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RESUME

Comme le dit son nom, un probleme d’interaction fluide-structure est principalement caracté-
risé par l'interaction entre les équations du domaine fluide et celles du domaine solide. Selon
le niveau de couplage entre ces deux domaines, différents problemes numériques peuvent sur-
venir lorsque l'effet de masse ajoutée est important. On vise donc a développer une méthode
de résolution entierement monolithique permettant de contourner ces problemes tout en arri-
vant a mieux représenter la physique du probleme. Cette approche vise ainsi a éviter le cofit
de calcul important que représente le remaillage en déplacant plutét les noeuds du maillage
selon le mouvement de I'objet solide dans le domaine fluide. De cette facon, la position des

noeuds du maillage représente une nouvelle inconnue du probleme.

En ce qui concerne le déplacement des noeuds, plusieurs méthodes sont déja bien établies. 1l
y a les méthodes basées sur les équations aux dérivées partielles, dont font partie la méthode
du pseudo-solide et la MMPDE, ainsi que les méthodes algébriques. Vu leur potentiel de
recherche et la facilité avec laquelle celles-ci peuvent étre implémentées dans un programme
d’éléments finis déja existant, les méthodes algébriques sont particulierement intéressantes.

Ce sont plus précisément IDW, ITM et I'TB qui sont testées ici.

Avant de se plonger dans le développement de la méthode de résolution monolithique, IDW,
ITM et ITB sont étudiées en profondeur pour arriver a conclure qu’aucune d’entre elles ne
se démarquent clairement des deux autres. En effet, selon le type de mouvement étudié,
la précision de chacune varie. ITM se démarque légerement dans les cas de rotation et de
déformation pure, mais sous certaines conditions seulement. En ce qui concerne la translation,
toutes les méthodes semblent équivalentes. Ces tests préliminaires mettent aussi de 'avant
I'importance de la méthode d’intégration utilisée. En effet, le lien est tres fort entre la méthode
d’intégration et la méthode d’interpolation puisque le programme integre d’abord la position
des noeuds pour ensuite interpoler la vitesse de ceux-ci. Ainsi, une méthode d’intégration
comme Runge-Kutta 4 permet d’obtenir des résultats beaucoup plus précis que la méthode
d’Euler et ce pour une charge d’intégration, communément appelée workload, équivalente.
La meilleure méthode de déplacement des noeuds a implémenter peut donc varier selon le
mouvement étudié ainsi que selon différentes contraintes externes, comme la nécessité ou
non d’implémenter une méthode linéairement exacte ou bien la limitation de la méthode
d’intégration a utiliser. Il demeure important de souligner qu’'ITM et I'TB se démarquent
d’IDW par le fait que celles-ci sont transfinies. Cela signifie que la représentation exacte de

I'objet est considérée lors du déplacement des noeuds et non seulement le nuage de points
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formant celui-ci. Il s’avere d’ailleurs que ces deux méthodes convergent plus rapidement
qu’IDW, c’est-a-dire qu'un moins grand nombre de sous-étapes de déplacement est nécessaire,

ce qui est particulierement utile lors de ’étude d’un mouvement imprévisible.

Le mouvement auquel on s’intéresse ici correspond au comportement chaotique dun cylindre
elliptique solide dans un écoulement fluide qui ne peut que tourner autour d'un certain
centre de rotation. A la suite de plusieurs tests, le pas de temps dt = 0.05 avec BDF2 a
été choisi comme étant suffisamment précis sans nécessiter un cotit de calcul trop important.
Le modele ALE/FFT avec I'approximation 4-ITM-ZE; a été choisie comme étant le modele
le plus précis pour ce type de mouvement; ce dernier n’a été appliqué qu’a une certaine
partie du domaine afin de minimiser le temps de calcul sans compromettre la précision des
résultats. Une fois toutes les équations nécessaires a la méthode de résolution monolithique
implémentées, vérifiées et validées dans EFS, la simulation de l'ellipse dans un écoulement
a Re = {200,300,400} et ou la distance entre le point de pivot et le centre géométrique
de T'ellipse varie telle que r = {0.1,0.12,0.13,0.14,0.16} a été effectuée. On y observe trois
principaux types de mouvement, soit la stabilité asymétrique, qui survient a un faible nombre
de Re, la phase chaotique, qui apparait lorsque le nombre de Re est graduellement augmenté,
et la stabilité symétrique qui suit lorsque le nombre de Re est encore supérieur. Cette séquence
des différents types de mouvement demeure toujours le méme, mais plus la distance entre
le point de pivot et le centre géométrique de l'ellipse augmente, plus la transition entre ces

phases est retardée.

En pratique, cette simulation peut représenter une bouée remorquée par un bateau ou bien
un cable sous-marin soumis a I’écoulement de 'eau. Il est donc toujours préférable d’éviter la
phase chaotique, soit celle ot le mouvement de rotation de I'ellipse est tout a fait aléatoire et
dont les amplitudes de rotation sont assez importantes. La phase de stabilité asymétrique est
donc préférable puisque 'amplitude des angles balayés par 'ellipse est largement inférieure
a la phase chaotique, mais aussi a la stabilité symétrique. Un coefficient d’amortissement
servant justement a limiter le mouvement de l'ellipse dans 1’écoulement a donc été ajouté
aux équations. Pour Re = 1000 et r = 0.16, une combinaison qui engendre normalement
un mouvement chaotique de l'ellipse si aucun amortissement n’est imposé, on observe bel
et bien un retard dans la transition entre les différentes phases. L’intervalle efficace de la
vitesse réduite adimensionnelle observée est donc U, = [0.6, 1.0], ¢’est-a-dire l'intervalle ou le

mouvement n’atteint pas la phase chaotique, mais ou I'ellipse n’est pas non plus sur-amortie.

La méthode de résolution monolithique ot la position des noeuds du maillage fait aussi partie
des inconnus s’est donc avérée précise et efficace. Plusieurs tests restent a étre complétés pour

arriver a quantifier le gain que celle-ci représente dans le cadre de la résolution de différents



problemes d’'TFS.
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ABSTRACT

A fluid-structure interaction problem, as the name says, is mainly characterized by the inter-
action between the equations of the fluid domain and those of the solid domain. Depending
on the level of the coupling between these two domains, different numerical problems can arise
when the added mass effect is significant. We therefore aim to develop an entirely monolithic
resolution method able to circumvent these problems while representing more accurately the
physics of the problem. This approach thus aims to avoid the significant computation cost
that the remeshing represents by rather moving the nodes of the mesh according to the mo-
tion of the solid object in the fluid domain. Hence, the position of the nodes of the mesh

represents a new unknown of the problem.

With regard to the displacement of the nodes, several methods are already well established.
There are the methods based on partial differential equations, which include the pseudo-solid
method and the MMPDE, as well as the algebraic methods. Given their research potential
and the ease with which these can be implemented in an already existing finite element
program, algebraic methods are particularly interesting. More specifically, IDW, TMI and
TBI are the ones tested here.

Before diving into the development of the monolithic resolution method, IDW, TMI and TBI
are studied in greater depth to conclude that neither of them clearly stands out from the
other two. Indeed, depending on the type of motion studied, the precision of each varies.
TMI slightly stands out in the case of pure rotation and deformation, but only under certain
conditions. As far as translation is concerned, all the methods seem to be equivalent. These
preliminary tests also highlight the importance of the integration method used. Indeed,
the link is very strong between the integration method and the interpolation method since
the program first integrates the position of the nodes and then interpolates their velocity.
Thus, an integration method like Runge-Kutta 4 makes it possible to obtain much more
precise results than the Euler method for an equivalent workload. The best method for the
displacement of the nodes to be implemented can therefore vary according to the motion
studied as well as according to various external constraints, such as the need or not to
implement a linearly exact method or the limitation of the integration method used. It is
important to emphasize that TMI and TBI differ from IDW since they are transfinite. This
means that the exact representation of the object is considered when moving the nodes and
not only the cloud of points forming it. It also turns out that these two methods converge

faster than IDW, that is to say that a smaller number of displacement sub-steps is necessary,
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which is particularly useful for the study of highly irregular motion.

The motion we are looking into here corresponds to the chaotic behavior of a solid elliptical
cylinder in a fluid flow which can only rotate around a certain pivot. Following several
tests, the time step of dt = 0.05 with BDF2 was chosen as being sufficiently precise without
requiring an important computation cost. The ALE/FFI model with the 4-TMI-Z&; appro-
ximation was chosen as being the most precise model for this type of motion; it has only been
applied to a certain part of the domain in order to minimize the computation time without
compromising the accuracy of the results. Once all the equations needed for the monolithic
resolution method have been implemented, verified and validated in FF8, the simulation of
the ellipse in a flow at Re = {200, 300,400} and where the distance between the pivot point
and the geometric center of the ellipse varies as r = {0.1,0.12,0.13,0.14,0.16} was completed.
Three main types of motion have been identified: asymmetric stability, which occurs at a low
Re number, the chaotic phase, which appears when the Re number is gradually increased,
and symmetrical stability which follows when the Re number is even higher. This motion
sequence always remains the same. However, as the distance between the pivot point and

the geometric center of the ellipse increases, the transition between these phases is delayed.

In practice, this simulation can represent a buoy towed by a boat or a riser subjected to the
flow of water. It is therefore always preferable to avoid the chaotic phase, that is, where the
rotational motion of the ellipse is completely random and where amplitudes of rotation are
quite large. The asymmetric stability phase is therefore preferable since the amplitude of
the angles swept by the ellipse is much lower than in the chaotic phase, but also less than in
the symmetrical stability. A damping coefficient which precisely serves to limit the motion
of the ellipse in the flow has then been added to the equations. For Re = 1000 and r = 0.16,
a combination which normally generates a chaotic motion of the ellipse if no damping is
imposed, we do observe a delay in the transition between the different phases. The effective
interval of the dimensionless reduced speed observed is thus U, = [0.6, 1.0], i.e. the interval
where the motion does not reach the chaotic phase, but where the ellipse is not overdamped

either.

The monolithic resolution method where the position of the nodes of the mesh are also a part
of the unknowns has proved to be precise and effective. Several tests remain to be completed
in order to quantify the gain that it represents in the context of the resolution of various FSI

problems.
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CHAPITRE 1 INTRODUCTION

Les problemes d’interaction fluide-structure (IFS) sont omniprésents en ingénierie. On peut
d’abord penser a I’écoulement du sang dans les arteres et les veines du corps humain ou bien
a l'interaction entre la houle des vagues et les plateformes pétrolieres. Il y a aussi 'exemple
classique de I’écoulement de l'air autour d’un avion qui crée les forces de portance et de
trainée sur celui-ci. Dans tous ces problemes, le mouvement du fluide a une influence sur le
mouvement de la structure et vice-versa. La dynamique de ces deux domaines physiques doit

donc étre prise en compte lors de la modélisation de ces phénomenes.

Il est d’abord nécessaire de déterminer quel niveau de couplage entre le domaine fluide et le
domaine solide est nécessaire a la simulation du probleme étudié. La méthode de résolution
pour chacun de ces domaines, que celle-ci soit implicite ou non, doit ensuite étre déterminée.

C’est alors que les équations a résoudre sont explicitées et peuvent étre implémentées.

1.1 Eléments de la problématique

1.1.1 Interaction fluide-structure

Les problemes d’IFS sont des problemes de mécanique ou les équations régissant la dynamique
des fluides et la mécanique du solide sont couplées dans le but de modéliser I'influence d’un

écoulement fluide visqueux et incompressible autour d’une structure élastique non-linéaire.

Il existe plusieurs fagons de résoudre numériquement ce type de probleme comme en témoigne
la Figure 1.1. Dans un premier temps, il est possible de résoudre indépendamment le domaine
fluide et le domaine solide ou bien de résoudre ces deux domaines de fagon unifiée. En
procédant de fagon partitionnée, les équations qui régissent 1’écoulement et le déplacement de
la structure sont assemblées dans deux systemes d’équations distincts. Cela permet d’utiliser
des logiciels spécialisés et d’ainsi obtenir d’importants gains en efficacité puisque les matrices
sont souvent mieux conditionnées que dans le cas d’un probleme unifié [4]. En choisissant
cette voie, il est possible de coupler faiblement le domaine fluide au domaine solide, ce qui
implique que les deux systemes d’équations sont résolus séquentiellement a chaque pas de
temps a l'aide de méthodes directes ou itératives adaptées aux caractéristiques des systemes
algébriques. Il s’agit de la méthode la plus efficace, c’est-a-dire celle ot le cofit de calcul est
le plus faible. Il est aussi possible de coupler fortement le domaine fluide au domaine solide.
En effet, pour accroitre la robustesse du calcul, toutes les inconnues impliquées dans I'un

des systemes algébriques sont résolues implicitement a ’exception des variables partagées



entre les systémes et un certain nombre d’itérations est effectué a chaque pas de temps
pour s’assurer de la cohérence de la solution. Le cotit de calcul devient rapidement plus

important. En ce qui concerne la résolution unifiée des domaines fluide et solide, il demeure

Probleme d’IF'S

T

Partitionné Couplé
Résolution indépendante Résolution unifiée
du fluide et du solide du ?t du solide
Faiblement Fortement Completement  Résolution isolée

couplé couplé monolithique de la pression
[ Fort effet de masse ajoutée ]
Conditionnel-  Conditionnel- Inconditionnel- Conditionnel-
lement stable lement stable lement stable lement stable

Figure 1.1 Schématisation des différents problemes pouvant survenir selon le niveau de cou-
plage utilisé pour la résolution des problemes d’IFS; adapté de [4]

possible de résoudre la pression indépendamment du champs de vitesse du fluide, réduisant
ainsi le cofit de calcul comparativement a la méthode complétement monolithique [4]. Cette
derniere donne les mémes résultats que la méthode partitionnée fortement couplée, mais la
différence fondamentale entre ces deux techniques réside dans leur fagon de gérer 'effet de

masse ajoutée.

Definition 1.1.1. Approche monolithique. Selon I’approche dite monolithique, les équations
de I'écoulement et du déplacement de la structure sont assemblées dans un seul systeme
d’équations. Elles sont résolues, a chaque étape de temps, a 'aide d'une méthode de calcul
algébrique directe! ou itérative 2. Dans cette approche, toutes les inconnues impliquées dans
les différents termes 3 des équations sont évaluées au temps courant de la solution. L’approche

monolithique est donc également implicite.

Definition 1.1.2. Effet de masse ajoutée. L’effet de masse ajoutée est communément utilisé

dans la littérature pour identifier les instabilités qui surviennent lors de la modélisation d’un

1. Par exemple les méthodes de factorisation LU PARDISO ou MUMPS.

2. Par exemple la méthode GMRES et ses méthodes de préconditionnement.

3. Par exemple l'accélération locale, %—;‘7 et 'accélération convective, ((u — v) - V)u, des équations de
Navier-Stokes.



écoulement interne incompressible pour lequel la densité du fluide est proche ou supérieure
de celle du solide, c’est-a-dire lorsque le ratio de masse ps/ps est petit. Par exemple, effet
de masse ajoutée est pratiquement inexistant en aéroélasticité alors qu’il est trés important

dans le domaine de la biomécanique.

On voit d’ailleurs, a la Figure 1.1, les conséquences d'un fort effet de masse ajoutée sur
chacune des méthodes de résolution. C’est alors qu’on peut observer que seule une résolution
completement monolithique des équations fluides et solides permet d’éviter les instabilités

numériques tout en assurant la convergence de la solution.

1.1.2 Déplacement des noeuds du maillage

Un écoulement visqueux incompressible autour d’une structure élastique entraine nécessaire-
ment le déplacement, la rotation ou bien la déformation de celle-ci. Peu importe la méthode
de résolution choisie, que ce soit par volumes finis ou par éléments finis, le maillage doit
s’ajuster au mouvement de la structure. Une méthode largement utilisée, mais toutefois tres

coliteuse, correspond au remaillage.

Definition 1.1.3. Remaillage. Le remaillage consiste a générer un nouveau maillage a une
ou plusieurs reprises au fil du déplacement de la structure selon I'importance du mouvement.
Il s’agit ainsi de reconstruire toutes les structures de données nécessaires a la construction

d’un maillage, comme la table de connectivité.

Une méthode moins cofiteuse correspond a la gestion d’un maillage mobile. Alors que la
structure se déplace ou se déforme, il est possible de bouger les différents noeuds du maillage
afin d’adapter celui-ci a la nouvelle configuration physique, et ce a chaque pas de temps. Il
n’est nullement nécessaire de reconstruire les structures de données. Il faut toutefois implé-
menter une méthode permettant de mettre a jour la position des noeuds du maillage selon le
mouvement de la structure. Cette méthode possede aussi ses limites puisqu’il faut préserver

la validité du maillage de fagon a ce que la résolution numérique demeure possible.

1.2 Objectifs de recherche

Ainsi, le but de cette recherche consiste a développer une méthode de résolution des problémes
d’IFS completement monolithique dans laquelle le domaine fluide et le domaine solide sont
résolus a chaque pas de temps, tout comme le mouvement des noeuds du maillage, a I’aide de
la méthode des vitesses. Cette approche ne rencontre ainsi aucun probléme lorsque 'effet de

masse ajoutée est important et n’implique pas non plus la lourdeur du remaillage lorsque la



structure se déplace ou se déforme. Il est alors nécessaire d’étudier les différentes méthodes
permettant de gérer un maillage mobile pour connaitre leurs forces ainsi que leurs faiblesses.
Comme le code d’éléments finis du groupe de recherche est déja développé, il est nécessaire
d’implémenter les méthodes d’interpolation du taux de déformation du maillage a l'intérieur
de celui-ci pour ensuite pouvoir le vérifier, le valider et finalement I’appliquer a des problémes

concrets d’interaction fluide-structure.

1.3 Plan du mémoire

Apres un court survol des éléments finis et des équations de Navier-Stokes, une bonne partie
de ce mémoire sera dédiée a I'explication des multiples équations mathématiques qui entrent
en ligne de compte pour la résolution monolithique d’un probleme d’TF'S a I'aide d’un maillage
mobile, soit le Chapitre 3. Suivra ensuite plusieurs tests de vérification et de validation de
I'implémentation du code d’éléments finis du laboratoire, FFS8, au Chapitre 4, allant de la
vérification des taux de convergence a la validation de problemes physiques et ce, en passant
par la modélisation de solutions manufacturées. L’application de cette nouvelle méthode au
probleme d’un cylindre elliptique solide placé dans un écoulement fluide sera effectuée au

Chapitre 5 pour finalement conclure le mémoire.



CHAPITRE 2 REVUE DE LITTERATURE

2.1 Interaction fluide-structure

Dans plusieurs cas, les spécificités du probleme physique a résoudre permettent d’identifier la
meilleure méthode de résolution numérique a utiliser. Cependant, pour un méme probleme,
plusieurs méthodes peuvent demeurer valides. Le choix final peut alors dépendre d’une mul-
titude d’autres contraintes, que ce soit de la difficulté d’implémentation, de la précision

nécessaire ou bien du cotit de calcul pour ne nommer que ceux-ci.

Dans le cas de Samaniego et al. [8], Papproche découplée est employée pour modéliser les
vibrations induites par vortex (VIV) dans le sillage d'un cylindre ou le ratio de masse est
grand. Cela signifie que les domaines fluide et solide sont résolus indépendamment. Ils uti-
lisent ainsi un solveur paralléle utilisant des éléments finis (EF) basés sur la formulation
faible stabilisée, mieux connue sous le nom de Variational Multiscale Stabilized formulation
(VMS), pour résoudre la partie fluide du probleme. Les forces de traction exercées par le fluide
sont ensuite appliquées au solide. En ce qui concerne le mouvement des noeuds du maillage,
deux différentes stratégies sont adoptées. La premiere consiste a bouger les noeuds situés a
la frontiere entre le fluide et le solide avec la méthode de la frontiere immergée (Immersed
Boundary method (IB)) alors que la seconde utilise plutdt une variante de la formulation
Euler-Lagrange (ALE), soit la méthode Fized Mesh ALE (FMALE). Celle-ci modélise vir-
tuellement le mouvement du fluide a chaque pas de temps pour ensuite le projeter sur le
maillage qui demeure fixe a 'aide de la méthode du krigeage. Des algorithmes spécifiques
doivent toutefois étre appliqués pour s’assurer de la cohérence géométrique des noeuds. Au
final, Samaniego et al. concluent que la méthode utilisant le maillage mobile est plus précise

et converge plus rapidement.

Malheureusement, aucune de ces méthodes ne peut étre appliquée a des problémes ou le ratio
de masse est prét de 1. En effet, ce type de probleme nécessite un couplage plus fort entre le
domaine fluide et solide. C’est d’ailleurs ce que soulignent Lozovskiy et al. [9]. qui souhaitent
modéliser I’écoulement hémodynamique dans un vaisseau sanguin souffrant d’un anévrisme.
Ces derniers évitent ainsi les instabilités souvent présentes dans les modeles faiblement couplés
en utilisant une approche fortement couplée par EF ot la formulation ALE des équations
de Navier-Stokes est résolue. Ils arrivent a réduire le cotit de calcul a ’aide d'une technique
d’extrapolation qui mene a une méthode semi-implicite ou seule la solution a un probleme
linéaire est nécessaire a chaque pas de temps. La stabilité de cette technique est d’ailleurs

démontrée. Toutefois, le calcul du mouvement des noeuds demeure quant a lui découplé de



la résolution des vitesses, des déplacements et de la pression. Cela entraine des limitations

importantes puisque seuls de faibles déplacements peuvent étre traités.

Une autre approche intéressante correspond a celle de Dettmer et Perié¢ [5] qui arrivent a
modéliser le phénomene des VIV tout comme le flottement d’un pont a ’'aide d’'une méthode
monolithique par EF utilisant aussi la formulation ALE des équations de Navier-Stokes.
Celle-ci permet d’utiliser un maillage mobile qui est géré par un algorithme permettant de
maintenir la qualité du maillage tout au long du mouvement de la structure. L’alternative
d’un maillage fixe est mentionnée, mais celle-ci est limitée a un seul solide immergé dans un
domaine fluide infini et est donc considérée trop restrictive. La méthode généralisée-a est
employée pour l'intégration en temps, permettant ainsi un mouvement en une seule étape
et assurant une stabilité inconditionnelle pour les problemes d’ordre 2. Le systeme complet
comporte donc plusieurs équations non-linéaires et est schématisé a la Figure 2.1. Les forces
de tractions exercées par le fluide permettent de déterminer le mouvement de la frontiere
solide qui, elle, détermine la géométrie du domaine fluide et permet donc le mouvement des
noeuds. Toutefois, cette méthode n’a pas été généralisée a des problemes ou le ratio de masse
est faible. Il est donc possible que des instabilités surviennent. Dans les cas présentés par
Dettmer et Peri¢, la dynamique du solide est assez simple pour que le probléeme se résume

essentiellement a la résolution de 1’écoulement fluide et du mouvement du maillage.

N

Conservation

Ecoulement de la quantité

fluide de mouvement
du solide

Mouvement
du maillage
du domaine fluide

Figure 2.1 Les trois domaines a résoudre dans le cas d’'un probleme d’IFS selon Dettmer et
Perié [5]

Schott, Ager et Wall présentent, quant a eux, une nouvelle méthode permettant de résoudre

des problémes d’interaction fluide-structure plus complexes ou la structure connait de grandes



déformations [10]. Celle-ci consiste & entourer la structure d’un fin domaine ou la formulation
ALE des équations de Navier-Stokes est appliquée et d’entourer ce dernier d’'un domaine au
maillage fixe et purement eulérien. Cette méthode est autant applicable aux éléments finis,
aux volumes finis ou aux méthodes discontinues de Galerkin. Le lien numérique entre les
deux sous-domaines est imposé faiblement par la méthode de Nitsche et le mouvement du
maillage est géré par la méthode des éléments finis coupés (CUTFEM). En ce qui concerne
la mise a jour des noeuds du maillage, c’est la technique du pseudo-solide qui est appliquée
au sous-domaine ALE. Comme la technique présentée est monolithique, la procédure de mise

a jour de la position des noeuds est ajoutée au systeme qui est alors résolu implicitement.

On remarque assez rapidement que la résolution numérique d’un probleme d’IFS peut se
faire de plusieurs facons différentes. Dans le cas présent, tel que mentionné a la Section 1.2,
le but est de développer une méthode de résolution générale permettant de traiter un grand
éventail de probléemes. Ainsi, les méthodes monolithiques semblent moins contraignantes que
les méthodes partitionnées. Il est aussi important de considérer que la résolution se fera a
partir du code FF§8 déja existant. Méme si celui-ci sera forcément modifié, la structure de

données ainsi que les méthodes déja implémentées doivent étre considérées.

La méthode ALE est largement utilisée en IFS et semble définitivement étre la meilleure
méthode permettant de modéliser ce type de phénomenes. Il reste toutefois a déterminer si
cette formulation doit étre appliquée a tout le domaine ou bien qu’a une partie restreinte
de celui-ci pour minimiser le cotlit de calcul. Cependant, dans un contexte de recherche, la
contrainte du cofit de calcul est moins présente méme si elle demeure intéressante a étudier
pour une potentielle application commerciale. Finalement, la littérature semble s’orienter
davantage vers les méthodes ot le maillage est mobile puisque celles-ci sont plus versatiles et

plus précises.

Une revue de littérature s’attardant davantage aux différents algorithmes de gestion du

maillage mobile et d’interpolation de la vitesse des noeuds du maillage est donc nécessaire.

2.2 Maillages mobiles

Les multiples méthodes permettant de gérer un maillage mobile peuvent étre divisées en
deux principales catégories : (1) les méthodes basées sur les équations aux dérivées partielles
(EDP) et (2) les méthodes algébriques.



2.2.1 Meéthodes basées sur les équations aux dérivées partielles
Origines

Les méthodes basées sur les équations aux dérivées partielles pergoivent la mise a jour du

maillage comme le résultat de la déformation d’un milieu virtuel continu.

Les premiers balbutiements de ce type de méthodes peuvent étre retracés jusqu'en 1966,
ou Winslow [11], qui travaille alors avec les différences finies, construit numériquement un
maillage triangulaire a l'aide de I'équation de Laplace qu’il résout par des surrelaxations
successives. Il arrive ainsi a générer un maillage aux coordonnées curvilignes en agencgant
un maillage triangulaire structuré aux lignes de courant équipotent, typiques d’un probleme

magnétostatique.

C’est alors que Thompson, Mastin et Warzi [12], en 1982, reprennent le travail de Winslow et
arrivent a obtenir un maillage qui coincident avec toutes les frontieres d’'un domaine irrégulier.
Ceux-ci utilisent un systeme de coordonnées qui, couplé avec le mouvement physique, s’adapte

dynamiquement et permet le déplacement du maillage avec les frontieres.

Au cours de la méme période, dans une série d’articles, Lynch [13] et Lynch et O’Neil [14]
ont été les premiers a utiliser I’équation des solides élastiques pour adapter le maillage aux
déformations des frontieres du domaine physique. Cette idée fut reprise et développée par
Sackinger, Schunk et Rao [15] en 1996 pour la modélisation de I'interaction fluide-structure
connaissant de grandes déformations. En particulier, ils expliquent comment linéariser un
systeme d’équations lorsque les coordonnées du maillage font également partie des inconnues
du systeme d’équations. La construction d’un tel systeme monolithique est essentiel pour
assurer la stabilité de I'intégration temporelle des phénomenes physiques lorsque le ratio de
masse entre le fluide et la structure est égal ou inférieur a I'unité. En 2006, Dettmer et
Peri¢ [5] ont, a juste titre, noté que les coordonnées intérieures du maillage sont dépendantes
des coordonnées des frontieres mobiles, réduisant ainsi considérablement la taille du systeme
d’équations sans compromettre le taux de convergence optimal de la linéarisation de Newton-

Raphson.

Pseudo-solide

Dans les simulations d’interaction fluide-structure, ’approche la plus courante pour le dé-
placement des noeuds du maillage est la méthode du pseudo-solide. Différentes stratégies
peuvent étre utilisées pour controler les propriétés du pseudo-solide afin d’optimiser la qua-

lité du maillage. Les stratégies en une étape attribuent un coefficient de rigidité aux éléments



en fonction des propriétés géométriques initiales. Les stratégies en deux étapes, largement
étudiées par Xu et Accorsi [16], commencent par une analyse pseudo-structurelle linéaire
basée sur les déplacements prescrits aux frontieres, puis les déformations sont utilisées pour

attribuer une rigidité non homogene lors de la seconde analyse.

MMPDE

Au milieu des années 90’, dans une série de papiers [17-20], Huang et Russel établissent les
bases de la méthode de déplacement des noeuds connue sous 'abréviation MMPDE (Moving
Mesh Partial Differenciation Equation). Ils reconnaissent ainsi la nature variationnelle de
ce type de méthodes. Les équations du probleme a résoudre sont donc remplacées par un
systeme dont les inconnues incluent la solution du probléme physique et les coordonnées
des noeuds du maillage. En appliquant le principe d’équidistribution a une fonction d’une
caractéristique du probleme physique (telle que le gradient de la solution), ils développent
une série d’équations différentielles aux dérivées partielles, elliptiques et paraboliques, pour
contrdler la position des noeuds. Ce faisant, ils lient les coordonnées du domaine physique

aux coordonnées invariantes dans le temps du domaine de calcul, c’est-a-dire & = x(&,t).

En 1998 [21], ils étendent le domaine d’application de la méthode MMPDE aux géométries
2D et 3D. Puisque les équations sont exprimées en fonction des variables du domaine de
calcul, la méthode MMPDE peut également déplacer les noeuds d'un domaine physique dont

les frontieres se déforment.

Pour obtenir les équations aux dérivées partielles, Huang et Russel se sont inspirés des travaux
de Winslow [11] sur la génération de systeémes de coordonnées curvilignes a 1'aide d’équations
de Laplace. La transformation de coordonnées entre le domaine physique et le domaine de

calcul, i.e. € = &(x), s’obtient de I'extrémisation de la fonctionnelle
1 o .
1) = 5 [ dz (V€)' (e,

avec GG; une matrice symétrique définie sur l'espace de fonctions, satisfaisant d1(£) = 0 ou
V - (G;'VE) = 0. Huang et Russel proposent différentes constructions pour les matrices
G;. Tout comme Winslow, on peut écrire la fonctionnelle en fonction des coordonnées du

domaine physique x, i.e. I(x).

On distingue trois approches pour adapter un maillage en fonction de I'estimation de 'erreur
ou d’une fonction de controle. L’adaptivité h consiste a subdiviser le maillage, ’adaptivité
p a choisir le degré du polynéme d’interpolation, et I'adaptivité r a déplacer les noeuds du

maillage. Cao, Huang et Russel [22] décrivent I'adaptivité r pour les maillages non-structurés
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basée sur la méthode MMPDE. Les applications numériques illustrent le potentiel de la
méthode pour le controle et le mouvement des noeuds du maillage dans des configurations
complexes. Cependant, la difficulté réside dans la construction de la fonction de contrdle pour

capturer simultanément plusieurs structures de 1’écoulement.

Les méthodes basées sur les équations aux dérivées partielles ont ainsi connu de grandes
améliorations dans les derniéres décennies et ont donc atteint un niveau de sophistication
assez impressionnant ou il est a la fois possible de controler la mise a jour de la position
des noeuds du maillage et l'erreur de discrétisation. Ces méthodes, par leur nature, ajoutent
toutefois des équations différentielles au systeme qui en contient déja plusieurs, servant a
représenter le phénomene physique. Il s’agit donc d’équations supplémentaires qui doivent
aussi étre discrétisées, que ce soit par la méthodes des différences finies, des éléments finis ou
bien des volumes finis. C’est d’ailleurs cette caractéristique intrinseque a ces méthodes qui a

mené au développement d’'une autre catégorie de méthodes, soit les méthodes algébriques.

2.2.2 Méthodes algébriques

Les méthodes algébriques sont essentiellement des méthodes d’interpolation qui pondeérent le
déplacement des noeuds du maillage selon le déplacement des frontieéres mobiles et résolvent
ainsi des équations aux dérivées ordinaires (EDO). La preuve de I'existence d'une solution
d’une EDO est beaucoup plus simple que pour une EDP, qui requiert I'analyse de ’espace
solution et la construction d’approximations élémentaires appropriées. Les méthodes algé-
briques sont donc beaucoup plus faciles a implémenter, ce qui les rend tres intéressantes pour
les développeurs qui souhaitent simplement ajouter la résolution d’un maillage mobile a un
programme de résolution d’équations différentielles déja existant. Ici, principalement trois
méthodes sont étudiées, soit la Radial Basis Functions method (RBF), I'Inverse Distance-
Weighting method (IDW) et I'Interpolation Transfinie en Moyenne (ITM).

IDW

En 1968, Shepard [23] définit pour la premiere fois la méthode d’interpolation de données
non-structurées par une pondération inverse a la distance entre les interpolés et les données
de l'interpolation. Cette méthode est devenue un outil essentiel pour ’analyse des données
en météorologie, en biologie, en imagerie et en géoscience. La méthode peut étre aisément
étendue a des dimensions supérieures de 'espace et est en fait une généralisation de I'ap-
proximation de Lagrange aux espaces multidimensionnels. Depuis quelques années, elle est
devenue une méthode trés compétitive pour déplacer les noeuds du maillage lors de la simu-

lation de probleme d’IFS. IDW se base ainsi sur un nuage de points auxquels les données sont
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connues pour interpoler celles-ci sur les autres points du domaine. La Figure 2.2, représentant
des points auxquels Shepard applique la fonction d’interpolation 2.1, en illustre justement

un exemple.

°® ® 3 ®
D, Do P Ds
w_A ~ J
da ds
¢ J
v
dy

Figure 2.2 Schématisation de 'interpolation au point P par la méthode IDW

N 1
i=1%igF di £ 0
N 1 Sl ;
f(P) = L% (2.1)
Zi si dz =0

ou P correspond au point auquel on veut interpoler les données,

N au nombre de points ou les données sont connues,

z; a 'information connue a chaque point,

k & la dimension (espace R*) et

d; a la distance entre le point ou 1'on veut interpoler les données et ceux ou les données

sont connues.

Shepard discute aussi de la construction des fonctions de pondération a support global et a
support compact pour minimiser le cotit du calcul, 'erreur d’interpolation et pour modéliser

Ueffet de barriéres.

Witteveen et Bijl [24] sont les premiers a appliquer la méthode d’interpolation de Shepard au
déplacement des noeuds d’un maillage. Ils utilisent donc la position des noeuds composants
les frontieres pour interpoler la position de tous les noeuds du maillage. Cette application est
illustrée a la Figure 2.3 ou une ellipse solide, composée du nuage de point £ = {£1, &, ..., &s}

est située dans un domaine fluide €.

La formule d’interpolation utilisée correspond ainsi & 'Equation (2.2) et est simplement une

application de la formule d’interpolation originale de Shepard.

> f(€)
= lle— €| €|I’“
u(z) = £ :

2z

ek

(2.2)
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Figure 2.3 Interpolation de la position des noeuds d’un maillage (zone grisée) a partir d’un
nuage de points F = {1, &, ..., &} formant I'objet solide placé dans un domaine fluide €2

ou E = {&,...,&n} correspond au nuage de points,

f(&) aux données a ces points et

k & la dimension (espace RF).

Witteveen et Bijl réalisent plusieurs essais numériques qui démontrent le gain substantiel en
efficacité sur la méthode RBF de De Boer [2], détaillée a la Section 2.2.2, sans compromettre

la précision des calculs et la qualité des maillages.

IDW est une méthode d’interpolation qui gagne rapidement en popularité, il est toutefois in-
téressant de la comparer a la méthode du pseudo-solide. Barral, Luke et Alauzet [25] se sont
justement attardés a cette comparaison pour en conclure que le préconditionneur nuit a la
programmation parallele de la méthode du pseudo-solide. Quant a elle, 'interpolation pondé-
rée en fonction de la distance bénéficie d'un excellent niveau de programmation parallele. Les
performances de ces méthodes sont mesurées a 'aide d'une métrique de la qualité du maillage
et du nombre d’échange d’arétes. Les tests incluent, en 3D, la compression radiale d'un cy-
lindre, la déflexion d’une poutre et la trainée d’un F-117. Il semble qu’en général la méthode
IDW soit la plus efficiente. Toutefois, la méthode du pseudo-solide nécessite beaucoup moins

d’échange de sommets si le cisaillement de I’écoulement est important.

Landry, Soulaimai, Luke et Haj Ali [26] décrivent, quant & eux, une méthodologie pour
déplacer le maillage en fonction du déplacement des frontieres. Ils utilisent IDW pour calculer
le champ de déplacement, puis appliquent divers algorithmes de lissage pour améliorer la
qualité du maillage et éliminer les éléments enchevétrés. Leur méthode s’est révélée efficace
pour la simulation de l'interaction fluide-structure d’une aile symétrique et d’une aile en

fleche. Cependant, des améliorations sont nécessaires pour traiter la déformation du maillage
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lorsque les frontieres mobiles sont trés pres les unes des autres.

RBF

De Boer, Van der Shoot et Bijl [2] sont les premiers a proposer des bases radiales pour
adapter un maillage aux déformations des frontieres. Ils ont testé six bases radiales a support
global, ¢’est-a-dire que la position de tous les noeuds influence la position du noeud interpolé,
ainsi que huit bases radiales a support compact, ou seulement la position des noeuds situés
a un certain rayon du noeud interpolé est prise en compte. Les déplacements des noeuds
internes s’obtiennent de la somme des contributions de la base radiale. Tout comme IDW,
RBF interpole a partir d'un nuage de points F = {&,&,...,&n} ou la fonction f(&;) est
connue, tel qu'illustré a la Figure 2.3. C’est donc en trouvant la solution au systeme linéaire
de I'Equation (2.3) que les coefficients {\1,..A\,,} de la méthode d’interpolation u(x) de

'Equation (2.4) sont déterminés'.

p(ll€r =&l - @(l[6r = &mlD) A1 f(&1)

; : : = : (2.3)
e([1&m — &) - @(|[€m — &mll) mxm Am f(&m)
u(x) = > Aie(llz - &) (2.4)
j=1
ou || - || correspond a la mesure de la distance entre deux points,

m au nombre de points ou les données sont connues,
©(||&; — &il|) & une fonction a base radiale qui dépend de la distance entre deux points,
A; aux coefficients recherchés et

f(&;) aux données connues aux points {1, &s, ..., Em -

Les différentes fonctions a bases radiales a support global sont présentées au Tableau 2.1 et

celles a support compact, tirées des travaux de Wendland [3] sont présentées au Tableau 2.2.

Les tests incluent, en 2D, la translation et la rotation d’un rectangle, ainsi que 'extension
du volet d'une aile. Les résultats démontrent que cette méthodologie produit des maillages
de qualité supérieure a celle de 'analogie des ressorts de Farhat [27]. La qualité relative des
éléments est utilisée pour mesurer 'effet de différentes bases radiales. De Boer, Van der Shoot

et Bijl concluent en recommandant la fonction & base radiale C? & support compact.

1. Un polynéme linéaire peut étre ajouté au systéme s’il est nécessaire que la méthode soit linéairement
exacte.
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Tableau 2.1 Fonctions a bases radiales a support global, tiré de [2], on x = ||x||

No Nom Abbréviation ¢(]||xz||)
1 Spline de plaque mince TPS 22 log(x)
2 Biharmoniques multiquadriques MQB Vva?+ x?
3 Biharmoniques multiquadriques inverses IMQB ”ﬁ
4 Biharmoniques quadriques QB 1+ 22
5  Biharmoniques quadriques inverses 1QB il +112
6  Gaussienne Gauss e

Tableau 2.2 Fonctions a bases radiales a support compact, tiré de [3], ou £ = ||z — &||/R,

R > 0 étant la rayon du support compact

No  Nom o(llz —&l1)
7 CPCY (1-¢)?
8 CPC?  (1—¢)i4E+1)
9 CPcC* (1-85(2+66+1)
10 CP (¢S (1 5)8(3253 + 2587+ 8+ 1)

11 CTPSC® (1-¢)°

12 CTPS C' 14 %¢2 —40¢% + 15¢* — 3¢° 4 20¢% log (&)
13 CTPS C? 1 —30£% — 10€3 4 456% — 6£° — 60&3 log(€)
14 CTPS C? 1 —20£2 +80&% — 456% — 16£° + 60£* log(€)

Quelques années plus tard, Rendall et Allen [28,29] appliquent justement la fonction & base
radiale C? de Wendland [3] pour déformer le maillage volumique du fluide en fonction de la
déformation d’une ou de plusieurs surfaces aéroélastiques. Cette méthode est certes efficace
et robuste, mais requiert la construction d’une matrice contenant N? coefficients ot IV est le
nombre de sommets du maillage & déformer. Ainsi, on obtient une matrice de 10?2 nombres
réels pour un petit maillage 3D de 10° noeuds. La solution directe de ce systéme d’équa-
tions est tres coliteuse et méme prohibitive en 3D. Ils proposent donc un algorithme tres
élaboré pour réduire la taille du systeme d’équations avec un impact limité sur le controle

des déplacements des noeuds du maillage.

Encore plus récemment, Coulier et Darve [30] utilisent la méthode des bases radiales pour
interpoler le déplacement des noeuds du maillage pour des problemes d’IFS. La robustesse
de I'interpolation utilisée est soulignée. Cependant, le systéme d’équations des coefficients de

I'interpolation est dense, i.e. de I'ordre du nombre N de noeuds, et la solution directe est
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donc de complexité O(N?). Les solveurs de Krylov se buttent, pour leur part, au mauvais
conditionnement du systeme avec 'augmentation considérable du nombre de coefficients a

calculer en 3D.

ITM

En 1999, Floater et Gotsman [31] étudient la construction d’une transformation continue
entre deux maillages de R?. Ils montrent que pour toutes paires de maillages convexes et
compatibles, avec des frontieres identiques, il est possible de construire, par des combinai-
sons convexes, une transformation continue non-dégénérée de I'un vers I’autre. La transforma-
tion linéaire communément utilisée entre deux maillages peut induire des éléments inversés.
Floater et Gotsman étudient donc les conditions suffisantes pour obtenir une bonne trans-
formation, et, a 'aide des coordonnées barycentriques, ils obtiennent un systeme d’équations
dont la solution détermine les coefficients de la transformation. Cette technique, appelée le
morphing, est utilisée en imagerie pour la transformation continue et animée d’une image
en une autre. Entre les deux images, le maillage des objets est donc modifié. Le cadre théo-
rique de cette méthode peut étre exploité pour déplacer le maillage des objets en interaction

fluide-structure.

En 2003, Floater [32] généralise les coordonnées barycentriques & un polygone convexe a k
cOtés pour la paramétrisation et la déformation de triangulations. La construction en coor-
données barycentriques est lisse (C*) et varie contintiment par rapport aux sommets de la
triangulation. Il nomme ces coordonnées mean value coordinates puisque leur construction

satisfait le théoreme de la moyenne.

Les points vy, v1, ...., v, sont les sommets d’'une triangulation dans R? de facon & ce que vy
n’est jamais sur le bord du polygone convexe formé par vy, ..., v, tel qu’illustré a la Figure
2.4.

L’objectif est I’étude des poids Aq, ..., A\x > 0 tel que

k
i=1 Aiv; = g,
k —

Dans le cas de polygones convexes, les poids, exprimés tel que

L0 ey 0/ + )
D=1 Wj

>\7§ y

v — o]

sont les coordonnées pour vy par rapport a vy, ...., vy [33].
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Vi—1

Figure 2.4 Triangulation d’un polygone étoilé

En 2009, Dyken et Floater [34] peaufinent davantage le développement de l'interpolation
transfinie en moyenne d’une fonction f définie sur des courbes fermées (sans boucle) du plan.
Ils établissent des conditions suffisantes pour assurer la cohérence de I'I'TM, c’est-a-dire des
conditions qui garantissent que I'I'TM est un interpolant. Ils généralisent ainsi la formule
d’interpolation aux domaines non-convexes en comptant le nombre d’intersections entre la

ligne [vg, p|, joignant le point vy et tout point p de la frontiére, et la frontiere du domaine.

Bruvoll et Floater [35] poursuivent sur cette lancée en généralisant ces résultats dans R".
Dans R?, ils obtiennent des formules pour I'interpolation transfinie d’une fonction f évaluée

sur une surface fermée qui délimite une région de I’espace.
Dans R", Iinterpolation transfinie en moyenne peut étre réécrite sous la forme intégrale de

I'Equation (2.5)

_ 1 _t-r
u(e) = 5o A e (@), (25)

avec
o) = [ s i)

pour £ € I" et I une hypersurface de dimension n — 1.

En ce qui concerne la modélisation de problemes d’IFS a ’aide de la méthode des éléments
finis, le progres le plus intéressant est fait par Ju [36] qui applique la formulation intégrale

(2.5) dans R? en remplacant la courbe par une collection de segments de droite. L’applica-
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tion de cette méthode a la résolution de probleme d’IFS semble ainsi avoir un intéressant
potentiel. Le but original de 'I'TM differe de celui d’'IDW et de RBF par le fait que l'inter-
polation est basée sur des courbes continues plutdt que sur un nuage de points. En éléments
finis, il est possible d’approximer ces courbes par plusieurs segments de droite sur lesquels
différentes fonctions d’interpolation géométriques peuvent étre appliquées. On peut penser
ici a des polynémes de Lagrange linéaires ou bien quadratiques et mémes a des fonctions tri-
gonométriques. La flexibilité de I'I'TM, quant a la précision de I'approximation géométrique
des frontieres, différencie cette méthode des autres et souligne du fait méme le potentiel de

recherche qu’elle représente.
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CHAPITRE 3 MATHEMATIQUES DE L’INTERACTION
FLUIDE-STRUCTURE

Pour arriver a I'implémentation monolithique d’une méthode de résolution par éléments finis
a maillage mobile, il est évidemment nécessaire de mieux comprendre les différents éléments
qui la composent. Ce chapitre vise donc a revenir brievement sur la méthode des éléments
finis, a détailler mathématiquement la formulation Euler-Lagrange des équations de Navier-
Stokes ainsi que I'équation de conservation du moment angulaire et a reformuler les différentes
méthodes d’interpolation de la position des noeuds du maillage pour finalement établir les

équations clées a implémenter dans EFS.

3.1 Survol des éléments finis

La méthode de Ritz (1909) [37], qui sert & approximer la solution d’une équation aux dé-
rivées partielles dont les conditions frontieres sont connues, est souvent considérée comme
I’ancétre des éléments finis. Dans cette section, c¢’est 'équation de la chaleur 1D, qui permet
de connaitre le champ de température a l'intérieur d’'un domaine, qui sera utilisée a titre

d’exemple dans le but d’expliquer cette méthode.

3.1.1 Formulation variationnelle

La méthode de Ritz, tout comme la méthode des EF, est basée sur la formulation variation-
nelle des EDP. Elle permet d’affaiblir ’équation en la multipliant par une fonction test ainsi
qu’en l'intégrant sur tout son domaine pour transformer celle-ci en un systéme matriciel qui
peut étre résolu a 'aide de fonctions d’interpolation. Cela donne lieu a une approximation
de la solution sur tout le domaine qui varie selon l'ordre de précision désiré. Toutefois, la
méthode de Ritz devient rapidement cotiteuse et imprécise pour les problémes moindrement
complexes et est pratiquement inapplicable aux géométries 2D et 3D. En contrepartie, les
EF appliquent pratiquement la méme procédure, mais sur un domaine discrétisé, ¢’est-a-dire
sur un maillage composé de plusieurs petits domaines élémentaires (€2.). Cette différence
entre la méthode de Ritz et celle des EF est justement illustrée & la Figure 3.1. Les EF
permettent ainsi de réduire considérablement la taille du systeme d’équations, de réduire
son conditionnement et de généraliser la discrétisation des formulations variationnelles aux

problemes multidimensionnels.

Les EF permettent de résoudre une EDP sur un maillage. Par exemple, dans le cas de
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Frontieres sur
lesquelles les
valeurs sont connues

r r
Qe
Q Q
Domaine Domaine
gouverné gouverné
par une EDP par une EDR
(a) Méthode de Ritz (b) Méthode des EF

Figure 3.1 Comparaison entre le domaine ) a résoudre avec la méthode de Ritz et avec la
méthode des EF, ou les domaines élémentaires €2, sont considérés

I’équation de la chaleur, la méthode des EF permet, en 1D, de trouver la température exacte
aux noeuds et les fonctions d’interpolation permettent ensuite d’approximer le champ de
température sur chaque élément. On dit alors que le degré de liberté de I’approximation

correspond a la température aux noeuds de 1’élément.

Definition 3.1.1. Degrés de liberté (DDL). En EF, les degrés de liberté correspondent aux
valeurs du champ déterminé par 'EDP. Dans le cas de 1’équation de la chaleur, il n'y a
qu'un seul champ, soit la température alors que I'équation de Navier-Stokes, par exemple,

comportent plusieurs champs, soient la vitesse d’écoulement et la pression du fluide.

Comme mentionné précédemment, la démarche mathématique est essentiellement la méme
que pour la méthode de Ritz, comme en témoigne les équations du Tableau 3.1 pour une
solution dans Hg ().

Dans la Tableau 3.1,

k correspond a la conductivité thermique du matériau,
T a la température,

f a la production volumique,

(2 au domaine,

v aux fonctions tests,

U, et ¥; aux fonctions d’interpolation,

a;; a la matrice bilinéaire élémentaire,

b au vecteur linéaire élémentaire,
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Tableau 3.1 Résolution de Péquation de la chaleur a l'aide de la méthode des EF

Description Equation
: d dT
Formulation forte ——|k— ) —f=0, Vxe
dx dx
d dT d ar
Formulation faible continue YL gy = / — | pk— | dz + / pfdx
Qdz dx dx dx
NELM d dTe
Formulation faible discréte Z / L RS do = / o fdx
NELM 40, d\If] NELM
Systeme matriciel élémentaire ;::1 ( Qe dr dx dr ) Z / Vifdr

aTezf

NELM au nombre d’éléments a 'intérieur du domaine et

I'exposant e indique que les variables sont calculées sur un élément du domaine.

Cependant, comme la résolution de 'EDP se fait sur chaque élément du domaine, une étape
supplémentaire s’ajoute, soit I’assemblage des résultats élémentaires pour obtenir le systeme
d’équations global permettant de résoudre 1’équation de la chaleur sur tout le domaine. Plu-
sieurs tables permettent ainsi de mettre en relation les coordonnées des noeuds du maillage,
les éléments du domaine ainsi que les degrés de liberté a résoudre. D’un point de vue informa-
tique, cette opération nécessite beaucoup d’espace et plusieurs mises a jour des structures de
données, ce qui devient rapidement lourd et peut entrainer des erreurs. C’est d’ailleurs pour
cette raison que l'on souhaite éviter de remailler le domaine si celui-ci se déforme puisque

cela implique des cotits de calcul élevés.

3.1.2 Fonctions d’interpolation

Le Tableau 3.1 fait apparaitre les fonctions test ¢ et d’interpolation W. Dans le cas présent,
I’approche de Galerkin est utilisée, c’est-a-dire que les mémes fonctions servent a la fois de
fonctions tests et d’interpolation. Celles-ci servent ainsi a approximer le champ de DDL, mais
aussi la géométrie du domaine. Selon le probléme a résoudre et la géométrie du domaine, il est
possible de choisir des fonctions qui donneront des résultats plus précis. Par exemple, pour des
problemes simples, des fonctions d’interpolation linéaires peuvent étre suffisantes. Toutefois,
comme le dit leur nom, ces fonctions ne permettent de capturer exactement qu'une distribu-
tion linéaire des DDL sur chaque élément ainsi que des géométries linéaires. Lorsqu’on a des
géométries moindrement complexes, comme des courbes, les fonctions d’interpolation quadra-

tiques ou d’ordre supérieur sont plus intéressantes puisqu’elles approximent plus fidelement



21

la géométrie. Il faut toutefois étre prudent puisqu’il faut s’assurer d’étre sous-paramétrique
ou bien isoparamétrique pour éviter des problemes d’instabilité numérique. En d’autres mots,
le degré de la fonction d’interpolation de la géométrie ne doit pas dépasser le plus petit degré

des fonctions d’interpolation approximant les champs de DDL.

3.1.3 Schéma d’intégration en temps

Comme c’est le cas pour plusieurs problémes, les DDL ne varient pas seulement dans I'espace,
mais aussi en temps. Alors que le maillage permet de discrétiser ’espace, un schéma de
discrétisation doit étre choisi pour permettre la discrétisation du DDL en temps. Dans le
cas présent, ce sont les formules de différentiation arriere, communément appelées Backward
Differentiation Formula (BDF), qui sont utilisées puisque celles-ci sont déja implémentées
dans FF8. Ces formules permettent d’approximer la dérivée d’une fonction y = f(¢) au
temps t = t,, en considérant les différentes valeurs de cette fonction aux temps précédents.
Les formules BDF utilisées varient selon le nombre de pas de temps précédents considérés,

tel que l'illustre la Figure 3.2.

Y
t
tn—G tn—5 tn—4 tn—S tn—? tn—l tn t
v BDF1 Y
~
v BDF2 y
~
BDF5

Figure 3.2 Schématisation de la discrétisation en temps pour des formules BDF d’ordres
différents

On choisit ainsi le schéma de discrétisation BDF selon le probléeme a résoudre puisque les

formules different par leur région de stabilité.
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3.2 Formulation Euler-Lagrange (ALE) des équations de Navier-Stokes

Lors de la résolution d’un probléme impliquant un écoulement fluide, il est nécessaire de
résoudre les équations de Navier-Stokes qui décrivent le mouvement d’un fluide newtonien.
L’équation de Navier-Stokes correspond en réalité a une autre forme de la seconde loi de
Newton, F = ma, comme cela est illustré a la Figure 3.3. En effet, le terme de force F
contient, par exemple, les forces visqueuses ainsi que le terme de pression. La complexité de
I’équation de Navier-Stokes réside principalement dans la définition du terme d’accélération
a.

l%ltl +((u—v)- V)u] =V {pI[Jru(Vu%—VTu)}

WLKIH —

a = F

Figure 3.3 Analogie entre la seconde loi de Newton et I’équation de Navier-Stokes

La description du mouvement d’un fluide peut se faire de deux fagons équivalentes, soit via

la formulation lagrangienne ou eulérienne.

3.2.1 Cinématiques lagrangienne et eulérienne de I’écoulement

Soit Uy C R", le domaine mouillé initialement par le fluide. Nous supposons qu’il existe
une application continue et bijective de classe C'(]Ty, T1[) telle que Vt €]Ty, Ty, c’est-a-dire

I'intervalle de temps de la simulation,
p(t): Uy — U ={z € R" |Vay € Uy, z = p(t,z9)} CR"

Celle-ci est illustrée a la Figure 3.4. Dans le domaine Uy, I’hypothese du continuum modélise
le fluide réel et permet I'utilisation des EDP pour décrire les lois de conservation de masse,
d’énergie et de quantité de mouvement. Ainsi, chaque point de coordonnées xy € Uy détermine

uniquement une particule du fluide et p(¢,xy) € R" sa position en fonction du temps.

La cinématique lagrangienne décrit le mouvement des particules de fluide de U, dans R".
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Figure 3.4 Cinématique de Lagrange pour un domaine se déformant entre ¢, et ¢; ou la zone
grisée représente le fluide et le trait plein le domaine étudié

Nous notons par

0
u(t,zo) = ap(t,l'o)

la vitesse lagrangienne de la particule xy € Uy, et, par ug(t,z) la vitesse eulérienne de la

particule au point € U C R". Ces cinématiques satisfont la relation

uz(t, ro) = ug(t, p(t, o)) = ug o p(t, o)

puisque la vitesse de ’écoulement est indépendante de la cinématique utilisée (lagrangienne
ou eulérienne). Cette derniére relation permet d’exprimer I'accélération de la particule de
fluide selon les cinématiques lagrangienne ou eulérienne. Nous écrivons donc 'accélération

lagrangienne ay (¢, zq) telle que

QuL(t,xo) = qu(t,p(t,xo)) = (auE(t,x) + (up(t,x) - Vx)uE(t,x)> :

t —
ar(t, o) = o dt ot -
z=p(t,z0)

et 'accélération eulérienne ag(t, x) telle que

ap(t,r) = aatuE(t,x) + (ug(t,z) - Vy)ug(t,x) .

3.2.2 Cinématique lagrangienne et eulérienne du domaine mobile

Soit Vo € R", I'ensemble des points ou sont évaluées les propriétés de 1’écoulement. Les

noeuds du maillage appartiennent a cet ensemble. Nous supposons qu’il existe une application
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continue et bijective de classe C'(|Ty, Th|) telle que Vt €]Ty, T1[, c’est-a-dire l'intervalle de

temps de la simulation,
g(t): Vo=V ={zeR" |V Vy,z=g(t,zo)} CR"

et V C U pour qu’il soit mouillé par I’écoulement. Notons également que dans le domaine
Vb, chaque point de coordonnées Zy détermine uniquement un point d’échantillonnage des

propriétés de I’écoulement et g(t, o) € R" sa position en fonction du temps.

La cinématique lagrangienne décrit le mouvement des points de V) dans R". Nous notons par

. 0 .
vi(t, &) = &g(tax(])

la vitesse lagrangienne du point &y € Vj, et, par vg(t,x) la vitesse eulérienne de ce point a

x €V C R". Ces cinématiques satisfont la relation
vi(t, o) = vp(t,g(t 20)) = ve o g1, Zo)

puisque la vitesse du point est indépendante de la cinématique utilisée (lagrangienne ou

culérienne).

3.2.3 Cinématique eulérienne-lagrangienne de 1’écoulement

Nous écrivons ugy(t, Zo) I'expression de la vitesse eulérienne-lagrangienne Vi, € Vo C R".

Elle s’obtient de la composition des fonctions g et ug selon
upr(t, 2o) = up(t, g(t, &) = up o g(t, &) .

Cette cinématique décrit ’évolution temporelle de la vitesse de I’écoulement en un point du
domaine mobile identifié par sa position initiale . Nous pouvons donc exprimer la variation

temporelle de la vitesse eulérienne-lagrangienne au point Zy de la fagon suivante

0 ~ d ~ 0 ~ 0 .
auEL(ta To) = £UE(75, g(t, o)) = EUE(tag(tJCo)) + (atg(t,fﬁo) : Vz) ugp(t,z)

x:g(t,io)
ou, de fagon équivalente, par

0 R 0 N
EUEL(twa) = <UE + (Ve - V,) uE) og(t, o) .
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Ensuite, en bougeant légerement les termes de I’équation précédente, nous écrivons la dérivée

temporelle de la vitesse eulérienne en fonction de la vitesse eulérienne-lagrangienne

0 A o X )
((;E> og(t,Ty) = auEL(t, Z0) — ((vg - Vo) ug) o g(t, &) ,

pour modifier I'expression de I'accélération d’une particule de I’écoulement

(9uE

ap(t,r)og(t,2y) = (825) og(t,z0) + ((ug - Vi) ug) o g(t, o) ,

selon la position du point d’échantillonnage (ou du maillage). Nous obtenons donc I’expression

eulérienne-lagrangienne de I'accélération de la particule de fluide,

. 0 . .
ap(t,x) o g(t, &o) = 5oupL(t, &) + ((up — Vi) - Va) up) 0 g(t, %) ,
ou, de maniere équivalente,

auEL

5 ° g ' (t,2) + ((ug —vg) - Vi) ug ,

ap(t,z) =

la formulation recherchée.

3.2.4 Synthese

Il est d’usage d’écrire 'accélération du fluide sous la forme suivante

ou
E‘F((U_V)'vx)u?

qu’il est maintenant possible d’interpréter correctement en fonction du résultat de la section

précédente dans le contexte de la méthode des éléments finis.

Rappelons qu’a un noeud du maillage, nous connaissons toujours sa position initiale Z( et sa
position courante x au temps ¢ : (Z, x). Egalement, nous connaissons la vitesse u en ce noeud,
et cette vitesse est donc la valeur des expressions eulérienne-lagrangienne ou eulérienne, u =
upr(t,Zo) = ug(t, z), selon le contexte du calcul a réaliser. Ainsi 'approximation élémentaire

de la vitesse en fonction des valeurs nodales u;,
h ~
u = Z Lz u; ~ ug ,

s'interprete comme 'approximation de la I'expression ug de la cinématique eulérienne; il en
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va de méme pour v". De plus, approximation de la dérivée temporelle des vitesses & un

noeud par la formule BDF peut étre écrite telle que

. du R
=Y aul ~ PL ¢ 20.)

ot
et
ou
flh:ZLifli% ELngl(tax) )
ot
olt uf a ul sont les valeurs de la solution de I'indice du temps courant (k = 0) aux indices

des temps antérieurs.

3.3 Equation de conservation du moment angulaire

Dans le cadre de ce mémoire, on s’intéresse particulierement au mouvement rotationnel.
Ainsi, I’équation décrivant la dynamique des solides correspond simplement a 1’équation de
conservation du moment angulaire. Soit I le second moment de masse ([I] = ML?*)* d’un
objet en rotation par rapport a ’axe normal au plan z o y, c¢’est-a-dire dans la direction
normale au plan. La conservation du moment angulaire s’écrit

( d*0 do

Idtg—det—i-/iQ)ez—l—/S(x—xc)x)\dS =0

ou # correspond a I’angle de rotation du solide,

¢ ([¢] = ML*T™1) & la constante d’amortissement,

k ([k] = ML*T~?) a la constante du ressort en torsion,

(x —x.) & un vecteur dans le plan correspondant au bras de levier entre un point du solide
et le centre de rotation z. et

A a un second vecteur dans le plan correspondant au multiplicateur de Lagrange des

contraintes appliquées au systeme.

Naturellement, I’intégration est réalisée sur la surface S d'un solide dans R* pour obtenir le

couple exercé sur celui-ci. Le solide est représenté a la Figure 3.5.

En physique, le second moment de masse se calcule selon la relation

I:/ r’dm
1%

1. On utilise les dimensions usuelles M, L et T de la masse, de la longueur et du temps.
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T

Figure 3.5 Schématisation de la rotation d’un solide 3D en rotation autour d’un axe normal
au plan x oy

ou V correspond au volume occupé par le solide,

r a la mesure de la distance entre un point a l'intérieur de V' et le centre de rotation et

dm = p,dV au différentiel de masse (ps correspond a la masse volumique du solide).

Pour simplifier les calculs en 2D, nous supposons que le solide est un cylindre de section
constante A et de longueur h dans la direction normale au plan, c’est-a-dire V' = Ah et

dV = dAh. Si, de plus, la masse volumique du solide est constante, alors
I= / r2dm — psh/ r2dA = p.hl,
v A

avec Iy ([I] = L*) le second moment polaire d’inertie.

Comme le suggere les dimensions de (, nous pouvons I’exprimer en fonction du second moment

de masse (ou polaire) et d'une fréquence pour écrire

C = 27Tfn] - pshQan]O = psh<0

ot (o = 2w fnly ([(o] = L*T™") est le coefficient d’amortissement polaire. En procédant de

maniére analogue, on définit g tel que k = pykoh pour compléter 'analyse 2.

Pour compléter le développement, on approche 1’élément de surface du solide par dS = hdl’

ou I' = 0A, la frontiere de la surface projetée du solide dans le plan. En utilisant ’ensemble

2. L’expression de kg ne sera pas développée puisqu’elle n’est pas utilisée dans le cadre des études de ce
mémoire
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de ces développements et définitions, on obtient 'Equation (3.1)

d*0

do
@—l—ps@%—l—psngﬁ—i—/r((x—xc)x)\)-ezszo, (3.1)

IOsIO

soit 1’équation de conservation du moment angulaire dans le plan pour un solide de masse
volumique uniforme. Pour faciliter son implémentation, cette équation différentielle d’ordre

2 est réécrite sous la forme d’un systeme de deux équations différentielles d’ordre 1,

pslow + psCow + pskol + /F((X —X) X A) e dl = 0 (3.2)
0 = w, (3.3)

ol w est la vitesse de rotation angulaire. Des conditions initiales sur 6 et w sont éventuellement

prescrites pour déterminer la solution du systeme d’équations.

3.4 Interpolation de la position des noeuds du maillage

Tel que mentionné au Chapitre 2, il existe plusieurs méthodes permettant de calculer la
nouvelle position des noeuds du maillage au fil d’'une simulation. Dans le cas présent, les
méthodes algébriques attirent davantage notre intérét puisque celles-ci sont beaucoup plus
faciles & implémenter dans un programme d’éléments finis déja existant. Etant plus récentes
que les méthode basées sur les équations aux dérivées partielles, elles représentent aussi un

sujet intéressant de recherche et laissent place a encore beaucoup d’amélioration.

3.4.1 Interpolation sur une infinité de points et interpolation transfinie

Les méthodes algébriques déja bien établies dans le domaine de la gestion des maillages
mobiles, c’est-a-dire IDW et RBF, basent leur interpolation sur un nuage de points auxquels
I'information est connue. Celles-ci utilisent donc la position des noeuds aux frontieres pour
interpoler le taux de déformation des noeuds a l'intérieur du domaine. L’ITM, quant a elle, se
différencie par le fait qu’elle interpole a partir des courbes continues composant les frontieres
et non seulement a partir des noeuds. C’est ce qui lui confére son caractere transfini. La
Figure 3.6, inspirée du travail de Garon et Delfour [38-40], permet justement de bien imager
cette différence. Elle présente un exemple tres simple, soit une ellipse rigide placée au sein
d’un domaine fluide €2. La zone grisée représente la zone maillée. C’est donc en se basant sur
le mouvement de l'ellipse et de la frontiere extérieure du domaine fluide que IDW, RBF et
ITM peuvent interpoler le taux de déformation des noeuds situés a 'intérieur du domaine

2. Dans le cas ou la géométrie exacte de l'ellipse est connue, IDW et RBF approximent
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Figure 3.6 Interpolation a partir d'un nuage de points (gauche), a partir d’'un maillage d’élé-
ments finis (milieu) et & partir d’une courbe continue (droite) formant 1’objet solide placé
dans un domaine fluide maillé (zone grisée)

celle-ci par un nuage de points E = {&1,...,&} formés des noeuds de 1'ellipse. Ces derniers
bougent alors selon le mouvement entrainé par I’écoulement du fluide et I’ellipse doit ensuite
étre reconstruite. Ainsi, seule I'information des noeuds est conservée entre la position initiale
des frontieres et leur position déformée. Il s’agit aussi de la seule information utilisée pour
interpoler le taux de déformation des autres noeuds du maillage. Pour ce qui est de 'I'TM, la
géométrie exacte de 'ellipse, c’est-a-dire la courbe continue I' qui la compose, est déformée et
sert aussi a 'interpolation du taux de déformation des noeuds du maillage. Cela équivaut en
quelque sorte a interpoler a partir d’'un nuage infini de points. On maximise ainsi la précision
de l'interpolation en prenant avantage de toute l'information disponible. Toutefois, tel que
mentionné au Chapitre 2, il est parfois plus facile de baser 'interpolation de 'I'TM sur un
maillage d’éléments finis I';,. Cette méthode demeure plus précise que de baser I'interpolation
sur un nuage de points puisqu’un maillage contient non seulement I'information concernant les
noeuds, mais aussi concernant les éléments connectant ceux-ci. Cette technique permet donc
de controler la précision de l'interpolation par 'intermédiaire des fonctions d’interpolation

géométriques.

3.4.2 Généralisation des différentes méthodes d’interpolation algébriques

En étudiant plus en profondeur les différentes méthodes algébriques, il est possible de regrou-
per celles-ci. En effet, on peut faire ressortir une formule d’interpolation générale u(x), qui
peut étre présentée sous sa forme discrete ou continue, qui s’applique a la fois a IDW et a I'TM
et ou seule le changement d’une fonction de poids ¢(x — &) permet de passer d’une méthode
d’interpolation a 'autre. Le Tableau 3.2 présente justement cette formule sous ses différentes

formes. Une nouvelle méthode d’interpolation hybride peut méme étre ajoutée en appliquant
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la fonction de poids de IDW a la formule d’interpolation continue de I'ITM, donnant ainsi
lieu & I'Interpolation Transfinie Barycentrique (ITB) qui est en fait la version transfinie de
IDW. Le développement mathématique de cette méthode est davantage détaillé par Delfour
et Garon [38,39]. On peut maintenant noter k-IDW, k-ITM et k-ITB les différentes méthodes

en fonction de 'exposant k£ employé.

Tableau 3.2 Composition des formules d’interpolation de IDW, ITM et ITB

Type Formule d’interpolation Fonction de poids
1
i [ —&)  wl@®—&)=r—Fm
IDW = == J e
ul@) ;n:l (T — 53) k= u;*v SJH
_ (®—§)-n(g)dl
I A [
Jr f(&)p(x — &)dl =n+1
u(x) = 1
—&§)dl’ gy
ITB Jrel@ ) px—§) = ||:*B — |
=n

* . .
Dimension de I'espace R™.

En ce qui concerne RBF, cette méthode est 1égerement différente dans sa structure, prin-
cipalement parce que celle-ci ne contient pas de fonctions de poids, mais plutot différentes
fonctions a bases radiales. Tout comme IDW, ITM et I'TB, elle demeure composée d’une
fonction d’interpolation générale a l'intérieur de laquelle différentes fonctions peuvent étre
implémentées. La fonction d’interpolation u(x) présentée au Tableau 3.3 est la méme que

'Equation (2.4) présentée au Chapitre 2.

Tableau 3.3 Composition de la formule d’interpolation de RBF

Type Formule d’interpolation Fonctions a bases radiales

m Tableau 2.1
RBF  u(x) = S Aol — &) e

3.4.3 Modélisation de la dynamique du maillage

Outre le choix de la méthode d’interpolation du taux de déformation des noeuds du maillage,

il existe différentes approches pour mettre celle-ci en oeuvre. On décrit ici trois approches



31

pour la modélisation de la dynamique du maillage. La premiére approche, la plus naturelle,
exprime 1’évolution du maillage en fonction du temps a l'aide d’une équation différentielle
ordinaire. La seconde exprime 1’évolution du maillage en fonction du temps a 'aide d’une
formulation intégrale. Finalement, la troisieme approche, moins intuitive, décrit I’'évolution

du maillage a I'aide d’une fonction de forme.

Dans le but de différencier les différentes approches, on note la fonction x(¢) comme étant la
position des noeuds du maillage en fonction du temps et la fonction X (¢, u) celle décrivant la
position des noeuds en fonction du facteur de forme p. Pour écrire la relation entre ces deux
définitions, on pose I’hypothese que le facteur de forme p varie linéairement aux frontieres

du domaine. On suppose ainsi que

X(t,p) = 2(0) + p(x(t) — x(0))
aux frontieres mobiles. Ainsi,

def diX

X = = — =r—zx"
o, 0 z(t)—z(0)=x—=z

ou x* correspond a la position initiale des noeuds, soit leur position au temps ¢ = 0.

Soit €(t) le domaine de calcul muni de s frontiéres en mouvement, I';(¢), et d’une frontiere
immobile, I'y(¢). On définit par

s = Ui Ty

I'union des frontieéres d’indice 7 a s, tel que schématisé a la Figure 3.7. Pour alléger la notation
Q=Q(t) et I'y =T"3(t). Ainsi I'{ dénote I'union de toutes des frontieres mobiles et I'f 'union
de toutes les frontieres au temps t. Egalement, on note spécifiquement par ©(0) et T'5(0), les
domaines en ¢ = 0, c’est-a-dire a I'é¢tat dit de référence. On note également 607 et x, I'état
de référence des solides, c’est-a-dire 'orientation et la position du centre de rotation. On a
également z; la position d’'un noeud du maillage au temps implicite ¢ et x} la position initiale

de ce noeud.

Finalement, on note par N les numéros de noeuds du maillage mobile incluant les noeuds
des frontieres, et par N'° les numéros des noeuds du maillage mobile & I’exclusion des noeuds

des frontiéres. On note aussi par S = {1, ..., s} I'ensemble des numéros des solides.
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Figure 3.7 Schématisation du domaine fluide 2 au sein duquel 2 solides (s = 2) sont en
mouvement. Seule la zone grisée est maillée.
Formulation Temporelle Différentielle (FTD)

Pour obtenir les coordonnées du maillage mobile, on suppose que les coordonnées z(t) dé-
pendent du temps. Si la dérivée temporelle des coordonnées aux parois mobiles est connue,

alors les valeurs de z;(t) = x; s’obtiennent de 'intégration de

/ vp(x; — x)dl
L5t

dz;
i =V (x,v;t) = Vie N°
dt / o(x; — x)dl
I3
avec
z;(0) =z Vie N°
et
e
Cdt

la vitesse de déformation des noeuds de la frontieére mobile. Pour les besoins du calcul numé-
rique, on approche la dérivée temporelle des noeuds de N° par une formule aux différences

arrieres (BDF) implicite
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avec z¥ = x;(t;,). Puisque la méthode est implicite, on a t = tg, le temps courant, et to > t; >

... > t,, avec n Uordre de la méthode BDF. Finalement, on écrit ’'Equation (3.4) telle que

dl’i
dt Jrg

o(z; — x)dl — / vp(r; —x)dl =0 Vie N° (3.4)

g
dans laquelle on omet I'§ = I%(¢) par convention. Pour les problemes d’IFS, v est une inconnue
du probléeme qui est déterminée par une équation qui décrit I’évolution de la frontiere en
fonction des contraintes du fluide et des propriétés dynamiques du solide.

Formulation Temporelle Intégrale (FTI)

On considere maintenant ’équation différentielle (3.4) de la section précédente et on I'integre

directement sur l'intervalle |0, 7. On obtient

/ vp(z; — x)dl
I5(@)
T

Vie N°
/ o(x; — x)dl
I3

2:(T) — 2,(0) = /OT dt

ou, sur un sous-intervalle ]t, to],
xl(tg) = $z(t1) + T(tl,tg,l'i) VZ S NO

avec

" /rg(t) vp(z; — x)dl
T(tl, tg, l’l) = dt

t / x; — x)dl
- o( )

La formulation sur |¢1,t5[ permet de faire évoluer une solution connue en ¢; vers le temps 5.

Elle est utile dans le contexte du calcul numérique.

Pour les besoins du calcul numérique, on doit définir la vitesse de déformation de la géométrie
dans 'intervalle |t1, to[. Tel que mentionné précédemment, on suppose que cette variation est

linéaire en tout point homologue de la géométrie, c¢’est-a-dire

(2(t2) = x(t))(t = 1)

to —ty

z(t) = z(ty) +



34

et

z(t2) — x(t)
to — t1

v(t) =

Ainsi v(t) n’est donc pas la vitesse de déformation instantanée de la frontiere, mais bien celle
de la trajectoire décrite par la sécante reliant les positions du point aux temps ¢; (position
connue) et ty (position prédite). L’intégrale en temps de T peut ensuite étre approchée a 1’aide
des méthodes explicites d’intégration Euler, du point milieu ou de Runge-Kutta d’ordre 4
(RK4), pour simplifier les calculs. En particulier, on note respectivement par T E(ty, ta, x;),
TM(ty,ta, x;) et TREA(Ly,t2, z;) les approximations a 'aide de la méthode d’Euler, du point
milieu et de RK4. Spécifiquement, on obtient

/mtl) Wﬂxi(tl) —x(ty))dl

TE(Mrta, ;) = (ta —
(1, 12, ) = (t2 — 1) /Fs(t)w(xi(tl)_g;(tl))dl“

ou, plus simplement,

/Fsm)(x(@) —z(t1))p(xi(tr) — x(ty))dl

Tg(tl, t2, SCZ) =
. @lailn) = ()T

Dans cette derniere expression, les intégrales sont calculées avec des valeurs connues au temps
t; pour prédire une valeur au temps ts.
De cette nouvelle nomenclature en découlent d’autres tres similaires, soient

— k-ITM-TE, qui est 'approximation Euler explicite de 7 pour la fonction de pondération
de la méthode d’interpolation I'TM. Ainsi, 3-ITM-T £ désigne cette méthode pour k =
3;

— k-ITB-TE&, qui est 'approximation Euler explicite de 7 pour la fonction de pondération
de la méthode d’interpolation ITB. Ainsi, 3-ITB-T £ désigne cette méthode pour k = 3 ;

— k-ITM-T M, qui est I'approximation du point milieu (midpoint) de T pour la fonction
de pondération de la méthode d’interpolation ITM. Ainsi, 3-ITM-7T M désigne cette
méthode pour k£ = 3;

— Ek-ITB-TM, qui est 'approximation du point milieu (midpoint) de T pour la fonction
de pondération de la méthode d’interpolation ITB. Ainsi, 3-ITB-T M désigne cette
méthode pour k = 3;

— k-ITM-TRK4, qui est 'approximation Runge-Kutta d’ordre 4 de 7 pour la fonction
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de pondération de la méthode d’interpolation ITM. Ainsi, 3-ITM-TRK4 désigne cette
méthode pour k = 3;

— k-ITB-TRKA4, qui est 'approximation Runge-Kutta d’ordre 4 de T pour la fonction
de pondération de la méthode d’interpolation I'TB. Ainsi, 3-ITB—7 RK4 désigne cette
méthode pour k£ = 3.

Formulation de Forme Intégrale (FFI)

Pour obtenir les coordonnées du maillage mobile, on suppose 'existence d’une fonction de
forme X (t, p) telle que x(t) = X(¢,1) et 2(0) = X(¢,0). Si la dérivée de forme, c’est-a-dire par
rapport au parametre p, est connue aux frontieres mobiles, alors les valeurs de X;(¢,1) = z;

s’obtiennent de l'intégration de

/ 9, Xp(X; — X)dl
I'g(ut)

a,u,Xi :V<X”L7X78MX’/'Lt) = Vi GNO
o(X; — X)dl
5 (ut)
avec
Xi(t,0) =] Yie N°
pour écrire 'Equation (3.5)
1
Xi(t,1) — Xi(t,0) = 2, — & :/ AV (Xi, X, 0,X; ut) Vie N° (3.5)
0

soit I'expression générale de la position des noeuds x; du domaine mobile avec V la pseudo-

vitesse de déformation du maillage.

Pour les besoins du calcul numérique, on formule cette expression générale sur n sous-

intervalles d’intégration pour écrire
n=1 (k+1)/n
v —x; =ZL(p,0,X,n) = Z// dpV (X, X, 0,X; ut)
E—0 k/n

A la suite de quoi, pour approcher Z, on utilise 0, X (t, ) = x—a*, qui provient de '’hypothese
de la variation linéaire de la fonction de forme X (¢, ) aux frontieres énoncée en début

de section, et les méthodes explicites d’Euler ou de Runge-Kutta d’ordre 4 pour réaliser
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I'intégration par rapport a p. On écrit alors
n—1 1

k=0 T

I'approximation avec Euler explicite et ZRK4(p, x —x*, n) pour 'approximation avec Runge-
Kutta d’ordre 4.

En particulier, on note par
[ (e = 2")p(X,(t,0) — X (t,0))dr
r'3(0)

/FS o 0(Xi(t,0) — X (t,0))dl

ZE 1 (p,x — ") =ZE(p, v — 2, 1) = V(X;, X,z — x2%;0) =

I'approximation ZE a un pas. Apres lidentification des X;(¢,0) = a2 et X (¢,0) = z*, elle

s’écrit

. (@=a") gla; - a%)r
« _ JT3(0)
Ty — X, =

Z o(z] —2*)dl
o #=2)

ou, de facon équivalente, telle qu’a ’'Equation (3.6)

X — x} / o(x; —x*)dl — / (x —a")o(z; — x*)dl' Vi e N° . (3.6)
I'3(0) 5(0)

Elle est la moins précise de cette famille de méthodes, mais ne couple que les coordonnées x;

aux coordonnées x; des noeuds du maillage. D’un point de vue schématique, il est possible

d’illustrer la différence entre la formulation de forme Z& et les formulations temporelles telle

qu’a la Figure 3.8.

Dans le méme ordre d’idée qu’a la section précédent, on établie une nomenclature telle que

— k-ITM-ZE&, est 'approximation Euler explicite de Z pour la fonction de pondération
de la méthode d’interpolation ITM avec un seul intervalle (n = 1). Ainsi, 3-ITM—-Z&,

désigne cette méthode pour k = 3;

— k-ITB-Z&; est 'approximation Euler explicite de 7 pour la fonction de pondération
de la méthode d’interpolation I'TB avec un seul intervalle (n = 1). Ainsi, 3-ITB-T&;

désigne cette méthode pour k£ = 3.
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Linitial

Figure 3.8 Comparaison des formulations temporelles et de la formulation de forme quant au
déplacement d’un solide. Les fleches grises montrent les déplacements intermédiaires entre la
position initiale et finale de I'objet solide alors que la fleche noire montre le déplacement en
une seule étape du solide de sa position initiale a sa position finale a I’aide de la méthode
ZE;.

Synthése

FTD, FTI et FFI sont des formulations qui possédent chacune des avantages et des incon-
vénients. Soit # N le nombre de noeuds de la partie mobile du maillage. En 2D, le nombre
de variables associées au maillage est donc égal, au minimum, a 2 X #N (pour x et y), et ce

peu importe la formulation utilisée.

L’approche FTD, tel que mentionné précédemment, se préte intuitivement a la méthode de
résolution monolithique en IF'S vu son caractere implicite. Elle requiert toutefois un minimum
de DDL supplémentaires par rapport a la simulation des équations de Navier-Stokes sur un
maillage fixe, soit (2 x #N) DDL quelque soit 'ordre de la méthode BDF utilisé. Dans cette
approche, I’évolution des coordonnées des noeuds du maillage est concurrente a celle de la
géométrie ; le systeme est donc fortement couplé et parfois difficile a linéariser. Des problemes
numériques sont possibles si la géométrie évolue tres rapidement. De plus, I'intégration tem-
porelle est sujette au cumul des erreurs de troncature et peut causer ’enchevétrement des

¢léments du maillage lorsque la simulation est réalisée sur de longues périodes de temps.

L’approche FTI, quant a elle, se préte davantage a la méthode de résolution partitionnée en
IFS et ne requiert donc aucun DDL supplémentaire par rapport a la simulation des équa-
tions de Navier-Stokes sur un maillage fixe. En effet, le maillage est mis a jour itérativement
a la suite des calculs de I’écoulement et des déplacements. Ce découplage fait en sorte que

cette approche est relativement facile a mettre en oeuvre par 'utilisation de méthodes expli-
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cites puisqu’on évite la linéarisation de systemes d’équations. Tout comme 'approche FTD
I’enchevétrement du maillage est possible lorsque la simulation est réalisée sur de longues
périodes de temps [40]. De plus, la formulation partitionnée s’avere inadéquate lorsque le
ratio de masse (ps/py) est inférieur a l'unité, puisque les systemes d’équations sont alors

inconditionnellement instables.

L’approche FFT a été congue pour éviter 'enchevétrement du maillage lorsque les simulations
sont réalisées sur de longues périodes de temps. Elle se préte aisément a la méthode de
résolution partitionnée et ne requiert alors aucun DDL supplémentaire ; mais requiert tout
de méme beaucoup plus d’opérations par étape de temps que I'approche FTI. L’approche FFI
se préte également a la méthode de résolution monolithique mais requiert, respectivement,
(nx 2 x #N) DDL pour 'approximation ZE et (3 x n x 2 x #N) DDL pour I"approximation
TIRKA, avec n le nombre de sous-intervalles. Par contre, la méthode ZE; ne requiert que (2 x
#N) DDL et est donc, a cet égard, équivalente a I’approche FTD. De plus, la méthode Z&; est
linéaire et n’est donc pas sujette aux instabilités de I'approche F'TD lorsque le maillage évolue
brusquement d’un pas de temps a l'autre. En contrepartie, I’enchevétrement du maillage

demeure possible si les déplacements sont trés grands.

Le domaine d’application de la méthode Z&; de I'approche FFI inclut I’étude de 1'oscillation
d’un solide par rapport a son centre de gravité. De grands déplacements sont alors admissibles
si les noeuds du maillage mobile, en contact avec le solide, peuvent se mouvoir librement selon

la méthodologie développée dans ce mémoire.

3.5 Formulation faible monolithique de I’interaction fluide-structure

Alors que la formulation ALE des équations de Navier-Stokes, I’équation de conservation du
moment angulaire ainsi que les différentes formulation permettant de modéliser la dynamique
du maillage ont été détaillées précédemment, on vise ici a rassembler et synthétiser toutes les
équations nécessaires a la résolution monolithique d’un probleme d’IFS. On s’attarde d’abord
a la dynamique du fluide, a celle des solides ainsi qu’aux différentes formes de la cinématique

des noeuds aux frontieres et du maillage entier.

3.5.1 Dynamique du fluide

Les équations détaillant la dynamique du fluide proviennent évidemment des équations de

Navier-Stokes. On obtient assez facilement la formulation faible de ces équations sous la forme
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ALE tel que détaillé aux Equations (3.7) et (3.8).

_~ Ou . [
/Qu~pad9 + /Qu~p(u-V)udQ + /Qo'(u,p).VudQ +

variation temporelle accélération du fluide tenseur de contraintes sur le domaine
. ox .
U-pl—— -V]|ud2 = a-o(u,p) -ndl (3.7)
Q ot T
accélération des noeuds du maillage tenseur de contraintes sur les frontiéres immobiles
- / V(W dQ = 0 (3.8)
Q

ou u et ¢ correspondent a des fonctions tests,

p a la masse volumique du fluide,

u au vecteur vitesse du fluide,

o(u,p) au tenseur qui contient a la fois les contraintes visqueuses et celles issues de la
pression,

0x /0t & la vitesse de déformation des noeuds x du maillage et

n a la normale dirigée vers I'extérieur du domaine.

Or, comme la résolution se veut monolithique, il faut, déja a ce stade, imposer une condi-
tion d’adhérence entre le fluide, les solides ainsi que le maillage. En d’autres mots, on veut
indiquer que la vitesse de déplacement du fluide aux frontieres solides est égale a la vitesse
de déformation de ces frontieres et qu’il en est de méme pour la vitesse de déplacement des
noeuds du maillage situés sur ces frontieres. On passe alors par une fonctionnelle faisant

apparaitre le multiplicateur de Lagrange A telle que

I(w,)\) = / A (u—v)dl, (3.9)

us_, Ty

i=

qui, une fois extrémisée, permet d’écrire

5[(u,)\):/us F_@/-(u—v)dr+/us A dur. (3.10)
=1t g i=177% i

Il est important de spécifier ici que l'intégrale est effectuée sur les frontieres en mouvement
seulement, soit U;_,I';, puisque ce sont sur ces frontieres que la contrainte d’égalité des vitesses
est imposée. Dans le cas présent, les variations 0\ et du correspondent aux fonctions tests de
ces variables, soit respectivement A et G. Il suffit maintenant d’ajouter les différents termes
de I'Equation (3.10) au systéme composé des équations (3.7) et (3.8). On obtient ainsi les

Equations (3.11), (3.12) et (3.13) ol les termes ajoutés par la minimisation de la fonctionnelle
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sont mis en évidence.

. Ou . o
/Qu-pEdQ—l—/Qu-p(u-V)udQ + /Qa(u,p).VudQ—i—

ox °
aop (=25 0 — a-\dl| = - ndl 11
/Qu p( T V)ud ;/Fu Ad /69\ufll‘iu o(u,p) -nd (3.11)
—/@V(u)d@ ~ 0 (3.12)
Q

—i/r'f\-(u—v)dl“ = 0 (3.13)

On utilise ici 'approximation P, P; P, pour approcher les variables des champs u,p et A des
Equations (3.11)-(3.13). On applique ainsi une approximation quadratique pour u, linéaire
pour p et quadratique pour A. Celles-ci sont continues et généralisent I'approximation P, P,
de Taylor-Hood.

3.5.2 Dynamique des solides

L’équation de la conservation du moment angulaire, qui régit la dynamique des solides étudiée
ici, a été largement détaillée & la Section 3.3. Les Equations (3.14) et (3.15) ne sont donc

qu'un rappel des Equations (3.2) et (3.3).

pslow + psCow + pskol + /((X — X)X A)-edll = 0 VieS (3.14)
r
0 = w ViesS (3.15)

3.5.3 Cinématique des frontieres du maillage

Tout comme il existe différentes formulations permettant de modéliser la dynamique du
maillage (Section 3.4.3), il est aussi possible de déplacer I'objet solide selon deux approches,

soit par rotation rigide, ou bien a ’aide d’une transformation générale.
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Mouvement rigide

Le mouvement rigide des frontieres des solides, qui est occasionné par I’écoulement fluide,

peut étre exprimé tel qu’aux Equations (3.16) et (3.17).

/ 2( w—1. —RO—6)a*—a)dl = 0 VieS (3.16)
I (0) —— .
Translate a la Impose la nouvelle rotation

nouvelle position au bras de levier

de la position précédente

/ v-(v—2v, —wiP(x —x.,))dl = 0 VieS§S (3.17)
r;

ou T et ¥ correspondent aux fonctions tests de chaque équation,

x a la position des noeuds frontieres du solide au temps t,

z., a la position du centre de rotation du solide au temps ¢,

0; a la position angulaire des noeuds frontieres du solide au temps ¢,

07 a la position angulaire initiale des noeuds frontiere du solide,

x* a la position initiale des noeuds frontieres du solide,

r;. a la position initiale du centre de rotation du solide,

R a la matrice de rotation en 2D,

v a la vitesse de déplacement des noeuds frontieres du solide au temps t,
v, & la vitesse de déplacement du centre de rotation du solide au temps ¢,

w; a la vitesse angulaire des noeuds frontieres du solide au temps ¢ et

P a R(n/2).

Transformation générale

Il est aussi possible de procéder a la rotation de I’ellipse en voyant plutot celle-ci comme une
déformation de l'ellipse entre sa position angulaire initiale et sa position angulaire finale. De
cette fagon, on a 'impression que les noeuds glissent sur 'ellipse lorsque celle-ci se met en
mouvement. Cela est dii au fait que chaque noeud du maillage ne peut que se déplacer sur
son propre rayon et conserve toujours la méme position angulaire. Cette technique s’agence
non seulement tres bien avec la formulation FFI, mais elle permet aussi de minimiser le

déplacement des noeuds du maillage. Son équation générale est présentée a 'Equation (3.18).
/()9?-F(t,x,xci,ei;a:*,x;,eg‘)dF — 0 Vies (3.18)
(0

avec F' une fonction qui décrit la déformation de la frontiere de 1’objet. La construction de

cette fonction est détaillée par Delfour et Garon [38]. Cette transformation permet de vérifier
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I'hypothese de linéarité de X (¢, 1) = x(0)+ p(x(t) —x(0)) pour les noeuds de la frontiere. Elle
est tres intuitive pour un mouvement de translation, mais I’est moins pour un mouvement de

rotation, tel qu’on peut le constater a la Figure 3.9. Elle demeure valide dans ces deux cas.

Figure 3.9 Schématisation du mouvement d’un solide par transformation générale. A droite
on observe la translation d’un carré entre ;1 = 0 et 1t = 1 et a gauche la rotation d’une ellipse
ol les noeuds a la frontiere se déplacent linéairement sur leur rayon entre p =0 et p = 1.

L’impact de I'utilisation de I’équation du mouvement rigide ou de la transformation générale
sur le mouvement de noeuds du maillage est un facteur important a étudier. En effet, les
noeuds a la frontiere entre 1’objet solide et le fluide ont une grande influence sur tous les
noeuds du maillage et donc sur comment ceux-ci se déplacent au fil de la simulation. Ces deux

approches seront donc testées en profondeur avant de procéder aux applications numériques.

3.5.4 Cinématique des noeuds du maillage

Les noeuds a l'intérieur du maillage, soit x; € N°, peuvent étre déplacés selon différentes
approches, tel qu’expliqué a la Section 3.4.3. Si on utilise I'approche FFI (k-ITM-Z&; ou k-
ITB-ZE,), clest I’Equation (3.19) qui régit I'interpolation du taux de déformation des noeuds

du maillage au fil de la simulation.

(i — x7) /rs(o) o(zf — x*)dl — / (x — 2%)p(zf —2")dl =0 Vie N° (3.19)

'5(0)

Si on applique plutét approche FTD, c’est I'Equation (3.20) qui régit l'interpolation du
taux de déformation des noeuds du maillage au fil de la simulation.

dl‘i
dt Jrg

o(x; — 2)dl — / vp(r; —x)dll = 0 Vie N° (3.20)

I3
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3.5.5 Synthese

Pour mettre en oeuvre le modele ALE avec la formulation FTD; il est nécessaire d’appliquer
les Equations (3.11), (3.12), (3.13), (3.14), (3.15), (3.16), (3.17) et (3.20) qui modélisent le

mouvement d’un corps rigide en rotation.

Pour le modéle ALE avec la formulation FFI, ce sont les Equations (3.11), (3.12), (3.13),
(3.14), (3.15), (3.16), (3.17) et (3.19) qui modélisent le mouvement d’un corps rigide en

rotation par I’approximation de forme.

Finalement, pour appliquer le modéle ALE avec la formulation FFI en procédant a une rota-
tion par transformation générale, ce sont les Equations (3.11), (3.12), (3.13), (3.14), (3.15),
(3.18) et (3.19) qui modélisent le mouvement d’un corps rigide en rotation par I’approxima-

tion de forme.

On explicite ainsi toutes les équations nécessaires a la résolution des problemes d’IFS ou le
mouvement est purement rotationnel et ou la résolution du domaine fluide, du domaine solide

et de la position des noeuds du maillage est totalement monolithique.

3.6 Equations adimensionnelles

Maintenant que toutes les équations constitutives de la méthode de résolution monolithique
sont établies, il est nécessaire de procéder a leur adimensionnalisation. Les équations des
Sections 3.5.3 et 3.5.4 étant homogenes, il est inutile de les adimensionnaliser. On se concentre

alors sur les équations de Navier-Stokes ainsi que sur celles de la dynamique des solides.

3.6.1 Adimensionnalisation des équations de Navier-Stokes

Tel que mentionné a la Section 3.2, les équations de Navier-Stokes sous forme ALE s’écrivent
telles que

p[21+((u—v)~V)u]—V-a(p,u):() , (3.21)

—V-u=0 . (3.22)

ou o(p,u) = pl + p (Vu+ VTu). Les changements de variables ainsi que les différentes
échelles dimensionnelles sont présentés au Tableau 3.4 ou U, correspond a la vitesse en amont

de I’écoulement a l'infini, Lj a la longueur du grand axe de U'ellipse et py a la masse volumique

UoL
du fluide. On peut en déduire Ty = Ly/Uy. Le nombre de Re devient donc Re = P00 et
I
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Tableau 3.4 Changements de variable pour I'adimensionnalisation de ’équation de Navier-
Stokes sous forme ALE. Une variable dimensionnelle correspond a la multiplication de sa
variable adimensionnelle et de son échelle dimensionnelle.

Variable dimensionnelle Variable adimensionnelle Echelle dimensionnelle

P P Po

2 H poLoTy
u u Uo

v v Uo

p p poU3

t i T

\Y \Y 1/Ly

o= —pl+ é(@fﬁ— V7). Ainsi, en remplacant les variables dimensionnelles par les variables

adimensionnelles dans les Equations (3.21) et (3.22), on obtient

aal;_lJr((ﬁ—v)-v)ﬁ:V-& ,

~V-i=0,

ou p = 1/Re.

3.6.2 Adimensionnalisation des équations de la dynamique des solides

Il est ensuite nécessaire de procéder a I’adimensionnalisation des équations de la dynamique

des solides, soient

ps (Tt + Cow + Kof) + /F((x “x)XA)-edl = 0, (3.23)
d
Ly = 24

qui sont tirées des Equations (3.14) et (3.15) et ofl p, correspond & la masse volumique du
solide. Les changements de variables ainsi que les différentes échelles dimensionnelles qui
s’ajoutent a ceux présentés au Tableau 3.4 sont présentés au Tableau 3.5 ou Uy demeure la
vitesse en amont de I’écoulement a l'infini, Ly la longueur du grand axe de 'ellipse et pg la

masse volumique du fluide.

Ainsi, en remplagant les variables dimensionnelles par les variables adimensionnelles dans les
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Tableau 3.5 Changements de variable pour I’adimensionnalisation de I’équation de la dyna-

mique du solide. Une variable dimensionnelle correspond a la multiplic
adimensionnelle et de son échelle dimensionnelle.

ation de sa variable

Variable dimensionnelle Variable adimensionnelle Echelle dimensionnelle

Ps ps Lo

w w Uo/Lo
W W UZ/L3
Iy jo 1/Lé
Co Co 1/(L3Ty)
Ko Ko 1/(LyTF)
X X LO

Xe )_(c LO

A A po/(LoT§)
T T Lo

Equations (3.23) et (3.24), on obtient
r

d _
Egﬁ—w

ou 7, = ps/po- On peut également écrire

__JA
CO = 271—nt0 = 27Tfn1070
Ty

et

_ _ 2 —
Co = 27Tfnfo = FIO

T

ou U, = 1/ f, correspond a la vitesse réduite et ou f, est une fréquence

de lellipse.

Finalement, pour obtenir les équations sans dimension, il suffit d’appliquer la correspondance

entre les parametres dimensionnels et adimensionnels du Tableau 3.6. Pour les applications

qui suivent, on allege 1’équation adimensionnelle en omettant le symbole *

S

sur les variables.



Tableau 3.6 Correspondance entre les parametres clés dimensionnels et leur équivalent adi-
mensionnel
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CHAPITRE 4 VERIFICATION ET VALIDATION

Le programme EF8 est utilisé par le groupe de recherche depuis plusieurs années et a déja
été vérifié et validé a maintes reprises. Toutefois, dans le but d’y intégrer la formulation ALE
des équations de Navier-Stokes ainsi que l'interpolation transfinie permettant de résoudre
le taux de déformation des noeuds du maillage et ainsi rendre ce dernier mobile, plusieurs
modifications du code ont été requises. Il est donc essentiel de vérifier et de valider celui-
ci & nouveau. Les processus de vérification et de validation (V&V) connaissent différentes
définitions dans la littérature scientifique et méme dans le domaine de la dynamique des
fluides numérique comme en témoignent Oberkampf et al. [41]. Ici, ce sont les définitions de
I’ American Institute of Aeronautics and Astronautics (ATAA) qui servent de lignes directrices
pour les différents tests de V&V.

Definition 4.0.1. Vérification. Le processus de vérification vise a déterminer que « I'implé-
mentation du modele numérique représente bel et bien la description conceptuel du modele
faite par le développeur ainsi que la solution de celui-ci »[Notre traduction] [42]. En d’autres
mots, la vérification permet de s’assurer que les équations et les algorithmes implémentés

sont résolus correctement et donnent les solutions attendues.

Definition 4.0.2. Validation. Le processus de validation permet « de déterminer le degré
de précision d’'un modele numérique quant a sa représentation d’'un phénomene réel du point
de vue de l'utilisation désirée de ce modele »[Notre traduction] [42]. La validation vise ainsi
a s’assurer que ce sont les bonnes équations et les bons algorithmes qui sont résolus dans le

but de représenter un phénomene réel avec une précision acceptable selon ’application.

4.1 Vérification

Selon le probléme a résoudre, la dimension temporelle peut avoir ou non une influence sur
le phénomeéne étudié. C’est pourquoi le programme EF8 peut étre utilisé pour résoudre des
problemes stationnaires ainsi que transitoires. Dans le cas des problémes stationnaires, seul
I’espace est discrétisé par la méthode des éléments finis alors que la discrétisation temporelle
s’ajoute dans le cas des problemes transitoires. Pour toutes les études de cette section, c¢’est

le modele ALE jumelé a I'approche FTD, détaillée au Chapitre 3, qui est employé.
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4.1.1 Ecoulement stationnaire

Les problemes stationnaires sont un bon moyen de vérifier la discrétisation de I'espace utilisé

par EF8 puisque celle-ci n’est pas influencée par la discrétisation temporelle.

Vérification de la discrétisation en espace

Le Tableau 4.1 résume 'objectif, les moyens d’évaluation, les hypotheses ainsi que les criteres
de robustesse du premier test de vérification. On comprend donc que ce test vise a vérifier la
justesse de la mise en oeuvre de 'approximation PyPq, utilisée pour les champs de vitesses
et de pression. Les criteres de robustesse, quant a eux, servent a s’assurer que les résultats
obtenus ne sont pas influencés par des parametres desquels ils devraient étre indépendants.
Ici, on vérifie la robustesse des résultats par rapport a l'orientation de la géométrie et a la
valeur du nombre de Re. Les taux de convergence devraient donc étre conservés, peu importe

la valeur de ces parametres. Ici, p = 1/Re et p = 1.

Tableau 4.1 Détails du test de vérification de la discrétisation en espace de EF8

Moyen(s) Critére(s) de

Objectif(s) d’évaluation Hypothése(s) robustesse
Vérifier la Tawx de convergence Taux de convergence Rotation de
discrétisation PoP; basés sur les normes H! . & 1 .
los vit ¢ 12 en foncti > 2 pour les vitesses (norme H')  la géométrie
DOt 165 VITESSES ¢ en fonetion > 2 pour la pression (norme L?) et différents Re
et la pression du raffinement du maillage = P P

La Figure 4.1 montre la géométrie et le maillage initial, ¢’est-a-dire le plus grossier, sur lequel
est basée 'analyse du taux de convergence. Ce maillage a été raffiné a plusieurs reprises pour
permettre le calcul de la norme H' de l'erreur en vitesse et de la norme L? de 'erreur en

pression dans le but d’obtenir leurs taux de convergence.

Dans un premier temps, des polynomes linéaires ont été imposés sur toutes les frontieres
du domaine pour les vitesses u et v et une pression constante a été imposée en un point
du domaine, tentant ainsi de reproduire la solution manufacturée présentée a la Figure 4.2
et & ’'Equation (4.1). La méthode de vérification par solution manufacturée est détaillée a

I’Annexe B.

u = 3x
Uip = Uout = Wdown = Utop = v — _3y 15 (41)

p=2
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Figure 4.1 Maillage triangulaire composé de 22 éléments et de 57 noeuds

utop T

U;n Uoyt

/. Udown

p

Figure 4.2 Schématisation des conditions u, v, p imposées aux frontieres (I') du domaine fluide
(Q) pour la vérification de la résolution de la discrétisation en espace

Cette premiere analyse vérifie que la solution exacte est capturée par EFS8 puisque les poly-
nomes d’interpolation choisis permettent théoriquement de représenter exactement ce type
de solution. Le Tableau 4.2 montre justement que la solution est bel et bien capturée exac-
tement pour tous les maillages. En effet, les normes sont toutes de 1'ordre du zéro machine.
Les résultats sont tres semblables pour le domaine ayant subi une rotation ainsi que pour

des nombres de Re plus élevés. Ces résultats sont présentés aux Tableaux C.1, C.2 et C.3 de
I’Annexe C.

Dans un second temps, des polyndémes d’ordre supérieur sont imposés sur toutes les frontieres
du domaine pour les vitesses u et v et une pression linéaire est imposée en un point du

domaine, reproduisant cette fois la solution manufacturée présentée a la Figure 4.2 et a
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Tableau 4.2 Normes de I’erreur en vitesse et en pression pour un champ de vitesse linéaire et
une pression constante (Re = 1)

Maillage Nombre Norme des  Norme de la
d’éléments vitesses (H') pression (L?)
h 22 1.45E-14 1.58E-13
h/2 88 2.65E-14 3.91E-13
h/4 352 7.87TE-14 5.58E-12
h/8 1408 1.95E-13 3.09E-11

'Equation (4.2).

u=3x%y — 4y + 2

4.2
v = —3y*x — 6z (4.2)

Win, = Uout = Udown = Wgop = {
p=2xr+3

En procédant a ce test a différents Re et en faisant varier ’orientation du domaine, on s’assure
que les taux de convergence correspondent toujours aux taux de convergence théoriques. C’est
d’ailleurs ce que 'on constate a la Figure 4.3 ou la norme H' de I'erreur en vitesse (gauche)
ainsi que la norme L? de I'erreur en pression (droite) sont toutes les deux tracées en fonction
du nombre d’éléments du maillage et ce, pour différents Re. Encore une fois, les résultats
sont tres semblables pour le domaine ayant subi une rotation, comme il est possible de le

constater a la Figure C.1 de I’Annexe C.

Ces premiers tests de vérification de la discrétisation spatiale permettent de conclure que FF'8
résout correctement 'approximation PoP; de la formulation variationnelle des équations de

Navier-Stokes permettant d’obtenir les champs de vitesses et de pression sur tout le domaine.

4.1.2 Ecoulement transitoire

En passant a la résolution des écoulements transitoires, la discrétisation temporelle entre
en jeu. Il devient donc possible de vérifier que EF§ résout correctement les schémas de
discrétisation en temps BDF', détaillés a la Section 3.1.3. Toutefois, comme la discrétisation
temporelle est ajoutée a la discrétisation spatiale, il est important de vérifier que celles-ci
interagissent correctement entre elles. C’est pourquoi une premiere série de tests visant a
vérifier uniquement la discrétisation temporelle est exécutée et qu'une seconde série de tests

est ajoutée pour vérifier une combinaison adéquate de I’erreur en temps et en espace.
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Figure 4.3 Normes de l'erreur en vitesses (gauche) et en pression (droite) pour un champ de
vitesses d’ordre élevé et une pression linéaire

Vérification de la discrétisation en temps

En premier lieu, pour vérifier uniquement la résolution de la discrétisation en temps par FFS,
différentes solutions spatialement exactes sont imposées sur un domaine rectangulaire fluide
pour que la norme de ’erreur ne tienne compte que de l'erreur en temps. Il s’agit ainsi d’un
probléme de conditions initiales et non de conditions limites. A des fins de concision, seuls les
schémas les plus utilisés, soit BDF'1, BDF2 et BDF3 sont vérifiés. BDF'1 et BDF?2 sont
d’ailleurs des schémas inconditionnellement stables, ce qui les rend d’autant plus intéressants
dans le contexte d'une implémentation monolithique comme c’est le cas de EF8. La Figure
4.4 montre le maillage utilisé pour cette série de tests et 'Equation (4.3) présente la condition

initiale ug(t) qui ne dépend que du temps; ici, Re = 1.

Pour s’assurer de I'indépendance de la solution par rapport a la discrétisation spatiale, v et
p ont été imposées comme étant nulles sur tout le domaine. Cette méthode permet d’ailleurs
d'utiliser la norme H! de 'erreur de u en fonction du raffinement du pas de temps comme
mesure du taux de convergence tel qu’explicité au Tableau 4.3. Différentes conditions initiales
up(t) ont ensuite été imposées sur la frontiére gauche du domaine dans le but de reproduire

les solutions manufacturées de I'Equation (4.3) illustrée a la Figure 4.5 et ainsi tester BDF'1,
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0.8 |

0.6 F |

0.4+ 1

0.2 1l

Figure 4.4 Maillage triangulaire composé de 70 éléments et de 163 noeuds

BDF2 et BDF3 avec chacune de celles-ci.

up(t) =t" pourn=1,23,4 (4.3)

ok (
t2
@

Figure 4.5 Schématisation des conditions v, p et de la condition initiale uy(t) imposées aux
frontieres (I') du domaine fluide (€2) pour la vérification de la résolution en temps pour quatre
cas différents

Cette série de tests a donné lieu aux résultats présentés au Tableau 4.4. On y voit que les
taux de convergence théoriques sont bel et bien respectés pour tous les schémas BDF'. De
plus, chaque schéma arrive a capturer les solutions exactes tel qu’attendu, c’est-a-dire que
BDF1 arrive a capturer exactement une solution linéaire, BDF'2 une solution quadratique

et BDF'3 une solution cubique.

Afin de tester la discrétisation spatiale de facon encore plus consciencieuse, la solution manu-
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Tableau 4.3 Détails du test de vérification de la discrétisation en temps de EF8

Moyen(s)

Objectif(s) Pévaluation Hypothése(s)
Vérifier la Taux de convergence Taux de convergence
discrétisation en basé sur la norme H! > 1 pour BDF'1
temps BDF1, en fonction du raffinement > 2 pour BDF?2
BDF2 et BDF3 du pas de temps > 3 pour BDF3

Tableau 4.4 Taux de convergence des différents schémas d’intégration temporelle BDF' selon
l'ordre de la condition initiale ug(t)

Serbma Duy=t @uy=r @uwy=1 Du)=r'

BDF1 Solution 1 1.005973901  1.008933125
exacte

BDF2 Solution Solution 1990807793  1.973049203
exacte exacte

BDF3 Solution Solution Solution 9 990897794
exacte exacte exacte

facturée 2D ALE de Hay et al. [6], présentée a 'Equation (4.4), a été reproduite et appliquée

tel que schématisée a la Figure 4.6.

p = —(x + y)sin(27t) (4.4)
X X:@xy(x—l 3 o(t) 0 pour t < 0
Y = @xy(y - 1) 4(t — tanh(t)) pourt >0

ou X permet d’imposer le mouvement des noeuds du maillage.

Ce probleme a d’abord été résolu avec EFS§ en utilisant un maillage fixe, c’est-a-dire en
omettant les variables X et Y, dans le but de vérifier d’abord la résolution adéquate de la
formulation ALE des équations de Navier-Stokes. En utilisant ensuite un maillage mobile, on
peut s’assurer que les taux de convergence sont conservés malgré le déplacement des noeuds
du maillage. L’objectif, les moyens d’évaluation et les hypotheses de ce test sont présentés
au Tableau 4.5.
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u

Figure 4.6 Schématisation des conditions u et X imposées aux frontiéres (I') du domaine
fluide (€2) pour la vérification de la solution manufacturée de [6]. Ot aucune condition limite
n’est spécifiée, ce sont les conditions naturelles qui sont appliquées.

Tableau 4.5 Détails du test de vérification de la discrétisation en temps de EF'8 par rapport
a la solution manufacturée

Moyen(s)
d’évaluation

Taux de convergence
) 1 Taux de convergence
basés sur les normes H

L. >
. V?r'lﬁer' la et L? en fonction du raffi- = 1 pour BDF1
discrétisation en nement du pas de temps et > 2 pour BDF?2
temps BDF'1, p P > 3 pour BDF3

ison des ch d R
BDF2 et ppp3 COMmparaison des champs de Mémes champs de
vitesses et de pression avec . .
vitesses et de pression

la solution manufacturée

Objectif(s) Hypothese(s)

Les normes de l'erreur en vitesses et en pression pour ce probléme sont présentées a la
Figure 4.7. La solution a d’abord été générée entre [0,7], ou T" = 1.1, puis comparée a la
solution exacte, telle qu'aux Equations (4.5) et (4.6) ot E, et E, représentent respectivement
Ierreur en pression et en vitesses. On a ensuite procédé a un raffinement du pas de temps
tout en conservant 'intervalle de simulation [0,7] dans le but d’obtenir les courbes de la
Figure 4.7.

EP(AT) = ||ph(T> - pe:}cacte(T)||L2 (45)
EU(AT) - ||uh(T) - uemacte<t)HH1 (46)

On observe que les taux de convergence théoriques sont parfaitement reproduits et ce, autant
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pour le maillage fixe que pour le maillage mobile. De plus, les valeurs des différentes normes
sont tres semblables entre le maillage fixe et mobile. Il est normal que les valeurs ne soient

pas exactement les mémes puisque comme 'un des maillage est mobile, il n’est forcément pas

identique au maillage fixe a chaque pas de temps.

3 1 & |

3 1% | 2"
Z1071 ) 1 £}
o ; ¢ = ; .
21072 E E 8 ]_072 S =
= - . — - .
) I : = I ]
107} \ E=p (g
= . |[-o- BDF1 - fixe ¢ =, |[-o- BDFI - fixe |
T107 % E . 4 S 107*E . S
ey -|—— BDF1 - mobile [~ 1 -|—=— BDF1 - mobile g
o10-5 || BDF2 - fixe ' P:3< | 2105l ° BDF2 - fixe P:3< |
g -|—e— BDF2 - mobile « | & -| —e— BDF2 - mobile
Z10-6 ||~ o~ BDF3 - fixe | Z10-6|{ ° BDF3 - fixe
BDF3 - mobile BDF3 - mobile

1077 1077

10! 102 103 10! 102 10°

Nombre de pas de temps

Nombre de pas de temps

Figure 4.7 Normes de l'erreur en vitesses (gauche) et en pression (droite) pour la solution
manufacturée 2D de Hay et al. [6]. Les pentes de référence P sont aussi présentées a titre de
comparaison.

En ce qui concerne la comparaison des champs de vitesses et de pression avec ceux de la
solution manufacturée, 'analyse est forcément plus qualitative qu’en ce qui concerne les taux
de convergence. Il est toutefois possible de superposer les lignes de courant au champ de
pression tel que Hay et al. 'ont fait pour ensuite comparer les figures. C’est justement ce
qu’on peut observer a la Figure 4.8 ou la résolution a été faite sur un maillage mobile. Ces
graphiques sont d’ailleurs tres semblables a ceux obtenus par Hay et al. aux mémes valeurs
de t.

La Figure 4.9 montre justement le maillage a ¢ = 0.0 et a t = 1.1. La déformation du maillage
devient tres évidente. On peut toutefois remarquer que les noeuds de la frontiere gauche ainsi
que de la frontiere du bas ne se déplacent pas, pour faciliter I'imposition des conditions de
Dirichlet sur celles-ci. Le méme comportement est observé en ce qui concerne les résultats de

Hay et al.

Les résultats étant les mémes ou bien tres proches de ceux de la solution manufacturée, il est
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Figure 4.8 Lignes de courant superposées au champ de pression a ¢t = 0.2 (gauche) et a ¢ = 1.1
(droite) obtenus a l'aide d’un maillage mobile
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Figure 4.9 Maillage mobile a ¢t = 0.0 (gauche) et a t = 1.1 (droite)

possible de confirmer que la discrétisation spatiale et temporelle est correctement faite par

EFS§, et ce autant pour un maillage fixe que mobile.
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Vérification combinée de la discrétisation en espace et en temps

Maintenant que les discrétisations spatiale et temporelle ont toutes les deux été vérifiées
indépendamment, une vérification de l'interaction de celles-ci est nécessaire. Contrairement
aux tests précédents, la solution doit maintenant dépendre a la fois de ’espace et du temps
pour arriver a étudier I'interaction des erreurs induites par ces deux types de discrétisation.

Les détails de cette série de tests sont présentés au Tableau 4.6.

Tableau 4.6 Détails du test de vérification de I'interaction entre les discrétisations en espace
et en temps de EF8

Objectif(s) d}:efle;};igi(:?())n Hypothese(s)
Vérifier I'interaction Taux de convergence Taux de convergence
entre la discrétisation en basés sur les normes H! > 2 pour les vitesses
temps BDF1, BDF2 et et L% en fonction (norme H')
BDF3 et la discrétisation PoPy du raffinement du > 2 pour la pression
des vitesses et de la pression  maillage et du pas de temps (norme L.2)

Le maillage sur lequel est basé cette série de tests correspond a celui utilisé pour la vérification
du taux de convergence en espace, c’est-a-dire celui présenté a la Figure 4.1. La solution
manufacturée de I'Equation (4.7) a donc été imposée par des conditions de Dirichlet sur
toutes les frontieres du domaine pour les vitesses u et v ainsi qu’en imposant la pression p

en un point du domaine, tel qu’illustré a la Figure 4.10.

u = 3z sin(2mt)

_ (4.7)
= —3ysin(27t) + 5

Win, = Uout = Udown = Ugop =
v
p=0

Pour cette série de tests, il est important de porter une attention particuliere au raffinement
du maillage et du pas de temps. En effet, selon les méthodes d’approximation choisies, les
taux de convergence théoriques de l'erreur en temps, en vitesses et en pression ne sont pas
nécessairement les mémes. L'Equation (4.8) montre justement comment procéder & un raffi-
nement cohérent du maillage et du pas de temps dans le cas de I'utilisation des polynomes
d’interpolation P,P; pour les vitesses et la pression et du schéma BDF1 pour la discrétisa-
tion en temps. Si le raffinement du maillage et du pas de temps n’est pas cohérent, les taux

de convergence des normes de l'erreur en vitesses et en pression ne seront pas conservés. C’est
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Figure 4.10 Schématisation des conditions u,v,p imposées aux frontieres (I') du domaine
fluide (2) pour la vérification combinée de la résolution de la discrétisation en espace et en
temps

d’ailleurs ce qui est vérifié par cette série de tests.

Temps : BDF1 — Erreur ~ O(At) — Diviser le pas de temps en 4
Vitesses : Norme H' — Erreur ~ O(h?) — Diviser la taille des éléments en 2 (4.8)

Pression : Norme L? — Erreur ~ O(h?) — Diviser la taille des éléments en 2

Ainsi, plusieurs types de raffinement sont testés :

— Raffinement en espace et en temps : Raffinement simultané cohérent, c’est-a-dire en
respectant 'ordre de convergence des vitesses, de la pression et du temps, du maillage

et du pas de temps.

— Raffinement en temps : Raffinement du pas de temps seulement en conservant toujours

le méme maillage (22 éléments).

— Raffinement en espace : Raffinement du maillage seulement en conservant toujours le

méme pas de temps (10 pas de temps).

La Figure 4.11 présente les résultats obtenus pour ces trois types de raffinement jumelés
au schéma de discrétisation en temps BDF'1. Si on s’attarde au graphique de gauche de la
Figure 4.11, on remarque que le raffinement en espace et en temps (les lignes pleines) permet
aux vitesses et a la pression de respecter leur taux de convergence théoriques, c’est-a-dire
que leur pente est minimalement de 2. Toutefois, si on ne raffine que le pas de temps sans
modifier le maillage, seule la pression arrive a respecter son taux de convergence théorique.

Le constat est tres semblable pour le graphique de droite. En effet, si on raffine uniquement
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le maillage sans modifier le pas de temps, la norme de l'erreur en pression stagne et seule
la norme de l'erreur des vitesses arrivent a atteindre le taux de convergence théorique. Ce
dernier demeure toutefois inférieur a celui obtenu lorsque 1’on raffine simultanément et de

facon cohérente en espace et en temps.
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Figure 4.11 Normes de 'erreur en vitesses et en pression au temps final en fonction du pas de
temps (gauche) et de la taille des éléments du maillage (droite) selon différents raffinement
pour BDF1

Les Figures D.1 et D.2 présentés a I’Annexe D, montrant les résultats obtenus pour les trois
types de raffinement jumelés respectivement aux schémas de discrétisation en temps BDF2

et BDF'3, permettent d’observer un comportement tres similaire.

On en conclut que peu importe le schéma de discrétisation en temps choisi, c¢’est-a-dire que
ce soit BDF1, BDF?2 ou BDF3, un raffinement cohérent en espace et en temps est le seul
moyen d’arriver a conserver les taux de convergence lorsqu’on étudie un probleme qui dépend

a la fois de ces deux discrétisations. FF'8 se comporte donc tel qu’attendu en ce qui concerne
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I'interaction entre I’erreur en espace et en temps. D’un point de vue plus général, cette analyse
du comportement de I'erreur démontre que lors de la résolution d’un probleme d’'IFS, il est
inutile de raffiner abusivement le pas de temps si le maillage, lui, demeure trop grossier. Cela
donnerait une solution probablement tres précise, mais au mauvais probleme. L’inverse, soit
un raffinement abusif du maillage en conservant un pas de temps grossier, est tout autant

inutile. C’est pourquoi il est nécessaire de raffiner en espace et en temps de facon cohérente.

4.1.3 Meéthodologie du calcul des forces exercées par le fluide

Parmi les données a extraire des problemes d’IFS, il y a évidemment les forces exercées par
le fluide sur le solide. En éléments finis, celles-ci sont communément calculées par la méthode
des réactions. Cette méthode ne peut toutefois étre utilisée qu’en post-traitement alors qu’il
est aussi possible de calculer ces forces a ’aide de multiplicateurs de Lagrange, tel qu’expliqué
a la Section 3.5.1, en ajoutant une nouvelle équation au systéme. Cette nouvelle équation
devient tres utile dans le cadre du développement d’'une méthode monolithique puisqu’elle
permet le couplage des équations. Dans le but de vérifier la précision de cette technique moins

usuelle, on compare ici les résultats obtenus via les deux méthodes.

Retour sur la méthode des réactions

En EF, la méthode des réactions permet d’obtenir la valeur des forces de traction sur une
frontiere grace aux coefficients du systeme algébrique construit selon le nombre de DDL du
probleme. Si on prend comme exemple un probleme 1D a 5 DDL ou la vitesse u est imposée
en A et en B (uy et us), tel quillustré a la Figure 4.12; le systeme algébrique construit

s’apparente a celui de I'Equation (4.9).

DDL : Uy Ul U9 us Uy
[ & L 2 L 2 '—>I'
A B

Figure 4.12 Exemple de probleme 1D a 5 DDL pour la résolution des équations de Navier-
Stokes par éléments finis
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air a2 0 ayy O Uy by
agr azg az 0 0 Us by

0 aszx a3 0 ass||us bs (4.9)
asg; 0 0 ag O Uy by + T's

0 0 as3 0 as5/ \us bs +Tg

La méthode des réactions utilise donc les coeflicients de la 4°¢ et 5° ligne de la matrice, c’est-
a-dire celles correspondant a la discrétisation des polyndémes assignés aux DDL uy et us, pour
calculer les forces de traction en A et en B (T4 et Tg). Ce calcul est explicité aux Equations
(4.10) et (4.11).

—TA = b4 — Q41U1 — QgqU4 (410)

—TB = b5 — a53U3 — Ax5Us (411)

Cette méthode fiable et précise est utilisée, entre autres, par le logiciel commercial COMSOL.

Comparaison entre les différentes méthodes de calcul des forces

La résolution des forces sur une frontiere par la méthode des multiplicateurs de Lagrange
ajoute deux équations différentielles au systeme, soit une pour le calcul des forces dans la
direction x et une seconde pour la direction y. Pour comparer la méthode des réactions a
celle des multiplicateurs de Lagrange pour le calcul des forces exercées par le fluide sur un
corps solide, ’écoulement d’un fluide autour d’un cylindre circulaire est étudié. Afin de créer
des allées de Von Karman, un écoulement cisaillé qui devient progressivement un écoulement
plan unitaire est imposé a l'entrée du domaine pour initier les instabilités. Le nombre de
Re est aussi fixé a 100 pour s’assurer de l'existence d’une solution 2D et Uy = Ly = 1. La
maillage de base utilisé est présenté a la Figure 4.13 et les conditions limites sont présentées
a la Figure 4.14 ou uy, = [((0.125y — 0.5) + min(¢/10,1)(—0.125y + 0.5) 4+ 1) - e,].

En calculant les forces exercées sur le cylindre par 1’écoulement fluide a l'aide des deux
méthodes, il est possible de comparer les courbes obtenues. En ce qui concerne la méthode
des multiplicateurs de Lagrange, différents maillages sont testés ainsi que différents nombres
de points d’intégration de Gauss afin d’étudier leur influence sur la valeur des forces calculées.

Un résumé des détails de ce test est présenté au Tableau 4.7

La Figure 4.15 montre les forces exercées sur le cylindre dans la direction x en fonction du
temps. Les graphiques de gauche et de droite présentent respectivement les forces calculées

sur un maillage de 428 et de 1712 éléments. L'impulsion que 'on remarque entre ¢ = 0 et
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Figure 4.13 Maillage triangulaire formé de 428 éléments et de 908 noeuds

v=20

U;pn O v=0

v=20

Figure 4.14 Schématisation des conditions u, v imposées aux frontieres (I') du domaine fluide
(Q) pour la vérification du calcul des forces

Tableau 4.7 Détails du test de vérification du calcul des forces par la méthode des multipli-
cateurs de Lagrange

Moyen(s)

Objectif(s) Pévaluation Hypotheése(s)
Vérifier le calcul des  Graphique des forces exercées Courbes de plus en plus
forces par la méthode par le fluide sur le solide rapprochées avec le raffinement

des multiplicateurs calculées par la méthode du maillage et 'augmentation

de Lagrange des réactions du nombre de points de Gauss




63

t =~ 10 est due a I’écoulement cisaillé qui est imposé alors qu’un certain régime permanent
s’établit a mesure que t augmente. On voit déja rapidement que les courbes ont toutes la méme
tendance. Toutefois, les forces calculées par la méthode des multiplicateurs de Lagrange sur
le maillage le plus grossier avec 3 points d’'intégration de Gauss sont nettement plus distantes
de la courbe de référence, c’est-a-dire celle de la force en x calculée a ’aide de la méthode des
réactions. Des qu’on augmente le nombre de points d’intégration de Gauss a 6, la valeur de la
force en x en fonction du temps se confond a celle calculée par la méthode des réactions. Sur
le graphique de droite, le maillage est plus fin et les courbes sont toutes confondues, méme

pour une nombre de points d’intégration de 3.
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Figure 4.15 Force dans la direction z en fonction du temps exercée par le fluide sur le cylindre
et calculée sur un maillage de 428 éléments (gauche) et de 1712 éléments (droite) pour
différents nombres de points d’intégration de Gauss

La Figure 4.16 montre plutot les forces exercées sur le cylindre dans la direction y en fonction
du temps. On y observe le méme comportement par rapport au nombre de points d’intégration
de Gauss et d’éléments du maillage. Ces graphiques permettent aussi de visualiser la nature

cyclique des forces en y des allées de Von Karman.

On peut en conclure qu’en choisissant adéquatement le nombre de points d’intégration de
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Figure 4.16 Force dans la direction y exercée par le fluide sur le cylindre en fonction du temps
calculée sur un maillage de 428 éléments (gauche) et de 1712 éléments (droite) pour différents
nombres de points d’intégration de Gauss

Gauss en fonction de la densité du maillage, le calcul des forces par les multiplicateurs de
Lagrange est équivalent a celui communément fait par la méthode des réactions. Cela est
di au fait que la géométrie est courbe et qu'un maillage plus fin permet de mieux capturer
la géométrie alors qu’un maillage plus grossier nécessite un plus grand nombre de points

d’intégration de Gauss pour arriver a un résultat fidele a la méthode des réactions.

4.2 Validation

Maintenant que la résolution des différentes équations par EF'§ est rigoureusement vérifiée,
I’étape subséquente correspond a la validation. Ici le but est de résoudre un probléme physique
pour lequel des résultats expérimentaux sont disponibles. Il est alors possible de simuler ce
probleme avec FF8 et ainsi s’assurer que les équations implémentées correspondent bel et

bien aux équations décrivant correctement la physique du probleme.
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Plusieurs problemes classiques sont testés. Dans un premier temps, un probleme stationnaire
est simulé, soit les vortex de Foppl. On pousse ensuite ce méme type de probléme pour simuler
les allées de Von Karman et ainsi modéliser un probleme transitoire. Finalement, le probleme
de la cavité entrainée, différent des deux premiers par sa géométrie et ses conditions limites,

est aussi testé.

4.2.1 Vortex de Foppl

Les vortex de Foppl correspondent a des vortex stables et symétriques qui se forment a
I’arriere d’un cylindre circulaire placé dans un écoulement a faible nombre de Re. C’est en se
basant sur le travail de Toja-Silva et al. [43] que ce test a été construit. Comme la solution

physique est stationnaire, ce test permet de valider adéquatement la module stationnaire de
EFS.

Un écoulement unitaire u est donc imposé a ’entrée du domaine alors que la vitesse v y est
imposée a 0, tel que la Figure 4.17 permet de le constater. Les conditions naturelles sont
imposées a la sortie. Pour s’assurer de la stabilité des vortex de Foppl et ainsi éviter d’initier
des allées de Von Karman, Re est imposé a 30. Ici, le maillage utilisé est triangulaire, non-
structuré et est composé de 209 588 éléments et de 420 257 noeuds, une densité semblable a

celle du maillage cartésien utilisé par Toja-Silva.

v=20 r

v=20

Figure 4.17 Schématisation des conditions u, v imposées aux frontiéres (I') du domaine fluide
(Q) pour la validation des vortex Foppl

En visualisant la solution telle qu’a la Figure 4.18, c¢’est-a-dire en superposant les lignes de
courant a la vorticité en z, on observe tres bien les vortex de Foppl. Ceux-ci sont bel et bien

stables et symétriques. En suivant la méthodologie de Toja-Silva et al., on se base sur leur



66

géométrie pour arriver a comparer les résultats obtenus avec FF§ a ceux de la littérature et de
tests expérimentaux. A l'aide de l'intégrale du multiplicateur de Lagrange dans la direction
de I’écoulement, il est aussi possible de calculer le Cp du cylindre et d’ajouter celui-ci aux

valeurs numériques a comparer. Les dimensions des vortex sont calculées par rapport au

e
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Figure 4.18 Dimensions des vortex de Foppl créés par un écoulement a Re = 30 autour d’un
cylindre circulaire. Celles-ci sont visualisées en superposant les lignes de courant a la vorticité
en z.

diametre (D) du cylindre circulaire qui correspond a Ly et qui est ici de 1. Le Cp est, quant

a lui, calculé a l'aide de 'Equation (4.12).

2Fp

Cp=—2
b pUgLo

(4.12)
Le Tableau 4.8 résume les résultats obtenus, en partie visibles a la Figure 4.18, tout en les
comparant a ceux de la littérature et des test expérimentaux disponibles. On y constate que

les résultats obtenus sont tout a fait fideéles a ceux attendus.
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Tableau 4.8 Comparaison des dimensions relatives des vortex de Foppl et du coefficient de
trainée du cylindre provenant de différentes références

Références l/D a/D b/D 0 Cp
Toja-Silva et al. [43] 1.71 0.56 0.53 47,93° 1.78
Pinelli et al. [44] 1.70 0.56 0.52  48.05° 1.80
Coutanceau et Bouard[45]  1.55 0.54 0.54  50.00° -

Triton [46] - - - - 1.74
EFS§ 1.6231 0.5410 0.5313 48.96° 1.80

* ’ . s .
Ces résultats proviennent de tests expérimentaux.

4.2.2 Allées de Von Karman

Méme si les allées de Von Karman ont déja été simulées a la Section 4.1.3 dans le but de

vérifier le calcul des forces, ce test de validation est basé sur la publication de Mendes et

Branco [47]. Ces derniers ont imposé un écoulement fluide & Re = 200 autour d’un cylindre

circulaire dont la géométrie et le maillage sont décrits a la Figure 4.19. Les conditions limites

sont, quant a elles, les mémes que celles décrites a la Figure 4.14, c’est-a-dire qu’un écoulement

cisaillé a 'entrée permet d’initier les instabilités avant de se transformer en écoulement plan

unitaire. Ce test est particulierement utile pour valider le module transitoire de EFS.

8
6

78 6 4 2 0 2 4 6 8 10 12

Figure 4.19 Maillage triangulaire formé de 2694 éléments et de 5525 noeuds

14 16 18 20 22 24 26 28

Afin de s’assurer du déclenchement adéquat des tourbillons de Von Karman, les champs de

vitesses u et v ainsi que le champ de pression p peuvent étre visualisés a la Figure 4.20.

On y voit facilement les tourbillons créés par I’écoulement initialement cisaillé. Ceux-ci sont

cycliques tels que le montrent les graphiques du haut et du milieu. Le graphique de la pression
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(bas), quant & lui, représente bien la zone de haute pression en amont du cylindre et les zones

de pression négative a 'arriere du cylindre, créées par le retour des vortex.

Figure 4.20 Champs des vitesses en z (haut), en y (milieu) et de la pression (bas) pour les
allées de Von Karman créées par 1’écoulement fluide autour d’un cylindre circulaire

Il est méme possible de tracer les vecteurs de la force exercée par le fluide sur le cylindre sur la
frontiere de celui-ci. Tel que le montre la Figure 4.21, ot un zoom sur le cylindre est effectué,
les forces calculées a 'aide des multiplicateurs de Lagrange sont tout a fait cohérentes. En
effet, comme les multiplicateurs de Lagrange sont composés d’un terme en pression et d’un
second en cisaillement, on observe que les vecteurs de forces sont bel et bien alignés avec les

pics de pression, soit les zones rouge et bleue. Entre celles-ci, le terme de pression est moins
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dominant et le terme de cisaillement gagne en importance ce qui fait en sorte que les vecteurs
de force deviennent plutdt tangentiels a la paroi du cylindre. Ce comportement est tout a

fait physique.

Figure 4.21 Champ de pression et vecteurs de force exercée par le fluide sur le cylindre calculés
via les multiplicateurs de Lagrange pour les allées de Von Karman créées par 1’écoulement
fluide autour d’un cylindre circulaire

Finalement, afin de valider la simulation des allées de Von Karman par EFS8, le Cp, le Cp,
ainsi que le nombre de St de I’écoulement autour du cylindre ont été calculés a 1'aide des
Equations (4.13) et (4.14).

2F(0)

Colt) = (4.13)
_2FL(1)

Cult) = (4.14)

ou Fp(t) correspond a la force de trainée en fonction du temps, c’est-a-dire a la force exercée

par le fluide sur le cylindre dans la direction =,

F(t) a la force de portance en fonction du temps, c’est-a-dire a la force exercée par le
fluide sur le cylindre dans la direction vy,
Uy a la vitesse caractéristique de I’écoulement, étant ici 1, et

Ly a la longueur caractéristique, soit le diametre du cylindre circulaire qui est aussi de 1.
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Les valeurs obtenues sont présentées au Tableau 4.9. Elles y sont aussi comparées aux valeurs

provenant de tests expérimentaux et d’autres simulations numériques tirées de la littérature.

Tableau 4.9 Comparaison des coefficients de forces et du nombre de Strouhal provenant de
différentes références. La valeur C'p correspond a la valeur moyenne du coefficient et la valeur
ACp correspond a la demi-amplitude de 'oscillation du coefficient.

Références Cp+ AChH +AC, St
Roshko [48] 1.38 0.18
Lecointe et Piquet [49] 1.46 0.194
Braza et al. [50] 1.38 +0.77 0.20
Lecointe et Piquet [51] 1.29 £ 0.04 +0.60 0.195
Franke et al. [52] 1.31 +0.65 0.194
Zhang et Dalton [53] 1.25+0.03 +0.54 0.196
Mendes et Branco [47] 1.399 + 0.049 +0.726 0.202
EFS§ 1.3292 £0.0349  +£0.5882  0.192

* 7 . ;.
Ces résultats proviennent de tests expérimentaux.

Tel qu’attendu, les valeurs provenant de FF§ sont tout a fait alignées avec celles de la

littérature.

4.2.3 Cavité entrainée

Finalement, le dernier test de validation correspond au test de la cavité entrainée. Celui-ci
modélise une cavité fermée ou le déplacement du fluide est créé par le mouvement constant
de la frontiére supérieure. Comme le domaine ne comporte ni entrée ni sortie, il est important
d’imposer la pression en un point. Les conditions limites sont d’ailleurs illustrées a la Figure

4.22 et celles-ci sont fideles a celles de Bruneau et Saad [54], qui servent de comparaison.

Afin de s’assurer que le mouvement de la frontiere supérieure initie un mouvement important
et donc observable du fluide, un Re de 1000 est imposé. Le maillage utilisé est triangulaire et
cartésien. Il est composé de 32 768 éléments et de 16 641 noeuds tels que Ax = Ay = 1/128.

Afin de comparer les résultats obtenus avec FEFS8, il est d’abord possible de visualiser les
lignes de courant, la vorticité en z et le champ de pression. En appliquant les mémes iso-
contours que Bruneau et Saad, on obtient les champs décrits a la Figure 4.23. Ceux-ci sont
visuellement identiques a ceux attendus. D’un point de vue plus quantitatif, il est aussi
possible de comparer la vitesse u, la vitesse v, la pression p et la vorticité w, a certains
points le long de la ligne centrale verticale ainsi que le long de la ligne centrale horizontale
du domaine avec les valeurs obtenues par d’autres méthodes numériques. C’est d’ailleurs ce

que permettent les Tableau 4.10 et 4.11.
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Figure 4.22 Schématisation des conditions u,v,p imposées aux frontieres (I') du domaine
fluide (§2) pour la validation de la cavité entrainée
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Figure 4.23 Lignes de courant (gauche), vorticité en z (milieu) et champ de pression (droite)
pour la cavité entrainée

On constate alors que les données obtenues, telles que la Figure 4.23 le laissait présager,
sont tres pres de celles de la littérature. En comparant les valeurs provenant de la simulation
avec EF8 avec la moyenne des résultas obtenus par [54-56], la différence est de I'ordre du
dixieme, voire du centieme de point de pourcentage. Seule la vorticité calculée aux frontieres
du domaine fait exception, alors que la différence peut aller jusqu’a 4%. Celle-ci peut étre
expliquée par le fait que la vorticité est calculée par le logiciel Tecplot qui n’utilise que des

polynémes linéaires plutot que les polynémes quadratiques de la simulation.
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Tableau 4.10 Comparaison de la vitesse u, de la pression p et de la vorticité w le long de la
ligne centrale verticale du domaine

Y u [55] u [56] u [54]  w (EF8) p [56] p[54 p(EF8) w,[56] w, [54] w,. (EFS8)
1.0000 -1.00000 -1.00000 -1.00000 -1.00000 0.052987 0.052971 0.052997 14.7534 14.792 15.0116
0.9688 -0.57492 -0.58083 -0.58031 -0.58088 0.051514 0.051493 0.051519 9.49496 9.4781 9.49755
0.9531 -0.46604 -0.47233 -0.47239 -0.47234 0.050329 0.050314 0.050335 4.85754 4.8628 4.88011
0.7344 -0.18719 -0.18867 -0.18861 -0.18867 0.012122 0.012113 0.012122 2.09121  2.0909 2.09131
0.5000  0.06080 0.06205 0.06205 0.06206 0.000000 0.000000  0.00000 2.06722  2.0669 2.06731
0.2813 0.27805 0.28036  0.28040  0.28037 0.040377 0.040381 0.040374 2.26722  2.2678 2.26782
0.1016  0.29730 0.30045 0.30029 0.30044 0.104187 0.104416 0.104210 -1.63436 -1.6352  -1.63279
0.0625 0.20196 0.20233  0.20227  0.20332 0.109200 0.10916 0.109217 -2.31786 -2.3174  -2.31889
0.0000  0.00000 0.00000  0.00000 0.00000 0.110591 0.11056 0.110599 -4.16648 -4.1554  -4.09278

Tableau 4.11 Comparaison de la vitesse v, de la pression p et de la vorticité w le long de la
ligne centrale horizontale du domaine

x v [55] v [56] v [54] v (EF8) p [56] pp4] p(EF8) w,[56] w,[54] w, (EFS)
0.0000  0.00000  0.00000 0.00000 0.00000 0.077455 0.077429 0.077418 -5.46217 -5.4967  -5.70065
0.0391 -0.27669 -0.29368 -0.29330 -0.29362 0.078685 0.078658 0.078673 -8.24616 -8.2462  -8.22811
0.0547 -0.39188 -0.41037 -0.41018 -0.41031 0.077154 0.077128 0.077149 -6.50867 -6.5097  -6.49747
0.1406 -0.42665 -0.42645 -0.42634 -0.42640 0.049029 0.049004 0.048986  3.43016 3.4294 3.42764
0.5000  0.02526  0.02579  0.02580  0.02579 0.000000 0.000000 0.000000 2.06722 2.0669 2.06731
0.7734 0.33075 0.33399 0.33398 0.33392 0.047260 0.047259 0.047222 2.00174 2.0010 2.00098
0.9062 0.32627 0.33304 0.33290 0.33299 0.084386 0.084369 0.084351 -0.82398 -0.82517  -0.82436
0.9297 0.29012 0.29627 0.29622 0.29622 0.087653 0.087625 0.087617 -1.50306 -1.5025  -1.50549
1.0000  0.00000  0.00000 0.00000 0.00000 0.090477 0.090448 0.090430 -7.66369 -7.6333  -7.43275
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CHAPITRE 5 COMPARAISONS ET APPLICATION

Maintenant que les équations de la méthode de résolution monolithique sont bien implémen-
tées dans EFF'8 et qu’elles ont été vérifiées, on revient vers le coeur de cette recherche, soit
les différentes méthodes de déplacement des noeuds du maillage. Dans un premier temps, les
méthodes sont comparées quant a leur capacité a gérer des maillages subissant des mouve-
ments élémentaires. Tel que souligné a la Section 3.4.2, la structure mathématique d’IDW,
d’ITM et d'ITB est assez similaire, c¢’est pourquoi ce sont ces méthodes qui sont étudiées plus
en profondeur. RBF demeure une approche intéressante et efficace, mais elle n’est pas appro-
fondie dans le présent mémoire. Suivra une application concréte de la méthode monolithique

a un probleme d’IFS ou le choix de chaque parametre de simulation est fait minutieusement.

5.1 Comparaison des méthodes

Dans le but de comparer 'efficacité, la précision et les limitations d’IDW, d'ITM et d’ITB,
trois principaux tests sont effectués, soit la translation, la rotation puis la déformation d'un
corps rigide. Comme la majorité des mouvements engendrés par l'interaction entre un fluide
et un corps rigide correspondent a un de ces mouvements élémentaires ou bien a une combi-
naison de ceux-ci, il est intéressant de voir quelle méthode se préte le mieux a chacun de ces
types de mouvement. Aussi, pour tous les tests visant & comparer les différents mouvements,
c’est 'approche FTI, détaillée au Chapitre 3, qui est employée pour décrire la cinématique
des noeuds. Toutefois, avant de procéder a ces tests, il est essentiel de déterminer une mé-

thodologie qui permettra de définir un critére de comparaison.

5.1.1 Meéthodologie de comparaison

Pour mesurer D'efficacité des différentes méthodes d’interpolation en terme d’adaptivité r,
évoquée au Chapitre 2, la métrique de qualité du maillage proposée par Knupp [57] et utilisées
par De Boer et al. [2], Garon et Delfour [40] et Couture-Peck et al. [7] est appliquée. Il s’agit
du f,, détaillé & 'Equation (5.1) tel que

fss = fsize X fshape> (51)

ol fs.. mesure le ratio entre 'aire de I’élément déformé et 1’élément original tel que fg;.. =0
si I’élément est enchevétré ou dégénéré et fg.. = 1 si l'aire de 1'élément est conservé. fypape

mesure quant a lui le caractere équilatéral des éléments de facon a ce que fgpape = 0 si I'élé-
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ment est dégénéré et fopqpe = 1 si I'élément est un triangle équilatéral parfait.
Contrairement & ce & quoi on pourrait s’attendre, la valeur moyenne de fy, n’est que tres
peu affectée pour le mouvement des noeuds puisque les éléments situés tres loin de 'objet
en mouvement demeurent pratiquement inchangés et minimisent ainsi 'impact des éléments
grandement déformés situés plus pres de I'objet. L’étude de la valeur minimale de la métrique
fss est quant a elle tres intéressante puisqu’elle permet de voir si le maillage se dégénére au
fil du mouvement en étudiant seulement le pire élément du maillage. En effet, si la valeur
de min (f,s) tombe & 0 pour une certaine méthode et un certain maillage, cela indique que
le maillage n’est plus valide et ne peut donc pas étre utilisé pour une simulation. Il faut
toutefois étre prudent lors de Panalyse de cette métrique. A ce stade, f,s et min (fss) per-
mettent seulement d’évaluer la qualité géométrique du maillage. Il n’y a pas nécessairement
de corrélation entre cette qualité géométrique et la qualité des résultats qu’il serait possible
d’obtenir en résolvant un probleme d’IFS sur ce maillage.

Une autre valeur dérivée de f,, est intéressante a comparer si ’on change certains parametres
détaillé & I'Equation (5.2) tel que

de la simulation, soit le min ( f;s),

min (fss)

min (fy. )’

min (fss),o = (5.2)
ou min ( fy_ ) est la valeur asymptotique de min ( fss), soit celle ot la position finale des noeuds
est exacte. Le ratio min (f,s),,, permet de déterminer le nombre de sous-étapes minimal pour
atteindre une certaine qualité relative minimale du maillage. Par exemple, une méthode
qui requiert un grand nombre de sous-étapes de déformation pour atteindre une valeur de
min (fss),; de 1 est une méthode qui converge lentement et qui est donc plus coiiteuse a

utiliser.

5.1.2 Etude des différents mouvements

Pour les trois différents mouvements étudiés, différents parametres ont été testés, soit

1. la méthode d’intégration : Euler explicite, la méthode du point milieu (midpoint) et
Runge-Kutta 4, c’est-a-dire les approximations 7&, M et RK4 détaillées a la Section
3.4.3;

2. la charge d’intégration, communément appelée workload, qui correspond au nombre fois
que la fonction d’interpolation est appelée, soit le nombre de sous-étapes de déformation

x le nombre d’étapes d’intégration par sous-étape;

3. la valeur de I'exposant k qui apparait dans la formule d’interpolation de chaque méthode

de déplacement des noeuds (Section 3.4) et qui controle le rayon d’action de chacune
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des méthodes, c¢’est-a-dire la distance entre 1'objet en mouvement et le noeud déplacé

situé le plus loin de celui-ci.

Translation

Les tests visant a étudier le mouvement de translation ont été effectués par Garon et Del-
four [40] et sont basés sur la géométrie présentée a la Figure 5.1. Le bloc solide est ainsi
translaté de 5 unités vers le bas et de 5 unités vers la gauche de facon simultanée. Il s’agit
d’une translation rigide, c’est-a-dire que les noeuds situés sur le bloc bougent avec celui-ci
et que les noeuds environnants sont conséquemment déplacés par les différentes méthodes
d’interpolation, soit IDW, ITM et ITB. Les résultats détaillés sont présentés dans [40]. On

| o
t
25D

A 4

25D

A

Figure 5.1 Schéma de la géométrie de base pour la translation et la rotation ou le rectangle
hachuré est le solide placé a 'intérieur du domaine fluide

en retire principalement qu’en appliquant ’exposant k& optimal pour chaque méthode, IDW,
ITM et I'TB sont sensiblement équivalentes en ce qui concerne le mouvement de translation
pure. En effet, les trois méthodes convergent approximativement au méme rythme vers leur
valeur asymptotique min (fs_ ). On remarque tout de méme qu’en utilisant Runge-Kutta 4
comme méthode d’intégration, la convergence des trois méthodes est beaucoup plus rapide

qu’avec Euler explicite, et ce pour une méme charge d’intégration.

Rotation

En ce qui concerne le mouvement de rotation, les tests effectués par Garon et Delfour [40] sont

aussi basés sur la géométrie de la Figure 5.1. Ici, on procede plutét a la rotation rigide du bloc
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solide de 60° dans le sens anti-horaire. A partir des résultats détaillés par Garon et Delfour,
on remarque qu’'IDW et I'TB n’arrivent en aucun cas a générer un maillage valide pour k = 2
alors qu’'ITM y arrive pour k£ = 3, une valeur pour laquelle cette méthode est linéairement
exacte. De facon plus générale, on observe que la valeur de k a peu d’influence sur la qualité
du maillage lorsque que Runge-Kutta 4 est utilisée comme méthode d’intégration. Si on

compare les valeurs du ratio min ( fss), ,, on remarque qu'ITM est la méthode la plus efficace

rel?
puisqu’elle converge pour une charge d’intégration largement inférieure a celles nécessaires

pour IDW et I'TB.

Déformation

Pour ce qui est des tests de déformation, deux différents tests ont été faits, soit un premier
test ou une déformation constante a été appliquée au bloc rigide de la Figure 5.2 (gauche)
dans le but d’identifier les parametres optimaux pour chaque méthode d’interpolation et un
second test, basé sur la géométrie de droite de la Figure 5.2, ou l'intensité de la déformation
varie afin de déterminer quelle méthode peut soutenir les déformations les plus importantes.

Les résultats des tests a déformation constante, détaillés par Couture-Peck et al. [7], montrent

Roin =% . _
D i o \ ',Rmm3:4
}_k\\ e l RN 11,7 B
\ S - N e =
—T_ 2 T = z 2
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25D 7 25D 7
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Figure 5.2 Géométrie de base pour le test & déformation constante (gauche) et pour le test
pour lequel l'intensité de déformation varie (droite) et ot le rectangle hachuré correspond au
solide placé a l'intérieur du domaine fluide

que les méthodes d’intégration ont une tres grande influence sur la vitesse de convergence des
trois méthodes d’interpolation, tout comme c’est le cas pour le mouvement de translation. En
effet, les méthodes de déplacement des noeuds convergent tres rapidement lorsqu’on emploie

la méthode du point milieu ou bien Runge-Kutta 4 comparativement a la méthode d’Euler
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explicite. La différence entre les maillages générés par les différentes méthode d’interpolation
n’est toutefois pas évidente a ce stade et dépend aussi du maillage utilisé. Il n’est donc pas
possible de déterminer clairement une méthode supérieure en ce qui a trait a ce mouvement

de déformation.

Les résultats des tests ou l'intensité de déformation varie sont quant a eux tres intéressants.
En effet, Couture-Peck et al. montrent qu’'I'TM, jumelée a la méthode d’intégration Runge-
Kutta 4, est la seule méthode capable de générer un maillage valide pour la déformation de

la plus grande intensité testée. La Figure 5.3, tirée de [7] montre d’ailleurs ce maillage.

12 2

10 1 2

—12 | .

-12 -10 -8 -6 -4 -2 0 2 4 6 & 10 12

Figure 5.3 Maillage déformé par ITM jumelé a Runge-Kutta 4 pour k£ = 5 et pour une charge
d’intégration de 240, tiré de [7]
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5.2 Application du maillage mobile

Un des problemes d’'IFS tres intéressants a résoudre a l'aide de la formulation ALE des
équations de Navier-Stokes et d'un maillage mobile correspond au mouvement chaotique d’un
corps rigide dans un écoulement. En effet, comme ce type de mouvement est imprévisible,
seules des méthodes robustes permettent de le simuler adéquatement. C’est donc en se basant
sur le travail de Gabriel Weymouth [1,58,59] que la simulation du mouvement chaotique d’un

cylindre elliptique dans un écoulement a été réalisée.

5.2.1 Ellipse chaotique de Weymouth

Weymouth étudie plus précisément le mouvement 2D d’un cylindre elliptique de longueur
caractéristique Lo dont le mouvement est entrainé par son interaction avec un fluide d’une
viscosité non-nulle u et de vitesse adimensionnelle Uy [1], tel qu’illustré a la Figure 5.4. Celui-
ci peut représenter un capteur immergé dans un liquide ou bien un systeme d’extraction
d’énergie pour lequel le nombre de Reynolds n’excede pas Re = % = 103. Seule la
distance r entre le centroide x( de l'ellipse et le centre de rotation ¢ contréle la stabilité du
systeme et est d’ailleurs un exemple souvent utilisé pour démontrer un mouvement chaotique.
C’est justement les différents types de sillage, autant stables que chaotiques qui sont étudiés

par Weymouth. L’équation du mouvement angulaire utilisée correspond a I'Equation (5.3)

Figure 5.4 Schéma du cylindre elliptique rigide a une degré de liberté dans un écoulement
fluide de vitesse U adapté de [1]

qui découle de I’'Equation (3.14) présentée a la Section 3.5.

pelois + psGow + / (x—%)XA)-e.dT =0 VieS (5.3)
I
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ou I correspond ici au second moment de masse de 1’ellipse par rapport au point de pivot ¢
dont la position est identifiée par x.. La méthodologie numérique adoptée pour résoudre ce
probleme, qui est davantage décrite dans les publications précédentes de Weymouth [58,59],
correspond a la méthode Boundary Data Immersion Method (BDIM) ou les équations dé-
crivant le mouvement du fluide a 'intérieur du domaine sont combinées analytiquement aux
conditions de I'interface fluide-solide. Le comportement du solide est controlé en appliquant
la réaction du corps immergé au fluide et en ajustant ensuite le corps a ’écoulement résultant.
Les équations couplées sont alors résolues par la méthode des volumes finis et la méthode de
Heun d’ordre 2 est employée pour la discrétisation en temps avec un pas adaptatif.

La condition frontiere appliquée a la sortie est particulierement intéressante. Il s’agit d’une
méthode dérivée de la condition de Higdon [60] ot les flux massiques sont intégrés sur toutes
les autres frontieres pour ajuster celui a la sortie et ainsi respecter la loi de conservation
globale de la masse. Dans le cas d’EFS, la loi de conservation globale de la masse est auto-
matiquement respectée par la méthode de résolution par EF. Un tel ajustement n’est donc

pas nécessaire.

5.2.2 Sensibilité de la solution

Méme en ne se concentrant que sur une application de la nouvelle méthode de résolution
monolithique a maillage mobile, plusieurs décisions doivent étre prises pour déterminer les
valeurs d’une multitude de parametres de simulation. Telle que le montre la relation sym-
bolique (5.4), la solution S dépend de la méthode de mouvement des noeuds (MMN), du
maillage, de U'intervalle de temps étudié ([t1,3]), du pas de temps (dt), du polyndéme d’inter-

polation choisi pour la géométrie (Px) et de la solution initiale (S7) utilisée en entrée.
S = {MMN, maillage, [t1, t2], dt, Px; ST} (5.4)

C’est pourquoi il est essentiel d’isoler et de tester chacun de ces parametres de simulation pour
trouver les valeurs optimales. En ce qui concerne les parameétres physiques des simulations, les
dimensions du domaine et de I'ellipse en mouvement respectent toujours celles de Weymouth
[1]. Quant & lui, le schéma d’intégration en temps utilisé correspond a BDF2. De plus, dans
le but des comparer des solutions a régime permanent, le nombre de Re est posé a 400 et le
rapport /L a 0.1.

Finalement, dans le but de comparer les différentes solutions obtenues, les caractéristiques
du mouvement de 1'ellipse seront considérées, soit I'amplitude angulaire du mouvement ()
et 'amplitude des vitesses de rotation (w). Un graphique semblable a celui de la Figure 5.5

sera donc tracé. A partir de celui-ci, il est possible de définir la plus petite boite contenant
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le mouvement de l’ellipse et dont 'aire est définie par amplitude de € x amplitude d’w. C’est

donc I'aire de cette boite qui servira de principal critere de comparaison.

3m/4

/2 i

|

Figure 5.5 Définition de la plus petite boite (en pointillé) pouvant contenir le mouvement de
Iellipse

Définition de la zone mobile du maillage

Tel qu’expliqué au Chapitre 3, les méthodes transfinies résolvent la position de chaque noeud
du maillage comme une inconnue du probleme. Cela ajoute inévitablement un grand nombre
de degrés de liberté. Il devient donc avantageux de ne définir qu'une partie du domaine
comme étant mobile, de fagon a limiter le nombre d’inconnues et ainsi minimiser le temps
de calcul. On teste d’abord le cas ou tout le domaine est mobile, c¢’est-a-dire que la position
de tous les noeuds du maillage fait partie des inconnues. C’est alors le modele ALE jumelé
a l'approche FTD qui est employé (voir Chapitre 3) pour bouger les noeuds du maillage a
I'aide d’ITB avec k = 4. On définit ensuite un sous-domaine rectangulaire mobile autour
de Dellipse. Celui-ci est alors contenu dans un plus grand domaine pour lequel les noeuds
demeurent fixes. Tel qu’illustré a la Figure 5.6, on procede ensuite a la réduction progressive
de la taille du domaine mobile tout en vérifiant constamment la précision des résultats ainsi
qu’en comparant les temps de calcul. Tous les maillages utilisés sont d’ailleurs présentés a

I’Annexe E et ont tous été résolus en utilisant le temps comme parametre d’intégration.

Visuellement, les graphiques d’w en fonction de 6 sont tres semblables, et ce méme si la
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Figure 5.6 Schéma de la réduction progressive de la zone mobile du maillage (zone hachurée)
a 'intérieur du domaine complet. Le reste du domaine est composé d'un maillage fixe

zone mobile differe entre chaque maillage. Ceux-ci sont d’ailleurs présentés a I’Annexe F. Si
on compare plus rigoureusement l’aire des boites contenant le mouvement de l'ellipse pour

chaque maillage, on obtient les résultats présentés au Tableau 5.1. On remarque que méme

Tableau 5.1 Amplitude de 6 et d’'w permettant de calculer I'aire de la plus petite boite
contenant la solution pour différentes dimensions de la zone mobile du maillage. Tous les
maillages sont composés d’environ 23 000 noeuds.

Amplitude § Amplitude w Aire boite % différence

Compléetement mobile 1.4200 1.8587 10.5577 -

Grande zone mobile 1.4360 1.9143 10.9960 4.151%
Zone mobile moyenne 1.4190 1.8832 10.6892 1.245%
Petite zone mobile 1.4144 1.8736 10.5998 0.399%

si les aires des boites sont relativement tres pres les unes des autres, celle du maillage dont la
zone mobile est grande est, étonnamment, plus loin de celle du maillage entierement mobile
que le sont celles ou la zone mobile est plus petite. Cela est probablement di au fait que,
méme si les maillages contiennent environ tous le méme nombre de noeuds (23 000), si la
zone mobile differe entre les maillages, cela signifie forcément que les maillages sont différents.
Le pourcentage d’écart peut étre dii a cette différence globale du maillage plutot que de la
zone mobile en soi. On peut donc conclure que les dimensions de la zone mobile du maillage
n’influencent que tres peu la précision des résultats et les différents maillages permettent,
dans tous les cas, de bien représenter le mouvement de l'ellipse. La différence importante et
particulierement intéressante réside plutot dans le temps de calcul nécessaire pour résoudre
chacun des maillages étudiés. En effet, la Figure 5.7 démontre bien que le temps de calcul
croit tres rapidement avec le nombre de degrés de liberté totaux. Ainsi, si le mouvement est
entierement connu ou du moins limité, il devient tres avantageux de réduire la zone mobile
du maillage tout en veillant a ce que celle-ci soit suffisamment grande pour permettre le
mouvement complet de ’objet et ainsi réduire considérablement le temps de calcul et donc le
colit de la simulation. Dans le cas présent de 'ellipse de Weymouth, on voit que pour le Re

et le ratio /L imposé, tous les maillages étudiés permettent a 'ellipse de se mouvoir sans
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Figure 5.7 Evolution du temps de calcul en fonction du nombre de degrés de liberté qui est
directement relié a la grandeur de la zone mobile du domaine

distordre le maillage et ainsi compromettre sa validité. Toutefois, comme le but est justement
d’étudier le comportement chaotique de ’ellipse en faisant varier le Re et le ratio /L, il est
plus prudent, méme si légerement plus cotiteux, d’utiliser le maillage ou la taille de la zone

mobile est moyenne, c’est-a-dire le maillage présenté a la Figure E.4 de I’Annexe E.

Raffinement du maillage et du pas de temps

Un autre aspect tres important a étudier correspond a la sensibilité de la solution au raffine-
ment du maillage et du pas de temps. C’est encore une fois le modele ALE jumelé a ’approche
FTD qui est employé (voir Chapitre 3) pour bouger les noeuds du maillage. La méthode de
déplacement des noeuds I'TB avec k = 4 a été utilisée pour tous ces tests, mais le comporte-
ment est le méme pour ITM. Ici, le but est de déterminer le raffinement optimal du maillage,
c’est-a-dire celui permettant de capturer adéquatement le comportement de la solution sans
nécessiter une trop grande quantité d’éléments. Trois différents maillages sont alors testés :
un maillage grossier (M), un maillage normal (Ms) et un maillage fin (M3). Dans le méme
ordre d’idée, on étudie aussi 'influence du pas de temps dans le but d’obtenir une solution
qui converge vers le régime permanent sans, encore une fois, nécessiter un temps de calcul
trop important. Quatre différents pas de temps ont été testés avec le schéma BDF2, soit
dt = {0.1,0.075,0.05,0.025}.
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La méthodologie employée et représentée a la Figure 5.8 consiste simplement a tester les
différentes valeurs de dt pour chaque maillage en partant du plus grossier au plus fin et en
utilisant toujours la solution précédente comme solution initiale. De cette facon, on arrive
a simuler un mouvement continu, mais avec différentes valeurs de dt, ce qui permet de voir

si un changement apparait lorsque ’on passe d’une valeur de dt a une autre. Cette série de

Re =400 r/L=0.1

A

r A
M, M M;
dt = 0.1 dt = 0.1 dt = 0.1
t € 10,50] t € 1[0,50] t € 10,50]
dt = 0.075 dt = 0.075 dt = 0.075
t € [50,100] t € [50,100] t € [50,100]
dt =0.05 dt = 0.05 dt = 0.05
t € [100, 150] t € [100, 150] t € [100, 150]
dt = 0.025 dt =0.025 dt =0.025
t € [150,200] t € [150,200] t € [150, 200]

Figure 5.8 Schéma de la méthodologie utilisée pour étudier I'influence du raffinement du
maillage et du pas de temps sur la solution obtenue

tests donne ainsi lieu aux graphiques de la Figure 5.9 ou ’on peut voir la vitesse de rotation
w en fonction de 'angle de rotation 6 pour les trois maillages ainsi que pour les différentes

valeurs de dt.

Les trois graphiques de la Figure 5.9 sont globalement assez semblables, mais comportent
tout de méme quelques différences lorsqu’on s’attarde aux valeurs de I'aire de la plus petite
boite contenant le mouvement de l'ellipse. Les Tableaux 5.2 a 5.4 montrent respectivement
ces résultats pour les maillages M7, M, et Ms. On y remarque entre autres que la convergence
de I'amplitude de € et d’w ne semble pas étre monotone, mais bien oscillante. En effet, les
valeurs de # et d’'w n’évoluent pas toutes dans un méme sens alors que le dt diminue, elles
semblent plutot osciller autour d’une solution. On remarque quand méme la convergence en
observant que la différence entre 'aire des boites s’amenuise avec le raffinement du dt. La

Figure 5.10 permet tres bien de voir ce phénomene pour les trois maillages. On sait aussi,



84

dt=0.1 ol dt=0.1 o dt=0.1
dt=0.075 dt=0.075 dt=0.075
dt=0.05 dt=0.05 N\ dt=0.05
dt=0.025 dt=0.025 dt=0.025

w [rad/s]
w [rad/s]
w [rad/s]

rrrrr

6 [rad] 0 [rad]

Figure 5.9 Vitesse de rotation w en fonction de I'angle de rotation 6 pour différents dt pour

le maillage grossier M; (gauche), pour le maillage normal M, (centre) et pour le maillage fin
M3 (droite)

Tableau 5.2 Amplitude de 6 et d’'w permettant de calculer l'aire de la plus petite boite
contenant la solution pour le maillage M;. Le pourcentage (%) de différence est toujours
calculé avec 'aire de la boite du dt supérieur.

Amplitude 6 [rad] Amplitude w [rad/s|] Aire boite % différence

dt =0.1 1.4404 1.9975 11.5088 -

dt =0.075 1.4381 2.0553 11.8233 2.732%
dt = 0.05 1.4304 2.1045 12.0416 1.847%
dt = 0.025 1.4262 2.0844 11.8910 1.251%

Tableau 5.3 Amplitude de 0 et d’'w permettant de calculer I'aire de la plus petite boite
contenant la solution pour le maillage M,. Le pourcentage (%) de différence est toujours
calculé avec 'aire de la boite du dt supérieur.

Amplitude 6 [rad] Amplitude w [rad/s|] Aire boite % différence

dt =0.1 1.4192 1.8885 10.7206 -

dt =0.075 1.4210 1.9625 11.1549 4.051%
dt =0.05 1.4140 1.9926 11.2701 1.032%
dt = 0.025 1.4101 2.0002 11.2817 0.103%

tel que prouvé a la Section 4.1.2, que 'erreur d’un maillage de bonne qualité diminue pour
atteindre un plateau lorsqu’on raffine la pas de temps. Le maillage M, c¢’est-a-dire le plus
grossier, ne semble pas se comporter de cette facon. En effet, on observe un certain pic a
dt = 0.05, ce qui ne se produit pas pour les maillages My et M3. On peut aussi constater,

au Tableau 5.2, que le pourcentage de différence de l'aire de la boite entre chaque valeur
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Tableau 5.4 Amplitude de 6 et d’'w permettant de calculer l'aire de la plus petite boite
contenant la solution pour le maillage M. Le pourcentage (%) de différence est toujours
calculé avec 'aire de la boite du dt supérieur.

Amplitude 6 [rad] Amplitude w [rad/s] Aire boite % différence

dt =0.1 1.4240 1.9333 11.0121 -
dt = 0.075 1.4265 2.0214 11.5342 4.741%
dt = 0.05 1.4206 2.0849 11.8473 2.714%
dt = 0.025 1.4115 2.1078 11.9011 0.454%
12.2 T T T T
M1
1.8 1 .
1.6F :
L
j:
1]
o 114t q
o
o .
z o
1.2 .
10.8 ]
106 1 | | 1 | 1 1
0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

dt

Figure 5.10 Evolution de l’aire de la plus petite boite contenant le mouvement de Vellipse en
fonction du dt pour les trois maillages testés

de dt converge plus lentement. Ce maillage sera donc éliminé pour les prochains tests. Si
on s’attarde aux maillages My et Ms, on voit que leur comportement est tres similaire. 11
est donc plus judicieux d’utiliser le maillage normal M, puisqu’il nécessite moins de temps
de calcul que M3 pour une précision de calcul environ équivalente. Finalement, My et Mj

semblent atteindre un plateau a partir de dt = 0.05. En d’autres mots, on obtient tres peu
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de gain si on continue de raffiner le pas de temps a partir de cette valeur. Un pas de temps

de dt = 0.05 semble donc adéquat pour les prochains tests.

Influence de la méthode de mouvement des noeuds et de ses parameétres intrin-

seques

Pour étudier I'influence des différentes méthodes de mouvement des noeuds, deux principaux

aspects sont approfondis :

1. Le parametre d’intégration utilisé pour calculer le mouvement de 1'objet solide, soit
par rotation rigide (modele ALE/FTD) ou bien par transformation générale (modele
ALE/FFI);

2. La méthode d’interpolation des vitesses de déformation du maillage, soit I'TB ou ITM

ainsi que leurs différentes valeurs du parametre k.

En ce qui concerne le parametre d’intégration, il est intuitif d’utiliser le temps, c’est-a-dire
I’approche FTD présentée a la Section 3.4.3. De plus, tel que mentionné au Chapitre 3, les
schémas d’intégration en temps BDF sont utilisés par FF'8 et sont normalement assez précis.
Toutefois, un probléeme survient lors de longues simulations. En effet, en utilisant le temps
comme parametre d’intégration, le calcul de la nouvelle position de l'ellipse a chaque pas de
temps est effectué a partir de la position précédente de I'ellipse. Cela fait en sorte qu'une
erreur d’intégration s’accumule au fil de la simulation. Comme le graphique de gauche de la
Figure 5.11 permet de le constater, cette erreur d’intégration cause une dégradation de la
qualité du maillage et peut méme ultimement mener a un maillage invalide (un jacobien né-
gatif) si la simulation est effectuée sur un grand intervalle de temps [¢;, o). Ce probléme n’est
pas apparu dans le cadre des tests effectués précédemment puisque les simulations n’étaient
pas suffisamment longue pour que ce comportement se manifeste. Aussi, a la Section 5.1,
seule la position des noeuds était résolue ce qui suggérait I'utilisation de ’approche FTI, qui
n’a pas ce probléeme. En effet, on observe un probleme d’hystérésis puisque méme si le mou-
vement de D'ellipse est cyclique, le maillage ne reprend pas sa forme initiale a chaque cycle.
Une des solutions pourrait étre de conserver le modele ALE/FTD, mais d’utiliser un schéma
d’intégration en temps plus précis. Toutefois, cela ne ferait que repousser le probleme puisque
I'erreur d’intégration continuerait de s’accumuler, mais plus lentement. Une autre solution
pourrait étre de réduire le pas de temps, mais cela impliquerait une hausse significative du
temps de simulation. Ainsi, une toute autre approche est nécessaire.

En changeant le parametre d’intégration pour un facteur de forme plutét que le temps, le
calcul de la nouvelle position de 'ellipse est toujours effectué en une seule étape a partir de
la position initiale de l'ellipse si 'approche k-ITM-ZE, ou k-ITB-ZE, est utilisée. On évite
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Figure 5.11 Evolution du minimum du fgg en fonction du temps de la simulation pour une
rotation rigide avec le modele ALE/FTD (gauche) et une transformation générale avec le
modele ALE/FFT (droite)

ainsi le probleme d’accumulation de 'erreur d’intégration a chaque sous-étape et la qualité
de maillage demeure donc constante au fil des cycles, tel que le montre le graphique de droite
de la Figure 5.11. Le fait de bouger les noeuds a la frontiere a 1'aide d’une transformation
générale plutot qu’en procédant a une rotation rigide a aussi une influence sur I'apparence
visuelle du maillage final. I’image de gauche de la Figure 5.12 permet de constater que la
rotation rigide de l'ellipse engendre une déformation plus généralisée de la zone mobile du
maillage puisque pratiquement tous les noeuds mobiles sont entrainés par le mouvement de
I’ellipse. L’image de droite de la Figure 5.12, qui montre la rotation de 'ellipse a ’aide d’une
transformation générale, montre que la déformation du maillage est beaucoup plus locale,
soit tres pres de la paroi de 'ellipse. Méme s’il est visuellement difficile de le constater, la
Figure 5.11 prouve bel et bien qu’en utilisant le modele ALE jumelé a 'approche FFI, on
peut non seulement suivre l’ellipse dans son mouvement en minimisant le déplacement des
noeuds du maillage, mais aussi mieux conserver la qualité du maillage au fil de la simula-
tion. C’est donc cette approche qui sera utilisée pour les tests. La Figure 5.12 illustre aussi
comment les noeuds situés sur la frontiere de l'ellipse sont répartis différemment selon la
méthode utilisée. En effet, le modele ALE/FTD fait en sorte que ellipse conserve toujours
la méme discrétisation puisque les noeuds de 'ellipse suivent toujours cette derniere dans

son mouvement. L’image de droite, ou 'ellipse est plutét déformée, montre que la répartition
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Figure 5.12 Zoom sur le maillage autour de I’ellipse en rotation ou le parametre d’intégration
est le temps (gauche) et le parametre de forme (droite)

des noeuds sur l'ellipse change au fil de son mouvement puisque le maillage initial est généré

autour de l'ellipse a la position horizontale.

A la Section 5.1, les divers tests soulignaient 'influence de la méthode d’intégration utilisée sur
la validité des maillages générés a une charge d’intégration donnée ainsi que sur la convergence
de chaque méthode d’interpolation du taux de déformation du maillage. Toutefois, ces tests
simulaient de tres grands déplacements, ce qui ne sera pas le cas avec I'ellipse de Weymouth
puisque méme si le mouvement peut s’avérer chaotique, celui-ci est limité a un degré de liberté,
soit la rotation autour d’un point de pivot. De plus, on voit clairement a la Figure 5.11 que
I’approche Z&; arrive sans probleme a résoudre le probleme étudié lorsque le modele utilisé
correspond & ALE/FFI et permet d’effectuer les déplacement de ellipse en une seule étape
sans faire apparaitre de variables intermédiaires. Il ne devient donc pas pertinent, dans le
cas présent, de prendre le temps d’implémenter des méthodes d’intégration d’ordre supérieur

compte tenu du fait que la précision actuelle est amplement satisfaisante.

En second lieu, il est intéressant d’étudier 'influence de la méthode d’interpolation des vi-
tesses de déformation des noeuds du maillage sur les résultats obtenus. Pour ce faire, le mou-
vement de Dellipse entre [t1,t5] = [150,500] a été étudié, en utilisant la solution a ¢ = 150 a
régime permanent comme solution initiale. ITM et I'TB, les seules méthodes transfinies, ont

toutes les deux été testées tout en faisant varier la valeur du parametre k tel que k = {3,4,5}.
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Les résultats obtenus sont tres semblables, voire impossible a différencier visuellement, comme
il est possible de le constater a la Figure G.1 de ’Annexe G. Le Tableau 5.5 montre lui aussi
que les résultats sont tres semblables, et ce peu importe la méthode d’interpolation ainsi que
son parametre k. Il est cependant important de noter que tous les tests effectués avec k = 3
donnaient rapidement des maillages invalides puisque le rayon d’influence du mouvement est
trop petit pour assurer un déplacement cohérent des noeuds du maillage et ainsi éviter toute

inversion d’éléments. On constate tout de méme une légere réduction de 'aire de la boite

Tableau 5.5 Amplitude de 6 et d’w permettant de calculer I'aire de la plus petite boite
contenant la solution pour ITB et ITM et pour différentes valeurs de k

Méthode d’interpolation k£ Amplitude § Amplitude w Aire boite

3 - - -
ITB 4 1.4156 1.9989 11.3182
5 1.4130 1.9654 11.1085
3 - - -
ITM 4 1.4148 1.9834 11.2240
5 1.4149 1.9696 11.1474

pour ITB ainsi que pour ITM lorsqu’on passe de k = 4 a k = 5. Cette différence n’étant que
de 0.687% pour ITM, cette méthode semble particuliérement stable, peu importe la valeur
de k.

Si on s’attarde maintenant a 1’évolution de la valeur du min(fss) en fonction du mouvement,
on obtient le graphique de la Figure 5.13 ou l'on observe que pour toutes les valeurs de k,
ITM possede un min( fy,) supérieur a I'TB. Méme si la valeur min( fs5) n’a qu’une signification
géométrique et que cela n'implique pas nécessairement que la précision des calculs effectués
sur ces maillages sera meilleure, il est important de considérer que, pour un comportement
chaotique, le mouvement de 'ellipse est imprévisible. Il est donc préférable d’utiliser une mé-
thode qui permet de maintenir la validité du maillage le plus longtemps possible, c’est-a-dire
pour les mouvements de la plus grande amplitude possible. Dans un cas ot le mouvement
étudié est connu ou que ses limites sont connues, nul besoin d’accorder trop d’importance au
min( fss). Toutefois, pour l'ellipse de Weymouth, il est préférable d’utiliser la méthode ITM
avec le parametre k = 4, puisque c’est cette méthode qui permet de préserver la validité du

maillage pour les mouvements les plus importants.

Influence de l’interpolant géométrique

Finalement, le dernier parametre de simulation testé est le degré de I'interpolant géométrique.

Méme s’il est évident que l'interpolant P, pour la géométrie permet de beaucoup mieux
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Figure 5.13 Evolution du min(fss) en fonction de angle de rotation 6 de Dellipse pour les
différentes méthodes d’interpolation

approximer la forme de I'ellipse, ce type d’interpolant ajoute un tres grande nombre de degrés
de liberté a résoudre. Il est donc intéressant de se pencher sur les résultats obtenus avec les
interpolants P; et P, et ainsi juger de 'importance de la différence. Ici, c’est le modele ALE
jumelé a I'approche FTD qui déplace les noeuds du maillage a ’aide de la méthode I'TB avec
k = 4. Les graphiques de la vitesse de rotation w en fonction de ’angle de rotation 6 sont
présentés a la Figure H.1 de I’Annexe H. Le Tableau 5.6 présente justement ces résultats
de facon numérique. On y constate que la différence entre les solutions générées a l'aide
des interpolants P; et P, sont minimes. Il n’est donc pas pertinent d’utiliser un interpolant
P> considérant I'importante augmentation du temps de calcul que cause I'augmentation du
nombre de degrés de liberté. C’est donc l'interpolant géométrique P; qui sera utilisé pour les

tests subséquents.
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Tableau 5.6 Amplitude de 6 et d’'w permettant de calculer I'aire de la plus petite boite
contenant la solution pour les interpolants géométriques P; et P, et pour I'TB et I'TM

Interpolant d’irll\f::;lc())ljfion Amplitude # Amplitude w Aire boite
P, ITB 1.4142 1.9936 11.2770
ITM 1.4147 1.9834 11.2238
P ITB 1.4400 2.0528 11.8239
2 IT™™ 1.4392 2.0435 11.7642

5.2.3 Application a ’ellipse de Weymouth [1]

Alors que Weymouth a analysé en détails le mouvement chaotique du cylindre elliptique mis
en mouvement via I’écoulement du fluide, on s’intéresse ici particulierement a deux aspects,
soit

1. a la sensibilité du comportement de ’ellipse en fonction de deux parametres : le nombre

de Re et le rapport r/L;
2. a I'influence du coefficient d’amortissement sur le mouvement de 1’ellipse.

En ce qui concerne 1'étude paramétrique en fonction de Re et du rapport r/L, le but est
d’abord de tenter de retrouver les mémes résultats que Weymouth, tout en poussant davan-
tage I'analyse et la compréhension du phénomeéne. Pour ce qui est de I'influence du coefficient
d’amortissement, le but est simplement de voir comment il est possible de controler le mouve-
ment de 'ellipse en y ajoutant un coefficient d’amortissement. Les parametres de simulation
sont tous fixés suite aux différents tests de la Section 5.2.2 dans le but d’obtenir le meilleur
compromis entre la précision et les limites des ressources de calcul. C’est donc le modele
ALE/FFI avec I'approximation 4-ITM-ZE; qui sera employée, tel qu’expliqué a la Section
5.2.2. On continue aussi a appliquer le schéma d’intégration en temps BDF2. De plus, en
utilisant le théoreme des axes paralleles ainsi que la forme adimensionnelle des équations de
Navier-Stokes sous forme ALE on détermine aisément que I, = 5% + 7“2% ou r correspond
a la distance entre le centre géométrique de 'ellipse et son centre de rotation. On applique

encore le schéma d’intégration en temps BDF2.

Sensibilité du comportement de D’ellipse

Dans un premier temps une étude paramétrique en fonction du nombre de Re et du ratio r/L
a été effectuée. Le détail de 'application des conditions limites sur le domaine est présenté a
la Figure 5.14 ou u;, = [((0.05y — 0.25) 4+ min(¢/5,1)(—0.05y + 0.25) + 1) - e,]. On observe

les résultats obtenus aux Figures 5.15 et 5.16. La Figure 5.15 illustre bien le mouvement de
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v=20

Figure 5.14 Schématisation des conditions u, v imposées aux frontieres (I') du domaine fluide
(Q2) pour I'étude de la sensibilité du comportement de ellipse en fonction de Re et du ratio
r/L

Iellipse en tracant la vitesse de rotation w en fonction de I'angle de rotation 6 alors que la
Figure 5.16 permet plus facilement de différencier les types de mouvement en tragant 1’angle

de rotation # en fonction du temps.

A la Figure 5.15, pour Re = 200, on observe que ellipse n’oscille que d'un c6té sans jamais
aller du coté des 6 négatifs et ce, pour toutes les valeurs de /L testées. Il est a noter que
le sens de l'oscillation est simplement dicté par le sens du profil en cisaillement a 'entrée
de I’écoulement. Ainsi, en inversant le profil de cisaillement, 1’ellipse oscille en sens inverse,
mais le comportement demeure le méme. Celui-ci est d’ailleurs pratiquement périodique et
est caractérisé par des allées de Von Karman standards. La Figure 5.17 montre tres bien ce
comportement a l’aide du champ de vorticité et de pression ainsi que des vecteurs du champ
de vitesse. Ce type de mouvement est stable et est donc nommé stabilité asymétrique. En
effet, si on observe les graphiques analogues a la Figure 5.16, c’est-a-dire ceux ou Re = 200,
on observe que 'amplitude de 0 est bel et bien périodique, mais oscille toujours autour d’une
valeur différente de 0. Ce méme type de mouvement se produit aussi a Re = 300 et Re = 400
pour /L = 0.16. A titre de référence, Weymouth [1] nomme ce mouvement period-1 limit
cycle around a single branch. Cette stabilité asymétrique se différencie de I'autre forme de
mouvement stable que I'on observe a Re plus élevé, soit & Re = 400 pour des valeurs de r/L

de 0.1, 0.12 et 0.13.

En effet, lorsque le nombre de Re est élevé et que le ratio r/L n’excéde pas 0.13, 'ellipse
oscille autour de # = 0 avec une amplitude d’oscillation plus importante comme on peut
le constater a la Figure 5.16 ainsi que de facon plus visuelle a la Figure 5.18. Ce type de

mouvement est nommé stabilité symétrique. Contrairement au mouvement de stabilité asy-
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Figure 5.15 Vitesse de rotation w en fonction de l'angle de rotation # pour Re =
{200, 300,400} et r/L ={0.1,0.12,0.13,0.14,0.16}

métrique, les vortex du sillage s’éloignent de ceux de Von Karman. On observe plutot un

vortex principal suivi d’un vortex secondaire, et ce a chaque demi période. On remarque

aussi que les vitesses de rotation w sont beaucoup plus importantes que pour les mouvements

de stabilité asymétrique. Weymouth [1] nomme ce mouvement stable limit cycle.



94

Re = 200 Re = 300 Re = 400
2 I I 2 I I
— (LT AMIA mm ..... AR AATR ORI AN AR 1l T T
S g ——— - |
2 203 X - m
} % _1 "" 1] 11 1] 'T101 10001 1] 1] _]_ CEEY U R T r ey ey v vy evreveyyiey
0 | | -9 | | -9 | |
0 100 200 0 100 200 0 100 200
o 1 1 1
=S W
1 £ o5 0 0
H <
~
= 0 | | _1 | _1 I
0 100 200 0 100 200 0 100 200
1 1 a1
g — l“ ’M 0.5 |1 f 0.5
£ 05 0f I 0 l
2= —0.5j t —0.5
0 | | —1 H | -1t 1
0 100 200 100 200 0 100 200
- 1 1 - 1 _
0.8 | | ,
= I'l|||||||||||||||||||ll|| 0.5 0.5
o 0.6
< . " A "I 0 O
=04
D — —
] e Oj N
0 100 200 100 200 0 100 200
1 1 1
et 0.8 0.8 0.8
; = 06 0.6 Ihll"“"“u I ,l,l||||||n.|||| 0.6 P
T2 04 0. |MAATARATAAMTANMIRTE o [HEARARAA AR At
= = 02 02| 0.2 | "'
0 | | O - | | O - | |
0 100 200 0 100 200 0 100 200
Temps Temps Temps

Figure 5.16 Angle de rotation € en fonction du temps pour Re = {200,300,400} et r/L =
{0.1,0.12,0.13,0.14,0.16}

Finalement, pour passer d'un mouvement de stabilité asymétrique a un mouvement de stabi-
lité symétrique en augmentant le nombre de Re, 'ellipse passe par un mouvement chaotique
qui est caractérisé par une variation aléatoire d’w en fonction de @ tel qu’on peut le constater
a la Figure 5.16 pour Re = 300 et /L = {0.13,0.14}. On constate aussi a la Figure 5.19
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Figure 5.17 Champ de vorticité (gauche) et champ de pression et vecteurs du champ de

vitesse (droite) pour un écoulement & Re = 200 avec r/L = 0.1 de type stabilité asymétrique
at={13.5,15.5,17.5} (de haut en bas)

que pour un méme angle 6, le sillage derriere I'ellipse varie beaucoup, ce qui implique que le
moment appliqué sur 'ellipse est différent pour chacun de ces cas, ce qui mene inévitablement

a des trajectoires totalement différentes. Il s’agit d’'un comportement typiquement chaotique.

Certains mouvement hybrides peuvent aussi étre observés, comme c’est le cas a Re = 300
pour /L = {0.1,0.12} ainsi qu’a Re = 400 pour /L = 0.14. La Figure 5.16 permet de voir
assez clairement que ces mouvements sont principalement composés d'une phase de stabilité

symétrique. On peut tout de méme y observer quelques épisodes chaotiques.

De facon plus générale, on remarque que l'ellipse passe d’'un mouvement de stabilité asymé-

trique a une phase chaotique pour ensuite atteindre un état de stabilité symétrique a mesure
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Figure 5.18 Champ de vorticité (gauche) et champ de pression et vecteurs du champ de
vitesse (droite) pour un écoulement a Re = 400 avec r/L = 0.1 de type stabilité symétrique
at={9.5,11,13} (de haut en bas)

que le Re augmente. On remarque aussi que plus le centre de rotation de l'ellipse s’éloigne
de son centre géométrique, c’est-a-dire que le ratio r/L augmente, plus la transition de I’état
de stabilité asymétrique vers I’état de stabilité symétrique est lente. En effet, 'amplitude du
mouvement diminue avec l'augmentation du ratio r/L et il est de plus en plus nécessaire
d’augmenter le Re pour atteindre la phase chaotique qui permet ensuite de passer a I’état de
stabilité symétrique. Cela est cohérent avec les résultats de Weymouth [1] qui souligne que
I'ellipse la plus instable, c’est-a-dire la configuration qui atteint la phase chaotique au plus
bas Re, correspond a celle ou le centre de rotation coincide avec le centre géométrique alors
qu’a l'inverse, l'ellipse la plus stable correspond a celle ou le centre de rotation est situé au

bord d’attaque de 1'ellipse.
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Figure 5.19 Champ de vorticité (gauche) et champ de pression et vecteurs du champ de
vitesse (droite) pour un écoulement & Re = 300 avec r/L = 0.13 de type chaotique a ¢ =
{15.5,30.5,72.5} (de haut en bas)

Lorsque 'on compare minutieusement ces résultats avec ceux de Weymouth [1], on observe
les mémes types de mouvement, mais avec un certain décalage par rapport au Re. En effet,
Weymouth obtient les mémes résultats, mais a des nombres de Re légérement inférieurs.
Ainsi, dans le but de pousser davantage ’analyse des différents mouvements de I’ellipse pour
un r/L constant, une série de tests a r/L = 0.13 a été réalisée pour un plus grand éventail
de Re. Il est donc possible d’observer plus en détails la transition entre les différents types
de mouvement aux Figures 5.20 et 5.21 ou Re = {100, 125, 150, 175, ...400}.

On y voit assez clairement que le mouvement de stabilité asymétrique est présent de Re =

100 a Re = 225 alors qu’une transition s’entame a Re = 250 ou on observe un début
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Figure 5.20 Vitesse de rotation w en fonction de l’angle de rotation 6 pour Re
100, 125,150,175, ...400 et /L = 0.13

de mouvement chaotique. Le mouvement de 'ellipse devient alors pleinement chaotique de
Re = 275 a Re = 325 pour ensuite atteindre une seconde phase de transition a Re = 350 ou

on observe encore quelques traces du mouvement chaotique avant d’atteindre le mouvement
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Figure 5.21 Angle de rotation # en fonction du temps pour Re = {100, 125, 150, 175, ...400}

et r/L=0.13

de stabilité symétrique a partir de Re = 375. Cette série de tests permet non seulement de

s’assurer de la cohérence des simulations en raffinant le nombre de Re, mais aussi a cibler des

combinaisons Re —r/L dont le mouvement de 'ellipse différe de celui obtenu par Weymouth

pour ces mémes combinaisons Re — /L.
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La légere discordance entre les résultats obtenus avec EF§ et ceux de Weymouth meéne a une
nouvelle série de simulations qui vise a s’assurer que les solutions obtenues ne sont pas le
fruit d’erreurs numériques. Ainsi, on utilise les solutions obtenus a Re = 200 et Re = 400,
encore une fois avec r/L = 0.13, comme solutions initiales pour poursuivre ces simulations,
mais avec un pas de temps adaptatif permettant ainsi de controler I'erreur. La méthodologie

de cette série de simulations est d’ailleurs illustrée a la Figure 5.22.

Re = 200 Re = 400
r/L =0.13 r/L =0.13
erreur BDF' = 6.0683e — 4 erreur BDF' = 9.9018e — 4
t € [0,500] t € [0,500]
-
tol(erreur BDF) = le —4 tol(erreur BDF) = le —4
t € [500, 1000] t € [500, 1000]

tol(erreur BDF) = 0.5e — 4 tol(erreur BDF') = 0.5¢ — 4 \ Pas de temps

¢ € [1000, 1500] ¢ € [1000, 1500] adaptatif
tol(erreur BDF') = 2e — 4 tol(erreur BDF') = 2e — 4
t € [1500, 2000] t € [1500, 2000] |

Figure 5.22 Schématisation de la méthodologie pour les simulations a pas de temps adaptatif

Ces simulations servent ainsi a s’assurer que les solutions obtenues ne sont pas dépendantes du
pas de temps et que méme en réduisant significativement 1’erreur, le comportement de 'ellipse
demeure le méme. Les résultats obtenus, présentés a la Figure 5.23, prouvent justement que
c’est bel et bien le cas. On y voit les solutions obtenues par EFS§ pour Re = 200 et Re = 400
pour un temps adimensionnel ¢ qui va de 0 & 2000 mais pour lequel un pas de temps adaptatif
est utilisé de ¢ = [500,2000] en imposant différentes tolérances pour l'erreur de l'intégration
en temps (BDF). On y voit que le comportement de 'ellipse demeure le méme et ce, malgré

I'utilisation d’un pas de temps adaptatif.

Avant I'application de la méthode de résolution monolithique développée et implémentée dans
EFS§ au probleme de l'ellipse de Weymouth, la sensibilité de la solution par rapport a tous les
parametres de simulation a été largement étudiée a la section 5.2.2. Parmi ces parametres,

différents maillages ont été testés et le comportement de 'ellipse n’était pas dépendant de
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Figure 5.23 Vitesse de rotation w en fonction de l'angle de rotation € pour Re = 200 et
Re = 400 avec r/L = 0.13 avec un pas de temps adaptatif en fonction de 'erreur

ceux-ci. L’erreur en espace ne peut donc pas expliquer la différence entre les présents résultats
et ceux de Weymouth. Alors que ceux-ci pourraient provenir de I’erreur numérique en temps,
cette hypothese a été testée et infirmée a 'aide des simulations effectuées a pas de temps

adaptatif. On en conclut donc que nos solutions semblent entierement cohérentes et valides.

En ce qui concerne les résultats obtenus par Weymouth, certaines informations sont man-
quantes. Par exemple, ce dernier ne mentionne pas 'erreur qui lui permet de gérer son pas
de temps adaptatif. Il utilise aussi une méthode de résolution différente, soit les équations
couplées BDIM qu’il discrétise a l'aide de la méthode des volumes finis. Weymouth utilise
aussi un maillage cartésien alors que les maillages utilisés ici sont non-structurés. En utili-
sant la méthode de Heun d’ordre 2, il est possible qu'une légere erreur d’intégration cause le
décalage observé entre les transitions des différents types de mouvement. De plus, le fait que
Weymouth doive utiliser une condition particuliére en sortie pour s’assurer de respecter la loi
de conservation globale de masse pousse a croire que des erreurs numériques se glissent dans
ses simulations, ce qui peut aussi expliquer les différences observées. Finalement, Weymouth
utilise la méthode de déplacement virtuel pour simuler la rotation de 'ellipse a l'intérieur

du domaine. Celle-ci engendre inévitablement des erreurs, alors que la méthode développée
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et implémentée ici, soit ITM, vise justement a réduire ces erreurs et a mieux représenter le

comportement physique de 'ellipse.

Influence du coefficient d’amortissement

Alors que I'Equation (3.23) de la Section 3.6 avec {; = ko = 0 est utilisée pour étudier
les différents types de mouvement de lellipse, on se penche maintenant sur cette méme
équation mais en y ajoutant le terme d’amortissement (. Le but est donc d’étudier le com-
portement de l’ellipse alors qu’on y ajoute un couple d’amortissement structurel linéaire.
Le Re imposé est de 1000 et le ratio r/L est de 0.16. Cette combinaison de Re — /L est
utilisée puisqu’elle est chaotique si aucun amortissement n’est appliqué. Le détail de 'ap-
plication des différentes conditions limites sur le domaine est présenté a la Figure 5.24 ou
u;, = [((0.05y — 0.25) + min(t/5,1)(—0.05y + 0.25) 4 1) - e,] et ot la condition limite de sor-
tie T openBoundary €st détaillée a I’Annexe I. L’ajout de cette condition limite en sortie, qui vise
a imiter la condition naturelle, est di au nombre de Re important. Comme Re = 1000 est
largement supérieur aux différents Re imposés a la section précédente, un probleme classique
survient en procédant a ces simulations dans le méme domaine que précédemment, c’est-a-
dire 5Ly x 8Ly ou Ly correspond au grand axe de l'ellipse. En effet, une grande quantité de
vortex sont créés et la viscosité du fluide est trop basse pour arriver & amortir ceux-ci et ainsi
dissiper et transporter correctement l’énergie cinétique dans le domaine. Cela fait en sorte
que ’énergie cinétique grimpe sans cesse a 'intérieur du domaine jusqu’a ce que le niveau de
pression atteigne des valeurs trop élevées et force donc l'arrét de la simulation. La solution
usuelle a ce probleme est d’allonger le domaine de calcul pour permettre aux vortex de se
dissiper avant de franchir la sortie du domaine. Toutefois, comme on veut ici conserver le
méme domaine que Weymouth, les dimensions du domaine ne peuvent étre changées. On re-
médie donc a la situation en appliquant une condition de sortie qui régule I’énergie cinétique

pour empécher la montée en fleche de celle-ci.

Tel que détaillé a la Section 3.6, la version adimensionnelle de ( correspond en fait a (%’:) Io.
Comme [ dépend de la géométrie de ellipse ainsi que du ratio r/L qui est maintenu
constant et que r,, est fixé a 1, le parametre d’étude devient U, = f—in qui est la vitesse
réduite de l'ellipse. On se questionne donc a savoir quelle est la U, maximale permettant
d’éviter que l’ellipse entre dans sa phase de mouvement chaotique. On s’intéresse aussi
au mouvement de l'ellipse pour différentes valeurs de U,. Les résultats pour les valeurs
de U, = {0.2,0.4,0.6,0.8,1.0,2.0,3.0} sont présentés a la Figure 5.23. On y observe trois

comportements distincts.

L’amortissement a pour but de retarder la phase chaotique, c¢’est-a-dire que 'ellipse doit étre
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Figure 5.24 Schématisation des conditions u, v et T imposées aux frontieres (I') du domaine
fluide (£2) pour I’étude de 'influence du coefficient d’amortissement

dans sa phase de stabilité asymétrique, soit la phase précédant la phase chaotique, pour qu’on

considere que 'amortissement est efficace.

Dans un premier temps, on semble observer cet amortissement efficace a la Figures 5.25 pour
U, ={0.6,0.8,1.0,2.0} ou lellipse oscille autour d’une valeur positive de 6. Pour U, = 0.2
et U, = 0.4, 'ellipse est sur-amortie. En effet, on observe que ’ellipse oscille dans le sens
inverse de son mouvement naturel, ¢’est-a-dire le mouvement de l'ellipse sans amortissement
lorsque son comportement est du type stabilité asymétrique. En absence d’amortissement,
I’écoulement cisaillé entrant ou la vitesse est supérieure a la paroi du haut fait en sorte
que le bord d’attaque de l'ellipse a tendance a pointer vers le bas et ’ellipse se met alors a
osciller dans les valeurs positives de 8. Toutefois, ce qu’on observe pour U, = 0.2 et U, = 0.4,
correspond plutot a une trop grande réponse de l'ellipse qui, étant sur-amortie, tente de
contrer I’écoulement qu’elle percoit a son bord d’attaque en s’orientant parallelement aux
forces qu’elle subit. Le bord d’attaque de I’ellipse va alors vers le haut et elle se met a osciller,
a tres faible amplitude, dans les 6 négatifs. Finalement, on voit clairement qu’a U, = 3.0 et
U, = 4.0, 'amortissement n’est pas suffisant et le mouvement de ’ellipse demeure chaotique.
Il faut donc étre prudent avec 'amortissement imposé a 1’ellipse puisque les valeurs de U,
ont une borne inférieure et supérieure si on désire un amortissement qui retarde la phase

chaotique de 'ellipse sans que celle-ci soit sur-amortie.

Dans un second temps, on se penche sur I’évolution de 'angle de rotation 6 de ’ellipse en
fonction du temps présentée a la Figure 5.26. On constate encore une fois un comportement
sur-amorti pour U, = {0.2,0.4} ou les valeurs de 6 balayées sont toutes négatives. Toutefois,
contrairement a ce qu’on pouvait constater a la Figure 5.25, l'intervalle de U, ou l'ellipse

est dans une phase de stabilité asymétrique semble plutot se limiter a U, = [0.6,1.0]. En
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Figure 5.25 Vitesse de rotation w en fonction de 'angle de rotation 6 pour Re = 1000 et
r/L = 0.16 pour U, = {0.2,0.4,0.6,0.8,1.0,2.0,3.0}
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effet, on voit clairement un épisode chaotique au début de la simulation a U, = 2.0, ce
qu’on n’arrivait pas a voir en observant uniquement la Figure 5.25. On peut aussi noter que
I'évolution de 6 en fonction du temps pour U, = [0.6,1.0], soit lorsque ellipse est dans la
phase de stabilité asymétrique, est moins réguliere que pour cette méme phase observée lors
des tests sans amortissement. Il est normal qu’en ajoutant le parametre d’amortissement on
ne retrouve pas exactement le méme comportement que lorsque celui-ci est ignoré. L’ellipse
conserve tout de méme le comportement recherché, soit un comportement stable, a faible
amplitude et ol aucun épisode chaotique n’est observé. En ce qui concerne U, = 3.0 et
U, = 4.0, la Figure 5.26 mene aux mémes conclusions que précédemment, soit que 'ellipse
a un comportement chaotique et que 'amortissement n’est donc pas suffisant. Dans le cas

présent et pour les valeurs testées, on observe donc que 'intervalle efficace de U, est environ

[0.6,1.0].
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Figure 5.26 Angle de rotation € en fonction du temps pour U, = {0.2,0.4,0.6,0.8,1.0,2.0,3.0}

et r/L=0.13
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CHAPITRE 6 CONCLUSION

L’implémentation d’une méthode de résolution entierement monolithique développée pour
résoudre des problemes d’IFS a été complétée. Outre le fort couplage existant entre les équa-
tions, qui permet d’éviter les complications souvent amenées par l'effet de masse ajoutée,
c’est définitivement la méthode de mouvement des noeuds, qui fait entierement partie du
systeme d’équations a résoudre et qui permet d’éviter le remaillage, qui caractérise I'unicité
de cette méthode.

Ce mémoire ne fait toutefois état que des premiers pas du développement de cette méthode.

6.1 Syntheése des travaux

L’essence du travail de ce mémoire repose sur la mise en oeuvre de la méthode des vitesses

basées sur différentes méthodes d’interpolation.

Dans un premier temps, les différentes méthodes d’interpolation ont été indépendamment
étudiées. En se concentrant particulierement sur I'TM et I'TB, une approche partitionnée a
d’abord été testée, soit 'approche ALE/FTI. Des résultats tres encourageants ont été obtenus
et ont permis de comparer ces méthodes a d’autres plus établies et d’ainsi identifier les forces

et les faiblesses de chacune.

Suite a cette étude approfondie des méthodes d’interpolation, il a été question de mettre en
oeuvre la méthode des vitesses avec les équations de Navier-Stokes dans le but de résoudre
des problemes d'IFS. L’approche FTD, la plus intuitive, a alors été testée. Alors que cette
approche se préte trés bien au couplage monolithique, un probléeme d’hystérésis a été identifié
et a ainsi forcer le développement d’une autre approche, 'approche FFI. Cette derniere a,
a son tour, poussé au développement d’'une alternative originale permettant de modéliser la
rotation d’un objet par I'intermédiaire d’une transformation générale plutot que de procéder
a une rotation rigide de celui-ci. Plusieurs tests ont alors été effectués et ont permis de tirer
des conclusions treés encourageantes sur la précision des résultats ainsi que sur la possibilité

de déplacer les noeuds du maillage tout en conserver la qualité géométrique de celui-ci.

Plusieurs tests de vérification et de validation ont ensuite été effectués pour s’assurer que les
équations ont toutes été implémentées correctement et que celles-ci représentent bel et bien les
comportements désirés. On a ainsi pu conclure que la nouvelle méthode monolithique conserve
les taux de convergence théoriques et permet aussi le controle de la précision en temps et en

espace. Une série de comparaisons avec des résultats numériques et expérimentaux ont aussi
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permis de valider cette nouvelle approche.

Finalement, la nouvelle méthode de résolution monolithique avec le modele ALE/FFI a été
appliquée a un probleme d’IFS ou une ellipse a un degré de liberté se met en mouvement
rotationnel dans un écoulement fluide. Alors qu’une premiere série de tests permet de préciser
une partie des résultats de Weymouth [1], une seconde série permet surtout d’approfondir la
compréhension de l'influence de I'amortissement sur le systeme dynamique. On arrive ainsi
a mieux qualifier 'impact d’un coefficient d’amortissement non nul sur le comportement

naturellement chaotique de ’ellipse.

6.2 Limitations de la solution proposée

Dans le cas présent, il est important de mentionner que I'approche FFI-Z&,, telle qu’im-
plémentée actuellement, ne peut que résoudre un probleme d’IFS ou un seul objet solide se
déplace dans un espace infini. De plus, la généralisation de la transformation générale utilisée
pour déplacer les noeuds situés a la frontiere de ’objet solide ne peut qu’étre appliquée a des
géométries étoilées. Il s’agit ainsi des deux principales limites des travaux présentés dans ce

mémoire.

Aussi, les cas étudiés ont tous un ratio de masse r,, de 1 puisque la majorité des applications
testées ne comportent ni raideur, ni friction. C’est d’ailleurs dans cet ordre d’idée que les
équations adimensionnelles ont été développées. Ainsi, pour des cas ou la raideur et la friction
sont importantes et ou r,, est faible, une révision de ’adimensionnalisation serait nécessaire
puisque présentement, si 7, temps vers 0, tous les termes de ’équation de la dynamique du

solide tendent aussi vers 0.

Tel que mentionné, 'approche FFI-ZE; donne des résultats tout a fait satisfaisants pour
les applications testées. Toutefois, la méthode d’intégration d’Euler en une étape (ZE;) est
évidemment moins précise que plusieurs autres méthodes d’intégration comme la méthode
du point milieu ou RK4. Si de telles méthodes devaient étre testées, une révision de la mise

en oeuvre serait nécessaire puisque la formulation mathématique actuelle n’est pas adéquate.

La grande majorité des tests ont été effectués a pas de temps fixe puisque le but était prin-
cipalement de comprendre 'influence de chaque parametre et d’ainsi arriver a qualifier cor-
rectement le comportement de la méthode monolithique implémentée. Si on voulait procéder
aux mémes tests, mais avec un pas de temps adaptatif, une méthode de contrdle de I'erreur
en espace qui arriverait a repositionner les noeuds de facon dynamique devrait aussi étre
implémentée. En effet, tel que prouvé, il est important de raffiner en temps et en espace de

facon cohérente si on désire conserver la précision des calculs.
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6.3 Améliorations futures

Dans le méme ordre d’idées des limitations mentionnées, il serait important de réfléchir a la
nécessité ou non d’une implémentation entierement monolithique, soit d’inclure le calcul du
déplacement des noeuds du maillage au systeme d’équations ou non. L’approche monolithique
est évidemment la plus sécuritaire, mais est aussi tres dispendieuse en terme de temps de
calcul. Il serait donc intéressant de quantifier le gain que celle-ci représente par rapport aux
méthodes plus traditionnelles. En effet, en considérant la position des noeuds comme des
inconnues au méme titre que les champs de DDL, on rempli une grande partie des matrices.
Meéme si celles-ci demeurent creuses, cela a définitivement un impact non négligeable sur

Pefficacité du calcul.

De plus, une grande partie du travail effectué correspond au développement des méthodes
transfinies de déplacement des noeuds. Dans le but d’améliorer la flexibilité de celles-ci et
de les rendre plus compétitives, il serait trés pertinent que la représentation géométrique
des solides étudiés soit indépendante de la discrétisation par éléments finis. En effet, alors
que ces méthodes transfinies ont permis de passer d’un nuage de points a un maillage d’élé-
ments finis, la prochaine étape vise a passer a une représentation via une courbe continue et
exacte. Présentement, la position de chaque noeud du maillage est controlée par la position
de chaque noeud de la frontiere de 1'objet solide alors qu’une représentation a ’aide d’une
courbe continue permettrait de relier chaque noeud du maillage & un maximum de 3 DDL (en
2D). Le calcul deviendrait ainsi beaucoup moins lourd et les structures de données seraient

grandement simplifiées.

Comme beaucoup d’efforts ont été mis sur les méthodes d’interpolation ainsi que sur le détail
de I'implémentation implicite de la méthode monolithique, la parallélisation de plusieurs
parties du code a été négligée, comme la construction des matrices. Un effort en ce sens

permettrait certainement d’améliorer I'efficacité du calcul.

Il serait aussi tres intéressant d’introduire le calcul de la métrique de la qualité du maillage
a l'algorithme de déplacement des noeuds pour ainsi potentiellement permettre un controle
actif de 'erreur en fonction de celle-ci. On pourrait aussi introduire des éléments de Taylor-
Hood d’ordres supérieurs tels que P3P, P alors que seuls les éléments P, Py P, ont été testés

jusqu’a présent.
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ANNEXE B METHODE DE VERIFICATION PAR SOLUTION
MANUFACTUREE

La méthode des solution manufacturée est une méthode largement utilisée en dynamique des
fluides pour faire la vérification d’un programme logiciel scientifique. Elle consiste a imposer
la solution analytique d’un probléeme connu pour ensuite en vérifier les taux de convergence

théoriques [42].

Dans le cas présent, les équations étudiées sont celles de Navier-Stokes. On procede ainsi a
'imposition d’un champ de vitesses et de pression tel quexplicité aux Equations (B.1) et
(B.2), ou les indices sm indiquent que les champs proviennent explicitement de la solution

manufacturée.

Oug,,
Pem | " 54

+ ((Wgm — Vim) - V)usm] -V [psm]l + lsm (Vusm + VTusm)} =F,, (B.1)

-V -us, =0 (B.2)

Selon le cas, les champs connus peuvent étre imposés par I'intermédiaire de conditions li-
mites aux bords, sur tout le domaine ou comme condition initiale pour certaines solutions

manufacturées temporelles.

Pour toutes les solutions manufacturées de la Section 4.1, les champs de DDL imposés sont
tous explicités, tout comme le moyen par lequel ils sont imposés. Le terme source Fy,, de
’'Equation (B.1) est, quant a lui, toujours calculé analytiquement puis injecté dans la for-
mulation faible de I'Equation (B.1). On s’assure ainsi que les équations ((B.1) et (B.2)) sont

respectées.

Il est ensuite possible de procéder au raffinement du maillage ou du pas de temps pour vérifier

les taux de convergence désirés.
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ANNEXE C VERIFICATION COMPLEMENTAIRE DE LA RESOLUTION
D’UN ECOULEMENT STATIONNAIRE PAR EFS8

Les Tableaux C.1, C.2 et C.3 et la Figure C.1 montrent bien I'indépendance de la résolution
de la discrétisation spatiale pour un écoulement stationnaire par rapport a l’orientation du

domaine et au nombre de Re.

Tel qu’attendu, en utilisant les polynomes d’interpolation PoP, FF§ arrive a capturer exac-
tement la solution pour un probléeme ou le champ de vitesses est linéaire et la pression

constante.

Tableau C.1 Normes de ’erreur en vitesse et en pression pour un champ de vitesses linéaire
et une pression constante (Re = 1) pour un domaine ayant subi une rotation de 45° dans le
sens anti-horaire

Maillage Nombre Norme des  Norme de la
d’éléments vitesses (H') pression (L?)
h 22 1.53E-14 2.19E-13
h/2 88 2.01E-14 1.71E-13
h/4 352 3.97E-14 2.07E-12
h/8 1408 7.94E-14 8.82E-12

Tableau C.2 Normes de I'erreur en vitesse et en pression pour un champ de vitesses linéaire
et une pression constante (Re = 10)

Maillage Nombre Norme des  Norme de la
d’éléments vitesses (H') pression (L?)
h 22 2.86E-14 4.13E-14
h/2 88 3.91E-14 6.33E-14
h/4 352 9.20E-14 7.02E-13
h/8 1408 1.92E-13 2.97E-12

La Figure C.1, quant a elle, présente les normes de l'erreur en vitesse et en pression pour
un champ de vitesse quadratique et une pression linéaire pour un domaine ayant subi une
rotation de 45° dans le sens anti-horaire. On constate que pour tous les nombres de Re testés,
le taux de convergence est supérieur au taux de convergence théorique de 2, ce qui confirme

que EFS§ résout adéquatement la discrétisation spatiale PoP; pour ce type de probléme.
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Tableau C.3 Normes de I'erreur en vitesse et en pression pour un champ de vitesses linéaire
et une pression constante (Re = 10) pour un domaine ayant subi une rotation de 45° dans le

sens anti-horaire

Maillage Nombre Norme des  Norme de la
&€ d’éléments vitesses (H') pression (L2)
h 22 3.18E-14 3.06E-14
h/2 88 3.12E-14 1.68E-14
h/4 352 4.80E-14 2.22E-13
h/8 1408 8.62E-14 9.15E-13
TT 102 F H
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Figure C.1 Normes de I'erreur en vitesses et en pression pour un champs de vitesses quadra-
tique et une pression linéaire pour un domaine ayant subi une rotation de 45° dans le sens

anti-horaire
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ANNEXE D VERIFICATION COMBINEE DE LA DISCRETISATION EN
ESPACE ET EN TEMPS POUR BDF2 ET BDF3

Les Figures D.1 et D.2 montrent des comportements tres similaires. On y observe en effet
que le raffinement en temps permet bel et bien de respecter le taux de convergence de 2 pour
la norme L? de la pression, mais pas pour la norme H1 des vitesses alors qu’on observe un

comportement inverse pour le raffinement en espace.

102 B ] 102 B
10! |

100 |

Norme de 'erreur
—_
o
b

Norme de lerreur

1074 |

| —e~ UV (H') - Espace-Temps | 107 | —e~ UV (H') - Espace-Temps |

|—-P (L) - Espace-Temps |—~-P (L) - Espace-Temps |

107 - o- UV (H') - Temps 107%g|-o- UV (H') - Espace

|- P (L) - Temps | |- P (L) - Espace |
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Taille du pas de temps Taille des éléments du maillage

Figure D.1 Normes de 'erreur en vitesses et en pression au temps final en fonction du pas de
temps (gauche) et de la taille des éléments du maillage (droite) selon différents raffinement
pour BDF2

Ainsi, seul le raffinement combiné en espace et en temps permet de respecter les taux de

convergence théoriques pour les champs de vitesses et de pression.
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ANNEXE E MAILLAGES OU LA ZONE DE MAILLAGE MOBILE VARIE

Le premier maillage testé, présenté a la Figure E.4 possede le plus grande nombre de degrés de
liberté, soit 61 659, puisque tous les noeuds sont mobiles et font ainsi tous partie des inconnues

a résoudre. Le second maillage testé contient un grand sous-domaine mobile alors que le reste
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Figure E.1 Maillage composé de 11 159 éléments, de 22 547 noeuds et ou tous les noeuds
sont mobiles

du domaine est fixe, ce qui donne un total de 58 687 degrés de liberté. Le troisieme maillage
testé contient un sous-domaine mobile de taille moyenne alors que le reste du domaine est
fixe, ce qui donne un total de 54 958 degrés de liberté. Finalement, le quatrieme maillage
testé contient un petit sous-domaine mobile alors que le reste du domaine est fixe, ce qui
donne un total de 50 867 degrés de liberté. Tel qu’attendu, le nombre de degrés de liberté

diminue avec la taille du sous-domaine mobile du maillage.
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Figure E.2 Maillage composé de 12 115 éléments, de 24 445 noeuds et ou un sous-domaine
est mobile
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Figure E.3 Maillage composé de 11 641 éléments, de 23 491 noeuds et ou un sous-domaine
est mobile
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Figure E.4 Maillage composé de 11 415 éléments, de 23 039 noeuds et ou un sous-domaine
est mobile
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ANNEXE F GRAPHIQUES DU MOUVEMENT DE L’ELLIPSE SELON
LES DIFFERENTES DIMENSIONS DE LA ZONE MOBILE DU MAILLAGE

/2| |
/4t |
= of | =
g £
3 /4t . 3
/2| |
-m/4 0 /4 - /4 0 /4
0 [rad] 0 [rad]
/2 | /2| |
/4t | /4t |
= | = |
S.n/4t | S_n/4t |
-m/2 | | -m/2 | |
- /4 0 /4 - /4 0 /4
0 [rad] 0 [rad]

Figure F.1 Vitesse de rotation w en fonction de I’angle de rotation 6 pour le maillage entie-
rement mobile (haut-gauche), pour une grande zone de maillage mobile (haut-droite), pour
une zone de maillage mobile de taille moyenne (bas-gauche) et pour une petite zone mobile
(bas-droite)
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ANNEXE G GRAPHIQUES DU MOUVEMENT DE L’ELLIPSE SELON
LES DIFFERENTES VALEURS DE K POUR ITB ET ITM

3r/4 : : : 3 /4
/2 : /2
/4t | /4l
7 o 7 o
L L
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Figure G.1 Vitesse de rotation w en fonction de ’angle de rotation 6 pour les noeuds déplacés
a l'aide de la méthode ITB avec k = 4 (haut-gauche) et k = 5 (haut-droite) et ceux déplacés
a 'aide de la méthode ITM avec k = 4 (bas-gauche) et k = 5 (bas-droite)
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ANNEXE H GRAPHIQUES DU MOUVEMENT DE L’ELLIPSE SELON
LES DIFFERENTS INTERPOLANTS GEOMETRIQUES POUR ITB ET ITM

37 /4 37 /4
/2 : /2 2
m/4| . T4l }
?«/4 : . i_ﬂ/z; : .
/2 ) ] /2] |
/4 2 a4 0 TR Bmis 2 w40 T )2
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T/2} 8 T/2f 1
/4l . n/4| l
?«/4 : . ?—7?/4 : .
2l . /2| |
A a0 aA a2 T 0 i e
0 [rad] 0 [rad]

Figure H.1 Vitesse de rotation w en fonction de ’angle de rotation 6 pour les noeuds déplacés a
'aide de la méthode I'TB en utilisant I'interpolant géométrique P; (haut-gauche) et P, (haut-
droite) et ceux déplacés a I'aide de la méthode ITM en utilisant I'interpolant géométrique P;
(bas-gauche) et P, (bas-droite)
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ANNEXEI MODELISATION DE LA CONDITION LIMITE NATURELLE

Soit I’équation de conservation de 1’énergie cinétique

gt(pEc) +V:(pEa) =V - (0)u, (L.1)

et son intégrale

d
—/pEch:/ (T-u—pu'nEc)dF—/O':VudQ—...
dt Ja o0 Q

Influence de la condition de sortie

On souhaite d’abord étudier I'influence de la condition de traction nulle sur la conservation
de I’énergie cinétique dans le domaine. Comme T = o -n, cela implique que T - u est toujours
positif, tout comme le terme [, o : Vud(2} qui correspond a la perte d’énergie par friction.
Au début de la simulation, comme un écoulement plan u est imposé a ’entrée, il est normal
que Dénergie cinétique augmente a Uintérieur du systéme. A la sortie, si on n’applique aucune
condition frontiere, c’est la condition naturelle qui est appliquée, c’est-a-dire T = 0. Dans le
cas ou le profil de I’écoulement a la sortie s’approche d’un écoulement plan, le terme pu-nkFE,
est positif et un certain équilibre de ’énergie cinétique est maintenu a I'intérieur du domaine.
Toutefois, lorsqu’il y a présence de vortex, tel qu’a la Figure 1.1, certains problemes peuvent

survenir. En effet, un vortex implique qu’une partie de 1’écoulement a la sortie est sortante

u

- @@@@@D/UTM

Q

Yy YV vy

Figure 1.1 Schéma des vortex dans le sillage de 1'ellipse a haut Re

alors qu'une autre partie est entrante, ce qui fait en sorte que le signe du terme pu - nFE,
peut varier. Si les vortex sont rapides, ceux-ci peuvent se dissiper rapidement grace a la perte
d’énergie par friction. A 'inverse, si les vortex sont lents et que le Re est élevé, I'énergie des

vortex peine a étre entierement dissipée par la friction du fluide qui est alors peu visqueux.
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Un nouveau vortex arrive alors avant que l'énergie cinétique du précédent soit dissipée et
c’est ainsi que I’énergie cinétique du systeéme ne fait qu’augmenter. Cette énergie cinétique
se manifeste sous forme de pression et on observe alors un énorme pic de pression a la sortie
du domaine juste avant que le programme ne cesse de fonctionner. Il est donc nécessaire
d’implémenter une condition de sortie, développée initialement par Dong et al. [61], qui

permet de gérer I'entrée et la sortie d’énergie cinétique de fagon dynamique telle que

0 sin-n=>0
T = |u|2 ‘
an siu-n<0

Il faut ensuite arriver a régulariser cette fonction afin d’avoir un profil continu de traction
normale & la sortie du domaine. Telle que détaillée & I'Equation (1.2), c’est la fonction tanh
qui permet de lisser la condition frontiere a la sortie. C’est d’ailleurs cette équation qui est

implémentée dans FF8 comme la condition frontiere Open Boundary.

0 siu'n=>0

1 siu-n<0

S(u-n) = ; (1 ~ tanh (‘;]0;‘» (1.2)

ou Uy correspond a la vitesse caractéristique de référence et ¢ controle la transition de la

T=p—n-S(u-n) oun S(u-n):{

fonction tanh de fagon a ce que plus 0 est petit, plus la transition est étroite et vice-versa.

Démonstration de I’équation de conservation de I’énergie cinétique (I.1)
Dans le domaine étudié, plusieurs lois de conservation doivent étre respectées. La loi de

conservation de la masse, présentée a ’'Equation (1.3), est la premiére d’entre elles.

dp B
dp

E—i—(u-V)p—l—pV-u:O (1.3)

La loi de conservation de la quantité de mouvement, présentée & 'Equation (I.4), doit aussi

étre respectée.

5,
P TV (pudu) =V

dp

au+p(u-v)u+u{+pV-u+(u-V>p}=V-U (L4)

Por ot

Connaissant ces deux lois de conservation, on cherche maintenant 1’expression de la conser-
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[uf?

vation de I'énergie cinétique E.. Comme E, =

, on peut faire apparaitre la dérivée de

I’énergie cinétique telle qu’a I'Equation (L.5).

ou  10[u?
ot T2 9

(L5)

Ainsi, si on multiplie I'Equation (I.4) par u, on obtient 'Equation (I.6) qui permet de faire

apparaitre I’énergie cinétique F..

0 0
pal;-u—l—p((u-V)u)u—i—|u|2{a§+pv-u+(u~V)p}:V-(a')u

oFE, dp

Py +p(u-V)EC+EC{at +pV-u+(u-V)p}

dp

+E,. 8t+pV-u—|—(u~V)p =V (o)u
OE. 3} 0
(p T +E68/;> +p(u-V)Ec—l—Ech'u+Ec(u'V)p—|—Ec{a§—|—V'(pu)} =V-(o)u
=0

(L6)

De plus, il est possible d’écrire que

V- (pEa) =pENV -u+u-V(pE,),
= Ecpv ‘u+ p(u ’ V)Ec + Ec(u ’ V)p,

ce qui permet, une fois combiné a 'Equation (I.6), d’obtenir ’équation de conservation de

énergie cinétique recherchée, ¢’est-a-dire I'Equation (L.7).

0

a(pEc) +V-(pEu) =V - (o)u (L.7)
Il est aussi possible de réécrire le terme de droite de 'Equation (1.7) tel que

V-(o-u)=V-(oc)u+o:Vu

Le terme o : Vu représente alors le frottement visqueux. L'Equation (I.7) peut donc étre
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réécrite telle qu’a 'Equation (1.8).

gt(pEc)—i-V-(pEcu):V-(a-u)—a:Vu

gt(pEC) =V.(c-u—puE.) —o:Vu (L.8)

Maintenant, pour savoir comment varie ’énergie cinétique a l'intérieur du domaine illustré a

la Figure 1.1, il suffit d’intégrer 'Equation (L.8) sur le domaine tel que

0
/Q&(PEC)CZQ = /mV (o -u—puk,)dl' — /ch :VudQ) — ..,

d
—/pECdQ:/ (T-u—pu-nEC)dF—/a:VudQ—...,
dt Ja o0 Q

ol un terme correspondant au travail effectué par le fluide sur 'objet est toujours soustrait.



	REMERCIEMENTS
	RÃ›SUMÃ›
	ABSTRACT
	TABLE DES MATIÃ‹RES
	LISTE DES TABLEAUX
	LISTE DES FIGURES
	LISTE DES SIGLES ET ABRÃ›VIATIONS
	LISTE DES ANNEXES
	1 INTRODUCTION
	1.1 Ã›lÃ©ments de la problÃ©matique
	1.1.1 Interaction fluide-structure
	1.1.2 DÃ©placement des noeuds du maillage

	1.2 Objectifs de recherche
	1.3 Plan du mÃ©moire

	2 REVUE DE LITTÃ›RATURE
	2.1 Interaction fluide-structure
	2.2 Maillages mobiles
	2.2.1 MÃ©thodes basÃ©es sur les Ã©quations aux dÃ©rivÃ©es partielles
	2.2.2 MÃ©thodes algÃ©briques


	3 MATHÃ›MATIQUES DE L'INTERACTION FLUIDE-STRUCTURE
	3.1 Survol des Ã©lÃ©ments finis
	3.1.1 Formulation variationnelle
	3.1.2 Fonctions d'interpolation
	3.1.3 SchÃ©ma d'intÃ©gration en temps

	3.2 Formulation Euler-Lagrange (ALE) des Ã©quations de Navier-Stokes
	3.2.1 CinÃ©matiques lagrangienne et eulÃ©rienne de l'Ã©coulement
	3.2.2 CinÃ©matique lagrangienne et eulÃ©rienne du domaine mobile
	3.2.3 CinÃ©matique eulÃ©rienne-lagrangienne de l'Ã©coulement
	3.2.4 SynthÃ¨se

	3.3 Ã›quation de conservation du moment angulaire
	3.4 Interpolation de la position des noeuds du maillage
	3.4.1 Interpolation sur une infinitÃ© de points et interpolation transfinie
	3.4.2 GÃ©nÃ©ralisation des diffÃ©rentes mÃ©thodes d'interpolation algÃ©briques
	3.4.3 ModÃ©lisation de la dynamique du maillage

	3.5 Formulation faible monolithique de l'interaction fluide-structure
	3.5.1 Dynamique du fluide
	3.5.2 Dynamique des solides
	3.5.3 CinÃ©matique des frontiÃ¨res du maillage
	3.5.4 CinÃ©matique des noeuds du maillage
	3.5.5 SynthÃ¨se

	3.6 Ã›quations adimensionnelles
	3.6.1 Adimensionnalisation des Ã©quations de Navier-Stokes
	3.6.2 Adimensionnalisation des Ã©quations de la dynamique des solides


	4 VÃ›RIFICATION ET VALIDATION
	4.1 VÃ©rification
	4.1.1 Ã›coulement stationnaire
	4.1.2 Ã›coulement transitoire
	4.1.3 MÃ©thodologie du calcul des forces exercÃ©es par le fluide

	4.2 Validation
	4.2.1 Vortex de FÃ¶ppl
	4.2.2 AllÃ©es de Von Karman
	4.2.3 CavitÃ© entraÃ®nÃ©e


	5 COMPARAISONS ET APPLICATION
	5.1 Comparaison des mÃ©thodes
	5.1.1 MÃ©thodologie de comparaison
	5.1.2 Ã›tude des diffÃ©rents mouvements

	5.2 Application du maillage mobile
	5.2.1 Ellipse chaotique de Weymouth
	5.2.2 SensibilitÃ© de la solution
	5.2.3 Application Ã€ l'ellipse de Weymouth weymouthChaoticRotationTowed2014


	6 CONCLUSION
	6.1 SynthÃ¨se des travaux
	6.2 Limitations de la solution proposÃ©e
	6.3 AmÃ©liorations futures

	RÃ›FÃ›RENCES
	ANNEXES

