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RÉSUMÉ

Comme le dit son nom, un problème d’interaction fluide-structure est principalement caracté-
risé par l’interaction entre les équations du domaine fluide et celles du domaine solide. Selon
le niveau de couplage entre ces deux domaines, différents problèmes numériques peuvent sur-
venir lorsque l’effet de masse ajoutée est important. On vise donc à développer une méthode
de résolution entièrement monolithique permettant de contourner ces problèmes tout en arri-
vant à mieux représenter la physique du problème. Cette approche vise ainsi à éviter le coût
de calcul important que représente le remaillage en déplaçant plutôt les noeuds du maillage
selon le mouvement de l’objet solide dans le domaine fluide. De cette façon, la position des
noeuds du maillage représente une nouvelle inconnue du problème.

En ce qui concerne le déplacement des noeuds, plusieurs méthodes sont déjà bien établies. Il
y a les méthodes basées sur les équations aux dérivées partielles, dont font partie la méthode
du pseudo-solide et la MMPDE, ainsi que les méthodes algébriques. Vu leur potentiel de
recherche et la facilité avec laquelle celles-ci peuvent être implémentées dans un programme
d’éléments finis déjà existant, les méthodes algébriques sont particulièrement intéressantes.
Ce sont plus précisément IDW, ITM et ITB qui sont testées ici.

Avant de se plonger dans le développement de la méthode de résolution monolithique, IDW,
ITM et ITB sont étudiées en profondeur pour arriver à conclure qu’aucune d’entre elles ne
se démarquent clairement des deux autres. En effet, selon le type de mouvement étudié,
la précision de chacune varie. ITM se démarque légèrement dans les cas de rotation et de
déformation pure, mais sous certaines conditions seulement. En ce qui concerne la translation,
toutes les méthodes semblent équivalentes. Ces tests préliminaires mettent aussi de l’avant
l’importance de la méthode d’intégration utilisée. En effet, le lien est très fort entre la méthode
d’intégration et la méthode d’interpolation puisque le programme intègre d’abord la position
des noeuds pour ensuite interpoler la vitesse de ceux-ci. Ainsi, une méthode d’intégration
comme Runge-Kutta 4 permet d’obtenir des résultats beaucoup plus précis que la méthode
d’Euler et ce pour une charge d’intégration, communément appelée workload, équivalente.
La meilleure méthode de déplacement des noeuds à implémenter peut donc varier selon le
mouvement étudié ainsi que selon différentes contraintes externes, comme la nécessité ou
non d’implémenter une méthode linéairement exacte ou bien la limitation de la méthode
d’intégration à utiliser. Il demeure important de souligner qu’ITM et ITB se démarquent
d’IDW par le fait que celles-ci sont transfinies. Cela signifie que la représentation exacte de
l’objet est considérée lors du déplacement des noeuds et non seulement le nuage de points



vi

formant celui-ci. Il s’avère d’ailleurs que ces deux méthodes convergent plus rapidement
qu’IDW, c’est-à-dire qu’un moins grand nombre de sous-étapes de déplacement est nécessaire,
ce qui est particulièrement utile lors de l’étude d’un mouvement imprévisible.

Le mouvement auquel on s’intéresse ici correspond au comportement chaotique d’un cylindre
elliptique solide dans un écoulement fluide qui ne peut que tourner autour d’un certain
centre de rotation. À la suite de plusieurs tests, le pas de temps dt = 0.05 avec BDF2 a
été choisi comme étant suffisamment précis sans nécessiter un coût de calcul trop important.
Le modèle ALE/FFI avec l’approximation 4-ITM-IE1 a été choisie comme étant le modèle
le plus précis pour ce type de mouvement ; ce dernier n’a été appliqué qu’à une certaine
partie du domaine afin de minimiser le temps de calcul sans compromettre la précision des
résultats. Une fois toutes les équations nécessaires à la méthode de résolution monolithique
implémentées, vérifiées et validées dans EF8, la simulation de l’ellipse dans un écoulement
à Re = {200, 300, 400} et où la distance entre le point de pivot et le centre géométrique
de l’ellipse varie telle que r = {0.1, 0.12, 0.13, 0.14, 0.16} a été effectuée. On y observe trois
principaux types de mouvement, soit la stabilité asymétrique, qui survient à un faible nombre
de Re, la phase chaotique, qui apparaît lorsque le nombre de Re est graduellement augmenté,
et la stabilité symétrique qui suit lorsque le nombre de Re est encore supérieur. Cette séquence
des différents types de mouvement demeure toujours le même, mais plus la distance entre
le point de pivot et le centre géométrique de l’ellipse augmente, plus la transition entre ces
phases est retardée.

En pratique, cette simulation peut représenter une bouée remorquée par un bateau ou bien
un câble sous-marin soumis à l’écoulement de l’eau. Il est donc toujours préférable d’éviter la
phase chaotique, soit celle où le mouvement de rotation de l’ellipse est tout à fait aléatoire et
dont les amplitudes de rotation sont assez importantes. La phase de stabilité asymétrique est
donc préférable puisque l’amplitude des angles balayés par l’ellipse est largement inférieure
à la phase chaotique, mais aussi à la stabilité symétrique. Un coefficient d’amortissement
servant justement à limiter le mouvement de l’ellipse dans l’écoulement a donc été ajouté
aux équations. Pour Re = 1000 et r = 0.16, une combinaison qui engendre normalement
un mouvement chaotique de l’ellipse si aucun amortissement n’est imposé, on observe bel
et bien un retard dans la transition entre les différentes phases. L’intervalle efficace de la
vitesse réduite adimensionnelle observée est donc Ur = [0.6, 1.0], c’est-à-dire l’intervalle où le
mouvement n’atteint pas la phase chaotique, mais où l’ellipse n’est pas non plus sur-amortie.

La méthode de résolution monolithique où la position des noeuds du maillage fait aussi partie
des inconnus s’est donc avérée précise et efficace. Plusieurs tests restent à être complétés pour
arriver à quantifier le gain que celle-ci représente dans le cadre de la résolution de différents
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problèmes d’IFS.
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ABSTRACT

A fluid-structure interaction problem, as the name says, is mainly characterized by the inter-
action between the equations of the fluid domain and those of the solid domain. Depending
on the level of the coupling between these two domains, different numerical problems can arise
when the added mass effect is significant. We therefore aim to develop an entirely monolithic
resolution method able to circumvent these problems while representing more accurately the
physics of the problem. This approach thus aims to avoid the significant computation cost
that the remeshing represents by rather moving the nodes of the mesh according to the mo-
tion of the solid object in the fluid domain. Hence, the position of the nodes of the mesh
represents a new unknown of the problem.

With regard to the displacement of the nodes, several methods are already well established.
There are the methods based on partial differential equations, which include the pseudo-solid
method and the MMPDE, as well as the algebraic methods. Given their research potential
and the ease with which these can be implemented in an already existing finite element
program, algebraic methods are particularly interesting. More specifically, IDW, TMI and
TBI are the ones tested here.

Before diving into the development of the monolithic resolution method, IDW, TMI and TBI
are studied in greater depth to conclude that neither of them clearly stands out from the
other two. Indeed, depending on the type of motion studied, the precision of each varies.
TMI slightly stands out in the case of pure rotation and deformation, but only under certain
conditions. As far as translation is concerned, all the methods seem to be equivalent. These
preliminary tests also highlight the importance of the integration method used. Indeed,
the link is very strong between the integration method and the interpolation method since
the program first integrates the position of the nodes and then interpolates their velocity.
Thus, an integration method like Runge-Kutta 4 makes it possible to obtain much more
precise results than the Euler method for an equivalent workload. The best method for the
displacement of the nodes to be implemented can therefore vary according to the motion
studied as well as according to various external constraints, such as the need or not to
implement a linearly exact method or the limitation of the integration method used. It is
important to emphasize that TMI and TBI differ from IDW since they are transfinite. This
means that the exact representation of the object is considered when moving the nodes and
not only the cloud of points forming it. It also turns out that these two methods converge
faster than IDW, that is to say that a smaller number of displacement sub-steps is necessary,
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which is particularly useful for the study of highly irregular motion.

The motion we are looking into here corresponds to the chaotic behavior of a solid elliptical
cylinder in a fluid flow which can only rotate around a certain pivot. Following several
tests, the time step of dt = 0.05 with BDF2 was chosen as being sufficiently precise without
requiring an important computation cost. The ALE/FFI model with the 4-TMI-IE1 appro-
ximation was chosen as being the most precise model for this type of motion; it has only been
applied to a certain part of the domain in order to minimize the computation time without
compromising the accuracy of the results. Once all the equations needed for the monolithic
resolution method have been implemented, verified and validated in EF8, the simulation of
the ellipse in a flow at Re = {200, 300, 400} and where the distance between the pivot point
and the geometric center of the ellipse varies as r = {0.1, 0.12, 0.13, 0.14, 0.16} was completed.
Three main types of motion have been identified: asymmetric stability, which occurs at a low
Re number, the chaotic phase, which appears when the Re number is gradually increased,
and symmetrical stability which follows when the Re number is even higher. This motion
sequence always remains the same. However, as the distance between the pivot point and
the geometric center of the ellipse increases, the transition between these phases is delayed.

In practice, this simulation can represent a buoy towed by a boat or a riser subjected to the
flow of water. It is therefore always preferable to avoid the chaotic phase, that is, where the
rotational motion of the ellipse is completely random and where amplitudes of rotation are
quite large. The asymmetric stability phase is therefore preferable since the amplitude of
the angles swept by the ellipse is much lower than in the chaotic phase, but also less than in
the symmetrical stability. A damping coefficient which precisely serves to limit the motion
of the ellipse in the flow has then been added to the equations. For Re = 1000 and r = 0.16,
a combination which normally generates a chaotic motion of the ellipse if no damping is
imposed, we do observe a delay in the transition between the different phases. The effective
interval of the dimensionless reduced speed observed is thus Ur = [0.6, 1.0], i.e. the interval
where the motion does not reach the chaotic phase, but where the ellipse is not overdamped
either.

The monolithic resolution method where the position of the nodes of the mesh are also a part
of the unknowns has proved to be precise and effective. Several tests remain to be completed
in order to quantify the gain that it represents in the context of the resolution of various FSI
problems.
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CHAPITRE 1 INTRODUCTION

Les problèmes d’interaction fluide-structure (IFS) sont omniprésents en ingénierie. On peut
d’abord penser à l’écoulement du sang dans les artères et les veines du corps humain ou bien
à l’interaction entre la houle des vagues et les plateformes pétrolières. Il y a aussi l’exemple
classique de l’écoulement de l’air autour d’un avion qui crée les forces de portance et de
traînée sur celui-ci. Dans tous ces problèmes, le mouvement du fluide a une influence sur le
mouvement de la structure et vice-versa. La dynamique de ces deux domaines physiques doit
donc être prise en compte lors de la modélisation de ces phénomènes.

Il est d’abord nécessaire de déterminer quel niveau de couplage entre le domaine fluide et le
domaine solide est nécessaire à la simulation du problème étudié. La méthode de résolution
pour chacun de ces domaines, que celle-ci soit implicite ou non, doit ensuite être déterminée.
C’est alors que les équations à résoudre sont explicitées et peuvent être implémentées.

1.1 Éléments de la problématique

1.1.1 Interaction fluide-structure

Les problèmes d’IFS sont des problèmes de mécanique où les équations régissant la dynamique
des fluides et la mécanique du solide sont couplées dans le but de modéliser l’influence d’un
écoulement fluide visqueux et incompressible autour d’une structure élastique non-linéaire.

Il existe plusieurs façons de résoudre numériquement ce type de problème comme en témoigne
la Figure 1.1. Dans un premier temps, il est possible de résoudre indépendamment le domaine
fluide et le domaine solide ou bien de résoudre ces deux domaines de façon unifiée. En
procédant de façon partitionnée, les équations qui régissent l’écoulement et le déplacement de
la structure sont assemblées dans deux systèmes d’équations distincts. Cela permet d’utiliser
des logiciels spécialisés et d’ainsi obtenir d’importants gains en efficacité puisque les matrices
sont souvent mieux conditionnées que dans le cas d’un problème unifié [4]. En choisissant
cette voie, il est possible de coupler faiblement le domaine fluide au domaine solide, ce qui
implique que les deux systèmes d’équations sont résolus séquentiellement à chaque pas de
temps à l’aide de méthodes directes ou itératives adaptées aux caractéristiques des systèmes
algébriques. Il s’agit de la méthode la plus efficace, c’est-à-dire celle où le coût de calcul est
le plus faible. Il est aussi possible de coupler fortement le domaine fluide au domaine solide.
En effet, pour accroître la robustesse du calcul, toutes les inconnues impliquées dans l’un
des systèmes algébriques sont résolues implicitement à l’exception des variables partagées
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entre les systèmes et un certain nombre d’itérations est effectué à chaque pas de temps
pour s’assurer de la cohérence de la solution. Le coût de calcul devient rapidement plus
important. En ce qui concerne la résolution unifiée des domaines fluide et solide, il demeure

Problème d’IFS

Fortement
couplé

Partitionné Couplé
Résolution indépendante

du fluide et du solide
Résolution unifiée

du fluide et du solide

Faiblement
couplé

Complètement
monolithique

Résolution isolée
de la pression

Fort effet de masse ajoutée

Conditionnel-
lement stable

Conditionnel-
lement stable

Conditionnel-
lement stable

Inconditionnel-
lement stable

Figure 1.1 Schématisation des différents problèmes pouvant survenir selon le niveau de cou-
plage utilisé pour la résolution des problèmes d’IFS, adapté de [4]
possible de résoudre la pression indépendamment du champs de vitesse du fluide, réduisant
ainsi le coût de calcul comparativement à la méthode complètement monolithique [4]. Cette
dernière donne les mêmes résultats que la méthode partitionnée fortement couplée, mais la
différence fondamentale entre ces deux techniques réside dans leur façon de gérer l’effet de
masse ajoutée.

Definition 1.1.1. Approche monolithique. Selon l’approche dite monolithique, les équations
de l’écoulement et du déplacement de la structure sont assemblées dans un seul système
d’équations. Elles sont résolues, à chaque étape de temps, à l’aide d’une méthode de calcul
algébrique directe 1 ou itérative 2. Dans cette approche, toutes les inconnues impliquées dans
les différents termes 3 des équations sont évaluées au temps courant de la solution. L’approche
monolithique est donc également implicite.

Definition 1.1.2. Effet de masse ajoutée. L’effet de masse ajoutée est communément utilisé
dans la littérature pour identifier les instabilités qui surviennent lors de la modélisation d’un

1. Par exemple les méthodes de factorisation LU PARDISO ou MUMPS.
2. Par exemple la méthode GMRES et ses méthodes de préconditionnement.
3. Par exemple l’accélération locale, ∂u

∂t , et l’accélération convective, ((u − v) · ∇)u, des équations de
Navier-Stokes.
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écoulement interne incompressible pour lequel la densité du fluide est proche ou supérieure
de celle du solide, c’est-à-dire lorsque le ratio de masse ρs/ρf est petit. Par exemple, l’effet
de masse ajoutée est pratiquement inexistant en aéroélasticité alors qu’il est très important
dans le domaine de la biomécanique.

On voit d’ailleurs, à la Figure 1.1, les conséquences d’un fort effet de masse ajoutée sur
chacune des méthodes de résolution. C’est alors qu’on peut observer que seule une résolution
complètement monolithique des équations fluides et solides permet d’éviter les instabilités
numériques tout en assurant la convergence de la solution.

1.1.2 Déplacement des noeuds du maillage

Un écoulement visqueux incompressible autour d’une structure élastique entraîne nécessaire-
ment le déplacement, la rotation ou bien la déformation de celle-ci. Peu importe la méthode
de résolution choisie, que ce soit par volumes finis ou par éléments finis, le maillage doit
s’ajuster au mouvement de la structure. Une méthode largement utilisée, mais toutefois très
coûteuse, correspond au remaillage.

Definition 1.1.3. Remaillage. Le remaillage consiste à générer un nouveau maillage à une
ou plusieurs reprises au fil du déplacement de la structure selon l’importance du mouvement.
Il s’agit ainsi de reconstruire toutes les structures de données nécessaires à la construction
d’un maillage, comme la table de connectivité.

Une méthode moins coûteuse correspond à la gestion d’un maillage mobile. Alors que la
structure se déplace ou se déforme, il est possible de bouger les différents noeuds du maillage
afin d’adapter celui-ci à la nouvelle configuration physique, et ce à chaque pas de temps. Il
n’est nullement nécessaire de reconstruire les structures de données. Il faut toutefois implé-
menter une méthode permettant de mettre à jour la position des noeuds du maillage selon le
mouvement de la structure. Cette méthode possède aussi ses limites puisqu’il faut préserver
la validité du maillage de façon à ce que la résolution numérique demeure possible.

1.2 Objectifs de recherche

Ainsi, le but de cette recherche consiste à développer une méthode de résolution des problèmes
d’IFS complètement monolithique dans laquelle le domaine fluide et le domaine solide sont
résolus à chaque pas de temps, tout comme le mouvement des noeuds du maillage, à l’aide de
la méthode des vitesses. Cette approche ne rencontre ainsi aucun problème lorsque l’effet de
masse ajoutée est important et n’implique pas non plus la lourdeur du remaillage lorsque la
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structure se déplace ou se déforme. Il est alors nécessaire d’étudier les différentes méthodes
permettant de gérer un maillage mobile pour connaître leurs forces ainsi que leurs faiblesses.
Comme le code d’éléments finis du groupe de recherche est déjà développé, il est nécessaire
d’implémenter les méthodes d’interpolation du taux de déformation du maillage à l’intérieur
de celui-ci pour ensuite pouvoir le vérifier, le valider et finalement l’appliquer à des problèmes
concrets d’interaction fluide-structure.

1.3 Plan du mémoire

Après un court survol des éléments finis et des équations de Navier-Stokes, une bonne partie
de ce mémoire sera dédiée à l’explication des multiples équations mathématiques qui entrent
en ligne de compte pour la résolution monolithique d’un problème d’IFS à l’aide d’un maillage
mobile, soit le Chapitre 3. Suivra ensuite plusieurs tests de vérification et de validation de
l’implémentation du code d’éléments finis du laboratoire, EF8, au Chapitre 4, allant de la
vérification des taux de convergence à la validation de problèmes physiques et ce, en passant
par la modélisation de solutions manufacturées. L’application de cette nouvelle méthode au
problème d’un cylindre elliptique solide placé dans un écoulement fluide sera effectuée au
Chapitre 5 pour finalement conclure le mémoire.
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CHAPITRE 2 REVUE DE LITTÉRATURE

2.1 Interaction fluide-structure

Dans plusieurs cas, les spécificités du problème physique à résoudre permettent d’identifier la
meilleure méthode de résolution numérique à utiliser. Cependant, pour un même problème,
plusieurs méthodes peuvent demeurer valides. Le choix final peut alors dépendre d’une mul-
titude d’autres contraintes, que ce soit de la difficulté d’implémentation, de la précision
nécessaire ou bien du coût de calcul pour ne nommer que ceux-ci.

Dans le cas de Samaniego et al. [8], l’approche découplée est employée pour modéliser les
vibrations induites par vortex (VIV) dans le sillage d’un cylindre où le ratio de masse est
grand. Cela signifie que les domaines fluide et solide sont résolus indépendamment. Ils uti-
lisent ainsi un solveur parallèle utilisant des éléments finis (ÉF) basés sur la formulation
faible stabilisée, mieux connue sous le nom de Variational Multiscale Stabilized formulation
(VMS), pour résoudre la partie fluide du problème. Les forces de traction exercées par le fluide
sont ensuite appliquées au solide. En ce qui concerne le mouvement des noeuds du maillage,
deux différentes stratégies sont adoptées. La première consiste à bouger les noeuds situés à
la frontière entre le fluide et le solide avec la méthode de la frontière immergée (Immersed
Boundary method (IB)) alors que la seconde utilise plutôt une variante de la formulation
Euler-Lagrange (ALE), soit la méthode Fixed Mesh ALE (FMALE). Celle-ci modélise vir-
tuellement le mouvement du fluide à chaque pas de temps pour ensuite le projeter sur le
maillage qui demeure fixe à l’aide de la méthode du krigeage. Des algorithmes spécifiques
doivent toutefois être appliqués pour s’assurer de la cohérence géométrique des noeuds. Au
final, Samaniego et al. concluent que la méthode utilisant le maillage mobile est plus précise
et converge plus rapidement.

Malheureusement, aucune de ces méthodes ne peut être appliquée à des problèmes où le ratio
de masse est prêt de 1. En effet, ce type de problème nécessite un couplage plus fort entre le
domaine fluide et solide. C’est d’ailleurs ce que soulignent Lozovskiy et al. [9]. qui souhaitent
modéliser l’écoulement hémodynamique dans un vaisseau sanguin souffrant d’un anévrisme.
Ces derniers évitent ainsi les instabilités souvent présentes dans les modèles faiblement couplés
en utilisant une approche fortement couplée par ÉF où la formulation ALE des équations
de Navier-Stokes est résolue. Ils arrivent à réduire le coût de calcul à l’aide d’une technique
d’extrapolation qui mène à une méthode semi-implicite où seule la solution à un problème
linéaire est nécessaire à chaque pas de temps. La stabilité de cette technique est d’ailleurs
démontrée. Toutefois, le calcul du mouvement des noeuds demeure quant à lui découplé de
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la résolution des vitesses, des déplacements et de la pression. Cela entraîne des limitations
importantes puisque seuls de faibles déplacements peuvent être traités.

Une autre approche intéressante correspond à celle de Dettmer et Perić [5] qui arrivent à
modéliser le phénomène des VIV tout comme le flottement d’un pont à l’aide d’une méthode
monolithique par ÉF utilisant aussi la formulation ALE des équations de Navier-Stokes.
Celle-ci permet d’utiliser un maillage mobile qui est géré par un algorithme permettant de
maintenir la qualité du maillage tout au long du mouvement de la structure. L’alternative
d’un maillage fixe est mentionnée, mais celle-ci est limitée à un seul solide immergé dans un
domaine fluide infini et est donc considérée trop restrictive. La méthode généralisée-α est
employée pour l’intégration en temps, permettant ainsi un mouvement en une seule étape
et assurant une stabilité inconditionnelle pour les problèmes d’ordre 2. Le système complet
comporte donc plusieurs équations non-linéaires et est schématisé à la Figure 2.1. Les forces
de tractions exercées par le fluide permettent de déterminer le mouvement de la frontière
solide qui, elle, détermine la géométrie du domaine fluide et permet donc le mouvement des
noeuds. Toutefois, cette méthode n’a pas été généralisée à des problèmes où le ratio de masse
est faible. Il est donc possible que des instabilités surviennent. Dans les cas présentés par
Dettmer et Perić, la dynamique du solide est assez simple pour que le problème se résume
essentiellement à la résolution de l’écoulement fluide et du mouvement du maillage.

Écoulement
fluide

Conservation
de la quantité

de mouvement
du solide

Mouvement
du maillage

du domaine fluide

Figure 2.1 Les trois domaines à résoudre dans le cas d’un problème d’IFS selon Dettmer et
Perić [5]

Schott, Ager et Wall présentent, quant à eux, une nouvelle méthode permettant de résoudre
des problèmes d’interaction fluide-structure plus complexes où la structure connaît de grandes
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déformations [10]. Celle-ci consiste à entourer la structure d’un fin domaine où la formulation
ALE des équations de Navier-Stokes est appliquée et d’entourer ce dernier d’un domaine au
maillage fixe et purement eulérien. Cette méthode est autant applicable aux éléments finis,
aux volumes finis ou aux méthodes discontinues de Galerkin. Le lien numérique entre les
deux sous-domaines est imposé faiblement par la méthode de Nitsche et le mouvement du
maillage est géré par la méthode des éléments finis coupés (CUTFEM). En ce qui concerne
la mise à jour des noeuds du maillage, c’est la technique du pseudo-solide qui est appliquée
au sous-domaine ALE. Comme la technique présentée est monolithique, la procédure de mise
à jour de la position des noeuds est ajoutée au système qui est alors résolu implicitement.

On remarque assez rapidement que la résolution numérique d’un problème d’IFS peut se
faire de plusieurs façons différentes. Dans le cas présent, tel que mentionné à la Section 1.2,
le but est de développer une méthode de résolution générale permettant de traiter un grand
éventail de problèmes. Ainsi, les méthodes monolithiques semblent moins contraignantes que
les méthodes partitionnées. Il est aussi important de considérer que la résolution se fera à
partir du code EF8 déjà existant. Même si celui-ci sera forcément modifié, la structure de
données ainsi que les méthodes déjà implémentées doivent être considérées.

La méthode ALE est largement utilisée en IFS et semble définitivement être la meilleure
méthode permettant de modéliser ce type de phénomènes. Il reste toutefois à déterminer si
cette formulation doit être appliquée à tout le domaine ou bien qu’à une partie restreinte
de celui-ci pour minimiser le coût de calcul. Cependant, dans un contexte de recherche, la
contrainte du coût de calcul est moins présente même si elle demeure intéressante à étudier
pour une potentielle application commerciale. Finalement, la littérature semble s’orienter
davantage vers les méthodes où le maillage est mobile puisque celles-ci sont plus versatiles et
plus précises.

Une revue de littérature s’attardant davantage aux différents algorithmes de gestion du
maillage mobile et d’interpolation de la vitesse des noeuds du maillage est donc nécessaire.

2.2 Maillages mobiles

Les multiples méthodes permettant de gérer un maillage mobile peuvent être divisées en
deux principales catégories : (1) les méthodes basées sur les équations aux dérivées partielles
(EDP) et (2) les méthodes algébriques.
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2.2.1 Méthodes basées sur les équations aux dérivées partielles

Origines

Les méthodes basées sur les équations aux dérivées partielles perçoivent la mise à jour du
maillage comme le résultat de la déformation d’un milieu virtuel continu.

Les premiers balbutiements de ce type de méthodes peuvent être retracés jusqu’en 1966,
où Winslow [11], qui travaille alors avec les différences finies, construit numériquement un
maillage triangulaire à l’aide de l’équation de Laplace qu’il résout par des surrelaxations
successives. Il arrive ainsi à générer un maillage aux coordonnées curvilignes en agençant
un maillage triangulaire structuré aux lignes de courant équipotent, typiques d’un problème
magnétostatique.

C’est alors que Thompson, Mastin et Warzi [12], en 1982, reprennent le travail de Winslow et
arrivent à obtenir un maillage qui coïncident avec toutes les frontières d’un domaine irrégulier.
Ceux-ci utilisent un système de coordonnées qui, couplé avec le mouvement physique, s’adapte
dynamiquement et permet le déplacement du maillage avec les frontières.

Au cours de la même période, dans une série d’articles, Lynch [13] et Lynch et O’Neil [14]
ont été les premiers à utiliser l’équation des solides élastiques pour adapter le maillage aux
déformations des frontières du domaine physique. Cette idée fut reprise et développée par
Sackinger, Schunk et Rao [15] en 1996 pour la modélisation de l’interaction fluide-structure
connaissant de grandes déformations. En particulier, ils expliquent comment linéariser un
système d’équations lorsque les coordonnées du maillage font également partie des inconnues
du système d’équations. La construction d’un tel système monolithique est essentiel pour
assurer la stabilité de l’intégration temporelle des phénomènes physiques lorsque le ratio de
masse entre le fluide et la structure est égal ou inférieur à l’unité. En 2006, Dettmer et
Perić [5] ont, à juste titre, noté que les coordonnées intérieures du maillage sont dépendantes
des coordonnées des frontières mobiles, réduisant ainsi considérablement la taille du système
d’équations sans compromettre le taux de convergence optimal de la linéarisation de Newton-
Raphson.

Pseudo-solide

Dans les simulations d’interaction fluide-structure, l’approche la plus courante pour le dé-
placement des noeuds du maillage est la méthode du pseudo-solide. Différentes stratégies
peuvent être utilisées pour contrôler les propriétés du pseudo-solide afin d’optimiser la qua-
lité du maillage. Les stratégies en une étape attribuent un coefficient de rigidité aux éléments
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en fonction des propriétés géométriques initiales. Les stratégies en deux étapes, largement
étudiées par Xu et Accorsi [16], commencent par une analyse pseudo-structurelle linéaire
basée sur les déplacements prescrits aux frontières, puis les déformations sont utilisées pour
attribuer une rigidité non homogène lors de la seconde analyse.

MMPDE

Au milieu des années 90’, dans une série de papiers [17–20], Huang et Russel établissent les
bases de la méthode de déplacement des noeuds connue sous l’abréviation MMPDE (Moving
Mesh Partial Differenciation Equation). Ils reconnaissent ainsi la nature variationnelle de
ce type de méthodes. Les équations du problème à résoudre sont donc remplacées par un
système dont les inconnues incluent la solution du problème physique et les coordonnées
des noeuds du maillage. En appliquant le principe d’équidistribution à une fonction d’une
caractéristique du problème physique (telle que le gradient de la solution), ils développent
une série d’équations différentielles aux dérivées partielles, elliptiques et paraboliques, pour
contrôler la position des noeuds. Ce faisant, ils lient les coordonnées du domaine physique
aux coordonnées invariantes dans le temps du domaine de calcul, c’est-à-dire x = x(ξ, t).

En 1998 [21], ils étendent le domaine d’application de la méthode MMPDE aux géométries
2D et 3D. Puisque les équations sont exprimées en fonction des variables du domaine de
calcul, la méthode MMPDE peut également déplacer les noeuds d’un domaine physique dont
les frontières se déforment.

Pour obtenir les équations aux dérivées partielles, Huang et Russel se sont inspirés des travaux
de Winslow [11] sur la génération de systèmes de coordonnées curvilignes à l’aide d’équations
de Laplace. La transformation de coordonnées entre le domaine physique et le domaine de
calcul, i.e. ξ = ξ(x), s’obtient de l’extrémisation de la fonctionnelle

I(ξ) = 1
2

∫
Ω

dx
∑

i

(∇ξi)tG−1
i (∇ξi),

avec Gi une matrice symétrique définie sur l’espace de fonctions, satisfaisant δI(ξ) = 0 ou
∇ · (G−1

i ∇ξi) = 0. Huang et Russel proposent différentes constructions pour les matrices
Gi. Tout comme Winslow, on peut écrire la fonctionnelle en fonction des coordonnées du
domaine physique x, i.e. I(x).

On distingue trois approches pour adapter un maillage en fonction de l’estimation de l’erreur
ou d’une fonction de contrôle. L’adaptivité h consiste à subdiviser le maillage, l’adaptivité
p à choisir le degré du polynôme d’interpolation, et l’adaptivité r à déplacer les noeuds du
maillage. Cao, Huang et Russel [22] décrivent l’adaptivité r pour les maillages non-structurés
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basée sur la méthode MMPDE. Les applications numériques illustrent le potentiel de la
méthode pour le contrôle et le mouvement des noeuds du maillage dans des configurations
complexes. Cependant, la difficulté réside dans la construction de la fonction de contrôle pour
capturer simultanément plusieurs structures de l’écoulement.

Les méthodes basées sur les équations aux dérivées partielles ont ainsi connu de grandes
améliorations dans les dernières décennies et ont donc atteint un niveau de sophistication
assez impressionnant où il est à la fois possible de contrôler la mise à jour de la position
des noeuds du maillage et l’erreur de discrétisation. Ces méthodes, par leur nature, ajoutent
toutefois des équations différentielles au système qui en contient déjà plusieurs, servant à
représenter le phénomène physique. Il s’agit donc d’équations supplémentaires qui doivent
aussi être discrétisées, que ce soit par la méthodes des différences finies, des éléments finis ou
bien des volumes finis. C’est d’ailleurs cette caractéristique intrinsèque à ces méthodes qui a
mené au développement d’une autre catégorie de méthodes, soit les méthodes algébriques.

2.2.2 Méthodes algébriques

Les méthodes algébriques sont essentiellement des méthodes d’interpolation qui pondèrent le
déplacement des noeuds du maillage selon le déplacement des frontières mobiles et résolvent
ainsi des équations aux dérivées ordinaires (EDO). La preuve de l’existence d’une solution
d’une EDO est beaucoup plus simple que pour une EDP, qui requiert l’analyse de l’espace
solution et la construction d’approximations élémentaires appropriées. Les méthodes algé-
briques sont donc beaucoup plus faciles à implémenter, ce qui les rend très intéressantes pour
les développeurs qui souhaitent simplement ajouter la résolution d’un maillage mobile à un
programme de résolution d’équations différentielles déjà existant. Ici, principalement trois
méthodes sont étudiées, soit la Radial Basis Functions method (RBF), l’Inverse Distance-
Weighting method (IDW) et l’Interpolation Transfinie en Moyenne (ITM).

IDW

En 1968, Shepard [23] définit pour la première fois la méthode d’interpolation de données
non-structurées par une pondération inverse à la distance entre les interpolés et les données
de l’interpolation. Cette méthode est devenue un outil essentiel pour l’analyse des données
en météorologie, en biologie, en imagerie et en géoscience. La méthode peut être aisément
étendue à des dimensions supérieures de l’espace et est en fait une généralisation de l’ap-
proximation de Lagrange aux espaces multidimensionnels. Depuis quelques années, elle est
devenue une méthode très compétitive pour déplacer les noeuds du maillage lors de la simu-
lation de problème d’IFS. IDW se base ainsi sur un nuage de points auxquels les données sont
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connues pour interpoler celles-ci sur les autres points du domaine. La Figure 2.2, représentant
des points auxquels Shepard applique la fonction d’interpolation 2.1, en illustre justement
un exemple.

x
D1 D2 D3P

d1

d2 d3

Figure 2.2 Schématisation de l’interpolation au point P par la méthode IDW

f(P ) =


∑N

i=1 zi
1

dk
i∑N

i=1
1

dk
i

si di 6= 0,

zi si di = 0
(2.1)

où P correspond au point auquel on veut interpoler les données,

N au nombre de points où les données sont connues,
zi à l’information connue à chaque point,
k à la dimension (espace Rk) et
di à la distance entre le point où l’on veut interpoler les données et ceux où les données
sont connues.

Shepard discute aussi de la construction des fonctions de pondération à support global et à
support compact pour minimiser le coût du calcul, l’erreur d’interpolation et pour modéliser
l’effet de barrières.

Witteveen et Bijl [24] sont les premiers à appliquer la méthode d’interpolation de Shepard au
déplacement des noeuds d’un maillage. Ils utilisent donc la position des noeuds composants
les frontières pour interpoler la position de tous les noeuds du maillage. Cette application est
illustrée à la Figure 2.3 où une ellipse solide, composée du nuage de point E = {ξ1, ξ2, ..., ξ8}
est située dans un domaine fluide Ω.

La formule d’interpolation utilisée correspond ainsi à l’Équation (2.2) et est simplement une
application de la formule d’interpolation originale de Shepard.

u(x) =

∑
ξ∈E

f(ξ) 1
||x − ξ||k∑

ξ∈E

1
||x − ξ||k

(2.2)
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Figure 2.3 Interpolation de la position des noeuds d’un maillage (zone grisée) à partir d’un
nuage de points E = {ξ1, ξ2, ..., ξ8} formant l’objet solide placé dans un domaine fluide Ω

où E = {ξ1, ..., ξm} correspond au nuage de points,

f(ξ) aux données à ces points et
k à la dimension (espace Rk).

Witteveen et Bijl réalisent plusieurs essais numériques qui démontrent le gain substantiel en
efficacité sur la méthode RBF de De Boer [2], détaillée à la Section 2.2.2, sans compromettre
la précision des calculs et la qualité des maillages.

IDW est une méthode d’interpolation qui gagne rapidement en popularité, il est toutefois in-
téressant de la comparer à la méthode du pseudo-solide. Barral, Luke et Alauzet [25] se sont
justement attardés à cette comparaison pour en conclure que le préconditionneur nuit à la
programmation parallèle de la méthode du pseudo-solide. Quant à elle, l’interpolation pondé-
rée en fonction de la distance bénéficie d’un excellent niveau de programmation parallèle. Les
performances de ces méthodes sont mesurées à l’aide d’une métrique de la qualité du maillage
et du nombre d’échange d’arêtes. Les tests incluent, en 3D, la compression radiale d’un cy-
lindre, la déflexion d’une poutre et la traînée d’un F-117. Il semble qu’en général la méthode
IDW soit la plus efficiente. Toutefois, la méthode du pseudo-solide nécessite beaucoup moins
d’échange de sommets si le cisaillement de l’écoulement est important.

Landry, Soulaïmai, Luke et Haj Ali [26] décrivent, quant à eux, une méthodologie pour
déplacer le maillage en fonction du déplacement des frontières. Ils utilisent IDW pour calculer
le champ de déplacement, puis appliquent divers algorithmes de lissage pour améliorer la
qualité du maillage et éliminer les éléments enchevêtrés. Leur méthode s’est révélée efficace
pour la simulation de l’interaction fluide-structure d’une aile symétrique et d’une aile en
flèche. Cependant, des améliorations sont nécessaires pour traiter la déformation du maillage
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lorsque les frontières mobiles sont très près les unes des autres.

RBF

De Boer, Van der Shoot et Bijl [2] sont les premiers à proposer des bases radiales pour
adapter un maillage aux déformations des frontières. Ils ont testé six bases radiales à support
global, c’est-à-dire que la position de tous les noeuds influence la position du noeud interpolé,
ainsi que huit bases radiales à support compact, où seulement la position des noeuds situés
à un certain rayon du noeud interpolé est prise en compte. Les déplacements des noeuds
internes s’obtiennent de la somme des contributions de la base radiale. Tout comme IDW,
RBF interpole à partir d’un nuage de points E = {ξ1, ξ2, ..., ξm} où la fonction f(ξi) est
connue, tel qu’illustré à la Figure 2.3. C’est donc en trouvant la solution au système linéaire
de l’Équation (2.3) que les coefficients {λ1, ...λm} de la méthode d’interpolation u(x) de
l’Équation (2.4) sont déterminés 1.


ϕ(||ξ1 − ξ1||) ... ϕ(||ξ1 − ξm||)

... . . . ...
ϕ(||ξm − ξ1||) ... ϕ(||ξm − ξm||)


m×m


λ1
...

λm

 =


f(ξ1)

...
f(ξm)

 (2.3)

u(x) =
m∑

j=1
λjϕ(||x − ξj||) (2.4)

où || · || correspond à la mesure de la distance entre deux points,

m au nombre de points où les données sont connues,
ϕ(||ξj − ξi||) à une fonction à base radiale qui dépend de la distance entre deux points,
λi aux coefficients recherchés et
f(ξi) aux données connues aux points {ξ1, ξ2, ..., ξm}.

Les différentes fonctions à bases radiales à support global sont présentées au Tableau 2.1 et
celles à support compact, tirées des travaux de Wendland [3] sont présentées au Tableau 2.2.

Les tests incluent, en 2D, la translation et la rotation d’un rectangle, ainsi que l’extension
du volet d’une aile. Les résultats démontrent que cette méthodologie produit des maillages
de qualité supérieure à celle de l’analogie des ressorts de Farhat [27]. La qualité relative des
éléments est utilisée pour mesurer l’effet de différentes bases radiales. De Boer, Van der Shoot
et Bijl concluent en recommandant la fonction à base radiale C2 à support compact.

1. Un polynôme linéaire peut être ajouté au système s’il est nécessaire que la méthode soit linéairement
exacte.
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Tableau 2.1 Fonctions à bases radiales à support global, tiré de [2], où x = ||x||

No Nom Abbréviation ϕ(||x||)
1 Spline de plaque mince TPS x2 log(x)
2 Biharmoniques multiquadriques MQB

√
a2 + x2

3 Biharmoniques multiquadriques inverses IMQB
√

1
a2+x2

4 Biharmoniques quadriques QB 1 + x2

5 Biharmoniques quadriques inverses IQB 1
1+x2

6 Gaussienne Gauss e−x2

Tableau 2.2 Fonctions à bases radiales à support compact, tiré de [3], où ξ = ||x − ξ||/R,
R > 0 étant la rayon du support compact

No Nom ϕ(||x − ξ||)
7 CP C0 (1 − ξ)2

8 CP C2 (1 − ξ)4(4ξ + 1)
9 CP C4 (1 − ξ)6(35

3 ξ2 + 6ξ + 1)
10 CP C6 (1 − ξ)8(32ξ3 + 25ξ2 + 8ξ + 1)
11 CTPS C0 (1 − ξ)5

12 CTPS C1 1 + 80
3 ξ2 − 40ξ3 + 15ξ4 − 8

3ξ5 + 20ξ2 log(ξ)
13 CTPS C2

a 1 − 30ξ2 − 10ξ3 + 45ξ4 − 6ξ5 − 60ξ3 log(ξ)
14 CTPS C2

b 1 − 20ξ2 + 80ξ3 − 45ξ4 − 16ξ5 + 60ξ4 log(ξ)

Quelques années plus tard, Rendall et Allen [28, 29] appliquent justement la fonction à base
radiale C2 de Wendland [3] pour déformer le maillage volumique du fluide en fonction de la
déformation d’une ou de plusieurs surfaces aéroélastiques. Cette méthode est certes efficace
et robuste, mais requiert la construction d’une matrice contenant N2 coefficients où N est le
nombre de sommets du maillage à déformer. Ainsi, on obtient une matrice de 1012 nombres
réels pour un petit maillage 3D de 106 noeuds. La solution directe de ce système d’équa-
tions est très coûteuse et même prohibitive en 3D. Ils proposent donc un algorithme très
élaboré pour réduire la taille du système d’équations avec un impact limité sur le contrôle
des déplacements des noeuds du maillage.

Encore plus récemment, Coulier et Darve [30] utilisent la méthode des bases radiales pour
interpoler le déplacement des noeuds du maillage pour des problèmes d’IFS. La robustesse
de l’interpolation utilisée est soulignée. Cependant, le système d’équations des coefficients de
l’interpolation est dense, i.e. de l’ordre du nombre N de noeuds, et la solution directe est
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donc de complexité O(N3). Les solveurs de Krylov se buttent, pour leur part, au mauvais
conditionnement du système avec l’augmentation considérable du nombre de coefficients à
calculer en 3D.

ITM

En 1999, Floater et Gotsman [31] étudient la construction d’une transformation continue
entre deux maillages de R2. Ils montrent que pour toutes paires de maillages convexes et
compatibles, avec des frontières identiques, il est possible de construire, par des combinai-
sons convexes, une transformation continue non-dégénérée de l’un vers l’autre. La transforma-
tion linéaire communément utilisée entre deux maillages peut induire des éléments inversés.
Floater et Gotsman étudient donc les conditions suffisantes pour obtenir une bonne trans-
formation, et, à l’aide des coordonnées barycentriques, ils obtiennent un système d’équations
dont la solution détermine les coefficients de la transformation. Cette technique, appelée le
morphing, est utilisée en imagerie pour la transformation continue et animée d’une image
en une autre. Entre les deux images, le maillage des objets est donc modifié. Le cadre théo-
rique de cette méthode peut être exploité pour déplacer le maillage des objets en interaction
fluide-structure.

En 2003, Floater [32] généralise les coordonnées barycentriques à un polygone convexe à k

côtés pour la paramétrisation et la déformation de triangulations. La construction en coor-
données barycentriques est lisse (C∞) et varie continûment par rapport aux sommets de la
triangulation. Il nomme ces coordonnées mean value coordinates puisque leur construction
satisfait le théorème de la moyenne.

Les points v0, v1, ...., vk sont les sommets d’une triangulation dans R2 de façon à ce que v0

n’est jamais sur le bord du polygone convexe formé par v1, ..., vk, tel qu’illustré à la Figure
2.4.

L’objectif est l’étude des poids λ1, ..., λk ≥ 0 tel que

∑k
i=1 λivi = v0,∑k
i=1 λi = 1.

Dans le cas de polygones convexes, les poids, exprimés tel que

λi = wi∑k
j=1 wj

avec wi = tan(αi−1/2) + tan αi/2
‖vi − v0‖

,

sont les coordonnées pour v0 par rapport à v1, ...., vk [33].
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v0

vi−1

vi
αi−1

αi

Figure 2.4 Triangulation d’un polygone étoilé

En 2009, Dyken et Floater [34] peaufinent davantage le développement de l’interpolation
transfinie en moyenne d’une fonction f définie sur des courbes fermées (sans boucle) du plan.
Ils établissent des conditions suffisantes pour assurer la cohérence de l’ITM, c’est-à-dire des
conditions qui garantissent que l’ITM est un interpolant. Ils généralisent ainsi la formule
d’interpolation aux domaines non-convexes en comptant le nombre d’intersections entre la
ligne [v0, p], joignant le point v0 et tout point p de la frontière, et la frontière du domaine.

Bruvoll et Floater [35] poursuivent sur cette lancée en généralisant ces résultats dans Rn.
Dans R3, ils obtiennent des formules pour l’interpolation transfinie d’une fonction f évaluée
sur une surface fermée qui délimite une région de l’espace.

Dans Rn, l’interpolation transfinie en moyenne peut être réécrite sous la forme intégrale de
l’Équation (2.5)

u(x) = 1
φ(x)

∫
Γ

f(ξ) ξ − x

‖ξ − x‖n+1 · n(ξ) dΓ, (2.5)

avec

φ(x) =
∫

Γ

ξ − x

‖ξ − x‖n+1 · n(ξ) dΓ,

pour ξ ∈ Γ et Γ une hypersurface de dimension n − 1.

En ce qui concerne la modélisation de problèmes d’IFS à l’aide de la méthode des éléments
finis, le progrès le plus intéressant est fait par Ju [36] qui applique la formulation intégrale
(2.5) dans R2 en remplaçant la courbe par une collection de segments de droite. L’applica-
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tion de cette méthode à la résolution de problème d’IFS semble ainsi avoir un intéressant
potentiel. Le but original de l’ITM diffère de celui d’IDW et de RBF par le fait que l’inter-
polation est basée sur des courbes continues plutôt que sur un nuage de points. En éléments
finis, il est possible d’approximer ces courbes par plusieurs segments de droite sur lesquels
différentes fonctions d’interpolation géométriques peuvent être appliquées. On peut penser
ici à des polynômes de Lagrange linéaires ou bien quadratiques et mêmes à des fonctions tri-
gonométriques. La flexibilité de l’ITM, quant à la précision de l’approximation géométrique
des frontières, différencie cette méthode des autres et souligne du fait même le potentiel de
recherche qu’elle représente.



18

CHAPITRE 3 MATHÉMATIQUES DE L’INTERACTION
FLUIDE-STRUCTURE

Pour arriver à l’implémentation monolithique d’une méthode de résolution par éléments finis
à maillage mobile, il est évidemment nécessaire de mieux comprendre les différents éléments
qui la composent. Ce chapitre vise donc à revenir brièvement sur la méthode des éléments
finis, à détailler mathématiquement la formulation Euler-Lagrange des équations de Navier-
Stokes ainsi que l’équation de conservation du moment angulaire et à reformuler les différentes
méthodes d’interpolation de la position des noeuds du maillage pour finalement établir les
équations clées a implémenter dans EF8.

3.1 Survol des éléments finis

La méthode de Ritz (1909) [37], qui sert à approximer la solution d’une équation aux dé-
rivées partielles dont les conditions frontières sont connues, est souvent considérée comme
l’ancêtre des éléments finis. Dans cette section, c’est l’équation de la chaleur 1D, qui permet
de connaître le champ de température à l’intérieur d’un domaine, qui sera utilisée à titre
d’exemple dans le but d’expliquer cette méthode.

3.1.1 Formulation variationnelle

La méthode de Ritz, tout comme la méthode des ÉF, est basée sur la formulation variation-
nelle des EDP. Elle permet d’affaiblir l’équation en la multipliant par une fonction test ainsi
qu’en l’intégrant sur tout son domaine pour transformer celle-ci en un système matriciel qui
peut être résolu à l’aide de fonctions d’interpolation. Cela donne lieu à une approximation
de la solution sur tout le domaine qui varie selon l’ordre de précision désiré. Toutefois, la
méthode de Ritz devient rapidement coûteuse et imprécise pour les problèmes moindrement
complexes et est pratiquement inapplicable aux géométries 2D et 3D. En contrepartie, les
ÉF appliquent pratiquement la même procédure, mais sur un domaine discrétisé, c’est-à-dire
sur un maillage composé de plusieurs petits domaines élémentaires (Ωe). Cette différence
entre la méthode de Ritz et celle des ÉF est justement illustrée à la Figure 3.1. Les ÉF
permettent ainsi de réduire considérablement la taille du système d’équations, de réduire
son conditionnement et de généraliser la discrétisation des formulations variationnelles aux
problèmes multidimensionnels.

Les ÉF permettent de résoudre une EDP sur un maillage. Par exemple, dans le cas de
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Domaine
gouverné

par une EDP

Frontières sur
lesquelles les

valeurs sont connues

Ω

Γ

Domaine
gouverné

par une EDP

Ω

Γ
Ωe

(a) Méthode de Ritz (b) Méthode des ÉF

Figure 3.1 Comparaison entre le domaine Ω à résoudre avec la méthode de Ritz et avec la
méthode des ÉF, où les domaines élémentaires Ωe sont considérés

l’équation de la chaleur, la méthode des ÉF permet, en 1D, de trouver la température exacte
aux noeuds et les fonctions d’interpolation permettent ensuite d’approximer le champ de
température sur chaque élément. On dit alors que le degré de liberté de l’approximation
correspond à la température aux noeuds de l’élément.

Definition 3.1.1. Degrés de liberté (DDL). En ÉF, les degrés de liberté correspondent aux
valeurs du champ déterminé par l’EDP. Dans le cas de l’équation de la chaleur, il n’y a
qu’un seul champ, soit la température alors que l’équation de Navier-Stokes, par exemple,
comportent plusieurs champs, soient la vitesse d’écoulement et la pression du fluide.

Comme mentionné précédemment, la démarche mathématique est essentiellement la même
que pour la méthode de Ritz, comme en témoigne les équations du Tableau 3.1 pour une
solution dans H1

0 (Ω).

Dans la Tableau 3.1,

k correspond à la conductivité thermique du matériau,
T à la température,
f à la production volumique,
Ω au domaine,
ϕ aux fonctions tests,
Ψi et Ψj aux fonctions d’interpolation,
ae

ij à la matrice bilinéaire élémentaire,
be

i au vecteur linéaire élémentaire,
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Tableau 3.1 Résolution de l’équation de la chaleur à l’aide de la méthode des ÉF

Description Équation

Formulation forte − d

dx

(
k

dT

dx

)
− f = 0, ∀x ∈ Ω

Formulation faible continue
∫

Ω

dϕ

dx
k

dT

dx
dx =

∫
Ω

d

dx

(
ϕk

dT

dx

)
dx +

∫
Ω

ϕfdx

Formulation faible discrète
NELM∑

e=1

∫
Ωe

dϕe

dx
k

dT e

dx
dx =

∫
Ω

ϕefdx

Système matriciel élémentaire

NELM∑
e=1

(∫
Ωe

dΨi

dx
k

dΨj

dx
dx

)
T e

j =
NELM∑

e=1

∫
Ωe

Ψifdx

ae
ij

~T e
j = ~be

i

NELM au nombre d’éléments à l’intérieur du domaine et
l’exposant e indique que les variables sont calculées sur un élément du domaine.

Cependant, comme la résolution de l’EDP se fait sur chaque élément du domaine, une étape
supplémentaire s’ajoute, soit l’assemblage des résultats élémentaires pour obtenir le système
d’équations global permettant de résoudre l’équation de la chaleur sur tout le domaine. Plu-
sieurs tables permettent ainsi de mettre en relation les coordonnées des noeuds du maillage,
les éléments du domaine ainsi que les degrés de liberté à résoudre. D’un point de vue informa-
tique, cette opération nécessite beaucoup d’espace et plusieurs mises à jour des structures de
données, ce qui devient rapidement lourd et peut entraîner des erreurs. C’est d’ailleurs pour
cette raison que l’on souhaite éviter de remailler le domaine si celui-ci se déforme puisque
cela implique des coûts de calcul élevés.

3.1.2 Fonctions d’interpolation

Le Tableau 3.1 fait apparaître les fonctions test ϕ et d’interpolation Ψ. Dans le cas présent,
l’approche de Galerkin est utilisée, c’est-à-dire que les mêmes fonctions servent à la fois de
fonctions tests et d’interpolation. Celles-ci servent ainsi à approximer le champ de DDL, mais
aussi la géométrie du domaine. Selon le problème à résoudre et la géométrie du domaine, il est
possible de choisir des fonctions qui donneront des résultats plus précis. Par exemple, pour des
problèmes simples, des fonctions d’interpolation linéaires peuvent être suffisantes. Toutefois,
comme le dit leur nom, ces fonctions ne permettent de capturer exactement qu’une distribu-
tion linéaire des DDL sur chaque élément ainsi que des géométries linéaires. Lorsqu’on a des
géométries moindrement complexes, comme des courbes, les fonctions d’interpolation quadra-
tiques ou d’ordre supérieur sont plus intéressantes puisqu’elles approximent plus fidèlement
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la géométrie. Il faut toutefois être prudent puisqu’il faut s’assurer d’être sous-paramétrique
ou bien isoparamétrique pour éviter des problèmes d’instabilité numérique. En d’autres mots,
le degré de la fonction d’interpolation de la géométrie ne doit pas dépasser le plus petit degré
des fonctions d’interpolation approximant les champs de DDL.

3.1.3 Schéma d’intégration en temps

Comme c’est le cas pour plusieurs problèmes, les DDL ne varient pas seulement dans l’espace,
mais aussi en temps. Alors que le maillage permet de discrétiser l’espace, un schéma de
discrétisation doit être choisi pour permettre la discrétisation du DDL en temps. Dans le
cas présent, ce sont les formules de différentiation arrière, communément appelées Backward
Differentiation Formula (BDF), qui sont utilisées puisque celles-ci sont déjà implémentées
dans EF8. Ces formules permettent d’approximer la dérivée d’une fonction y = f(t) au
temps t = tn en considérant les différentes valeurs de cette fonction aux temps précédents.
Les formules BDF utilisées varient selon le nombre de pas de temps précédents considérés,
tel que l’illustre la Figure 3.2.

y

t

f(t)

tntn−1tn−2tn−3tn−4tn−5tn−6

BDF1

BDF2

BDF5

...

yn

Figure 3.2 Schématisation de la discrétisation en temps pour des formules BDF d’ordres
différents

On choisit ainsi le schéma de discrétisation BDF selon le problème à résoudre puisque les
formules diffèrent par leur région de stabilité.
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3.2 Formulation Euler-Lagrange (ALE) des équations de Navier-Stokes

Lors de la résolution d’un problème impliquant un écoulement fluide, il est nécessaire de
résoudre les équations de Navier-Stokes qui décrivent le mouvement d’un fluide newtonien.
L’équation de Navier-Stokes correspond en réalité à une autre forme de la seconde loi de
Newton, F = ma, comme cela est illustré à la Figure 3.3. En effet, le terme de force F
contient, par exemple, les forces visqueuses ainsi que le terme de pression. La complexité de
l’équation de Navier-Stokes réside principalement dans la définition du terme d’accélération
a.

ρ

[
∂u
∂t

+ ((u − v) · ∇)u
]

= ∇ ·
[
pI + µ

(
∇u + ∇T u

)]

m a = F

Figure 3.3 Analogie entre la seconde loi de Newton et l’équation de Navier-Stokes

La description du mouvement d’un fluide peut se faire de deux façons équivalentes, soit via
la formulation lagrangienne ou eulérienne.

3.2.1 Cinématiques lagrangienne et eulérienne de l’écoulement

Soit U0 ⊂ Rn, le domaine mouillé initialement par le fluide. Nous supposons qu’il existe
une application continue et bijective de classe C1(]T0, T1[) telle que ∀t ∈]T0, T1[, c’est-à-dire
l’intervalle de temps de la simulation,

p(t) : U0 → U = {x ∈ Rn | ∀x0 ∈ U0, x = p(t, x0)} ⊂ Rn .

Celle-ci est illustrée à la Figure 3.4. Dans le domaine U0, l’hypothèse du continuum modélise
le fluide réel et permet l’utilisation des EDP pour décrire les lois de conservation de masse,
d’énergie et de quantité de mouvement. Ainsi, chaque point de coordonnées x0 ∈ U0 détermine
uniquement une particule du fluide et p(t, x0) ∈ Rn sa position en fonction du temps.

La cinématique lagrangienne décrit le mouvement des particules de fluide de U0 dans Rn.
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p(t, x0 )x0
x

U0
U

Figure 3.4 Cinématique de Lagrange pour un domaine se déformant entre t0 et t1 où la zone
grisée représente le fluide et le trait plein le domaine étudié

Nous notons par

uL(t, x0) = ∂

∂t
p(t, x0)

la vitesse lagrangienne de la particule x0 ∈ U0, et, par uE(t, x) la vitesse eulérienne de la
particule au point x ∈ U ⊂ Rn. Ces cinématiques satisfont la relation

uL(t, x0) = uE(t, p(t, x0)) ≡ uE ◦ p(t, x0)

puisque la vitesse de l’écoulement est indépendante de la cinématique utilisée (lagrangienne
ou eulérienne). Cette dernière relation permet d’exprimer l’accélération de la particule de
fluide selon les cinématiques lagrangienne ou eulérienne. Nous écrivons donc l’accélération
lagrangienne aL(t, x0) telle que

aL(t, x0) = ∂

∂t
uL(t, x0) = d

dt
uE(t, p(t, x0)) ≡

(
∂

∂t
uE(t, x) + (uE(t, x) · ∇x)uE(t, x)

)
x=p(t,x0)

,

et l’accélération eulérienne aE(t, x) telle que

aE(t, x) = ∂

∂t
uE(t, x) + (uE(t, x) · ∇x)uE(t, x) .

3.2.2 Cinématique lagrangienne et eulérienne du domaine mobile

Soit V0 ⊂ Rn, l’ensemble des points où sont évaluées les propriétés de l’écoulement. Les
noeuds du maillage appartiennent à cet ensemble. Nous supposons qu’il existe une application
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continue et bijective de classe C1(]T0, T1[) telle que ∀t ∈]T0, T1[, c’est-à-dire l’intervalle de
temps de la simulation,

g(t) : V0 → V = {x̂ ∈ Rn | ∀x̂0 ∈ V0, x̂ = g(t, x̂0)} ⊂ Rn

et V ⊂ U pour qu’il soit mouillé par l’écoulement. Notons également que dans le domaine
V0, chaque point de coordonnées x̂0 détermine uniquement un point d’échantillonnage des
propriétés de l’écoulement et g(t, x̂0) ∈ Rn sa position en fonction du temps.

La cinématique lagrangienne décrit le mouvement des points de V0 dans Rn. Nous notons par

vL(t, x̂0) = ∂

∂t
g(t, x̂0)

la vitesse lagrangienne du point x̂0 ∈ V0, et, par vE(t, x) la vitesse eulérienne de ce point à
x ∈ V ⊂ Rn. Ces cinématiques satisfont la relation

vL(t, x̂0) = vE(t, g(t, x̂0)) ≡ vE ◦ g(t, x̂0)

puisque la vitesse du point est indépendante de la cinématique utilisée (lagrangienne ou
eulérienne).

3.2.3 Cinématique eulérienne-lagrangienne de l’écoulement

Nous écrivons uEL(t, x̂0) l’expression de la vitesse eulérienne-lagrangienne ∀x̂0 ∈ V0 ⊂ Rn.
Elle s’obtient de la composition des fonctions g et uE selon

uEL(t, x̂0) = uE(t, g(t, x̂0)) ≡ uE ◦ g(t, x̂0) .

Cette cinématique décrit l’évolution temporelle de la vitesse de l’écoulement en un point du
domaine mobile identifié par sa position initiale x̂0. Nous pouvons donc exprimer la variation
temporelle de la vitesse eulérienne-lagrangienne au point x̂0 de la façon suivante

∂

∂t
uEL(t, x̂0) = d

dt
uE(t, g(t, x̂0)) = ∂

∂t
uE(t, g(t, x̂0)) +

(
∂

∂t
g(t, x̂0) · ∇x

)
uE(t, x)

∣∣∣∣∣
x=g(t,x̂0)

ou, de façon équivalente, par

∂

∂t
uEL(t, x̂0) =

(
∂uE

∂t
+ (vE · ∇x) uE

)
◦ g(t, x̂0) .
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Ensuite, en bougeant légèrement les termes de l’équation précédente, nous écrivons la dérivée
temporelle de la vitesse eulérienne en fonction de la vitesse eulérienne-lagrangienne

(
∂uE

∂t

)
◦ g(t, x̂0) = ∂

∂t
uEL(t, x̂0) − ((vE · ∇x) uE) ◦ g(t, x̂0) ,

pour modifier l’expression de l’accélération d’une particule de l’écoulement

aE(t, x) ◦ g(t, x̂0) =
(

∂uE

∂t

)
◦ g(t, x̂0) + ((uE · ∇x) uE) ◦ g(t, x̂0) ,

selon la position du point d’échantillonnage (ou du maillage). Nous obtenons donc l’expression
eulérienne-lagrangienne de l’accélération de la particule de fluide,

aE(t, x) ◦ g(t, x̂0) = ∂

∂t
uEL(t, x̂0) + (((uE − vE) · ∇x) uE) ◦ g(t, x̂0) ,

ou, de manière équivalente,

aE(t, x) = ∂uEL

∂t
◦ g−1(t, x) + ((uE − vE) · ∇x) uE ,

la formulation recherchée.

3.2.4 Synthèse

Il est d’usage d’écrire l’accélération du fluide sous la forme suivante

∂u
∂t

+ ((u − v) · ∇x) u ,

qu’il est maintenant possible d’interpréter correctement en fonction du résultat de la section
précédente dans le contexte de la méthode des éléments finis.

Rappelons qu’à un noeud du maillage, nous connaissons toujours sa position initiale x̂0 et sa
position courante x au temps t : (x̂0, x). Également, nous connaissons la vitesse u en ce noeud,
et cette vitesse est donc la valeur des expressions eulérienne-lagrangienne ou eulérienne, u =
uEL(t, x̂0) = uE(t, x), selon le contexte du calcul à réaliser. Ainsi l’approximation élémentaire
de la vitesse en fonction des valeurs nodales ui,

uh =
∑

Li ui ≈ uE ,

s’interprète comme l’approximation de la l’expression uE de la cinématique eulérienne ; il en
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va de même pour vh. De plus, l’approximation de la dérivée temporelle des vitesses à un
noeud par la formule BDF peut être écrite telle que

u̇i =
∑

αkuk
i ≈ ∂uEL

∂t
(t, x̂0i

)

et

u̇h =
∑

Li u̇i ≈ ∂uEL

∂t
◦ g−1(t, x) ,

où u0
i à un

i sont les valeurs de la solution de l’indice du temps courant (k = 0) aux indices
des temps antérieurs.

3.3 Équation de conservation du moment angulaire

Dans le cadre de ce mémoire, on s’intéresse particulièrement au mouvement rotationnel.
Ainsi, l’équation décrivant la dynamique des solides correspond simplement à l’équation de
conservation du moment angulaire. Soit I le second moment de masse ([I] = ML2) 1 d’un
objet en rotation par rapport à l’axe normal au plan x ◦ y, c’est-à-dire dans la direction
normale au plan. La conservation du moment angulaire s’écrit

(
I

d2θ

dt2 + ζ
dθ

dt
+ κθ

)
ez +

∫
S
(x − xc) × λdS = 0

où θ correspond à l’angle de rotation du solide,

ζ ([ζ] = ML2T −1) à la constante d’amortissement,
κ ([κ] = ML2T −2) à la constante du ressort en torsion,
(x−xc) à un vecteur dans le plan correspondant au bras de levier entre un point du solide
et le centre de rotation xc et
λ à un second vecteur dans le plan correspondant au multiplicateur de Lagrange des
contraintes appliquées au système.

Naturellement, l’intégration est réalisée sur la surface S d’un solide dans R3 pour obtenir le
couple exercé sur celui-ci. Le solide est représenté à la Figure 3.5.

En physique, le second moment de masse se calcule selon la relation

I =
∫

V
r2dm

1. On utilise les dimensions usuelles M , L et T de la masse, de la longueur et du temps.
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V

Figure 3.5 Schématisation de la rotation d’un solide 3D en rotation autour d’un axe normal
au plan x ◦ y

où V correspond au volume occupé par le solide,

r à la mesure de la distance entre un point à l’intérieur de V et le centre de rotation et
dm = ρsdV au différentiel de masse (ρs correspond à la masse volumique du solide).

Pour simplifier les calculs en 2D, nous supposons que le solide est un cylindre de section
constante A et de longueur h dans la direction normale au plan, c’est-à-dire V = Ah et
dV = dAh. Si, de plus, la masse volumique du solide est constante, alors

I =
∫

V
r2dm = ρsh

∫
A

r2dA = ρshI0

avec I0 ([I0] = L4) le second moment polaire d’inertie.

Comme le suggère les dimensions de ζ, nous pouvons l’exprimer en fonction du second moment
de masse (ou polaire) et d’une fréquence pour écrire

ζ = 2πfnI = ρsh2πfnI0 = ρshζ0

où ζ0 = 2πfnI0 ([ζ0] = L4T −1) est le coefficient d’amortissement polaire. En procédant de
manière analogue, on définit κ0 tel que κ = ρsκ0h pour compléter l’analyse 2.

Pour compléter le développement, on approche l’élément de surface du solide par dS = hdΓ
où Γ = ∂A, la frontière de la surface projetée du solide dans le plan. En utilisant l’ensemble

2. L’expression de κ0 ne sera pas développée puisqu’elle n’est pas utilisée dans le cadre des études de ce
mémoire
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de ces développements et définitions, on obtient l’Équation (3.1)

ρsI0
d2θ

dt2 + ρsζ0
dθ

dt
+ ρs κ0 θ +

∫
Γ
((x − xc) × λ) · ez dΓ = 0, (3.1)

soit l’équation de conservation du moment angulaire dans le plan pour un solide de masse
volumique uniforme. Pour faciliter son implémentation, cette équation différentielle d’ordre
2 est réécrite sous la forme d’un système de deux équations différentielles d’ordre 1,

ρsI0ω̇ + ρsζ0ω + ρsκ0θ +
∫

Γ
((x − xc) × λ) · ezdΓ = 0 (3.2)

θ̇ = ω , (3.3)

où ω est la vitesse de rotation angulaire. Des conditions initiales sur θ et ω sont éventuellement
prescrites pour déterminer la solution du système d’équations.

3.4 Interpolation de la position des noeuds du maillage

Tel que mentionné au Chapitre 2, il existe plusieurs méthodes permettant de calculer la
nouvelle position des noeuds du maillage au fil d’une simulation. Dans le cas présent, les
méthodes algébriques attirent davantage notre intérêt puisque celles-ci sont beaucoup plus
faciles à implémenter dans un programme d’éléments finis déjà existant. Étant plus récentes
que les méthode basées sur les équations aux dérivées partielles, elles représentent aussi un
sujet intéressant de recherche et laissent place à encore beaucoup d’amélioration.

3.4.1 Interpolation sur une infinité de points et interpolation transfinie

Les méthodes algébriques déjà bien établies dans le domaine de la gestion des maillages
mobiles, c’est-à-dire IDW et RBF, basent leur interpolation sur un nuage de points auxquels
l’information est connue. Celles-ci utilisent donc la position des noeuds aux frontières pour
interpoler le taux de déformation des noeuds à l’intérieur du domaine. L’ITM, quant à elle, se
différencie par le fait qu’elle interpole à partir des courbes continues composant les frontières
et non seulement à partir des noeuds. C’est ce qui lui confère son caractère transfini. La
Figure 3.6, inspirée du travail de Garon et Delfour [38–40], permet justement de bien imager
cette différence. Elle présente un exemple très simple, soit une ellipse rigide placée au sein
d’un domaine fluide Ω. La zone grisée représente la zone maillée. C’est donc en se basant sur
le mouvement de l’ellipse et de la frontière extérieure du domaine fluide que IDW, RBF et
ITM peuvent interpoler le taux de déformation des noeuds situés à l’intérieur du domaine
Ω. Dans le cas où la géométrie exacte de l’ellipse est connue, IDW et RBF approximent
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Figure 3.6 Interpolation à partir d’un nuage de points (gauche), à partir d’un maillage d’élé-
ments finis (milieu) et à partir d’une courbe continue (droite) formant l’objet solide placé
dans un domaine fluide maillé (zone grisée)

celle-ci par un nuage de points E = {ξ1, ..., ξ8} formés des noeuds de l’ellipse. Ces derniers
bougent alors selon le mouvement entraîné par l’écoulement du fluide et l’ellipse doit ensuite
être reconstruite. Ainsi, seule l’information des noeuds est conservée entre la position initiale
des frontières et leur position déformée. Il s’agit aussi de la seule information utilisée pour
interpoler le taux de déformation des autres noeuds du maillage. Pour ce qui est de l’ITM, la
géométrie exacte de l’ellipse, c’est-à-dire la courbe continue Γ qui la compose, est déformée et
sert aussi à l’interpolation du taux de déformation des noeuds du maillage. Cela équivaut en
quelque sorte à interpoler à partir d’un nuage infini de points. On maximise ainsi la précision
de l’interpolation en prenant avantage de toute l’information disponible. Toutefois, tel que
mentionné au Chapitre 2, il est parfois plus facile de baser l’interpolation de l’ITM sur un
maillage d’éléments finis Γh. Cette méthode demeure plus précise que de baser l’interpolation
sur un nuage de points puisqu’un maillage contient non seulement l’information concernant les
noeuds, mais aussi concernant les éléments connectant ceux-ci. Cette technique permet donc
de contrôler la précision de l’interpolation par l’intermédiaire des fonctions d’interpolation
géométriques.

3.4.2 Généralisation des différentes méthodes d’interpolation algébriques

En étudiant plus en profondeur les différentes méthodes algébriques, il est possible de regrou-
per celles-ci. En effet, on peut faire ressortir une formule d’interpolation générale u(x), qui
peut être présentée sous sa forme discrète ou continue, qui s’applique à la fois à IDW et à ITM
et où seule le changement d’une fonction de poids ϕ(x − ξ) permet de passer d’une méthode
d’interpolation à l’autre. Le Tableau 3.2 présente justement cette formule sous ses différentes
formes. Une nouvelle méthode d’interpolation hybride peut même être ajoutée en appliquant
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la fonction de poids de IDW à la formule d’interpolation continue de l’ITM, donnant ainsi
lieu à l’Interpolation Transfinie Barycentrique (ITB) qui est en fait la version transfinie de
IDW. Le développement mathématique de cette méthode est davantage détaillé par Delfour
et Garon [38,39]. On peut maintenant noter k-IDW, k-ITM et k-ITB les différentes méthodes
en fonction de l’exposant k employé.

Tableau 3.2 Composition des formules d’interpolation de IDW, ITM et ITB

Type Formule d’interpolation Fonction de poids

IDW u(x) :=
∑m

j=1 f(ξj)ϕ(x − ξj)∑m
j=1 ϕ(x − ξj)

ϕ(x − ξj) = 1
||x − ξj||k

k = n*

ITM

u(x) :=
∫

Γ f(ξ)ϕ(x − ξ)dΓ∫
Γ ϕ(x − ξ)dΓ

ϕ(x − ξ) = (x − ξ) · n̂(ξ)dΓ
||x − ξ||k

k = n*+ 1

ITB ϕ(x − ξ) = 1
||x − ξ||k

k = n*

* Dimension de l’espace Rn.

En ce qui concerne RBF, cette méthode est légèrement différente dans sa structure, prin-
cipalement parce que celle-ci ne contient pas de fonctions de poids, mais plutôt différentes
fonctions à bases radiales. Tout comme IDW, ITM et ITB, elle demeure composée d’une
fonction d’interpolation générale à l’intérieur de laquelle différentes fonctions peuvent être
implémentées. La fonction d’interpolation u(x) présentée au Tableau 3.3 est la même que
l’Équation (2.4) présentée au Chapitre 2.

Tableau 3.3 Composition de la formule d’interpolation de RBF

Type Formule d’interpolation Fonctions à bases radiales

RBF u(x) = ∑m
j=1 λjϕ(||x − ξj||) Tableau 2.1

Tableau 2.2

3.4.3 Modélisation de la dynamique du maillage

Outre le choix de la méthode d’interpolation du taux de déformation des noeuds du maillage,
il existe différentes approches pour mettre celle-ci en oeuvre. On décrit ici trois approches
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pour la modélisation de la dynamique du maillage. La première approche, la plus naturelle,
exprime l’évolution du maillage en fonction du temps à l’aide d’une équation différentielle
ordinaire. La seconde exprime l’évolution du maillage en fonction du temps à l’aide d’une
formulation intégrale. Finalement, la troisième approche, moins intuitive, décrit l’évolution
du maillage à l’aide d’une fonction de forme.

Dans le but de différencier les différentes approches, on note la fonction x(t) comme étant la
position des noeuds du maillage en fonction du temps et la fonction X(t, µ) celle décrivant la
position des noeuds en fonction du facteur de forme µ. Pour écrire la relation entre ces deux
définitions, on pose l’hypothèse que le facteur de forme µ varie linéairement aux frontières
du domaine. On suppose ainsi que

X(t, µ) = x(0) + µ(x(t) − x(0))

aux frontières mobiles. Ainsi,

∂µX
def= dX

dµ
= x(t) − x(0) ≡ x − x∗

où x∗ correspond à la position initiale des noeuds, soit leur position au temps t = 0.

Soit Ω(t) le domaine de calcul muni de s frontières en mouvement, Γi(t), et d’une frontière
immobile, Γ0(t). On définit par

Γs
i = ∪s

k=iΓk

l’union des frontières d’indice i à s, tel que schématisé à la Figure 3.7. Pour alléger la notation
Ω ≡ Ω(t) et Γs

i ≡ Γs
i (t). Ainsi Γs

1 dénote l’union de toutes des frontières mobiles et Γs
0 l’union

de toutes les frontières au temps t. Également, on note spécifiquement par Ω(0) et Γs
i (0), les

domaines en t = 0, c’est-à-dire à l’état dit de référence. On note également θ∗
i et x∗

ci
l’état

de référence des solides, c’est-à-dire l’orientation et la position du centre de rotation. On a
également xi la position d’un noeud du maillage au temps implicite t et x∗

i la position initiale
de ce noeud.

Finalement, on note par N les numéros de noeuds du maillage mobile incluant les noeuds
des frontières, et par N ◦ les numéros des noeuds du maillage mobile à l’exclusion des noeuds
des frontières. On note aussi par S = {1, ..., s} l’ensemble des numéros des solides.
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Γ1
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Figure 3.7 Schématisation du domaine fluide Ω au sein duquel 2 solides (s = 2) sont en
mouvement. Seule la zone grisée est maillée.

Formulation Temporelle Différentielle (FTD)

Pour obtenir les coordonnées du maillage mobile, on suppose que les coordonnées x(t) dé-
pendent du temps. Si la dérivée temporelle des coordonnées aux parois mobiles est connue,
alors les valeurs de xi(t) ≡ xi s’obtiennent de l’intégration de

dxi

dt
= V (xi, v; t) =

∫
Γs

0(t)
vϕ(xi − x)dΓ∫

Γs
0(t)

ϕ(xi − x)dΓ
∀i ∈ N ◦

avec

xi(0) = x∗
i ∀i ∈ N ◦

et

v
def= dx

dt

la vitesse de déformation des noeuds de la frontière mobile. Pour les besoins du calcul numé-
rique, on approche la dérivée temporelle des noeuds de N ◦ par une formule aux différences
arrières (BDF) implicite

dxi

dt
≈

N∑
k=0

αkxk
i
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avec xk
i = xi(tk). Puisque la méthode est implicite, on a t = t0, le temps courant, et t0 > t1 >

... > tn, avec n l’ordre de la méthode BDF. Finalement, on écrit l’Équation (3.4) telle que

dxi

dt

∫
Γs

0

ϕ(xi − x)dΓ −
∫

Γs
0

vϕ(xi − x)dΓ = 0 ∀i ∈ N ◦ (3.4)

dans laquelle on omet Γs
0 ≡ Γs

0(t) par convention. Pour les problèmes d’IFS, v est une inconnue
du problème qui est déterminée par une équation qui décrit l’évolution de la frontière en
fonction des contraintes du fluide et des propriétés dynamiques du solide.

Formulation Temporelle Intégrale (FTI)

On considère maintenant l’équation différentielle (3.4) de la section précédente et on l’intègre
directement sur l’intervalle ]0, T [. On obtient

xi(T ) − xi(0) =
∫ T

0
dt

∫
Γs

0(t)
vϕ(xi − x)dΓ∫

Γs
0(t)

ϕ(xi − x)dΓ
∀i ∈ N ◦

ou, sur un sous-intervalle ]t1, t2[,

xi(t2) = xi(t1) + T (t1, t2, xi) ∀i ∈ N ◦

avec

T (t1, t2, xi) =
∫ t2

t1
dt

∫
Γs

0(t)
vϕ(xi − x)dΓ∫

Γs
0(t)

ϕ(xi − x)dΓ
.

La formulation sur ]t1, t2[ permet de faire évoluer une solution connue en t1 vers le temps t2.
Elle est utile dans le contexte du calcul numérique.

Pour les besoins du calcul numérique, on doit définir la vitesse de déformation de la géométrie
dans l’intervalle ]t1, t2[. Tel que mentionné précédemment, on suppose que cette variation est
linéaire en tout point homologue de la géométrie, c’est-à-dire

x(t) = x(t1) + (x(t2) − x(t1))(t − t1)
t2 − t1
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et

v(t) = x(t2) − x(t1)
t2 − t1

.

Ainsi v(t) n’est donc pas la vitesse de déformation instantanée de la frontière, mais bien celle
de la trajectoire décrite par la sécante reliant les positions du point aux temps t1 (position
connue) et t2 (position prédite). L’intégrale en temps de T peut ensuite être approchée à l’aide
des méthodes explicites d’intégration Euler, du point milieu ou de Runge-Kutta d’ordre 4
(RK4), pour simplifier les calculs. En particulier, on note respectivement par T E(t1, t2, xi),
T M(t1, t2, xi) et T RK4(t1, t2, xi) les approximations à l’aide de la méthode d’Euler, du point
milieu et de RK4. Spécifiquement, on obtient

T E(t1, t2, xi) = (t2 − t1)

∫
Γs

0(t1)

x(t2) − x(t1)
(t2 − t1)

ϕ(xi(t1) − x(t1))dΓ∫
Γs

0(t1)
ϕ(xi(t1) − x(t1))dΓ

ou, plus simplement,

T E(t1, t2, xi) =

∫
Γs

0(t1)
(x(t2) − x(t1))ϕ(xi(t1) − x(t1))dΓ∫

Γs
0(t1)

ϕ(xi(t1) − x(t1))dΓ
.

Dans cette dernière expression, les intégrales sont calculées avec des valeurs connues au temps
t1 pour prédire une valeur au temps t2.

De cette nouvelle nomenclature en découlent d’autres très similaires, soient

— k-ITM-T E , qui est l’approximation Euler explicite de T pour la fonction de pondération
de la méthode d’interpolation ITM. Ainsi, 3-ITM-T E désigne cette méthode pour k =
3 ;

— k-ITB-T E , qui est l’approximation Euler explicite de T pour la fonction de pondération
de la méthode d’interpolation ITB. Ainsi, 3-ITB-T E désigne cette méthode pour k = 3 ;

— k-ITM-T M, qui est l’approximation du point milieu (midpoint) de T pour la fonction
de pondération de la méthode d’interpolation ITM. Ainsi, 3-ITM-T M désigne cette
méthode pour k = 3 ;

— k-ITB-T M, qui est l’approximation du point milieu (midpoint) de T pour la fonction
de pondération de la méthode d’interpolation ITB. Ainsi, 3-ITB-T M désigne cette
méthode pour k = 3 ;

— k-ITM-T RK4, qui est l’approximation Runge-Kutta d’ordre 4 de T pour la fonction
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de pondération de la méthode d’interpolation ITM. Ainsi, 3-ITM-T RK4 désigne cette
méthode pour k = 3 ;

— k-ITB-T RK4, qui est l’approximation Runge-Kutta d’ordre 4 de T pour la fonction
de pondération de la méthode d’interpolation ITB. Ainsi, 3-ITB−T RK4 désigne cette
méthode pour k = 3.

Formulation de Forme Intégrale (FFI)

Pour obtenir les coordonnées du maillage mobile, on suppose l’existence d’une fonction de
forme X(t, µ) telle que x(t) = X(t, 1) et x(0) = X(t, 0). Si la dérivée de forme, c’est-à-dire par
rapport au paramètre µ, est connue aux frontières mobiles, alors les valeurs de Xi(t, 1) ≡ xi

s’obtiennent de l’intégration de

∂µXi = V(Xi, X, ∂µX; µt) =

∫
Γs

0(µt)
∂µXϕ(Xi − X)dΓ∫

Γs
0(µt)

ϕ(Xi − X)dΓ
∀i ∈ N ◦

avec

Xi(t, 0) = x∗
i ∀i ∈ N ◦

pour écrire l’Équation (3.5)

Xi(t, 1) − Xi(t, 0) = xi − x∗
i =

∫ 1

0
dµV(Xi, X, ∂µX; µt) ∀i ∈ N ◦ , (3.5)

soit l’expression générale de la position des noeuds xi du domaine mobile avec V la pseudo-
vitesse de déformation du maillage.

Pour les besoins du calcul numérique, on formule cette expression générale sur n sous-
intervalles d’intégration pour écrire

xi − x∗
i = I(ϕ, ∂µX, n) =

n−1∑
k=0

∫ (k+1)/n

k/n
dµV(Xi, X, ∂µX; µt)

À la suite de quoi, pour approcher I, on utilise ∂µX(t, µ) = x−x∗, qui provient de l’hypothèse
de la variation linéaire de la fonction de forme X(t, µ) aux frontières énoncée en début
de section, et les méthodes explicites d’Euler ou de Runge-Kutta d’ordre 4 pour réaliser



36

l’intégration par rapport à µ. On écrit alors

IE(ϕ, x − x∗, n) =
n−1∑
k=0

1
n

V(Xi, X, x − x∗; (k/n)t)

l’approximation avec Euler explicite et IRK4(ϕ, x−x∗, n) pour l’approximation avec Runge-
Kutta d’ordre 4.

En particulier, on note par

IE1(ϕ, x − x∗) = IE(ϕ, x − x∗, 1) = V(Xi, X, x − x∗; 0) =

∫
Γs

0(0)
(x − x∗)ϕ(Xi(t, 0) − X(t, 0))dΓ∫
Γs

0(0)
ϕ(Xi(t, 0) − X(t, 0))dΓ

l’approximation IE à un pas. Après l’identification des Xi(t, 0) = x∗
i et X(t, 0) = x∗, elle

s’écrit

xi − x∗
i =

∫
Γs

0(0)
(x − x∗) ϕ(x∗

i − x∗)dΓ∫
Γs

0(0)
ϕ(x∗

i − x∗)dΓ

ou, de façon équivalente, telle qu’à l’Équation (3.6)

xi − x∗
i

∫
Γs

0(0)
ϕ(x∗

i − x∗)dΓ −
∫

Γs
0(0)

(x − x∗) ϕ(x∗
i − x∗)dΓ ∀i ∈ N ◦ . (3.6)

Elle est la moins précise de cette famille de méthodes, mais ne couple que les coordonnées xi

aux coordonnées x∗
i des noeuds du maillage. D’un point de vue schématique, il est possible

d’illustrer la différence entre la formulation de forme IE et les formulations temporelles telle
qu’à la Figure 3.8.

Dans le même ordre d’idée qu’à la section précédent, on établie une nomenclature telle que

— k-ITM-IE1 est l’approximation Euler explicite de I pour la fonction de pondération
de la méthode d’interpolation ITM avec un seul intervalle (n = 1). Ainsi, 3-ITM−IE1

désigne cette méthode pour k = 3 ;

— k-ITB-IE1 est l’approximation Euler explicite de T pour la fonction de pondération
de la méthode d’interpolation ITB avec un seul intervalle (n = 1). Ainsi, 3-ITB−T E1

désigne cette méthode pour k = 3.
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tinitial

tfinal

t1

t2

t3

µ = 0

µ = 1

Figure 3.8 Comparaison des formulations temporelles et de la formulation de forme quant au
déplacement d’un solide. Les flèches grises montrent les déplacements intermédiaires entre la
position initiale et finale de l’objet solide alors que la flèche noire montre le déplacement en
une seule étape du solide de sa position initiale à sa position finale à l’aide de la méthode
IE1.

Synthèse

FTD, FTI et FFI sont des formulations qui possèdent chacune des avantages et des incon-
vénients. Soit #N le nombre de noeuds de la partie mobile du maillage. En 2D, le nombre
de variables associées au maillage est donc égal, au minimum, à 2 × #N (pour x et y), et ce
peu importe la formulation utilisée.

L’approche FTD, tel que mentionné précédemment, se prête intuitivement à la méthode de
résolution monolithique en IFS vu son caractère implicite. Elle requiert toutefois un minimum
de DDL supplémentaires par rapport à la simulation des équations de Navier-Stokes sur un
maillage fixe, soit (2 × #N) DDL quelque soit l’ordre de la méthode BDF utilisé. Dans cette
approche, l’évolution des coordonnées des noeuds du maillage est concurrente à celle de la
géométrie ; le système est donc fortement couplé et parfois difficile à linéariser. Des problèmes
numériques sont possibles si la géométrie évolue très rapidement. De plus, l’intégration tem-
porelle est sujette au cumul des erreurs de troncature et peut causer l’enchevêtrement des
éléments du maillage lorsque la simulation est réalisée sur de longues périodes de temps.

L’approche FTI, quant à elle, se prête davantage à la méthode de résolution partitionnée en
IFS et ne requiert donc aucun DDL supplémentaire par rapport à la simulation des équa-
tions de Navier-Stokes sur un maillage fixe. En effet, le maillage est mis à jour itérativement
à la suite des calculs de l’écoulement et des déplacements. Ce découplage fait en sorte que
cette approche est relativement facile à mettre en oeuvre par l’utilisation de méthodes expli-
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cites puisqu’on évite la linéarisation de systèmes d’équations. Tout comme l’approche FTD
l’enchevêtrement du maillage est possible lorsque la simulation est réalisée sur de longues
périodes de temps [40]. De plus, la formulation partitionnée s’avère inadéquate lorsque le
ratio de masse (ρs/ρf ) est inférieur à l’unité, puisque les systèmes d’équations sont alors
inconditionnellement instables.

L’approche FFI a été conçue pour éviter l’enchevêtrement du maillage lorsque les simulations
sont réalisées sur de longues périodes de temps. Elle se prête aisément à la méthode de
résolution partitionnée et ne requiert alors aucun DDL supplémentaire ; mais requiert tout
de même beaucoup plus d’opérations par étape de temps que l’approche FTI. L’approche FFI
se prête également à la méthode de résolution monolithique mais requiert, respectivement,
(n × 2 × #N) DDL pour l’approximation IE et (3 × n × 2 × #N) DDL pour l’approximation
IRK4, avec n le nombre de sous-intervalles. Par contre, la méthode IE1 ne requiert que (2×
#N) DDL et est donc, à cet égard, équivalente à l’approche FTD. De plus, la méthode IE1 est
linéaire et n’est donc pas sujette aux instabilités de l’approche FTD lorsque le maillage évolue
brusquement d’un pas de temps à l’autre. En contrepartie, l’enchevêtrement du maillage
demeure possible si les déplacements sont très grands.

Le domaine d’application de la méthode IE1 de l’approche FFI inclut l’étude de l’oscillation
d’un solide par rapport à son centre de gravité. De grands déplacements sont alors admissibles
si les noeuds du maillage mobile, en contact avec le solide, peuvent se mouvoir librement selon
la méthodologie développée dans ce mémoire.

3.5 Formulation faible monolithique de l’interaction fluide-structure

Alors que la formulation ALE des équations de Navier-Stokes, l’équation de conservation du
moment angulaire ainsi que les différentes formulation permettant de modéliser la dynamique
du maillage ont été détaillées précédemment, on vise ici à rassembler et synthétiser toutes les
équations nécessaires à la résolution monolithique d’un problème d’IFS. On s’attarde d’abord
à la dynamique du fluide, à celle des solides ainsi qu’aux différentes formes de la cinématique
des noeuds aux frontières et du maillage entier.

3.5.1 Dynamique du fluide

Les équations détaillant la dynamique du fluide proviennent évidemment des équations de
Navier-Stokes. On obtient assez facilement la formulation faible de ces équations sous la forme



39

ALE tel que détaillé aux Équations (3.7) et (3.8).

∫
Ω

û · ρ
∂u
∂t

dΩ︸ ︷︷ ︸
variation temporelle

+
∫

Ω
û · ρ (u · ∇) u dΩ︸ ︷︷ ︸
accélération du fluide

+
∫

Ω
σ(u, p) : ∇û dΩ︸ ︷︷ ︸

tenseur de contraintes sur le domaine

+

∫
Ω

û · ρ

(
−∂x

∂t
· ∇

)
u dΩ︸ ︷︷ ︸

accélération des noeuds du maillage

=
∫

∂Ω\Γs
0

û · σ(u, p) · n dΓ︸ ︷︷ ︸
tenseur de contraintes sur les frontières immobiles

(3.7)

−
∫

Ω
q̂ ∇(u) dΩ = 0 (3.8)

où û et q̂ correspondent à des fonctions tests,

ρ à la masse volumique du fluide,
u au vecteur vitesse du fluide,
σ(u, p) au tenseur qui contient à la fois les contraintes visqueuses et celles issues de la
pression,
∂x/∂t à la vitesse de déformation des noeuds x du maillage et
n à la normale dirigée vers l’extérieur du domaine.

Or, comme la résolution se veut monolithique, il faut, déjà à ce stade, imposer une condi-
tion d’adhérence entre le fluide, les solides ainsi que le maillage. En d’autres mots, on veut
indiquer que la vitesse de déplacement du fluide aux frontières solides est égale à la vitesse
de déformation de ces frontières et qu’il en est de même pour la vitesse de déplacement des
noeuds du maillage situés sur ces frontières. On passe alors par une fonctionnelle faisant
apparaître le multiplicateur de Lagrange λ telle que

I(u, λ) =
∫

∪s
i=1Γi

λ · (u − v) dΓ, (3.9)

qui, une fois extrémisée, permet d’écrire

δI(u, λ) =
∫

∪s
i=1Γi

δλ︸︷︷︸
λ̂

· (u − v) dΓ +
∫

∪s
i=1Γi

λ · δu︸︷︷︸
û

dΓ. (3.10)

Il est important de spécifier ici que l’intégrale est effectuée sur les frontières en mouvement
seulement, soit ∪s

i=1Γi, puisque ce sont sur ces frontières que la contrainte d’égalité des vitesses
est imposée. Dans le cas présent, les variations δλ et δu correspondent aux fonctions tests de
ces variables, soit respectivement λ̂ et û. Il suffit maintenant d’ajouter les différents termes
de l’Équation (3.10) au système composé des équations (3.7) et (3.8). On obtient ainsi les
Équations (3.11), (3.12) et (3.13) où les termes ajoutés par la minimisation de la fonctionnelle
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sont mis en évidence.
∫

Ω
û · ρ

∂u
∂t

dΩ +
∫

Ω
û · ρ (u · ∇) u dΩ +

∫
Ω

σ(u, p) : ∇û dΩ +
∫

Ω
û · ρ

(
−∂x

∂t
· ∇

)
u dΩ −

s∑
i=1

∫
Γi

û · λ dΓ =
∫

∂Ω\ ∪s
i=1Γi

û · σ(u, p) · n dΓ (3.11)

−
∫

Ω
q̂ ∇(u) dΩ = 0 (3.12)

−
s∑

i=1

∫
Γi

λ̂ · (u − v) dΓ = 0 (3.13)

On utilise ici l’approximation P2P1P2 pour approcher les variables des champs u,p et λ des
Équations (3.11)-(3.13). On applique ainsi une approximation quadratique pour u, linéaire
pour p et quadratique pour λ. Celles-ci sont continues et généralisent l’approximation P2P1

de Taylor-Hood.

3.5.2 Dynamique des solides

L’équation de la conservation du moment angulaire, qui régit la dynamique des solides étudiée
ici, a été largement détaillée à la Section 3.3. Les Équations (3.14) et (3.15) ne sont donc
qu’un rappel des Équations (3.2) et (3.3).

ρsI0ω̇ + ρsζ0ω + ρsκ0θ +
∫

Γ
((x − xc) × λ) · ezdΓ = 0 ∀i ∈ S (3.14)

θ̇ = ω ∀i ∈ S (3.15)

3.5.3 Cinématique des frontières du maillage

Tout comme il existe différentes formulations permettant de modéliser la dynamique du
maillage (Section 3.4.3), il est aussi possible de déplacer l’objet solide selon deux approches,
soit par rotation rigide, ou bien à l’aide d’une transformation générale.
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Mouvement rigide

Le mouvement rigide des frontières des solides, qui est occasionné par l’écoulement fluide,
peut être exprimé tel qu’aux Équations (3.16) et (3.17).

∫
Γi(0)

x̂ · ( x − xci︸ ︷︷ ︸
Translate à la

nouvelle position

− R(θi − θ∗
i )(x∗ − x∗

ci
)︸ ︷︷ ︸

Impose la nouvelle rotation
au bras de levier

de la position précédente

)dΓ = 0 ∀i ∈ S (3.16)

∫
Γi

v̂ · (v − vci
− ωiP (x − xci

))dΓ = 0 ∀i ∈ S (3.17)

où x̂ et v̂ correspondent aux fonctions tests de chaque équation,

x à la position des noeuds frontières du solide au temps t,
xci

à la position du centre de rotation du solide au temps t,
θi à la position angulaire des noeuds frontières du solide au temps t,
θ∗

i à la position angulaire initiale des noeuds frontière du solide,
x∗ à la position initiale des noeuds frontières du solide,
x∗

ci
à la position initiale du centre de rotation du solide,

R à la matrice de rotation en 2D,
v à la vitesse de déplacement des noeuds frontières du solide au temps t,
vci

à la vitesse de déplacement du centre de rotation du solide au temps t,
ωi à la vitesse angulaire des noeuds frontières du solide au temps t et
P à R(π/2).

Transformation générale

Il est aussi possible de procéder à la rotation de l’ellipse en voyant plutôt celle-ci comme une
déformation de l’ellipse entre sa position angulaire initiale et sa position angulaire finale. De
cette façon, on a l’impression que les noeuds glissent sur l’ellipse lorsque celle-ci se met en
mouvement. Cela est dû au fait que chaque noeud du maillage ne peut que se déplacer sur
son propre rayon et conserve toujours la même position angulaire. Cette technique s’agence
non seulement très bien avec la formulation FFI, mais elle permet aussi de minimiser le
déplacement des noeuds du maillage. Son équation générale est présentée à l’Équation (3.18).

∫
Γi(0)

x̂ · F (t, x, xci
, θi; x∗, x∗

ci
, θ∗

i ) dΓ = 0 ∀i ∈ S (3.18)

avec F une fonction qui décrit la déformation de la frontière de l’objet. La construction de
cette fonction est détaillée par Delfour et Garon [38]. Cette transformation permet de vérifier
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l’hypothèse de linéarité de X(t, µ) = x(0)+µ(x(t)−x(0)) pour les noeuds de la frontière. Elle
est très intuitive pour un mouvement de translation, mais l’est moins pour un mouvement de
rotation, tel qu’on peut le constater à la Figure 3.9. Elle demeure valide dans ces deux cas.

x(0)

x(1)

x(0)

x(1)

Figure 3.9 Schématisation du mouvement d’un solide par transformation générale. À droite
on observe la translation d’un carré entre µ = 0 et µ = 1 et à gauche la rotation d’une ellipse
où les noeuds à la frontière se déplacent linéairement sur leur rayon entre µ = 0 et µ = 1.

L’impact de l’utilisation de l’équation du mouvement rigide ou de la transformation générale
sur le mouvement de noeuds du maillage est un facteur important à étudier. En effet, les
noeuds à la frontière entre l’objet solide et le fluide ont une grande influence sur tous les
noeuds du maillage et donc sur comment ceux-ci se déplacent au fil de la simulation. Ces deux
approches seront donc testées en profondeur avant de procéder aux applications numériques.

3.5.4 Cinématique des noeuds du maillage

Les noeuds à l’intérieur du maillage, soit xi ∈ N ◦, peuvent être déplacés selon différentes
approches, tel qu’expliqué à la Section 3.4.3. Si on utilise l’approche FFI (k-ITM-IE1 ou k-
ITB-IE1), c’est l’Équation (3.19) qui régit l’interpolation du taux de déformation des noeuds
du maillage au fil de la simulation.

(xi − x∗
i )
∫

Γs
0(0)

ϕ(x∗
i − x∗)dΓ −

∫
Γs

0(0)
(x − x∗)ϕ(x∗

i − x∗)dΓ = 0 ∀i ∈ N ◦ (3.19)

Si on applique plutôt l’approche FTD, c’est l’Équation (3.20) qui régit l’interpolation du
taux de déformation des noeuds du maillage au fil de la simulation.

dxi

dt

∫
Γs

0

ϕ(xi − x)dΓ −
∫

Γs
0

vϕ(xi − x)dΓ = 0 ∀i ∈ N ◦ (3.20)
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3.5.5 Synthèse

Pour mettre en oeuvre le modèle ALE avec la formulation FTD, il est nécessaire d’appliquer
les Équations (3.11), (3.12), (3.13), (3.14), (3.15), (3.16), (3.17) et (3.20) qui modélisent le
mouvement d’un corps rigide en rotation.

Pour le modèle ALE avec la formulation FFI, ce sont les Équations (3.11), (3.12), (3.13),
(3.14), (3.15), (3.16), (3.17) et (3.19) qui modélisent le mouvement d’un corps rigide en
rotation par l’approximation de forme.

Finalement, pour appliquer le modèle ALE avec la formulation FFI en procédant à une rota-
tion par transformation générale, ce sont les Équations (3.11), (3.12), (3.13), (3.14), (3.15),
(3.18) et (3.19) qui modélisent le mouvement d’un corps rigide en rotation par l’approxima-
tion de forme.

On explicite ainsi toutes les équations nécessaires à la résolution des problèmes d’IFS où le
mouvement est purement rotationnel et où la résolution du domaine fluide, du domaine solide
et de la position des noeuds du maillage est totalement monolithique.

3.6 Équations adimensionnelles

Maintenant que toutes les équations constitutives de la méthode de résolution monolithique
sont établies, il est nécessaire de procéder à leur adimensionnalisation. Les équations des
Sections 3.5.3 et 3.5.4 étant homogènes, il est inutile de les adimensionnaliser. On se concentre
alors sur les équations de Navier-Stokes ainsi que sur celles de la dynamique des solides.

3.6.1 Adimensionnalisation des équations de Navier-Stokes

Tel que mentionné à la Section 3.2, les équations de Navier-Stokes sous forme ALE s’écrivent
telles que

ρ

[
∂u
∂t

+ ((u − v) · ∇) u
]

− ∇ · σ(p, u) = 0 , (3.21)

−∇ · u = 0 . (3.22)

où σ(p, u) = pI + µ
(
∇u + ∇T u

)
. Les changements de variables ainsi que les différentes

échelles dimensionnelles sont présentés au Tableau 3.4 où U0 correspond à la vitesse en amont
de l’écoulement à l’infini, L0 à la longueur du grand axe de l’ellipse et ρ0 à la masse volumique
du fluide. On peut en déduire T0 = L0/U0. Le nombre de Re devient donc Re = ρ0U0L0

µ
et
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Tableau 3.4 Changements de variable pour l’adimensionnalisation de l’équation de Navier-
Stokes sous forme ALE. Une variable dimensionnelle correspond à la multiplication de sa
variable adimensionnelle et de son échelle dimensionnelle.

Variable dimensionnelle Variable adimensionnelle Échelle dimensionnelle
ρ ρ̄ ρ0
µ µ̄ ρ0L0T0
u ū U0
v v̄ U0
p p̄ ρ0U

2
0

t t̄ T0
∇ ∇̄ 1/L0

σ̄ = −p̄I+ 1
Re

(∇̄ū+∇̄T ū). Ainsi, en remplaçant les variables dimensionnelles par les variables
adimensionnelles dans les Équations (3.21) et (3.22), on obtient

∂ū
∂t̄

+
(
(ū − v̄) · ∇̄

)
ū = ∇̄ · σ̄ ,

−∇̄ · ū = 0 ,

où µ = 1/Re.

3.6.2 Adimensionnalisation des équations de la dynamique des solides

Il est ensuite nécessaire de procéder à l’adimensionnalisation des équations de la dynamique
des solides, soient

ρs (I0ω̇ + ζ0ω + κ0θ) +
∫

Γ
((x − xc) × λ) · ezdΓ = 0 , (3.23)

d

dt
θ = ω , (3.24)

qui sont tirées des Équations (3.14) et (3.15) et où ρs correspond à la masse volumique du
solide. Les changements de variables ainsi que les différentes échelles dimensionnelles qui
s’ajoutent à ceux présentés au Tableau 3.4 sont présentés au Tableau 3.5 où U0 demeure la
vitesse en amont de l’écoulement à l’infini, L0 la longueur du grand axe de l’ellipse et ρ0 la
masse volumique du fluide.

Ainsi, en remplaçant les variables dimensionnelles par les variables adimensionnelles dans les
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Tableau 3.5 Changements de variable pour l’adimensionnalisation de l’équation de la dyna-
mique du solide. Une variable dimensionnelle correspond à la multiplication de sa variable
adimensionnelle et de son échelle dimensionnelle.

Variable dimensionnelle Variable adimensionnelle Échelle dimensionnelle
ρs ρ̄s ρ0

ω ω̄ U0/L0

ω̇ ¯̇ω U2
0 /L2

0
I0 Ī0 1/L4

0
ζ0 ζ̄0 1/(L4

0T0)
κ0 κ̄0 1/(L4

0T
2
0 )

x x̄ L0

xc x̄c L0

λ λ̄ ρ0/(L0T
2
0 )

Γ Γ̄ L0

Équations (3.23) et (3.24), on obtient

rm

(
Ī0 ¯̇ω + ζ̄0ω̄ + κ̄0θ

)
+
∫

Γ
((x̄ − x̄c) × λ̄) · ez dΓ̄ = 0

d

dt̄
θ = ω̄

où rm = ρs/ρ0. On peut également écrire

ζ0 = 2πfnI0 = 2πf̄nĪ0
L4

0
T0

et

ζ̄0 = 2πf̄nĪ0 = 2π

Ur

Ī0

où Ur = 1/f̄n correspond à la vitesse réduite et où fn est une fréquence de l’ellipse.

Finalement, pour obtenir les équations sans dimension, il suffit d’appliquer la correspondance
entre les paramètres dimensionnels et adimensionnels du Tableau 3.6. Pour les applications
qui suivent, on allège l’équation adimensionnelle en omettant le symbole ·̄ sur les variables.
s
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Tableau 3.6 Correspondance entre les paramètres clés dimensionnels et leur équivalent adi-
mensionnel

ρ µ ρs I0 ζ0 κ0

1 1
Re

rm Ī0
2π

Ur

Ī0 κ̄0
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CHAPITRE 4 VÉRIFICATION ET VALIDATION

Le programme EF8 est utilisé par le groupe de recherche depuis plusieurs années et a déjà
été vérifié et validé à maintes reprises. Toutefois, dans le but d’y intégrer la formulation ALE
des équations de Navier-Stokes ainsi que l’interpolation transfinie permettant de résoudre
le taux de déformation des noeuds du maillage et ainsi rendre ce dernier mobile, plusieurs
modifications du code ont été requises. Il est donc essentiel de vérifier et de valider celui-
ci à nouveau. Les processus de vérification et de validation (V&V) connaissent différentes
définitions dans la littérature scientifique et même dans le domaine de la dynamique des
fluides numérique comme en témoignent Oberkampf et al. [41]. Ici, ce sont les définitions de
l’American Institute of Aeronautics and Astronautics (AIAA) qui servent de lignes directrices
pour les différents tests de V&V.

Definition 4.0.1. Vérification. Le processus de vérification vise à déterminer que « l’implé-
mentation du modèle numérique représente bel et bien la description conceptuel du modèle
faite par le développeur ainsi que la solution de celui-ci »[Notre traduction] [42]. En d’autres
mots, la vérification permet de s’assurer que les équations et les algorithmes implémentés
sont résolus correctement et donnent les solutions attendues.

Definition 4.0.2. Validation. Le processus de validation permet « de déterminer le degré
de précision d’un modèle numérique quant à sa représentation d’un phénomène réel du point
de vue de l’utilisation désirée de ce modèle »[Notre traduction] [42]. La validation vise ainsi
à s’assurer que ce sont les bonnes équations et les bons algorithmes qui sont résolus dans le
but de représenter un phénomène réel avec une précision acceptable selon l’application.

4.1 Vérification

Selon le problème à résoudre, la dimension temporelle peut avoir ou non une influence sur
le phénomène étudié. C’est pourquoi le programme EF8 peut être utilisé pour résoudre des
problèmes stationnaires ainsi que transitoires. Dans le cas des problèmes stationnaires, seul
l’espace est discrétisé par la méthode des éléments finis alors que la discrétisation temporelle
s’ajoute dans le cas des problèmes transitoires. Pour toutes les études de cette section, c’est
le modèle ALE jumelé à l’approche FTD, détaillée au Chapitre 3, qui est employé.
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4.1.1 Écoulement stationnaire

Les problèmes stationnaires sont un bon moyen de vérifier la discrétisation de l’espace utilisé
par EF8 puisque celle-ci n’est pas influencée par la discrétisation temporelle.

Vérification de la discrétisation en espace

Le Tableau 4.1 résume l’objectif, les moyens d’évaluation, les hypothèses ainsi que les critères
de robustesse du premier test de vérification. On comprend donc que ce test vise à vérifier la
justesse de la mise en oeuvre de l’approximation P2P1, utilisée pour les champs de vitesses
et de pression. Les critères de robustesse, quant à eux, servent à s’assurer que les résultats
obtenus ne sont pas influencés par des paramètres desquels ils devraient être indépendants.
Ici, on vérifie la robustesse des résultats par rapport à l’orientation de la géométrie et à la
valeur du nombre de Re. Les taux de convergence devraient donc être conservés, peu importe
la valeur de ces paramètres. Ici, µ = 1/Re et ρ = 1.

Tableau 4.1 Détails du test de vérification de la discrétisation en espace de EF8

Objectif(s) Moyen(s)
d’évaluation Hypothèse(s) Critère(s) de

robustesse
Vérifier la

discrétisation P2P1
pour les vitesses

et la pression

Taux de convergence
basés sur les normes H1

et L2 en fonction
du raffinement du maillage

Taux de convergence
> 2 pour les vitesses (norme H1)
> 2 pour la pression (norme L2)

Rotation de
la géométrie

et différents Re

La Figure 4.1 montre la géométrie et le maillage initial, c’est-à-dire le plus grossier, sur lequel
est basée l’analyse du taux de convergence. Ce maillage a été raffiné à plusieurs reprises pour
permettre le calcul de la norme H1 de l’erreur en vitesse et de la norme L2 de l’erreur en
pression dans le but d’obtenir leurs taux de convergence.

Dans un premier temps, des polynômes linéaires ont été imposés sur toutes les frontières
du domaine pour les vitesses u et v et une pression constante a été imposée en un point
du domaine, tentant ainsi de reproduire la solution manufacturée présentée à la Figure 4.2
et à l’Équation (4.1). La méthode de vérification par solution manufacturée est détaillée à
l’Annexe B.

uin = uout = udown = utop =
 u = 3x

v = −3y + 5
(4.1)

p = 2
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Figure 4.1 Maillage triangulaire composé de 22 éléments et de 57 noeuds
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Figure 4.2 Schématisation des conditions u, v, p imposées aux frontières (Γ) du domaine fluide
(Ω) pour la vérification de la résolution de la discrétisation en espace

Cette première analyse vérifie que la solution exacte est capturée par EF8 puisque les poly-
nômes d’interpolation choisis permettent théoriquement de représenter exactement ce type
de solution. Le Tableau 4.2 montre justement que la solution est bel et bien capturée exac-
tement pour tous les maillages. En effet, les normes sont toutes de l’ordre du zéro machine.
Les résultats sont très semblables pour le domaine ayant subi une rotation ainsi que pour
des nombres de Re plus élevés. Ces résultats sont présentés aux Tableaux C.1, C.2 et C.3 de
l’Annexe C.

Dans un second temps, des polynômes d’ordre supérieur sont imposés sur toutes les frontières
du domaine pour les vitesses u et v et une pression linéaire est imposée en un point du
domaine, reproduisant cette fois la solution manufacturée présentée à la Figure 4.2 et à
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Tableau 4.2 Normes de l’erreur en vitesse et en pression pour un champ de vitesse linéaire et
une pression constante (Re = 1)

Maillage Nombre
d’éléments

Norme des
vitesses (H1)

Norme de la
pression (L2)

h 22 1.45E-14 1.58E-13
h/2 88 2.65E-14 3.91E-13
h/4 352 7.87E-14 5.58E-12
h/8 1408 1.95E-13 3.09E-11

l’Équation (4.2).

uin = uout = udown = utop =
 u = 3x2y − 4y + 2

v = −3y2x − 6x
(4.2)

p = 2x + 3

En procédant à ce test à différents Re et en faisant varier l’orientation du domaine, on s’assure
que les taux de convergence correspondent toujours aux taux de convergence théoriques. C’est
d’ailleurs ce que l’on constate à la Figure 4.3 où la norme H1 de l’erreur en vitesse (gauche)
ainsi que la norme L2 de l’erreur en pression (droite) sont toutes les deux tracées en fonction
du nombre d’éléments du maillage et ce, pour différents Re. Encore une fois, les résultats
sont très semblables pour le domaine ayant subi une rotation, comme il est possible de le
constater à la Figure C.1 de l’Annexe C.

Ces premiers tests de vérification de la discrétisation spatiale permettent de conclure que EF8
résout correctement l’approximation P2P1 de la formulation variationnelle des équations de
Navier-Stokes permettant d’obtenir les champs de vitesses et de pression sur tout le domaine.

4.1.2 Écoulement transitoire

En passant à la résolution des écoulements transitoires, la discrétisation temporelle entre
en jeu. Il devient donc possible de vérifier que EF8 résout correctement les schémas de
discrétisation en temps BDF , détaillés à la Section 3.1.3. Toutefois, comme la discrétisation
temporelle est ajoutée à la discrétisation spatiale, il est important de vérifier que celles-ci
interagissent correctement entre elles. C’est pourquoi une première série de tests visant à
vérifier uniquement la discrétisation temporelle est exécutée et qu’une seconde série de tests
est ajoutée pour vérifier une combinaison adéquate de l’erreur en temps et en espace.
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Figure 4.3 Normes de l’erreur en vitesses (gauche) et en pression (droite) pour un champ de
vitesses d’ordre élevé et une pression linéaire

Vérification de la discrétisation en temps

En premier lieu, pour vérifier uniquement la résolution de la discrétisation en temps par EF8,
différentes solutions spatialement exactes sont imposées sur un domaine rectangulaire fluide
pour que la norme de l’erreur ne tienne compte que de l’erreur en temps. Il s’agit ainsi d’un
problème de conditions initiales et non de conditions limites. À des fins de concision, seuls les
schémas les plus utilisés, soit BDF1, BDF2 et BDF3 sont vérifiés. BDF1 et BDF2 sont
d’ailleurs des schémas inconditionnellement stables, ce qui les rend d’autant plus intéressants
dans le contexte d’une implémentation monolithique comme c’est le cas de EF8. La Figure
4.4 montre le maillage utilisé pour cette série de tests et l’Équation (4.3) présente la condition
initiale u0(t) qui ne dépend que du temps ; ici, Re = 1.

Pour s’assurer de l’indépendance de la solution par rapport à la discrétisation spatiale, v et
p ont été imposées comme étant nulles sur tout le domaine. Cette méthode permet d’ailleurs
d’utiliser la norme H1 de l’erreur de u en fonction du raffinement du pas de temps comme
mesure du taux de convergence tel qu’explicité au Tableau 4.3. Différentes conditions initiales
u0(t) ont ensuite été imposées sur la frontière gauche du domaine dans le but de reproduire
les solutions manufacturées de l’Équation (4.3) illustrée à la Figure 4.5 et ainsi tester BDF1,
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Figure 4.4 Maillage triangulaire composé de 70 éléments et de 163 noeuds

BDF2 et BDF3 avec chacune de celles-ci.

u0(t) = tn pour n = 1, 2, 3, 4 (4.3)

u0(t) =
1 t

2 t2

3 t3

4 t4

Γ

Ω

v = 0
p = 0

Figure 4.5 Schématisation des conditions v, p et de la condition initiale u0(t) imposées aux
frontières (Γ) du domaine fluide (Ω) pour la vérification de la résolution en temps pour quatre
cas différents

Cette série de tests a donné lieu aux résultats présentés au Tableau 4.4. On y voit que les
taux de convergence théoriques sont bel et bien respectés pour tous les schémas BDF . De
plus, chaque schéma arrive à capturer les solutions exactes tel qu’attendu, c’est-à-dire que
BDF1 arrive à capturer exactement une solution linéaire, BDF2 une solution quadratique
et BDF3 une solution cubique.

Afin de tester la discrétisation spatiale de façon encore plus consciencieuse, la solution manu-
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Tableau 4.3 Détails du test de vérification de la discrétisation en temps de EF8

Objectif(s) Moyen(s)
d’évaluation Hypothèse(s)

Vérifier la
discrétisation en
temps BDF1,

BDF2 et BDF3

Taux de convergence
basé sur la norme H1

en fonction du raffinement
du pas de temps

Taux de convergence
> 1 pour BDF1
> 2 pour BDF2
> 3 pour BDF3

Tableau 4.4 Taux de convergence des différents schémas d’intégration temporelle BDF selon
l’ordre de la condition initiale u0(t)

Schéma
temporel 1 u(t) = t 2 u(t) = t2 3 u(t) = t3 4 u(t) = t4

BDF1 Solution
exacte

1 1.005973901 1.008933125

BDF2 Solution
exacte

Solution
exacte

1.990897793 1.973049203

BDF3 Solution
exacte

Solution
exacte

Solution
exacte

2.990897794

facturée 2D ALE de Hay et al. [6], présentée à l’Équation (4.4), a été reproduite et appliquée
tel que schématisée à la Figure 4.6.

u =
 u = −5(x + y(y − 1)) sin(2πt)

v = −5(y − x(x − 1)) sin(2πt)

p = −(x + y) sin(2πt) (4.4)

X =
 X = φ(t)

4 xy(x − 1)
Y = φ(t)

4 xy(y − 1)
où φ(t) =

 0 pour t 6 0
4(t − tanh(t)) pour t > 0

où X permet d’imposer le mouvement des noeuds du maillage.

Ce problème a d’abord été résolu avec EF8 en utilisant un maillage fixe, c’est-à-dire en
omettant les variables X et Y , dans le but de vérifier d’abord la résolution adéquate de la
formulation ALE des équations de Navier-Stokes. En utilisant ensuite un maillage mobile, on
peut s’assurer que les taux de convergence sont conservés malgré le déplacement des noeuds
du maillage. L’objectif, les moyens d’évaluation et les hypothèses de ce test sont présentés
au Tableau 4.5.
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Figure 4.6 Schématisation des conditions u et X imposées aux frontières (Γ) du domaine
fluide (Ω) pour la vérification de la solution manufacturée de [6]. Où aucune condition limite
n’est spécifiée, ce sont les conditions naturelles qui sont appliquées.

Tableau 4.5 Détails du test de vérification de la discrétisation en temps de EF8 par rapport
à la solution manufacturée

Objectif(s) Moyen(s)
d’évaluation Hypothèse(s)

Vérifier la
discrétisation en
temps BDF1,

BDF2 et BDF3

Taux de convergence
basés sur les normes H1

et L2 en fonction du raffi-
nement du pas de temps et
comparaison des champs de
vitesses et de pression avec
la solution manufacturée

Taux de convergence
> 1 pour BDF1
> 2 pour BDF2
> 3 pour BDF3

Mêmes champs de
vitesses et de pression

Les normes de l’erreur en vitesses et en pression pour ce problème sont présentées à la
Figure 4.7. La solution a d’abord été générée entre [0, T ], où T = 1.1, puis comparée à la
solution exacte, telle qu’aux Équations (4.5) et (4.6) où Ep et Eu représentent respectivement
l’erreur en pression et en vitesses. On a ensuite procédé à un raffinement du pas de temps
tout en conservant l’intervalle de simulation [0, T ] dans le but d’obtenir les courbes de la
Figure 4.7.

Ep(∆T ) = ||ph(T ) − pexacte(T )||L2 (4.5)

Eu(∆T ) = ||uh(T ) − uexacte(t)||H1 (4.6)

On observe que les taux de convergence théoriques sont parfaitement reproduits et ce, autant
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pour le maillage fixe que pour le maillage mobile. De plus, les valeurs des différentes normes
sont très semblables entre le maillage fixe et mobile. Il est normal que les valeurs ne soient
pas exactement les mêmes puisque comme l’un des maillage est mobile, il n’est forcément pas
identique au maillage fixe à chaque pas de temps.
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Figure 4.7 Normes de l’erreur en vitesses (gauche) et en pression (droite) pour la solution
manufacturée 2D de Hay et al. [6]. Les pentes de référence P sont aussi présentées à titre de
comparaison.

En ce qui concerne la comparaison des champs de vitesses et de pression avec ceux de la
solution manufacturée, l’analyse est forcément plus qualitative qu’en ce qui concerne les taux
de convergence. Il est toutefois possible de superposer les lignes de courant au champ de
pression tel que Hay et al. l’ont fait pour ensuite comparer les figures. C’est justement ce
qu’on peut observer à la Figure 4.8 où la résolution a été faite sur un maillage mobile. Ces
graphiques sont d’ailleurs très semblables à ceux obtenus par Hay et al. aux mêmes valeurs
de t.

La Figure 4.9 montre justement le maillage à t = 0.0 et à t = 1.1. La déformation du maillage
devient très évidente. On peut toutefois remarquer que les noeuds de la frontière gauche ainsi
que de la frontière du bas ne se déplacent pas, pour faciliter l’imposition des conditions de
Dirichlet sur celles-ci. Le même comportement est observé en ce qui concerne les résultats de
Hay et al.

Les résultats étant les mêmes ou bien très proches de ceux de la solution manufacturée, il est
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Figure 4.8 Lignes de courant superposées au champ de pression à t = 0.2 (gauche) et à t = 1.1
(droite) obtenus à l’aide d’un maillage mobile

Figure 4.9 Maillage mobile à t = 0.0 (gauche) et à t = 1.1 (droite)

possible de confirmer que la discrétisation spatiale et temporelle est correctement faite par
EF8, et ce autant pour un maillage fixe que mobile.
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Vérification combinée de la discrétisation en espace et en temps

Maintenant que les discrétisations spatiale et temporelle ont toutes les deux été vérifiées
indépendamment, une vérification de l’interaction de celles-ci est nécessaire. Contrairement
aux tests précédents, la solution doit maintenant dépendre à la fois de l’espace et du temps
pour arriver à étudier l’interaction des erreurs induites par ces deux types de discrétisation.
Les détails de cette série de tests sont présentés au Tableau 4.6.

Tableau 4.6 Détails du test de vérification de l’interaction entre les discrétisations en espace
et en temps de EF8

Objectif(s) Moyen(s)
d’évaluation Hypothèse(s)

Vérifier l’interaction
entre la discrétisation en
temps BDF1, BDF2 et

BDF3 et la discrétisation P2P1
des vitesses et de la pression

Taux de convergence
basés sur les normes H1

et L2 en fonction
du raffinement du

maillage et du pas de temps

Taux de convergence
> 2 pour les vitesses

(norme H1)
> 2 pour la pression

(norme L2)

Le maillage sur lequel est basé cette série de tests correspond à celui utilisé pour la vérification
du taux de convergence en espace, c’est-à-dire celui présenté à la Figure 4.1. La solution
manufacturée de l’Équation (4.7) a donc été imposée par des conditions de Dirichlet sur
toutes les frontières du domaine pour les vitesses u et v ainsi qu’en imposant la pression p

en un point du domaine, tel qu’illustré à la Figure 4.10.

uin = uout = udown = utop =
 u = 3x sin(2πt)

v = −3y sin(2πt) + 5
(4.7)

p = 0

Pour cette série de tests, il est important de porter une attention particulière au raffinement
du maillage et du pas de temps. En effet, selon les méthodes d’approximation choisies, les
taux de convergence théoriques de l’erreur en temps, en vitesses et en pression ne sont pas
nécessairement les mêmes. L’Équation (4.8) montre justement comment procéder à un raffi-
nement cohérent du maillage et du pas de temps dans le cas de l’utilisation des polynômes
d’interpolation P2P1 pour les vitesses et la pression et du schéma BDF1 pour la discrétisa-
tion en temps. Si le raffinement du maillage et du pas de temps n’est pas cohérent, les taux
de convergence des normes de l’erreur en vitesses et en pression ne seront pas conservés. C’est
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Figure 4.10 Schématisation des conditions u, v, p imposées aux frontières (Γ) du domaine
fluide (Ω) pour la vérification combinée de la résolution de la discrétisation en espace et en
temps

d’ailleurs ce qui est vérifié par cette série de tests.

Temps : BDF1 −→ Erreur ≈ O(∆t) −→ Diviser le pas de temps en 4

Vitesses : Norme H1 −→ Erreur ≈ O(h2) −→ Diviser la taille des éléments en 2 (4.8)

Pression : Norme L2 −→ Erreur ≈ O(h2) −→ Diviser la taille des éléments en 2

Ainsi, plusieurs types de raffinement sont testés :

— Raffinement en espace et en temps : Raffinement simultané cohérent, c’est-à-dire en
respectant l’ordre de convergence des vitesses, de la pression et du temps, du maillage
et du pas de temps.

— Raffinement en temps : Raffinement du pas de temps seulement en conservant toujours
le même maillage (22 éléments).

— Raffinement en espace : Raffinement du maillage seulement en conservant toujours le
même pas de temps (10 pas de temps).

La Figure 4.11 présente les résultats obtenus pour ces trois types de raffinement jumelés
au schéma de discrétisation en temps BDF1. Si on s’attarde au graphique de gauche de la
Figure 4.11, on remarque que le raffinement en espace et en temps (les lignes pleines) permet
aux vitesses et à la pression de respecter leur taux de convergence théoriques, c’est-à-dire
que leur pente est minimalement de 2. Toutefois, si on ne raffine que le pas de temps sans
modifier le maillage, seule la pression arrive à respecter son taux de convergence théorique.
Le constat est très semblable pour le graphique de droite. En effet, si on raffine uniquement
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le maillage sans modifier le pas de temps, la norme de l’erreur en pression stagne et seule
la norme de l’erreur des vitesses arrivent à atteindre le taux de convergence théorique. Ce
dernier demeure toutefois inférieur à celui obtenu lorsque l’on raffine simultanément et de
façon cohérente en espace et en temps.
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Figure 4.11 Normes de l’erreur en vitesses et en pression au temps final en fonction du pas de
temps (gauche) et de la taille des éléments du maillage (droite) selon différents raffinement
pour BDF1

Les Figures D.1 et D.2 présentés à l’Annexe D, montrant les résultats obtenus pour les trois
types de raffinement jumelés respectivement aux schémas de discrétisation en temps BDF2
et BDF3, permettent d’observer un comportement très similaire.

On en conclut que peu importe le schéma de discrétisation en temps choisi, c’est-à-dire que
ce soit BDF1, BDF2 ou BDF3, un raffinement cohérent en espace et en temps est le seul
moyen d’arriver à conserver les taux de convergence lorsqu’on étudie un problème qui dépend
à la fois de ces deux discrétisations. EF8 se comporte donc tel qu’attendu en ce qui concerne
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l’interaction entre l’erreur en espace et en temps. D’un point de vue plus général, cette analyse
du comportement de l’erreur démontre que lors de la résolution d’un problème d’IFS, il est
inutile de raffiner abusivement le pas de temps si le maillage, lui, demeure trop grossier. Cela
donnerait une solution probablement très précise, mais au mauvais problème. L’inverse, soit
un raffinement abusif du maillage en conservant un pas de temps grossier, est tout autant
inutile. C’est pourquoi il est nécessaire de raffiner en espace et en temps de façon cohérente.

4.1.3 Méthodologie du calcul des forces exercées par le fluide

Parmi les données à extraire des problèmes d’IFS, il y a évidemment les forces exercées par
le fluide sur le solide. En éléments finis, celles-ci sont communément calculées par la méthode
des réactions. Cette méthode ne peut toutefois être utilisée qu’en post-traitement alors qu’il
est aussi possible de calculer ces forces à l’aide de multiplicateurs de Lagrange, tel qu’expliqué
à la Section 3.5.1, en ajoutant une nouvelle équation au système. Cette nouvelle équation
devient très utile dans le cadre du développement d’une méthode monolithique puisqu’elle
permet le couplage des équations. Dans le but de vérifier la précision de cette technique moins
usuelle, on compare ici les résultats obtenus via les deux méthodes.

Retour sur la méthode des réactions

En ÉF, la méthode des réactions permet d’obtenir la valeur des forces de traction sur une
frontière grâce aux coefficients du système algébrique construit selon le nombre de DDL du
problème. Si on prend comme exemple un problème 1D à 5 DDL où la vitesse u est imposée
en A et en B (u4 et u5), tel qu’illustré à la Figure 4.12, le système algébrique construit
s’apparente à celui de l’Équation (4.9).

x

u4DDL : u1 u2 u3 u5

A B

Figure 4.12 Exemple de problème 1D à 5 DDL pour la résolution des équations de Navier-
Stokes par éléments finis
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

a11 a12 0 a14 0
a21 a22 a23 0 0
0 a32 a33 0 a35

a41 0 0 a44 0
0 0 a53 0 a55





u1

u2

u3

u4

u5


=



b1

b2

b3

b4 + TA

b5 + TB


(4.9)

La méthode des réactions utilise donc les coefficients de la 4e et 5e ligne de la matrice, c’est-
à-dire celles correspondant à la discrétisation des polynômes assignés aux DDL u4 et u5, pour
calculer les forces de traction en A et en B (TA et TB). Ce calcul est explicité aux Équations
(4.10) et (4.11).

−TA = b4 − a41u1 − a44u4 (4.10)

−TB = b5 − a53u3 − a55u5 (4.11)

Cette méthode fiable et précise est utilisée, entre autres, par le logiciel commercial COMSOL.

Comparaison entre les différentes méthodes de calcul des forces

La résolution des forces sur une frontière par la méthode des multiplicateurs de Lagrange
ajoute deux équations différentielles au système, soit une pour le calcul des forces dans la
direction x et une seconde pour la direction y. Pour comparer la méthode des réactions à
celle des multiplicateurs de Lagrange pour le calcul des forces exercées par le fluide sur un
corps solide, l’écoulement d’un fluide autour d’un cylindre circulaire est étudié. Afin de créer
des allées de Von Karman, un écoulement cisaillé qui devient progressivement un écoulement
plan unitaire est imposé à l’entrée du domaine pour initier les instabilités. Le nombre de
Re est aussi fixé à 100 pour s’assurer de l’existence d’une solution 2D et U0 = L0 = 1. La
maillage de base utilisé est présenté à la Figure 4.13 et les conditions limites sont présentées
à la Figure 4.14 où uin = [((0.125y − 0.5) + min(t/10, 1)(−0.125y + 0.5) + 1) · ex].

En calculant les forces exercées sur le cylindre par l’écoulement fluide à l’aide des deux
méthodes, il est possible de comparer les courbes obtenues. En ce qui concerne la méthode
des multiplicateurs de Lagrange, différents maillages sont testés ainsi que différents nombres
de points d’intégration de Gauss afin d’étudier leur influence sur la valeur des forces calculées.
Un résumé des détails de ce test est présenté au Tableau 4.7

La Figure 4.15 montre les forces exercées sur le cylindre dans la direction x en fonction du
temps. Les graphiques de gauche et de droite présentent respectivement les forces calculées
sur un maillage de 428 et de 1712 éléments. L’impulsion que l’on remarque entre t = 0 et
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Figure 4.13 Maillage triangulaire formé de 428 éléments et de 908 noeuds

Γ

Ω

v = 0

uin
v = 0

v = 0

Figure 4.14 Schématisation des conditions u, v imposées aux frontières (Γ) du domaine fluide
(Ω) pour la vérification du calcul des forces

Tableau 4.7 Détails du test de vérification du calcul des forces par la méthode des multipli-
cateurs de Lagrange

Objectif(s) Moyen(s)
d’évaluation Hypothèse(s)

Vérifier le calcul des
forces par la méthode

des multiplicateurs
de Lagrange

Graphique des forces exercées
par le fluide sur le solide
calculées par la méthode

des réactions

Courbes de plus en plus
rapprochées avec le raffinement
du maillage et l’augmentation
du nombre de points de Gauss
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t ≈ 10 est due à l’écoulement cisaillé qui est imposé alors qu’un certain régime permanent
s’établit à mesure que t augmente. On voit déjà rapidement que les courbes ont toutes la même
tendance. Toutefois, les forces calculées par la méthode des multiplicateurs de Lagrange sur
le maillage le plus grossier avec 3 points d’intégration de Gauss sont nettement plus distantes
de la courbe de référence, c’est-à-dire celle de la force en x calculée à l’aide de la méthode des
réactions. Dès qu’on augmente le nombre de points d’intégration de Gauss à 6, la valeur de la
force en x en fonction du temps se confond à celle calculée par la méthode des réactions. Sur
le graphique de droite, le maillage est plus fin et les courbes sont toutes confondues, même
pour une nombre de points d’intégration de 3.
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Figure 4.15 Force dans la direction x en fonction du temps exercée par le fluide sur le cylindre
et calculée sur un maillage de 428 éléments (gauche) et de 1712 éléments (droite) pour
différents nombres de points d’intégration de Gauss

La Figure 4.16 montre plutôt les forces exercées sur le cylindre dans la direction y en fonction
du temps. On y observe le même comportement par rapport au nombre de points d’intégration
de Gauss et d’éléments du maillage. Ces graphiques permettent aussi de visualiser la nature
cyclique des forces en y des allées de Von Karman.

On peut en conclure qu’en choisissant adéquatement le nombre de points d’intégration de
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Figure 4.16 Force dans la direction y exercée par le fluide sur le cylindre en fonction du temps
calculée sur un maillage de 428 éléments (gauche) et de 1712 éléments (droite) pour différents
nombres de points d’intégration de Gauss

Gauss en fonction de la densité du maillage, le calcul des forces par les multiplicateurs de
Lagrange est équivalent à celui communément fait par la méthode des réactions. Cela est
dû au fait que la géométrie est courbe et qu’un maillage plus fin permet de mieux capturer
la géométrie alors qu’un maillage plus grossier nécessite un plus grand nombre de points
d’intégration de Gauss pour arriver à un résultat fidèle à la méthode des réactions.

4.2 Validation

Maintenant que la résolution des différentes équations par EF8 est rigoureusement vérifiée,
l’étape subséquente correspond à la validation. Ici le but est de résoudre un problème physique
pour lequel des résultats expérimentaux sont disponibles. Il est alors possible de simuler ce
problème avec EF8 et ainsi s’assurer que les équations implémentées correspondent bel et
bien aux équations décrivant correctement la physique du problème.
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Plusieurs problèmes classiques sont testés. Dans un premier temps, un problème stationnaire
est simulé, soit les vortex de Föppl. On pousse ensuite ce même type de problème pour simuler
les allées de Von Karman et ainsi modéliser un problème transitoire. Finalement, le problème
de la cavité entraînée, différent des deux premiers par sa géométrie et ses conditions limites,
est aussi testé.

4.2.1 Vortex de Föppl

Les vortex de Föppl correspondent à des vortex stables et symétriques qui se forment à
l’arrière d’un cylindre circulaire placé dans un écoulement à faible nombre de Re. C’est en se
basant sur le travail de Toja-Silva et al. [43] que ce test a été construit. Comme la solution
physique est stationnaire, ce test permet de valider adéquatement la module stationnaire de
EF8.

Un écoulement unitaire u est donc imposé à l’entrée du domaine alors que la vitesse v y est
imposée à 0, tel que la Figure 4.17 permet de le constater. Les conditions naturelles sont
imposées à la sortie. Pour s’assurer de la stabilité des vortex de Föppl et ainsi éviter d’initier
des allées de Von Karman, Re est imposé à 30. Ici, le maillage utilisé est triangulaire, non-
structuré et est composé de 209 588 éléments et de 420 257 noeuds, une densité semblable à
celle du maillage cartésien utilisé par Toja-Silva.

Γ

Ω

v = 0

u = 1
v = 0

v = 0

Figure 4.17 Schématisation des conditions u, v imposées aux frontières (Γ) du domaine fluide
(Ω) pour la validation des vortex Föppl

En visualisant la solution telle qu’à la Figure 4.18, c’est-à-dire en superposant les lignes de
courant à la vorticité en z, on observe très bien les vortex de Föppl. Ceux-ci sont bel et bien
stables et symétriques. En suivant la méthodologie de Toja-Silva et al., on se base sur leur
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géométrie pour arriver à comparer les résultats obtenus avec EF8 à ceux de la littérature et de
tests expérimentaux. À l’aide de l’intégrale du multiplicateur de Lagrange dans la direction
de l’écoulement, il est aussi possible de calculer le CD du cylindre et d’ajouter celui-ci aux
valeurs numériques à comparer. Les dimensions des vortex sont calculées par rapport au

Figure 4.18 Dimensions des vortex de Föppl créés par un écoulement à Re = 30 autour d’un
cylindre circulaire. Celles-ci sont visualisées en superposant les lignes de courant à la vorticité
en z.

diamètre (D) du cylindre circulaire qui correspond à L0 et qui est ici de 1. Le CD est, quant
à lui, calculé à l’aide de l’Équation (4.12).

CD = 2FD

ρU2
0 L0

(4.12)

Le Tableau 4.8 résume les résultats obtenus, en partie visibles à la Figure 4.18, tout en les
comparant à ceux de la littérature et des test expérimentaux disponibles. On y constate que
les résultats obtenus sont tout à fait fidèles à ceux attendus.
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Tableau 4.8 Comparaison des dimensions relatives des vortex de Föppl et du coefficient de
traînée du cylindre provenant de différentes références

Références l/D a/D b/D θ CD

Toja-Silva et al. [43] 1.71 0.56 0.53 47,93° 1.78
Pinelli et al. [44] 1.70 0.56 0.52 48.05° 1.80
Coutanceau et Bouard*[45] 1.55 0.54 0.54 50.00° -
Triton*[46] - - - - 1.74
EF8 1.6231 0.5410 0.5313 48.96° 1.80
* Ces résultats proviennent de tests expérimentaux.

4.2.2 Allées de Von Karman

Même si les allées de Von Karman ont déjà été simulées à la Section 4.1.3 dans le but de
vérifier le calcul des forces, ce test de validation est basé sur la publication de Mendes et
Branco [47]. Ces derniers ont imposé un écoulement fluide à Re = 200 autour d’un cylindre
circulaire dont la géométrie et le maillage sont décrits à la Figure 4.19. Les conditions limites
sont, quant à elles, les mêmes que celles décrites à la Figure 4.14, c’est-à-dire qu’un écoulement
cisaillé à l’entrée permet d’initier les instabilités avant de se transformer en écoulement plan
unitaire. Ce test est particulièrement utile pour valider le module transitoire de EF8.
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Figure 4.19 Maillage triangulaire formé de 2694 éléments et de 5525 noeuds

Afin de s’assurer du déclenchement adéquat des tourbillons de Von Karman, les champs de
vitesses u et v ainsi que le champ de pression p peuvent être visualisés à la Figure 4.20.
On y voit facilement les tourbillons créés par l’écoulement initialement cisaillé. Ceux-ci sont
cycliques tels que le montrent les graphiques du haut et du milieu. Le graphique de la pression
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(bas), quant à lui, représente bien la zone de haute pression en amont du cylindre et les zones
de pression négative à l’arrière du cylindre, créées par le retour des vortex.

Figure 4.20 Champs des vitesses en x (haut), en y (milieu) et de la pression (bas) pour les
allées de Von Karman créées par l’écoulement fluide autour d’un cylindre circulaire

Il est même possible de tracer les vecteurs de la force exercée par le fluide sur le cylindre sur la
frontière de celui-ci. Tel que le montre la Figure 4.21, où un zoom sur le cylindre est effectué,
les forces calculées à l’aide des multiplicateurs de Lagrange sont tout à fait cohérentes. En
effet, comme les multiplicateurs de Lagrange sont composés d’un terme en pression et d’un
second en cisaillement, on observe que les vecteurs de forces sont bel et bien alignés avec les
pics de pression, soit les zones rouge et bleue. Entre celles-ci, le terme de pression est moins
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dominant et le terme de cisaillement gagne en importance ce qui fait en sorte que les vecteurs
de force deviennent plutôt tangentiels à la paroi du cylindre. Ce comportement est tout à
fait physique.

Figure 4.21 Champ de pression et vecteurs de force exercée par le fluide sur le cylindre calculés
via les multiplicateurs de Lagrange pour les allées de Von Karman créées par l’écoulement
fluide autour d’un cylindre circulaire

Finalement, afin de valider la simulation des allées de Von Karman par EF8, le CD, le CL

ainsi que le nombre de St de l’écoulement autour du cylindre ont été calculés à l’aide des
Équations (4.13) et (4.14).

CD(t) = 2FD(t)
ρU2

0 L0
(4.13)

CL(t) = 2FL(t)
ρU2

0 L0
(4.14)

où FD(t) correspond à la force de traînée en fonction du temps, c’est-à-dire à la force exercée
par le fluide sur le cylindre dans la direction x,

FL(t) à la force de portance en fonction du temps, c’est-à-dire à la force exercée par le
fluide sur le cylindre dans la direction y,
U0 à la vitesse caractéristique de l’écoulement, étant ici 1, et
L0 à la longueur caractéristique, soit le diamètre du cylindre circulaire qui est aussi de 1.
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Les valeurs obtenues sont présentées au Tableau 4.9. Elles y sont aussi comparées aux valeurs
provenant de tests expérimentaux et d’autres simulations numériques tirées de la littérature.

Tableau 4.9 Comparaison des coefficients de forces et du nombre de Strouhal provenant de
différentes références. La valeur CD correspond à la valeur moyenne du coefficient et la valeur
∆CD correspond à la demi-amplitude de l’oscillation du coefficient.

Références CD ± ∆CD ±∆CL St

Roshko*[48] 1.38 0.18
Lecointe et Piquet [49] 1.46 0.194
Braza et al. [50] 1.38 ±0.77 0.20
Lecointe et Piquet [51] 1.29 ± 0.04 ±0.60 0.195
Franke et al. [52] 1.31 ±0.65 0.194
Zhang et Dalton [53] 1.25 ± 0.03 ±0.54 0.196
Mendes et Branco [47] 1.399 ± 0.049 ±0.726 0.202
EF8 1.3292 ± 0.0349 ±0.5882 0.192
* Ces résultats proviennent de tests expérimentaux.

Tel qu’attendu, les valeurs provenant de EF8 sont tout à fait alignées avec celles de la
littérature.

4.2.3 Cavité entraînée

Finalement, le dernier test de validation correspond au test de la cavité entraînée. Celui-ci
modélise une cavité fermée où le déplacement du fluide est créé par le mouvement constant
de la frontière supérieure. Comme le domaine ne comporte ni entrée ni sortie, il est important
d’imposer la pression en un point. Les conditions limites sont d’ailleurs illustrées à la Figure
4.22 et celles-ci sont fidèles à celles de Bruneau et Saad [54], qui servent de comparaison.

Afin de s’assurer que le mouvement de la frontière supérieure initie un mouvement important
et donc observable du fluide, un Re de 1000 est imposé. Le maillage utilisé est triangulaire et
cartésien. Il est composé de 32 768 éléments et de 16 641 noeuds tels que ∆x = ∆y = 1/128.

Afin de comparer les résultats obtenus avec EF8, il est d’abord possible de visualiser les
lignes de courant, la vorticité en z et le champ de pression. En appliquant les mêmes iso-
contours que Bruneau et Saad, on obtient les champs décrits à la Figure 4.23. Ceux-ci sont
visuellement identiques à ceux attendus. D’un point de vue plus quantitatif, il est aussi
possible de comparer la vitesse u, la vitesse v, la pression p et la vorticité ωz à certains
points le long de la ligne centrale verticale ainsi que le long de la ligne centrale horizontale
du domaine avec les valeurs obtenues par d’autres méthodes numériques. C’est d’ailleurs ce
que permettent les Tableau 4.10 et 4.11.
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Figure 4.22 Schématisation des conditions u, v, p imposées aux frontières (Γ) du domaine
fluide (Ω) pour la validation de la cavité entraînée

Figure 4.23 Lignes de courant (gauche), vorticité en z (milieu) et champ de pression (droite)
pour la cavité entraînée

On constate alors que les données obtenues, telles que la Figure 4.23 le laissait présager,
sont très près de celles de la littérature. En comparant les valeurs provenant de la simulation
avec EF8 avec la moyenne des résultas obtenus par [54–56], la différence est de l’ordre du
dixième, voire du centième de point de pourcentage. Seule la vorticité calculée aux frontières
du domaine fait exception, alors que la différence peut aller jusqu’à 4%. Celle-ci peut être
expliquée par le fait que la vorticité est calculée par le logiciel Tecplot qui n’utilise que des
polynômes linéaires plutôt que les polynômes quadratiques de la simulation.
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Tableau 4.10 Comparaison de la vitesse u, de la pression p et de la vorticité ω le long de la
ligne centrale verticale du domaine

y u [55] u [56] u [54] u (EF8) p [56] p [54] p (EF8) ωz [56] ωz [54] ωz (EF8)
1.0000 -1.00000 -1.00000 -1.00000 -1.00000 0.052987 0.052971 0.052997 14.7534 14.792 15.0116
0.9688 -0.57492 -0.58083 -0.58031 -0.58088 0.051514 0.051493 0.051519 9.49496 9.4781 9.49755
0.9531 -0.46604 -0.47233 -0.47239 -0.47234 0.050329 0.050314 0.050335 4.85754 4.8628 4.88011
0.7344 -0.18719 -0.18867 -0.18861 -0.18867 0.012122 0.012113 0.012122 2.09121 2.0909 2.09131
0.5000 0.06080 0.06205 0.06205 0.06206 0.000000 0.000000 0.00000 2.06722 2.0669 2.06731
0.2813 0.27805 0.28036 0.28040 0.28037 0.040377 0.040381 0.040374 2.26722 2.2678 2.26782
0.1016 0.29730 0.30045 0.30029 0.30044 0.104187 0.104416 0.104210 -1.63436 -1.6352 -1.63279
0.0625 0.20196 0.20233 0.20227 0.20332 0.109200 0.10916 0.109217 -2.31786 -2.3174 -2.31889
0.0000 0.00000 0.00000 0.00000 0.00000 0.110591 0.11056 0.110599 -4.16648 -4.1554 -4.09278

Tableau 4.11 Comparaison de la vitesse v, de la pression p et de la vorticité ω le long de la
ligne centrale horizontale du domaine

x v [55] v [56] v [54] v (EF8) p [56] p [54] p (EF8) ωz [56] ωz [54] ωz (EF8)
0.0000 0.00000 0.00000 0.00000 0.00000 0.077455 0.077429 0.077418 -5.46217 -5.4967 -5.70065
0.0391 -0.27669 -0.29368 -0.29330 -0.29362 0.078685 0.078658 0.078673 -8.24616 -8.2462 -8.22811
0.0547 -0.39188 -0.41037 -0.41018 -0.41031 0.077154 0.077128 0.077149 -6.50867 -6.5097 -6.49747
0.1406 -0.42665 -0.42645 -0.42634 -0.42640 0.049029 0.049004 0.048986 3.43016 3.4294 3.42764
0.5000 0.02526 0.02579 0.02580 0.02579 0.000000 0.000000 0.000000 2.06722 2.0669 2.06731
0.7734 0.33075 0.33399 0.33398 0.33392 0.047260 0.047259 0.047222 2.00174 2.0010 2.00098
0.9062 0.32627 0.33304 0.33290 0.33299 0.084386 0.084369 0.084351 -0.82398 -0.82517 -0.82436
0.9297 0.29012 0.29627 0.29622 0.29622 0.087653 0.087625 0.087617 -1.50306 -1.5025 -1.50549
1.0000 0.00000 0.00000 0.00000 0.00000 0.090477 0.090448 0.090430 -7.66369 -7.6333 -7.43275



73

CHAPITRE 5 COMPARAISONS ET APPLICATION

Maintenant que les équations de la méthode de résolution monolithique sont bien implémen-
tées dans EF8 et qu’elles ont été vérifiées, on revient vers le coeur de cette recherche, soit
les différentes méthodes de déplacement des noeuds du maillage. Dans un premier temps, les
méthodes sont comparées quant à leur capacité à gérer des maillages subissant des mouve-
ments élémentaires. Tel que souligné à la Section 3.4.2, la structure mathématique d’IDW,
d’ITM et d’ITB est assez similaire, c’est pourquoi ce sont ces méthodes qui sont étudiées plus
en profondeur. RBF demeure une approche intéressante et efficace, mais elle n’est pas appro-
fondie dans le présent mémoire. Suivra une application concrète de la méthode monolithique
à un problème d’IFS où le choix de chaque paramètre de simulation est fait minutieusement.

5.1 Comparaison des méthodes

Dans le but de comparer l’efficacité, la précision et les limitations d’IDW, d’ITM et d’ITB,
trois principaux tests sont effectués, soit la translation, la rotation puis la déformation d’un
corps rigide. Comme la majorité des mouvements engendrés par l’interaction entre un fluide
et un corps rigide correspondent à un de ces mouvements élémentaires ou bien à une combi-
naison de ceux-ci, il est intéressant de voir quelle méthode se prête le mieux à chacun de ces
types de mouvement. Aussi, pour tous les tests visant à comparer les différents mouvements,
c’est l’approche FTI, détaillée au Chapitre 3, qui est employée pour décrire la cinématique
des noeuds. Toutefois, avant de procéder à ces tests, il est essentiel de déterminer une mé-
thodologie qui permettra de définir un critère de comparaison.

5.1.1 Méthodologie de comparaison

Pour mesurer l’efficacité des différentes méthodes d’interpolation en terme d’adaptivité r,
évoquée au Chapitre 2, la métrique de qualité du maillage proposée par Knupp [57] et utilisées
par De Boer et al. [2], Garon et Delfour [40] et Couture-Peck et al. [7] est appliquée. Il s’agit
du fss détaillé à l’Équation (5.1) tel que

fss = fsize × fshape, (5.1)

où fsize mesure le ratio entre l’aire de l’élément déformé et l’élément original tel que fsize = 0
si l’élément est enchevêtré ou dégénéré et fsize = 1 si l’aire de l’élément est conservé. fshape

mesure quant à lui le caractère équilatéral des éléments de façon à ce que fshape = 0 si l’élé-
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ment est dégénéré et fshape = 1 si l’élément est un triangle équilatéral parfait.
Contrairement à ce à quoi on pourrait s’attendre, la valeur moyenne de fss n’est que très
peu affectée pour le mouvement des noeuds puisque les éléments situés très loin de l’objet
en mouvement demeurent pratiquement inchangés et minimisent ainsi l’impact des éléments
grandement déformés situés plus près de l’objet. L’étude de la valeur minimale de la métrique
fss est quant à elle très intéressante puisqu’elle permet de voir si le maillage se dégénère au
fil du mouvement en étudiant seulement le pire élément du maillage. En effet, si la valeur
de min (fss) tombe à 0 pour une certaine méthode et un certain maillage, cela indique que
le maillage n’est plus valide et ne peut donc pas être utilisé pour une simulation. Il faut
toutefois être prudent lors de l’analyse de cette métrique. À ce stade, fss et min (fss) per-
mettent seulement d’évaluer la qualité géométrique du maillage. Il n’y a pas nécessairement
de corrélation entre cette qualité géométrique et la qualité des résultats qu’il serait possible
d’obtenir en résolvant un problème d’IFS sur ce maillage.
Une autre valeur dérivée de fss est intéressante à comparer si l’on change certains paramètres
de la simulation, soit le min (fss)rel détaillé à l’Équation (5.2) tel que

min (fss)rel = min (fss)
min (fss∞) , (5.2)

où min (fss∞) est la valeur asymptotique de min (fss), soit celle où la position finale des noeuds
est exacte. Le ratio min (fss)rel permet de déterminer le nombre de sous-étapes minimal pour
atteindre une certaine qualité relative minimale du maillage. Par exemple, une méthode
qui requiert un grand nombre de sous-étapes de déformation pour atteindre une valeur de
min (fss)rel de 1 est une méthode qui converge lentement et qui est donc plus coûteuse à
utiliser.

5.1.2 Étude des différents mouvements

Pour les trois différents mouvements étudiés, différents paramètres ont été testés, soit

1. la méthode d’intégration : Euler explicite, la méthode du point milieu (midpoint) et
Runge-Kutta 4, c’est-à-dire les approximations T E , M et RK4 détaillées à la Section
3.4.3 ;

2. la charge d’intégration, communément appelée workload, qui correspond au nombre fois
que la fonction d’interpolation est appelée, soit le nombre de sous-étapes de déformation
× le nombre d’étapes d’intégration par sous-étape ;

3. la valeur de l’exposant k qui apparaît dans la formule d’interpolation de chaque méthode
de déplacement des noeuds (Section 3.4) et qui contrôle le rayon d’action de chacune
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des méthodes, c’est-à-dire la distance entre l’objet en mouvement et le noeud déplacé
situé le plus loin de celui-ci.

Translation

Les tests visant à étudier le mouvement de translation ont été effectués par Garon et Del-
four [40] et sont basés sur la géométrie présentée à la Figure 5.1. Le bloc solide est ainsi
translaté de 5 unités vers le bas et de 5 unités vers la gauche de façon simultanée. Il s’agit
d’une translation rigide, c’est-à-dire que les noeuds situés sur le bloc bougent avec celui-ci
et que les noeuds environnants sont conséquemment déplacés par les différentes méthodes
d’interpolation, soit IDW, ITM et ITB. Les résultats détaillés sont présentés dans [40]. On

25D

25
D

5D

D

Figure 5.1 Schéma de la géométrie de base pour la translation et la rotation où le rectangle
hachuré est le solide placé à l’intérieur du domaine fluide

en retire principalement qu’en appliquant l’exposant k optimal pour chaque méthode, IDW,
ITM et ITB sont sensiblement équivalentes en ce qui concerne le mouvement de translation
pure. En effet, les trois méthodes convergent approximativement au même rythme vers leur
valeur asymptotique min (fss∞). On remarque tout de même qu’en utilisant Runge-Kutta 4
comme méthode d’intégration, la convergence des trois méthodes est beaucoup plus rapide
qu’avec Euler explicite, et ce pour une même charge d’intégration.

Rotation

En ce qui concerne le mouvement de rotation, les tests effectués par Garon et Delfour [40] sont
aussi basés sur la géométrie de la Figure 5.1. Ici, on procède plutôt à la rotation rigide du bloc
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solide de 60° dans le sens anti-horaire. À partir des résultats détaillés par Garon et Delfour,
on remarque qu’IDW et ITB n’arrivent en aucun cas à générer un maillage valide pour k = 2
alors qu’ITM y arrive pour k = 3, une valeur pour laquelle cette méthode est linéairement
exacte. De façon plus générale, on observe que la valeur de k a peu d’influence sur la qualité
du maillage lorsque que Runge-Kutta 4 est utilisée comme méthode d’intégration. Si on
compare les valeurs du ratio min (fss)rel, on remarque qu’ITM est la méthode la plus efficace
puisqu’elle converge pour une charge d’intégration largement inférieure à celles nécessaires
pour IDW et ITB.

Déformation

Pour ce qui est des tests de déformation, deux différents tests ont été faits, soit un premier
test où une déformation constante a été appliquée au bloc rigide de la Figure 5.2 (gauche)
dans le but d’identifier les paramètres optimaux pour chaque méthode d’interpolation et un
second test, basé sur la géométrie de droite de la Figure 5.2, où l’intensité de la déformation
varie afin de déterminer quelle méthode peut soutenir les déformations les plus importantes.
Les résultats des tests à déformation constante, détaillés par Couture-Peck et al. [7], montrent

25D
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Rmin = 5

Rmin = 4

Rmin = 3Rmin = 2

Figure 5.2 Géométrie de base pour le test à déformation constante (gauche) et pour le test
pour lequel l’intensité de déformation varie (droite) et où le rectangle hachuré correspond au
solide placé à l’intérieur du domaine fluide

que les méthodes d’intégration ont une très grande influence sur la vitesse de convergence des
trois méthodes d’interpolation, tout comme c’est le cas pour le mouvement de translation. En
effet, les méthodes de déplacement des noeuds convergent très rapidement lorsqu’on emploie
la méthode du point milieu ou bien Runge-Kutta 4 comparativement à la méthode d’Euler
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explicite. La différence entre les maillages générés par les différentes méthode d’interpolation
n’est toutefois pas évidente à ce stade et dépend aussi du maillage utilisé. Il n’est donc pas
possible de déterminer clairement une méthode supérieure en ce qui a trait à ce mouvement
de déformation.

Les résultats des tests où l’intensité de déformation varie sont quant à eux très intéressants.
En effet, Couture-Peck et al. montrent qu’ITM, jumelée à la méthode d’intégration Runge-
Kutta 4, est la seule méthode capable de générer un maillage valide pour la déformation de
la plus grande intensité testée. La Figure 5.3, tirée de [7] montre d’ailleurs ce maillage.
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Figure 5.3 Maillage déformé par ITM jumelé à Runge-Kutta 4 pour k = 5 et pour une charge
d’intégration de 240, tiré de [7]
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5.2 Application du maillage mobile

Un des problèmes d’IFS très intéressants à résoudre à l’aide de la formulation ALE des
équations de Navier-Stokes et d’un maillage mobile correspond au mouvement chaotique d’un
corps rigide dans un écoulement. En effet, comme ce type de mouvement est imprévisible,
seules des méthodes robustes permettent de le simuler adéquatement. C’est donc en se basant
sur le travail de Gabriel Weymouth [1,58,59] que la simulation du mouvement chaotique d’un
cylindre elliptique dans un écoulement a été réalisée.

5.2.1 Ellipse chaotique de Weymouth

Weymouth étudie plus précisément le mouvement 2D d’un cylindre elliptique de longueur
caractéristique L0 dont le mouvement est entraîné par son interaction avec un fluide d’une
viscosité non-nulle µ et de vitesse adimensionnelle U0 [1], tel qu’illustré à la Figure 5.4. Celui-
ci peut représenter un capteur immergé dans un liquide ou bien un système d’extraction
d’énergie pour lequel le nombre de Reynolds n’excède pas Re = ρ0U0L0

µ
= 103. Seule la

distance r entre le centroïde x0 de l’ellipse et le centre de rotation c contrôle la stabilité du
système et est d’ailleurs un exemple souvent utilisé pour démontrer un mouvement chaotique.
C’est justement les différents types de sillage, autant stables que chaotiques qui sont étudiés
par Weymouth. L’équation du mouvement angulaire utilisée correspond à l’Équation (5.3)

c

x0 φ

x′

y′

L0

r

U0

Figure 5.4 Schéma du cylindre elliptique rigide à une degré de liberté dans un écoulement
fluide de vitesse U adapté de [1]

qui découle de l’Équation (3.14) présentée à la Section 3.5.

ρsI0ω̇ + ρsζ0ω +
∫

Γ
((x − xc) × λ) · ezdΓ = 0 ∀i ∈ S (5.3)
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où I0 correspond ici au second moment de masse de l’ellipse par rapport au point de pivot c

dont la position est identifiée par xc. La méthodologie numérique adoptée pour résoudre ce
problème, qui est davantage décrite dans les publications précédentes de Weymouth [58,59],
correspond à la méthode Boundary Data Immersion Method (BDIM) où les équations dé-
crivant le mouvement du fluide à l’intérieur du domaine sont combinées analytiquement aux
conditions de l’interface fluide-solide. Le comportement du solide est contrôlé en appliquant
la réaction du corps immergé au fluide et en ajustant ensuite le corps à l’écoulement résultant.
Les équations couplées sont alors résolues par la méthode des volumes finis et la méthode de
Heun d’ordre 2 est employée pour la discrétisation en temps avec un pas adaptatif.
La condition frontière appliquée à la sortie est particulièrement intéressante. Il s’agit d’une
méthode dérivée de la condition de Higdon [60] où les flux massiques sont intégrés sur toutes
les autres frontières pour ajuster celui à la sortie et ainsi respecter la loi de conservation
globale de la masse. Dans le cas d’EF8, la loi de conservation globale de la masse est auto-
matiquement respectée par la méthode de résolution par ÉF. Un tel ajustement n’est donc
pas nécessaire.

5.2.2 Sensibilité de la solution

Même en ne se concentrant que sur une application de la nouvelle méthode de résolution
monolithique à maillage mobile, plusieurs décisions doivent être prises pour déterminer les
valeurs d’une multitude de paramètres de simulation. Telle que le montre la relation sym-
bolique (5.4), la solution S dépend de la méthode de mouvement des noeuds (MMN), du
maillage, de l’intervalle de temps étudié ([t1, t2]), du pas de temps (dt), du polynôme d’inter-
polation choisi pour la géométrie (PX) et de la solution initiale (SI) utilisée en entrée.

S = {MMN, maillage, [t1, t2], dt, PX ; SI} (5.4)

C’est pourquoi il est essentiel d’isoler et de tester chacun de ces paramètres de simulation pour
trouver les valeurs optimales. En ce qui concerne les paramètres physiques des simulations, les
dimensions du domaine et de l’ellipse en mouvement respectent toujours celles de Weymouth
[1]. Quant à lui, le schéma d’intégration en temps utilisé correspond à BDF2. De plus, dans
le but des comparer des solutions à régime permanent, le nombre de Re est posé à 400 et le
rapport r/L à 0.1.
Finalement, dans le but de comparer les différentes solutions obtenues, les caractéristiques
du mouvement de l’ellipse seront considérées, soit l’amplitude angulaire du mouvement (θ)
et l’amplitude des vitesses de rotation (ω). Un graphique semblable à celui de la Figure 5.5
sera donc tracé. À partir de celui-ci, il est possible de définir la plus petite boîte contenant
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le mouvement de l’ellipse et dont l’aire est définie par amplitude de θ × amplitude d’ω. C’est
donc l’aire de cette boîte qui servira de principal critère de comparaison.
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Figure 5.5 Définition de la plus petite boîte (en pointillé) pouvant contenir le mouvement de
l’ellipse

Définition de la zone mobile du maillage

Tel qu’expliqué au Chapitre 3, les méthodes transfinies résolvent la position de chaque noeud
du maillage comme une inconnue du problème. Cela ajoute inévitablement un grand nombre
de degrés de liberté. Il devient donc avantageux de ne définir qu’une partie du domaine
comme étant mobile, de façon à limiter le nombre d’inconnues et ainsi minimiser le temps
de calcul. On teste d’abord le cas où tout le domaine est mobile, c’est-à-dire que la position
de tous les noeuds du maillage fait partie des inconnues. C’est alors le modèle ALE jumelé
à l’approche FTD qui est employé (voir Chapitre 3) pour bouger les noeuds du maillage à
l’aide d’ITB avec k = 4. On définit ensuite un sous-domaine rectangulaire mobile autour
de l’ellipse. Celui-ci est alors contenu dans un plus grand domaine pour lequel les noeuds
demeurent fixes. Tel qu’illustré à la Figure 5.6, on procède ensuite à la réduction progressive
de la taille du domaine mobile tout en vérifiant constamment la précision des résultats ainsi
qu’en comparant les temps de calcul. Tous les maillages utilisés sont d’ailleurs présentés à
l’Annexe E et ont tous été résolus en utilisant le temps comme paramètre d’intégration.

Visuellement, les graphiques d’ω en fonction de θ sont très semblables, et ce même si la
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Figure 5.6 Schéma de la réduction progressive de la zone mobile du maillage (zone hachurée)
à l’intérieur du domaine complet. Le reste du domaine est composé d’un maillage fixe

zone mobile diffère entre chaque maillage. Ceux-ci sont d’ailleurs présentés à l’Annexe F. Si
on compare plus rigoureusement l’aire des boîtes contenant le mouvement de l’ellipse pour
chaque maillage, on obtient les résultats présentés au Tableau 5.1. On remarque que même

Tableau 5.1 Amplitude de θ et d’ω permettant de calculer l’aire de la plus petite boîte
contenant la solution pour différentes dimensions de la zone mobile du maillage. Tous les
maillages sont composés d’environ 23 000 noeuds.

Amplitude θ Amplitude ω Aire boîte % différence
Complètement mobile 1.4200 1.8587 10.5577 -
Grande zone mobile 1.4360 1.9143 10.9960 4.151%
Zone mobile moyenne 1.4190 1.8832 10.6892 1.245%
Petite zone mobile 1.4144 1.8736 10.5998 0.399%

si les aires des boîtes sont relativement très près les unes des autres, celle du maillage dont la
zone mobile est grande est, étonnamment, plus loin de celle du maillage entièrement mobile
que le sont celles où la zone mobile est plus petite. Cela est probablement dû au fait que,
même si les maillages contiennent environ tous le même nombre de noeuds (23 000), si la
zone mobile diffère entre les maillages, cela signifie forcément que les maillages sont différents.
Le pourcentage d’écart peut être dû à cette différence globale du maillage plutôt que de la
zone mobile en soi. On peut donc conclure que les dimensions de la zone mobile du maillage
n’influencent que très peu la précision des résultats et les différents maillages permettent,
dans tous les cas, de bien représenter le mouvement de l’ellipse. La différence importante et
particulièrement intéressante réside plutôt dans le temps de calcul nécessaire pour résoudre
chacun des maillages étudiés. En effet, la Figure 5.7 démontre bien que le temps de calcul
croît très rapidement avec le nombre de degrés de liberté totaux. Ainsi, si le mouvement est
entièrement connu ou du moins limité, il devient très avantageux de réduire la zone mobile
du maillage tout en veillant à ce que celle-ci soit suffisamment grande pour permettre le
mouvement complet de l’objet et ainsi réduire considérablement le temps de calcul et donc le
coût de la simulation. Dans le cas présent de l’ellipse de Weymouth, on voit que pour le Re

et le ratio r/L imposé, tous les maillages étudiés permettent à l’ellipse de se mouvoir sans



82

5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6 6.1 6.2 6.3
·104

0
100
200
300
400
500
600
700
800
900

1,000
1,100
1,200
1,300
1,400
1,500
1,600

Complètement mobile

Grande zone

Moyenne zone
Petite zone

Nombre de degrés de liberté du maillage

Te
m

ps
de

ca
lc

ul
[m

in
]

Figure 5.7 Évolution du temps de calcul en fonction du nombre de degrés de liberté qui est
directement relié à la grandeur de la zone mobile du domaine

distordre le maillage et ainsi compromettre sa validité. Toutefois, comme le but est justement
d’étudier le comportement chaotique de l’ellipse en faisant varier le Re et le ratio r/L, il est
plus prudent, même si légèrement plus coûteux, d’utiliser le maillage où la taille de la zone
mobile est moyenne, c’est-à-dire le maillage présenté à la Figure E.4 de l’Annexe E.

Raffinement du maillage et du pas de temps

Un autre aspect très important à étudier correspond à la sensibilité de la solution au raffine-
ment du maillage et du pas de temps. C’est encore une fois le modèle ALE jumelé à l’approche
FTD qui est employé (voir Chapitre 3) pour bouger les noeuds du maillage. La méthode de
déplacement des noeuds ITB avec k = 4 a été utilisée pour tous ces tests, mais le comporte-
ment est le même pour ITM. Ici, le but est de déterminer le raffinement optimal du maillage,
c’est-à-dire celui permettant de capturer adéquatement le comportement de la solution sans
nécessiter une trop grande quantité d’éléments. Trois différents maillages sont alors testés :
un maillage grossier (M1), un maillage normal (M2) et un maillage fin (M3). Dans le même
ordre d’idée, on étudie aussi l’influence du pas de temps dans le but d’obtenir une solution
qui converge vers le régime permanent sans, encore une fois, nécessiter un temps de calcul
trop important. Quatre différents pas de temps ont été testés avec le schéma BDF2, soit
dt = {0.1, 0.075, 0.05, 0.025}.
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La méthodologie employée et représentée à la Figure 5.8 consiste simplement à tester les
différentes valeurs de dt pour chaque maillage en partant du plus grossier au plus fin et en
utilisant toujours la solution précédente comme solution initiale. De cette façon, on arrive
à simuler un mouvement continu, mais avec différentes valeurs de dt, ce qui permet de voir
si un changement apparaît lorsque l’on passe d’une valeur de dt à une autre. Cette série de

M1

Re = 400 r/L = 0.1

M2 M3

dt = 0.1
t ∈ [0, 50]

input

dt = 0.075
t ∈ [50, 100]

input

dt = 0.05
t ∈ [100, 150]

input

dt = 0.025
t ∈ [150, 200]

dt = 0.1
t ∈ [0, 50]

input

dt = 0.075
t ∈ [50, 100]

input

dt = 0.05
t ∈ [100, 150]

input

dt = 0.025
t ∈ [150, 200]

dt = 0.1
t ∈ [0, 50]

input

dt = 0.075
t ∈ [50, 100]

input

dt = 0.05
t ∈ [100, 150]

input

dt = 0.025
t ∈ [150, 200]

Figure 5.8 Schéma de la méthodologie utilisée pour étudier l’influence du raffinement du
maillage et du pas de temps sur la solution obtenue

tests donne ainsi lieu aux graphiques de la Figure 5.9 où l’on peut voir la vitesse de rotation
ω en fonction de l’angle de rotation θ pour les trois maillages ainsi que pour les différentes
valeurs de dt.

Les trois graphiques de la Figure 5.9 sont globalement assez semblables, mais comportent
tout de même quelques différences lorsqu’on s’attarde aux valeurs de l’aire de la plus petite
boîte contenant le mouvement de l’ellipse. Les Tableaux 5.2 à 5.4 montrent respectivement
ces résultats pour les maillages M1, M2 et M3. On y remarque entre autres que la convergence
de l’amplitude de θ et d’ω ne semble pas être monotone, mais bien oscillante. En effet, les
valeurs de θ et d’ω n’évoluent pas toutes dans un même sens alors que le dt diminue, elles
semblent plutôt osciller autour d’une solution. On remarque quand même la convergence en
observant que la différence entre l’aire des boîtes s’amenuise avec le raffinement du dt. La
Figure 5.10 permet très bien de voir ce phénomène pour les trois maillages. On sait aussi,
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Figure 5.9 Vitesse de rotation ω en fonction de l’angle de rotation θ pour différents dt pour
le maillage grossier M1 (gauche), pour le maillage normal M2 (centre) et pour le maillage fin
M3 (droite)

Tableau 5.2 Amplitude de θ et d’ω permettant de calculer l’aire de la plus petite boîte
contenant la solution pour le maillage M1. Le pourcentage (%) de différence est toujours
calculé avec l’aire de la boîte du dt supérieur.

Amplitude θ [rad] Amplitude ω [rad/s] Aire boîte % différence
dt = 0.1 1.4404 1.9975 11.5088 -
dt = 0.075 1.4381 2.0553 11.8233 2.732%
dt = 0.05 1.4304 2.1045 12.0416 1.847%
dt = 0.025 1.4262 2.0844 11.8910 1.251%

Tableau 5.3 Amplitude de θ et d’ω permettant de calculer l’aire de la plus petite boîte
contenant la solution pour le maillage M2. Le pourcentage (%) de différence est toujours
calculé avec l’aire de la boîte du dt supérieur.

Amplitude θ [rad] Amplitude ω [rad/s] Aire boîte % différence
dt = 0.1 1.4192 1.8885 10.7206 -
dt = 0.075 1.4210 1.9625 11.1549 4.051%
dt = 0.05 1.4140 1.9926 11.2701 1.032%
dt = 0.025 1.4101 2.0002 11.2817 0.103%

tel que prouvé à la Section 4.1.2, que l’erreur d’un maillage de bonne qualité diminue pour
atteindre un plateau lorsqu’on raffine la pas de temps. Le maillage M1, c’est-à-dire le plus
grossier, ne semble pas se comporter de cette façon. En effet, on observe un certain pic à
dt = 0.05, ce qui ne se produit pas pour les maillages M2 et M3. On peut aussi constater,
au Tableau 5.2, que le pourcentage de différence de l’aire de la boîte entre chaque valeur
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Tableau 5.4 Amplitude de θ et d’ω permettant de calculer l’aire de la plus petite boîte
contenant la solution pour le maillage M3. Le pourcentage (%) de différence est toujours
calculé avec l’aire de la boîte du dt supérieur.

Amplitude θ [rad] Amplitude ω [rad/s] Aire boîte % différence
dt = 0.1 1.4240 1.9333 11.0121 -
dt = 0.075 1.4265 2.0214 11.5342 4.741%
dt = 0.05 1.4206 2.0849 11.8473 2.714%
dt = 0.025 1.4115 2.1078 11.9011 0.454%

Figure 5.10 Évolution de l’aire de la plus petite boîte contenant le mouvement de l’ellipse en
fonction du dt pour les trois maillages testés

de dt converge plus lentement. Ce maillage sera donc éliminé pour les prochains tests. Si
on s’attarde aux maillages M2 et M3, on voit que leur comportement est très similaire. Il
est donc plus judicieux d’utiliser le maillage normal M2 puisqu’il nécessite moins de temps
de calcul que M3 pour une précision de calcul environ équivalente. Finalement, M2 et M3

semblent atteindre un plateau à partir de dt = 0.05. En d’autres mots, on obtient très peu
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de gain si on continue de raffiner le pas de temps à partir de cette valeur. Un pas de temps
de dt = 0.05 semble donc adéquat pour les prochains tests.

Influence de la méthode de mouvement des noeuds et de ses paramètres intrin-
sèques

Pour étudier l’influence des différentes méthodes de mouvement des noeuds, deux principaux
aspects sont approfondis :

1. Le paramètre d’intégration utilisé pour calculer le mouvement de l’objet solide, soit
par rotation rigide (modèle ALE/FTD) ou bien par transformation générale (modèle
ALE/FFI) ;

2. La méthode d’interpolation des vitesses de déformation du maillage, soit ITB ou ITM
ainsi que leurs différentes valeurs du paramètre k.

En ce qui concerne le paramètre d’intégration, il est intuitif d’utiliser le temps, c’est-à-dire
l’approche FTD présentée à la Section 3.4.3. De plus, tel que mentionné au Chapitre 3, les
schémas d’intégration en temps BDF sont utilisés par EF8 et sont normalement assez précis.
Toutefois, un problème survient lors de longues simulations. En effet, en utilisant le temps
comme paramètre d’intégration, le calcul de la nouvelle position de l’ellipse à chaque pas de
temps est effectué à partir de la position précédente de l’ellipse. Cela fait en sorte qu’une
erreur d’intégration s’accumule au fil de la simulation. Comme le graphique de gauche de la
Figure 5.11 permet de le constater, cette erreur d’intégration cause une dégradation de la
qualité du maillage et peut même ultimement mener à un maillage invalide (un jacobien né-
gatif) si la simulation est effectuée sur un grand intervalle de temps [t1, t2]. Ce problème n’est
pas apparu dans le cadre des tests effectués précédemment puisque les simulations n’étaient
pas suffisamment longue pour que ce comportement se manifeste. Aussi, à la Section 5.1,
seule la position des noeuds était résolue ce qui suggérait l’utilisation de l’approche FTI, qui
n’a pas ce problème. En effet, on observe un problème d’hystérésis puisque même si le mou-
vement de l’ellipse est cyclique, le maillage ne reprend pas sa forme initiale à chaque cycle.
Une des solutions pourrait être de conserver le modèle ALE/FTD, mais d’utiliser un schéma
d’intégration en temps plus précis. Toutefois, cela ne ferait que repousser le problème puisque
l’erreur d’intégration continuerait de s’accumuler, mais plus lentement. Une autre solution
pourrait être de réduire le pas de temps, mais cela impliquerait une hausse significative du
temps de simulation. Ainsi, une toute autre approche est nécessaire.
En changeant le paramètre d’intégration pour un facteur de forme plutôt que le temps, le
calcul de la nouvelle position de l’ellipse est toujours effectué en une seule étape à partir de
la position initiale de l’ellipse si l’approche k-ITM-IE1 ou k-ITB-IE1 est utilisée. On évite
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Figure 5.11 Évolution du minimum du fSS en fonction du temps de la simulation pour une
rotation rigide avec le modèle ALE/FTD (gauche) et une transformation générale avec le
modèle ALE/FFI (droite)

ainsi le problème d’accumulation de l’erreur d’intégration à chaque sous-étape et la qualité
de maillage demeure donc constante au fil des cycles, tel que le montre le graphique de droite
de la Figure 5.11. Le fait de bouger les noeuds à la frontière à l’aide d’une transformation
générale plutôt qu’en procédant à une rotation rigide a aussi une influence sur l’apparence
visuelle du maillage final. L’image de gauche de la Figure 5.12 permet de constater que la
rotation rigide de l’ellipse engendre une déformation plus généralisée de la zone mobile du
maillage puisque pratiquement tous les noeuds mobiles sont entraînés par le mouvement de
l’ellipse. L’image de droite de la Figure 5.12, qui montre la rotation de l’ellipse à l’aide d’une
transformation générale, montre que la déformation du maillage est beaucoup plus locale,
soit très près de la paroi de l’ellipse. Même s’il est visuellement difficile de le constater, la
Figure 5.11 prouve bel et bien qu’en utilisant le modèle ALE jumelé à l’approche FFI, on
peut non seulement suivre l’ellipse dans son mouvement en minimisant le déplacement des
noeuds du maillage, mais aussi mieux conserver la qualité du maillage au fil de la simula-
tion. C’est donc cette approche qui sera utilisée pour les tests. La Figure 5.12 illustre aussi
comment les noeuds situés sur la frontière de l’ellipse sont répartis différemment selon la
méthode utilisée. En effet, le modèle ALE/FTD fait en sorte que l’ellipse conserve toujours
la même discrétisation puisque les noeuds de l’ellipse suivent toujours cette dernière dans
son mouvement. L’image de droite, où l’ellipse est plutôt déformée, montre que la répartition
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Figure 5.12 Zoom sur le maillage autour de l’ellipse en rotation où le paramètre d’intégration
est le temps (gauche) et le paramètre de forme (droite)

des noeuds sur l’ellipse change au fil de son mouvement puisque le maillage initial est généré
autour de l’ellipse à la position horizontale.

À la Section 5.1, les divers tests soulignaient l’influence de la méthode d’intégration utilisée sur
la validité des maillages générés à une charge d’intégration donnée ainsi que sur la convergence
de chaque méthode d’interpolation du taux de déformation du maillage. Toutefois, ces tests
simulaient de très grands déplacements, ce qui ne sera pas le cas avec l’ellipse de Weymouth
puisque même si le mouvement peut s’avérer chaotique, celui-ci est limité à un degré de liberté,
soit la rotation autour d’un point de pivot. De plus, on voit clairement à la Figure 5.11 que
l’approche IE1 arrive sans problème à résoudre le problème étudié lorsque le modèle utilisé
correspond à ALE/FFI et permet d’effectuer les déplacement de l’ellipse en une seule étape
sans faire apparaître de variables intermédiaires. Il ne devient donc pas pertinent, dans le
cas présent, de prendre le temps d’implémenter des méthodes d’intégration d’ordre supérieur
compte tenu du fait que la précision actuelle est amplement satisfaisante.

En second lieu, il est intéressant d’étudier l’influence de la méthode d’interpolation des vi-
tesses de déformation des noeuds du maillage sur les résultats obtenus. Pour ce faire, le mou-
vement de l’ellipse entre [t1, t2] = [150, 500] a été étudié, en utilisant la solution à t = 150 à
régime permanent comme solution initiale. ITM et ITB, les seules méthodes transfinies, ont
toutes les deux été testées tout en faisant varier la valeur du paramètre k tel que k = {3, 4, 5}.
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Les résultats obtenus sont très semblables, voire impossible à différencier visuellement, comme
il est possible de le constater à la Figure G.1 de l’Annexe G. Le Tableau 5.5 montre lui aussi
que les résultats sont très semblables, et ce peu importe la méthode d’interpolation ainsi que
son paramètre k. Il est cependant important de noter que tous les tests effectués avec k = 3
donnaient rapidement des maillages invalides puisque le rayon d’influence du mouvement est
trop petit pour assurer un déplacement cohérent des noeuds du maillage et ainsi éviter toute
inversion d’éléments. On constate tout de même une légère réduction de l’aire de la boîte

Tableau 5.5 Amplitude de θ et d’ω permettant de calculer l’aire de la plus petite boîte
contenant la solution pour ITB et ITM et pour différentes valeurs de k

Méthode d’interpolation k Amplitude θ Amplitude ω Aire boîte

ITB
3 - - -
4 1.4156 1.9989 11.3182
5 1.4130 1.9654 11.1085

ITM
3 - - -
4 1.4148 1.9834 11.2240
5 1.4149 1.9696 11.1474

pour ITB ainsi que pour ITM lorsqu’on passe de k = 4 à k = 5. Cette différence n’étant que
de 0.687% pour ITM, cette méthode semble particulièrement stable, peu importe la valeur
de k.
Si on s’attarde maintenant à l’évolution de la valeur du min(fss) en fonction du mouvement,
on obtient le graphique de la Figure 5.13 où l’on observe que pour toutes les valeurs de k,
ITM possède un min(fss) supérieur à ITB. Même si la valeur min(fss) n’a qu’une signification
géométrique et que cela n’implique pas nécessairement que la précision des calculs effectués
sur ces maillages sera meilleure, il est important de considérer que, pour un comportement
chaotique, le mouvement de l’ellipse est imprévisible. Il est donc préférable d’utiliser une mé-
thode qui permet de maintenir la validité du maillage le plus longtemps possible, c’est-à-dire
pour les mouvements de la plus grande amplitude possible. Dans un cas où le mouvement
étudié est connu ou que ses limites sont connues, nul besoin d’accorder trop d’importance au
min(fss). Toutefois, pour l’ellipse de Weymouth, il est préférable d’utiliser la méthode ITM
avec le paramètre k = 4, puisque c’est cette méthode qui permet de préserver la validité du
maillage pour les mouvements les plus importants.

Influence de l’interpolant géométrique

Finalement, le dernier paramètre de simulation testé est le degré de l’interpolant géométrique.
Même s’il est évident que l’interpolant P2 pour la géométrie permet de beaucoup mieux
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Figure 5.13 Évolution du min(fss) en fonction de l’angle de rotation θ de l’ellipse pour les
différentes méthodes d’interpolation

approximer la forme de l’ellipse, ce type d’interpolant ajoute un très grande nombre de degrés
de liberté à résoudre. Il est donc intéressant de se pencher sur les résultats obtenus avec les
interpolants P1 et P2 et ainsi juger de l’importance de la différence. Ici, c’est le modèle ALE
jumelé à l’approche FTD qui déplace les noeuds du maillage à l’aide de la méthode ITB avec
k = 4. Les graphiques de la vitesse de rotation ω en fonction de l’angle de rotation θ sont
présentés à la Figure H.1 de l’Annexe H. Le Tableau 5.6 présente justement ces résultats
de façon numérique. On y constate que la différence entre les solutions générées à l’aide
des interpolants P1 et P2 sont minimes. Il n’est donc pas pertinent d’utiliser un interpolant
P2 considérant l’importante augmentation du temps de calcul que cause l’augmentation du
nombre de degrés de liberté. C’est donc l’interpolant géométrique P1 qui sera utilisé pour les
tests subséquents.
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Tableau 5.6 Amplitude de θ et d’ω permettant de calculer l’aire de la plus petite boîte
contenant la solution pour les interpolants géométriques P1 et P2 et pour ITB et ITM

Interpolant Méthode
d’interpolation Amplitude θ Amplitude ω Aire boîte

P1
ITB 1.4142 1.9936 11.2770
ITM 1.4147 1.9834 11.2238

P2
ITB 1.4400 2.0528 11.8239
ITM 1.4392 2.0435 11.7642

5.2.3 Application à l’ellipse de Weymouth [1]

Alors que Weymouth a analysé en détails le mouvement chaotique du cylindre elliptique mis
en mouvement via l’écoulement du fluide, on s’intéresse ici particulièrement à deux aspects,
soit

1. à la sensibilité du comportement de l’ellipse en fonction de deux paramètres : le nombre
de Re et le rapport r/L ;

2. à l’influence du coefficient d’amortissement sur le mouvement de l’ellipse.

En ce qui concerne l’étude paramétrique en fonction de Re et du rapport r/L, le but est
d’abord de tenter de retrouver les mêmes résultats que Weymouth, tout en poussant davan-
tage l’analyse et la compréhension du phénomène. Pour ce qui est de l’influence du coefficient
d’amortissement, le but est simplement de voir comment il est possible de contrôler le mouve-
ment de l’ellipse en y ajoutant un coefficient d’amortissement. Les paramètres de simulation
sont tous fixés suite aux différents tests de la Section 5.2.2 dans le but d’obtenir le meilleur
compromis entre la précision et les limites des ressources de calcul. C’est donc le modèle
ALE/FFI avec l’approximation 4-ITM-IE1 qui sera employée, tel qu’expliqué à la Section
5.2.2. On continue aussi à appliquer le schéma d’intégration en temps BDF2. De plus, en
utilisant le théorème des axes parallèles ainsi que la forme adimensionnelle des équations de
Navier-Stokes sous forme ALE on détermine aisément que Ī0 = 5π

512 + r2 π
8 où r correspond

à la distance entre le centre géométrique de l’ellipse et son centre de rotation. On applique
encore le schéma d’intégration en temps BDF2.

Sensibilité du comportement de l’ellipse

Dans un premier temps une étude paramétrique en fonction du nombre de Re et du ratio r/L

a été effectuée. Le détail de l’application des conditions limites sur le domaine est présenté à
la Figure 5.14 où uin = [((0.05y − 0.25) + min(t/5, 1)(−0.05y + 0.25) + 1) · ex]. On observe
les résultats obtenus aux Figures 5.15 et 5.16. La Figure 5.15 illustre bien le mouvement de
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v = 0
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Figure 5.14 Schématisation des conditions u, v imposées aux frontières (Γ) du domaine fluide
(Ω) pour l’étude de la sensibilité du comportement de l’ellipse en fonction de Re et du ratio
r/L

l’ellipse en traçant la vitesse de rotation ω en fonction de l’angle de rotation θ alors que la
Figure 5.16 permet plus facilement de différencier les types de mouvement en traçant l’angle
de rotation θ en fonction du temps.

À la Figure 5.15, pour Re = 200, on observe que l’ellipse n’oscille que d’un côté sans jamais
aller du côté des θ négatifs et ce, pour toutes les valeurs de r/L testées. Il est à noter que
le sens de l’oscillation est simplement dicté par le sens du profil en cisaillement à l’entrée
de l’écoulement. Ainsi, en inversant le profil de cisaillement, l’ellipse oscille en sens inverse,
mais le comportement demeure le même. Celui-ci est d’ailleurs pratiquement périodique et
est caractérisé par des allées de Von Karman standards. La Figure 5.17 montre très bien ce
comportement à l’aide du champ de vorticité et de pression ainsi que des vecteurs du champ
de vitesse. Ce type de mouvement est stable et est donc nommé stabilité asymétrique. En
effet, si on observe les graphiques analogues à la Figure 5.16, c’est-à-dire ceux où Re = 200,
on observe que l’amplitude de θ est bel et bien périodique, mais oscille toujours autour d’une
valeur différente de 0. Ce même type de mouvement se produit aussi à Re = 300 et Re = 400
pour r/L = 0.16. À titre de référence, Weymouth [1] nomme ce mouvement period-1 limit
cycle around a single branch. Cette stabilité asymétrique se différencie de l’autre forme de
mouvement stable que l’on observe à Re plus élevé, soit à Re = 400 pour des valeurs de r/L

de 0.1, 0.12 et 0.13.

En effet, lorsque le nombre de Re est élevé et que le ratio r/L n’excède pas 0.13, l’ellipse
oscille autour de θ = 0 avec une amplitude d’oscillation plus importante comme on peut
le constater à la Figure 5.16 ainsi que de façon plus visuelle à la Figure 5.18. Ce type de
mouvement est nommé stabilité symétrique. Contrairement au mouvement de stabilité asy-
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Figure 5.15 Vitesse de rotation ω en fonction de l’angle de rotation θ pour Re =
{200, 300, 400} et r/L = {0.1, 0.12, 0.13, 0.14, 0.16}

métrique, les vortex du sillage s’éloignent de ceux de Von Karman. On observe plutôt un
vortex principal suivi d’un vortex secondaire, et ce à chaque demi période. On remarque
aussi que les vitesses de rotation ω sont beaucoup plus importantes que pour les mouvements
de stabilité asymétrique. Weymouth [1] nomme ce mouvement stable limit cycle.
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Figure 5.16 Angle de rotation θ en fonction du temps pour Re = {200, 300, 400} et r/L =
{0.1, 0.12, 0.13, 0.14, 0.16}

Finalement, pour passer d’un mouvement de stabilité asymétrique à un mouvement de stabi-
lité symétrique en augmentant le nombre de Re, l’ellipse passe par un mouvement chaotique
qui est caractérisé par une variation aléatoire d’ω en fonction de θ tel qu’on peut le constater
à la Figure 5.16 pour Re = 300 et r/L = {0.13, 0.14}. On constate aussi à la Figure 5.19
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Figure 5.17 Champ de vorticité (gauche) et champ de pression et vecteurs du champ de
vitesse (droite) pour un écoulement à Re = 200 avec r/L = 0.1 de type stabilité asymétrique
à t̄ = {13.5, 15.5, 17.5} (de haut en bas)

que pour un même angle θ, le sillage derrière l’ellipse varie beaucoup, ce qui implique que le
moment appliqué sur l’ellipse est différent pour chacun de ces cas, ce qui mène inévitablement
à des trajectoires totalement différentes. Il s’agit d’un comportement typiquement chaotique.

Certains mouvement hybrides peuvent aussi être observés, comme c’est le cas à Re = 300
pour r/L = {0.1, 0.12} ainsi qu’à Re = 400 pour r/L = 0.14. La Figure 5.16 permet de voir
assez clairement que ces mouvements sont principalement composés d’une phase de stabilité
symétrique. On peut tout de même y observer quelques épisodes chaotiques.

De façon plus générale, on remarque que l’ellipse passe d’un mouvement de stabilité asymé-
trique à une phase chaotique pour ensuite atteindre un état de stabilité symétrique à mesure
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Figure 5.18 Champ de vorticité (gauche) et champ de pression et vecteurs du champ de
vitesse (droite) pour un écoulement à Re = 400 avec r/L = 0.1 de type stabilité symétrique
à t̄ = {9.5, 11, 13} (de haut en bas)

que le Re augmente. On remarque aussi que plus le centre de rotation de l’ellipse s’éloigne
de son centre géométrique, c’est-à-dire que le ratio r/L augmente, plus la transition de l’état
de stabilité asymétrique vers l’état de stabilité symétrique est lente. En effet, l’amplitude du
mouvement diminue avec l’augmentation du ratio r/L et il est de plus en plus nécessaire
d’augmenter le Re pour atteindre la phase chaotique qui permet ensuite de passer à l’état de
stabilité symétrique. Cela est cohérent avec les résultats de Weymouth [1] qui souligne que
l’ellipse la plus instable, c’est-à-dire la configuration qui atteint la phase chaotique au plus
bas Re, correspond à celle où le centre de rotation coïncide avec le centre géométrique alors
qu’à l’inverse, l’ellipse la plus stable correspond à celle où le centre de rotation est situé au
bord d’attaque de l’ellipse.
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Figure 5.19 Champ de vorticité (gauche) et champ de pression et vecteurs du champ de
vitesse (droite) pour un écoulement à Re = 300 avec r/L = 0.13 de type chaotique à t̄ =
{15.5, 30.5, 72.5} (de haut en bas)

Lorsque l’on compare minutieusement ces résultats avec ceux de Weymouth [1], on observe
les mêmes types de mouvement, mais avec un certain décalage par rapport au Re. En effet,
Weymouth obtient les mêmes résultats, mais à des nombres de Re légèrement inférieurs.
Ainsi, dans le but de pousser davantage l’analyse des différents mouvements de l’ellipse pour
un r/L constant, une série de tests à r/L = 0.13 a été réalisée pour un plus grand éventail
de Re. Il est donc possible d’observer plus en détails la transition entre les différents types
de mouvement aux Figures 5.20 et 5.21 où Re = {100, 125, 150, 175, ...400}.

On y voit assez clairement que le mouvement de stabilité asymétrique est présent de Re =
100 à Re = 225 alors qu’une transition s’entame à Re = 250 où on observe un début
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Figure 5.20 Vitesse de rotation ω en fonction de l’angle de rotation θ pour Re =
100, 125, 150, 175, ...400 et r/L = 0.13

de mouvement chaotique. Le mouvement de l’ellipse devient alors pleinement chaotique de
Re = 275 à Re = 325 pour ensuite atteindre une seconde phase de transition à Re = 350 où
on observe encore quelques traces du mouvement chaotique avant d’atteindre le mouvement
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Figure 5.21 Angle de rotation θ en fonction du temps pour Re = {100, 125, 150, 175, ...400}
et r/L = 0.13

de stabilité symétrique à partir de Re = 375. Cette série de tests permet non seulement de
s’assurer de la cohérence des simulations en raffinant le nombre de Re, mais aussi à cibler des
combinaisons Re − r/L dont le mouvement de l’ellipse diffère de celui obtenu par Weymouth
pour ces mêmes combinaisons Re − r/L.
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La légère discordance entre les résultats obtenus avec EF8 et ceux de Weymouth mène à une
nouvelle série de simulations qui vise à s’assurer que les solutions obtenues ne sont pas le
fruit d’erreurs numériques. Ainsi, on utilise les solutions obtenus à Re = 200 et Re = 400,
encore une fois avec r/L = 0.13, comme solutions initiales pour poursuivre ces simulations,
mais avec un pas de temps adaptatif permettant ainsi de contrôler l’erreur. La méthodologie
de cette série de simulations est d’ailleurs illustrée à la Figure 5.22.

Re = 200
r/L = 0.13

Re = 400
r/L = 0.13

erreur BDF = 6.0683e − 4 erreur BDF = 9.9018e − 4
t ∈ [0, 500] t ∈ [0, 500]

tol(erreur BDF ) = 1e − 4
t ∈ [500, 1000]

tol(erreur BDF ) = 1e − 4
t ∈ [500, 1000]

tol(erreur BDF ) = 0.5e − 4
t ∈ [1000, 1500]

tol(erreur BDF ) = 0.5e − 4
t ∈ [1000, 1500]

tol(erreur BDF ) = 2e − 4
t ∈ [1500, 2000]

tol(erreur BDF ) = 2e − 4
t ∈ [1500, 2000]

input

input

input

input

input

Pas de temps
adaptatif

input

Figure 5.22 Schématisation de la méthodologie pour les simulations à pas de temps adaptatif

Ces simulations servent ainsi à s’assurer que les solutions obtenues ne sont pas dépendantes du
pas de temps et que même en réduisant significativement l’erreur, le comportement de l’ellipse
demeure le même. Les résultats obtenus, présentés à la Figure 5.23, prouvent justement que
c’est bel et bien le cas. On y voit les solutions obtenues par EF8 pour Re = 200 et Re = 400
pour un temps adimensionnel t qui va de 0 à 2000 mais pour lequel un pas de temps adaptatif
est utilisé de t = [500, 2000] en imposant différentes tolérances pour l’erreur de l’intégration
en temps (BDF). On y voit que le comportement de l’ellipse demeure le même et ce, malgré
l’utilisation d’un pas de temps adaptatif.

Avant l’application de la méthode de résolution monolithique développée et implémentée dans
EF8 au problème de l’ellipse de Weymouth, la sensibilité de la solution par rapport à tous les
paramètres de simulation a été largement étudiée à la section 5.2.2. Parmi ces paramètres,
différents maillages ont été testés et le comportement de l’ellipse n’était pas dépendant de
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Figure 5.23 Vitesse de rotation ω en fonction de l’angle de rotation θ pour Re = 200 et
Re = 400 avec r/L = 0.13 avec un pas de temps adaptatif en fonction de l’erreur

ceux-ci. L’erreur en espace ne peut donc pas expliquer la différence entre les présents résultats
et ceux de Weymouth. Alors que ceux-ci pourraient provenir de l’erreur numérique en temps,
cette hypothèse a été testée et infirmée à l’aide des simulations effectuées à pas de temps
adaptatif. On en conclut donc que nos solutions semblent entièrement cohérentes et valides.

En ce qui concerne les résultats obtenus par Weymouth, certaines informations sont man-
quantes. Par exemple, ce dernier ne mentionne pas l’erreur qui lui permet de gérer son pas
de temps adaptatif. Il utilise aussi une méthode de résolution différente, soit les équations
couplées BDIM qu’il discrétise à l’aide de la méthode des volumes finis. Weymouth utilise
aussi un maillage cartésien alors que les maillages utilisés ici sont non-structurés. En utili-
sant la méthode de Heun d’ordre 2, il est possible qu’une légère erreur d’intégration cause le
décalage observé entre les transitions des différents types de mouvement. De plus, le fait que
Weymouth doive utiliser une condition particulière en sortie pour s’assurer de respecter la loi
de conservation globale de masse pousse à croire que des erreurs numériques se glissent dans
ses simulations, ce qui peut aussi expliquer les différences observées. Finalement, Weymouth
utilise la méthode de déplacement virtuel pour simuler la rotation de l’ellipse à l’intérieur
du domaine. Celle-ci engendre inévitablement des erreurs, alors que la méthode développée
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et implémentée ici, soit ITM, vise justement à réduire ces erreurs et à mieux représenter le
comportement physique de l’ellipse.

Influence du coefficient d’amortissement

Alors que l’Équation (3.23) de la Section 3.6 avec ζ0 = κ0 = 0 est utilisée pour étudier
les différents types de mouvement de l’ellipse, on se penche maintenant sur cette même
équation mais en y ajoutant le terme d’amortissement ζ0. Le but est donc d’étudier le com-
portement de l’ellipse alors qu’on y ajoute un couple d’amortissement structurel linéaire.
Le Re imposé est de 1000 et le ratio r/L est de 0.16. Cette combinaison de Re − r/L est
utilisée puisqu’elle est chaotique si aucun amortissement n’est appliqué. Le détail de l’ap-
plication des différentes conditions limites sur le domaine est présenté à la Figure 5.24 où
uin = [((0.05y − 0.25) + min(t/5, 1)(−0.05y + 0.25) + 1) ·ex] et où la condition limite de sor-
tie TOpenBoundary est détaillée à l’Annexe I. L’ajout de cette condition limite en sortie, qui vise
à imiter la condition naturelle, est dû au nombre de Re important. Comme Re = 1000 est
largement supérieur aux différents Re imposés à la section précédente, un problème classique
survient en procédant à ces simulations dans le même domaine que précédemment, c’est-à-
dire 5L0 × 8L0 où L0 correspond au grand axe de l’ellipse. En effet, une grande quantité de
vortex sont créés et la viscosité du fluide est trop basse pour arriver à amortir ceux-ci et ainsi
dissiper et transporter correctement l’énergie cinétique dans le domaine. Cela fait en sorte
que l’énergie cinétique grimpe sans cesse à l’intérieur du domaine jusqu’à ce que le niveau de
pression atteigne des valeurs trop élevées et force donc l’arrêt de la simulation. La solution
usuelle à ce problème est d’allonger le domaine de calcul pour permettre aux vortex de se
dissiper avant de franchir la sortie du domaine. Toutefois, comme on veut ici conserver le
même domaine que Weymouth, les dimensions du domaine ne peuvent être changées. On re-
médie donc à la situation en appliquant une condition de sortie qui régule l’énergie cinétique
pour empêcher la montée en flèche de celle-ci.

Tel que détaillé à la Section 3.6, la version adimensionnelle de ζ correspond en fait à
(

2π
Ur

)
Ī0.

Comme Ī0 dépend de la géométrie de l’ellipse ainsi que du ratio r/L qui est maintenu
constant et que rm est fixé à 1, le paramètre d’étude devient Ur = 1

f̄n
qui est la vitesse

réduite de l’ellipse. On se questionne donc à savoir quelle est la Ur maximale permettant
d’éviter que l’ellipse entre dans sa phase de mouvement chaotique. On s’intéresse aussi
au mouvement de l’ellipse pour différentes valeurs de Ur. Les résultats pour les valeurs
de Ur = {0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 3.0} sont présentés à la Figure 5.23. On y observe trois
comportements distincts.

L’amortissement a pour but de retarder la phase chaotique, c’est-à-dire que l’ellipse doit être
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v = 0

v = 0

uin TOpenBoundary

Figure 5.24 Schématisation des conditions u, v et T imposées aux frontières (Γ) du domaine
fluide (Ω) pour l’étude de l’influence du coefficient d’amortissement

dans sa phase de stabilité asymétrique, soit la phase précédant la phase chaotique, pour qu’on
considère que l’amortissement est efficace.

Dans un premier temps, on semble observer cet amortissement efficace à la Figures 5.25 pour
Ur = {0.6, 0.8, 1.0, 2.0} où l’ellipse oscille autour d’une valeur positive de θ. Pour Ur = 0.2
et Ur = 0.4, l’ellipse est sur-amortie. En effet, on observe que l’ellipse oscille dans le sens
inverse de son mouvement naturel, c’est-à-dire le mouvement de l’ellipse sans amortissement
lorsque son comportement est du type stabilité asymétrique. En absence d’amortissement,
l’écoulement cisaillé entrant où la vitesse est supérieure à la paroi du haut fait en sorte
que le bord d’attaque de l’ellipse a tendance à pointer vers le bas et l’ellipse se met alors à
osciller dans les valeurs positives de θ. Toutefois, ce qu’on observe pour Ur = 0.2 et Ur = 0.4,
correspond plutôt à une trop grande réponse de l’ellipse qui, étant sur-amortie, tente de
contrer l’écoulement qu’elle perçoit à son bord d’attaque en s’orientant parallèlement aux
forces qu’elle subit. Le bord d’attaque de l’ellipse va alors vers le haut et elle se met à osciller,
à très faible amplitude, dans les θ négatifs. Finalement, on voit clairement qu’à Ur = 3.0 et
Ur = 4.0, l’amortissement n’est pas suffisant et le mouvement de l’ellipse demeure chaotique.
Il faut donc être prudent avec l’amortissement imposé à l’ellipse puisque les valeurs de Ur

ont une borne inférieure et supérieure si on désire un amortissement qui retarde la phase
chaotique de l’ellipse sans que celle-ci soit sur-amortie.

Dans un second temps, on se penche sur l’évolution de l’angle de rotation θ de l’ellipse en
fonction du temps présentée à la Figure 5.26. On constate encore une fois un comportement
sur-amorti pour Ur = {0.2, 0.4} où les valeurs de θ balayées sont toutes négatives. Toutefois,
contrairement à ce qu’on pouvait constater à la Figure 5.25, l’intervalle de Ur où l’ellipse
est dans une phase de stabilité asymétrique semble plutôt se limiter à Ur = [0.6, 1.0]. En
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Figure 5.25 Vitesse de rotation ω en fonction de l’angle de rotation θ pour Re = 1000 et
r/L = 0.16 pour Ur = {0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 3.0}
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effet, on voit clairement un épisode chaotique au début de la simulation à Ur = 2.0, ce
qu’on n’arrivait pas à voir en observant uniquement la Figure 5.25. On peut aussi noter que
l’évolution de θ en fonction du temps pour Ur = [0.6, 1.0], soit lorsque l’ellipse est dans la
phase de stabilité asymétrique, est moins régulière que pour cette même phase observée lors
des tests sans amortissement. Il est normal qu’en ajoutant le paramètre d’amortissement on
ne retrouve pas exactement le même comportement que lorsque celui-ci est ignoré. L’ellipse
conserve tout de même le comportement recherché, soit un comportement stable, à faible
amplitude et où aucun épisode chaotique n’est observé. En ce qui concerne Ur = 3.0 et
Ur = 4.0, la Figure 5.26 mène aux mêmes conclusions que précédemment, soit que l’ellipse
a un comportement chaotique et que l’amortissement n’est donc pas suffisant. Dans le cas
présent et pour les valeurs testées, on observe donc que l’intervalle efficace de Ur est environ
[0.6, 1.0].
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Figure 5.26 Angle de rotation θ en fonction du temps pour Ur = {0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 3.0}
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CHAPITRE 6 CONCLUSION

L’implémentation d’une méthode de résolution entièrement monolithique développée pour
résoudre des problèmes d’IFS a été complétée. Outre le fort couplage existant entre les équa-
tions, qui permet d’éviter les complications souvent amenées par l’effet de masse ajoutée,
c’est définitivement la méthode de mouvement des noeuds, qui fait entièrement partie du
système d’équations à résoudre et qui permet d’éviter le remaillage, qui caractérise l’unicité
de cette méthode.
Ce mémoire ne fait toutefois état que des premiers pas du développement de cette méthode.

6.1 Synthèse des travaux

L’essence du travail de ce mémoire repose sur la mise en oeuvre de la méthode des vitesses
basées sur différentes méthodes d’interpolation.

Dans un premier temps, les différentes méthodes d’interpolation ont été indépendamment
étudiées. En se concentrant particulièrement sur ITM et ITB, une approche partitionnée a
d’abord été testée, soit l’approche ALE/FTI. Des résultats très encourageants ont été obtenus
et ont permis de comparer ces méthodes à d’autres plus établies et d’ainsi identifier les forces
et les faiblesses de chacune.

Suite à cette étude approfondie des méthodes d’interpolation, il a été question de mettre en
oeuvre la méthode des vitesses avec les équations de Navier-Stokes dans le but de résoudre
des problèmes d’IFS. L’approche FTD, la plus intuitive, a alors été testée. Alors que cette
approche se prête très bien au couplage monolithique, un problème d’hystérésis a été identifié
et a ainsi forcer le développement d’une autre approche, l’approche FFI. Cette dernière a,
à son tour, poussé au développement d’une alternative originale permettant de modéliser la
rotation d’un objet par l’intermédiaire d’une transformation générale plutôt que de procéder
à une rotation rigide de celui-ci. Plusieurs tests ont alors été effectués et ont permis de tirer
des conclusions très encourageantes sur la précision des résultats ainsi que sur la possibilité
de déplacer les noeuds du maillage tout en conserver la qualité géométrique de celui-ci.

Plusieurs tests de vérification et de validation ont ensuite été effectués pour s’assurer que les
équations ont toutes été implémentées correctement et que celles-ci représentent bel et bien les
comportements désirés. On a ainsi pu conclure que la nouvelle méthode monolithique conserve
les taux de convergence théoriques et permet aussi le contrôle de la précision en temps et en
espace. Une série de comparaisons avec des résultats numériques et expérimentaux ont aussi
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permis de valider cette nouvelle approche.

Finalement, la nouvelle méthode de résolution monolithique avec le modèle ALE/FFI a été
appliquée à un problème d’IFS où une ellipse à un degré de liberté se met en mouvement
rotationnel dans un écoulement fluide. Alors qu’une première série de tests permet de préciser
une partie des résultats de Weymouth [1], une seconde série permet surtout d’approfondir la
compréhension de l’influence de l’amortissement sur le système dynamique. On arrive ainsi
à mieux qualifier l’impact d’un coefficient d’amortissement non nul sur le comportement
naturellement chaotique de l’ellipse.

6.2 Limitations de la solution proposée

Dans le cas présent, il est important de mentionner que l’approche FFI-IE1, telle qu’im-
plémentée actuellement, ne peut que résoudre un problème d’IFS où un seul objet solide se
déplace dans un espace infini. De plus, la généralisation de la transformation générale utilisée
pour déplacer les noeuds situés à la frontière de l’objet solide ne peut qu’être appliquée à des
géométries étoilées. Il s’agit ainsi des deux principales limites des travaux présentés dans ce
mémoire.

Aussi, les cas étudiés ont tous un ratio de masse rm de 1 puisque la majorité des applications
testées ne comportent ni raideur, ni friction. C’est d’ailleurs dans cet ordre d’idée que les
équations adimensionnelles ont été développées. Ainsi, pour des cas où la raideur et la friction
sont importantes et où rm est faible, une révision de l’adimensionnalisation serait nécessaire
puisque présentement, si rm temps vers 0, tous les termes de l’équation de la dynamique du
solide tendent aussi vers 0.

Tel que mentionné, l’approche FFI-IE1 donne des résultats tout à fait satisfaisants pour
les applications testées. Toutefois, la méthode d’intégration d’Euler en une étape (IE1) est
évidemment moins précise que plusieurs autres méthodes d’intégration comme la méthode
du point milieu ou RK4. Si de telles méthodes devaient être testées, une révision de la mise
en oeuvre serait nécessaire puisque la formulation mathématique actuelle n’est pas adéquate.

La grande majorité des tests ont été effectués à pas de temps fixe puisque le but était prin-
cipalement de comprendre l’influence de chaque paramètre et d’ainsi arriver à qualifier cor-
rectement le comportement de la méthode monolithique implémentée. Si on voulait procéder
aux mêmes tests, mais avec un pas de temps adaptatif, une méthode de contrôle de l’erreur
en espace qui arriverait à repositionner les noeuds de façon dynamique devrait aussi être
implémentée. En effet, tel que prouvé, il est important de raffiner en temps et en espace de
façon cohérente si on désire conserver la précision des calculs.
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6.3 Améliorations futures

Dans le même ordre d’idées des limitations mentionnées, il serait important de réfléchir à la
nécessité ou non d’une implémentation entièrement monolithique, soit d’inclure le calcul du
déplacement des noeuds du maillage au système d’équations ou non. L’approche monolithique
est évidemment la plus sécuritaire, mais est aussi très dispendieuse en terme de temps de
calcul. Il serait donc intéressant de quantifier le gain que celle-ci représente par rapport aux
méthodes plus traditionnelles. En effet, en considérant la position des noeuds comme des
inconnues au même titre que les champs de DDL, on rempli une grande partie des matrices.
Même si celles-ci demeurent creuses, cela a définitivement un impact non négligeable sur
l’efficacité du calcul.

De plus, une grande partie du travail effectué correspond au développement des méthodes
transfinies de déplacement des noeuds. Dans le but d’améliorer la flexibilité de celles-ci et
de les rendre plus compétitives, il serait très pertinent que la représentation géométrique
des solides étudiés soit indépendante de la discrétisation par éléments finis. En effet, alors
que ces méthodes transfinies ont permis de passer d’un nuage de points à un maillage d’élé-
ments finis, la prochaine étape vise à passer à une représentation via une courbe continue et
exacte. Présentement, la position de chaque noeud du maillage est contrôlée par la position
de chaque noeud de la frontière de l’objet solide alors qu’une représentation à l’aide d’une
courbe continue permettrait de relier chaque noeud du maillage à un maximum de 3 DDL (en
2D). Le calcul deviendrait ainsi beaucoup moins lourd et les structures de données seraient
grandement simplifiées.

Comme beaucoup d’efforts ont été mis sur les méthodes d’interpolation ainsi que sur le détail
de l’implémentation implicite de la méthode monolithique, la parallélisation de plusieurs
parties du code a été négligée, comme la construction des matrices. Un effort en ce sens
permettrait certainement d’améliorer l’efficacité du calcul.

Il serait aussi très intéressant d’introduire le calcul de la métrique de la qualité du maillage
à l’algorithme de déplacement des noeuds pour ainsi potentiellement permettre un contrôle
actif de l’erreur en fonction de celle-ci. On pourrait aussi introduire des éléments de Taylor-
Hood d’ordres supérieurs tels que P3P2P3 alors que seuls les éléments P2P1P2 ont été testés
jusqu’à présent.
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ANNEXE A CORRECTION DES REMERCIEMENTS

Figure A.1 Correction de la grille de mots croisés des remerciements
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ANNEXE B MÉTHODE DE VÉRIFICATION PAR SOLUTION
MANUFACTURÉE

La méthode des solution manufacturée est une méthode largement utilisée en dynamique des
fluides pour faire la vérification d’un programme logiciel scientifique. Elle consiste à imposer
la solution analytique d’un problème connu pour ensuite en vérifier les taux de convergence
théoriques [42].

Dans le cas présent, les équations étudiées sont celles de Navier-Stokes. On procède ainsi à
l’imposition d’un champ de vitesses et de pression tel qu’explicité aux Équations (B.1) et
(B.2), où les indices sm indiquent que les champs proviennent explicitement de la solution
manufacturée.

ρsm

[
∂usm

∂t
+ ((usm − vsm) · ∇)usm

]
− ∇ ·

[
psmI + µsm

(
∇usm + ∇T usm

)]
= Fsm (B.1)

−∇ · usm = 0 (B.2)

Selon le cas, les champs connus peuvent être imposés par l’intermédiaire de conditions li-
mites aux bords, sur tout le domaine ou comme condition initiale pour certaines solutions
manufacturées temporelles.

Pour toutes les solutions manufacturées de la Section 4.1, les champs de DDL imposés sont
tous explicités, tout comme le moyen par lequel ils sont imposés. Le terme source Fsm de
l’Équation (B.1) est, quant à lui, toujours calculé analytiquement puis injecté dans la for-
mulation faible de l’Équation (B.1). On s’assure ainsi que les équations ((B.1) et (B.2)) sont
respectées.

Il est ensuite possible de procéder au raffinement du maillage ou du pas de temps pour vérifier
les taux de convergence désirés.
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ANNEXE C VÉRIFICATION COMPLÉMENTAIRE DE LA RÉSOLUTION
D’UN ÉCOULEMENT STATIONNAIRE PAR EF8

Les Tableaux C.1, C.2 et C.3 et la Figure C.1 montrent bien l’indépendance de la résolution
de la discrétisation spatiale pour un écoulement stationnaire par rapport à l’orientation du
domaine et au nombre de Re.

Tel qu’attendu, en utilisant les polynômes d’interpolation P2P1, EF8 arrive à capturer exac-
tement la solution pour un problème où le champ de vitesses est linéaire et la pression
constante.

Tableau C.1 Normes de l’erreur en vitesse et en pression pour un champ de vitesses linéaire
et une pression constante (Re = 1) pour un domaine ayant subi une rotation de 45° dans le
sens anti-horaire

Maillage Nombre
d’éléments

Norme des
vitesses (H1)

Norme de la
pression (L2)

h 22 1.53E-14 2.19E-13
h/2 88 2.01E-14 1.71E-13
h/4 352 3.97E-14 2.07E-12
h/8 1408 7.94E-14 8.82E-12

Tableau C.2 Normes de l’erreur en vitesse et en pression pour un champ de vitesses linéaire
et une pression constante (Re = 10)

Maillage Nombre
d’éléments

Norme des
vitesses (H1)

Norme de la
pression (L2)

h 22 2.86E-14 4.13E-14
h/2 88 3.91E-14 6.33E-14
h/4 352 9.20E-14 7.02E-13
h/8 1408 1.92E-13 2.97E-12

La Figure C.1, quant à elle, présente les normes de l’erreur en vitesse et en pression pour
un champ de vitesse quadratique et une pression linéaire pour un domaine ayant subi une
rotation de 45° dans le sens anti-horaire. On constate que pour tous les nombres de Re testés,
le taux de convergence est supérieur au taux de convergence théorique de 2, ce qui confirme
que EF8 résout adéquatement la discrétisation spatiale P2P1 pour ce type de problème.
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Tableau C.3 Normes de l’erreur en vitesse et en pression pour un champ de vitesses linéaire
et une pression constante (Re = 10) pour un domaine ayant subi une rotation de 45° dans le
sens anti-horaire

Maillage Nombre
d’éléments

Norme des
vitesses (H1)

Norme de la
pression (L2)

h 22 3.18E-14 3.06E-14
h/2 88 3.12E-14 1.68E-14
h/4 352 4.80E-14 2.22E-13
h/8 1408 8.62E-14 9.15E-13
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Figure C.1 Normes de l’erreur en vitesses et en pression pour un champs de vitesses quadra-
tique et une pression linéaire pour un domaine ayant subi une rotation de 45° dans le sens
anti-horaire
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ANNEXE D VÉRIFICATION COMBINÉE DE LA DISCRÉTISATION EN
ESPACE ET EN TEMPS POUR BDF2 ET BDF3

Les Figures D.1 et D.2 montrent des comportements très similaires. On y observe en effet
que le raffinement en temps permet bel et bien de respecter le taux de convergence de 2 pour
la norme L2 de la pression, mais pas pour la norme H1 des vitesses alors qu’on observe un
comportement inverse pour le raffinement en espace.
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Figure D.1 Normes de l’erreur en vitesses et en pression au temps final en fonction du pas de
temps (gauche) et de la taille des éléments du maillage (droite) selon différents raffinement
pour BDF2

Ainsi, seul le raffinement combiné en espace et en temps permet de respecter les taux de
convergence théoriques pour les champs de vitesses et de pression.
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Figure D.2 Normes de l’erreur en vitesses et en pression au temps final en fonction du pas de
temps (gauche) et de la taille des éléments du maillage (droite) selon différents raffinement
pour BDF3
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ANNEXE E MAILLAGES OÙ LA ZONE DE MAILLAGE MOBILE VARIE

Le premier maillage testé, présenté à la Figure E.4 possède le plus grande nombre de degrés de
liberté, soit 61 659, puisque tous les noeuds sont mobiles et font ainsi tous partie des inconnues
à résoudre. Le second maillage testé contient un grand sous-domaine mobile alors que le reste
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Figure E.1 Maillage composé de 11 159 éléments, de 22 547 noeuds et où tous les noeuds
sont mobiles

du domaine est fixe, ce qui donne un total de 58 687 degrés de liberté. Le troisième maillage
testé contient un sous-domaine mobile de taille moyenne alors que le reste du domaine est
fixe, ce qui donne un total de 54 958 degrés de liberté. Finalement, le quatrième maillage
testé contient un petit sous-domaine mobile alors que le reste du domaine est fixe, ce qui
donne un total de 50 867 degrés de liberté. Tel qu’attendu, le nombre de degrés de liberté
diminue avec la taille du sous-domaine mobile du maillage.
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Figure E.2 Maillage composé de 12 115 éléments, de 24 445 noeuds et où un sous-domaine
est mobile

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure E.3 Maillage composé de 11 641 éléments, de 23 491 noeuds et où un sous-domaine
est mobile
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Figure E.4 Maillage composé de 11 415 éléments, de 23 039 noeuds et où un sous-domaine
est mobile
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ANNEXE F GRAPHIQUES DU MOUVEMENT DE L’ELLIPSE SELON
LES DIFFÉRENTES DIMENSIONS DE LA ZONE MOBILE DU MAILLAGE

-π/4 0 π/4

-π/2

-π/4

0

π/4

π/2

θ [rad]

ω
[ra

d/
s]

-π/4 0 π/4

-π/2

-π/4

0

π/4

π/2

θ [rad]
ω

[ra
d/

s]

-π/4 0 π/4

-π/2

-π/4

0

π/4

π/2

θ [rad]

ω
[ra

d/
s]

-π/4 0 π/4

-π/2

-π/4

0

π/4

π/2

θ [rad]

ω
[ra

d/
s]

Figure F.1 Vitesse de rotation ω en fonction de l’angle de rotation θ pour le maillage entiè-
rement mobile (haut-gauche), pour une grande zone de maillage mobile (haut-droite), pour
une zone de maillage mobile de taille moyenne (bas-gauche) et pour une petite zone mobile
(bas-droite)
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ANNEXE G GRAPHIQUES DU MOUVEMENT DE L’ELLIPSE SELON
LES DIFFÉRENTES VALEURS DE K POUR ITB ET ITM
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Figure G.1 Vitesse de rotation ω en fonction de l’angle de rotation θ pour les noeuds déplacés
à l’aide de la méthode ITB avec k = 4 (haut-gauche) et k = 5 (haut-droite) et ceux déplacés
à l’aide de la méthode ITM avec k = 4 (bas-gauche) et k = 5 (bas-droite)
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ANNEXE H GRAPHIQUES DU MOUVEMENT DE L’ELLIPSE SELON
LES DIFFÉRENTS INTERPOLANTS GÉOMÉTRIQUES POUR ITB ET ITM
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Figure H.1 Vitesse de rotation ω en fonction de l’angle de rotation θ pour les noeuds déplacés à
l’aide de la méthode ITB en utilisant l’interpolant géométrique P1 (haut-gauche) et P2 (haut-
droite) et ceux déplacés à l’aide de la méthode ITM en utilisant l’interpolant géométrique P1
(bas-gauche) et P2 (bas-droite)
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ANNEXE I MODÉLISATION DE LA CONDITION LIMITE NATURELLE

Soit l’équation de conservation de l’énergie cinétique

∂

∂t
(ρEc) + ∇ · (ρEcu) = ∇ · (σ)u, (I.1)

et son intégrale

d

dt

∫
Ω

ρEcdΩ =
∫

∂Ω
(T · u − ρu · nEc)dΓ −

∫
Ω

σ : ∇udΩ − ... .

Influence de la condition de sortie
On souhaite d’abord étudier l’influence de la condition de traction nulle sur la conservation
de l’énergie cinétique dans le domaine. Comme T = σ ·n, cela implique que T ·u est toujours
positif, tout comme le terme

∫
Ω σ : ∇udΩ qui correspond à la perte d’énergie par friction.

Au début de la simulation, comme un écoulement plan u est imposé à l’entrée, il est normal
que l’énergie cinétique augmente à l’intérieur du système. À la sortie, si on n’applique aucune
condition frontière, c’est la condition naturelle qui est appliquée, c’est-à-dire T = 0. Dans le
cas où le profil de l’écoulement à la sortie s’approche d’un écoulement plan, le terme ρu · nEc

est positif et un certain équilibre de l’énergie cinétique est maintenu à l’intérieur du domaine.
Toutefois, lorsqu’il y a présence de vortex, tel qu’à la Figure I.1, certains problèmes peuvent
survenir. En effet, un vortex implique qu’une partie de l’écoulement à la sortie est sortante

nn
u

T = σ · n

u

Ω

Γ

Figure I.1 Schéma des vortex dans le sillage de l’ellipse à haut Re

alors qu’une autre partie est entrante, ce qui fait en sorte que le signe du terme ρu · nEc

peut varier. Si les vortex sont rapides, ceux-ci peuvent se dissiper rapidement grâce à la perte
d’énergie par friction. À l’inverse, si les vortex sont lents et que le Re est élevé, l’énergie des
vortex peine à être entièrement dissipée par la friction du fluide qui est alors peu visqueux.
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Un nouveau vortex arrive alors avant que l’énergie cinétique du précédent soit dissipée et
c’est ainsi que l’énergie cinétique du système ne fait qu’augmenter. Cette énergie cinétique
se manifeste sous forme de pression et on observe alors un énorme pic de pression à la sortie
du domaine juste avant que le programme ne cesse de fonctionner. Il est donc nécessaire
d’implémenter une condition de sortie, développée initialement par Dong et al. [61], qui
permet de gérer l’entrée et la sortie d’énergie cinétique de façon dynamique telle que

T =


0 si u · n > 0

ρ
|u|2

2 n si u · n < 0

Il faut ensuite arriver à régulariser cette fonction afin d’avoir un profil continu de traction
normale à la sortie du domaine. Telle que détaillée à l’Équation (I.2), c’est la fonction tanh
qui permet de lisser la condition frontière à la sortie. C’est d’ailleurs cette équation qui est
implémentée dans EF8 comme la condition frontière Open Boundary.

T = ρ
|u|2

2 n · S(u · n) où S(u · n) =
 0 si u · n > 0

1 si u · n < 0

S(u · n) = 1
2

(
1 − tanh

(u · n
U0δ

))
(I.2)

où U0 correspond à la vitesse caractéristique de référence et δ contrôle la transition de la
fonction tanh de façon à ce que plus δ est petit, plus la transition est étroite et vice-versa.

Démonstration de l’équation de conservation de l’énergie cinétique (I.1)
Dans le domaine étudié, plusieurs lois de conservation doivent être respectées. La loi de
conservation de la masse, présentée à l’Équation (I.3), est la première d’entre elles.

∂ρ

∂t
+ ∇ · (ρu) = 0

∂ρ

∂t
+ (u · ∇)ρ + ρ∇ · u = 0 (I.3)

La loi de conservation de la quantité de mouvement, présentée à l’Équation (I.4), doit aussi
être respectée.

∂

∂t
(ρu) + ∇ · (ρu ⊗ u) = ∇ · σ

ρ
∂u
∂t

+ ρ(u · ∇)u + u
{

∂ρ

∂t
+ ρ∇ · u + (u · ∇)ρ

}
= ∇ · σ (I.4)

Connaissant ces deux lois de conservation, on cherche maintenant l’expression de la conser-
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vation de l’énergie cinétique Ec. Comme Ec = |u|2
2 , on peut faire apparaître la dérivée de

l’énergie cinétique telle qu’à l’Équation (I.5).

∂u
∂t

· u = 1
2

∂|u|2

2 (I.5)

Ainsi, si on multiplie l’Équation (I.4) par u, on obtient l’Équation (I.6) qui permet de faire
apparaître l’énergie cinétique Ec.

ρ
∂u
∂t

· u + ρ ((u · ∇)u) u + |u|2
{

∂ρ

∂t
+ ρ∇ · u + (u · ∇)ρ

}
= ∇ · (σ)u

ρ
∂Ec

∂t
+ ρ(u · ∇)Ec + Ec

{
∂ρ

∂t
+ ρ∇ · u + (u · ∇)ρ

}

+Ec

{
∂ρ

∂t
+ ρ∇ · u + (u · ∇)ρ

}
= ∇ · (σ)u(

ρ
∂Ec

∂t
+ Ec

∂ρ

∂t

)
+ ρ(u · ∇)Ec + Ecρ∇ · u + Ec(u · ∇)ρ + Ec

{
∂ρ

∂t
+ ∇ · (ρu)

}
︸ ︷︷ ︸

=0

= ∇ · (σ)u

(I.6)

De plus, il est possible d’écrire que

∇ · (ρEcu) = ρEc∇ · u + u · ∇(ρEc),
= Ecρ∇ · u + ρ(u · ∇)Ec + Ec(u · ∇)ρ,

ce qui permet, une fois combiné à l’Équation (I.6), d’obtenir l’équation de conservation de
l’énergie cinétique recherchée, c’est-à-dire l’Équation (I.7).

∂

∂t
(ρEc) + ∇ · (ρEcu) = ∇ · (σ)u (I.7)

Il est aussi possible de réécrire le terme de droite de l’Équation (I.7) tel que

∇ · (σ · u) = ∇ · (σ)u + σ : ∇u.

Le terme σ : ∇u représente alors le frottement visqueux. L’Équation (I.7) peut donc être
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réécrite telle qu’à l’Équation (I.8).

∂

∂t
(ρEc) + ∇ · (ρEcu) = ∇ · (σ · u) − σ : ∇u

∂

∂t
(ρEc) = ∇ · (σ · u − ρuEc) − σ : ∇u (I.8)

Maintenant, pour savoir comment varie l’énergie cinétique à l’intérieur du domaine illustré à
la Figure I.1, il suffit d’intégrer l’Équation (I.8) sur le domaine tel que

∫
Ω

∂

∂t
(ρEc)dΩ =

∫
∂Ω

∇ · (σ · u − ρuEc)dΓ −
∫

Ω
σ : ∇udΩ − ...,

d

dt

∫
Ω

ρEcdΩ =
∫

∂Ω
(T · u − ρu · nEc)dΓ −

∫
Ω

σ : ∇udΩ − ...,

où un terme correspondant au travail effectué par le fluide sur l’objet est toujours soustrait.
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