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RÉSUMÉ 

Ce mémoire vise à étudier les effets des fondations sur les sollicitations sismiques au sein des 

barrages poids et des structures connexes à l’aide d’analyses par éléments finis. À cette fin, des 

composantes sismiques horizontales et verticales sont appliqués aux systèmes barrage-réservoir-

fondation pour évaluer les effets de l’interaction sol-structure sur les spectres de plancher des 

accélérations horizontale et verticale, représentant les accélérations maximales des structures 

annexes au barrage. 

Le système barrage-réservoir-fondation est modélisé en utilisant des éléments finis solides 

bidimensionnels (2D), incluant des éléments spéciaux assurant l’interaction fluide-structure à 

l’interface barrage-réservoir, et des conditions aux limites absorbantes, i.e. amortisseurs visqueux 

de Lysmer-Kuhlemeyer, aux limites inférieures et latérales du domaine modélisé de la fondation 

du barrage. La masse de la fondation du barrage est incluse dans les modèles numériques. Par 

conséquent, un processus de déconvolution est effectué pour obtenir les signaux sismiques à la 

base de la fondation. Un programme MATLAB efficace a été programmé à cet effet. 

Parallèlement au traitement des données sismiques, et l’application des transformées de Fourrier 

(FFT, IFFT), une analyse temporelle a été effectuée à chaque itération du processus de 

déconvolution. Le signal sismique résultant a été modifié à l’aide de deux techniques d’ajustement. 

Des analyses de sensibilité ont été effectuées pour étudier les effets des dimensions de la fondation, 

sa flexibilité et des conditions aux limites du domaine sur la convergence et la précision des 

résultats, ainsi que l’efficacité des techniques employées. 

Les signaux horizontaux et verticaux obtenus de la déconvolution sismique ont été utilisés pour 

effectuer des analyses dynamiques temporelles des systèmes barrage-réservoir-fondation, afin 

d’évaluer les effets de la masse de la fondation et de l’interaction sol-structure sur les spectres 

d’accélération de plancher au sein des barrages étudiés. Les effets de la flexibilité des fondations 

et du taux d'amortissement sur les sollicitations sismiques sont également étudiés. 

La déconvolution et les analyses sismiques sont effectuées sur deux barrages poids. Un barrage de 

121 m de haut (Pine Flat), et un plus petit barrage poids de 35 m de haut. Les accélérations 

horizontales et verticales du séisme de Taft (1952) sont utilisées pour illustrer les résultats. 

 



vi 

 

 

ABSTRACT 

This research aims at investigating rock foundation effects on the seismic demands with concrete 

gravity dams and their appurtenant structures using finite element analyses. For this purpose, 

horizontal and vertical seismic components are applied to dam-reservoir-foundation systems to 

evaluate the effects of soil-structure interaction on both horizontal and vertical acceleration floor 

spectra, representing maximum acceleration response experienced by dam appurtenant structures.  

The dam-reservoir-foundation system is modelled using bidimensional (2D) solid finite elements, 

including fluid-structure interaction special elements at the dam-reservoir interface, and absorbing 

boundary conditions, i.e. viscous Lysmer-Kuhlemeyer dampers, at the bottom and lateral 

boundaries of the dam foundation domain. The mass of the dam foundation is included in the finite 

element models. Therefore, a deconvolution process is carried out to obtain the deconvolved 

earthquake signals at the base of the foundation. An efficient MATLAB code was programmed for 

this purpose. Along with the data processing techniques programmed, i.e. FFT, IFFT processes, a 

transient time-domain analysis was performed for each deconvolution iteration, and the output 

deconvolved signal was modified using two different adjustment techniques. Sensitivity analyses 

were carried out to investigate the effects of the dimensions of the foundation, as well as boundary 

conditions and dam foundation flexibility on the convergence and accuracy of the results, and the 

efficiency of the techniques used.  

The obtained horizontal and vertical deconvolved signals were used as input for transient dynamic 

analyses of dam-reservoir-foundation systems, to evaluate the effects of massed foundation on the 

floor acceleration response spectra within the dams. The effects of foundation flexibility and 

damping ratio on the seismic demands are also investigated.  

The deconvolution and seismic analyses are performed on two gravity dams. A 121-m high dam, 

i.e. tallest non-overflow monolith of Pine Flat dam, and a smaller 35 m gravity dam monolith. 

The recorded horizontal and vertical components of Taft ground motion (1952) were used for 

illustration purposes.  
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INTRODUCTION 

This chapter aims to introduce the context of this study, as well as the problem investigated. 

The objectives along with the methodology utilized to fulfil them are described. The contents of 

the thesis are presented at end of this chapter. 

1.1 Context of study 

Dams are a fundamental component of a society’s infrastructure. Understanding their seismic 

behaviour is important; not only to protect human lives, but also to avoid or reduce structural 

damage that may lead to dam rupture or reservoir release, with major potential consequences in 

terms of human and economical losses. Reported earthquake-induced dam failures, e.g. Pacoima 

arch dam subjected to the San Fernando earthquake in 1971, although relatively rare, regularly 

raise concerns leading to the continuous improvement of approaches of seismic dam design and 

safety evaluation.  

Significant research has been devoted to study the seismic safety of dam-reservoir-foundation 

systems including several advanced analytical or numerical approaches. However, little attention 

has been devoted to the seismic behaviour and safety of dam appurtenant structures. Some of the 

critical systems attached to the dam, e.g. electromechanical equipment, can indeed be highly 

sensitive to earthquakes even in regions of low to moderate seismicity due to dynamic 

amplifications over dam height. For example, accelerations recorded at three dam sites during the 

Saguenay earthquake showed amplifications of about 10 times from rock to the dam crest (Rainer 

and Dascal, 1991). Therefore, in many cases, appurtenant structures can be at higher seismic hazard 

than the dam itself. Failure of such structures could critically affect the operation, the safety and 

the performance of a hydroelectric facility. Thus, modern guidelines, such as ICOLD (2010) 

recommend that seismic input at the base of appurtenant structures account for ground motion 

amplification. Floor response spectra (described in detail later) can then be used to assess the 

seismic response of safety-critical appurtenant systems located near dam crest where ground 

motions can be significantly amplified from dam base. Although floor response spectra have been 

widely studied in the context of nuclear facilities and multi-storey buildings, studies on the 

amplification of seismic demands within gravity dams are still rare, especially accounting for the 
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effects of combined earthquake-induced interactions from the impounded reservoir and rock 

foundation.  

1.2 Problem statement 

The assessment of the seismic demands within dams and their appurtenant structures requires 

accounting for dynamic interactions between the dam, the reservoir and the foundation. Some 

previous studies focused on the effects of water modeling assumptions on such seismic demands 

under horizontal and vertical earthquake components (Bouaanani and Renaud 2014, Bouaanani et 

al. 2018). However, these studies considered a rigid dam foundation. Therefore, there is still a need 

to investigate the effects of soil-structure interaction, i.e. massed foundation, radiation damping 

and wave propagation, on the seismic demands within dams and their appurtenant structures 

subjected to horizontal and vertical earthquake components.  

1.3 Research objectives 

The main objective of this research is to investigate the seismic demands within concrete gravity 

dams and their appurtenant structures considering the effects of impounded reservoir, massed rock 

foundation, appropriate boundary conditions. The seismic demands are expressed in terms of 

acceleration floor response spectra. The general objective can be broken down to five specific 

objectives as follows: 

 Evaluating two existing techniques in the literature for time-domain deconvolution analysis

of the input free-field ground motion signals in terms of efficiency and accuracy.

 Programming and performing deconvolution procedures to investigate the sensitivity of the

results to various factors, such as rock foundation flexibility, size and boundary conditions.

 Studying the effects of the rock foundation flexibility on the amplification of horizontal and

vertical floor acceleration spectra within gravity dams impounding compressible water

reservoirs.

 Studying the effects of damping ratio of the foundation on the amplification of floor

response spectra on a small and a large gravity dam structure.
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 Evaluating the effects of dam size effects on the floor acceleration response spectra 

associated with dam-reservoir-foundation systems. 

1.4 Methodology 

In this section, the methodology adopted to investigate rock foundation effects on seismic demands 

within dams and the appurtenant structures is described. First, a deconvolution process is done in 

order to obtain the deconvolved signals which should be applied at the base of the massed 

foundation. A MATLAB code is programmed based on an iterative data processing procedure 

using the FFT and IFFT formulations. A time-domain seismic analysis is performed through finite 

element modelling, so the obtained output signal at the surface of the foundation could be adjusted 

using two different adjustment techniques at the end of each iteration. Several analyses are carried 

out next to investigate the effects of size, lateral boundary conditions and flexibility of the 

foundation profile on the accuracy and correctness of the deconvolution technique. For this 

purpose, Pine Flat gravity dam (121 m high) was selected based on material properties and the 

geometry provided by USSD (2017) and the deconvolution process is illustrated using Taft ground 

motion acceleration (1952).   

The seismic demands within Pine Flat gravity dam, and a smaller (35 m high) gravity dam are then 

evaluated by determining acceleration floor response spectra when the dams are subjected to 

horizontal and vertical components of Taft earthquake (1952). The models consist of the dams, 

along with their impounded reservoirs with compressible water, and a massed rock foundation. 

The horizontal and vertical acceleration floor response spectra of the dam-reservoir-foundation 

models are compared with the reference model consisting of the dam-reservoir system with a rigid 

foundation.  

1.5 Organization of thesis 

This thesis is organized in six chapters including this introduction Chapter, and four appendices. 

A literature review related to concrete gravity dams and to their seismic behaviour, numerical 

modelling and analyses is presented in Chapter 2. In Chapter 3, modelling issues related to the 

numerical modelling of Pine Flat dam are discussed. In Chapter 4, two adjustment techniques for 
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seismic deconvolution analysis are described, applied to Pine Flat dam and the results are 

compared. The effects of the flexibility and damping of a rock massed foundation on seismic 

demands within two dams and their appurtenant structures are discussed in Chapter 5. The 

conclusions of this research are given in Chapter 6.  

Appendix A presents examples of the velocity time-history and Fourier amplitude obtained using 

the developed deconvolution MATLAB code. A convergence study to evaluate the dimensions of 

the massed rock foundation is presented in Appendix B. The results of the modal analysis (e.g. 

frequencies and mode shapes) of the tallest non-overflow monolith of Pine Flat gravity dam are 

discussed in Appendix C. Appendix D compares the response spectra of horizontal and vertical 

convolved seismic signals to the target free-field ground motions. 
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 LITTERATURE REVIEW 

This chapter presents a summary of the literature review related to the numerical modeling and 

seismic analysis of concrete gravity dams.  

2.1 Earthquake impacts on concrete dams  

Earthquake-induced failures or major damaging events in concrete dams have been rarely reported 

in the literature. For example, in 1962, 15 m high Hsingfengkiang buttress dam in China was 

subjected to a strong local earthquake, suspected of being caused by reservoir-triggered seismicity. 

The event significantly damaged the dam, and resulted in considerable horizontal and longitudinal 

cracking near the crest of the dam (Shen et al., 1974; ICOLD, 2008). Koyna dam, a 103 m high 

straight gravity dam in India, is another illustration of the vulnerability of dams to earthquakes. It 

was hit in 1967 by an earthquake which induced horizontal cracks on the downstream and upstream 

faces of the non-overflow blocks near the crest (e.g. ICOLD, 2008). Major repairs were carried out 

strengthen the non-overflow monoliths by adding buttresses to ensure their stability (e.g. Chopra 

and Chakrabarti, 1973). Sefid rud gravity buttress dam in Iran can be also mentioned as another 

example. In 1990, one of the most catastrophic seismic events in the region, Manjil-Rudbar 

earthquake, left over 35,000 people dead and the complete destruction of the city (Wieland and 

Fan, 2004). The 106 m high buttress dam was severely damaged, as illustrated in Figure 2.1, 

including horizontal cracks at lift joints, spalling of concrete along the vertical joints, as well as 

observed sliding between monoliths. Even though the dam was not designed to withstand such 

significant accelerations, its performance was quite satisfactory, and its stability was not of 

concern. The cracked areas were repaired using epoxy grouting along with post tensioning strands 

(e.g. USCOLD, 2000; ICOLD, 2001; Ahmadi et al., 1992). 
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Figure 2.1 Sefid Rud buttress dam - Horizontal cracks at lift joints (Wieland and Fan, 2004) 

Pacoima arch dam (Figure 2.2) in the US, with a height of 111 m and a crest length of 180 m, was 

damaged during the San Fernando earthquake in 1971 (e.g. Serafim, 1987). The dam suffered 

opening of the contraction joints, as well as, movements of the abutment rock, one of the most 

critical potential failure modes in arch dams (Ghanaat, 2004). This earthquake had a major impact 

of the improvement of dam seismic design approaches.  

 

Figure 2.2 Pacoima dam – left and right abutments (Alves, 2005) 
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2.2 Earthquake impacts on appurtenant structures  

Various appurtenant structures and equipment are required to properly service the dam or ensure 

its operation. These include of spillways, outlet works, gates, valves, power plants, etc. Earthquake-

induced defects to these appurtenant structures and equipment could critically affect the operation, 

the safety and the performance of a given hydroelectric facility. Therefore, during and after an 

earthquake, it is essential that the appurtenant structures remain operational. Figure 2.3 illustrates 

the collapse of Shih-Kang dam during Chichi earthquake in Taiwan in 1999 (Wieland, 2016). 

 

Figure 2.3 Failure of Shih-Kang dam during Chichi earthquake in Taiwan (Wieland, 2016) 

2.3 Progressive analysis methodology and failure modes 

To assess the dynamic response of a hydraulic structure to earthquakes, a series of analyses with 

different levels of complexity can be performed. The dam seismic evaluation can begin with the 

simplest methods, and then progress towards more complex linear and non-linear methods as 

needed. Through this process, engineering judgement is required along with satisfying safety 

criteria and verifying the appropriateness of numerical results (USACE, 2003; Ghrib et al., 1997).  
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The first two phases of this progressive approach are pseudo-static and pseudo-dynamic analysis 

methods. The third phase is the first level in which the time history aspect of the earthquake is 

considered. Nonlinear dynamic analysis is the last level of the progressive method and the most 

powerful method of seismic analysis. The dynamic response of concrete gravity dams to 

earthquakes is a complex phenomenon. However, these massive plain concrete structures are 

mostly evaluated based on the linear-elastic finite element method of analysis. Tensile behaviour 

along with the cracking of the concrete should be assessed to ensure the safety and serviceability 

of the dam (USACE, 2007). Dam safety evaluation also involves the identification of all possible 

failure modes. The most probable structural modes of failure for the concrete gravity dams are as 

follow: Horizontal cracking within the dam at the concrete-concrete interfaces or at the foundation-

dam interface is one of the common modes of failure. Cracking usually occurs at the heel of the 

dam, as well as near the crest when the earthquake is in the upstream direction. However, cracking 

occurs at the level of slope discontinuity and near the toe of the dam when the earthquake is in the 

downstream direction (Figure 2.4). Due to the cracked sections in the dam or dam-foundation 

interface, considered as weak planes, the sliding may happen. Therefore, the permanent 

displacements should be within acceptable limits in order to prevent the rupture of the structure or 

damage to appurtenant structures. Internal erosion by seepage, piping, is another main concern. It 

occurs around hydraulic structures and through cracks within the dam and the interface of the dam 

and its foundation. 

 

Figure 2.4 Gravity dam – High tensile stress regions (Adopted from USACE, 2007) 
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2.4 Seismic evaluation of concrete dams 

2.4.1 Finite element techniques 

The finite element method is considered the most popular numerical method for structural analysis. 

This numerical analysis technique is used to obtain approximate solutions for a variety of physical 

engineering problems, including dam engineering. Some specialised finite element codes have 

been developed to facilitate the 2D and even more complex 3D finite element idealizations of dam-

reservoir-foundation rock systems (EAGD 84, EACD 96). Recourse to commercial software, such 

as ADINA (2018), is however more common. In this work, a 2D idealization is used for the 

numerical simulation of gravity dams under the assumption of plane stress or plane strain. 

The interactions of the three substructures, i.e. dams, water and rock foundation, and the associated 

boundary conditions are problems specific to dams that may complexify the analyses.  

2.4.1.1 Fluid-Structure interaction 

The dynamic response of the concrete dam may be significantly influenced by its interaction with 

the impounded water, water compressibility and the absorption of hydrodynamic waves at reservoir 

bottom. The importance of hydrodynamic effects was first demonstrated by the simplified added 

mass formulation of Westergaard (1933), defining hydrodynamic forces as inertia forces associated 

with a given volume of water attached to the dam face and moving back and force with the structure 

during earthquake shaking. The limitations of his assumption include 2D idealization of a rigid 

monolith with vertical upstream face impounding a semi-infinite reservoir (Figure 2.5).  

 

Figure 2.5 Hydrostatic and hydrodynamic forces during earthquake excitation (Zangar, 1952) 

Several researchers extended Westergaard’s work by including some of the complexities for their 

models, e.g. Zangar (1952) determined the hydrodynamic pressure for the 2D monoliths with 
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sloping upstream face. Several researchers developed efficient simplified and practical methods 

taking into account both the flexibility of the dam and the compressibility of the water in the 

reservoir (e.g. Fenves and Chopra, 1985; Bouaanani and Perrault, 2010; Miquel and Bouaanani, 

2010).  

The finite element modeling of fluid-structure interaction is more and more accessible to practicing 

engineers. It is a powerful technique susceptible of accounting of various complex phenomena 

typical of dams (e.g. fluid-structure interaction, water compressibility, etc.). Two main 

formulations are available to model a dam reservoir using finite element, i.e. the Lagrangian and 

Eulerian approaches. In the Lagrangian approach, the solid and fluid elements share the same type 

of state variable, i.e. displacements. A considerable advantage of this method is that the equilibrium 

and the compatibility are automatically satisfied between the nodes located at the fluid-solid 

interfaces. Therefore, no special interface elements are needed to be modeled. Although the shape 

functions for both elements are the same, fluid elements are characterized by a volumetric modulus 

of elasticity equal to that of the fluid compressibility modulus. A zero-shear resistance is associated 

with the fluid elements. In the Eulerian approach, however, the behavior of fluid is defined by a 

velocity potential, pressure or velocity, while displacement is used as a state variable for solid 

elements. Interface elements are required to ensure the compatibility and equilibrium conditions at 

the boundaries between the solid and the fluid. The Eulerian approach yields to potential-based 

fluid finite elements defined with a scalar variable, which reduces the number of degrees of 

freedom and thus computational requirements in terms of execution time and memory.  

The Eulerian approach is used in this work. A symmetric potential-based method by Everstine 

(1981), in which the fluid variable is defined using velocity potential, Ф, is programmed in the 

finite element software ADINA. The Φ-U formulation assumes that the displacements at the fluid-

structure interface are small, that the fluid is non-viscous and irrotational, but can be compressible 

or incompressible. A detailed explanation of this formulation can be found in Everstine (1981) and 

Bouaanani and Lu (2009). 

2.4.1.2 Dam-foundation interaction 

Dam-foundation interactions during earthquakes cannot always be neglected (e.g. According to 

United States Army Corps of Engineers, 2007). Such interactions are generally associated with 

added flexibility and damping, e.g. radiating or material damping in the foundation. A flexible rock 
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foundation elongates the vibration periods of the dam and the additional damping reduces the 

structural response. Two main general methods are available to model the dam and the rock 

foundation, i.e. the “direct method” and “substructure method”. Simplified idealizations are often 

used to reduce the complexities associated with soil-structure interaction. Rock foundation models 

suitable for concrete hydraulic structures can be distinguished into (USACE, 2007):  

1- Massless foundation model: a massless finite element model could be an acceptable 

simplifying approach when the supporting the studied concrete dam is constructed on a 

qualified rock foundation. The dimensions of the foundation compared to the structure are 

not needed to be large and the input seismic load can be applied at the base of foundation 

model. 

2- Viscoelastic foundation model: if the elastic modulus of the rock site is considerably lower 

than the massive concrete, the simplified massless foundation model is no longer valid, 

since it excludes the inertia and damping effects of the foundation. Assuming similar rocks 

cover a large area through foundation depth, this idealization may be realized by means of 

frequency-dependent “impedance functions” consisting of real and imaginary components. 

The stiffness and inertia of the foundation is represented by the real part and the damping 

is defined as the imaginary part, e.g. Fenves and Chopra (1984), Løkke and Chopra (2014). 

3- Coupled finite element soil-structure interaction model: in such models, finite elements are 

used to simulate and couple the seismic response of the different substructures.  

4- Lumped-parameter model: frequency-independent springs, masses and dampers attached 

to the dam are used to model and replace the response of the rock foundation. 

Concrete gravity, arch-gravity and arch dams, including impounded water and the foundation rock, 

may be analyzed in a complete system in time domain using standard finite element method with 

massless foundation rock, or separately in frequency domain (substructures method). The 

substructures method in frequency domain can be used if homogeneous material properties are 

considered for the foundation. The size of the massless foundation for the arch-dam model is 

affected by the modulus ratio of the foundation to the concrete. If the ratio is higher than one, the 

dimensions of the foundation could be equal to the dam height in all directions. However, in case 

which ½ < Ef /Ec < ¼, twice the dam height is at least necessary for the size of the foundation in 

all directions. Boundary conditions for the foundation could be considered fixed at the bottom, 
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since the rigid bedrock is beneath the soil. However, for each side, considering horizontal 

excitation, only vertical translation degree of freedom is fixed, while for vertical excitation, 

horizontal translations are blocked (USACE, 2003). 

 

2.4.1.3 Deconvolution 

The difficulties and uncertainties associated with soil-structure interaction problems have led to 

the adoption of oversimplified massless foundation models. In such cases, only the stiffness of the 

rock foundation contributes to the seismic response, while inertia forces and damping are 

neglected. In a massless rock foundation, the free-field recorded ground motions can be applied at 

the base of the foundation model, as seismic signals do not change as they propagate in this case. 

In a more realistic case of a massed rock foundation, free-field recorded ground motions can no 

longer be applied directly at the base of the foundation and a deconvolution process has to be 

applied (Remier, 1973).  

Deconvolution analysis could be done using computer programs such as SHAKE (1972), designed 

for the seismic analysis of horizontally layered rock foundations, characterised by a shear modulus, 

a density and a viscous damping, and generally assumed as uniform and extending horizontally to 

infinity. Léger and Boughoufalah (1989) investigated the seismic response of concrete gravity 

dams including the interaction of the dam with a massed rock foundation, and subjected to various 

earthquake input mechanisms. In particular, they compared the effects of a standard rigid base 

model, a massless foundation and deconvolved input models. Bayraktar et al. (2005) also assessed 

free-field input mechanisms for dam-reservoir foundation systems. Clough et al. (1985) studied the 

effects of dynamic interaction in arch dams. In all these publications, the ground motions at the 

surface were obtained using the SHAKE program. The nonlinear seismic analysis of semi-

unbounded dam-reservoir-foundation systems was investigated recently by Løkke and Chopra 

(2017) using direct finite element method. A massed rock foundation was assumed. Spatially 

variable seismic excitations were used to evaluate the nonlinear behavior of gravity dams by Huang 

and Zerva (2014). The massed foundation was considered in their study and the specified free-field 

spatially varying earthquake ground motions were applied at the surface of the foundation. Khazaei 

Poul and Aspasia Zerva (2018a), used both frequency- and time-domain approaches for the 

deconvolution process, to evaluate the nonlinear response of concrete gravity dams including the 
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effects of massed rock foundation. It is shown that time-domain approach provides more accurate 

results than the frequency approach, and more conservative results were when a massless rock 

foundation was included in the analysis. 

The deconvolution used in this study was originally proposed by Reimer (1973) based on Fourier 

analysis. An iterative procedure initiates by applying the target ground motions at the bottom of 

the foundation. The transient wave propagation problem is then solved through finite element 

modelling at the point of interest, generally located at the surface of the rock foundation. Next, 

using Fourier analysis, a comparison is made in the frequency domain between the acceleration 

response obtained at the top and the target ground motion acceleration. Fast Fourier transform 

(FFT) and Inverse Fast Fourier Transform (IFFT) algorithms are used in order of transfer the 

signals from time domain to the frequency domain and vise versa. There are different types of 

correction factors, i.e. phase-amplitude and spectrum density procedures. For example, a correction 

factor proposed by Reimer (1973) can be defined by dividing Fourier amplitudes of both signals. 

Employing the correction factor, the ground motion acceleration at the base of the foundation is 

modified and then transferred to the time domain. This modified signal is applied at the base of the 

foundation and the finite element analysis of the wave propagation is repeated. At this iteration, 

another comparison should be made between the obtained ground motion at the top of the 

foundation and the target free-field recorded ground motion to ensure a satisfactory modified input 

signal. This iterative procedure is repeated until the output signal at the top matches the recorded 

free-field ground motion. A modified adjustment technique for the high frequency ground motion 

records using response spectrum density was presented by Sooch and Bagchi (2014). 

2.5 Appurtenant structures 

Damage to secondary structures could result in significant threats to the safety, functionality, or 

even worse, the failure of the supported structure. Therefore, it is essential to ensure the structural 

integrity of such critical components under seismic loads. Two methods can be generally used to 

evaluate seismic demands on appurtenant structures: ‘floor response spectra’ or ‘Combined 

primary-secondary system’ (Chen and Soong, 1988). Floor response spectra have been widely used 

and are selected in this work (Singh and Sharma, 1985; Chen and Soong, 1988). They define the 

maximum dynamic response of a secondary structure, assuming its mass can be neglected with 

respect of the primary structure, i.e. the dam, to which it is attached. In this case, the primary and 
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the secondary systems can be studied individually, first the response behaviour of the dam structure 

at the support point of the appurtenant structure is determined while the effect of the secondary 

system is neglected. Then, the floor response spectrum is used to obtain the seismic behaviour of 

the secondary system. In the case of a 2D finite element model, horizontal and vertical earthquake 

components of the chosen ground motion can be applied at the base of the structure. Then, the 

absolute acceleration at the point of interest, P, representing the attachment of the secondary 

structure to the primary one, is determined by adding the acceleration of the point at crest relative 

to the base of the primary structure to the ground excitations. Floor seismic demands of the 

appurtenant structure, simplified as SDOF systems, is defined by knowing the natural frequency 

and the damping ratio of the attached structure.  The motion equation of the SDOF system of the 

secondary structure is written as: 

𝑚௦𝑢̈௦ + 𝑐௦𝑢̇௦ + 𝑘௦𝑢௦ = −𝑚௦(𝑢̈௣ + 𝑢̈௚)           (2.1) 

𝑚௦𝑣̈௦ + 𝑐௦𝑣̇௦ + 𝑘௦𝑣௦  =  −𝑚௦(𝑣̈௣ + 𝑣̈௚)            (2.2) 

where 𝑢̈௦ , 𝑢̇௦ and 𝑢௦ represent respectively the relative horizontal displacement, velocity and 

acceleration and 𝑣̈௦. 𝑣̇௦ and 𝑣௦ represent respectively the relative vertical displacement, velocity and 

acceleration of the point P to its base. The floor acceleration demand at point P is then defined as 

the maximum absolute acceleration response of the secondary system for a frequency vibration 

𝑓௦ =
ଵ

ଶగ
ට

௞ೞ

௠ೞ
 and damping coefficient 𝑐௦ or equivalent damping ratio 𝜉௦ =

௖ೞ

ସగ௠ೞ௙ೞ
 .  

The floor spectra of the maximum accelerations of the secondary systems as a function of 

frequencies and for a given damping ratio 𝜉௦ can then be obtained for a given point P. Figure 2.6 

illustrates the computation of floor acceleration spectra at point P located at dam crest, representing 

the attachment of the SDOF appurtenant structure foundation, while the dam is subjected to the 

horizontal and vertical components of a given earthquake.  
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Figure 2.6 Illustration of floor response spectra calculation at point P 
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 DAM-RESERVOIR-FOUNDATION SYSTEM 

MODELLING ASSUMPTIONS AND APPROACHES  

This chapter presents the assumptions and numerical approaches adopted for modeling a two-

dimensional dam-reservoir-foundation system. A description of the main parameters for seismic 

analysis of such systems are given in detail. The dynamic interactions between the substructures 

(i.e. dam, reservoir, and rock foundation), the modeling of massed rock foundation and its effect 

on recorded free-field ground motion acceleration are also discussed. The tallest non-overflow 

monolith of Pine Flat gravity dam (e.g. Hall, 1986; USBR, 2018), located on King’s River in 

California, is used next to illustrate the assumptions and the finite element modelling methodology 

adopted.   

3.1 Finite element model and types of analyses  

3.1.1 Geometry of the model 

The height and the thickness of the tallest non-overflow monolith (no. 16) of Pine Flat dam are 400 

ft and 50 ft, respectively, while its length at the crest is 1,840 ft. Figure 3.1 shows the geometry of 

the middle plane of the tallest monolith as well as some main features.  

 

 

 

Parameters Value 

Maximum height above excavation 400 ft 

Width at the crest 32 ft 

Maximum width at the base 314 ft 4 in 

Elevation of the crest 970.0 ft 

Elevation of the base 570.0 ft 

Normal water level 951.5 ft 

Downstream slope  0.78H / 1V 

Upstream slope  0.05H / 1V 
 

Figure 3.1 Cross section and main features of the non-overflow monolith (no. 16) of Pine Flat 

dam (adopted from USBR 2018) 
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The material properties used for the numerical modeling of the concrete dam, rock foundation and 

the impounded water are summarized in Table 3.1 (USSD, 2017) with units in Imperial and 

International Systems for convenient reference. Two sets of rock foundation properties were 

provided by USSD (2017), but only one set is considered herein. The dam and the foundation 

materials are assumed linear elastic, homogeneous and isotropic in all the analyses. A numerical 

model of the dam-reservoir-foundation system is shown in Figure 3.2. In this figure the length of 

the reservoir is 2.5 times of the height of the dam and the depth of the foundation is chosen equal 

to the dam height for illustration purposes. The modeling of the three sub-structures is explained 

in the following sections. 

Table 3.1 Material properties used for the dam-reservoir-foundation model 

 
Material 

 
Parameters 

Imperial system International system  

Properties Units Properties Units 

Concrete Modulus of elasticity 
Density 
Poisson’s ratio 

3250000 
155 
0.20 

lb/in2 
lb/ft3 

- 

22.407961203 
2482.86 

0.20 

GPa 
kg/m3 

- 

Rock  
foundation  

Modulus of elasticity 
Density 
Poisson’s ratio 

3250000 
155 
0.20 

lb/in2 
lb/ft3 

- 

22.407961203 
2482.86 

0.20 

GPa 
kg/m3 

- 

Water Density 
Bulk modulus 
Wave velocity 

62.5 
 

4720 

lb/ft3 
 

ft/sec 

1000 
2,069,731,086.336 

1,438.656 

kg/m3 
N/m2 
m/sec 

 

Figure 3.2 Cross section of the numerical model of the whole system using H as the depth of the 

foundation (adopted from USSD 2017) 
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3.1.2 Modelling of the dam monolith 

The selected monolith of Pine Flat dam is modelled using 2D solid 4-node plane strain elements. 

The finite element commercial software ADINA was used for this purpose. Each node has two 

translational degrees of freedom. The meshing of the dam is denser at crest and at the base as 

illustrated in Figure 3.3. The appropriateness of the mesh density was verified based on a detailed 

convergence study using modal analyses as described in appendix C. To ensure maximum 

accuracy, 4-node transition elements were enforced (through programming) in some locations (as 

illustrated in Figure 3.3) to avoid recourse to Constant Strain Triangles (CSTs) which are otherwise 

automatically created by the software.  

 

  

 

 

 

Figure 3.3 Two-dimensional mesh of the monolith 16 of Pine Flat dam and the trasition pattern 

3.1.3 Modelling of the impounded reservoir 

The reservoir is modelled using 2D 4-node potential-based fluid elements. The meshing of the 

reservoir is more refined closer to the dam face as shown in Figure 3.4. Water is assumed to be 

non-viscous, irrotational and compressible with a density of 𝜌௥  = 1000 kg/m3 and a bulk modulus 

of 𝜇௥= 2.069 GPa, corresponding to wave propagation velocity of 1438 m/sec.  
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Figure 3.4 Numerical simulation of the dam-reservoir system and the reservoir boundary conditions 

The Eulerian approach and the Φ-U formulation are programmed in ADINA to simulate the fluid-

structure interaction (Bouaanani and Lu, 2009; ADINA, 2018). In the present case, such 

interactions occur at dam face (i.e. dam-reservoir interface) and reservoir bottom (i.e. reservoir-

foundation interface). The Φ-U formulation connects velocity potentials or hydrodynamic pressure 

to the displacements of the dam or foundation nodes at the interfaces.  

Choosing appropriate boundary conditions is an important step in the numerical modeling of dam-

reservoir systems. The velocity potential in the reservoir should satisfy a free surface boundary 

condition, with or without gravity waves, a radiation boundary condition simulated herein by 

infinite elements at the upstream end of the reservoir, and a boundary condition at reservoir bottom 

accounting for the interaction between the reservoir and the foundation. Neglecting the effects of 

gravity waves at reservoir surface is common and justified. A null fluid potential is then imposed 

at the free surface of the reservoir. The infinite elements at the upstream end of the reservoir (Olson 

and Bathe, 1985) are to be positioned at a reservoir truncation length far enough from dam face to 

prevent or reduce reflection of earthquake-induced outgoing waves. Although wave absorption at 

reservoir bottom (i.e. due to sedimentation) can be modelled using simplified techniques (e.g. 

Fenves and Chopra 1984; Bouaanani and Lu 2009), it is neglected in this work.  

3.1.4 Modelling of the rock foundation and the deconvolution method 

The rock foundation is modelled using the same type of 2D solid plane strain finite elements used 

to model the dam monolith. The meshing of the rock foundation is optimized to find a compromise 

between required calculation time and accuracy. The dam monolith is assumed to be fully attached 
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to its foundation (i.e. sliding is not allowed). In order to investigate the effects of lateral boundary 

conditions (LBCs) on the accuracy of the output convolved signals, several types of such conditions 

are defined, including fixed, sliding and absorbing boundaries. Using a fixed boundary condition 

leads to the artificial reflection of the outgoing waves at the boundaries which may result in 

overestimation and unrealistic seismic response of the structure. Absorbing boundary conditions, 

e.g. viscous dampers, could simulate an infinite condition at a physical truncation boundary of the 

dam rock foundation model. Table 3.2 categorizes the different models chosen for deconvolution 

analyses including and excluding the dam and the reservoir. Two different depths are considered 

to investigate the effects of the foundation depth on the accuracy of the convolved signals obtained 

at the surface of the foundation.  

Table 3.2 Models to be studied in deconvolution sensitivity analyses of Pine Flat dam-reservoir -

foundation system 

Foundation depth (H*) Lateral Boundary conditions Dam Impounded water 

1H  Fixed Excluded Excluded 

1H  Sliding Excluded Excluded 

1H  Absorbing Excluded Excluded 

1H  Fixed Included Excluded 

1H  Sliding Included Excluded 

1H  Absorbing Included Excluded 

1H  Fixed Included Included 

1H  Sliding Included Included 

1H  Absorbing Included Included 

3H  Fixed Excluded Excluded 

3H  Sliding Excluded Excluded 

3H  Absorbing Excluded Excluded 

3H  Fixed Included Excluded 

3H  Sliding Included Excluded 

3H  Absorbing Included Excluded 

3H  Fixed Included Included 

3H  Sliding Included Included 

3H  Absorbing Included Included 

  * H is the height of the dam monolith. 
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First proposed by Lysmer and Kuhlemeyer in 1969, viscous boundary tractions represent a system 

of dashpots located at the artificial truncated boundaries which could damp out the reflection of the 

outgoing propagating waves. Being independent of wave frequency, the suggested ABC can even 

serve non-harmonic waves as it is the case for seismic ground motions. Although this model is 

formulated based on approximative local scheme, which the solution at any time step depends only 

on the current node and the current time step, its convenience has made it much more attractive for 

numerical implementation. In a 2D dam foundation model, the dashpots attached to the normal and 

tangential DOFs of each node of the foundation boundary correspond to a pair of stresses expressed 

as: 

𝜎 = 𝑎𝜌୤𝑉௣𝑣௡  (3.1) 

𝜏 = 𝑏 𝜌୤ 𝑉௦ 𝑣௧  (3.2) 

where 𝜎 and 𝜏 are the normal and shear stresses on the boundary, respectively; 𝑣௡ and 𝑣௧ represent 

normal and tangential particle velocities of the boundary, respectively; 𝜌୤ is the mass of the rock 

foundation; 𝑉௣ and 𝑉௦ represent the velocities of the primary and secondary waves traveling through 

the media, respectively; 𝑎 and 𝑏 are dimensionless parameters. Maximum wave absorption is 

achieved when choosing 𝑎 and 𝑏 equal to 1. If the rotation of the boundary is small, the normal 

and tangential resistant forces provided by the dashpots are given by: 

𝐹௡ = −𝑎 𝜌୤ 𝑉௣ 𝑣௡ 𝑙௢  (3.3) 

𝐹௧ = −𝑏 𝜌୤ 𝑉௦ 𝑣௧  𝑙௢  (3.4) 

where 𝑙௢ is the length of the finite element of the foundation boundary to which the dashpot is 

attached. In a 2D finite element model, a unit thickness is considered. The viscous damping 

coefficients, shown in Figure 3.5, and corresponding to the normal and tangential dashpots can be 

expressed as: 

𝐶௡ = 𝑎 𝜌୤ 𝑉௣ 𝑙௢  (3.5) 

𝐶௧ = 𝑏 𝜌୤ 𝑉௦ 𝑙௢   (3.6) 

in which the compressional and shear wave velocities are obtained as: 

𝑉௣ =  ට
ா౜ (ଵିజ౜)

ఘ౜(ଵାజ౜)(ଵିଶజ౜)
 (3.7) 
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𝑉௦ =  ට
ா౜

ଶఘ౜(ଵାజ౜)
 (3.8) 

where 𝐸୤ and 𝜐୤ denote the Young’s modulus and Poisson’s ratio of the rock foundation, 

respectively.  

Figure 3.5 Viscous boundary illustration in numerical simulation of a finite domain 

A viscous damping ratio is also associated with the rock foundation and varied to account for 

damping effects. For the purpose of direct integration method, corresponding coefficients of 

Rayleigh damping are determined based on a frequency-domain analysis. Figure 3.6 shows the 

numerical finite element modelling of the dam including the flexible massed foundation. 

Figure 3.6 Numerical finite element dam-foundation model 
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The mass of the dam foundation is considered in the analysis, and thus related inertia forces. 

Therefore, seismic signals change through the foundation when propagating vertically towards the 

surface. A deconvolution process has then to be performed to define the deconvolved signals at the 

base of the foundation which correspond to a given target free-field ground acceleration at the 

surface, as illustrated in Figure 3.7. Using deconvolution analysis, the amplitude and frequency 

content of the earthquake ground motion are adjusted to get the desired output signal at the dam-

foundation interface.  

Figure 3.7 Illustration of deconvolved signal causing an output signal which matches the 

recorded free-field ground motion 

As discussed in Chapter 2, the deconvolution process is based on Fourier analysis (Remier, 1973) 

and finite element time-domain analysis. This iterative procedure is initiated by applying the free 

field ground motion at the base of the dam foundation. Performing a numerical finite element 

analysis using ADINA, the acceleration at the top of the foundation (here the point at the middle 

of the dam-foundation interface) is determined. The ground motion acceleration obtained at the 

surface of the foundation is then compared to the recorded free field acceleration, after both signals 

are transformed from time domain to the frequency domain using Fourier transform (Cooley and 

Tukey, 1965). Figure 3.8 illustrates the transformation of the recorded free field horizontal 

component of Taft ground motion from time domain to the frequency domain using Fast Fourier 

Transform (FFT).  
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Figure 3.8 Fourier spectrum of the recorded free-field horizontal component of Taft ground 

motion acceleration 

Converting the signals from time domain to the frequency domain, and again converting back from 

frequency domain to the time domain is done using the FFT and inverse fast Fourier transform 

(IFFT) algorithms, respectively. A program was written in MATLAB (2017) for this purpose. 

Having input, output and free field signals, a correction factor is calculated based on adjustment 

techniques described in the next Chapter 4. A new signal is generated and applied at the base of 

the dam foundation in the next iteration. Using IFFT, the modified signal in frequency domain is 

converted back to the time domain and used in finite element analysis to reproduce another signal 

at the dam-foundation interface. This process is repeated until the output signal at the top of the 

foundation (here the dam-foundation interface) closely matches the recorded free field ground 

motion acceleration. A criteria can be established to determine the number of sufficient iterations. 

In the present case, the acceleration response spectra of the target and modified signals are 

compared and an error is computed at each iteration. Iterations are stopped when an error less of 

10% over the entire range of the response spectra is obtained (Sooch and Bagchi, 2014). The last 

modified signal applied at the base of the foundation and satisfying the convergence criteria is 

referred to as the deconvolved signal and is used to evaluate the seismic behaviour of the dam-

foundation systems.  

Figure 3.9 illustrates the acceleration response spectra of the horizontal and vertical components 

of the free-field ground motion compared to the ones of the convolved signals at the top of the dam 

foundation. 
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Period (s) Period (s) 

Figure 3.9 Comparing the acceleration response spectra of the Taft free-field ground motion to 

the ones of convolved signals 

 (a) horizontal component, and (b) vertical component. 

The previous approaches are applied to construct coupled dam-reservoir-foundation systems as the 

one illustrated in Figure 3.10. 

Figure 3.10 Numerical two-dimensional simulation of the dam-reservoir-foundation model 

3.2 Seismic loads 

Horizontal and vertical components of Taft ground motion are used to conduct the sensitivity 

analyses of the deconvolution process for Pine Flat dam. Recorded on July 21st, 1952, the Taft 

ground motion accelerations are applied in upstream-downstream and vertical directions 
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simultaneously to the foundation, dam-foundation and dam-reservoir foundation models, listed in 

Table 3.2, to investigate the accuracy and the efficiency of the deconvolution analysis for each of 

the models. Horizontal and vertical components of Taft earthquake are shown in Figure 3.11 (a). 

The maximum values of accelerations are 0.18g and 0.11g respectively for the horizontal and the 

vertical ground motions. The recording time step and the total duration of this earthquake are 0.01 

and 54.15 seconds, respectively.  

Figure 3.11 Taft earthquake (1952) 

 (a) horizontal and vertical accelerograms; (b) acceleration response spectra determined for 5% 

damping 
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DECONVOLUTION SENSITIVITY ANALYSIS 

Considering dam-foundation interaction in dynamic analyses of dam-reservoir-foundation systems 

introduces flexibility along with additional damping, which may affect the seismic response of the 

dam and appurtenant structures. The massless foundation assumption is utilized extensively in the 

literature and in the practice due to its simplicity. Considering only the stiffness of the foundation, 

the dam-foundation dynamic interaction is then reduced to a series of spring acting at the base of 

the dam, while inertia forces and damping of the foundation are ignored. This simplification also 

affects how earthquake input loads are applied. The absence of the foundation mass leads to an 

infinite wave velocity causing ground motion signals to propagate within the foundation 

instantaneously, without any changes. Therefore, recorded free-field ground motions can be 

applied effortlessly at the base of the foundation. A massed foundation is considered as a more 

realistic way of accounting for dam-foundation dynamic interaction. In this case, the seismic 

signals change within the foundation rising toward the dam. Therefore, the free-field recorded 

ground motions cannot be applied directly at the base of the foundation. A deconvolution process 

is then needed in order to obtain the signal at the base which produces the recorded free-field 

ground motion signal at the top (here dam-foundation interface). The appropriate deconvolved 

motion can be derived by utilizing either frequency domain analysis (Clough et al., 1985; Léger 

and Boughoufalah, 1989; Bayraktar et al., 2005) or data processing technique (Reimer, 1973; 

Khazaei poul and Zerva, 2018b; Robbe, 2017) along with time domain analysis. Data processing 

method, based on the mathematical model of the system, is utilized to deconvolve the seismic 

motions by adjusting the Fourier transform of the surface and base ground motions as suggested 

by Reimer (1973).  

This chapter compares two adjustment techniques used in the literature for the deconvolution 

process in terms of accuracy and efficiency. A series of sensitive analyses are performed to 

investigate the effects of dimensions, flexibility and boundary conditions of the foundation, as well 

as, excluding or including the static weight of the system along with the presence of the dam and 

the reservoir during the process. Pine Flat dam subjected to horizontal and vertical components of 

Taft ground motion is used as an example for this purpose.  
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4.1 Deconvolution adjustment techniques 

4.1.1 Phase-amplitude modification procedure 

The phase-amplitude modification procedure suggested by Khazaei poul and Zerva (2018b) is 

suitable to deconvolve both horizontal and vertical components of a ground motion in linear 

viscoelastic media. The recorded free-field ground motion, termed as Target surface ground 

motion, consists of the horizontal component, which is assumed to consist mainly of shear waves 

(S-waves), and the vertical component, which mostly contains compressional waves (P-waves). 

The step-by-step procedure is as follows: 

1- To calculate damping ratio and the equivalent properties of the soil layers, sensitivity 

analyses should be performed prior to the deconvolution process. 

2- The deconvolution process initiates by building the finite element model of the foundation 

rock. An appropriate boundary condition (e.g. absorbing boundary condition, infinite 

elements, perfectly matched layers) muse be applied at the truncated boundaries. So, the 

reflection of the outgoing waves back into the model is prevented. In this research study 

the absorbing boundary is defined based on viscous boundary scheme developed by Lysmer 

and Kuhlemeyer (1969), described in Chapter 3. 

3- The selected target time-history ground motion accelerations cannot be applied directly to 

the quiet boundary. Instead, first the accelerations is integrated to obtain velocities and then 

the effective horizontal and vertical time history nodal forces are calculated using equations 

(4.1 a,b) and are applied on nodes at the base of the soil profile. 

𝐹ௌ
ூ௡௣௨௧

= 2 𝜌 𝑏 𝑡 𝐶ௌ
௘௤

𝑢̇ௌ
ூ௡௣௨௧

(𝑡)  (4.1-a) 

𝐹௣
ூ௡௣௨௧

= 2 𝜌 𝑏 𝑡 𝐶௣
௘௤

𝑢̇௣
ூ௡௣௨௧

(𝑡)  (4.1-b) 

where 𝑢̇௦
ூ௡௣௨௧

(𝑡) and 𝑢̇௣
ூ௡௣௨௧

(𝑡) represent respectively the velocity time history ground

motion of S-waves and P-waves at depth. 𝐶௦
௘௤ and 𝐶௣

௘௤ are the equivalent shear and

compressional wave velocities. 𝜌 is the density of the soil. b and t are the length and the 

thickness of the elements at the bottom of the foundation. The factor of 2 is used to 

compensate the half of the energy which propagates downwards (Mejia and Dawson, 2006). 

The input velocity time histories are assumed to be half of the target value for the first 
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iteration. This division, here by two, will increase the convergence speed of the 

deconvolution method (Ju, 2013).  

4- A time-domain analysis is then carried out using the effective nodal forces stated at step 2 

in order to obtain the dynamic response ground motion at the top of the foundation. 

5- Target, input and response ground motions (i.e. the velocity time histories) are transformed 

to frequency domain using Fast Fourier Transform (FFT) as expressed in equations 4.2 to 

4.4 in terms of their amplitude and phase.  

𝑢̇௦
்௔௥௚௘௧

(𝜔) = ห𝑢̇௦
்௔௥௚௘௧

(𝜔)ห exp [𝑖𝜑௦
்௔௥௚௘௧

(𝜔)]  (4.2-a) 

𝑢̇௣
்௔௥௚௘௧

(𝜔) = ห𝑢̇௣
்௔௥௚௘௧

(𝜔)ห exp [𝑖𝜑௣
்௔௥௚௘௧

(𝜔)]   (4.2-b) 

𝑢̇௦
ூ௡௣௨௧

(𝜔) = ห𝑢̇௦
ூ௡௣௨௧

(𝜔)ห exp [𝑖𝜑௦
ூ௡௣௨௧

(𝜔)] (4.3-a) 

𝑢̇௣
ூ௡௣௨௧

(𝜔) = ห𝑢̇௣
ூ௡௣௨௧

(𝜔)ห exp [𝑖𝜑௣
ூ௡௣௨௧

(𝜔)] (4.3-b) 

𝑢̇௦
ோ௘௦௣௢௡௦௘

(𝜔) = ห𝑢̇௦
ோ௘௦௣௢௡௦௘

(𝜔)ห exp [𝑖𝜑௦
ோ௘௦௣௢௡௦௘

(𝜔)]  (4.4-a) 

𝑢̇௣
ோ௘௦௣௢௡௦௘

(𝜔) = ห𝑢̇௣
ோ௘௦௣௢௡௦௘

(𝜔)ห exp [𝑖𝜑௣
ோ௘௦௣௢௡௦௘

(𝜔)]  (4.4-b) 

6- The new modified input ground motion is generated based on the following expressions: 

𝑢̇௦
ூ௡௣௨௧ (௡௘௪)

(𝜔) = 𝛽௦(𝜔). ห𝑢̇௦
ூ௡௣௨௧(𝜔)ห exp [𝑖(𝜑௦

்௔௥௚௘௧(𝜔) − 𝜑ത௦
ௌ௛௜௙௧

(𝜔))]  (4.5-a) 

𝑢̇௣
ூ௡௣௨௧ (௡௘௪)

(𝜔) = 𝛽௣(𝜔). ห𝑢̇௣
ூ௡௣௨௧(𝜔)ห exp [𝑖(𝜑௣

்௔௥௚௘௧(𝜔) − 𝜑ത௣
ௌ௛௜௙௧

(𝜔))]  (4.5-b) 

where 

𝛽௦(𝜔) = ห𝑢̇௦
்௔௥௚௘௧(𝜔)ห    ห𝑢̇௦

ோ௘௦௣௢௡௦௘(𝜔)หൗ    Modifying factor

𝛽௣(𝜔) = ห𝑢̇௣
்௔௥௚௘௧(𝜔)ห    ห𝑢̇௣

ோ௘௦௢௡௦௘(𝜔)หൗ     Modifying factor 

𝜑ത௦
ௌ௛௜௙௧(𝜔) =   𝜑௦

ோ௘௦௣௢௡௦௘(𝜔) −   𝜑௦
ூ௡௣௨௧

(𝜔)     Effective phase shift

𝜑ത௣
ௌ௛௜௙௧(𝜔) =   𝜑௣

ோ௘௦௣௢௡௦௘(𝜔) −   𝜑௣
ூ௡௣௨௧

(𝜔)    Effective phase shift 

7- The new input motion, then, transferred back from the frequency domain to the time domain 

using the inverse Fourier Transform (IFFT) to compute the new time history nodal forces 

and to perform a new analysis in the next iteration. 
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8- After each iteration a comparison must be made between the convolved ground motion 

(Response motion) and the target ground motion to see if the results are satisfying. 

4.1.2 Amplitude modification procedure 

The adjustment technique in this section is based on Fourier analysis proposed by Reimer (1973). 

The iterative deconvolution procedure is as follows: 

1- The finite element model of the dam-foundation system is created by means of any FE 

commercial software. According to Bayraktar et al. (2010) the size of the foundation should 

be large enough, three times the height of the dam, to accommodate the local displacement 

near the dam. Boundary condition is defined based on tied degrees of freedom for the lateral 

sides, so it makes the soil column act one-dimensionally. Therefore, the boundary nodes of 

lateral sides at the same level are constrained to have the same displacement (Sooch and 

Bagchi, 2014). In this research, three different lateral boundary conditions are implemented 

to the model, while the base of the foundation model is considered fixed. 

2- Target ground motion time history acceleration, considered as the input acceleration in the 

first iteration, is applied at the bottom of the foundation. 

3- The wave propagation analysis is performed and the output time history acceleration at the 

point of interest on the foundation surface, i.e. the middle point at the dam-foundation 

interface, is determined.  

4- Similar to the previous procedure, the reproduced acceleration time history at the top, the 

input and the free-field acceleration, all are converted to frequency domain using Fast 

Fourier Transform.   

5- The correction factor to adjust the deconvolved signal is calculated differently compared to 

the phase-amplitude technique. The deconvolved signal is adjusted by using the ratio of the 

Fourier amplitudes of the free field and the output acceleration signals in the specific 

iteration for each frequency as expressed below: 

𝐶. 𝐹(𝑗) =  
𝐴𝑚𝑝்(𝑗)

𝐴𝑚𝑝ோ(𝑗)
(4.6) 
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The new modified input motion in frequency domain is generated as: 

𝑎(𝑗)௠௢ௗ௜௙௜௘ௗ =  𝑎(𝑗) ∗ 𝐶𝐹(𝑗)   and   𝑏(𝑗)௠௢ௗ௜௙௜௘ௗ =  𝑏(𝑗) ∗ 𝐶𝐹(𝑗) 

Where a(j) is the real part of the input motion at the base of the foundation and the b(j) is 

the imaginary part of the same signal in frequency domain. 

6- The new modified input motion is then transferred back to the time domain using IFFT and 

is utilized to carry out a new wave propagation analysis in the next iteration. 

7- A comparison should be made after each iteration between the convolved ground motion at 

the top and the selected target ground motion to see if the results are satisfying. 

Table 4.1 Highlights and differences of the phase-amplitude vs amplitude modifications 

Adjustment 
 method 

Parameters 
 to compare 

Phase-Amplitude modification Amplitude modification 

Primary step 
Obtaining soil equivalent properties 

and damping ratio 
--- 

FEM model 
foundation with 4-node  
plain strain finite elements 

Dam-foundation model using 4-
node plain strain finite elements 

Depth of the foundation is 3 
times the height of the dam 

Boundary 
condition 

Absorbing boundary condition (e.g. viscous 
boundary, infinite elements, PML or …) 

Tied degrees of freedom at 
lateral sides 

Signals used 
Ground motion velocity used to calculate effective 
nodal forces at the base of the foundation 

Time history ground motion 
acceleration 

Modification 
factors 

Fourier magnitude modifying factor 

𝛽(𝜔) = ห𝑢̇
்௔௥௚௘௧(𝜔)ห    ห𝑢̇

ோ௘௦௣௢௡௦௘(𝜔)หൗ  

Effective phase shift 

𝜑ത
ௌ௛௜௙௧(𝜔) =   𝜑

ோ௘௦௣௢௡௦௘(𝜔) −   𝜑
ூ௡௣௨௧

(𝜔) 

Amplitude modifying factor 

𝐶. 𝐹(𝑗) =  
𝐴𝑚𝑝்(𝑗)

𝐴𝑚𝑝ோ(𝑗)

Modified input 𝑢̇
ூ௡௣௨௧ (௡௘௪)

(𝜔) = 𝛽(𝜔). ห𝑢̇
ூ௡௣௨௧(𝜔)ห 𝑒𝑥𝑝 [𝑖(𝜑

்௔௥௚௘௧(𝜔) − 𝜑ത
ௌ௛௜௙௧

(𝜔))]

𝑎(𝑗)௠௢ௗ௜௙௜௘ௗ =  𝑎(𝑗) ∗ 𝐶𝐹(𝑗) 

𝑏(𝑗)௠௢ௗ௜௙௜௘ௗ =  𝑏(𝑗) ∗ 𝐶𝐹(𝑗) 

(4.7) 
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4.2 Deconvolution models 

As an example of the deconvolution-convolution process, a single layer foundation is selected 

according to USSD benchmark workshop (2017) on Pine Flat dam. The foundation rock has a 

depth equal to the height of the dam, which is 121.92m (400 ft). The shear and compressional wave 

velocities are assumed to be constant for the whole foundation depth. The density of the soil and 

its Poisson’s ratio are defined as 2482.86 kg/m3 (155 lb/ft3) and 0.2, respectively. The horizontal 

and vertical components of Taft earthquake (1952) were selected as the target surface ground 

motions. It is also assumed that the horizontal ground motion consists mainly of shear waves, and 

the vertical ground motion of mostly of compressional waves. The soil domain was modeled in 

ADINA using plane strain 2D solid finite elements as described in the previous chapter.  

For the deconvolution procedure based on the phase-amplitude modification technique, 

viscous Lysmer-Kuhlemeyer dampers are implemented into the bottom boundary of the rock 

foundation. The effective nodal time-history forces are calculated based on time-history velocity 

and are applied at the nodes at the base of the foundation. However, for the second adjustment 

technique based on amplitude modification, the boundary condition at the base of the foundation 

is defined differently. The ground motion accelerations are applied directly at the base and the 

lower edge of the foundation is defined as fixed.  

First, the effects of several conditions at the lateral boundaries are investigated for the foundation 

medium including and excluding its self-weight. Fixed boundaries, sliders, as well as viscous 

dampers at lateral sides are chosen to evaluate how the convolved signal could be affected by the 

least realistic yet easiest, to the most real one but complicated to apply. The dam and the reservoir 

are respectively added to the foundation to verify their influence on the accuracy of the obtained 

convolved signals. On the other hand, another study is carried out on the depth of the foundation. 

Based on a study by Bayraktar et al. (2010), in order to accommodate local displacements, the size 

of the foundation should be three times the height of the dam. To consider the effect of dam-

foundation interaction, it is recommended that the depth of the finite foundation should be at least 

twice the height of the dam (Khazaei Poul et al., 2018b). Penner et al. (2017) also created a 

numerical model of Ruskin dam in which the foundation extends three time the height of the dam 

in each direction. Therefore, the depth of the foundation for the second study is chosen as 3H, 

where H represents the height of the dam monolith, to meet the requirements of local displacement 
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accommodation as well as dam-foundation interaction. Figure 4.1 illustrates the numerical 

simulation of the foundation models for the phase-amplitude modification technique. In this figure, 

the viscous dampers are shown schematically at the base of the model. Dampers are applied to the 

bottom end of the foundation in both normal and tangential directions. The damping coefficients 

depend on density, shear and compressional wave velocities. Three different cases are considered 

to define the condition at the foundation lateral boundaries (i.e. fixed, sliding and absorbing), as 

illustrated in Figure 4.2. 

(a) (b) 

Figure 4.1 Numerical simulation of the foundation models used for phase-amplitude method; 

(a) foundation model with 1H depth, (b) foundation model with 3H depth 

(a) (b) (c) 

Figure 4.2 Lateral boundary conditions defined for the purpose of deconvolution sensitivity 

analyses: 

(a) fixed lateral boundary condition, (b) sliding lateral boundary condition, (c) absorbing lateral 

boundary condition 
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4.2.1 Results for phase-amplitude modification procedure 

A MATLAB (2017) code of the phase-amplitude modification method described earlier was 

programmed and used to carry out the deconvolution analysis. The goal is to determine the required 

input force time-histories such that the output acceleration time histories at the surface of the 

foundation match the target free-field ground motion. The program starts with the construction of 

the finite element model of the studied system through commands sent to ADINA (2018). Four 

different systems are considered. First, a flat box model (USBR, 2013), consisting of the rock 

foundation medium excluding the dam, the reservoir and any self-weight. A second system 

including the flat box model considering the self-weight of the foundation rock along with the 

deconvolution process. In the third model, the dam is added in order to verify the effects of the 

dam on the accuracy of the convolved signal at the dam-foundation interface. Finally, the reservoir 

is also included into the finite element model to give an insight of how it affects the deconvolution 

process. The effects of lateral boundary conditions are investigated for each of the described 

models. Fixed, sliding and absorbing boundary conditions are implemented to the nodes at the sides 

of the rock foundation.  

The selected time-history ground motion accelerations are read by the program and converted to 

velocity time-histories; and the effective nodal time histories are calculated and applied at the nodes 

at the base of the foundation. Next, the time-domain time history analysis is performed. 

By obtaining the response signal on the surface of the foundation at the point of interest, the 

modification process is carried out to determine the modified input signal which is used for the 

next iteration. In this chapter, the comparison is made using time-history ground motion 

accelerations, while another comparison using response spectra is presented in appendix D. Figure 

4.3 compares the horizontal and vertical components of the free-field ground motion accelerations 

and their related convolved signals obtained at the top surface of the foundation. As shown in 

Figure 4.3 (a) and (b), corresponding to the foundation model excluding the self-weight, a perfect 

agreement is achieved between the recorded free-field ground motion, here termed as “target 

motion”, and the convolved signals obtained at the top of the flat box respectively for the horizontal 

and vertical components, when the lateral boundaries are simulated using sliding and absorbing 

conditions However, in case of a fixed lateral boundary condition, discrepancies are observed at 

the beginning and the end of the horizontal convolved signal. 
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 H - Target  Fixed  Sliding VD  V- Target 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Figure 4.3 Comparing horizontal (left) and vertical (right) components of free-field 
acceleration vs convolved signal for the model with 1H depth including fixed, sliding and 

absorbing lateral B.C. 

(a) and (b) Foundation only excluding its self-weight; (c) and (d) Foundation only including self-
weight; (e) and (f) dam-foundation including static weight; (g) and (h) dam-reservoir-foundation 
including static weight 
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Figure 4.3 (c) illustrates a perfect match between the horizontal component of the target motion 

and the horizontal convolved signals for the models with sliders and viscous dampers at the lateral 

boundaries of the foundation model including self-weight. However, for the fixed lateral boundary 

condition, despite a very good match throughout the signal, there are discrepancies at the beginning 

and at the end of the horizontal convolved signal compared to the horizontal component of the 

target ground motion. Comparing vertical components in Figure 4.3 (d), the difference between 

target and vertical convolved signals is quite noticeable for the model with sliders. Seismic signals 

corresponding to the other two boundary conditions, however, show an ideal agreement throughout 

the whole time duration except at the beginning and at the end. Figure 4.3 (e) and (f) show 

respectively the comparison between the horizontal and vertical signals including the effect of the 

dam. As can be seen, while the horizontal convolved signals are not affected, less accurate results 

are obtained for the vertical components of the convolved signals. A good match is achieved for 

horizontal deconvolved components from the models with lateral sliders and viscous dampers. 

However, the discrepancies exist at the beginning and at the end of the vertical convolved signals 

of the same models. By including the reservoir, Figure 4.3 (g) and (h) illustrate the same trend as 

for the dam-foundation system. In this case, the best results for both horizontal and vertical 

components are obtained for the model including the lateral viscous dampers. Yet, a small 

discrepancy exists at both sides of the convolved signals.  

Figure 4.4 compares the results from the models which foundation depth extends to three times the 

height of the dam. As shown in Figure 4.4 (a) and (b), a perfect match is obtained between target 

motions and convolved signals for both horizontal and vertical components of the models with 

sliding and absorbing lateral boundary conditions. As the depth of the model increases, the 

accuracy of the convolved signal in the model with fixed lateral boundary conditions decreases 

only for the horizontal component. Its vertical component still matches flawlessly. The comparison 

of the horizontal and vertical signals of the foundation only model including the static weight is 

illustrated in Figure 4.4 (c) and (d). A clean agreement is achieved for the models with sliding and 

absorbing lateral boundaries. However, for the horizontal convolved signal of the model with fixed 

B.C. a huge disagreement is obtained at the beginning of the signals. The vertical convolved signal 

for the same mode, nevertheless, perfectly matches the target motion.  
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 H - Target  Fixed  Sliding VD  V- Target 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Figure 4.4 Comparing horizontal (left) and vertical (right) components of free-field 
acceleration vs convolved signal for the model with 3H depth including fixed, sliding and 

absorbing lateral B.C. 

(a) and (b) Foundation only excluding its self-weight; (c) and (d) Foundation only including self-
weight; (e) and (f) dam-foundation including static weight; (g) and (h) dam-reservoir-foundation 
including static weight 
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By joining the dam to the model, Figure 4.4 (e) and (f), the horizontal results related to the fixed 

lateral boundaries considerably lose their agreement and accuracy at the beginning, although they 

are matched elsewhere throughout the signal. Still for this model, the results obtained for the 

vertical deconvolved signals are in excellent agreement with the vertical target motion. The results 

for the dam-foundation model with 3H depth including the reservoir are shown in Figure 4.4 (g) 

and (h). As illustrated in Figure 4.4 (g), the horizontal convolved signals from the model with fixed 

lateral boundary conditions do not match the free-field signal at the beginning of the signal. The 

difference between the two signals is important. Horizontal convolved signals for models with both 

sliding and absorbing boundary conditions are also less accurate at the beginning and at the end of 

the signals. However, a very good agreement is achieved throughout these signals to the end. For 

the vertical components, all the models show a good agreement between the convolved and the 

target signals, although some slight discrepancies can still be observed at the end of the signals 

from the model with absorbing boundary conditions. 

Figure 4.5 compares the convolved results obtained from the models with 1H depth with the ones 

from the models with 3H depth to show any improvement or deterioration of the convolved signals 

by increasing the depth of the model. As can be seen from Figure 4.5 (a) and (b), the accuracy of 

the horizontal convolved signals for the flat box models with fixed lateral boundaries and excluding 

the weight of the dam degrade with increased depth of the foundation. For the models with sliders 

and viscous dampers at the lateral sides of the rock foundation, the results are not affected. For the 

vertical components, however, the accuracy of the convolved signals is very satisfactory in both 

cases. In the case of the foundation model including self-weight, Figure 4.5 (c) and (d), the same 

trend exists for the horizontal convolved signals model with fixed lateral boundary condition. By 

increasing the depth of the foundation, the horizontal convolved signal is getting worse. However, 

much better results are obtained for the vertical convolved signals especially for the model with 

sliding lateral boundary conditions. No discrepancies are now observed at the beginning and at the 

end of vertical convolved signals. When the foundation depth is increased, more accurate vertical 

convolved signals are obtained for all the dam-foundation and dam-reservoir-foundation models 

with fixed, sliding and absorbing lateral boundary conditions. The accuracy of the horizontal 

convolved signals for the models with absorbing and sliding boundary conditions is also improved. 
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 H and V 
 Target 

Fixed B.C. - 1H model 
Fixed B.C. - 3H model 

 Sliding B.C. - 1H model 
Sliding B.C. - 3H model 

 VD B.C. - 1H model 
VD B.C. - 3H model 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Figure 4.5 Comparing horizontal (left) and vertical (right) components of free-field 
acceleration vs convolved signal for the models with 1H and 3H depth including fixed, sliding 

and absorbing lateral B.C. 

(a) and (b) Foundation only excluding its self-weight; (c) and (d) Foundation only including self-
weight; (e) and (f) dam-foundation including static weight; (g) and (h) dam-reservoir-foundation 
including static weight 
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However, significantly less accurate convolved signals are obtained for the dam-foundation and 

dam-reservoir-foundation models with fixed lateral boundary conditions. 

Another deconvolution analysis is carried out by attributing a very small value of the modulus of 

elasticity to the foundation rock in order to verify the effects that flexibility might have on the 

accuracy of the obtained convolved signal on the top surface of the foundation compared to the 

target ground motions. For this purpose, a small value of 4.48 GPa (i.e. one fifth of that used in the 

former models) was used as an elastic modulus of the rock foundation. The process is only 

performed for the flat box model of the foundation with 3H depth excluding the self-weight. 

As shown in Figure 4.6, a very good agreement is obtained for both horizontal and vertical 

earthquake components throughout the entire duration of the signal, except for a slight noise at the 

end of the convolved signals. 

 H - Target  VD - Hor  VD - Ver  V- Target 

(a) (b) 

Figure 4.6 Comparing convoled signals versus target ground motion accelerations of the 

foundation only model with 3H depth having a very small value of Young's modulus 

 (a) Horizontal components; (b) Vertical components 

4.2.2 Results for amplitude modification method 

According to this approach, the seismic loads are applied as ground motion accelerations at the 

base of the dam foundation. The rock foundation model has fixed boundary conditions at the 

bottom edge and a depth of 3H, where H is the height of the dam. This method is evaluated only 

for the flat box model excluding the dam and the reservoir. Figure 4.7 shows the results obtained 

to verify the accuracy of the output signals compared to the target free-field ground motions when 

three types of lateral boundary conditions are applied (i.e. fixed, sliding and absorbing boundary 
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conditions). It is found that the horizontal and vertical convolved signals of the model with 

absorbing boundary conditions exhibit a better agreement than the other two models. A comparison 

of the acceleration response spectra of the target motions and their corresponding convolved signals 

is also presented in Appendix D. 

 H - Target  Fixed  Slider VD  V- Target 

(a) (b) 

Figure 4.7 Comparing convolved signals versus free-field ground motion acceleration for the 

foundation-only model with 3H depth using amplitude modification approach 

 (a) horizontal components, (b) vertical components 

4.3 Conclusions 

The purpose of this chapter was to determine the input time-history signal such that the output time 

history acceleration at the top of the foundation matches the free-field ground motion acceleration. 

Two adjustment techniques reported in the literature were investigated to carry out deconvolution 

analysis for both horizontal and vertical seismic components in linear viscoelastic media and 

compared in terms of accuracy and efficiency. A series of sensitive analyses are performed to 

investigate the effects of dimensions, flexibility, boundary conditions of the foundation, as well as 

excluding or including the presence of the dam and the reservoir. The main conclusions can be 

summarized as follows: 

1- The results show that the phase-amplitude procedure can accurately estimate the 

deconvolved ground motion. An excellent match is observed between the convolved and 

target motion for both horizontal and vertical components in flat box models. The amplitude 

FFT adjustment technique, however, is easier to apply but may induce inaccurate 

deconvolved signals.  
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2- Absorbing lateral boundary condition, compared to fixed and sliding lateral boundary 

conditions, exhibits much better agreement between the target and the convolved signals 

for both horizontal and vertical components using either of adjustment techniques. 

3- By increasing the depth of the foundation to three times the height of the dam, the error in 

deconvolution results for the horizontal component increases considerably for the model 

with the fixed boundary condition. However, results for the models with sliding and 

absorbing lateral boundary conditions improves slightly. Improved accuracy is obtained for 

the vertical earthquake components of the model with sliding lateral boundary conditions.  

4- The best results for the deconvolution process are obtained for the flat box model excluding 

foundation static weight. By adding the static weight, dam and the reservoir structure to the 

model, the accuracy of the deconvolution is affected mainly at the beginning and the end 

of the convolved signals.  

5- The phase-amplitude method exhibits a very low sensitivity to the flexibility of the 

foundation. It yields excellent results for the foundation with very low elastic modulus. 

6- Generally, the convergence of the deconvolution process for the flat box models using 

either of the lateral boundary conditions is achieved at the third or fourth iteration. 
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ROCK FOUNDATION EFFECTS ON SEISMIC 

DEMANDS WITHIN DAMS AND APPURTENANT STRUCTURES 

The effects of the soil-structure interaction on seismic demands within the dam are investigated in 

this chapter in terms of floor response spectra. The phase-amplitude deconvolution technique, 

described and verified in the preceding chapter, is utilized to perform deconvolution analyses to 

obtain the seismic signals to be applied at the base of the dam-reservoir-foundation models.  

5.1 Size of the rock foundation model 

Since the infinite domain of the foundation is truncated, a convergence study is required to 

determine the required size of the foundation sufficient for propagating waves to radiate out 

through the boundaries, i.e. no wave reflection back into the foundation domain. For this purpose, 

different upstream lengths are considered for the foundation model and the convergence of the 

dynamic response for the dam-foundation model is verified by means of the horizontal and the 

vertical floor acceleration response spectra at a point located at the middle of the dam crest.  

The length of the foundation towards upstream is varied. The results of the convergence study are 

illustrated in what follows for upstream truncation lengths of 5H, 50H and 70H of the reservoir and 

the rock foundation, where H denotes the height of the dam monolith. The rock foundation is 

truncated at 3H downstream (i.e. from dam toe). The depth of the foundation is 3H as illustrated in 

Figure 5.1. The convergence of the horizontal and vertical floor response spectra is presented for 

Pine Flat dam-foundation model subjected only to the horizontal earthquake component of Taft 

ground motion, and then to both horizontal and vertical components of the same earthquake. The 

ground motions were first deconvolved for each truncation length.  

Figure 5.1 Dimensions of the reservoir and rock foundation domains 
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The convergence study is illustrated next for a model where the dam and the rock foundation are 

assumed to have the same modulus of elasticity. Viscous damping ratios of 5% and 7% are 

considered for the dam and foundation, respectively. Figure 5.2 shows the acceleration floor 

response spectra obtained at a point at the middle of the dam crest. Each floor spectral acceleration 

is divided by the horizontal peak ground motion acceleration (HPGA) of the ground motion to 

evaluate seismic amplifications from the dam base to the crest. It is seen from Figure 5.2 that the 

acceleration floor response spectra converge for an upstream truncation length of 50H of the 

reservoir and the rock foundation. This truncation length is used in the rest of this chapter. 

Figure 5.2 Verification of the convergence of the horizontal and vertical floor response spectra of 

the Pine Flat dam-massed foundation model subjected to deconvolved Taft ground motion 

 (a) and (b) horizontal earthquake input only; (c) and (d) horizontal and vertical earthquake input; 

(a) and (c) horizontal acceleration floor response spectra; (b) and (d) vertical acceleration floor 

response spectra 
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5.2 Calibration of Rayleigh damping 

Absorbing boundary conditions are assigned at the lateral and bottom boundaries of the rock 

foundation as discussed in the previous chapter. The effective nodal forces are calculated and 

applied at the nodes located at the bottom of the foundation domain. The accuracy of the 

deconvolution process can be affected by the proper choice of natural frequencies used to calculate 

Rayleigh damping coefficients of the rock foundation. The case of a rock foundation with a 

relatively low ratio of elastic modulus to the elastic modulus of the dam, i.e. 𝐸୤/𝐸ୢ =0.2, is 

illustrated in this section to highlight the effects of proper selection of Rayleigh damping on the 

accuracy of the convolved signal compared to the target free-field ground motion.  

The dynamic properties of the flat box foundation model with 50H upstream truncation length are 

determined first, i.e. vibration frequencies, mode shapes and modal participation factors. 

The modes associated with significant contributions to the dynamic response of the foundation 

model are identified. An example of a 5%-damped frequency response curve at the point of interest 

(i.e. point at the middle of the dam-foundation interface) is shown in Figure 5.3 (a). A total of 500 

modes were included in the analysis. The percentages of the mass participating along the Y 

direction are also given in Figure 5.3 (b). Table 5.1 contains the frequencies and modal mass 

participations (in %) corresponding to the modes contributing most to the dynamic response of the 

system, i.e. the fundamental, 46th and 129th vibration modes.  

Figure 5.3 Modal properties of the dam-rock foundation 

 (a) Frequency response curve of the rock foundation model: (b) Percentage of the modal mass 
participation along Y direction considering 500 first modes 
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Table 5.1 Frequency and modal participation of significant modes in dynamic response of the 

foundation model with 50H upstream length 

Mode Frequency (Hz) Modal participation (Y) % Modal participation (Z) % 

1 0.593 81.029 0 

46 1.779 8.97668 0 

129 2.965 3.21516 0 

The Rayleigh damping coefficients are determined based on different sets of frequencies of the 

first, second and third significant modes identified previously in order to compare the effects on 

the convolved earthquake signals. The first set of frequencies correspond to the fundamental and 

second vibration modes, the second set to the fundamental and 49th vibration modes, and the third 

set to the fundamental and 129th vibration modes. The horizontal component of the Taft ground 

motion acceleration is used to illustrate the results. Figure 5.4 compares the acceleration time-

history and the response spectra of the deconvolved horizontal component of Taft ground motion 

obtained using the different Rayleigh damping coefficients. 

 Taft Horizontal Target  F1 and F2  F1 and F46  F1 and F129 

(a) (b) 

Figure 5.4 Effect of Rayleigh damping on the accuracy of the horizontal convolved signals 

 (a) comparison between acceleration time histories; (b) comparison between response spectra of 

the related signals determined for 5% damping 

As can be seen, the accuracy of the convolved signal at the surface of the foundation is significantly 

improved when the Rayleigh damping coefficients are obtained using the second and third sets of 

frequencies, i.e. fundamental and 49th or 129th vibration modes. 
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5.3 Effects of foundation flexibility and damping on dam-reservoir systems 

The objective of this section is to study the horizontal and vertical floor acceleration response 

spectra obtained at a point at the middle of the crest of Pine Flat dam subjected to only the 

horizontal component of Taft ground motion, or to both horizontal and vertical components of the 

same record. The response of the gravity dam including impounded water effects is determined 

first. Water compressibility is modelled, while wave absorption at reservoir bottom is ignored. 

The acceleration floor response spectra are obtained from an implicit direct integration time-history 

dynamic analysis with a time step equal to 0.005 s. The base of the dam is considered rigid and the 

loads are applied as ground motion accelerations at the base. Three values of elastic modulus are 

considered for the rock foundation, corresponding to ratios of 2, 1 and 0.5 with respect to the elastic 

modulus of the dam concrete. Two viscous damping ratios are selected as 2% and 7%. Figure 5.5 

shows the amplification of the horizontal and vertical acceleration floor response spectra when the 

dam-water system is subjected to loading cases described earlier. The horizontal and vertical 

acceleration floor response spectra are compared in Figures 5.5 (a) and (b). It is concluded that the 

vertical component of the considered Taft earthquake does not significantly affect the horizontal 

floor acceleration at the crest of the dam. However, the vertical floor response spectrum at crest is 

amplified considerably, especially at higher frequencies, when the dam-reservoir system is 

subjected to the horizontal and vertical components simultaneously.  

Figure 5.5 Horizontal and vertical floor response spectra at the crest of Pine Flat dam-reservoir 

model subjected to only horizontal or both horizontal and vertical components of Taft ground 

motion accelerations 

(a) Horizontal acceleration floor response spectra; (b) Vertical acceleration floor response spectra 
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Figure 5.6 shows the floor acceleration response spectra at dam crest when the rock foundation is 

included in the analysis, considering viscous damping coefficients of 5% and 7% for the dam and 

rock foundation, respectively. It is observed that the amplifications of horizontal and vertical floor 

response spectra at dam crest are higher as rock foundation is stiffer. It is also seen from Figure 5.6 

(b) that higher vertical accelerations are obtained at dam crest subjected to only horizontal 

earthquake when dam-foundation effects are included. Such effects also lead to shifting of the 

resonant peaks of the floor response spectra.  

Figure 5.6 Horizontal and vertical floor response spectra at the crest of Pine Flat dam-reservoir-foundation 

model with 7% damping ratio subjected to only horizontal and both horizontal and vertical components of 

Taft ground motion earthquake 

 (a) and (b) elastic modulus of the foundation is twice as the elastic modulus of the dam; (c) and (d) elastic 

modulus of the foundation is equal to that of the dam; (d) and (e) elastic modulus of the foundation is half 

of the one related to dam; (a), (c) and (e): Horizontal acceleration floor response spectra; (b), (d) and (f): 

vertical acceleration floor response spectra. 

Ef = 2Ed Ef = 2Ed 

Ef = Ed Ef = Ed 

Ef = 0.5Ed Ef = 0.5Ed 
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Figure 5.7 illustrates the amplification of the horizontal and vertical floor spectral accelerations 

when a 2% damping ratio is considered for the rock foundation. Similar trends as previously are 

observed. 

Figure 5.7 Horizontal and vertical floor response spectra at the crest of Pine Flat dam-reservoir-

foundation model with 2% damping ratio subjected to horizontal only and horizontal and vertical 

components of Taft ground motion earthquake 

(a) and (b) elastic modulus of the foundation is twice as the elastic modulus of the dam; (c) and (d) 

elastic modulus of the foundation is equal to that of the dam; (d) and (e) elastic modulus of the 

foundation is half of the one related to dam; (a), (c) and (e): Horizontal acceleration floor response 

spectra; (b), (d) and (f): vertical acceleration floor response spectra. 

Ef = 2Ed Ef = 2Ed 

Ef = Ed Ef = Ed 

Ef = 0.5Ed Ef = 0.5Ed 
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Another comparison between horizontal and vertical acceleration floor response spectra is shown 

in Figures 5.8 and 5.9 to highlight the influence of damping on the results. Figure 5.8 compares the 

results for the horizontal and vertical floor acceleration response spectra when the dam-reservoir-

foundation model is subjected only to the horizontal component of the Taft ground motion. The 

results under both horizontal and vertical components of the same record are presented in 

Figure 5.9.  

Figure 5.8 Horizontal and vertical floor response spectra at the crest of Pine Flat dam-reservoir-

foundation model subjected to horizontal component of Taft ground motion earthquake 

(a) and (b) elastic modulus of the foundation is twice as the elastic modulus of the dam; (c) and (d) 

elastic modulus of the foundation is the same as that of the dam; (e) and (f) elastic modulus of the 

foundation is half of the one related to dam; (a), (c) and (e) : Horizontal acceleration floor response 

spectra; (b), (d) and (f) : vertical acceleration floor response spectra. 

Ef = 2Ed Ef = 2Ed 

Ef = Ed Ef = Ed 

Ef = 0.5Ed Ef = 0.5Ed 
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These results show that horizontal and vertical floor acceleration response spectra are not 

significantly influenced by the damping ratio associated with a rock foundation when its flexibility 

is equal or higher than that of the dam. The opposite is observed when the flexibility of the rock 

foundation is lower than that of the dam. The results also show that horizonal and vertical floor 

spectral amplifications are higher when the damping ratio decreases from 7% to 2%.  

Figure 5.9 Horizontal and vertical floor response spectra at the crest of Pine Flat dam-reservoir-

foundation model subjected to horizontal and vertical components of Taft ground motion 

earthquake simultaneously 

(a) and (b) elastic modulus of the foundation is twice as the elastic modulus of the dam; (c) and (d) 

elastic modulus of the foundation is equal to that of the dam; (e) and (f) elastic modulus of the 

foundation is half of the one related to dam; (a), (c) and (e): Horizontal acceleration floor response 

spectra; (b), (d) and (f): vertical acceleration floor response spectra. 

Ef = 2Ed Ef = 2Ed 

Ef = Ed Ef = Ed 

Ef = 0.5Ed Ef = 0.5Ed 
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5.4 The effects of dam-size 

In this section, the effects of dam size on the seismic demands related to a dam-reservoir-foundation 

system are investigated. For this purpose, a gravity dam, denoted hereafter as D35, is considered. 

The geometry of this small gravity dam is compared to that of Pine Flat dam in Figure 5.10. The 

dam has a height of 35 m, 27.5 m width at the base, and 5 m width at the crest. The level of 

impounded water is at 32 m. The dam, the reservoir and the rock foundation are modelled following 

the same methodology described in Chapter 3. The mechanical properties adopted for the D35 

dam-reservoir-foundation system are summarized in Table 5.2.  

Figure 5.10 Geometry of the small & large gravity dams 

Three elastic moduli are defined for the foundation with respect to the modulus of elasticity of the 

dam. The ratios are 2, 1 and 0.5, given respectively values of 50, 25 and 12.5 GPa for the elastic 

modulus of the foundation. 
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Table 5.2 Material properties for the synthetized small gravity dam 

Material Parameters Small dam (D35) Units (SI) 

Concrete Modulus of elasticity 
Density 
Poisson’s ratio 

25 
2400 
0.20 

GPa 
Kg/m3 

- 

Foundation 
rock 

Modulus of elasticity 
Density 
Poisson’s ratio 

Ef
*

2400 
0.20 

GPa 
Kg/m3 

- 

Water Density 
Bulk modulus 
Wave velocity 

1000 
2.07 E9 

1440 

Kg/m3 
N/m2 
m/sec 

Figure 5.11 illustrates the 2D finite element meshing of the D35 dam. Three transition layers are 

created, and the meshing is more refined at the crest and at the base of the dam.  

Figure 5.11 2D meshing of the D35 gravity dam 

The dam is subjected to the horizontal and vertical components of Taft earthquake described 

previously. The same deconvolution technique used for Pine Flat is applied. The same boundary 

conditions discussed previously are also considered. Figure 5.12 compares the horizontal and 

vertical floor acceleration response spectra at the middle of the crest of the D35 dam subjected to 

only horizontal Taft ground motion, and both horizontal and vertical ground motions. The results 
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show that the amplification on the horizontal floor spectral accelerations is practically not affected. 

However, the vertical floor response accelerations are amplified considerably when the system is 

subjected to the both horizontal and vertical earthquake input. When the effects of rock foundation 

are included, the amplifications of the horizontal and vertical acceleration floor response spectra at 

the crest of the dam decrease as shown in Figure 5.13. 

Figure 5.12 Horizontal and vertical floor response spectra at the crest of D35 dam-reservoir 

model including compressible water subjected to only horizontal and both horizontal and vertical 

components of Taft ground motion 

(a) horizontal floor acceleration response spectra; (b) vertical floor acceleration response spectra 
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Figure 5.13 Horizontal and vertical floor response spectra at the center of the crest of D35 dam-

reservoir-foundation model with 7% damping ratio subjected to horizontal only and horizontal 

and vertical components of Taft ground motion earthquake 

(a) and (b) elastic modulus of the foundation is twice as the elastic modulus of the dam; (c) and (d) 

elastic modulus of the foundation is equal to that of the dam; (d) and (e) elastic modulus of the 

foundation is half of the one related to dam; (a), (c) and (e): horizontal acceleration FRS; (b), (d) 

and (f): vertical acceleration FRS 

Ef = 2Ed Ef = 2Ed 

Ef = Ed Ef = Ed 

Ef = 0.5Ed Ef = 0.5Ed 
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CONCLUSION 

The purpose of this research was to investigate the effects of rock foundation on seismic demands 

within dams and appurtenant structures. Due to potential amplifications of ground motions over 

the height of a dam, the supported equipment and secondary structures can be at higher seismic 

hazard than the dam itself. The finite element method is used in this work to investigate the seismic 

response of dam-reservoir-foundation systems, expressed in terms of floor acceleration response 

spectra, when subjected to horizontal and vertical ground motion components. Several 2D finite 

element models of dam-reservoir-foundation systems including fluid-structure interaction, as well 

as absorbing boundary conditions for the rock foundation domain were constructed. 

A deconvolution process was carried out to account for the mass of the rock foundation. For this 

purpose, an efficient MATLAB code was developed and applied to obtain the deconvolved 

earthquake signals at the base of the foundation. Two different adjustment techniques were applied 

to modify the output seismic signals obtained from transient time-domain analysis at the end of 

each deconvolution iteration. The effects of the dimensions of the rock foundation, the boundary 

conditions and dam foundation flexibility on the convergence, accuracy and efficiency of the 

techniques were investigated. The deconvolved seismic signals were utilized to evaluate the effects 

of massed foundation on dynamic behavior of dam-reservoir-foundation systems, in terms of floor 

acceleration response spectra within the dams. The effects of foundation flexibility and damping 

ratio on the seismic demands were also investigated. Two dams were considered for illustration 

purposes: Pine Flat dam and a smaller 35 m gravity dam. 

The following main conclusions can be drawn from this study: 

1- The phase-amplitude FFT adjustment technique for the deconvolution process provided an 

excellent agreement between the convolved and the free field ground motion acceleration. 

However, this procedure requires the application of absorbing boundary conditions and the 

determination of nodal forces at the base of the soil domain. Although the adjustment 

technique based on only FFT amplitude is simpler and can be more efficient, it may induce 

inaccurate deconvolved signals.  

2- Absorbing lateral boundary conditions of the rock foundation domain, simulated using 

viscous Lysmer-Kuhlemeyer dampers, exhibit much better performance compared to fixed 

and sliding boundary conditions.  
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3- Increasing the depth of modelled rock foundation could lead to less accurate deconvolution 

results if the foundation If the rock is highly flexible. 

4- Inadequate evaluation of equivalent Rayleigh damping for the purpose of transient direct 

integration analyses used in the deconvolution process may lead to inaccurate results. 

5- The convergence for the deconvolution process for the flat box models using either of 

lateral boundary conditions was achieved within three or four iterations. 

6- The presence of the massed flexible foundation can significantly influence the seismic 

demands within gravity dams. For example, some results show that the amplification of 

floor acceleration response spectra at the dam crest could be reduced by up to 70% when 

rock foundation effects are included. 

7- Increasing the viscous damping ratio of the rock foundation slightly reduces the 

amplification of both horizontal and vertical floor acceleration spectra for the foundations 

with higher flexibility ratios. However, this damping effect increases with decreasing rock 

foundation flexibility. 

8- A stiffer rock foundation generally induced higher acceleration seismic demands with the 

gravity dams studied. 

6.1 Research Perspectives 

The analyses performed in this research considered the linear behavior of the dam and the 

foundation. However, the material nonlinearity for the dam and the foundation, cracking, joint 

opening and sliding between dam-foundation interface should be considered for further research. 

Accounting for the nonlinear behaviour of the soil in such analyses should also be considered. 

Moreover, absorption of the compressional waves, due to the sedimentation at the bottom of the 

reservoir, should also be considered at reservoir-foundation interface. Finally, three-dimensional 

simulation of dam-reservoir-foundation system, i.e. 3D effects of the reservoir, input seismic loads, 

should be investigated as well.  
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APPENDIX A   EVALUATION OF MATLAB CODE 

A MATLAB code is programmed in order to carry out the deconvolution analysis using data 

processing technique. In order to ensure the correctness of the results, commands and functions 

used in MATLAB, a comparison is made to SeismoSignal, an earthquake software which is used 

for signal processing of strong-motion data. The program is able to read accelerograms and derive 

the velocity, displacement, as well as Fourier spectra.   

In the phase-amplitude modification technique, the very first step is to calculate the time history 

velocity of the ground motion acceleration. Here, as an example, horizontal component of Taft 

time history ground motion acceleration is selected for comparison purposes. Figure A.1 shows a 

comparison between the results obtained by the two software for the horizontal component of the 

ground motion velocity. 

Figure A.1 Comparing the horizontal velocity time history of Taft ground motion obtained by 

MATLAB and SeismoSignal 

In addition, another comparison is made for the Fourier spectra of the horizontal component of Taft 

earthquake. The results for the normalized one-sided Fourier spectra is shown in figure A.2. as it’s 

illustrated, the amplitudes through the frequencies are perfectly matched. 
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Figure A.2 Verification of the Fourier amplitude of the horizontal component of Taft ground 

motion acceleration obtained by MATLAB and SeismoSignal 
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APPENDIX B   MASSED FOUNDATION CONVERGENCE ANALYSIS 

A convergence study is done on the dimensions of the foundation rock. In case of static analysis, 

the size of foundation model is selected so that the results containing the static displacements and 

stresses induced in the dam have no changes by any expansion of the foundation size. In the seismic 

analysis however, this size should be selected so that the static results, as well as the natural 

frequencies and mode shapes, which control the seismic response of the dam, are calculated 

accurately. However, in case of flexible massed foundation, the natural frequencies of the dam-

foundation model reduce with no convergence as the size of the foundation increases. Figure B.1 

illustrate the dimensions of the foundation rock and the selected sizes to make the comparison. 

Figure B.2 compares the natural frequencies of the selected models with the original dimensions 

which is a = 2.5 H and b = H,  where H is the height of the dam. 

a=2.5H  ,    b=2H 

a=3H     ,    b=3H 

a=4H     ,    b=4H 

a=5H     ,    b=5H 

Figure B.1 Dimensions selected for the convergence study of the foundation rock 

As it is illustrated in figure B.2 no convergence is occurred in natural frequencies, as well as floor 

response spectrum at the top of the foundation, by increasing the size of the foundation, when only 

the free-field ground motion accelerations are applied to the model. 

(a) (b) 

Figure B.2 Comparing:  (a) natural frequencies; (b) floor response spectra 
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APPENDIX C   COMPARING 2D AND 3D MODELING OF PINE FLAT 

DAM IN TERMS OF NATURAL FREQUENCIES AND MODE SHAPES 

Prior to the dynamic analysis, a frequency analysis should be carried out in order to obtain the 

natural frequencies and shape modes of the FE models. Considering the same material properties 

proposed by USSD, the first 20 natural frequencies are obtained for both 2D and 3D models of the 

tallest non-overflow monolith of the Pine-Flat dam. Although this step seems to be a very simple 

and basic step of the dynamic analysis, special attention should be given to it because the accuracy 

of the results mostly depends on the values gain from this step. Apart from the mathematical model 

behind this free-motion frequency analysis, choosing a correct meshing in terms of both the size 

and the order of elements is a very delicate process. The size of the elements should be such that a 

balance is established between the preciseness of the results and the computation time. Plus, 

refinement is necessary at the crest, as well as, at the base of the dam depending on the type of 

analysis. The selected monolith of the dam is modelled in both 2D and 3D. for the two-dimension 

model, meshing is done utilizing 2D-solid plane strain elements with 3 types of refinements, each 

with 4 nodes (linear) and with 9 nodes (parabolic). In case of three-dimension model, 3D-solid 

elements are created based on correspondent 2D model, each with 8 nodes and 20 nodes in order 

to better compare and judge the results. Figure C.1 shows the meshing of both 2D and 3D models, 

from coarse elements on the left to the most refined one on the right. To avoid unfavourable 

Constant Strain Triangle (CST) elements, which are created by the software along the height of the 

dam to adjust different divisions on the top to the ones on the bottom, several transition level with 

geometry ratio of 1 to 2 are created, so we can still have a better refinement with 4-noded 

rectangular elements to ensure more accurate results within the dam. Figure C.2 illustrates how this 

transition elements works. Although the seismic behaviour of the concrete gravity dam, as a short 

vibration period structure, is preliminary related to the fundamental mode of vibration, higher 

vibration modes has still its little influence. Since in modal analysis, the accumulative masses of 

the modes participating in the total dynamic response of the system should be at least 90% of the 

total mass of the structure in every direction that the ground motion is applied, a verification is 

done on the convergence of the higher modes (here the first 20 modes). As it is numerically 

illustrated in Tables C.1 and C.2, respectively the values of first twenty modes of vibration of the 

models in two dimensions and three dimensions, the few lower modes are converged as the size of 

meshing becomes finer and finer. However, for the higher modes this 
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 (a)  (b)  (c) 

       (d)                                                   (e)                                                    (f) 

Figure C.1 Mesh refinement for 2D and 3D models of Pine Flat dam:  
(a) and (d) coarse meshing; (b) and (e) less refined meshing; (c) and (f) refined meshing 

convergence is still needed when the linear elements are utilized. In case of using higher order 

elements with parabolic interpolation function, the convergence is achieved even with the large 

size of meshing. The convergence criterion is usually satisfying when the difference of the 

frequency of the same mode with different meshing divided to the accurate value is less than 0.01 

percent which is the case for all meshing with parabolic elements even with large size. 

(a) (b) 

Figure C.2 Transition patterns: (a) 3D model; (b) 2D model 
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Table C.1 First twenty natural frequencies of the 2D model with different refinements 

2D model 

Modes 
Large Medium size Refined 

4Nodes Error 9Nodes Error 4Nodes Error 9Nodes Error 4Nodes Error 9Nodes 

1 3.242 0.0031 3.232 0.0000 3.235 0.0008 3.232 0.00000 3.233 0.0002 3.232 
2 6.675 0.0088 6.617 0.0000 6.631 0.0021 6.617 0.00001 6.620 0.0005 6.617 
3 8.918 0.0009 8.910 0.0000 8.912 0.0003 8.910 0.00000 8.910 0.0001 8.910 
4 11.476 0.0101 11.363 0.0001 11.390 0.0025 11.362 0.00001 11.369 0.0006 11.362 
5 17.353 0.0122 17.145 0.0001 17.196 0.0031 17.144 0.00001 17.157 0.0008 17.144 
6 19.442 0.0027 19.390 0.0000 19.403 0.0007 19.390 0.00000 19.394 0.0002 19.390 
7 23.950 0.0153 23.591 0.0001 23.684 0.0040 23.590 0.00001 23.615 0.0010 23.590 
8 24.518 0.0024 24.459 0.0000 24.473 0.0006 24.459 0.00000 24.463 0.0001 24.459 
9 26.226 0.0056 26.080 0.0000 26.115 0.0014 26.079 0.00000 26.089 0.0004 26.079 

10 29.134 0.0153 28.696 0.0001 28.811 0.0040 28.695 0.00000 28.726 0.0011 28.695 
11 30.986 0.0042 30.858 0.0000 30.895 0.0012 30.857 0.00000 30.867 0.0003 30.857 
12 32.240 0.0163 31.726 0.0001 31.850 0.0040 31.723 0.00001 31.756 0.0010 31.723 
13 35.674 0.0227 34.887 0.0001 35.098 0.0062 34.883 0.00001 34.941 0.0017 34.883 
14 37.028 0.0089 36.703 0.0000 36.776 0.0020 36.702 0.00000 36.721 0.0005 36.702 
15 39.825 0.0183 39.112 0.0001 39.300 0.0049 39.108 0.00001 39.160 0.0013 39.108 
16 40.850 0.0140 40.292 0.0001 40.446 0.0040 40.288 0.00001 40.331 0.0011 40.287 
17 42.291 0.0174 41.575 0.0002 41.828 0.0062 41.569 0.00001 41.640 0.0017 41.569 
18 42.885 0.0226 41.940 0.0001 42.088 0.0036 41.938 0.00000 41.974 0.0009 41.938 
19 45.169 0.0103 44.713 0.0001 44.850 0.0031 44.710 0.00000 44.749 0.0009 44.710 
20 46.698 0.0135 46.083 0.0001 46.250 0.0037 46.078 0.00001 46.126 0.0011 46.078 
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Table C.2 First twenty natural frequencies of the 3D model with different refinements 
3D model 

Modes 
Large Medium size Refined 

8Nodes Error 20Nodes Error 8Nodes Error 20Nodes Error 8Nodes Error 20Nodes 

1 3.242 0.0031 3.233 0.0000 3.235 0.0008 3.232 0.00001 3.233 0.0002 3.232 
2 6.675 0.0088 6.617 0.0001 6.631 0.0021 6.617 0.00002 6.620 0.0005 6.617 
3 8.918 0.0009 8.910 0.0000 8.912 0.0003 8.910 0.00000 8.910 0.0001 8.910 
4 11.476 0.0101 11.363 0.0001 11.390 0.0025 11.362 0.00002 11.369 0.0006 11.362 
5 17.353 0.0122 17.145 0.0001 17.196 0.0030 17.144 0.00001 17.157 0.0008 17.144 
6 19.442 0.0027 19.391 0.0000 19.403 0.0007 19.390 0.00001 19.394 0.0002 19.390 
7 23.950 0.0153 23.592 0.0001 23.684 0.0040 23.590 0.00001 23.615 0.0010 23.590 
8 24.518 0.0024 24.459 0.0000 24.473 0.0006 24.459 0.00000 24.463 0.0001 24.459 
9 26.226 0.0056 26.081 0.0001 26.115 0.0014 26.079 0.00001 26.089 0.0004 26.079 

10 29.134 0.0153 28.697 0.0001 28.811 0.0040 28.695 0.00001 28.726 0.0011 28.695 
11 30.986 0.0042 30.858 0.0000 30.895 0.0012 30.857 0.00000 30.867 0.0003 30.857 
12 32.240 0.0163 31.727 0.0001 31.850 0.0040 31.723 0.00002 31.756 0.0010 31.723 
13 35.674 0.0227 34.887 0.0001 35.098 0.0062 34.883 0.00001 34.941 0.0017 34.883 
14 37.028 0.0089 36.704 0.0000 36.776 0.0020 36.702 0.00001 36.721 0.0005 36.702 
15 39.825 0.0183 39.114 0.0001 39.300 0.0049 39.109 0.00001 39.160 0.0013 39.108 
16 40.850 0.0140 40.292 0.0001 40.446 0.0040 40.288 0.00001 40.331 0.0011 40.287 
17 42.291 0.0174 41.576 0.0002 41.828 0.0062 41.569 0.00001 41.640 0.0017 41.569 
18 42.885 0.0226 41.941 0.0001 42.088 0.0036 41.938 0.00001 41.974 0.0009 41.938 
19 43.549 0.0198 42.705 0.0000 43.230 0.0123 42.703 0.00001 43.170 0.0109 42.703 
20 45.169 0.0103 44.713 0.0001 44.850 0.0031 44.710 0.00000 44.749 0.0009 44.710 
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The results for the accumulative effective mass in the first twenty modes of the 3D refined model 

with 20-node elements for all three directions are presented in Table C.3. Since the dams is fixed 

on both sides for x-translation the values in this direction is obviously zero. For the first mode of 

vibration, the effective mass participation in Y direction is about 34% while it is 1.6% in Z 

direction. This accumulation masses reach 90% of total mass at the 12th mode in Y direction, 

although in Z direction it does not still attain for the 20th mode. 

Table C.3: Accumulative modal participation factor 

MODE FREQUENCY (Hz)  MASS(X) % MASS(Y) % MASS(Z) % 

1 3.232 0 34.198 1.626 

2 6.617 0 58.620 2.081 

3 8.910 0 65.153 57.606 

4 11.362 0 76.684 64.089 

5 17.144 0 84.062 64.091 

6 19.390 0 84.132 77.266 

7 23.590 0 87.175 78.221 

8 24.459 0 87.222 78.245 

9 26.079 0 88.124 79.881 

10 28.695 0 88.522 80.248 

11 30.857 0 88.755 84.800 

12 31.723 0 90.575 85.005 

13 34.883 0 90.872 85.311 

14 36.702 0 90.880 85.387 

15 39.108 0 91.948 85.388 

16 40.287 0 92.081 85.529 

17 41.569 0 92.109 86.822 

18 41.938 0 92.472 88.133 

19 42.703 0.00018 92.472 88.133 

20 44.710 0.00018 92.689 88.480 

Figure C.3 shows the deformed shape of the structure in its first mode of vibration for both the 2D 

and 3D models. As it is shown, the deformation of the structure is almost completely dominant by 

Y direction (horizontal direction), which corresponds to the numbers in the table above for the 3D 

model. Deformation in both directions is illustrated as well for the 20th mode, which shows the 

deformation in both Y and Z directions, although it's likely never happens. 

Using the medium size of described meshing for both 2D and 3D model, a frequency analysis is 

done for all cases from dam-only to the complete system, considering the first six modes of each 
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(a) (b) 

Figure C.3 Vibrational Mode of the 2D and 3D model of the dam monolith: 

(a) first mode of vibration; (b) 20th mode of vibration 

model. Figure C.4 illustrates the results related to 2D and 3D models respectively. Table C.4 shows 

the values of the frequencies related to each model. 

Dam DW DF prop1 DF prop2 DFW prop1 DFW prop2 

Figure C.4 Natural frequencies of the six first modes for the 2D (left) and 3D (right) 

Pine Flat model 

Table C.4 Natural frequency values of the six first modes for the 2D and 3D PineFlat model 

2D models 

Modes Dam DW 
DF 

Prop1 
DF 

Prop2 
DFW 
Prop1 

DFW 
Prop2 

1 3.2320 2.6535 2.492 2.9801 2.0737 2.4458 
2 6.6170 3.4570 4.202 5.8323 3.1008 3.3635 
3 8.9100 4.4155 4.861 7.1128 3.8861 4.3049 
4 11.362 5.8761 5.678 7.8002 4.3176 5.4900 
5 17.144 6.7155 5.915 10.1751 4.8844 6.3718 
6 19.390 8.3414 6.746 10.5477 5.3822 7.0777 

3D models 

Modes Dam DW 
DF 

Prop1 
DF 

Prop2 
DFW 
Prop1 

DFW 
Prop2 

1 3.2320 2.6536 2.492 2.9802 2.0741 2.4459 
2 6.6170 3.4570 4.202 5.8325 3.1008 3.3635 
3 8.9100 4.4155 4.861 7.1129 3.8861 4.3049 
4 11.362 5.8761 5.678 7.8002 4.3176 5.4901 
5 17.144 6.7155 5.915 10.1752 4.8847 6.3718 
6 19.390 8.3414 6.747 10.5480 5.3825 7.0778 
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APPENDIX D   DECONVOLUTION COMPARISON USING RESPONSE 

SPECTRUM 

In this appendix, a comparison is made between the horizontal and vertical target ground motions 

and their corresponded convolved signals obtained from phase-amplitude modification method and 

the amplitude adjustment technique described in Chapter 4. The response spectrum is used to 

demonstrate the similarity or differences between the results for each model.  

Figure D.1 illustrate comparison of response spectra for the foundation model with 1H depth. The 

results obtained using phase-amplitude adjustment technique. As it is shown in Figure D.1 (a) and 

(b), corresponding to the foundation only model excluding the self-weight, a perfect match is 

achieved between the response spectra of the free-field ground motions and the convolved signals 

at the top of the flat box respectively for the horizontal and vertical components, for all the models. 

Figure D.1 subplot (c) related to the foundation only model including its self-weight illustrate an 

excellent match for the horizontal convolved components. Comparing vertical spectral 

accelerations in subplot (d), the difference between target and convolved signal are quite noticeable 

for the model with sliders. Fig. D.1 (e) and (f) show the comparison between the signals including 

the effects of the dam. as illustrated, the inaccuracy is higher for the vertical convolved signal of 

the model with sliding lateral boundary condition. However, a very good agreement is achieved 

for all the models in terms of horizontal convolved signals. By joining the reservoir, subplots (g) 

and (h), same trend is exhibited for the horizontal and vertical convolved signals. 

Figure D.2 compares the results obtained by phase-amplitude technique for the models having 

foundation with 3H depth. As the depth increases, the precision of the results for the fixed model 

decreases. Plots in Figure D.2 (a) and (b) show a perfect match between horizontal and vertical 

target motions and related convolved signals for the sliding and absorbing boundary conditions. 

For the model with fixed lateral boundary condition, horizontal convolved signal loses its accuracy, 

while the vertical convolved signal illustrate a perfect match. The same results in terms of accuracy 

is obtained by including the weight of the foundation as it is illustrated in Figure D.2 (c) and (d). 

By joining the dam to the model, Figure D.2(e) and (f), the horizontal convolve signal for the model 

with fixed lateral boundary condition significantly looses its accuracy. Results for the sliding and 

absorbing models still show a very good agreement for both horizontal and vertical components. 

Same trend is observed in Figure D.2 (g) and (h) by including the reservoir to the system.  
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 H - Target  Fixed  Slider VD  V- Target 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Figure D.1 Comparing spectral acceleration of horizontal (left) and vertical (right) components 
of free-field vs convolved signals for the model with 1H depth including fixed, sliding and 

absorbing later B.C 

 (a) and (b) Foundation only excluding its self-weight; (c) and (d) Foundation only including 
self-weight; (e) and (f) dam-foundation including static weight; (g) and (h) dam-reservoir-
foundation including static weight 
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 H - Target  Fixed  Slider VD  V- Target 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Figure D.2 Comparing spectral acceleration of horizontal (left) and vertical (right) components 
of free-field vs convolved signals for the model with 3H depth including fixed, sliding and 

absorbing later B.C. 

(a) and (b) Foundation only excluding its self-weight; (c) and (d) Foundation only including 
self-weight; (e) and (f) dam-foundation including static weight; (g) and (h) dam-reservoir-
foundation including static weight 
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Comparison of the horizontal and the vertical convolved signals for the flat box model with 3H 

depth having a very small value of modulus of elasticity is illustrated in figure D.3. The results are 

obtained using phase-amplitude adjustment technique. 

 H - Target  VD - Hor  VD - Ver  V- Target 

(a) (b) 

Figure D.3 Comparing response specta of the free-field ground motion accelerations versus 

convoled signals obtained by phase-amplitude technique for the foundation-only model with 

3H depth with a very small value of  Young's modulus 

 (a) Horizontal components; (b) Vertical components 

Figure D.4 shows the spectral accelerations obtained from the amplitude approach. A good 

agreement is obtained for the horizontal component of the model with lateral absorbing boundary 

condition.   

 H - Target  Fixed  Slider VD  V- Target 

(a) (b) 

Figure D.4 Comparing response spectra of the free-field ground motion acceleration versus 
convolved signals obtained by amplitude modification techique for the foundation only model 

with 3H depth: 
 (a) horizontal components; (b) Vertical components 




