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Hypertracing: Tracing Through Virtualization
Layers

Abderrahmane Benbachir, Member, IEEE, Michel Dagenais, Senior Member, IEEE

Abstract—Cloud computing enables on-demand access to remote computing resources. It provides dynamic scalability and elasticity

with a low upfront cost. As the adoption of this computing model is rapidly growing, this increases the system complexity, since virtual

machines (VMs) running on multiple virtualization layers become very difficult to monitor without interfering with their performance. In

this paper, we present hypertracing, a novel method for tracing VMs by using various paravirtualization techniques, enabling efficient

monitoring across virtualization boundaries. Hypertracing is a monitoring infrastructure that facilitates seamless trace sharing among

host and guests. Our toolchain can detect latencies and their root causes within VMs, even for boot-up and shutdown sequences,

whereas existing tools fail to handle these cases. We propose a new hypervisor optimization, for handling efficient nested

paravirtualization, which allows hypertracing to be enabled in any nested environment without triggering VM exit multiplication. This is a

significant improvement over current monitoring tools, with their large I/O overhead associated with activating monitoring within each

virtualization layer.

Index Terms—Virtual Machine, Para-virtualization, KVM, Performance analysis, Tracing.

✦

1 INTRODUCTION

C LOUD computing has emerged as another paradigm in
which a user or an organization can dynamically rent

storage resources and remote computing facilities. It allows
application providers to assign resources on-request, and to
adjust the quantity of resources to fit the workload. Cloud
computing benefits lie in its Pay-as-you-Go model; users
simply pay for the used resources and can adaptively incre-
ment or decrement the capacity of the resources assigned to
them [1].

In any case, an essential metric in this dynamic process
is relative to the fact that, irrespective of cloud users being
able to request more resources at any time, some delay may
be needed for the procured VMs to become available. Cloud
providers require time to select a suitable node for the VM
instance in their data centers, for resources to be allocated
(such as IP addresses) to the VM, as well as to copy or boot
or even configure the entire OS image [2].

This dynamic process is unavoidable to ensure cloud
elasticity. A long undesirable latency during this process
may result in a degradation of elasticity responsiveness,
which will immediately hurt the application performance.

Paravirtualization is the communication that happens
between the hypervisor and the guest OS to enhance I/O
efficiency and performance. This entails changing the OS
kernel for the non-virtualizable instructions to be replaced
with hypercalls that simply communicate with the virtu-
alization layer hypervisor. The hypervisor, likewise, offers
hypercall interfaces for related critical kernel activities like
interrupt handling, timekeeping, and memory management
[3].

• The authors are with the Department of Computer and Software Engi-
neering, Polytechnique Montreal, Montreal, Qubec, Canada.
E-mail: {abderrahmane.benbachir, michel.dagenais}@polymtl.ca.
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Boot-up and shutdown phases are critical stages that a
system must undergo to initialize or release it resources.
During these stages, many resources may not be available,
such as storage, network or memory allocation. As a con-
sequence, most debugging and tracing tools are either not
available or with very limited capabilities. Therefore, those
stages are particularly difficult to trace or debug.

An important challenge is to monitor guest systems
while they go through these critical stages. Current monitor-
ing tools were not conceived to operate in such conditions.
To overcome those limitations, we propose paravirtualiza-
tion solutions to be integrated into current monitoring tools.

In this paper, we propose hypertracing, a guest-host
collaboration and communication design for monitoring
purposes. In particular, we developed trace sharing
techniques that enable accurate latency detection, which is
not addressed by existing monitoring tools. We propose an
approach based on different paravirtualization mechanisms,
which is an effective and efficient way to communicate
directly with the host, even from nested layers. The
proposed method consists in offloading and merging guests
and host traces. Depending on which communication
channels are used, trace fusion may need synchronization
to insure that events are stored in chronological order.

Our main contributions in this paper are: First, we
propose an hypercall interface as a new communication
channel for trace sharing between host and guests,
comparing this with shared-memory-based channels. The
hypercall channel allows us to debug VM performance
issues, even during sensitive phases such as boot-up
and shutdown. Secondly we propose a technique to
enable guest virtualization awareness, without accessing
the host. Thirdly we submitted many kernel patches to
the Linux community to perform boot-level tracing and
enable function tracing during early boot-up. Fourthly we
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developed a KVM optimization patch for handling nested
paravirtualization, which prevents exit multiplication
and reduces CPU cache pollution when performing
hypertracing from nested layers. Lastly, we implemented
VM analysis views which improve the overall performance
investigation.

The rest of this paper is structured as follows: Sec-
tion 2 presents a summary of existing paravirtualization
approaches used for VM monitoring. Section 3 states the
problem addressed by this paper. Section 5 introduces
a comparative study of existing inter-VM communication
channels. In section 6 we present the design and architecture
of our hypertracing techniques. Section 7 outlines some
performance challenges of using hypertracing from nested
environments and how we addressed them. Section 8 shows
some representative use cases and their analysis results,
followed by the overhead analysis in section 9. Finally,
Section 10 concludes the paper with future directions.

2 RELATED WORK

Various monitoring tools embraced paravirtualization to
reduce I/O performance issues while tracing VMs. In this
section, we summarize most of the previous studies related
to our work, grouped into the following categories.

2.1 Hypercall based

Khen at al. [4] presents LgDb, a framework tool that uses
Lguest to provide kernel development and testing, code pro-
filing and code coverage. It enables running within a virtual
environment kernel modules under study. The key behind
LgDB is similar to traditional debuggers, as the framework
will cause a context switch from the guest to the hypervisor
mode, in order to stop guest execution when code flow
reaches a specific point. Two approaches were proposed for
this matter. First, the hypercall-based approach, which re-
quires manual instrumentation of the inspected kernel code
to set breakpoints. Secondly, the debugger-based approach
which does not require any code modification, uses the
kernel debugger (KGDB) to enable breakpoints over a virtio
serial port.

Stolfa at al. [5] propose Dtrace-virt, an extension on top
of the DTrace tracer in FreeBSD. It is a monitoring tool tai-
lored for tracing untrusted VMs. DTrace-virt was designed
as an Intrusion Detection System (IDS) and malware anal-
ysis tools; this tool has been designed to detect malicious
code injections by sending aggregated trace event data to the
host hypervisor, using hypercalls as a fast trap mechanism,
instead of using networking protocols (traditionally used
by many distributed tracing tools) which induce a larger
overhead in a virtualized environment. The authors did not
provide any use case to evaluate the usefulness of such
a monitoring approach for security purposes; their work
only discusses the infrastructure design and implementation
challenges of their approach.

Gebai at al. [6] proposed a multi-level trace analysis
which retrieves the preemption state for vCPUs by using
merged traces from the host kernel and each VM. His work
was extended by Biancheri [7] for nested VMs analysis.

Both study the root cause of preemption by recovering the
execution flow of a specific process, whether it is a host
thread, VM or nested VM. They proposed an approach to
resolve clock drift issues using paravirtualization with pe-
riodic hypercalls as synchronization events. Their approach
adds about a 7% constant overhead to each VM, even if they
are idle.

2.2 Page sharing based

Yunomae [8] implemented virtio-trace, a low-overhead
monitoring system for collecting guests kernel trace events
directly from the host side over virtio-serial, in order to
prevent using the network stack layers while sending traces
to host. They enable an agent inside the guest to perform
splicing operations on Ftrace [9] ring buffers, when tracing
is enabled. This mechanism provides efficient data transfers,
without copying memory to the QEMU virtio-ring, which is
then consumed directly by the host.

Jin at al. [10], developed a paravirtualized tool named
Xenrelay. This tool is an unified one-way inter-VM trans-
mission engine mechanism, very efficient for transferring
frequently small trace data from the guest domain to the
privileged domain. Xenrelay has the ability to relay data
without lock or notification. This mechanism was imple-
mented using a producer-consumer circular buffer with
a mapping mechanism to avoid using synchronization. It
helped to optimize Xen virtualization performance by im-
proving the tracing and analysis virtualization issues.

2.3 Hypervisor monitoring

Nemati [11], [12] proposed a new approach to trace guests
virtual CPU states, in any virtualization layer, tracing
only the host without accessing VMs. Sharma [13], used a
hardware tracing monitoring-based approach to generate
hypervisor metrics and exposing virtualization overhead.
This method involves continuous host access, which may
not be possible in some cases. Our work is unique in
the sense that it can be used without the need to access
the host. We use paravirtualization to enable effective
host-guest communication and collaboration. This enables
virtualization-awareness from the guest perspective, and
enables measuring the virtualization overhead from the
guest.

Other studies [14], [15] attempt to measure the virtual-
ization cost using performance benchmarks suites, in order
to measure CPU, memory and I/O virtualization overhead.
However, such an approach is not representative of real-
world workloads.

Paravirtualization approaches are mostly used to avoid
the heavy network path communication, using shared mem-
ory or hypercalls as fast communication paths in virtualized
environments. To our knowledge, no previous study has
used this mechanism to solve real world performance issues,
for instance at bootup or shutdown when few operating
system facilities are available; paravirtualization approaches
were mostly used to speedup I/O operations.

3 PROBLEM STATEMENT AND DEFINITIONS

In this section, we present challenging issues, grouped into
the following categories.
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3.1 Nested Layers

Various performance issues in virtual environments are
caused by the isolation layer imposed by the hypervisor.
VMs have the illusion of exclusive access to system hard-
ware due to the virtualization layer. When a system has
multiple layers of virtualization, it becomes very difficult
to know what is happening. As a basic approach, we can
enable monitoring in each layer. However, there is still
the challenge to merge and synchronize the traces coming
from multiple layers due to clock drift. Moreover, monitor-
ing in all layers comes with overhead concerns, as most
monitoring tools need to consume the recorded data in
one way or another, either by storing them to disk (offline
analysis), or using live monitoring to offload them through
a network (online analysis). Both approaches introduce
significant overhead related to I/O operations, especially
when tracing is enabled within a nested environment. In
a nested environment, the performance slowdown could
reach a factor of 30 and more.

3.2 Crash Dump

QEMU has a panic device, supported by Libvirt since the
first version. Using this device, the guest is capable of
notifying the host when a guest panic occurs, through the
process of sending a particular event directly to QEMU,
which in turn will inform Libvirt.

Libvirt offers a mechanism that can store guest crash
dumps automatically to a dedicated address on a host.
Activating the panic device PVPanic for guests will enable
a crash dump to be forwarded, without the need of using
kdump [16] within the guest [17]. The major issue with
this method is the amount of data generated. A basic crash
dump size would be 128MB. If a system has 1TB of memory,
then 192MB will be reserved, a 128MB of basic memory plus
an additional 64MB. As a result, the host would need more
storage resources to store all these crash dumps coming
from different guests.

3.3 Boot Time Analysis

The Boot-up time is the amount of time it takes to boot a VM
into a ready state. It is an important factor for VM allocation
strategies, particularly while provisioning for peak load.
Automated allocation strategies will request new VMs to
match load demand. In this situation, the time to boot VMs
is critical, as the system is waiting after the boot-up in order
to be fully operational. Enabling monitoring during the
boot-up phase is challenging, yet is often the only effective
way to investigate boot-up latencies. Data generated during
this phase cannot be stored on disk or offloaded through the
network, because network and storage are only available
once this phase is almost completed.

Another approach may be possible. If enough memory
space is allocated at the beginning of boot-up, to prevent
event loss, then events can be consumed after boot-up when
storage and network are available. However, this approach
requires a large memory space allocation (ring buffer). It
also adds a significant time overhead because the moni-
toring tool uses memory frame allocation at initialization
time [18], avoiding postponed page faults while tracing is

enabled. This initialization, at the start of the boot process,
directly impacts the boot time.

Kernel crashes may also happen while VMs are booting.
Investigating such problems is a non-trivial task since most
of the debugging tools are not available at that stage. Kernel
developers typically resort to using printk for dumping
messages on the serial console, with information such as
call stacks and register values. Using printk introduces a
very large overhead (system calls) and can affect the timing,
particularly when the output is over a serial line [19], which
does not help to solve complex performance issues.

3.4 Shutdown Analysis

Investigating the shutdown latency is another challenging
task. One may question the interest of optimizing the shut-
down latency. In many cases, latencies are not very impor-
tant when turning off VMs during the under-provisioning
stage. Nevertheless, VMs shutting down consume resources
and may prevent a host from starting up more rapidly
newer VMs. Shutting down existing VMs quickly is the
fastest way to get back the necessary resources. Thus,
any delay during the shutdown is directly impacting the
provisioning of newer VMs. However, in some cases, the
shutdown latency is much more critical. Indeed, in critical
embedded systems, the shutdown latency is on the critical
path for the case where your system needs to reboot after
doing a major software upgrade. Any significant delay
impacts the non availability phase during the upgrade.

When a system is shutting down, userland processes are
being released, drivers being unloaded, and the network
and disks are not available. Current monitoring tools are
not designed to operate during this phase.

In this paper, we present how we use paravirtualization
to design guest-host collaboration and address the above
challenges. As we illustrate in section Use cases, the tech-
niques resulting from our work will help to efficiently in-
vestigate system failures and hidden latencies within VMs,
as well as enabling runtime perturbations detection due to
CPU or disk sharing between colocated VMs.

4 ENVIRONMENT

For all experiments and benchmarks, we used a computer
with a quad-core Intel(R) Core(TM) i7-6700K CPU running
at 4.00GHz, 32 GB of DDR3 memory and a 256 GB SSD.
The operating system is Ubuntu 16.10, running Linux 4.14
and LTTng 2.10. The frequency scaling governor of the
CPU was always set at performance to prevent CPU scaling
operations while performing the benchmarks. Benchmark
results were computed using the average of one million
iterations.

KVM and QEMU 2.8.0 were used as virtualization tech-
nology. Host and guests were configured with the same
linux versions during all experiments. For nested environ-
ments, we enabled all nested optimizations such as the EPT-
on-EPT feature.
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5 INTER-VM COMMUNICATION CHANNELS ANAL-

YSIS

Virtualization technology provides security and isolation,
with the ability to share system resources between VMs
co-located on the same host. Furthermore, isolation is the
main property that keeps the industry from shifting to
container technology. However, when co-located VMs need
to communicate with each other or with the host, it becomes
a bottleneck.

Communication by means of TCP/IP requires a longer
time since the transfer of data from the sender VM directly
to the receiver host undergoes a long communication chan-
nel through a host hypervisor that incurs multiple switches
between the root mode and user mode, as well as going
across the entire network stack layers. This is inherently in-
efficient and causes performance degradation. Moreover, to
allow efficient and fast communication, the guest OS and the
hypervisor are capable of using an optimized I/O interface,
rather than depending on TCP/IP. This mechanism is called
paravirtualization [20].

In this section, we discuss different paravirtualization
communication channel alternatives to TCP/IP, exposing
design limitations and performance drawbacks of each one.

5.1 Page Sharing Channel

Instead of emulating hardware devices, Xen designed a new
split driver I/O model, which provides efficient I/O virtu-
alization and offers protection and isolation of the device
interface. In this new model, drivers are split into frontend
and backend, isolated from each other across Xen domains.
These frontend and backend can only communicate asyn-
chronously through the hypervisor, in order to satisfy the
isolation, using shared-memory (shared I/O ring buffers)
[21].

The shared I/O ring buffers are enabled by two main
communication channels provided by Xen, the Grant Table
and the Event mechanism. The event mechanism allow
inter-VM asynchronous notification and signals, instead of
polling. Events can be used to signal received/pending
network data, or to indicate the completion of a disk request.
The Grant Table is the fundamental core component for
memory sharing. It offers mapping/transfer memory pages
between frontend and backend drivers. Moreover, the grant
mechanism provides an API, accessible directly from the OS
kernel, to share guest pages efficiently and securely. It allows
guest domains to revoke page access at any time.

The Xen page sharing mechanism is implemented by
issuing synchronous calls to the hypervisor (hypercalls). If a
guest domain wants to share a page, it invokes a hypercall
that contains the target domain reference and the shared
page address. The hypervisor will first validate the page
ownership, then map the page into the address space of
the target domain. Similarly, to revoke a shared page, the
guest issues another hypercall, and this time the hypervisor
unmaps and unpins the guest page from the target address
space [22].

In early 2006, when KVM was merged into linux, virtio
was introduced. It was based on Xen I/O paravirtualization,
which uses a mechanism similar to the Grant Table. After-

wards, virtio evolved and converged into the default I/O
infrastructure supported by different hypervisors.

Virtio is an efficient paravirtualization framework that
provides a transport abstraction layer over hardware de-
vices. It offers a common API to reduce code duplica-
tion in virtual device drivers. Such drivers enable efficient
transport mechanisms for guest-host as well as inter-guest
communication channels [23]. Similar to Xen, virtio device
drivers are also split into the frontend which resides in
the guest OS, while the backend can be either in user
space, inside QEMU, or in kernel space as KVM modules
(vhost). The communication between those drivers (guest
and hypervisor) is organized as two separate circular buffers
(virtqueue), in a producer-consumer fashion, as illustrated
in Fig. 1. The avail-ring is for sending and the used-ring for
receiving.
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Fig. 1. Architecture of Page Sharing mechanism in virtio

A producer (guest driver) writes data into the virtqueue
avail-ring in the form of scatter-gather (guest physical ad-
dress pointer and length) lists, then notifies the host when
buffers are available, using the kick call mechanism. The
virtio kick operation can be performed using the paravirt ops
API infrastructure. This API can be either an input/output
port access (pio) operation, a hypercall or other notification
mechanism which depends on the hypervisor. The host
can decide to disable guest notifications while processing
buffers, as notification implies an expensive context switch
of the guest. Virtio also supports batching, which improves
the performance throughout. This feature can be enabled by
adding multiple buffers to the virtqueue before calling the
kick event [24]. When the consumer (hypervisor or QEMU)
gets the notification, it reads the virtqueue avail-ring buffers.
The consumed buffers will then be pushed to the used-ring.

A virtio device may choose to define as many virtqueues
as needed. For instance, the virtio-net device has two
virtqueues, the first one for packet transmission and the
other one for packet reception.

Virtio-serial is an implementation of the serial bus on
QEMU. This mechanism was used for monitoring purposes,
such as retrieving metrics of the guest CPU, memory and
disk usage [25]. As presented in section 2, virtio-serial was
also used as a transport layer to implement virtio-trace. We
decided to use virtio-serial as the reference implementation
for the page sharing channel, when we compare it to other
inter-VM communication mechanisms later in this section.
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5.2 Memory Sharing Region Channel

Inter-Process Communication (IPC) is an operating system
mechanism allowing different processes to collaborate and
share data. A variety of IPC mechanisms are supported in
most operating systems, including sockets, signals, pipes
and shared memory. Depending on the system configura-
tion, processes may be distributed across different machines,
or across different data centers, which requires using re-
mote procedure calls (RPCs) and streaming data over the
network. On the other hand, processes may be located on
the same machine and, in this case, it is more efficient to use
a shared memory to increase the performance of concurrent
processing.

With the recent advances in virtualization technology,
the need for efficient Inter-VM communication is growing. A
variety of inter-VM shared memory mechanisms were intro-
duced in the Xen hypervisor using a page-flipping (Grant)
mechanism. Nahanni and ZIVM are two shared memory
mechanisms that were introduced in KVM. Unlike Xen,
these mechanisms allow host-guest as well as guest-guest
sharing, supporting POSIX and System V shared memory
regions.

Developed by Cameron Macdonell, Nahanni is a zero-
copy low-latency and high-bandwidth POSIX shared mem-
ory based communication channel. It enables hosts, guests,
as well as inter-guests efficient transport mechanisms. Un-
like a page sharing mechanism, it does not require any
hypervisor or guest involvement while reading or writing
to the shared region [26].
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Fig. 2. Architecture of Memory Sharing Region

As illustrated in Fig. 2, Nahanni is implemented as a
new virtual PCI device (ivshmem) in QEMU, which will
be used to share the POSIX memory region, mapped into
QEMU with the guest OS. Userspace applications inside
the guest OS can access directly the shared memory region
by opening the device using the mmap system call. This call
will map the memory region into their address space, with
zero-copy. Nahanni also supports a notification mechanism,
in order to notify the host or other guests about data
availability. It uses event file descriptors (eventfds) as an
interrupt for signalling and synchronization mechanisms.

We decided to use Nahanni as the reference implemen-
tation for the memory sharing channel, after we compared

it with other inter-VM communication mechanisms.

5.3 Hypercall Channel

With the introduction of Hardware-assisted virtualization
in Intel-VT and AMD-V, all privileged instructions executed
in user-mode (guest OS) should cause a trap into the root-
mode (hypervisor). This transition incurs significant over-
head and is called Virtual Machine Extensions (VMX). By
using paravirtualization we can reduce this overhead, a
guest OS source code will be modified to replace those
VMX (privileged) instructions with a single VMX instruc-
tion called hypercall, which will invoke the hypervisor to
perform heavy-weight work. The hypercall interface allows
the request of a service from the hypervisor by performing a
synchronous software trap into the host, which is similar to
system calls. Fig. 3 illustrates the hypercall trap mechanism
in more details.

In other words, the hypercall is a guest request to the
host to perform a privileged operation, and it can be used
as a guest to host communication mechanism as well.

The hypercall transport mechanism is performed using
registers. As an illustration for x86 architecture, guests could
use the default general purpose registers ax, bx, cx, dx
and si to place data before emitting the hypercall. The ax
register will be reserved for the hypercall number during
the submission, then the hypervisor will use ax to place the
returned value when switching back to user mode [27]. On
the Intel 64-bits architecture, additional registers can be used
such as r8 to r15, coupled with a proper compiler register
clobbering mechanism.
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Fig. 3. Hypercall in a nutshell

A practical hypercall use case is available in the Linux
project. A hypercall can be used by guests to wake up a
virtual CPU (vCPU) from the halt (HLT) state. In case a
given thread is waiting to access a resource, the thread
would perform an active polling (spinlock) on a vCPU.
Paravirtualization can be used in this case to save wasted
cpu cycles, by executing the HLT instruction when a time
interval threshold was elapsed. The execution of the HLT
instruction causes a trap to the hypervisor, and then the
vCPU will be put into sleep mode until an appropriate event
is raised. When the resource is released by other threads, on
other vCPUs, the thread can wake up the sleeping vCPU by
the triggering KVM HC KICK CPU hypercall [27].
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5.4 Performance Comparisons

In this section, we present the performance comparison
of three data transmission channels: hypercall, virtio-serial
and Nahanni. We measure the bandwidth for streaming a
fixed volume of data (1 GB), from guest (with single vCPU)
to host repeatedly. Our bandwidth benchmark measures
the time to send the data to the host, without measuring
the overhead of consuming it. There are several ways for
consuming the data, and in this section we only need to
compare the transmission path between these channels,
which is enough for a micro-benchmark. Later in section
9 we will compare these channels with a more realistic
workload.
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Fig. 4 shows the bandwidth measured with hypercall,
virtio-serial and Nahanni while increasing the sending mes-
sage size. The bandwidth increases for both virtio and
Nahanni with larger message sizes. Then, both reach a stable
throughput of 80 Gbps when message sizes are larger than
32 KB. Nahanni achieves higher throughput for smaller
and larger message data than both the hypercall and virtio
mechanisms. Virtio shows the worst bandwidth for sending
smaller messages. This is because it requires a larger number
of hypervisor exits to send the same amount of bytes.

The hypercall achieves a constant throughput, of about
2 Gbps, with a single CPU, and 17.5 Gbps with 8 CPUs.
This is because the hypercall uses CPU registers for the
transmission. Increasing the message size simply implies
using more registers (if available). We couldn’t use more
than 8 CPUs due to resource limitations.

In summary, shared memory based approaches achieved
a higher communication efficiency as compared to other
channels.

To solve the challenging problems previously raised in
section 3, we decided to explore in depth both hypercall
and shared memory region channels, we have found that
there is a lack of scientific contribution for both channels
compared to the page sharing channel, which had enormous
contributions on either virtio KVM or Xen due to their pop-

ularity. The next section presents the design of hypertracing
techniques using both channels.

6 HYPERTRACING DESIGN AND ARCHITECTURE

In this section, we will explain the design and architecture
of hypertracing using both hypercall and memory sharing
channels.

6.1 Hypertracing Through Hypercall

As explained in section 5, a hypercall is a guest synchronous
request to the host to perform a privileged operation, but
it can also be used for debugging, or for guest-host
communication purposes. The heart of a hypercall is the
vmcall VMX instruction, the main aim of which is to cause
an instant trap into the host hypervisor. On the other hand,
the transport mechanism of a hypercall can be performed
solely by using guest registers. The approach of using the
vmcall instruction alongside the registers requires saving
these registers into the guest stack. When returning from
the hypercall, the guest can then restore the registers
state, from the stack, before continuing it execution. The
vmcall instruction can also be used without touching
guest registers. Instead, it can be used for the purpose
of inspecting guest registers, for instance as a breakpoint
mechanism.

6.1.1 Debugging aspect

The vmcall instruction has a behavior similar to debugger
breakpoint mechanisms, which use the interrupt instruction
(INT 3) to cause a userspace program to trap into the kernel
space.

A practical example of debugging a guest kernel using
vmcall, would be the function tracing. Adding the gcc -pg
option while compiling the kernel will automatically add
a mcount() call at the beginning of each function. Ftrace
[9], the kernel tracer, relies on the gcc -pg option for its
function tracing infrastructure. During boot-up, Ftrace will
use live patching to convert all mcount() calls into NOP
instructions. When tracing is enabled, Ftrace converts the
NOP instructions into a callback routine that handles the
tracing part. This mechanism is known as dynamic tracing.

To be able to debug a guest kernel from the host side,
we can use dynamic tracing coupled with vmcall. This
mechanism will convert dynamically the NOP instructions
into a vmcall instruction. Each time a kernel function is
called in the guest, a trap to the host hypervisor happens.
Once in the host, it is possible to inspect the guest registers,
stack, heap and memory directly from the host. This allows
the extraction of guest data such as function address or
function arguments. It is possible to use a pause/resume
operation on a guest, when a specific hypercall was
triggered. This feature will allow developers to manually
inspect guests for advanced step-by-step investigations.
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6.1.2 Tracing aspect

Debugging is a very useful technique, providing developers
with a handful of features to investigate very complex
problems in step-by-step mode. However, debugging in pro-
duction cloud-based environments is not tolerable due to its
huge overhead cost. Instead, practitioners use tracing tools
to collect VM execution events in the most optimal way.
Then, collected events would be asynchronously recorded
on disk for offline analysis.
Another way of tracing virtual environments would be to
offload guest events directly to the host. This mechanism
requires using a transport channel, such as hypercall. When
offloading guest events using hypercalls, there are three
different offloading configurations to consider, discussed as
follows:

One-to-One: 1-event to 1-hypercall This configuration
restricts the data transmission to only one hypercall per
event. Each guest event will cause a trap in the host hy-
pervisor, using host timestamps when recording the guest
event.

In the case of high event frequency, this configuration
may dramatically impact the overall performance of the
guest execution. However, no latency is added to traced
events and, as a result, we have instant insight into what
is happening inside guests, from a host perspective with
aligned timing. This mechanism allows tracing many guests
at the same time in live monitoring.

One-to-Many: 1-event to n-hypercalls This
configuration may help the situation when a specific
event needs more memory space than available (e.g. fixed
number of registers) to send a payload. In this case, two or
three hypercalls may be used for the transmission, resulting
in an enormous performance impact on the guest execution.
In this paper, we didn’t find a need for this configuration.
First, all traced event data payloads did fit between 1 to 4
registers. Secondly, a shared page can be shared between
the host and guest in order to expand the hypercall payload
maximum size.

Many-to-One: n-events to 1-hypercall The purpose of
this configuration is mainly to reduce the overhead induced
by a hypercall. The idea is simple, multiple hypercalls can
be batched as a single hypercall. This is important to reduce
the number of hypercalls being used for sending events.
The more hypercalls are batched, the less overhead we get.
We named this mechanism the event batching and event
compression.

Event Batching When event batching is enabled, we save
the payload and record the guest timestamp on each event.
When the last event of the batch is encountered, we group
the events data as much as possible to fit into the hypercall
payload. Instead of sending a guest timestamp, we send the
time delta of each event, which would be computed against
the guest last event. The last event will trigger a hypercall
and a timestamp will then be recorded in the host, which
will be used to convert the batched events times delta into
host timestamps. Storing the time delta requires only 32 bits,
and enables batching events within a maximum interval of
4 seconds. This is sufficient for the groupings envisioned.

Even with a minimal configuration, event batching turns
out to be very efficient. However, this mechanism would
mostly work for periodic events that happen frequently.
Moreover, finding the appropriate number of events to batch
largely depends on the type of events being traced. The
main drawback of batching is the latency added before an
event becomes visible, for instance in live tracing. Another
problematic scenario is upon a crash, the crucial last few
events before the crash may be held up in a batch being
assembled.

In order to fit as many events as possible in the payload,
the batched events should be periodic, frequent, and from
the same event type. These properties are already present
in most operating system applications. Nonetheless, in this
paper we focus on the Linux operating system.

Linux offers a robust tracing infrastructure that supports
static and dynamic instrumentation. Static tracepoints have
been manually inserted into different subsystems, allow-
ing developers to better understand the kernel runtime is-
sues. Scheduling, memory management, filesystems, device
drivers, system calls and many more are important compo-
nents in the kernel, and they are exercised frequently during
the execution. These components are already instrumented,
and they can efficiently be used with event batching since
they occur periodically in the system. As an illustration, Fig.
5 provides more details on how batching scheduling events
could be implemented. We have used the sched switch
event as an example in this figure.

Sched switch is the linux trace event that shows the
context switches between tasks. This event allows recording
information such as the name, priority and tid of the previ-
ous and the next tasks. This is represented by seven fields
as follows: prev prio, prev state, prev tid, prev comm,
next prio, next tid and next comm. In linux, the pid/tid
maximum value is configurable, but pid has a default max-
imum value of 32768, which needs only 15 bits to be stored.
The task priority and it state can be stored within 8 bits
each. The task name length is 16 characters, and requires
two registers to be stored.

If we use a one-to-one configuration, each sched switch
event would require 5 registers (64 bits architecture),
which can easily fit into a hypercall payload. Batching
sched switch events is much easier than it looks. As has
been noted previously, the sched switch event contains data
fields about the previous and next tasks. We notice that,
when analyzing two consecutive sched switch events, as
shown in Fig. 5, the task ”migration/1” which was included
as the ”next task” in the first sched switch event, is also
included in the second sched switch event as the ”previ-
ous task”. Therefore, event compression can be enabled,
omitting the repeated information, in order to batch more
sched switch events within the payload.

The effectiveness of any compression algorithm is evalu-
ated by how much the input size is reduced, which depends
on the input data. In our case, the situation is different. We
have a predefined and fixed length of hypercall payload,
and our goal is to fit in that payload as many events as
possible, without losing any information.

With compression enabled, event batching will take into
consideration only the ”next task” fields, as the ”previous
task” fields can be retrieved from the previous event while
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Fig. 5. Event batching of schedule switches events with compression enabled.

consuming these events from the host.
Using the above compression optimization will allow

us to compress 3 sched switch events while using only 9
registers: 1 register to store the time delta and 8 to store
the event fields. To be able to compress more than 3 events,
using a hash would be optimal for storing characters like
task name which can be to fit into 32 bits, or use a guest-
host shared page to store these characters as debug symbols.

A direct limitation of the event batching mechanism is
that we often want to group together the function entry
and exit while enabling function tracing, in order to reduce
the overhead by 50%. However, functions that last a long
time (e.g. close to the root of the call tree such as the main
function) would not be collected if tracing was stopped
before recording their exit event.

6.1.3 Architecture

In this section, we discuss the implementation of our hy-
pertracing technique using hypercall as a transport channel.
We have chosen to implement it within the Linux Ftrace in-
frastructure. Ftrace is an internal Linux kernel tracer, which
enables this tracer to investigate problems earlier during the
boot-up stage and later during the shutdown stage.

The hypertracing architecture is presented in Fig. 6,
where we illustrate the hypergraph and bootlevel internal
probing mechanisms for performing hypertracing from a
guest system. On the host side, we must enable hypercall
tracing to collect hypercalls emitted by either hypergraph
or bootlevel; any available Linux tracer can be used for the
trace collection.

Hypergraph was developed as a plug-in within Ftrace,
which provides the ability to enable function tracing. Unlike
the function graph tracer, hypergraph doesn’t need to store
collected events into the Ftrace ring buffer. Instead, it di-
rectly uses the hypercall API and sends the function address
to the host hypervisor. As a result, we can retrieve the VM
call stack during any stage, such as boot-up and shutdown,
or even during kernel crashes.

A very important feature of this tracer is to associate the
call stacks of VM processes with the vmexits generated by
that VM. This helps to narrow down which function was
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Fig. 6. Hypertracing architecture using hypercalls as transport interface,
and illustrating hypergraph and bootlevel tracers.

causing more hypervisor traps.

Bootlevel tracer provides the ability to trace boot levels
and built-in modules initializations, known as initcalls.
Instead of using the mcount hook for tracing initcalls, we
used trace-points (static instrumentation) which results in
less overhead.

Using hypergraph involves a greater overhead, this is
why we advise using the bootlevel tracer at first, in order
to get the overall picture, without any noticeable perfor-
mance degradation. Then, one can use a more fine-grained
approach like hypergraph for enabling function tracing and
getting in-depth details.

6.1.4 Performance analysis

In order to measure the effectiveness of the hypertracing
mechanism, by using micro-benchmarks we study the cost
of tracing guest kernel events using the traditional tracers
such as Lttng, Ftrace and Perf. Then, we compare those trac-
ers against hypertracing with and without batching enabled.

From the results, presented in Fig. 7, we find that batch-
ing reduced greatly the hypertracing overhead compared
with other tracers. We notice that the overhead is reduced by
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a factor of 3 (from 425 ns to 150 ns) with minimal batching
(2 events). This performance is even higher than that of the
Perf tracer.

The batching cost is a constant overhead of about 25
ns. It involves recording guest timestamps on each event,
and computing each event (grouped) time delta to be stored
in the payload. Hypertracing outperforms the LTTng and
Ftrace tracers when batching 5 events or more together.
Thus, with a relatively small number of batched events, it
performs better than the finest tracers.

Batching many events may result in having less space
for the payload of each event within the hypercall. Batching
15 events results in a 50 ns overhead per event, but in return
the hypercall payload will only have 24 bytes available.
Therefore, batching 9 events may be better than batching
15 events, because it doubles the payload length to 48 bytes,
in exchange for just an additional 12 ns overhead.

●

●

●

●

●

●

●

Fig. 7. Offloading latency of the hypertracing, batching is enabled only
when at least two events are combined.

Fig. 8. Different component overhead involved in hypertracing when
using event batching.

Tracing through hypercalls involves overhead in differ-
ent layers. This mechanism starts by hooking a probe call-
back in the guest trace event infrastructure. The registered
callback would be called whenever these events occur. At
this point, a hypercall would be triggered using one of the
three offloading configurations previously explained. From
the host side, the triggered hypercalls are gathered by using
a tracer. Any tracer could be used to trace hypercalls, and
in this work we are using LTTng due to its low tracing
overhead.

In order to understand which part of tracing does im-
pact the performance, we perform another experiment to
measure the cost of each component. The results are shown
in Fig. 8. By analyzing the results, we find that ”batching”
not only reduces the hypercall overhead but it does reduce
the host tracing overhead as well. As can be seen in the
figure, the hypercall is the main source of overhead, being
70% of the overall cost. Host tracing comes second with
a 25% cost. On the other hand, using a minimal 2-events
batching configuration adds 17 ns of overhead. In return, it
reduces the hypercall and host tracing cost by 65% and 72%
respectively.

6.2 Hypertracing Through Memory Sharing

Shared-memory based communication channels are known
for their high-bandwidth and performance, compared to
other existing communication mechanisms. It allows ef-
ficient data sharing across virtualization boundaries, by
enabling guest-host and inter-guests communication. When
communicating with memory, the host hypervisor inter-
vention is only required when performing notification or
synchronization. Our primary aim is to prevent any host
involvement while designing the trace sharing mechanism.
For this reason, we do not use any notification mechanism.
In this paper, we mainly focus on communication between
guest and host. It is an asynchronous-based communication,
where the shared data is consumed without the need for
explicit synchronization.

6.2.1 Architecture

We developed the shared memory buffer as a virtual CPU
producer-consumer circular buffer. In any buffering design
scheme, data overflow may occur when the producer is
writing faster than the consumer client reads. In this case,
two modes may be used. The first one, is the blocking mode,
where the producer suspends writing into the buffer when
full, causing new data to be lost. The second, is the flight
recorder mode, which overwrites older data in order to push
recent data into the buffer.

The flight recorder mode is used here, continuously writ-
ing into the shared buffer, to prioritize the recent data. This
mode constantly has the latest data, which is convenient
when we want to take snapshots of the shared buffer on
specific events such as guest exits, task migrations and more.

Fig. 9 shows our shared buffer design. Both the guest
and host do write into the shared ring buffer but not at the
same time. Guests may use any traditional monitoring tool
for recording trace events into the shared buffer. When a
trap happens (the hypervisor emulates guest privileged in-
structions), the host would then record guest related events
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Fig. 9. Shared ring buffer between guest and host.

(VMCS data) into the shared buffer of the preempted virtual
CPU. In other words, the host would be responsible for
offloading virtualization events to its guests for monitoring
purposes, which would then enable guests to be aware of
the virtualization operations performed by the hypervisor.

7 NESTED PARA-VIRTUALIZATION

Nested virtualization is the concept of enabling a VM to
run as a hypervisor. VMs running inside guest hypervisors
are called nested VMs. Once this feature is enabled by the
Infrastructure-as-a-Service (IaaS) provider, cloud users will
have the ability to manage and run their favorite hypervisor
of choice (like Xen, VMware vSphere ESXi or KVM) as a
VM.

The x86 virtualisation is a single-level architecture, it
follows the ”trap and emulate” model and supports only
a single hypervisor mode. Running privileged instructions
from a guest level or nested guest level should cause a trap
to the host hypervisor (L0). Any trap received by the host
should be inspected; if the trap was coming from a nested
level, it should be forwarded to the above hypervisors for
emulation. Since the guest hypervisor (L1) is unmodified,
it has the illusion of absolute control of the physical CPU.
When L1 receives the trap forwarded from L0, L1 will emu-
late the nested VM (L2) trap using VMX instructions. VMX
instructions are privileged instructions too, and they can
only execute in root mode. In this case, VMX instructions
should be emulated by L0, which causes additional traps
[28].
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Fig. 10. Exit multiplication, caused by nested traps

This phenomenon is called exit multiplication, which is
illustrated in Fig. 10, where a single high level L2 exit causes
many L1 exits leading to performance degradation. The Tur-
tles Project [28] proposed two optimizations implemented

in KVM, in order to reduce L1 exits frequency. The first
one optimizes the transitions between L1 and L2 by optimiz-
ing the merging process of VMCS0 → 1 and VMCS1 → 2 into
VMCS0 → 2, copying only the modified fields, and perform-
ing multiple fields copy at once. The second optimization
relies on improving exit handling in L1 by replacing vmread
and vmwrite instructions by accessing directly VMCS1 → 2 by
non-trapping memory load and store operations.

Nested paravirtualization is a way of performing par-
avirtualization from nested levels, which may result in
exit multiplication. If the paravirtualization technique used
relies heavily on the hypervisor, it would decrease the guest
performance. As presented in section 5, Nahanni (memory
sharing region) is the only mechanism that does not require
any hypervisor involvement while reading and writing to
the shared buffer. This mechanism enables efficient hyper-
tracing through shared memory, where any nested guest
may communicate with the host, guest or any nested guest
without any performance degradation.

The virtio (page sharing) channel requires notification
operations to perform inter-VM communication. This noti-
fication is a kick call performed by pio operation or a hyper-
call, either of which will lead to performance slowdown.

Using hypertracing through a hypercall channel may be
the most costly mechanism to use from a nested level, be-
cause it purely relies on vmcall, which is a VMX instruction.
To understand the cost involved in nested hypertracing, we
performed micro-benchmarks of hypercalls from different
layers L1, L2 and L3. The results are presented in Table 1.
The table shows that performing a single hypercall from L1

costs only 286 nanoseconds, whereas performing a hypercall
from L2 (nested guest) costs about 9.3 microseconds, which
is about 33 times worse than L1. And L3 is the worst, with
232.7 microseconds, about 814 times worse than L1.

The huge overhead noticed between L1 and L2, is the
result of exit multiplication happening while the guest
hypervisor handles the vmcall instruction. For this matter,
we propose an optimization in the form of a patch [29]
implemented in KVM; it can be ported to other hypervisors
as well. This patch optimizes the vmcall exit handling in L0.
The concept of this contribution is to avoid involving the
nested hypervisor in the communication between the nested
guest and the host, which removes any exit multiplication
in the nested communication path using hypercalls. Mainly,
this prevents the vmcall instruction, executed from L2 (or
Ln, with n>1), to be transmitted to L1, since a single exit L2

can cause many L1 exits. This optimization processes vmcalls
from nested layers with a single exit, for an additional 1-2%
overhead compared to L1, as also shown in table 1.

TABLE 1
VMCALL overhead from nested layers

Baseline

L1

Nested vmcall Overhead

L2 L3 L2 L3

Default 286 ns 9.3 us 232.7 us x33 x814

L0 optimization 286 ns 289 ns 292 ns 1 % 2.1 %
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Fig. 11. Linux boot-up sequences.

8 USE CASES

This section shows how we used hypertracing to solve real
world issues.

8.1 Early Boot Crashes

Kernel crashes are frequent during the development cycle;
kernel developers often use the serial console to inspect
debugging messages like printed call stacks or registers
values. A more sophisticated and modern way to debug
kernel panics is tracing. Tracing enables developers to track
back the prior events that led up to the crash. Ftrace im-
plements a feature called ftrace dump on oops. Enabling
ftrace dump on oops makes debugging crashes much eas-
ier by dumping the entire trace buffer to the console in
ASCII format.

Kernel panics happening during the boot-up phase are
much more difficult to investigate. The console output is the
only available tool during boot-up, but it remains limited
when non-trivial issues happen at a very early stage.
Ftrace is an internal Linux kernel tracer; this interesting
property makes this tracer most suitable to use for inves-
tigating kernel boot issues. We have submitted a kernel
patch [30] to the Linux kernel to enable function tracing
at a very early stage during boot-up. This contribution
enables tracing and debugging during the early kernel boot-
up. Moreover, we faced some challenges while developing
this feature. We found no way to debug kernel crashes
happening during the development of this feature. In early
boot-up, the console output is not yet initialized, which
makes it almost impossible to debug.

In a virtualized environment, the host system is fully
available but does not have access to guest information, and
the guest system has all the information but is in the initial-
ization phase. Therefore, the goal is to use host collaboration
to debug early guest initialization crashes by using paravir-
tualization. Hypercall is the most suitable paravirtualization
technique at that point because it only uses registers and
vmcall instructions to communicate. At an early stage, either
memory sharing or networking cannot be used, so using an
infrastructure-less technique such as the hypercall is most
appropriate for this particular configuration.

We used a combination of both static and dynamic code
instrumentation techniques to insert our tracing hypercalls
into the kernel code. For dynamic instrumentation, we used
the mcount mechanism that can be enabled using a gcc com-
pilation option called ”-pg”. We placed a hypercall inside
the mcount callback function, which is invoked on every
function entry. This way, we can get the call stack that led up

to early initialization crashes. With static instrumentation,
we instrumented some large functions to dump the values
of some variables. We instrumented some inlined functions
that were not handled by the mcount mechanism. We also
instrumented some assembly code too, (hypercall was a
perfect choice for that), because it only needs one instruction
(vmcall) to perform tracing.

8.2 VM Boot-up

In any cloud platform, the procured VMs need some amount
of time to be fully operational for cloud users. Cloud
providers require time to select a host in their data centers
on which to run the requested new VMs, for resources to be
allocated (such as IP addresses) directly to the VM, as well
as to copy or boot or even configure the entire OS image.
Many surveys and blogs raised questions about these issues.
More importantly, cloud users have also complained about
this unexpected long provisioning time issue [31]. It hurts
their cloud application performance and slows down their
development productivity.
In fact, this dynamic process is inevitable to ensure cloud
elasticity. A long undesirable latency during this process
could result in a degradation of elasticity responsiveness,
which will immediately hurt the application performance.

In a cloud system, three distinct stages are performed
when a client requests to start a VM. In the first stage, the
platform identifies a suitable physical node to allocate the
requested VM. The second stage is based on transferring
the VM image from the image store to the compute node.
While in the final stage, the VM is booting on the physical
node [32].
Most cloud providers have a centralized scheduler that
orchestrates VMs provisioning. In this matter, the first stage
can be completed within a few seconds. In the second stage,
the network bandwidth and the image size do impact the
transfer rate. Previous work [2] has performed a compara-
tive performance study of VM booting on Rackspace, Azure
and Amazon EC2. They concluded that the provider infras-
tructure greatly impacts the network transfer rate, which
affects the overall launching process. Finally, the boot-up
stage is mostly neglected in the cloud research. Researchers
take for granted that this stage requires a small amount of
resources.

Boot-up phases

BIOS Boot loader Kernel Userland / boot scripts

Fig. 12. Boot-up stages.
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Fig. 13. Tracing VMs boot-up levels and built-in modules.

Fig. 14. Detecting kernel panics happening during a VM boot-up.

The VM boot-up stage is performed like any normal
Linux boot process, which is illustrated in Fig. 12. When the
hypervisor executes the VMLAUNCH instruction, the BIOS
starts by performing hardware checks. Then, it locates and
loads into the memory the bootloader. Next, the boot loader
loads the kernel binary into the main memory and perform
a jump to the first kernel code located in head.S. Only
processor CPU0 is running at this moment, and the kernel
performs synchronous initialization with only one thread.
Global data structures, CPU, virtual memory, scheduler,
interrupt handlers (IRQs), timers, and the console are
all initialized in a strict order. This part of the system is
behaving like a real-time operating system, and runs fairly
quickly. This behavior changes when the kernel runs the
function rest init(); the kernel spawns a new thread to load
built-in code (modules) and initialize other processors. The
final phase happens when the kernel runs the init process
(PID 1), the first userspace program. At this step, the system
is preemptible and asynchronous.

Built-in modules are grouped by functionality into sep-
arate sections known as boot levels. These sections are
defined as follows in a specific order: console, security, early,
pure, core, post-core, arch, subsys, fs, rootfs, device and late.
Fig. 11 shows the boot sequence order when the kernel boot-
up happened in one second.

A built-in module can register itself in any boot level
using the kernel initialization mechanism called initcall [33].
The boot order of each level is statically defined and iden-
tical across all Linux systems. However, the ordering of
modules inside each level is determined by the link order.

The blacklist feature allows users to prevent some built-in
modules from loading during the boot-up, which enables
runtime customization of the boot process.

To be able to monitor issues happening during VM boot-
ups, we have developed two Ftrace plugins [29]. The first
plugin is the bootlevel tracer, which enables tracing boot
level sequences. The second plugin is the hypergraph tracer.
This technique provides the ability to trace guest kernel
call stacks directly from the host. It works by offloading
(through hypercalls) the guest sched switch and function
entry/exit events. This technique can also be used to debug
other use cases like unexpected shutdown latencies, or ker-
nel crashes. In this section, hypergraph would be configured
to solely trace initcalls (built-in modules) entry & exit, which
would help detect latencies during boot-up.

We produced two different experiments to test our
method. In both experiments, we enabled host tracing us-
ing the following trace events: kvm hypercall, kvm exit,
kvm entry and kvm write tsc offset. The first experiment
focuses on understanding the boot time in various scenarios
where concurrent VMs are booted, whereas the second
experiment addresses the case where a crash occurs while
loading a specific module.

The result of the first experiment is shown in Fig. 13.
In this experiment, we spawned at the same time six VMs
VM1, VM2.1 (nested VM within VM2), VM3, VM4, VM5
and VM6, each with one virtual CPU and 2 GB of memory,
and pinned their vCPU0 to a dedicated physical processor
except for VM4 and VM5, they both have been assigned to a
single core (CPU5). The following VMs, VM1, VM2.1, VM3,
VM4, and VM5 have identical kernel images. Their kernel
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Fig. 15. Tracing VM shutdown sequences.

was configured using the make target localmodconfig, which
provides a way to disable modules that are not required
by the system. In our system, this configuration produced
a lightweight kernel image; it contains 830 built-in modules
loaded during the boot-up. VM1 and VM2.1 are booting on
separate processors CPU1 and CPU2 respectively. But they
still have different boot times, about 850 ms and 930 ms
respectively. The VM2.1 is booting from nested level (L2),
this explain the overhead (about 9%) compared to VM1.

Next, we study a scenario where two concurrent VMs
(VM4 and VM5) are booting on the same CPU. The boot
time of VM4 and VM5 is 1.6 and 1.5 seconds respectively,
about twice the time it took for VM1 to boot. Furthermore,
in Fig. 13 we notice that in either VM4 or VM5, latency was
present across all boot sequences. In fact, VM4 and VM5
were preempting each other all the time, and they shared
the processor resources equitably through boot sequences.

In VM3, we implemented a custom module named la-
tency module init loaded under the device boot level. This
module introduces a 324 ms latency at the device level,
which added a 35% overhead to the boot-up, and resulting
in 1.3 seconds of boot time.

The boot time of VM6 was 1.14 seconds, VM6 was also
configured using the make target localmodconfig. Addition-
ally, we changed some configuration entries that were setup
as ”=m” by ”=y.” When a module is set with ”=m,” it will
be loaded as an external module once the boot-up finished.
By turning a configuration value from ”=m” to ”=y,” the
selected modules will be loaded during the boot-up at the
device level. This change added 130 modules to be loaded
by VM6 as compared to VM1, and resulted in 27% overhead
for the boot-up.

The result of the second experiment is shown in Fig. 14.
This experiment aims to verify the effectiveness of hyper-
tracing toward kernel crashes. We implemented a module
called crash module init; we registered this module to load
during device boot level. This module tries to access a non-
existing memory which immediately causes a kernel panic.
As a result, our monitoring technique detected this crash
right away, as seen in Fig. 14.

8.3 VM Shutdown

We verified that the hypertracing method works for tracing
late shutdown sequences while rebooting the VM. We used
the hypergraph tracer to trace the kernel restart(char *cmd)
function that is related to rebooting the system. The result is
shown in Fig. 15.

The function kernel restart is called after performing
a reboot system call from userland. Then, the following
sequence is performed:
Reboot notifiers: This step goes through the reboot notifiers
list of hooks to be invoked for watchdog tasks. Fig. 15 shows
that this step took about 1 second to complete. Most of the
time was spent within the md notify reboot notifier call.
While inspecting the Linux kernel source code, we found
that the md notify reboot() function effectively performs a
call to mdelay(1000) when at least one MD device (Multiple
Device Driver or RAID) was used. In our case, the VM was
using an MD device which led to the 1 second delays.
Disable usermod: This step ensures that no more userland
code will start at this point.
Device shutdown: This step will release all devices on the
system, about 340 devices were released in the experiment
seen in Fig. 15. Among these devices, the sd device (driver
for SCSI disk drives) took about 40% of the total time for
this step.
Migrate to reboot cpu: In this step, the kernel forces the
scheduler to switch all tasks to one particular CPU. Only a
single CPU is running from this point on.
Syscore shutdown: This step performs some shutdown
operations like disabling interrupts before powering off the
hardware.

8.4 Rolling Upgrade

In a competitive market, cloud and online service providers
guarantee the high availability of theirs platform services
using Service Level Agreements (SLAs). Availability refers
to the time that a service is operating correctly without
encountering any downtime, which may be high but cannot
reach 100%. For this reason, cloud providers commit to
ensure an annual uptime percentage, like Amazon AWS
which provides an uptime of at least 99.999%, equivalent
to less than 6 minutes per year.
Based on recent studies [34], [35], software upgrades are the
major cause of such downtime (planned or unplanned) with
up to 50% rates of upgrades failure.

Best practices recommend that industries avoid
downtime using rolling upgrades. This mechanism enables
upgrading and rebooting a single host or domain at a time
through the data center [36]. However, this approach may
result in temporary performance degradation caused by
using the network when transferring the new release to the
target nodes, and by having capacity loss while rebooting
some nodes. Rolling upgrades are a good solution for
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Fig. 16. Performing rolling upgrade on the application simulator.

resources with a high number of identical units, such as
nodes in a cloud. There are other resources such as controller
nodes or network switches where there are few units and
the downtime associated with upgrading each unit is
much more problematic, hence the importance in those
cases of optimizing the upgrade shutdown and reboot cycle.

With the uprising of the computing as a service model, a
big shift was noticed toward hardware simulation, enabling
industries to test, simulate and validate their services
using simulated hardware at low cost. Using a simulated
environment improves development and ensures quality
of the embedded software before deploying it to real
hardware. A typical fault-tolerant embedded hardware
unit is composed of one controller and two (or more)
circuit boards defined as primary card and secondary
card. The secondary card is used for resiliency purpose; it
takes control when the primary card is not available. VMs
are used to simulate the hardware unit. A VM is needed
to simulate the controller, and two others (SimVM1 and
SimVM2) to simulate the primary and secondary cards.

A particularly interesting case we have seen in a product
is the presence of some important performance degradation
while performing a rolling upgrade within a simulator. An
unexpected latency occurred while rebooting the SimVM in
the context of an upgrade. Interestingly, this delay was not
present when performing the same software upgrade on real
hardware. As noted, the difference between the hardware
and the simulation is the presence of virtualization and the
application simulator.

Fig. 16 illustrates the sequence of the rolling upgrade.
The first card to be upgraded is the secondary card SimVM2.
The controller asks the primary card (SimVM1) to initiate
the upgrade process when the target load (release) was
delivered. Then, the steps 1, 2 and 3 are performed by the
primary to prepare the secondary for the upgrade. Step 4
involves rebooting the secondary card, and it took about 40
seconds. When the secondary card is booted with the new
load, SimVM1 sends a request to SimVM2 to switch its state
to primary, then SimVM1 performs the reboot. After step 5,
the primary card is now SimVM2, when SimVm1 is booted
with the new load it becomes secondary. In the final step,
SimVM2 sends to the controller a commit message which
indicates that the upgrade was completed.

During the upgrade, the whole system becomes vulner-
able and loses its redundancy (fault-tolerance) for about 80
seconds, which is a significant period of time. The boot-
up and shutdown sequences are an important part of the

upgrade and should be closely investigated.
We traced both the shutdown and boot-up using the hy-

pertracing techniques previously presented (bootlevel and
hypergraph tracers). As a result, we found no latency related
to the kernel boot-up and the shutdown, they both took
about 1 second each to complete. Normally, it is possible
to enable monitoring tools after boot-up, but during the
upgrade, the stored traces are destroyed, because of the
unmounting operations that are performed to prepare for
mounting the new release filesystem. To overcome this
situation, we decided to use hypertracing to trace boot
scripts initialization too. For this matter, we have developed
another hypertracing tracer called hypertrace [29]. Since we
did not know what caused this latency, we enabled some
specific events that are presented as follows: scheduling
events, system calls, timer and interrupts (IRQs) events.
Analyzing 40 seconds of a trace is very difficult, thus we
decided to use the critical path analysis [37]. This analysis is
already integrated into TraceCompass1, and was developed
by our research group2. The result of the analysis is shown
in Fig. 17.

Fig. 17. Active path of the application simulator. Some sensitive informa-
tion like process’s names were hidden, due to privacy concerns.

After the boot-up, the application simulator performs
some logging during its initialization; the first logged mes-
sage was ”Starting simulation application” which occurred
30 seconds later than the previous message. When analyzing
the results shown in Fig. 17, the active path of the appli-
cation simulator was blocked by the syslog-ng process for
about 30 seconds, this explains the presence of a 30 seconds
interval within the simulator logs.

The 30 seconds delay seems like a default configuration
for a network timeout. This means that the syslog-ng is
somehow offloading logs to an unavailable remote server.
However, as we know, syslog would normally use the

1. http://tracecompass.org
2. http://dorsal.polymtl.ca
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rsyslog process for remote logging, instead of syslog-ng,
and there is no rsyslog process in the trace. While digging
into the syslog configuration file, we discovered that syslog
was configured for writing over an NFS mount, whereas the
remote NFS server was unavailable. When syslog receives
the timeout message 30 seconds later, it falls back to the
default mode and then uses a local file for logging.

8.5 Virtualization Awareness

We verified that the hypertracing method works through
a shared memory region. We used QEMU ivshmem (Na-
hanni) to enable a shared ring buffer between the guest and
host. We enabled guest kernel tracing and configured it to
write into the shared buffer. On each hypervisor trap, we
record the hypervisor event (VMEXIT and VMENTRY) into
the shared buffer. With this configuration, the guest could
detect delays related to virtualization.

In this use case, we show how virtualization awareness
could help us to find the root cause of latency from guest
only. We executed sysbench as a CPU workload (prime
numbers) inside the guest which had a single vCPU. Fig.
18 shows the results of guest tracing.

Fig. 18. vCPU migration detection.

We have used three views to explain our findings. The
control flow view shows that the sysbench process was
running (Green color) on the CPU for the whole period of
time. This is the kind of view that we usually get without
enabling virtualization awareness. The virtual CPU view
shows additional information, such as vCPU preemption
states (Purple color) and VM transiting states (Red color)
from VMX root mode or non-root. As expected, the vCPU
was preempted many times during this experiment, this is a
normal behavior. But we notice a long delay of 40 ms caused
by a vm exit with an exit reason of 1. The value 1 means that
an external interrupt was triggered from the host to preempt
the vCPU.

The virtual resources view shows which physical CPU
was used by the guest. We can clearly see that the guest

vCPU0 was migrated from pCPU7 to pCPU5. Resulting into
a 40 ms latency caused by the vCPU migration.

9 OVERHEAD ANALYSIS

In this section, we compare the overhead of our approach
with the existing monitoring tools. Table 3 presents the
added overhead of tracing boot-up sequences for existing
tracing tools. Our bootlevel tracer achieved a very low
overhead of 0.44%; no existing tool can be compared to our
tracer because none of them do trace boot levels. Bootgraph
and function graph tracer are both able to trace initcalls,
similar to our hypergraph tool. Bootgraph uses the console
to print the initcalls duration. Then it parses the dmesg
output to retrieve the timings of the initcalls. The Ftrace
function graph tracer uses the mcount mechanism to trace
function entries & exits; each event will be recorded to the
ring-buffer.

The bootgraph overhead is mostly related to using
printk, which will write to the kernel console buffer, an
inefficient channel for performance monitoring. The func-
tion graph tracer exhibits the worst performance; this is
mainly due to the ftrace initialization time. Ftrace uses mem-
ory frame allocation at initialization time to setup it buffers
(per-CPU ring-buffer); this avoids postponed page faults
when tracing is enabled. However, since we are monitoring
the boot-up, the page faults overhead resulting from the
frame allocation does significantly impact the performance
of the boot time. Hypergraph achieved the lowest over-
head at about 0.52%. Unlike bootgraph and function graph,
hypergraph does not rely on ftrace or printk buffers, but
instead uses hypercall to offload it events.

In order to get a clear understanding of the overhead
involved when using hypertracing, we ran sysbench Disk
I/O, CPU and Memory representative workloads to com-
pare our approach with the multi-level [6] tracing approach.
We enabled tracepoints that are related to scheduling and
system call events inside the VM. We also enabled hy-
pervisor events on the host such as kvm exit kvm entry
and kvm hypercall, which are used by all the approaches.
Moreover, we enabled synchronization events that were
needed for the multi-level approach to work. The results
are presented in Table 2.

Hypertracing through shared memory has the mini-
mal overhead among all approaches. Particularly with I/O
workloads, our approach incurs the lowest overhead of
about 6%. The reason behind this low overhead is that we
have configured the shared buffer to be consumed asyn-
chronously from a different host CPU, it means that all I/O
operations related to tracing were handled by a different
host process running on a dedicated CPU.

Unlike hypertracing, the multi-level approach consumes
it trace buffer from inside the VM. Doing I/O operations
inside a VM require hypervisor involvement for handling
the I/O device virtualization, resulting in a more context
switching between guest and hypervisor which induce
much greater overhead of about 11%.

Hypertracing through hypercalls shows a significant
overhead of 38%, due to the higher presence of sys write
events. Enabling event batching did significantly reduce
the overhead from 38% to 25%, about a 70% improvement
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TABLE 2
Comparison of multi-level tracing approach [6] with our hypertracing approach for synthetic loads

Benchmark Baseline
Multi-level

tracing

Hypertracing Overhead (%)

Shared

memory
Hypercall Batching Multi-level

Shared

memory
Hypercall Batching

File I/O (ms) 52.380 58.220 55.960 72.714 65.580 11.15 6.83 38.82 25.2

Memory (ms) 525.788 538.544 537.530 540.368 537.118 2.42 2.23 2.77 2.15

CPU (ms) 1380.34 1428.076 1421.426 1430.085 1426.404 3.45 2.97 3.6 3.33

TABLE 3
Comparison of existing boot-up tracing tools and our hypertracing

approach

Boot-up tracing Time (ms) Overhead (%)

Baseline 734.43 -

Bootlevel 737.67 0.44

Hypergraph (initcalls) 738.28 0.52

Bootgraph (initcalls) 740.45 0.81

Ftrace function graph (initcalls) 743.06 1.17

since we only used a minimal batching configuration to
group system call entry and exit events. Using a more
aggressive batching configuration will definitely reduce the
overhead even more. With CPU and memory workloads, all
the approaches had similar overheads, around 2% and 3%
respectively. Hypertracing performed slightly better com-
pared to multi-level when enabling event batching.

10 CONCLUSION

In this paper, we presented hypertracing, a paravirtualiza-
tion technique that we used as new monitoring infrastruc-
ture for investigating virtual machines performance issues.

We presented the strong and weak points of existing
inter-VM communication channel alternatives to TCP/IP.
Then, we compared their throughput and concluded that
memory sharing achieved higher efficiency. We then ex-
plained how we developed hypertracing using hypercalls,
which enables debugging VMs within sensitives phases
such as system crashes, boot-up and shutdown. We also
showed how hypertracing can be used with the shared-
memory-based approach for enabling virtualization aware-
ness within VMs.

Finally, we proposed an L0 optimization in the form of
a patch to KVM. This contribution enables efficient nested
paravirtualization, and allows our technique to monitor any
nested environment without additional overhead. Current
monitoring tools incur a significant overhead due to exit
multiplication caused by I/O operations.

In the future, we aim to combine hypercall and memory
sharing techniques to enable advanced hypertracing mecha-
nisms. This configuration would combine the advantages of
each channel, and thus enable complex issues to be solved.
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