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RESUME

Ce mémoire vise a étudier les effets des fondations sur les sollicitations sismiques au sein des
barrages poids et des structures connexes & I’aide d’analyses par éléments finis. A cette fin, des
composantes sismiques horizontales et verticales sont appliqués aux systemes barrage-réservoir-
fondation pour évaluer les effets de ’interaction sol-structure sur les spectres de plancher des
accélérations horizontale et verticale, représentant les accélérations maximales des structures

annexes au barrage.

Le systeme barrage-réservoir-fondation est modélisé en utilisant des éléments finis solides
bidimensionnels (2D), incluant des éléments spéciaux assurant I’interaction fluide-structure a
I’interface barrage-réservoir, et des conditions aux limites absorbantes, i.e. amortisseurs visqueux
de Lysmer-Kuhlemeyer, aux limites inférieures et latérales du domaine modélisé de la fondation
du barrage. La masse de la fondation du barrage est incluse dans les modeles numériques. Par
conséquent, un processus de déconvolution est effectué pour obtenir les signaux sismiques a la
base de la fondation. Un programme MATLAB efficace a été programmé a cet effet.
Parallélement au traitement des données sismiques, et I’application des transformées de Fourrier
(FFT, IFFT), une analyse temporelle a été effectuée a chaque itération du processus de
déconvolution. Le signal sismique résultant a été modifi¢ a 1’aide de deux techniques d’ajustement.
Des analyses de sensibilité ont été effectuées pour étudier les effets des dimensions de la fondation,
sa flexibilité et des conditions aux limites du domaine sur la convergence et la précision des

résultats, ainsi que 1’efficacité des techniques employées.

Les signaux horizontaux et verticaux obtenus de la déconvolution sismique ont été utilisés pour
effectuer des analyses dynamiques temporelles des systémes barrage-réservoir-fondation, afin
d’évaluer les effets de la masse de la fondation et de I’interaction sol-structure sur les spectres
d’accélération de plancher au sein des barrages étudiés. Les effets de la flexibilité des fondations

et du taux d'amortissement sur les sollicitations sismiques sont également étudiés.

La déconvolution et les analyses sismiques sont effectuées sur deux barrages poids. Un barrage de
121 m de haut (Pine Flat), et un plus petit barrage poids de 35 m de haut. Les accélérations

horizontales et verticales du séisme de Taft (1952) sont utilisées pour illustrer les résultats.
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ABSTRACT

This research aims at investigating rock foundation effects on the seismic demands with concrete
gravity dams and their appurtenant structures using finite element analyses. For this purpose,
horizontal and vertical seismic components are applied to dam-reservoir-foundation systems to
evaluate the effects of soil-structure interaction on both horizontal and vertical acceleration floor

spectra, representing maximum acceleration response experienced by dam appurtenant structures.

The dam-reservoir-foundation system is modelled using bidimensional (2D) solid finite elements,
including fluid-structure interaction special elements at the dam-reservoir interface, and absorbing
boundary conditions, i.e. viscous Lysmer-Kuhlemeyer dampers, at the bottom and lateral
boundaries of the dam foundation domain. The mass of the dam foundation is included in the finite
element models. Therefore, a deconvolution process is carried out to obtain the deconvolved
earthquake signals at the base of the foundation. An efficient MATLAB code was programmed for
this purpose. Along with the data processing techniques programmed, i.e. FFT, IFFT processes, a
transient time-domain analysis was performed for each deconvolution iteration, and the output
deconvolved signal was modified using two different adjustment techniques. Sensitivity analyses
were carried out to investigate the effects of the dimensions of the foundation, as well as boundary
conditions and dam foundation flexibility on the convergence and accuracy of the results, and the

efficiency of the techniques used.

The obtained horizontal and vertical deconvolved signals were used as input for transient dynamic
analyses of dam-reservoir-foundation systems, to evaluate the effects of massed foundation on the
floor acceleration response spectra within the dams. The effects of foundation flexibility and

damping ratio on the seismic demands are also investigated.

The deconvolution and seismic analyses are performed on two gravity dams. A 121-m high dam,
1.e. tallest non-overflow monolith of Pine Flat dam, and a smaller 35 m gravity dam monolith.
The recorded horizontal and vertical components of Taft ground motion (1952) were used for

illustration purposes.
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CHAPTER 1 INTRODUCTION

This chapter aims to introduce the context of this study, as well as the problem investigated.
The objectives along with the methodology utilized to fulfil them are described. The contents of

the thesis are presented at end of this chapter.

1.1 Context of study

Dams are a fundamental component of a society’s infrastructure. Understanding their seismic
behaviour is important; not only to protect human lives, but also to avoid or reduce structural
damage that may lead to dam rupture or reservoir release, with major potential consequences in
terms of human and economical losses. Reported earthquake-induced dam failures, e.g. Pacoima
arch dam subjected to the San Fernando earthquake in 1971, although relatively rare, regularly
raise concerns leading to the continuous improvement of approaches of seismic dam design and

safety evaluation.

Significant research has been devoted to study the seismic safety of dam-reservoir-foundation
systems including several advanced analytical or numerical approaches. However, little attention
has been devoted to the seismic behaviour and safety of dam appurtenant structures. Some of the
critical systems attached to the dam, e.g. electromechanical equipment, can indeed be highly
sensitive to earthquakes even in regions of low to moderate seismicity due to dynamic
amplifications over dam height. For example, accelerations recorded at three dam sites during the
Saguenay earthquake showed amplifications of about 10 times from rock to the dam crest (Rainer
and Dascal, 1991). Therefore, in many cases, appurtenant structures can be at higher seismic hazard
than the dam itself. Failure of such structures could critically affect the operation, the safety and
the performance of a hydroelectric facility. Thus, modern guidelines, such as ICOLD (2010)
recommend that seismic input at the base of appurtenant structures account for ground motion
amplification. Floor response spectra (described in detail later) can then be used to assess the
seismic response of safety-critical appurtenant systems located near dam crest where ground
motions can be significantly amplified from dam base. Although floor response spectra have been
widely studied in the context of nuclear facilities and multi-storey buildings, studies on the

amplification of seismic demands within gravity dams are still rare, especially accounting for the



effects of combined earthquake-induced interactions from the impounded reservoir and rock

foundation.

1.2 Problem statement

The assessment of the seismic demands within dams and their appurtenant structures requires
accounting for dynamic interactions between the dam, the reservoir and the foundation. Some
previous studies focused on the effects of water modeling assumptions on such seismic demands
under horizontal and vertical earthquake components (Bouaanani and Renaud 2014, Bouaanani et
al. 2018). However, these studies considered a rigid dam foundation. Therefore, there is still a need
to investigate the effects of soil-structure interaction, i.e. massed foundation, radiation damping
and wave propagation, on the seismic demands within dams and their appurtenant structures

subjected to horizontal and vertical earthquake components.

1.3 Research objectives

The main objective of this research is to investigate the seismic demands within concrete gravity
dams and their appurtenant structures considering the effects of impounded reservoir, massed rock
foundation, appropriate boundary conditions. The seismic demands are expressed in terms of
acceleration floor response spectra. The general objective can be broken down to five specific

objectives as follows:

e Evaluating two existing techniques in the literature for time-domain deconvolution analysis

of the input free-field ground motion signals in terms of efficiency and accuracy.

e Programming and performing deconvolution procedures to investigate the sensitivity of the

results to various factors, such as rock foundation flexibility, size and boundary conditions.

e Studying the effects of the rock foundation flexibility on the amplification of horizontal and
vertical floor acceleration spectra within gravity dams impounding compressible water

resServoirs.

e Studying the effects of damping ratio of the foundation on the amplification of floor

response spectra on a small and a large gravity dam structure.



e Evaluating the effects of dam size effects on the floor acceleration response spectra

associated with dam-reservoir-foundation systems.

1.4 Methodology

In this section, the methodology adopted to investigate rock foundation effects on seismic demands
within dams and the appurtenant structures is described. First, a deconvolution process is done in
order to obtain the deconvolved signals which should be applied at the base of the massed
foundation. A MATLAB code is programmed based on an iterative data processing procedure
using the FFT and IFFT formulations. A time-domain seismic analysis is performed through finite
element modelling, so the obtained output signal at the surface of the foundation could be adjusted
using two different adjustment techniques at the end of each iteration. Several analyses are carried
out next to investigate the effects of size, lateral boundary conditions and flexibility of the
foundation profile on the accuracy and correctness of the deconvolution technique. For this
purpose, Pine Flat gravity dam (121 m high) was selected based on material properties and the
geometry provided by USSD (2017) and the deconvolution process is illustrated using Taft ground

motion acceleration (1952).

The seismic demands within Pine Flat gravity dam, and a smaller (35 m high) gravity dam are then
evaluated by determining acceleration floor response spectra when the dams are subjected to
horizontal and vertical components of Taft earthquake (1952). The models consist of the dams,
along with their impounded reservoirs with compressible water, and a massed rock foundation.
The horizontal and vertical acceleration floor response spectra of the dam-reservoir-foundation
models are compared with the reference model consisting of the dam-reservoir system with a rigid

foundation.

1.5 Organization of thesis

This thesis is organized in six chapters including this introduction Chapter, and four appendices.

A literature review related to concrete gravity dams and to their seismic behaviour, numerical
modelling and analyses is presented in Chapter 2. In Chapter 3, modelling issues related to the

numerical modelling of Pine Flat dam are discussed. In Chapter 4, two adjustment techniques for



seismic deconvolution analysis are described, applied to Pine Flat dam and the results are
compared. The effects of the flexibility and damping of a rock massed foundation on seismic
demands within two dams and their appurtenant structures are discussed in Chapter 5. The

conclusions of this research are given in Chapter 6.

Appendix A presents examples of the velocity time-history and Fourier amplitude obtained using
the developed deconvolution MATLAB code. A convergence study to evaluate the dimensions of
the massed rock foundation is presented in Appendix B. The results of the modal analysis (e.g.
frequencies and mode shapes) of the tallest non-overflow monolith of Pine Flat gravity dam are
discussed in Appendix C. Appendix D compares the response spectra of horizontal and vertical

convolved seismic signals to the target free-field ground motions.



CHAPTER 2 LITTERATURE REVIEW

This chapter presents a summary of the literature review related to the numerical modeling and

seismic analysis of concrete gravity dams.

2.1 Earthquake impacts on concrete dams

Earthquake-induced failures or major damaging events in concrete dams have been rarely reported
in the literature. For example, in 1962, 15 m high Hsingfengkiang buttress dam in China was
subjected to a strong local earthquake, suspected of being caused by reservoir-triggered seismicity.
The event significantly damaged the dam, and resulted in considerable horizontal and longitudinal
cracking near the crest of the dam (Shen et al., 1974; ICOLD, 2008). Koyna dam, a 103 m high
straight gravity dam in India, is another illustration of the vulnerability of dams to earthquakes. It
was hit in 1967 by an earthquake which induced horizontal cracks on the downstream and upstream
faces of the non-overflow blocks near the crest (e.g. ICOLD, 2008). Major repairs were carried out
strengthen the non-overflow monoliths by adding buttresses to ensure their stability (e.g. Chopra
and Chakrabarti, 1973). Sefid rud gravity buttress dam in Iran can be also mentioned as another
example. In 1990, one of the most catastrophic seismic events in the region, Manjil-Rudbar
earthquake, left over 35,000 people dead and the complete destruction of the city (Wieland and
Fan, 2004). The 106 m high buttress dam was severely damaged, as illustrated in Figure 2.1,
including horizontal cracks at lift joints, spalling of concrete along the vertical joints, as well as
observed sliding between monoliths. Even though the dam was not designed to withstand such
significant accelerations, its performance was quite satisfactory, and its stability was not of
concern. The cracked areas were repaired using epoxy grouting along with post tensioning strands

(e.g. USCOLD, 2000; ICOLD, 2001; Ahmadi et al., 1992).



Figure 2.1 Sefid Rud buttress dam - Horizontal cracks at lift joints (Wieland and Fan, 2004)

Pacoima arch dam (Figure 2.2) in the US, with a height of 111 m and a crest length of 180 m, was
damaged during the San Fernando earthquake in 1971 (e.g. Serafim, 1987). The dam suffered
opening of the contraction joints, as well as, movements of the abutment rock, one of the most
critical potential failure modes in arch dams (Ghanaat, 2004). This earthquake had a major impact

of the improvement of dam seismic design approaches.

Figure 2.2 Pacoima dam — left and right abutments (Alves, 2005)



2.2 Earthquake impacts on appurtenant structures

Various appurtenant structures and equipment are required to properly service the dam or ensure
its operation. These include of spillways, outlet works, gates, valves, power plants, etc. Earthquake-
induced defects to these appurtenant structures and equipment could critically affect the operation,
the safety and the performance of a given hydroelectric facility. Therefore, during and after an
earthquake, it is essential that the appurtenant structures remain operational. Figure 2.3 illustrates

the collapse of Shih-Kang dam during Chichi earthquake in Taiwan in 1999 (Wieland, 2016).

Figure 2.3 Failure of Shih-Kang dam during Chichi earthquake in Taiwan (Wieland, 2016)

2.3 Progressive analysis methodology and failure modes

To assess the dynamic response of a hydraulic structure to earthquakes, a series of analyses with
different levels of complexity can be performed. The dam seismic evaluation can begin with the
simplest methods, and then progress towards more complex linear and non-linear methods as
needed. Through this process, engineering judgement is required along with satisfying safety

criteria and verifying the appropriateness of numerical results (USACE, 2003; Ghrib et al., 1997).



The first two phases of this progressive approach are pseudo-static and pseudo-dynamic analysis
methods. The third phase is the first level in which the time history aspect of the earthquake is
considered. Nonlinear dynamic analysis is the last level of the progressive method and the most
powerful method of seismic analysis. The dynamic response of concrete gravity dams to
earthquakes is a complex phenomenon. However, these massive plain concrete structures are
mostly evaluated based on the linear-elastic finite element method of analysis. Tensile behaviour
along with the cracking of the concrete should be assessed to ensure the safety and serviceability
of the dam (USACE, 2007). Dam safety evaluation also involves the identification of all possible
failure modes. The most probable structural modes of failure for the concrete gravity dams are as
follow: Horizontal cracking within the dam at the concrete-concrete interfaces or at the foundation-
dam interface is one of the common modes of failure. Cracking usually occurs at the heel of the
dam, as well as near the crest when the earthquake is in the upstream direction. However, cracking
occurs at the level of slope discontinuity and near the toe of the dam when the earthquake is in the
downstream direction (Figure 2.4). Due to the cracked sections in the dam or dam-foundation
interface, considered as weak planes, the sliding may happen. Therefore, the permanent
displacements should be within acceptable limits in order to prevent the rupture of the structure or
damage to appurtenant structures. Internal erosion by seepage, piping, is another main concern. It
occurs around hydraulic structures and through cracks within the dam and the interface of the dam

and its foundation.

High Tensile stress regions

<1 —_
Ground motion Ground motion

Figure 2.4 Gravity dam — High tensile stress regions (Adopted from USACE, 2007)



2.4 Seismic evaluation of concrete dams

2.4.1 Finite element techniques

The finite element method is considered the most popular numerical method for structural analysis.
This numerical analysis technique is used to obtain approximate solutions for a variety of physical
engineering problems, including dam engineering. Some specialised finite element codes have
been developed to facilitate the 2D and even more complex 3D finite element idealizations of dam-
reservoir-foundation rock systems (EAGD 84, EACD 96). Recourse to commercial software, such
as ADINA (2018), is however more common. In this work, a 2D idealization is used for the
numerical simulation of gravity dams under the assumption of plane stress or plane strain.
The interactions of the three substructures, 1.e. dams, water and rock foundation, and the associated

boundary conditions are problems specific to dams that may complexify the analyses.

2.4.1.1 Fluid-Structure interaction

The dynamic response of the concrete dam may be significantly influenced by its interaction with
the impounded water, water compressibility and the absorption of hydrodynamic waves at reservoir
bottom. The importance of hydrodynamic effects was first demonstrated by the simplified added
mass formulation of Westergaard (1933), defining hydrodynamic forces as inertia forces associated
with a given volume of water attached to the dam face and moving back and force with the structure
during earthquake shaking. The limitations of his assumption include 2D idealization of a rigid

monolith with vertical upstream face impounding a semi-infinite reservoir (Figure 2.5).
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Figure 2.5 Hydrostatic and hydrodynamic forces during earthquake excitation (Zangar, 1952)

Several researchers extended Westergaard’s work by including some of the complexities for their

models, e.g. Zangar (1952) determined the hydrodynamic pressure for the 2D monoliths with
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sloping upstream face. Several researchers developed efficient simplified and practical methods
taking into account both the flexibility of the dam and the compressibility of the water in the
reservoir (e.g. Fenves and Chopra, 1985; Bouaanani and Perrault, 2010; Miquel and Bouaanani,

2010).

The finite element modeling of fluid-structure interaction is more and more accessible to practicing
engineers. It is a powerful technique susceptible of accounting of various complex phenomena
typical of dams (e.g. fluid-structure interaction, water compressibility, etc.). Two main
formulations are available to model a dam reservoir using finite element, i.e. the Lagrangian and
Eulerian approaches. In the Lagrangian approach, the solid and fluid elements share the same type
of state variable, i.e. displacements. A considerable advantage of this method is that the equilibrium
and the compatibility are automatically satisfied between the nodes located at the fluid-solid
interfaces. Therefore, no special interface elements are needed to be modeled. Although the shape
functions for both elements are the same, fluid elements are characterized by a volumetric modulus
of elasticity equal to that of the fluid compressibility modulus. A zero-shear resistance is associated
with the fluid elements. In the Eulerian approach, however, the behavior of fluid is defined by a
velocity potential, pressure or velocity, while displacement is used as a state variable for solid
elements. Interface elements are required to ensure the compatibility and equilibrium conditions at
the boundaries between the solid and the fluid. The Eulerian approach yields to potential-based
fluid finite elements defined with a scalar variable, which reduces the number of degrees of

freedom and thus computational requirements in terms of execution time and memory.

The Eulerian approach is used in this work. A symmetric potential-based method by Everstine
(1981), in which the fluid variable is defined using velocity potential, @, is programmed in the
finite element software ADINA. The ®-U formulation assumes that the displacements at the fluid-
structure interface are small, that the fluid is non-viscous and irrotational, but can be compressible
or incompressible. A detailed explanation of this formulation can be found in Everstine (1981) and

Bouaanani and Lu (2009).

2.4.1.2 Dam-foundation interaction

Dam-foundation interactions during earthquakes cannot always be neglected (e.g. According to
United States Army Corps of Engineers, 2007). Such interactions are generally associated with

added flexibility and damping, e.g. radiating or material damping in the foundation. A flexible rock
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foundation elongates the vibration periods of the dam and the additional damping reduces the
structural response. Two main general methods are available to model the dam and the rock
foundation, i.e. the “direct method” and “substructure method”. Simplified idealizations are often
used to reduce the complexities associated with soil-structure interaction. Rock foundation models

suitable for concrete hydraulic structures can be distinguished into (USACE, 2007):

1- Massless foundation model: a massless finite element model could be an acceptable
simplifying approach when the supporting the studied concrete dam is constructed on a
qualified rock foundation. The dimensions of the foundation compared to the structure are
not needed to be large and the input seismic load can be applied at the base of foundation

model.

2- Viscoelastic foundation model: if the elastic modulus of the rock site is considerably lower
than the massive concrete, the simplified massless foundation model is no longer valid,
since it excludes the inertia and damping effects of the foundation. Assuming similar rocks
cover a large area through foundation depth, this idealization may be realized by means of
frequency-dependent “impedance functions” consisting of real and imaginary components.
The stiffness and inertia of the foundation is represented by the real part and the damping

is defined as the imaginary part, e.g. Fenves and Chopra (1984), Lekke and Chopra (2014).

3- Coupled finite element soil-structure interaction model: in such models, finite elements are

used to simulate and couple the seismic response of the different substructures.

4- Lumped-parameter model: frequency-independent springs, masses and dampers attached

to the dam are used to model and replace the response of the rock foundation.

Concrete gravity, arch-gravity and arch dams, including impounded water and the foundation rock,
may be analyzed in a complete system in time domain using standard finite element method with
massless foundation rock, or separately in frequency domain (substructures method). The
substructures method in frequency domain can be used if homogeneous material properties are
considered for the foundation. The size of the massless foundation for the arch-dam model is
affected by the modulus ratio of the foundation to the concrete. If the ratio is higher than one, the
dimensions of the foundation could be equal to the dam height in all directions. However, in case
which 72 < E¢ /E. < V4, twice the dam height is at least necessary for the size of the foundation in

all directions. Boundary conditions for the foundation could be considered fixed at the bottom,
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since the rigid bedrock is beneath the soil. However, for each side, considering horizontal
excitation, only vertical translation degree of freedom is fixed, while for vertical excitation,

horizontal translations are blocked (USACE, 2003).

2.4.1.3 Deconvolution

The difficulties and uncertainties associated with soil-structure interaction problems have led to
the adoption of oversimplified massless foundation models. In such cases, only the stiffness of the
rock foundation contributes to the seismic response, while inertia forces and damping are
neglected. In a massless rock foundation, the free-field recorded ground motions can be applied at
the base of the foundation model, as seismic signals do not change as they propagate in this case.
In a more realistic case of a massed rock foundation, free-field recorded ground motions can no
longer be applied directly at the base of the foundation and a deconvolution process has to be

applied (Remier, 1973).

Deconvolution analysis could be done using computer programs such as SHAKE (1972), designed
for the seismic analysis of horizontally layered rock foundations, characterised by a shear modulus,
a density and a viscous damping, and generally assumed as uniform and extending horizontally to
infinity. Léger and Boughoufalah (1989) investigated the seismic response of concrete gravity
dams including the interaction of the dam with a massed rock foundation, and subjected to various
earthquake input mechanisms. In particular, they compared the effects of a standard rigid base
model, a massless foundation and deconvolved input models. Bayraktar et al. (2005) also assessed
free-field input mechanisms for dam-reservoir foundation systems. Clough et al. (1985) studied the
effects of dynamic interaction in arch dams. In all these publications, the ground motions at the
surface were obtained using the SHAKE program. The nonlinear seismic analysis of semi-
unbounded dam-reservoir-foundation systems was investigated recently by Lekke and Chopra
(2017) using direct finite element method. A massed rock foundation was assumed. Spatially
variable seismic excitations were used to evaluate the nonlinear behavior of gravity dams by Huang
and Zerva (2014). The massed foundation was considered in their study and the specified free-field
spatially varying earthquake ground motions were applied at the surface of the foundation. Khazaei
Poul and Aspasia Zerva (2018a), used both frequency- and time-domain approaches for the

deconvolution process, to evaluate the nonlinear response of concrete gravity dams including the
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effects of massed rock foundation. It is shown that time-domain approach provides more accurate
results than the frequency approach, and more conservative results were when a massless rock

foundation was included in the analysis.

The deconvolution used in this study was originally proposed by Reimer (1973) based on Fourier
analysis. An iterative procedure initiates by applying the target ground motions at the bottom of
the foundation. The transient wave propagation problem is then solved through finite element
modelling at the point of interest, generally located at the surface of the rock foundation. Next,
using Fourier analysis, a comparison is made in the frequency domain between the acceleration
response obtained at the top and the target ground motion acceleration. Fast Fourier transform
(FFT) and Inverse Fast Fourier Transform (IFFT) algorithms are used in order of transfer the
signals from time domain to the frequency domain and vise versa. There are different types of
correction factors, i.e. phase-amplitude and spectrum density procedures. For example, a correction
factor proposed by Reimer (1973) can be defined by dividing Fourier amplitudes of both signals.
Employing the correction factor, the ground motion acceleration at the base of the foundation is
modified and then transferred to the time domain. This modified signal is applied at the base of the
foundation and the finite element analysis of the wave propagation is repeated. At this iteration,
another comparison should be made between the obtained ground motion at the top of the
foundation and the target free-field recorded ground motion to ensure a satisfactory modified input
signal. This iterative procedure is repeated until the output signal at the top matches the recorded
free-field ground motion. A modified adjustment technique for the high frequency ground motion

records using response spectrum density was presented by Sooch and Bagchi (2014).

2.5 Appurtenant structures

Damage to secondary structures could result in significant threats to the safety, functionality, or
even worse, the failure of the supported structure. Therefore, it is essential to ensure the structural
integrity of such critical components under seismic loads. Two methods can be generally used to
evaluate seismic demands on appurtenant structures: ‘floor response spectra’ or ‘Combined
primary-secondary system’ (Chen and Soong, 1988). Floor response spectra have been widely used
and are selected in this work (Singh and Sharma, 1985; Chen and Soong, 1988). They define the
maximum dynamic response of a secondary structure, assuming its mass can be neglected with

respect of the primary structure, i.e. the dam, to which it is attached. In this case, the primary and
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the secondary systems can be studied individually, first the response behaviour of the dam structure
at the support point of the appurtenant structure is determined while the effect of the secondary
system is neglected. Then, the floor response spectrum is used to obtain the seismic behaviour of
the secondary system. In the case of a 2D finite element model, horizontal and vertical earthquake
components of the chosen ground motion can be applied at the base of the structure. Then, the
absolute acceleration at the point of interest, P, representing the attachment of the secondary
structure to the primary one, is determined by adding the acceleration of the point at crest relative
to the base of the primary structure to the ground excitations. Floor seismic demands of the
appurtenant structure, simplified as SDOF systems, is defined by knowing the natural frequency
and the damping ratio of the attached structure. The motion equation of the SDOF system of the

secondary structure is written as:
mgils + sl + kguy = —mg (i, + iig) 2.1
msis + 05 + kv = —mg (U, + Uy) (2.2)

where i, 1ty and us represent respectively the relative horizontal displacement, velocity and
acceleration and v. v and v, represent respectively the relative vertical displacement, velocity and
acceleration of the point P to its base. The floor acceleration demand at point P is then defined as
the maximum absolute acceleration response of the secondary system for a frequency vibration

1 [k . . . : :
fs = po m—ss and damping coefficient ¢ or equivalent damping ratio &g =

Cs

ammgfs

The floor spectra of the maximum accelerations of the secondary systems as a function of
frequencies and for a given damping ratio g can then be obtained for a given point P. Figure 2.6
illustrates the computation of floor acceleration spectra at point P located at dam crest, representing
the attachment of the SDOF appurtenant structure foundation, while the dam is subjected to the

horizontal and vertical components of a given earthquake.
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Figure 2.6 Illustration of floor response spectra calculation at point P
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CHAPTER 3 DAM-RESERVOIR-FOUNDATION SYSTEM
MODELLING ASSUMPTIONS AND APPROACHES

This chapter presents the assumptions and numerical approaches adopted for modeling a two-
dimensional dam-reservoir-foundation system. A description of the main parameters for seismic
analysis of such systems are given in detail. The dynamic interactions between the substructures
(i.e. dam, reservoir, and rock foundation), the modeling of massed rock foundation and its effect
on recorded free-field ground motion acceleration are also discussed. The tallest non-overflow
monolith of Pine Flat gravity dam (e.g. Hall, 1986; USBR, 2018), located on King’s River in
California, is used next to illustrate the assumptions and the finite element modelling methodology

adopted.

3.1 Finite element model and types of analyses

3.1.1 Geometry of the model

The height and the thickness of the tallest non-overflow monolith (no. 16) of Pine Flat dam are 400
ft and 50 ft, respectively, while its length at the crest is 1,840 ft. Figure 3.1 shows the geometry of

the middle plane of the tallest monolith as well as some main features.

EL 970.0 41
E

EL 9515 El 943.3 Parameters Value
EL 905.0 R =84.00
\ Maximum height above excavation 400 ft
400 Width at the crest 32 ft
0.05 > Maximum width at the base 314 ft4in
e Elevation of the crest 970.0 ft
10 Elevation of the base 570.0 ft
Normal water level 951.5 ft
Downstream slope 0.78H/1V
Upstream slope 0.05H/ 1V
EL 570.0

Figure 3.1 Cross section and main features of the non-overflow monolith (no. 16) of Pine Flat

dam (adopted from USBR 2018)
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The material properties used for the numerical modeling of the concrete dam, rock foundation and
the impounded water are summarized in Table 3.1 (USSD, 2017) with units in Imperial and
International Systems for convenient reference. Two sets of rock foundation properties were
provided by USSD (2017), but only one set is considered herein. The dam and the foundation
materials are assumed linear elastic, homogeneous and isotropic in all the analyses. A numerical
model of the dam-reservoir-foundation system is shown in Figure 3.2. In this figure the length of
the reservoir is 2.5 times of the height of the dam and the depth of the foundation is chosen equal
to the dam height for illustration purposes. The modeling of the three sub-structures is explained

in the following sections.

Table 3.1 Material properties used for the dam-reservoir-foundation model

Imperial system International system
Material Parameters Properties  Units Properties Units
Concrete Modulus of elasticity 3250000 1b/in? 22.407961203 GPa
Density 155 1b/ft? 2482.86 kg/m?
Poisson’s ratio 0.20 - 0.20 -
Rock Modulus of elasticity 3250000 1b/in? 22.407961203 GPa
foundation Density 155 1b/ft? 2482.86 kg/m?
Poisson’s ratio 0.20 - 0.20 -
Water Density 62.5 Ib/ft? 1000 kg/m?
Bulk modulus 2,069,731,086.336  N/m?
Wave velocity 4720 ft/sec 1,438.656 m/sec

Water

e _2.5H=710007 Y F

Foundation rock

Figure 3.2 Cross section of the numerical model of the whole system using H as the depth of the

foundation (adopted from USSD 2017)
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3.1.2 Modelling of the dam monolith

The selected monolith of Pine Flat dam is modelled using 2D solid 4-node plane strain elements.
The finite element commercial software ADINA was used for this purpose. Each node has two
translational degrees of freedom. The meshing of the dam is denser at crest and at the base as
illustrated in Figure 3.3. The appropriateness of the mesh density was verified based on a detailed
convergence study using modal analyses as described in appendix C. To ensure maximum
accuracy, 4-node transition elements were enforced (through programming) in some locations (as
illustrated in Figure 3.3) to avoid recourse to Constant Strain Triangles (CSTs) which are otherwise

automatically created by the software.

Figure 3.3 Two-dimensional mesh of the monolith 16 of Pine Flat dam and the trasition pattern

3.1.3 Modelling of the impounded reservoir

The reservoir is modelled using 2D 4-node potential-based fluid elements. The meshing of the
reservoir is more refined closer to the dam face as shown in Figure 3.4. Water is assumed to be
non-viscous, irrotational and compressible with a density of p,.= 1000 kg/m> and a bulk modulus

of u,=2.069 GPa, corresponding to wave propagation velocity of 1438 m/sec.
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Free-sureface B.C.

Infinite B.C.

Reservoir-foundation B.C.
Figure 3.4 Numerical simulation of the dam-reservoir system and the reservoir boundary conditions

The Eulerian approach and the ®-U formulation are programmed in ADINA to simulate the fluid-
structure interaction (Bouaanani and Lu, 2009; ADINA, 2018). In the present case, such
interactions occur at dam face (i.e. dam-reservoir interface) and reservoir bottom (i.e. reservoir-
foundation interface). The @-U formulation connects velocity potentials or hydrodynamic pressure

to the displacements of the dam or foundation nodes at the interfaces.

Choosing appropriate boundary conditions is an important step in the numerical modeling of dam-
reservoir systems. The velocity potential in the reservoir should satisfy a free surface boundary
condition, with or without gravity waves, a radiation boundary condition simulated herein by
infinite elements at the upstream end of the reservoir, and a boundary condition at reservoir bottom
accounting for the interaction between the reservoir and the foundation. Neglecting the effects of
gravity waves at reservoir surface is common and justified. A null fluid potential is then imposed
at the free surface of the reservoir. The infinite elements at the upstream end of the reservoir (Olson
and Bathe, 1985) are to be positioned at a reservoir truncation length far enough from dam face to
prevent or reduce reflection of earthquake-induced outgoing waves. Although wave absorption at
reservoir bottom (i.e. due to sedimentation) can be modelled using simplified techniques (e.g.

Fenves and Chopra 1984; Bouaanani and Lu 2009), it is neglected in this work.

3.1.4 Modelling of the rock foundation and the deconvolution method

The rock foundation is modelled using the same type of 2D solid plane strain finite elements used
to model the dam monolith. The meshing of the rock foundation is optimized to find a compromise

between required calculation time and accuracy. The dam monolith is assumed to be fully attached
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to its foundation (i.e. sliding is not allowed). In order to investigate the effects of lateral boundary
conditions (LBCs) on the accuracy of the output convolved signals, several types of such conditions
are defined, including fixed, sliding and absorbing boundaries. Using a fixed boundary condition
leads to the artificial reflection of the outgoing waves at the boundaries which may result in
overestimation and unrealistic seismic response of the structure. Absorbing boundary conditions,
e.g. viscous dampers, could simulate an infinite condition at a physical truncation boundary of the
dam rock foundation model. Table 3.2 categorizes the different models chosen for deconvolution
analyses including and excluding the dam and the reservoir. Two different depths are considered
to investigate the effects of the foundation depth on the accuracy of the convolved signals obtained

at the surface of the foundation.

Table 3.2 Models to be studied in deconvolution sensitivity analyses of Pine Flat dam-reservoir -

foundation system

Foundation depth (H")  Lateral Boundary conditions Dam Impounded water
1H Fixed Excluded Excluded
1H Sliding Excluded Excluded
1H Absorbing Excluded Excluded
1H Fixed Included Excluded
1H Sliding Included Excluded
1H Absorbing Included Excluded
1H Fixed Included Included
1H Sliding Included Included
1H Absorbing Included Included
3H Fixed Excluded Excluded
3H Sliding Excluded Excluded
3H Absorbing Excluded Excluded
3H Fixed Included Excluded
3H Sliding Included Excluded
3H Absorbing Included Excluded
3H Fixed Included Included
3H Sliding Included Included
3H Absorbing Included Included

* H is the height of the dam monolith.



21

First proposed by Lysmer and Kuhlemeyer in 1969, viscous boundary tractions represent a system
of dashpots located at the artificial truncated boundaries which could damp out the reflection of the
outgoing propagating waves. Being independent of wave frequency, the suggested ABC can even
serve non-harmonic waves as it is the case for seismic ground motions. Although this model is
formulated based on approximative local scheme, which the solution at any time step depends only
on the current node and the current time step, its convenience has made it much more attractive for
numerical implementation. In a 2D dam foundation model, the dashpots attached to the normal and
tangential DOFs of each node of the foundation boundary correspond to a pair of stresses expressed

as:
o = apiV,v, (3.1)
T=bpeVi v, (3.2)

where o and 7 are the normal and shear stresses on the boundary, respectively; v, and v, represent
normal and tangential particle velocities of the boundary, respectively; pr is the mass of the rock

foundation; V;, and V; represent the velocities of the primary and secondary waves traveling through

the media, respectively; a and b are dimensionless parameters. Maximum wave absorption is
achieved when choosing a and b equal to 1. If the rotation of the boundary is small, the normal

and tangential resistant forces provided by the dashpots are given by:
Fo=—apeVyvyl, (3.3)
Fo=—-bpsVsv (3.4)

where [, is the length of the finite element of the foundation boundary to which the dashpot is
attached. In a 2D finite element model, a unit thickness is considered. The viscous damping
coefficients, shown in Figure 3.5, and corresponding to the normal and tangential dashpots can be

expressed as:
Ch=aps L (3.5)
Ce=bpeVsl, (3.6)

in which the compressional and shear wave velocities are obtained as:

_ Ef (1-v¢)
Y= \] pr(1+vg) (1-2vf) (.7



Ef
2p¢(1+vr)
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(3.8)

where Ef and v denote the Young’s modulus and Poisson’s ratio of the rock foundation,

respectively.
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Normal viscous damper

Figure 3.5 Viscous boundary illustration in numerical simulation of a finite domain

A viscous damping ratio is also associated with the rock foundation and varied to account for

damping effects. For the purpose of direct integration method, corresponding coefficients of

Rayleigh damping are determined based on a frequency-domain analysis. Figure 3.6 shows the

numerical finite element modelling of the dam including the flexible massed foundation.

Free surface

Flexible foundation
Mass # 0

Truncated B.C.

Figure 3.6 Numerical finite element dam-foundation model
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The mass of the dam foundation is considered in the analysis, and thus related inertia forces.
Therefore, seismic signals change through the foundation when propagating vertically towards the
surface. A deconvolution process has then to be performed to define the deconvolved signals at the
base of the foundation which correspond to a given target free-field ground acceleration at the
surface, as illustrated in Figure 3.7. Using deconvolution analysis, the amplitude and frequency
content of the earthquake ground motion are adjusted to get the desired output signal at the dam-

foundation interface.

Recorded free-field ground motion acceleration

i Ailtha:
T

Output signal

Flexible foundation rock

LTAVARLYERY/
(v

Deconvolved signal at
the base of the foundation

Figure 3.7 Illustration of deconvolved signal causing an output signal which matches the

recorded free-field ground motion

As discussed in Chapter 2, the deconvolution process is based on Fourier analysis (Remier, 1973)
and finite element time-domain analysis. This iterative procedure is initiated by applying the free
field ground motion at the base of the dam foundation. Performing a numerical finite element
analysis using ADINA, the acceleration at the top of the foundation (here the point at the middle
of the dam-foundation interface) is determined. The ground motion acceleration obtained at the
surface of the foundation is then compared to the recorded free field acceleration, after both signals
are transformed from time domain to the frequency domain using Fourier transform (Cooley and
Tukey, 1965). Figure 3.8 illustrates the transformation of the recorded free field horizontal
component of Taft ground motion from time domain to the frequency domain using Fast Fourier

Transform (FFT).
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Figure 3.8 Fourier spectrum of the recorded free-field horizontal component of Taft ground

motion acceleration

Converting the signals from time domain to the frequency domain, and again converting back from
frequency domain to the time domain is done using the FFT and inverse fast Fourier transform
(IFFT) algorithms, respectively. A program was written in MATLAB (2017) for this purpose.
Having input, output and free field signals, a correction factor is calculated based on adjustment
techniques described in the next Chapter 4. A new signal is generated and applied at the base of
the dam foundation in the next iteration. Using IFFT, the modified signal in frequency domain is
converted back to the time domain and used in finite element analysis to reproduce another signal
at the dam-foundation interface. This process is repeated until the output signal at the top of the
foundation (here the dam-foundation interface) closely matches the recorded free field ground
motion acceleration. A criteria can be established to determine the number of sufficient iterations.
In the present case, the acceleration response spectra of the target and modified signals are
compared and an error is computed at each iteration. Iterations are stopped when an error less of
10% over the entire range of the response spectra is obtained (Sooch and Bagchi, 2014). The last
modified signal applied at the base of the foundation and satisfying the convergence criteria is
referred to as the deconvolved signal and is used to evaluate the seismic behaviour of the dam-

foundation systems.

Figure 3.9 illustrates the acceleration response spectra of the horizontal and vertical components
of the free-field ground motion compared to the ones of the convolved signals at the top of the dam

foundation.
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Figure 3.9 Comparing the acceleration response spectra of the Taft free-field ground motion to

the ones of convolved signals

(a) horizontal component, and (b) vertical component.

The previous approaches are applied to construct coupled dam-reservoir-foundation systems as the
one illustrated in Figure 3.10.

Free-sureface B.C. + Fixed Fluid potential

Infinite B.C.

Flexible foundation
Mass # 0

Truncated B.C.

Figure 3.10 Numerical two-dimensional simulation of the dam-reservoir-foundation model

3.2 Seismic loads

Horizontal and vertical components of Taft ground motion are used to conduct the sensitivity
analyses of the deconvolution process for Pine Flat dam. Recorded on July 21%, 1952, the Taft

ground motion accelerations are applied in upstream-downstream and vertical directions
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simultaneously to the foundation, dam-foundation and dam-reservoir foundation models, listed in
Table 3.2, to investigate the accuracy and the efficiency of the deconvolution analysis for each of
the models. Horizontal and vertical components of Taft earthquake are shown in Figure 3.11 (a).
The maximum values of accelerations are 0.18g and 0.11g respectively for the horizontal and the

vertical ground motions. The recording time step and the total duration of this earthquake are 0.01

and 54.15 seconds, respectively.

—— Horizontal component —— Vertical component
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9
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Figure 3.11 Taft earthquake (1952)

(a) horizontal and vertical accelerograms; (b) acceleration response spectra determined for 5%

damping
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CHAPTER 4 DECONVOLUTION SENSITIVITY ANALYSIS

Considering dam-foundation interaction in dynamic analyses of dam-reservoir-foundation systems
introduces flexibility along with additional damping, which may affect the seismic response of the
dam and appurtenant structures. The massless foundation assumption is utilized extensively in the
literature and in the practice due to its simplicity. Considering only the stiffness of the foundation,
the dam-foundation dynamic interaction is then reduced to a series of spring acting at the base of
the dam, while inertia forces and damping of the foundation are ignored. This simplification also
affects how earthquake input loads are applied. The absence of the foundation mass leads to an
infinite wave velocity causing ground motion signals to propagate within the foundation
instantaneously, without any changes. Therefore, recorded free-field ground motions can be
applied effortlessly at the base of the foundation. A massed foundation is considered as a more
realistic way of accounting for dam-foundation dynamic interaction. In this case, the seismic
signals change within the foundation rising toward the dam. Therefore, the free-field recorded
ground motions cannot be applied directly at the base of the foundation. A deconvolution process
is then needed in order to obtain the signal at the base which produces the recorded free-field
ground motion signal at the top (here dam-foundation interface). The appropriate deconvolved
motion can be derived by utilizing either frequency domain analysis (Clough et al., 1985; Léger
and Boughoufalah, 1989; Bayraktar et al., 2005) or data processing technique (Reimer, 1973;
Khazaei poul and Zerva, 2018b; Robbe, 2017) along with time domain analysis. Data processing
method, based on the mathematical model of the system, is utilized to deconvolve the seismic
motions by adjusting the Fourier transform of the surface and base ground motions as suggested

by Reimer (1973).

This chapter compares two adjustment techniques used in the literature for the deconvolution
process in terms of accuracy and efficiency. A series of sensitive analyses are performed to
investigate the effects of dimensions, flexibility and boundary conditions of the foundation, as well
as, excluding or including the static weight of the system along with the presence of the dam and
the reservoir during the process. Pine Flat dam subjected to horizontal and vertical components of

Taft ground motion is used as an example for this purpose.
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4.1 Deconvolution adjustment techniques

4.1.1

Phase-amplitude modification procedure

The phase-amplitude modification procedure suggested by Khazaei poul and Zerva (2018b) is

suitable to deconvolve both horizontal and vertical components of a ground motion in linear

viscoelastic media. The recorded free-field ground motion, termed as Target surface ground

motion, consists of the horizontal component, which is assumed to consist mainly of shear waves

(S-waves), and the vertical component, which mostly contains compressional waves (P-waves).

The step-by-step procedure is as follows:

1-

To calculate damping ratio and the equivalent properties of the soil layers, sensitivity

analyses should be performed prior to the deconvolution process.

The deconvolution process initiates by building the finite element model of the foundation
rock. An appropriate boundary condition (e.g. absorbing boundary condition, infinite
elements, perfectly matched layers) muse be applied at the truncated boundaries. So, the
reflection of the outgoing waves back into the model is prevented. In this research study
the absorbing boundary is defined based on viscous boundary scheme developed by Lysmer

and Kuhlemeyer (1969), described in Chapter 3.

The selected target time-history ground motion accelerations cannot be applied directly to
the quiet boundary. Instead, first the accelerations is integrated to obtain velocities and then
the effective horizontal and vertical time history nodal forces are calculated using equations

(4.1 a,b) and are applied on nodes at the base of the soil profile.

™Y =2 p bt CSTul™ (t) (4.1-a)
E™Y =2 p bt Colu, P (t) (4.1-b)

where ué"”"t(t) and u;"”“t(t) represent respectively the velocity time history ground
motion of S-waves and P-waves at depth. C;? and C,? are the equivalent shear and
compressional wave velocities. p is the density of the soil. b and t are the length and the
thickness of the elements at the bottom of the foundation. The factor of 2 is used to

compensate the half of the energy which propagates downwards (Mejia and Dawson, 2006).

The input velocity time histories are assumed to be half of the target value for the first
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iteration. This division, here by two, will increase the convergence speed of the

deconvolution method (Ju, 2013).

4- A time-domain analysis is then carried out using the effective nodal forces stated at step 2

in order to obtain the dynamic response ground motion at the top of the foundation.

5- Target, input and response ground motions (i.e. the velocity time histories) are transformed
to frequency domain using Fast Fourier Transform (FFT) as expressed in equations 4.2 to

4.4 in terms of their amplitude and phase.

AT = 79 ) e (119 o) @2
u;‘arget( w) = Target (w)| exp | l(p;‘arget ()] (4.2-b)
g () = [i" ()] exp [igg™ ()] (4.3-a)
P (W) = [P (w)| exp [igy P (w)] (4.3-b)

AREPONSE (1) = [ REPOME ()| exp [ipFEP ()] (4.4-2)

AREPONSE (1) = [REPOME ()| exp [ipREP ()] (4.4-b)

6- The new modified input ground motion is generated based on the following expressions:
g ) () = By(w). [y ()| exp [i(ps T (@) — 35" (w))] (45-2)
i Pt mew) () = Bp(@). [, P (w)| exp [ l((pTarget(w) Shlft(w))] (4.5-b)

where
Ls(w) = |usTarget(w)| / |u§ewonse(a})| Modifying factor

Bp(w) = |u;arget(w)| / |ukesonse(w)| Modifying factor

P (W) = RePOnSe () — "M ()  Effective phase shift
(ﬁ;hif “w) = (pgesmnse (w) — Input(a)) Effective phase shift

7- The new input motion, then, transferred back from the frequency domain to the time domain
using the inverse Fourier Transform (IFFT) to compute the new time history nodal forces

and to perform a new analysis in the next iteration.
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After each iteration a comparison must be made between the convolved ground motion

(Response motion) and the target ground motion to see if the results are satisfying.

Amplitude modification procedure

The adjustment technique in this section is based on Fourier analysis proposed by Reimer (1973).

The iterative deconvolution procedure is as follows:

1-

The finite element model of the dam-foundation system is created by means of any FE
commercial software. According to Bayraktar et al. (2010) the size of the foundation should
be large enough, three times the height of the dam, to accommodate the local displacement
near the dam. Boundary condition is defined based on tied degrees of freedom for the lateral
sides, so it makes the soil column act one-dimensionally. Therefore, the boundary nodes of
lateral sides at the same level are constrained to have the same displacement (Sooch and
Bagchi, 2014). In this research, three different lateral boundary conditions are implemented

to the model, while the base of the foundation model is considered fixed.

Target ground motion time history acceleration, considered as the input acceleration in the

first iteration, is applied at the bottom of the foundation.

The wave propagation analysis is performed and the output time history acceleration at the
point of interest on the foundation surface, i.e. the middle point at the dam-foundation

interface, is determined.

Similar to the previous procedure, the reproduced acceleration time history at the top, the
input and the free-field acceleration, all are converted to frequency domain using Fast

Fourier Transform.

The correction factor to adjust the deconvolved signal is calculated differently compared to
the phase-amplitude technique. The deconvolved signal is adjusted by using the ratio of the
Fourier amplitudes of the free field and the output acceleration signals in the specific
iteration for each frequency as expressed below:

SO Ty
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The new modified input motion in frequency domain is generated as:
a(j)modified = a(]) * CF(j) and b(j)modified = b(]) * CF(j) 4.7)

Where a(j) is the real part of the input motion at the base of the foundation and the b(j) is

the imaginary part of the same signal in frequency domain.

6- The new modified input motion is then transferred back to the time domain using IFFT and

is utilized to carry out a new wave propagation analysis in the next iteration.

7- A comparison should be made after each iteration between the convolved ground motion at

the top and the selected target ground motion to see if the results are satisfying.

Table 4.1 Highlights and differences of the phase-amplitude vs amplitude modifications

Adjustment

method
Phase-Amplitude modification Amplitude modification
Parameters
to compare

. Obtaining soil equivalent properties
Primary step . . --
and damping ratio

Dam-foundation model using 4-

foundation with 4-node node plain strain finite elements
FEM model . . . .
plain strain finite elements Depth of the foundation is 3
times the height of the dam
Boundary Absorbing boundary condition (e.g. viscous Tied degrees of freedom at
condition boundary, infinite elements, PML or ...) lateral sides

Ground motion velocity used to calculate effective ~ Time history ground motion

Signals used nodal forces at the base of the foundation acceleration

Fourier magnitude modifying factor

Amplitude modifying factor
) ) ﬁ(w) — |uTarget(w)| / |uResponse(w)| .
Modification _ Ampr(j)

C.F(j) =
factors Effective phase shift ) Ampg(j)

@Shift((u) — ¢Response (w) _ (plnput(w)

. a(j)modified = a(]) * CF(j)
Modified input | "™ ") = p(w). [ @)] exp [i(0""** (@) ~ ¢ ()]
b(NDmoaifiea = b() * CF(j)
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4.2 Deconvolution models

As an example of the deconvolution-convolution process, a single layer foundation is selected
according to USSD benchmark workshop (2017) on Pine Flat dam. The foundation rock has a
depth equal to the height of the dam, which is 121.92m (400 ft). The shear and compressional wave
velocities are assumed to be constant for the whole foundation depth. The density of the soil and
its Poisson’s ratio are defined as 2482.86 kg/m3 (155 Ib/ft?) and 0.2, respectively. The horizontal
and vertical components of Taft earthquake (1952) were selected as the target surface ground
motions. It is also assumed that the horizontal ground motion consists mainly of shear waves, and
the vertical ground motion of mostly of compressional waves. The soil domain was modeled in

ADINA using plane strain 2D solid finite elements as described in the previous chapter.

For the deconvolution procedure based on the phase-amplitude modification technique,
viscous Lysmer-Kuhlemeyer dampers are implemented into the bottom boundary of the rock
foundation. The effective nodal time-history forces are calculated based on time-history velocity
and are applied at the nodes at the base of the foundation. However, for the second adjustment
technique based on amplitude modification, the boundary condition at the base of the foundation
is defined differently. The ground motion accelerations are applied directly at the base and the

lower edge of the foundation is defined as fixed.

First, the effects of several conditions at the lateral boundaries are investigated for the foundation
medium including and excluding its self-weight. Fixed boundaries, sliders, as well as viscous
dampers at lateral sides are chosen to evaluate how the convolved signal could be affected by the
least realistic yet easiest, to the most real one but complicated to apply. The dam and the reservoir
are respectively added to the foundation to verify their influence on the accuracy of the obtained
convolved signals. On the other hand, another study is carried out on the depth of the foundation.
Based on a study by Bayraktar et al. (2010), in order to accommodate local displacements, the size
of the foundation should be three times the height of the dam. To consider the effect of dam-
foundation interaction, it is recommended that the depth of the finite foundation should be at least
twice the height of the dam (Khazaei Poul et al., 2018b). Penner et al. (2017) also created a
numerical model of Ruskin dam in which the foundation extends three time the height of the dam
in each direction. Therefore, the depth of the foundation for the second study is chosen as 3H,

where H represents the height of the dam monolith, to meet the requirements of local displacement
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accommodation as well as dam-foundation interaction. Figure 4.1 illustrates the numerical
simulation of the foundation models for the phase-amplitude modification technique. In this figure,
the viscous dampers are shown schematically at the base of the model. Dampers are applied to the
bottom end of the foundation in both normal and tangential directions. The damping coefficients
depend on density, shear and compressional wave velocities. Three different cases are considered
to define the condition at the foundation lateral boundaries (i.e. fixed, sliding and absorbing), as

illustrated in Figure 4.2.

(a) (b)
Figure 4.1 Numerical simulation of the foundation models used for phase-amplitude method;

(a) foundation model with 1H depth, (b) foundation model with 3H depth

(a) (b) (c)
Figure 4.2 Lateral boundary conditions defined for the purpose of deconvolution sensitivity

analyses:

(a) fixed lateral boundary condition, (b) sliding lateral boundary condition, (c) absorbing lateral

boundary condition
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4.2.1 Results for phase-amplitude modification procedure

A MATLAB (2017) code of the phase-amplitude modification method described earlier was
programmed and used to carry out the deconvolution analysis. The goal is to determine the required
input force time-histories such that the output acceleration time histories at the surface of the
foundation match the target free-field ground motion. The program starts with the construction of
the finite element model of the studied system through commands sent to ADINA (2018). Four
different systems are considered. First, a flat box model (USBR, 2013), consisting of the rock
foundation medium excluding the dam, the reservoir and any self-weight. A second system
including the flat box model considering the self-weight of the foundation rock along with the
deconvolution process. In the third model, the dam is added in order to verify the effects of the
dam on the accuracy of the convolved signal at the dam-foundation interface. Finally, the reservoir
is also included into the finite element model to give an insight of how it affects the deconvolution
process. The effects of lateral boundary conditions are investigated for each of the described
models. Fixed, sliding and absorbing boundary conditions are implemented to the nodes at the sides

of the rock foundation.

The selected time-history ground motion accelerations are read by the program and converted to
velocity time-histories; and the effective nodal time histories are calculated and applied at the nodes
at the base of the foundation. Next, the time-domain time history analysis is performed.
By obtaining the response signal on the surface of the foundation at the point of interest, the
modification process is carried out to determine the modified input signal which is used for the
next iteration. In this chapter, the comparison is made using time-history ground motion
accelerations, while another comparison using response spectra is presented in appendix D. Figure
4.3 compares the horizontal and vertical components of the free-field ground motion accelerations
and their related convolved signals obtained at the top surface of the foundation. As shown in
Figure 4.3 (a) and (b), corresponding to the foundation model excluding the self-weight, a perfect
agreement is achieved between the recorded free-field ground motion, here termed as “target
motion”, and the convolved signals obtained at the top of the flat box respectively for the horizontal
and vertical components, when the lateral boundaries are simulated using sliding and absorbing
conditions However, in case of a fixed lateral boundary condition, discrepancies are observed at

the beginning and the end of the horizontal convolved signal.
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Figure 4.3 Comparing horizontal (left) and vertical (right) components of free-field
acceleration vs convolved signal for the model with 1H depth including fixed, sliding and
absorbing lateral B.C.

(a) and (b) Foundation only excluding its self-weight; (c) and (d) Foundation only including self-
weight; (e) and (f) dam-foundation including static weight; (g) and (h) dam-reservoir-foundation
including static weight
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Figure 4.3 (c) illustrates a perfect match between the horizontal component of the target motion
and the horizontal convolved signals for the models with sliders and viscous dampers at the lateral
boundaries of the foundation model including self-weight. However, for the fixed lateral boundary
condition, despite a very good match throughout the signal, there are discrepancies at the beginning
and at the end of the horizontal convolved signal compared to the horizontal component of the
target ground motion. Comparing vertical components in Figure 4.3 (d), the difference between
target and vertical convolved signals is quite noticeable for the model with sliders. Seismic signals
corresponding to the other two boundary conditions, however, show an ideal agreement throughout
the whole time duration except at the beginning and at the end. Figure 4.3 (e) and (f) show
respectively the comparison between the horizontal and vertical signals including the effect of the
dam. As can be seen, while the horizontal convolved signals are not affected, less accurate results
are obtained for the vertical components of the convolved signals. A good match is achieved for
horizontal deconvolved components from the models with lateral sliders and viscous dampers.
However, the discrepancies exist at the beginning and at the end of the vertical convolved signals
of the same models. By including the reservoir, Figure 4.3 (g) and (h) illustrate the same trend as
for the dam-foundation system. In this case, the best results for both horizontal and vertical
components are obtained for the model including the lateral viscous dampers. Yet, a small

discrepancy exists at both sides of the convolved signals.

Figure 4.4 compares the results from the models which foundation depth extends to three times the
height of the dam. As shown in Figure 4.4 (a) and (b), a perfect match is obtained between target
motions and convolved signals for both horizontal and vertical components of the models with
sliding and absorbing lateral boundary conditions. As the depth of the model increases, the
accuracy of the convolved signal in the model with fixed lateral boundary conditions decreases
only for the horizontal component. Its vertical component still matches flawlessly. The comparison
of the horizontal and vertical signals of the foundation only model including the static weight is
illustrated in Figure 4.4 (¢) and (d). A clean agreement is achieved for the models with sliding and
absorbing lateral boundaries. However, for the horizontal convolved signal of the model with fixed
B.C. a huge disagreement is obtained at the beginning of the signals. The vertical convolved signal

for the same mode, nevertheless, perfectly matches the target motion.
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(a) and (b) Foundation only excluding its self-weight; (c) and (d) Foundation only including self-

weight; (e) and (f) dam-foundation including static weight; (g) and (h) dam-reservoir-foundation
including static weight
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By joining the dam to the model, Figure 4.4 (e) and (f), the horizontal results related to the fixed
lateral boundaries considerably lose their agreement and accuracy at the beginning, although they
are matched elsewhere throughout the signal. Still for this model, the results obtained for the
vertical deconvolved signals are in excellent agreement with the vertical target motion. The results
for the dam-foundation model with 3H depth including the reservoir are shown in Figure 4.4 (g)
and (h). As illustrated in Figure 4.4 (g), the horizontal convolved signals from the model with fixed
lateral boundary conditions do not match the free-field signal at the beginning of the signal. The
difference between the two signals is important. Horizontal convolved signals for models with both
sliding and absorbing boundary conditions are also less accurate at the beginning and at the end of
the signals. However, a very good agreement is achieved throughout these signals to the end. For
the vertical components, all the models show a good agreement between the convolved and the
target signals, although some slight discrepancies can still be observed at the end of the signals

from the model with absorbing boundary conditions.

Figure 4.5 compares the convolved results obtained from the models with 1H depth with the ones
from the models with 3H depth to show any improvement or deterioration of the convolved signals
by increasing the depth of the model. As can be seen from Figure 4.5 (a) and (b), the accuracy of
the horizontal convolved signals for the flat box models with fixed lateral boundaries and excluding
the weight of the dam degrade with increased depth of the foundation. For the models with sliders
and viscous dampers at the lateral sides of the rock foundation, the results are not affected. For the
vertical components, however, the accuracy of the convolved signals is very satisfactory in both
cases. In the case of the foundation model including self-weight, Figure 4.5 (¢) and (d), the same
trend exists for the horizontal convolved signals model with fixed lateral boundary condition. By
increasing the depth of the foundation, the horizontal convolved signal is getting worse. However,
much better results are obtained for the vertical convolved signals especially for the model with
sliding lateral boundary conditions. No discrepancies are now observed at the beginning and at the
end of vertical convolved signals. When the foundation depth is increased, more accurate vertical
convolved signals are obtained for all the dam-foundation and dam-reservoir-foundation models
with fixed, sliding and absorbing lateral boundary conditions. The accuracy of the horizontal

convolved signals for the models with absorbing and sliding boundary conditions is also improved.
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Figure 4.5 Comparing horizontal (left) and vertical (right) components of free-field
acceleration vs convolved signal for the models with 1H and 3H depth including fixed, sliding
and absorbing lateral B.C.

(a) and (b) Foundation only excluding its self-weight; (c) and (d) Foundation only including self-
weight; (e) and (f) dam-foundation including static weight; (g) and (h) dam-reservoir-foundation
including static weight
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However, significantly less accurate convolved signals are obtained for the dam-foundation and

dam-reservoir-foundation models with fixed lateral boundary conditions.

Another deconvolution analysis is carried out by attributing a very small value of the modulus of
elasticity to the foundation rock in order to verify the effects that flexibility might have on the
accuracy of the obtained convolved signal on the top surface of the foundation compared to the
target ground motions. For this purpose, a small value of 4.48 GPa (i.e. one fifth of that used in the
former models) was used as an elastic modulus of the rock foundation. The process is only
performed for the flat box model of the foundation with 3H depth excluding the self-weight.
As shown in Figure 4.6, a very good agreement is obtained for both horizontal and vertical
earthquake components throughout the entire duration of the signal, except for a slight noise at the
end of the convolved signals.
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Figure 4.6 Comparing convoled signals versus target ground motion accelerations of the
foundation only model with 3H depth having a very small value of Young's modulus

(a) Horizontal components; (b) Vertical components

4.2.2 Results for amplitude modification method

According to this approach, the seismic loads are applied as ground motion accelerations at the
base of the dam foundation. The rock foundation model has fixed boundary conditions at the
bottom edge and a depth of 3H, where H is the height of the dam. This method is evaluated only
for the flat box model excluding the dam and the reservoir. Figure 4.7 shows the results obtained
to verify the accuracy of the output signals compared to the target free-field ground motions when

three types of lateral boundary conditions are applied (i.e. fixed, sliding and absorbing boundary
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conditions). It is found that the horizontal and vertical convolved signals of the model with
absorbing boundary conditions exhibit a better agreement than the other two models. A comparison
of the acceleration response spectra of the target motions and their corresponding convolved signals

is also presented in Appendix D.
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Figure 4.7 Comparing convolved signals versus free-field ground motion acceleration for the

foundation-only model with 3H depth using amplitude modification approach

(a) horizontal components, (b) vertical components

4.3 Conclusions

The purpose of this chapter was to determine the input time-history signal such that the output time
history acceleration at the top of the foundation matches the free-field ground motion acceleration.
Two adjustment techniques reported in the literature were investigated to carry out deconvolution
analysis for both horizontal and vertical seismic components in linear viscoelastic media and
compared in terms of accuracy and efficiency. A series of sensitive analyses are performed to
investigate the effects of dimensions, flexibility, boundary conditions of the foundation, as well as
excluding or including the presence of the dam and the reservoir. The main conclusions can be

summarized as follows:

1- The results show that the phase-amplitude procedure can accurately estimate the
deconvolved ground motion. An excellent match is observed between the convolved and
target motion for both horizontal and vertical components in flat box models. The amplitude
FFT adjustment technique, however, is easier to apply but may induce inaccurate

deconvolved signals.
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Absorbing lateral boundary condition, compared to fixed and sliding lateral boundary
conditions, exhibits much better agreement between the target and the convolved signals

for both horizontal and vertical components using either of adjustment techniques.

By increasing the depth of the foundation to three times the height of the dam, the error in
deconvolution results for the horizontal component increases considerably for the model
with the fixed boundary condition. However, results for the models with sliding and
absorbing lateral boundary conditions improves slightly. Improved accuracy is obtained for

the vertical earthquake components of the model with sliding lateral boundary conditions.

The best results for the deconvolution process are obtained for the flat box model excluding
foundation static weight. By adding the static weight, dam and the reservoir structure to the
model, the accuracy of the deconvolution is affected mainly at the beginning and the end

of the convolved signals.

The phase-amplitude method exhibits a very low sensitivity to the flexibility of the

foundation. It yields excellent results for the foundation with very low elastic modulus.

Generally, the convergence of the deconvolution process for the flat box models using

either of the lateral boundary conditions is achieved at the third or fourth iteration.
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CHAPTER S ROCK FOUNDATION EFFECTS ON SEISMIC
DEMANDS WITHIN DAMS AND APPURTENANT STRUCTURES

The effects of the soil-structure interaction on seismic demands within the dam are investigated in
this chapter in terms of floor response spectra. The phase-amplitude deconvolution technique,
described and verified in the preceding chapter, is utilized to perform deconvolution analyses to

obtain the seismic signals to be applied at the base of the dam-reservoir-foundation models.

5.1 Size of the rock foundation model

Since the infinite domain of the foundation is truncated, a convergence study is required to
determine the required size of the foundation sufficient for propagating waves to radiate out
through the boundaries, i.e. no wave reflection back into the foundation domain. For this purpose,
different upstream lengths are considered for the foundation model and the convergence of the
dynamic response for the dam-foundation model is verified by means of the horizontal and the

vertical floor acceleration response spectra at a point located at the middle of the dam crest.

The length of the foundation towards upstream is varied. The results of the convergence study are
illustrated in what follows for upstream truncation lengths of SH, 5S0H and 70H of the reservoir and
the rock foundation, where H denotes the height of the dam monolith. The rock foundation is
truncated at 3H downstream (i.e. from dam toe). The depth of the foundation is 3H as illustrated in
Figure 5.1. The convergence of the horizontal and vertical floor response spectra is presented for
Pine Flat dam-foundation model subjected only to the horizontal earthquake component of Taft
ground motion, and then to both horizontal and vertical components of the same earthquake. The

ground motions were first deconvolved for each truncation length.

H 5 Impounded water >,

Massed foundation
3H

Figure 5.1 Dimensions of the reservoir and rock foundation domains
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The convergence study is illustrated next for a model where the dam and the rock foundation are
assumed to have the same modulus of elasticity. Viscous damping ratios of 5% and 7% are
considered for the dam and foundation, respectively. Figure 5.2 shows the acceleration floor
response spectra obtained at a point at the middle of the dam crest. Each floor spectral acceleration
is divided by the horizontal peak ground motion acceleration (HPGA) of the ground motion to
evaluate seismic amplifications from the dam base to the crest. It is seen from Figure 5.2 that the
acceleration floor response spectra converge for an upstream truncation length of S0H of the

reservoir and the rock foundation. This truncation length is used in the rest of this chapter.
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Figure 5.2 Verification of the convergence of the horizontal and vertical floor response spectra of

the Pine Flat dam-massed foundation model subjected to deconvolved Taft ground motion

(a) and (b) horizontal earthquake input only; (c) and (d) horizontal and vertical earthquake input;
(a) and (c) horizontal acceleration floor response spectra; (b) and (d) vertical acceleration floor

response spectra
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5.2 Calibration of Rayleigh damping

Absorbing boundary conditions are assigned at the lateral and bottom boundaries of the rock
foundation as discussed in the previous chapter. The effective nodal forces are calculated and
applied at the nodes located at the bottom of the foundation domain. The accuracy of the
deconvolution process can be affected by the proper choice of natural frequencies used to calculate
Rayleigh damping coefficients of the rock foundation. The case of a rock foundation with a
relatively low ratio of elastic modulus to the elastic modulus of the dam, i.e. Ef/E4 =0.2, is
illustrated in this section to highlight the effects of proper selection of Rayleigh damping on the

accuracy of the convolved signal compared to the target free-field ground motion.

The dynamic properties of the flat box foundation model with 50H upstream truncation length are
determined first, i.e. vibration frequencies, mode shapes and modal participation factors.
The modes associated with significant contributions to the dynamic response of the foundation
model are identified. An example of a 5%-damped frequency response curve at the point of interest
(i.e. point at the middle of the dam-foundation interface) is shown in Figure 5.3 (a). A total of 500
modes were included in the analysis. The percentages of the mass participating along the Y
direction are also given in Figure 5.3 (b). Table 5.1 contains the frequencies and modal mass
participations (in %) corresponding to the modes contributing most to the dynamic response of the

system, i.e. the fundamental, 46™ and 129" vibration modes.
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Figure 5.3 Modal properties of the dam-rock foundation

(a) Frequency response curve of the rock foundation model: (b) Percentage of the modal mass
participation along Y direction considering 500 first modes
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Table 5.1 Frequency and modal participation of significant modes in dynamic response of the

foundation model with 50H upstream length

Mode Frequency (Hz) Modal participation (Y) % Modal participation (Z) %
1 0.593 81.029 0
46 1.779 8.97668 0
129 2.965 3.21516 0

The Rayleigh damping coefficients are determined based on different sets of frequencies of the
first, second and third significant modes identified previously in order to compare the effects on
the convolved earthquake signals. The first set of frequencies correspond to the fundamental and
second vibration modes, the second set to the fundamental and 49" vibration modes, and the third
set to the fundamental and 129" vibration modes. The horizontal component of the Taft ground
motion acceleration is used to illustrate the results. Figure 5.4 compares the acceleration time-
history and the response spectra of the deconvolved horizontal component of Taft ground motion

obtained using the different Rayleigh damping coefficients.

—Taft Horizontal Target Fl and F2 Fl and F46 —— F1 and F129
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Figure 5.4 Effect of Rayleigh damping on the accuracy of the horizontal convolved signals

(a) comparison between acceleration time histories; (b) comparison between response spectra of

the related signals determined for 5% damping

As can be seen, the accuracy of the convolved signal at the surface of the foundation is significantly
improved when the Rayleigh damping coefficients are obtained using the second and third sets of

frequencies, i.e. fundamental and 49" or 129 vibration modes.
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5.3 Effects of foundation flexibility and damping on dam-reservoir systems

The objective of this section is to study the horizontal and vertical floor acceleration response
spectra obtained at a point at the middle of the crest of Pine Flat dam subjected to only the
horizontal component of Taft ground motion, or to both horizontal and vertical components of the
same record. The response of the gravity dam including impounded water effects is determined
first. Water compressibility is modelled, while wave absorption at reservoir bottom is ignored.
The acceleration floor response spectra are obtained from an implicit direct integration time-history
dynamic analysis with a time step equal to 0.005 s. The base of the dam is considered rigid and the
loads are applied as ground motion accelerations at the base. Three values of elastic modulus are
considered for the rock foundation, corresponding to ratios of 2, 1 and 0.5 with respect to the elastic
modulus of the dam concrete. Two viscous damping ratios are selected as 2% and 7%. Figure 5.5
shows the amplification of the horizontal and vertical acceleration floor response spectra when the
dam-water system is subjected to loading cases described earlier. The horizontal and vertical
acceleration floor response spectra are compared in Figures 5.5 (a) and (b). It is concluded that the
vertical component of the considered Taft earthquake does not significantly affect the horizontal
floor acceleration at the crest of the dam. However, the vertical floor response spectrum at crest is
amplified considerably, especially at higher frequencies, when the dam-reservoir system is

subjected to the horizontal and vertical components simultaneously.
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Figure 5.5 Horizontal and vertical floor response spectra at the crest of Pine Flat dam-reservoir
model subjected to only horizontal or both horizontal and vertical components of Taft ground
motion accelerations
(a) Horizontal acceleration floor response spectra; (b) Vertical acceleration floor response spectra
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Figure 5.6 shows the floor acceleration response spectra at dam crest when the rock foundation is
included in the analysis, considering viscous damping coefficients of 5% and 7% for the dam and
rock foundation, respectively. It is observed that the amplifications of horizontal and vertical floor
response spectra at dam crest are higher as rock foundation is stiffer. It is also seen from Figure 5.6
(b) that higher vertical accelerations are obtained at dam crest subjected to only horizontal
earthquake when dam-foundation effects are included. Such effects also lead to shifting of the

resonant peaks of the floor response spectra.
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Figure 5.6 Horizontal and vertical floor response spectra at the crest of Pine Flat dam-reservoir-foundation
model with 7% damping ratio subjected to only horizontal and both horizontal and vertical components of
Taft ground motion earthquake
(a) and (b) elastic modulus of the foundation is twice as the elastic modulus of the dam; (c) and (d) elastic
modulus of the foundation is equal to that of the dam; (d) and (e) elastic modulus of the foundation is half
of the one related to dam; (a), (c) and (e): Horizontal acceleration floor response spectra; (b), (d) and (f):

vertical acceleration floor response spectra.
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Figure 5.7 illustrates the amplification of the horizontal and vertical floor spectral accelerations

when a 2% damping ratio is considered for the rock foundation. Similar trends as previously are

observed.
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Figure 5.7 Horizontal and vertical floor response spectra at the crest of Pine Flat dam-reservoir-
foundation model with 2% damping ratio subjected to horizontal only and horizontal and vertical

components of Taft ground motion earthquake

(a) and (b) elastic modulus of the foundation is twice as the elastic modulus of the dam; (c) and (d)
elastic modulus of the foundation is equal to that of the dam; (d) and (e) elastic modulus of the
foundation is half of the one related to dam; (a), (c) and (e): Horizontal acceleration floor response

spectra; (b), (d) and (f): vertical acceleration floor response spectra.
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Another comparison between horizontal and vertical acceleration floor response spectra is shown
in Figures 5.8 and 5.9 to highlight the influence of damping on the results. Figure 5.8 compares the
results for the horizontal and vertical floor acceleration response spectra when the dam-reservoir-
foundation model is subjected only to the horizontal component of the Taft ground motion. The

results under both horizontal and vertical components of the same record are presented in

Figure 5.9.
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Figure 5.8 Horizontal and vertical floor response spectra at the crest of Pine Flat dam-reservoir-

foundation model subjected to horizontal component of Taft ground motion earthquake

(a) and (b) elastic modulus of the foundation is twice as the elastic modulus of the dam; (c) and (d)
elastic modulus of the foundation is the same as that of the dam; (e) and (f) elastic modulus of the
foundation is half of the one related to dam; (a), (c) and (e) : Horizontal acceleration floor response

spectra; (b), (d) and (f) : vertical acceleration floor response spectra.



51

These results show that horizontal and vertical floor acceleration response spectra are not
significantly influenced by the damping ratio associated with a rock foundation when its flexibility
is equal or higher than that of the dam. The opposite is observed when the flexibility of the rock
foundation is lower than that of the dam. The results also show that horizonal and vertical floor

spectral amplifications are higher when the damping ratio decreases from 7% to 2%.
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Figure 5.9 Horizontal and vertical floor response spectra at the crest of Pine Flat dam-reservoir-
foundation model subjected to horizontal and vertical components of Taft ground motion

earthquake simultaneously

(a) and (b) elastic modulus of the foundation is twice as the elastic modulus of the dam; (c) and (d)
elastic modulus of the foundation is equal to that of the dam; (e) and (f) elastic modulus of the
foundation is half of the one related to dam; (a), (c) and (e): Horizontal acceleration floor response

spectra; (b), (d) and (f): vertical acceleration floor response spectra.
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5.4 The effects of dam-size

In this section, the effects of dam size on the seismic demands related to a dam-reservoir-foundation
system are investigated. For this purpose, a gravity dam, denoted hereafter as D35, is considered.
The geometry of this small gravity dam is compared to that of Pine Flat dam in Figure 5.10. The
dam has a height of 35 m, 27.5 m width at the base, and 5 m width at the crest. The level of
impounded water is at 32 m. The dam, the reservoir and the rock foundation are modelled following
the same methodology described in Chapter 3. The mechanical properties adopted for the D35

dam-reservoir-foundation system are summarized in Table 5.2.
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Figure 5.10 Geometry of the small & large gravity dams

Three elastic moduli are defined for the foundation with respect to the modulus of elasticity of the
dam. The ratios are 2, 1 and 0.5, given respectively values of 50, 25 and 12.5 GPa for the elastic

modulus of the foundation.
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Material Parameters Small dam (D35) Units (SI)
Concrete Modulus of elasticity 25 GPa
Density 2400 Kg/m?3
Poisson’s ratio 0.20 -
Foundation =~ Modulus of elasticity Ef GPa
rock Density 2400 Kg/m?
Poisson’s ratio 0.20 -
Water Density 1000 Kg/m?
Bulk modulus 2.07 E9 N/m?
Wave velocity 1440 m/sec

Figure 5.11 illustrates the 2D finite element meshing of the D35 dam. Three transition layers are

created, and the meshing is more refined at the crest and at the base of the dam.
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Figure 5.11 2D meshing of the D35 gravity dam

The dam is subjected to the horizontal and vertical components of Taft earthquake described

previously. The same deconvolution technique used for Pine Flat is applied. The same boundary

conditions discussed previously are also considered. Figure 5.12 compares the horizontal and

vertical floor acceleration response spectra at the middle of the crest of the D35 dam subjected to

only horizontal Taft ground motion, and both horizontal and vertical ground motions. The results
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show that the amplification on the horizontal floor spectral accelerations is practically not affected.
However, the vertical floor response accelerations are amplified considerably when the system is
subjected to the both horizontal and vertical earthquake input. When the effects of rock foundation
are included, the amplifications of the horizontal and vertical acceleration floor response spectra at

the crest of the dam decrease as shown in Figure 5.13.
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Figure 5.12 Horizontal and vertical floor response spectra at the crest of D35 dam-reservoir
model including compressible water subjected to only horizontal and both horizontal and vertical

components of Taft ground motion

(a) horizontal floor acceleration response spectra; (b) vertical floor acceleration response spectra
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Figure 5.13 Horizontal and vertical floor response spectra at the center of the crest of D35 dam-
reservoir-foundation model with 7% damping ratio subjected to horizontal only and horizontal

and vertical components of Taft ground motion earthquake

(a) and (b) elastic modulus of the foundation is twice as the elastic modulus of the dam; (c) and (d)
elastic modulus of the foundation is equal to that of the dam; (d) and (e) elastic modulus of the
foundation is half of the one related to dam; (a), (c) and (e): horizontal acceleration FRS; (b), (d)

and (f): vertical acceleration FRS



56

CHAPTER 6 CONCLUSION

The purpose of this research was to investigate the effects of rock foundation on seismic demands
within dams and appurtenant structures. Due to potential amplifications of ground motions over
the height of a dam, the supported equipment and secondary structures can be at higher seismic
hazard than the dam itself. The finite element method is used in this work to investigate the seismic
response of dam-reservoir-foundation systems, expressed in terms of floor acceleration response
spectra, when subjected to horizontal and vertical ground motion components. Several 2D finite
element models of dam-reservoir-foundation systems including fluid-structure interaction, as well
as absorbing boundary conditions for the rock foundation domain were constructed.
A deconvolution process was carried out to account for the mass of the rock foundation. For this
purpose, an efficient MATLAB code was developed and applied to obtain the deconvolved
earthquake signals at the base of the foundation. Two different adjustment techniques were applied
to modify the output seismic signals obtained from transient time-domain analysis at the end of
each deconvolution iteration. The effects of the dimensions of the rock foundation, the boundary
conditions and dam foundation flexibility on the convergence, accuracy and efficiency of the
techniques were investigated. The deconvolved seismic signals were utilized to evaluate the effects
of massed foundation on dynamic behavior of dam-reservoir-foundation systems, in terms of floor
acceleration response spectra within the dams. The effects of foundation flexibility and damping
ratio on the seismic demands were also investigated. Two dams were considered for illustration

purposes: Pine Flat dam and a smaller 35 m gravity dam.
The following main conclusions can be drawn from this study:

1- The phase-amplitude FFT adjustment technique for the deconvolution process provided an
excellent agreement between the convolved and the free field ground motion acceleration.
However, this procedure requires the application of absorbing boundary conditions and the
determination of nodal forces at the base of the soil domain. Although the adjustment
technique based on only FFT amplitude is simpler and can be more efficient, it may induce

inaccurate deconvolved signals.

2- Absorbing lateral boundary conditions of the rock foundation domain, simulated using
viscous Lysmer-Kuhlemeyer dampers, exhibit much better performance compared to fixed

and sliding boundary conditions.
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3- Increasing the depth of modelled rock foundation could lead to less accurate deconvolution

results if the foundation If the rock is highly flexible.

4- Inadequate evaluation of equivalent Rayleigh damping for the purpose of transient direct

integration analyses used in the deconvolution process may lead to inaccurate results.

5- The convergence for the deconvolution process for the flat box models using either of

lateral boundary conditions was achieved within three or four iterations.

6- The presence of the massed flexible foundation can significantly influence the seismic
demands within gravity dams. For example, some results show that the amplification of
floor acceleration response spectra at the dam crest could be reduced by up to 70% when

rock foundation effects are included.

7- Increasing the viscous damping ratio of the rock foundation slightly reduces the
amplification of both horizontal and vertical floor acceleration spectra for the foundations
with higher flexibility ratios. However, this damping effect increases with decreasing rock

foundation flexibility.

8- A stiffer rock foundation generally induced higher acceleration seismic demands with the

gravity dams studied.

6.1 Research Perspectives

The analyses performed in this research considered the linear behavior of the dam and the
foundation. However, the material nonlinearity for the dam and the foundation, cracking, joint
opening and sliding between dam-foundation interface should be considered for further research.
Accounting for the nonlinear behaviour of the soil in such analyses should also be considered.
Moreover, absorption of the compressional waves, due to the sedimentation at the bottom of the
reservoir, should also be considered at reservoir-foundation interface. Finally, three-dimensional
simulation of dam-reservoir-foundation system, i.e. 3D effects of the reservoir, input seismic loads,

should be investigated as well.
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APPENDIX A EVALUATION OF MATLAB CODE

A MATLAB code is programmed in order to carry out the deconvolution analysis using data
processing technique. In order to ensure the correctness of the results, commands and functions
used in MATLAB, a comparison is made to SeismoSignal, an earthquake software which is used
for signal processing of strong-motion data. The program is able to read accelerograms and derive

the velocity, displacement, as well as Fourier spectra.

In the phase-amplitude modification technique, the very first step is to calculate the time history
velocity of the ground motion acceleration. Here, as an example, horizontal component of Taft
time history ground motion acceleration is selected for comparison purposes. Figure A.1 shows a
comparison between the results obtained by the two software for the horizontal component of the

ground motion velocity.
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Figure A.1 Comparing the horizontal velocity time history of Taft ground motion obtained by

MATLAB and SeismoSignal

In addition, another comparison is made for the Fourier spectra of the horizontal component of Taft
earthquake. The results for the normalized one-sided Fourier spectra is shown in figure A.2. as it’s

illustrated, the amplitudes through the frequencies are perfectly matched.
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Figure A.2 Verification of the Fourier amplitude of the horizontal component of Taft ground

motion acceleration obtained by MATLAB and SeismoSignal
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APPENDIX B MASSED FOUNDATION CONVERGENCE ANALYSIS

A convergence study is done on the dimensions of the foundation rock. In case of static analysis,
the size of foundation model is selected so that the results containing the static displacements and
stresses induced in the dam have no changes by any expansion of the foundation size. In the seismic
analysis however, this size should be selected so that the static results, as well as the natural
frequencies and mode shapes, which control the seismic response of the dam, are calculated
accurately. However, in case of flexible massed foundation, the natural frequencies of the dam-
foundation model reduce with no convergence as the size of the foundation increases. Figure B.1
illustrate the dimensions of the foundation rock and the selected sizes to make the comparison.
Figure B.2 compares the natural frequencies of the selected models with the original dimensions

which is a=2.5 H and b =H, where H is the height of the dam.

a=2.5H , b=2H

a=3H , b=3H e———8___

a=4H , b=4H T

a=SH , b=5H b i Massed foundation
i

Figure B.1 Dimensions selected for the convergence study of the foundation rock
As it is illustrated in figure B.2 no convergence is occurred in natural frequencies, as well as floor
response spectrum at the top of the foundation, by increasing the size of the foundation, when only

the free-field ground motion accelerations are applied to the model.
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Figure B.2 Comparing: (a) natural frequencies; (b) floor response spectra
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APPENDIX C COMPARING 2D AND 3D MODELING OF PINE FLAT
DAM IN TERMS OF NATURAL FREQUENCIES AND MODE SHAPES

Prior to the dynamic analysis, a frequency analysis should be carried out in order to obtain the
natural frequencies and shape modes of the FE models. Considering the same material properties
proposed by USSD, the first 20 natural frequencies are obtained for both 2D and 3D models of the
tallest non-overflow monolith of the Pine-Flat dam. Although this step seems to be a very simple
and basic step of the dynamic analysis, special attention should be given to it because the accuracy
of the results mostly depends on the values gain from this step. Apart from the mathematical model
behind this free-motion frequency analysis, choosing a correct meshing in terms of both the size
and the order of elements is a very delicate process. The size of the elements should be such that a
balance is established between the preciseness of the results and the computation time. Plus,
refinement is necessary at the crest, as well as, at the base of the dam depending on the type of
analysis. The selected monolith of the dam is modelled in both 2D and 3D. for the two-dimension
model, meshing is done utilizing 2D-solid plane strain elements with 3 types of refinements, each
with 4 nodes (linear) and with 9 nodes (parabolic). In case of three-dimension model, 3D-solid
elements are created based on correspondent 2D model, each with 8 nodes and 20 nodes in order
to better compare and judge the results. Figure C.1 shows the meshing of both 2D and 3D models,
from coarse elements on the left to the most refined one on the right. To avoid unfavourable
Constant Strain Triangle (CST) elements, which are created by the software along the height of the
dam to adjust different divisions on the top to the ones on the bottom, several transition level with
geometry ratio of 1 to 2 are created, so we can still have a better refinement with 4-noded
rectangular elements to ensure more accurate results within the dam. Figure C.2 illustrates how this
transition elements works. Although the seismic behaviour of the concrete gravity dam, as a short
vibration period structure, is preliminary related to the fundamental mode of vibration, higher
vibration modes has still its little influence. Since in modal analysis, the accumulative masses of
the modes participating in the total dynamic response of the system should be at least 90% of the
total mass of the structure in every direction that the ground motion is applied, a verification is
done on the convergence of the higher modes (here the first 20 modes). As it is numerically
illustrated in Tables C.1 and C.2, respectively the values of first twenty modes of vibration of the
models in two dimensions and three dimensions, the few lower modes are converged as the size of

meshing becomes finer and finer. However, for the higher modes this
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(a) (b) (©)

(d) (e) ()
Figure C.1 Mesh refinement for 2D and 3D models of Pine Flat dam:
(a) and (d) coarse meshing; (b) and (e) less refined meshing; (¢) and (f) refined meshing

convergence is still needed when the linear elements are utilized. In case of using higher order
elements with parabolic interpolation function, the convergence is achieved even with the large
size of meshing. The convergence criterion is usually satisfying when the difference of the
frequency of the same mode with different meshing divided to the accurate value is less than 0.01

percent which is the case for all meshing with parabolic elements even with large size.

(a) (b)

Figure C.2 Transition patterns: (a) 3D model; (b) 2D model
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2D model
Large Medium size Refined
Modes
4Nodes | Error | 9Nodes | Error | 4Nodes | Error | 9Nodes | Error | 4Nodes | Error | 9Nodes
1 3.242 0.0031 3232 | 0.0000 | 3235 0.0008 | 3232 | 0.00000 | 3.233 0.0002 3.232
2 6.675 0.0088 6.617 | 0.0000 | 6.631 0.0021 6.617 | 0.00001 | 6.620 0.0005 6.617
3 8918 0.0009 8910 | 0.0000 8912 0.0003 8910 | 0.00000 [ 8910 0.0001 8910
4 11.476 0.0101 11.363 | 0.0001 [ 11.390 | 0.0025 | 11.362 | 0.00001 | 11.369 | 0.0006 | 11.362
5 17.353 0.0122 17.145 | 0.0001 | 17.196 | 0.0031 | 17.144 | 0.00001 | 17.157 | 0.0008 | 17.144
6 19.442 0.0027 19.390 | 0.0000 [ 19.403 | 0.0007 | 19.390 | 0.00000 | 19.394 | 0.0002 | 19.390
7 23.950 0.0153 23.591 | 0.0001 | 23.684 | 0.0040 | 23.590 | 0.00001 | 23.615 | 0.0010 | 23.590
8 24.518 | 0.0024 | 24.459 | 0.0000 | 24.473 | 0.0006 | 24.459 | 0.00000 | 24.463 | 0.0001 | 24.459
9 26.226 | 0.0056 | 26.080 | 0.0000 | 26.115 | 0.0014 | 26.079 | 0.00000 [ 26.089 | 0.0004 | 26.079
10 29.134 | 0.0153 | 28.696 | 0.0001 | 28.811 | 0.0040 | 28.695 | 0.00000 | 28.726 | 0.0011 | 28.695
11 30.986 | 0.0042 | 30.858 | 0.0000 [ 30.895 | 0.0012 | 30.857 | 0.00000 | 30.867 | 0.0003 | 30.857
12 32.240 | 0.0163 | 31.726 | 0.0001 | 31.850 | 0.0040 | 31.723 | 0.00001 | 31.756 | 0.0010 | 31,723
13 35.674 0.0227 34.887 | 0.0001 | 35.098 | 0.0062 | 34.883 | 0.00001 | 34941 | 0.0017 | 34.883
14 37.028 | 0.0089 | 36.703 | 0.0000 | 36.776 | 0.0020 | 36.702 | 0.00000 [ 36.721 | 0.0005 | 36.702
15 39.825 0.0183 39.112 | 0.0001 | 39.300 | 0.0049 | 39.108 | 0.00001 | 39.160 | 0.0013 | 39.108
16 40.850 0.0140 | 40.292 | 0.0001 | 40.446 | 0.0040 | 40.288 | 0.00001 | 40.331 | 0.0011 | 40.287
17 42291 | 0.0174 | 41.575 | 0.0002 | 41.828 | 0.0062 | 41.569 | 0.00001 | 41.640 | 0.0017 | 41.569
18 42 .885 0.0226 | 41.940 | 0.0001 | 42.088 | 0.0036 | 41.938 | 0.00000 | 41.974 | 0.0009 | 41.938
19 45.169 | 0.0103 | 44.713 | 0.0001 | 44.850 | 0.0031 | 44.710 | 0.00000 | 44.749 | 0.0009 | 44.710
20 46.698 0.0135 46.083 | 0.0001 | 46.250 | 0.0037 | 46.078 | 0.00001 | 46.126 | 0.0011 | 46.078
Frequency analysis of the 2D model
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3D model
Large Medium size Refined
Modes
8Nodes | Error | 20Nodes | Error | 8Nodes | Error | 20Nodes | Error | 8Nodes | Error | 20Nodes
1 3242 | 0.0031 3233 0.0000 | 3.235 | 0.0008 3232 0.00001 3.233 0.0002 3232
2 6.675 | 0.0088 6.617 0.0001 | 6.631 | 0.0021 6.617 0.00002 | 6.620 0.0005 6.617
3 8918 | 0.0009 8.910 0.0000 [ 8.912 | 0.0003 8.910 0.00000 | 8910 0.0001 8.910
4 11.476 | 0.0101 11.363 | 0.0001 | 11.390 | 0.0025 | 11.362 | 0.00002 | 11.369 | 0.0006 11.362
5 17.353 | 0.0122 | 17.145 | 0.0001 | 17.196 | 0.0030 | 17.144 | 0.00001 | 17.157 | 0.0008 17.144
6 19.442 | 0.0027 | 19.391 | 0.0000 [ 19.403 | 0.0007 | 19.390 | 0.00001 [ 19.394 | 0.0002 19.390
7 23.950 | 0.0153 | 23,592 | 0.0001 [ 23.684 | 0.0040 | 23.590 | 0.00001 [ 23.615 | 0.0010 23.590
8 24.518 | 0.0024 | 24459 | 0.0000 | 24.473 | 0.0006 | 24459 | 0.00000 | 24463 | 0.0001 | 24459
9 26.226 | 0.0056 | 26.081 | 0.0001 [ 26.115 | 0.0014 | 26.079 | 0.00001 [ 26.089 | 0.0004 26.079
10 29.134 | 0.0153 | 28.697 | 0.0001 | 28.811 | 0.0040 | 28.695 | 0.00001 | 28.726 | 0.0011 | 28.695
11 30.986 | 0.0042 | 30.858 | 0.0000 | 30.895 | 0.0012 | 30.857 | 0.00000 [ 30.867 | 0.0003 30.857
12 32.240 | 0.0163 | 31.727 | 0.0001 | 31.850 | 0.0040 | 31.723 | 0.00002 | 31.756 | 0.0010 | 31.723
13 35.674 | 0.0227 | 34,887 | 0.0001 | 35098 | 0.0062 | 34883 | 0.00001 | 34941 | 0.0017 34.883
14 37.028 | 0.0089 | 36.704 | 0.0000 | 36.776 | 0.0020 | 36.702 | 0.00001 | 36.721 | 0.0005 | 36.702
15 39.825 | 0.0183 | 39.114 | 0.0001 [ 39300 | 0.0049 | 39.109 | 0.00001 | 39.160 | 0.0013 39.108
16 40.850 | 0.0140 | 40.292 | 0.0001 | 40.446 | 0.0040 | 40.288 | 0.00001 [ 40.331 | 0.0011 40.287
17 42.291 | 0.0174 | 41.576 | 0.0002 | 41.828 | 0.0062 | 41.569 | 0.00001 | 41.640 | 0.0017 41.569
18 42.885 | 0.0226 | 41.941 | 0.0001 [ 42.088 | 0.0036 | 41.938 | 0.00001 [ 41.974 | 0.0009 41.938
19 43.549 | 0.0198 | 42705 | 0.0000 [ 43.230 | 0.0123 | 42.703 | 0.00001 | 43.170 | 0.0109 42.703
20 45.169 | 0.0103 | 44713 | 0.0001 | 44850 | 0.0031 | 44710 | 0.00000 | 44749 | 0.0009 | 44.710
Frequency analysis of the 3D model
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The results for the accumulative effective mass in the first twenty modes of the 3D refined model
with 20-node elements for all three directions are presented in Table C.3. Since the dams is fixed
on both sides for x-translation the values in this direction is obviously zero. For the first mode of
vibration, the effective mass participation in Y direction is about 34% while it is 1.6% in Z
direction. This accumulation masses reach 90% of total mass at the 12" mode in Y direction,

although in Z direction it does not still attain for the 20" mode.

Table C.3: Accumulative modal participation factor

MODE FREQUENCY (Hz) MASS(X) % MASS(Y) % MASS(Z) %

1 3.232 0 34.198 1.626
2 6.617 0 58.620 2.081
3 8.910 0 65.153 57.606
4 11.362 0 76.684 64.089
5 17.144 0 84.062 64.091
6 19.390 0 84.132 77.266
7 23.590 0 87.175 78.221
8 24.459 0 87.222 78.245
9 26.079 0 88.124 79.881
10 28.695 0 88.522 80.248
11 30.857 0 88.755 84.800
12 31.723 0 90.575 85.005
13 34.883 0 90.872 85.311
14 36.702 0 90.880 85.387
15 39.108 0 91.948 85.388
16 40.287 0 92.081 85.529
17 41.569 0 92.109 86.822
18 41.938 0 92.472 88.133
19 42.703 0.00018 92.472 88.133
20 44.710 0.00018 92.689 88.480

Figure C.3 shows the deformed shape of the structure in its first mode of vibration for both the 2D
and 3D models. As it is shown, the deformation of the structure is almost completely dominant by
Y direction (horizontal direction), which corresponds to the numbers in the table above for the 3D
model. Deformation in both directions is illustrated as well for the 20™ mode, which shows the

deformation in both Y and Z directions, although it's likely never happens.

Using the medium size of described meshing for both 2D and 3D model, a frequency analysis is

done for all cases from dam-only to the complete system, considering the first six modes of each
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Figure C.3 Vibrational Mode of the 2D and 3D model of the dam monolith:

(a) first mode of vibration; (b) 20" mode of vibration

(b)
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model. Figure C.4 illustrates the results related to 2D and 3D models respectively. Table C.4 shows

the values of the frequencies related to each model.
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Figure C.4 Natural frequencies of the six first modes for the 2D (left) and 3D (right)

Pine Flat model

Table C.4 Natural frequency values of the six first modes for the 2D and 3D PineFlat model

2D models 3D models

DF DF DFW DFW DF DF DFW DFW

Modes  Dam DWW Propl Prop2 Propl Prop2 Modes  Dam  DW Propl Prop2 Propl Prop2
1 3.2320 2.6535 2.492 29801 2.0737 2.4458 1 3.2320 2.6536 2.492 2.9802 2.0741 2.4459

2 6.6170 3.4570 4.202 5.8323 3.1008 3.3635 2 6.6170 3.4570 4.202 5.8325 3.1008 3.3635
3 8.9100 4.4155 4.861 7.1128 3.8861 4.3049 3 8.9100 4.4155 4.861 7.1129 3.8861 4.3049
4 11.362 5.8761 5.678 7.8002 4.3176 5.4900 4 11.362 5.8761 5.678 7.8002 4.3176 5.4901
5 17.144 6.7155 5915 10.1751 4.8844 6.3718 5 17.144 6.7155 5915 10.1752 4.8847 6.3718
6 19.390 8.3414 6.746 10.5477 5.3822 7.0777 6 19.390 8.3414 6.747 10.5480 5.3825 7.0778
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APPENDIX D DECONVOLUTION COMPARISON USING RESPONSE
SPECTRUM

In this appendix, a comparison is made between the horizontal and vertical target ground motions
and their corresponded convolved signals obtained from phase-amplitude modification method and
the amplitude adjustment technique described in Chapter 4. The response spectrum is used to

demonstrate the similarity or differences between the results for each model.

Figure D.1 illustrate comparison of response spectra for the foundation model with 1H depth. The
results obtained using phase-amplitude adjustment technique. As it is shown in Figure D.1 (a) and
(b), corresponding to the foundation only model excluding the self-weight, a perfect match is
achieved between the response spectra of the free-field ground motions and the convolved signals
at the top of the flat box respectively for the horizontal and vertical components, for all the models.
Figure D.1 subplot (c) related to the foundation only model including its self-weight illustrate an
excellent match for the horizontal convolved components. Comparing vertical spectral
accelerations in subplot (d), the difference between target and convolved signal are quite noticeable
for the model with sliders. Fig. D.1 (e) and (f) show the comparison between the signals including
the effects of the dam. as illustrated, the inaccuracy is higher for the vertical convolved signal of
the model with sliding lateral boundary condition. However, a very good agreement is achieved
for all the models in terms of horizontal convolved signals. By joining the reservoir, subplots (g)

and (h), same trend is exhibited for the horizontal and vertical convolved signals.

Figure D.2 compares the results obtained by phase-amplitude technique for the models having
foundation with 3H depth. As the depth increases, the precision of the results for the fixed model
decreases. Plots in Figure D.2 (a) and (b) show a perfect match between horizontal and vertical
target motions and related convolved signals for the sliding and absorbing boundary conditions.
For the model with fixed lateral boundary condition, horizontal convolved signal loses its accuracy,
while the vertical convolved signal illustrate a perfect match. The same results in terms of accuracy
is obtained by including the weight of the foundation as it is illustrated in Figure D.2 (c) and (d).
By joining the dam to the model, Figure D.2(e) and (f), the horizontal convolve signal for the model
with fixed lateral boundary condition significantly looses its accuracy. Results for the sliding and
absorbing models still show a very good agreement for both horizontal and vertical components.

Same trend is observed in Figure D.2 (g) and (h) by including the reservoir to the system.
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Figure D.1 Comparing spectral acceleration of horizontal (left) and vertical (right) components
of free-field vs convolved signals for the model with 1H depth including fixed, sliding and
absorbing later B.C

(a) and (b) Foundation only excluding its self-weight; (c) and (d) Foundation only including
self-weight; (e) and (f) dam-foundation including static weight; (g) and (h) dam-reservoir-

foundation including static weight
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Figure D.2 Comparing spectral acceleration of horizontal (left) and vertical (right) components
of free-field vs convolved signals for the model with 3H depth including fixed, sliding and
absorbing later B.C.

(a) and (b) Foundation only excluding its self-weight; (¢) and (d) Foundation only including
self-weight; (e) and (f) dam-foundation including static weight; (g) and (h) dam-reservoir-
foundation including static weight



75

Comparison of the horizontal and the vertical convolved signals for the flat box model with 3H
depth having a very small value of modulus of elasticity is illustrated in figure D.3. The results are

obtained using phase-amplitude adjustment technique.
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Figure D.3 Comparing response specta of the free-field ground motion accelerations versus

convoled signals obtained by phase-amplitude technique for the foundation-only model with
3H depth with a very small value of Young's modulus

(a) Horizontal components; (b) Vertical components

Figure D.4 shows the spectral accelerations obtained from the amplitude approach. A good
agreement is obtained for the horizontal component of the model with lateral absorbing boundary

condition.
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Figure D.4 Comparing response spectra of the free-field ground motion acceleration versus
convolved signals obtained by amplitude modification techique for the foundation only model
with 3H depth:

(a) horizontal components; (b) Vertical components





