aux ordres supérieures de dispersion (Anderson,

1987) ou de diffraction (Weber, 1992), (Mart́ınez-Herrero et al., 1992). Dans ce cas,

il faut inclure les moments d’ordre supérieur représentant indirectement la forme de

l’impulsion (Mart́ınez-Herrero et al., 1995), (Mart́ınez et al., 1997), ce qui permet de

décrire les aberrations par les moments (Ji et Lü, 2003).

Lorsque la non-linéarité est ajoutée, il est plus difficile d’obtenir des solutions

générales ne dépendant pas de la forme de l’impulsion ; des suppositions doivent être

faites. Par exemple, en supposant seulement que l’impulsion est un créneau, il est pos-

sible de dériver un expression relativement précise à basse puissance (Marcuse, 1992).

La généralité peut toutefois être conservée au prix d’obtenir un système d’équations

n’ayant pas de solutions analytiques. Dans ce cas, il est possible d’obtenir une solu-

tion approximative sous forme d’une série de Taylor qui est très précise sur de courtes

distances (Bélanger et Bélanger, 1995), (Bélanger, 1996). D’autres stratégies peuvent

être utilisées comme de procéder en alternant des propagations linéaire et non-linéaire

pour lesquelles la propagation analytique est calculable (Potasek et al., 1986), (Mar-

cuse et al., 1999) ce qui ne donne de bons résultats que pour de très courtes distances.

Un autre stratégie consiste à utiliser les quantités invariantes du système, telle que

l’énergie. Ces quantités étant invariantes, elles peuvent être utilisées pour réduire le

nombre d’équations à résoudre afin de déterminer la propagation des impulsions, ce

qui est particulièrement utile dans les systèmes à plusieurs dimensions (Freeman et

Saleh, 1988), (Mart́ınez-Herrero et Mej́ıas, 1997), (Dodonov et Man’ko, 2000).
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En utilisant les invariants et en choisissant un ansatz pour la solution, il est pos-

sible de déduire des équations de propagation pour les paramètres de l’ansatz (Tsoy et

de Sterke, 2006). Ce faisant, l’évolution du système est décrit à travers les paramètres

de l’ansatz au lieu des moments ; les deux sont reliés directement en calculant les mo-

ments de l’ansatz. Il est possible de considérer une variété de perturbations à l’ESNL

(Mäımistov, 1993) ou encore des termes asymétriques (Beech-Brandt et Smyth, 2001).

Notons finalement qu’il n’est pas nécessaire d’utiliser les invariants pour résoudre. Le

seul fait d’utiliser un ansatz permet d’éliminer tous les moments et de les remplacer

par les paramètres. Dans ce cas, il faut bien choisir les moments utilisés pour décrire

les paramètres de l’ansatz. Le choix des moments change évidemment la forme des

équations décrivant l’évolution des paramètres (Santhanam et Agrawal, 2003). Il est

généralement préférable d’utiliser les moments d’ordre le plus bas possible. Il est ainsi

possible d’inclure des termes non-linéaires d’ordre supérieur dans l’ESNL (Chen et al.,

2010). Ce faisant toutefois, il est rare de pouvoir trouver des solutions analytiques

autres que sous forme de séries de Taylor.

Notons finalement que les moments ont été utilisés avec succès dans d’autres cas,

tels que la gestion de la dispersion lors de la propagation solitonique (Bélanger et

Paré, 1999), la mesure de gigue non-linéaire (McKinstrie et al., 2002), ainsi que la

mesure de la cohérence des faisceaux (Du et al., 1992), (Yang et Fan, 1999). Les mo-

ments d’ordre supérieur ont également été utilisés pour déterminer la rupture du front

d’onde lors de la propagation (Rosenberg et al., 2007). En résumé, la méthode des mo-

ments a l’avantage de pouvoir décrire la propagation sans rien supposer sur la forme

de la solution dans le cas purement dispersif. En ajoutant les termes non-linéaires, il

faut toutefois poser un ansatz pour obtenir des équations de propagation sur les mo-

ments ou les paramètres de l’anstaz, qui peuvent ou non être résolues analytiquement.

Dans ce dernier cas, les solutions peuvent être obtenues pour de courtes distances de

propagation ou de faibles non-linéarités sous forme de séries de Taylor. En ce sens, la

méthode variationnelle et la méthode des moments se ressemblent. Les deux méthodes

permettent également d’inclure des perturbations à l’ESNL pour résoudre. Toutefois,

la méthode des moments permet d’utiliser les quantités invariantes du système pour

en réduire la complexité. De plus, les calculs de la méthode des moments sont beau-

coup moins lourds que ceux de la méthode variationnelle. Finalement, la possibilité

de s’affranchir d’un ansatz s’avère intéressant pour l’étude des lasers où la forme de

l’impulsion n’est pas connue a priori.
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2.2 Les lasers et l’équation de Ginzburg-Landau

Dans cette thèse, nous explorons seulement une facette de la modélisation des la-

sers à impulsions, soient les équations mâıtresses. La façon la plus précise de modéliser

la propagation du champ de l’impulsion est de décrire sa modification séquentiellement

à travers chaque composant optique présent dans le laser. Cette méthode implique

généralement de lourds calculs qui ne donnent généralement pas de solutions analy-

tiques. Une façon de procéder est de linéariser la propagation du champ à travers

chaque composant sous l’hypothèse que le champ se déforme peu lors de sa propaga-

tion en régime stationnaire (Haus, 1975a), (Martinez et al., 1984). L’équation ainsi

obtenue décrit un milieu unique de propagation possédant toutes les caractéristiques

des composants présents dans le laser ; c’est l’équation mâıtresse. Cette équation

différentielle décrit le changement que l’impulsion subit à chaque cycle dans la ca-

vité ; lorsque la variation est nulle (à une phase près), nous trouvons le régime station-

naire. On distingue différents types d’équations mâıtresses selon le type de laser. Par

exemple, l’équation mâıtresse pour les lasers solitoniques à synchronisation passive des

modes (Haus et al., 1975), (Haus, 1975b) est différente de l’équation mâıtresse avec

une synchronisation active des modes. Une revue des types d’équations mâıtresses

peut être trouvée dans (Nelson et al., 1997) et (Haus, 2000).

D’une façon générale, les composants les plus souvent retrouvés dans les lasers

sont : un milieu de gain, des pertes, un élément dispersif, un élément filtrant dans le

domaine des fréquences, un élément non-linéaire, un absorbant saturable avec la puis-

sance, une modulation de phase et un filtre temporel (un modulateur par exemple).

Notons que dans cette thèse nous n’étudions que les composants ayant des effets

symétriques sur les impulsions, ce qui exclut, entre autres, la modulation en fréquence

de la porteuse (Siegman et Kuizenga, 1970), les dispersions d’ordre supérieur ainsi

que le gain Raman (Spence et Mildren, 2007). Une équation mâıtresse particulière

a été étudiée abondamment, celle où les deux derniers termes sont absents (aucune

phase temporelle ni filtrage temporel) ; c’est l’équation de Ginzburg-Landau (Hakim

et Rappel, 1992). Le laser qu’elle représente est le laser solitonique (Haus et al.,

1994) où la dispersion de la fibre est compensée par sa non-linéarité, et le filtrage

spectral du milieu de gain par un absorbant saturable (Haus et al., 1991). Les impul-

sions/solutions dans ce cas sont des solitons montrant différents niveau de «chirp»
selon les paramètres de la cavité. Le fait d’avoir une solution analytique nous permet,
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entre autres, de faire des études de stabilité des impulsions (Chen et al., 1994).

L’intérêt suscité vient de la brièveté des impulsions pouvant être générées pou-

vant atteindre de quelques centaines de femtosecondes à quelques dizaines de fem-

tosecondes quand la dispersion est gérée dans la cavité (Haus et al., 1995). Dans ce

dernier cas, la dispersion dans la cavité n’est pas uniforme ; des sections sont nor-

males et d’autres anormales. Par conséquent, l’impulsion s’étire et se recompresse

dans la cavité d’où l’appellation «stretched pulse». L’avantage de cette configuration

est d’éliminer la condition de résonance de l’énergie dissipée par l’impulsion lors de sa

propagation dans la cavité (Elgin et Kelly, 1993). Il faut, dans ce cas, avoir recours à

une équation mâıtresse quelque peu modifiée pour tenir compte de la grande fluctua-

tion de l’impulsion lors de son cycle dans la cavité, fluctuation qui est difficilement

considérée par l’effet moyen de la linéarisation.

L’équation de Ginzburg-Landau néglige cependant plusieurs effets se retrouvant

dans les lasers : entre autres, les dispersions d’ordre supérieur, le décalage Raman

auto-induit, ainsi que des termes de non-linéarité d’ordre supérieur (Bélanger, 2005).

Des solutions analytiques sont difficilement trouvées dans le cas où tous ces effets sont

présents et il faut recourir aux solutions numériques (Kalashnikov et al., 2005). Tou-

tefois, des solutions analytiques intéressantes peuvent être trouvées en ne considérant

que certains termes (Moores, 1993). Par exemple, en ne considérant qu’un ordre

de développement supplémentaire sur l’absorbant saturable et la non-linéarité (une

dépendance avec le carré de la puissance), nous obtenons l’équation de Ginzburg-

Landau quintique. Les solutions numériques de cette équation peuvent être plutôt ex-

centriques, donnant des comportements pouvant être chaotiques, explosifs, palpitants

ou rampants (Akhmediev et al., 2001). Cette équation admet cependant différentes

solutions analytiques sous la forme de solitons qualifiés de «dissipatifs» (Akhmediev

et al., 1996). Certaines solutions s’avèrent avoir un intérêt pratique, par exemple un

soliton dissipatif en dispersion normale ayant une amplitude fixe et s’élargissant avec

la puissance de pompage (Soto-Crespo et al., 1997). Ce type d’impulsion permet d’at-

teindre expérimentalement de hautes énergies par impulsions sans atteindre le seuil

de dommage des matériaux (par exemple, la silice) ni présenter une rupture du front

d’onde (Liu, 2010).

Parfois, ce sont les simulations numériques qui précèdent l’expérience (Ilday et al.,

2003b). Ce fût le cas des lasers à impulsions auto-similaires ou lasers à similaritons

(Ilday et al., 2003a). Ces lasers ont la propriété de générer des impulsions pouvant
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atteindre plusieurs nanojoules (Chong et al., 2007). À l’instar des impulsions auto-

similaires, les similaritons sont résistants à la rupture du front d’onde (Ilday, 2004).

Il est même possible de démontrer l’existence de ce type d’impulsions à partir de

l’équation de Ginzburg-Landau (Bale et al., 2008) (Bale, 2009). Ces lasers ont la

particularité d’émettre des impulsions «chirpées», c’est-à-dire dont le contenu spectral

est étalé dans le temps. En remettant ce contenu spectral en phase, des impulsions

de quelques femtosecondes peuvent être obtenues (Ruehl et al., 2005). Une autre

caractéristique de ce type de laser est que la forme et la largeur de l’impulsion changent

lors de sa propagation (Ruehl et al., 2006). Différentes équations mâıtresses peuvent

être utilisées pour modéliser ce type de laser. L’équation de Ginzburg-Landau étendue

en incluant l’auto-raidissement et le décalage Raman donne de très bons résultats en

ce qui concerne la largeur des impulsions (Bélanger, 2006). Un autre approche est

d’ajouter des termes d’absorption saturable. Dans ce cas, la solution obtenue diffère de

la sécante hyperbolique et se rapproche des formes d’impulsion et de spectre observées

expérimentalement (Renninger et al., 2008).

Il est également possible d’avoir recours aux moments pour résoudre l’équation

de Ginzburg-Landau. Une façon de procéder est de considérer les équations décrivant

l’évolution des moments à travers l’équation de Ginzburg-Landau. Ces équations font

appel à des moments d’ordre plus ou moins élévé qui sont éliminés en posant un an-

satz, le plus souvent une sécante hyperbolique ou une gaussienne. Les équations sont

ensuite réécrites en terme des paramètres de l’ansatz (Tsoy et Akhmediev, 2005). Les

équations ainsi écrites ne peuvent généralement pas être résolues analytiquement mais

elles peuvent résolues numériquement (Mahdi et al., 2010) et ce, beaucoup plus rapi-

dement qu’en propageant numériquement le champ électrique (Usechak et Agrawal,

2005b). Des solutions stationnaires peuvent toutefois être obtenues, puisque, dans

ce cas, le système d’équations différentielles devient un simple système d’équations

algébriques (non-linéaires !). Il est alors possible de faire une analyse de points fixes

sur ce nouveau système (Zhuravlev et Ostrovskaya, 2004) afin de déterminer les

zones de stabilité de l’équation. L’avantage de cette technique est qu’elle permet de

considérer des effets qui ne donnent pas de solutions analytiques comme la modula-

tion en fréquence (Usechak et Agrawal, 2005a) et d’obtenir des résultats. Toutefois, la

solution obtenue est d’autant plus précise que l’anstaz utilisé s’approche de la solution

exacte, qui est, bien sûr, inconnue.

Notons finalement que la grande majorité des lasers étudiés par les équations
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mâıtresses s’articulent autour des lasers solitoniques, ou plus récemment auto-similaires

qui utilisent tous deux une synchronisation passive des modes. Ils sont plus faciles à

étudier car les solutions en sécantes hyperboliques de l’équation de Ginzburg-Landau

proviennent d’un équilibre entre, d’une part la dispersion et la non-linéarité (dans le

laser solitonique) mais aussi, d’autre part, entre l’absorption saturable et l’étendue

finie du gain. Quand la synchronisation est active, le cas est différent. Pour obtenir

une solution analytique, il faut soit négliger la non-linéarité et la dispersion (Siegman

et Kuizenga, 1974) soit au moins la non-linéarité (Tamura et Nakazawa, 1996). Une

autre approche consiste à supposer que la dispersion est normale et que le laser opère

dans un régime solitonique stabilisé par la modulation active (Marti-Panameno et al.,

1994), (Kärtner et al., 1995).

Notons finalement que les principales lacunes de ces méthodes sont d’une part

qu’elles ne peuvent traiter que des cas très particuliers où les effets considérés per-

mettent de trouver une solution analytique. Quand elles utilisent des méthodes d’ap-

proximations, comme la méthode des moments, il faut spécifier une forme d’impulsion

représentant suffisamment bien le résultat final pour que la méthode soit suffisam-

ment précise. Ce résultat n’est évidemment pas connu avant d’entreprendre le calcul,

à moins de le vérifier numériquement (ce qui réduit la pertinence d’avoir une solu-

tion analytique en premier lieu). Finalement, n’oublions pas que l’approximation à la

base des équations mâıtresses est que l’impulsion se déforme peu lors de son parcours

dans la cavité, ce qui n’est pas vrai dans bien des cas dont, entre autres, le laser à

dispersion gérée et le laser auto-similaire.



16

Chapitre 3

Les moments

La méthode des moments permet de déterminer certaines propriétés d’une distri-

bution telles que sa position, sa largeur, son asymétrie. L’ensemble du travail de cette

thèse repose sur les moments ; au lieu de faire les calculs sur le champ électrique d’une

impulsion, nous les faisons sur les moments de cette impulsion. Il est donc essentiel

de bien définir les moments, de bien comprendre ce qu’ils représentent et de bien

en connâıtre les limites. Dans ce chapitre, nous définissons d’abord trois catégories

de moments et en expliquons la signification mathématique et la signification phy-

sique. Certaines propriétés intéressantes sont également présentées dans chacune de

ces catégories. Le chapitre se termine par une évaluation des limites de la modélisation

d’une distribution par ses moments.

3.1 Moments d’une distribution réelle

Les moments d’une distribution réelle sont principalement utilisés dans la théorie

des probabilités pour caractériser les densités de probabilité. Supposons que nous

ayons une distribution réelle P (t) positive, fonction de la variable réelle t. Les moments

bruts d’ordre j de la distribution sont définis par

�tj� =
1

E

� ∞

−∞
tjP (t)dt E =

� ∞

−∞
P (t)dt (3.1)

si l’intégrale converge. Les moments sont normalisés par rapport à l’aire sous la courbe

de P (t) (pour les densités de probabilité E = 1). Le moment �tj� représente donc une

moyenne pondérée de la distribution P (t) par la fonction de poids tj. Le moment

�t� donne la position du «centre de masse» de la distribution P (t). Si la distribution

est symmétrique, �t� donne simplement la position du centre de la distribution. Pour

mieux comprendre ce que représentent les moments d’ordre supérieur, il est éclairant

d’exprimer la distribution comme la somme d’une distribution symétrique PS(t) et
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antisymétrique PA(t) (supposées centrées en t = 0).

�tj� =
1

E

� ∞

−∞
tj[PS(t) + PA(t)]dt (3.2)

Il apparâıt alors que les moments pairs (pour lesquels j est pair) ne dépendent que

de la partie symétrique de la distribution. Les moments impairs (pour lesquels j est

impair) ne dépendent que de sa partie antisymétrique. Puisque nous supposons que

la distribution P (t) est réelle et positive, il s’ensuit que |PA(t)| < |PS(t)|. Considérons

alors séparément les moments pairs et impairs.

3.1.1 Moments pairs

Considérons le cas plus général où la distribution PS n’est pas centrée en t = 0. Il

est plus simple alors d’analyser les moments s’ils sont centrés par rapport au centre

de la distribution �t� ; les moments centrés sont ainsi obtenus.

�T j� =
1

E

� ∞

−∞
T jP (t)dt T = t− �t� (3.3)

Les moments �T j� sont les moments de la distribution centrée P (T ). Les moments �T j�
pairs représentent la moyenne de PS(t) pondérée par T j lorsque j est pair comme le

montre la figure 3.1. Chacun de ces moments est une mesure indirecte de la largeur de

la distribution PS(t) ; par exemple �T 2� est la variance de la distribution. Ces largeurs

peuvent être comparées entre elles en en extrayant la racine jième (les moments pairs

étant tous positifs),

∆Tj = j
�
�T j� (3.4)

où ∆Tj est une mesure de la demi-largeur de la distribution PS(T ), s’apparentant

à l’écart type (nous retrouvons l’écart type lorsque j = 2). Ces largeurs diffèrent

entre elles par un facteur qui dépend de la forme de la distribution. En effet, en

regardant attentivement la figure 3.1, nous voyons que l’importance accordée aux

ailes de la distribution augmente avec j. Inversement, le centre de la distribution pèse

plus lourd dans le calcul de la largeur lorsque j est faible. Notons toutefois que la

valeur du centre de la distribution (T = 0) ne compte pas dans le calcul de la largeur

puisque la fonction de poids T j vaut zéro. La largeur de la distribution P (T ) est la
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Figure 3.1 Pondération de la distribution par la fonction de poids T j. La distribution
P (T ) est une gaussienne. Il apparâıt que les ailes de la distribution prennent une
importance d’autant plus grande par rapport au centre que j est grand.

même que celle de PS(T ), puisque les moments pairs sont nuls pour PA(T ).

Les moments �T j� nous renseignent donc sur la forme de la distribution ; cette

information est toutefois indirecte dû à l’effet moyennant de l’intégrale. Toutefois,

en comparant les différents moments entre eux, il est possible d’extraire une cer-

taine information sur la forme de la distribution. Par exemple, l’aplatissement de la

distribution ou kurtosis est défini en comparant les deux premiers moments pairs.

κt =
�T 4�
�T 2�2 (3.5)

Une façon générale d’extraire la forme de la distribution est d’utiliser les moments

standardisés, qui sont obtenus en normalisant le temps T par rapport à l’écart type
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∆T2 =
�
�T 2�.

�θj� =
1

E

� ∞

−∞
θjP (t)dt θ =

t− �t��
�T 2�

=
T

∆T2
(3.6)

Les moments standardisés sont donc sans dimension ; l’information qu’ils représentent

se rapporte d’autant plus aux ailes de la distribution que j est grand. Il s’ensuit de

la définition que �θ2� = 1 et �θ4� = κt. Notons que de reconstruire la distribution à

partir des moments est un problème complexe que nous n’envisageons pas dans cette

thèse.

3.1.2 Moments impairs

Les moments impairs représentent la moyenne de PA(t) pondérée par tj lorsque j

est impair. Puisque PS(t) n’intervient pas dans le calcul des moments impairs, ces der-

niers ne représentent donc que la largeur de la partie asymétrique de la distribution

P (t) ; en d’autres termes ils caractérisent l’asymétrie de la distribution. Contraire-

ment aux moments pairs, les moments impairs ne sont pas nécessairement positifs ;

le signe du moment indique le sens de l’asymétrie. Le moment d’ordre 1 représentant

le centre de masse, son signe indique le sens du décalage de la distribution. Le signe

des moments d’ordre supérieur indique lequel des côtés de la distribution PA(t) est

le plus raide. Un signe positif indique que le côté gauche (vers t < 0) est plus raide

que le côté droit (vers t > 0) ; un signe négatif indique le contraire. Les moments

standardisés décrivent la partie asymétrique de la forme de l’impulsion.

3.2 Moments d’une distribution complexe

Les moments d’une distribution réelle ne sont cependant pas suffisants pour l’ana-

lyse qui suit puisque nous nous étudions principalement l’évolution de champs com-

plexes. Il nous faut donc un ensemble de moments pouvant décrire les distributions

complexes. Dans cette section, nous présentons un formalisme des moments d’une

distribution complexe qui forme la base de l’analyse qui suit dans cette thèse. Le

formalisme que nous utilisons est emprunter à la mécanique quantique. Supposons

que nous ayons une distribution complexe A(t) qui est une fonction du temps t dont
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nous pouvons calculer la transformée de Fourier Ã(ω) tel que

Ã(ω) =
1√
2π

� ∞

−∞
A(t) exp(iωt)dt (3.7)

Les moments de cette distribution peuvent être alors décrits à l’aide d’opérateur de

temps t et de pulsation ω = i d
dt . Les moments bruts complexes d’ordre n = j +k sont

définis par

�tjωk� =
1

E

� ∞

−∞
A∗(t)tj

�
i
d

dt

�k

A(t)dt E =

� ∞

−∞
|A(t)|2dt (3.8)

et sont normalisés par E (pour une fonction d’onde, E = 1). Cette définition est

analogue aux opérateurs ne mécanique quantique ; t est analogue à l’opérateur de

position, ω à la quantité de mouvement et le champ A à la fonction d’onde. No-

tons que nous avons utilisé le temps et les fréquences pour décrire la distribution

afin d’être cohérents avec les chapitres suivants. Ces moments ne décrivent toutefois

pas la distribution de manière utile puisque leur valeur dépend de la position de la

distribution. Pour interpréter les moments plus facilement, nous pouvons les centrer

autour de la valeur moyenne. En centrant les moments autour de �t� et de �ω�, les

moments complexes centrés sont ainsi obtenus.

�T jΩk� =
1

E

� ∞

−∞
A∗(t)(t− �t�)j

�
i
d

dt
− �ω�

�k

A(t)dt (3.9)

Bien que ces moments soient complexes, il est possible de démontrer que leur

partie réelle est suffisante pour décrire la distribution ; leur partie imaginaire pouvant

être exprimée au moyen de la partie réelle de moments d’ordre inférieur (voir annexe

A). Nous ne considérons donc que la partie réelle de ces moments dans ce qui suit. Les

moments obtenus avec l’éq. (3.9) peuvent être séparés en deux catégories : les moments

purs, pouvant être uniquement par l’opérateur temps (k = 0) ou l’opérateur pulsation

(j = 0), et les moments mixtes, devant être décrits à l’aide des deux opérateurs.

Considérons séparément chacun de ces cas.
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3.2.1 Moments purs

Les moments purs sont toujours réels ; c’est évident lorsque k = 0 car nous nous

retrouvons avec les moments �tj� de la section 3.1.1 avec P (t) = |A(t)|2. Dans le cas où

j = 0, l’éq. (3.9) définit dans le temps les moments �ωk� qui décrivent la distribution

dans le domaine spectral et il n’est pas évident que ces moments soient toujours réels.

Pour s’en convaincre, il suffit de réécrire la définition des moments dans le domaine

spectral au lieu du domaine temporel.

�tjωk� =
1

E

� ∞

−∞
Ã(ω)ωk

�
i

d

dω

�j

Ã∗(ω)dω E =

� ∞

−∞
|Ã(ω)|2dω (3.10)

Il devient alors clair que, lorsque j = 0, les moments �ωk� sont réels. La signification

de ces moments est la même que dans la section précédente, sauf qu’il y a mainte-

nant deux groupes de moments, �tj� et �ωk�, décrivant la norme de la distribution

respectivement dans le domaine temporel et dans le domaine spectral.

3.2.2 Moments mixtes

Les moments mixtes contiennent de l’information appartenant à la fois au do-

maine temporel et spectral. Ils décrivent donc des covariances. Alors que les mo-

ments purs décrivent la norme de la distribution, temporelle et spectrale, les mo-

ments mixtes décrivent sa phase temporelle et spectrale (qui ne sont évidemment pas

indépendantes). Pour s’en convaincre, il suffit d’exprimer la distribution en termes de

sa norme et de sa phase A(t) = |A(t)| exp[iφ(t)] et de considérer le cas où k = 1.

�tjω�r = − 1

E

� ∞

−∞
|A(t)|2tj d

dt
φ(t)dt (3.11)

L’indice r indique que seulement la partie réelle du moment est considérée. Le moment

�tjω�r dépend directement de la fréquence instantanée, définie par

ωinst(t) = − d

dt
φ(t), (3.12)

et représente donc dans quelle proportion la fréquence instantanée varie selon tj. Nous

définissons également le chirp d’une impulsion comme la fréquence instantanée à la-

quelle la porteuse �ω� (qui est également ωinst(�t�) pour les distributions symétriques)
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a été soustraite. En procédant de manière similaire dans le domaine spectral, le mo-

ment �tωk�r est défini par

�tωk�r =
1

E

� ∞

−∞
|Ã(ω)|2ωk d

dω
Φ(ω)dω (3.13)

où Φ(ω) est la phase de Ã(ω). Ce moment caractérise le délai fréquentiel tfreq tel que

tfreq(ω) =
d

dω
Φ(ω). (3.14)

Alors que la fréquence instantanée indique la fréquence de la distribution à un temps

donné, le délai fréquentiel donne le délai auquel une fréquence donnée se retrouve. Le

moment �tωk�r indique alors à quel point tfreq varie selon ωk. Il est à noter que les

moments donnent des corrélations moyennes, c’est-à-dire qu’il ne faut pas interpréter,

par exemple, le moment �tjω�r comme étant proportionnel au «jième» coefficient de

la série de Taylor de ωinst. Il faut plutôt le voir comme étant proportionnel à la courbe

de tendance tj décrivant le mieux ωinst.

Dans le cas général où j �= 1 et k �= 1, les moments mixtes décrivent comment la

fréquence instantanée varie avec tj/k ou encore comment le délai fréquentiel varie en

ωk/j. Toutefois, lorsque n = j + k est pair et supérieur à 2, le moment �tjωk�r décrit

en plus indirectement la norme de la distribution. Par exemple, le moment �t2ω2�r
décrit non seulement la phase de manière similaire à �tω�r mais contient également

les opérateurs t2 et ω2 qui décrivent la norme de la distribution.

La symétrie des moments mixtes est légèrement différente des moments purs.

Les moments purs d’ordre pair caractérisent la partie symétrique de la norme et les

moments impairs la partie asymétrique. Les moments mixtes d’ordre pair sont non-

nuls pour une distribution symétrique avec une phase symétrique ou une distribution

asymétrique avec une phase asymétrique. Les moments mixtes d’ordre impair ont des

contributions provenant de la partie symétrique de la norme pondérée par la partie

asymétrique de la phase ainsi que de la partie asymétrique de la norme pondérée par

la partie symétrique de la phase.

Notons finalement que bien que les moments purs décrivent la norme de la dis-

tribution, ils décrivent également indirectement la phase ; la norme de la distribution

dans le domaine temporel dépend de la phase dans le domaine spectral et vice-versa.
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3.3 Moments non-linéaires

Les moments présentés depuis le début du chapitre pondèrent la distribution avec

le monôme tj et/ou la dérivée
�
i d
dt

�k
. Bien qu’il existe une infinité de fonctions avec

lesquelles la distribution puisse être pondérée, il est intéressant de considérer la dis-

tribution elle-même par le biais de l’opérateur P = |A(t)|2. Il est alors possible de

définir les moments bruts non-linéaires qui sont également complexes.

�P ptjωk� =
1

E

� ∞

−∞
A∗(t)|A(t)|2ptjik

dk

dtk
A(t)dt E =

� ∞

−∞
|A(t)|2dt (3.15)

Les moments non-linéaires sont différents des moment complexes à plusieurs niveaux.

Premièrement, leur partie imaginaire ne peut pas être exprimée de manière générale

au moyen de moments d’ordre inférieur. Deuxièmement, ils ne présentent pas de

symétrie temps-fréquence, puisque l’opérateur P est défini dans le temps. La symétrie

temps-fréquence vient du fait que les opérateurs t et ω sont conjugués. Finalement,

ils n’obéissent pas aux relations de commutation décrites dans l’annexe A.

Il est difficile d’expliquer de façon générale ce que représentent ces moments

puisque l’effet de l’opérateur P dépend explicitement de la forme de la distribution.

Toutefois pour les distributions en forme de cloches, l’effet de l’opérateur P p est de

mettre plus de poids sur le centre de la distribution que sur les ailes et ce, d’autant

plus que p est élevé. Ils ont donc l’effet contraire de l’opérateur tj qui met un poids

plus important sur les ailes. De plus, l’effet de l’opérateur est d’autant moins prononcé

que la distribution se rapproche d’un créneau, pour lequel l’opérateur n’a aucun effet.

La partie imaginaire du moment non-linéaire doit être interprétée différemment

de sa partie réelle. La partie réelle du moment conserve à peu près le même sens que

le moment complexe équivalent. Par exemple, �PΩ2�r est proportionnel à la largeur

de la norme de la distribution dans le domaine spectral, tout comme �Ω2�, mais

elle est également proportionnelle à son amplitude. Toutefois, �PΩ2�i décrit la phase

de la distribution. De façon générale, la partie imaginaire décrit la phase lorsque la

partie réelle décrit la norme et vice-versa. Ceci est également vrai pour les moments

complexes. Notons que les moments non-linéaires pour lesquels k < 2 ont une partie

réelle pouvant être exprimée en terme de moments non-linéaire d’ordre inférieur.
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3.4 Facteurs de forme

Nous avons vu que les moments, quel que soit leur ordre, dépendent indirectement

de la forme de la distribution. En les comparant entre eux, il est possible d’extraire

certaines informations sur la forme de l’impulsion. Le coefficient d’aplatissement a

déjà été défini par l’Éq. (3.5) et peut être étendu aux moments complexes et non-

linéaires.

κT =
�T 4�
�T 2�2 κΩ =

�Ω4�
�Ω2�2 κP =

�P 2�
�P �2 (3.16)

Plus κt est faible, plus la norme de la distribution temporelle est pointue ; κω décrit

de manière similaire la distribution dans le domaine spectral. Le facteur de forme κP

décrit également l’aplatissement dans le domaine temporel de manière similaire à κt

lorsque la distribution est en forme de cloche. Il est également possible de d’obtenir

des facteurs de formes en utilisant des moments de natures différentes.

κTΩ =
�T 2Ω2�r
�T 2��Ω2� κPT =

�PT 2�
�P ��T 2� κPΩ =

�PΩ2�r
�P ��Ω2� (3.17)

Les facteurs de forme κtω et κPω sont définis à la fois dans le domaine temporel et le

domaine spectral. L’asymétrie de la distribution peut être définie à l’aide des moments

d’ordre impair.

sT =
�T 3�
�T 2� 3

2

sΩ =
�Ω3�
�Ω2� 3

2

sPT =
�Pt�
�P ��t� sPΩ =

�Pω�r
�P ��ω� (3.18)

Il existe une infinité de paramètres de forme en utilisant les moments d’ordre supérieur.

Nous n’avons présenté ici que quelques exemples faisant intervenir les moments com-

plexes d’ordre n ≤ 4 et les moments non-linéaire d’ordre n ≤ 2. Pour mieux com-

prendre comment ces facteurs caractérisent la distribution, nous utilisons la distribu-

tion de Pearson.

3.4.1 Distribution de Pearson

Pour avoir une idée de ce que que représentent les facteurs de forme, nous pour-

rions les calculer pour différentes distributions, ce qui serait relativement long. Ou si

nous avions une distribution pouvant prendre différentes formes, il nous suffirait de
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calculer les facteurs de forme de cette dernière. La distribution de Pearson (Pearson,

1916), (Craig, 1936) est une telle distribution réelle qui permet de décrire différentes

formes de distributions. Alors que la distribution gaussienne est la meilleure approxi-

mation qu’on puisse faire d’une distribution connaissant seulement ses deux premiers

moments (la moyenne et la variance), la distribution de Pearson est l’approximation

utilisant les quatre premiers moments réels (l’asymétrie et l’aplatissement). Nous pou-

vons donc étudier facilement les facteurs de forme. Puisque la distribution de Pearson

peut prendre différentes formes, elle nous sera utile pour approximer les moments afin

de résoudre les équations de propagation et celles des lasers.

APrsn(t) = K
�
at2 + d

√
bt + b

�− 1
2a

exp

�
d + 2am√
4a− d2

arctan

�
d + 2at/

√
b√

4a− d2

��
(3.19)

Elle est alternativement décrite sous forme différentielle.

1

APrsn(t)

d

dt
APrsn(t) =

m
√

b− t

at2 + d
√

bt + b
(3.20)

La distribution de Pearson peut donc être vue comme le développement de Padé

d’ordre (1,2) sur une échelle logarithmique de la dérivée de la distribution. Les pa-

ramètres a, d et m sont des paramètres réels sans dimension. Les paramètres K et b

sont des paramètres réels et positifs ; K est une constante de normalisation alors que√
b représente la largeur de la distribution et a les dimensions de t. Les paramètres a

et d dictent la forme de la distribution ; l’aplatissement et l’asymétrie respectivement.

Le paramètre m est le mode, ou valeur maximale, de la distribution où la dérivée est

nulle. Pour s’en convaincre, il suffit de calculer les moments réels de la distribution

P (t) = A2
Pearson(t), en supposant �t� = 0 pour fin de simplicité.

�t� =
d + 2m

2(1− a)

√
b = 0 ⇒ d = −2m

�T 2� =
b

2− 3a
st =

2m
√

b

2a− 1
κt =

3(2− 3a)(1− 2a) + 12m2b

(2− 5a)(1− 2a)
(3.21)

La largeur de la distribution, �T 2� est proportionnelle à b. L’asymétrie est propor-

tionnelle à d (puisque d = −2m quand �t� = 0). Finalement κt est donnée par a. Pour

que la distribution demeure intégrable, lorsque a < 0, il faut limiter la distribution à

l’intervalle r1 ≤ t ≤ r2, où r1 et r2 sont les racines de at2 + d
√

bt + b. La distribution
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est nulle à l’extérieur de cet intervalle.

La distribution de Pearson permet de représenter plusieurs distributions de pro-

babilité dont la distribution normale (gaussienne) (a = 0), beta, gamma et Student

Leon-Garcia (1994). Elle peut également représenter entre autres les fonctions symétri-

ques (d = m = 0) parabolique (a = −1), lorentzienne (a = 1) et créneau (a = −b =

−∞). Différentes distributions symétriques sont tracées à la figure 3.2 sur une échelle

logarithmique. La sécante hyperbolique est représentée approximativement soit par

a = 1/3, soit par a ≈ 0.29 selon que la valeur soit obtenue par le développement en

série de Padé de la sécante hyperbolique, ou par la conservation de l’énergie (c’est-à-

dire en faisant en sorte que la distribution de Pearson et la sécante hyperbolique aient

la même constante de normalisation). Cette dernière donne une meilleure approxima-

tion sur les ailes puisque la forme est pondérée sur tout le temps dans le calcul de

l’énergie alors que le développement de Padé se fait autour de T = 0.

La figure 3.3 montre les facteurs de forme κT , κPT , κP , κΩ, κTΩ et κPΩ en fonction

de a pour une distribution symétrique (leur définition exacte est donnée à l’annexe D).

Les différents facteurs de forme permettent de caractériser la forme de l’impulsion de

différentes façons en mettant l’accent sur le centre ou les ailes ; ainsi certains facteurs

de forme diminuent ou augmentent avec a. Cependant, pour certaines valeurs de a,

le facteur de forme diverge.

3.4.2 Limites des moments

La divergence possible de certains moments nous amène aux limites d’utilisation

des moments. Pour mieux comprendre ces limites, considérons la largeur temporelle

et spectrale de la distribution de Pearson symétrique.

�T 2� =
b

2− 3a
�Ω2� =

1

4b

�
2− a

1 + a

�
(3.22)

Le moment �T 2� est la variance de la distribution de Pearson, une quantité positive

par définition. Que ce passe-t-il alors lorsque a > 2/3 ? Est-ce que la distribution

devient infiniment large lorsque a = 2/3 ? La réponse est non. Le problème vient du

fait que les moments sont définis au moyen d’une intégrale définie (de −∞ à ∞) et

cette intégrale doit converger. Il n’est pas suffisant que la distribution soit intégrable ;

il faut aussi que l’opérateur du moment appliqué sur la distribution soit intégrable.



27

10-5

10-4

10-3

10-2

10-1

100

101

-4 -2 0 2 4

D
is

tri
bu

tio
n 

A2

T

a =-1

sech2

a =0

a =0.29

a =-!

a =1

a =1/3

Figure 3.2 Différentes distributions pouvant être représentées par la distribution de
Pearson. La gaussienne (a = 0), la parabole (a = −1), la lorentzienne (a = 1) et
le créneau (a → −∞) sont représentés exactement. Notons que b = −a pour avoir
un créneau défini −1 ≤ T ≤ 1. La sécante hyperbolique est représentée approxima-
tivement de deux manières différentes selon une expansion de Padé (a = 1/3) ou la
conservation de l’énergie (a ≈ 0.29).

Dans le cas de �T 2� pour la distribution de Pearson, l’intégrale converge si a < 2/3 ;

au-delà de cette valeur, l’intégrale diverge et la valeur de la variance n’a plus de sens.

Il en va de même pour �Ω2� qui devient infini lorsque la distribution est parabolique

(a = 1). La distribution parabolique a un spectre très large et oscillant puisqu’elle

est finie dans le domaine temporel. Il s’ensuit que l’intégrale définissant �Ω2�, qu’elle

soit dans le domaine temporel ou spectral, diverge pour a ≤ 1. Un autre fait notable

est que �Ω2� est nul lorsque a = 2. La largeur spectrale ne peut évidemment pas être

nulle sans violer le principe d’incertitude. Le moment �Ω2� devient nul parce que la

constante de normalisation E diverge lorsque a = 2. La largeur spectrale n’est donc

définie qu’à l’intérieur de l’intervalle −1 < a < 2.
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Figure 3.3 Différents facteurs de forme décrivant la forme de la distribution de Pear-
son réelle en fonction du paramètre de forme a. Certains facteurs de forme divergent
ou s’annulent indiquant que l’intégrale du calcul d’au moins un des moments rattaché
au calcul de ce facteur de forme diverge.

Il faut donc bien comprendre que les moments ne sont qu’un moyen de caractériser

une distribution ; d’autres moyens existent. Par exemple, comparons l’écart type ∆T2

de la distribution de Pearson avec sa largeur à mi-hauteur δT1/2.

∆T2 =

�
b

2− 3a

� 1
2

(3.23)

δT1/2 = 2

�
b

a
(2a − 1)

�1/2

(3.24)

Nous constatons que l’écart type possède un pôle en a = 2/3 alors que largeur à mi-

hauteur est définie pour toutes les valeurs de a. Alors pourquoi utiliser les moments ?

Après tout, la largeur à mi-hauteur est définie de manière cohérente, pour toutes les
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valeurs de a contrairement à �T 2� ! Les moments ont toutefois un avantage important :

ils se calculent indépendamment de la distribution. Plus exactement, l’expression de

la largeur à mi-hauteur dépend explicitement de la forme de la distribution alors que

la définition �T 2� est la même quelle que soit la distribution. Ainsi, si les moments

sont utilisés pour modéliser une distribution dans un problème donné, pour simpli-

fier la résolution par exemple, aucune supposition n’a besoin d’être faite a priori

sur la forme de la distribution. Une fois le problème résolu, les moments décrivent

la distribution recherchée (approximativement, bien entendu). Si nous voulions uti-

liser la largeur à mi-hauteur pour caractériser la distribution lors de la résolution

du problème, il faudrait supposer au départ la forme de cette dernière. Cela revien-

drait à connâıtre la solution du problème avant de l’avoir résolu ! Évidemment, si

la distribution recherchée ne peut être représentée par les moments, ces derniers ne

sont d’aucun secours pour résoudre le problème. Nous reviendrons plus en détails

sur ces considérations au chapitre 6. Il est possible d’imaginer d’autres moyens de

caractériser la distribution, en utilisant par exemple d’autres opérateurs de moments.

Les moments �tjωk� ont toutefois l’avantage d’être faciles à interpréter, contraire-

ment à des opérateurs plus complexes. Certains opérateurs plus exotiques peuvent

cependant simplifier la résolution à l’occasion, surtout quand ils reflètent la nature

du problème à résoudre.

Dans ce premier chapitre, les principaux concepts de base des moments ont été

exposés. Trois catégories de plus en plus générales de moments ont été définies : les mo-

ments réels, complexes et non-linéaires. La signification de ces moments, par rapport

à la distribution qu’ils caractérisent, a été donnée dans les différents cas. La définition

des moments ne dépend pas directement de la forme de la distribution considérée,

ce qui est un grand avantage ; il faut toutefois que l’intégrale définissant le moment

considéré converge. La distribution de Pearson a également été présentée. Cette dis-

tribution permet de reconstruire approximativement une distribution à partir de ces

quatre premiers moments. Elle peut donc représenter différentes distributions. Tous

ces concepts sont employés dans les chapitres suivants pour décrire la propagation

d’impulsions dans un milieu dispersif et non-linéaire.
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Chapitre 4

Propagation non-linéaire et les

moments d’ordre 2

Regardons maintenant comment les moments présentés au chapitre précédent nous

permettent de résoudre l’équation décrivant la propagation d’une impulsion dans une

fibre optique dispersive et non-linéaire. Bien que nous nous intéressons dans le reste

de cette thèse à la propagation d’impulsion dans une fibre optique, l’équation de

Schrödinger non-linéaire est utilisable pour décrire d’autres phénomènes physiques.

En plus de la propagation dans les fibres optiques, elle permet de décrire, entre autres,

la propagation d’ondes dans un fluide et la propagation d’ondes diffractantes.

4.1 L’équation de Schrödinger non-linéaire

Considérons une impulsion lumineuse se propageant dans une fibre optique. Nous

supposons que le champ électrique de cette impulsion conserve la même polarisation

linéaire tout au long de la propagation. Le champ est donné par (Agrawal, 2001)

�E(t) =
x̂

2
{F (x, y)A(z, t) exp [i (β0z − ω0t)] + complexe conjugué} . (4.1)

Le champ est décomposable en une partie transverse F (x, y), donnée par le mode

de la fibre, et une partie longitudinale A(z, t), l’enveloppe de l’impulsion. Cette

décomposition se justifie dans le cadre de la théorie des modes scalaires. L’ampli-

tude du champ est normalisé de façon que |F (x, y)|2 = 1 et |A(t)|2 est la puissance

du champ. Le champ est centré dans le domaine spectral autour de la porteuse ω0 et

se propage avec un nombre d’onde moyen β(ω0) = β0. Nous supposons également que

la durée de l’impulsion est supérieure à 1 picoseconde. Dans ce cas, la propagation de

l’amplitude du champ électrique est donnée par l’équation de Shrödinger non-linéaire
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(ESNL)

∂A

∂z
= −β1

∂A

∂t
− iβ2

2

∂2A

∂t2
+ iγ|A|2A (4.2)

où les paramètres β1 et β2 proviennent du développement en série de Taylor de la

constante de propagation β(ω) autour de ω0. Ils représentent respectivement l’inverse

de la vitesse de groupe de l’enveloppe de l’impulsion et la dispersion de la vitesse de

groupe. Le paramètre γ donne l’ampleur de l’auto-modulation de phase, une phase

non-linéaire proportionnelle à l’intensité du champ.

Il n’y a pas de solutions analytiques générales à l’équation de Schrödinger non-

linéaire. Elle admet par contre des solutions analytiques dans certains cas particuliers.

Il existe une solution analytique dans le cas purement dispersif (γ = 0) et purement

non-linéaire (βj = 0). Lorsque β �= 0 et γ �= 0, il existe une solution périodique, le

soliton, et une solution asymptotique.

4.1.1 Solution dispersive

Dans le cas dispersif, l’ESNL se réduit à

∂A

∂z
= −iβ2

2

∂2A

∂T 2
(4.3)

où T = t − β1z représente un référentiel de temps se déplaçant à la même vitesse

que le centre de l’impulsion. Cette équation peut être résolue lorsque l’impulsion se

propageant est une gaussienne en procédant par transformée de Fourier. Dans ce cas,

l’amplitude du champ de l’impulsion est donnée par

A(z, T ) =

�
P0T 2

0

T 2
0 − iβ2z

� 1
2

exp

�
− T 2

2 (T 2
0 − iβ2z)

�
(4.4)

où P0 est la puissance crête initiale en z = 0 et T0 la demi-largeur initiale à 1/e de

l’intensité. L’enveloppe de l’impulsion s’étale dans le temps pendant la propagation

Sa phase devient quadratique ce qui implique que la fréquence instantanée augmente

ou diminue linéairement avec le temps. La densité spectrale de l’impulsion ne change

pas pendant la propagation, la dispersion chromatique ne changeant que la phase
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dans le domaine spectral.

A(z, Ω) = |A(0, Ω)| exp
�
iβ2Ω

2z
�

(4.5)

4.1.2 Solution non-linéaire

Le cas purement non-linéaire (βj = 0) est résolue analytiquement pour n’importe

la forme d’impulsion. La solution est toutefois implicite et s’écrit sous la forme

A(z, t) = A(0, t) exp
�
iγ|A(0, t)|2z

�
(4.6)

où A(0, t) est l’amplitude initiale de l’impulsion. La puissance de l’impulsion demeure

constante lors de la propagation, seule une phase proportionnelle à la puissance aug-

mente. Dans le domaine spectral, la densité spectrale s’élargit avec la propagation.

4.1.3 Solution périodique

Dans le régime de dispersion anormale (β2 < 0), la dispersion chromatique et

l’auto-modulation de phase peuvent se compenser pour former une impulsion qui

se propage sans se déformer lors de la propagation : c’est le soliton Agrawal (2001).

Lorsque la compensation est parfaite, nous avons un soliton d’ordre 1 qui est invariant

lors de la propagation. Lorsque la puissance est suffisamment élevée, la compensation

est périodique et l’impulsion retrouve périodiquement sa forme initiale. L’enveloppe

du champ du soliton d’ordre un est donnée par

A(z, T ) =

�
|β2|
γT 2

0

sech

�
T

T0

�
exp

�
− i

2

β2

T 2
0

z

�
(4.7)

L’enveloppe du soliton est décrite par une sécante hyperbolique. Les solitons d’ordres

supérieurs sont obtenus par la méthode de diffusion inverse (Zakharov et Shabat,

1972). La forme générale de leur amplitude est un rapport de sommes de cosinus

hyperboliques et trigonométriques.
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4.1.4 Solution asymptotique

Dans le régime de dispersion normale, la dispersion chromatique et l’auto-modula-

tion de phase ne peuvent se compenser. Dans ce régime, une impulsion possédant

initialement une très grande puissance crête tend de manière asymptotique en se pro-

pageant vers une impulsion très «chirpée» dont l’enveloppe est parabolique (Anderson

et al., 1993b).

A(z, T ) =
�

Pc(z)

�
1− T 2

T 2
c (z)

� 1
2

exp

�
−ib(z)

2
T 2

�
(4.8)

Les paramètres Pc(z), Tc(z) et b(z) sont définis analytiquement de manière explicite

par les relations suivantes dans le cas asymptotique :

b(z) ≈ 1

β2z
(4.9a)

= 2K0K1Pc

�
1−K1Pc (4.9b)

1

K1
= Pc(0) +

9

64

β2

γ

E2b2(0)

P 2
c (0)

(4.9c)

K0 =
4

3

�
γ

β2

K
− 3

2
1

E
(4.9d)

Tc(z)Pc(z) =
3

4
E (4.9e)

(4.9f)

où E est l’énergie de l’impulsion. Le paramètre Pc(z) est obtenu en résolvant l’équation

implicite 4.9b. Le paramètre Tc(z) est obtenu en fixant l’énergie de l’impulsion.

4.2 Équations de propagation des moments

Utilisons maintenant les moments dans le but de déterminer une solution approxi-

mative générale de l’ESNL mais dans le cas où il y a dispersion et non-linéarité. Nous

limitons l’analyse dans cette section au moments d’ordre 1 et 2. Les équations de pro-

pagation des moments sont obtenues en dérivant les définitions des moments données

au chapitre 3 et en y substituant l’éq. (4.2). La constante de normalisation E devient

alors l’énergie de l’impulsion selon la définition (4.1). La propagation des moments
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d’ordre 1 est ainsi

d

dz
�t� = β1 + β2�ω� (4.10a)

d

dz
�ω� = 2γ�Pω�i = 0. (4.10b)

Il faut faire attention ici à la définition de ω qui n’est pas la fréquence (pulsation) du

champ puisque nous avons soustrait cette dernière dans l’expression (4.1) du champ

électrique. Le moment ω représente dans ce cas l’écart à la porteuse ω0. Notons que

pour les distributions symétriques, cet écart est toujours nul. Ces deux équations sont

facilement intégrables et donnent

�t� = �t�0 + β1z + β2�ω�0z �ω� = �ω�0 (4.11)

où l’indice 0 représente la valeur en z = 0. En supposant, sans perte de généralité,

que �ω�0 = 0 et �t�0 = 0, les équations de propagation des moments d’ordre 2 peuvent

être écrites sur les moments centrés. Les équations de propagation pour les moments

d’ordre 2 sont alors

d

dz
�T 2� = 2β2�TΩ�r (4.12a)

d

dz
�TΩ�r = β2�Ω2�+

γ

2
�P � (4.12b)

d

dz
�Ω2� = 2γ�PΩ2�i (4.12c)

où T = t−�t� et Ω = ω−�ω�. Il est également utile d’écrire l’équation de propagation

du moment non-linéaire d’ordre 0, �P � puisqu’il intervient dans le calcul de �TΩ�r.

d

dz
�P � = −2β2�PΩ2�i (4.13)

Ce moment est proportionnel à la puissance crête de l’impulsion et dépend également

de la forme de l’impulsion ; il représente une puissance effective. Finalement, il est pos-

sible de montrer que l’éq. (4.2) conserve l’énergie puisque dE/dz = 0. Les équations

de propagation des moments ne sont malheureusement pas fermées puisqu’il n’y pas

d’équation différentielle pour le moment �PΩ2�i. Si nous écrivions l’équation de pro-

pagation de cette dernière des moments d’ordre supérieur surviendraient. Il y a donc
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une fuite vers l’avant, c’est-à-dire que les équations de propagation de ces moments

d’ordre supérieur font intervenir à leur tour des moments d’ordre encore plus élevé.

Il faut donc approximer ces moments d’ordre supérieur pour résoudre.

L’approximation la plus simple à faire est de remplacer le moment �PΩ2�i par

une expression ne dépendant que de �T 2�, �TΩ�r, �Ω2� et �P �. Une façon d’y arriver

est de supposer que la phase du champ est quadratique dans le temps. Ainsi, si nous

substituons A(z, T ) = |A(z, T )| exp (iφ) où φ = hT 2 dans les définitions de �TΩ�r et

�PΩ2�i, nous obtenons

�TΩ�r = − 1

E

� +∞

−∞
|A(T )|2T dφ

dT
dT ≈ −2h�T 2� (4.14)

�PΩ2�i = − 1

2E

� +∞

−∞
|A(T )|4 d2φ

dT 2
dT ≈ h�P � =

�P ��TΩ�r
2�T 2� . (4.15)

Cette approximation permet de résoudre les équations de propagation des moments

puisqu’il n’y a plus de fuite vers l’avant. Il est remarquable que le système d’équations

puissent se fermer en faisant seulement une approximation sur la phase de l’impul-

sion. Autrement dit, nous avons fermé le système en ne faisant aucune supposition

sur la forme de l’impulsion. La résolution qui suit est donc valide pour des formes

arbitraires d’impulsions. Il y a toutefois deux restrictions à faire. Premièrement, le

résultat final, l’évolution des moments d’ordre 2, ne nous informe que sur les différentes

largeurs de l’impulsion. Ainsi l’information de forme est plus ou moins absente des mo-

ments d’ordre 2 (il est possible d’y avoir accès indirectement, comme nous le verrons).

Deuxièmement, une des conséquences de supposer que la phase est quadratique est

que la forme de l’impulsion ne change pas lors de la propagation. Pour s’en convaincre,

il suffit d’écrire l’évolution du coefficient d’aplatissement.

1

κt

dκt

dz
= 4β2

�
�T 3Ω�r
�T 4� − �TΩ�r

�T 2�

�
≈ −4β2 (2h− 2h) = 0 (4.16)

Le fait que la forme de l’impulsion soit supposée invariante est une limitation im-

portante. Toutefois, notons que la forme de l’impulsion est invariante dans toutes les

solutions analytiques présentées précédemment dans la littérature (à l’exception des

solitons d’ordre supérieur où elle change périodiquement). Pour obtenir l’évolution de

la forme de l’impulsion, il faut donc inclure l’évolution des moments d’ordre supérieur

à 2. Pour les distributions symétriques, il faut considérer les moments d’ordre 4, ce



36

que nous faisons au chapitre 6.

À l’ordre 2, l’évolution des moments est ainsi approximativement décrite par le

système d’équations différentielles suivant :

d

dz
�T 2� ≈ 2β2�TΩ�r (4.17a)

d

dz
�TΩ�r ≈ β2�Ω2�+

γ

2
�P � (4.17b)

d

dz
�Ω2� ≈ γ

�P ��TΩ�r
�T 2� (4.17c)

d

dz
�P � ≈ −β2

�P ��TΩ�r
�T 2� (4.17d)

Un des avantages d’utiliser les moments, au lieu du champ, pour exprimer le problème

est que la physique de la propagation devient beaucoup plus limpide. Par exemple,

nous retrouvons par le biais de l’éq. (4.17a) le résultat bien connu que la durée d’une

impulsion ne peut être comprimée que si son «chirp» (proportionnel à �TΩ�r) et la

dispersion (β2) sont de signes opposés. D’une manière similaire, d’après l’éq. (4.17c), la

largeur de bande ne peut être réduite que si le chirp est négatif puisque γ est toujours

positif dans la silice. Cette compression spectrale est d’autant plus importante que

l’impulsion est courte et que sa puissance est grande. À partir de l’éq. (4.17d), il

apparâıt que plus l’impulsion est courte, plus sa puissance change rapidement, ce qui

est cohérent avec la notion de dispersion chromatique : plus l’impulsion est courte,

plus sa largeur de bande est grande et plus la dispersion chromatique est importante.

Il est évident selon l’éq (4.17b) qu’il y a deux contributions au chirp : une dispersive,

proportionnelle à la largeur de bande �Ω2�, et une non-linéaire, proportionnelle à

la puissance �P �. La condition solitonique (pour un soliton fondamental) peut être

retrouvée à partir de l’éq. (4.17b) lorsque la dérivée est nulle, c’est-à-dire que les deux

contributions se compensent parfaitement. La condition s’écrit alors

LD

LNL
= 1 =

γ�P �
2|β2|�Ω2� (4.18)

où la longueur de dispersion LD et la longueur non-linéaire LNL sont définies par

LD =
1

|β2|�Ω2� , LNL =
2

γ�P � . (4.19)
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Il est intéressant de remarquer qu’alors que la longueur de dispersion est habituelle-

ment définie par rapport à la durée de l’impulsion, elle est définie ici par rapport à

la largeur de bande, ce qui correspond mieux à la physique de la dispersion chroma-

tique. La longueur non-linéaire est habituellement définie par rapport à la puissance

crête, ce qui représente le maximum du déphasage non-linéaire par auto-modulation

de phase. Nous n’avons directement accès à la puissance crête par les moments ; le

moment s’y approchant le plus est �P � qui donne le déphasage non-linéaire moyen.

4.2.1 Invariants

Une technique pour résoudre un système d’équations différentielles est de trouver

des quantités qui sont invariantes le long de la propagation. De plus, ces invariants

nous permettent de mieux comprendre la dynamique du système. En combinant les

éqs. (4.17), trois invariants peuvent être découverts.

I0 = β2�Ω2�+ γ�P � =
sgn(β2)

LD
+

2

LNL
(4.20a)

I1 = �Ω2��T 2� − �TΩ�2r (4.20b)

I2 =
�P �

�
�T 2�

E
(4.20c)

Le premier de ces invariants I0 est également un invariant du système non approximé

(4.12). Les deux autres invariants découlent de l’approximation (4.14). L’invariant I0

dit que la somme des effets dispersifs et non-linéaires est conservée. Dans le régime de

dispersion normale, cela signifie que la largeur de bande augmente lorsque la puissance

crête diminue. La puissance diminue à cause de la dispersion chromatique alors que

la largeur de bande augmente par l’auto-modulation de phase. Dans le régime de

dispersion anormale, la largeur de bande augmente avec la puissance crête, ce qui est

observable dans les solitons d’ordre supérieur.

L’invariant I1 est une formulation directe du principe d’incertitude d’Heisenberg.

Puisque I1 est invariant, il s’ensuit que la forme de l’impulsion reste inchangée lors

de la propagation ou, pour être plus exact, l’information de forme obtenue au travers

des moments d’ordre 2 est invariante lors de la propagation. La distinction deviendra

claire à la section 4.3.1. Le dernier invariant montre tout d’abord la conservation

de l’énergie (le terme au numérateur). En divisant par l’énergie (qui est également

invariante), l’invariant I2 informe également sur la forme de l’impulsion qui est cons-
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tante. L’avantage de diviser par l’énergie est que l’invariant I2 demeure valable même

si un terme d’absorption (ou de gain) est ajouté à l’ESNL. Les invariants I1 et I2 sont,

par définition, des quantités réelles et positives. Pour finir cette section, le tableau 4.1

présente les valeurs des invariants I1 et I2 pour certaines formes typiques d’impulsions.

Les valeurs pour la parabole et le créneau ne peuvent être calculées car �Ω2� diverge.

4.2.2 Propriétés

Certaines propriétés intéressantes peuvent être déduites du système en utilisant

les invariants avant de l’intégrer. En combinant les trois invariants et en isolant �TΩ�r,
il est possible de trouver

|�TΩ�r| =

�
I0

β2
�T 2� − γI2E

β2

�
�T 2� − I1

� 1
2

. (4.21)

où le signe de �TΩ�r demeure inconnu. Lorsque le moment �TΩ�r est nul, il en va

de même pour la phase de l’impulsion ; c’est le cas «Fourier limité» où le produit

�T 2��Ω2� est minimal. La largeur Fourier limitée de l’impulsion est alors

∆TFL = 2
�
�T 2�FL =

γI2E

I0
+

sgn(β2)

I0

�
γ2I2

2E
2 + 4β2I0I1. (4.22)

La largeur de bande Fourier limitée se déduit à partir de l’éq. (4.20b)

∆ΩFL = 2
�
�Ω2�FL = 4

√
I1

∆TFL
(4.23)

Tableau 4.1 Invariants I1 et I2 pour des formes typiques d’impulsions

I1 I2

Gaussienne 1
4

1
2
√

π

Sécante hyperbolique π
12

π
6
√

3

Super Gaussienne (ordre 1) 0.3427 0.2697
Parabolique — 3

5
√

5

Créneau — 1
2
√

3
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et la puissance en utilisant l’éq. (4.20a) ou (4.20c).

�P �FL =
2I2E

∆TFL
=

I0

γ
− 4β2I1

γ∆T 2
FL

(4.24)

L’éq. (4.22) permet d’observer le cas intéressant de la compression solitonique. La

compression solitonique permet de changer le produit �T 2��Ω2� tout en conservant

une impulsion Fourier limitée. Ainsi pour diminuer ∆TFL. il faut que la dispersion

soit anormale (β2 < 0).

En remplaçant l’éq. (4.21) dans l’éq. (4.17a), nous pouvons écrire l’équation de

propagation du moment �T 2� sans faire intervenir les autres moments.

d�T 2�
dz

= 2β2�TΩ�r = 2β2sgn (�TΩ�r)
�

I0

β2
�T 2� − γI2E

β2

�
�T 2� − I1

� 1
2

(4.25)

Le seul paramètre inconnu est le signe de �TΩ�r, ce qui n’empêche pas le système

d’être intégré. Le résultat de l’intégration dépend évidemment de ce signe qui peut

être déterminé ultérieurement.

4.3 Propagation des moments

L’équation (4.25) peut être intégrée de façon analytique pour obtenir

2β2sgn (�TΩ�r) z + K =
2β2

I0

�
I0

β2
�T 2� − γI2E

β2

�
�T 2� − I1

� 1
2

(4.26)

− γI2E

I0

�
β2

I0

� 1
2

arcsinh

�
1

∆
1
2

�
2I0

β2

�
�T 2� − γI2E

β2

��

où K est la constante d’intégration et ∆ vaut

∆ = 4
I1I0

β2
− γ2I2

2E
2

β2
2

=
I0

β2

�
4I1 −

γ2I2
2E

2

β2I0

�
. (4.27)

Nous trouvons là un résultat très important : la solution obtenue ne dépend pas du

régime de dispersion. Autrement dit, l’éq. (4.26) décrit à la fois des évolutions mono-

tones ET périodiques de �T 2�, selon l’argument de arc sinus hyperbolique. Si l’argu-

ment est imaginaire, arcsinh(ix) = iarcsin(x) et l’évolution est périodique ; autrement
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elle est monotone. La question est maintenant de savoir sous quelle(s) condition(s) la

propagation devient périodique. Le moment �T 2� est toujours positif par définition ;

il s’ensuit que l’argument de l’arc sinus hyperbolique devient imaginaire que si ∆

est négatif. Nous avons déjà mentionné que I1, I2, γ et E sont toujours positifs. Il

en résulte que c’est le signe de β2I0 qui détermine le signe de ∆. Lorsque β2I0 < 0,

nous avons ∆ < 0 et si β2I0 > 0, ∆ > 0 et ce quelle que soit la valeur des autres

paramètres. Pour s’en convaincre, il suffit de réécrire ∆ en fonction du paramètre

non-linéaire standard N défini par

N2 =
LD

LNL
=

γ�P �
2|β2|�Ω2� (4.28)

et du paramètre q

q =
γI2E�
|β2I0|

= N2

�
4(I1 + �TΩ�2r0)
|1 + sgn(β2)2N2|

� 1
2

. (4.29)

Le paramètre N indique la force des effets non-linéaires par rapport aux effets disper-

sifs. Le paramètre q est à peu près proportionnel à N lorsque β2 > 0. Cela veut dire

qu’en régime très non-linéaire q � 1 et en régime dispersif q � 1. Lorsque β2 < 0, il

y a une discontinuité en N2 = 1/2 où q → ∞ ; le régime demeure toutefois linéaire.

Il apparâıt alors que lorsque β2I0 > 0, β2 > 0 (d’après (4.20a) et donc que ∆ > 0

(en posant arbitrairement �TΩ�0r = 0). Nous pouvons donc définir deux cas, selon le

signe β2I0, mais à quel régime de dispersion correspondent-ils ? Il semble à première

vue que β2I0 > 0 réfère au régime de dispersion normal et β2I0 < 0 au régime de

dispersion anormale. Il en est ainsi sauf en régime de dispersion anormale à basse

puissance (N2 < 1/2 d’après l’éq (4.20a)). Dans ce cas, I0 < 0 et β2 < 0 résultant en

β2I0 > 0. Le tableau 4.2 résume la situation. Nous traitons ces deux cas en détails

dans les sections qui suivent, mais auparavant il est instructif de considérer les cas

purement dispersif et purement non-linéaire.

Tableau 4.2 Signe de β2I0

N2 ≤ 1/2 N2 ≥ 1/2
β2 > 0 + +
β2 < 0 + −
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4.3.1 Cas purement dispersif et purement non-linéaire

Les cas purement dispersif (γ = 0) et purement non-linéaire (β2 = 0) sont fa-

cilement intégrables, puisque les solutions sont polynomiales. Dans le cas purement

dispersif, l’intégration des éqs. (4.17) donne

�Ω2� = �Ω2�0 (4.30a)

�TΩ�r = �TΩ�r0 + β2�Ω2�0z (4.30b)

�T 2� = �T 2�0 + 2β2�TΩ�r0z + β2
2�Ω2�0z2 (4.30c)

�P � ≈ �P �0

�
�T 2�0
�T 2� . (4.30d)

L’indice 0 des moments indique leur valeur à z = 0. Les équations (4.30), à l’ex-

ception de (4.30d), sont valides quelle que soit la forme de l’impulsion. Une théorie

plus générale s’appliquant aux dispersions d’ordre supérieur a déjà été développée

(Anderson, 1987). En combinant ces équations, il est possible de montrer que les

invariants (4.20) sont toujours valides. Pourtant, aucune supposition sur la phase

supplémentaire à celle de (4.30d) n’est nécessaire pour résoudre (4.30) ! Il en ressort

que, dans le cas purement dispersif à l’ordre 2, il est implicitement supposé que la

phase est quadratique. Pourtant la phase n’est quadratique que dans le cas d’une

impulsion gaussienne. Comment expliquer cette contradiction apparente ? Une façon

de l’interpréter est que la différence entre la phase induite par la dispersion chroma-

tique et une phase quadratique ne peut être décrite par les moments d’ordre 2 ; les

moments d’ordre 2 sont donc les mêmes, peu importe la forme de l’impulsion. Toute-

fois, à l’ordre 4, la différence apparâıt. Nous avons montré que l’approximation de la

phase quadratique a pour conséquence que le coefficient d’aplatissement κt, et donc

la forme de l’impulsion, ne changent pas lors de la propagation. Dans le cas purement

dispersif à l’ordre 4, κt n’est pas invariant lors de la propagation.
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Dans le cas purement non-linéaire, l’intégration des éqs. (4.17) donne

�P � = �P �0 (4.31a)

�T 2� = �T 2�0 (4.31b)

�TΩ�r = �TΩ�r0 +
γ

2
�P �0z (4.31c)

�Ω2� = �Ω2�0 + γ
�P �0
�T 2�0

�TΩ�r0z +
γ2

4

�P �20
�T 2�0

z2. (4.31d)

Il est remarquable que l’évolution dans le cas purement non-linéaire soit également

quadratique en z. Il est encore plus remarquable que le système soit en quelque sorte

inversé, c’est-à-dire que les moments constants dans un cas changent en z2 dans l’autre

cas et vice-versa. Le moment �TΩ�r est linéaire en z dans les deux cas.

4.3.2 Cas β2I0 > 0

Retournons maintenant au cas général où la dispersion et la non-linéarité sont

présentes dans la fibre optique. L’éq. (4.26) peut être écrite de manière plus claire en

utilisant l’éq. (4.21) et la relation arcsinh(x) = ln
�
x +

√
1 + x2

�
et en supposant que

β2I0 > 0

|�TΩ�r| = K + sgn (β2�TΩ�r) I0z − sgn(β2)
q

2
ln

�
2 |�TΩ�r| + 2

�
I0�T 2�

β2
− sgn(β2)q

�

(4.32)

où la constante d’intégration K est définie par

K = |�TΩ�r0| + sgn(β2)
q

2
ln

�
2 |�TΩ�r0| + 2

�
I0�T 2�0

β2
− sgn(β2)q

�
. (4.33)

Rappelons que β2 peut être négatif si N2 < 1/2. Pour avoir une solution complète,

il faut maintenant connâıtre le signe de �TΩ�r. Ce signe est lié à la distance de

propagation zFL pour laquelle l’impulsion devient «Fourier limitée», c’est-à-dire pour

laquelle �TΩ�r = 0. La distance zFL donc correspond également à la distance où

le «chirp» change de signe. En isolant z dans l’éq. (4.32) et en posant �TΩ�r = 0,
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�T 2� = �T 2�0 et sgn (�TΩ�r) = sgn (�TΩ�r0), la distance zFL est définie par

zFL = sgn (�TΩ�r0)
q

2I0
ln

�
(q2 + 4I1)

1
2

2|�TΩ�0r| + (q2 + 4I1 + 4�TΩ�2r0)
1
2

�
− �TΩ�r0

|I0|
. (4.34)

Une valeur négative de zFL indique que la distance «Fourier limitée» se situe avant le

début de la propagation ; l’impulsion s’élargit dans ce cas de manière monotone. Si zFL

est positif, l’impulsion subit une contraction jusqu’à z = zFL puis s’élargit de manière

monotone. Lorsque l’impulsion initiale n’est pas initialement «chirpée», �TΩ�0r = 0

et zFL = 0. Le signe de �TΩ�r peut être retrouvé connaissant zFL, β2 et �TΩ�r0. Si zFL

est négatif, �TΩ�r a le même signe que �TΩ�r0. Si zFL est positif, �TΩ�r a le même

signe que �TΩ�r0 jusqu’à zFL et change de signe après. Dans le cas où �TΩ�r0 = 0, le

signe de �TΩ�r est le même que celui de β2. Le tout peut être résumé par

s = sgn (�TΩ�r) = sgn (β2) sgn [1 + sgn (β2�TΩ�0r) + sgn (z − zFL)] . (4.35)

En tenant compte de l’éq. (4.35), l’évolution du moment �TΩ�r donnée par l’éq. (4.32)

devient

�TΩ�r = s |�TΩ�r| (4.36)

= �TΩ�0r + I0z − sgn(β2)s
q

2
ln

�
�TΩ�r + s

2 (q2 + 4I1 + 4�TΩ�2r)
1
2

�TΩ�0r + s
2 (q2 + 4I1 + 4�TΩ�20r)

1
2

�
.

Les autres moments sont calculés à partir des invariants. Nous trouvons

�
�T 2� =

γ�P �0
�
�T 2�0

2I0
+

�
γ2�P �20�T 2�0

4I2
0

+
β2

I0

�
I1 + �TΩ�2r

�� 1
2

(4.37)

�P � = �P �0

�
�T 2�0
�T 2� (4.38)

�Ω2� = �Ω2�0 +
γ

β2
(�P � − �P �0) . (4.39)

Notons que l’éq. (4.37) est obtenue à partir de l’éq. (4.21) en isolant
�
�T 2� (en ne

conservant que la racine positive). Nous avons ainsi l’évolution de tous les moments

d’ordre 2, ainsi que de �P �, lors de la propagation. L’éq. (4.36) décrivant l’évolution

du moment �TΩ�r, d’où tous les autres moments découlent, est implicite ; il faut
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donc, a priori, la résoudre numériquement. Nous verrons à la section 4.4 qu’il est

possible d’obtenir des expressions analytiques approximatives permettant de contour-

ner ce problème. Pour le moment, vérifions la validité du modèle en comparant les

éqs. (4.36)–(4.38) à des simulations numériques décrivant la propagation de l’impul-

sion, c’est-à-dire la résolution de l’ÉSNL (éq. (4.2)).

Le modèle est validé en comparant les moments obtenus de la résolution numérique

de l’équation implicite (4.36) avec les moments calculés à partir du champ propagé

numériquement. La propagation numérique du champ est faite à l’aide de la méthode

«Split-Step Fourier» qui est standard pour l’ÉSNL. La figure 4.1 montre cette com-

paraison pour les différents moments ainsi que pour les deux invariants approximatifs

I1 et I2 pour une impulsion super-gaussienne (A = exp{−T 4}) sans «chirp» initial

(�TΩ�r0 = 0). La comparaison est faite pour différentes valeurs de N2 comprise entre

0,01 et 10 afin de connâıtre la validité du modèle dans les régimes hautement et

faiblement non-linéaires.

Les différents graphiques de la figure 4.1 et 4.2 montrent un excellent accord entre

le modèle et les simulations numériques. L’accord est aussi bon sur de courtes que sur

de longues distances (plusieurs longueurs de dispersion), que pour le régime faiblement

(N2 � 1) et hautement (N2 � 1) non-linéaire. Il y a toutefois de petits écarts. Ces

écarts viennent du fait que I1 et I2 ne sont qu’approximativement invariants. L’écart

relatif sur les moments �T 2� et �TΩ�r est moins de 2% ce qui est excellent. L’erreur est

cependant plus grande sur les moments �Ω2� et �P � voisinant 15%. L’erreur est plus

grande sur ces moments car ils dépendent indirectement des invariants par le biais

des éqs. (4.39) et (4.38). L’erreur relative sur ces moments est d’ailleurs comparable à

la fluctuation de I2. Nous voyons toutefois que I1 et I2 deviennent constants de façon

asymptotique pour de longues distances de propagation. La phase de l’impulsion

devient asymptotiquement parabolique dans le régime de dispersion normale et ainsi

l’approximation de la phase quadratique devient progressivement meilleure lorsque z

augmente. Cet effet est d’autant plus prononcé que N est grand, car la phase tend

d’autant plus rapidement vers une parabole. Les plus grands écarts se situent autour

de z = LD/2 où se trouve la plus forte variation de la forme d’impulsion (comme

nous le verrons au chapitre 6). Puisque l’approximation de la phase quadratique

suppose que la forme de l’impulsion est constante, il n’est pas surprenant de constater

que l’écart est plus grand quand cette dernière change fortement. Le bruit présent

sur I1 lorsque N est grand est d’origine numérique. Le calcul de I1 consiste en une
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Figure 4.1 Propagation des moments d’ordre 2 d’une impulsion super gaussienne
dans le régime de dispersion normale (β2 > 0). Les différentes courbes représentent
différentes puissances crêtes initiales ; du haut vers le bas N2 = 10, 5, 2, 1, 0.5, 0.1, 0.01
(sauf pour I2). Les lignes pleines correspondent à la résolution numérique de l’ÉSNL
éq. (4.2) alors que les lignes pointillées avec les losanges proviennent de la résolution
numérique de l’équation implicite (éq. (4.36)). Les deux invariants approximatifs I1

et I2, sont également tracés. Notons que l’ordre des courbes est inversé pour I2.
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différence très faible entre deux termes très grands (proportionnels à N), ce qui est

numériquement instable.

Le modèle permet également de tenir compte d’une phase initiale sur l’impul-

sion. La figure 4.3 montre la propagation d’une impulsion gaussienne pour différentes

valeurs de phase initiale �TΩ�r0. La phase initiale est d’origine dispersive ; c’est la

phase obtenue suite à la propagation dans une fibre dispersive sans non-linéarité. Les

différents cas ont tous N = 1 lorsque l’impulsion est «Fourier limitée». La comparai-

son est encore une fois excellente. La distance zFL correspond au minimum de �T 2�
et au maximum de �P �. Cette distance augmente avec le «chirp» initial puisqu’il faut

une distance de propagation plus grande pour annuler ce «chirp». Il y a un léger

écart autour de zFL qui augmente avec �TΩ�r0. Cela vient du fait que plus la phase

initiale est grande, plus il y a une forte modification de la forme de l’impulsion par

auto-modulation de phase. Les points discutés pour le cas Fourier limitée présentés

précédemment s’appliquent également lorsque l’impulsion est chirpée.

4.3.3 Cas β2I0 < 0

Considérons maintenant le cas où β2I0 < 0 qui ne survient qu’en régime de dis-

persion normale lorsque N2 > 1/2. Dans ce cas, l’évolution des différents moments

est périodique lors de la propagation ; c’est le cas, entre autres, des solitons d’ordre

supérieur. L’éq. (4.26) montre un arc sinus trigonométrique dans ce cas. Il est toute-

fois plus aisé de travailler avec la fonction arc tangente car elle est définie pour tous

les arguments alors que pour l’arc sinus, il faut toujours s’assurer que l’argument est

situé dans l’intervalle [-1,1]. En utilisant la relation tan(x) = sin2(x)/
�

1− sin2(x),

l’éq. (4.26) devient

|�TΩ�r| = sgn (�TΩ�r) I0z + K +
q

2
arctan

�
1

|�TΩ�r|

��
I0�T 2�
|β2|

− q

2

��
(4.40)

où la constante d’intégration K est définie par

K = |�TΩ�0r| −
q

2
arctan

�
1

|�TΩ�0r|

��
I0�T 2�0
|β2|

− q

2

��
. (4.41)
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Figure 4.3 Propagation des moments d’ordre 2 pour une impulsion gaussienne dans le
régime de dispersion normale. Les différentes courbes représentent des phases initiales
par le biais de �TΩ�r0 = −10,−5,−2,−1, 0, 1, 2, 5, 10. Les lignes pleines correspondent
à la propagation numérique du champ alors que les lignes pointillées avec les carrés
proviennent de la résolution numérique de l’équation implicite. Les losanges vides
sont associés à un «chirp» positif et les losanges pleins à un «chirp» négatif. Le cas
«Fourier limité» est identifié par des cercles. Les moments sont normalisés par leur
valeur «Fourier limitée», dénotée par l’indice FL. Tous les impulsions ont N = 1
lorsqu’elles sont «Fourier limitées».
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Encore une fois, il faut déterminer le signe de �TΩ�r afin de résoudre complètement

l’éq. (4.40). Pour ce faire, employons la même méthode que pour le cas β2I0 > 0 et

trouvons la distances zFL où la phase est nulle. Contrairement au cas où β2I0 > 0, il

existe plusieurs distances zFL où l’impulsion est «Fourier limitée» puisque l’évolution

des moments est périodique. Ces distances sont obtenus en posant �TΩ�r = 0 dans

l’éq. (4.40)

zFL,m =
sgn (�TΩ�0r)

I0

���
qπ

4
−K

��� +
qmπ

2I0
m ∈ Z (4.42)

La période d’oscillation Tosc est obtenue à partir de l’éq. (4.42) en considérant que la

fonction tan(x) passe deux fois par zéro par période.

Tosc =
qπ

I0
∝ 1

N
(4.43)

En remplaçant q par l’éq. (4.29) et I0 = β2�Ω2�0(1 + 2N2) dans l’éq. (4.43), il

apparâıt que la période Tosc est inversement proportionnelle à N lorsque N � 1.

Ainsi, la période d’oscillation diminue lorsque la puissance crête initiale de l’impul-

sion augmente, ce qui correspond bien au comportement de solitons d’ordre supérieur.

Notons un cas particulier lorsque N = 1 puisque l’argument de l’arctangente s’an-

nule. Pour s’en convaincre, il suffit de remplacer q par l’éq. (4.29) et de noter que

β2�Ω2�0 + γ�P �/2 = 0 lorsque N = 1 dans le régime de dispersion anormale. En

notant que le «chirp» change de signe à chaque fois que �TΩ�r passe par zéro, le signe

de �TΩ�r peut être écrit

sm =sgn (�TΩ�r) = 1− 2

����

�
2(z − zFL,m)

Tosc

�
mod 2

���� (4.44)

où les symboles � et � représentent la fonction plancher et mod est la fonction modulo

donnant le reste de la division par l’argument du modulo. Connaissant le signe du

moment �TΩ�r, l’évolution de ce dernier peut maintenant être écrite en utilisant les
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éqs. (4.40) et (4.44).

�TΩ�r =sm |�TΩ�r| (4.45)

=I0z + �TΩ�0r −
qπ

2

�
2(z − zFL,m)

Tosc

�
+

q

2
arctan

�
1

�TΩ�r

��
I0�T 2�
|β2|

− q

2

��

− q

2
arctan

�
1

�TΩ�0r

��
I0�T 2�0
|β2|

− q

2

��

L’éq. (4.45) dépend à la fois de �TΩ�r et de �T 2�. Elle peut être toutefois exprimée

uniquement en fonction de �T 2� en utilisant l’éq. (4.21). L’équation résultante est

également implicite et doit être résolue numériquement. Les autres moments sont

obtenus à partir des éqs. (4.21), (4.39) et (4.38). Pour vérifier la validité de ce modèle,

nous le comparons avec les solutions de l’ÉSNL résolue numériquement par «force

brute».

La comparaison s’est faite à l’instar du cas précédent ; la résolution numérique

du modèle a été comparée aux moments obtenus du champ propagé numériquement.

La comparaison pour une impulsion sécante hyperbolique avec différents niveaux de

puissance initiale est présentée à la figure (4.4). Les courbes sont décalées sur les

différents graphiques pour plus de clarté. De façon générale, l’accord est excellent

à basse puissance et se détériore progressivement lorsque N > 1. Contrairement

au régime de dispersion normale, la forme de l’impulsion change rapidement dans

le régime de dispersion anormale et ce, d’autant plus que N est grand. Le cas où

N2 = 0, 5 est le cas limite entre les solutions où β2I0 < 0 et β2I0 > 0. Le cas

N = 1 est le soliton d’ordre 1 et sa forme est invariante. Les cas N = 2 et N =

3 montrent la propagation des solitons d’ordre supérieur. Bien que la comparaison

soit loin d’être parfaite, nous voyons que le modèle prédit bien qualitativement le

comportement. La période prédite par le modèle s’approche de celle du soliton et

diminue avec N . L’amplitude des variations des différents moments du soliton d’ordre

2 est adéquatement décrite par le modèle ; la comparaison est moins bonne pour le

soliton d’ordre 3. Le modèle décrit également correctement comment les moments

varient avec la propagation, à savoir si la variation est sinusöıdale ou en dents de scie.

Lorsque N2 vaut 2, 3 ou 5, le modèle prédit une évolution périodique alors que les

simulations numériques montrent qu’il y a en plus une dérive plus ou moins polyno-

miale (particulièrement visible sur N2 = 2). Lorsque N n’est pas entier, l’impulsion
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Figure 4.4 Propagation des moments d’ordre 2 d’une impulsion super gaussienne
dans le régime de dispersion anormale (β2 < 0). Les différentes courbes représentent
différents puissances crêtes initiales ; du haut vers le bas N2 = 9, 5, 4, 3, 2, 1, 0, 5. Les
lignes pleines correspondent à la propagation numérique du champ alors que les lignes
pointillées avec les losanges proviennent de la résolution numérique de l’équation im-
plicite. Les deux invariants approximatifs I1 et I2, sont également tracés. Les courbes
sont décalées de deux unités (100 en échelle logarithmique) les unes par rapport aux
autres pour plus de clarté.
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n’a pas un comportement parfaitement périodique puisque sa puissance est trop pe-

tite (ou trop grande) pour compenser la dispersion. Dans ce cas, l’impulsion change

de forme, mais ne revient pas périodiquement à sa forme de départ car la propagation

est partiellement dispersive. Le modèle dans le régime β2I0 < 0 prédit toutefois un

comportement strictement périodique qui ne reflète pas cette évolution. Cela semble à

première vue surprenant ; après tout, ce comportement était modélisé adéquatement

dans le cas où β2I0 > 0 ! La réponse vient de modification de la forme d’impulsion.

Dans le régime de dispersion anormale, lorsque les effets dispersifs et non-linéaire ne

se compensent pas parfaitement, il y a formation d’un piédestal dans le profil de puis-

sance quand le centre de l’impulsion ne se déplace pas à la même vitesse que les ailes.

Ce piédestal cause un élargissement «artificiel» de �T 2�. Le mot «artificiel» est entre

guillemets car l’augmentation de �T 2� est due plus au changement de forme de l’im-

pulsion qu’à une augmentation de sa durée (en réalité, l’impulsion centrale est plus

courte). Le moment �TΩ�r demeure faible et �Ω2� ne diminue pas, montrant bien que

l’augmentation de �T 2� est causé par un changement de forme. Rappelons-nous que

l’opérateur t2 met plus de poids sur les ailes de l’impulsion (et donc sur le piédestal)

que sur son centre. Le modèle ne peut prédire ce type de changement car il ne tient

compte que de la forme initiale de l’impulsion. C’est pour cette raison que le modèle

donne des meilleurs résultats pour des valeurs entières de N car, dans ce cas, la forme

de l’impulsion revient périodiquement à sa forme initiale. Ce problème ne survient

pas dans le régime de dispersion normale puisque que la dispersion et la non-linéarité

sont de même signe et qu’aucun piédestal ne se forme.

La variation des quantités I1 et I2, approximativement invariantes dans notre

modèle, donne une bonne idée de la variation de la forme d’impulsion et donc de

la validité du modèle. Dans le cas β2I0 > 0, l’invariant I1 (celui relié au principe

d’incertitude) varie d’un facteur 2 lors de la propagation ; dans le cas β2I0 < 0 c’est de

près d’un facteur 50 qu’il varie. Le changement pour I2 est également plus élevé dans

ce cas. La périodicité de la forme de l’impulsion est par ailleurs très visible lorsque N

est entier. Il est intéressant de remarquer que les évolutions de ces quantités sont liées

entre elles. En écrivant les équations de propagation de I1 et I2 à partir du système

d’équations de propagation des moments original (4.12), nous obtenons

β2
dI1

dz
+ γE

�
�T 2�dI2

dz
= 0. (4.46)
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Ainsi, l’évolution des deux «invariants» est la même lorsque la durée de l’impulsion est

constante. Les quantités I1 et I2 deviennent réellement invariantes que lorsque β2 = 0

ou γ = 0. Dans chacun de ces cas, nous avons vu à la section (4.3.1) que la propagation

est décrite par des polynômes en z2. Le cas intermédiaire est beaucoup plus complexe

et doit être décrit à l’aide de fonctions hyperboliques ou trigonométriques implicites,

selon le signe de β2I0. Regardons maintenant s’il est possible de simplifier ces équations

afin de les rendre explicites.

4.4 Approximation des solutions implicites

Bien que les éqs. (4.36) et (4.45) décrivent précisément la propagation des mo-

ments, il demeure que ces équations doivent être résolues numériquement, ce qui est

un inconvénient. Les équations analytiques, implicites ou explicites, permettent de

mieux comprendre la physique d’un problème qu’une résolution. Les équations expli-

cites peuvent être plus facilement utilisées et sont généralement plus intuitives que les

équations implicites. Tentons donc de rendre explicites les équations de propagation

des moments. Lorsque la distance de propagation z est très courte, l’éq. (4.12b) peut

être linéarisée, c’est-à-dire intégrée en supposant les autres variables cosntantes, et

donne

�TΩ�rL = �TΩ�0r +
�
β2�Ω2�0 +

γ

2
�P �0

�
z (4.47)

où l’indice L signifie «linéarisé». Afin de déterminer �T 2�, il suffit de remplacer

l’éq. (4.47) dans l’éq. (4.12a) et d’intégrer.

�T 2�L =�T 2�0 + 2β2�TΩ�0rz + β2

�
β2�Ω2�0 +

γ

2
�P �0

�
z2 (4.48)

Les moments �Ω2� et �P � sont obtenus par le biais des éqs. (4.39) et (4.38) respective-

ment. Le modèle linéarisé est le même pour β2I0 > 0 et β2I0 < 0. Ce modèle ne décrit

ni l’évolution asymptotique en régime de dispersion normale ni l’évolution périodique

en régime de dispersion anormale. Une équation similaire à l’éq. (4.48) a été obtenue

précédemment où la largeur de bande n’a pas été incluse. Le modèle s’applique sur

de longues distances lorsque la puissance de l’impulsion est faible (N2 � 1). Dans

un tel cas, la non-linéarité est faible et la densité spectrale de l’impulsion change peu

lors de la propagation ; l’approximation �Ω2� ≈ �Ω2�0 est donc justifiée. À la limite,
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lorsque γ = 0, l’éq. (4.48) décrit exactement la propagation dispersive de l’éq. (4.30c).

Lorsque la non-linéarité est importante, il faut de nouveau considérer deux cas selon

le signe de β2I0.

4.4.1 Cas β2I0 > 0

Dans ce régime, la durée, densité spectrale et phase augmentent de manière mo-

notone avec la propagation. Lorsque la distance de propagation tend vers l’infini

(z → ∞), le logarithme dans l’éq. (4.36) devient négligeable ; nous obtenons ainsi

l’expression asymptotique de �TΩ�r.

�TΩ�r∞ = �TΩ�0r + I0z (4.49)

�T 2�∞ = �T 2�0 + 2β2�TΩ�0rz + β2I0z
2

Le «chirp» est donnée par l’éq. (3.12) et s’exprime par le rapport �TΩ�r/�T 2� lorsque

la phase est quadratique dans le temps.

Ωinst,∞ =
�TΩ�r∞
�T 2�∞

T ≈ T

β2z
(4.50)

Ce résultat est similaire au chirp linéaire des impulsions paraboliques où une variation

en 1/z de la fréquence instantanée a été calculée (Anderson et al., 1993b). Il est

remarquable que �TΩ�rL et �TΩ�r∞ soient tous deux linéaires avec z et que leur pente

ne diffère que par γ�P �0/2. Le logarithme de l’éq. (4.36) assure donc une transition

douce entre ces deux pentes. Une expression explicite peut être trouvée pour cette

transition en supposant que l’impulsion s’est très élargie, autrement dit �T 2� � �T 2�0,
ce qui se produit lorsque l’impulsion est très «chirpée». Sous cette approximation,

l’éq. (4.21) devient

|�TΩ�r| =

�
I0

β2
�T 2� − γI2E

β2

�
�T 2� − I1

� 1
2

≈

�
I0�T 2�

β2
− sgn(β2)

q

2
(4.51)

ce qui est équivalent à supposer que �TΩ�r � I1, q. En utilisant cette approximation

dans l’éq. (4.36), et en remplaçant le moment �TΩ�r par l’éq. (4.47) nous obtenons
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une équation décrivant la transition.

�TΩ�rG =�TΩ�0r + I0z − sgn(β2)s
q

2
ln



 2�TΩ�rL

�TΩ�0r + s
�

I0�T 2�0
β2

− sgn(β2)s
q
2



 (4.52)

L’indice G indique une solution sur une grande distance de propagation. Il aurait

également été possible de substituer �TΩ�r par l’éq. (4.49), mais puisque nous avons

déjà supposé que �TΩ�r est très grand, il est plus précis sur de courtes distances

d’utiliser l’éq. (4.47). Les autres moments sont obtenus à partir des éqs. (4.37)– (4.38).

L’éq. (4.52) se réduit au cas asymptotique lorsque la distance de propagation est très

grande mais ne se réduit pas au cas linéarisé lorsque cette dernière est très courte. Il

faut donc déterminer la distance pour laquelle il faut passer du modèle linéarisé donné

par l’éq. (4.49) à celui de l’éq. (4.52). Cette distance zG de transition est l’endroit

où la différence entre les deux modèles est la plus faible. Autrement dit, zG est la

distance minimisant la différence �TΩ�rL − �TΩ�rG.

zG =

�
�T 2�0
β2I0

− �TΩ�r0
I0 − γ�P �0

2

(4.53)

Si la distance de propagation est inférieure à zG, il vaut mieux utiliser l’éq. (4.47) ;

au-delà de zG, l’éq. (4.52) est plus précise. Puisque nous avons obtenu �TΩ�rG en

supposant que le chirp était grand, il n’est pas surprenant que la distance de transition

dépende de �TΩ�r0.
Pour vérifier la validité des éqs. (4.47) et (4.52), nous les comparons de nou-

veau avec les simulations numériques pour différentes valeurs de N2 en utilisant la

même procédure qu’à la section précédente. La comparaison est montrée à la figure

4.5. �TΩ�rL représente bien l’évolution pour de courtes distances et �TΩ�rG pour de

longues distances. L’écart est évidemment le plus grand autour du point de transition

zG. Nous voyons qu’autour du point de transition, �TΩ�rL est plus précis que �TΩ�rG,

ce qui suggère que de minimiser la distance entre les deux modèles pour obtenir zG

n’est pas la méthode optimale. Toutefois pour faire mieux, il faudrait connâıtre a priori

la solution recherchée, ce qui n’est évidemment pas possible. Tentons maintenant de

simplifier les équations implicites du cas où β2I0 < 0.
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Figure 4.5 Comparaison des modèles explicites et des simulations pour moment
�TΩ�r d’une impulsion super gaussienne dans le régime de dispersion normale (β2 >
0). Les différentes courbes montrent différentes puissances crêtes initiales ; du haut
vers le bas N2 = 10, 5, 2, 1, 0.5, 0.1, 0.01. Les lignes pleines représentent les simulations
numériques alors que les lignes pointillées avec les losanges représentent le modèle
linéarisé lorsque z < zG et le modèle pour de grandes distances lorsque z > zG. Le
point de transition vaut zG/LD = 0.13, 0.18, 0.26, 0.34, 0.41, 0.53, 0.58 selon N2. La
figure de droite est un agrandissement de celle de gauche.

4.4.2 Cas β2I0 < 0

Il est plus difficile de déterminer une équation explicite dans ce cas car il n’est pas

possible de supposer que le «chirp» est très grand. De plus, tous les paramètres sont

du même ordre de grandeur de sorte qu’aucune simplification n’est possible. Toute-

fois, si l’impulsion possède un «chirp» initial important, l’éq. (4.52) peut être utilisée

puisque l’évolution est monotone dans ce cas. Il n’y a pas de méthodes évident pour

simplifier l’éq. (4.45) afin d’obtenir une forme explicite ; elle est toutefois raisonnable-

ment décrite par

�TΩ�rG =

��
I0�T 2�0
|β2|

− q

2

�
sin

�
2I0z

q

�

1 +
�
1− 1

N

�
cos

�
2I0z

q

� (4.54)

qui est similaire à un développement de Pade-Fourier Geer (1995). La période en z du

moment �TΩ�rG est celle de l’éq. (4.43). Le paramètre N au dénominateur détermine

la forme de la fonction périodique. Lorsque N ≈ 1, l’évolution est approximativement



57

sinusöıdale. Elle devient en dents de scie lorsque N � 1. L’évolution suit une tangente

lorsque N � 1. Il est donc évident que le modèle ne s’applique que pour des puissances

suffisamment élevées, c’est-à-dire N > 1 puisque l’évolution du moment �TΩ�r n’est

pas périodique lorsque N ≤ 1. Il est toujours possible d’utiliser le modèle linéarisé

�TΩ�rL à faible puissance N < 1. Puisque l’éq. (4.54) n’est pas une solution valide de

l’éq. (4.25), l’éq. (4.37) ne peut être utilisée pour déterminer l’évolution du moment

�T 2�. Pour y arriver, il est préférable d’intégrer directement l’éq. (4.54).

�T 2�G = �T 2�0 −
qβ2

I0(1− 1
N )

ln




1 + (1− 1

N ) cos
�

2I0z
q

�

2− 1
N



 (4.55)

Les autres moments sont donnés par les éqs. (4.39) et (4.38). Pour vérifier la justesse

des éqs. (4.54) et (4.55), comparons-les au modèle implicite de l’éq. (4.45). Il est plus

justifié de les comparer à cette dernière plutôt qu’aux solutions numériques. Comme

nous l’avons vu, l’éq. (4.45) ne modélise pas précisément les simulations numériques

à haute puissance. Le mieux que nous pouvons espérer des éqs. (4.54) et (4.55) est

de bien représenter l’éq. (4.45). La comparaison est présentée à la figure 4.6 pour

différentes valeurs de N . La correspondance est satisfaisante entre les modèles expli-
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Figure 4.6 Comparaison entre des moments �TΩ�r et �T 2� obtenus par les modèles
implicites et explicites dans le régime de dispersion anormale (β2 < 0). Le modèle
explicite donné par les éqs. (4.54) et (4.55) est tracé en ligne pointillée avec les losanges
et la solution implicite de l’éq. (4.45) est tracée en lignes pleines pour N = 2, 3, 4. Les
courbes sont décalées de trois graduations pour �TΩ� et de deux graduations pour
�T 2� à des fins de clarté.
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cites et implicites, compte tenu du fait que les éqs. (4.54) et (4.55) sont très approxi-

matives. L’écart entre les modèles diminue lorsque N augmente ; malheureusement

l’écart entre le modèle implicite et les simulations numériques augmente lorsque N

augmente, comme nous l’avons vu à la figure 4.4.

4.5 Conclusion

Dans ce chapitre, nous avons utilisé les moments pour résoudre l’équation de

Schrödinger non-linéaire. Nous avons limité l’analyse aux moments d’ordre 2 qui

décrivent la durée de l’impulsion, sa largeur de bande ainsi qu’une covariance don-

nant la phase. Un autre moment, �P �, doit être introduit pour décrire la puissance de

l’impulsion. Pour fermer le système et calculer l’évolution de ces moments, nous avons

supposé que la phase varie quadratiquement avec le temps. Cette approximation a

pour conséquence que la forme de l’impulsion est invariante lors de la propagation.

Cette approximation a également permis de déterminer trois quantités invariantes

décrivant respectivement la conservation des effets dispersifs et non-linéaires, le prin-

cipe d’incertitude d’Heisenberg et la conservation de l’énergie.

Par le biais de ces trois invariants, une solution des équations de propagation a

été trouvée, valide autant dans le régime de dispersion normale qu’anormale. Selon

le signe de β2I0, la solution a un comportement monotone (β2I0 > 0) ou périodique

(β2I0 < 0). Les solutions ainsi obtenues sont implicites. Dans le régime monotone, la

solution ainsi trouvée est très proche de la solution trouvée par résolution numérique

directe autant pour de courtes que de longues distances de propagation, à faible et

à haute puissance. Dans le régime périodique, l’accord entre la solution implicite et

les simulations numériques se détériore avec la puissance crête initiale de l’impulsion.

Toutefois la solution décrit qualitativement bien la diminution de la période lorsque

N augmente ainsi que la forme du comportement périodique.

Nous avons finalement simplifié les deux solutions implicites afin d’obtenir des

expressions explicites. Nous avons d’abord trouvé une expression explicite pour de

courtes distances, valide dans les deux régimes de propagation (selon le signe de β2I0).

Dans le régime de propagation monotone, une expression pour de grandes distances

de propagation a été obtenue en supposant la durée de l’impulsion beaucoup plus

grande que sa durée initiale. Un point de transition entre le modèle à courte et à

longue distance a également été défini. Les expressions explicites monotones sont en
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bon accord avec les simulations numériques. Dans le régime périodique, une expression

explicite décrit bien le modèle implicite pour de grandes valeurs de N . Bien que d’une

utilité limitée, elle représente bien qualitativement la propagation, même lorsque la

précision diminue avec N .
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Chapitre 5

Propagation d’une impulsion

gaussienne

Au chapitre précédent, des expressions analytiques implicites et explicites ont été

obtenues pour décrire la propagation d’une impulsion dans un milieu dispersif et

non-linéaire au moyen des moments d’ordre 2. Bien que ces expressions décrivent les

principales caractéristiques de l’impulsion, elles n’en décrivent pas la forme. Peut-on

espérer déduire la forme des impulsions à partir des moments d’ordre 2 ? La réponse

est non puisque nous avons supposé que la phase de l’impulsion est quadratique lors

de la résolution. La phase quadratique n’est en effet valide que pour les impulsions

gaussiennes dans un milieu dispersif, pour les impulsions paraboliques dans un milieu

non-linéaire et pour les solitons d’ordre 1, des impulsions qui sont toutes invariantes

lors de leur propagation.

Bien que l’évolution de la forme de l’impulsion ne puisse être décrite de manière

générale par les moments d’ordre 2, il est possible d’utiliser ces expressions afin de

perturber les solutions analytiques pour décrire la propagation d’une impulsion gaus-

sienne dans un milieu dispersif et non-linéaire. Dans ce chapitre, des expressions

analytiques implicites décrivant la propagation d’une impulsion dans un milieu dis-

persif et non-linéaire sont déduites à partir des cas purement dispersif et purement

non-linéaire ainsi que des moment d’ordre 2.

Dans ce chapitre, nous traitons seulement du cas où β2I0 > 0, étant donné que

le cas où β2I0 < 0 ne donne pas des résultats suffisamment précis pour permettre

l’analyse qui suit.

5.1 Propagations dispersive et non-linéaire

Commençons par rappeler les solutions dispersives et non-linéaires et exprimons-

les en fonctions des moments d’ordre 2.
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5.1.1 Propagation dispersive

La solution dispersive (4.4) peut se réécrire en terme des moments d’ordre d’ordre

2 comme

A(z, T ) =

�
P0

|η| exp

�
−�Ω

2�
η

T 2

�
η = 1− 2i�TΩ�r (5.1)

où P0 est la puissance initiale qui est donnée par

P0 = E

�
2

π
�Ω2�

� 1
2

. (5.2)

La propagation dispersive ne dépend donc que des moments E, �Ω2� et �TΩ�r. Notons

que la solution aurait pu s’écrire avec les moments �P � et �T 2�, mais il est plus naturel

de l’exprimer avec E et �Ω2� puisque ces derniers sont invariants lors de la propagation

purement dispersive.

5.1.2 Propagation non-linéaire

La solution non-linéaire (4.6) peut se réécrire en terme des moments d’ordre

d’ordre 2 comme

A(z, T ) =
�

Pc exp

�
− T 2

4�T 2�

�
exp

�
iγ |A(z, T )|2 z

�
(5.3)

où Pc est la puissance crête qui est donnée par

Pc =
√

2�P � =
E�

2π�T 2�
(5.4)

et où le facteur
√

2 découle de la forme gaussienne de l’impulsion. Puisque l’intensité

de l’impulsion est invariante lors de la propagation non-linéaire, il est préférable d’uti-

liser les moments E, �P � et �T 2� qui sont également invariants. Notons que l’équation

(5.3) est implicite.
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5.1.3 Perturbation des solutions analytiques

Maintenant que nous avons défini la propagation d’une impulsion gaussienne dans

un milieu dispersif et dans un milieu non-linéaire, nous pouvons les perturber pour

déterminer la propagation d’une impulsion gaussienne dans un milieu dispersif et non-

linéaire. L’idée est de remplacer les moments qui sont invariants dans les équations

(5.1) et (5.3) par les expressions des moments d’ordre 2 obtenus au chapitre 4. Les

équations perturbées doivent ensuite être normalisées afin de conserver l’énergie. No-

tons finalement que les éqs. (5.1) et (5.3) sont perturbées de manières très différentes

dans ce qui suit.

5.1.4 Perturbation de la propagation dispersive

Dans le cas de la propagation dispersive, il est intéressant de remarquer que le

seul paramètre changeant lors de la propagation est le paramètre η et donc �TΩ�.
Rappelons les deux expressions explicites trouvées au chapitre 4, (4.47) et (4.49),

décrivant le moment �TΩ�.

�TΩ�rL = �TΩ�0r +
�
β2�Ω2�0 +

γ

2
�P �0

�
z (5.5)

�TΩ�r∞ = �TΩ�0r +
�
β2�Ω2�0 + γ�P �0

�
z (5.6)

Les deux expressions ne diffèrent que par un facteur 1/2 sur le terme non-linéaire ;

nous utilisons donc la valeur moyenne et supposons une phase initiale nulle.

�TΩ�r =

�
β2�Ω2�0 +

3

4
γ�P �0

�
z (5.7)

L’éq. (5.7) contient un terme proportionnel à �P � qui change la valeur du «chirp»
pour inclure l’auto-modulation de phase ; ceci ne change cependant pas la forme de

l’impulsion, car le moment �P � n’est pas une fonction du temps. Pour modifier la

forme de l’impulsion, il faut ajouter cette dépendance temporelle. Remplaçons ainsi

le moment �P � par la puissance |A(z, T )|2 /
√

2, ce qui revient à s’affranchir de l’effet

moyennant de l’intégrale dans la définition de �P �. L’éq. (5.7) devient alors

{TΩ}r = β2

�
Ω2

�
z +

3

4
√

2
γ |A(z, T )|2 z (5.8)
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où les accolades indiquent que les moments sont maintenant des quantités qui dépen-

dent du temps. Ce ne sont donc plus des moments proprement dit mais continuent

à représenter le même concept. L’indice 0 a été retiré de sorte que les moments ne

représentent plus des valeurs initiales. Le moment {Ω2} est déterminé par l’invariant

I0 donné par l’éq. (4.20a).

�
Ω2

�
=

I0

β2
− γ

β2
�P � =

I0

β2
− γ√

2β2

Pc

|η|

=
I0

β2
− γ

β2

E

|η|

�
1

π

�
Ω2

�� 1
2

, η = 1− 2i {TΩ}r (5.9)

Le moment �P � est substitué par la puissance crête et Pc par l’éq. (5.2). La raison

pour laquelle �P � est substitué par des expressions différentes dans les éqs. (5.8) et

(5.9) est que la phase non-linéaire est proportionnelle à la puissance instantanée alors

que l’invariant I0 lie la largeur spectrale à la puissance crête. La largeur de bande

{Ω2} est donc définie si {TΩ} est défini. La seule inconnue est la puissance |A(z, T )|2

qui est obtenue à travers l’amplitude complexe A(z, T ).

A(z, T ) =

�
2

π

E2

|η|2
�
Ω2

�� 1
4

exp

�
−{Ω2}

η
T 2

�
(5.10)

Puisque la puissance dépend de {Ω2} et de {TΩ} qui eux-mêmes dépendent de la puis-

sance, l’éq. (5.10) est définie de manière implicite. La solution implicite est représentée

schématiquement à la figure 5.1. Bien que cette solution soit parfaitement définie ana-

lytiquement, elle doit être résolue numériquement pour obtenir explicitement l’am-

plitude du champ. Cette résolue numérique est plus rapide que la simulation de la

propagation du champ et peut être obtenue pour n’importe quelle valeur individuelle

de z.
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A(z, T )

|A(z, T )|2 {TΩ}r

η

{Ω2}

1

Figure 5.1 Représentation schématique de la solution implicite à la propagation non-
linéaire et dispersive d’une impulsion gaussienne. La variable à la queue de la flèche
doit être connue afin de déterminer la variable à la tête de la flèche.

5.1.5 Perturbation de la propagation non-linéaire

Dans le cas non-linéaire, commençons par linéariser l’équation de Schrödinger

non-linéaire (éq. (4.2)) comme point de départ à la propagation

1

A

∂A

∂z
=− iβ2

2A

∂2A

∂T 2
+ iγ |A|2 (5.11)

⇒ A(z, T ) = A0 exp

��
− iβ2

2A0

∂2A0

∂T 2
+ iγ |A0|2

�
z

�

où A0 = A(0, T ) est le champ initial en z = 0. Utilisons maintenant l’éq. (5.3) comme

champ initial, bien qu’il soit défini sur tous les z. La dérivée seconde est alors définie

par

1

A0

∂2A0

∂T 2
= − 1

2�T 2�0
+

T 2

4�T 2�20
− i

γ |A0|2 z

�T 2�0
+ 2iγ |A0|2 z

T 2

�T 2�20
− γ2 |A0|4 z2 T 2

�T 2�20
.

(5.12)

Les termes réels dans la dérivée seconde sont des termes de phase ; les termes ima-

ginaires agissent comme un filtre qui modifie la forme de l’impulsion. L’effet filtrant

des termes imaginaires contribue à changer la largeur l’impulsion de sorte que �T 2�0
ne représente plus la variance temporelle. De la même manière ce filtre atténue la

puissance crête de sorte que Pc n’est plus la puissance crête. Écrivons la puissance de
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l’impulsion en changeant �T 2�0 par �T 2�ini et Pc par Pini pour marquer la différence.

|A(z, T )|2 = Pini exp

�
− T 2

2�T 2�ini

�
exp

�
−β2γ |A(z, T )|2 z2

�T 2�ini

�
1− 2T 2

�T 2�ini

��
(5.13)

Pour avoir une expression utile de l’amplitude, il faut s’affranchir de Pini et de �T 2�ini.

À partir de l’éq. (5.13), il est possible de déterminer la vraie puissance crête, en

évaluant la puissance autour de T = 0.

Pc = Pini exp

�
−β2γPcz2

�T 2�ini

�
(5.14)

La puissance s’écrit alors approximativement lorsque T 2 � �T 2�ini

|A(z, T )|2 = Pc exp

�
− T 2

2�T 2�ini

�
exp

�
−F

�
|A(z, T )|2 − Pc

��
(5.15)

où F agit comme un filtre non-linéaire et s’écrit

F =
β2γz2

�T 2�ini

�
1− 2T 2

�T 2�ini

�
(5.16)

Pour déterminer �T 2�ini, il suffit de calculer la variance de l’éq. (5.15). Il est toutefois

plus simple d’évaluer la largeur à 1/e et de noter que pour une gaussienne T 2
1/e =

2�T 2� ; cela induit une légère erreur car l’impulsion n’est pas gaussienne. La variance

peut être ainsi reliée à �T 2�ini au moyen d’une équation quadratique.

�T 2�ini = �T 2�+ β2γPcz
2

�
1

e
− 1

� �
1− 4�T 2�

�T 2�ini

�
(5.17)

En utilisant les éqs. (5.15)–(5.17), nous obtenons une équation implicite qui décrit la

propagation d’une gaussienne dans un milieu dispersif et non-linéaire à condition que

l’évolution selon z des quantités �T 2� et Pc soit connue. L’évolution du moment �T 2�
est donnée en intégrant l’éq. (4.17a) au moyen de l’éq. (5.7)

�T 2� = �T 2�0 + β2

�
I0 −

γPc

4
√

2

�
z2 (5.18)
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où le moment �P � est remplacé par Pc/
√

2 et le moment �Ω2� est déterminé par

l’invariant I0. La seule quantité qu’il faut définir est la puissance crête Pc qui peut

être exprimée en termes de l’énergie, en supposant que l’impulsion est gaussienne.

Pc =
E�

2π�T 2�
(5.19)

En résumé, en connaissant le moment �T 2� et l’énergie, il possible de déterminer Pc,

�T 2�ini et la puissance |A(z, T )|2 au moyen des éqs. (5.19), (5.17) et (5.15) respective-

ment. Notons que, contrairement au cas précédent, la solution obtenue est explicite

et non implicite. Pour obtenir l’amplitude A(z, T ) du champ de l’impulsion, il suffit

de considérer les termes imaginaires de l’éq. (5.12). L’amplitude s’écrit alors

A(z, T ) =
�

Pc exp

�
− T 2

4�T 2�ini

�
exp

�
−F

2

�
|A(z, T )|2 − Pc

��
exp (iφ) (5.20)

φ = γ |A(z, T )|2 z + β2�Ω2�
�

1− T 2

2�T 2�

�
(5.21)

= γ |A(z, T )|2 z +

�
I0 −

γPc√
2

� �
1− T 2

2�T 2�

�

où le moment �Ω2� a été introduit pour remplacer (4�T 2�)−1 (le facteur de 4 est pour

une impulsion gaussienne). Bien qu’il n’y ait pas de différence entre les deux au début

de la propagation (puisque �TΩ�0 = 0), �Ω2� est plus approprié car il reflète mieux la

physique de la dispersion que �T 2�. La phase est obtenue à partir des éqs. (5.11) et

(5.12) où le terme quadratique en γ a été négligé.

5.2 Comparaison et validation

Pour valider les éq. (5.10) et (5.20), nous les comparons avec les champs obte-

nus par simulation numérique à l’aide d’un propagateur par transformée de Fou-

rier. Les comparaisons sont faites pour différentes longueurs de dispersion et pour

différents rapports N entre la longueur de dispersion et la longueur non-linéaire définis

à l’éq. (4.28). Spécifiquement, la comparaison est faite pour des valeurs de N = 1,

5, 10 correspondant à des effets non-linéaires égaux, cinq fois plus importants et dix

fois plus importants respectivement que les effets dispersifs. Les puissances, chirps et

spectres sont comparés aux figures 5.2–5.10 pour des distances de propagation allant,
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selon le cas, d’une fraction de la longueur de dispersion LD à 4LD.

De manière générale, l’accord entre les deux modèles et les simulations numériques

est bon, ce qui est surprenant, considérant la nature très approximative des deux

modèles analytiques. Les deux modèles donnent des résultats plus proches des simu-

lations numériques pour de faibles valeurs de N que pour de grandes valeurs de N .

Lorsque les effets non-linéaires sont importants, correspondant à une valeur élevée de

N , la modification de la forme de l’impulsion est importante. Il s’ensuit que la per-

turbation doit être plus forte pour modifier la gaussienne, ce qui augmente l’erreur.

Les deux modèles donnent des résultats différents. Le modèle dispersif évalue bien la

puissance crête de l’impulsion mais sous-estime sa durée. Le modèle non-linéaire es-

time correctement la durée de l’impulsion mais surestime la puissance crête. Le même

résultat se reflète dans le domaine des fréquences où le modèle dispersif sous-estime

la densité spectrale crête et surestime la largeur spectrale et le modèle non-linéaire

fait le contraire.

Bien que les deux modèles estiment bien la pente du «chirp» autour de T = 0, ils ne

représentent pas les oscillations rapides associées à la rupture de l’enveloppe («wave-

breaking»). Le modèle dispersif décrit bien la courbure générale du «chirp», de sorte

que le «chirp» est bien décrit sur les ailes de l’impulsion, ce qui n’est pas surprenant

puisque la dispersion domine sur les ailes. Toutefois, le modèle dispersif ne décrit pas le

chirp provenant de l’auto-modulation de phase. De plus, des instabilités apparaissent à

haute puissance. Ces instabilités proviennent de la résolution numérique de l’équation

implicite (5.10). L’effet de ces instabilités est visible sur la puissance de l’impulsion

par une légère modulation sur les ailes de l’impulsion. Ces instabilités ne sont pas

présentes sur le modèle non-linéaire puisque ce dernier est explicite.

Le modèle non-linéaire représente adéquatement le «chirp» non-linéaire autour de

T = 0 puisque la phase non-linéaire apparâıt explicitement dans l’éq. (5.20). Toutefois

le «chirp» sur les ailes de l’impulsions est sous-estimé à haute puissance, puisque le

«chirp» sur les ailes est dominé par la dispersion. L’effet de la phase non-linéaire est

observée sur le spectre de l’impulsion où des oscillations dues à l’auto-modulation de

phase sont visibles lorsque N = 10. La forme du spectre est de manière générale un

bon indicateur se la qualité de l’approximation de la phase dans le temps.

La validité des deux modèles est bonne pour toutes les distances de propagation

simulées. Nous remarquons cependant que l’accord est meilleur sur de longues dis-

tances lorsque la puissance est élevée. La raison est, comme nous le verrons dans le
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Figure 5.2 Comparaison des puissances obtenues par les simulations numériques et
par le modèle basé sur une solution dispersive (haut) et le modèle basé sur la solution
non-linéaire (bas) pour un rapport N = 1 entre les effets non-linéaires et dispersifs. Les
simulations numériques sont en traits pleins noirs et les modèles analytiques en cercles
rouges. Les courbes sont tracées pour des distances z/LD = {0, 1/4, 1/2, 1, 2, 4}. Le

temps est normalisé par �T 2�1/2
0 .
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Figure 5.3 Comparaison des «chirps» obtenus par les simulations numériques et par
le modèle basé sur une solution dispersive (haut) et le modèle basé sur la solution non-
linéaire (bas) pour un rapport N = 1 entre les effets non-linéaires et dispersifs. Les
simulations numériques sont en traits pleins noirs et les modèles analytiques en cercles
rouges. Les courbes sont tracées pour des distances z/LD = {0, 1/4, 1/2, 1, 2, 4}. Le

temps est normalisé par �T 2�1/2
0 .
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Figure 5.4 Comparaison des spectres obtenus par les simulations numériques et par
le modèle basé sur une solution dispersive (haut) et le modèle basé sur la solution non-
linéaire (bas) pour un rapport N = 1 entre les effets non-linéaires et dispersifs. Les
simulations numériques sont en traits pleins noirs et les modèles analytiques en cercles
rouges. Les courbes sont tracées pour des distances z/LD = {0, 1/4, 1/2, 1, 2, 4}. Les

fréquences sont normalisées par �Ω2�1/2
0 .
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Figure 5.5 Comparaison des puissances obtenues par les simulations numériques et
par le modèle basé sur une solution dispersive (haut) et le modèle basé sur la solution
non-linéaire (bas) pour un rapport N = 5 entre les effets non-linéaires et dispersifs. Les
simulations numériques sont en traits pleins noirs et les modèles analytiques en cercles
rouges. Les courbes sont tracées pour des distances z/LD = {0, 1/4, 1/2, 1, 2, 4}. Le

temps est normalisé par �T 2�1/2
0 .
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Figure 5.6 Comparaison des «chirps» obtenus par les simulations numériques et par
le modèle basé sur une solution dispersive (haut) et le modèle basé sur la solution non-
linéaire (bas) pour un rapport N = 5 entre les effets non-linéaires et dispersifs. Les
simulations numériques sont en traits pleins noirs et les modèles analytiques en cercles
rouges. Les courbes sont tracées pour des distances z/LD = {0, 1/4, 1/2, 1, 2, 4}. Le

temps est normalisé par �T 2�1/2
0 .
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Figure 5.7 Comparaison des spectres obtenus par les simulations numériques et par
le modèle basé sur une solution dispersive (haut) et le modèle basé sur la solution non-
linéaire (bas) pour un rapport N = 5 entre les effets non-linéaires et dispersifs. Les
simulations numériques sont en traits pleins noirs et les modèles analytiques en cercles
rouges. Les courbes sont tracées pour des distances z/LD = {0, 1/4, 1/2, 1, 2, 4}. Les

fréquences sont normalisées par �Ω2�1/2
0 .
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Figure 5.8 Comparaison des puissances obtenues par les simulations numériques
et par le modèle basé sur une solution dispersive (haut) et le modèle basé sur la
solution non-linéaire (bas) pour un rapport N = 10 entre les effets non-linéaires
et dispersifs. Les simulations numériques sont en traits pleins noirs et les modèles
analytiques en cercles rouges. Les courbes sont tracées pour des distances z/LD =

{0, 1/4, 1/2, 1, 2, 4}. Le temps est normalisé par �T 2�1/2
0 .
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Figure 5.9 Comparaison des «chirps» obtenus par les simulations numériques et par
le modèle basé sur une solution dispersive (haut) et le modèle basé sur la solution non-
linéaire (bas) pour un rapport N = 10 entre les effets non-linéaires et dispersifs. Les
simulations numériques sont en traits pleins noirs et les modèles analytiques en cercles
rouges. Les courbes sont tracées pour des distances z/LD = {0, 1/4, 1/2, 1, 2, 4}. Le

temps est normalisé par �T 2�1/2
0 .
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Figure 5.10 Comparaison des spectres obtenus par les simulations numériques et par
le modèle basé sur une solution dispersive (haut) et le modèle basé sur la solution non-
linéaire (bas) pour un rapport N = 10 entre les effets non-linéaires et dispersifs. Les
simulations numériques sont en traits pleins noirs et les modèles analytiques en cercles
rouges. Les courbes sont tracées pour des distances z/LD = {0, 1/4, 1/2, 1, 2, 4}. Les

fréquences sont normalisées par �Ω2�1/2
0 .
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chapitre suivant, que la forme de l’impulsion reprend un peu une forme gaussienne

sur de longues distances de propagation. Finalement, le modèle non-linéaire montre

de meilleures performances que le modèle dispersif sur les différentes distances de pro-

pagation et différentes puissances crêtes simulées. Cela s’explique par le fait qu’une

linéarisation de l’équation de Schrödinger non-linéaire a été incluse dans le modèle

non-linéaire, alors que le modèle dispersif ne dépend que de l’évolution des moments

d’ordre 2.

Il est plus facile d’observer l’évolution de la forme de l’impulsion en utilisant les

facteurs de forme. Les figures 5.11–5.13 montrent l’évolution des facteurs de formes κT ,

κPT et κP des champs simulés en trait plein et modélisés en trait pointillé. Rappelons

que le facteur de forme κT accorde un poids plus important aux ailes de la distribution

alors que κP place le poids sur le centre. Le facteur κPT est un compromis entre les

deux. En observant ces figures nous voyons d’abord que le modèle découlant de la

solution non-linéaire prédit beaucoup plus adéquatement la forme de l’impulsion que

celui provenant de la solution dispersive. Les oscillations apparaissant dans la solution

dispersive proviennent de la résolution de l’équation implicite (5.10) qui est ardue

lorsque les distances de propagation sont courtes. Ce problème ne se pose pas dans

le cas non-linéaire car le modèle obtenu est explicite.

Les facteurs de formes montrent que les deux modèles représentent bien la modifi-

cation de la forme de l’impulsion lors de la propagation. Ils montrent également que la

précision est d’autant plus grande que N est faible, ce qui est compréhensible puisque

le changement de forme s’accentue avec N . Notons également que la différence entre

les différents κ des champs simulés et modélisés n’est pas la même. La différence est

beaucoup plus faible pour κP est plus faible que pour κT , κPT se situant entre les

deux. Nous en déduisons que les deux modèles sont, de façon générale, plus précis

au centre de l’impulsion que sur ses ailes. Les deux modèles offrent une précision

surprenante sur la forme de l’impulsion, surtout lorsque nous considérons l’ampleur

des approximations faites dans leur élaboration.

5.3 Conclusion

Dans ce chapitre, nous avons étudié comment il est possible de déterminer l’évolu-

tion de l’enveloppe du champ d’une impulsion gaussienne se propageant dans un

milieu dispersif normal et non-linéaire connaissant l’évolution des moments d’ordre 2.
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Figure 5.11 Comparaison entre les simulations numériques (lignes pleines) et le
modèle (cercles) basé sur une solution dispersive (haut) et le modèle basée sur la
solution non-linéaire (bas) pour un rapport N = 1 entre les effets non-linéaires et
dispersifs. Le trait noir montre le facteur de forme κT , le trait bleu κPT et le trait
rouge κP .
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Figure 5.12 Comparaison entre les simulations numériques (lignes pleines) et le
modèle (cercles) basé sur une solution dispersive (haut) et le modèle basée sur la
solution non-linéaire (bas) pour un rapport N = 5 entre les effets non-linéaires et
dispersifs. Le trait noir montre le facteur de forme κT , le trait bleu κPT et le trait
rouge κP .
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Figure 5.13 Comparaison entre les simulations numériques (lignes pleines) et le
modèle (cercles) basé sur une solution dispersive (haut) et le modèle basée sur la
solution non-linéaire (bas) pour un rapport N = 10 entre les effets non-linéaires et
dispersifs. Le trait noir montre le facteur de forme κT , le trait bleu κPT et le trait
rouge κP .
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Une expression analytique implicite a été obtenue à partir de la solution analytique de

la propagation d’une impulsion gaussienne dans un milieu dispersif. Une expression

analytique explicite a été obtenue à partir de la solution analytique de la propagation

d’une impulsion gaussienne dans un milieu non-linéaire. Les deux expressions ont été

comparées à des simulations numériques afin d’en étudier la validité pour différentes

valeurs de N et pour différentes distances de propagation.

Les deux modèles se comparent bien aux simulations numériques, mais l’accord

diminue lorsque la non-linéarité crôıt (N élevé). Le modèle non-linéaire montre une

plus grande précision sur l’ensemble de simulations que le modèle dispersif. Bien que

les deux modèles développés dans ce chapitre permettent de suivre l’évolution de

l’enveloppe du champ, ils sont limités au cas où la dispersion est normale. De plus, ils

ne permettent pas de fournir un cadre systématique pour analyser l’évolution de la

forme de l’impulsion lors de la propagation dans un milieu dispersif et non-linéaire.



82

Chapitre 6

Propagation non-linéaire et les

moments d’ordre supérieur

Les moments d’ordre 2 donnent une description adéquate des principales ca-

ractéristiques d’une impulsion mais omettent une caractéristique essentielle : sa forme.

Comme nous l’avons au chapitre 4, en supposant la phase quadratique, la forme de

l’impulsion est invariante. Pour décrire correctement la propagation d’une impul-

sion dans un milieu dispersif et non-linéaire, il faut être en mesure de mieux décrire

adéquatement la phase. Lors de l’analyse à l’aide des moments d’ordre 2, nous avons

supposé une phase quadratique, ce qui est l’approximation la plus simple que nous

pouvions faire. Dans ce chapitre, nous tentons d’obtenir une expression plus précise

pour décrire la phase et ainsi obtenir une description plus juste de la propagation

d’une impulsion dans un milieu dispersif et non-linéaire. Pour bien décrire la phase,

il est également important de bien décrire la puissance puisque la phase y est propor-

tionnelle par le biais de l’auto-modulation de phase.

Pour raffiner la description de l’amplitude de l’impulsion, il faut avoir recours

aux moments d’ordre supérieur à 2. Il est nécessaire d’avoir des moments d’ordre

supérieur car la forme de l’impulsion est déduite en comparant des moments d’ordres

différents entre eux. Nous nous limitons à des impulsions symétriques, de sorte que

tous les moments impairs sont nuls. Il est possible, en théorie, de considérer des

moments d’ordre arbitrairement élevé, mais l’analyse devient rapidement complexe

et ingérable. Nous limiterons donc notre analyse aux moments linéaires d’ordre 4 et

aux moments non-linéaires d’ordre 2.

Dans ce chapitre, nous établissons d’abord les équations de propagation des mo-

ments linéaires d’ordre 4 et des moments non-linéaires d’ordre 2. Ces équations

présentent la même fuite vers l’avant vers les moments d’ordre supérieur. Nous étudions

donc ensuite différents modèles pour s’affranchir de cette fuite vers l’avant et ap-

proximer les équations de propagation. Ces modèles sont ensuite comparés, dans un
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premier temps, à des simulations numériques pour en analyser la validité. Dans un

second temps, ces modèles sont utilisés pour intégrer numériquement les équations de

propagation approximatives afin d’en tester la validité plus en détails. Ces analyses

nous permettront de déterminer quel modèle est plus apte pour représenter le champ.

6.1 Équations de propagation

Les équations de propagation sont déterminées en intégrant l’équation de Schrödin-

ger non-linéaire, (éq. (4.2)), par rapport au temps en considérant l’opérateur appro-

prié (les détails sont présentés à l’annexe B). Nous considérons ici les moments centrés

dans le référentiel se déplaçant à la vitesse de groupe de l’impulsion.

6.1.1 Moments linéaires d’ordre 4

La propagation des moments linéaires est décrite par les équations suivantes

d

dz
�T 4� = 4β2�T 3Ω�r (6.1a)

d

dz
�T 3Ω�r = 3β2

�
�T 2Ω2�r +

1

2

�
+

3γ

2
�PT 2� (6.1b)

d

dz
�T 2Ω2�r = 2β2�TΩ3�r + 4γ�PTΩ�r + 2γ�PT 2Ω2�i (6.1c)

d

dz
�TΩ3�r = β2�Ω4�+ 3γ�PΩ2�r + 2γ�PTΩ3�i (6.1d)

d

dz
�Ω4� = 2γ�PΩ4�i. (6.1e)

Le système d’éqs. (6.1) n’est pas fermé ; il contient des moments d’ordre supérieur dont

les équations de propagation ne sont pas définies. Ces moments «externes», similaires

au moments �PΩ2�i du système d’éqs. (4.12) à l’ordre 2, sont de nature non-linéaire.

En effet, le système purement dispersif (γ = 0) est intégrable (voir annexe B). Il y

a six moments externes au système, trois d’ordre 2 et trois d’ordre 4. Pour résoudre

le système d’éqs. (6.1), il faut représenter ces moments externes en fonctions des

moments linéaires.
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6.1.2 Moments non-linéaires d’ordre 2

La propagation des moments non-linéaires est décrite par les équations suivantes

d

dz
�PT 2� =− 2β2�PT 2Ω2�i (6.2a)

d

dz
�PTΩ�r =− 3

2
β2�PΩ2�r − 2β2�PTΩ3�i − 2β2

�
∂P

∂T
TΩ2

�

r

+
γ

3
�P 2� (6.2b)

=
β2

2
�PΩ2�r − 2β2

�
T

∂A∗

∂T

∂2A

∂T 2

�

r

+
γ

3
�P 2�

d

dz
�PΩ2�r =− β2�PΩ4�i − 2β2

�
∂A∗

∂T

∂3A

∂T 3

�

i

− β2

�
∂A

∂t

∂2A∗

∂T 2
Ω

�

r

+ γ�P 2Ω2�i

(6.2c)

d

dz
�PΩ2�i =β2�PΩ4�r + 2β2

�
∂A∗

∂T

∂3A

∂T 3

�

r

+ β2

�
∂A

∂T

∂2A∗

∂T 2
Ω

�

i

− γ�P 2Ω2�r + γ

�
P

����
∂A

∂t

����
2
�
− γ

�
P

∂2P

∂T 2

�
. (6.2d)

Il est également utile d’écrire l’équation de propagation de �P 2�.

d

dz
�P 2� = −3β2�P 2Ω2�i (6.3)

Le système d’éqs. (6.2) n’est également pas fermé. Les opérateurs requis pour décrire

les moments externes sont plus compliqués que ceux dont nous calculons l’évolution.

Toutefois, le formalisme des opérateurs permet de représenter succinctement ces mo-

ments en n’alourdissant pas la notation. Puisque le moment �P 2� est d’ordre 0 (comme

E et �P �), son équation de propagation a été définie à l’éq. (6.3).

6.2 Modélisation des moments d’ordre supérieur

Pour résoudre le système d’éqs. (6.1) et/ou (6.2), il faut pouvoir écrire les moments

externes en fonction des moments des deux systèmes. Dans le chapitre 4, le système

a pu être fermé en supposant que la phase de l’impulsion était quadratique. Cette

approximation n’est toutefois pas suffisante à l’ordre 4, comme nous le verrons plus

loin. De plus, certain des moments externes ne dépendent que de la puissance de

l’impulsion. Il faut donc pouvoir modéliser la puissance en plus de la phase.
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Une distinction importante doit être faite maintenant au sujet de la modélisation.

Dans la méthode classique des moments, un ansatz est posé pour l’amplitude du

champ ; pour l’ÉSNL, une sécante hyperbolique est typiquement utilisée où la puis-

sance crête, la durée et la phase sont des paramètres. Ces paramètres sont ensuite

reliés aux moments de sorte qu’il y a une correspondance directe entre les paramètres

et les moments. Il est alors possible d’obtenir des équations de propagation pour les

paramètres en ayant celles des moments. Bien que les équations décrivant l’évolution

des moments contiennent des moments externes, ces derniers peuvent être exprimés

en fonction des moments internes puisque la forme du champ est fixé par l’ansatz. Il

s’ensuit que la solution obtenue est confinée par l’ansatz choisi pour l’amplitude. Si

un ansatz pouvant décrire la forme de l’impulsion est utilisé, il est alors possible de

décrire en partie l’évolution de la forme de l’impulsion. Toutefois, cette évolution est

toujours limitée à la forme de l’anstatz.

Pourtant si nous considérons l’ensemble des moments, il est possible de décrire

n’importe quelle amplitude. Il faut cependant un nombre infini de moments pour

décrire exactement l’amplitude du champ. Cela est dû au fait que les moments sont

des quantités moyennes dans le temps ; ainsi des amplitudes différentes peuvent avoir

un ou plusieurs moments en commun. Ce n’est qu’en connaissant tous les moments

qu’il est possible de déterminer exactement la norme et la phase du champ et ce

problème demeure très complexe (Talenti, 1987). Dans la méthode des moments, il

n’est pas nécessaire d’avoir plus de moments que de paramètres d’ansatz ; il suffit

d’avoir autant de moments que de paramètres pour passer d’un à l’autre. Nous avons

cependant accès à bien plus de moments que nécessaire pour la méthode des moments.

Ces moments contiennent de l’information qu’il est possible d’exploiter.

L’idée alors est d’utiliser un ansatz pour l’amplitude uniquement pour les moments

externes et de considérer tous les moments internes pour décrire l’évolution du champ.

Ainsi la description de l’amplitude du champ n’est pas limitée qu’à l’ansatz mais est

décrite par l’ensemble des moments considérés. La distinction est importante car les

moments décrivent alors une famille d’amplitudes limitée par la modélisation des

moments externes, au lieu d’être limitée par l’ansatz de l’amplitude, résultant en une

description plus générale. Prenons comme exemple simple la modélisation faite au

chapitre 4. En ne modélisant que la phase du champ, et en ne supposant rien sur la

forme de l’impulsion, il a été possible de trouver les invariants approximatifs I1 et I2

qui dépendent de la forme initiale de l’impulsion. Si la forme de l’amplitude avait été
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fixée, I1 et I2 n’auraient pu prendre qu’une valeur.

En résumé, dans la méthode que nous utilisons ici et dans la méthode classique

des moments, l’amplitude du champ doit être représentée par un ansatz. Dans la

méthode des moments, seuls les moments nécessaires pour représenter les paramètres

sont considérés. Dans notre méthode, tous les moments sont considérés et l’anstaz ne

sert qu’à résoudre le problème des moments externes. Autrement dit, l’ansatz sert à

représenter les termes dans la dérivée de l’équation d’évolution du moment au lieu

du moment même. De manière plus générale, le niveau de précision de la méthode

peut être ajustée en incluant plus ou moins de moments, d’ordre plus ou moins élevé.

Regardons maintenant quelles formes l’ansatz représentant l’amplitude peut prendre.

6.2.1 Modéliser l’amplitude ou la norme ?

Pour faire la modélisation, deux chemins peuvent être empruntés ; soit de modéliser

directement l’amplitude complexe du champ, soit de modéliser la norme et la phase

du champ séparément. L’avantage de modéliser directement l’amplitude, c’est-à-dire

d’avoir un ansatz avec des paramètres complexes dont la partie réelle dicte la norme et

la partie imaginaire la phase, est que l’ansatz décrivant la norme décrit également la

phase. Il est alors possible d’avoir une plus grande précision avec moins de paramètres

de modélisation. Le champ s’écrit donc de manière beaucoup plus simple. De plus,

la phase est potentiellement décrite par une fonction très complexe, mais qui s’écrit

toutefois (relativement) simplement. Un exemple de ce genre de modélisation est la

gaussienne dispersive ou encore le modèle implicite basé sur la solution dispersive

décrit au chapitre 5.

Le problème toutefois avec cette avenue est que la norme et la phase sont intime-

ment couplées ensemble. Il est inévitable que la modélisation ne représente pas exac-

tement le champ (autrement, ce serait carrément une solution générale de l’ÉSNL) ;

il y aura des erreurs d’approximation sur le champ, soit en norme ou en phase. Le

couplage entre la norme et la phase dans le modèle amplifie les erreurs d’approxi-

mation car les fluctuations de phase se transforment en fluctuations de norme et

vice-versa dans l’ÉSNL. Un autre problème survient lors de l’intégration du modèle

dans la définition des moments. Il peut être difficile d’intégrer des fonctions avec des

paramètres complexes (même si la variable d’intégration est réelle) tout en s’assurant

que l’intégrale ne diverge pas ou que l’intégrale simplement existe. C’est pour ces
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raisons que nous privilégions une modélisation où la norme et la phase du champ sont

décrites par des fonctions distinctes.

6.2.2 Modélisation de la puissance

Différentes avenues sont envisageables pour modéliser la puissance du champ. Nous

ne considérons dans l’analyse qui suit que des impulsions symétriques dans le temps ;

les effets asymétriques étant ainsi négligés. La modélisation choisie doit respecter trois

critères. Elle doit pouvoir représenter facilement les formes de «cloche» couramment

rencontrées. Elle doit pouvoir également s’intégrer facilement dans la définition des

moments. Finalement, la modélisation devra être relativement simple ; nous nous

limitons à un seul paramètre pour représenter la forme. Ce paramètre doit donc

pouvoir représenter la majorité des formes d’impulsions typiquement rencontrées.

Ces conditions limitent les modélisations possibles. Par exemple, une expansion de

Taylor ne permet pas de représenter facilement des formes de cloche. Une alternative

est de prendre une expansion de Padé, qui représentent bien la forme de cloche.

Toutefois, elle ne permet pas de bien représenter les principales formes d’impulsions

sans avoir recours à plusieurs termes. Une modélisation intéressante est la super-

gaussienne

P (T ) = Pc exp

�
−

����
T

b

����
2�

�
(6.4)

où le paramètre b est relié à la durée de la super-gaussienne, Pc est la puissance crête

et � est un paramètre de forme. Lorsque � est entier, les valeurs absolues peuvent être

négligées. Lorsque � = 1, nous retrouvons l’impulsion gaussienne. Quand la valeur

de � augmente, la super-gaussienne devient de plus en plus carrée ; elle devient un

créneau lorsque � → ∞. Les impulsions ont des ailes moins évanescentes pour des

valeurs de 0 < � < 1. Toutefois, dans ce cas, il y a une discontinuité de la dérivée

de la puissance en T = 0 ; de façon générale, lorsque � n’est pas entier, il y a une

discontinuité provenant de la dérivée de la fonction valeur absolue. À part le problème

de la discontinuité en T = 0, la super-gaussienne ne permet pas de représenter une

forme parabolique qui est une solution asymptotique de l’ÉSNL et certains moments

non-linéaires ne peuvent être calculés. Autrement, la super-gaussienne est un modèle

efficace qui a été parfois utilisées dans la description de la propagation non-linéaire
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d’impulsions.

La modélisation que nous employons dans le reste de ce chapitre utilise la distribu-

tion de Pearson. Cette distribution a été présentée au chapitre 3. Nous ne considérons

ici que la forme symétrique qui est beaucoup plus simple,

P (T ) = Pc

�
1 +

aT 2

b

�− 1
a

lorsque a ≥ 0 (6.5)

où le paramètre b est relié à la durée de l’impulsion, Pc est la puissance crête et le

paramètre a est un paramètre de forme. Notons que de les paramètres a, b et Pc sont

réels. Pour que l’éq. (6.5) demeure carrée intégrable sur l’intervalle lorsque a < 0, la

distribution est limitée à ses zéros.

P (T ) =






Pc

�
1 + aT 2

b

�− 1
a

lorsque a ≥ 0

Pc

�
1 + aT 2

b

�− 1
a

si T <
�

b
|a| et a < 0

0 si |T | ≥
�

b
|a| et a < 0

(6.6)

Dans le cas où a < 0, il y a une discontinuité dans la dérivée autour de T =
�

b/|a| ;
toutefois la puissance y est nulle, ce qui ne pose donc pas un problème lors de

l’intégration. Il semble à première vue contraignant d’avoir deux définitions de la

norme selon la forme de l’impulsion. Nous verrons plus loin que les expressions des

moments sont les mêmes peu importe le signe de a. Comme nous l’avons vu au

chapitre 3, la distribution de Pearson permet de représenter, exactement ou approxi-

mativement, la plupart des impulsions ou spectres utiles, soit la gaussienne, la sécante

hyperbolique, la lorentzienne, la parabole et le créneau. De plus, elle permet de décrire

les formes d’impulsions intermédiaires puisque le paramètre de forme a est continu.

La distribution de Pearson est particulièrement bien adaptée aux moments car ces

derniers peuvent être définis de manière récursive en intégrant par partie la forme

différentielle de la distribution (éq. (3.20)), comme le montre l’annexe D. Il s’ensuit

que tous les moments peuvent être définis en fonction des paramètres du modèle ou

d’autres moments.

À partir de la définition de la puissance du champ donnée par l’éq. (6.6), tous les

moments de la distribution de Pearson n’utilisant que les opérateurs T et P peuvent

être calculés, ainsi que l’énergie. Notons que les moments d’ordre impair (selon T )
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sont nuls car la puissance donnée par l’éq. (6.6) est symétrique.

E = Pc

�
πb

|a|
Γ

�
1
a −

1
2

�

Γ
�

1
a

�
�

1 lorsque a ≥ 0

cot
�

π
|a|

�
lorsque a ≤ 0

(6.7)

�T j� =
1√
π

�
b

a

� j
2 Γ

�
j+1
2

�
Γ

�
1
a −

�
j+1
2

��

Γ
�

1
a −

1
2

� pour j pair, 0 autrement (6.8)

�P p� = P p
c

Γ
�

p+1
a − 1

2

�
Γ

�
1
a

�

Γ
�

p+1
a

�
Γ

�
1
a −

1
2

�
�

1 lorsque a ≥ 0

tan
�

π
a

�
cot

�
π
a (p + 1)

�
lorsque a ≤ 0

(6.9)

�P pT j� =
b(j − 1)

2(p + 1)− a(j + 1)
�P pT j−2� (6.10)

Le moment �P pT j� est défini de manière récursive alors que les autres moments sont

définis par la fonction Γ. Des expressions spécifiques pour certaines valeurs parti-

culières de j et de p sont présentées à l’annexe D. Des expressions différentes sont

obtenues selon le signe de a. Bien que la fonction Γ soit parfaitement bien définie, il

est plus facile de manipuler des expressions polynomiales. Pour ce faire, l’approxima-

tion de la fonction Γ donnée par l’éq. (C.8) nous est utile pour simplifier les éqs. (6.7)

et (6.9) lorsque a tend vers zéro.

E ≈ Pc

4

√
πb

�
8− a

2− a

�
(6.11)

�P p� ≈ P p
c√

n + 1

�
2− a

8− a

� �
8(p + 1)− a

2(p + 1)− a

�
(6.12)

Ces équations approximatives sont valides peu importe le signe de a, ce qui simplifie

grandement l’analyse. Un des problème des équations définies par morceaux est que,

lors de calculs analytiques, il faut savoir quel morceau s’applique avant la fin du calcul.

Par exemple, si dans un calcul le paramètre a doit être déterminé, son signe doit

être connu pour savoir quelle définition utiliser. Il est donc plus simple d’avoir une

expression unique. Aucune approximation n’est nécessaire pour obtenir une forme

polynomiale pour le moment �T j� car les fonctions Γ se simplifient au moyen de

l’éq. (C.2), sauf Γ[(j + 1]/2] qui ne dépend que de l’ordre du moment.

La validité de ces approximations est montrée à la figure 6.1 où les éqs. (6.11) et

(6.12) sont comparées aux éqs. (6.7) et (6.9). La figure 6.1 montre que les équations

approximatives donnent un résultat très précis sur l’intervalle de formes d’impulsion
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Figure 6.1 En haut : Comparaison entre la valeur théorique de l’énergie de la dis-
tribution de Pearson et la valeur approximative. En bas : Comparaison du moment
�P p� de la distribution de Pearson et la valeur approximative. Les quatre courbes
représentent du haut vers le bas p = 1, 2, 3 et 4. Les valeurs théoriques sont en lignes
pleines alors que les valeurs approximatives sont représentées par des cercles.
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intéressantes −2 ≤ a ≤ 2. Notons que l’échelle de l’énergie est logarithmique, signi-

fiant que l’accord est bon sur plusieurs ordres de grandeur. Il est remarquable que

les équations approximatives (6.11) et (6.12) soient si précises. Il est d’autant plus

remarquable qu’elles le sont aussi bien lorsque a ≥ 0 que lorsque a ≤ 0. La précision

des approximations vient du fait que les éqs. (6.11) et (6.12) sont les développements

en série de Padé des éqs. (6.7) et (6.9). Puisque ces approximations sont très précises,

simples à manipuler et ne diffèrent pas selon le signe de a, nous les préférons aux

équations exactes pour le reste de l’analyse, éliminant ainsi les fonctions gamma.

Les moments décrits par les éqs. (6.7)–(6.9) (ou encore les éqs. (6.11) et (6.12) )

permettent de décrire les facteurs de formes temporelles κ décrit au chapitre 3. Ces

facteurs sont alors décrits seulement par le paramètre a de la distribution de Pearson.

κT = 3

�
2− 3a

2− 5a

�
(6.13)

κPT =
2− 3a

4− 3a
(6.14)

κP =
2√
3

�
8− a

2− a

� �
24− a

6− a

� �
4− a

16− a

�2

≈ 2√
3

�
96− 49a

96− 61a

�
(6.15)

L’approximation de κP est obtenue par un développement de Padé. Un autre pa-

ramètre de forme intéressant est obtenu en comparant l’énergie avec les moments �P �
et �T 2�.

κE =
E

�P �
�
�T 2�

=

�
2π(2− 3a)

4

�
4− a

16− a

� �
8− a

2− a

�2

(6.16)

≈ 4
�

2π(2− 3a)

�
12− a

48− 31a

�

Encore une fois, une valeur spécifique d’un de ses paramètres ne permet pas de

connâıtre avec certitude la forme de l’impulsion ; différentes formes peuvent donner

la même valeur de κ. Ainsi, plus il y a de facteurs de forme considérés, plus la forme

de l’impulsion peut être déterminée précisément. Toutefois, si nous supposons que la

forme de l’impulsion est décrite par la distribution de Pearson, n’importe quel des

facteurs de forme κ est suffisant pour déterminer le paramètre a et ce faisant, la forme

de l’impulsion.
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6.2.3 Modélisation de la phase

La modélisation de la phase temporelle est très importante car elle détermine non

seulement la phase spectrale, mais également en partie la forme de la densité spectrale

du champ. Autrement dit, les moments contenant l’opérateur Ω dépendent fortement

de la phase temporelle. Notons que la modélisation pourrait être faite dans le domaine

spectral. La distribution de Pearson peut autant servir à décrire la puissance que la

densité spectrale. La raison pour laquelle il est préférable de travailler dans le domaine

temporel est que les effets non-linéaires sont décrits plus facilement dans le domaine

temporel que dans le domaine spectral. Trois formes de phase sont envisagées dans

ce qui suit. La première est une phase quadratique, comme celle utilisée au chapitre

4, la seconde une phase quadratique avec une contribution non-linéaire et enfin une

phase logarithmique, couramment utilisée dans la modélisation des lasers.

Phase quadratique

Supposons que la phase du champ est quadratique et s’écrit

φ(T, z) = hT 2 + iβ0z (6.17)

où h est une constante réelle et le terme de droite donne l’évolution de la phase

spatiale (qui n’apparâıt pas dans l’évolution des moments). Les différents moments

de l’amplitude A(T, z) =
�

P (T ) exp[iφ(T, z)] peuvent être calculés, où P (T ) est

décrit par l’éq. (6.6). Des expressions générales des moments utilisant les opérateurs

P , T et Ω sont toutefois difficiles à calculer à cause de la dérivée dans l’opérateur Ω.

Une liste des principaux moments de cette modélisation est cependant présentée à

l’annexe D.

Il est maintenant intéressant de revenir brièvement sur l’analyse du chapitre 4

en supposant que le champ est exactement décrit par les éqs. (6.6) et (6.17). Nous

procédons donc comme dans la méthode classique des moments. Comme nous l’avons

mentionné, l’approximation de la phase quadratique a pour effet que le facteur de

forme κT est invariant lors de la propagation. En dérivant les deux autres facteurs

de forme temporelle, κPT et κP , par rapport à z et en remplaçant les moments par

les paramètres du modèle, nous constatons qu’ils sont également invariants. Il est

intéressant de noter que les solutions analytiques connues de l’ÉSNL dont la forme est

invariante (le soliton d’ordre, l’impulsion parabolique asymptotique et la gaussienne
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dispersive) ont toutes une phase quadratique.

Il est également intéressant de réécrire les invariants approximatifs I1 et I2, donnés

par les éqs. (4.20b) et (4.20c) en fonction du paramètre a.

I1 = �T 2��Ω2� − �TΩ�2 =
1

4(2− 3a)

�
2− a

1 + a

�
≈ 1

4

�
1 +

3

2
a2

�
(6.18)

I2 =
1

κE
≈ 1

2
√

π

�
1 +

3a

16

�
(6.19)

Les valeurs approximatives sont écrites en série de Taylor puisque le paramètre a est

généralement près de 0. Il se trouve que l’invariant I1 dépend du paramètre de forme

a à l’ordre 2, de sorte que l’approximation de la phase quadratique est similaire à une

approximation gaussienne de la forme (elle est légèrement plus précise car l’invariant

peut prendre différentes valeurs). L’invariant I2 montre une variation d’environ 20%

sur la plage des valeurs de a utiles. Notons toutefois que nous supposons que la forme

de l’impulsion peut toujours être décrite par la distribution de Pearson, ce qui est

évidemment une approximation.

Phase quadratique et non-linéaire

Puisque de supposer que la phase est quadratique n’est pas suffisant pour décrire

l’évolution de la forme de l’impulsion lors de la propagation, il faut modéliser la phase

plus précisément. Puisque la phase quadratique représente à peu près bien la partie

dispersive de la phase, ajoutons une contribution non-linéaire pour bien refléter la

physique du problème.

φ(T, z) = hT 2 + fP (T ) + iβ0z (6.20)

où f est un paramètre réel et P (T ) est donné par l’éq. (6.6). L’évolution du paramètre

de forme κT s’écrit alors

dκT

dz
= −4β2

f

b
�P �κPT κT (1 + a) (6.21)

en supposant que le champ est adéquatement décrit par la distribution de Pearson.

Notons que dans l’éq. (6.21) nous retrouvons à la fois des moments (�P � et indirec-

tement κPT et κT ) et des paramètres (a, b et f). Il serait plus propre de ne travailler
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qu’avec les moments ou qu’avec les paramètres ; toutefois les expressions deviennent

rapidement très lourde. Ainsi en se permettant d’utiliser à la fois les moments et les

paramètres, les équations sont allégées. Il est possible de passer d’un à l’autre en

utilisant les éqs. (6.8), (6.12), (6.13) et (6.14).

Il apparâıt selon l’éq. (6.21) qu’il faut que la dispersion et f , donc indirectement la

non-linéarité, soit non-nuls pour que la forme de l’impulsion se modifie au long de la

propagation. Il est intéressant de regarder sous quelles conditions κT devient invariant.

Il devient invariant lorsque la dispersion est nulle β2 = 0 puisque l’auto-modulation

de phase ne cause qu’un déphasage dans le temps. Lorsque f = 0, nous sommes

dans le cas de l’approximation de la phase quadratique. Quand b → ∞, l’impulsion

devient infiniment longue et se rapproche d’un faisceau continu qui ne subit pas l’effet

de la dispersion ou de l’auto-modulation de phase (du moins, si les fluctuations dues

au bruit sont négligées). Notons que pour traiter proprement le cas d’un faisceau

continu, le présent modèle n’est pas adéquat. κT devient invariant quand le moment

�P � = 0, et donc que la puissance crête est nulle. La propagation est purement

dispersive dans ce cas. Bien que la dispersion change la forme de l’impulsion lors de

la propagation de façon générale (voir annexe B), la phase devient quadratique lorsque

�P � = 0, tout comme la phase d’une impulsion gaussienne dispersive dont la forme

est invariante. Les paramètres κT et κPT deviennent artificiellement nuls pour a =

2/3 puisque l’intégrale définissant �T 2� diverge. Finalement, la forme de l’impulsion

devient invariante lorsque a = −1, ce qui correspond à une impulsion parabolique, qui

est la solution asymptotique à l’ÉSNL. Notons que le soliton (a ≈ 0.29) est également

invariant, mais cette condition n’apparâıt pas directement dans l’éq. (6.21), puisque

l’invariance provient de l’équilibre entre la dispersion et l’auto-modulation de phase.

Phase logarithmique

Une autre option intéressante est une phase proportionnelle au logarithme de la

forme de l’impulsion

φ(T, z) = c ln
��

P (T )
�

+ iβ0z

= − c

2a
ln

�
1 +

a

b
T 2

�
+ iβ0z (6.22)

où c est un paramètre réel. Cette phase est en quelque sorte un compromis entre

une phase dispersive et non-linéaire. Elle intervient dans la solution de l’équation
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de Ginzburg-Landau décrivant le soliton moyen dans les lasers à fibre. Dans ce cas

l’évolution de κT est donné par

dκT

dz
= −4β2

ac

b
κT (6.23)

en supposant toujours que le champ est décrit par distribution de Pearson. Une

différence est notable si l’éq. (6.23) est comparée à l’éq. (6.21). Le facteur de forme

κT est invariant lorsque a = 0, donc quand l’impulsion est gaussienne, comme dans

le cas de la propagation purement dispersive. La forme devient également invariante

lorsque la phase c est nulle, donc lorsqu’il n’y a ni dispersion ni non-linéarité. No-

tons que, contrairement au cas précédent, les phases dispersives et non-linéaires sont

condensées dans le même terme. Nous n’observons pas dans le cas ici l’invariance de

la forme de l’impulsion ni dans le cas parabolique, ni dans le cas solitonique.

Il existe bien entendu d’autres modélisations possibles de la phase ; toutefois les

trois présentées ici sont simples et descriptives. Malgré cela, notons que la représenta-

tion des moments contenant l’opérateur Ωk en fonction des paramètres devient rapi-

dement lourde à cause des nombreux termes lorsque k > 2. Ces nombreux termes sont

générés par la dérivée temporelle d’ordre k. Un point important qu’il faut considérer

au sujet de la modélisation est la différence entre représenter l’amplitude d’une impul-

sion stationnaire et modéliser l’amplitude durant toute la propagation. Il est beaucoup

plus difficile de représenter l’évolution de l’amplitude pendant toute la propagation

car la modélisation doit être suffisamment précise pour que les erreurs d’approxima-

tion n’affectent pas significativement la propagation. Autrement dit, il faut être en

mesure de modéliser raisonnablement toutes les formes de norme et de phase que l’im-

pulsion prend lors de la propagation. Dans le cas d’une solution stationnaire, il faut

seulement représenter la forme finale de la norme et de la phase. Par exemple, une

phase quadratique est suffisante pour décrire les solutions stationnaire (ou asymp-

totique) de l’ÉSNL, mais n’est pas suffisante pour décrire la propagation dans des

conditions arbitraires.

Un autre point à considérer est le choix des moments pour représenter les pa-

ramètres, que ce soit dans la méthode classique des moments ou la méthode générale

des moments. Dans la méthode classique des moments, il nous faut choisir autant

de moments que de paramètres. Il y a toutefois une infinité de combinaisons pos-

sibles. Dans la méthode générale des moments, il faut représenter les moments d’ordre
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supérieur en fonction des paramètres et remplacer les paramètres par des moments

faisant partie du système ; le choix est également grand. Pour déterminer quels sont

les choix les plus efficaces, comparons les moments d’ordre supérieur d’un champ

propagé numériquement avec la reconstruction du même moment obtenu à l’aide de

différentes combinaison de moments d’ordre inférieurs également calculés à partir de

la propagation numérique du champ.

6.3 Représentation des paramètres par les moments

Si nous voulons approximer les moments ne faisant pas partie du système afin

de fermer ce dernier, il nous faut exprimer ces moments externes en fonction des

moments internes, non des paramètres. Il s’ensuit que nous devons établir une corres-

pondance entre les paramètres et les moments. Les choix possibles de moments pour

représenter les paramètres a, b, c, f , h et Pc sont très nombreux et il est impensable de

tous les considérer. Pour restreindre les choix, nous prenons comme règle d’utiliser les

moments d’ordre le plus bas possible pour représenter les paramètres. Nous favorisons

également les moments usant de l’opérateur T plutôt que ceux utilisant l’opérateur Ω

lorsque c’est possible puisque la modélisation est fait dans le domaine temporel. Fi-

nalement, nous cherchons à représenter les paramètres avec le moins de moments pos-

sible. Dans cette section, nous étudions différentes façons d’exprimer les paramètres

du modèle en fonction des moments respectant ces conditions. Nous comparons en-

suite certains moments d’ordre supérieur clefs obtenus à partir de représentations

avec ceux obtenus directement du champ complecxe simulé numériquement afin de

déterminer la représentation la plus précise.

6.3.1 Paramètres de norme

Pour représenter le paramètre a dictant la forme de l’impulsion, nous avons recours

aux facteurs de formes κ. Nous considérons seulement les facteurs sans l’opérateur Ω.

De plus, les facteurs κP et κE sont rejetés car ils ne sont pas facilement inversibles pour

obtenir le paramètre a. Ils ne restent alors que κT et κPT . Le paramètre a s’exprime
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alors

aT = 2

�
3− κT

9− 5κT

�
(6.24)

aPT =
2

3

�
1− 2κPT

1− κPT

�
(6.25)

où les indices rappellent comment le paramètre est obtenu. Dans le premier cas, le

paramètre a est obtenu en comparant �T 4� à �T 2� via κT . Dans le second cas, a

provient de la comparaison de �PT 2�, �T 2� et �P �. Pour obtenir les paramètres b et

Pc les moments les plus naturels à utiliser sont respectivement �T 2� et �P �.

bT = (2− 3a)�T 2� (6.26)

PcP =
√

2�P �
�

8− a

2− a

� �
4− a

16− a

�
(6.27)

Les indices P et T réfèrent aux moments utilisés pour obtenir les paramètres. Le

paramètre a doit être substitué par l’éq. (6.24) ou (6.25). Il est également intéressant

de considérer l’énergie E, le moment d’ordre 0, pour déterminer b ou Pc.

bE =
1

π

�
4E

PcP

�
2− a

8− a

��2

(6.28)

PcE =
4E√
πbT

�
2− a

8− a

�
(6.29)

L’énergie est ainsi utilisée au lieu, ou en plus, du moment �T 2� ou �P �. Il y a

ainsi quatre façons différentes de représenter b et Pc ensemble. Avec les deux façons

différentes de représenter a, cela fait huit représentations différentes.

Il faut maintenant une méthode systématique pour déterminer laquelle de ces huit

représentations est la plus juste. Pour ce faire, nous calculons numériquement les mo-

ments entrant dans les différentes définitions de a, b, et Pc, soit �P �, �T 2�, �PT 2�, �T 4�
et E pour différentes propagations de l’amplitude du champ. Les paramètres des huit

représentations peuvent alors être évalués à partir du champ obtenu numériquement.

N’importe quel moment n’entrant pas dans les différentes définitions peut être obtenu

à partir de l’une de ces huit représentations ou directement à partir du champ calculé

numériquement (ces moments doivent toutefois ne contenir que les opérateurs P et

T ). En comparant les deux, nous obtenons la validité des différentes représentations.
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Nous utilisons donc les deux moments d’ordre le plus bas n’entrant pas dans les

définitions et de s’exprimant qu’au moyen de P et T pour valider les représentations,

soit �PT 4� et �P 2T 2�. Ces moments se décomposent de la manière suivante en fonction

des paramètres

�PT 4� =
3�P �b2

(4− 5a)(4− 3a)
�P 2T 2� =

b

3

�P 2�
(2− a)

(6.30)

où les moments �P � et �P 2� doivent être exprimés par l’éq. (6.12). Le résultat des

différentes simulations dans le régime de dispersion anormale et normale, pour les huit

différentes représentations possibles des moments �PT 4� et �P 2T 2� est présenté aux

figures 6.2–6.5. Nous utilisons également les moments �P �, �T 2� et E pour valider les

représentations quand ces derniers n’entrent pas dans les définitions des paramètres.

Les figures 6.6–6.8 montrent le résultat des simulations dans les deux régimes de

dispersion dans ce cas.

Plusieurs constatations intéressantes ressortent de ces figures. Si nous comparons

les résultats entre aT et aPT , il apparâıt que ce dernier donne en moyenne de bien

meilleurs résultats que aT pour la plupart des moments considérés, en particulier sur

les moments d’ordre inférieur E, �P � et �T 2� de la propagation en dispersion anormale

où la différence est frappante. La différence n’est pas cependant très marquée dans le

régime de dispersion normal. Dans ce régime, nous voyons même que aT est préférable

à aPT pour le moment �PT 4�. La différence vient de la manière dont les deux facteurs

de forme κ caractérisent la forme de l’impulsion. Le facteur κT compare les moments

�T 2� et �T 4� qui tous deux caractérisent les ailes de l’impulsion ; ils n’accordent que

très peu d’importance au sommet de l’impulsion. Le facteur κPT utilise les moments

P , �T 2� et �PT 2�. �T 2� caractérise les ailes de l’impulsion, �P � caractérise plutôt le

centre de l’impulsion (pour des impulsions en forme de cloche). Ainsi, κPT donne

une mesure plus globale de la forme de l’impulsion. Il est à noter toutefois que aT

donne un meilleur résultat de façon générale pour �PT 4� que aPT et l’inverse pour le

moment �P 2T 2�. Cela vient du fait que �PT 4� est similaire à �T 4� et �P 2T 2� à �PT 2�.
Dans le régime de dispersion normale, le centre de l’impulsion change peu lors de

la propagation, ce qui explique pourquoi les deux paramètres donnent des résultats

similaires. Toutefois en régime de dispersion anormale, le centre de l’impulsion se

modifie considérablement et le facteur κT ne permet pas de le caractériser conve-

nablement. Cela explique d’ailleurs pourquoi l’efficacité de la modélisation dans le
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Figure 6.2 Comparaison numérique entre les différentes représentations du moment
�P 2T 2� normalisé d’une impulsion gaussienne se propageant dans le régime de disper-
sion anormale avec N = 2. Le moment calculé directement à partir de la propagation
numérique est en trait plein noir. La figure du haut en trait foncé présente le cas
où aT est utilisé alors que aPT a été utilisé dans la figure du bas en trait clair. Le
paramètre bT apparâıt en trait plein et bE en trait pointillé. Le paramètre PcP est
représenté en cercle plein et PcE en cercle vide.
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Figure 6.3 Comparaison numérique entre les différentes représentations du moment
�PT 4� normalisé d’une impulsion gaussienne se propageant dans le régime de disper-
sion anormale avec N = 2. Le moment calculé directement à partir de la propagation
numérique est en trait plein noir. La figure du haut en trait foncé présente le cas
où aT est utilisé alors que aPT a été utilisé dans la figure du bas en trait clair. Le
paramètre bT apparâıt en trait plein et bE en trait pointillé. Le paramètre PcP est
représenté en cercle plein et PcE en cercle vide.
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Figure 6.4 Comparaison numérique entre les différentes représentations du moment
�P 2T 2� normalisé d’une impulsion gaussienne se propageant dans le régime de disper-
sion normale avec N = 2. Le moment calculé directement à partir de la propagation
numérique est en trait plein noir. La figure du haut en trait foncé présente le cas
où aT est utilisé alors que aPT a été utilisé dans la figure du bas en trait clair. Le
paramètre bT apparâıt en trait plein et bE en trait pointillé. Le paramètre PcP est
représenté en cercle plein et PcE en cercle vide.
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Figure 6.5 Comparaison numérique entre les différentes représentations du moment
�PT 4� normalisé d’une impulsion gaussienne se propageant dans le régime de disper-
sion normale avec N = 2. Le moment calculé directement à partir de la propagation
numérique est en trait plein noir. La figure du haut en trait foncé présente le cas
où aT est utilisé alors que aPT a été utilisé dans la figure du bas en trait clair. Le
paramètre bT apparâıt en trait plein et bE en trait pointillé. Le paramètre PcP est
représenté en cercle plein et PcE en cercle vide.
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Figure 6.6 Comparaison numérique entre la représentation utilisant le paramètres aT

(trait foncé) et aPT (trait clair) de l’énergie E normalisée d’une impulsion gaussienne
se propageant dans le régime de dispersion normale (figure du bas) et anormale (figure
du haut) où N = 2.
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Figure 6.7 Comparaison numérique entre la représentation utilisant le paramètres aT

(trait foncé) et aPT (trait clair) du moment �P � normalisé d’une impulsion gaussienne
se propageant dans le régime de dispersion normale (figure du bas) et anormale (figure
du haut) où N = 2.
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Figure 6.8 Comparaison numérique entre la représentation utilisant le paramètres aT

(trait foncé) et aPT (trait clair) du moment �T 2� normalisé d’une impulsion gaussienne
se propageant dans le régime de dispersion normale (figure du bas) et anormale (figure
du haut) où N = 2.
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régime de dispersion normale est de loin supérieure à celle dans le régime de disper-

sion anormale. La distribution de Pearson permet de bien modéliser toutes les formes

d’impulsions présentes pendant la propagation en dispersion normale. En dispersion

anormale, et en présence de fortes non-linéarités, les impulsions présentent des lobes

secondaires ou des piédestaux qui ne peuvent pas être modélisés par la distribution

de Pearson. Notons toutefois que même en régime de dispersion anormale, l’accord

est très bon en utilisant le facteur de forme κPT .

La modélisation de la puissance crête Pc semble dépendre surtout du paramètre

a utilisé. Lorsque le paramètre de forme est aPT , la modélisation directe par le pa-

ramètre PcP (cercles pleins) est plus précise que PcE. C’est toutefois le contraire

lorsque le paramètre de forme est aT . Nous pouvons voir sur les éqs. (6.27) et (6.29)

que le paramètre PcP dépend plus fortement de a que PcE. Ainsi, l’accord est meilleur

avec PcE qu’avec PcP lorsque aT est utilisé puisque la représentation de la forme de

l’impulsion est moins précise dans ce dernier cas. Lorsque aPT est utilisé, la différence

entre PcP et PcE est très faible. La modélisation du paramètre b dépend également de

a. Lorsque le paramètre aPT est utilisé, le paramètre bT (ligne pleine) est plus adéquat

que le paramètre bE (ligne pointillée). L’inverse est vrai lorsque aT est utilisé. Notons

toutefois que bT est également efficace dans ce cas lorsque la puissance est modélisée

par PcE.

En résumé, nous adoptons les paramètres aPT , bT et PcE pour la modélisation de

ce qui suivra. Notons toutefois qu’en régime de dispersion normal, n’importe laquelle

des huit représentations est adéquate. Dans ce cas, il est possible d’adopter aT ou aPT

pour analyser l’évolution de la forme de l’impulsion.

6.3.2 Paramètres de phase

Modéliser la phase est plus simple puisqu’il n’y a qu’un ou deux paramètres à

représenter. Les moments de plus bas ordre représentant la phase sont �TΩ�r, �PTΩ�r
et �T 3Ω�r. Considérons pour commencer le cas où ces moments sont exprimés en
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fonction des paramètres h et f définis à l’éq. (6.20).

�TΩ�r = −2
h

(2− 3a)
+

f

2
�P � (6.31)

�PTΩ�r = −2
h

(4− 3a)
+

f

2
�P 2� (6.32)

�T 3Ω�r = −6
h�T 2�

(2− 5a)
+

3f

2
�PT 2� (6.33)

Il y a donc trois différentes façons d’écrire h et f en utilisant deux de ces moments.

Nous ne considérons seulement que les deux façons incluant le moment �TΩ�r puisque

c’est le moment de plus bas ordre. Les paramètres h et f s’écrivent alors :

fPTΩ =
6

�P �2
�
�PTΩ�r − κPT �P ��TΩ�r

2κP − 3κPT

�
(6.34)

fT3Ω =
2

�P ��T 2�

�
�T 3Ω�r − κT �T 2��TΩ�r

3κPT − κT

�
(6.35)

h =

�
1− 3a

2

� �
f

2
�P � − �TΩ�r

�
(6.36)

Pour valider ces représentations, nous comparons des moments calculés numériquement

avec les mêmes moments obtenus en utilisant les éqs. (6.31)–(6.33). Pour faire la

comparaison, trois moments sont considérés. Premièrement, il y a �PΩ2�i, le seul

moment d’ordre supérieur du système d’équations d’évolution des moments d’ordre

2. Deuxièmement, �PT 2Ω2�i puisqu’il intervient dans l’équation d’évolution du mo-

ment �PT 2� qui lui-même sert à définir le paramètre a. Finalement, le moment �Ω2�
est considéré puisqu’il est seul moment d’ordre 2 autre que �TΩ�r qui contienne de

l’information de phase. Ces moments sont définis à partir des paramètres comme suit

�PΩ2�i = −h

b
�P �+

f

3b
�P 2�

�
6− a

3 + a

�
(6.37)

�PT 2Ω2�i =
h

2− 3a
�P � − f

3b
�P 2�

�
3 + 2a

3 + a

�
(6.38)

�Ω2� =
1

4b

�
2− a

1 + a

�
+

4h2

b(2− 3a)
− hf

b
�P �+

f 2

3b
�P 2�

�
6− a

3 + a

�
(6.39)

où les moments �P � et �P 2� sont définis par l’éq. (6.12). La comparaison est montrée

aux figures 6.9–6.11 pour des propagations dans les deux régimes de dispersion.
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Figure 6.9 Comparaison numérique entre la représentation utilisant les paramètres
h, fPTΩ (carré) et fT3Ω (cercle) du moment �PΩ2�i d’une gaussienne se propageant
dans le régime de dispersion normale (figure du bas) et anormale (figure du haut)
où N = 2 (ligne grasse noire). Les cercles vides indiquent que κT entrant dans les
définitions est obtenu numériquement à partir de �T 4� et non à partir de aPT .
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Figure 6.10 Comparaison numérique entre la représentation utilisant les paramètres
h, fPTΩ (carré) et fT3Ω (cercle) du moment �PT 2Ω2�i d’une impulsion gaussienne se
propageant dans le régime de dispersion normale (figure du bas) et anormale (figure
du haut) où N = 2 (ligne grasse noire). Les cercles vides indiquent que κT entrant
dans les définitions est obtenu numériquement à partir de �T 4� et non à partir de
aPT .
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Figure 6.11 Comparaison numérique entre la représentation utilisant les paramètres
h, fPTΩ (carré) et fT3Ω (cercle) du moment �Ω2� d’une impulsion gaussienne se pro-
pageant dans le régime de dispersion normale (figure du bas) et anormale (figure du
haut) où N = 2 (ligne grasse noire). Les cercles vides indiquent que κT entrant dans
les définitions est obtenu numériquement à partir de �T 4� et non à partir de aPT .
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Il ressort que le paramètre fPTΩ est de loin plus efficace que le paramètre fT3Ω,

particulièrement dans le régime de dispersion anormale. Dans le régime de dispersion

normale, la différence entre les deux modèles est moins marquée, mais fPTΩ l’em-

porte tout de même. Dans l’éq. (6.35), le facteur κT doit être connu pour déterminer

fT3Ω. Deux façons différentes ont été prises pour le calculer ; directement à partir de

�T 4� calculé numériquement à partir du champ et à partir de l’éq. (6.13) et aPT . Le

calcul direct à partir du champ donne une plus grande précision, ce qui n’est guère

surprenant puisqu’il y a moins d’approximations dans ce cas.

Encore une fois l’opérateur P permet de mieux quantifier la forme du champ. Le

moment �T 3Ω�r donne plus de poids à la phase lorsque T est très grand alors que

�PTΩ�r permet de répartir le poids plus uniformément dans le temps, donnant une

mesure plus juste de la phase. Dans le régime de dispersion normale, cette différence

de pondération apparâıt peu car la phase demeure plus ou moins quadratique lors

de la propagation, comme nous l’avons vu au chapitre 4. Toutefois la phase présente

plusieurs variations temporelles dans le régime de dispersion anormale. Dans ce cas,

il est important d’avoir une pondération permettant de bien considérer ces variations.

Un fait intéressant à noter est que la précision des différents modèles est moins

bonne pour le moment �Ω2� que la précision du modèle quadratique du chapitre 4.

Cela est quelque peu surprenant puisque les éqs. (6.34)–(6.36) sont plus générales

que l’approximation de la phase quadratique. La raison se trouve dans la différence

entre la méthode classique des moments et la méthode générale des moments. Dans

la méthode classique, il ne faut modéliser qu’autant de moments que de paramètres.

Dans ce cas, il y a un moment redondant entre �T 2�, �TΩ�r et �Ω2� (en supposant

une forme connue d’impulsion) et seulement les deux premiers seraient considérées

dans l’analyse, comme nous l’avons fait aux éqs. (6.34)–(6.36). Toutefois, au chapitre

4, nous avons considéré les trois moments dans l’analyse ce qui offre une plus grande

précision. Il est donc avantageux d’inclure le plus de moments possibles dans l’analyse

pour caractériser l’amplitude. Toutefois, plus de moments considérés veut aussi dire un

système plus lourd à gérer et plus de moments d’ordre supérieur dont l’approximation

doit être faite ; il y a donc un équilibre à rechercher.

Regardons maintenant le cas plus simple où il n’y qu’un seul paramètre de phase.

Le cas de la phase quadratique a été traité au chapitre 4. Le paramètre c de la phase



112

logarithmique peut s’écrire à partir des moments �TΩ�r, �PTΩ�r et �T 3Ω�r.

cTΩ = 2�TΩ�r (6.40)

cPTΩ = 4
�PTΩ�r
�P � (6.41)

cT3Ω =
2

3

�T 3Ω�r
�T 2� (6.42)

Afin de déterminer laquelle de cette façon est la meilleure, nous procédons de la même

manière que précédemment et les comparons avec des moments d’ordre supérieur. Les

moments utilisés pour la comparaison s’écrivent alors

�PΩ2�i =
c�P �
4b

�
4− a

2 + a

�
(6.43)

�PT 2Ω2�i = −c�P �
4

�
1 + 2a

2 + a

�
(6.44)

�Ω2� =
(1 + c2)

4b

�
2− a

1 + a

�
(6.45)

où le moment �P � est donné par l’éq. (6.12). La comparaison entre les moments

calculés numériquement et ceux obtenus à partir de c est présentée aux figures 6.12–

6.14.

De façon générale, l’accord est moins bon qu’avec la représentation utilisant les

paramètres h et f , ce qui est attendu puisqu’il y a un paramètre de moins dans cette

représentation. La représentation la plus précise parmi les trois valeur de c est cPTΩ.

Encore une fois, le moment �PTΩ�r se révèle être une excellente mesure de la phase.

Notons cependant que dans le régime de dispersion normale, la différence entre les

représentations et les moments �Ω2� et �T 2Ω2�i est particulièrement importante. Il

faut donc trouver une autre façon de représenter ces moments. Il est facile d’inclure

�Ω2� dans le système d’équations d’évolution puisque c’est un moment d’ordre 2. Il

est également possible d’utiliser l’invariant I0 et le représenter par le moment �P �.
Pour représenter le moment �PT 2Ω2�i, considérons l’approximation suivante

�PT 2Ω2�i ≈ −
�PT 2��PΩ2�i

�P � (6.46)

qui est tracée à la figure 6.13 en trait pâle avec des croix. Cette approximation donne
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Figure 6.12 Comparaison numérique entre la représentation utilisant les paramètres
cTΩ (cercles vides), cPTΩ (carrés) et cT3Ω (cercles pleins) du moment �PΩ2�i d’une
impulsion gaussienne se propageant dans le régime de dispersion normale (figure du
bas) et anormale (figure du haut) où N = 2 (ligne grasse noire).
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Figure 6.13 Comparaison numérique entre la représentation utilisant les paramètres
cTΩ (cercles vides), cPTΩ (carrés) et cT3Ω (cercles pleins) du moment �PT 2Ω2�i d’une
impulsion gaussienne se propageant dans le régime de dispersion normale (figure du
bas) et anormale (figure du haut) où N = 2 (ligne grasse noire). La ligne pâle avec
les croix représente l’approximation de l’éq. (6.46).
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Figure 6.14 Comparaison numérique entre la représentation utilisant les paramètres
cTΩ (cercles vides), cPTΩ (carrés) et cT3Ω (cercles pleins) du moment �Ω2� d’une im-
pulsion gaussienne se propageant dans le régime de dispersion normale (figure du bas)
et anormale (figure du haut) où N = 2 (ligne grasse noire).
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de bons résultat et de plus, peut être intégrée de part et d’autres au moyen des

éqs. (4.13) et (6.2a), ce qui mène à un invariant approximatif.

I3 =
�P ��PT 2�

E2
(6.47)

L’invariant I3 est normalisé en utilisant l’énergie pour ne dépendre que de a.

Il est clair, en regardant les figures 6.12–6.14, que la phase logarithmique est plus

appropriée dans le régime de dispersion anormale que dans le régime de dispersion

normale. Rappelons que la phase logarithmique est issue du soliton moyen dans les

équations mâıtresses des lasers opérant dans le régime de dispersion anormale. Il est

donc prévisible qu’il y ait un meilleur accord dans ce régime de dispersion.

Certaines observations intéressantes ressortent de l’ensemble des représentations

de la phase. Tout d’abord, le moment �PTΩ�r est clairement le moment clef pour

représenter les paramètres de phase. Il permet de représenter la phase plutôt simple de

la propagation en régime de dispersion normale ainsi que de bien faire la moyenne des

motifs de la phase dans le régime de dispersion anormale. D’ailleurs, la représentation

est en générale meilleure dans le régime de dispersion normale, plutôt qu’anormale,

puisque la phase est plus facile à modéliser. Ensuite, il est préférable d’utiliser les

paramètres h et fPTΩ pour représenter la phase, qui donne une bonne représentation

dans les deux régimes de dispersion. Toutefois, dans le régime de dispersion normale,

tous les h et f sont adéquats. Dans la représentation à un paramètre seul cPTΩ est

adéquat, et ce, seulement dans le régime de dispersion anormale.

Nous pouvons maintenant représenter tous les moments d’ordre supérieur présents

dans les systèmes d’équations (6.1) et (6.2). Pour ce faire, nous supposons que les mo-

ments d’ordre supérieur du système peuvent être remplacés par les moments d’ordre

supérieur correspondants de la distribution de Pearson. Ces moments peuvent donc

être exprimés en termes des paramètres de la distribution de Pearson a, b et Pc et les

paramètres de phase h et f ou c. Ces paramètres peuvent à leur tour être exprimés

en terme des moments internes. Le système d’équations se trouve alors fermé et il

devient possible de le résoudre.

Bien que l’accord entre les moments calculés numériquement et leur représentation

puisse être bon, il est important que l’accord le soit autour de z = 0. Si nous voulons

intégrer les systèmes d’éqs. (6.1) et (6.2) fermés, il est capital que les erreurs soient

faibles autour de z = 0 pour éviter les divergences et la propagation d’erreurs. Il
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s’ensuit qu’en résolvant les systèmes d’éqs. (6.1) et (6.2) des moments d’ordre 4 et

d’ordre 2 non-linéaire et en les comparant aux moments calculés directement à partir

du champ propagé numériquement, nous obtenons une mesure de la précision des

approximations de l’ensemble des moments d’ordre supérieur. C’est donc ce que le

reste de ce chapitre présente.

6.4 Intégration numérique

Dans cette section, les systèmes d’équations sur les moments d’ordre 4 (éq. (6.1)),

d’ordre 2 non-linéaires (éq. (6.2)), ainsi que ceux à l’ordre 2 (éq. (4.12)) sont intégrés

en utilisant les différentes représentations du champ pour s’affranchir des moments

d’ordre supérieur. Puisque ces systèmes comportent plusieurs équations et que ces

dernières sont non-linéaires, l’intégration est faite numériquement. Le paramètre a

est alors calculé à partir des moments intégrés et comparé avec le paramètre a obtenu

à partir des moments «exacts» calculés à partir du champ propagé numériquement

par la méthode split-step Fourier. Cette comparaison nous donne une mesure glo-

bale de la précision des approximations des moments d’ordre supérieur. De plus, les

systèmes sont intégrés en considérant toutes ou seulement quelques-unes des équations

différentielles. Autrement dit, la représentation du champ de Pearson est utilisée pour

approximer les moments faisant partie du système, réduisant ainsi la taille de ce der-

nier. Ceci nous permet de déterminer le point à partir duquel ajouter des moments

au système introduit plus d’erreurs d’approximation qu’il n’augmente la précision.

Les intégrations des systèmes d’équations différentielles des moments représentent

évidemment la propagation d’une impulsion dans un milieu dispersif et non-linéaire.

Des intégrations (propagations) ont été effectuées dans les deux régimes de dispersion,

normale et anormale, pour trois différentes puissances crêtes différentes donnant N =

1, 2 et 3, afin de vérifier la validité des différentes représentations du champ dans

différentes conditions. Notons qu’une gaussienne a été prise comme forme initiale de

l’impulsion. Pour chacune de ces six conditions, le système à l’ordre 4 et le système à

l’ordre 2 non-linéaire, décrits respectivement par les éqs. (6.1) et (6.2) sont intégrés

avec trois différentes représentations de la phase ; la phase logarithmique, quadratique

et quadratique avec un terme non-linéaire, donnant 18 configurations pour chaque

système.

Pour chacune de ces configurations, les équations du systèmes sont considérés
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dans leur intégralité ou certaines sont éliminées. Dans ce cas, le moment décrit par

l’équation éliminée est approximé par la représentation du champ utilisé dans la

configuration. Spécifiquement, à l’ordre 4, le système est résolu soit en tenant compte

des 5 équations à l’ordre 4, soit en approximant le moment �Ω4� et en laissant tomber

l’éq. (6.1e), soit en approximant le moment �TΩ3�r et en laissant tomber les éqs. (6.1d)

et (6.1e) et soit finalement en approximant le moment �T 2Ω2�r tout en laissant tomber

les éqs. (6.1c)–(6.1e). Pour le système à l’ordre 2 non-linéaire, le système est intégré

avec les quatre éqs. (6.2), puis en approximant le moment �PΩ2�i et en laissant tomber

l’éq. (6.2d) et finalement en approximant le moment �PΩ2�r et en laissant tomber les

éqs. (6.2c)–(6.2d). Le tableau 6.4 résume les différents cas se retrouvant dans chaque

configuration.

Moments approximés dans le système à l’ordre 4 Équations intégrées
�PT 2�, �PTΩ�r, �PT 2Ω2�i, �PΩ2�r, �PTΩ3�i, �PΩ4�i, �PΩ2�i 6.1a–6.1e
�PT 2�, �PTΩ�r, �PT 2Ω2�i, �PΩ2�r, �PTΩ3�i, �Ω4�, �PΩ2�i 6.1a–6.1d

�PT 2�, �PTΩ�r, �PT 2Ω2�i, �TΩ3�r, �PΩ2�i 6.1a–6.1c
�PT 2�, �T 2Ω2�r, �PΩ2�i 6.1a–6.1b

Moments approximés dans le système à l’ordre 2 non-linéaire Équations intégrées

�PT 2Ω2�i, �PΩ2�r,
�
T ∂A∗

∂T
∂2A
∂T 2

�

r
, �P 2�, �PΩ4�i,

�
∂A∗

∂T
∂3A
∂T 3

�

i
6.2a–6.2d

�
∂A∗

∂T
∂2A
∂T 2 Ω

�

r
, �P 2Ω2�i, �PΩ4�r,

�
∂A∗

∂T
∂3A
∂T 3

�

r
,
�

∂A∗

∂T
∂2A
∂T 2 Ω

�

i

�P 2Ω2�r,
�
P

��∂A
∂T

��2
�
,
�
P ∂2P

∂T 2

�

�PT 2Ω2�i, �PΩ2�r,
�
T ∂A∗

∂T
∂2A
∂T 2

�

r
, �P 2�, �PΩ4�i,

�
∂A∗

∂T
∂3A
∂T 3

�

i
6.2a–6.2c

�
∂A∗

∂T
∂2A
∂T 2 Ω

�

r
, �P 2Ω2�i, �PΩ2�i

�PT 2Ω2�i, �PΩ2�r,
�
T ∂A∗

∂T
∂2A
∂T 2

�

r
, �P 2�, �PΩ2�i 6.2a–6.2b

Tableau 6.1 Liste des différentes approximations avec lesquelles les systèmes
d’équations à l’ordre 4 et à l’ordre 2 non-linéaire sont intégrés dans chaque confi-
guration.

Les différents paramètres a obtenus de l’intégration des équations de propagation

sont présentées aux figures 6.15–6.20 dans les deux différents régimes de dispersion et

pour les différentes valeurs de N . Sur chacune de ces figures, le paramètre a obtenu

de la simulation split-step est en trait plein noir. Les courbes avec les cercles pleins

représentent la phase logarithmique, celle avec les carreaux la phase quadratique et
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le trait sans marqueur représente la phase quadratique avec un terme non-linéaire.

Pour les systèmes à l’ordre 4, les courbes en trait plein indiquent que les cinq mo-

ments d’ordre 4 sont inclus dans l’intégration et seuls les moments d’ordre supérieur

sont approximés. Les courbes en tirets indiquent que le moment �Ω4� est approximé

et qu’il n’y a que quatre équations d’ordre 4. Les courbes tiret-point et pointillées

représentent les cas où le moment �TΩ3�r et �T 2Ω2�r sont respectivement remplacés

par la représentation de Pearson. Dans le système à l’ordre 2 non-linéaire, les courbes

en trait plein indiquent que seuls les moments d’ordre supérieur sont approximés. Les

courbes avec les tirets indique le cas où le moment �PΩ2�i est approximé par la dis-

tribution de Pearson et son équation différentielle est retirée du système. Les courbes

pointillées indiquent que les moments �PΩ2�r et �PΩ2�i sont remplacées par la distri-

bution de Pearson et leurs équations respectives sont retirées du système. Regardons

maintenant en détails les résultats présentés sur chacune de ces figures.

6.4.1 Dispersion normale

Dans le régime de dispersion normale, le paramètre a diminue au début de la

propagation, indiquant que l’impulsion se rapproche d’une forme parabolique (et

éventuellement carrée, selon la puissance) jusqu’à atteindre un minimum correspon-

dant au point de rupture du font d’onde. L’impulsion reprend alors une forme de

cloche avec la dispersion des lobes générés par la rupture du front. La forme de l’im-

pulsion se stabilise ensuite de manière asymptotique vers une impulsion parabolique.

Considérons dans un premier temps l’intégration des systèmes à l’ordre 4.

Système à l’ordre 4

Dans le système à l’ordre 4, le système d’éqs. (6.1) est intégré et le paramètre a est

utilisé pour comparer les différents cas avec les simulations numériques. Le paramètre

a dans ce cas est obtenu à partir du paramètre de forme κT . Les trois différentes phases

présentées précédemment, la phase logarithmique, quadratique et non-linéaire, sont

étudiées lors de l’intégration.

La phase logarithmique est représentée par les cercles sur les figures du haut 6.15–

6.17 pour différents valeurs de N . L’intégration des éq. (6.1) donne en général un

résultat proche des simulations, ce qui signifie que les moments �PTΩ�r, �PT 2Ω2�r,
�PTΩ3�i, �PΩ2�r et �PΩ4�i sont bien représentés. Quelques points sont remarquables.
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Figure 6.15 Paramètre a obtenu de l’intégration des systèmes à l’ordre 4 (haut) et
à l’ordre 2 non-linéaire (bas) pour N = 1 dans le régime de dispersion normale. Les
courbes rouges avec cercles représentent la phase logarithmique, les courbes bleues
avec carreaux la phase quadratique et les courbes grises foncées la phase quadratique
et non-linéaire. Les traits indiquent les termes inclus dans les systèmes (voir texte). La
courbe noire pleine représente le paramètre a obtenu par la propagation numérique.
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Figure 6.16 Paramètre a obtenu de l’intégration des systèmes à l’ordre 4 (haut) et
à l’ordre 2 non-linéaire (bas) pour N = 2 dans le régime de dispersion normale. Les
courbes rouges avec cercles représentent la phase logarithmique, les courbes bleues
avec carreaux la phase quadratique et les courbes grises foncées la phase quadratique
et non-linéaire. Les traits indiquent les termes inclus dans les systèmes (voir texte). La
courbe noire pleine représente le paramètre a obtenu par la propagation numérique.
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Figure 6.17 Paramètre a obtenu de l’intégration des systèmes à l’ordre 4 (haut) et
à l’ordre 2 non-linéaire (bas) pour N = 3 dans le régime de dispersion normal. Les
courbes rouges avec cercles représentent la phase logarithmique, les courbes bleues
avec carreaux la phase quadratique et les courbes grises foncées la phase quadratique
et non-linéaire. Les traits indiquent les termes inclus dans les systèmes (voir texte). La
courbe noire pleine représente le paramètre a obtenu par la propagation numérique.



123

Premièrement, la précision est plus grande pour de courtes distances de propagation.

Les erreurs d’approximation s’accumulent lors de l’intégration. Ainsi, la distance à

laquelle les moments intégrés diffèrent substantiellement des simulations est un indi-

cateur de la qualité des approximations. Deuxièmement, la phase logarithmique est

une meilleure approximation lorsque le paramètre N est faible puisque la phase est

d’autant plus quadratique que la non-linéarité est faible. Finalement, la précision aug-

mente avec le nombre de moments considérés lors de l’intégration. Ce dernier point

est important car il signifie que la méthode classique des moments, où le nombre de

moments considérés est égal au nombre de paramètres de la représentation, est plus

approximative comparé au cas où plus de moments sont inclus dans la représentation.

Autrement dit, le champ est représenté plus exactement avec un grand nombre de

moments au lieu de ne le représenter qu’avec les paramètres de Pearson.

La phase quadratique, représentée par les carrés, montre des conclusions légère-

ment différentes. À courte distance, l’intégration est d’autant plus précise que le

nombre de moments est grand. Toutefois, à longue distance l’intégration diverge

lorsque tous les moments sont inclus ou lorsque �Ω4� est retiré (ou lorsque N > 1,

�TΩ3�r est retiré ). La divergence se produit parce que la phase quadratique est trop

simple pour représenter adéquatement les moments d’ordre supérieur. En retirant des

moments de l’intégration, le nombre de moments à approximer diminue et le système

ne diverge plus. Parmi les cas ne divergeant pas lorsque N = 1, l’intégration où

�TΩ3�r et �Ω4� sont retirés, est plus précise que l’intégration où le moment �T 2Ω2�r
est également retiré. Cependant, dans ce dernier cas l’intégration se rapproche de la

simulation pour de longues distances. La raison est que dans le régime de dispersion

normale, la phase tend de manière asymptotique vers une parabole.

La phase quadratique avec contribution non-linéaire est représentée avec des lignes

sans marqueurs sur les figures 6.15–6.17. Tous les différents cas divergent pour de

longues distances sauf celui où les moments �TΩ3�r et �Ω4� sont retirés. Toutefois

dans ce cas, l’intégration donne le résultat le plus précis de toutes les représentations

pour toutes les différentes valeurs de N . Il est remarquable que dans le cas de la

phase quadratique, avec ou sans la contribution non-linéaire, l’intégration diverge

lorsque le système d’éqs. (6.1) contient des moments contenant les opérateurs Ω3 ou

Ω4. Ces opérateurs font intervenir des dérivées d’ordre élevé du champ, et donc de la

phase. Bien que la phase soit représentée suffisamment précisément pour représenter

les dérivées de bas ordre, elle ne l’est pas suffisamment pour éviter que le système ne
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diverge en présence des dérivées d’ordre élevé.

Système à l’ordre 2 non-linéaire

La partie du bas des figures 6.15–6.17 montre l’intégration du système d’équations

(6.2) décrivant l’évolution des moments d’ordre 2 non-linéaires dans le régime de

dispersion normal. Dans ce cas, le paramètre a est obtenu à partir du paramètre de

forme κPT . Notons que les paramètres a des simulations numériques provenant des

systèmes à l’ordre 4 et 2 non-linéaire sont légèrement différents. La différence vient

du fait que le champ calculé numériquement n’est pas exactement représenté par la

distribution de Pearson. Ainsi, le paramètre a diffère selon les moments utilisés pour

l’obtenir. L’allure générale des deux courbes est toutefois la même, ce qui montre que

la distribution est une bonne approximation.

De manière générale, l’accord entre les différentes intégrations, pour les différentes

phases est moins bon que dans le cas à l’ordre 4, ce qui est surprenant compte tenu

que le facteur de forme κPT représente mieux le paramètre a dans les différents mo-

ments comme nous l’avons vu à la section précédente. La raison principale est que les

équations du système à l’ordre 2 non-linéaire contiennent plusieurs moments conte-

nant le produit de dérivées du champ (directement où par le biais de l’opérateur Ω).

En intégrant par partie, ces produits de dérivées peuvent être ramenés à des sommes

de moments contenant les opérateurs Ω3 ou Ω4. Et à l’instar du système à l’ordre 4,

ces moments ne sont pas suffisamment bien représentés pour éviter que l’intégration

ne diverge. On remarque toutefois que plus le nombre de moments est élevé, plus

l’intégration est précise sur de courtes distances.

Lorsque les moments dont les équations d’évolution contiennent des moments

définis par des dérivées d’ordre 3 ou supérieur (ou l’équivalent en produit de dérivées

d’ordre 1 ou 2) sont retirés du système, l’intégration converge pour les trois représenta-

tions de la phase et pour les différentes valeurs de N . Dans ce cas, les trois représenta-

tions de la phase se comportent différemment. L’intégration de la phase logarithmique

suit la forme générale de la simulation numérique ; l’erreur est toutefois relativement

grande. L’erreur est d’ailleurs d’autant plus grande que N est élevé. L’intégration de

la phase quadratique s’approche plus de la simulation numérique que la phase loga-

rithmique au début de la propagation. Toutefois, sa forme générale ne suit pas celle

de la simulation numérique car il n’y a pas d’inflexion autour de z/LD ≈ 0, 4. Cet en-

droit est le point où le front de l’impulsion se brise. Finalement, c’est encore une fois
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la phase quadratique avec contribution non-linéaire qui représente le mieux la phase

du champ. Pour les trois valeurs de N , l’intégration suit la simulation numérique avec

précision pour de courtes et longues distances. L’accord est cependant d’autant moins

juste après le point de rupture du front d’onde que N est élevé. À cet endroit, l’im-

pulsion possède des lobes (qui disparâıtront) et est donc moins bien représentée par

la distribution de Pearson. Ces lobes sont d’autant plus important que la puissance,

et donc N , est grande.

En résumé, dans le régime de dispersion normale, nous retenons que la phase

quadratique avec contribution non-linéaire est la représentation la plus précise du

champ parmi les phases considérées, que ce soit avec le système à l’ordre 4 ou à

l’ordre 2 non-linéaire. Il faut toutefois ne prendre en compte que les moments dont

les équations d’évolution ne contiennent pas de moments définis par des dérivées

d’ordre 3 ou 4 ou l’équivalent. Notons également que la phase logarithmique donne

des résultats raisonnables pour le système à l’ordre 4 lorsque tous les moments des

éqs. (6.1) sont considérés. Les systèmes à l’ordre 4 à l’ordre 2 non-linéaire donnent

des résultats de précision semblable dans ce régime de dispersion.

6.4.2 Dispersion anormale

Dans le régime de dispersion anormale, l’impulsion gaussienne se déforme pour

tendre vers une impulsion solitonique de forme sécante hyperbolique. Lorsque N = 1,

la simulation numérique en trait noir montre que l’évolution se fait asymptotiquement.

Toutefois à puissance plus élevé, N = 2 ou 3, l’évolution se fait de manière oscillante.

La différence entre les simulations numériques est plus marquée que dans le cas où

la dispersion est normale. La raison est que dans le régime de dispersion anormale

le front d’onde se brise très tôt lors de la propagation pour former un piédestal. Ce

piédestal (et éventuellement des lobes) est très important dans le régime de dispersion

anormale, et il ne peut être représenté adéquatement par la distribution de Pearson.

Toutefois, puisque les moments sont des quantités moyennes, la distribution de Pear-

son peut être utilisée malgré tout. La conséquence est que le paramètre a dépend des

moments utilisées pour le calculer, soit κT pour le système à l’ordre 4, soit κPT pour

le système à l’ordre 2 non-linéaire. Considérons chacun de ces systèmes séparément

pour déterminer laquelle des trois représentation de la phase est la plus adéquate dans

ce régime de dispersion.
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Figure 6.18 Paramètre a obtenu de l’intégration des systèmes à l’ordre 4 (haut) et
à l’ordre 2 non-linéaire (bas) pour N = 1 dans le régime de dispersion anormale. Les
courbes rouges avec cercles représentent la phase logarithmiques, les courbes bleues
avec carreaux la phase quadratique et les courbes grises foncées la phase quadratique
et non-linéaire. Les traits indiquent les termes inclus dans les systèmes (voir texte). La
courbe noire pleine représente le paramètre a obtenu par la propagation numérique.
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Figure 6.19 Paramètre a obtenu de l’intégration des systèmes à l’ordre 4 (haut) et
à l’ordre 2 non-linéaire (bas) pour N = 2 dans le régime de dispersion anormale. Les
courbes rouges avec cercles représentent la phase logarithmique, les courbes bleues
avec carreaux la phase quadratique et les courbes grises foncées la phase quadratique
et non-linéaire. Les traits indiquent les termes inclus dans les systèmes (voir texte). La
courbe noire pleine représente le paramètre a obtenu par la propagation numérique.
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Figure 6.20 Paramètre a obtenu de l’intégration des systèmes à l’ordre 4 (haut) et
à l’ordre 2 non-linéaire (bas) pour N = 3 dans le régime de dispersion anormale. Les
courbes rouges avec cercles représentent la phase logarithmique, les courbes bleues
avec carreaux la phase quadratique et les courbes grises foncées la phase quadratique
et non-linéaire. Les traits indiquent les termes inclus dans les systèmes (voir texte). La
courbe noire pleine représente le paramètre a obtenu par la propagation numérique.
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Système à l’ordre 4

Les paramètres a obtenus par l’intégration du système d’éqs. (6.1) à l’ordre 4

dans le régime de dispersion anormale sont présentés dans la partie supérieure des

figures 6.18–6.20. Les différentes courbes suivent la même convention qu’à la section

précédente. La précision des différentes représentations dépend beaucoup de la valeur

de N dans ce régime de dispersion. Dans le régime de dispersion anormale, l’impulsion

subit des changements de forme d’autant plus important que la valeur de N est élevée.

Nous analysons donc les différents modèles pour les trois valeurs de N .

Lorsque N = 1, l’intégration diverge pour les phases quadratiques et logarith-

miques lorsque tous les moments sont présents ou lorsque l’éq. (6.1e) est retirée. En

retirant en plus l’éq. (6.1d), l’intégration ne diverge plus. Dans ce cas, l’erreur est

maximale autour de z/LD ≈ 0, 6 et diminue avec la distance de propagation. Lorsque

l’éq. (6.1c) est également retirée, l’erreur augmente avec la distance de propagation.

Pour ce qui est de la phase quadratique et non-linéaire, l’intégration diverge seule-

ment lorsque l’éq. (6.1e) est retirée ; autrement l’intégration converge. L’erreur est

minimale lorsque l’éq. (6.1d) est également retirée. Nous voyons ici encore une fois

que la précision augmente avec le nombre de moments considérés tant que ces derniers

n’induisent pas des erreurs d’approximation importantes.

Dans le cas où N = 2, l’intégration est en générale plus instable que pour le cas

N = 1. La phase quadratique n’est adéquate que sur de courtes distances de propa-

gation (z/LD ≈ 0.6). La phase logarithmique donne un résultat optimal lorsque les

éqs. (6.1d)–(6.1e) sont retirées ; en simplifiant davantage, la précision diminue. Il en

va de même pour la phase quadratique avec une contribution non-linéaire. Notons

que dans certains cas, l’intégration diverge abruptement. Ce comportement se pro-

duit quand le paramètre a prend une valeur telle que le dénominateur d’un terme

définissant un des moments approximés s’annule.

L’intégration redevient plus stable lorsque N = 3 que lorsque N = 2. La phase

quadratique ne donne toutefois pas de meilleurs résultats que dans le cas précédent.

La phase logarithmique diverge quand tous les moments sont considérés ou quand

les éqs. (6.1d) et (6.1e) sont enlevées. Dans les deux autres cas, l’intégration sur-

ou sous-estime la simulation numérique, en réduisant ou exagérant les oscillations

du paramètre a lors de la propagation. La phase quadratique avec contribution non-

linéaire se rapproche des simulations numériques lorsque les éqs. (6.1d) et (6.1e) sont

retirées du système. Lorsque l’éq. (6.1c) est également enlevée, la précision est encore
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plus grande, mais il y a une discontinuité autour de z/LD ≈ 0.6.

Pour les trois valeurs de N étudiées, des points communs ressortent. Premièrement,

tous les modèles sont précis sur de courtes distances de propagation, avant que les

erreurs d’approximation ne fassent diverger l’intégration. Deuxièmement, le modèle

quadratique n’est pas adéquat pour décrire la déformation de l’impulsion lors de la

propagation. La phase de l’impulsion dans le régime de dispersion anormale n’est pas

monotone, d’autant plus que la non-linéarité est forte. La phase quadratique n’est

donc pas adéquate pour décrire la propagation d’autant plus que N est grand. Ainsi

s’explique que la phase quadratique donne une plus grande précision lorsque N = 1

que lorsque N = 2 ou 3. Troisièmement, la phase logarithmique est une représentation

plus efficace en dispersion anormale qu’en régime de dispersion normale. La phase lo-

garithmique est une solution stationnaire dans le régime de dispersion anormale de

l’équation de Ginzburg-Laudau qui est un cas plus général de l’ÉSNL car elle contient

des termes dissipatifs, comme nous le verrons au prochain chapitre. Il est donc raison-

nable qu’elle puisse être une bonne approximation pour représenter les solutions tran-

sitoires de l’ÉSNL. Quatrièmement, la phase quadratique et non-linéaire se montre

de nouveau comme étant la représentation la plus efficace pour approximer la phase

du champ. Finalement, dans la plupart des cas, le système d’équations est optimal

quand les moments �Ω4� et �TΩ3�r sont remplacés par des moments faisant partie

du système. Dans le régime de dispersion normale, le système optimal approximait

également le moment �T 2Ω2�r. La différence s’explique par le fait que les moments

mixtes sont de plus faible amplitude dans le régime de dispersion anormale puisque

la dispersion et la non-linéarité s’annulent partiellement. Il s’ensuit que les moments

mixtes d’ordre supérieur ayant des dérivées d’ordre 3 ou 4 deviennent négligeables

face aux autres moments de l’équation différentielle.

Système à l’ordre 2 non-linéaire

L’intégration du système d’éqs. (6.2) est représentée à travers le paramètre a dans

le régime de dispersion anormale dans la partie inférieure des figures 6.18–6.20. Pour

le système à l’ordre 2 non-linéaire, l’intégration change également grandement selon la

valeur de N . Dans l’ensemble, le système à l’ordre 2 non-linéaire est beaucoup moins

précis pour prédire l’évolution de la forme de l’impulsion que le système à l’ordre 4

dans le régime de dispersion anormale.

Dans le cas où N = 1, la plupart des intégrations oscillent autour de la simulation
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numérique ou divergent. Pour la phase quadratique, seul le cas où les éqs. (6.2c)–

(6.2d) sont retirées donne un résultat se rapprochant de la simulation numérique. Les

autres cas divergent après une très courte distance de propagation. L’intégration de

la phase logarithmique ne diverge pour aucune des simplifications. Quand toutes les

équations sont incluses, le paramètre a oscille fortement. Dans les deux autres cas, où

les éqs. (6.2d) et/ou (6.2c) sont enlevées, les paramètres a obtenus oscillent autour de

la simulation numérique. La phase quadratique avec contribution non-linéaire diverge

quand tous les moments sont considérés et oscillent autrement. Le cas où les deux

éqs. (6.2c)–(6.2d) sont retirées est plus précis seulement quand l’éq. (6.2d) l’est. Dans

ces deux cas, le résultat est moins précis qu’avec la phase logarithmique.

Lorsque N = 2, toutes les intégrations divergent ou oscillent avec de grandes am-

plitudes. Tous les cas où tous les moments sont inclus divergent. Tous les cas où les

deux équations sont retirées oscillent. Seul le cas de la phase quadratique avec contri-

bution non-linéaire oscille lorsque l’éq. (6.2d) est enlevée ; les autres représentations

de la phase divergent. Notons que les diverses intégrations s’éloignent très rapidement

de la simulation numérique.

Toutes les représentations de la phase donnent des intégrations qui divergent au-

tour de z/LD ≈ 0, 3 lorsque N = 3, sauf pour la phase quadratique et uniquement dans

le cas où les éqs. (6.2c)–(6.2d) sont retirées du système d’équations. Les différentes

intégrations donnent des paramètres a qui s’éloignent aussi très rapidement de la

simulation numérique lors de la propagation.

Ces observations sont surprenantes. Nous avons vu à la section précédente que la

modélisation utilisant κPT était plus précise que celle utilisant κ. Alors pourquoi le

système d’équations à l’ordre 2 non-linéaire est moins efficace que celui à l’ordre 4 ? La

réponse est que dans le régime de dispersion anormale, l’impulsion change beaucoup

de forme ; il y a formation de lobes et de piédestal causés par la rupture du front

d’onde. Il s’ensuit que l’approximation de Pearson de l’enveloppe du champ devient

moins précise. Une conséquence indirecte est que l’erreur sur l’opérateur P augmente,

puisque que ce dernier, contrairement aux autres opérateurs, dépend directement

de la forme de l’impulsion. Dans le système à l’ordre 4, l’opérateur P intervient

dans certains des moments présents définissant les dérivées du système. À l’ordre 2,

l’opérateur est présent dans tous les moments ; autant ceux du systèmes que ceux

définissant leurs dérivées. Il en résulte que l’erreur d’approximation prend beaucoup

plus d’importance et l’intégration diverge rapidement lors de la propagation. L’erreur
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est par ailleurs d’autant plus importante que N est élevé, puisque le changement de

forme de l’impulsion est plus important quand la non-linéarité est forte par rapport

à la dispersion.

En résumé, dans le régime de dispersion anormale, il existe une différence notable

entre les systèmes à l’ordre 4 et à l’ordre 2 non-linéaire. Le système à l’ordre 4 donne

des résultats précis pour la phase logarithmique et pour la phase quadratique avec une

contribution non-linéaire. Toutefois le système à l’ordre 2 ne donnent des résultats

qualitativement précis que dans le cas où N = 1 ou sur de très courtes distances de

propagation pour toutes les représentations de la phase considérée.

6.5 Approximation de l’ÉSNL

Dans cette section, à l’instar de ce que nous avons fait au chapitre 4, nous utilisons

les approximations présentées précédemment pour analyser l’ÉSNL. Contrairement à

ce que nous avons fait au chapitre 4, nous analysons ici la forme de l’impulsion. Après

avoir analysé les différentes modèles possibles pour approximer les moments, nous ne

considérons ici que la représentation de la forme par le facteur de forme κPT ainsi que

la phase non-linéaire puisqu’ils donnent les résultats les plus précis. Nous regardons

aussi la phase logarithmique à des fins de comparaison. L’analyse prédécente nous

montre également qu’il est difficile de résoudre les équations de propagation des mo-

ments d’ordre élevé puisqu’il faut approximer bon nombre de moments. Dans cette

section, nous n’utilisons que le moment �PT 2� comme moment d’ordre supérieur afin

de définir κPT .

6.5.1 Phase quadratique avec contribution non-linéaire

Écrivons l’équation d’évolution du facteur de forme κPT en utilisant la phase

non-linéaire définie par l’éq. (6.20). En utilisant le moment �T 2� pour remplacer le

paramètre b, nous obtenons

dκPT

dz
=− 2β2

�PT 2Ω2�i
�P ��T 2� + 2β2

�PΩ2�i�PT 2�
�P �2�T 2� − 2β2

�PT 2��TΩ�r
�P ��T 2�2

=fβ2κPT
�P �
�T 2�

�
4

3

(9− a− 3a2)

(2− 3a)(3 + a)
κP − 1

�
(6.48)
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où a est le paramètre de Pearson et κP le facteur de forme donné par l’éq. (6.15).

Encore une fois, nous utilisons une représentation hybride entre les moments et les

paramètres à des fins de clarté. Si nous nous attardons aux points fixes de l’éq. (6.48),

c’est-à-dire les conditions où la dérivée est nulle et donc que κPT ne change pas,

nous trouvons différentes conditions. Remarquons tout d’abord que l’éq. (6.48) est

très similaire à l’éq. (6.21) décrivant l’évolution de κT et que les deux ont plusieurs

points fixes en commun. Nous voyons tout d’abord que l’éq. (6.48) ne dépend pas

du paramètre de phase quadratique h. Ceci n’est guère surprenant car, comme nous

l’avons vu au chapitre 4, une des conséquences de supposer la phase quadratique est

que la forme de l’impulsion est invariante. Ainsi seul le paramètre de phase f change

la forme de l’impulsion ; il s’ensuit que la forme de l’impulsion est invariante lorsque

f = 0. Nous voyons également que la dérivée est nulle dans le cas purement non-

linéaire, lorsque β2 = 0, ce qui est conséquent avec la solution analytique. Lorsque

le moment �P � est nul, la puissance est infiniment faible, ce qui revient à être dans

un cas purement dispersif qui, à cause de l’approximation de la phase quadratique,

donne une forme invariante. De manière similaire, une impulsion infiniment large est

invariante car nous retrouvons dans le cas d’une émission continue. Le terme dans les

crochets du membre de droite de l’éq. (6.48) s’annule lorsque a = {−1; 1, 8}. Lorsque

a = −1, l’impulsion est parabolique qui est obtenue asymptotiquement lors le cas

d’une propagation très non-linéaire. La valeur a = 1, 8 provient de la divergence de

la définition des moments. Le facteur κPT est essentiellement positif.

Bien qu’il apparâıt que l’évolution de l’impulsion soit proportionnelle au paramètre

de phase f , il serait intéressant de comprendre sous quelles conditions ce paramètre

devient nul. En se limitant seulement au moments d’ordre 2, il est possible de réécrire

ce paramètre en termes des moments �P �, �T 2�, �Ω2� et �TΩ�r.

f =
3

4

(2− 3a)

κP �P �

�
3 + a

6− a

� �
�TΩ�r ± ∆

1
2

�
(6.49)

∆ = �TΩ�2r −
16

3

κP

(2− 3a)

�
6− a

3 + a

� �
�T 2��Ω2� − �TΩ�2r −

1

4(2− 3a)

�
2− a

1 + a

��

(6.50)

En regardant cette définition de f , il n’est pas évident de voir dans quelles conditions

nous avons f = 0. Il est toutefois clair que la seule possibilité pour avoir f = 0 est

que le terme �TΩ�r ±
√

∆ = 0 et donc ∆ = �TΩ�2r ou ∆ = �TΩ�2r = 0 puisque le
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terme en κP ne peut être nul de manière physiquement significative. Regardons s’il

est possible d’obtenir ces conditions en écrivant explicitement la première condition.

�T 2��Ω2� − �TΩ�2r =
1

4(2− 3a)

�
2− a

1 + a

�
(6.51)

Cette condition n’est rien d’autre que la définition de l’invariant I1 lorsque la phase

est quadratique selon l’éq. (6.18). Cette condition est vérifiée dans deux cas ; lorsque

la propagation est dispersive et donc f = 0 et lorsque l’impulsion n’est pas chirpée,

c’est-à-dire �TΩ�r = 0. Évidemment, l’invariance dans le cas dispersif ne s’applique

que pour l’impulsion gaussienne ; c’est une approximation pour les autres formes

d’impulsions. La phase constante représentée par �TΩ�r = 0 est le cas de l’impulsion

solitonique pour laquelle la propagation est invariante. Voyons si nous pouvons re-

trouver la forme de l’impulsion en sécante hyperbolique dans ce cas. Du fait que le

moment �TΩ�r = 0, nous obtenons l’équation suivante.

�TΩ�r = − 2h

(2− 3a)
+

f

2
�P � = 0 ⇒ h =

f

4
(2− 3a)�P � (6.52)

En posant que la forme de l’impulsion et que l’énergie demeurent constantes lors de

la propagation, il s’ensuit que �P � est également constant et donc que sa dérivée

est nulle. Puisque le seul moment présent dans la dérivée de �P � est �PΩ2�i, nous

en déduisons que ce dernier est nul, ce qui nous donne une autre relation entre les

paramètres de la phase.

�PΩ2�i = −h

b
�P �+

f

3b
�P 2�

�
6− a

3 + a

�
= 0 ⇒ h =

f

3
κP

�
6− a

3 + a

�
�P � (6.53)

En égalant les éqs. (6.52) et (6.53), nous obtenons une expression ne dépendant que du

paramètre a et qui définit donc la forme de l’impulsion. En résolvant cette équation,

nous trouvons deux valeurs a = {−1, 0595;−0, 9405} qui sont bien approximées par

a ≈ −1. La forme d’impulsion obtenue est parabolique alors que nous nous attendions

à obtenir une sécante hyperbolique. Comment expliquer cette différence ? La réponse

se cache dans la nature de l’invariance de l’impulsion solitonique. Le soliton demeure

invariant lors de sa propagation car la dispersion et la non-linéarité se contrecarrent.

Autrement dit, la phase issue de la non-linéarité annule celle provenant de la disper-

sion. Hors, dans notre modèle, la dispersion est modélisée par une phase quadratique ;
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il s’ensuit que l’impulsion doit être parabolique pour que la phase non-linéaire, ayant

la forme de l’impulsion, puisse l’annuler. Nous en déduisons donc qu’une modélisation

plus précise devrait s’attarder à mieux modéliser la phase dispersive.

6.5.2 Phase logarithmique

À des fins de comparaisons, regardons les points fixes de l’évolution de la forme

de l’impulsion en utilisant la phase logarithmique.

dκPT

dz
=

10βaκPT

(2− 3a)(2 + a)

�TΩ�r
�T 2� (6.54)

La phase logarithmique permet de représenter l’évolution de la forme de l’impul-

sion dans certains cas. L’invariance de l’impulsion lorsque la phase est constante ou

lorsque la dispersion est absente est bien représentée. Nous voyons aussi que la forme

de l’impulsion cesse de changer lorsque la largeur de l’impulsion devient arbitraire-

ment grande. Toutefois certaines différences sont remarquables. Premièrement, nous

ne voyons plus apparâıtre le cas dispersif lorsque la puissance est très faible. Ceci

vient du fait qu’il n’y a qu’un seul paramètre de phase pour représenter la dispersion

et la non-linéarité. Du même coup, de poser que �TΩ�r = 0 ne nous permet plus de

déterminer la forme de l’impulsion solitonique. Deuxièmement, la phase logarithmique

ne nous permet pas d’obtenir la forme asymptotique parabolique de l’impulsion. Fi-

nalement, notons que l’évolution de la forme de l’impulsion devient invariante lorsque

a = 0. Hors, ceci n’a de sens que pour une propagation purement dispersive. Ceci

suggère que la phase logarithmique pourrait être un candidat intéressant à envisager

dans le futur pour mieux modéliser la phase dispersive.

6.5.3 Rupture du front d’onde

Le rupture du front d’onde est un phénomène important lors de la propagation

car il détermine le point à partir duquel l’impulsion n’a plus une forme de «cloche».

Elle est d’autant plus importante dans les lasers puisque seules les impulsions ne se

brisant pas peuvent exister dans un régime stable d’opération car l’impulsion doit

être stationnaire d’un tour à l’autre dans la cavité. La rupture du front d’onde se

produit lors que la dérivée de la phase, le chirp, n’est plus une fonction monotone

(Anderson et al., 1992), autrement dit, lorsque la dérivée seconde de la phase a plus
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d’un zéro. Ainsi, si nous pouvons trouver plus d’une racine à la dérivée seconde de

la phase, nous savons que l’impulsion est sur le point de se briser. Écrivons comment

cette condition se manifeste dans le cas de la phase quadratique avec contribution

non-linéaire et dans le cas de la phase logarithmique.

Phase quadratique avec contribution non-linéaire

La condition de rupture du front d’onde s’écrit de la manière suivante,

∂2φ

∂T 2
= 2h + 2fPc

�
1 +

a

b
T 2

�− 1
a [(2 + a)T 2 − b]

(aT 2 + b)2
= 0 (6.55)

en n’oubliant pas que si le paramètre a est négatif, la fonction n’est définie que dans

l’intervalle T =]−
�

a/b,
�

a/b[. En remaniant, elle peut être exprimée sous une forme

transcendante plus simple.

(1 + aτ 2)2+ 1
a = Khf

�
1− (2 + a)τ 2

�
où Khf =

fPc

hb
et τ =

t√
b

(6.56)

Si l’éq. (6.56) est vérifiée pour une valeur réelle et positive de τ , alors l’impulsion

est en train de se rompre. S’il n’existe pas de telle valeur, l’impulsion est stable. Par

exemple, si nous sommes dans un régime où f = 0 (par exemple, purement dispersif),

Khf = 0 et donc l’équation se réduit à

(1 + aτ 2)2+ 1
a = 0. (6.57)

Dans un tel cas, aucune valeur de a sur l’intervalle où la fonction est définie ne peut

satisfaire cette équation et l’impulsion ne peut se briser, peu importe la valeur de a.

Notons que lorsque cette situation représente un cas purement dispersif, nous voyons

une autre limite de l’approximation de la phase quadratique car certaines formes

d’impulsions peuvent se briser dans lors d’une propagation purement dispersive.

La condition décrite par l’éq. (6.56) est particulière à la modélisation et non à

la propagation. Si à un moment donné lors de l’utilisation de cette modélisation, la

condition 6.56 est satisfaite, nous savons que l’impulsion est sur le point de se briser.

Ainsi, si nous voulons savoir la distance à laquelle l’impulsion se brise lorsqu’elle se

propage dans un milieu dispersif et non-linéaire, il faut résoudre la propagation et

vérifier quand la condition 6.56 devient satisfaite. Une autre façon de procéder est de
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linéariser l’ESNL, ce qui permet de découpler le temps et la distance de propagation

et de ce fait déterminer la distance de rupture du front d’onde (Anderson et al., 1992).

En supposant que l’impulsion n’est pas initialement chirpée, le point de rupture est

défini selon cette méthode par

zR =− 1

β2

�
∂2φL

∂T 2

�−1

(6.58)

φL =
β2

2|A|
∂2

∂T 2
|A| − γ|A|2 (6.59)

où φL est la phase obtenue par la linéarisation de l’ESNL. Il est apparent à partir

de l’éq. (6.58) que la distance de rupture est négative tant que la dérivée seconde

demeure positive. Si cette dernière vient à être nulle, la distance de rupture devient

infinie ; l’impulsion commence à se briser. Lorsque φL devient très négatif, l’impulsion

se brise rapidement. En utilisant la distribution de Pearson comme forme initiale, la

condition pour voir apparâıtre la rupture, soit φL = 0 s’écrit alors

aτ 2[5 + 6(1 + a)(1− aτ 2)] = −K
�
1− (2 + a)τ 2

�
(1 + aτ 2)2− 1

a où K = 2
γPcb

β2

(6.60)

où τ prend la même valeur que précédemment. Il existe une grande similitude entre

l’éq. (6.60) et l’éq. (6.56) montrant ainsi que notre modélisation s’apparente à une

linéarisation de l’ESNL. Toutefois, nous voyons quelques différences. Par exemple,

lorsque K = 0, la condition purement dispersive s’écrit

a[5 + 6(1 + a)(1− aτ 2)] = 0 (6.61)

Cette condition est toujours satisfaite, peu importe la valeur de τ lorsque l’impulsion

est gaussienne, c’est-à-dire lorsque a = 0, comme attendu. Nous voyons aussi que

l’impulsion ne se brise pas lorsque a ∈]−1, 0[ et lorsque a < −11/6. Il serait intéressant

d’étudier plus à fond ces cas afin de savoir s’ils représentent bien des impulsions ne se

brisant pas lorsqu’elles se dispersent ou si ces cas sont des artefacts provenant de la

modélisation. La difficulté à répondre à cette question vient du fait que la largeur de

bande de ces impulsions est infiniment large puisqu’elles sont tronquées dans le temps

et donc difficile à analyser numériquement. Notons toutefois que la condition (6.61)
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montre bien que les impulsions ayant a > 0, dont le soliton, se brisent lorsqu’elles se

dispersent.

Phase logarithmique

En utilisant la modélisation logarithmique de la phase, la condition de rupture du

front d’onde devient

∂2φ

∂T 2
=

4acT 2

(aT 2 + b)2
= 0 ⇒ 4acT 2 = 0. (6.62)

Il s’ensuit que l’impulsion dans ce cas ne se brise jamais car la seule racine du

système est T = 0. La phase logarithmique n’est donc pas suffisamment précise pour

représenter la propagation linéaire et non-linéaire puisque les impulsions se dispersant

peuvent également se briser (Anderson et al., 1992). Toutefois, elle est utilisée avec

succès pour calculer les impulsions en régime stationnaire des lasers.

6.6 Conclusion

Dans ce chapitre, nous avons étudié l’utilisation des moments pour décrire l’évolution

de la forme de l’impulsion. La forme de l’impulsion est décrite en comparant des mo-

ments entre eux ; il faut donc avoir recours à des moments d’ordre supérieur. Deux

options ont été considérées. La première consiste à prendre des opérateurs de temps

et de fréquences d’ordre plus élevé, ce qui donne les moments d’ordre 4 (puisque les

impulsions sont supposées symétriques et que l’ÉSNL est symétrique, les moments

d’ordre 3 sont nuls). L’autre option est de comparer avec des moments non-linéaires

à l’ordre 2, c’est-à-dire utilisant l’opérateur P . Dans chacun de ces cas, un système

d’équations différentielles est établi pour décrire l’évolution de tous ces moments lors

de la propagation.

À l’instar du système à l’ordre 2, les systèmes d’équations différentielles d’ordre 4

et d’ordre 2 non-linéaires sont ouverts, c’est-à-dire qu’ils contiennent des moments qui

ne font pas partie du système. De plus, il y a maintenant plusieurs moments externes

qui ne peuvent être représentés par des moments internes que par une approximation

sur la phase. Nous avons étudié trois formes de la phase du champ : une phase qua-

dratique, une phase logarithmique et une phase quadratique avec une contribution

non-linéaire. La phase quadratique est la même que celle utilisée pour résoudre le
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système à l’ordre 2. La phase logarithmique est couramment utilisée dans les propa-

gations solitoniques. L’ajout d’une contribution non-linéaire à la phase quadratique,

proportionnelle à la puissance du champ, permet de mieux refléter la physique de

l’ÉSNL. Au moyen de ces représentations, il est possible d’exprimer tous les mo-

ments du système, internes ou externes, en fonction des paramètres du modèle. Les

paramètres du modèle peuvent par la suite être exprimés en fonction des moments

internes du système pour le fermer. Différentes combinaisons de moments internes

ont été choisies sur la base de leur simplicité et ont été étudiées. La validation de ces

modèles s’est faite en les comparant avec des champs simulés numériquement.

Il ressort de cette comparaison que le paramètre a est représenté plus précisément

par le facteur de forme κPT que par le facteur de forme κT . Pour ce qui est des pa-

ramètres de phase, les moments �TΩ�r et �PTΩ�r donnent une plus grande précision

que le moment �T 3Ω�r. La raison est que les moments non-linéaires utilisent l’opérateur

P qui pondère le centre de l’impulsion, ce que ne font pas les opérateurs linéaires.

Cela suggère que le système à l’ordre 2 non-linéaire est plus précis que le système à

l’ordre 4 pour décrire l’évolution de la forme de l’impulsion. Pour vérifier que tel est

le cas, les deux systèmes, une fois fermés en utilisant les diverses représentations, ont

été intégrés numériquement dans les deux régimes de dispersion. Il s’avère que dans

le régime de dispersion normale, les deux systèmes sont d’égale précision. Toutefois,

dans le régime de dispersion anormale, le système à l’ordre 4 est plus précis car le

système à l’ordre 2 diverge, surtout lorsque N > 1. Ce résultat semble contradictoire

par rapport à la comparaison précédente. La clé est qu’une châıne n’est pas plus forte

que le plus faible de ses maillons. Ainsi, il suffit qu’un des moments du système soit

mal représenté pour que l’intégration de tous les moments du système divergent. Le

système à l’ordre 4 comporte moins de moments externes que le système à l’ordre

2. De plus, ces moments externes sont beaucoup moins non-linéaires. Il en résulte

que le système à l’ordre 2 non-linéaire est plus instable aux erreurs d’approximations

dans le régime de dispersion anormale où la forme de l’impulsion change de manière

significative lors de la propagation.

En général, le nombre d’équations à considérer dans le système dépend de la

précision de la représentation. Lorsque les moments externes sont en moyenne bien

représentés en fonction des moments internes, l’évolution du paramètre de forme

a est la mieux décrite lorsque toutes les équations différentielles du système sont

considérées. Toutefois, pour éviter que le système ne diverge, il faut retirer les équations
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différentielles où les moments externes ne sont pas correctement approximés et ap-

proximer le moment interne de l’équation différentielle retirée. Une règle approxima-

tive est de ne pas approximer les moments définis par les opérateurs Ω3 et Ω4. Le

nombre minimal de moments considérés dans le système doit être égal au nombre de

paramètres, soit trois moments pour la norme et deux (ou un seul) pour la phase,

totalisant cinq. En employant la méthode des moments classiques, seulement cinq

équations seraient nécessaires. Cependant en incluant plus de moments, la descrip-

tion faite du champ par les moments ne se limite plus à l’ansatz de la distribution de

Pearson pour décrire le champ et la description devient plus précise.

Nous avons donc établi différentes façons d’utiliser les moments d’ordre supérieur

pour obtenir la forme de l’impulsion, ainsi que les limitations d’une telle approche.

La modélisation employée dans ce chapitre peut maintenant être appliquée à une

équation plus complexe, l’équation de Ginzburg-Landau, utilisée pour décrire les im-

pulsions dans les lasers à fibre.
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Chapitre 7

Les moments et les lasers

Dans ce chapitre, les moments sont utilisés pour caractériser les impulsions pro-

duites par les lasers. Les impulsions à la sortie d’un laser dépendent de sa configu-

ration et des paramètres de la cavité. Cette dépendance est exprimée sous la forme

d’équations différentielles partielles décrivant la propagation de l’impulsion dans la ca-

vité laser. Nous utilisons les moments dans ce chapitre afin de résoudre ces équations

de propagation. Nous nous attardons ici seulement au modèle moyen pour décrire

les lasers. Dans un modèle moyen, tous les éléments sont supposés être linéaires et

présents simultanément dans la fibre de sorte que l’ordre dans lequel ces éléments sont

traversés par l’impulsion est ignoré (Haus, 2000). Par opposition, un modèle discret

tient compte de chaque élément individuellement lors de la propagation. L’avantage

du modèle moyen est sa simplicité car les équations de propagation sur un passage se

réduisent à une seule équation différentielle. Nous résolvons donc dans ce chapitre les

équations différentielles de différents modèles moyens décrivant divers lasers à l’aide

du formalisme des moments.

Nous énumérons dans un premier temps les différents éléments optiques se retrou-

vant les lasers et nous donnons la modélisation utilisée pour représenter leur effet

sur la propagation du champ. Nous définissons ensuite l’équation différentielle du

modèle moyen à l’aide de ces éléments. Par l’application de différents opérateurs,

l’équation différentielle est ensuite transformée en un système d’équations sur les mo-

ments. Ces équations sont ensuite résolues dans trois cas particuliers dont les solutions

analytiques sont connues pour valider l’approche utilisée et dans trois cas où aucune

solution analytique exacte n’est connue.

7.1 Éléments optiques

Dans cette section, les composantes se retrouvant typiquement dans les cavités

laser sont présentées et leur effet est modélisé sous forme différentielle. Nous nous li-
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mitons ici aux effets pairs ; nous négligeons les effets impairs. Il en résulte que les effets

non-linéaires d’ordre supérieur tel l’auto-décalage Raman et l’auto-raidissement sont

négligés, ce qui limitent la validité du modèle aux impulsions d’une durée supérieure

à la picoseconde. De plus, certain éléments couramment utilisés ou présents dans les

lasers tels les modulateurs de phase ou la dispersion de troisième ordre sont ignorés.

7.1.1 Élement dispersif

L’amplitude du champ à travers un élément montrant de la dispersion chromatique

est déformée puisque chaque fréquence dans l’impulsion se propage à une vitesse

différente. En supposant que la dispersion est quadratique en fréquence, elle s’écrit

∂A

∂z
= −i

β2

2

∂2A

∂T 2
(7.1)

où β2 est le paramètre de dispersion. Ce cas a été présenté à la section 4.3.1.

7.1.2 Filtre spectral

L’évolution de l’amplitude du champ à travers un filtre spectral gaussien passe-

bande s’écrit

∂A

∂z
=

σ

2

∂2A

∂T 2
(7.2)

où σ est inversement proportionnel à la largeur de bande au carré du filtre.

7.1.3 Déphasage non-linéaire

La propagation à travers un élément présentant de l’auto-modulation génère une

phase non-linéaire et un élargissement spectral. L’évolution de l’amplitude s’écrit dans

ce cas

∂A

∂z
= iγ |A|2 A (7.3)

où le facteur γ donne l’ampleur de la non-linéarité.
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7.1.4 Absorbant saturable

L’évolution de l’amplitude du champ se propageant à travers un élément présentant

une saturation proportionnelle à la puissance, tels un absorbant saturable ou une ab-

sorption non-linéaire s’écrit :

∂A

∂z
=

δ

2
|A|2 A. (7.4)

Lorsque nous sommes en présence d’une absorption proportionnelle à la puissance,

telle l’absorption à deux photons, le facteur δ est négatif. Il est positif dans le cas

d’une absorption saturable, c’est-à-dire qui diminue avec la puissance. Ce terme est

souvent accompagné d’un terme constant décrivant une perte ou un gain constant.

7.1.5 Déphasage quadratique

L’évolution de l’amplitude du champ se propageant à travers un élément induisant

une phase temporelle quadratique s’écrit

∂A

∂z
= i

ρ

2
T 2A. (7.5)

Ce genre de phase est typique induite par le fonctionnement même des modulateurs

électro-optiques où l’indice de réfraction change avec la tension ou le courant appliqué

aux électrodes.

7.1.6 Filtre temporel

L’évolution de l’amplitude du champ se propageant à travers un élément indui-

sant un filtrage temporel dans le temps tel qu’un modulateur d’intensité acousto- ou

électro-optique s’écrit

∂A

∂z
= − �

2
T 2A (7.6)

où le facteur � est inversement proportionnel au carré de la largeur du filtre temporel.
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7.1.7 Gain uniforme

L’évolution de l’amplitude du champ se propageant à travers un élément générant

un gain uniforme g s’écrit

∂A

∂z
=

g

2
A. (7.7)

Notons que si g est négatif, nous obtenons une perte uniforme.

7.1.8 Gain saturable en énergie

L’évolution de l’amplitude du champ se propageant à travers un élément avec un

gain saturable lent en énergie s’écrit

∂A

∂z
=

g0

2(1 + E/Esat)
A (7.8)

où g0 est le gain petit signal, E est l’énergie de l’impulsion et Esat l’énergie de satu-

ration du milieu de gain.

7.1.9 Gain saturable en puissance

L’évolution de l’amplitude du champ se propageant à travers un élément avec un

gain saturable lent en puissance s’écrit

∂A

∂z
=

g0

2(1 + |A|2/Psat)
A (7.9)

où g0 est le gain petit signal et Psat la puissance de saturation du milieu de gain.

7.1.10 Fibre optique

Comme nous l’avons vu aux chapitres précédents, la fibre optique peut être modélisée

par un élément dispersif et un élément avec une phase non-linéaire, ce qui donne

l’ÉSNL.

∂A

∂z
= −i

β2

2

∂2A

∂T 2
+ iγ |A|2 A (7.10)
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Bien qu’il soit possible d’ajouter les pertes de la fibre dans la modélisation, ce n’est

pas nécessaire puisque les longueurs de fibre sont typiquement courtes dans les lasers

et que les pertes sont faibles comparées aux pertes des autres composants.

7.1.11 Fibre de gain

Une fibre de gain peut être modélisée de manière réaliste par un gain saturable

ainsi qu’un filtre spectral représentant l’étendue finie du gain.

∂A

∂z
=

σ

2

g0

(1 + E/Esat)

∂2A

∂T 2
(7.11)

7.2 Modèle moyen

Dans les modèles moyens, le champ de l’impulsion est supposé changer très peu lors

de la propagation à travers les différents éléments optiques. Dans ce cas, la propagation

à travers un élément optique décrit sous forme différentielle par H(A, T ) peut être

obtenu en intégrant de part et d’autre en supposant que le champ intervenant dans

la définition est invariant, c’est-à-dire H(A, T ) = H(A0, T ), ce qui donne

∂A

∂z
= H(A, T )A = H(A0, T )A ⇒ A = A0 exp[H(A0, T )z]. (7.12)

Ainsi le champ résultant de la propagation à travers M éléments optiques est obtenue

en multipliant les fonctions de transfert.

A = A0 exp

�
M�

i=1

Hi(A0, T )zi

�
(7.13)

En supposant que la propagation à travers les différents éléments optiques se fait en

boucle, nous pouvons déterminer la variation du champ à chaque itération de la cavité

ainsi créée. Puisque les changements sont supposés faibles, le développement en série

de Taylor de la fonction exponentielle peut être fait ; la variation du champ s’écrit

alors

A− A0 ≈
M�

i=1

Hi(A0, T )zi =
dA

dζ
(7.14)
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où ζ est correspond à une unité de temps normalisée marquant un cycle dans la cavité.

Si nous considérons le cas général où tous les effets sont présents, nous obtenons

dA

dζ
=

(σ̄ − iβ̄2)

2

∂2A

∂T 2
+

�
δ̄

2
+ γ̄

�
|A|2 A +

ḡ

2
A− (�̄− iρ̄)

2
T 2A (7.15)

où ḡ est le gain net (gain moins perte) qui peut être soit le gain petit signal, soit le

gain saturable en puissance, soit le gain saturable en énergie. Les quantités barrées

représentent les quantités nettes ; nous entendons par quantités nettes la somme de

tous les éléments dans la cavité donnant un certain effet. Par exemple, la dispersion β2

est donnée en secondes carrées par mètre alors que β̄2 =
�

k β2kLk est l’effet total des

k éléments dispersifs dans la cavité, en secondes carrées. Si nous posons (�̄ = ρ̄ = 0),

l’éq. (7.15) se réduit à l’équation de Ginzburg-Laudau (ÉGL). L’éq. (7.15) est donc

une équation de Ginzburg-Landau étendue (ÉGLÉ), mais légèrement différente de

ce qu’on retrouve dans la littérature (Akhmediev et al., 2001). L’ÉGLÉ retrouvée

le plus couramment contient des termes non-linéaires supplémentaires montrant des

phases et des absorptions saturables en |A|4, ce qui permet d’obtenir des solutions

analytiques dans le cas stationnaire (Akhmediev et al., 1996). Toutefois, toutes ces

solutions supposent que le mécanisme de synchronisation des modes dans la cavité

est passif et est décrit par le terme d’absorption saturable afin d’obtenir une solution

analytique. Lorsque le mécanisme de synchronisation des modes est actif, il n’existe

pas de solution analytiques de l’ÉGLÉ.

L’éq. (7.15) est l’équation mâıtresse du laser. Elle permet de décrire l’évolution de

l’impulsion dans la cavité laser. Lorsque nous voulons déterminer l’impulsion station-

naire dans la cavité laser, nous supposons que la dérivée du champ est nulle, à une

phase près. L’équation mâıtresse devient alors dans le cas stationnaire :

iψA =
(σ̄ − iβ̄2)

2

∂2A

∂T 2
+

�
δ̄

2
+ iγ̄

�
|A|2 A +

ḡ

2
A− (�̄− iρ̄)

2
T 2A (7.16)

où ψ est un déphasage. Selon les termes qui sont supposés nuls, il existe différentes

solutions analytiques à l’éq. (7.16) ; certaines combinaisons de termes n’en ont pas.

Il est difficile a priori de trouver ces solutions puisque le système est non-linéaire ;

plusieurs cas ont toutefois déjà été étudiés. Nous essayons dans le reste de cette

section de trouver une solution générale de l’éq. (7.16) à l’aide des moments.
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7.2.1 Définition des équations sur les moments

Afin de résoudre à l’aide des moments, il nous faut décrire le champ de l’impul-

sion laser par différents moments. Tout comme au chapitre 4, nous favorisons les

moments les plus naturels pour décrire les impulsions : �T 2�, �TΩ�r, �Ω2� et �P �.
Nous appliquons donc les opérateurs définissant ces moments de part et d’autre de

l’éq. (7.16), multiplions ensuite par A∗ et nous intégrons sur tout le temps afin d’ob-

tenir un ensemble d’équations sur les moments décrivant les propriétés de l’impulsion

stationnaire dans le laser. L’opérateur de plus bas ordre que nous appliquons est 1,

ce qui génère deux équations lorsque nous séparons les parties réelles et imaginaires.

0 =− σ̄�Ω2�+ δ̄�P �+ ḡ − �̄�T 2� (7.17)

ψ =
β̄2

2
�Ω2�+ γ̄�P �+

ρ̄

2
�T 2� (7.18)

L’éq. (7.17) montre la partie dissipative du régime stationnaire, c’est-à-dire que le gain

doit être égal aux pertes. L’éq. (7.18) montre la partie conservative, soit la phase accu-

mulée sur un aller-retour dans la cavité. Nous procédons de même pour l’opérateur T 2

ce qui génère également deux équations. Notons que la partie imaginaire des moments

a été remplacée par sa partie partie réelle équivalente (voir Annexe A).

0 =− σ̄�T 2Ω2�r + 2β̄2�TΩ�r + δ̄�PT 2�+ ḡ�T 2� − �̄�T 4� (7.19)

ψ�T 2� =
β̄2

2
�T 2Ω2�r + σ̄�TΩ�r + γ̄�PT 2�+

ρ̄

2
�T 4� (7.20)

Si nous divisons l’éq. (7.19) et (7.20) par �T 2�, nous obtenons des équations représentant

également la conservation de l’énergie et le déphasage sur un aller-retour respective-

ment. Une différence est cependant remarquable ; la présence d’un terme contenant

β2 dans l’équation dissipative et un terme contenant σ dans l’équation conservative.

Cela vient du fait que les équations représentent les variations des parties conser-

vatives et dissipatives relatives à la largeur de l’impulsion. L’équation conservative

indique comment la largeur de l’impulsions crôıt ou décrôıt ; ainsi le terme en β̄2

représente l’élargissement dû à la dispersion. L’équation dissipative représente le chan-

gement d’une composante quadratique moyenne de la phase. Ainsi le filtrage spectral

σ̄ crée une diminution du «chirp» de l’impulsion. Nous voyons apparâıtre des mo-

ments d’ordre supérieur à 2 ; ces termes devront être approximés pour résoudre le
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système d’équations.

De manière similaire, en appliquant l’opérateur P , nous obtenons les équations

suivantes.

0 =− σ̄�PΩ2�r − β̄2�PΩ2�i + δ̄�P 2�+ ḡ�P � − �̄�PT 2� (7.21)

ψ�P � =
β̄2

2
�PΩ2�r −

σ̄

2
�PΩ2�i + γ̄�P 2�+

ρ̄

2
�PT 2� (7.22)

Il faut interpréter ici l’éq. (7.21) comme le changement de la puissance crête et

l’éq. (7.22) comme le changement de la composante de la phase qui corrèle avec

la puissance crête, la phase non-linéaire.

En appliquant l’opérateur TΩ, les équations obtenues mélangent les informations

de déphasage et de gain net.

ψ =
3

2
β̄2�Ω2� − σ̄�TΩ3�r +

3

2
γ̄�P �+ δ̄�PTΩ�r + ḡ�TΩ�r − �̄�T 3Ω�r −

ρ̄

2
�T 2�
(7.23)

ψ�TΩ�r =
β̄2

2
�TΩ3�r +

σ̄

2
�Ω2�+ γ̄�PTΩ�r −

δ̄

8
�P �+

ρ̄

2
�T 3Ω�r −

�̄

2
�T 2� (7.24)

Puisque l’opérateur TΩ contient une partie réelle et une partie imaginaire, nous avons

ici un couplage entre les parties conservatives et dissipatives. Toutefois seulement la

partie réelle de l’opérateur TΩ a le sens d’une phase, la partie imaginaire étant une

constante. Le dernier opérateur représentant les moments d’ordre 0 et 2 est Ω2. Les

équations obtenues de cet opérateur s’écrivent comme suit.

0 =− σ̄�Ω4�+ 2γ̄�PΩ2�i + δ̄�PΩ2�r + ḡ�Ω2� − �̄�T 2Ω2�r − 2ρ̄�TΩ�r (7.25)

ψ�Ω2� =
β̄2

2
�Ω4�+ γ̄�PΩ2�r −

δ̄

2
�PΩ2�i − �̄�TΩ�r +

ρ̄

2
�T 2Ω2�r (7.26)

Encore une fois, il faut interpréter l’équation conservative (7.25) comme étant la

modification de la largeur de bande lors d’un cycle dans la cavité à l’état stationnaire.

L’équation dissipative (7.26) décrit la modification de la composante de la phase qui

corrèle avec Ω2 lors d’un cycle.

À ces 10 équations décrivant différentes relations entre les moments, nous en ajou-

tons finalement deux autres en utilisant l’opérateur PT 2. Comme nous l’avons vu au

chapitre 6, ce moment donne une bonne approximation de la forme de l’impulsion
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lorsqu’il est comparé aux moments �T 2� et �P �.

0 =− σ̄�PT 2Ω2�r − β̄2�PT 2Ω2�i + δ̄�P 2T 2�+ ḡ�PT 2� − �̄�PT 4� (7.27)

ψ�PT 2� =
β̄2

2
�PT 2Ω2�r −

σ̄2

2
�PT 2Ω2�i + γ̄�P 2T 2�+

ρ̄

2
�PT 4� (7.28)

Ces 12 équations permettent de déterminer les propriétés de l’impulsion laser station-

naire. Nous avons cependant encore le problèmes des moments d’ordre supérieur ; le

système fait intervenir 19 moments différents (en supposant que le gain peut poten-

tiellement dépendre de l’énergie E) et seulement 11 équations (puisque le paramètre

ψ est décrit l’impulsion et non la cavité laser et est donc inconnu, nous lui dédions

l’éq. (7.18) et la retirons des équations du système). Quatre de ces moments ne sont

présent que dans les deux dernières équations. Même en les omettant, il reste 15

moments pour 9 équations. Il faut approximer les moments d’ordre supérieur pour

résoudre le système. Finalement nous terminons cette section en écrivant (à la page

suivante) toutes les équations décrites ci-haut en y substituant le paramètre ψ par

l’éq. (7.18).
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0 =− σ̄�Ω2�+ δ̄�P �+ ḡ − �̄�T 2� (7.29a)

ψ =
β̄2

2
�Ω2�+ γ̄�P �+

ρ̄

2
�T 2� (7.29b)

0 =− σ̄κTΩ�Ω2�+ 2β̄2
�TΩ�r
�T 2� + δ̄κPT �P �+ ḡ − �̄κT �T 2� (7.29c)

0 =
β̄2

2
(κTΩ − 1)�T 2Ω2�r + σ̄

�TΩ�r
�T 2� + γ̄(κPT − 1)�P �+

ρ̄

2
(κT − 1)�T 2� (7.29d)

0 =− σ̄κPΩ�Ω2� − β̄2
�PΩ2�i
�P � + δ̄κP �P �+ ḡ − �̄κPT �T 2� (7.29e)

0 =
β̄2

2
(κPΩ − 1)�Ω2� − σ̄2

2

�PΩ2�i
�P � + γ̄(κP − 1)�P �+

ρ̄

2
(κPT − 1)�T 2� (7.29f)

0 =β̄2�Ω2� − σ̄�TΩ3�r +
γ̄

2
�P �+ δ̄�PTΩ�r + ḡ�TΩ�r − �̄�T 3Ω�r − ρ̄�T 2� (7.29g)

0 =
β̄2

2
(κTΩ3 − 1)�TΩ�r�Ω2�+

σ̄

2
�Ω2�+ γ̄

�
�PTΩ�r
�P ��TΩ�r

− 1

�
�P ��TΩ�r

− δ̄

8
�P �+

ρ̄

2
(κT3Ω − 1)�T 2��TΩ�r −

�̄

2
�T 2� (7.29h)

0 =− σ̄κΩ�Ω2�+ 2γ̄
�PΩ2�i
�Ω2� + δ̄κPΩ�P �+ ḡ − �̄κTΩ�T 2� − 2ρ̄

�TΩ�r
�Ω2� (7.29i)

0 =
β̄2

2
(κΩ − 1)�Ω2�+ γ̄(κPΩ − 1)�P � − δ̄

2

�PΩ2�i
�Ω2� − �̄

�TΩ�r
�Ω2� +

ρ̄

2
(κTΩ − 1)�T 2�

(7.29j)

0 =− σ̄κPTΩ�Ω2� − β̄2
�PT 2Ω2�i
�PT 2� + δ̄κP2T2�P �+ ḡ − �̄κPT4�T 2� (7.29k)

0 =
β̄2

2
(κPTΩ − 1)�Ω2� − σ̄2

2

�PT 2Ω2�i
�PT 2� + γ̄(κP2T2 − 1)�P �+

ρ̄

2
(κPT4 − 1)�T 2�

(7.29l)
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7.2.2 Approximation des moments d’ordre supérieur

Pour résoudre le système d’équations décrivant le laser, il nous faut simplifier les

moments d’ordre supérieur. Pour ce faire, nous utilisons la distribution de Pearson

pour modéliser la norme du champ dans la définition de ces moments. Nous de-

vons également choisir une modélisation pour la phase. Nous avons vu au chapitre

précédent que la phase décrivant le mieux la propagation dans l’ÉSNL est la phase

quadratique avec une contribution non-linéaire. Cette modélisation contient toute-

fois deux paramètres h et f pour décrire la phase. Compte tenu du grand nombre

d’équations, nous simplifions la modélisation en utilisant une phase à un seul pa-

ramètre, ce qui nous laisse le choix entre la phase quadratique et la phase logarith-

mique. Nous optons pour la phase logarithmique car elle est d’une part plus précise

que la phase quadratique et d’autre part, plusieurs solutions exactes des équations

mâıtresses ont une phase logarithmique et finalement elle ne présente pas de rupture

du front d’onde. De plus, nous n’analysons ici que les solutions stationnaires, qui sont

moins sensibles aux approximations que les solutions dynamiques. Rappelons donc la

modélisation de l’amplitude que nous utilisons pour simplifier les moments d’ordre

supérieur.

A(T ) =
�

Pc

�
1 +

a

b
T 2

�− (1+ic)
2a

(7.30)

où Pc est la puissance crête, b est proportionnel au carré de la durée de l’impulsion, c

est l’ampleur de la phase et a est le paramètre de forme. En substituant l’éq. (7.30)

dans les moments externes, nous pouvons les exprimer à l’aide des paramètres a, b,

c et Pc. Le résultat de cette substitution est présenté à l’annexe D. Pour résoudre

le système d’équations, il faut par la suite exprimer ces paramètres en fonction des

moments faisant partie du système. Un choix logique s’impose pour certains de ces

paramètres. Par exemple la durée b, la phase c et la puissance crête Pc se modélisent

bien par �T 2�, �TΩ�r et �P � respectivement. Nous avons vu au chapitre 6 qu’il y

a plusieurs façons différentes de représenter le paramètre a ; c’est pour cette raison

que nous préférons conserver ce paramètre comme une variable du système et ne

pas le remplacer par son équivalent en moments. Ceci constitue une approximation

moins précise, mais simplifie considérablement l’analyse. Dans l’expression des mo-

ments en fonction des paramètres, il ressort que les moments contenant l’opérateur Ω2

contiennent le paramètre c2. Nous remplaçons donc le paramètre c2 par �Ω2�, ce qui
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a plus de sens physique que �TΩ�2r. Il se trouve alors que le paramètre c est remplacé

par deux moments différents, �Ω2� et �TΩ�r selon le contexte. Il serait possible de

procéder de même pour d’autres paramètres. Par exemple, Pc pourrait être remplacé

par E. En renversant ce raisonnement, pourquoi ne pas utiliser que les paramètres au

lieu des moments ? Comme nous l’avons discuté au chapitre 6, utiliser les moments

permet d’extraire plus d’informations du système. Le choix des moments à utiliser

doit être dicté par la physique du problème, ce qui rend les approximations plus justes.

Ainsi, les changements de variables cités ci-haut s’écrivent comme suit.

b =(2− 3a)�T 2� (7.31)

c =2�TΩ�r (7.32)

c2 =4(2− 3a)

�
1 + a

2− a

�
�T 2��Ω2� − 1 (7.33)

Pc =
√

2

�
8− a

2− a

� �
4− a

16− a

�
�P � (7.34)

Maintenant que nous pouvons exprimer les moments d’ordre supérieur en fonc-

tion des moments du système, il reste à savoir quels moments nous approximons.

L’approche la plus simple est de modéliser tous les moments d’ordre supérieur. Nous

perdons toutefois de la précision en procédant ainsi, puisqu’il n’est pas nécessaire

d’approximer autant ; cela toutefois diminue le nombre de variables à considérer. En

omettant les éqs. (7.27) et (7.28), nous devons simplifier un minimum de 7 moments

pour résoudre (puisque a est maintenant considéré une variable du système) et un

maximum de 10 moments en ne conservant que les moments �T 2�, �TΩ�r, �Ω2�, �P � et

le paramètre a. Nous avons vu précédemment que les moments purs temporels sont

très bien représentés par la distribution de Pearson. Nous pouvons donc approxi-

mer les moments �T 4�, �PT 2�, �P 2� et E sans trop d’erreurs. Les moments décrivant

la phase plutôt dans le temps qu’en fréquence introduisent également peu d’erreurs

puisque l’éq. (7.30) est définie dans le temps. Nous approximons donc �T 3�r, �PTΩ�r
et �PΩ2�i, qui, bien qu’il contienne l’opérateur Ω2, s’apparente à �TΩ�r comme nous

l’avons vu au chapitre 4. Nous avons ainsi 7 moments que nous pouvons retirer du

système. Réécrivons les éqs. (7.21) à (7.28), en substituant la définition des moments

approximés, en remplaçant ḡ par l’éq. (7.17) et en remplaçant ψ par l’éq. (7.18). Le

résultat est 8 équations ne dépendant que des moments d’ordre 2 et de paramètres
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de formes.

0 =− σ̄(κTΩ − 1)�T 2��Ω2�+ 2β̄2�TΩ�r −
2δ̄�P ��T 2�
(4− 3a)

− 4�̄

�
1− a

2− 5a

�
�T 2�2 (7.35a)

0 =β̄2(κTΩ − 1)�T 2��Ω2�+ 2σ̄�TΩ�r −
4γ̄�P ��T 2�
(4− 3a)

+ 4ρ̄

�
1− a

2− 5a

�
�T 2�2 (7.35b)

0 =− σ̄(κPΩ − 1)�T 2��Ω2� − β̄2�TΩ�r
2(2− 3a)

�
4− a

2 + a

�
+ δ̄(κP − 1)�P ��T 2�+

2�̄�T 2�2
(4− 3a)

(7.35c)

0 =
β̄2

2
(κPΩ − 1)�T 2��Ω2� − σ̄�TΩ�r

4(2− 3a)

�
4− a

2 + a

�
+ γ̄(κP − 1)�P ��T 2� − ρ̄�T 2�2

(4− 3a)

(7.35d)

0 =− σ̄(κTΩ3 − 1)�TΩ�r�Ω2�+ β̄2�Ω2�+
γ̄

2
�P � − δ̄

2
�P ��TΩ�r − 2�̄�T 2��TΩ�r − ρ̄�T 2�

(7.35e)

0 =β̄2(κTΩ3 − 1)�TΩ�r�Ω2�+ σ̄�Ω2� − δ̄

4
�P � − γ̄�P ��TΩ�r + 2ρ̄�T 2��TΩ�r − �̄�T 2�

(7.35f)

0 =− σ̄(κΩ − 1)�Ω2�2 + δ̄(κPΩ − 1)�P ��Ω2�+
γ̄�P �

(2− 3a)

�
4− a

2 + a

�
�TΩ�r
�T 2�

− �̄(κTΩ − 1)�T 2��Ω2� − 2ρ̄�TΩ�r (7.35g)

0 =β̄2(κΩ − 1)�Ω2�2 + 2γ̄(κPΩ − 1)�P ��Ω2� − δ̄�P �
2(2− 3a)

�
4− a

2 + a

�
�TΩ�r
�T 2�

+ ρ̄(κTΩ − 1)�T 2��Ω2� − 2�̄�TΩ�r (7.35h)

Nous procédons de la même façon avec les éqs. (7.27) et (7.28) en approximant les

moments relatifs au temps �P 2T 2� et �PT 4� ainsi que le moment �PT 2Ω2�i.

0 =− σ̄(κPTΩ − 1)�T 2��Ω2�+
β̄2

2

�
4− 3a

2− 3a

� �
1 + 2a

2 + a

�
�TΩ�r

+ δ̄

�
κP

3

�
4− 3a

2− a

�
− 1

�
�P ��T 2� − 2�̄

�
1− 2a

4− 5a

�
�T 2�2 (7.36)

0 =β̄2(κPTΩ − 1)�T 2��Ω2�+
σ̄

2

�
4− 3a

2− 3a

� �
1 + 2a

2 + a

�
�TΩ�r

+ 2γ̄

�
κP

3

�
4− 3a

2− a

�
− 1

�
�P ��T 2�+ 2ρ̄

�
1− 2a

4− 5a

�
�T 2�2 (7.37)
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Les différents facteurs de forme ont été définis au chapitre 3. Nous les répétons ici

pour plus de clarté.

κTΩ =
�T 2Ω2�r
�T 2��Ω2� κTΩ3 =

�TΩ3�r
�TΩ�r�Ω2� κΩ =

�Ω4�
�Ω2�2

κPΩ =
�PΩ2�r
�P ��Ω2� κPTΩ =

�PT 2Ω2�r
�P ��T 2��Ω2� (7.38)

Nous avons ainsi quatre facteurs de forme et cinq variables pour les neuf premières

équations et un facteur de forme pour les deux équations provenant de l’opérateur

PT 2. Le facteur κP est défini explicitement en fonction du paramètre a.

κP =
�P 2�
�P �2 =

2√
3

�
8− a

2− a

� �
24− a

6− a

� �
4− a

16− a

�2

≈
√

3

�
2− a

3− 2a

�
(7.39)

Notons qu’il se peut que certaines de ces équations soient redondantes selon les effets

présents dans la cavité laser, ce qui implique que des simplifications supplémentaires

devront être faites. Ces équations forment un système qui est non-linéaire et doit

être résolu selon le cas particulier étudié afin d’obtenir les paramètres de l’impulsion

en régime stationnaire. Bien que le système soit relativement grand, il est toutefois

plus facile de résoudre ce système d’équations non-linéaires que de résoudre l’équation

différentielle particulière de l’équation mâıtresse. De plus, il est possible de déterminer

une solution approximative là où une solution analytique ne peut être trouvée. Pour

se convaincre de la validité et de l’intérêt de ces équations, procédons à l’étude de cas

particuliers.

7.2.3 Validation du modèle

Afin de valider notre modèle moyen, nous le comparons à trois cas où une solution

analytique est connue. C’est trois modèles sont le laser à verrouillage actif des modes,

le laser à verrouillage passif des modes et le laser solitonique.

Laser à verrouillage actif des modes (β̄2 = δ̄ = γ̄ = ρ̄ = 0)

Dans le cas du laser à verrouillage actif des modes, il n’y a pas de dispersion

chromatique (β̄2 = 0), de non-linéarité (γ̄ = 0), d’absorbant saturable (δ̄ = 0) ou

de phase quadratique (ρ̄ = 0) (Siegman et Kuizenga, 1974). Dans ce cas, le système
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d’équations (7.35) devient

0 =− σ̄(κTΩ − 1)�Ω2� − 4�̄

�
1− a

2− 5a

�
�T 2� (7.40a)

0 =2σ̄�TΩ�r (7.40b)

0 =− σ̄(κPΩ − 1)�Ω2�+
2�̄�T 2�

(4− 3a)
(7.40c)

0 =− σ̄�TΩ�r
4(2− 3a)

�
4− a

2 + a

�
(7.40d)

0 =− σ̄(κTΩ3 − 1)�TΩ�r�Ω2� − 2�̄�T 2��TΩ�r (7.40e)

0 =σ̄�Ω2� − �̄�T 2� (7.40f)

0 =− σ̄(κΩ − 1)�Ω2� − �̄(κTΩ − 1)�T 2� (7.40g)

0 =− 2�̄�TΩ�r (7.40h)

avec les deux équations supplémentaire provenant de PT 2.

0 =− σ̄(κPTΩ − 1)�Ω2� − 2�̄

�
1− 2a

4− 5a

�
�T 2� (7.41)

0 =
σ̄

2

�
4− 3a

2− 3a

� �
1 + 2a

2 + a

�
�TΩ�r (7.42)

Nous déduisons des éqs. (7.40b), (7.40d), (7.40e), (7.40d), (7.40h) et (7.42) que

�TΩ�r = 0, ce qui n’est guère surprenant puisqu’aucun élément optique de la cavité

n’induit de déphasage entre les différentes parties de l’impulsion. De l’éq. (7.40f), nous

déduisons une relation importante entre les filtrages temporels et spectraux.

σ̄�Ω2� = �̄�T 2� (7.43)

Il s’ensuit qu’en régime stationnaire, il y a un équilibre entre le filtrage temporel et

spectral de sorte que les deux sont égaux. Nous voyons ici un avantage de conserver

les moments par rapport à n’utiliser que les paramètres de la modélisation de Pear-

son. Nous pouvons tirer des conclusions sur la physique du système car les moments

permettent de travailler dans les domaines spectral et temporel simultanément. En

remplaçant l’éq. (7.43) dans les éqs. (7.40a), (7.40c), (7.40g) et (7.41), nous trouvons
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4 équations reliant différents facteurs de forme entre eux.

κTΩ =1− 4

�
1− a

2− 5a

�
(7.44)

κPΩ =1 +
2

(4− 3a)
(7.45)

κΩ =2− κTΩ = 1 + 4

�
1− a

2− 5a

�
(7.46)

κPTΩ =1− 2

�
1− 2a

4− 5a

�
(7.47)

Nous avons ainsi différents facteurs de forme qui dépendent du paramètre de forme

a, mais aucune de ces équations ne nous renseigne directement sur la valeur de ce

paramètre. Il nous faut donc approximer un des paramètres de forme pour déterminer

a. La raison pour laquelle nous devons approximer davantage est que plus de la moitié

des équations nous informaient uniquement sur la phase de l’impulsion et non sur

la forme ; nous nous retrouvons donc avec trop d’inconnues. En suivant la logique

d’approximer le moment de plus bas ordre, nous approximons le facteur κTΩ.

κTΩ =3

�
2− 3a

2− a

�
− 1

�T 2��Ω2� (7.48)

Toutefois le facteur κTΩ ne dépend pas que de a ; il faut une autre approximation.

Pour ce faire, nous écrivons l’expression du principe d’incertitude en fonction des

moments pour l’approximation de la phase logarithmique.

�T 2��Ω2� =
(1 + 4�TΩ�2r)

4(2− 3a)

�
2− a

1 + a

�
=

1

4(2− 3a)

�
2− a

1 + a

�
(7.49)

Il s’ensuit que κTΩ s’écrit alors

κTΩ =− (1 + 4a)

�
2− 3a

2− a

�
(7.50)

et ne dépend que du paramètre a. Cela nous permet de déterminer la valeur de a au

moyen des éqs. (7.50) et (7.44).

1− 4

�
1− a

2− 5a

�
=− (1 + 4a)

�
2− 3a

2− a

�
⇒ a =

�
0,

4

5

�
(7.51)
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Nous trouvons ainsi deux valeurs du paramètre a. Il est surprenant, quoique possible,

qu’il y ait deux valeurs de a. Pour vérifier qu’il n’y ait pas d’inconsistances sur ces

deux valeurs, nous évaluons le produit durée-largeur spectral pour chacune d’entre

elles.

�T 2��Ω2� =

�
1

4
,− 5

12

�
(7.52)

Ce produit ne pouvant être négatif, nous en déduisons que la solution a = 4/5 est

inconsistante. Il s’ensuit que la solution est a = 0, ce qui donne une forme d’impul-

sion gaussienne, ce qui est prédit par la solution analytique de Siegmann-Huizenga.

Connaissant le paramètre a, il est possible de déterminer les autres moments du

système à l’aide des éqs. (7.49), (7.43) et (7.17).

�T 2� =
1

2

�
σ̄

�̄
�Ω2� =

1

2

�
�̄

σ̄
ḡ =

√
σ̄�̄ (7.53)

Les facteurs de forme deviennent alors

κTΩ = −1 κPΩ =
3

2
κΩ = 3 κPTΩ =

1

2
. (7.54)

Nous déduisons entre autres de ces facteurs de forme que le spectre de l’impulsion est

également gaussien puisque κΩ = 3.

Nous avons maintenant déterminé les moments de l’impulsion en fonction des pa-

ramètres généraux du laser. Pour déterminer les moments en fonction des paramètres

spécifiques de la cavité laser, nous procédons aux substitutions suivantes. En suppo-

sant que le milieu de gain a une largeur de bande finie Ωf un gain petit signal g0,

que la cavité a une perte nette α et que le modulateur a une modulation égale de√
MΩM , les constantes �̄, σ̄ et ḡ s’écrivent

σ̄ =
g0

Ω2
f

�̄ = MΩ2
M ḡ = g0 − α (7.55)

ce qui est exactement le résultat obtenu en résolvant analytiquement l’équation mâıtresse

(Siegman et Kuizenga, 1974). Notons qu’à aucun moment l’énergie ou la puissance

crête de l’impulsion stationnaire n’ont été spécifiées. Pour les déterminer, il faut pous-

ser l’analyse plus loin que le modèle de Siegmann-Huizenga, ce qui est très facile avec

le formalisme des moments. Il suffit de remplacer le gain g0 par un gain saturable
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g0/(1 + �P �/�Psat�), ce qui fixe la puissance de l’impulsion stationnaire.

�P � =

�
g0

α +
√

σ̄�̄

�
�P �sat (7.56)

Laser à verrouillage passif des modes (β̄2 = γ̄ = �̄ = ρ̄ = 0)

Nous avons retrouvé la forme gaussienne de l’impulsion stationnaire du laser à

verrouillage actif des modes à la section précédente. La forme gaussienne est un cas

particulier de la distribution de Pearson ; il n’est pas surprenant que nous l’ayons

retrouvée. Un test de validation plus intéressant nous permettrait de voir si, en

résolvant, nous retrouvons une forme d’impulsion qui n’est qu’approximativement

représentée par la distribution de Pearson. Pour ce faire, nous étudions maintenant

le laser à verrouillage actif des modes qui a une sécante hyperbolique comme solution

stationnaire analytique (Haus et al., 1975). Comme nous l’avons vu au chapitre 3, la

sécante hyperbolique n’est pas représentée exactement par la distribution de Pearson.

Le laser à verrouillage passif des modes est modélisé en éliminant les termes qua-

dratiques (�̄ = ρ̄ = 0) et les autres termes de phases (β̄2 = γ̄ = 0). Dans ce cas, les

éqs. (7.35) se réduisent aux équations suivantes.

0 =− σ̄(κTΩ − 1)�Ω2� − 2δ̄�P �
(4− 3a)

(7.57a)

0 =2σ̄�TΩ�r (7.57b)

0 =− σ̄(κPΩ − 1)�Ω2�+ δ̄(κP − 1)�P � (7.57c)

0 =− σ̄�TΩ�r
4(2− 3a)

�
4− a

2 + a

�
(7.57d)

0 =− σ̄(κTΩ3 − 1)�TΩ�r�Ω2� − δ̄

2
�P ��TΩ�r (7.57e)

0 =σ̄�Ω2� − δ̄

4
�P � (7.57f)

0 =− σ̄(κΩ − 1)�Ω2�+ δ̄(κPΩ − 1)�P � (7.57g)

0 =− δ̄�P �
2(2− 3a)

�
4− a

2 + a

�
�TΩ�r
�T 2� (7.57h)
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avec les deux équations supplémentaire suivantes

0 =− σ̄(κPTΩ − 1)�Ω2�+ δ̄

�
κP

3

�
4− 3a

2− a

�
− 1

�
�P � (7.58)

0 =
σ̄

2

�
4− 3a

2− 3a

� �
1 + 2a

2 + a

�
�TΩ�r. (7.59)

Une fois de plus le moment �TΩ�r = 0 par les éqs. (7.57b), (7.57d), (7.57e), (7.57d),

(7.57h) et (7.59) puisqu’aucun élément dans la cavité ne crée de déphasage. L’éq. (7.57f)

nous donne une relation importante entre la largeur spectrale de l’impulsion et sa

puissance crête.

δ̄�P � = 4σ̄�Ω2� (7.60)

Cette équation est analogue à l’éq. (7.43). Elle dit que la perte par filtrage dans

le milieu de gain doit être comparable à la perte dans l’absorbant saturable. Cette

relation permet de déterminer les relations entre les facteurs de forme.

κTΩ =1− 8

(4− 3a)
(7.61)

κPΩ =1 + 4(κP − 1) (7.62)

κΩ =1 + 4(κPΩ − 1) = 1 + 16(κP − 1) (7.63)

κPTΩ =1 + 4

�
κP

3

�
4− 3a

2− a

�
− 1

�
(7.64)

Nous nous retrouvons devant le même problème qu’avec le laser à verrouillage actif

des modes. En procédant comme dans ce cas, nous obtenons deux valeurs pour le

paramètre a,

1− 8

(4− 3a)
=− (1 + 4a)

�
2− 3a

2− a

�
⇒ a = {0, 2324; 1, 434} (7.65)

dont seulement la première valeur, a = 0, 2324, donne un produit �T 2��Ω2� positif. À

partir de cette valeur de a, nous pouvons calculer les autres facteurs de forme. Pour

vérifier la validité de notre méthode, nous comparons ces facteurs de forme avec ceux

calculés à partir de la solution analytique exacte. La comparaison est présentée à la

table (7.2.3).
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Facteur de forme a=0,2324 sécante hyperbolique erreur relative
κP 1,194 1,2 0,50%
κT 4.664 4,2 11,04%
κPT 0.3921 0,3945 0,61%
κTΩ -1,422 -1,432 0,70%
κPΩ 1,776 1,8 1,33%
κΩ 4,102 4,2 2,33%

κPTΩ -0,0256 -0.0238 7,56%

Tableau 7.1 Comparaison des facteurs de forme de la solution exacte et approxima-
tive du laser à verrouillage passif des modes.

Nous voyons à la table (7.2.3) que l’accord entre la solution obtenue par les mo-

ments et la solution analytique est excellent ; nous avons une erreur moyenne de

3,44%. L’erreur est principalement sur le facteur de forme κT et κPTΩ. La raison est

que κT met beaucoup de poids sur les ailes de la distribution, là où la distribution

de Pearson et la sécante hyperbolique diffèrent le plus. Le facteur de forme κPTΩ

fait intervenir trois opérateurs de nature différente ; il s’ensuit que l’erreur y est plus

grande. Il ne reste qu’à déterminer l’expression des moments �P �, �Ω2� et �T 2� en

fonction des paramètres de la cavité. Nous reprenons pour ce faire l’éq. (7.17) et le

principe d’incertitude (7.49).

�P � = −4

3

ḡ

δ̄
�Ω2� = − ḡ

3σ̄
�T 2� = −0.8257

σ̄

ḡ
(7.66)

Nous remarquons que contrairement au verrouillage actif des modes, il faut que le

gain net ḡ soit négatif pour que les moments soient des quantités positives. Cela

signifie que les pertes non saturées doivent être plus grandes que le gain pour que

les impulsions soient stables, ce qui reflète la conclusion du modèle analytique (Haus,

2000). Autrement dit, le gain est plus grand que les pertes seulement quand ces

dernières sont saturées. Les moments s’expriment en fonction des paramètres de la

cavité au moyen des équations suivantes

σ̄ =
g0

Ω2
f

δ̄ = s0/Pabs ḡ = g0 − α− s0 (7.67)

où s0 est la perte petit signal de l’absorbant saturable et Pabs est la puissance de sa-
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turation de l’absorbant saturable. Il est possible ici encore de tenir compte facilement

d’un gain saturable en puissance. Nous obtenons alors la puissance suivante :

�P � =
2

3
Pabs



 α

s0
+

1

4
±

��
α

s0
+

1

4

�2

+ 3

�
g0 − α

s0
− 1

�

 (7.68)

Laser solitonique (�̄ = ρ̄ = 0)

Nous avons montré avec le laser à verrouillage passif des modes que la distribution

de Pearson peut être utilisée efficacement pour représenter la forme de l’impulsion,

même si ce n’est qu’approximativement. Toutefois, nous n’avons pas encore étudié

un cas où l’impulsion stationnaire avait une phase non nulle. Pour y remédier, le

dernier cas de validation que nous étudions est le laser solitonique où l’impulsion

stationnaire est une sécante hyperbolique qui survient lorsque la largeur de bande

du gain est équilibrée par l’absorption saturable et que la dispersion nette anormale

β̄2 est balancée par la non-linéarité γ̄ (Haus et al., 1991). Les équations régissant le

système s’écrivent alors

0 =− σ̄(κTΩ − 1)�T 2��Ω2�+ 2β̄2�TΩ�r −
2δ̄�P ��T 2�
(4− 3a)

(7.69a)

0 =β̄2(κTΩ − 1)�T 2��Ω2�+ 2σ̄�TΩ�r −
4γ̄�P ��T 2�
(4− 3a)

(7.69b)

0 =− σ̄(κPΩ − 1)�T 2��Ω2� − β̄2�TΩ�r
2(2− 3a)

�
4− a

2 + a

�
+ δ̄(κP − 1)�P ��T 2� (7.69c)

0 =
β̄2

2
(κPΩ − 1)�T 2��Ω2� − σ̄�TΩ�r

4(2− 3a)

�
4− a

2 + a

�
+ γ̄(κP − 1)�P ��T 2� (7.69d)

0 =− σ̄(κTΩ3 − 1)�TΩ�r�Ω2�+ β̄2�Ω2�+
γ̄

2
�P � − δ̄

2
�P ��TΩ�r (7.69e)

0 =β̄2(κTΩ3 − 1)�TΩ�r�Ω2�+ σ̄�Ω2� − δ̄

4
�P � − γ̄�P ��TΩ�r (7.69f)

0 =− σ̄(κΩ − 1)�Ω2�2 + δ̄(κPΩ − 1)�P ��Ω2�+
γ̄�P �

(2− 3a)

�
4− a

2 + a

�
�TΩ�r
�T 2� (7.69g)

0 =β̄2(κΩ − 1)�Ω2�2 + 2γ̄(κPΩ − 1)�P ��Ω2� − δ̄�P �
2(2− 3a)

�
4− a

2 + a

�
�TΩ�r
�T 2� (7.69h)
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avec les deux équations supplémentaires provenant de PT 2.

0 =− σ̄(κPTΩ − 1)�T 2��Ω2�+
β̄2

2

�
4− 3a

2− 3a

� �
1 + 2a

2 + a

�
�TΩ�r

+ δ̄

�
κP

3

�
4− 3a

2− a

�
− 1

�
�P ��T 2� (7.70)

0 =β̄2(κPTΩ − 1)�T 2��Ω2�+
σ̄

2

�
4− 3a

2− 3a

� �
1 + 2a

2 + a

�
�TΩ�r

+ 2γ̄

�
κP

3

�
4− 3a

2− a

�
− 1

�
�P ��T 2� (7.71)

Pour résoudre, nous procédons de manière légèrement différente que dans les deux

cas précédents. Nous utilisons la symétrie des équations, ce qui permet d’éliminer les

facteurs de forme des équations. En prenant chaque paire d’équations similaires, nous

éliminons le facteur par substitution, ce qui donne pour les éqs. (7.69)

0 =

�
β̄2

σ̄
+

σ̄

β̄2

�
�TΩ�r −

�
δ̄

σ̄
+

2γ̄

β̄2

�
�P ��T 2�
(4− 3a)

(7.72a)

0 =

�
β̄2

σ̄
+

σ̄

β̄2

�
�TΩ�r

(2− 3a)

�
4− a

2 + a

�
− 2

�
δ̄

σ̄
+

2γ̄

β̄2

�
(κP − 1)�P ��T 2� (7.72b)

0 =

�
β̄2

σ̄
+

σ̄

β̄2

�
�Ω2�+

1

4

�
2γ̄

σ̄
− δ̄

β̄2

�
�P � − 1

2

�
δ̄

σ̄
+

2γ̄

β̄2

�
�P ��TΩ�r (7.72c)

0 =2

�
δ̄

σ̄
+

2γ̄

β̄2

�
(κPΩ − 1)�T 2��Ω2�+

�
2γ̄

σ̄
− δ̄

β̄2

�
1

(2− 3a)

�
4− a

2 + a

�
�TΩ�r (7.72d)

et pour les éqs. (7.70) et (7.71).

0 =

�
β̄2

σ̄
+

σ̄

β̄2

� �
4− 3a

2− 3a

� �
1 + 2a

2 + a

�
�TΩ�r

+ 2

�
δ̄

σ̄
+

2γ̄

β̄2

� �
κP

3

�
4− 3a

2− a

�
− 1

�
�P ��T 2� (7.73)

Les éqs. (7.72a) et (7.72b) nous permettent de définir le paramètre a. En résolvant,

nous trouvons trois valeurs a = {−0, 9790; 0, 2246; 1, 394}. Pour déterminer l’admis-

sibilité de ces trois solutions, nous utilisons encore une fois le principe d’incertitude

(éq. (7.49)), en tenant compte cette fois-ci de la phase non nulle de l’impulsion. Il

s’ensuit que seule la solution a = 0, 2246 est valide. Nous pouvons également résoudre

le paramètre a à l’aide de l’éq. (7.73) ; procédons ainsi afin de déterminer si nous
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obtenons des valeurs de a consistantes. En résolvant les éqs.(7.72a) et (7.73) en-

semble, nous trouvons une seule solution a = 0, 2390. Les éqs. (7.72b) et (7.73) donne

a = {0, 2573; 0.9823}, dont seulement a = 0, 2573 est admissible. Il s’ensuit que les

seules valeurs de a admissibles sont a = {0, 2246; 0, 2390; 0, 2573}, ce qui donne une

valeur moyenne ā = 0, 2403 ; nous reconnaissons ici la sécante hyperbolique que nous

avons trouvée précédemment. Les écarts relatifs entre les valeurs par rapport à la

valeur moyenne sont de ∆a/ā = 6, 53%; 0, 54%, 7, 07%. Nous avons donc une varia-

tion inférieure à 10% sur la consistance des solutions. Cette valeur moyenne de a

est conforme à la solution analytique ; nous utilisons donc la valeur moyenne ā pour

déterminer les autres moments de l’impulsion stationnaire.

Il y a plusieurs façon de déterminer les autres moments de la solution. Une façon

de procéder est de multiplier l’éq (7.72c) par �T 2� et d’utiliser les éqs. (7.72a) et (7.49)

pour n’avoir que le moment �TΩ�r.

0 =1 + 2, 956χ�TΩ�r − 1, 910�TΩ�2r (7.74)

χ =
2γ̄β̄2 − δ̄σ̄

2γ̄σ̄ + δ̄β̄2
(7.75)

À des fins de comparaison, si nous utilisons les éqs. (7.69a) et (7.69b), éliminons

le terme en �P ��T 2� par substitution et explicitons le facteur de forme κTΩ, nous

obtenons une équation similaire.

0 =1 + 2, 974χ�TΩ�r − 1, 948�TΩ�2r (7.76)

La différence moyenne entre les coefficients n’est que de 1,29%. Pour simplifier les

expressions, nous arrondissons les coefficients aux entiers les plus proches, ce qui crée

une faible erreur, inférieure à 5%.

0 =1 + 3χ�TΩ�r − 2�TΩ�2r (7.77)

�TΩ�r =
3χ +

�
9χ2 + 8

4
(7.78)

La durée s’exprime en fonction de �P � à partir de l’éq. (7.72a) et la largeur de bande
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à partir du principe d’incertitude.

�T 2� =3, 279
�TΩ�r
�P �

�
β̄2

2
+ σ̄2

2γ̄σ̄ + δ̄β̄2

�
(7.79)

�Ω2� =0, 08457
�P �
�TΩ�r

(1 + 4�TΩ�2r)
�

2γ̄σ̄ + δ̄β̄2

β̄2
2
+ σ̄2

�
(7.80)

Finalement la puissance effective est obtenue avec l’éq. (7.17).

�P � =
ḡ(β̄2

2
+ σ̄2)�TΩ�r

0.08457σ̄(1 + 4�TΩ�2r)(2γ̄σ̄ + δ̄β̄2)− δ̄(β̄2
2
+ σ̄2)�TΩ�r

(7.81)

Les moments ainsi trouvés correspondent exactement au modèle analytique développé

pour le laser solitonique.

7.2.4 Étude de cas sans solution analytique

Nous avons étudié jusqu’à maintenant des cas où il existait des solutions ana-

lytiques. Nous analysons maintenant des lasers où il n’existe pas de telle solution

analytique. Nous montrons que notre méthode approximative basée sur les moments

et la distribution de Pearson permet de déterminer des solutions dans ce cas. Pour

commencer, nous regardons le cas d’un laser sans linéarité, soluble analytiquement et

avec non-linéarité qui n’est soluble qu’approximativement.

Laser à verrouillage actif des modes accordable en dispersion (σ̄ = δ̄ = ρ̄ = 0)

Pour tester l’intérêt de cette méthode, nous analysons le cas du laser à verrouillage

actif des modes accordable en dispersion. Dans ce laser, la dispersion étale le contenu

fréquentiel dans le temps et un modulateur ne laisse passer qu’une partie de ce dernier.

Nous regardons le cas où aucune non-linéarité n’est présente dans le laser, cas qui est

résolu analytiquement (Tamura et Nakazawa, 1996) et le cas où l’auto-modulation

de phase est présente. Les équations décrivant le laser, en incluant la non-linéarité,
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s’écrivent

0 =2β̄2�TΩ�r − 4�̄

�
1− a

2− 5a

�
�T 2�2 (7.82a)

0 =β̄2(κTΩ − 1)�T 2��Ω2� − 4γ̄�P ��T 2�
(4− 3a)

(7.82b)

0 =− β̄2�TΩ�r
2(2− 3a)

�
4− a

2 + a

�
+

2�̄�T 2�2
(4− 3a)

(7.82c)

0 =
β̄2

2
(κPΩ − 1)�T 2��Ω2�+ γ̄(κP − 1)�P ��T 2� (7.82d)

0 =β̄2�Ω2�+
γ̄

2
�P � − 2�̄�T 2��TΩ�r (7.82e)

0 =β̄2(κTΩ3 − 1)�TΩ�r�Ω2� − γ̄�P ��TΩ�r − �̄�T 2� (7.82f)

0 =
γ̄�P �

(2− 3a)

�
4− a

2 + a

�
�TΩ�r
�T 2� − �̄(κTΩ − 1)�T 2��Ω2� (7.82g)

0 =β̄2(κΩ − 1)�Ω2�2 + 2γ̄(κPΩ − 1)�P ��Ω2� − 2�̄�TΩ�r (7.82h)

en incluant les deux équations suivantes.

0 =
β̄2

2

�
4− 3a

2− 3a

� �
1 + 2a

2 + a

�
�TΩ�r − 2�̄

�
1− 2a

4− 5a

�
�T 2�2 (7.83)

0 =β̄2(κPTΩ − 1)�T 2��Ω2�+ 2γ̄

�
κP

3

�
4− 3a

2− a

�
− 1

�
�P ��T 2� (7.84)

Il est facile de déterminer la valeur du paramètre a à partir des éqs. (7.82a), (7.82c)

et/ou (7.83) ; nous trouvons a = 0. Nous avons donc une impulsion de forme gaus-

sienne, comme dans le cas du verrouillage actif des modes sans dispersion. Notons

que le terme non-linéaire n’influence pas la forme de l’impulsion, ce qui est une ap-

proximation. La non-linéarité change la forme spectrale de l’impulsion qui, à travers

la dispersion linéaire, transforme la forme temporelle de l’impulsion. Nous ne voyons

pas ici cet effet à cause de l’effet moyen de l’équation mâıtresse. Nous pouvons toute-

fois voir l’effet se répercuter sur les facteurs de forme et les moments. Pour résoudre,

nous supposons que le milieu de gain est saturable en puissance, et s’écrit

ḡ =
g0

1 + �P �
�P �sat

− α �P � = �P �sat

�
g0

�̄�T 2�+ α
− 1

�
(7.85)

Le tableau (7.2.4) compare les cas linéaire et non-linéaire.
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Moments Cas linéaire (γ̄ = 0) Cas non-linéaire (γ̄ �= 0)

�T 2�
�

|β̄2|
2�̄ 4�̄2�T 2�4 − β̄2

2 − 2β̄2γ̄�P �sat�T 2�
�

g0

�̄�T 2�+α − 1
�

= 0

�TΩ�r sgn(β̄2)
2

sgn(β̄2)
2

�
1 + 2 γ̄

β̄2
�P �sat�T 2�

�
g0

�̄�T 2�+α − 1
�

�Ω2�
�

�̄
2|β̄2|

1
2�T 2� + γ̄

¯2β2
�P �sat

�
g0

�̄�T 2�+α − 1
�

�P � �P �sat

�
g0q

�̄|β̄2|
2 +α

− 1

�
�P �sat

�
g0

�̄�T 2�+α − 1
�

�T 2��Ω2� 1
2

1
2 + γ̄

¯2β2
�P �sat�T 2�

�
g0

�̄�T 2�+α − 1
�

a 0 0

κTΩ 1 1 + 4 γ̄�P �
β̄2�Ω2�

κPΩ 1 1 + 2
3(2
√

3− 3) γ̄�P �
β̄2�Ω2�

κΩ 3 1 + 2
�

β̄2
2+2β̄2γ̄�P ��T 2�− 8

3 (2
√

3−3)γ̄2�P �2�T 2�2

(β̄2+γ̄�P ��T 2�)2

�

κTΩ3 1 1 + 1
�T 2��Ω2�4

γ̄�P �
β̄2�Ω2�

κPTΩ 1 1 + 2
�
1− 4

√
3

9

�
γ̄�P �

β̄2�Ω2�

Tableau 7.2 Comparaison des facteurs de forme de la solution exacte et approxima-
tive du laser à verrouillage actif des modes accordable en dispersion.

Nous voyons tout d’abord que la solution non-linéaire se réduit à la solution

linéaire lorsque la non-linéarité γ̄ = 0. Alors que les facteurs de formes sont constants

dans le cas linéaire, nous voyons qu’ils dépendent des paramètres du laser dans le

cas non-linéaire. Nous voyons alors l’importance de garder le plus grand nombre de

facteurs de formes possible pour bien décrire l’impulsion. Nous voyons ainsi comment

la non-linéarité déforme la densité spectrale de l’impulsion. De plus, nous voyons

que la déformation générée par les effets non-linéaires est proportionnelle au rapport

γ̄/β̄2. Ainsi une faible non-linéarité peut tout de même avoir une effet remarquable

si la dispersion dans la cavité est faible. Nous déduisons aussi de ce rapport que le

signe de la dispersion influence l’effet de la non-linéarité. En dispersion nette nor-

male, β̄2 > 0, la largeur spectrale de l’impulsion ainsi que son «chirp» augmentent

avec la non-linéarité. En dispersion anormale, β̄2 < 0, c’est le contraire qui se produit,

comme la compression solitonique le prévoit. Notons finalement que la non-linéarité

n’influence pas la forme de l’impulsion dans le temps puisque, d’une part, celle-ci

est parfaitement définie par l’action du modulateur et, d’autre part, la non-linéarité
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n’agit qu’au premier ordre dans le modèle linéarisé des équations mâıtresses et, de ce

fait, ne change pas la forme de l’impulsion.

Laser à verrouillage passif avec dispersion (σ̄ = �̄ = γ̄ = ρ̄ = 0)

Considérons maintenant un verrouillage passif des modes, au lieu d’un verrouillage

actif. Nous négligeons la non-linéarité dans ce cas, question de ne regarder que la

différence causée pas la nature du verrouillage des modes. Alors que le cas du ver-

rouillage actif avec dispersion avait une solution analytique lorsque la non-linéarité est

absente, ce n’est pas le cas ici. Dans le verrouillage passif sans dispersion, l’absorption

saturable et la largeur finie du gain se compensent pour former une impulsion sécante

hyperbolique, à la manière d’une effet solitonique. Ce n’est pas possible ici car nous

avons supposé une largeur infinie du milieu de gain (σ̄ = 0) ; la limitation de la largeur

de bande se faisant par le biais de la dispersion. Pour déterminer les paramètres de

la solution stationnaire, regardons les équations définissant les moments.

0 =β̄2�TΩ�r −
δ̄�P ��T 2�
(4− 3a)

(7.86a)

0 =β̄2(κTΩ − 1)�T 2��Ω2� (7.86b)

0 =− β̄2�TΩ�r
2(2− 3a)

�
4− a

2 + a

�
+ δ̄(κP − 1)�P ��T 2� (7.86c)

0 =
β̄2

2
(κPΩ − 1)�T 2��Ω2� (7.86d)

0 =β̄2�Ω2� − δ̄

2
�P ��TΩ�r (7.86e)

0 =β̄2(κTΩ3 − 1)�TΩ�r�Ω2� − δ̄

4
�P � (7.86f)

0 =δ̄(κPΩ − 1)�P ��Ω2� (7.86g)

0 =β̄2(κΩ − 1)�Ω2�2 − δ̄�P �
2(2− 3a)

�
4− a

2 + a

�
�TΩ�r
�T 2� (7.86h)

Nous procédons de la même façon avec les éqs. (7.27) et (7.28) en approximant les

moments relatifs au temps �P 2T 2� et �PT 4� ainsi que le moment �PT 2Ω2�i.

0 =
β̄2

2

�
4− 3a

2− 3a

� �
1 + 2a

2 + a

�
�TΩ�r + δ̄

�
κP

3

�
4− 3a

2− a

�
− 1

�
�P ��T 2� (7.87)

0 =β̄2(κPTΩ − 1)�T 2��Ω2� (7.88)
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Il est facile de déterminer la forme de l’impulsion à l’aide des éqs. (7.86a), (7.86c) et

(7.87). En combinant ces équations deux à la fois, nous trouvons différents facteurs

de forme dont les seuls se croisant sont a = {0, 2246; 0, 2390; 0, 2573} donnant une

valeur moyenne de ā = 0.2403. Nous obtenons également dans ce cas une solution

sécante hyperbolique à cause de l’action de l’absorbant saturable. Le fait d’avoir

un milieu dispersif au lieu d’un milieu de gain filtrant afin de limiter la largeur de

bande ne semble pas affecter la forme de l’impulsion. Cela s’explique par le fait que

l’absorption saturable cause une décroissance exponentielle des ailes de l’impulsion

(Haus et al., 1994). Les autres moments décrivant l’impulsion peuvent être facilement

calculés et sont décrits dans le tableau (7.2.4), en posant que le gain s’écrit selon

l’éq. (7.67).

Moments Moments et facteurs de forme

�T 2� ¯|β2|
δ̄

2,371s0

�P �sat(s0+α−g0)

�T 2��Ω2� 1
2

�TΩ�r 0, 7231 sgn(β̄2)

�Ω2� 0, 3616 δ
¯|β2|
�P �sat

�
1 + α−g0

s0

�

�P � �P �sat

�
1 + α−g0

s0

�

�T 2��Ω2� 0, 8572
a 0, 2403

κTΩ 1
κPΩ 1
κΩ 2, 4944

κTΩ3 1, 956
κPTΩ 1

Tableau 7.3 Moments et facteurs de forme de la solution approximative du laser à
verrouillage passif en présence de dispersion.

Il y a quelques différences notables par rapport au cas actif et au cas non-dispersif.

En comparant avec le cas du verrouillage actif, nous voyons une correspondance entre

le rôle joué par le filtrage temporelle actif du modulateur (�̄) et celui passif de l’ab-

sorbant saturable (δ̄). Les facteurs de forme ont également des valeurs similaires à

l’exception du paramètre κΩ qui est légèrement plus faible dans le cas passif que

dans le cas actif où κΩ = 3 indique une densité spectrale gaussienne. En comparant
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maintenant au cas du verrouillage passif sans dispersion, nous voyons également une

différence car la valeur de κΩ = 4, 2 signifie dans ce cas que la densité spectrale a

également une forme de sécante hyperbolique. Nous en déduisons que l’effet de la dis-

persion est d’atténuer les ailes spectrales de l’impulsion donnant une densité spectrale

s’approchant un peu plus d’une parabole. Une autre différence notable est la forme

de la phase décrite à travers le facteur κTΩ3 qui est deux fois plus grand dans le cas

passif que dans le cas actif ce qui reflète également le fait que la densité spectrale

est différente. Notons finalement que la méthode des moments présentée ici n’informe

pas sur la stabilité des impulsions. Dans le cas du laser avec verrouillage passif avec

dispersion, aucun élément ne fixe le taux de répétition dans la cavité, ce qui peut

avoir deux conséquences. Premièrement, le spectre devient infiniment large, ce qui est

physiquement impossible à cause de l’étendue finie du gain. Deuxièmement, le laser ne

se verrouille pas car tous les longueurs d’onde ont des temps de propagation différents

dans la cavité. Pour remédier à ce problème, il faudrait un verrouillage hybride des

modes.

Laser à verrouillage hybride des modes (β̄2 = γ̄ = ρ̄ = 0)

Nous obtenons un verrouillage hybride des modes si nous considérons simul-

tanément un verrouillage actif et passif des modes. Puisqu’aucun terme n’induit un

déphasage, nous avons �TΩ�r = 0. Dans ce cas, les équations pertinentes décrivant

les autres moments du système s’écrivent

0 =− σ̄(κTΩ − 1)�T 2��Ω2� − 2δ̄�P ��T 2�
(4− 3a)

− 4�̄

�
1− a

2− 5a

�
�T 2�2 (7.89a)

0 =− σ̄(κPΩ − 1)�T 2��Ω2�+ δ̄(κP − 1)�P ��T 2�+
2�̄�T 2�2
(4− 3a)

(7.89b)

0 =σ̄�Ω2� − δ̄

4
�P � − �̄�T 2� (7.89c)

0 =− σ̄(κΩ − 1)�Ω2�2 + δ̄(κPΩ − 1)�P ��Ω2� − �̄(κTΩ − 1)�T 2��Ω2� (7.89d)

avec l’équation supplémentaire suivante.

0 =− σ̄(κPTΩ − 1)�T 2��Ω2�+ δ̄

�
κP

3

�
4− 3a

2− a

�
− 1

�
�P ��T 2� − 2�̄

�
1− 2a

4− 5a

�
�T 2�2

(7.90)
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Nous avons 4 variables à déterminer : �P �, �T 2�, �Ω2� et a. En utilisant le principe

d’incertitude et l’éq. (7.89c), il nous faut deux équations et donc deux facteurs de

forme à réduire. Nous prenons les éqs. (7.89a) et (7.89b), ce qui signifie qu’il faut

simplifier les facteurs de forme κΩ et κPΩ. Ces facteurs de forme s’écrivent alors

κTΩ =− (1 + 4a)

�
2− 3a

2− a

�
(7.91)

κPΩ =
3

2

�
4− a

2 + a

� �
1 + a

2− a

�
(7.92)

En résolvant nous trouvons trois valeurs pour la forme a = {−0, 6856; 0; 0, 2838}.
Ces trois valeurs de a sont admissibles puisqu’aucune ne donne une valeur négative

de �T 2�. Il y a deux façons d’interpréter ces trois valeurs. Premièrement, les trois

formes d’impulsions sont des solutions du système d’équations. Deuxièmement, les

trois solutions proviennent en partie des approximations sur les moments d’ordre

supérieur et certaines d’entre elles ne sont pas des solutions valables. Il est clair que

toutes ces valeurs ne peuvent être des solutions du système car le cas gaussien a = 0

qui est exactement représenté par la distribution de Pearson n’est pas une solution de

l’équation mâıtresse. Afin d’éliminer les valeurs de a donnant des solutions invalides,

nous approximons le facteur de forme κPTΩ et résolvons le système à l’aide de ce

dernier. Nous obtenons

κPTΩ =
(2− 3a)

2

�
1− 4a

2 + a

� �
1 + a

2− a

�
(7.93)

qui donne, après résolution les valeurs a = {0, 2325; 0, 8707}. De ces deux valeurs,

la deuxième est invalide par le principe d’incertitude. La première s’approche suf-

fisamment de 0,2838 pour que la différence entre les deux s’explique par les er-

reurs d’approximation sur les moments d’ordre supérieur. Nous obtenons donc une

forme d’impulsion qui s’approche plus d’une sécante hyperbolique que d’une gaus-

sienne. Par ailleurs les facteurs de formes sont, pour la valeur moyenne ā = 0.2582,

κTΩ = −1, 4301 et κPΩ = 1, 7954, ce qui correspond au cas du verrouillage passif à

une différence inférieure à 0.3%. Ce résultat correspond bien à ce que nous obser-

vons expérimentalement où la modulation active sert à démarrer le verrouillage mais

éventuellement dominée par le filtrage passif de l’absorbant qui, ultimement, dicte la

forme de l’impulsion (Delfyett et al., 1992), (Weber et al., 1992).
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7.3 Conclusion

Les équations différentielles mâıtresses des lasers ne sont solubles que dans quelques

cas particuliers de manière analytique ; les moments nous permettent toutefois de

trouver des solutions approximatives dans la plupart des cas. En écrivant les équations

mâıtresses des lasers par l’entremise des moments, nous avons pu ramener l’équation

différentielle décrivant l’impulsion laser en un système d’équations non-linéaires. Ces

équations expriment diverses relations entre des moments d’ordre différent. Pour

résoudre le système, il nous a fallu exprimer les moments d’ordre supérieur en fonction

des moments de plus bas ordre.

Nous avons utilisé la distribution de Pearson avec une phase logarithmique pour

ce faire. Bien que la phase logarithmique soit moins précise que la phase non-linéaire

avec une contribution quadratique pour la propagation dans les fibres optiques, elle

est fréquemment utilisée dans la plupart des solutions analytiques des lasers. En

réduisant les moments d’ordre supérieur aux moments �T 2�, �TΩ�r, �Ω2� et �P � ainsi

qu’à différents facteurs de forme, nous avons pu résoudre le système dans divers cas.

Nous avons considéré trois cas bien connus et résolus analytiquement pour valider

notre méthode : le laser à verrouillage actif, le laser à verrouillage passif et le laser

solitonique. Nous avons aussi étudié trois cas où les solutions analytiques n’existent

pas : le laser à verrouillage actif accordable en dispersion incluant la non-linéarité, le

laser à verrouillage passif incluant la dispersion et le laser à verrouillage hybride.

Les trois cas de validation nous ont donné des résultats très proches des solutions

analytiques. Dans le cas du verrouillage actif, nous obtenons le même résultat que la

solution analytique. Dans le cas du verrouillage passif, nous avons une erreur moyenne

inférieure à 3,5% sur les facteurs de forme des impulsions. De plus, nous obtenons les

mêmes relations entre les paramètres des impulsions et les paramètres de la cavité laser

que dans le cas analytique. Le laser solitonique nous donne un résultat similaire en

procédant de différentes façons pour faire le calcul ; toutes ces façons donnent le même

résultats avec une variation inférieure à 8%. Nous obtenons également dans ce cas les

mêmes relations, à l’approximation de coefficients près, entre les caractéristiques des

impulsions et les paramètres de la cavité.

Nous avons finalement étudié trois cas n’ayant pas de solution analytiques. Le

premier de ces cas est le laser à verrouillage actif des modes accordable en dispersion. Il

existe une solution analytique à l’équation mâıtresse de ce laser lorsque la non-linéarité
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est absente. Lorsqu’elle est présente, aucune solution analytique exacte n’existe. Nous

avons résolu les équations mâıtresses par l’entremise des moments dans les deux cas et

les avons comparés. La solution linéaire s’exprime de manière explicite et la solution

non-linéaire de manière implicite ; à faible puissance, le cas non-linéaire converge vers

le cas linéaire. De plus, nous constatons que la forme de l’impulsion dans le temps ne

semble pas être changée par la présence de la non-linéarité ; toutefois les facteurs de

forme décrivant la densité spectrale sont fortement influencés par cette dernière.

Le deuxième cas étudié sans solution exacte est le verrouillage passif avec dis-

persion. Dans le cas passif sans dispersion, c’est la largeur finie du milieu de gain

qui limite la durée de l’impulsion temporelle et donne une solution stable. Dans ce

cas, il y a un effet «solitonique» entre la perte de l’absorbant saturable et le filtrage

spectral du milieu de gain. Qu’arrive-t-il si à l’instar du verrouillage actif accordable

en dispersion, nous remplaçons le filtrage par la dispersion ? La solution analytique

approximative alors trouvée est encore une sécante hyperbolique. La solution ainsi

obtenue ressemble par ailleurs énormément à la solution dans le cas actif où le rôle

du filtrage temporel actif du modulateur a été remplacé par le filtrage temporel passif

de l’absorbant saturable.

Finalement le dernier cas analysé est le verrouillage hybride où les filtrages tempo-

rels actif et passif sont présents dans la cavité. La résolution des équations donne une

forme d’impulsion en sécante hyperbolique, ce qui correspond bien à ce qui est ob-

servé expérimentalement. Le verrouillage actif, donnant une impulsion gaussienne, ne

sert qu’à amorcer le verrouillage qui est finalement dominé par l’absorbant saturable,

donnant l’impulsion sécante hyperbolique.
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Chapitre 8

Conclusion

Dans cette thèse, nous avons utilisé les moments afin d’étudier la propagation d’im-

pulsions dans un milieu dispersif et non-linéaire décrite par l’équation de Schrödinger

non-linéaire. Pour ce faire, nous avons établi un formalisme de moments complexes,

utilisant des opérateurs linéaires et non-linéaires, ce qui a permis de représenter clai-

rement les équations ainsi que la physique sous-jacente. En supposant que la phase

temporelle du champ est quadratique et en utilisant les moments d’ordre 2, nous avons

dérivé une solution analytique décrivant pour la première fois, à notre connaissance,

l’évolution de l’impulsion à la fois dans le régime de dispersion normale et anormale.

Cette solution a été obtenue au moyen de trois invariants, dont deux proviennent

de l’approximation de la phase quadratique. Ces invariants représentent la conser-

vation de la somme des effets dispersif et non-linéaire, la conservation de l’énergie

et la conservation de la forme de l’impulsion. Dans le régime de dispersion normale,

l’évolution des moments est asymptotique alors qu’elle est périodique dans le régime

de dispersion anormale. Différentes quantités importantes ont pu être obtenues, telles

que la distance pour avoir une impulsion « Fourier-limitée » ainsi que sa durée à ce

point. Afin de vérifier la validité de cette solution, elle a été comparée à la simulation

numérique de l’évolution de l’amplitude complexe du champ. La comparaison montre

un excellent accord entre la solution analytique et la solution numérique dans le régime

de dispersion normale. Bien que l’accord ne soit pas aussi bon dans le régime de dis-

persion anormale, le comportement des deux solutions est qualitativement le même.

Des équations approximatives linéaires ont été obtenues pour décrire l’évolution non-

linéaire pour de très courtes distances et pour de très longues distances lorsque la

dispersion est normale ; on donne aussi la distance à laquelle la transition se fait entre

ces deux solutions approximatives.

Les moments d’ordre 2 ne décrivent que les principales caractéristiques de l’im-

pulsion : sa durée, sa largeur spectrale, sa puissance effective et son « chirp ». Ils

ne décrivent pas directement la forme de l’impulsion. La solution obtenue en ne
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considérant que les moments d’ordre 2 ne permet pas non plus de décrire l’évolution

de la forme de l’impulsion puisque le second invariant dit que la forme de l’impul-

sion est constante. Afin de voir comment une impulsion gaussienne se déforme lors

de sa propagation dans un milieu dispersif normal et non-linéaire, nous avons utilisé

les équations linéaires approximatives et supposé que les moments de ces équations

étaient des fonctions du temps. En remplaçant ces équations dans les solutions analy-

tiques des propagations purement dispersive et purement non-linéaire, nous avons ob-

tenu des solutions implicites. Lorsqu’elles sont comparées aux simulations numériques,

ces solutions implicites décrivent très bien la propagation d’une impulsion gaussienne,

incluant sa déformation.

Afin d’avoir une façon systématique d’étudier l’évolution de la forme de l’im-

pulsion lors de la propagation dans un milieu dispersif et non-linéaire, il faut al-

ler au-delà d’une simple approximation quadratique de la phase. Pour ce faire, il

faut non seulement une meilleure approximation de la phase, mais il faut également

pouvoir approximer la norme du champ complexe. Nous avons donc examiné trois

modélisations différentes de la phase temporelle : la phase quadratique, la phase qua-

dratique avec une contribution non-linéaire et la phase logarithmique. La norme a

été représentée par la distribution de Pearson. Celle-ci permet de représenter une

variété de formes d’impulsions dont la gaussienne, la parabole, la lorentzienne ainsi

que de passer continûment de l’une à l’autre. Différents moments peuvent être em-

ployés afin d’obtenir les paramètres de ces modèles. Plusieurs simulations numériques

dans les deux régimes de dispersion ont été faites, d’une part, pour déterminer quelle

modélisation est la plus précise et, d’autre part, quels sont les moments les plus

adéquats pour représenter les paramètres. Il ressort que la phase quadratique avec

contribution non-linéaire donne les résultats les plus précis, que les moments de plus

bas ordre donnent de meilleurs résultats et qu’il vaut mieux comparer les moments

d’ordre 2 avec les moments d’ordre 2 non-linéaires plutôt qu’aux moments d’ordre

4 pour décrire la forme de l’impulsion. Différentes propagations numériques ont per-

mis de déterminer que les moments contenant les opérateurs Ω3 et Ω4 ne sont pas

bien décrits par les modèles étudiés et qu’il vaut mieux éviter de les inclure. Finale-

ment, une analyse de points fixes a montré que la modélisation basée sur la distri-

bution de Pearson et la phase quadratique avec contribution stationnaire permet de

décrire différentes formes d’impulsion stationnaires dont la gaussienne et la parabole,

la sécante hyperbolique ne pouvant toutefois pas être obtenue par ce modèle.
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La modélisation développée a ensuite été appliquée aux équations mâıtresses des

lasers tout-fibre qui décrivent l’impulsion stationnaire de la cavité laser sous forme

différentielle. Il existe de nombreuses équations mâıtresses selon les différents éléments

optiques présents dans la cavité ; chacune de ces équations a une solution différente

qu’il faut déterminer. Puisque ces équations sont souvent non-linéaires, il n’existe pas

de moyen systématique d’obtenir une solution. En appliquant la méthode des moments

et en utilisant la distribution de Pearson ainsi que la phase logarithmique (couram-

ment obtenue dans les solutions des équations mâıtresses), les équations mâıtresses

peuvent être ramenées à un système d’équations algébriques non-linéaires. Ce système

a été résolu dans trois cas où une solution analytique à l’équation mâıtresse est

connue : le laser à verrouillage actif des modes, le laser à verrouillage passif des

modes et le laser solitonique. Dans le premier cas, nous avons obtenu la solution ana-

lytique à l’équation mâıtresse. Dans les deux autres cas, des solutions approximatives

qui ont été trouvées donnent les mêmes relations physiques entre les paramètres de

l’impulsion et ceux de la cavité et une forme d’impulsion qui s’approche à moins de

5% de la sécante hyperbolique, qui est la forme de la solution analytique dans ces

cas. Nous avons ensuite utilisé le même modèle pour décrire trois lasers pour lesquels

aucune solution n’est, à notre connaissance, connue : le laser à verrouillage actif des

modes accordable en dispersion (incluant la non-linéarité), le laser à verrouillage pas-

sif des modes accordable en dispersion et le laser à verrouillage hybride des modes.

Dans les trois cas, les solutions obtenues sont cohérentes avec ce qui a été observé

expérimentalement. La méthode que nous avons développée permet donc de s’atta-

quer à des équations mâıtresses afin d’obtenir des solutions approximatives lorsque

les solutions analytiques ne sont pas connues.

Finissons sur différentes avenues qui peuvent être explorées à l’aide du travail

de cette thèse. Premièrement, il est possible de s’attarder à d’autres modélisations

et représentations. La distribution de Pearson est probablement la fonction la plus

simple pour représenter différentes formes d’impulsion puisqu’elle n’a qu’un paramètre

de contrôle. Différentes formes à deux ou plusieurs paramètres sont envisageables,

pour représenter, entre autres, le centre et la base de l’impulsion individuellement.

La modélisation de la phase peut également être améliorée, en essayant, entre autres,

d’obtenir une phase qui soit proportionnelle au carré de la fréquence, mais qui soit

exprimée dans le domaine temporel. Une autre option intéressante est d’introduire

de nouveaux opérateurs définissant de nouveaux moments. Par exemple, aucun des
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opérateurs utilisés ne permet de mesurer le centre de l’impulsion ; les opérateurs en

T j n’accordent que du poids sur les ailes. L’opérateur P le fait seulement quand

l’impulsion est une cloche et le fait d’une manière relative à la forme de l’impulsion.

Des opérateurs de la forme 1/(1 + T 2j) ou de la forme (1 + T 2)−j permettraient

d’avoir une lecture fiable du centre de la distribution. Il faut toutefois se rappeler que

la plus grande difficulté avec la modélisation par les moments est de déterminer une

représentation de la norme, de la phase et des opérateurs qui sont intégrables dans la

définition des moments.

Une autre avenue est de considérer les effets asymétriques tels que la dispersion

d’ordre 3, l’auto-raidissement et l’auto-décalage Raman. Dans ce cas, la norme du

champ peut, par exemple, être représentée par la distribution de Pearson incluant

l’asymétrie et la phase temporelle étendue en ajoutant un terme linéaire et un terme

cubique. La difficulté survenant avec les distributions asymétriques est que les mo-

ments centrés ne sont plus égaux aux moments bruts. Les expressions deviennent plus

lourdes et difficiles à gérer car les moyennes (moments d’ordre 1) changent avec les

effets asymétriques, ce qui a une répercussion sur tous les autres moments.

Il serait également intéressant d’appliquer les moments aux équations couplées

telles que les équations définissant le gain Raman ou le mélange à quatre ondes. La

difficulté dans ce cas est qu’il y aura différentes covariances ; non seulement entre le

temps et les fréquences, mais entre les champs aux différentes longueurs d’onde. Il

faut également pouvoir tenir compte des phases relatives des champs aux différentes

longueurs d’onde à travers les moments afin de bien modéliser les accords de phases

qui sont critiques dans les processus non-linéaires.

Finalement, deux avenues peuvent être envisagées dans le cas des lasers. Première-

ment, il serait intéressant d’utiliser d’autres modélisations de la phase et d’étudier

l’impact qu’elles ont sur les solutions obtenues par rapport à celles utilisées dans

cette thèse. Entre autres, le fait d’utiliser une contribution non-linéaire à la phase

donne-t-il d’autres formes d’impulsions ? Si tel est le cas, il y aurait d’autres solutions

aux équations mâıtresses qui n’apparaissent pas avec les solutions analytiques tradi-

tionnelles. Finalement, l’avenue qui est certainement la plus intéressante à explorer

est l’étude des équations mâıtresses discrètes. Les équations mâıtresses que l’on re-

trouve dans la littérature se basent toutes sur les modèles moyens où tous les effets

sont supposés déformer peu les impulsions. Or, dans beaucoup de lasers ayant en ce

moment une grande importance technologie, tels que les lasers « stretched-pulse »
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et auto-similaires, l’impulsion se déforme considérablement dans la cavité et la non-

linéarité y joue un rôle clef. La non-linéarité est devient tellement importante qu’elle

cause la rupture du front d’onde, ce qui limite l’énergie des impulsions pouvant être

générées par le laser. Ces effets ne peuvent être analysés par les équations mâıtresses

moyennes. Un modèle est difficilement envisageable dans bien des cas puisqu’il faut

trouver une fonction de transfert du champ complexe à travers chaque élément op-

tique de la cavité. Les moments s’avèrent un outil puissant pour calculer ces fonctions

de transfert et ainsi obtenir une équation mâıtresse discrète exprimée en termes des

moments. Ces équations pourraient présupposer une forme d’impulsion ou déterminer

une forme moyenne de l’impulsion ou encore suivre la déformation de l’impulsion à

travers chaque élément. Une modélisation adéquate de la phase permettrait d’étudier

la rupture du front d’onde après chaque élément optique et ainsi déterminer les limi-

tations de ces cavités tout en optimisant leur design.
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BÉLANGER, P.-A. et PARÉ, C. (1999). Second-order moment analysis of

dispersion-managed solitons. J. Lightwave Technol., 17, 445.

BRANDT-PEARCE, M., JACOBS, I., LEE, J.-H. et SHAW, J. K. (1999). Optimal

input gaussian pulse width for transmission in dispersive nonlinear fibers. J. Opt.

Soc. Am. B, 16, 1189–1196.

CHANG, G. (2005). Self-similar parabolic beam generation and propagation. Phys.

Rev. E ; Physical Review E”, 72.



180

CHEN, C., WAI, P. et MENYUK, C. (1994). Stability of passively mode-locked

fiber lasers with fast saturable absorption. Optics letters, 19, 198.

CHEN, S. (2005a). Chirped self-similar solutions of a generalized nonlinear schrödin-
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Annexe A

Définitions et propriétés des

moments

Cette annexe présente différentes propriétés des moments et explicite certaines

des définitions des moments.

A.1 Propriétés des moments complexes

Considérons le moment �tjωk� d’ordre n = j + k défini dans le domaine temporel.

�tjωk� =
1

E

� ∞

−∞
A∗tj

�
i
d

dt

�k

Adt (A.1)

E =

� ∞

−∞
|A(t)|2dt. (A.2)

En faisant la transformée de Fourier de l’éq. (A.1), les moments peuvent être définis

dans le domaine spectral.

�tjωk� =
1

E

� ∞

−∞
Ã(ω)ωk

�
i

d

dω

�j

Ã∗(ω)dω (A.3)

E =

� ∞

−∞
|Ã(ω)|2dω (A.4)

A.1.1 Définition des moments purs dans le domaine spectral

En posant j = 0 dans l’éq. (A.3), les moments purs spectraux s’écrivent

�ωk� =
1

E

� ∞

−∞
ωk |A(ω)|2 dω. (A.5)

Il ressort de l’éq. (A.5) que les moments purs spectraux sont bien réels.
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A.1.2 Définitions récurrentes

Il est possible d’exprimer le moment �tjωk� différemment en intégrant par partie

k fois la définition éq. (A.1).

�tjωk� = �ωktj�∗ (A.6)

=
k�

p=0
p≤j

(−i)p j!k!

p!(j − p)!(k − p)!
�tj−pωk−p�∗. (A.7)

L’éq. (A.7) est intéressante car elle exprime le moment �tjωk� en fonction des mo-

ments d’ordre égal ou inférieur. Pour y voir plus clair, exprimons les parties réels et

imaginaires de �tjωk� en fonction de ces moments d’ordre inférieur

�tjωk�r =
1

2

�
�tjωk�+ �tjωk�∗

�
(A.8)

=
k�

p=1
p≤j

p impair

(−1)
p+1
2

p!

2

�
j

p

��
k

p

�
�tj−pωk−p�i −

k�

p=2
p≤j

p pair

(−1)
p
2
p!

2

�
j

p

��
k

p

�
�tj−pωk−p�r

�tjωk�i =− i

2

�
�tjωk� − �tjωk�∗

�
(A.9)

=
k�

p=1
p≤j

p impair

(−1)
p−1
2

p!

2

�
j

p

��
k

p

�
�tj−pωk−p�r −

k�

p=2
p≤j

p pair

(−1)
p
2
p!

2

�
j

p

��
k

p

�
�tj−pωk−p�i

en fonction de ces moments d’ordre inférieur où les indices r et i dénotent respecti-

vement les parties réels et imaginaires. Nous voyons à l’éq. (A.8) que la partie réel

�tjωk�r dépend de la partie imaginaire et la partie réelle des moments d’ordre égal

ou inférieur. Il en va de même pour la partie imaginaire �tjωk�i. Il est donc pos-

sible , par substitution, d’exprimer les parties imaginaires des moments en fonction

des parties réelles des moments d’ordre inférieur. Une autre façons d’écrire les par-

ties réelles et imaginaires des moments est d’utiliser les relations de commutation et
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d’anti-commutation des moments.

[tj, ωk] = �tjωk� − �ωktj� = �tjωk� − �tjωk�∗ = 2i�tjωk�i (A.10)

{tj, ωk} = �tjωk�+ �ωktj� = �tjωk�+ �tjωk�∗ = 2�tjωk�r. (A.11)

Nous voyons à l’éq. (A.10) que les opérateurs tj et ωk ne commutent que pour les

moments purs, c’est-à-dire lorsque j = 0 ou k = 0.

A.2 Définitions explicites des moments

Les sous-sections suivantes contiennent les définitions des moments présentées de

manières explicites en terme de l’amplitude de la distribution complexe, A(t) et A∗(t),

ainsi que sa norme et sa phase A(t) = r(t) exp [iφ(t)]. Les indices r et i dénotent

respectivement les parties réelle et imaginaire. Lorsqu’aucun indice n’est présente, le

moment n’a pas de partie imaginaire et est donc réel. Les dépendances temporelles

des quantités, (t), n’est pas explicitement affichées pour alléger la lecture.

A.2.1 Moments complexes

Ordre 0

Le moment d’ordre 0 est utilisé pour normalisée les moments d’ordre supérieurs.

E =

� ∞

−∞
|A|2dt =

� ∞

−∞
r2dt (A.12)

Ordre 1

Les moments d’ordre 1 représentent la position de la distribution dans le domaine

temporel et spectral.

�t� =
1

E

� ∞

−∞
t|A|2dt =

1

E

� ∞

−∞
tr2dt (A.13)

�ω� =
i

E

� ∞

−∞
A∗dA

dt
dt = − 1

E

� ∞

−∞
r2dφ

dt
dt (A.14)
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Ordre 2

Les moments d’ordre 2 sont reliés à la largeur temporel et spectral de l’impulsion

ainsi qu’à l’ampleur de la phase.

�t2� =
1

E

� ∞

−∞
t2|A|2dt =

1

E

� ∞

−∞
t2r2dt (A.15)

�tω�r = �
�

i

E

� ∞

−∞
A∗t

dA

dt
dt

�
= − 1

E

� ∞

−∞
r2t

dφ

dt
dt (A.16)

�tω�i = �
�

i

E

� ∞

−∞
A∗t

dA

dt
dt

�
= −1

2
(A.17)

�ω2� =
1

E

� ∞

−∞
A∗t

d2A

dt2
dt = − 1

E

� ∞

−∞

�
dr

dt

�2

+ r2

�
dφ

dt

�2

dt (A.18)

Ordre 3

Les moments d’ordre 3 caractérisent l’asymétrie de la norme et de la phase de la

distribution.

�t3� =
1

E

� ∞

−∞
t3|A|2dt =

1

E

� ∞

−∞
t3r2dt (A.19)

�t2ω�r = �
�

i

E

� ∞

−∞
A∗t2

dA

dt
dt

�
= − 1

E

� ∞

−∞
r2t2

dφ

dt
dt (A.20)

�t2ω�i = �
�

i

E

� ∞

−∞
A∗t2

dA

dt
dt

�
= −�t� (A.21)

�tω2�r = −�
�

1

E

� ∞

−∞
A∗t

d2A

dt2
dt

�
=

1

E

� ∞

−∞
t

�
dr

dt

�2

+ tr2

�
dφ

dt

�2

dt (A.22)

�tω2�i = −�
�

1

E

� ∞

−∞
A∗t

d2A

dt2
dt

�
= −�ω� (A.23)

�ω3� = − i

E

� ∞

−∞
A∗d

3A

dt3
dt = − 1

E

� ∞

−∞
3

�
dr

dt

�2 dφ

dt
− r2d3φ

dt3
dt (A.24)
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Ordre 4

La forme de l’impulsion est caractérisée en comparant les moments d’ordre 4 avec

les moments d’ordre 2.

�t4� =
1

E

� ∞

−∞
t3|A|2dt =

1

E

� ∞

−∞
t4r2dt (A.25)

�t3ω�r = �
�

i

E

� ∞

−∞
A∗t3

dA

dt
dt

�
= − 1

E

� ∞

−∞
r2t3

dφ

dt
dt (A.26)

�t3ω�i = �
�

i

E

� ∞

−∞
A∗t3

dA

dt
dt

�
= −3

2
�t2� (A.27)

�t2ω2�r = −�
�

1

E

� ∞

−∞
A∗t2

d2A

dt2
dt

�
=

1

E

� ∞

−∞
t2

�
dr

dt

�2

+ t2r2

�
dφ

dt

�2

dt− 1

(A.28)

�t2ω2�i = −�
�

1

E

� ∞

−∞
A∗t2

d2A

dt2
dt

�
= −2�tω�r (A.29)

�tω3�r = −�
�

i

E

� ∞

−∞
A∗t

d3A

dt3
dt

�
=

1

E

� ∞

−∞
−3t

�
dr

dt

�2 dφ

dt
+

3

2
r2d2φ

dt2
+ r2t

d3φ

dt3
dt

(A.30)

�tω3�i = −�
�

i

E

� ∞

−∞
A∗t

d3A

dt3
dt

�
= −3

2
�ω2� (A.31)

�ω4� =
1

E

� ∞

−∞
A∗d

4A

dt4
dt (A.32)

=
1

E

� ∞

−∞

�
d2r

dt2

�2

−
�
r
d2r

dt2
+ 3

�
dr

dt

�2
� �

dφ

dt

�2

+ r2

�
dφ

dt

�4

− r2

�
d2φ

dt2

�2

dt

(A.33)
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A.2.2 Moments non-linéaires

Ordre 1

Les moments d’ordre 1 non-linéaires décrivent l’asymétrie de la norme de l’impul-

sion dans le domaine temporel et la position dans le domaine spectral.

�Pt� =
1

E

� ∞

−∞
t|A|4dt =

1

E

� ∞

−∞
tr4dt (A.34)

�Pω�r = �
�

i

E

� ∞

−∞
|A|2A∗dA

dt
dt

�
= − 1

E

� ∞

−∞
r4dφ

dt
dt (A.35)

�Pω�i = �
�

i

E

� ∞

−∞
|A|2A∗dA

dt
dt

�
= 0 (A.36)

Ordre 2

Les moments d’ordre 2 non-linéaires sont reliés à la largeur temporel et spectral

de l’impulsion ainsi qu’à l’ampleur de la phase.

�Pt2� =
1

E

� ∞

−∞
t2|A|4dt =

1

E

� ∞

−∞
t2r2dt (A.37)

�Ptω�r = �
�

i

E

� ∞

−∞
|A|2A∗t

dA

dt
dt

�
= − 1

E

� ∞

−∞
r4t

dφ

dt
dt (A.38)

�Ptω�i = �
�

i

E

� ∞

−∞
|A|2A∗t

dA

dt
dt

�
= −�P �

4
(A.39)

�Pω2�r = −�
�

1

E

� ∞

−∞
|A|2A∗dA

dt
dt

�
= − 1

E

� ∞

−∞
r3d2r

dt2
− r4

�
dφ

dt

�2

dt (A.40)

�Pω2�i = −�
�

1

E

� ∞

−∞
|A|2A∗dA

dt
dt

�
= − 1

E

� ∞

−∞

r4

2

d2φ

dt2
dt (A.41)

A.3 Moments centrés

Dans cette section, les relations explicites entre les moments centrés et les moments

bruts sont présentées.



193

A.3.1 Moments complexes

Ordre 1

Les moments centrés sont par définition nuls.

�T � = 0 (A.42)

�Ω� = 0 (A.43)

Ordre 2

�T 2� = �t2� − �t�2 (A.44)

�TΩ�r = �tω�r − �t��ω� (A.45)

�Ω2� = �ω2� − �ω�2 (A.46)

Ordre 3

�T 3� = �t3� − 3�t2��t�+ 2�t�3 (A.47)

�T 2Ω�r = �t2ω�r − 2�tω�r�t� − �t2��ω�+ 2�t�2�ω� (A.48)

�TΩ2�r = �tω2�r − 2�tω�r�ω� − �t��ω2�+ 2�t��ω�2 (A.49)

�Ω3� = �ω3� − 3�ω2��ω�+ 2�ω�3 (A.50)
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Ordre 4

�T 4� = �t4� − 4�t3��t�+ 6�t2��t�2 − 3�t�4 (A.51)

�T 3Ω�r = �t3ω�r − 3�t2ω�r�t�+ 3�tω�r�t�2 − �t3��ω� − 3�t2��t��ω�+ 3�t�3�ω�
(A.52)

�T 2Ω2�r = �t2ω2�r − 2�t2ω�r�ω� − 2�tω2�r�t�+ 4�tω�r�t��ω�
+ �ω2��t�2 + �t2��ω�2 − 3�ω�2�t�2 (A.53)

�TΩ3� = �tω3�r − 3�tω2�r�ω�+ 3�tω�r�ω�2 − �t��ω3� − 3�ω2��t��ω�+ 3�t��ω�3

(A.54)

�Ω4� = �ω4� − 4�ω3��ω�+ 6�ω2��ω�2 − 3�ω�4 (A.55)

A.3.2 Moments non-linéaires

Ordre 1

�PT � = �Pt� − �P ��t� (A.56)

�PΩ�r = �Pω�r − �P ��ω� (A.57)

Ordre 2

�PT 2� = �Pt2� − 2�Pt��t�+ �P ��t�2 (A.58)

�PTΩ�r = �Ptω�r − �Pt��ω� − �Pω�r�t�+ �P ��t��ω� (A.59)

�PΩ2�r = �Pω2�r − 2�Pω�r�ω�+ �P ��ω�2 (A.60)

�PΩ2�i = �Pω2�i (A.61)
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Annexe B

Détails de calculs

B.1 Résolution du système dispersif à l’ordre 4

Soit le système dispersif décrit par l’équation de propagation

∂A

∂z
= −i

β2

2

∂2A

∂t2
. (B.1)

Les équations d’évolution des moments complexes centrés d’ordre 4 s’écrivent dans

ce cas

∂

∂z
�T 4� = 4β2�T 3Ω�r (B.2)

∂

∂z
�T 3Ω� = 3β2

�
1

2
+ �T 2Ω2�r

�
(B.3)

∂

∂z
�T 2Ω2� = 2β2�TΩ3�r (B.4)

∂

∂z
�TΩ3� = β2�Ω4�r (B.5)

∂

∂z
�Ω2� = 0. (B.6)
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Le système peut être intégré en commençant par l’éq. (B.6) et en remontant jusqu’à

l’éq. (B.2). On obtient alors

�T 4� = �T 4�0 + 4β2�T 3Ω�0z + 6β2
2

�
1

2
+ �T 2Ω2�0

�
z2 + 4β3

2�TΩ3�0z3 + β4
2�Ω4�0z4

(B.7)

�T 3Ω� = �T 3Ω�0 + 3β2

�
1

2
+ �T 2Ω2�0

�
z + 3β2

2�TΩ3�0z2 + β3
2�Ω4�0z3 (B.8)

�T 2Ω2� = �T 2Ω2�0 + 2β2�TΩ3�0z + β2
2�Ω4�0z2 (B.9)

�TΩ3� = �TΩ3�0 + β2�Ω4�0z (B.10)

�Ω4� = �Ω4�0. (B.11)

Le changement de forme d’impulsion peut être exprimé par le facteur de forme κT

à l’aide des éqs. (B.7) et (4.30c).

κT =
�T 4�
�T 2�2 (B.12)

=
�T 4�0 + 4β2�T 3Ω�0z + 6β2

2

�
1
2 + �T 2Ω2�0

�
z2 + 4β3

2�TΩ3�0z3 + β4
2�Ω4�0z4

(�T 2�0 + 2β2�TΩ�r0z + β2
2�Ω2�0z2)2
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Annexe C

Fonctions utiles

C.1 Fonction Gamma

Cette annexe présente quelques propriétés utiles de la fonction Gamma.

C.1.1 Définition

Γ(x) =

� ∞

0

tx−1e−tdt x > 0 (C.1)

Le cas où x ≤ 0 est calculé en utilisant les propriétés suivantes.

C.1.2 Propriétés

Γ(x + 1) = xΓ(x) = x! (C.2)

Γ(nx) = (2π)
1−n

2 nnx− 1
2

n−1�

k=0

Γ

�
x +

k

n

�
n ∈ N (C.3)

Γ(−x) = − π

xΓ(x) sin(πx)
= − π

Γ(x + 1) sin(πx)
(C.4)

22x =
2
√

πΓ(2x)

Γ(x)Γ
�
x + 1

2

� (C.5)
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C.1.3 Approximation asymptotique (x →∞)

Γ(x) =
√

2πxx− 1
2 e−x

�
1 +

1

12x
+

1

288x2
− 139

51840x3
− 571

2488320x4
+ ...

�
(C.6)

Γ
�
x + 1

2

�

Γ(x)
=
√

x

�
1− 1

8x
+

1

28x2
+

5

1024x3
− 21

32768x4
+ ...

�
≈
√

x

�
1− 1

8x

�

(C.7)

Γ
�
x− 1

2

�

Γ(x)
≈ 1

4
√

x

�
8x− 1

2x− 1

�
(C.8)

Γ(x + a)

Γ(x + b)
≈ 1 +

(a− b)(a + b− 1)

2x
(C.9)

C.1.4 Valeurs particulières

Γ(
1

2
) =

√
π (C.10)

Γ(
3

2
) =

1

2

√
π (C.11)

C.2 Fonction Beta

Cette annexe présente quelques propriétés utiles de la fonction Beta.

C.2.1 Définition

B(x, y) =

� 1

0

tx−1(1− t)y−1dt x > 0, y > 0 (C.12)

=

� ∞

0

tx−1

(1 + t)x+y
dt =

Γ(x)Γ(y)

Γ(x + y)
(C.13)

Les valeurs négatives de x et y sont déterminés à partir de la relation de récurrence

C.2.
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C.2.2 Propriétés

B(x, y) = by(1 + b)x

� 1

0

tx−1(1− t)y−1

(b + t)x+y
dt (C.14)
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Annexe D

Définition des moments de la

distribution de Pearson

Dans cette annexe, les différents moments sont exprimés en fonction des pa-

ramètres des deux représentations de Pearson utilisées au cours de ce travail. Ces

deux représentations sont

Ac(T ) =
�

Pc

�
1 +

a

b
T 2

�− (1+ic)
2a

(D.1)

Ahf (T ) =
�

Pc

�
1 +

a

b
T 2

�− 1
2a

exp
�
hT 2 + f |Ahf (T )|2

�
(D.2)

Les deux représentations ne diffèrent que dans la définition de la phase. Ainsi, elles

partagent les mêmes définitions des moments ne contenant pas l’opérateur Ω puisque

la phase est définie dans le domaine temporel.

D.1 Relations de récurrence

La distribution de Pearson peut être réécrite sous forme différentielle en dérivant

par rapport au temps les éqs. (D.1) et (D.2).

(aT 2 + b)
d

dT
Ac = −(1 + ic)AcT (D.3)

(aT 2 + b)
d

dT
Ahf = −AhfT + (aT 2 + b)

�
2hT + f

d

dT
|Ahf |2

�
Ahf (D.4)

Il est facile d’obtenir des relations de récurrence entre certains moments en multi-

pliant par l’opérateur tj ou P p ou en appliquant l’opérateur ωk ou n’importe quelle

combinaison de ces dernier, en mulitpliant par A∗ et en intégrant de part et d’autre

l’éq. (D.3) ou (D.4). Par exemple, appliquons l’opérateur ω de part et d’autre de
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l’éq. (D.3), multiplions par A∗
c et intégrons par rapport à T . Nous obtenons alors

a�T 2Ω2�+ b�Ω2�+ 2ia�TΩ� = 1 + ic + (c− i)�TΩ� (D.5)

qui se sépare en partie réelle et imaginaire pour donner

� ⇒ a�T 2Ω2�r + b�Ω2�+ a = c�TΩ�r +
1

2
(D.6)

� ⇒ 0 =
c

2
− �TΩ�r. (D.7)

D.2 Calcul typique d’un moment

Considérons le calcul du moment �P pT j−1Ω�r avec une phase quadratique.

�P pT j−1Ω�r = �
�

i

E

� r+

r−

|Ah|2pA∗T j−1dAh

dT
dT

�
(D.8)

= − 2h

bE

� r+

r−

P p+1
c

�
1 +

a

b
T 2

�− (p+1)
a

T jdT (D.9)

Les racines T+ et T− sont les valeurs de T où la distribution s’annule ; ces valeurs sont

T± =





±∞ lorsque a ≥ 0

±
�

b
|a| lorsque a < 0

. (D.10)

Il est plus simple de réécrire l’éq. (D.9) en faisant le changement de variable suivant

θ =
|a|
b

T 2 dθ =
2|a|
b

TdT (D.11)

et en exploitant la symétrie de la distribution de Pearson pour obtenir

�P pT j−1Ω�r = − 2h

bE
P p+1

c

�
b

a

� j+1
2






� +∞
0

θ
j−1
2

(1+θ)
(p+1)

a

dθ lorsque a ≥ 0

i(−1)
j
2

� 1

0
θ

j−1
2

(1−θ)
(p+1)

a

dθ lorsque a < 0
. (D.12)
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En remplaçant l’expression de l’énergie par l’éq. (D.18), on obtient

�P pT j−1Ω�r = −2hP p
c√

πb

�
b

a

� j
2 Γ

�
1
a

�

Γ
�

1
a −

1
2

�






� +∞
0

θ
j−1
2

(1+θ)
(p+1)

a

dθ si a ≥ 0

−(−1)
j
2 tan

�
π
a

� � 1

0
θ

j−1
2

(1−θ)
(p+1)

a

dθ si a < 0
.

(D.13)

L’intégrale définit directement la fonction beta définie à l’annexe C.

�P pT j−1Ω�r = −2hP p
c√

πb

�
b

a

� j
2 Γ

�
1
a

�

Γ
�

1
a −

1
2

�






Γ( j+1
2 )Γ( p+1

a − (j+1)
2 )

Γ( p+1
a )

si a ≥ 0

−(−1)
j
2 tan

�
π
a

� Γ( j+1
2 )Γ[1−( p+1

a )]
Γ[ j+3

2 −( p+1
a )]

si a < 0
.

(D.14)

Il est possible de simplifier d’avantage l’éq. (D.14) en multipliant l’argument de la

fonction gamma de l’expression où a < 0 en utilisant la propriété éq. (C.4) de la

fonction gamma.

�P pT j−1Ω�r = −2hP p
c√

πb

�
b

a

� j
2 Γ

�
1
a

�
Γ

�
j+1
2

�

Γ
�

1
a −

1
2

�
Γ

�
p+1
a − (j+1)

2

�

Γ
�

p+1
a

�

×





1 si a ≥ 0

−(−1)
j
2 tan

�
π
a

� sin[π( p+1
a )−π

2 (j+1)]
sin[π( p+1

a )]
si a < 0

. (D.15)

Cette dernière expression se simplifie davantage si en notant que m est un entier .

�P pT j−1Ω�r = −2hP p
c√

πb

�
b

a

� j
2 Γ

�
1
a

�
Γ

�
j+1
2

�

Γ
�

1
a −

1
2

� Γ
�

p+1
a − j+1

2

�

Γ
�

p+1
a

�

×
�

1 si a ≥ 0

tan
�

π
a

�
cot

�
π
a (p + 1)

�
si a < 0

. (D.16)

Il est possible de l’exprimer plus simplement en fonction du moment �P pT j�

�P pT j−1Ω�r = −2h

b
�P pT j� (D.17)
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D.3 Moments d’ordre 0

E = Pc

�
πb

a

Γ
�

1
a −

1
2

�

Γ
�

1
a

�
�

1 lorsque a ≥ 0

−i cot
�

π
a

�
lorsque a < 0

(D.18)

≈ Pc

4

√
πb

�
8− a

2− a

�
(D.19)

�P p� = P p
c

Γ
�

p+1
a − 1

2

�
Γ

�
1
a

�

Γ
�

p+1
a

�
Γ

�
1
a −

1
2

�
�

1 lorsque a ≥ 0

tan
�

π
a

�
cot

�
π
a (p + 1)

�
lorsque a < 0

(D.20)

≈ P p
c√

p + 1

�
2− a

8− a

� �
8(p + 1)− a

2(p + 1)− a

�
(D.21)
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D.4 Moments d’ordre 2

D.4.1 Phase en c

�T 2� =
b

(2− 3a)
(D.22)

�TΩ�r =
c

2
(D.23)

�Ω2� =
(1 + c2)

4b

�
2− a

1 + a

�
(D.24)

�PT 2� =
b�P �

(4− 3a)
(D.25)

�PTΩ�r =
c�P �

4
(D.26)

�PΩ2�i =
c�P �
4b

�
4− a

2 + a

�
(D.27)

�PΩ2�r =
(3 + c2)�P �

8b

�
4− a

2 + a

�
(D.28)

�P 2T 2� =
b�P 2�

3(2− a)
(D.29)

�P 2TΩ�r =
c�P 2�

2(3 + a)
(D.30)

�P 2Ω2�i =
c�P 2�

3b

�
6− a

3 + a

�
(D.31)

�P 2Ω2�r =
�P 2�
12b

(5 + c2)

�
6− a

3 + a

�
(D.32)
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D.4.2 Phase en h et f

�T 2� =
b

(2− 3a)
(D.33)

�TΩ�r = − 2h

(2− 3a)
+

f

2
�P � (D.34)

�Ω2� =
1

4b

�
2− a

1 + a

�
+

4h2

b(2− 3a)
− hf

b
�P �+

f 2�P 2�
3b

�
6− a

3 + a

�
(D.35)

�PT 2� =
b�P �

(4− 3a)
(D.36)

�PTΩ�r = − 2h�P �
(4− 3a)

+
f�P 2�

3
(D.37)

�PΩ2�i = −h

b
�P �+

f�P 2�
3b

�
6− a

3 + a

�
(D.38)

�PΩ2�r =
3�P �
8b

�
4− a

2 + a

�
+

4h2�P �
b(4− 3a)

− 4

3

hf

b
�P 2�+

f 2�P 3�
4b

�
8− a

4 + a

�
(D.39)

�P 2Ω2�i = −4

3

h

b
�P 2�+

f�P 3�
2b

�
8− a

4 + a

�
(D.40)

�P 2Ω2�r =
�P 2�
12b

�
5

�
6− a

3 + a

�
+

16h2

(2− a)

�
− hf

b
�P 3�+

f 2�P 4�
5b

�
10− a

5 + a

�
(D.41)



206

D.4.3 Moments d’ordre 4

D.4.4 Phase en c

�T 4� =
3b2

(2− 3a)(2− 5a)
(D.42)

�T 3Ω�r =
3

2

bc

(2− 3a)
(D.43)

�T 2Ω2�r = −1

4

�
1− 3c2 + 4a

1 + a

�
(D.44)

�TΩ3�r =
3

8

c(1 + c2)(2− a)

b(1 + a)(1 + 2a)
(D.45)

�Ω4� =
3

16

(1 + c2)(4− a2) [4a(1 + a) + 1 + c2]

b2(1 + 3a)(1 + 2a)(1 + a)
(D.46)

�PT 4� =
3b2�P �

(4− 3a)(4− 5a)
(D.47)

�PT 3Ω�r =
3

4

bc�P �
(4− 3a)

(D.48)

�PT 2Ω2�i = −c�P �
4

�
1 + 2a

2 + a

�
(D.49)

�PT 2Ω2�r =
�P �
8

[3(1 + c2)− 2(1 + 2a)]

(2 + a)
(D.50)

�PTΩ3�i =
3

32

�P �
b

(4− a)[c2(1− 2a)− 3(1 + 2a)]

(2 + a)(1 + a)
(D.51)

�PTΩ3�r =
3

32

c�P �
b

(c2 + 4a + 5)

(1 + a)

�
4− a

2 + a

�
(D.52)

�PΩ4�i =
3

16

c�P �
b2

(16− a2) [c2 + 3 + 2a(2 + a)]

(2 + 3a)(2 + a)(1 + a)
(D.53)

�PΩ4�r =
3

64

�P �
b2

(16− a2) [4a(c2 + 3)(2 + a) + c4 + 2c2 + 9]

(2 + 3a)(2 + a)(1 + a)
(D.54)
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D.4.5 Phase en h et f

�T 4� =
3b2

(2− 3a)(2− 5a)
(D.55)

�T 3Ω�r =− 6bh

(2− 3a)(2− 5a)
+

3

2

bf�P �
(4− 3a)

(D.56)

�T 2Ω2�r =− 1

4

�
1 + 4a

1 + a

�
+

12h2

(2− 3a)(2− 5a)
− 6hf�P �

(4− 3a)
+

f 2�P 2�
(3 + a)

(D.57)

�TΩ3�r =− 3

2

h

b

��
1− 2a

1 + a

�
+

16h2

(2− 3a)(2− 5a)

�
+

9

16

f�P �
b(1 + a)

�
4− a

2 + a

�

+ 18
h2f�P �

b(4− 3a)
− 6

hf 2�P 2�
b(3 + a)

+
3

8

f 3�P 3�
b(2 + a)

�
8− a

4 + a

�
(D.58)

�Ω4� =
3

16b2

��
4− a2

1 + 3a

� �
1 + 2a

1 + a

�
+ 32h2

�
1− 2a

1 + a

�
− 256h4

(2− 3a)(2− 5a)

�

− 9

2

hf�P �
b2(1 + a)

�
4− a

2 + a

�
− 48

h3f�P �
b2(4− 3a)

+ 12
h2f 2�P 2�
b2(3 + a)

+
f 2�P 2�
12b2

(36− a2)(4a2 + 12a + 11)

(3 + 2a)(3 + a)(1 + a)
− 3

hf 3�P 3�
b2(2 + a)

�
8− a

4 + a

�

+
3

5

f 4�P 4�
b2

(100− a2)

(5 + 3a)(5 + 2a)(5 + a)
(D.59)
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�PT 4� =
3b2�P �

(4− 3a)(4− 5a)
(D.60)

�PT 3Ω�r =− 6
bh�P �

(4− 3a)(4− 5a)
+ f�P 2T 2� (D.61)

�PT 2Ω2�i =
h�P �

(4− 3a)
− f�P 2�

3

�
3 + 2a

3 + a

�
(D.62)

�PT 2Ω2�r =
�P �
8

��
1− 4a

2 + a

�
+

96h2

(4− 5a)(4− 3a)

�
− 4

3

hf�P 2�
(2− a)

+
3

4

f 2�P 3�
(4 + a)

(D.63)

�PTΩ3�i =
3

32

�P �
b

�
32h2

(4− 3a)
− 3

�
1 + 2a

1 + a

� �
4− a

2 + a

��
(D.64)

+ 2
ahf�P 2�
b(3 + a)

− 3

16

f 2�P 3�
b

�
1 + 2a

2 + a

� �
8− a

4 + a

�

�PTΩ3�r =− 3

4

h

b
�P �

�
32h2

(4− 5a)(2− 3a)
+

�
5− 2a

2 + a

��
− 9

2

hf 2�P 3�
b(4 + a)

(D.65)

+ 4
h2f�P 2�
b(2− a)

+
f�P 2�

4b

�
11 + 4a

3 + 2a

� �
6− a

3 + a

�
+

3

5

f 3�P 4�
b(5 + 2a)

�
10− a

5 + a

�

�PΩ4�i =
3

4

h�P �
b2

�
3(4− a)

(1 + a)(2 + a)
+

32h2

(4− 3a)

�
− 3

4

hf 2�P 3�
b2

�
5− 2a

2 + a

� �
8− a

4 + a

�

+ 24
h2f�P 2�
b2(3 + a)

+
f�P �
6b2

(36− a2)(2a2 + 6a + 7)

(1 + a)(3 + a)(3 + 2a)

+
6

5

f 3�P 4�
b2

(100− a2)

(5 + a)(5 + 2a)(5 + 3a)
(D.66)

�PΩ4�r =− 3

64

�P �
b2

�
3

�
16− a2

2 + a

� �
1 + 2a

1 + a

�
+ 64h2

�
1− 4a

2 + a

�
+

1024h4

(4− 3a)(4− 5a)

�

− 10
hf�P �

b2

�
1 + 4a

3 + 2a

� �
6− a

3 + a

�
− 32

3

h3f�P 2�
b2(2− a)

− 24

5

hf 3�P 4�
b2(5 + 2a)(5 + a)

+ 9
h2f 2�P 3�
b2(4 + a)

+
f 2�P 3�
32b2

(64− a2)(12a2 − 48a− 51)

(4 + a)(4 + 3a)(2 + a)

+
f 4�P 5�
12b2

(144− a2)

(6 + a)(3 + a)(2 + a)
(D.67)
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D.5 Moments d’ordre 6

D.5.1 Phase en c

�T 6� =
15b3

(2− 3a)(2− 5a)(2− 7a)
(D.68)

�T 5Ω�r =
15

2

cb2

(2− 3a)(2− 5a)
(D.69)

�T 4Ω2�r =
3b

(2− 3a)

�
5

4

(1 + c2)

(1 + a)
− 2

�
(D.70)

�T 3Ω3�r =3c

�
5

8

(1 + c2)

(1 + a)(1 + 2a)
− 1

�
(D.71)



210

D.6 Moments non-linéaires d’ordre arbitraire

D.6.1 Phase en h

�T 2m� =
1√
π

�
b

a

�m

Γ

�
m +

1

2

�
Γ

�
1
a −

1
2 −m

�

Γ
�

1
a −

1
2

� (D.72)

= bm
m�

k=1

(2k − 1)

[2− (2k + 1)a]
(D.73)

�T 2m−1Ω�r = − 2h√
πb

�
b

a

�m

Γ

�
m +

1

2

�
Γ

�
1
a −

1
2 −m

�

Γ
�

1
a −

1
2

� (D.74)

= −2hbm−1
m�

k=1

(2k − 1)

[2− (2k + 1)a]
=
�TΩ�r
�T 2� �T

2m� (D.75)

�T 2mΩ2�r = − 1√
8π

�
b

a

�m

Γ

�
m +

1

2

�
Γ

�
1
a −

3
2 −m

�

a(1 + a)Γ
�

1
a −

1
2

� (D.76)

�T 2mΩ2�i = −2m�T 2m−1Ω�r (D.77)

�T 2m−1Ω3�r =
3

4

�TΩ�r�T 2m�
�T 2�2(1 + a)(2− 3a)

[2− (2m− 1)(1 + 2a)][2− a(2m + 1)] (D.78)

+
�TΩ�r�T 2m�

4�T 2�2(1 + a)

(2m + 1)

[2− (2m + 3)a]
[4(2− 3a)(1 + a)�T 2��Ω2� − (2− a)]

�T 2m+1Ω3�i =
�T 2m�

8�T 2�(2− 3a)

�
1 + 2m

1 + a

�
[2m(1 + 4a)− 3][2− a(2m + 1)] (D.79)

− 3

8

�TΩ�r�T 2m�
�T 2�

(2m + 1)

[2− (2m + 3)a]
[4(2− 3a)(1 + a)�T 2��Ω2� − (2− a)]

�PT 2m� = bm�P �
m�

k=1

(2k − 1)

[4− (2k + 1)a]
(D.80)

�PT 2m−1Ω�r = − 2h√
πb

�
b

a

�m

�P �Γ
�

m +
1

2

�
Γ

�
2
a −

1
2 −m

�

Γ
�

2
a −

1
2

� (D.81)

= −2hbm−1�P �
m�

k=1

(2k − 1)

[4− (2k + 1)a]
=
�TΩ�r
�T 2� �PT 2m� (D.82)

(D.83)
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�P pT 2m� = bm�P p�
m�

k=1

(2k − 1)

[2(p + 1)− (2k + 1)a]
(D.84)

�P pT 2m−1Ω2�r =
�P pT 2m�
4�T 2�

�
2m + 1

1 + a

� �
4(1 + a)(2− 3a)�T 2��Ω2� − (2− a)

2(p + 1)− (2m + 3)a

�

(D.85)

+
�P pT 2m�
4�T 2�

[2(p + 1)− (2m + 1)a][2(p + 1)− 2m(1 + 2a)− 1]

(p + 1)(p + 1 + a)(2− 3a)

�P pT 2mΩ2�i = −�TΩ�r
�T 2� �P

pT 2m�
�

2m− p

p + 1

�
(D.86)

D.7 Autres moments

D.7.1 Phase en c

�
P

∂2P

∂T 2

�
= −2

3

�P 2�
b

�
6− a

3 + a

�
(D.87)

�
P

����
∂A

∂t

����
2
�

=
(1 + c2)�P 2�

12b

�
6− a

3 + a

�
(D.88)

�
∂A∗

∂T

∂3A

∂T 3

�

r

= − 3

128

�P �
b2

(1 + c2)(16− a2) [4a(2 + a) + c + 3]

(1 + a)(2 + a)(2 + 3a)
(D.89)

�
∂A∗

∂T

∂3A

∂T 3

�
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D.7.2 Phase en h et f
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