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Je tiens à remercier les collègues étudiants que j’ai côtoyés au Laboratoire de magné-
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et Stéphane Turcotte, pour leur support constant et le climat de travail agréable qu’ils ont
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RÉSUMÉ

Les métamatériaux électromagnétiques consistent en des matériaux composites artificiels,

structurés à l’échelle sous-longueur d’onde et caractérisés par des propriétés souvent inacces-

sibles aux matériaux naturels. Depuis la dernière décennie, leur étude suscite un vif engoue-

ment au sein de la communauté scientifique, motivé en grande partie par leur potentiel pour

des applications novatrices dans les technologies de l’information et des télécommunications.

Les métamatériaux s’appuient typiquement sur des arrangements astucieux d’inclusions mé-

talliques ou de permittivité élevée à l’intérieur d’une matrice hôte. Leur structuration sous-

longueur d’onde permet de les assimiler à des milieux homogènes et de décrire leur réponse

électromagnétique par l’intermédiaire de tenseurs de permittivité et de perméabilité effec-

tives, qui dépendent à la fois des propriétés intrinsèques des inclusions, de leurs paramètres

géométriques et de leurs interactions mutuelles.

En particulier, des propositions basées sur l’utilisation d’inclusions ferromagnétiques ont

ouvert la voie à une nouvelle classe de métamatériaux caractérisés par des paramètres consti-

tutifs ajustables à l’aide d’un champ magnétique statique et par un spectre d’excitations

magnétiques en hyperfréquences plus riche que celui des métamatériaux usuels, lesquels sont

fondés sur un effet de magnétisme artificiel à l’intérieur d’inclusions conductrices ou diélec-

triques. Parmi ces matériaux composites, les réseaux de fils ferromagnétiques apparaissent

comme des candidats prometteurs pour des dispositifs en hyperfréquences, des applications

magnéto-optiques et des métamatériaux à indice de réfraction négatif. Or, l’exploitation tech-

nologique de ces réseaux requiert des modèles théoriques capables de décrire leur réponse à

des ondes électromagnétiques.

Dans ce contexte, l’objectif principal de ce travail consiste à établir des expressions analy-

tiques pour la permittivité et la perméabilité effectives de métamatériaux à base de réseaux de

fils ferromagnétiques conducteurs. En particulier, nous considérons le cas de fils de rayon al-

lant de 10 nm à 100 µm, aimantés axialement et excités dans les hyperfréquences (1–100 GHz)

par des champs électrique et magnétique respectivement parallèle et perpendiculaire à l’axe

des fils. De même, nous portons une attention particulière à l’évaluation du potentiel de ces

réseaux à présenter, sur une même plage de fréquences, des réponses électrique et magnétique

simultanément ajustables par un champ magnétique statique.

Pour ce faire, nous développons une procédure d’homogénéisation de type Maxwell Gar-

nett, qui incorpore l’influence du retard électromagnétique (notamment de l’effet de peau) sur

la réponse gyromagnétique tensorielle des fils individuels, de même que l’effet des interactions

dipolaires interfils sur le comportement macroscopique de réseaux de taille finie. Il convient
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de souligner qu’il s’agit là d’aspects dont le traitement est en général incomplet ou négligé

dans la littérature.

Notre méthode de dérivation consiste d’abord à résoudre le problème de la diffusion d’une

onde électromagnétique par un fil individuel, en vue d’obtenir la réponse dipolaire de sa

polarisation et de son aimantation dynamiques en régime d’effet de peau arbitraire. Cette

réponse est ensuite incorporée dans notre procédure d’homogénéisation, ce qui mène à des

expressions générales pour la permittivité et la perméabilité effectives du réseau, lesquelles

dépendent notamment des natures gyromagnétique et métallique des fils, de la géométrie du

réseau et des interactions dipolaires interfils. En outre, nos résultats montrent que la prise

en compte de l’effet de peau est grandement simplifiée par la renormalisation des proprié-

tés intrinsèques des fils, laquelle fait intervenir des facteurs dépendant de kwa, où kw est

l’amplitude complexe du vecteur d’onde à l’intérieur des fils de rayon a.

Notre expression pour la perméabilité effective du réseau est un tenseur gyrotrope, dont

les éléments diagonaux et hors diagonaux adoptent une forme compacte en fonction de com-

posantes de perméabilité renormalisée, qui décrivent l’influence du retard électromagnétique

à l’intérieur des fils. Il importe de souligner que l’incorporation simultanée de la gyrotro-

pie et du retard électromagnétique constitue une extension des modèles présentés dans la

littérature, lesquels se limitent à traiter l’un ou l’autre de ces aspects.

De façon similaire, la permittivité effective s’exprime simplement en fonction de l’impé-

dance totale d’un fil placé dans le réseau, laquelle peut être décomposée en contributions

interne et externe. D’abord, la partie interne tient compte de l’effet de peau dans les fils et

correspond, lorsque ceux-ci sont ferromagnétiques, à une magnétoimpédance. Il peut alors en

résulter une réponse magnétodiélectrique, c’est-à-dire une permittivité effective dépendant

du champ magnétique statique. En revanche, la partie externe est contrôlée principalement

par la géométrie et fixe la valeur de la fréquence plasma typiquement associée aux réseaux

de fils métalliques excités par un champ électrique axial.

Nous introduisons également le concept de réponse effective externe afin de tenir compte

explicitement des interactions dipolaires à l’intérieur d’un métamatériau de taille finie excité

par des champs dynamiques spatialement uniformes en son voisinage. Le concept est appli-

qué à la description de la résonance ferromagnétique du mode uniforme d’un réseau de fils

à l’intérieur duquel les interactions dipolaires statiques et dynamiques doivent être explici-

tement considérées. En particulier, nous démontrons comment le tenseur de désaimantation

dû aux interactions dipolaires peut être lié au tenseur de désaimantation de forme du réseau

macroscopique.

La présentation du modèle théorique est suivie par une analyse détaillée de la solution

générale, en vue d’en préciser les implications et les limites. Pour ce faire, nous considérons



vii

un réseau de fils ferromagnétiques de nickel caractérisés par des propriétés intrinsèques re-

présentatives et étudions l’évolution de ses réponses électrique et magnétique en fonction des

paramètres géométriques et de l’effet de peau. D’une part, l’examen de la réponse magnétique

montre que des réseaux denses et un effet de peau faible sont nécessaires à l’obtention d’une

perméabilité effective substantielle et possiblement négative entre les fréquences de résonance

et d’antirésonance. En revanche, notre modèle de permittivité indique que de tels réseaux pré-

sentent un comportement métallique (c.-à-d., dissipatif) et que l’observation d’une réponse

magnétodiélectrique optimale et accompagnée de faibles pertes requiert plutôt des réseaux

dilués et un effet de peau modéré.

De même, nous décrivons comment l’utilisation de nanofils semi-isolés, c’est-à-dire dont la

continuité électrique n’est pas assurée, permet d’exploiter la perméabilité effective de réseaux

denses de nanofils. De tels réseaux se comportent alors comme des isolants magnétiques effec-

tifs, mais ne présentent plus de réponse magnétodiélectrique. Par conséquent, nous concluons

que les conditions pour lesquelles les réseaux de fils ferromagnétiques conducteurs présentent

une permittivité et une perméabilité significatives et accordables par un champ magnétique

statique tendent à être mutuellement exclusives.

Par la suite, nous appliquons notre formalisme théorique à l’étude de la perméabilité ef-

fective de réseaux denses de nanofils ferromagnétiques (c.-à-d., caractérisés par un effet de

peau négligeable) incorporés dans une matrice diélectrique. Dans ces réseaux, les fils indivi-

duels montrent un comportement bistable en fonction du champ magnétique statique axial

et, lorsque le réseau est partiellement désaimanté, se répartissent alors en deux populations

d’aimantations antiparallèles, dont les proportions relatives peuvent être ajustées à l’aide de

cycles d’hystérésis mineurs. De plus, la présence de ces deux populations modifie de façon

importante la perméabilité effective du réseau, laquelle peut notamment montrer deux pics

d’absorption distincts. Pour expliquer ce phénomène de double résonance ferromagnétique,

nous généralisons notre procédure d’homogénéisation au cas d’un réseau formé de deux po-

pulations antiparallèles, liées par les interactions dipolaires. Le calcul mène à des expressions

analytiques pour les composantes diagonales et hors diagonales du tenseur de perméabilité ef-

fective, desquelles sont déduites des relations explicites pour les deux fréquences de résonance

qui leur sont associées.

Notre modèle de perméabilité effective est ensuite confronté avec l’expérience. Pour ce

faire, des mesures de résonance ferromagnétique large bande (1–40 GHz) en configuration

de ligne microruban ont été réalisées sur un réseau de nanofils de Co94Fe5B1, de diamètre

moyen de 45 nm, incorporés dans une membrane d’alumine de distance interpore moyenne

de 110 nm. De façon générale, les spectres de perméabilité complexe extraits des données

expérimentales démontrent un excellent accord avec les spectres théoriques, notamment en
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ce qui a trait au comportement du profil, de l’amplitude, de la position et de la largeur

des deux pics de résonance en fonction du champ magnétique statique et de l’aimantation

rémanente du réseau. Des écarts observés lorsque la séparation entre les deux pics devient

faible sont attribués à des fluctuations spatiales du champ local d’interaction, lesquelles ne

sont pas prises en compte dans le modèle.

Enfin, nous présentons une synthèse des résultats principaux obtenus pendant la réalisa-

tion de cette thèse, en insistant sur les contributions originales, les limites et les extensions

possibles du modèle théorique.
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ABSTRACT

Electromagnetic metamaterials consist of artificially designed subwavelength composite

materials exhibiting properties not readily available in natural materials. Over the last

decade, the study of their electromagnetic response has sparked considerable interest in the

scientific community, owing largely to their potential for novel applications in information

and telecommunication technologies. Metamaterials typically rely on clever arrangements

of metallic or high-permittivity inclusions in a host matrix. Their subwavelength structure

allows us to treat them as homogeneous media and to describe their macroscopic electro-

magnetic response in terms of effective permittivity and permeability tensors which depend

upon the intrinsic properties of the inclusions, their geometrical parameters, and their mutual

interactions.

In particular, recent proposals for the use of ferromagnetic inclusions have opened the

way to a new class of microwave metamaterials, characterized by magnetic-field-tuneable

constitutive parameters and by a spectrum of magnetic excitations richer than that of most

present-day metamaterials, which are based on the artificial magnetism exhibited by nonmag-

netic conducting or dielectric inclusions. Among these magnetic composite materials, arrays

of ferromagnetic wires emerge as interesting candidates for microwave devices, magneto-

optical applications, and negative-refractive-index metamaterials. However, exploiting the

full technological potential of such arrays requires theoretical models able to describe their

response to electromagnetic waves.

In this context, the main objective of this work is to establish analytical expressions for

the effective permittivity and permeability of metamaterials based on arrays of ferromagnetic

conducting wires. Specifically, we consider the case of axially magnetized wires of radius

ranging from 10 nm to 100 µm, which are excited in the microwave frequency range (1–

100 GHz) by electric and magnetic fields parallel and perpendicular to the axis of the wires,

respectively. We place special emphasis on evaluating the potential of these ferromagnetic

wire arrays to produce, over the same frequency range, simultaneous magnetic-field-tuneable

electric and magnetic responses.

Our theoretical approach consists of developing a Maxwell-Garnett-type homogenization

procedure, which incorporates the influence of electromagnetic retardation (e.g., skin effect)

on the tensorial gyromagnetic response of the individual wires, as well as the effect of interwire

dipolar interactions on the macroscopic behaviour of finite-size arrays. It must be noted that

the treatment in the literature of these aspects is generally lacking or incomplete.
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First, our method of derivation requires solving the problem of the scattering and absorp-

tion of an electromagnetic wave by an individual wire, so as to obtain the dipolar responses

of its dynamic polarization and magnetization in the regime of arbitrary skin effect. These

responses are then incorporated into our homogenization procedure, in order to yield gen-

eral expressions for the effective permittivity and permeability of the array, which depend

upon the gyromagnetic and metallic properties of the wires, the geometrical parameters of

the array, and the interwire dipolar interactions. Our results show that the consideration of

skin effect is greatly simplified by introducing kwa-dependent renormalized expressions for

the wire intrinsic properties, where kw is the complex amplitude of the wave vector inside

the wires of radius a.

Our expression for the effective permeability tensor of the array is a gyrotropic tensor,

with diagonal and off-diagonal components expressed compactly in terms of renormalized

permeability components which account for electromagnetic retardation inside the wires.

It must be emphasized that our explicit treatment of both gyrotropy and electromagnetic

retardation constitutes an extension of existing models, which are restricted to considering

only one or the other of these two aspects.

Similarly, we find that the effective permittivity of the array can be expressed simply

in terms of the total impedance of a single wire placed in the array, which can itself be

decomposed into internal and external contributions. On the one hand, the internal part

accounts for the skin effect inside the wires and results, for ferromagnetic wires, in a mag-

netoimpedance effect. This may then lead to a magnetodielectric response, that is, to a

magnetic-field-tuneable effective permittivity. On the other hand, the external part, which

depends mostly on the geometrical parameters of the array, controls the value of the effective

plasma frequency typically associated with the electric response of arrays of metallic wires

excited by an axial electric field.

We also introduce the effective external response of a finite-size array excited by spatially

uniform dynamic fields, in order to account for the interwire dipolar interactions. The concept

is applied to describe the uniform-mode ferromagnetic resonance of a wire array in which

both static and dynamic dipolar interactions must be explicitly considered. In particular, we

demonstrate how the demagnetizing tensor due to dipolar interactions can be related to the

shape demagnetizing tensor of the macroscopic array.

The presentation of the model is followed by a detailed analysis of the implications and

limitations of our theoretical results. This is achieved by considering an array of nickel wires

with representative parameters and by studying how its electric and magnetic responses vary

as a function of the geometrical parameters and with the importance of skin effect. On

the one hand, we show that dense arrays and weak skin effect are necessary conditions for
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substantial effective permeability, which may become negative between the resonance and

antiresonance frequencies. On the other hand, our permittivity model indicates that such

arrays behave as effective magnetic metals (i.e., they exhibit significant Ohmic losses) and

that, in contrast, the observation of a low-loss magnetodielectric response instead requires

dilute arrays and moderate skin effect.

We also describe how the effective permeability of dense arrays of nanowires can be

exploited by using semi-isolated wires, that is, wires for which electrical continuity is not

maintained at either of their ends. Such arrays then behave as effective magnetic insulators

but no longer show magnetodielectric effects. Hence, we conclude that the conditions un-

der which arrays of ferromagnetic wires exhibit effective permittivity and permeability that

are simultaneously significant and tuneable by a static magnetic field tend to be mutually

exclusive.

Next, we apply our theoretical formalism to the study of the effective permeability of

dense arrays of nanowires (i.e., characterized by negligible skin effect) embedded in a dielec-

tric membrane. In these arrays, the individual wires exhibit a bistable response as a function

of the static axial magnetic field, so that when the array is partially demagnetized, the wires

split into two oppositely magnetized populations, the relative proportions of which can be

adjusted by using minor hysteresis cycles. Further, the presence of these two populations

strongly modifies the effective permeability of the array, which may then display two distinct

absorption peaks. We account for this double resonance phenomenon by generalizing our

homogenization procedure to the case of an array composed of two populations of interact-

ing bistable nanowires. This yields analytical expressions for the diagonal and off-diagonal

components of the effective permeability tensor, from which we deduce explicit relations for

the two resonance frequencies.

In order to validate our effective permeability model, broadband microstrip line ferromag-

netic resonance measurements (1–40 GHz) have been performed on an array of Co94Fe5B1

nanowires, of average diameter 45 nm, embedded into an alumina membrane of average in-

terpore distance 110 nm. These show that the complex permeability spectra extracted from

the experimental data are generally in excellent agreement with the theoretical spectra. In

particular, the model accounts well for the dependence of the shape, amplitude, position, and

width of the two-peak permeability spectra as a function of the applied static magnetic field

and the remanent magnetization of the array. Discrepancies observed when the peaks are

close to each other are attributed to spatial fluctuations of the local interaction field, which

are not accounted for in our model.

Finally, we summarize the main results of this work and highlight the original contribu-

tions, limits, and possible extensions of our theoretical model.
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TABLE DES MATIÈRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LISTE DES TABLEAUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LISTE DES FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

LISTE DES ANNEXES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xviii

LISTE DES SIGLES ET SYMBOLES . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

CHAPITRE 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Mise en contexte : les métamatériaux électromagnétiques . . . . . . . . . . . . 1
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1.4 Organisation de la thèse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Communications scientifiques . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
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d’un réseau de fils de Ni de rayon 0,5 et 1 µm, pour différentes valeurs
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fils

b0 Coefficient d’amplitude (complexe) du mode 0 de l’onde transmise

b±1 Coefficient d’amplitude (complexe) du mode ±1 de l’onde transmise

bm Induction magnétique dynamique dans la matrice

bm↑,↓ Induction magnétique dynamique dans la matrice au voisinage des fils

aimantés vers le haut (↑) et vers le bas (↓)
bn Coefficient d’amplitude (complexe) du mode n de l’onde transmise

bw Induction magnétique dynamique à l’intérieur des fils
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f↑,↓ Fraction surfacique du réseau occupée par les fils aimantés vers le haut

(↑) et vers le bas (↓)
F (kwa) Facteur de renormalisation en régime quasi statique étendu

g Facteur gyromagnétique (facteur de Landé)
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keff Vecteur d’onde à l’intérieur du milieu effectif (amplitude complexe :

keff)
¯̄keff Matrice antisymétrique dont le produit avec un vecteur arbitraire

donne un résultat identique au produit vectoriel de keff avec ce même

vecteur
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L Longueur d’un fil

Lext Inductance externe d’un fil placé dans le réseau
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¯̄Nint Tenseur de désaimantation dû aux interactions dipolaires interfils

(composantes : N int
ip et N int

op )
¯̄Nw Tenseur de désaimantation de forme d’un fil individuel de rayon a et

de longueur L (composantes Nw
ip et Nw

op)
¯̄Nw⊥ Tenseur de désaimantation de forme transverse d’un fil individuel de

rayon a et de longueur L ( ¯̄Nw⊥ est égal à Nw
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ẑ Vecteur unitaire dans la direction z

Zc Impédance caractéristique de la ligne microruban
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α Paramètre d’amortissement de Gilbert
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partie réelle de la composante de perméabilité effective µ̃eff⊥ ne devient

pas négative entre la résonance et l’antirésonance

αc0 Quantité intervenant dans l’expression de αc

¯̄αm,w Tenseur de polarisabilité magnétique d’un fil

β Rapport µt/µ des composantes hors diagonale et diagonale du tenseur

de perméabilité intrinsèque gyrotrope ¯̄µw

γ Rapport gyromagnétique (γ = − |γ|)
γE Constante d’Euler (γE ≈ 0,5772)

γp,eff Fréquence (angulaire) de relaxation dans le modèle plasmonique de la

permittivité effective du réseau

Γ (u) Fonction décrivant la dépendance radiale du champ électrique diffusé

par le fil dans le mode n = 0

δeff0 Profondeur de pénétration non magnétique effective du réseau de fils

dans la limite QS

δi Profondeur de pénétration d’une inclusion

δw Profondeur de pénétration d’un fil

δw0 Profondeur de pénétration non magnétique d’un fil

∆f Aimantation moyenne du réseau normalisée par l’aimantation spon-

tanée Ms d’un fil

∆fr Aimantation rémanente du réseau normalisée par l’aimantation spon-

tanée Ms d’un fil

∆g Aimantation moyenne du réseau normalisée par son aimantation à

saturation 〈M0s〉
∆gr Aimantation rémanente du réseau normalisée par son aimantation à

saturation 〈M0s〉
∆ωres Séparation entre les fréquences angulaires de résonance ωres+ et ωres−

ǫ0 Permittivité du vide (ǫ0 ≈ 8,854× 10−12 C·V−1 ·m−1)

ǫc Permittivité caractéristique de la ligne microruban

ǫeff Composante axiale du tenseur ¯̄ǫeff dans la limite quasi statique (cor-

respond formellement à ǫeff‖)
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¯̄ǫeff Tenseur de permittivité effective du réseau de fils

ǫ̃eff Composante axiale du tenseur ¯̄ǫeff en régime quasi statique étendu

(correspond formellement à ǫ̃eff‖)

ǫeff1 Permittivité effective axiale, dans la limite quasi statique, de la portion

non remplie du réseau de fils de longueur finie

ǫeff2 Permittivité effective axiale, dans la limite quasi statique, de la portion

remplie du réseau de fils de longueur finie

ǫi Permittivité intrinsèque d’une inclusion

ǫ̃i Permittivité renormalisée d’une inclusion

ǫm Permittivité intrinsèque de la matrice

¯̄ǫm Tenseur de permittivité intrinsèque de la matrice

ǫw Permittivité intrinsèque d’un fil

¯̄ǫw Tenseur de permittivité intrinsèque d’un fil

ǫ̃w Permittivité renormalisée d’un fil

ǫ̃w,F Permittivité d’un fil renormalisée par le facteur F (kwa)

ǫ∞ Permittivité intrinsèque à très hautes fréquences, dans le cadre du

modèle de Drude

ζm Impédance d’onde intrinsèque de la matrice

ζw Impédance d’onde intrinsèque d’un fil

η Composante diagonale du tenseur ¯̄ηw dans la limite quasi statique

η̃ Composante diagonale du tenseur ¯̄ηw en régime quasi statique étendu

ηcell Susceptibilité magnétique externe de la cellule unitaire équivalente

dans la limite quasi statique

¯̄ηcell Tenseur de susceptibilité magnétique externe de la cellule unitaire

équivalente

η̃cell Susceptibilité magnétique externe de la cellule unitaire équivalente en

régime quasi statique étendu

ηeff Composante diagonale du tenseur ¯̄ηeff dans la limite quasi statique

¯̄ηeff Tenseur de susceptibilité magnétique effective externe du réseau de

fils

η̃eff Composante diagonale du tenseur ¯̄ηeff en régime quasi statique étendu

ηeff,t Composante hors diagonale du tenseur ¯̄ηeff dans la limite quasi sta-

tique

η̃eff,t Composante hors diagonale du tenseur ¯̄ηeff en régime quasi statique

étendu

η̃eff‖ Composante axiale du tenseur ¯̄ηeff en régime quasi statique étendu
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ηt Composante hors diagonale du tenseur ¯̄ηw dans la limite quasi statique

η̃t Composante hors diagonale du tenseur ¯̄ηw en régime quasi statique

étendu

ηt↑,↓ Composante hors diagonale du tenseur ¯̄ηw↑,↓ des fils aimantés vers le

haut (↑) et vers le bas (↓) dans la limite quasi statique

ηw Susceptibilité magnétique externe d’un fil isotrope dans la limite quasi

statique

¯̄ηw Tenseur de susceptibilité magnétique externe d’un fil

η̃w Susceptibilité magnétique externe d’un fil isotrope en régime quasi

statique étendu

¯̄ηw↑,↓ Tenseur de susceptibilité magnétique externe des fils aimantés vers le

haut (↑) et vers le bas (↓)
η↑,↓ Composante diagonale du tenseur ¯̄ηw↑,↓ des fils aimantés vers le haut

(↑) et vers le bas (↓) dans la limite quasi statique

η‖ Composante axiale du tenseur ¯̄ηw dans la limite quasi statique

η̃‖ Composante axiale du tenseur ¯̄ηw en régime quasi statique étendu

η‖↑,↓ Composante axiale du tenseur ¯̄ηw↑,↓ des fils aimantés vers le haut (↑)
et vers le bas (↓) dans la limite quasi statique

θk Angle entre le vecteur d’onde kw et l’aimantation statique Mw0 d’un

métal ferromagnétique

¯̄κcell Tenseur de susceptibilité électrique externe de la cellule unitaire équi-

valente

¯̄κeff Tenseur de susceptibilité électrique effective externe du réseau de fils

κw Composante axiale du tenseur ¯̄κw dans la limite quasi statique (cor-

respond formellement à κw‖)

¯̄κw Tenseur de susceptibilité électrique externe d’un fil

κ̃w Composante axiale du tenseur ¯̄κw en régime quasi statique étendu

(correspond formellement à κ̃w‖)

λeff Longueur d’onde dans le milieu effectif

µ Composante diagonale du tenseur ¯̄µw

µ̃ Composante diagonale de perméabilité renormalisée

µ0 Perméabilité du vide (µ0 = 4π × 10−7 T·m·A−1)

µB Magnéton de Bohr (µB ≈ 9,274× 10−24 A·m2)

µc Perméabilité caractéristique de la ligne microruban

µeff Composante diagonale du tenseur ¯̄µeff dans la limite quasi statique

¯̄µeff Tenseur de perméabilité effective du réseau de fils
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µ̃eff Composante diagonale du tenseur ¯̄µeff en régime quasi statique étendu

µeff,t Composante hors diagonale du tenseur ¯̄µeff dans la limite quasi sta-

tique

µ̃eff,t Composante hors diagonale du tenseur ¯̄µeff en régime quasi statique

étendu

µeff± Composante du tenseur ¯̄µeff associée aux modes de polarisations cir-

culaires droite (+) et gauche (−) dans la limite quasi statique

µeff±↑,↓ Composante du tenseur ¯̄µeff associée aux modes de polarisations cir-

culaires droite (+) et gauche (−) et due aux fils aimantés vers le haut

(↑) et vers le bas (↓) dans la limite quasi statique

µeff‖ Composante axiale du tenseur ¯̄µeff dans la limite quasi statique

µ̃eff‖ Composante axiale du tenseur ¯̄µeff en régime quasi statique étendu

µeff⊥ Perméabilité de Voigt effective dans la limite quasi statique

µ̃eff⊥ Perméabilité de Voigt effective en régime quasi statique étendu

µi Perméabilité intrinsèque d’une inclusion

µ̃i Perméabilité renormalisée d’une inclusion

µm Perméabilité intrinsèque de la matrice

¯̄µm Tenseur de perméabilité intrinsèque de la matrice

µt Composante hors diagonale du tenseur ¯̄µw

µ̃t Composante hors diagonale de perméabilité renormalisée

µw Perméabilité intrinsèque d’un fil isotrope

µw (θk) Perméabilité scalaire équivalente associée à l’onde qui se propage dans

un métal ferromagnétique avec un vecteur d’onde kw faisant un angle

θk avec la direction de l’aimantation statique Mw0

¯̄µw Tenseur de perméabilité intrinsèque d’un fil

µ̃w Perméabilité renormalisée d’un fil isotrope

µ‖ Composante du tenseur ¯̄µw parallèle à l’axe de gyrotropie (c.-à-d.,

selon la direction de l’aimantation statique Mw0)

µ̃‖ Composante axiale de perméabilité renormalisée

µ⊥ Perméabilité de Voigt

µ̃⊥ Perméabilité de Voigt renormalisée

ρ Coordonnée radiale du système cylindrique ρφz

ρ̂ Vecteur unitaire dans la direction ρ

σeff Conductivité électrique effective du réseau de fils dans la limite quasi

statique

σw Conductivité électrique intrinsèque d’un fil
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τ Temps de relaxation du gaz électronique dans le cadre du modèle de

Drude

φ Coordonnée azimutale du système cylindrique ρφz

φ̂ Vecteur unitaire dans la direction φ

χ Composante diagonale du tenseur ¯̄χw

χeff Composante diagonale du tenseur ¯̄χeff dans la limite quasi statique

¯̄χeff Tenseur de susceptibilité magnétique effective du réseau

χeff,t Composante hors diagonale du tenseur ¯̄χeff dans la limite quasi sta-

tique

χt Composante hors diagonale du tenseur ¯̄χw

χw Susceptibilité magnétique intrinsèque d’un fil isotrope

¯̄χw Tenseur de susceptibilité magnétique intrinsèque d’un fil

χ‖ Composante axiale du tenseur ¯̄χw

ω Fréquence angulaire

ω0 Fréquence angulaire proportionnelle à l’amplitudeHext0 du champ ma-

gnétique statique appliqué

ωar Fréquence angulaire d’antirésonance ferromagnétique d’un fil indivi-

duel dans la limite d’effet de peau

ωcyl Fréquence angulaire de résonance ferromagnétique d’un fil individuel

dans la limite quasi statique

ωH Fréquence angulaire proportionnelle à l’amplitude Hw0 du champ ma-

gnétique statique à l’intérieur des fils

ω∗
H Fréquence angulaire complexe égale à ωH − iαω

ωM Fréquence angulaire proportionnelle à l’aimantation spontanée Ms

ωp Fréquence angulaire plasma

ωp,eff Fréquence angulaire plasma effective du réseau de fils

ωres Fréquence angulaire de résonance ferromagnétique d’un fil

ωres Valeur moyenne de ωres+ et ωres−

ωres,eff Fréquence angulaire de résonance du réseau de fils

ω∗
res,eff Fréquence angulaire de résonance complexe égale à ωres,eff − iαω

ωres± Fréquence angulaire de résonance des modes de polarisations circu-

laires droite (+) et gauche (−)

ωδ Fréquence angulaire à laquelle la profondeur de pénétration non ma-

gnétique δw0 devient égale au rayon a du fil (c.-à-d., a/δw0 = 1 lorsque

ω = ωδ)
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ω± Fréquence angulaire à laquelle la partie réelle de µeff⊥ s’annule, cor-

respondant à la résonance (−) et à l’antirésonance (+)

ω⊥ Fréquence angulaire de résonance ferromagnétique d’un fil individuel

dans la limite d’effet de peau

ω↑,↓ Fréquence angulaire de résonance dans le champ local des fils aimantés

vers le haut (↑) et vers le bas (↓)
ω∗
↑,↓ Fréquence angulaire complexe égale à ω↑,↓ − iαω

Ω± Dénominateur de µeff±
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CHAPITRE 1

INTRODUCTION

1.1 Mise en contexte : les métamatériaux électromagnétiques

Le développement d’applications plus performantes dans les technologies de l’information

et des télécommunications s’appuie en grande partie sur notre capacité à comprendre et à

contrôler la réponse électromagnétique des matériaux qui constituent les dispositifs. Dans ce

contexte, la dernière décennie a été marquée par l’émergence d’une nouvelle classe de maté-

riaux, les métamatériaux électromagnétiques, qui permettent d’élargir considérablement notre

mâıtrise des phénomènes électromagnétiques dans la matière et qui apparaissent comme des

candidats prometteurs pour des applications technologiques, notamment dans les hyperfré-

quences et les fréquences optiques [1–4].

Les métamatériaux électromagnétiques consistent en des matériaux composites artificiels

qui présentent des fonctions de réponse et des relations de dispersion uniques ou hors du

commun, souvent inaccessibles aux matériaux naturels. Ils sont typiquement constitués d’in-

clusions conductrices ou de permittivité élevée, de composition et de géométrie (taille, forme,

orientation, séparation, arrangement, etc.) choisies, incorporées dans une matrice hôte. Leur

structuration sous-longueur d’onde permet de les traiter comme des matériaux homogènes,

caractérisés par une permittivité et une perméabilité macroscopiques effectives. Ces fonctions

de réponse peuvent alors être déterminées à l’aide de théories de milieu effectif [5] et vont

dépendre à la fois des propriétés intrinsèques des inclusions, de leurs paramètres géométriques

et de leurs interactions mutuelles.

L’engouement actuel pour les métamatériaux et l’étude de leurs propriétés électromagné-

tiques s’explique notamment par la démonstration expérimentale, dans les hyperfréquences,

d’une permittivité et d’une perméabilité simultanément négatives [6], puis d’un indice de

réfraction négatif [7] dans une structure périodique formée par l’association de réseaux de

fils métalliques [8] et de résonateurs annulaires fendus (en anglais, split ring resonators) [9],

caractérisés respectivement par une permittivité et une perméabilité effectives négatives. Ces

résultats ont permis de vérifier certaines des prédictions théoriques formulées à la fin des

années 1960 par Veselago [10], qui a étudié la réponse d’un matériau hypothétique décrit par

une permittivité et une perméabilité à la fois isotropes, réelles et négatives. Il a démontré

qu’une onde qui se propage dans un tel milieu possède des propriétés électromagnétiques
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renversées par rapport à celles des matériaux « conventionnels », en particulier un indice de

réfraction réel et négatif, de même que des vecteurs d’onde et de Poynting antiparallèles. 1 Or,

pendant plus de 30 ans, peu d’attention a été portée aux prédictions de Veselago, notamment

en raison de l’absence de matériaux isotropes connus qui soient caractérisés à la fois par un

indice de réfraction négatif et de faibles pertes.

L’intérêt pour le sujet s’est toutefois ravivé au cours des dix dernières années, en parti-

culier grâce aux travaux de Pendry et al. [8, 9], qui ont étudié deux structures artificielles

permettant d’obtenir séparément des réponses électrique et magnétique négatives dans les

hyperfréquences. D’une part, ils ont réintroduit une idée connue depuis les années 1960 [13],

voulant qu’un réseau de longs fils métalliques parallèles soumis à un champ électrique dyna-

mique axial se comporte comme un plasma artificiel dilué, c’est-à-dire avec une permittivité

effective négative sous la fréquence plasma du réseau [8]. De plus, lorsque l’effet de peau

dans les fils est assez important pour limiter les pertes ohmiques, cette fréquence plasma

effective est alors contrôlée par la géométrie du réseau et les propriétés de la matrice hôte,

mais demeure essentiellement indépendante de la composition des fils.

D’autre part, ils ont montré qu’une inclusion métallique constituée de deux anneaux

fendus concentriques et soumise à un champ magnétique dynamique normal au plan des an-

neaux engendre un moment magnétique dipolaire effectif, caractérisé par une dispersion en

fréquence équivalente à celle d’un circuit résonant de type RLC [9]. 2 Il en résulte que la ré-

ponse collective d’un ensemble de tels anneaux peut être interprétée comme une perméabilité

effective de forme lorentzienne, dont la partie réelle peut devenir négative entre les fréquences

de résonance et d’antirésonance du réseau.

Comme dans le cas de la réponse plasmonique d’un réseau de fils métalliques, les caracté-

ristiques spectrales de la perméabilité effective résonante d’un réseau d’anneaux conducteurs

sont déterminées par la géométrie et l’environnement des inclusions, plutôt que par leurs

propriétés intrinsèques, lesquelles n’affectent que la composante dissipative de la réponse. Il

convient également de souligner que l’obtention d’une perméabilité macroscopique par l’in-

termédiaire de la réponse inductive et capacitive d’un ensemble de boucles de courant de

géométrie choisie constitue un exemple de magnétisme artificiel, au sens où une perméabi-

1. Soulignons que lorsque la dissipation est prise en compte, la permittivité et la perméabilité deviennent
des nombres complexes, de sorte que le critère de Veselago pour obtenir un indice de réfraction avec une
partie réelle négative doit être généralisé en conséquence, comme discuté notamment aux références [11, 12].

2. Notons que la possibilité de produire un moment magnétique effectif à partir de la réponse inductive et
capacitive d’anneaux conducteurs fendus était déjà connue dans les années 1950 [14]. Le caractère innovant
de la structure proposée par Pendry et al. réside plutôt dans l’utilisation d’inclusions constituées de deux
anneaux fendus concentriques, entre lesquels existe un couplage capacitif important. Ce couplage permet
d’abaisser suffisamment la fréquence de résonance des anneaux pour qu’un réseau formé de tels résonateurs
puisse être considéré comme un matériau homogène, décrit par une perméabilité effective macroscopique.
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lité effective substantielle et dispersive est obtenue sans l’aide de matériaux intrinsèquement

magnétiques.

Depuis la réalisation expérimentale [7] d’un métamatériau à indice de réfraction négatif

basé sur les deux structures proposées par Pendry et al. [8, 9], la plupart des métamatériaux

considérés dans la littérature s’appuient sur de telles combinaisons d’inclusions formées de

métaux non magnétiques et arrangées en deux sous-réseaux indépendants, l’un associé à la

permittivité effective et l’autre à la perméabilité effective. Ce type de métamatériaux pos-

sède toutefois plusieurs restrictions et lacunes [15–18], notamment une réponse anisotrope,

une structure relativement complexe, une faible homogénéité et une fréquence d’opération

fixée par la géométrie, laquelle mène à une largeur de bande relativement étroite et à une

ajustabilité par un paramètre externe limitée. De plus, la mise à l’échelle d’inclusions métal-

liques en vue d’obtenir une réponse magnétique artificielle à des fréquences significativement

plus élevées que les hyperfréquences s’avère difficile en raison de la saturation de la fréquence

de résonance et de la diminution de la réponse magnétique de ces structures lorsque leur taille

est réduite (voir notamment le chapitre 16 de la référence [4]).

Pour palier à certaines de ces limitations, mentionnons que plusieurs auteurs [15–24] ont

proposé des matériaux composites axés plutôt sur l’excitation de résonances dipolaires élec-

triques et magnétiques de type Mie [25] à l’intérieur d’inclusions diélectriques sous-longueur

d’onde. De tels métamatériaux sont caractérisés par une structure plus simple, des pertes sou-

vent plus faibles et des fréquences d’opération typiquement plus élevées que leur contrepartie

à base d’éléments métalliques. Par contre, ils requièrent des inclusions avec des permittivités

très élevées et demeurent difficilement ajustables à l’aide d’un paramètre externe.

Une approche prometteuse pour l’élaboration de métamatériaux présentant des fonctions

de réponse accordables dans les hyperfréquences consiste à utiliser des matériaux intrinsè-

quement magnétiques, de manière à exploiter leurs résonances naturelles et la richesse de

leurs relations de dispersion dans cette gamme de fréquences [26]. Dans ce contexte, des

propositions récentes pour l’utilisation d’inclusions ferromagnétiques, caractérisées par une

réponse simultanément gyrotrope et dispersive, ont ouvert la voie à une nouvelle classe de

métamatériaux dotés d’une perméabilité [27–35] ou d’une permittivité [32, 36–39] effectives

ajustables par un champ magnétique statique.

Parmi ces métamatériaux magnétiques, les réseaux de fils à la fois métalliques et ferro-

magnétiques ont fait l’objet de plusieurs études théoriques et expérimentales au cours des

dernières années, motivées par leur potentiel pour des dispositifs en hyperfréquences ajus-

tables ou non réciproques [40–45], des absorbeurs électromagnétiques [46, 47], des applica-

tions magnéto-optiques [48, 49] et des métamatériaux à indice de réfraction négatif [50–56].

En particulier, l’analyse de la réponse de réseaux saturés de nanofils ferromagnétiques en
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interaction et incorporés dans les pores d’une membrane diélectrique a permis de mettre en

évidence la richesse de leur spectre d’excitations magnétiques dans les hyperfréquences, le-

quel peut supporter aussi bien un mode de précession uniforme [57–61] que des modes non

uniformes d’ondes de spin [62–65]. Plus récemment, ces réseaux ont également été considérés

à l’état non saturé [66–70], dans lequel leur perméabilité effective peut notamment présenter

deux pics d’absorption distincts, associés à la présence de deux populations de fils bistables

liés par les interactions dipolaires [67–70].

1.2 Problématique : modélisation des propriétés électromagnéti-

ques effectives

La perspective d’obtenir des réponses gyromagnétique et magnétodiélectrique 3 simulta-

nément ajustables par l’application d’un champ magnétique statique motive l’étude de la

réponse dans les hyperfréquences de métamatériaux formés d’ensembles d’inclusions à la fois

métalliques et intrinsèquement magnétiques, en particulier les réseaux de fils ferromagné-

tiques. L’exploitation du potentiel technologique de ces milieux magnétiques effectifs requiert

alors d’établir des modèles théoriques capables de décrire leur interaction avec une onde

électromagnétique. Par définition, les métamatériaux consistent en des matériaux compo-

sites homogènes, c’est-à-dire qu’à leur fréquence d’opération, la taille caractéristique de leurs

inhomogénéités demeure substantiellement inférieure à la longueur de l’onde avec laquelle

ils interagissent. Il en résulte qu’ils peuvent être décrits par l’électrodynamique des milieux

continus.

Dans ce contexte, la réponse collective d’un ensemble d’inclusions sous-longueur d’onde

incorporées dans une matrice hôte peut être remplacée conceptuellement par celle d’un mi-

lieu homogène équivalent, décrit par une permittivité et une perméabilité effectives. De façon

générale, ces deux fonctions de réponse peuvent être obtenues à l’aide de théories de milieu

effectif, lesquelles permettent de lier les propriétés des constituants individuels au compor-

tement macroscopique du matériau composite global. Or, le développement d’expressions

pour la permittivité et la perméabilité effectives de matériaux composites constitués d’inclu-

sions intrinsèquement magnétiques pose plusieurs difficultés théoriques, lesquelles ne sont pas

toujours prises en compte convenablement dans la littérature.

Le défi principal de la modélisation des propriétés effectives de ces métamatériaux consiste

à incorporer correctement la réponse à la fois dispersive et anisotrope des inclusions métal-

liques et ferromagnétiques dans les hyperfréquences, laquelle est gouvernée essentiellement par

3. Dans le cadre de cette thèse, une réponse magnétodiélectrique correspond à une permittivité effective
qui dépend de la valeur du champ magnétique statique.
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deux mécanismes distincts : (i) la précession gyromagnétique et résonante de l’aimantation et

(ii) l’effet de peau. D’une part, leur perméabilité intrinsèque est un tenseur gyrotrope, dont les

composantes diagonales et hors diagonales complexes montrent un comportement résonant

en fonction de la fréquence et du champ magnétique statique. Cette réponse magnétique est

caractérisée par une résonance ferromagnétique (FMR, pour ferromagnetic resonance), une

antirésonance ferromagnétique (FMAR, pour ferromagnetic antiresonance) et une largeur de

résonance due aux pertes magnétiques intrinsèques [26].

D’autre part, indépendamment de sa perméabilité intrinsèque, un corps métallique sou-

mis à un champ magnétique dynamique acquiert une aimantation, laquelle tire son origine

des courants de Foucault engendrés à l’intérieur de la profondeur de peau [71]. Il en résulte

une réponse diamagnétique et dissipative, qui dépend de kia, où ki est l’amplitude du vec-

teur d’onde à l’intérieur d’une inclusion individuelle de taille caractéristique a. Or, pour les

métaux ferromagnétiques dans les hyperfréquences, la nature gyromagnétique de la perméa-

bilité intrinsèque se manifeste dans le comportement dispersif de ki, qui à son tour modifie

la réponse diamagnétique et les pertes ohmiques générées par les courants de Foucault. Les

réponses ferromagnétique et métallique sont donc étroitement liées, le couplage étant maxi-

mal lorsque la fréquence de résonance ferromagnétique s’approche de la fréquence à laquelle

la profondeur de pénétration devient comparable à la taille des inclusions. Dans ce régime,

la diffusion d’une onde électromagnétique par des inclusions simultanément métalliques et

gyromagnétiques est caractérisée par des fréquences de résonance et d’antirésonance qui dé-

pendent de la taille et par une largeur de résonance déterminée par l’effet combiné des pertes

magnétiques et de conduction [72, 73].

Or, plusieurs caractéristiques propres à cette nature à la fois métallique et ferromagné-

tique n’ont pas été complètement incorporées dans les modèles visant à décrire les propriétés

électromagnétiques de métamatériaux magnétiques. Le comportement macroscopique d’un

matériau composite est habituellement lié à la diffusion électromagnétique des inclusions in-

dividuelles, par l’intermédiaire de théories de milieu effectif, notamment les formalismes de

Maxwell Garnett et de Bruggeman [5]. Dans leur formulation usuelle la plus simple, ces procé-

dures d’homogénéisation sont dérivées dans le cadre de l’approximation quasi statique (QS),

laquelle suppose que les champs dynamiques à l’intérieur des inclusions sont spatialement

uniformes ou, de façon équivalente, que la condition |ki| a ≪ 1 s’applique. Dans cette limite,

les propriétés électriques et magnétiques effectives ne tiennent généralement pas compte de

la taille des inclusions et peuvent être déterminées de façon indépendante. Il en résulte que

les relations obtenues pour la permittivité effective ne dépendent que de la permittivité des

inclusions, alors que celles dérivées pour la perméabilité effective ne font intervenir que la

perméabilité des inclusions.
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En plus de sa relative simplicité, l’approximation QS possède l’avantage de pouvoir être

étendue de façon relativement directe au cas d’inclusions caractérisées par des propriétés

intrinsèques anisotropes [5, 74, 75]. Dans ce contexte, plusieurs groupes ont proposé des

expressions pour le tenseur de perméabilité effective de matériaux composites formés d’inclu-

sions gyromagnétiques excitées dans un mode de précession uniforme [28, 32, 52, 76–78]. En

revanche, l’hypothèse de champs dynamiques spatialement uniformes à l’intérieur des inclu-

sions pose d’importantes restrictions sur leur taille maximale permise et constitue le principal

désavantage lié à la limite QS [74]. En particulier, la profondeur de pénétration δi = 1/Im [ki]

des champs à l’intérieur d’un métal typique peut facilement devenir inférieure à 1 µm dans

les hyperfréquences, ce qui mène à des effets de propagation et d’atténuation à l’intérieur des

inclusions et qui, par conséquent, invalide le recours aux théories QS.

Un modèle théorique qui permet de prendre en compte les difficultés engendrées par

le retard électromagnétique à l’intérieur des inclusions a été proposé par L. Lewin en 1947,

pour le cas d’un réseau cubique d’inclusions sphériques de permittivité ǫi et de perméabilité µi

complexes et isotropes [79]. À l’aide de la théorie de la diffusion électromagnétique de Mie [25,

80], il a dérivé les propriétés intrinsèques renormalisées ǫ̃i = ǫiG (kia) et µ̃i = µiG (kia) des

inclusions sphériques, où G (kia) est un facteur de renormalisation qui incorpore l’effet du

retard électromagnétique à l’intérieur des inclusions. Grâce à l’introduction des paramètres

renormalisés ǫ̃i et µ̃i, la théorie de Lewin constitue une généralisation du formalisme original

de Maxwell Garnett [81] à des valeurs arbitraires de kia. Dans cette approche, ǫ̃i et µ̃i jouent

alors le rôle des propriétés intrinsèques ǫi et µi, respectivement. Soulignons également que

dans ce régime, les expressions dérivées par Lewin pour la permittivité et la perméabilité

effectives du réseau dépendent toutes deux à la fois de la permittivité ǫi et de la perméabilité µi

intrinsèques des inclusions. En particulier, ces résultats mettent en évidence l’idée qu’au-delà

de la limite QS, un composite peut présenter une réponse macroscopique à la fois magnétique

et dispersive, même s’il est formé d’inclusions qui intrinsèquement ne le sont pas.

L’approche de Lewin a été subséquemment étendue par Khizhnyak à des inclusions el-

lipsöıdales [82], puis à des réseaux bidimensionnels de fils infinis [83], mais n’a pas encore

été généralisée au cas d’inclusions dotées de propriétés intrinsèques anisotropes. En dépit de

cette restriction, la théorie de Lewin a été utilisée au cours des deux dernières décennies pour

dériver les propriétés électromagnétiques effectives de divers systèmes composés de particules

magnétiques [84–93], c’est-à-dire en considérant les effets du retard électromagnétique ∝ kia

à l’intérieur des inclusions individuelles, mais en négligeant leur réponse gyromagnétique

tensorielle.

Cette question a été récemment considérée par Jin et al. [34], qui ont dérivé des expressions

pour les paramètres constitutifs effectifs de réseaux denses de fils ferrimagnétiques aimantés
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axialement. Leur traitement du problème électromagnétique comporte cependant un certain

nombre de lacunes. D’abord, bien qu’ils aient incorporé à la fois la gyrotropie et la dépendance

en kia de la réponse des fils individuels, leur modèle résulte tout de même en une perméabi-

lité effective scalaire, laquelle s’applique uniquement à un mode de propagation spécifique à

l’intérieur d’un réseau d’étendue latérale infinie. Or, la forme gyrotrope complète du tenseur

de perméabilité effective est en général requise pour traiter d’autres modes de propagation

ou pour décrire adéquatement la réponse d’un réseau de taille finie. En effet, les paramètres

constitutifs obtenus à l’aide de théories de milieu effectif ne tiennent en général pas compte

des dimensions finies du métamatériau. Ces propriétés doivent alors être distinguées des pro-

priétés mesurées expérimentalement, par exemple en cavité résonante ou en configuration de

ligne de transmission. Il est important de souligner que cette distinction demeure souvent

implicite dans la littérature portant sur les matériaux composites magnétiques.

De plus, comme aux références [21, 94] traitant de fils isotropes, l’expression développée

à la référence [34] pour la permittivité effective de réseaux de fils gyrotropes tient compte de

l’impédance interne des fils, mais néglige leur inductance externe. Or, cette dernière quan-

tité doit être prise en compte dans un traitement complet, puisqu’elle fixe, entre autres,

la fréquence plasma effective du réseau [8, 95]. Dans ce contexte, deux études [36, 38] ont

modélisé la permittivité effective de réseaux de fils ferromagnétiques en incorporant à la

fois leur inductance externe et leur magnétoimpédance, laquelle détermine alors la réponse

magnétodiélectrique du réseau. Notamment, les travaux de la référence [36] ont vérifié ex-

périmentalement que la permittivité effective dans les hyperfréquences de réseaux dilués de

microfils ferromagnétiques caractérisés par un effet de peau modéré dépend fortement de la

magnétoimpédance des fils et peut donc être ajustée par l’application d’un champ magnétique

statique.

En revanche, leur modèle ne considère toutefois qu’un seul type de réseaux et, par consé-

quent, n’étudie pas de façon systématique le comportement de la permittivité effective en

fonction de la taille et de la séparation des fils, lesquelles contrôlent respectivement l’im-

portance de l’effet de peau et la position de la fréquence plasma effective. De même, ils ne

résolvent pas de façon formelle le problème de la diffusion d’une onde électromagnétique par

un fil individuel, de sorte que l’importance relative de l’inductance externe et de la magné-

toimpédance n’est pas mise en évidence de façon explicite.

La permittivité du réseau est également influencée par la longueur des fils, notamment en

ce qui a trait à son caractère fini ou infini. 4 En effet, d’une part, l’application de la formule de

Maxwell Garnett à un réseau dense de nanofils ferromagnétiques continus prédit une réponse

4. Expérimentalement, les fils peuvent être considérés comme étant de longueur infinie lorsque la continuité
électrique est assurée à leurs deux extrémités.
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métallique dominée par les pertes ohmiques à l’intérieur des fils [32]. D’autre part, des études

théoriques [96] et expérimentales [43, 96] portant sur des réseaux de nanofils semi-isolés et

incorporés dans les pores d’une membrane nanoporeuse ont plutôt indiqué un comportement

diélectrique, contrôlé essentiellement par les propriétés de la matrice et la géométrie du réseau

plutôt que par la conductivité des fils. Dans ce contexte, le rôle de la longueur finie des fils et

de leur continuité électrique sur la permittivité effective du réseau mérite d’être approfondi.

La modélisation des propriétés électromagnétiques de métamatériaux formés d’inclusions

gyromagnétiques requiert également de prendre en compte leurs interactions mutuelles, no-

tamment lorsque leur densité est élevée. D’abord, la théorie de Maxwell Garnett tient compte

des interactions dipolaires dynamiques à l’intérieur d’un matériau composite non borné, par

l’intermédiaire du champ de cavité de Lorentz. Or, l’hypothèse implicite d’un réseau infini,

laquelle se retrouve dans la plupart des études traitant des propriétés électromagnétiques

de matériaux composites, empêche la prise en compte des pôles à la surface d’échantillons

de taille finie. De plus, lorsque le métamatériau possède une aimantation statique moyenne

non nulle, les inclusions sont également soumises à un champ d’interaction statique, lequel

s’ajoute aux champs appliqué et de désaimantation de forme. Cette contribution n’est toute-

fois pas prise en compte a priori dans le modèle de Maxwell Garnett et doit être explicitement

considérée dans le terme de champ statique effectif, lequel apparâıt dans les expressions des

composantes du tenseur de perméabilité intrinsèque des inclusions (voir notamment la réfé-

rence [26], p. 23).

Il importe de souligner que cette distinction entre les interactions dipolaires statiques et

dynamiques ne ressort pas toujours explicitement dans la littérature portant sur les maté-

riaux composites magnétiques [76, 78, 89]. Dans ce contexte, plusieurs groupes ont étudié

l’effet des interactions dipolaires sur la résonance ferromagnétique de matériaux composites

magnétiques saturés [57, 61, 97–102]. Or, ces études se limitent à obtenir la position de la réso-

nance, sans toutefois dériver une expression pour le tenseur de perméabilité effective. Notons

enfin que la compréhension des interactions dipolaires entre les inclusions est fondamentale

pour étudier des métamatériaux caractérisés par une configuration magnétique statique plus

complexe, par exemple les réseaux non saturés de nanofils ferromagnétiques bistables, dont le

spectre de perméabilité effective présente notamment deux pics de résonance distincts [66–70].

1.3 Objectifs du projet de recherche

La section précédente nous a permis d’exposer certains éléments théoriques qui doivent

être considérés lors de la modélisation de la réponse électromagnétique de matériaux compo-

sites formés d’inclusions à la fois conductrices et intrinsèquement magnétiques. Nous avons
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recensé et décrit plusieurs problèmes ou lacunes rencontrés couramment dans la littérature,

en particulier l’absence de modèles qui incluent simultanément le caractère gyromagnétique

de la perméabilité intrinsèque des inclusions et le retard électromagnétique à l’intérieur de

celles-ci. Ces considérations justifient la modélisation des paramètres constitutifs effectifs de

métamatériaux magnétiques.

Dans ce contexte, l’objectif général de cette thèse consiste à établir un modèle théorique

pour la permittivité et la perméabilité effectives de réseaux de fils à la fois métalliques et

ferromagnétiques. Notre formalisme incorporera notamment les effets du retard électroma-

gnétique sur la réponse gyrotrope des fils et l’influence des interactions dipolaires sur le

comportement macroscopique de réseaux de taille finie. Pour ce faire, nous développerons

une procédure d’homogénéisation qui permettra de lier les propriétés électromagnétiques des

fils individuels aux paramètres constitutifs effectifs du matériau composite global. Nous ana-

lyserons ensuite notre solution générale en fonction des paramètres géométriques du réseau,

en portant une attention particulière à la possibilité d’obtenir, dans les hyperfréquences, des

réponses électrique et magnétique simultanément ajustables par un champ magnétique sta-

tique et accompagnées de pertes raisonnables. Enfin, nous généraliserons notre modèle de

perméabilité effective et le validerons en comparant les spectres théoriques aux spectres ex-

traits de mesures expérimentales en configuration de ligne microruban réalisées sur un réseau

de nanofils de CoFeB.

De façon plus précise, l’objectif général sera réalisé par l’atteinte des objectifs spécifiques

suivants :

1. Établir une procédure d’homogénéisation, basée sur le formalisme de Maxwell Garnett,

qui prend en compte à la fois le retard électromagnétique à l’intérieur des fils et la

nature tensorielle de leur perméabilité gyrotrope intrinsèque.

2. Incorporer au modèle l’effet des interactions dipolaires statiques et dynamiques, en

particulier pour des réseaux de taille finie.

3. Déterminer l’influence du retard électromagnétique sur la réponse magnétique d’un

fil individuel et sur celle du réseau, notamment en ce qui a trait à la position de la

résonance et de l’antirésonance, ainsi qu’à la largeur de la courbe d’absorption.

4. Formaliser la dérivation de la permittivité effective de réseaux de fils ferromagnétiques,

notamment en explicitant les différentes contributions à l’impédance totale des fils pla-

cés dans le réseau.

5. Préciser les conditions de réalisation d’un effet magnétodiélectrique significatif.
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6. Évaluer la possibilité théorique d’observer, sur une même plage de fréquences, des dis-

persions électrique et magnétique significatives et simultanément ajustables par un

champ magnétique statique.

7. Généraliser l’expression du tenseur de perméabilité effective au cas de réseaux non

saturés de nanofils ferromagnétiques bistables, dans le but de confronter le modèle

théorique aux données expérimentales disponibles au Laboratoire de magnétisme et de

décrire le phénomène de double résonance ferromagnétique.

1.4 Organisation de la thèse

La suite du document s’articule comme suit. Le chapitre 2 établit d’abord l’approche

théorique générale à partir de laquelle nous dériverons les propriétés effectives de réseaux

de fils ferromagnétiques. Notre procédure d’homogénéisation s’appuie sur le formalisme de

Maxwell Garnett, que nous généralisons afin d’incorporer l’effet combiné du retard électro-

magnétique à l’intérieur des fils et de la nature gyrotrope de leur perméabilité intrinsèque. Ce

chapitre présente également la solution générale du problème de la diffusion d’une onde élec-

tromagnétique par un fil ferromagnétique aimanté axialement, une étape essentielle qui nous

permettra de mieux délimiter les conditions d’application particulières du modèle général.

Au chapitre 3, nous nous appuyons sur la solution du problème de diffusion pour détermi-

ner des expressions analytiques pour la perméabilité et la permittivité effectives de réseaux

de fils ferromagnétiques. Ces résultats tiennent compte à la fois de la géométrie du réseau,

de l’effet de peau à l’intérieur des fils individuels, de la nature tensorielle de leur réponse

gyromagnétique et de leur impédance totale lorsque placés dans le réseau. Nous introduisons

également le concept de susceptibilité effective externe d’un matériau composite de taille fi-

nie, que nous appliquons au traitement de la résonance ferromagnétique du mode uniforme

d’un réseau de fils dont la réponse est dominée par les interactions dipolaires.

L’analyse et la discussion de la solution générale sont ensuite présentées au chapitre 4.

Nous étudions en détail l’effet des paramètres géométriques et du retard électromagnétique

sur la réponse du réseau et mettons en évidence les conditions qui mènent à une permit-

tivité et une perméabilité effectives substantielles dans les hyperfréquences. De plus, nous

établissons les limites fondamentales associées aux réseaux de fils ferromagnétiques et exami-

nons la possibilité théorique d’obtenir des réponses électrique et magnétique simultanément

ajustables par un champ magnétique statique.

Le chapitre 5 est consacré à l’étude de réseaux de nanofils bistables. Sous la saturation du

réseau, les fils se répartissent en deux populations d’aimantations antiparallèles, de sorte que

le spectre de perméabilité effective présente deux pics d’absorption distincts. Pour traiter cette
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double résonance ferromagnétique, nous généralisons l’expression du tenseur de perméabilité

effective dérivée au chapitre 3 au cas de deux populations de nanofils bistables et déduisons

les deux conditions de résonance qui y sont associées. Nous constatons que l’accord observé

entre le modèle théorique et les résultats expérimentaux s’avère en général excellent.

Enfin, le chapitre 6 résume les résultats principaux obtenus dans le cadre de cette thèse,

décrit les contributions originales du modèle théorique et présente des perspectives pour des

travaux futurs.

1.5 Communications scientifiques

Les résultats présentés dans le cadre de cette thèse ont mené à quatre publications prin-

cipales [32, 35, 67, 68] dans des revues avec comité de lecture et à une présentation orale lors

d’une conférence internationale. Ces contributions sont décrites sommairement ci-dessous.

Mentionnons également que pendant la durée de cette thèse, j’ai également contribué, comme

coauteur, à deux actes de conférence avec comité de lecture, sept conférences avec comité de

lecture et trois conférences avec invitation.

Publications dans des revues avec comité de lecture

V. Boucher et D. Ménard, « Effective magnetic properties of arrays of interacting ferroma-

gnetic wires exhibiting gyromagnetic anisotropy and retardation effects », Physical Review

B, vol. 81, no. 17, p. 174404, 2010. Sélectionné dans le Virtual Journal of Nanoscale Science

& Technology, vol. 21, no. 20, 2010.

Cet article présente le modèle théorique complet de la réponse magnétique effective de réseaux

de fils ferromagnétiques. Le formalisme incorpore simultanément le retard électromagnétique

à l’intérieur des fils et leur réponse gyromagnétique intrinsèque, les interactions dipolaires

intra et interfils, ainsi que l’effet de la taille finie du réseau. Le contenu de cet article fait

notamment l’objet des sections 2.7, 3.2, 3.4 et 4.2 de la thèse.

V. Boucher, L.-P. Carignan, T. Kodera, C. Caloz, A. Yelon et D. Ménard, « Effective permea-

bility tensor and double resonance of interacting bistable ferromagnetic nanowires », Physical

Review B, vol. 80, no. 22, p. 224402, 2009.

Cet article est consacré à l’étude de la réponse magnétique de réseaux non saturés de nano-

fils ferromagnétiques répartis en deux populations d’aimantations antiparallèles. Le tenseur
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gyrotrope de perméabilité effective du réseau est établi, à partir duquel sont dérivées des

expressions explicites pour les deux conditions de résonance associées au caractère bistable

de l’aimantation statique des fils. Le modèle est ensuite comparé à des données expérimen-

tales mesurées en configuration de ligne microruban. Les résultats présentés dans cet article

composent l’essentiel du chapitre 5 de cette thèse.

L.-P. Carignan, V. Boucher, T. Kodera, C. Caloz, A. Yelon et D. Ménard, « Double ferro-

magnetic resonance in nanowire arrays », Applied Physics Letters, vol. 95, no. 6, p. 062504,

2009. Sélectionné dans le Virtual Journal of Nanoscale Science & Technology, vol. 20, no. 8,

2009.

Dans cet article, nous avons fait la démonstration expérimentale du phénomène de double

résonance dans les réseaux non saturés de nanofils ferromagnétiques bistables. Le modèle

théorique de perméabilité effective qui explique les résultats expérimentaux y est décrit de

façon sommaire. Ces travaux sont considérés au chapitre 5 de la thèse.

V. Boucher et D. Ménard, « Electromagnetic properties of ferromagnetic nanowire arrays »,

Journal of Applied Physics, vol. 103, no. 7, p. 07E720, 2008. Sélectionné dans le Virtual Jour-

nal of Nanoscale Science & Technology, vol. 17, no. 7, 2008.

Cet article propose un modèle préliminaire, basé sur le formalisme de Maxwell Garnett, pour

la permittivité et la perméabilité effectives de réseaux de nanofils ferromagnétiques. L’analyse

met l’emphase sur la possibilité théorique d’obtenir, dans les hyperfréquences, des réponses

gyromagnétique et magnétodiélectrique simultanément ajustables par un champ magnétique

statique. De plus, le concept de réponse effective externe d’un matériau composite de taille

finie est introduit. Des éléments de cet article sont présentés notamment aux chapitres 3 et 4

de la thèse.

Présentation orale à une conférence internationale avec comité de lecture

V. Boucher et D. Ménard, « Electromagnetic properties of ferromagnetic nanowire arrays »,

52nd Magnetism and Magnetic Materials Conference, Tampa, Floride, États-Unis, (5–9 no-

vembre 2007, présenté le 6 novembre 2007).
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CHAPITRE 2

APPROCHE THÉORIQUE GÉNÉRALE

2.1 Introduction

Ce chapitre nous permettra d’établir l’approche théorique sur laquelle repose la thèse.

Notre objectif principal consiste à développer une procédure générale pour obtenir les pro-

priétés électromagnétiques effectives de réseaux de fils ferromagnétiques, dans le cas où l’effet

de peau à l’intérieur des fils modifie de façon non triviale leur réponse gyromagnétique. À

la section 2.2, nous allons d’abord définir les paramètres géométriques et l’état magnétique

statique du réseau, de même que les propriétés intrinsèques de ses constituants. La descrip-

tion de la méthode de dérivation fera ensuite l’objet des sections 2.3 à 2.6. Nous favoriserons

une approche qui met l’accent sur la signification physique du formalisme plutôt que sur ses

aspects mathématiques, notamment en insistant sur les liens entre les étapes de la modéli-

sation et sur le fondement des hypothèses et des approximations utilisées. Nous porterons

une attention particulière à l’influence du retard électromagnétique sur la réponse dipolaire

d’une inclusion gyrotrope et à la justification de la procédure d’homogénéisation, laquelle

s’appuie sur la définition d’une cellule unitaire centrée sur le fil et plongée dans le milieu

effectif dont les propriétés sont à déterminer. Nous conclurons le chapitre à la section 2.7,

en présentant la solution générale de la diffusion d’une onde électromagnétique par un fil

individuel aimanté axialement. Ce résultat constituera notre point de départ pour dériver,

au chapitre 3, la perméabilité et la permittivité effectives de réseaux de fils en interaction.

Avant de poursuivre, soulignons que l’approche théorique qui sera développée aux sec-

tions 2.3 à 2.6 s’avère générale et pourrait être adaptée à tout matériau composite dont la

structure hiérarchique s’apparente à celle des réseaux de fils, à la condition de modifier en

conséquence la forme des expressions pour les paramètres physiques donnés à la section 2.2.

De plus, malgré que les réponses électrique et magnétique soient traitées sur un pied d’égalité

dans ce chapitre, nous mettrons davantage l’emphase, au cours des chapitres subséquents,

sur les propriétés magnétiques des réseaux de fils.

2.2 Définition du système étudié

Considérons un ensemble de fils ferromagnétiques parallèles, de diamètre d = 2a et de

longueur L ≫ d, incorporés dans une matrice circulaire d’épaisseur h = L et de rayon R ≫ h.
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Les fils forment un réseau bidimensionnel de distance interfil moyenne D et occupent une

fraction f = f0 (πa
2/D2) de la matrice, où f0 est une constante qui dépend de la symétrie

du réseau (p. ex., carrée, hexagonale ou aléatoire). Pour simplifier le traitement analytique

et sans perte de généralité, nous allons poser dans ce chapitre que f0 = 1, ce qui correspond

à un réseau de symétrie carrée avec f = πa2/D2. Nous définissons également un système

de coordonnées cartésiennes tel que l’axe z cöıncide avec l’axe des fils et définit la direction

hors plan (OP, pour out-of-plane), alors que les axes x et y correspondent aux directions

dans le plan (IP, pour in-plane). Une représentation schématique du réseau est montrée à la

figure 2.1.

h

2R

z,Hext0

y

x

L

d = 2a

D

Ms

Tenseur de forme N̄w

Figure 2.1 Représentation schématique d’un réseau saturé de fils ferromagnétiques aimantés
axialement et définition des paramètres géométriques pertinents et du système de coordonnées
cartésiennes.

Nous traitons les fils du réseau comme des ellipsöıdes de révolution prolates et monodo-

maines, soumis à un champ magnétique statique externe Hext0 = Hext0ẑ. Nous supposons que

le champ est suffisamment élevé pour saturer les fils selon leur axe, de sorte que Mw0 = Msẑ

correspond à l’aimantation statique des fils, où la valeur de l’aimantation spontanée Ms

dépend de la nature du matériau et de la température. Cette configuration magnétique sta-

tique conduit à un réseau saturé de fils aimantés axialement, caractérisé par une aimantation

statique moyenne

〈M0〉 = fMw0 = fMsẑ = 〈M0s〉 ẑ, (2.1)

où 〈M0s〉 = fMs désigne l’aimantation à saturation du réseau. Notons que le fait de mo-

déliser les fils comme des ellipsöıdes de révolution permet, d’une part, de supposer que leur
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aimantation statique Mw0 est spatialement uniforme et, d’autre part, de tenir compte de leur

forme par l’intermédiaire du tenseur de désaimantation (ou de dépolarisation)

¯̄Nw =







Nw
ip 0 0

0 Nw
ip 0

0 0 Nw
op






, (2.2)

où les facteurs de désaimantation dans le plan et hors plan, Nw
ip et Nw

op, satisfont la relation

2Nw
ip+Nw

op = 1 [103]. Notons que pour de longs fils avec L ≫ d, nous trouvons que Nw
ip ≈ 1/2

et Nw
op ≈ 0.

La description de la réponse électromagnétique du réseau requiert de considérer des ex-

pressions pour la permittivité et la perméabilité dynamiques intrinsèques de la matrice, ¯̄ǫm

et ¯̄µm, et des fils, ¯̄ǫw et ¯̄µw. Ceci consiste à établir les relations constitutives

dm = ¯̄ǫmem, (2.3a)

bm = ¯̄µmhm (2.3b)

dans la matrice et

dw = ¯̄ǫwew, (2.4a)

bw = ¯̄µwhw (2.4b)

à l’intérieur des fils, lesquelles permettent de lier les inductions aux champs à l’intérieur des

deux constituants. 1 En général, les propriétés électromagnétiques ¯̄ǫm, ¯̄ǫw, ¯̄µm et ¯̄µw corres-

pondent à des tenseurs d’ordre deux, qui peuvent être représentés par des matrices 3 × 3

dans un système de coordonnées choisi. Leurs composantes sont des nombres complexes, qui

peuvent dépendre de la fréquence (dispersion temporelle), de la longueur d’onde (dispersion

spatiale), du champ magnétique statique, de la température, etc. 2 Des expressions pour les

tenseurs de permittivité et de perméabilité peuvent être obtenues à l’aide de modèles micro-

1. Signalons que les expressions pour ¯̄ǫm et ¯̄ǫw incluent la conductivité des matériaux respectifs.
2. Dans le cadre de cette thèse, nous adoptons la convention selon laquelle les vecteurs sont désignés par

des lettres en caractère gras, alors que les tenseurs sont dénotés par l’ajout d’une double barre ¯̄ au-dessus
du symbole.
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scopiques de la matière, lesquels mènent aux équations du mouvement pour la polarisation

et l’aimantation dynamiques soumises à des champs électromagnétiques.

D’abord, nous supposons que la matrice est constituée d’un matériau diélectrique et non

magnétique, caractérisé par des propriétés électromagnétiques scalaires et locales. La permit-

tivité ¯̄ǫm → ǫm est donc essentiellement réelle (autrement dit, Re [ǫm] ≫ Im [ǫm]) et faiblement

dispersive dans les hyperfréquences, alors que la perméabilité ¯̄µm → µm = µ0 est égale à celle

du vide.

La réponse électromagnétique intrinsèque de fils ferromagnétiques conducteurs est tou-

tefois plus complexe et doit être déterminée, en général, par la résolution simultanée des

équations de Maxwell, incluant la loi d’Ohm, et de l’équation du mouvement de l’aimanta-

tion [104]. D’abord, nous supposons que les propriétés électriques peuvent être décrites dans

le cadre du modèle de Drude, qui considère le métal comme un gaz d’électrons libres et sup-

pose l’existence d’un temps de relaxation τ , qui décrit les mécanismes de dissipation dans le

système [105]. Dans les hyperfréquences, ce modèle mène à une permittivité isotrope, locale

et essentiellement imaginaire, donnée par [106]

ǫw = ǫ∞ − ǫ0
ω2
p

ω (ω + i/τ)
≈ iσw

ω
, (2.5)

avec ǫ∞ la permittivité à très hautes fréquences, ǫ0 la permittivité du vide, ωp la fréquence

plasma et σw = ǫ0τω
2
p la conductivité de Drude statique. Soulignons que cette expression

ignore les effets galvanomagnétiques, 3 néglige les courants de déplacement par rapport aux

courants de conduction et suppose que ωτ ≪ 1 dans les hyperfréquences, correspondant au

régime de Hagen-Rubens [106]. La permittivité très élevée (|ǫw| ≫ ǫ0) et imaginaire décrite

par l’équation (2.5) mène à une pénétration finie des champs électromagnétiques à l’intérieur

du métal, laquelle peut être caractérisée par la profondeur de pénétration non magnétique

δw0 =

√

2

ωσwµ0

. (2.6)

Notons que cette formulation suppose une relation locale entre la densité de courant et le

champ électrique (c.-à-d., indépendante du vecteur d’onde kw à l’intérieur des fils). Par consé-

quent, ce régime ne permet pas de traiter l’effet de peau anormal, lequel survient généralement

à basses températures, lorsque le libre parcours moyen des électrons devient supérieur à la

profondeur de pénétration [108].

3. De façon générale, la conduction électrique dans un métal ferromagnétique dépend de la valeur du
champ magnétique et de l’aimantation, de sorte que la loi d’Ohm doit être modifiée pour inclure les effets
galvanomagnétiques ordinaires et spontanés, tels que les effets Hall et la magnétorésistance [107]. Toutefois,
dans le cadre cette thèse, nous allons admettre que l’équation (2.5) suffit.
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Dans l’hypothèse où l’interaction d’échange et l’anisotropie magnétocristalline peuvent

être négligées, le tenseur de perméabilité intrinsèque ¯̄µw établit une relation locale entre l’in-

duction et le champ magnétiques dynamiques à l’intérieur du métal ferromagnétique, telle

que décrite par l’équation (2.4b). 4 L’établissement d’expressions explicites pour les compo-

santes de ¯̄µw requiert alors de considérer la réponse dynamique de l’aimantation totale Mw

du fil, laquelle peut être décrite par l’équation du mouvement suivante [26]

∂Mw

∂t
= −Mw ×

(

µ0|γ|Hw − α

Ms

∂Mw

∂t

)

, (2.7)

où Hw est le champ effectif interne agissant sur les moments magnétiques à l’intérieur du

matériau, α est la constante d’amortissement phénoménologique de Gilbert et γ = − |γ| =
−gµB/~ est le rapport gyromagnétique, avec g le facteur gyromagnétique (facteur de Landé),

µB le magnéton de Bohr et ~ la constante de Planck divisée par 2π. L’aimantation et le champ

effectif interne peuvent ensuite être séparés en des composante statique et dynamique

Mw = Mw0 +mw = Msẑ+mw, (2.8)

Hw = Hw0 + hw = Hw0ẑ+ hw, (2.9)

où les vecteurs en caractères majuscules affectés d’un indice 0 désignent des quantités sta-

tiques, alors que les caractères minuscules représentent des quantités dynamiques. Dans l’ap-

proximation des petits signaux, nous posons que |mw| ≪ Ms et |hw| ≪ Hw0, ce qui permet de

linéariser l’équation (2.7). En supposant une dépendance temporelle harmonique proportion-

nelle à e−iωt pour les composantes dynamiques, la résolution du système d’équations résultant

mène au tenseur de susceptibilité magnétique intrinsèque ¯̄χw, lequel définit la relation consti-

tutive

mw = ¯̄χwhw. (2.10)

Enfin, la relation bw = µ0 (hw +mw) = ¯̄µwhw permet d’obtenir le tenseur gyrotrope de

perméabilité intrinsèque du métal ferromagnétique [26]

4. Lorsque l’interaction d’échange est considérée, la solution combinée des équations de Maxwell et de
l’équation du mouvement de l’aimantation indique que la perméabilité ¯̄µw montre un caractère non local,
c’est-à-dire dépendant de kw. La relation de dispersion ω (kw) du métal ferromagnétique possède alors quatre
branches de vecteurs d’onde différents, qui décrivent quatre modes présentant des caractères distincts d’ondes
électromagnétiques et d’ondes de spin [104]. La relation de dispersion de chacun de ces modes et leurs
caractéristiques physiques respectives sont discutées à la référence [109], alors que la réponse non locale
associée aux effets combinés de l’échange et de l’effet de peau anormal est étudiée à la référence [110]. Enfin,
mentionnons que nous avons justifié le fait de négliger l’interaction d’échange à la référence [35].
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¯̄µw = µ0

(

¯̄I + ¯̄χw

)

=







µ −iµt 0

iµt µ 0

0 0 µ‖






, (2.11)

où ¯̄I est la matrice identité et

µ = µ0
ω∗
H (ω∗

H + ωM)− ω2

(ω∗
H)

2 − ω2
, (2.12a)

µt = µ0
ωMω

(ω∗
H)

2 − ω2
(2.12b)

sont les composantes transverses diagonales et hors diagonales de ¯̄µw, avec

ω∗
H = ωH − iαω = µ0|γ|Hw0 − iαω, (2.13)

ωM = µ0|γ|Ms. (2.14)

De plus, µ‖ désigne ici la composante de ¯̄µw parallèle à l’axe de gyrotropie, c’est-à-dire

selon la direction de l’aimantation statique Mw0 = Msẑ. Il est important de souligner que

dans l’approximation des petits signaux (approximation linéaire) utilisée dans ce travail,

la composante dynamique µ‖ devient strictement égale à la perméabilité du vide (c.-à-d.,

µ‖ = µ0). Or, physiquement, nous avons plutôt que µ‖ ≈ µ0, en raison notamment des

réponses diamagnétique et paramagnétique intrinsèques du matériau, auxquelles peuvent

s’ajouter des contributions non linéaires dans l’équation du mouvement de l’aimantation

[Éq. (2.7)]. De même, nous allons voir plus loin que, mathématiquement, il est avantageux

d’admettre que µ‖ diffère légèrement de µ0. En particulier, l’ajout phénoménologique de µ‖ va

nous permettre d’écrire, de façon mathématiquement rigoureuse, le tenseur de perméabilité

effective ¯̄µeff du réseau de fils comme un tenseur 3 × 3, sans toutefois influencer la réponse

dominante dans le plan transverse à l’axe de gyrotropie. Cette question est examinée de façon

plus approfondie à l’annexe A.

Le tenseur ¯̄µw donné à l’équation (2.11) décrit alors la perméabilité intrinsèque du ma-

tériau massif en fonction du champ interne hw et ce, indépendamment des dimensions géo-

métriques de l’échantillon. Les composantes complexes µ et µt dépendent de la valeur de

l’aimantation spontanée et tiennent compte des pertes magnétiques intrinsèques, par l’inter-

médiaire de la constante d’amortissement α. Dans les hyperfréquences, cette perméabilité

possède un caractère résonant en fonction de la fréquence d’opération et du champ magné-
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tique statique, avec un pôle et un zéro correspondant à la résonance et à l’antirésonance

ferromagnétiques, respectivement.

Une fois que la permittivité et la perméabilité intrinsèques ǫw et ¯̄µw ont été définies, nous

pouvons les substituer dans les équations de Maxwell pour obtenir la relation de dispersion

ω (kw) du métal ferromagnétique massif. Nous trouvons alors qu’une onde électromagnétique

s’y propage avec un indice de réfraction complexe nw, lequel dépend de l’angle θk formé par

le vecteur d’onde kw et l’aimantation statique Mw0. Il s’ensuit que

nw (θk) = c0 [ǫwµw (θk)]
1/2 , (2.15)

où c0 = (ǫ0µ0)
−1/2 est la vitesse de la lumière dans le vide et µw (θk) est une perméabilité

scalaire équivalente, qui dépend de l’angle θk et des composantes µ et µt, comme montré à la

référence [26], p. 97. Notons que dans le cas où les pertes sont suffisamment faibles, la partie

réelle de nw peut devenir négative entre les fréquences de résonance et d’antirésonance de

µw (θk). Toutefois, en raison de l’importance de l’effet de peau, la partie imaginaire de nw

demeure très élevée, de sorte que l’onde s’atténue fortement en pénétrant dans le matériau. 5

Enfin, les vecteurs d’onde kw obtenus en résolvant l’équation séculaire ω (kw) = 0 peuvent

être utilisés dans les conditions aux frontières électromagnétiques à la surface du matériau

afin de déterminer l’impédance, les coefficients de réflexion et de transmission, ou tout autre

paramètre physique d’intérêt. 6

2.3 Réponse externe d’un fil ferromagnétique individuel

La section précédente a permis de définir les paramètres géométriques et l’état magnétique

statique du réseau de fils, ainsi que les propriétés intrinsèques de ses constituants. Avant de

passer à la modélisation du réseau comme un matériau homogène équivalent, décrit par des

paramètres constitutifs effectifs, nous allons d’abord caractériser la réponse externe d’un

fil ferromagnétique individuel soumis à une onde électromagnétique. En particulier, nous

allons introduire différents régimes d’opération, qui s’appliquent selon l’importance de la

propagation électromagnétique à l’intérieur et à l’extérieur du fil.

5. Mentionnons qu’une démonstration expérimentale d’un indice de réfraction doté d’une partie réelle
négative dans les hyperfréquences a effectivement été réalisée dans une couche mince de métal ferromagnétique
(La2/3Ca1/3MnO3) [111]. Toutefois, ces mesures ont indiqué, d’une part, que la composante imaginaire de
l’indice de réfraction demeure considérable, correspondant à une atténuation importante de l’onde, et, d’autre
part, que l’indice de réfraction est fortement anisotrope en fonction de la polarisation de l’onde incidente.

6. Comme mentionné précédemment, lorsque l’interaction d’échange est prise en compte dans l’équation
du mouvement de l’aimantation, la relation de dispersion ω (kw) comporte quatre solutions distinctes pour
kw. Dans ce cas, des conditions aux frontières supplémentaires pour l’aimantation dynamique doivent alors
être imposées à la surface de l’échantillon et vont s’ajouter aux conditions de continuité habituelles pour les
champs électromagnétiques [112].
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Considérons un fil ferromagnétique placé dans une matrice de permittivité ǫm et de per-

méabilité µ0. Le fil, caractérisé par les propriétés intrinsèques ǫw et ¯̄µw [Éqs. (2.5) et (2.11)],

est soumis à une onde électromagnétique incidente. La procédure consiste alors à résoudre

le problème de la diffusion de l’onde par le fil ferromagnétique, ce qui requiert de satisfaire

les conditions de continuité imposées par les équations de Maxwell à la surface du fil, dans

le but de déterminer l’amplitude des champs diffusés et transmis.

De façon générale, l’onde incidente peut être développée en une expansion multipolaire

d’ondes partielles, lesquelles vont constituer une infinité de modes orthogonaux et vont exciter

des réponses collectives de la polarisation pw et de l’aimantation mw dynamiques du fil.

Chacune de ces réponses peut alors être assimilée à celle d’un multipôle ponctuel et être

décrite par une susceptibilité externe multipolaire. Les susceptibilités externes, qui dépendent

elles-mêmes de la taille et de la composition du fil, sont proportionnelles à l’amplitude de

l’onde diffusée du mode correspondant [113].

La solution générale de la diffusion d’une onde électromagnétique plane par un cylindre

infini et caractérisé par le tenseur de perméabilité gyrotrope de l’équation (2.11) est présentée

à la référence [114] et s’avère relativement complexe. 7 Des solutions approximatives peuvent

néanmoins être obtenues selon l’importance du retard électromagnétique à l’intérieur et à

l’extérieur du fil, lequel sera pris en compte par les valeurs de |km| a et |kw| a devant l’unité.

Les termes km et kw correspondent respectivement à l’amplitude complexe des vecteurs d’onde

des champs dans la matrice (c.-à-d., incidents et diffusés) et des champ transmis à l’intérieur

du fil de rayon a.

Supposons d’abord que les champs dans la matrice demeurent spatialement uniformes au

voisinage du fil, ce qui se traduit par l’inégalité

|km| a ≪ 1. (2.16)

Un calcul direct montre que cette condition est aisément satisfaite pour les intervalles de

fréquences (1–100 GHz) et de rayons (0,01–100 µm) considérés dans le cadre de cette thèse.

Par conséquent, à partir de maintenant, nous supposerons toujours que les fils individuels

du réseau sont excités par des champs locaux eloc et hloc uniformes. De plus, comme nous le

verrons plus loin, la condition |km| a ≪ 1 s’avère essentielle à l’homogénéisation du réseau et

donc à la définition des tenseurs de permittivité et de perméabilité effectives.

La conséquence principale entrâınée par la satisfaction de l’équation (2.16) réside toutefois

dans le fait que la réponse du mode dipolaire domine largement celles des autres modes, de

sorte que l’effet des pôles d’ordres supérieurs peut être négligé [72, 74, 84, 115]. Il est alors

7. Mentionnons toutefois que la dérivation explicite des susceptibilités externes multipolaires n’est pas
présentée à la référence [114].
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possible d’introduire les tenseurs de susceptibilités externes électrique ¯̄κw et magnétique ¯̄ηw

associés à la réponse dipolaire du fil. Ces deux fonctions de réponse définissent les relations

constitutives

〈pw〉 = ǫm ¯̄κweloc, (2.17a)

〈mw〉 = ¯̄ηwhloc, (2.17b)

où les crochets angulaires 〈.〉 désignent des moyennes spatiales de pw et mw, lesquelles sont

généralement non uniformes à l’intérieur du fil, puisqu’aucune restriction n’a encore été im-

posée quant à la valeur de |kw| a. 8 Nous allons maintenant considérer cet aspect en étudiant

les trois régimes d’opération illustrés à la figure 2.2. Ces différents niveaux d’approximation

se distinguent par l’importance du retard électromagnétique à l’intérieur du fil et par les

solutions pour les susceptibilités externes ¯̄κw et ¯̄ηw.

Dans le cas le plus simple, les champs sont également uniformes à l’intérieur du fil, de

sorte que la condition

|kw| a ≪ 1 (2.18)

s’applique et définit la limite QS (ou limite de Rayleigh [5]). Dans ce cas, la propagation

électromagnétique est négligeable à l’intérieur du fil, ce qui correspond à des modes d’os-

cillations uniformes de la polarisation et de l’aimantation dynamiques. Par conséquent, les

problèmes électrostatique et magnétostatique pour déterminer respectivement ¯̄κw et ¯̄ηw sont

découplés [74, 116, 117]. Leur résolution mène alors aux expressions compactes suivantes (voir

notamment l’équation 5.78 à la référence [5])

¯̄κ−1
w =

(

¯̄ǫw
ǫm

− ¯̄I

)−1

+ ¯̄Nw, (2.19a)

¯̄η−1
w =

(

¯̄µw

µ0

− ¯̄I

)−1

+ ¯̄Nw, (2.19b)

8. Notons que les tenseurs ¯̄κw et ¯̄ηw correspondent également à des tenseurs de polarisabilités dipolaires
électrique et magnétique par unité de volume de l’inclusion. Par exemple, un fil de volume Vw et d’aimantation
mw possède un moment dipolaire magnétique Vwmw, lequel est lié au champ local par la relation Vwmw =
¯̄αm,whloc, où le tenseur de polarisabilité magnétique ¯̄αm,w du fil vaut ¯̄αm,w = Vw ¯̄ηw, de sorte que ¯̄ηw =
V −1
w

¯̄αm,w et décrit bien une polarisabilité par unité de volume du fil. Le terme « susceptibilité externe »

est utilisé notamment dans la littérature traitant de la résonance ferromagnétique du mode uniforme d’un
ellipsöıde [26] et nous adopterons cette nomenclature dans le cadre de ce travail.
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|km| a ≪ 1

Tous les cas

〈pw〉 = ǫmκ̄weloc

〈mw〉 = η̄whloc

Réponses dipolaires externes

Limite QS

|kw| a ≪ 1

|kw| a ≫ 1
Limite SE

d = 2a

δw

κ̄w, η̄w dépendent de:

ǭw, µ̄wPropriétés intrinsèques

Forme N̄w

Taille kwa

Configuration des champs locaux

État magnétique statique

Régime EQS

|kw| a arbitraire

Figure 2.2 Représentation schématique des différents niveaux d’approximation décrivant les
réponses dipolaires externes de la polarisation et de l’aimantation d’un fil soumis aux champs
dynamiques locaux eloc et hloc, lesquels demeurent spatialement uniformes au voisinage du
fil (|km| a ≪ 1) : limite quasi statique (QS) avec |kw| a ≪ 1, régime quasi statique étendu
(EQS, pour extended quasistatic) où la valeur |kw| a est arbitraire et limite d’effet de peau
(SE, pour skin effect) avec |kw| a ≫ 1. Les réponses sont prises en compte par les tenseurs
de susceptibilité externe ¯̄κw et ¯̄ηw, dont les dépendances sont indiquées.

lesquelles satisfont l’équation (2.17) dans la limite 〈pw〉 = pw et 〈mw〉 = mw. Dans l’approxi-

mation QS, la réponse dipolaire externe d’un fil individuel est déterminée uniquement par

ses propriétés intrinsèques et sa forme. En particulier, notons que le pôle de ¯̄ηw cöıncide avec

la formule de Kittel [118], laquelle détermine la fréquence de résonance ferromagnétique du

mode uniforme d’un fil modélisé comme un ellipsöıde de révolution.

Comme mentionné précédemment, l’équation (2.16) est facilement satisfaite dans les hy-

perfréquences pour des fils de taille micro ou nanométrique. En revanche, l’équation (2.18)

impose des champs uniformes à l’intérieur du fil et constitue une condition beaucoup plus

restrictive dans le cas de métaux ferromagnétiques. En effet, la permittivité imaginaire élevée

associée au caractère métallique et l’augmentation de la perméabilité près de la résonance

ferromagnétique impliquent que |kw| ≫ |km| et mènent à une profondeur de pénétration finie

δw = 1/Im [kw] des champs à l’intérieur du fil. De plus, lorsque l’épaisseur de peau devient

suffisamment petite devant le rayon du fil pour remplir la condition |kw| a ≫ 1, les champs

dynamiques demeurent confinés à sa surface et la limite d’effet de peau (SE, pour skin effect)

est atteinte. Comme dans la limite QS, nous trouvons alors que la réponse externe du fil

devient indépendante de sa taille [72].
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Or, il existe un intervalle de rayons pour lequel ni |kw| a ≪ 1, ni |kw| a ≫ 1 ne sont

satisfaites, que nous allons désigner comme le régime quasi statique étendu (EQS, pour ex-

tended quasistatic) [74]. Ce régime plus général se caractérise par une valeur arbitraire de

kwa et se réduit ainsi aux limites QS et SE lorsque l’effet de peau dans le fil devient respec-

tivement négligeable et dominant. En régime EQS, les tenseurs ¯̄κw et ¯̄ηw vont dépendre de

façon non triviale des propriétés intrinsèques ǫw et ¯̄µw du fil, de sa forme et de sa taille, de

la configuration des champs locaux eloc et hloc, ainsi que de l’état magnétique statique Mw0

du fil.

En terminant cette section, mentionnons que le régime EQS va constituer le cadre théo-

rique général à l’intérieur duquel nous allons modéliser la réponse électromagnétique des ré-

seaux de fils ferromagnétiques. Notons également que la terminologie « quasi statique étendu »

peut porter à confusion, puisqu’aucune restriction n’est imposée quant à la valeur de kwa. En

effet, le régime EQS s’appuie sur un calcul entièrement dynamique des champs à l’intérieur

du fil, lequel requiert uniquement que les champs locaux eloc et hloc qui excitent le fil soient

uniformes.

2.4 Réponse macroscopique du réseau de fils et propriétés électro-

magnétiques effectives

Nous allons maintenant considérer le comportement macroscopique d’un ensemble de fils

parallèles, en nous appuyant sur les résultats des sections précédentes pour les propriétés

intrinsèques du réseau et la réponse externe des fils individuels. Du point de vue électro-

magnétique, la possibilité d’assimiler un milieu donné à un matériau homogène décrit par

l’électrodynamique des milieux continus est dictée par la valeur du rapport entre la longueur

d’onde dans le matériau et la taille de ses inhomogénéités. Autrement dit, lorsqu’une onde

électromagnétique se propage dans un réseau de fils avec une longueur d’onde effective λeff

beaucoup plus grande que la taille caractéristique des fils et leur séparation moyenne, le

réseau peut, en théorie, être caractérisé par des tenseurs de permittivité ¯̄ǫeff et de perméabi-

lité ¯̄µeff dynamiques effectives. Ces fonctions de réponse macroscopiques lient les inductions

moyennes 〈d〉 et 〈b〉 aux champs moyens 〈e〉 et 〈h〉 à l’intérieur du réseau et définissent les

relations constitutives suivantes :

〈d〉 = ¯̄ǫeff 〈e〉 , (2.20a)

〈b〉 = ¯̄µeff 〈h〉 . (2.20b)
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L’introduction des équations (2.20a) et (2.20b) permet alors de remplacer conceptuellement le

réseau de fils de la figure 2.3(a) par le matériau homogène équivalent montré à la figure 2.3(b).

Dans ce contexte, les tenseurs ¯̄ǫeff et ¯̄µeff doivent alors être interprétés comme les propriétés

intrinsèques du matériau homogénéisé, c’est-à-dire que ¯̄ǫeff et ¯̄µeff vont jouer un rôle identique

à celui de ¯̄ǫw et ¯̄µw dans le contexte des matériaux naturels. Par conséquent, la propagation

d’une onde électromagnétique plane harmonique de la forme ei(keff ·r−ωt) à l’intérieur du ré-

seau peut, en principe, être décrite par des équations de Maxwell macroscopiques, lesquelles

s’expriment en fonction des propriétés effectives ¯̄ǫeff et ¯̄µeff comme

keff × 〈e〉 = ω ¯̄µeff 〈h〉 , (2.21a)

keff × 〈h〉 = −ω¯̄ǫeff 〈e〉 , (2.21b)

où keff est un vecteur d’onde effectif dans le réseau de fils homogénéisé. Les équations (2.21a)

et (2.21b) indiquent que 〈e〉 et 〈h〉 représentent les champs macroscopiques pertinents à

l’échelle 2π/ |keff | = λeff ≫ d,D. De plus, soulignons que notre définition pour ¯̄ǫeff inclut le

tenseur de conductivité effective du réseau.

(b) Matériau homogène équivalent

⇐⇒

(a) Réseau de fils ferromagnétiques

Matrice

dm = ǫmem

bm = µ0hm

Fils

dw = ǫwew
bw = µ̄whw

L

d = 2a

D

2R

h

ǭeff , µ̄eff

〈d〉 = ǭeff 〈e〉
〈b〉 = µ̄eff 〈h〉

keff × 〈e〉 = ωµ̄eff 〈h〉
keff × 〈h〉 = −ωǭeff 〈e〉

Relations constitutives Équations de Maxwell

Relation de dispersion

det
[

k̄eff · ǭ−1

eff
· k̄eff + ω2µ̄eff

]

= 0

ω (keff)

Figure 2.3 (a) Matériau composite de dimensions finies, composé de fils ferromagnétiques
incorporés dans une matrice diélectrique. (b) Matériau homogène équivalent décrit par les
propriétés électromagnétiques effectives ¯̄ǫeff et ¯̄µeff , lesquelles sont obtenues par l’homogénéi-
sation du réseau de fils montré en (a). Les tenseurs ¯̄ǫeff et ¯̄µeff définissent les équations de
Maxwell macroscopiques et mènent à la relation de dispersion ω (keff) du matériau composite
homogénéisé.
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La combinaison des deux équations de Maxwell permet ensuite d’établir la relation de dis-

persion ω (keff) du réseau. Pour exprimer ω (keff) sous une forme matricielle compacte dans

laquelle ¯̄ǫeff et ¯̄µeff apparaissent explicitement, nous pouvons introduire le tenseur antisymé-

trique d’ordre deux ¯̄keff , défini en fonction des composantes cartésiennes de keff comme [119]

¯̄keff =







0 −keff,z keff,y

keff,z 0 −keff,x

−keff,y keff,x 0






. (2.22)

Concrètement, le tenseur ¯̄keff permet de remplacer les produits vectoriels dans les équa-

tions (2.21a) et (2.21b) par des produits matriciels, ce qui mène à

¯̄keff 〈e〉 = ω ¯̄µeff 〈h〉 , (2.23a)

¯̄keff 〈h〉 = −ω¯̄ǫeff 〈e〉 , (2.23b)

que nous pouvons combiner pour exprimer la relation de dispersion ω (keff) comme un déter-

minant séculaire, c’est-à-dire

det
[

¯̄keff · ¯̄ǫ−1
eff · ¯̄keff + ω2 ¯̄µeff

]

= 0. (2.24)

La résolution de cette équation établit les relations permises entre ω et les vecteurs d’onde keff

des ondes planes qui se propagent dans le milieu effectif caractérisé par ¯̄ǫeff et ¯̄µeff . Les solutions

pour keff peuvent ensuite être utilisées dans les conditions aux frontière imposées par les

équations (2.21a) et (2.21b), dans le but de lier les champs eext et hext d’une onde incidente et

les champs moyens 〈e〉 et 〈h〉 à l’intérieur du réseau. Cette procédure permet alors d’extraire,

en principe, des paramètres effectifs d’intérêt, tels que l’impédance caractéristique, l’indice

de réfraction, la profondeur de pénétration et les coefficients de réflexion et de transmission.

2.5 Théories de milieu effectif

Aller plus loin avec les équations macroscopiques générales développées à la section précé-

dente nécessite d’établir des expressions pour les tenseurs ¯̄ǫeff et ¯̄µeff en fonction des propriétés

intrinsèques de la matrice et des fils, des paramètres géométriques, des interactions interfils et

de l’état magnétique statique du réseau. Pour ce faire, nous allons maintenant considérer un

modèle de milieu effectif, que nous allons généraliser au régime EQS dans le but de traiter le
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cas d’inclusions ferromagnétiques conductrices caractérisées par une réponse gyromagnétique

tensorielle et un effet de peau qui ne peuvent être négligés a priori.

L’étude de la réponse électromagnétique de milieux hétérogènes en fonction des propriétés

de leurs constituants possède une longue histoire, qui remonte au début de l’électromagné-

tisme moderne. Il existe aujourd’hui une vaste littérature permettant de décrire les diverses

approches possibles pour calculer les paramètres électromagnétiques effectifs. 9 La plupart des

modèles utilisés actuellement constituent des généralisations ou des variations des formalismes

précurseurs établis par Maxwell Garnett [81], puis par Bruggeman [5], lesquels s’appuient

eux-mêmes sur les relations antérieures de Clausius-Mossotti et de Lorentz-Lorenz [105].

La théorie de Maxwell Garnett s’applique bien lorsque l’un des deux constituants peut être

considéré comme une matrice continue, dans laquelle l’autre constituant est incorporé sous la

forme d’inclusions isolées et de géométrie bien définie. Il s’agit d’un modèle de champ moyen

qui fait intervenir l’approximation dipolaire de deux façons distinctes [113]. D’une part, les

inclusions polarisables sont traitées comme des dipôles induits, suffisamment éloignés les uns

des autres pour agir comme des diffuseurs indépendants. D’autre part, seules les interactions

dipolaires entre les inclusions sont considérées, par l’intermédiaire du champ de cavité de

Lorentz, lequel consiste à approximer l’effet de toutes les inclusions sur une inclusion donnée

par un champ moyen uniforme.

En revanche, dans le modèle de Bruggeman, les deux constituants sont traités comme des

inclusions plongées dans le milieu effectif et soumises aux champs moyens 〈e〉 et 〈h〉. Dans
cette approche symétrique, les propriétés effectives sont déterminées par autoconsistance, en

imposant que les déviations par rapport aux champs moyens causées par la polarisation et

l’aimantation des inclusions s’annulent en moyenne.

Dans notre contexte, les réseaux de fils ferromagnétiques parallèles incorporés dans une

matrice diélectrique peuvent être adéquatement traités comme un ensemble d’inclusions iso-

lées et plongées dans un milieu hôte. Cette représentation correspond à celle décrite par la

théorie de Maxwell Garnett, sur laquelle nous allons par conséquent nous concentrer exclusi-

vement dans le cadre de cette thèse. 10 Pour sa part, l’approche de Bruggeman pourrait être

utilisée pour décrire, par exemple, un matériau composite où les fils sont distribués aléatoire-

9. Le livre de A. Sihvola [5] présente une bonne introduction aux théories de milieu effectif. De même,
pour une revue historique du sujet, le lecteur pourra notamment consulter les références [120, 121].
10. Notons également que d’un point de vue strictement analytique, l’approche de Maxwell Garnett mène

à des expressions explicites pour les tenseurs ¯̄ǫeff et ¯̄µeff , lesquelles s’avèrent beaucoup plus simples que les
relations implicites prédites par le formalisme de Bruggeman, notamment dans le cas d’inclusions gyromagné-
tiques dans la limite QS [76, 77]. De plus, la théorie de Maxwell Garnett permet d’inclure plus directement
les effets de retard électromagnétique associés à la taille finie des inclusions en régime EQS [113], comme
traité dans le cadre de cette thèse.
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ment sur une surface plane (c.-à-d., avec l’axe des fils dans la direction IP) et peuvent alors

former des chemins de percolation.

Dans sa forme originale [81], la formule de Maxwell Garnett a été établie dans la limite QS,

pour le cas d’inclusions sphériques caractérisées par des propriétés intrinsèques isotropes, mais

a depuis été généralisée à plusieurs égards [5]. En particulier, les propriétés électromagnétiques

effectives QS d’un ensemble d’inclusions ellipsöıdales anisotropes et orientées parallèlement

dans une matrice isotrope peuvent s’écrire sous la forme générale suivante (voir notamment

l’équation 5.81 à la référence [5]) :

¯̄ǫeff
ǫm

= ¯̄I + f
[

¯̄κ−1
w − f ¯̄Nw

]−1

= ¯̄I + f

[

(

¯̄ǫw
ǫm

− ¯̄I

)−1

+ (1− f) ¯̄Nw

]−1

, (2.25a)

¯̄µeff

µ0

= ¯̄I + f
[

¯̄η−1
w − f ¯̄Nw

]−1

= ¯̄I + f

[

(

¯̄µw

µ0

− ¯̄I

)−1

+ (1− f) ¯̄Nw

]−1

, (2.25b)

où nous avons utilisé les résultats de l’équation (2.19) pour obtenir les membres de droite.

Nous constatons que les tenseurs ¯̄ǫeff et ¯̄µeff dépendent des propriétés intrinsèques ǫm

et µ0 de la matrice, de la fraction f occupée par les fils, de leur tenseur de forme ¯̄Nw et,

principalement, de leurs susceptibilités externes électrique ¯̄κw et magnétique ¯̄ηw. Comme

mentionné à la section 2.3, ces tenseurs décrivent la réponse dipolaire de la polarisation pw

et de l’aimantation mw dynamiques des inclusions soumises aux champs locaux eloc et hloc

dans le matériau composite et excitées dans un mode d’oscillation uniforme. Rappelons que

les champs locaux diffèrent des champs macroscopiques moyens 〈e〉 et 〈h〉 en raison des

interactions dipolaires entre les fils.

Dans l’approximation QS, les formules de Maxwell Garnett données aux équations (2.25a)

et (2.25b) peuvent être obtenues de plusieurs façons [5, 122, 123]. Dans cette limite, les

propriétés effectives sont d’abord dérivées à fréquence nulle, c’est-à-dire en considérant la

réponse des inclusions à des champs statiques, puis appliquées en régime dynamique à la

condition que la longueur d’onde dans le milieu effectif demeure grande par rapport à la

taille caractéristique des inhomogénéités.

2.6 Procédure d’homogénéisation

Dans le cadre de cette thèse, nous voulons développer une méthode de dérivation des pro-

priétés effectives ¯̄ǫeff et ¯̄µeff qui demeure valide en régime EQS, c’est-à-dire lorsque le retard

électromagnétique à l’intérieur des fils se répercute sur les paramètres constitutifs macrosco-
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piques du réseau. Pour ce faire, nous allons utiliser une approche basée sur la définition d’une

cellule unitaire équivalente plongée dans un milieu effectif caractérisé par les propriétés ¯̄ǫeff

et ¯̄µeff que nous cherchons à déterminer [124–127]. De plus, nous allons voir comment cette

méthode peut être adaptée pour tenir compte de la perméabilité intrinsèque tensorielle des

fils.

(a) Réseau de fils ferromagnétiques

a

b = D
√

π

ǫw

2a

D

ǫw, µ̄w

Fil

µ̄w

ǫm, µ0

Matrice

ǫm, µ0

Milieu effectif avec ǭeff, µ̄eff

(b) Cellule unitaire équivalente

dans le milieu effectif

z

y

x

ρ

φ

Figure 2.4 (a) Représentation schématique du réseau de fils ferromagnétiques conducteurs
parallèles incorporés dans une matrice diélectrique non magnétique. La cellule unitaire du
réseau est un carré de côté D, comprenant un fil de rayon a en son centre. (b) Définition
de la cellule unitaire équivalente circulaire de rayon externe b = D/

√
π, plongée dans un

milieu effectif caractérisé par les propriétés constitutives ¯̄ǫeff et ¯̄µeff à déterminer. Notons que
l’origine des systèmes de coordonnées en (b) cöıncide en fait avec le centre du fil.

La figure 2.4(a) montre une représentation schématique d’un réseau de fils ferromagné-

tiques parallèles, dont la cellule unitaire consiste en un carré de côté D, comprenant un fil

de rayon a en son centre. La procédure d’homogénéisation décrite aux références [124–127]

consiste d’abord à définir une cellule unitaire équivalente constituée d’un fil, de rayon a et

de propriétés intrinsèques ǫw et ¯̄µw, recouvert d’une enveloppe cylindrique de rayon externe

b = D/
√
π et de propriétés ǫm et µm = µ0, qui représente la matrice. Cette définition nous as-

sure que la fraction du réseau f = a2/b2 = πa2/D2 occupée par les fils dans la cellule unitaire

équivalente demeure identique à celle de la cellule unitaire carrée de la figure 2.4(a). 11

Nous supposons ensuite que la cellule unitaire équivalente est plongée dans un milieu

effectif caractérisé par les propriétés ¯̄ǫeff et ¯̄µeff , que nous cherchons à déterminer et qui satis-

font respectivement les équations (2.20a) et (2.20b). La procédure d’homogénéisation requiert

11. Notons que pour un réseau de symétrie arbitraire, nous devons prendre b = D/
√
πf0 pour conserver la

fraction du réseau occupée par les fils.
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alors de résoudre le problème de la diffusion d’une onde électromagnétique par la cellule uni-

taire équivalente centrée à l’origine commune des systèmes de coordonnées cartésiennes xyz

et cylindriques ρφz.

Pour ce faire, nous considérons une onde plane qui se propage dans le milieu effectif avec

un vecteur d’onde keff et des champs électrique 〈e〉 et magnétique 〈h〉. En particulier, le

vecteur d’onde keff s’exprime en fonction des composantes de ¯̄ǫeff et ¯̄µeff , par l’intermédiaire

de la relation de dispersion donnée à l’équation (2.24). Au contact avec la cellule unitaire,

l’onde plane incidente est partiellement réfléchie et partiellement transmise, en accord avec

les conditions de continuité des champs imposées par les équations de Maxwell.

La condition d’homogénéisation du réseau consiste ensuite à imposer que l’amplitude des

champs diffusés s’annule dans la limite |keff | b ≪ 1, c’est-à-dire lorsque la longueur d’onde

dans le milieu effectif est substantiellement plus grande que la taille de la cellule unitaire

équivalente. 12 Lorsque ce critère de diffusion nulle est satisfait, la cellule unitaire plongée

dans le milieu effectif devient « invisible » à l’onde électromagnétique qui s’y propage ou, de

façon équivalente, les champs 〈e〉 et 〈h〉 ne sont pas perturbés par la présence de la cellule.

Mentionnons que cette condition de diffusion nulle revient à exiger que les susceptibilités

externes ¯̄κcell et ¯̄ηcell de la cellule unitaire équivalente s’annulent dans la limite |keff | b ≪ 1.

Récemment, cette méthode a été mise à profit pour obtenir la réponse effective scalaire

en régime EQS de divers métamatériaux [21, 34, 94]. Il est toutefois important d’insister sur

le fait que cette approche ne peut être utilisée directement si ¯̄ǫeff et ¯̄µeff sont des tenseurs.

En effet, dans ce cas, le vecteur d’onde keff , lequel est la quantité physique qui intervient

directement dans le problème de diffusion, peut devenir une fonction relativement complexe

des composantes de ¯̄ǫeff et ¯̄µeff . Il en résulte que l’application de la condition de diffusion nulle

ne permet pas, en général, de déterminer l’ensemble des composantes de ¯̄ǫeff et ¯̄µeff .

Or, dans le cadre de cette thèse, la nature ferromagnétique des fils va mener à une per-

méabilité effective tensorielle dans les hyperfréquences. Pour l’obtenir, nous allons plutôt

considérer une méthode similaire, développée à la référence [23] dans le cas isotrope, que

nous allons étendre au traitement de la réponse gyrotrope des réseaux de fils ferromagné-

tiques.

Cette méthode s’appuie également sur la cellule unitaire équivalente de la figure 2.4(b).

Toutefois, plutôt que d’imposer une diffusion nulle par la cellule, l’approche requiert de satis-

faire les conditions de continuité des champs électromagnétiques à l’interface en ρ = b entre

la cellule unitaire et le milieu effectif. Les conditions aux frontières vont alors faire intervenir

les propriétés intrinsèques des fils et de la matrice pour les champs à l’intérieur de la cel-

lule et les propriétés effectives ¯̄ǫeff et ¯̄µeff à déterminer pour les champs à l’extérieur de la

12. Notons que cette limite permet de déterminer ¯̄ǫeff et ¯̄µeff de façon indépendante.
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cellule. Notons que dans le cas isotrope, les deux approches peuvent être utilisées de façon

équivalente, comme montré à l’annexe B.

La procédure d’homogénéisation que nous allons utiliser comporte deux étapes. La pre-

mière étape nécessite de résoudre le problème de la diffusion d’une onde électromagnétique

par un fil ferromagnétique individuel, comme discuté à la section 2.3. L’objectif consiste à

exprimer les champs diffusés escat et hscat et transmis ew et hw en fonction des champs inci-

dents eloc et hloc, puis à déterminer les tenseurs de susceptibilité externe ¯̄κw et ¯̄ηw du fil en

régime EQS.

La deuxième étape requiert de résoudre le problème de conditions aux frontières en ρ = b,

lorsque la cellule unitaire équivalente est plongée dans le milieu effectif [Fig. 2.4(b)]. Les

champs à l’extérieur de la cellule (a < ρ < b) correspondent aux champs dans la matrice,

em = eloc+escat et hm = hloc+hscat, obtenus lors de la résolution du problème de diffusion et

faisant intervenir les susceptibilités externes ¯̄κw et ¯̄ηw. Dans cette approche, notons que toute

l’information concernant la réponse des fils individuels est contenue dans les expressions pour

les champs diffusés escat ∝ ¯̄κw et hscat ∝ ¯̄ηw. Les propriétés effectives ¯̄ǫeff et ¯̄µeff du réseau

s’obtiennent alors en satisfaisant les équations suivantes en ρ = b :

〈e〉 · ẑ = em · ẑ, 〈h〉 · ẑ = hm · ẑ, (2.26a)

〈e〉 · φ̂ = em · φ̂, 〈h〉 · φ̂ = hm · φ̂, (2.26b)

(¯̄ǫeff 〈e〉) · ρ̂ = (ǫmem) · ρ̂, (¯̄µeff 〈h〉) · ρ̂ = (µ0hm) · ρ̂, (2.26c)

ce qui assure la continuité des composantes tangentielles des champs et de la composante

normale des inductions à la surface de la cellule unitaire équivalente. La possibilité d’appliquer

ces conditions à plusieurs valeurs de l’angle φ permet, en principe, de déterminer l’ensemble

des composantes des tenseurs ¯̄ǫeff et ¯̄µeff .

Ceci termine la description de notre approche théorique générale pour la modélisation des

propriétés effectives de réseaux de fils ferromagnétiques conducteurs. À la section suivante

nous allons résoudre explicitement le problème de la diffusion d’une onde électromagnétique

plane par un fil individuel aimanté axialement. En particulier, nous allons voir qu’en régime

EQS, les réponses dipolaires électrique et magnétique dominent la réponse du fil et, pour cette

raison, seront considérées en détail au chapitre 3. Cette étude nous permettra alors d’obtenir

les tenseurs de susceptibilité externe ¯̄κw et ¯̄ηw des fils individuels, puis les propriétés effectives

¯̄ǫeff et ¯̄µeff du réseau.
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2.7 Diffusion d’une onde électromagnétique plane par un fil ferro-

magnétique aimanté axialement

L’application de la procédure d’homogénéisation de Maxwell Garnett en vue de dériver les

propriétés effectives ¯̄ǫeff et ¯̄µeff du réseau requiert d’abord de connâıtre les réponses électrique

et magnétique externes d’un fil individuel. Pour ce faire, nous allons maintenant considérer

la diffusion d’une onde électromagnétique plane par un fil unique, dans le cas où le retard

électromagnétique à l’intérieur du fil (régime EQS) et la nature gyrotrope de sa perméabilité

intrinsèque ¯̄µw jouent un rôle significatif. Notre analyse du problème de diffusion s’inspire de

celles de Maryško [72] et de Kraus [73], qui ont étudié l’influence de l’effet de peau sur la

résonance ferromagnétique d’un fil conducteur. Nous allons étendre ces travaux en dérivant

des expressions explicites pour les tenseurs de susceptibilité externe ¯̄κw et ¯̄ηw.

2.7.1 Solution générale du problème de diffusion

La configuration du problème de diffusion est montrée à la figure 2.5. Un fil ferroma-

gnétique aimanté axialement est placé dans une matrice isotrope de permittivité ǫm et de

perméabilité µ0. Le fil, de diamètre d = 2a, de longueur L (supposée infinie dans le problème

de diffusion) et d’aimantation spontanée Ms, est centré à l’origine commune des systèmes

de coordonnées cartésiennes xyz et cylindriques ρφz, de façon à ce que l’axe du fil cöıncide

avec l’axe z. Pour un long fil isolé, le champ de désaimantation axial est négligeable, de sorte

que le champ statique externe Hext0 = Hext0ẑ est approximativement égal au champ statique

interne Hw0.

Nous considérons une onde incidente de polarisation transverse magnétique (TM), 13 qui

se propage dans la direction positive de l’axe x avec une fréquence angulaire ω et des champ

électrique axial et magnétique transverse donnés par

eloc = eloc0e
i(kmx−ωt)ẑ, (2.27a)

hloc = −eloc0
ζm

ei(kmx−ωt)ŷ = −hloc0e
i(kmx−ωt)ŷ, (2.27b)

où km = ω
√
ǫmµ0 et ζm =

√

µ0/ǫm désignent respectivement le vecteur d’onde et l’impédance

intrinsèque dans la matrice. Il convient de souligner ici que les champs locaux eloc et hloc

13. Dans le cas de la diffusion d’une onde électromagnétique par un cylindre infini, la désignation transverse

électrique (magnétique) correspond à une onde incidente dont le champ électrique (magnétique) est transverse
à l’axe du cylindre.
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associés à l’onde incidente qui excite le fil représentent les champs qui existeraient à la position

occupée par le fil si celui-ci était absent.

φ

ρ
y

x

z

Onde diffusée

Onde plane incidente

eloc

hloc

escat, hscat

hw

ew

Onde

transmise

kw

km

Matrice

km

ǫw,

d = 2a

µ0ǫm,

z

y

xkm

hloc

eloc

Fil
µ̄w

Diffusion par un fil ferromagnétique aimanté axialement

Ms, Hext0

Figure 2.5 Représentation schématique de la diffusion d’une onde électromagnétique plane
par un fil ferromagnétique aimanté axialement. Définition des systèmes de coordonnées car-
tésiennes xyz et cylindriques ρφz, de même que des paramètres des ondes incidente, diffusée
et transmise.

La symétrie cylindrique du problème suggère ensuite d’exprimer les champs incidents eloc

et hloc à l’aide des fonctions élémentaires du système de coordonnées cylindriques ρφz. En

utilisant l’identité de Jacobi-Anger (voir notamment la référence [128], p. 694)

eiu cosφ =
∞
∑

n=−∞

inJn(u)e
inφ, (2.28)

avec u cosφ = kmρ cosφ = kmx, nous obtenons

eloc = eloc

∞
∑

n=−∞

inJn (kmρ) e
inφẑ, (2.29a)

hloc = − i

ωµ0

(∇× eloc)

= hloc

∞
∑

n=−∞

in
[

n
Jn (kmρ)

kmρ
ρ̂+ iJ ′

n (kmρ) φ̂

]

einφ,
(2.29b)
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où les Jn(u) représentent les fonctions de Bessel de première espèce et la notation J ′
n(u) dé-

signe la dérivée de Jn(u) par rapport à son argument. Signalons également que le champ ma-

gnétique incident hloc a été obtenu à l’aide de l’équation de Maxwell-Faraday et notons que la

dépendance temporelle des champs été absorbée dans les facteurs d’amplitude eloc = eloc0e
−iωt

et hloc = hloc0e
−iωt. Les équations (2.29a) et (2.29b) montrent alors qu’en coordonnées cylin-

driques, une onde plane s’exprime comme une somme infinie de modes orthogonaux.

À l’interface entre le fil et la matrice, l’onde incidente est partiellement réfléchie et par-

tiellement transmise, en accord avec les conditions aux frontières imposées par les équations

de Maxwell à la surface du fil en ρ = a.

D’une part, les champs diffusés doivent correspondre à une onde qui s’éloigne du fil et

qui s’annule lorsque ρ → ∞ [80]. Dans ce cas, l’onde diffusée fait intervenir les fonctions de

Hankel de première espèce H
(1)
n (u) et se propage vers les ρ > 0 avec un vecteur d’onde km et

des champs électrique et magnétique exprimés comme

escat = eloc

∞
∑

n=−∞

inanH
(1)
n (kmρ) e

inφẑ, (2.30a)

hscat = − i

ωµ0

(∇× escat)

= hloc

∞
∑

n=−∞

inan

[

n
H

(1)
n (kmρ)

kmρ
ρ̂+ iH(1)′

n (kmρ) φ̂

]

einφ,
(2.30b)

où an est le coefficient d’amplitude des champs diffusés associés au mode propre n. Comme

mentionné à la section 2.3, les champs électrique et magnétique diffusés dans le mode n

peuvent être interprétés comme les champs produits par des multipôles électrique et magné-

tique ponctuels, d’amplitude proportionnelle à an.

D’autre part, pour le champ électrique incident de l’équation (2.29a) et un fil caractérisé

par une permittivité scalaire ǫw, le champ électrique ew = ew (ρ, φ) ẑ transmis à l’intérieur

du fil demeure strictement axial et satisfait l’équation d’onde

∇×
[

¯̄µ−1
w (∇× ew)

]

− ω2ǫwew = 0, (2.31)

où ¯̄µ−1
w est l’inverse du tenseur de perméabilité de l’équation (2.11). L’équation (2.31) peut

ensuite être mise sous la forme de l’équation de Poisson à deux dimensions en coordonnées

polaires,

∂2ew
∂ρ2

+
1

ρ

∂ew
∂ρ

+
1

ρ2
∂2ew
∂φ2

+ kwew = 0, (2.32)
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où kw correspond à l’amplitude complexe du vecteur d’onde radial à l’intérieur du fil. Ce

vecteur d’onde s’exprime en fonction des propriétés intrinsèques du fil comme

kw = ω
√
ǫwµ⊥ =

(

1 + i

δw0

)√

µ⊥

µ0

, (2.33)

où

µ⊥ =
µ2 − µ2

t

µ
= µ0

(ω∗
H + ωM)2 − ω2

ω∗
H (ω∗

H + ωM)− ω2
(2.34)

représente la perméabilité scalaire effective dans la configuration TM étudiée ici, pour laquelle

l’onde se propage perpendiculairement à la direction de l’aimantation statique [26]. Notons

ici que la perméabilité scalaire µ⊥ est souvent désignée comme la perméabilité de Voigt dans

la littérature (voir notamment la référence [129], p. 211).

La méthode de séparation des variables permet ensuite d’exprimer ew comme une somme

infinie de modes cylindriques orthogonaux, c’est-à-dire

ew = ew (ρ, φ) ẑ = eloc

∞
∑

n=−∞

inbnJn (kwρ) e
inφẑ, (2.35)

où les bn sont les coefficients d’amplitude associés aux modes de l’onde transmise. Pour sa

part, le champ magnétique à l’intérieur du fil s’obtient directement à l’aide de l’équation de

Maxwell-Faraday

hw = − i

ω
¯̄µ−1
w (∇× ew)

= hloc
ζm
ζw

∞
∑

n=−∞

inbn

[

Cρ
n (kwρ) ρ̂+ iCφ

n (kwρ) φ̂
]

einφ,
(2.36)

où l’impédance intrinsèque du fil ζw vaut

ζw =

√

µ⊥

ǫw
=

(

1− i

σwδw0

)√

µ⊥

µ0

= − ikw
σw

. (2.37)

De même, les coefficients Cρ
n (kwρ) et C

φ
n (kwρ) sont définis comme [72]

Cρ
n (kwρ) = n

Jn (kwρ)

kwρ
− βJ ′

n (kwρ) , (2.38a)

Cφ
n (kwρ) = J ′

n (kwρ)− nβ
Jn (kwρ)

kwρ
, (2.38b)
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où β = µt/µ correspond au rapport des éléments hors diagonal et diagonal du tenseur de

perméabilité intrinsèque ¯̄µw et tient compte du caractère gyrotrope du fil ferromagnétique.

Enfin, la détermination des coefficients an et bn nécessite de satisfaire les conditions aux

frontières pour la continuité de ez et hφ à la surface du fil en ρ = a. En considérant l’ortho-

gonalité des différents modes cylindriques, nous obtenons les relations

Jn (kma) + anH
(1)
n (kma) = bnJn (kwa) , (2.39a)

J ′
n (kma) + anH

(1)′
n (kma) =

ζm
ζw

bnC
φ
n (kwa) , (2.39b)

que nous résolvons pour obtenir

an =
ζmC

φ
n (kwa) Jn (kma)− ζwJn (kwa) J

′
n (kma)

ζwJn (kwa)H
(1)′
n (kma)− ζmC

φ
n (kwa)H

(1)
n (kma)

, (2.40)

bn =
2iζw/πkma

ζwJn (kwa)H
(1)′
n (kma)− ζmC

φ
n (kwa)H

(1)
n (kma)

, (2.41)

où le Wronskien des fonctions de Bessel (voir notamment la référence [130], p. 706)

Jn (kma)H
(1)′
n (kma)− J ′

n (kma)H
(1)
n (kma) =

2i

πkma
(2.42)

a été utilisé à l’équation (2.41) pour simplifier le numérateur de bn.

Ceci complète la solution générale du problème de diffusion d’une onde électromagnétique

plane par un fil ferromagnétique infini, aimanté axialement et excité dans la configuration

TM. Notons que dans la limite β = 0, les coefficients an et bn se réduisent aux expressions

valides dans le cas de la diffusion d’une onde plane par un cylindre isotrope (voir notamment

la référence [80], p. 301).

2.7.2 Solution du problème de diffusion en régime quasi statique étendu

Nous allons maintenant considérer spécifiquement la réponse du fil en régime EQS, c’est-

à-dire lorsque les champs incidents et diffusés demeurent spatialement uniformes en son voisi-

nage, ce qui se traduit par la satisfaction des conditions |km| a ≪ 1 [Éq. (2.16)] et |km| ρ ≪ 1

pour ρ . D. 14 Ces deux conditions permettent alors de développer en série de Maclaurin

14. Notons que la deuxième condition, qui implique des champs uniformes dans la matrice à l’échelle de la
cellule unitaire, est exigée par notre procédure d’homogénéisation décrite à la section 2.6.



36

toutes les fonctions de Bessel et de Hankel ayant kmρ ou kma comme argument dans les équa-

tions (2.29)–(2.42), ce qui simplifie considérablement la solution du problème de diffusion.

Le recours aux développements en série permet notamment de montrer que dans la limite

|km| a ≪ 1, les coefficients de diffusion an donnés à l’équation (2.40) deviennent proportion-

nels à (voir par exemple l’équation 5–117 à la référence [131])

an ∝



















(

kma

2

)2

n = 0,±1

(kma/2)
2|n|

|n|! (|n| − 1)!
|n| > 1.

(2.43)

Ce résultat indique que les modes n = 0 et n = ±1, lesquels décrivent respectivement les

réponses dipolaires électrique et magnétique du fil [21, 23, 34], dominent les autres modes en

régime EQS [72], de sorte que les coefficients d’ordres supérieurs (c.-à-d., avec |n| > 1) peuvent

être négligés. Or, la satisfaction de l’inégalité |km| a ≪ 1 constitue également une condition

nécessaire à la modélisation du réseau de fils comme un matériau homogène décrit par des

propriétés électromagnétiques macroscopiques. Par conséquent, seuls les modes dipolaires

n = 0 et n = ±1 interviendront dans les expressions pour les paramètres constitutifs effectifs

du réseau de fils, que nous dériverons et étudierons en détail au cours du chapitre 3.

Dans ce contexte, les coefficients de diffusion a0 et a±1, calculés à partir de l’équation (2.40)

dans la limite |km| a ≪ 1, vont permettre d’établir les tenseurs de susceptibilités externes

électrique ¯̄κw et magnétique ¯̄ηw d’un fil individuel, comme discuté à la section 2.3. Ces deux

fonctions de réponse vont ensuite intervenir dans la procédure d’homogénéisation décrite à

la section 2.6, laquelle mène à la permittivité ¯̄ǫeff et à la perméabilité ¯̄µeff effectives du réseau

de fils.

2.8 Sommaire

Dans ce chapitre, nous avons développé une approche théorique générale pour décrire la

réponse électromagnétique effective en régime EQS d’un métamatériau formé d’inclusions

gyromagnétiques. La procédure est appliquée à l’étude de réseaux de fils ferromagnétiques

conducteurs. En particulier, nous avons introduit le système étudié, présenté les étapes de la

modélisation et défini les fonctions de réponse, les paramètres physiques et les régimes d’opé-

ration pertinents. De plus, nous avons explicité la signification physique de notre procédure

d’homogénéisation et justifié les hypothèses et approximations qui lui sont associées.

Le modèle théorique sur lequel repose la thèse s’appuie sur une structure hiérarchique qui

comporte plusieurs échelles. Au niveau le plus fondamental, la section 2.2 a d’abord caractérisé
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le métamatériau considéré, en définissant ses paramètres géométriques et son état magnétique

statique, de même que les propriétés intrinsèques de ses constituants. La section 2.3 a ensuite

été consacrée à l’étude de la réponse externe en régime EQS d’un fil individuel soumis à une

onde électromagnétique. Dans ce régime d’opération général, les tenseurs de susceptibilité

externe ¯̄κw et ¯̄ηw décrivent la réponse dipolaire du fil en fonction de ses propriétés intrinsèques,

de ses dimensions (forme et taille) et de sa configuration magnétique statique.

Les sections 2.4 à 2.6 ont présenté en détail la procédure d’homogénéisation qui nous

permettra, au cours des chapitres suivants, d’établir les propriétés effectives ¯̄ǫeff et ¯̄µeff d’un

réseau de fils ferromagnétiques, à partir de la réponse des inclusions individuelles. En parti-

culier, nous avons justifié notre recours au formalisme de Maxwell Garnett comme théorie de

milieu effectif et nous avons décrit de façon générale notre méthode de dérivation des para-

mètres constitutifs du réseau. Cette approche s’appuie sur la définition d’une cellule unitaire

équivalente plongée dans le milieu effectif et sur la satisfaction des conditions aux frontières

appropriées à sa surface. Soulignons qu’un quatrième niveau hiérarchique, la réponse effective

externe, sera introduit au chapitre 3 pour tenir compte de la réponse d’un réseau de taille

finie excité par des champs dynamiques spatialement uniformes en son voisinage.

Finalement, à la section 2.7, nous avons débuté l’application directe de notre formalisme

aux réseaux de fils ferromagnétiques, en traitant la diffusion d’une onde plane incidente dans

la configuration TM par un fil individuel aimanté axialement. Nous avons notamment montré

qu’en régime EQS, la solution générale du problème de diffusion est dominée par les modes

n = 0 et n = ±1, qui sont respectivement associés aux réponses dipolaires électrique et

magnétique du fil. Au chapitre 3, nous étudierons en détail ces deux modes, en vue de dériver

les propriétés effectives ¯̄ǫeff et ¯̄µeff de réseaux de fils ferromagnétiques.

Enfin, avant de poursuivre, il convient de souligner que l’originalité de notre procédure

d’homogénéisation réside principalement dans la prise en compte simultanée du retard élec-

tromagnétique à l’intérieur des inclusions métalliques et de la gyrotropie associée à leur nature

ferromagnétique, ce qui, à notre connaissance, n’a jamais été incorporé de façon systématique

et complète dans un même formalisme. Il importe également d’insister sur la généralité de

notre approche théorique, qui peut, en principe, être appliquée à tout matériau hétérogène

caractérisé par une structure hiérarchique similaire à celle des réseaux de fils ferromagné-

tiques. Pour ce faire, il s’agit de modifier en conséquence les expressions présentées à la

section 2.2 pour les paramètres géométriques du métamatériau et les propriétés intrinsèques

de ses constituants.
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CHAPITRE 3

PROPRIÉTÉS ÉLECTROMAGNÉTIQUES DE

RÉSEAUX DE FILS FERROMAGNÉTIQUES

3.1 Introduction

Au cours du chapitre précédent, nous avons établi l’approche théorique générale préco-

nisée dans le cadre de cette thèse et nous avons défini les quantités physiques requises pour

obtenir les paramètres constitutifs effectifs ¯̄ǫeff et ¯̄µeff de réseaux de fils ferromagnétiques,

notamment les propriétés intrinsèques (¯̄ǫw et ¯̄µw) et externes (¯̄κw et ¯̄ηw) des fils individuels.

Nous avons également élaboré une procédure d’homogénéisation basée sur le formalisme de

Maxwell Garnett, que nous appliquerons maintenant afin de dériver les propriétés effectives

¯̄ǫeff et ¯̄µeff du réseau.

Cette procédure en deux étapes consiste d’abord à résoudre le problème de la diffusion

d’une onde électromagnétique par un fil unique, en vue d’obtenir les susceptibilités externes

¯̄κw et ¯̄ηw, puis à satisfaire les conditions de continuité des champs à la surface de la cellule

unitaire équivalente plongée dans le milieu effectif. La première étape du problème d’homogé-

néisation a été résolue dans le cas général à la section 2.7, pour le cas d’un fil ferromagnétique

excité dans la configuration TM. Ce résultat nous a alors permis de montrer que lorsque la

condition |km| a ≪ 1 est satisfaite (régime EQS), seuls les modes dipolaires électrique (n = 0)

et magnétique (n = ±1) doivent être considérés pour obtenir les susceptibilités externes du

fil et, ultimement, les propriétés électromagnétiques effectives du réseau.

Dans ce chapitre, nous étudierons en détail ces deux modes en vue d’établir la réponse

électromagnétique macroscopique du réseau de fils en régime EQS. D’abord, à la section 3.2,

nous dériverons le tenseur de susceptibilité magnétique externe ¯̄ηw d’un fil individuel dans

le mode n = ±1, puis utiliserons ce résultat dans notre procédure d’homogénéisation pour

déterminer la perméabilité effective gyrotrope ¯̄µeff du réseau. Ensuite, à la section 3.3, nous

emploierons une méthode similaire pour établir la susceptibilité électrique externe ¯̄κw d’un fil

isolé, puis la permittivité effective ¯̄ǫeff du réseau dans le mode n = 0. Enfin, à la section 3.4,

nous introduirons le concept de réponse effective externe d’un métamatériau de taille finie,

dans le but de traiter sa réponse à des champs externes dynamiques spatialement uniformes en

son voisinage. En particulier, nous étudierons la résonance ferromagnétique du mode uniforme

d’un réseau de fils ferromagnétiques et montrerons comment les interactions dipolaires interfils
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peuvent être prises en compte par l’intermédiaire d’un tenseur de désaimantation effectif ¯̄Neff ,

lequel pourra aussi être exprimé en fonction des dimensions géométriques macroscopiques du

réseau. Soulignons ici que l’essentiel des résultats théoriques présentés aux sections 3.2 et 3.4

a été publié à la référence [35].

De façon générale, notre procédure consistera à écrire les expressions pour ¯̄ǫeff et ¯̄µeff

valides en régime EQS sous une forme identique à celle des résultats connus dans la limite

QS, lesquels sont donnés à l’équation (2.25). Pour ce faire, nous appliquerons une procédure de

renormalisation des propriétés intrinsèques ¯̄ǫw et ¯̄µw, laquelle incorporera, d’une part, l’effet du

retard électromagnétique et, d’autre part, la gyrotropie des fils (pour ¯̄µeff) et leur inductance

externe lorsque placés dans la cellule unitaire du réseau (pour ¯̄ǫeff). Enfin, signalons que les

développements en série de Maclaurin requis pour l’analyse des modes n = 0 et n = ±1

en régime EQS sont regroupés au tableau 3.1, dans lequel γE ≈ 0,5772 désigne la constante

d’Euler.

Tableau 3.1 Développements en série de Maclaurin des fonctions de Bessel et Hankel et de
leur dérivée première pour les ordres 0 et ±1.

Fonction Développement Dérivée Développement

J0(u) 1 J ′
0(u) −u

2

J±1(u) ±u
2

J ′
±1(u) ±1

2

H
(1)
0 (u) 1 + 2i

π

[

ln
(

u
2

)

+ γE
]

H
(1)′
0 (u) −u

2
+ 2i

πu

H
(1)
±1 (u) ±

(

u
2
− 2i

πu

)

H
(1)′
±1 (u) ±

(

1
2
+ 2i

πu2

)

3.2 Propriétés magnétiques

3.2.1 Réponse d’un fil individuel : tenseur de susceptibilité externe

Dans la configuration TM et en régime EQS, les propriétés magnétiques sont dominées

par celles du mode n = ±1, lequel décrit la réponse dipolaire de l’aimantation dynamique

〈mw〉 des fils excités par le champ local hloc. Rappelons que pour un fil placé dans le réseau,

le champ local hloc est formé d’une contribution externe au réseau et d’une contribution due

aux interactions dipolaires interfils.

La première étape pour obtenir la perméabilité effective ¯̄µeff du réseau consiste à dériver

le tenseur gyrotrope de susceptibilité externe ¯̄ηw d’un fil individuel, dont nous allons exprimer

les composantes diagonales et hors diagonales sous une forme compacte, identique à celle des

relations valides dans la limite QS [26, 132]. Pour ce faire, nous allons définir les composantes
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de perméabilité renormalisée µ̃ et µ̃t, qui vont dépendre de kwa et que nous pourrons substi-

tuer aux composantes intrinsèques µ et µt, aux endroits où ces dernières apparaissent dans

les résultats QS. 1

À l’extérieur du fil, le champ magnétique hm dans la matrice s’exprime comme la somme

du champ local incident sur le fil et du champ diffusé par celui-ci, c’est-à-dire

hm = hloc + hscat, (3.1)

où hloc et hscat sont donnés respectivement aux équations (2.29b) et (2.30b). En conservant

uniquement le mode n = ±1, ces deux équations se réduisent à

hloc = −2

[

J1 (kmρ)

kmρ
sinφρ̂+ J ′

1 (kmρ) cosφφ̂

]

hloc (3.2)

et

hscat =

[

iH
(1)
1 (kmρ)

kmρ

(

a1e
iφ − a−1e

−iφ
)

ρ̂

−H
(1)′
1 (kmρ)

(

a1e
iφ + a−1e

−iφ
)

φ̂

]

hloc.

(3.3)

En régime EQS, les fonctions de Bessel et de Hankel ayant kmρ ou kma comme argument

peuvent être remplacées par leur développement en série de Maclaurin donné au tableau 3.1.

D’abord, le champ incident agissant sur le fil se simplifie considérablement et s’écrit comme

hloc = −hlocŷ = −hloc0e
−iωtŷ, (3.4)

ce qui correspond, comme attendu, à un champ local dynamique, transverse à l’axe du fil

et spatialement uniforme en son voisinage. Soulignons que l’équation (3.4) aurait pu être

obtenue directement en posant km = 0 dans l’équation (2.27b). Ensuite, l’équation (3.3) pour

le champ diffusé se réduit à

hscat =
2

π (kmρ)
2

[

(

a1e
iφ − a−1e

−iφ
)

ρ̂− i
(

a1e
iφ + a−1e

−iφ
)

φ̂
]

hloc, (3.5)

où nous avons exprimé les coefficients de réflexion a±1 sous la forme compacte

1. Dans le cadre de cette thèse, les quantités renormalisées qui s’appliquent en régime EQS seront désignées
par symbole ˜ inscrit au-dessus du caractère.
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a±1 = iπ

(

kma

2

)2
[

µ̃2 − (µ̃t ∓ µ0)
2

(µ̃+ µ0)
2 − µ̃2

t

]

, (3.6)

grâce à l’introduction des composantes de perméabilité renormalisée µ̃ et µ̃t. Ces quantités,

qui diffèrent des propriétés intrinsèques µ et µt en raison du retard électromagnétique à

l’intérieur du fil, sont définies comme

µ̃ = µ

[

(1− β2)G (kwa)

1− β2G2 (kwa)

]

, (3.7a)

µ̃t = µt

[

(1− β2)G2 (kwa)

1− β2G2 (kwa)

]

= µ̃βG (kwa) , (3.7b)

où

G (kwa) =
F (kwa)

1− F (kwa)
, (3.8)

F (kwa) =
J1 (kwa)

kwaJ0 (kwa)
(3.9)

sont des facteurs de renormalisation dépendant des fonctions de Bessel J0 (kwa) et J1 (kwa),

lesquelles reflètent la symétrie cylindrique du fil. Signalons que la signification physique des

propriétés magnétiques renormalisées µ̃ et µ̃t ressortira plus clairement lorsque nous aurons

dérivé notre expression pour le tenseur de susceptibilité externe ¯̄ηw. Enfin, par analogie avec

l’équation (2.34), nous pouvons aussi définir la perméabilité de Voigt renormalisée

µ̃⊥ =
µ̃2 − µ̃2

t

µ̃
= µ⊥G (kwa) , (3.10)

qui adopte une forme plus simple que µ̃ et µ̃t, puisque que c’est µ⊥ (et non µ ou µt) qui

intervient explicitement dans les expressions pour kw et ζw données respectivement aux équa-

tions (2.33) et (2.37) et qui, par conséquent, gouverne la propagation d’ondes à l’intérieur du

fil aimanté axialement.

Comme mentionné à section 2.3, le régime EQS correspond à l’excitation d’une réponse

dipolaire de l’aimantation du fil. Par conséquent, le champ diffusé donné à l’équation (3.5)

doit également pouvoir s’exprimer comme le champ dipolaire bidimensionnel produit par un

dipôle ponctuel, positionné à l’origine et doté d’un moment magnétique par unité de volume
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égal à 〈mw〉. Il s’ensuit que hscat peut s’écrire de façon équivalente comme (voir notamment

la référence [71], p. 194)

hscat =
a2

2ρ2
[2 (〈mw〉 · ρ̂) ρ̂− 〈mw〉]

=
a2

2ρ2
[2 (¯̄ηwhloc · ρ̂) ρ̂− ¯̄ηwhloc] .

(3.11)

Notons que la deuxième ligne de l’équation (3.11) découle de l’équation (2.17b) et indique que

le champ diffusé est lié au champ local hloc par l’intermédiaire du tenseur de susceptibilité

externe ¯̄ηw, que nous cherchons à déterminer. 2

En réarrangeant ensuite l’équation (3.5) sous une forme identique à celle de l’équa-

tion (3.11) nous trouvons, par identification, la susceptibilité externe du fil

¯̄ηw =













η̃ −iη̃t 0

iη̃t η̃ 0

0 0 η̃‖













, (3.12)

qui correspond à un tenseur gyrotrope, dont les composantes diagonales et hors diagonales

s’expriment en fonction des composantes de perméabilité renormalisée µ̃ et µ̃t comme

η̃ =
2 (µ̃2 − µ̃2

t − µ2
0)

(µ̃+ µ0)
2 − µ̃2

t

, (3.13a)

η̃t =
4µ0µ̃t

(µ̃+ µ0)
2 − µ̃2

t

. (3.13b)

Soulignons ici que la composante axiale η̃‖ a été ajoutée de façon ad hoc au tenseur ¯̄ηw (voir

l’annexe A), puisqu’elle n’apparâıt pas lors de la résolution du problème de diffusion dans la

configuration TM. Pour obtenir une expression explicite pour η̃‖, il faudrait alors traiter la

configuration transverse électrique (TE), dans laquelle un fil aimanté axialement est soumis

à une onde incidente caractérisée par des champs électrique et magnétique respectivement

2. Soulignons la similitude entre la forme bidimensionnelle du champ dipolaire donnée à l’équation (3.11)
et sa forme tridimensionnelle plus connue. En effet, en régime EQS, le champ dipolaire tridimensionnel diffusé
par une sphère de rayon a, placée à l’origine et d’aimantation dynamique moyenne 〈ms〉 vaut (voir notamment
la référence [71], p. 193)

hscat =
a3

3r3
[3 (〈ms〉 · r̂) r̂− 〈ms〉] ,

où r̂ est le vecteur unitaire en coordonnées sphériques et r est la distance par rapport à l’origine.
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perpendiculaire et parallèle à son axe. Or, la configuration TE ne sera pas considérée dans

le cadre de ce travail. 3 Par contre, comme discuté à l’annexe A, l’introduction d’une compo-

sante η̃‖ non nulle au tenseur ¯̄ηw va nous permettre de rendre plus transparent le traitement

mathématique de certaines relations présentées plus loin dans ce chapitre, notamment les

équations (3.36), (3.104), (3.108) et (3.117).

Les équations (3.12) et (3.13) décrivent la réponse complexe, tensorielle et dépendant

de kwa (régime EQS) de l’aimantation d’un fil ferromagnétique aimanté axialement et excité

dans la configuration TM. Ces relations constituent un des résultats principaux de cette thèse.

La dérivation du tenseur de susceptibilité externe ¯̄ηw représente également la première étape

de notre procédure d’homogénéisation visant à déterminer le tenseur de perméabilité effective

¯̄µeff d’un réseau de fils ferromagnétiques, lequel sera obtenu à la sous-section suivante. De plus,

en réexprimant la relation générale liant le champ diffusé hscat au champ local hloc [Éq. (3.5)]

sous la forme équivalente d’un champ dipolaire bidimensionnel [Éq. (3.11)], nous avons pu

établir une définition pour l’aimantation dynamique moyenne 〈mw〉 d’un fil en régime EQS.

Nous devons insister sur le fait que la prise en compte du retard électromagnétique à l’in-

térieur des fils est grandement simplifiée par l’introduction des composantes de perméabilité

renormalisée µ̃ et µ̃t, lesquelles mènent à des expressions pour η̃ et η̃t compactes et formelle-

ment identiques aux résultats valides dans la limite QS [voir notamment l’équation (3.29)].

En particulier, nos relations pour µ̃ et µ̃t incorporent, par l’intermédiaire du facteur de re-

normalisation G (kwa), tous les effets de propagation et d’atténuation à l’intérieur du fil. Par

conséquent, la réponse magnétique du fil en régime EQS, caractérisée par les positions de la

résonance et de l’antirésonance, de même que par la largeur, la forme et l’amplitude de la

courbe d’absorption, montrera une dépendance non triviale en fonction du produit kwa et

donc, en fonction du rayon du fil.

Dans ce contexte, les relations conventionnelles utilisées pour décrire la résonance ferro-

magnétique dans les limites QS et SE (voir la sous-section 3.2.3) ne s’appliquent généralement

pas en régime EQS. De même, les différentes contributions à la largeur de résonance de ¯̄ηw

ne peuvent être aisément distinguées, puisque µ̃ et µ̃t dépendent explicitement du vecteur

d’onde kw. Or, comme mentionné à la section 2.2, le vecteur d’onde dans un métal ferroma-

gnétique obéit à une relation de dispersion relativement complexe dans les hyperfréquences,

qui tient compte à la fois du caractère résonant de la perméabilité gyrotrope et de l’effet de

peau associé à la conductivité élevée. Par conséquent, la largeur de résonance de ¯̄ηw obser-

3. Mentionnons tout de même qu’en raison de la symétrie des équations de Maxwell, l’expression pour η̃‖
valide dans la configuration TE s’avère formellement identique au résultat que nous allons établir pour la
composante axiale de susceptibilité électrique externe κ̃w‖ = κ̃w dans la configuration TM [Éq. (3.53)]. Dans
ce contexte, par analogie avec notre expression pour κ̃w, il serait alors possible d’exprimer η̃‖ en fonction d’une
composante de perméabilité renormalisée, laquelle ferait intervenir notamment la composante de perméabilité
intrinsèque µ‖ et un facteur renormalisation dépendant des fonctions de Bessel.
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vée expérimentalement reflétera à la fois les pertes magnétiques intrinsèques attribuables à

l’amortissement de Gilbert et celles liées aux courants de Foucault générés à l’intérieur de la

profondeur de peau.

3.2.2 Réponse du réseau de fils : tenseur de perméabilité effective

La réponse d’un fil individuel en régime EQS va maintenant être utilisée dans les condi-

tions aux frontières magnétiques en vue de dériver une expression pour le tenseur de per-

méabilité effective ¯̄µeff dans le régime électromagnétique général, pour lequel la propagation

d’ondes est permise dans le réseau et où aucune restriction n’est imposée quant à la valeur de

|keff |R, où R tient compte des dimensions latérales du réseau, comme montré à la figure 2.1. 4

Notre résultat final sera exprimé en fonction des composantes η̃ et η̃t du tenseur de suscepti-

bilité externe, lesquelles incorporent à la fois le caractère gyrotrope et la dépendance en kwa

de la réponse des fils individuels.

〈b〉 = µ̄eff 〈h〉

a

bm = µ0hm

b =
D√
π

Milieu effectif Cellule unitaire
équivalente

η̄w

Susceptibilité
externe

〈h〉 · φ̂ = hm · φ̂
(µ̄eff 〈h〉) · ρ̂ = (µ0hm) · ρ̂

Conditions aux
frontières en ρ = b

z

y

x

ρ

φ

Figure 3.1 Définition du problème de conditions aux frontières à résoudre pour déterminer
le tenseur de perméabilité effective du réseau de fils. La cellule unitaire équivalente de rayon
b = D/

√
π est plongée dans le milieu effectif de perméabilité ¯̄µeff à déterminer et comprend,

en son centre, un fil de rayon a et de susceptibilité externe ¯̄ηw. Notons que l’origine des
systèmes de coordonnées cöıncide avec le centre du fil.

Notre méthode de résolution s’appuie sur la satisfaction des conditions aux frontières

données à l’équation (2.26) pour le champ et l’induction magnétiques à l’interface entre

la cellule unitaire équivalente et le milieu effectif, comme montré à la figure 3.1. Pour la

4. Les conditions d’homogénéisation |keff | a ≪ 1 et |keff |D ≪ 1 doivent toutefois être satisfaites.
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configuration TM considérée, les conditions pertinentes qui s’appliquent en ρ = b peuvent

s’écrire comme

〈h〉 · φ̂ = hm · φ̂, (3.14a)

〈b〉 · ρ̂ = bm · ρ̂, (3.14b)

où hm et bm = µ0hm désignent respectivement le champ et l’induction magnétiques dans la

matrice, laquelle correspond à la région externe (a < ρ < b) de la cellule unitaire équivalente.

Mentionnons que les équations (3.14a) et (3.14b) constituent nos définitions pour le champ

〈h〉 et l’induction 〈b〉 = ¯̄µeff 〈h〉 magnétiques moyennes du réseau de fils.

La procédure va maintenant consister à appliquer les équations (3.14a) et (3.14b) en

ρ = b, pour différentes valeurs de φ, dans le but d’exprimer 〈h〉 et 〈b〉 en fonction du champ

local hloc agissant sur le fil placé au centre de la cellule unitaire [Éq. (3.4)] et du tenseur

de susceptibilité externe ¯̄ηw. Les expressions résultantes pour 〈h〉 et 〈b〉 vont ensuite être

substituées dans la relation constitutive 〈b〉 = ¯̄µeff 〈h〉 [Éq. (2.20b)], ce qui va mener à notre

résultat final pour ¯̄µeff .

La première étape requiert donc de lier les champs hm et bm au champ local hloc. Pour

ce faire, nous insérons les équations (3.4) et (3.11) dans l’équation (3.1), ce qui nous permet

d’obtenir le champ magnétique dans la matrice (a < ρ < b) en régime EQS

hm = hloc + hscat

= hloc +
a2

2ρ2
[2 (¯̄ηwhloc · ρ̂) ρ̂− ¯̄ηwhloc]

= hloc +
a2

2ρ2

[

2 (ρ̂⊗ ρ̂)− ¯̄I
]

¯̄ηwhloc,

(3.15)

où les composantes de ¯̄ηw sont données à l’équation (3.13) et ρ̂ ⊗ ρ̂ correspond au produit

dyadique de ρ̂ = cosφx̂+ sinφŷ avec lui-même. Un calcul direct montre que

[

2 (ρ̂⊗ ρ̂)− ¯̄I
]

=





cos 2φ sin 2φ

sin 2φ − cos 2φ



 , (3.16)

que nous pouvons remplacer dans l’équation (3.15) en vue d’établir des expressions explicites

pour les composantes x et y de hm = hm,x (ρ, φ) x̂+hm,y (ρ, φ) ŷ en fonction de hloc = −hlocŷ.

Pour sa part, l’induction magnétique dans la matrice s’obtient en utilisant l’équation (3.15)
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dans la relation bm = µ0hm. Soulignons également que la notation dyadique introduite à

la deuxième ligne de l’équation (3.15) permet de séparer les contributions magnétique et

géométrique du champ hscat diffusé par le fil.

La procédure requiert ensuite de lier hm et bm aux champs moyens 〈h〉 et 〈b〉 en satis-

faisant les conditions de continuité pour la composante tangentielle du champ magnétique

[Éq. (3.14a)] et de la composante normale de l’induction magnétique [Éq. (3.14b)] en ρ = b.

D’une part, ces conditions impliquent que la composante y du champ magnétique et la com-

posante x de l’induction magnétique sont continues en (ρ = b, φ = 0, π), c’est-à-dire

〈hy〉 = hm,y = −
(

1− fη̃

2

)

hloc, (3.17a)

〈bx〉 = bm,x = iµ0

(

fη̃t
2

)

hloc. (3.17b)

Signalons ici que la relation f = a2/b2 a été employée afin d’introduire la fraction du ré-

seau occupée par les fils dans les conditions aux frontières. D’autre part, la composante

x du champ magnétique et la composante y de l’induction magnétique sont continues en

(ρ = b, φ = ±π/2), de sorte que

〈hx〉 = hm,x = −i

(

fη̃t
2

)

hloc, (3.18a)

〈by〉 = bm,y = −µ0

(

1 +
fη̃

2

)

hloc. (3.18b)

En combinant ensuite les équations (3.17) et (3.18), nous obtenons les expressions tensorielles

suivantes pour le champ moyen 〈h〉 et l’induction moyenne 〈b〉 en fonction du champ local

hloc

〈h〉 =
(

¯̄I − f ¯̄Nw ¯̄ηw

)

hloc, (3.19a)

〈b〉 = µ0

[

¯̄I + f
(

¯̄I − ¯̄Nw

)

¯̄ηw

]

hloc, (3.19b)

où ¯̄Nw est donné à l’équation (2.2) et possède des composantes transverses Nw
ip ≈ 1/2 et

longitudinale Nw
op ≈ 0 dans la limite de fils très longs avec L ≫ d. Enfin, nous substituons
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l’équation (3.19a) dans la relation 〈b〉 = ¯̄µeff 〈h〉 [Éq. (2.20b)], puis comparons le résultat

avec l’équation (3.19b). Le calcul est direct et mène à l’expression explicite suivante pour le

tenseur de perméabilité effective du réseau en régime EQS

¯̄µeff

µ0

= ¯̄I + ¯̄χeff = ¯̄I + f
(

¯̄η−1
w − f ¯̄Nw

)−1

, (3.20)

où ¯̄χeff est le tenseur de susceptibilité effective, défini par la relation

〈m〉 = ¯̄χeff 〈h〉 = f
(

¯̄η−1
w − f ¯̄Nw

)−1

〈h〉 . (3.21)

Le tenseur ¯̄χeff établit un lien entre le champ moyen 〈h〉 et l’aimantation dynamique moyenne

du réseau 〈m〉, laquelle est égale au produit de l’aimantation moyenne 〈mw〉 des fils indi-

viduels en régime EQS et de la fraction f qu’ils occupent dans le réseau, c’est-à-dire que

〈m〉 = f 〈mw〉. Mentionnons ici que le terme −f ¯̄Nw aux équations (3.20) et (3.21) représente

le champ de cavité de Lorentz et tient compte, dans un réseau non borné, des interactions

dipolaires dynamiques entre les fils.

L’examen de l’équation (3.20) indique que le tenseur de la perméabilité effective ¯̄µeff en

régime EQS adopte la même forme que la relation QS de Maxwell Garnett donnée par l’équa-

tion (2.25b), mais où ¯̄ηw est donnée par l’équation (3.12) plutôt que par l’équation (2.19b).

De plus, un calcul explicite montre que ¯̄µeff conserve le caractère gyrotrope de la susceptibilité

externe ¯̄ηw des fils individuels, c’est-à-dire

¯̄µeff = µ0

(

¯̄I + ¯̄χeff

)

=













µ̃eff −iµ̃eff,t 0

iµ̃eff,t µ̃eff 0

0 0 µ̃eff‖













, (3.22)

où les composantes transverses diagonales et hors diagonales sont données par

µ̃eff

µ0

= 1 + 2f

[

2η̃ − f (η̃2 − η̃2t )

(fη̃ − 2)2 − (fη̃t)
2

]

, (3.23a)

µ̃eff,t

µ0

=
4fη̃t

(fη̃ − 2)2 − (fη̃t)
2 (3.23b)

et où la composante axiale µ̃eff‖ satisfait la relation 〈bz〉 = µ̃eff‖ 〈hz〉. Or, comme pour la

composante de susceptibilité externe η̃‖ introduite en 3.2.1, la composante µ̃eff‖ n’intervient
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pas dans la configuration TM considérée ici et peut être obtenue en se plaçant dans la

configuration TE. 5

Notre résultat pour le tenseur gyrotrope de perméabilité effective ¯̄µeff incorpore l’effet de

la forme des fils ¯̄Nw, de la fraction f qu’ils occupent dans le réseau et, principalement, de

leur tenseur de susceptibilité externe ¯̄ηw, qui tient compte, en régime EQS, à la fois de la

gyrotropie, des pertes magnétiques intrinsèques et de la dépendance en kwa de la réponse

des fils individuels. La réponse dynamique du réseau dépend également, par l’intermédiaire

du terme ωH , du champ magnétique statique à l’intérieur des fils, lequel est déterminé, dans

le cas d’un réseau borné, à la fois par le champ appliqué Hext0 et les interactions dipolaires

interfils [61].

3.2.3 Étude de cas limites

Notre solution analytique pour la réponse magnétique du réseau de fils est générale et

permet de retrouver, comme cas particulier, plusieurs expressions existant dans la littérature.

Dans ce qui suit, nous allons valider les relations théoriques établies pour ¯̄ηw et ¯̄µeff [Éqs. (3.12)

et (3.20), respectivement] en étudiant leur comportement dans plusieurs limites d’intérêt.

Réseau non borné

Dans la configuration TM, une onde se propage dans le réseau perpendiculairement à la

direction de l’aimantation statique moyenne 〈M0〉 = fMsẑ. Lorsque le réseau est non borné

dans le plan xy (c.-à-d., selon les directions IP), sa réponse magnétique est prise en compte

par la perméabilité effective scalaire

µ̃eff⊥ =
µ̃2
eff − µ̃2

eff,t

µ̃eff

= µ0
(fη̃ + 2)2 − (fη̃t)

2

4− f 2 (η̃2 − η̃2t )
, (3.24)

laquelle joue un rôle équivalent à celui de la perméabilité de Voigt µ⊥ [Éq. (2.34)] dans le

contexte des matériaux naturels. Or, un calcul direct montre que notre équation (3.24) est

identique à l’expression obtenue par Jin et al. [34] pour la perméabilité effective d’un matériau

composite formé de cylindres ferrimagnétiques caractérisés par le tenseur de perméabilité gy-

rotrope de l’équation (2.11). Le résultat de la référence [34] a toutefois été établi en imposant

la condition de diffusion nulle par la cellule unitaire équivalente plongée dans le milieu effectif.

Par conséquent, cette approche ne s’applique que pour un mode de propagation spécifique et,

5. Encore une fois, en invoquant la symétrie des équations de Maxwell, nous pouvons déduire, par ana-
logie avec notre expression pour ǫ̃eff‖ = ǫ̃eff valide dans la configuration TM [Éq. (3.64)], que µ̃eff‖ dans la
configuration TE pourrait s’écrire sous la forme compacte µ̃eff‖ = (1− f)µ0 + fµ̃‖, où µ̃‖ est la composante
axiale de perméabilité renormalisée. Signalons qu’une telle relation pour µ̃eff‖ a notamment été proposée à la
référence [133].
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comme discuté à la section 2.6, ne mène pas à des expressions explicites pour les composantes

diagonales µ̃eff et hors diagonales µ̃eff,t, données à l’équation (3.23).

Dans ce contexte, il convient d’insister sur le fait que la perméabilité effective scalaire

µ̃eff⊥, telle que proposée à la référence [34], ne constitue qu’une combinaison particulière des

composantes de ¯̄µeff . Notamment, µ̃eff⊥ caractérise la propagation d’ondes électromagnétiques

dans le plan d’un réseau de non borné. En revanche, lorsque des ondes guidées se propagent

dans un réseau faisant partie d’une structure bornée, comme considéré au chapitre 5 et aux

références [67, 68], la forme gyrotrope complète de ¯̄µeff est en général requise pour décrire

convenablement la réponse magnétique effective [134].

Limite isotrope

Dans le cas d’un fil isotrope (c.-à-d., avec µt = 0 et ¯̄µw → µw) soumis à un champ

magnétique dynamique transverse à son axe, le tenseur de susceptibilité externe en régime

EQS se réduit également à un scalaire (c.-à-d., η̃t = 0 et ¯̄ηw → η̃w dans le plan transverse à

l’axe de gyrotropie) donné par

η̃w =
2 (µ̃w − µ0)

(µ̃w + µ0)
, (3.25)

où

µ̃w = µwG (kwa) (3.26)

est la perméabilité transverse renormalisée d’un fil isotrope, telle qu’introduite initialement

par Khizhnyak [83]. De même, la substitution de l’équation (3.25) dans l’équation (3.20)

mène à µ̃eff,t = 0 et à une perméabilité effective transverse

µ̃eff

µ0

=
2 + fη̃w
2− fη̃w

=
µ̃w (1 + f) + µ0 (1− f)

µ̃w (1− f) + µ0 (1 + f)
, (3.27)

qui cöıncide avec l’expression pour la perméabilité effective en régime EQS d’un réseau de

fils isotropes soumis à un champ magnétique dynamique transverse. Soulignons que l’équa-

tion (3.27) a d’abord été établie à la référence [83], puis redérivée par différents auteurs [21,

23, 88, 135].

Limite quasi statique

Dans la limite QS, l’aimantation des fils est excitée dans un mode de précession uniforme,

de sorte que 〈mw〉 se réduit à mw. La satisfaction de l’inégalité |kw| a ≪ 1 [Éq. (2.18)] à

l’intérieur des fils permet de remplacer les fonctions de Bessel J0 (kwa) et J1 (kwa) par leur
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développement en série donné au tableau 3.1, ce qui mène à F (kwa) ≈ 1/2 et G (kwa) ≈ 1.

Dans cette limite, les composantes de perméabilité renormalisée µ̃ et µ̃t ne dépendent plus

de kwa et cöıncident avec leur valeur intrinsèque, c’est-à-dire que µ̃ = µ et µ̃t = µt. Il s’ensuit

que le tenseur de susceptibilité externe se réduit à sa forme QS connue [26, 132]

mw = ¯̄ηwhloc =













η −iηt 0

iηt η 0

0 0 η‖













hloc, (3.28)

caractérisée par des composantes transverses diagonales et hors diagonales données par

η =
2 (µ2 − µ2

t − µ2
0)

(µ+ µ0)
2 − µ2

t

=
ωM (ω∗

H + ωM/2)

(ω∗
H + ωM/2)2 − ω2

, (3.29a)

ηt =
4µ0µt

(µ+ µ0)
2 − µ2

t

=
ωMω

(ω∗
H + ωM/2)2 − ω2

. (3.29b)

Pour sa part, la composante axiale est excitée dans la configuration TE et vaut η‖ = µ‖/µ0−1,

ce qui peut être déduit de l’équation (2.19b) appliquée au cas de longs fils avec Nw
ip = 1/2 et

Nw
op = 0.

Lorsque les pertes sont faibles (α ≪ 1), les composantes η et ηt montrent un pôle à la

fréquence

ωcyl = ωH +
ωM

2
, (3.30)

qui correspond à la condition de résonance du mode uniforme prédite par la formule de Kittel

pour le cas d’un cylindre infini aimanté axialement [26, 118]. Dans l’approximation QS, η et

ηt conservent ainsi le profil lorentzien intrinsèque de µ et µt et possèdent une largeur de

résonance déterminée uniquement par les pertes magnétiques intrinsèques, prises en compte

par la constante d’amortissement de Gilbert.

Une expression tensorielle explicite pour la susceptibilité externe ¯̄ηw en fonction de la

susceptibilité intrinsèque ¯̄χw peut être établie en se plaçant dès le départ dans la limite

magnétostatique. Dans ce cas, le champ magnétique à l’intérieur du fil vaut (voir notamment

l’équation 1.85 à la référence [26])

hw = hloc − ¯̄Nwmw, (3.31)
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où le champ de désaimantation dynamique − ¯̄Nwmw tire son origine des pôles magnétiques

non compensés à la surface du fil et dépend de la forme de celui-ci par l’intermédiaire du

tenseur de désaimantation ¯̄Nw [Éq. (2.2)]. Le recours aux équations (2.10) et (3.28) permet

ensuite d’effectuer les substitutions hw = ¯̄χ−1
w mw et hloc = ¯̄η−1

w mw dans l’équation (3.31),

puis de retrouver la relation tensorielle QS liant les tenseurs de susceptibilités externe et

intrinsèque (voir notamment l’équation 1.111 à la référence [26])

¯̄η−1
w = ¯̄χ−1

w + ¯̄Nw. (3.32)

Soulignons que cette expression est équivalente à l’équation (2.19b) et indique que dans la

limite QS, la réponse externe du fil est déterminée uniquement par sa susceptibilité intrinsèque

¯̄χw et sa forme ¯̄Nw, sans égard à sa taille. En outre, pour un long fil avec Nw
ip = 1/2 et Nw

op = 0,

l’équation (3.32) conduit aux équations (3.29a) et (3.29b) pour les composantes transverses

η et ηt, respectivement, de même qu’à η‖ = µ‖/µ0−1 pour la composante axiale excitée dans

la configuration TE.

Il est important de mentionner que d’un point de vue purement mathématique, l’équa-

tion (3.32) devient invalide dans l’approximation des petits signaux, soit lorsque µ‖ est pris

comme étant strictement égal à µ0. En effet, comme montré à l’annexe A, nous trouvons que

dans cette limite, les composantes axiales des tenseurs ¯̄χw et ¯̄ηw sont égales à 0. Il en résulte

que ¯̄χw et ¯̄ηw sont des matrices singulières (c.-à-d., dont le déterminant s’annule), ce qui im-

plique que les matrices inverses ¯̄χ−1
w et ¯̄η−1

w n’existent pas (voir notamment la référence [130],

p. 181). Dans ce contexte, l’introduction ad hoc, mais physiquement justifiée, d’une compo-

sante axiale µ‖ légèrement différente de µ0 dans le tenseur de perméabilité intrinsèque ¯̄µw

nous permet alors d’utiliser l’équation (3.32) de façon rigoureuse, c’est-à-dire en employant

des tenseurs de dimension 3× 3.

Pour un réseau de fils dans la limite QS, la substitution des équations (2.11) et (3.32)

dans l’équation (3.20) permet d’exprimer la perméabilité effective du réseau en fonction de

la réponse intrinsèque des fils comme

¯̄µeff

µ0

= ¯̄I + ¯̄χeff

= ¯̄I + f
[

¯̄χ−1
w + (1− f) ¯̄Nw

]−1

= ¯̄I + f

[

(

¯̄µw

µ0

− ¯̄I

)−1

+ (1− f) ¯̄Nw

]−1

,

(3.33)
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qui correspond à l’expression QS de Maxwell Garnett appliquée à un ensemble d’inclusions

anisotropes parallèles [5, 32, 78]. De même, la substitution de l’équation (3.29) dans les

équations (3.22) et (3.23) mène à

¯̄µeff =













µeff −iµeff,t 0

iµeff,t µeff 0

0 0 µeff‖













, (3.34)

avec

µeff

µ0

= 1 + 2f

[

2η − f (η2 − η2t )

(fη − 2)2 − (fηt)
2

]

=
[ω∗

H + ωM (1− f) /2] [ω∗
H + ωM (1 + f) /2]− ω2

[ω∗
H + ωM (1− f) /2]2 − ω2

,

(3.35a)

µeff,t

µ0

=
4fηt

(fη − 2)2 − (fηt)
2

=
fωMω

[ω∗
H + ωM (1− f) /2]2 − ω2

,

(3.35b)

où ωH (dans ω∗
H = ωH − iαω) est proportionnel au champ statique total à l’intérieur des fils

et inclut, comme nous le verrons à la section 3.4, des contributions du champ appliqué et des

interaction dipolaires interfils. Pour sa part, la composante axiale µeff‖ est excitée uniquement

dans la configuration TE et vaut µeff‖ = µ0

(

1 + fη‖
)

.

Il est également possible d’obtenir une expression similaire à l’équation (3.32), mais qui

lie plutôt la susceptibilité effective du réseau ¯̄χeff à la susceptibilité intrinsèque des fils ¯̄χw.

En effet, l’examen de l’équation (3.33) permet de déduire la relation tensorielle suivante

(

¯̄χeff

f

)−1

= ¯̄χ−1
w + (1− f) ¯̄Nw, (3.36)

qui incorpore les effets de désaimantation causés à la fois par la forme des fils et par leurs

interactions dipolaires mutuelles. En terminant, soulignons que les équations (3.28)–(3.36)

gouvernent notamment la réponse magnétique dans les hyperfréquences de réseaux saturés

de nanofils ferromagnétiques de rayon a . 100 nm [57–61].

Enfin, pour un réseau de fils isotropes dans la limite QS, nous trouvons que

¯̄µw → µw et ¯̄ηw → ηw =
2 (µw − µ0)

(µw + µ0)
, (3.37)
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de sorte que l’équation (3.20) pour ¯̄µeff → µeff se réduit à l’expression suivante

µeff − µ0

µeff + µ0

= f
µw − µ0

µw + µ0

=
fηw
2

, (3.38)

qui cöıncide avec la forme conventionnelle des équations de Maxwell Garnett et de Clausius-

Mossotti [5]. Rappelons encore une fois que ces derniers résultats pour ηw et µeff décrivent

respectivement la réponse d’un fil et du réseau lorsque soumis à un champ magnétique dy-

namique transverse (c.-à-d., dans la configuration TM).

Limite d’effet de peau dominant

Dans la limite opposée d’un effet de peau important, la condition |kw| a ≫ 1 est satisfaite

et le rapport des fonctions de Bessel J1(kwa)/J0(kwa) tend asymptotiquement vers i. Les

facteurs de renormalisation F (kwa) et G (kwa) se réduisent à i/kwa, ce qui implique que leurs

parties réelle et imaginaire sont toutes deux beaucoup plus petites que 1. Les composantes

de perméabilité renormalisée sont alors bien approximées par

µ̃ ≈ iµ (1− β2)

kwa
=

iµ⊥

kwa
, (3.39a)

µ̃t ≈ −µt (1− β2)

(kwa)
2 = − µ⊥β

(kwa)
2 , (3.39b)

où le résultat µ⊥ = µ (1− β2) découle de l’équation (2.34) et nous rappelons que β = µt/µ.

Les équations (3.39a) et (3.39b) mènent à la relation µ̃t ≈ (iβ/kwa) µ̃, de laquelle nous

déduisons que |µ̃| ≫ |µ̃t|. 6 Par conséquent, l’inégalité |η̃| ≫ |η̃t| est également satisfaite, de

sorte que le tenseur ¯̄ηw se réduit essentiellement à une quantité scalaire égale à l’élément

diagonal η̃. De l’équation (3.13), nous déduisons que

η̃ ≈ 2 (µ̃− µ0)

(µ̃+ µ0)
≈ −2

(

1− 2
µ̃

µ0

)

, (3.40)

où la condition |µ̃| ≪ µ0 a été prise en compte pour obtenir le membre de droite. Nous utilisons

ensuite l’équation (2.33) pour le vecteur d’onde kw, dans le but d’écrire l’équation (3.39a)

6. En effet, l’amplitude du rapport µ̃t/µ̃ = iβ/kwa est en général substantiellement inférieure à 1. D’une
part, l’hypothèse d’un effet de peau dominant implique que |kw| a ≫ 1. D’autre part, un calcul direct permet
de vérifier que l’amplitude de β est typiquement inférieure à 1, sauf près de la résonance ferromagnétique de
µ⊥, où elle devient supérieure à 1, mais demeure tout de même inférieure à |kw| a pour des valeurs réalistes du
paramètre d’amortissement de Gilbert α. Toutefois, dans le cas où ces conditions ne seraient pas satisfaites,
les relations générales pour η̃ et η̃t, données respectivement aux équations (3.13a) et (3.13b), devraient alors
être utilisées.



54

pour µ̃ en fonction de la profondeur de pénétration non magnétique δw0. En insérant ce

résultat dans l’équation (3.40), nous trouvons

η̃ ≈ −2

[

1− (1 + i)
δw0

a

√

µ⊥

µ0

]

, (3.41)

où le deuxième terme du membre de droite est beaucoup plus petit que 1 dans la limite SE.

Soulignons que dans le cas d’un conducteur cylindrique non magnétique (c.-à-d., avec µ⊥ =

µ0), nous trouvons que l’équation (3.41) se réduit au résultat connu η̃ ≈ −2 [1− (1 + i) δw0/a]

proportionnel à ω−1/2, tel que présenté à la référence [71], p. 192.

De façon équivalente, la combinaison des équations (2.33) pour kw et (2.37) pour ζw permet

d’exprimer µ̃ dans l’équation (3.39a) comme µ̃ = iζw/ωa, qui fait intervenir l’impédance

d’onde intrinsèque. En substituant ensuite ce résultat dans l’équation (3.40), nous retrouvons

l’expression pour η̃ dérivée par Maryško [72] dans limite SE

η̃ ≈ −2

(

1− 2i

kma

ζw
ζm

)

. (3.42)

L’équation (3.42) montre que pour un effet de peau important, la réponse de l’aimantation

du fil est essentiellement gouvernée par son impédance intrinsèque, qui dans notre cas s’écrit

comme

ζw =

√

µ⊥

ǫw
=

√

µ0

ǫw

[

(ω∗
H + ωM)2 − ω2

ω∗
H (ω∗

H + ωM)− ω2

]1/2

(3.43)

et constitue une quantité indépendante de la taille du fil. Par conséquent, les fréquences de

résonance ω⊥ et d’antirésonance ωar de η̃ vont alors cöıncider avec celles de ζw. Lorsque les

pertes sont faibles (α ≪ 1), ces deux fréquences valent

ω⊥ =
√

ωH (ωH + ωM), (3.44)

ωar = ωH + ωM . (3.45)

Soulignons ici que la limite SE s’applique bien à l’étude de microfils métalliques de rayon

de l’ordre de 100 µm [136]. Il convient également d’insister sur le fait que l’équation (3.42)

indique que dans la limite SE, la susceptibilité externe du fil présente le phénomène d’an-

tirésonance ferromagnétique à ω = ωar. À cette fréquence, la partie réelle de l’impédance

intrinsèque ζw atteint un minimum et l’induction magnétique devient très faible à l’intérieur

des fils (car Re [µ⊥] ≈ 0 à l’antirésonance). Suivant la loi d’Ohm et l’équation de Maxwell-

Faraday, les courants de Foucault induits dans les fils et les pertes qui leur sont associées sont
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alors substantiellement réduites, ce qui mène à une augmentation significative de la profon-

deur de pénétration et à un minimum de l’absorption, laquelle est proportionnelle à Im [η̃].

Mentionnons que l’antirésonance n’est pas observée dans la limite QS, puisque dans ce cas,

la profondeur de pénétration reste toujours supérieure au rayon des fils. Par conséquent, les

pertes par courants de Foucault demeurent toujours négligeables et la courbe d’absorption

ne possède pas de minimum local.

Pour un conducteur parfait avec σw → ∞, l’impédance intrinsèque ζw et la perméabilité

renormalisée µ̃ tendent toutes deux vers 0, de sorte que la susceptibilité externe η̃ donnée à

l’équation (3.42) se réduit à la valeur constante η̃ = −2, laquelle dépend uniquement de la

forme du conducteur et de l’orientation du champ dynamique local. Dans cette limite, il est

intéressant de mentionner qu’un fil conducteur soumis à un champ magnétique dynamique

se comporte exactement comme un corps parfaitement diamagnétique plongé dans un champ

magnétique statique, c’est-à-dire comme un matériau supraconducteur avec une susceptibilité

intrinsèque χw = −1 (voir la référence [71], p. 190). En effet, la susceptibilité externe ηw d’un

fil supraconducteur placé dans un champ magnétique statique transverse à l’axe peut être

obtenue à partir de l’équation (3.37) valide dans la limite QS isotrope. Le calcul explicite

mène à

ηw =
χw

1 +Nw
ipχw

=
2 (µw − µ0)

(µw + µ0)
= −2, (3.46)

où µw = µ0 (χw + 1) = 0 et Nw
ip = 1/2, ce qui constitue bien un résultat identique à l’équa-

tion (3.42) dans la limite d’un conducteur cylindrique parfait soumis à un champ magnétique

dynamique perpendiculaire à son axe, c’est-à-dire η̃ → − 2.

Enfin, pour un réseau de fils dans la limite SE, nous substituons η̃ ≈ 2 (µ̃− µ0) / (µ̃+ µ0)

[Éq. (3.40)] et η̃t ≈ 0 dans l’équation (3.23) et nous trouvons une perméabilité effective

transverse scalaire (car µ̃eff,t ≈ 0) donnée par

µ̃eff

µ0

≈ 2 + fη̃

2− fη̃
=

µ̃ (1 + f) + µ0 (1− f)

µ̃ (1− f) + µ0 (1 + f)
, (3.47)

qui adopte la même forme que l’équation (3.27) dans le cas isotrope. Enfin, pour un réseau

de fils ferromagnétiques parfaitement conducteurs, nous avons µ̃ ≈ 0 et

µ̃eff

µ0

≈ 1− f

1 + f
, (3.48)

qui dépend uniquement des paramètres géométriques du réseau et décrôıt avec f , ce qui

reflète le fait que l’induction moyenne 〈b〉 est alors complètement exclue du volume des fils

en raison de leur réponse diamagnétique parfaite.
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En résumé, les limites QS et SE de la réponse EQS générale sont caractérisées par des

paramètres de résonance ferromagnétique indépendants du rayon des fils. En particulier, la

largeur de résonance de la susceptibilité externe ¯̄ηw est gouvernée par le paramètre de Gilbert

α dans la limite QS (petits diamètres) et par la partie réelle de l’impédance intrinsèque ζw

dans la limite SE (grands diamètres). Entre ces deux limites, les expressions EQS générales

doivent être utilisées et mènent à des paramètres de résonance ferromagnétique présentant

une dépendance non triviale en fonction de la taille des fils.

Ceci complète la section portant sur la modélisation de la réponse magnétique du réseau

de fils en régime EQS. Dans ce qui suit, nous allons étudier le comportement électrique du

réseau et déduire sa permittivité effective.

3.3 Propriétés électriques

3.3.1 Réponse d’un fil individuel : susceptibilité externe

En régime EQS, les propriétés électriques du réseau sont données par la réponse du mode

n = 0. Comme à la section précédente, nous allons d’abord considérer la susceptibilité externe

¯̄κw d’un fil individuel, puis déterminer la permittivité effective ¯̄ǫeff du réseau en résolvant le

problème de conditions aux frontières à la surface de la cellule unitaire équivalente incorporée

dans le milieu effectif. Or, dans la configuration TM, tous les champs électriques sont parallèles

à l’axe des fils. Par conséquent, dans le cadre de cette thèse, seules les composantes axiales

des tenseurs ¯̄κw et ¯̄ǫeff devront être considérées pour décrire la réponse électrique des fils et

du réseau. Pour leur part, les composantes transverses de ¯̄κw et ¯̄ǫeff (c.-à-d., dans le plan

perpendiculaire à l’axe des fils) interviendraient plutôt dans la configuration TE.

Les champs électriques incident, diffusé et transmis dans le mode n = 0 s’obtiennent

respectivement à partir des équations (2.29a), (2.30a) et (2.35). Nous trouvons alors

eloc = elocJ0 (kmρ) ẑ, (3.49a)

escat = eloca0H
(1)
0 (kmρ) ẑ, (3.49b)

ew = elocb0J0 (kwρ) ẑ, (3.49c)

où les coefficients a0 et b0 sont donnés aux équations (2.40) et (2.41), respectivement. En

régime EQS, les fonctions de Bessel et de Hankel ayant kmρ ou kma comme argument peuvent

être remplacées par les développements en série donnés au tableau 3.1. Il en résulte que

eloc = elocẑ, (3.50a)
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escat = −eloc

[

ǫ̃w,F − ǫm
ǫ̃w,FΓ (kma) + ǫm

](

a

ρ

)2

Γ (kmρ) ẑ

= −elocκ̃w

(

a

ρ

)2

Γ (kmρ) ẑ,

(3.50b)

ew = eloc

[

ǫm
ǫ̃w,FΓ (kma) + ǫm

]

J0 (kmρ)

J0 (kma)
ẑ, (3.50c)

où

ǫ̃w,F = 2ǫwF (kwa) (3.51)

est une permittivité renormalisée qui dépend du facteur F (kwa) défini à l’équation (3.9) et

Γ (kmρ) =
(kmρ)

2

2

[

ln

(

kmρ

2

)

+ γE − iπ

2

]

(3.52)

est une fonction qui décrit la dépendance radiale du champ diffusé escat. Rappelons ici que

γE ≈ 0,5772 est la constante d’Euler. Nous avons également défini, à l’équation (3.50b), la

susceptibilité électrique externe renormalisée κ̃w d’un fil individuel en régime EQS,

κ̃w =
ǫ̃w,F − ǫm

ǫ̃w,FΓ (kma) + ǫm
, (3.53)

qui s’exprime de façon compacte en fonction de ǫ̃w,F et Γ (kma). Notons que formellement,

la susceptibilité externe κ̃w donnée à l’équation (3.53) correspond à la composante axiale de

¯̄κw, c’est-à-dire à κ̃w‖.

Avant de poursuivre, certaines remarques s’imposent quant aux résultats obtenus aux

équations (3.50)–(3.53). D’abord, comme attendu, le champ dynamique local eloc agissant

sur les fils est spatialement uniforme en régime EQS. Nous constatons ensuite que la fonction

Γ (kmρ) est essentiellement proportionnelle à (kmρ)
2, puisque le terme logarithmique ne varie

que faiblement avec kmρ. Par conséquent, le champ diffusé escat ∝ Γ (kmρ) /ρ
2 sera approxi-

mativement uniforme au voisinage du fil, c’est-à-dire pour des distances ρ qui satisfont la

condition |km| ρ ≪ 1. Enfin, soulignons que dans la limite QS, nous trouvons que ǫ̃w,F → ǫw

et Γ (kma) → 0, ce qui implique que

κ̃w → κw =
ǫw − ǫm

ǫm
=

ǫw
ǫm

− 1, (3.54)

comme attendu pour un fil infini soumis à un champ électrique axial. Notons que l’équa-

tion (3.54) pour κw (qui correspond formellement à κw‖) peut être obtenue directement à

partir de l’équation (2.19a) pour ¯̄κw. Pour ce faire, il s’agit de calculer la composante axiale
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de ¯̄κw dans le cas d’un fil unique doté d’une permittivité isotrope ǫw et d’un facteur de

dépolarisation axial Nw
op = 0.

En terminant, il convient de mentionner que la susceptibilité externe κ̃w du fil n’inter-

viendra pas dans l’expression finale de la permittivité effective renormalisée ǫ̃eff en régime

EQS donnée à l’équation (3.63). Par conséquent, dans ce qui suit, nous allons dériver la

permittivité effective sans considérer explicitement l’équation (3.53) pour κ̃w.

3.3.2 Réponse du réseau de fils : permittivité effective

Nous allons maintenant étudier la réponse électrique effective du réseau de fils dans le

mode n = 0. Or, la configuration TM requiert de considérer uniquement la composante de ¯̄ǫeff

parallèle à l’axe des fils, c’est-à-dire ǫ̃eff‖. Par conséquent, puisque que seule cette composante

va intervenir dans le traitement analytique, nous allons poser à partir de maintenant que

ǫ̃eff‖ = ǫ̃eff , ce qui va nous permettre de simplifier la notation. Sur la base de ces considérations,

la réponse électrique effective du réseau est décrite par la relation

〈d〉 = ǫ̃eff 〈e〉 , (3.55)

où 〈e〉 et 〈d〉 sont tous deux orientés selon z. Comme lors du calcul de la perméabilité effective

présenté à la section 3.2, la détermination de ǫ̃eff s’appuiera sur la satisfaction des conditions

aux frontières pour le champ et l’induction électriques à l’interface ρ = b entre la cellule

unitaire équivalente et le milieu effectif, comme montré à la figure 3.2. Rappelons ici que le

rayon externe b de la cellule unitaire équivalente est lié à la distance interfil du réseau carré

par la relation b = D/
√
π.

D’abord, le champ électrique em dans la matrice s’exprime comme la somme du champ

local agissant sur le fil placé au centre de la cellule unitaire équivalente et du champ diffusé

par celui-ci, lesquels sont donnés aux équations (3.49a) et (3.49b), respectivement. Il s’ensuit

que

em = eloc + escat

= eloc

[

J0 (kmρ) + a0H
(1)
0 (kmρ)

]

ẑ.
(3.56)

Signalons ici que les expressions exactes pour les champs eloc et escat ont été utilisées à

l’équation (3.56). En effet, il s’avère plus simple de faire la transition au régime EQS plus

loin dans la procédure d’homogénéisation.
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〈d〉 = ǫ̃eff 〈e〉

a

dm = ǫmem

b =
D√
π

Milieu effectif Cellule unitaire
équivalente

z

y

x

ρ

φ

κ̃w

Susceptibilité
externe

〈e〉 · ẑ = em · ẑ

Calcul de 〈d〉

Condition aux
frontières en ρ = b

〈d〉 = 2

b
2

[

∫

a

0 dwρdρ +
∫

b

a
dmρdρ

]

Figure 3.2 Définition du problème de conditions aux frontières pour déterminer la permittivité
effective du réseau de fils. La cellule unitaire équivalente de rayon b = D/

√
π est plongée dans

le milieu effectif de permittivité ǫ̃eff à déterminer et comprend, en son centre, un fil de rayon
a et de susceptibilité externe κ̃w. Notons que l’origine des systèmes de coordonnées cöıncide
avec le centre du fil.

Considérons maintenant les conditions aux frontières en ρ = b. D’une part, l’équa-

tion (2.26a) impose que la composante axiale du champ électrique soit continue à la surface

de la cellule unitaire (ρ = b), ce qui implique que

〈e〉 = em (ρ = b) = eloc

[

J0 (kmb) + a0H
(1)
0 (kmb)

]

ẑ. (3.57)

En revanche, la même procédure ne peut être appliquée pour le déplacement électrique,

puisque dm n’a pas de composante normale à la surface de la cellule unitaire équivalente

[autrement dit, l’équation (2.26c) mène au résultat trivial dm · ρ̂ = 0]. Par conséquent, nous

devons calculer explicitement la moyenne de 〈d〉 à l’intérieur de la cellule unitaire. Nous

trouvons que

〈d〉 = 1

πb2

(∫ a

0

∫ 2π

0

dwρdφdρ+

∫ b

a

∫ 2π

0

dmρdφdρ

)

=
2

b2

(∫ a

0

ǫwewρdρ+

∫ b

a

ǫmemρdρ

)

=
2eloc
b2

{

ǫwb0

∫ a

0

J0 (kwρ) ρdρ+ ǫm

∫ b

a

[

J0 (kwρ) + a0H
(1)
0 (kwρ)

]

ρdρ

}

ẑ,

(3.58)

où nous avons utilisé les équations (3.49c) et (3.56) pour ew et em, respectivement. La réso-

lution des intégrales donne
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〈d〉 = 2eloc

{

fǫwb0
J1 (kwa)

kwa
+ ǫm

[

J1 (kmb)

kmb
− f

J1 (kma)

kma

]

+ ǫma0

[

H
(1)
1 (kmb)

kmb
− f

H
(1)
1 (kma)

kma

]}

ẑ.

(3.59)

Il convient de mentionner que les équations (3.57) et (3.59) représentent respectivement nos

définitions pour le champ 〈e〉 et le déplacement 〈d〉 électriques moyens du réseau de fils en

fonction du champ électrique local eloc.

L’étape suivante de la dérivation consiste à passer en régime EQS. Pour ce faire, nous

utilisons les développements en série du tableau 3.1 dans les équations (3.57) et (3.59), ce qui

mène à

〈e〉 = eloc

{

[1 + fΓ (kmb)] ǫm + [Γ (kma)− fΓ (kmb)] ǫ̃w,F

ǫ̃w,FΓ (kma) + ǫm

}

ẑ, (3.60)

〈d〉 = elocǫm

{

(1− f) ǫm + [f + (1− f) Γ (kma)] ǫ̃w,F

ǫ̃w,FΓ (kma) + ǫm

}

ẑ, (3.61)

où les coefficients a0 et b0 ont été remplacés par

a0 = iπ

(

kma

2

)2 [
ǫ̃w,F − ǫm

ǫ̃w,FΓ (kma) + ǫm

]

,

b0 =
1

J0 (kwa)

[

ǫm
ǫ̃w,FΓ (kma) + ǫm

]

.

(3.62)

Enfin, nous substituons les équations (3.60) et (3.61) dans l’équation (3.55), ce qui nous

permet d’obtenir notre expression générale pour la permittivité effective en régime EQS d’un

réseau de fils ferromagnétiques excités dans la configuration TM

ǫ̃eff = ǫm
(1− f) ǫm + [f + (1− f) Γ (kma)] ǫ̃w,F

[1 + fΓ (kmb)] ǫm + [Γ (kma)− fΓ (kmb)] ǫ̃w,F

. (3.63)

Signalons que ce même résultat a été dérivé récemment par Chern et al [23], lesquels ont étudié

les propriétés électromagnétiques effectives d’un réseau bidimensionnel de fils diélectriques, en

s’appuyant sur une procédure d’homogénéisation équivalente à celle présentée dans ce travail.

Pour aller plus loin, nous devons maintenant procéder à l’analyse détaillée de la permittivité

effective de l’équation (3.63), dans le but d’en clarifier la signification physique.
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3.3.3 Analyse de la solution

Sous sa forme actuelle, l’équation (3.63) manque quelque peu de transparence. Afin de

mieux faire ressortir le sens physique de la solution en régime EQS, il convient de réexprimer

l’équation (3.63) sous la forme compacte suivante

ǫ̃eff = (1− f) ǫm + f ǫ̃w, (3.64)

où la permittivité renormalisée

ǫ̃w = ǫwK (kwa) (3.65)

est obtenue en multipliant la permittivité intrinsèque ǫw des fils par le facteur de renormali-

sation

K (kwa) =
ǫm
ǫw

[

ǫ̃w,F + (1− f) Γ (kmb) (ǫ̃w,F − ǫm)

ǫm + ǫ̃w,FΓ (kma)− fΓ (kmb) (ǫ̃w,F − ǫm)

]

. (3.66)

Ce facteur tient compte à la fois du retard électromagnétique à l’intérieur des fils et de la

structure de la cellule unitaire équivalente, par l’intermédiaire de ǫ̃w,F et des facteurs Γ (kma)

et Γ (kmb), respectivement. Nous devons souligner que l’introduction de la permittivité renor-

malisée ǫ̃w permet d’exprimer ǫ̃eff sous une forme identique au résultat de Maxwell Garnett

valide dans la limite QS, comme nous allons le montrer à l’équation (3.89) (voir également

la référence [5]). Rappelons également que les équations (3.64)–(3.66) ont été obtenues sans

approximer davantage l’équation (3.63).

Il est maintenant possible de simplifier l’équation (3.66) à deux égards. D’une part, dans

le cas de fils conducteurs, nous avons généralement que |ǫw| ≫ |ǫm|, ce qui nous permet

d’écrire

ǫ̃w,F − ǫm ≈ ǫ̃w,F . (3.67)

Cette approximation est aisément satisfaite dans les intervalles de fréquences d’opération

(1–100 GHz) et de rayons de fils (0,01–100 µm) considérés dans le cadre de ce travail et ce,

même en régime SE, où ǫ̃w,F est substantiellement réduite (en valeur absolue) par rapport à

sa valeur intrinsèque ǫw. D’autre part, nous pouvons également poser que

1 + (1− f) Γ (kmb) ≈ 1, (3.68)

puisque même pour une valeur de kmb aussi élevée que 0,3 (c.-à-d., près de la limite de la

condition d’homogénéisation du réseau), nous trouvons que |Γ (kmb)| demeure inférieur à 0,1.
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En considérant les approximations des équations (3.67) et (3.68), l’équation (3.66) se réduit

alors à

K (kwa) =
2F (kwa)

1− ǫw
ǫm

F (kwa) (kma)
2 ln

(

b

a

) , (3.69)

où nous avons utilisé le résultat exact

fΓ (kmb)− Γ (kma) =
(kma)

2

2
ln

(

b

a

)

(3.70)

au numérateur de K (kwa). Enfin, nous pouvons exprimer l’équation (3.69) en fonction du

rapport a/δw0, ce qui va nous permettre de mieux quantifier l’influence de l’effet de peau à

l’intérieur des fils individuels sur leur permittivité renormalisée ǫ̃w. Nous trouvons alors que

K (kwa) =
2F (kwa)

1− 2i

(

a

δw0

)2

F (kwa) ln

(

b

a

)

=

[

1

2F (kwa)
− i

(

a

δw0

)2

ln

(

b

a

)

]−1

.

(3.71)

À partir d’ici, nous allons étudier le sens physique du facteur de renormalisation K (kwa) en

l’exprimant sous deux formes équivalentes, qui seront dérivées sans introduire d’approxima-

tions supplémentaires à l’équation (3.71). D’abord, nous allons expliciter le lien entre K (kwa)

et l’impédance totale d’un fil ferromagnétique placé dans la cellule unitaire équivalente. En-

suite, nous allons montrer que ǫ̃eff peut s’écrire comme une réponse plasmonique de Drude,

soit sous une forme similaire à celle de l’équation (2.5) pour la permittivité intrinsèque ǫw du

métal qui compose les fils.

Écriture en fonction de l’impédance totale du fil

Nous allons d’abord exprimer le facteur de renormalisation K (kwa) donné à l’équation (3.71)

en fonction de l’impédance totale d’un fil individuel, laquelle peut être décomposée comme

Ztot = Zw + ZL = Zw − iωLext, (3.72)
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où Zw est l’impédance interne du fil et ZL = −iωLext est l’impédance associée à l’induc-

tance externe Lext du fil lorsque placé dans le réseau. 7 Comme nous allons le voir, la forme

particulière prise par Lext va dépendre de la configuration de la cellule unitaire équivalente.

Considérons d’abord le terme Zw. L’impédance interne Zw d’un fil de rayon a et de

longueur L est définie comme le rapport entre la tension et le courant dans le fil et peut

s’écrire comme [136]

Zw = Zs

(

L

2πa

)

, (3.73)

où Zs = (ez/hφ) |ρ=a est l’impédance de surface du fil dans la configuration TM. Une expres-

sion explicite pour Zs en fonction de l’impédance d’onde intrinsèque ζw =
√

µ⊥/ǫw [Éq. (2.37)]

peut être dérivée par l’intermédiaire des équations (2.36) et (3.49c), ce qui mène à 8

Zs = iζw
J0 (kwa)

J1 (kwa)
= i

√

µ⊥

ǫw

[

J0 (kwa)

J1 (kwa)

]

. (3.74)

En substituant ensuite l’équation (3.74) dans l’équation (3.73) et en considérant que ζw =

−ikw/σw [Éq. (2.37)], nous trouvons

Zw

Rdc

=
aσw

2
Zs =

iaσwζw
2

J0 (kwa)

J1 (kwa)
=

kwa

2

J0 (kwa)

J1 (kwa)
=

1

2F (kwa)
, (3.75)

où Rdc = L/πσwa
2 est la résistance du fil en courant continu et F (kwa) est le facteur de

renormalisation défini à l’équation (3.9). Enfin, nous insérons l’équation (3.75) dans l’équa-

tion (3.71), ce qui permet d’obtenir le résultat intermédiaire

K (kwa) =

[

Zw

Rdc

− i

(

a

δw0

)2

ln

(

b

a

)

]−1

. (3.76)

Notons qu’en utilisant cette valeur de K (kwa) dans l’équation (3.64), la permittivité effective

¯̄ǫeff qui en résulte est équivalente aux expressions proposées aux références [36, 37, 137, 138]. 9

Toutefois, ces études ont dérivé leur résultat à l’aide de méthodes moins rigoureuses que

celle proposée dans le cadre de cette thèse. En particulier, le problème de la diffusion d’une

7. Soulignons que dans le cas d’un fil infini excité par un champ électrique axial, l’impédance Ztot ne
possède pas de composante capacitive.

8. Dans le mode n = 0, le champ électrique axial ez à la surface du fil découle de l’équation (3.49c) et
vaut ez |ρ=a = elocb0J0 (kwa). De même, le champ magnétique circonférentiel hφ à la surface du fil est obtenu
en conservant uniquement le mode n = 0 dans l’équation (2.36), c’est-à-dire que hφ |ρ=a = −i elocζw

b0J1 (kwa).

Enfin, nous déduisons l’équation (3.74) en substituant ces deux résultats dans Zs = (ez/hφ) |ρ=a.

9. Il est important de mentionner qu’aux références [36, 37, 137, 138], le résultat pour la permittivité
effective n’est pas exprimé de façon compacte en fonction d’un facteur de renormalisation comme celui de
notre équation (3.76).
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onde électromagnétique par un fil individuel n’est pas résolu de façon exacte dans ces tra-

vaux, de sorte que les différentes hypothèse et approximations sur lesquelles s’appuient leurs

expressions pour la permittivité effective ne ressortent pas toujours de façon explicite.

Nous voulons maintenant introduire le terme d’impédance inductive ZL = −iωLext dans

l’expression du facteur de renormalisation K (kwa). Pour ce faire, il s’agit de remarquer que

le terme −i (a/δw0)
2 ln
(

b
a

)

dans l’équation (3.76) peut s’écrire comme −iωLext/Rdc, à la

condition de définir l’inductance externe Lext du fil placé dans la cellule unitaire équivalente

de rayon interne a et de rayon externe b comme

Lext =
µ0L

2π
ln

(

b

a

)

. (3.77)

Nous pouvons alors déduire notre expression finale pour le facteur de renormalisation

K (kwa) =

(

Zw

Rdc

+
ZL

Rdc

)−1

=

(

Ztot

Rdc

)−1

, (3.78)

avec

ZL

Rdc

= −iω
Lext

Rdc

= −i

(

a

δw0

)2

ln

(

b

a

)

. (3.79)

Ce résultat implique notamment que

ǫ̃w = ǫw

(

Ztot

Rdc

)−1

, (3.80)

ce qui indique que la permittivité renormalisée ǫ̃w du fil s’obtient simplement en divisant sa

permittivité intrinsèque ǫw par son impédance totale normalisée Ztot/Rdc. Enfin, la substi-

tution de l’équation (3.80) dans l’équation (3.64) mène à une expression générale pour la

permittivité effective du réseau de fils ferromagnétiques

ǫ̃eff = (1− f) ǫm + f ǫ̃w = (1− f) ǫm + fǫw

(

Ztot

Rdc

)−1

. (3.81)

Les équations (3.80) et (3.81) constituent un des résultats importants de cette thèse.

Notons qu’à la référence [32], nous avons initialement développé ces expressions sur la base

de considérations phénoménologiques. Or, dans le cadre de cette thèse, nous avons en plus

démontré explicitement que ces relations découlent naturellement de la solution rigoureuse

du problème de la diffusion d’une onde électromagnétique par un fil ferromagnétique infini,

puis de l’application, en régime EQS, de la procédure d’homogénéisation de Maxwell Garnett

présentée à la section 2.6.
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Notre résultat général pour la permittivité effective ǫ̃eff du réseau incorpore explicitement

l’influence de l’impédance Ztot d’un fil sur le comportement en régime EQS d’un réseau de

fils ferromagnétiques soumis à un champ électrique axial. Autrement dit, le terme Ztot/Rdc

tient compte de tous les effets causés par le retard électromagnétique et l’inductance externe

des fils individuels qui font que ǫ̃w diffère de sa valeur intrinsèque ǫw.

Au meilleur de notre connaissance, la permittivité effective d’un réseau de fils n’a jamais

été exprimée sous la forme de l’équation (3.81). De plus, soulignons que dans le cas particulier

de fils ferromagnétiques, l’impédance Zw décrit une magnétoimpédance, c’est-à-dire que Zw

dépend de la perméabilité intrinsèque des fils, par l’intermédiaire de l’impédance intrinsèque

ζw =
√

µ⊥/ǫw [Éq. (3.75)]. Cette magnétoimpédance va ultimement se répercuter sur la

permittivité effective ǫ̃eff du réseau [Éq. (3.81)], notamment dans les hyperfréquences, où

µ⊥ montre un comportement résonant en fonction de la fréquence et du champ magnétique

statique. Dans ce contexte, l’ajustabilité de la permittivité effective par l’application d’un

champ magnétique statique correspond à un effet magnétodiélectrique.

Mentionnons également que la forme compacte de l’équation (3.81) permet d’envisager

plusieurs généralisations pour ǫ̃eff , qui pourraient être obtenues en modifiant l’expression

utilisée pour Ztot/Rdc. En effet, sous la forme donnée à l’équation (3.77), l’inductance externe

Lext d’un fil est équivalente à celle d’un câble coaxial de rayon interne a et de rayon externe

b, dont la configuration peut être, comme attendu, assimilée à celle de la cellule unitaire

équivalente. Nous pouvons donc en déduire que la topologie choisie pour décrire le réseau de

fils gouvernera le choix de l’expression appropriée pour Lext. Par exemple, en imposant que le

champ magnétique azimutal produit par les fils s’annule à mi-chemin de la distance interfil,

nous trouverions plutôt que [137]

Lext =
µ0L

2π
ln

[

D2

4a (D − a)

]

. (3.82)

Un calcul direct montre que les expressions pour Lext données aux équations (3.77) et (3.82)

sont du même ordre de grandeur pour des valeurs réalistes du rapport a/D = a/b
√
π.

De même, la permittivité effective ǫ̃eff pourrait aussi être généralisée pour décrire un

réseau de fils de longueur L explicitement finie, comme nous le discuterons de façon plus

détaillée au chapitre 4. En particulier, nous verrons que la réponse électrique de réseaux de

nanofils ferromagnétiques électrodéposés dans les pores d’une membrane diélectrique est en

fait dominée par une réponse de nature essentiellement capacitive, dont l’origine physique est

liée au remplissage incomplet des nanopores de la matrice par les fils.
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Écriture en fonction d’une fréquence plasma effective

Il est connu depuis les années 1960 [13] qu’un réseau de longs fils métalliques parallèles

soumis à un champ électrique dynamique axial se comporte comme un plasma artificiel,

caractérisé par une permittivité effective négative sous la fréquence plasma du réseau. Cette

idée a notamment été réintroduite par Pendry et al. [8] au milieu des années 1990 et est

maintenant exploitée dans le contexte des métamatériaux. Par conséquent, l’équation (3.64)

pour la permittivité effective ǫ̃eff du réseau avec K (kwa) donné à l’équation (3.71) peut

s’écrire sous la forme équivalente d’une réponse plasmonique de Drude, c’est-à-dire sous une

forme similaire à l’équation (2.5) pour la permittivité intrinsèque ǫw du métal qui constitue

les fils. Le calcul mène à

ǫ̃eff
ǫm

= (1− f)−
ω2
p,eff

ω (ω + iγp,eff)
, (3.83)

où la fréquence plasma ωp,eff et le paramètre d’amortissement γp,eff effectifs sont exprimés

comme

ω2
p,eff =

2

ǫmµ0b2 ln

(

b

a

) =
2c2m

b2 ln

(

b

a

) (3.84)

et

γp,eff =

(

aǫmZs

2f

)

ω2
p,eff =

Zs

aµ0 ln

(

b

a

) , (3.85)

avec cm = (ǫmµ0)
−1/2 la vitesse de la lumière dans la matrice. Notons que ces relations pour

ωp,eff et γp,eff ont été présentées précédemment aux références [39, 138], pour le cas de réseaux

dilués de microfils ferromagnétiques.

Dans ce modèle, la fréquence plasma effective ωp,eff est une quantité réelle, qui dépend des

paramètres géométriques du réseau, en particulier de la distance interfil D = b
√
π, de même

que des propriétés intrinsèques de la matrice, mais qui n’est pas affectée par la composition des

fils. En revanche, la fréquence de relaxation γp,eff est une quantité complexe, proportionnelle

à l’impédance de surface Zs des fils individuels. D’une part, la partie réelle de γp,eff décrit

l’amortissement de la permittivité effective ǫ̃eff , en incorporant à la fois les pertes par courants

de Foucault liées à la nature métallique des fils et les pertes magnétiques intrinsèques causées
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par leur réponse gyromagnétique résonante. D’autre part, la partie imaginaire de γp,eff va

modifier la position à laquelle la partie réelle de ǫ̃eff s’annule. 10

3.3.4 Étude de cas limites

Nous allons maintenant considérer les résultats établis pour la permittivité effective du

réseau dans divers cas limites pertinents. Notre approche va consister à étudier comment l’ex-

pression générale pour ǫ̃eff est modifiée par l’effet de peau à l’intérieur des fils, c’est-à-dire par

la valeur du rayon normalisé a/δw0. Pour ce faire, nous exprimons d’abord l’équation (3.81)

explicitement en fonction des impédances normalisées Zw/Rdc et ZL/Rdc

ǫ̃eff = (1− f) ǫm + fǫw

(

Zw

Rdc

+
ZL

Rdc

)−1

. (3.86)

Nous constatons que le comportement de ǫ̃eff en fonction de a/δw0 sera gouverné par celui de

Zw/Rdc et de ZL/Rdc.

Nous voulons également étudier comment la forme plasmonique de ǫ̃eff donnée à l’équa-

tion (3.83) est modifiée par le retard électromagnétique à l’intérieur des fils. Pour ce faire,

il est utile d’exprimer les paramètres plasmoniques ωp,eff et γp,eff en fonction des impédances

normalisées Zw/Rdc et ZL/Rdc. Nous trouvons alors que

ω2
p,eff =

−ifωσw

ǫm

(

ZL

Rdc

)−1

=
fσw

ǫm

(

Lext

Rdc

)−1

, (3.87a)

γp,eff = −iω

(

ZL

Zw

)−1

=

(

Lext

Zw

)−1

, (3.87b)

ce qui montre que la fréquence plasma effective ωp,eff est contrôlée par l’impédance externe

ZL, alors que le paramètre d’amortissement effectif γp,eff est proportionnel au rapport Zw/ZL.

Limite quasi statique

Considérons d’abord la limite QS, dans laquelle la condition |kw| a ≪ 1 est satisfaite,

ce qui implique que F (kwa) ≈ 1/2 et donc que l’équation (3.75) se réduit à Zw/Rdc ≈ 1.

De plus, puisque l’impédance externe est proportionnelle à (a/δw0)
2 ≪ 1 [Éq. (3.79)], nous

trouvons que |ZL| ≪ |Zw| ou, de façon équivalente, que Ztot ≈ Zw ≈ Rdc.
11 Il s’ensuit que

le facteur de renormalisation K (kwa) de l’équation (3.71) se réduit à

10. En effet, dans la limite où γp,eff = 0, l’équation (3.83) se simplifie comme ǫ̃eff/ǫm ≈ (1− f)−ω2
p,eff/ω

2,

de sorte que Re [ǫ̃eff ] = 0 lorsque ω = ωp,eff (1− f)
−1/2

. En revanche, une valeur non nulle de γp,eff va modifier
la fréquence à laquelle la partie réelle de ǫ̃eff passe par zéro.

11. En effet, dans la limite QS, |ZL/Rdc| = (a/δw0)
2
ln (b/a) ≪ 1 car ln (b/a) est de l’ordre de l’unité pour

des valeurs réalistes du rapport b/a.
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K (kwa) =

(

Zw

Rdc

+
ZL

Rdc

)−1

≈
(

Zw

Rdc

)−1

≈ 1, (3.88)

de sorte que la permittivité effective devient égale à

ǫ̃eff ≈ ǫeff = (1− f) ǫm + fǫw (3.89)

et cöıncide avec la limite QS de la formule de Maxwell Garnett appliquée à un ensemble

d’inclusions cylindriques parallèles, soumises à un champ électrique axial, que nous pouvons

obtenir directement à partir de l’équation (2.25a). Dans ce cas, la permittivité effective cor-

respond à une simple interpolation linéaire entre la permittivité intrinsèque de la matrice,

pour f = 0, et celle des fils, pour f = 1.

De façon équivalente, la satisfaction de l’inégalité |ZL| ≪ |Zw| implique que |γp,eff | ≫ ω

[voir l’équation (3.87b)], de sorte que

ǫ̃eff ≈ ǫm

[

(1− f) +
iω2

p,eff

ωγp,eff

]

. (3.90)

Or, dans la limite QS, le rapport ω2
p,eff/γp,eff vaut fσw/ǫm, ce qui permet de vérifier que les

équations (3.89) et (3.90) sont équivalentes.

Limite d’effet de peau dominant

Dans la limite SE, l’inégalité a/δw0 ≫ 1 s’applique et le rapport J0 (kwa) /J1 (kwa) à

l’équation (3.74) tend vers −i, de sorte que Zs ≈ ζw.
12 Il en résulte que l’impédance interne

normalisée du fil donnée à l’équation (3.75) se réduit à

Zw

Rdc

≈ aσwζw
2

=
1− i

2

(

a

δw0

)√

µ⊥

µ0

, (3.91)

où le membre de droite découle de l’équation (2.37) pour ζw. Ce résultat implique que les

équations (3.78) pour K (kwa) et (3.81) pour ǫ̃eff demeurent valides à la condition d’utiliser,

dans l’impédance normalisée Ztot/Rdc, la valeur de Zw/Rdc donnée à l’équation (3.91). De

même, l’équation (3.83) pour ǫ̃eff s’applique intégralemment, à la condition d’exprimer le

paramètre d’amortissement comme

12. Notons que ce résultat est attendu en régime SE, puisque le rayon de courbure des fils devient alors
beaucoup plus grand que la profondeur de pénétration de l’onde, de sorte que chacun des fils se comporte
comme un conducteur planaire (métal semi-infini), dont l’impédance de surface Zs est égale à l’impédance
d’onde intrinsèque ζw.
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γp,eff ≈
(

aǫmζw
2f

)

ω2
p,eff =

ζw

aµ0 ln

(

b

a

) , (3.92)

c’est-à-dire en remplaçant simplement Zs par ζw dans l’équation (3.85). Par ailleurs, notons

que l’expression pour la fréquence plasma [Éq. (3.84)] demeure inchangée dans la limite SE.

L’équation (3.91) montre également que le terme d’impédance interne Zw/Rdc est propor-

tionnel à a/δw0 dans la limite SE. En revanche, le terme d’inductance externe ZL/Rdc varie

quant à lui en (a/δw0)
2 [Éq. (3.79)], ce qui entrâıne que |ZL| ≫ |Zw| et donc que |γp,eff | ≪ ω

[voir l’équation (3.87b)]. Par conséquent, lorsque l’effet de peau est dominant, nous trouvons

que Ztot ≈ ZL, de sorte que la permittivité effective du réseau se réduit alors à

ǫ̃eff ≈ (1− f) ǫm + fǫw

(

ZL

Rdc

)−1

(3.93)

ou, de façon équivalente, à [36, 37, 95]

ǫ̃eff ≈ ǫm

[

(1− f)−
(ωp,eff

ω

)2
]

, (3.94)

que nous avons obtenu en considérant l’inégalité |γp,eff | ≪ ω dans l’équation (3.83). L’équa-

tion (3.94) décrit alors une réponse diélectrique essentiellement réelle et dominée par la fré-

quence plasma effective, laquelle est contrôlée exclusivement par les propriétés de la matrice

et les paramètres géométriques du réseau. De plus, lorsque ω = ωp,eff (1− f)−1/2, la partie

réelle de ǫ̃eff est caractérisée par un changement de signe, passant de négative à positive.

Limite magnétoinductive

Enfin, examinons le cas où l’effet de peau dans les fils est faible, mais non négligeable.

Dans ce cas, l’impédance interne Zw peut s’écrire comme la somme de la résistance en courant

continu Rdc et d’une contribution inductive linéairement proportionnelle à ω, c’est-à-dire

Zw ≈ Rdc − iωLw, (3.95)

où Lw est l’inductance interne des fils, que nous allons désigner comme la magnétoinductance

dans le cas de fils ferromagnétiques. Pour exprimer Zw sous la forme de l’équation (3.95),

nous pouvons développer l’expression générale [Éq. (3.75)] en série de Maclaurin par rapport

à kwa, en utilisant les développements des fonctions de Bessel suivants

J0 (kwa) ≈ 1−
(

kwa

2

)2

, J1 (kwa) ≈
kwa

2

[

1− (kwa)
2

8

]

. (3.96)
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Nous trouvons alors que

Zw

Rdc

≈ 1− i
µ⊥

4µ0

(

a

δw0

)2

= 1− iω
Lw

Rdc

, (3.97)

de sorte que

Lw

Rdc

=
µ⊥

4µ0ω

(

a

δw0

)2

(3.98)

et

Lw =
µ⊥L

8π
=

µ0L

8π

[

(ω∗
H + ωM)2 − ω2

ω∗
H (ω∗

H + ωM)− ω2

]

. (3.99)

Ce dernier résultat indique que dans la limite |kw| a ≪ 1, la magnétoinductance devient

proportionnelle à la perméabilité de Voigt µ⊥. Il en résulte que le caractère résonant de µ⊥

en fonction de la fréquence et du champ magnétique statique va se répercuter d’abord sur

Lw, puis sur la permittivité renormalisée ǫ̃w = ǫw (Ztot/Rdc)
−1 des fils individuels et enfin sur

la permittivité effective ǫ̃eff du réseau.

En substituant l’équation (3.97) dans l’équation (3.72) et en considérant l’équation (3.79),

nous obtenons finalement [32]

Ztot

Rdc

≈ 1− iω

(

Lw + Lext

Rdc

)

= 1− i

(

a

δw0

)2 [
µ⊥

4µ0

+ ln

(

b

a

)]

. (3.100)

Ce résultat indique que Ztot/Rdc possède une composante résistive indépendante de la fré-

quence et une composante inductive proportionnelle à (a/δw0)
2, laquelle reflète la nature mé-

tallique des fils et représente la somme de leur magnétoinductance Lw et de leur inductance

externe Lext. Le terme magnétoinductif est contrôlé par la composante de perméabilité µ⊥ et

découle du caractère ferromagnétique des fils, alors que le terme d’inductance externe décrit

leur réponse plasmonique et dépend uniquement des paramètres géométriques du réseau et

des propriétés de la matrice.

Ceci termine la présentation du modèle pour la permittivité effective de réseaux saturés

de fils ferromagnétiques infinis, axialement aimantés et excités dans la configuration TM.

Dans la section qui suit, nous allons considérer explicitement la réponse de réseaux de taille

finie soumis à des champs dynamiques spatialement uniformes en son voisinage.



71

3.4 Réponse effective externe et interactions dipolaires

Les sections précédentes ont montré comment dériver les propriétés électromagnétiques

effectives ¯̄ǫeff et ¯̄µeff de réseaux de fils ferromagnétiques. Ces fonctions de réponse décrivent le

comportement macroscopique intrinsèque d’un métamatériau, indépendamment de sa taille

ou de sa forme, et permettent de déduire sa relation de dispersion [Éq. (2.24)]. Celle-ci peut

ensuite être utilisée dans les conditions aux frontières électromagnétiques à la surface du

matériau composite, dans le but d’obtenir différents paramètres électromagnétiques, tels que

l’impédance, l’indice de réfraction et les coefficients optiques. Les paramètres constitutifs ¯̄ǫeff

et ¯̄µeff jouent ainsi un rôle équivalent aux propriétés intrinsèques ¯̄ǫw et ¯̄µw dans le contexte des

matériaux naturels. Or, les techniques d’homogénéisation menant à des propriétés électro-

magnétiques effectives, telles que la procédure de Maxwell Garnett, supposent généralement

que le matériau composite est non borné, de sorte que l’effet des pôles non compensés à la

surface d’échantillons de taille finie n’est pas encore pris en compte à cette étape.

Lorsqu’une onde électromagnétique caractérisée par les champs eext et hext et le vecteur

d’onde kext, supposés connus, est incidente sur un réseau de fils de taille finie (voir la fi-

gure 2.1, les champs macroscopiques moyens 〈e〉 et 〈h〉 et le vecteur d’onde keff à l’intérieur

du matériau effectif sont inconnus a priori. Dans le cas le plus général, on se trouve dans le

régime de propagation électromagnétique, où aucune restriction n’est imposée aux produits

|kext|R et |keff |R, respectivement à l’extérieur et à l’intérieur du réseau de rayon R. L’obten-

tion des paramètres de l’onde à l’intérieur du réseau requiert alors de résoudre le problème

électromagnétique qui consiste à substituer ¯̄ǫeff et ¯̄µeff dans les équations de Maxwell macro-

scopiques [Éq. (2.21)], puis à satisfaire les conditions aux frontières appropriées à la surface

du réseau.

Le problème général se simplifie lorsque l’inégalité |kext|R ≪ 1 est satisfaite. Dans ce cas,

nous pouvons assimiler le réseau à une inclusion macroscopique de dimensions finies et de

propriétés intrinsèques ¯̄ǫeff et ¯̄µeff , soumise à des champs dynamiques eext et hext spatialement

uniformes en son voisinage. L’approche multiniveau préconisée dans le cadre de cette thèse

suggère alors d’étendre, aux métamatériaux de taille finie, la distinction entre propriétés

intrinsèques et propriétés externes déjà appliquée aux inclusions individuelles. Pour ce faire,

nous définissons les tenseurs de susceptibilité effective externe ¯̄κeff et ¯̄ηeff , lesquels vont établir

les relations constitutives suivantes

〈p〉 = ǫ0 ¯̄κeffeloc, (3.101a)

〈m〉 = ¯̄ηeffhloc. (3.101b)
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L’introduction de ces deux fonctions de réponse permet alors de lier la polarisation 〈p〉
et l’aimantation 〈m〉 moyennes du réseau de fils aux champs externes dynamiques, mais

spatialement uniformes, qui lui sont imposés.

Dans le cas où aucune restriction n’est imposée quant à la valeur de |keff |R à l’intérieur du

réseau, les susceptibilités effectives externes ¯̄κeff et ¯̄ηeff dépendront non seulement de la forme

et des propriétés effectives ¯̄ǫeff et ¯̄µeff du réseau, mais également du retard électromagnétique

à l’intérieur de celui-ci. Par conséquent, comme pour la réponse EQS d’un fil unique, il serait

alors possible, en principe, de renormaliser les composantes de ¯̄ǫeff et ¯̄µeff à l’aide de facteurs

géométriques dépendant de keffR et liés à la forme macroscopique du réseau. La procédure

consisterait ensuite à utiliser ces propriétés effectives renormalisées dans le but d’établir des

expressions explicites pour les composantes de ¯̄κeff et ¯̄ηeff .

Or, dans le cadre de cette thèse, nous allons toutefois imposer la condition supplémentaire

|keff |R ≪ 1 à l’intérieur du réseau, lequel se trouve alors lui-même dans la limite QS. 13 Dans

ces conditions, les champs externes eext et hext, qui peuvent correspondre expérimentalement

aux champs d’un mode non perturbé d’une cavité résonante, vont exciter des oscillations

uniformes de la polarisation 〈p〉 et de l’aimantation 〈m〉 dynamiques moyennes du réseau.

Soulignons que ces exigences sont généralement remplies lors de mesures de résonance fer-

romagnétique du mode uniforme impliquant des réseaux de taille suffisamment petite. De

telles expériences se sont notamment avérées très utiles pour étudier l’effet des interactions

dipolaires sur la réponse en hyperfréquences de réseaux de nanofils ferromagnétiques [57–61].

Dans ce qui suit, nous allons démontrer comment la résonance ferromagnétique du mode

uniforme d’un réseau de fils peut être convenablement décrite à l’aide du tenseur de sus-

ceptibilité magnétique effective externe ¯̄ηeff , tel que défini à l’équation (3.101b). Nous allons

également introduire le tenseur de désaimantation effectif ¯̄Neff , qui tient compte des inter-

actions dipolaires dans le réseau, et nous allons expliciter son lien avec d’autres tenseurs

de désaimantation considérés dans la littérature. Enfin, soulignons que la réponse effective

externe électrique, laquelle est prise en compte par le tenseur ¯̄κeff , ne sera pas considérée

explicitement dans le cadre de cette thèse. Toutefois, la plupart des résultats obtenus pour

¯̄ηeff pourront être appliqués à ¯̄κeff .

3.4.1 Tenseur de susceptibilité magnétique effective externe

Considérons un réseau de diamètre 2R, d’épaisseur h = L ≪ R et de susceptibilité effec-

tive ¯̄χeff , tel que montré à la figure 2.1. Supposons également que le réseau est soumis au champ

13. Notons que la satisfaction de la condition |keff |R ≪ 1 pour le réseau global n’empêche pas la réponse
des fils individuels d’être en régime EQS, correspondant à une valeur arbitraire de |kw| a.
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magnétique dynamique spatialement uniforme hext, lequel excite un mode de précession uni-

forme de son aimantation moyenne 〈m〉. La relation constitutive définie à l’équation (3.101b)

peut alors être explicitée comme

〈m〉 = ¯̄ηeffhext =













η̃eff −iη̃eff,t 0

iη̃eff,t η̃eff 0

0 0 η̃eff‖













hext, (3.102)

où la susceptibilité magnétique effective externe ¯̄ηeff est un tenseur gyrotrope, qui relie l’ai-

mantation dynamique moyenne 〈m〉 du réseau au champ alternatif externe hext.

Aller plus loin avec l’équation (3.102) requiert d’obtenir une relation entre la susceptibilité

effective externe ¯̄ηeff et la susceptibilité effective ¯̄χeff dérivée en 3.2.2. Pour ce faire, nous

définissons d’abord le tenseur de désaimantation effectif ¯̄Neff , de façon à ce que la relation

〈h〉 = hext − ¯̄Neff 〈m〉 (3.103)

soit satisfaite. Cette équation établit alors un lien entre le champ externe hext et le champ

moyen 〈h〉 à l’intérieur du réseau. Le champ 〈h〉 est donc spatialement uniforme, puisque,

d’une part, hext et 〈m〉 le sont par hypothèse et, d’autre part, nous supposons que les com-

posantes de ¯̄Neff sont indépendantes de la position dans le réseau.

Il convient de souligner que l’équation (3.103) constitue une généralisation de l’équa-

tion (3.31) au cas de métamatériaux décrits par des propriétés électromagnétiques effectives.

Dans ce contexte, le tenseur ¯̄Neff tient compte des pôles non compensés à la surface d’un

réseau de taille finie et, comme nous le verrons, pourra être interprété comme le tenseur de

désaimantation de forme du matériau composite homogénéisé. En effet, la prise en compte

des interactions dipolaires va nous permettre, en 3.4.2, de dériver une expression explicite

pour ¯̄Neff , notamment en vue d’établir comment celui-ci est lié au tenseur de désaimantation

de forme ¯̄Nd d’un disque magnétique homogène de rayon R et d’épaisseur h = L. Toutefois,

pour le moment, nous supposons seulement que ¯̄Neff existe et qu’il satisfait l’équation (3.103).

Comme lors de la dérivation de l’équation (3.32), nous pouvons alors utiliser les équa-

tions (3.21) et (3.102) pour effectuer les substitutions 〈h〉 = ¯̄χ−1
eff 〈m〉 et hext = ¯̄η−1

eff 〈m〉 dans
l’équation (3.103), ce qui mène à la relation

¯̄η−1
eff = ¯̄χ−1

eff + ¯̄Neff . (3.104)

Ce résultat indique que le tenseur de susceptibilité effective externe ¯̄ηeff constitue la fonction

de réponse appropriée pour décrire la réponse observée lors de mesures de résonance ferroma-
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gnétique du mode uniforme de l’aimantation dynamique moyenne 〈m〉 d’un réseau de taille

finie, caractérisé par la susceptibilité effective ¯̄χeff et le tenseur de désaimantation effectif ¯̄Neff .

L’équation (3.104) démontre également l’importance d’établir une distinction entre ¯̄χeff

et ¯̄ηeff . En effet, d’une part, la susceptibilité effective ¯̄χeff décrit la réponse de l’aimantation

d’un métamatériau au champ dynamique moyen 〈h〉, lequel apparâıt dans les équations de
Maxwell macroscopiques [Éq. (2.21)] décrivant la propagation d’ondes électromagnétiques

dans le matériau composite homogénéisé et ce, indépendamment de sa taille et de sa forme.

D’autre part, la susceptibilité effective externe ¯̄ηeff décrit la réponse d’un métamatériau dans

le cas particulier d’un champ dynamique externe hext spatialement uniforme en son voisi-

nage. La réponse effective externe du métamatériau dépend alors de sa forme globale, par

l’intermédiaire du tenseur de désaimantation effectif ¯̄Neff . En particulier, soulignons que c’est

le pôle de ¯̄ηeff , plutôt que celui de ¯̄χeff , qui correspond à la fréquence du pic d’absorption

observé lors d’une expérience de résonance ferromagnétique du mode uniforme, par exemple

en cavité hyperfréquence.

3.4.2 Interactions dipolaires

Nous allons maintenant montrer qu’une expression explicite pour ¯̄Neff peut être obtenue en

liant la réponse en résonance ferromagnétique d’un fil unique, dérivée précédemment en 3.2.1,

à celle d’un réseau de fils en interaction. Pour ce faire, nous combinons les équations (3.21)

et (3.104), ce qui permet d’exprimer ¯̄ηeff en fonction de ¯̄ηw comme

(

¯̄ηeff
f

)−1

= ¯̄η−1
w + f

(

¯̄Neff − ¯̄Nw

)

, (3.105)

où le terme f( ¯̄Neff− ¯̄Nw) tient compte des interactions interfils, comme nous allons maintenant

le démontrer.

D’abord, dans la limite |keff |R ≪ 1, le champ local hloc agissant sur chacun des fils est

constitué du champ externe hext, provenant de sources situées à l’extérieur du réseau, et de la

somme hint des champs d’interaction produits par tous les autres fils du réseau. Nous pouvons

alors écrire

hloc = hext + hint = hext − ¯̄Nint 〈mw〉 , (3.106)

où ¯̄Nint représente le tenseur d’interaction dérivé à la référence [61] afin d’incorporer l’influence

des interactions dipolaires à la fois intra et interfils sur la dépendance angulaire de la résonance

ferromagnétique de réseaux de nanofils ferromagnétiques dans la limite QS.
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En particulier, les travaux de la référence [61] ont démontré que la composante axiale de
¯̄Nint peut être exprimée comme

N int
op = f

∞
∑

n=1

ns

(n2 + s2)3/2
, (3.107)

où s = L/2D est un paramètre de longueur normalisée. La sommation infinie à l’équa-

tion (3.107) dépend uniquement de paramètres géométriques et tend asymptotiquement vers

l’unité dans le régime monopolaire, défini par la condition L ≫ D. Dans cette limite, N int
op se

réduit à f , alors que les composantes transverses N int
ip tendent toutes deux vers −f/2, puisque

la trace du tenseur d’interaction ¯̄Nint est nulle [61, 139], c’est-à-dire que 2N int
ip +N int

op = 0.

Les équations (2.17b) et (3.102) permettent alors d’effectuer les substitutions hloc =

¯̄η−1
w 〈mw〉 et hext = ¯̄η−1

eff 〈m〉 = f ¯̄η−1
eff 〈mw〉 dans l’équation (3.106), ce qui mène

(

¯̄ηeff
f

)−1

= ¯̄η−1
w + ¯̄Nint, (3.108)

où nous avons utilisé la relation 〈m〉 = f 〈mw〉 existant entre l’aimantation moyenne des fils

et celle du réseau.

Ce dernier résultat montre bien comment les interactions dipolaires interfils modifient la

résonance ferromagnétique d’un réseau de fils en interaction. En effet, le fait de négliger ces

interactions est équivalent à poser ¯̄Nint = 0, ce qui mène à l’expression ¯̄ηeff = f ¯̄ηw, valide

uniquement dans la limite diluée. Cette relation implique que hext = hloc à l’équation (3.106)

et prédit que la fréquence de résonance du réseau dans le champ externe hext est identique à

celle d’un fil individuel dans le champ local hloc. Or, cette hypothèse n’est valable que dans

le cas de métamatériaux magnétiques dilués [76]. Par contre, pour des matériaux composites

relativement denses [61, 68], les interactions dipolaires vont modifier substantiellement la

réponse magnétique, notamment en résonance ferromagnétique, et ne peuvent donc pas être

négligées.

La comparaison des équations (3.105) et (3.108) mène alors à une définition pour le

tenseur de désaimantation effectif du réseau, c’est-à-dire

¯̄Neff = ¯̄Nw + f−1 ¯̄Nint, (3.109)

où ¯̄Neff est exprimé en fonction des tenseurs connus ¯̄Nw et ¯̄Nint, lesquels dépendent unique-

ment des paramètres géométriques du réseau. De même, la comparaison formelle des équa-

tions (3.103) et (3.104) et des équations (3.31) et (3.32) suggère que ¯̄Neff pourrait également

représenter le tenseur de désaimantation de forme macroscopique du réseau de fils. En ce

sens, il s’avère alors pertinent de comparer l’équation (3.109) pour ¯̄Neff avec le tenseur de
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désaimantation ¯̄Nd d’un disque magnétique homogène de forme identique à celle du réseau

de fils.

En effet, le facteur de désaimantation hors plan Nd
op au centre d’un disque circulaire de

rayon R et d’épaisseur h = L vaut [140]

Nd
op = 1− l

(1 + l2)1/2
, (3.110)

où l = L/2R désigne le rapport entre l’épaisseur et le diamètre du disque. Pour leur part, les

composantes dans le plan Nd
ip peuvent être obtenues directement de la relation 2Nd

ip+Nd
op = 1.

De plus, pour un disque infini dans les deux directions IP, nous trouvons que l tend vers 0, ce

qui mène à Nd
ip ≈ 0 et Nd

op ≈ 1, comme attendu dans le cas d’une plaque circulaire infiniment

mince (voir notamment la référence [26], p. 25).

Nous allons maintenant démontrer que dans le cas de longs fils (L ≫ d) en régime mo-

nopolaire (L ≫ D), l’équation (3.109) se réduit simplement à l’équation (3.110), c’est-à-dire

que ¯̄Nw+ f−1 ¯̄Nint cöıncide avec le tenseur de désaimantation de forme ¯̄Nd d’un disque mince.

D’abord, nous avons que le tenseur de forme ¯̄Nw de long fils est caractérisé par des facteurs

de désaimantation Nw
ip = 1/2 et Nw

op = 0. Ensuite, pour un réseau de fils de diamètre fini,

la composante axiale du tenseur d’interaction peut être obtenue en retranchant, de l’équa-

tion (3.107) valide dans le cas d’un réseau infini, la contribution des fils situés à l’extérieur

du réseau de rayon R, c’est-à-dire en ρ > R. Nous trouvons alors qu’au centre du réseau

N int
op =

∞
∑

n=1

fns

(n2 + s2)3/2
−

∞
∑

n=nmax

fns

(n2 + s2)3/2
, (3.111)

où nmax = R/D est le nombre de fils sur un segment de droite reliant le centre du réseau à

sa circonférence [61].

En régime monopolaire, le premier terme du membre de droite de l’équation (3.111) se

réduit simplement à f . Pour évaluer le second terme, nous posons l’hypothèse supplémentaire

que les fils situés en ρ > R sont localisés suffisamment loin du centre du réseau pour que

nous puissions les traiter comme une distribution d’aimantation continue. Nous pouvons alors

remplacer la sommation sur n par une intégrale, c’est-à-dire

N int
op = f

[

1−
∫ ∞

nmax

ns

(n2 + s2)3/2
dn

]

= f

[

1− l

(1 + l2)1/2

]

,

(3.112)
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où l = s/nmax = L/2R, comme défini plus haut. Pour de longs fils avec Nw
op = 0, nous

obtenons enfin

N eff
op = Nw

op + f−1N int
op = 1− l

(1 + l2)1/2
= Nd

op, (3.113)

ce qui, comme anticipé, cöıncide avec l’équation (3.110) pour le facteur de désaimantation au

centre d’un disque mince. La même relation est évidemment vérifiée par les deux composantes

N eff
ip , c’est-à-dire queN eff

ip = Nd
ip, ce que nous pouvons déduire directement des relations 2Nw

ip+

Nw
op = 1 et 2N int

ip + N int
op = 0. Enfin, dans le cas limite d’un réseau infini, l’équation (3.107)

mène à N int
op = f , de sorte que N int

ip = −f/2. Nous obtenons alors N eff
op = 1 et N eff

ip = 0, ce qui

cöıncide également avec les facteurs de désaimantation Nd
op et Nd

ip d’un disque mince infini.

En résumé, lorsque les conditions L ≫ d et L ≫ D sont simultanément satisfaites, l’équa-

tion (3.113) indique que notre approche générale, laquelle inclut explicitement les interactions

dipolaires et mène au tenseur de désaimantation effectif ¯̄Neff défini à l’équation (3.109), se

réduit simplement à la formulation macroscopique basée sur le tenseur de désaimantation de

forme ¯̄Nd de l’équation (3.110). Dans ce régime, la résonance ferromagnétique du réseau de

fils peut alors être interprétée aussi bien en fonction de ¯̄Neff que de ¯̄Nd.

3.4.3 Limite quasi statique et tenseurs de désaimantation effectifs

Les travaux sur la résonance ferromagnétique de réseaux de nanofils typiques avec a .

100 nm satisfont généralement la condition |kw| a ≪ 1, ce qui correspond à une réponse QS

des fils individuels [57–61, 67, 68]. Dans cette limite, les composantes transverses de ¯̄ηeff se

réduisent à ηeff et ηeff,t, dont nous pouvons obtenir des expressions explicites en substituant

les équations (3.29a) et (3.29b) dans l’équations (3.108), ce qui conduit à

ηeff =
fωM [ω∗

H + ωM(1− f)/2]

[ω∗
H + ωM(1− f)/2]2 − ω2

, (3.114a)

ηeff,t =
fωMω

[ω∗
H + ωM(1− f)/2]2 − ω2

, (3.114b)

où nous avons utilisé le fait qu’en régime monopolaire, les composantes N int
ip et N int

op du tenseur

d’interaction ¯̄Nint valent −f/2 et f , respectivement.

Dans cette équation, la fréquence angulaire ωH (dans ω∗
H = ωH − iαω) est proportionnelle

au champ statique total à l’intérieur des fils et vaut ωH = ω0 − fωM , où ω0 = µ0 |γ|Hext0 et

−fωM tiennent compte respectivement du champ appliqué et du champ d’interaction interfil

axial. Pour sa part, le terme ωM(1− f)/2 tient compte des interactions dynamiques à la fois
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intra et interfils. Mentionnons ici que l’annexe A présente une discussion sur les façons bien

distinctes de tenir compte des interactions statiques et dynamiques.

Enfin, lorsque les pertes magnétiques sont faibles (α ≪ 1), les composantes ηeff et ηeff,t

possèdent un pôle à la fréquence

ωres,eff = ωH +
ωM

2
(1− f)

= ω0 +
ωM

2
(1− 3f) ,

(3.115)

qui correspond à la fréquence de résonance du mode uniforme d’un ensemble de fils en in-

teraction excités dans la limite QS. Soulignons que ce résultat a été initialement obtenu à la

référence [57], sur la base de considérations phénoménologiques, puis retrouvé subséquemment

grâce à une expression formelle du champ d’interaction dipolaire [61].

Dans ce contexte, la référence [61] a également défini le tenseur de désaimantation total
¯̄N du réseau comme

¯̄N = ¯̄Nw + ¯̄Nint. (3.116)

Ce résultat signifie qu’en raison des interactions dipolaires intra et interfils, lesquelles sont

respectivement prises en compte par les tenseurs ¯̄Nw et ¯̄Nint, le champ hw à l’intérieur des

fils individuels diffère du champ externe hext qui excite le réseau. Or, en substituant l’équa-

tion (3.32) dans l’équation (3.108), nous déduisons la relation

(

¯̄ηeff
f

)−1

= ¯̄χ−1
w + ¯̄N, (3.117)

qui indique que dans la limite QS, le tenseur de désaimantation ¯̄N relie la susceptibilité

intrinsèque ¯̄χw des fils individuels à la réponse effective externe ¯̄ηeff d’un réseau de taille finie

de fils en interaction.

En terminant, nous allons montrer comment obtenir une seconde expression pour ¯̄N . Pour

ce faire, nous supposons que la relation ¯̄Neff = ¯̄Nd est satisfaite (régime monopolaire), puis

nous combinons les équations (3.109) et (3.116), ce qui mène à la relation

¯̄N = (1− f) ¯̄Nw + f ¯̄Nd. (3.118)

Ce résultat implique que ¯̄N peut également être interprété comme une interpolation linéaire

entre ¯̄Nw et ¯̄Nd, correspondant respectivement à un ensemble dilué de fils isolés (quand f = 0)
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et à un disque mince d’aimantation uniforme et de forme identique à celle du réseau (quand

f = 1). En particulier, lorsque f = 1/3 nous trouvons que ¯̄N = ¯̄I/3, ce qui implique que

le réseau devient isotrope du point de vue des interactions dipolaires. L’équation (3.117)

prédit alors que la fréquence de résonance du réseau ne dépend plus de la direction du champ

statique appliqué [57].

Mentionnons que l’équation (3.118) a été établie initialement par Netzelmann [97], par

l’intermédiaire d’une approche de champ moyen basée sur des considérations d’énergie ma-

gnétostatique, dans le but de décrire la résonance ferromagnétique de rubans magnétiques

formés de particules de ferrites. Ce modèle a depuis été appliqué ou généralisé à l’étude de

différentes hétérostructures magnétiques [98–102]. Or, rappelons que lorsque la longueur L

des fils est beaucoup plus grande que leur diamètre d et leur séparation D (autrement dit,

quand ¯̄Neff = ¯̄Nd), notre approche décrite par l’équation (3.116) et basée sur les interactions

dipolaires intra et interfils devient rigoureusement équivalente à la formulation macroscopique

pour ¯̄N menant à l’équation (3.118).

3.5 Sommaire

Au terme de ce chapitre, nous avons établi un modèle pour les propriétés électromagné-

tiques effectives de réseaux de fils ferromagnétiques aimantés axialement et excités dans la

configuration TM. Dans ce contexte, nous nous sommes appuyés sur l’approche théorique

développée au chapitre 2, notamment la procédure d’homogénéisation en régime EQS et la

solution générale du problème de diffusion par un fil ferromagnétique. L’objectif principal

de la modélisation a consisté à incorporer l’effet du retard électromagnétique sur la réponse

gyrotrope et inductive des fils individuels. Pour ce faire, nous avons introduit les propriétés

renormalisées µ̃, µ̃t et ǫ̃w, qui nous ont permis d’écrire nos expressions pour la perméabilité

et la permittivité effectives sous une forme identique à celle des relations valides dans la

limite QS. De même, nous avons privilégié une méthode de dérivation qui met l’emphase sur

l’interprétation physique des résultats et leur validation dans divers cas limites.

La section 3.2 a été consacrée à l’étude des propriétés magnétiques et constitue le cœur

de la thèse. D’abord, nous avons dérivé le tenseur de susceptibilité externe ¯̄ηw, qui décrit,

en régime EQS, la réponse dipolaire d’un fil individuel excité dans le mode n = ±1. Les

composantes diagonales η̃ et hors diagonales η̃t de ¯̄ηw sont données à l’équation (3.13) et

constituent un des résultats importants de ce travail. Elles s’expriment de façon compacte

en fonction des composantes de perméabilité renormalisée µ̃ et µ̃t et tiennent compte des

éléments suivants :

1. La réponse gyromagnétique intrinsèque ¯̄µw des fils individuels.
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2. Leur forme cylindrique, par la présence des fonctions Bessel dans les facteurs de renor-

malisation F (kwa) et G (kwa).

3. Leur taille, par l’intermédiaire du facteur kwa.

4. Leur état magnétique statique, qui correspond ici à un réseau saturé de fils aimantés

axialement.

5. Le type d’excitation, c’est-à-dire ici le mode n = ±1 dans la configuration TM.

Notons qu’au chapitre 5, nous verrons comment généraliser le tenseur ¯̄ηw au cas d’un réseau

non saturé, constitué de deux populations de nanofils bistables aimantées antiparallèlement.

Nous avons ensuite incorporé le résultat pour ¯̄ηw dans notre procédure d’homogénéisation de

Maxwell Garnett, ce qui nous a permis d’obtenir des expressions analytiques [Éq. (3.23)] pour

les composantes diagonales µ̃eff et hors diagonales µ̃eff,t du tenseur de perméabilité effective

¯̄µeff d’un réseau de fils ferromagnétiques. Notre modèle pour ¯̄µeff tient compte de la nature à la

fois gyrotrope et métallique des fils, de même que de l’influence des paramètres géométriques

sur le réponse macroscopique du réseau. Enfin, nous avons terminé cette section en montrant

comment nos expressions générales pour ¯̄ηw et ¯̄µeff permettent de retrouver plusieurs résultats

particuliers, notamment dans les limites QS et SE.

La réponse électrique du réseau soumis à un champ axial dans le mode n = 0 a ensuite fait

l’objet de la section 3.3. Après avoir obtenu la susceptibilité externe κ̃w d’un fil individuel,

nous avons dérivé l’équation (3.64) pour la permittivité effective ǫ̃eff du réseau en régime

EQS. Nous avons exprimé notre résultat général sous une forme identique à celle valide

dans la limite QS, grâce à l’introduction de la permittivité renormalisée ǫ̃w = ǫwK (kwa),

où K (kwa) est un facteur de renormalisation qui tient compte du retard électromagnétique

à l’intérieur des fils et de leur effet inductif lorsque placés en réseau. Le résultat principal

de cette section est notre démonstration que K (kwa) peut s’exprimer simplement comme

(Ztot/Rdc)
−1 [Éq. (3.78)], où Ztot est l’impédance totale d’un fil du réseau et Rdc est sa

résistance en courant continu. L’impédance Ztot peut elle-même être décomposée en une

partie interne Zw, qui dépend de l’effet de peau et donne lieu à une magnétoimpédance

lorsque les fils sont ferromagnétiques, et en une partie externe ZL, qui décrit l’inductance

externe Lext d’un fil placé dans la cellule unitaire équivalente. La formulation résultante pour

la permittivité effective en fonction de Ztot/Rdc est donnée à l’équation (3.81) et permet

de faire ressortir clairement le sens physique de la solution. Enfin, nous avons montré, en

accord avec les modèles existants, que la permittivité effective peut s’écrire sous la forme

équivalente d’une réponse plasmonique et nous avons validé notre expression pour ǫ̃eff en

retrouvant plusieurs cas limites pertinents.

Finalement, à la section 3.4, nous avons considéré le comportement d’un réseau de taille

finie soumis à un champ électrique ou magnétique spatialement uniforme. Pour ce faire,
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nous avons défini les susceptibilités effectives externes électrique ¯̄κeff et magnétique ¯̄ηeff du

réseau [Éq. (3.101)], dans le but de décrire les oscillations uniformes de sa polarisation et

de son aimantation dynamiques moyennes. Dans ce contexte, nous avons décrit comment le

tenseur ¯̄ηeff représente la fonction de réponse appropriée pour décrire l’excitation d’un mode

de précession uniforme de l’aimantation d’un réseau de fils ferromagnétiques. Pour exprimer

¯̄ηeff en fonction du tenseur de susceptibilité effective ¯̄χeff , nous avons défini le tenseur de

désaimantation effectif ¯̄Neff , qui incorpore l’effet des pôles non compensés à la surface du

réseau [Éq. (3.104)]. Nous avons ensuite établi le lien entre ¯̄Neff et le tenseur ¯̄Nint introduit à

la référence [61] pour tenir compte des interactions dipolaires interfils. Nous avons également

démontré que pour de longs fils en régime monopolaire, ¯̄Neff devient rigoureusement équivalent

au tenseur de désaimantation de forme ¯̄Nd d’un disque magnétique homogène de dimensions

identiques à celles du réseau. Enfin, nous avons mis en évidence les relations existant entre ¯̄Neff

et différentes approches utilisées dans la littérature pour décrire la résonance ferromagnétique

d’ensembles de nanoparticules dans la limite QS.
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CHAPITRE 4

APPLICATION ET DISCUSSION DU MODÈLE

4.1 Introduction

Les deux chapitres précédents nous ont permis d’établir l’approche théorique sur laquelle

s’appuie la thèse, puis de l’appliquer à la détermination des propriétés électromagnétiques

effectives dans les hyperfréquences de réseaux de fils ferromagnétiques aimantés axialement et

excités dans la configuration TM. Dans ce chapitre, nous allons discuter la solution générale

établie au chapitre 3, dans le but d’en préciser les implications et les limites. Nous allons

clarifier l’impact des paramètres géométriques, de la gyrotropie et du retard électromagné-

tique sur ¯̄µeff et ǫ̃eff , en portant une attention particulière aux conditions pour lesquelles les

réseaux de fils ferromagnétiques présentent des fonctions de réponse intéressantes dans les

hyperfréquences.

Pour ce faire, nous appliquerons les résultats théoriques prédits par notre modèle à un

réseau de fils métalliques et ferromagnétiques de nickel (Ni), caractérisés par les propriétés

intrinsèques représentatives données au tableau 4.1. À moins d’indications contraires, ces

paramètres seront utilisés dans le calcul de toutes les courbes présentées dans le cadre de

ce chapitre. Nous indiquons également les propriétés du grenat d’yttrium et de fer (YIG,

pour yttrium iron garnet), un matériau ferrimagnétique isolant, qui sera considéré en 4.2.2

dans le but de comparer la réponse gyromagnétique de fils individuels conducteurs (Ni) et

diélectriques (YIG).

Tableau 4.1 Propriétés intrinsèques des fils de Ni et de YIG considérés dans les calculs théo-
riques.

Matériau
Propriété Symbole (unités) Ni YIG
Aimantation spontanée Ms (kA/m) 460 140
Facteur gyromagnétique g 2,2 2
Constante de Gilbert α 0,03 0,005
Conductivité de Drude σw (Ω−1 ·m−1) 1,5× 107 —
Permittivité intrinsèque relative ǫw/ǫ0 iσw/ωǫ0 15 (1 + 0,001i)

La section 4.2 sera consacrée à l’analyse de la réponse magnétique. Nous étudierons

d’abord l’influence de l’effet de peau sur la résonance, l’antirésonance et la largeur de la
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courbe d’absorption de la susceptibilité externe ¯̄ηw d’un fil individuel de Ni. Nous compa-

rerons ensuite la réponse du fil de Ni à celle d’un fil de YIG, dans le cas où la condition

|kw| a ≈ 1 est satisfaite pour les deux matériaux. Enfin, nous examinerons la réponse effec-

tive ¯̄µeff d’un réseau de fils de Ni, notamment en vue de clarifier les conditions nécessaires à

l’obtention d’une perméabilité effective substantielle et possiblement négative entre la réso-

nance et l’antirésonance.

La permittivité effective ǫ̃eff du réseau sera ensuite considérée à la section 4.3. D’une part,

nous décrirons comment la forme spectrale de ǫ̃eff est modifiée par la perméabilité intrinsèque

des fils et les paramètres géométriques du réseau, lesquels vont contrôler l’effet de peau et

la fréquence plasma effective ωp,eff . En particulier, nous établirons les critères qui mènent

à une réponse magnétodiélectrique optimale dans les hyperfréquences, c’est-à-dire à la fois

substantielle et accompagnée de faibles pertes. D’autre part, nous considérerons la réponse

de réseaux de nanofils de longueur finie et décrirons une approche pour intégrer cet effet.

Finalement, à la section 4.4, nous combinerons les réponses magnétique et électrique

effectives dans le but de décrire sommairement la propagation d’ondes électromagnétiques

dans le réseau. Cette discussion va nous permettre de faire ressortir les caractéristiques des

principaux régimes d’opération propres aux réseaux de fils ferromagnétiques conducteurs

aimantés axialement et excités dans la configuration TM.

4.2 Réponse magnétique

4.2.1 Influence de l’effet de peau sur la réponse magnétique d’un fil individuel

de nickel

L’effet de peau associé à la génération de courants de Foucault dans un matériau conduc-

teur peut modifier de façon significative la dispersion et la dissipation de la réponse d’un

fil ferromagnétique conducteur excité par un champ magnétique alternatif. Pour illustrer cet

effet, considérons un fil de Ni de rayon a, placé dans le vide et amené à saturation par un

champ magnétique statique axial Hext0. Le fil est également soumis à un champ magnétique

dynamique transverse hloc de fréquence ω/2π = 24 GHz, à laquelle la profondeur de pénétra-

tion non magnétique δw0 du Ni vaut 0,84 µm. En configuration TM, le champ hloc excite le

fil dans le mode n = ±1, de sorte que la réponse de l’aimantation dynamique 〈mw〉 = ¯̄ηwhloc

du fil est décrite par les équations (3.12) et (3.13).

Expérimentalement, cette configuration peut être réalisée en plaçant le fil dans une cavité

résonante, de manière à ce que l’axe du fil soit perpendiculaire au champ magnétique hyper-

fréquence d’un mode non perturbé de la cavité, puis en mesurant la puissance absorbée par

le fil en balayant le champ magnétique statique appliqué [72, 73, 141]. En supposant que la
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théorie des perturbations s’applique (voir par exemple la référence [142], chap. 6), le change-

ment de fréquence de résonance complexe de la cavité est alors proportionnel à la composante

diagonale η̃ du tenseur de susceptibilité externe ¯̄ηw (voir notamment la référence [26], p. 138).

En particulier, la partie imaginaire de η̃ reflète l’absorption d’énergie par le fil.
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Figure 4.1 Partie imaginaire de la composante diagonale η̃ du tenseur de susceptibilité externe
du fil en fonction du champ magnétique appliqué, à 24 GHz, pour un fil individuel de Ni de
rayon allant de 10 nm à 100 µm. Les courbes sont obtenues à l’aide de l’équation (3.13a)
en utilisant les paramètres du tableau 4.1. Les lignes verticales en trait pointillé indiquent
les valeurs de champ qui satisfont la condition de résonance dans la limite QS [Éq. (3.30)]
et les conditions de résonance et d’antirésonance dans la limite SE [Éqs. (3.44) et (3.45),
respectivement].

La figure 4.1 montre la partie imaginaire de η̃ calculée à l’aide de l’équation (3.13a) en

fonction du champ magnétique statique externe (100–700 kA/m) pour un fil unique de Ni

avec différentes valeurs de rayon allant de 10 nm à 100 µm. Les spectres théoriques illustrent

l’influence de l’effet de peau sur les conditions de résonance et d’antirésonance, de même

que sur la largeur, la forme et l’amplitude de la courbe d’absorption (notons que l’échelle de

Im [η̃] est logarithmique à la figure 4.1). Les caractéristiques générales de la réponse du fil sont

également présentées à la figure 4.2, qui montre le comportement des principaux paramètres

de résonance ferromagnétique en fonction du rayon normalisé a/δw0, lequel s’étend sur cinq

ordres de grandeur et couvre les limites d’effet de peau faible (a/δw0 . 0,1) et dominant

(a/δw0 & 50).
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Figure 4.2 Comportement des paramètres de résonance ferromagnétique en fonction du rayon
normalisé a/δw0 d’un fil de Ni à 24 GHz, où δw0 = 0,84 µm. (a) Champ de résonance, (b)
champ d’antirésonance et (c) largeur de résonance. Les courbes sont extraites de l’expression
de η̃ calculées à l’aide de l’équation (3.13a) et des paramètres du tableau 4.1. Les valeurs
indépendantes de la taille attendues dans les limites QS et SE sont indiquées par des lignes
horizontales en trait pointillé. (d) Comme (c) mais pour différentes valeurs de la constante
de Gilbert.

Dans la limite QS, le champ magnétique incident pénètre complètement à l’intérieur du fil

et excite des oscillations uniformes de l’aimantation. La susceptibilité externe η̃ se réduit alors

à η [Éq. (3.29a)], de sorte que le champ de résonance satisfait l’équation (3.30) et qu’aucun

minimum local dans l’absorption n’est observé au champ d’antirésonance. Dans cette limite,

la largeur de résonance ne varie pas avec a/δw0 et augmente de façon linéaire avec la valeur

de la constante d’amortissement α de Gilbert, comme montré aux figures 4.2(c) et 4.2(d),

respectivement.

En revanche, dans la limite SE, les courants de Foucault confinent les champs électroma-

gnétiques à l’intérieur de la profondeur de peau δw ≪ a. La susceptibilité externe η̃ se réduit

à l’équation (3.42) et suit alors le comportement de l’impédance d’onde intrinsèque ζw du fil

[Éq. (3.43)], laquelle tient compte à la fois du caractère métallique et des propriétés gyro-

magnétiques du Ni. En particulier, les conditions de résonance et d’antirésonance satisfont
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respectivement les équations (3.44) et (3.45), alors que l’absorption et la largeur de résonance

sont contrôlées par la partie réelle de ζw

L’augmentation de a/δw0 dans le régime intermédiaire entre les limites QS et SE trans-

forme progressivement le mode de résonance uniforme en un mode de surface, ce qui in-

troduit une dépendance non triviale de la réponse du fil en fonction kwa et modifie de fa-

çon importante la valeur des paramètres de résonance ferromagnétique. D’abord, la courbe

d’absorption perd son profil lorentzien symétrique et voit son amplitude diminuer de façon

importante (Fig. 4.1). Ensuite, la figure 4.2(a) montre que le champ de résonance augmente

avec a/δw0, passant de la valeur satisfaisant l’équation (3.30), pour le mode uniforme d’un

cylindre aimanté axialement, à celle satisfaisant l’équation (3.44), pour la résonance parallèle

d’un métal.

La figure 4.2(b) permet ensuite de constater qu’à partir de a/δw0 ≈ 0,5, l’antirésonance

apparâıt comme un minimum local dans la courbe d’absorption. Le champ d’antirésonance

augmente graduellement avec a/δw0 et atteint ultimement, dans la limite SE, la valeur du

champ satisfaisant l’équation (3.45). De façon équivalente, la figure 4.1 montre que l’an-

tirésonance devient clairement visible dans le spectre de susceptibilité externe à partir de

a ≥ 10 µm.

Enfin, les figures 4.2(c) et 4.2(d) indiquent que la largeur de résonance est maximale

lorsque 1 . a/δw0 . 10, en raison des pertes importantes causées par les courants de Foucault

générés à l’intérieur de la profondeur de peau. En effet, cette contribution est beaucoup moins

marquée dans les limites QS et SE. Dans le premier cas, le mécanisme d’amortissement

est dominé par les pertes magnétiques intrinsèques, puisque l’écrantage par les courants de

Foucault est négligeable. Dans le second cas, le champ incident ne pénètre pratiquement pas

à l’intérieur du conducteur, de sorte que les courants de Foucault volumiques demeurent peu

impliqués dans l’absorption de l’énergie électromagnétique [143].

Le comportement des paramètres de résonance ferromagnétique dans le régime de tran-

sition où 1 . a/δw0 . 10 peut être interprété en considérant que la susceptibilité externe η̃

du fil devient alors une fonction complexe de kwa, qui résulte du couplage entre un mode de

volume uniforme et un mode de surface fortement non uniforme. En effet, en régime EQS,

ces deux modes sont caractérisés par des paramètres de résonance ferromagnétique différents,

mais par des contributions à la largeur de résonance interreliées et d’importance comparable.

Par conséquent, les courbes de la figure 4.2 montrent certaines irrégularités dans le régime

de transition, telles qu’une légère diminution dans le comportement autrement monotone

croissant des champs de résonance et d’antirésonance et un double pic dans la largeur de

résonance. Soulignons que la présence de plus d’un maximum dans la largeur de résonance a

également été prédit à la référence [72]. Enfin, mentionnons que les valeurs exactes choisies
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pour les propriétés intrinsèques du fil (c.-à-d., Ms, g, α et σw) n’influencent toutefois pas de

façon marquée la forme et les caractéristiques générales des spectres de susceptibilité externe

montrés à la figure 4.1.

4.2.2 Perméabilité renormalisée de fils magnétiques : comparaison entre con-

ducteurs et isolants

Jusqu’à maintenant, nous avons mis l’emphase sur la réponse de fils ferromagnétiques

conducteurs et avons montré que le retard électromagnétique à l’intérieur des fils individuels,

pris en compte par le paramètre kwa, se manifeste principalement par l’effet de peau et les

pertes par courants de Foucault qui y sont associées. Or, il est important de souligner que

le formalisme développé dans le cadre de cette thèse est plus général et s’applique en fait

à tout matériau décrit par le tenseur de perméabilité gyrotrope de l’équation (2.11), à la

condition que sa permittivité ǫw demeure isotrope et locale. En particulier, notre modèle

permet de décrire la réponse électromagnétique de fils ferrimagnétiques isolants, tels que les

ferrites et les grenats, qui possèdent une permittivité intrinsèque essentiellement réelle et non

dispersive dans les hyperfréquences [144]. Pour ces matériaux, kwa est principalement réel

(sauf près de la résonance ferromagnétique), ce qui permet d’anticiper que leur réponse en

régime EQS puisse différer de celle des métaux ferromagnétiques, pour lesquels les parties

réelle et imaginaire de kwa sont d’importance comparable.

Dans cette section, nous allons examiner l’influence de la permittivité intrinsèque ǫw sur

la réponse gyromagnétique en régime EQS d’un fil individuel, en comparant la composante

de perméabilité renormalisée µ̃⊥ = µ⊥G (kwa) [Éq. (3.10)] du Ni et du YIG. En effet, ces

deux matériaux sont dotés de propriétés magnétiques intrinsèques similaires, mais de com-

portements électriques diamétralement opposés. Nous verrons notamment que dans le cas du

YIG, la perméabilité renormalisée µ̃⊥ présente un comportement résonant quasi périodique

en fonction de kwa, qui tire son origine dans l’excitation de résonances internes de type Mie

lorsque |kw| a & 1 [80]. Ce comportement se distingue de celui d’un fil conducteur, pour lequel

l’effet de peau domine et la perméabilité renormalisée µ̃⊥ présente les caractéristiques d’une

relaxation.

Nous considérons un fil ferromagnétique conducteur de Ni (a = 2 µm) et un fil ferri-

magnétique isolant de YIG (a = 2 mm), dont les propriétés intrinsèques sont données au

tableau 4.1. Pour les deux matériaux, la valeur du rayon a a été choisie de façon à ce que la

fréquence à laquelle |kw| a ≈ 1 soit près de la fréquence de résonance ferromagnétique de µ⊥

donnée à l’équation (3.44). Dans ces conditions, les réponse gyromagnétique et dépendant

de kwa sont fortement couplées, de sorte que la perméabilité renormalisée µ̃⊥ = µ⊥G (kwa)

[Éq. (3.10)] est modifiée de façon significative par rapport à sa valeur intrinsèque µ⊥.
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Figure 4.3 Comportement en fréquence de trois fonctions de réponse magnétiques d’un fil
unique de Ni (a = 2 µm, colonne de gauche) et d’un fil unique de YIG (a = 2 mm, colonne
de droite), dont les propriétés intrinsèques sont données au tableau 4.1. (a) Composante de
perméabilité intrinsèque relative µ⊥/µ0 pour un fil saturé par un champ magnétique statique
axial Hext0 =

1
2
Ms. (b) Composante de perméabilité renormalisée relative µ̃⊥/µ0 = G (kw0a)

pour un fil à l’état non magnétique, soumis à un champ magnétique statique « infini ». (c)
Composante de perméabilité renormalisée relative µ̃⊥/µ0 pour un fil saturé par un champ
magnétique statique axial Hext0 =

1
2
Ms. Les parties réelle et imaginaire sont dénotées par des

courbes continues et tiretées, respectivement.

La figure 4.3 compare les spectres (1–40 GHz) de trois fonctions de réponse magnétiques

d’un fil unique de Ni (colonne de gauche) et d’un fil unique de YIG (colonne de droite). Pour

chaque spectre, les parties réelle et imaginaire sont dénotées par des courbes continues et

tiretées, respectivement. D’abord, la figure 4.3(a) montre la perméabilité intrinsèque relative

µ⊥/µ0 calculée à partir de l’équation (2.34) avec Hext0 = 1
2
Ms. Ensuite, les figures 4.3(b)
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et 4.3(c) étudient la perméabilité renormalisée relative µ̃⊥/µ0 du Ni et du YIG pour deux

régimes : non magnétique et saturé.

D’une part, la figure 4.3(b) considère la réponse d’un fil unique soumis à un champ

magnétique appliqué Hext0 « infini ». Dans ce cas, la perméabilité gyrotrope intrinsèque ¯̄µw

se réduit à µ0, de sorte que les fils de Ni et de YIG se comportent effectivement comme

des matériaux non magnétiques. 1 Cette limite vise à examiner uniquement l’influence de la

permittivité intrinsèque ǫw des fils de Ni et de YIG sur leur perméabilité renormalisée µ̃⊥,

laquelle devient alors égale µ̃⊥ = µ0G (kw0a), où kw0 = ω
√
ǫwµ0 est un vecteur d’onde non

magnétique dépendant de ǫw. Dans ce contexte, le facteur de renormalisation G (kw0a) =

µ̃⊥/µ0 montré à la figure 4.3(b) correspond alors à la perméabilité renormalisée relative des

fils à l’état non magnétique.

D’autre part, la figure 4.3(c) montre la perméabilité renormalisée relative µ̃⊥ pour le cas

de fils saturés selon leur axe par un champ magnétique Hext0 =
1
2
Ms. Les courbes résultantes

permettent de comparer l’effet combiné des propriétés intrinsèques ǫw et ¯̄µw sur la réponse

magnétique renormalisée (régime EQS) d’un fil de Ni et d’un fil de YIG.

Procédons maintenant à l’analyse détaillée des spectres de la figure 4.3. D’abord, la fi-

gure 4.3(a) montre que les réponses magnétiques intrinsèques du Ni et du YIG possèdent

toutes deux un profil lorentzien, dont la position, la largeur et l’amplitude sont détermi-

nées uniquement par leurs propriétés magnétiques respectives (Ms, g et α) et par la valeur

du champ appliqué Hext0. Notons que dans la limite statique (ω → 0), nous trouvons que

µ⊥/µ0 ≈ 1+Ms/Hext0 = 3 à la fois pour le Ni et le YIG. Ce dernier résultat peut être déduit

en posant ω = 0 et ωH = ω0 =
1
2
ωM dans l’équation (2.34).

En revanche, bien que la dispersion de µ⊥ soit la même pour les deux matériaux, la

figure 4.3(b) montre que les spectres de la perméabilité renormalisée relative à l’état non ma-

gnétique, G (kw0a), diffèrent de façon importante. Dans la colonne de gauche, nous constatons

que la réponse du fil de Ni possède la forme d’une relaxation centrée en a/δw0 ≈ 1 (la condi-

tion a/δw0 = 1 est indiquée par une ligne verticale en trait pointillé). Dans le régime de

transition où a/δw0 ≈ 1, l’effet d’écrantage des courants de Foucault mène à une décrois-

sance monotone de la partie réelle de G (kw0a), laquelle passe alors de 1 lorsque a/δw0 ≪ 1

(comportement non magnétique) à 0 lorsque a/δw0 ≫ 1 (comportement supraconducteur).

De même, l’amortissement causé par les courants de Foucault est décrit par la partie imagi-

naire de G (kw0a), laquelle s’annule en ω = 0, augmente proportionnellement à (a/δw0)
2 ∝ ω

lorsque a/δw0 ≪ 1, atteint un maximum en a/δw0 ≈ 1, puis décrôıt proportionnellement à

(a/δw0)
−1 ∝ ω−1/2 lorsque a/δw0 ≫ 1, comme décrit notamment à la référence [71], p. 192.

1. En effet, lorsque ω0 = µ0 |γ|Hext0 ≫ ω, ωM , les équations (2.12a) et (2.12b) pour les composantes µ et
µt de ¯̄µw se réduisent respectivement à µ ≈ µ0 et µt ≈ µ0

(

ωMω/ω2
0

)

≪ µ0, de sorte que ¯̄µw → µ0 et que le
fil peut être assimilé à matériau non magnétique.
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Dans la colonne de droite, la réponse magnétique renormalisée G (kw0a) du fil de YIG

présente un caractère multirésonant, attribuable à l’excitation de résonances magnétiques

dipolaires de type Mie à l’intérieur du fil cylindrique [25, 80]. Les fréquences de résonance

correspondent aux pôles de G (kw0a), lesquels satisfont la condition kw0aJ0 (kw0a) = J1 (kw0a)

[voir l’équation (3.8)] et, par conséquent, suivent le caractère oscillatoire quasi périodique

des fonctions de Bessel. Ces résonances dimensionnelles s’accompagnent d’un maximum de la

partie imaginaire de G (kw0a) et d’un changement de signe de sa partie réelle, laquelle devient

donc négative sur un petit intervalle du côté à haute fréquence de chaque pôle. Il convient

également de souligner la nature dipolaire de ces résonances (c.-à-d., sous-longueur d’onde),

puisqu’elles surviennent pour |kw0| a & 1, mais lorsque |km| a est inférieur à 1.

L’amplitude et la largeur des pics d’absorption sont déterminées par les pertes diélec-

triques, de sorte qu’une augmentation de Im [ǫw] tend à amortir le caractère résonant de

G (kw0a) et ultimement, à restreindre Re [G (kw0a)] à des valeurs positives. De plus, lorsque

la condition |Im [ǫw]| ≫ |Re [ǫw]| est atteinte, le spectre de G (kw0a) se transforme alors en

celui d’un fil conducteur, qui ne montre pas de résonance autour a/δw0 ≈ 1, mais plutôt une

relaxation, comme pour le fil de Ni [Fig. 4.3(b), colonne de gauche]. Enfin, soulignons que les

spectres montrés à la figure 4.3(b) indiquent qu’en régime EQS, un fil conducteur ou isolant

peut présenter une réponse magnétique renormalisée µ̃⊥ dispersive et complexe, même si sa

perméabilité intrinsèque est égale à µ0.

Comme attendu, ces caractéristiques dépendant de ǫw se retrouvent également dans la

réponse gyromagnétique renormalisée montrée à la figure 4.3(c). Dans la colonne de gauche,

la réponse intrinsèque du Ni demeure apparente dans la perméabilité renormalisée, même si

l’effet de peau modifie de façon significative la forme spectrale de µ̃⊥/µ0 par rapport à celle

de µ⊥/µ0. D’une part, la réponse diamagnétique réduit la partie réelle de µ̃⊥/µ0 considéra-

blement lorsque la fréquence augmente, de sorte que celle-ci demeure toujours inférieure à 1

(même à la résonance ferromagnétique) et décrôıt vers 0 à hautes fréquences. D’autre part,

les pertes attribuables aux courants de Foucault mènent à un pic additionnel dans la partie

imaginaire de µ̃⊥/µ0 autour de a/δw0 ≈ 1, ainsi qu’à une diminution de l’amplitude et à un

élargissement du pic de résonance ferromagnétique.

En revanche, dans la colonne de droite, la perméabilité renormalisée du fil de YIG consiste

essentiellement en la superposition de sa réponse gyromagnétique intrinsèque et d’une série

de résonances magnétiques dipolaires, lesquelles correspondent aux pôles de G (kwa) et appa-

raissent aux fréquences satisfaisant la condition kwaJ0 (kwa) = J1 (kwa). Dans ce contexte, la

réponse du fil de YIG présente plusieurs régions de perméabilité renormalisée négative, dont

les positions spectrales peuvent être ajustées, dans une certaine mesure, par l’application

d’un champ magnétique statique.
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Il convient de souligner que la réponse multirésonante de la perméabilité renormalisée

µ̃⊥ d’un fil unique de YIG va se répercuter sur sa susceptibilité externe ¯̄ηw, puis sur la

perméabilité effective ¯̄µeff d’un réseau formé d’un ensemble de tels fils. Dans ce contexte, les

références [33, 34] ont modélisé la perméabilité 2 et la permittivité 3 effectives en régime EQS

d’un réseau de fils ferrimagnétiques de YIG. Ils ont proposé que ce système pourrait présenter,

dans les hyperfréquences, un indice de réfraction négatif et ajustable par l’application d’un

champ magnétique statique.

Par rapport à ces travaux, il est toutefois important d’insister sur le fait que l’excitation

de résonances de type Mie dans l’intervalle de fréquences où la perméabilité intrinsèque ¯̄µw

possède un caractère résonant nécessite que la condition |kw| a ≈ 1 soit satisfaite dans les hy-

perfréquences (c.-à-d., près de la résonance ferromagnétique des fils). Or, pour des matériaux

ferrimagnétiques typiques, ceci requiert des valeurs pour a (et donc pour D) relativement

importantes (c.-à-d., a et D & 1 mm), puisque l’amplitude |kw| du vecteur d’onde dans le

YIG n’est pas beaucoup plus élevée que sa valeur |km| dans la matrice (même en supposant

que ǫm = ǫ0 et µm = µ0). Il en résulte que pour des réseaux de fils ferrimagnétiques, les

conditions d’homogénéisation |km| a ≪ 1 et |km|D ≪ 1 pourraient n’être que faiblement ou

pas du tout satisfaites lorsque |kw| a ≈ 1. 4 En revanche, comme nous allons le voir en 4.2.3,

l’utilisation de fils ferromagnétiques conducteurs de dimensions sous-microniques assure que

les conditions d’homogénéisation sont remplies, tout en minimisant les pertes par courants

de Foucault.

En terminant, les résultats de cette section indiquent que l’obtention de métamatériaux

basés sur l’excitation de résonances de type Mie à l’intérieur d’inclusions diélectriques requiert

que les conditions |km| a ≪ 1 et |km|D ≪ 1 soient simultanément satisfaites lorsque |kw| a ≈
1. Cette contrainte nécessite alors de recourir à des inclusions constituées de matériaux à

indice de réfraction élevé et essentiellement réel, de manière à s’assurer que |kw| ≫ |km|. Dans
ce contexte, mentionnons que plusieurs groupes [15–24] ont récemment modélisé la réponse

électromagnétique effective d’ensembles d’inclusions diélectriques de permittivité élevée. En

2. Comme discuté en 3.2.3, l’expression pour la perméabilité effective présentée aux références [33, 34]
s’applique pour un réseau non borné et correspond à notre relation pour µ̃eff⊥ donnée à l’équation (3.24).
Notons également que les auteurs des références [33, 34] ne considèrent pas les interactions dipolaires interfils
statiques, c’est-à-dire qu’ils posent ωH = ω0 plutôt que ωH = ω0 − fωM (en régime monopolaire, voir la
section 3.4).

3. L’expression pour la permittivité effective développée aux références [33, 34] correspond, dans notre
notation, à ǫ̃eff = (1− f) ǫm + f ǫ̃w,F . Par conséquent, ce résultat néglige la contribution à la permittivité

effective due à l’impédance externe des fils ZL = −i (a/δw0)
2
ln
(

b
a

)

[Éq. (3.79)], ce qui est équivalent à

supposer que K (kwa) ≈ (Zw/Rdc)
−1

= 2F (kwa).
4. En effet, à la figure 4.3(c) (colonne de droite), les conditions |kw| a = 1 et |km| a = 1 sont atteintes autour

de 9 et 24 GHz, respectivement, ce qui nous apparâıt trop rapproché pour assurer une bonne homogénéité à
de tels composites.
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particulier, ces études ont proposé d’utiliser de tels systèmes pour obtenir des métamatériaux

à indice de réfraction négatif, c’est-à-dire caractérisés par une permittivité et une perméabilité

effectives simultanément négatives sur une même gamme de fréquences.

4.2.3 Réseaux de fils et perméabilité négative

En plus des restrictions imposées par le retard électromagnétique à l’intérieur des fils

individuels, la réponse magnétique d’un ensemble de fils en interaction est également réduite

par l’effet de la dilution des fils dans la matrice hôte, ce qui peut, par exemple, restreindre

la partie réelle de la perméabilité effective à des valeurs positives. L’étude de cette question,

qui s’avère essentielle au développement de métamatériaux dotés de fonctions de réponse

négatives, sera maintenant abordée ici.

Considérons un réseau saturé de fils de Ni aimantés axialement et caractérisés par les

propriétés données au tableau 4.1, qui remplissent les pores d’une matrice diélectrique de

permittivité ǫm = 10ǫ0, de perméabilité µm = µ0 et d’étendue latérale infinie. Les fils occupent

une fraction f = 0,20 du réseau et sont soumis à un champ magnétique statique axial Hext0 =
1
2
Ms. Le champ statique effectif Hw0 à l’intérieur des fils inclut une contribution additionnelle

due au champ d’interaction dipolaire interfil, de sorte qu’en régime monopolaire, nous avons

Hw0 = Hext0 − fMs et donc ωH = ω0 − fωM , comme en 3.4.3.

Nous supposons qu’une onde se propage dans le plan du réseau avec des champs électrique

et magnétique respectivement parallèle et perpendiculaire à l’axe des fils (configuration TM).

Dans le cas d’un réseau infini, ce mode est caractérisé par la perméabilité effective scalaire

µ̃eff⊥ donnée à l’équation (3.24), où les composantes η̃ et η̃t sont calculées à l’aide de l’équa-

tion (3.13). Nous devons insister ici sur le fait que l’utilisation de µ̃eff⊥ n’est rigoureusement

valide que dans le cas de réseaux non bornés. En effet, lorsque des ondes guidées se propagent

dans une structure de taille finie (p. ex., une ligne de transmission), µ̃eff⊥ ne représente pas

nécessairement la perméabilité caractéristique qui détermine la constante de propagation du

système. Par conséquent, la forme tensorielle complète de la perméabilité effective ¯̄µeff , prise

en compte aux équations (3.22) et (3.23), est en général requise [134]. 5 De plus, même lorsque

le réseau peut être considéré infini, la composante µ̃eff⊥ ne s’applique que pour le mode où

keff ⊥ 〈M0〉, de sorte que les expressions explicites pour les composantes diagonales et hors

diagonales de ¯̄µeff s’avèrent également nécessaires pour étudier d’autres configurations de

propagation.

5. Par exemple, au chapitre 5, nous verrons que pour un réseau de nanofils aimantés axialement placé en
configuration de ligne microruban, la propagation d’ondes dans le plan de la structure est régie, dans la limite
QS, par la composante diagonale µeff de ¯̄µeff plutôt que par la composante µeff⊥, laquelle s’appliquerait pour
ce mode si le réseau était effectivement non borné. Pour plus de détails, le lecteur pourra également consulter
nos travaux aux références [43, 67, 68].
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Figure 4.4 Parties réelle et imaginaire de la composante de perméabilité effective relative
µ̃eff⊥/µ0 en fonction de la fréquence pour un réseau de fils de Ni de rayon (a) 100 nm, (b)
500 nm, (c) 1 µm et (d) 10 µm. Les spectres sont calculés à l’aide de l’équation (3.24) avec
Hext0 =

1
2
Ms, f = 0,20 et les paramètres donnés au tableau 4.1. Les parties réelle et imaginaire

sont dénotées par des courbes continues et tiretées, respectivement.

La dépendance en fréquence des parties réelle et imaginaire de µ̃eff⊥/µ0 est montrée à la

figure 4.4 pour un réseau de fils de Ni de différents rayons. À la figure 4.4(a), a = 100 nm et

l’approximation QS est valide, de sorte que η̃ ≈ η et η̃t ≈ ηt satisfont l’équation (3.29). Dans

ce cas, µ̃eff⊥ se réduit à µeff⊥ et possède un profil lorentzien, caractérisé par des fréquences

de résonance et d’antirésonance entre lesquelles la partie réelle de µeff⊥ devient négative.

Lorsque la taille des fils augmente [Figs. 4.4(b) à 4.4(d)], la limite QS ne tient plus et les

expressions générales pour η̃ et η̃t doivent être utilisées [Éq. (3.13)]. Il en résulte que la

fréquence de résonance de µ̃eff⊥ diminue graduellement, alors que la courbe d’absorption,

décrite par Im [µ̃eff⊥], s’élargit, décrôıt en amplitude et devient asymétrique. Dans ce régime,

les paramètres de résonance ferromagnétique de µ̃eff⊥ dépendent de façon non triviale des

propriétés intrinsèques des fils, de la géométrie du réseau, du paramètre kwa et du champ

magnétique statique. Enfin, au-delà d’une certaine taille de fils, qui correspondrait à a &

50 µm dans le cas étudié, le régime d’effet de peau dominant est atteint. Les fils présentent

alors un comportement diamagnétique presque parfait (c.-à-d., η̃ ≈ −2 et η̃t ≈ 0), de sorte
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que µ̃eff⊥ ≈ µ̃eff ≈ µ0 (1− f) / (1 + f) ≈ 0,67 [Éq. (3.48)], qui dépend uniquement de f .

En régime SE, soulignons que la décroissance de µ̃eff⊥ en fonction de f reflète le fait que

l’induction magnétique devient alors presque nulle à l’intérieur des fils.

Les spectres montrés à la figure 4.4 indiquent également qu’il existe un rayon critique

pour les fils (entre 500 nm et 1 µm dans le cas étudié ici), au-delà duquel l’amortissement

effectif agissant sur les fils devient suffisamment important pour empêcher la partie réelle de

µ̃eff⊥ de devenir négative entre ses fréquences de résonance et d’antirésonance. Le passage

en régime EQS, qui survient lorsque a/δw0 ≈ 1, a donc deux conséquences importantes sur

la réponse magnétique effective du réseau. D’une part, l’hypothèse d’un mode de précession

uniforme à l’intérieur des fils devient invalide et, d’autre part, la perméabilité effective est

éventuellement restreinte à des valeurs positives et ce, indépendamment de la valeur du

paramètre d’amortissement magnétique α.

Dans ce contexte, soulignons que plusieurs groupes [50–55] ont exploré la possibilité théo-

rique d’obtenir un indice de réfraction négatif à partir de réseaux de fils ferromagnétiques

conducteurs de rayon a & 1 µm. Cependant, toutes ces études ont modélisé les propriétés

électromagnétiques effectives des réseaux en supposant un mode de précession uniforme de

l’aimantation des fils, malgré le fait que la condition a/δw0 & 1 s’appliquent pour toutes les

tailles de fils considérées dans ces travaux. Or, l’examen des spectres de la figure 4.4 montre

qu’une telle approche est injustifiée. En particulier, le recours à l’approximation QS pour

décrire la réponse magnétique de réseaux de fils de rayon a & 1 µm mène à une perméa-

bilité effective dotée d’un profil lorentzien similaire à celui de la figure 4.4(a) (c.-à-d., avec

un intervalle avec Re [µ̃eff⊥] < 0), ce qui nous semble erroné. En revanche, lorsque le retard

électromagnétique à l’intérieur des fils est pris en compte de façon explicite, la perméabilité

effective du réseau s’apparentera plutôt à celle de la figure 4.4(d) et ne montrera pas de région

où Re [µ̃eff⊥] < 0.

Sur la base de ces considérations, il est alors possible, lorsque la valeur de a/δw0 n’empêche

pas a priori d’obtenir un intervalle de perméabilité effective négative, de déterminer la valeur

critique α̃c du paramètre d’amortissement α au-delà de laquelle la partie réelle de µ̃eff⊥

demeure toujours positive. Dans ce contexte, la figure 4.5 montre la dépendance de α̃c en

fonction de a/δw0 pour un réseau de fils de Ni avec les paramètres du tableau 4.1 et δw0 =

0,84 µm (profondeur de peau du Ni à 24 GHz). Pour ces courbes, la valeur du paramètre

critique a été extraite de spectres de µ̃eff⊥ calculés à l’aide de l’équation (3.24).

À la figure 4.5(a), Hext0/Ms = 0,50 et la fraction f s’étend entre 0,05 et 0,40, alors qu’à

la figure 4.5(b), f = 0,20 et Hext0/Ms s’étend de 0,25 à 1,00. Ces résultats indiquent que la

valeur de α̃c augmente lorsque f augmente ou que Hext0/Ms diminue, de sorte que l’obtention

d’un intervalle de perméabilité effective négative est favorisé dans le cas de réseaux denses,
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Figure 4.5 Paramètre d’amortissement critique α̃c d’un réseau de fils de Ni en fonction du
rayon normalisé a/δw0. (a) Hext0/Ms = 0,50 avec f allant de 0,05 à 0,40. (b) f = 0,20 avec
Hext0/Ms allant de 0,25 à 1,00. Les paramètres intrinsèques des fils de Ni sont donnés au
tableau 4.1 et δw0 désigne la profondeur de pénétration non magnétique du Ni à 24 GHz,
c’est-à-dire δw0 = 0,84 µm. L’amortissement critique α̃c correspond à la valeur maximale de
α qui permet à la partie réelle de µ̃eff⊥ de devenir négative entre ses fréquences de résonance
et d’antirésonance.

soumis à de faibles champs magnétiques statiques. Enfin, comme discuté précédemment, la

perméabilité effective ne devient jamais négative lorsque a/δw0 & 1 et ce, même dans le cas

hypothétique d’un réseau de fils sans pertes magnétiques intrinsèques (c.-à-d., avec α = 0).

Il ne semble pas possible d’établir une expression analytique générale pour le paramètre

d’amortissement critique α̃c qui soit valide dans tout le régime EQS. Toutefois, dans la limite

QS, le paramètre critique α̃c se réduit à αc et nous pouvons alors montrer que (voir l’annexe C)

αc = αc0 −
√

α2
c0 − 1, (4.1)

où

αc0 =
2

f

[

Hext0

Ms

+
(1− 2f)

2

]

. (4.2)

Ce résultat montre que dans l’approximation QS, la valeur du paramètre d’amortissement

critique αc est fixée uniquement par f et la valeur du rapport Hext0/Ms. En particulier, αc

est indépendant du rayon normalisé a/δw0 et correspond à la portion horizontale des courbes

montrées à la figure 4.5.

Le paramètre αc représente ainsi la valeur maximale du paramètre de Gilbert permettant

d’obtenir, dans la limite QS, une région de perméabilité effective négative à l’aide de réseaux
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non bornés de fils ferromagnétiques. Par exemple, pour un réseau dense de nanofils avec

f = 0,30 et soumis à un champ magnétique statique relativement faible (Hext0/Ms = 0,25),

nous trouvons que αc ≈ 0,17. Or, cette valeur est supérieure aux valeurs typiques pour α

attendues dans le cas de métaux ferromagnétiques, c’est-à-dire avec α allant de 0,001 à 0,05

(voir par exemple la référence [26], p. 381). Par conséquent, ce résultat indique que des

réseaux de nanofils dotés de paramètres physiques réalistes pourraient, en théorie, montrer

une réponse magnétique négative entre les fréquences de résonance et d’antirésonance de leur

perméabilité effective.

Toutefois, pour des réseaux réels, le paramètre d’amortissement effectif qui décrit l’élar-

gissement de la résonance de la perméabilité effective est affecté non seulement par les pertes

magnétiques intrinsèques et celles dues aux courants de Foucault, mais également par des

contributions dites inhomogènes et liées, par exemple, à la variance statistique des paramètres

géométriques du réseau, de même qu’à la rugosité de surface et à la nature granulaire des fils

individuels. Dans ce contexte, il est possible qu’il faille ajouter un terme d’amortissement de

type Bloch–Bloembergen (c.-à-d., un temps de relaxation, voir notamment la référence [26],

p. 18) à l’équation du mouvement de l’aimantation [Éq. (2.7)] pour incorporer ces différents

mécanismes de pertes.

En terminant, cette section a permis de montrer que l’obtention d’une réponse magnétique

substantielle dans les hyperfréquences à partir de réseaux de fils ferromagnétiques conducteurs

requiert, d’une part, que l’effet de peau soit négligeable ou faible et, d’autre part, que le

réseau ne soit pas trop dilué. Ces conditions sont notamment remplies dans le cas de réseaux

de nanofils relativement denses, c’est-à-dire avec f & 0,1. En revanche, lorsque le retard

électromagnétique commence à se manifester dans la réponse des fils ou que ceux-ci sont

trop dilués dans la matrice, le modèle prédit que la perméabilité effective du réseau tend

essentiellement vers une constante positive, inférieure ou égale à la perméabilité du vide µ0.

4.3 Réponse électrique

Nous allons maintenant considérer la réponse électrique effective d’un réseau de fils fer-

romagnétiques excités dans la configuration TM. Nous examinerons d’abord comment l’effet

de peau et la position de la fréquence plasma ωp,eff modifient le spectre de permittivité ef-

fective ǫ̃eff . Nous porterons une attention particulière à la possibilité d’observer une réponse

magnétodiélectrique significative dans les hyperfréquences, c’est-à-dire une influence de la

perméabilité intrinsèque ¯̄µw des fils (et donc du champ magnétique statique) sur la disper-

sion en fréquence de ǫ̃eff . Enfin, nous discuterons de l’effet de la longueur finie des fils sur la
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permittivité de réseaux de nanofils ferromagnétiques, dans le cas où ceux-ci ne remplissent

pas complètement les pores de la matrice diélectrique.

4.3.1 Permittivité effective de réseaux denses

Nous allons d’abord étudier la permittivité effective de réseaux denses de fils ferromagné-

tiques excités dans la configuration TM. Comme en 4.2.3, nous considérons un réseau saturé

et non borné de fils de Ni aimantés axialement et décrits par les propriétés intrinsèques

données au tableau 4.1. Les fils sont incorporés dans les pores d’une matrice diélectrique ca-

ractérisée par ǫm = 10ǫ0, µm = µ0 et f = 0,20. Un champ magnétique statique Hext0 =
1
2
Ms

est appliqué selon l’axe des fils, de sorte qu’en régime monopolaire, le champ interne vaut

Hw0 = Hext0 − fMs, où −fMs tient compte des interactions dipolaires interfils.
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Figure 4.6 Parties réelle et imaginaire de la permittivité effective relative ǫ̃eff/ǫm en fonction
de la fréquence pour un réseau de fils de Ni de rayon (a) 100 nm, (b) 1 µm, (c) 10 µm et (d)
100 µm. Les courbes sont calculées à l’aide de l’équation (3.63) avec Hext0 =

1
2
Ms, f = 0,20

et les paramètres du Ni donnés au tableau 4.1. Les parties réelle et imaginaire sont dénotées
par des courbes continues et tiretées, respectivement. Notons qu’en (a), la partie imaginaire
de ǫ̃eff/ǫm est multipliée par 0,1.

La figure 4.6 montre le comportement en fonction de la fréquence des parties réelle et

imaginaire de ǫ̃eff/ǫm, que nous avons calculées à l’aide de l’équation (3.63) pour différents
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rayons allant de 100 nm à 100 µm. 6 Pour l’intervalle de fréquences considéré (5–25 GHz),

la profondeur de pénétration non magnétique δw0 du Ni est de l’ordre de 1 µm, de sorte

que les courbes de permittivité effective de la figure 4.6 couvrent les régimes d’effet de peau

faible (a/δw0 ≈ 0,1 pour a = 100 nm), modéré (a/δw0 ≈ 1 et 10 pour a = 1 et 10 µm,

respectivement) et dominant (a/δw0 ≈ 100 pour 100 µm). De plus, comme f = 0,20 pour

tous les spectres, la distance interfil D passe approximativement de 400 nm à 400 µm entre

les figures 4.6(a) et 4.6(d). Ces résultats permettent de mettre en évidence les deux éléments

principaux qui gouvernent la permittivité effective de réseaux denses de fils ferromagnétiques,

soit sa nature plasmonique et sa dépendance en fonction de la perméabilité intrinsèque des

fils.

D’une part, la réponse électrique du réseau peut être décrite dans le cadre du modèle

plasmonique de Drude, c’est-à-dire que ǫ̃eff peut s’exprimer sous la forme de l’équation (3.83),

laquelle fait intervenir une fréquence plasma ωp,eff et un paramètre d’amortissement γp,eff

effectifs. Dans ce modèle, Re [ǫ̃eff ] est négative (positive) lorsque ω . ωp,eff (ω & ωp,eff), alors

que Im [ǫ̃eff ] est proportionnelle à Re [γp,eff ] et tient compte des mécanismes de dissipation

dans le réseau. Comme indiqué à l’équation (3.84), la valeur de la fréquence plasma effective

est gouvernée uniquement par les propriétés de la matrice et les paramètres géométriques du

réseau. En particulier, ωp,eff est inversement proportionnelle à la distance interfil D = b
√
π,

de sorte que la fréquence plasma décrôıt linéairement de 100 THz à 100 GHz, lorsque D

passe de 400 nm à 400 µm entre les figures 4.6(a) et 4.6(d). 7 Par conséquent, aux fréquences

d’opération considérées (5–25 GHz), la partie réelle de ǫ̃eff demeure strictement négative pour

les quatre spectres.

D’autre part, nous avons vu en 3.3.3 que ǫ̃eff pouvait s’exprimer de façon équivalente en

fonction de l’impédance totale normalisée Ztot/Rdc d’un fil placé dans le réseau [Éq. (3.81)].

Selon cette formulation, les spectres de la figure 4.6 peuvent être interprétés en considérant

l’importance relative des contributions interne Zw et externe ZL à l’impédance totale. En par-

ticulier, lorsque les fils sont ferromagnétiques, l’impédance Zw de l’équation (3.75) devient

une magnétoimpédance et dépend alors de la réponse gyromagnétique des fils, par l’intermé-

diaire de la perméabilité de Voigt µ⊥. Il en résulte que le comportement résonant de µ⊥ en

fonction de la fréquence et du champ magnétique statique se répercute sur Zw et, ultimement,

sur ǫ̃eff . La permittivité effective du réseau présente alors une réponse magnétodiélectrique,

6. Mentionnons que le calcul de ǫ̃eff/ǫm à l’aide des équations (3.81) et (3.83) mène à des spectres essentiel-
lement identiques à ceux obtenus par l’intermédiaire de la relation un peu plus générale de l’équation (3.63).

7. Comme la fraction f occupée par les fils est identique pour les quatre spectres montrés à la figure 4.6,
le terme ln (b/a) = ln (D/a

√
π), qui apparâıt dans l’expression de ωp,eff [Éq. (3.84)], possède la même valeur

pour toutes les courbes.
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qui se manifeste principalement au voisinage de la fréquence de résonance de µ⊥ [Éq. (3.44)],

soit entre 10 et 15 GHz pour les spectres considérés à la figure 4.6.

À la figure 4.6(a), la fréquence plasma effective vaut approximativement 100 THz, ce qui

excède considérablement la fréquence d’opération et, par conséquent, entrâıne des pertes très

importantes dans les hyperfréquences. De plus, comme l’effet de peau est faible (a/δw0 ≈ 0,1),

il en résulte que Zw ≈ Rdc − iωLw, de sorte que la limite magnétoinductive s’applique. L’ex-

pression pour Ztot/Rdc est alors dominée par une composante résistive (c.-à-d., réelle et non

dispersive), à laquelle s’ajoutent deux termes de correction proportionnels à (a/δw0)
2 ≪ 1

et liés à la magnétoinductance et à l’inductance externe des fils, comme indiqué à l’équa-

tion (3.100). Le caractère essentiellement réel de Ztot/Rdc entrâıne que seule Re [ǫ̃eff ] est mo-

difiée de façon significative par la magnétoinductance des fils. Toutefois, puisque |Im [ǫ̃eff ]| ≫
|Re [ǫ̃eff ]|, 8 la permittivité effective ǫ̃eff est dominée par sa partie imaginaire, de sorte que

globalement, aucune réponse magnétodiélectrique utile n’est observée. Par conséquent, les

réseaux denses de nanofils ferromagnétiques présentent un comportement métallique, lequel

peut être décrit, dans la limite QS, à l’aide d’une conductivité effective σeff ≈ fσw.
9

En revanche, aux figures 4.6(b) et 4.6(c), l’augmentation de la distance interfil par rapport

à la figure 4.6(a) abaisse la fréquence plasma effective jusqu’à 10 et 1 THz, respectivement.

Il en résulte une diminution du paramètre d’amortissement γp,eff et des pertes associées à

Im [ǫ̃eff ], lesquelles demeurent toutefois significatives. De même, l’augmentation du rayon des

fils accrôıt l’importance de l’effet peau, si bien que a/δw0 ≈ 1 à la figure 4.6(b) et a/δw0 ≈ 10

à la figure 4.6(c). Dans ce régime, la magnétoimpédance Zw/Rdc doit être calculée à l’aide de

la relation générale donnée à l’équation (3.75) et va alors modifier de façon notable les parties

réelle et imaginaire de la permittivité effective ǫ̃eff dans l’intervalle entre 10 et 15 GHz.

Enfin, à la figure 4.6(d), la distance interfil est suffisamment importante pour abaisser

la fréquence plasma effective dans les hyperfréquences (ωp,eff/2π ≈ 100 GHz), de sorte que

|Im [ǫ̃eff ]| < |Re [ǫ̃eff ]|. Par conséquent, les pertes sont substantiellement réduites par rap-

port aux cas des figures 4.6(a) à 4.6(c). 10 De plus, comme l’effet de peau est dominant

(a/δw0 ≈ 100), la permittivité effective ǫ̃eff est bien décrite par les équations (3.93) ou (3.94).

Ces relations dépendent des propriétés électromagnétiques de la matrice et des paramètres

8. Notons qu’à la figure 4.6(a), la partie imaginaire de ǫ̃eff/ǫm est multipliée par un facteur 0,1.
9. Dans la limite QS, la permittivité effective est donnée par l’équation (3.89), qui peut s’écrire comme

ǫeff = (1− f) ǫm + ifσw/ω, où nous avons considéré que ǫw = iσw/ω [Éq. (2.5)]. Or, pour des réseaux denses
de fils conducteurs excités dans les hyperfréquences, le premier terme est négligeable par rapport au second,
de sorte que ǫeff ≈ ifσw/ω. Enfin, en définissant la conductivité effective σeff du réseau comme ǫeff = iσeff/ω,
nous trouvons, par identification, que σeff ≈ fσw.
10. La partie réelle de ǫ̃eff demeure toutefois strictement négative puisque la fréquence plasma effective

demeure supérieure aux fréquences d’opération considérées à la figure 4.6.
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géométriques du réseau, mais demeurent indépendantes des propriétés intrinsèques des fils. 11

En particulier, la réponse magnétodiélectrique de ǫ̃eff est négligeable (même près de la ré-

sonance ferromagnétique), de sorte que la permittivité du réseau devient équivalente à celle

d’un ensemble de fils conducteurs non magnétiques.

En résumé, la permittivité effective dans les hyperfréquences de réseaux denses de fils

ferromagnétiques excités dans la configuration TM dépend fortement du retard électroma-

gnétique à l’intérieur des fils. Lorsque que l’effet de peau est faible, l’impédance totale Ztot des

fils est dominée par sa composante résistive et le réseau se comporte essentiellement comme

un métal effectif. Par conséquent, la permittivité effective présente des pertes considérables

dans les hyperfréquences et une réponse magnétodiélectrique globalement peu significative.

Dans le cas plus général d’un effet de peau modéré (a ≈ δw0), l’impédance intrinsèque Zw de-

vient une magnétoimpédance, qui dépend de la perméabilité intrinsèque des fils et qui modifie

de façon appréciable les parties réelle et imaginaire de ǫ̃eff . Toutefois, en raison du fait que la

fréquence plasma effective reste élevée par rapport aux hyperfréquences, les pertes demeurent

substantielles dans ce régime. Enfin, quand l’effet de peau domine la réponse des fils et que la

fréquence plasma est réduite dans les hyperfréquences, la permittivité effective est contrôlée

principalement par la géométrie du réseau et s’accompagne de pertes relativement faibles.

4.3.2 Réponse magnétodiélectrique de réseaux dilués

La section précédente a permis d’établir les conditions favorables à l’obtention d’une ré-

ponse magnétodiélectrique substantielle et accompagnée de pertes faibles. D’une part, comme

montré aux figures 4.6(b) et 4.6(c), l’effet de peau doit être modéré pour que la perméabilité

intrinsèque des fils modifie de façon appréciable leur impédance totale Ztot et, par conséquent,

la permittivité effective du réseau [Éq. (3.81)]. D’autre part, la réduction des pertes associées

à la partie imaginaire de ǫ̃eff requiert que la distance interfil soit suffisamment grande pour

abaisser la fréquence plasma effective ωp,eff jusqu’aux hyperfréquences, comme montré à la

figure 4.6(d), où ωp,eff/2π ≈ 100 GHz. Pour des métaux ferromagnétiques typiques, ces deux

conditions sont satisfaites pour des fils de rayon a ≈ 1 µm, séparés d’une distance D ≈ 1 mm,

ce qui correspond à des réseaux dilués de microfils ferromagnétiques avec f ≈ 10−6.

Dans ce contexte, les références [36, 37] ont mesuré la permittivité effective dans les hyper-

fréquences de réseaux de microfils de CoFeSiB. Ils ont notamment montré que la dispersion

de la réponse électrique du composite dépend fortement des propriétés magnétiques des fils et

qu’elle peut être ajustée par l’application d’un champ magnétique statique. De même, ils ont

11. Les propriétés intrinsèques des fils sont prises en compte exclusivement par les termes Zw et γp,eff . Or,
lorsque l’effet de peau est dominant, nous trouvons que |Zw| ≪ |ZL| et |γp,eff | ≪ ω, de sorte que Zw et γp,eff
n’apparaissent pas dans les équations (3.93) et (3.94), respectivement. Autrement dit, dans la limite SE, les
champs ne pénètrent pas l’intérieur des fils et ne « sondent » donc pas leurs propriétés intrinsèques.
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proposé un modèle théorique qui démontre un bon accord avec les résultats expérimentaux. 12

Notons cependant que pour des réseaux aussi dilués, la perméabilité effective est essentielle-

ment égale à celle du vide (c.-à-d., ¯̄µeff → µ0), ce qui signifie que la réponse gyromagnétique

intrinsèque des fils se manifeste uniquement par l’intermédiaire de la permittivité effective.

La figure 4.7 montre la dépendance en fréquence des parties réelle et imaginaire de ǫ̃eff/ǫm

d’un réseau de fils de Ni de rayon (a) a = 0,5 µm et (b) a = 1 µm, décrits par les paramètres du

tableau 4.1 et soumis à quatre valeurs différentes du champ magnétique statique Hext0 allant

de 0,05Ms à 0, 50Ms. De plus, les fils sont incorporés dans une matrice non magnétique de

permittivité ǫm = 10ǫ0 et sont séparés d’une distanceD = 750 µm, de sorte que f ≈ 1,4×10−6

pour a = 0,5 µm et f ≈ 5,6× 10−6 pour a = 1 µm. Ces paramètres mènent à une fréquence

plasma effective ωp,eff/2π ≈ 20 GHz pour toutes les courbes présentées à la figure 4.7. 13

De façon générale, la permittivité effective du réseau peut être analysée en considérant

les trois fréquences caractéristiques suivantes :

1. La fréquence plasma effective ωp,eff du réseau [Éq. (3.84)], qui contrôle le changement

de signe de la partie réelle de ǫ̃eff et qui dépend principalement de la distance interfil et

des propriétés électromagnétiques de la matrice.

2. La fréquence de résonance ω⊥ de la magnétoimpédance Zw des fils [Éq. (3.44)], qui tient

compte de l’influence de la perméabilité intrinsèque des fils sur la permittivité effective

du réseau.

3. La fréquence ωδ = 2/σwµ0a
2 à laquelle la profondeur de pénétration non magnétique

δw0 devient égale au rayon a du fil (c.-à-d., a/δw0 = 1 lorsque ω = ωδ). Notons que la

valeur de ωδ est inversement proportionnelle à l’importance de l’effet de peau.

À la figure 4.7, la valeur de la fréquence plasma est fixée de façon à être comprise dans

l’intervalle 5–25 GHz, alors que ω⊥ et ωδ sont variées dans le but d’étudier l’influence de

la perméabilité intrinsèque des fils et de l’effet de peau sur la permittivité effective du ré-

seau, respectivement. D’une part, lorsque le champ magnétique statique appliqué Hext0 est

augmenté de 0,05Ms à 0,50Ms, le rapport ω⊥/ωp,eff passe approximativement de 0,20 à 0,80.

12. Comme mentionné au chapitre 3, l’expression pour la permittivité effective développée aux réfé-
rences [36, 37] est équivalente à notre équation (3.64), où K (kwa) est remplacée par sa valeur donnée à
l’équation (3.76). Toutefois, leur méthode de dérivation est moins rigoureuse et, notamment, ne considère pas
explicitement le problème de la diffusion d’une onde électromagnétique incidente par un fil ferromagnétique
individuel.
13. La fréquence plasma effective est indépendante de Hext0 et ne dépend que faiblement du rayon (dépen-

dance logarithmique). En effet, pour D = 750 µm et ǫm = 10ǫ0, l’équation (3.84) mène à ωp,eff/2π ≈ 19,4 GHz
pour a = 0,5 µm [Fig. 4.7(a)] et ωp,eff/2π ≈ 20,5 GHz pour a = 1 µm [Fig. 4.7(b)]. Notons que les valeurs de
D et ǫm ont été choisies pour que la valeur de la fréquence plasma effective soit comprise entre 5 et 25 GHz.
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Figure 4.7 Parties réelle et imaginaire de la permittivité effective relative ǫ̃eff/ǫm en fonction
de la fréquence pour un réseau de fils de Ni de rayon (a) a = 0,5 µm et (b) a = 1 µm. Les
courbes sont calculées à l’aide de l’équation (3.63) pour différentes valeurs du champ appliqué
Hext0 allant de 0,05Ms à 0, 50Ms et avec D = 750 µm, b = D/

√
π, f = a2/b2, ǫm = 10ǫ0 et

les paramètres du Ni donnés au tableau 4.1.

D’autre part, ωδ/ωp,eff ≈ 3,5 lorsque a = 0,5 µm [Fig. 4.7(a)] et ωδ/ωp,eff ≈ 0,8 lorsque

a = 1 µm [Fig. 4.7(b)]. 14

Les courbes de la figure 4.7 montrent que le caractère résonant de la perméabilité in-

trinsèque des fils peut modifier de façon significative la permittivité effective du réseau, en

particulier lorsque le champ magnétique statique externe est faible (c.-à-d., pour une petite

valeur de ω⊥/ωp,eff) et que l’effet de peau n’est pas trop important [Fig. 4.7(a)]. De façon

14. De façon équivalente, nous trouvons que la valeur de a/δw0 en ω = ωp,eff est approximativement égale
à 0,5 lorsque a = 0,5 µm et à 1,1 lorsque a = 1 µm, ce qui indique que l’effet de peau est plus important
dans le cas considéré à la figure 4.7(b).
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générale, cette réponse magnétodiélectrique se manifeste près de ω = ω⊥, par la présence d’un

maximum de Im [ǫ̃eff ] (pic d’absorption) et d’une zone de dispersion anormale de Re [ǫ̃eff ]. De

plus, pour un effet de peau et un champ magnétique appliqué suffisamment faibles, Re [ǫ̃eff ]

peut devenir positive sur un intervalle de fréquences autour de ω = ω⊥, comme montré à la

figure 4.7(a) pour Hext0 = 0,10Ms et 0,25Ms. Lorsque c’est le cas, la condition Re [ǫ̃eff ] = 0

est alors satisfaite pour trois valeurs de ω, c’est-à-dire deux près de ω⊥, dont les positions

sont ajustables par Hext0, et une troisième autour de ωp,eff , dont la position est fixée par la

géométrie et les propriétés de la matrice.

En résumé, la permittivité effective ǫ̃eff dans les hyperfréquences de réseaux dilués (f ≈
10−6) de fils ferromagnétiques caractérisés par un effet de peau modéré (a/δw0 ≈ 1) dé-

pend fortement de la perméabilité intrinsèque des fils, de sorte que la forme spectrale de ǫ̃eff

peut être ajustée par l’application d’un champ magnétique statique, notamment les zones

où Re [ǫ̃eff ] < 0. Cette réponse magnétodiélectrique s’ajoute alors à la réponse plasmonique

contrôlée par la géométrie et propre aux réseaux de fils conducteurs non magnétiques.

4.3.3 Permittivité de réseaux de nanofils de longueur finie

Nous allons maintenant examiner la permittivité effective de réseaux de fils de longueur

finie. En effet, il convient de rappeler que le modèle théorique que nous avons développé sup-

pose des fils de longueur infinie. Cette hypothèse nous a notamment permis, à la section 2.7,

de résoudre de façon analytique le problème de la diffusion d’une onde électromagnétique par

un fil individuel. Expérimentalement, la condition de fils infinis, ou continus, peut être réali-

sée en s’assurant que la continuité électrique des fils est satisfaite en leurs deux extrémités, à

l’aide, par exemple, de contacts métalliques externes. Une configuration qui respecte ce critère

est montrée à la figure 4.8(a) et consiste à insérer le réseau entre les deux plans conducteurs

d’une ligne de transmission, de manière à former un guide d’ondes à plaques parallèles. En

effet, dans cet exemple, les fils peuvent être considérés de longueur infinie puisqu’ils sont

connectés aux deux parois du guide.

Sur la base de ces considérations, nos expressions pour la permittivité et la perméabilité

effectives ne sont rigoureusement valides que si la continuité électrique des fils est assurée.

Dans le cas contraire, des écarts entre les prédictions théoriques et la réponse observée ex-

périmentalement peuvent survenir. Toutefois, pour un réseau de fils aimantés axialement et

excités dans la configuration TM, les champs électrique et magnétique sont respectivement

parallèle et perpendiculaire à l’axe des fils, ce qui entrâıne que seule la permittivité effective

(axiale) sera affectée de façon substantielle par la longueur finie des fils. 15

15. En effet, dans la configuration TM, les composantes dynamiques du champ magnétique et de l’aiman-
tation des fils demeurent essentiellement confinées dans le plan du réseau (approximation des petits signaux),
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h = L
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Plaques conductrices

(a) Réseau de fils continus (infinis)
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(b) Réseau de fils finis

Espacement d’air
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Figure 4.8 Représentation schématique d’un réseau de fils incorporés dans les pores d’une
matrice diélectrique. (a) Fils de longueur « infinie » qui remplissent complètement les pores
de la matrice et qui établissent un contact électrique avec les deux plaques du guide d’ondes
à plaques parallèles. (b) Fils de longueur « finie » qui remplissent partiellement les pores de la
matrice, de sorte qu’il existe un espacement d’air, d’épaisseur ∆L = h−L, entre l’extrémité
supérieure de chaque fil et le plan conducteur placé au-dessus du réseau.

Or, il s’avère que dans certaines situations, l’absence de contact électrique à l’une ou aux

deux extrémités des fils peut modifier la permittivité effective du réseau de façon avantageuse

par rapport à la réponse prédite pour des fils pouvant être considérés infinis [Éq. (3.63)]. C’est

notamment le cas pour les réseaux denses de nanofils ferromagnétiques, dont les spectres

théoriques de perméabilité et de permittivité effectives ont été présentés respectivement aux

figures 4.4(a) et 4.6(a) en supposant des fils de longueur infinie. D’une part, nous avons vu que

l’obtention d’une perméabilité effective substantielle requiert des réseaux denses (f & 0,1)

et un effet de peau négligeable (a/δw0 ≪ 1), ce qui est assuré par l’utilisation de nanofils de

rayon a . 100 nm. D’autre part, nous avons montré que la réponse électrique de tels réseaux

est équivalente à celle d’un métal massif, caractérisé par une conductivité effective σeff ≈ fσw.

Par conséquent, lorsque nous pouvons traiter les fils comme étant de longueur infinie, notre

modèle prédit que le comportement métallique de réseaux denses de nanofils ferromagnétiques

et les pertes qui y sont associées limitent fortement le potentiel de ces métamatériaux en vue

d’applications à des dispositifs visant à exploiter leur réponse magnétique.

En revanche, dans le cas où la continuité électrique des fils n’est pas satisfaite, comme

montré à la figure 4.8(b), la permittivité effective observée expérimentalement diffère radi-

calement de la réponse métallique prédite par l’équation (3.63) et illustrée à la figure 4.6(a).

De tels réseaux peuvent être obtenus par électrodéposition de métal ferromagnétique à l’in-

térieur des nanopores d’une membrane diélectrique, en s’assurant que la longueur L des fils

de sorte que la forme dispersive de la perméabilité effective ¯̄µeff n’est que faiblement influencée par la longueur
finie des fils, pour autant que la condition L ≫ d soit respectée.
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demeure inférieure à la hauteur h = L+∆L des pores, où ∆L correspond à l’épaisseur de la

portion supérieure non remplie de chaque pore. 16 Il en résulte des réseaux denses de nanofils

ferromagnétiques semi-isolés, c’est-à-dire où les fils sont en contact uniquement avec le plan

conducteur inférieur, lequel joue notamment le rôle de cathode lors du processus d’électro-

déposition. Cette configuration permet de s’affranchir des pertes par effet Joule associées

aux réseaux de fils continus, sans toutefois réduire de façon trop importante leur réponse

gyromagnétique. Les réseaux de nanofils semi-isolés se comportent alors comme des isolants

magnétiques effectifs et, par conséquent, constituent une solution de remplacement promet-

teuse aux matériaux ferrimagnétiques (p. ex., les ferrites et les grenats) utilisés actuellement

dans les dispositifs en hyperfréquences non réciproques ou ajustables par un paramètre ex-

terne.

Dans ce qui suit, nous allons présenter une expression QS pour la permittivité effective

ǫeff de réseaux de nanofils de longueur finie, en nous appuyant sur la procédure d’homogénéi-

sation en deux étapes illustrée à la figure 4.9. La première étape pour obtenir ǫeff consiste à

décomposer le réseau de la figure 4.9(a) en deux sous-réseaux d’épaisseurs ∆L et L, consti-

tués respectivement de fils de permittivités ǫ0 (l’espacement d’air) et ǫw (le métal), incorporés

dans une matrice de permittivité ǫm. Dans la limite QS et pour un champ électrique axial,

les permittivités effectives des deux sous-réseaux de fils s’expriment simplement comme [voir

l’équation (3.89)]

ǫeff1 = (1− f) ǫm + fǫ0, (4.3a)

ǫeff2 = (1− f) ǫm + fǫw. (4.3b)

La structure résultante est montrée à la figure 4.9(b) et consiste en un empilement de deux

couches minces homogénéisées, de permittivités ǫeff1 et ǫeff2, soumises à un champ électrique

dans la direction normale à leur plan. Signalons ici que l’équation (4.3b) pourrait être géné-

ralisée au régime EQS en remplaçant simplement ǫeff2 et ǫw par ǫ̃eff2 et ǫ̃w = ǫw (Ztot/Rdc)
−1,

respectivement.

La deuxième étape consiste à déterminer la permittivité effective ǫeff du réseau homogé-

néisé montré à la figure 4.9(c) en fonction de ǫeff1 et ǫeff2. Pour ce faire, il s’agit d’appliquer

16. Notons que le schéma montré à la figure 4.8(b) n’est pas à l’échelle. En effet, pour les réseaux de nanofils
considérés dans le cadre de ce travail, la longueur L des fils demeure significativement supérieure à leur rayon
a et à leur séparation D, alors que le facteur de remplissage L/h des pores varie habituellement entre 0,5 et
0,8. Par conséquent, l’épaisseur ∆L = h − L de l’espacement d’air s’avère également beaucoup plus grand
que le rayon et la séparation des fils (p. ex., voir les valeurs typiques pour a, D et L données à la figure 5.1).
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Figure 4.9 Représentation schématique de la procédure d’homogénéisation en deux étapes
permettant d’obtenir, dans la limite QS, la permittivité effective ǫeff de réseaux de nanofils
ferromagnétiques de longueur finie. (a) Réseau de nanofils de longueur finie L et de permitti-
vité ǫw, incorporés dans les pores de hauteur h d’une matrice diélectrique de permittivité ǫm.
(b) Première étape d’homogénéisation. (c) Deuxième étape d’homogénéisation. (d) Représen-
tation schématique du réseau correspondant à l’expression approximative pour ǫeff donnée à
l’équation (4.5).

l’équation (2.25a) au cas de disques minces soumis à un champ électrique dans la direction

hors plan (c.-à-d., avec un facteur de dépolarisation égal à 1). Le calcul est direct et mène à

notre résultat final

ǫeff =

(

f1
ǫeff1

+
f2
ǫeff2

)−1

= h

(

ǫeff1ǫeff2
∆Lǫeff2 + Lǫeff1

)

, (4.4)

où f1 = ∆L/h et f2 = L/h. L’équation (4.4) se réduit aux résultats attendus ǫeff1 et ǫeff2 dans

les limites d’un réseau vide (∆L = h et L = 0) et complètement rempli (∆L = 0 et L = h),

respectivement.

Enfin, soulignons que pour des réseaux de fils métalliques typiques, l’inégalité ∆Lǫeff2 ≫
Lǫeff1 est aisément satisfaite, de sorte que l’équation (4.4) se réduit en pratique à
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ǫeff ≈ h

∆L
ǫeff1 =

h

∆L
[(1− f) ǫm + fǫ0] . (4.5)

Dans cette limite, la permittivité effective ǫeff est contrôlée par les propriétés de la matrice, le

facteur de remplissage des pores et leur fraction surfacique, mais demeure indépendante des

propriétés intrinsèques des nanofils. Soulignons que notre expression finale pour ǫeff [Éq. (4.4)]

a été obtenue précédemment par Spiegel et al. [96], à l’aide d’une méthode équivalente, basée

sur le calcul de la capacité totale du réseau de la figure 4.8(b).

Du point de vue de la réponse électrique du réseau, l’équation (4.5) est équivalente à traiter

la partie inférieure du réseau, de hauteur L et de permittivité effective ǫeff2 = (1− f) ǫm+fǫw,

comme un plan conducteur homogène placé à une distance ∆L en dessous de la plaque

conductrice supérieure, comme montré à la figure 4.9(d). Suivant cette approche, le réseau

peut alors être modélisé comme un diélectrique d’épaisseur ∆L et de permittivité effective

ǫeff1 = (1− f) ǫm + fǫ0, inséré entre deux plans conducteurs séparés d’une distance ∆L. Or,

comme la permittivité effective ǫeff du réseau est dérivée en supposant un matériau composite

d’épaisseur h, nous devons multiplier ǫeff1 par le facteur h/∆L pour obtenir ǫeff . En effet, ce

facteur permet de tenir compte de la diminution de l’épaisseur apparente du métamatériau,

laquelle passe de h à ∆L lorsque des fils métalliques de longueur L sont électrodéposés dans

les pores de la matrice.

Par conséquent, alors que la permittivité effective des réseaux denses de nanofils infinis

adopte une forme plasmonique gouvernée par le comportement à la fois résistif et inductif des

fils [Éq. (3.83)], la réponse diélectrique de réseaux de nanofils semi-isolés est plutôt dominée

par l’effet capacitif de la partie supérieure non remplie des pores, d’épaisseur ∆L et de

permittivité effective ǫeff1 [Éq. (4.5)]. Dans cette dernière configuration, le modèle prédit que

la permittivité effective est contrôlée uniquement par la permittivité de la matrice et les

paramètres géométriques du réseau.

La figure 4.10 montre les parties réelle et imaginaire de ǫeff/ǫm en fonction du facteur

de remplissage des pores L/h. 17 La permittivité effective ǫeff est calculée à l’aide de l’équa-

tion (4.5), avec ǫm = 10ǫ0 (1 + 0,01i) et pour f = 0,05, 0,10 et 0,20. Ici, la partie imaginaire

de ǫm tient compte des pertes diélectriques intrinsèques dans la membrane nanoporeuse.

D’abord, comme discuté au paragraphe précédent, les courbes montrent que la permittivité

effective du réseau augmente avec l’augmentation de la longueur des fils. L’effet est d’au-

tant plus important lorsque L s’approche de h, puisque ǫeff est inversement proportionnelle à

l’épaisseur ∆L = h−L de l’espacement d’air [Éq. (4.5)]. Ensuite, nous constatons que l’aug-

mentation de f entrâıne une diminution de la permittivité effective, ce qui s’explique par le

fait que ǫeff est proportionnelle à ǫeff1 = (1− f) ǫm+fǫ0, laquelle diminue lorsque f augmente.

17. Notons que rigoureusement, nous devrions plutôt écrire ǫeff/Re [ǫm].
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Figure 4.10 Permittivité effective relative ǫeff/ǫm d’un réseau de nanofils ferromagnétiques de
longueur finie en fonction du facteur de remplissage des pores L/h. (a) Partie réelle de ǫeff/ǫm
et (b) partie imaginaire de ǫeff/ǫm. Les courbes sont calculées à l’aide de l’équation (4.5), avec
ǫm = 10ǫ0 (1 + 0,01i) et pour f = 0,05, 0,10 et 0,20.

Enfin, dans le cadre de ce modèle, la partie imaginaire de ǫeff est contrôlée exclusivement par

celle de ǫm, c’est-à-dire par les pertes diélectriques dans la matrice nanoporeuse.

En terminant, rappelons que l’équation (4.4) pour la permittivité effective de réseaux de

nanofils de longueur finie est valide uniquement lorsque l’épaisseur de l’espacement d’air est

beaucoup plus grand que le rayon et la séparation des pores (c.-à-d., lorsque ∆L ≫ a,D).

Pour la plupart des réseaux de nanofils ferromagnétiques considérés dans la littérature, ces

exigences sont habituellement satisfaites. En revanche, l’établissement d’une relation plus

générale pour la permittivité effective du réseau, qui ne poserait aucune restriction quant à

la valeur de a/∆L et D/∆L, constitue un problème analytique beaucoup plus complexe, qui

fait intervenir les interactions électrostatiques entre les fils [145]. Dans ce contexte, le modèle

de la référence [145] propose une expression pour la capacité équivalente d’un ensemble de

nanofils métalliques et non magnétiques similaire à celui de la figure 4.8. Nous croyons qu’une

telle approche pourrait constituer un bon point départ pour généraliser l’équation (4.4) au

cas où ∆L devient du même ordre de grandeur que a et D.

4.4 Réponse électromagnétique et synthèse

Au cours de ce chapitre, nous avons discuté notre modèle pour les propriétés électro-

magnétiques effectives de réseaux de fils ferromagnétiques conducteurs. Notre analyse a mis

l’emphase sur l’établissement des conditions relatives aux paramètres géométriques et au re-



109

tard électromagnétique à l’intérieur des fils qui mènent à des réponses effectives significatives

et utiles dans les hyperfréquences. De même, nous avons insisté sur le fait qu’en régime EQS,

les fonctions de réponse électrique et magnétique effectives du réseau sont toutes deux in-

fluencées à la fois par la permittivité et la perméabilité intrinsèques des fils. Il en résulte

alors une réponse gyromagnétique pour ¯̄µeff qui dépend de l’effet de peau et une réponse

plasmonique pour ǫ̃eff qui peut être ajustée par un champ magnétique statique.

La section 4.2 a été consacrée à l’étude des propriétés magnétiques, en traitant d’abord la

réponse d’un fil unique. D’une part, nous avons décrit l’influence du retard électromagnétique

à l’intérieur du fil, pris en compte par le rapport a/δw0, sur ses paramètres de résonance

ferromagnétique. D’autre part, nous avons examiné l’impact de la permittivité intrinsèque ǫw

des fils sur la dispersion de leur perméabilité renormalisée µ̃⊥ en régime EQS, en comparant

la réponse de fils magnétiques de Ni (conducteurs) et de YIG (isolants). Nous avons ensuite

considéré le comportement magnétique de réseaux de fils, ce qui nous a permis d’identifier

le rôle joué par la fraction f occupée par les fils dans le réseau, le paramètre de Gilbert

α et le rapport a/δw0 sur l’amplitude et la forme spectrale de la perméabilité effective. En

particulier, nous avons établi les critères qui permettent d’obtenir une zone de perméabilité

effective négative entre les fréquences de résonance et d’antirésonance.

La permittivité effective ǫ̃eff a ensuite été étudiée à la section 4.3, en analysant d’abord

la réponse plasmonique de réseaux denses de fils infinis. D’une part, nous avons observé que

lorsque la fréquence plasma effective ωp,eff du réseau est significativement supérieure à la fré-

quence d’opération, la partie imaginaire de ǫ̃eff et les pertes qui y sont associées dominent la

réponse électrique du réseau. Ce dernier montre alors un comportement similaire à celui d’un

métal massif décrit dans le cadre du modèle de Drude. Dans ce contexte, abaisser ωp,eff jus-

qu’aux hyperfréquences (c.-à-d., près de la résonance ferromagnétique des fils) requiert, pour

des matrices diélectriques typiques, que la distance interfil D soit de l’ordre du millimètre.

D’autre part, nous avons illustré comment la forme résonante et l’ajustabilité par un

champ magnétique statique de la perméabilité intrinsèque ¯̄µw des fils se répercutent, par

l’intermédiaire de la magnétoimpédance Zw des fils, sur la permittivité effective ǫ̃eff du réseau.

Il en résulte alors une réponse magnétodiélectrique, laquelle peut devenir particulièrement

importante en régime d’effet de peau modéré. Nous avons ensuite discuté de l’influence de

la longueur finie des fils, qui se manifeste notamment lorsque leur continuité électrique n’est

pas assurée. Pour ce faire, nous avons considéré la réponse diélectrique de réseaux denses

de nanofils ferromagnétiques qui ne remplissent que partiellement les pores d’une membrane

diélectrique. Pour ce système, nous avons montré que la réponse résistive et inductive propre

aux réseaux denses de nanofils infinis se transforme en une réponse essentiellement capacitive,

dominée par la géométrie et les propriétés diélectriques de la matrice.
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Dans ce chapitre, nous avons donc étudié séparément la permittivité ǫ̃eff et la perméabilité

¯̄µeff effectives de réseaux de fils ferromagnétiques. Or, dans le cas général, nous avons vu à

la section 2.4 que les fonctions de réponse électrique et magnétique doivent être prises en

compte simultanément dans les équations de Maxwell macroscopiques pour obtenir la relation

de dispersion ω (keff) et ainsi décrire la réponse électromagnétique globale du réseau. Dans

la configuration TM et pour un réseau non borné, l’équation (2.24) pour ω (keff) se réduit à

keff = ω
√

ǫ̃eff µ̃eff⊥, (4.6)

de sorte que les différents comportements montrés par ǫ̃eff et µ̃eff⊥ vont se répercuter sur

la dispersion de keff , puis sur la réponse électromagnétique du réseau. Dans ce contexte,

les résultats établis au cours des sections 4.2 et 4.3 permettent d’identifier trois régimes

d’opération principaux, caractérisés chacun par une réponse électromagnétique spécifique et

une combinaison particulière des paramètres géométriques a, D et L.

Le premier régime correspond aux réseaux denses (f & 0,1) de nanofils ferromagnétiques

de rayon a . 100 nm (limite QS) et de longueur infinie. D’une part, ces réseaux possèdent

une réponse gyromagnétique µ̃eff⊥ ≈ µeff⊥ substantielle et caractérisée par une résonance et

une antirésonance ferromagnétiques, dont les positions peuvent être ajustées à la fois par

la nature des fils, les paramètres géométriques du réseau et la valeur du champ magnétique

statique appliqué, comme illustré à la figure 4.4(a). En revanche, la figure 4.6(a) montre que

la permittivité effective ǫ̃eff ≈ ǫeff = iσeff/ω de tels réseaux est essentiellement imaginaire et

doit plutôt être interprétée en fonction d’une conductivité effective σeff ≈ fσw, laquelle est

non dispersive et à toutes fins pratiques indépendante du champ magnétique statique (ab-

sence de réponse magnétodiélectrique). Par conséquent, ces réseaux se comportent comme des

métaux ferromagnétiques massifs et leurs propriétés effectives possèdent des caractéristiques

spectrales similaires à celles des propriétés intrinsèques ¯̄µw et ǫw = iσw/ω des fils individuels.

Par analogie avec l’équation (2.33), l’équation (4.6) peut alors s’exprimer comme

keff ≈ ω
√
ǫeffµeff⊥ =

(

1 + i

δeff0

)√

µeff⊥

µ0

, (4.7)

où δeff0 =
√

2/ωσeffµ0 est la profondeur de pénétration non magnétique effective du réseau

de nanofils.

Les réseaux de fils infinis caractérisés par une fréquence plasma effective ωp,eff dans les

hyperfréquences et un effet de peau modéré représentent la deuxième configuration d’intérêt.

Pour des valeurs typiques de ǫw et ǫm, ces deux conditions sont remplies pour des fils de

rayon a ≈ 1 µm, séparés d’une distance D ≈ 1 mm, ce qui implique des réseaux fortement

dilués avec f ≈ 10−6. À la figure 4.7, nous avons montré que la permittivité effective ǫ̃eff



111

de tels réseaux est caractérisée par un changement de signe de sa partie réelle autour de

ωp,eff , des pertes relativement faibles et une réponse magnétodiélectrique près de la fréquence

de résonance ferromagnétique des fils. En revanche, la dilution importante des fils dans le

milieu hôte implique que µ̃eff⊥ devient essentiellement égale à la perméabilité du vide. Par

conséquent, l’équation (4.6) se réduit approximativement à

keff ≈ ω
√

ǫ̃effµ0, (4.8)

de sorte que le réseau se comporte alors comme un plasma non magnétique, caractérisé par une

réponse magnétodiélectrique résonante et ajustable par l’application d’un champ magnétique

statique.

Enfin, le dernier régime d’intérêt s’applique aux réseaux denses de nanofils de longueur

finie, incorporés dans les pores d’une membrane diélectrique. Le remplissage incomplet des

pores permet alors de s’affranchir des pertes par effet Joule associées à la continuité électrique

des fils (c.-à-d., aux fils infinis), mais de conserver la réponse gyromagnétique résonante propre

aux réseaux denses de nanofils. 18 Dans cette configuration, le réseau est équivalent à un isolant

magnétique effectif et l’équation (4.6) se réduit alors à

keff ≈ ω
√
ǫeffµeff⊥ ≈ ω

√

h

∆L
ǫeff1µeff⊥ ≈ ω

√

h

∆L
[(1− f) ǫm + fǫ0]µeff⊥. (4.9)

Cette expression pour keff ne dépend que de la perméabilité effective du réseau, des propriétés

diélectriques de la matrice, de la fraction surfacique du réseau occupée par les fils et du

facteur de remplissage des pores. Mentionnons qu’au chapitre suivant, nous étudierons cette

configuration d’isolant magnétique effectif et établirons une expression pour le tenseur de

perméabilité effective de réseaux non saturés, formés de deux populations de nanofils bistables

d’aimantations antiparallèles. Nous validerons ensuite notre modèle avec l’expérience, en nous

appuyant sur le fait que la permittivité effective du réseau est une constante essentiellement

réelle et non dispersive, comme prédit par l’équation (4.5).

En terminant, rappelons qu’un des objectifs poursuivis dans le cadre de cette thèse consiste

à évaluer la possibilité que les réseaux de fils ferromagnétiques conducteurs puissent présenter,

pour un ensemble donné de paramètres géométriques, des réponses gyromagnétique et ma-

gnétodiélectrique utiles et substantielles dans les hyperfréquences. Or, la discussion présentée

au cours de ce chapitre a permis de montrer que l’obtention d’une réponse gyromagnétique

18. En effet, dans la configuration TM, la forme résonante de la perméabilité effective est conservée, même
si la permittivité effective du réseau est radicalement modifiée. Comme nous le verrons au chapitre 5, le
remplissage incomplet des pores affecte uniquement l’amplitude de la susceptibilité effective ¯̄χeff du réseau.
Il en résulte que l’équation (3.33) pour calculer les composantes de ¯̄µeff = µ0(

¯̄I + ¯̄χeff) demeure valide, à la
condition de remplacer ¯̄χeff par (L/h) ¯̄χeff .
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substantielle requiert des réseaux denses et un effet de peau faible, alors que l’obtention d’une

réponse magnétodiélectrique accompagnée de faibles pertes nécessite plutôt que la fréquence

plasma effective soit réduite jusque dans les hyperfréquences et que l’effet de peau soit mo-

déré, ce qui implique des réseaux dilués. Par conséquent, nous concluons que les régimes pour

lesquels la perméabilité et la permittivité effectives montrent à la fois une dispersion significa-

tive dans les hyperfréquences et une ajustabilité par un champ magnétique statique tendent

à être mutuellement exclusifs, c’est-à-dire qu’ils ne peuvent être atteints simultanément pour

un même ensemble de paramètres géométriques.
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CHAPITRE 5

RÉPONSE MAGNÉTIQUE EFFECTIVE DE

RÉSEAUX NON SATURÉS DE NANOFILS

FERROMAGNÉTIQUES BISTABLES

5.1 Mise en contexte : réseaux de nanofils ferromagnétiques

Le modèle élaboré au cours des chapitres précédents sera maintenant appliqué à l’étude

des réseaux de nanofils ferromagnétiques incorporés dans une matrice diélectrique, qui consti-

tuent un système étudié par notre groupe de recherche. De façon générale, les nanofils ferro-

magnétiques peuvent être obtenus par électrodéposition d’ions métalliques dans les nanopores

d’une membrane diélectrique [146]. Il s’agit d’une méthode de fabrication relativement simple

et peu coûteuse, qui mène à des réseaux de haute qualité directement intégrés au substrat.

Selon les conditions de dépôt, il est possible d’obtenir des nanofils homogènes (c.-à-d., de

composition unique) ou multicouches (c.-à-d., formés par l’alternance de couches magné-

tiques et non magnétiques). Dans le cadre de cette thèse, nous considérons uniquement les

fils homogènes.

La figure 5.1 montre une représentation schématique d’un réseau de nanofils ferromagné-

tiques incorporés dans une membrane nanoporeuse d’alumine (Al2O3). De tels réseaux sont

fabriqués par un collègue du Laboratoire de magnétisme, l’étudiant au doctorat M. Louis-

Philippe Carignan. Nous indiquons les plages de valeurs pour les paramètres géométriques

internes du réseau (d = 2a, D et L), de même que la nature des principaux matériaux

utilisés pour les fils (Ni, Co et alliages de CoFeB et de NiFe). Mentionnons que la couche

d’or joue le rôle de cathode lors du processus d’électrodéposition et fait partie du plan de

masse pour les dispositifs en hyperfréquences. Notons également qu’en général, les fils ne

remplissent pas complètement les pores de la matrice (c.-à-d., L < h). Pour une descrip-

tion détaillée de la procédure de fabrication de nos réseaux, le lecteur pourra consulter les

références [61, 147, 148].

Dans le cas de fils de taille nanométrique incorporés dans une matrice isolante, la limite

QS s’applique, de sorte que les pertes par courants de Foucault, généralement associées aux

métaux ferromagnétiques massifs, sont réduites de façon importante. Il en résulte que les ré-

seaux de nanofils se comportent comme des isolants magnétiques effectifs, dont la permittivité
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Ni, Co, CoFeB, NiFe

Figure 5.1 Représentation schématique d’un réseau de nanofils ferromagnétiques incorpo-
rés dans les pores d’une membrane diélectrique. La composition des fils et les paramètres
géométriques des réseaux fabriqués au Laboratoire de magnétisme sont indiqués.

effective ǫeff est contrôlée par les propriétés diélectriques de la matrice, les paramètres géo-

métriques du réseau et le facteur de remplissage des pores, comme discuté au chapitre 4 [voir

notamment l’équation (4.5)]. Pour cette raison, ces matériaux constituent une solution de

remplacement intéressante aux matériaux ferrimagnétiques, tels que les ferrites spinelles, les

grenats et les hexaferrites [149, 150], lesquels sont utilisés actuellement dans des applications

en hyperfréquences nécessitant une réponse non réciproque (p. ex., circulateurs et isolateurs)

ou ajustable par un champ magnétique statique (p. ex., déphaseurs et filtres accordables).

Dans ce contexte, plusieurs études récentes ont proposé des dispositifs basés sur les réseaux

de nanofils, notamment des circulateurs [43, 45, 151], des isolateurs [42, 43], des déphaseurs

non réciproques [44], des filtres [28, 152] et des absorbeurs [153, 154].

Par comparaison avec les matériaux ferrimagnétiques conventionnels, les réseaux de na-

nofils ferromagnétiques comportent plusieurs avantages [28, 40, 43, 155]. D’abord, le faible

diamètre des fils et leur anisotropie de forme mènent à des réseaux dotés d’une rémanence

élevée dans la direction parallèle à l’axe des fils (c.-à-d., normal au plan du réseau), ce qui

rend possible leur utilisation à champ nul et sans aimant externe. 1 Ensuite, l’intégration di-

recte des réseaux de nanofils à un substrat planaire assure leur compatibilité avec les circuits

intégrés monolithiques en hyperfréquences et permet, en conjonction avec l’absence d’aimant

externe, de réduire la taille des dispositifs. De plus, en raison de l’aimantation spontanée gé-

néralement plus importante des métaux ferromagnétiques, les réseaux de nanofils possèdent

des fréquences d’opération plus élevées que celles de la plupart des ferrites spinelles et des

1. Signalons qu’en régime monopolaire, la porosité f du réseau doit toutefois demeurer inférieure à 0,33
pour que la direction facile d’anisotropie magnétique effective reste parallèle à l’axe des fils, comme discuté
en 3.4.3.
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grenats. 2 Enfin, comme nous le verrons dans ce chapitre, la dispersion de la perméabilité

effective des réseaux de nanofils montre des caractéristiques uniques, comme une double ré-

sonance ferromagnétique à l’état non saturé et, en particulier, à la rémanence.

5.1.1 Propriétés magnétiques à l’état saturé

La réponse magnétique dynamique de réseaux saturés de nanofils ferromagnétiques a no-

tamment été caractérisée par des mesures de résonance ferromagnétique du mode de préces-

sion uniforme en fonction du champ magnétique statique appliqué (grandeur et orientation),

de la fréquence d’opération, des paramètres géométriques et de la composition des fils [57–61].

En particulier, des modèles de champ effectif ont permis de démontrer que l’anisotropie des

réseaux est fortement dominée par les interactions dipolaires intra et interfils (en l’absence

d’autres sources d’anisotropie, par exemple magnétocristalline). Toutefois, ces approches ne

considèrent que la dépendance angulaire de la fréquence de résonance ferromagnétique et,

par conséquent, ne proposent généralement pas d’expressions pour le tenseur gyrotrope de

perméabilité effective du réseau.

Dans ce contexte, le formalisme que nous avons développé au chapitre 3 permet de décrire

la réponse gyromagnétique effective de réseaux de nanofils ferromagnétiques. Pour le cas de

nanofils avec a . 100 nm, l’inégalité |kw| a ≪ 1 est satisfaite dans les hyperfréquences, de

sorte que l’approximation QS s’applique. Dans cette limite, des expressions pour les tenseurs

de susceptibilités effective ¯̄χeff et effective externe ¯̄ηeff en fonction du tenseur de susceptibilité

intrinsèque ¯̄χw ont été établies aux équations (3.36) et (3.117), que nous rappelons ici

(

¯̄χeff

f

)−1

= ¯̄χ−1
w + (1− f) ¯̄Nw, (5.1a)

(

¯̄ηeff
f

)−1

= ¯̄χ−1
w + ¯̄N . (5.1b)

Il est important de souligner que ces fonctions de réponse ont été dérivées en supposant que

les fils remplissent complètement les pores de la matrice. Pour tenir compte du cas où la

longueur L des fils est inférieure à la hauteur h des pores, nous devons multiplier ¯̄χeff et ¯̄ηeff

par le facteur L/h. Autrement dit, lorsque L < h, les substitutions suivantes doivent être

effectuées

¯̄χeff → (L/h) ¯̄χeff , ¯̄ηeff → (L/h) ¯̄ηeff . (5.2)

2. Notons que des hexaferrites dotées d’une forte anisotropie uniaxiale dans la direction hors plan peuvent
être utilisées à la rémanence et à des fréquences élevées. Par contre, ces matériaux demeurent difficilement
compatibles avec la technologie des circuits intégrés planaires.
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Nous devons également mentionner que contrairement aux expressions développées en régime

EQS, la limite QS ne requiert pas que les fils soient aimantés selon leur axe. En effet, les re-

lations QS pour ¯̄χeff et ¯̄ηeff demeurent formellement valides même si l’axe de gyrotropie ne

cöıncide pas avec l’axe des fils, à la condition d’utiliser les transformations unitaires appro-

priées pour exprimer ¯̄χw et les tenseurs de désaimantation ¯̄Nw et ¯̄N dans un même système

de coordonnées. 3

Les équations (5.1a) et (5.1b), dérivées précédemment au chapitre 3, décrivent respective-

ment les réponses gyromagnétiques effective et effective externe de réseaux saturés de nanofils

ferromagnétiques. Elles incorporent l’effet du champ magnétique statique, de la fréquence

d’opération, des propriétés intrinsèques des fils, des paramètres géométriques du réseau et

des interactions dipolaires à la fois statiques et dynamiques sur la réponse macroscopique

du réseau. Dans ce chapitre, nous allons utiliser le modèle établi aux chapitres précédents

comme point de départ pour traiter la réponse QS de réseaux non saturés, formés de deux

populations de nanofils aimantées axialement mais antiparallèlement.

5.1.2 Réseaux non saturés et double résonance

L’anisotropie de forme intrinsèque des nanofils mène à des réseaux dotés d’une aimanta-

tion rémanente importante, ce qui rend possible le développement de dispositifs en hyperfré-

quences opérant en l’absence de champ magnétique statique appliqué [40]. Dans ce contexte,

Saib et al. [156] ont réalisé un circulateur planaire basé sur les réseaux de nanofils et fonction-

nant à l’état rémanent. Ils ont également proposé un modèle pour le tenseur de perméabilité

effective, qui fait intervenir la rémanence normalisé du réseau et qui s’appuie sur un résultat

précédent établi à l’état saturé [28]. 4 En revanche, leur approche suppose implicitement que

le réseau non saturé est constitué d’une seule population de nanofils et, par conséquent, ne

prédit qu’un seul pic de résonance ferromagnétique.

Plus récemment, Encinas et al. [157] ont démontré la possibilité d’ajuster la position de

la résonance ferromagnétique de réseaux dilués et autopolarisés (self-biased) de nanofils de

cobalt en fonction de la configuration magnétique statique du réseau. Par l’intermédiaire de

cycles de désaimantation, ils ont préparé différents états rémanents, caractérisés par la frac-

tion relative de fils aimantés parallèlement et antiparallèlement au champ magnétique axial.

Ils ont également introduit l’idée de dispositifs en hyperfréquences dont l’état magnétique

statique peut être contrôlé par le champ appliqué.

3. Rappelons que l’axe de gyrotropie est défini par la direction de l’aimantation statiqueMw0 et correspond
au troisième axe du tenseur ¯̄χw.

4. Notons que l’expression pour le tenseur de perméabilité effective ¯̄µeff proposée à la référence [28] est
dérivée de façon phénoménologique, c’est-à-dire en imposant que la fréquence de résonance des composantes
de ¯̄µeff cöıncide avec l’équation (3.115).
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Kou et al. [66] ont rapporté des résultats similaires dans le cas de réseaux denses de

nanofils de NiFe, pour lesquels les interactions dipolaires interfils affectent substantiellement

la réponse dans les hyperfréquences. Ils ont établi deux conditions de résonance, associées aux

deux populations de fils bistables aimantées vers le haut et vers le bas, mais n’ont observé

qu’un seul pic d’absorption en raison des capacités limitées de leur montage expérimental.

Leurs expressions pour les fréquences de résonance s’appuient sur la formule de Kittel pour

le mode de précession uniforme d’un ellipsöıde [118], à laquelle ils ont ajouté un terme de

correction. Ce terme est donné par le produit de l’aimantation rémanente du réseau et d’un

facteur géométrique qui incorpore l’effet des interactions dipolaires statiques le long de l’axe

des fils. Leur approche néglige toutefois les interactions dipolaires dynamiques transverses à

l’axe des fils, de sorte qu’à l’état saturé, leur résultat diffère du résultat attendu en régime

monopolaire [57] [voir aussi l’équation (3.115)].

Au cours d’une récente étude [67], nous avons réalisé des mesures de résonance ferroma-

gnétique large bande en configuration de ligne microruban, en vue d’étudier la réponse en

hyperfréquences de réseaux denses de nanofils de CoFeB aimantés axialement et incorporés

dans une membrane nanoporeuse d’alumine. En régime non saturé, nous avons observé deux

pics de résonance, associés à la présence de deux populations de fils aimantées antiparallèle-

ment. Nous avons généralisé le formalisme présenté aux chapitres 2 et 3 (voir également les

références [32] et [35]), afin d’établir le tenseur de perméabilité effective d’un réseau formé de

deux populations de nanofils bistables en interaction. Le modèle nous a permis de calculer le

coefficient de transmission de la ligne microruban et d’obtenir des expressions explicites pour

les fréquences de résonance des deux pics d’absorption. Nous avons constaté que la théorie

rend bien compte de la dépendance de la position et de l’amplitude relative des deux pics

de résonance en fonction du champ magnétique statique et de l’état rémanent du réseau.

Dans une étude plus détaillée [68], dont le contenu fera l’objet de ce chapitre, nous avons

présenté les hypothèses qui sous-tendent le modèle, obtenu le tenseur de perméabilité effec-

tive du réseau et dérivé les expressions analytiques pour les deux fréquences de résonance.

De plus, nous avons validé expérimentalement le modèle de perméabilité effective et proposé

une interprétation physique du phénomène de double résonance.

Enfin, De La Torre Medina et al. [69, 70] ont également observé et étudié le phénomène de

double résonance dans les réseaux non saturés de nanofils ferromagnétiques. Ils ont développé

des expressions valides en régime monopolaire pour les fréquences de résonance associées à

chacune des deux populations, sans toutefois les confronter directement au formalisme de

Kou et al. [66] et au nôtre [67, 68]. Leur modèle tient compte des interactions dipolaires

statiques et dynamiques entre les fils d’une même population, mais néglige explicitement

celles entre les fils de populations différentes (autrement dit, ils supposent que le réseau
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est formé de deux sous-réseaux indépendants). Ils ont également validé leur modèle par des

mesures de résonance ferromagnétique en fonction de la fréquence et en différents points de

la courbe d’hystérésis (courbe majeure, courbes de renversement du premier ordre et états

rémanents) sur des réseaux dilués de CoFe et de NiFe.

5.1.3 Organisation du chapitre

La structure du chapitre s’appuie sur celle de la référence [68]. Le modèle théorique est

présenté à section 5.2. Nous généralisons alors la procédure d’homogénéisation définie et

appliquée respectivement aux chapitres 2 et 3, dans le but de dériver, dans la limite QS, le

tenseur de perméabilité effective ¯̄µeff d’un réseau constitué de deux populations antiparallèles

de nanofils bistables en interaction. Notre résultat final est donné à l’équation (5.10) et

s’exprime de façon compacte en fonction des tenseurs de susceptibilité externe ¯̄ηw↑ et ¯̄ηw↓

des fils aimantés vers le haut et vers le bas. La résolution de l’équation du mouvement de

l’aimantation des fils de chaque population nous permet ensuite d’obtenir des expressions

explicites [Éq. (5.25)] pour les composantes diagonales et hors diagonales de ¯̄µeff , ce qui

constitue le résultat principal de ce chapitre. Nous établissons également des relations pour

les deux fréquences de résonance ωres± du réseau non saturé [Éq. (5.27)] et procédons à une

analyse des modes propres qui leur sont associés. De plus, nous montrons que les formalismes

de Kou et al. [66] et de De La Torre Medina et al. [69, 70] représentent des cas particuliers

de notre modèle général. Enfin, la comparaison entre le modèle et l’expérience est présentée

à la section 5.3 et discutée à la section 5.4. Nous constatons que l’accord entre la théorie et

les résultats expérimentaux s’avère en général excellent.

5.2 Modèle théorique

5.2.1 Considérations préliminaires et configuration magnétique statique

Considérons un réseau de nanofils ferromagnétiques caractérisé par les paramètres géo-

métriques indiqués à la figure 2.1 et soumis au champ magnétique statique Hext0 = Hext0ẑ

appliqué selon l’axe des fils. Dans le modèle théorique, nous supposons que la fraction du

réseau occupée par les fils est donnée par la fraction surfacique des pores f = f0 (πa
2/D2), où

f0 un paramètre qui décrit la symétrie des pores. Comme indiqué à l’équation (5.2), le cas de

fils de longueur L < h pourra être pris en compte en multipliant le tenseur de susceptibilité

effective ¯̄χeff du réseau par le facteur L/h.

Nous modélisons les fils individuels comme des ellipsöıdes monodomaines aimantés axia-

lement et caractérisés par une aimantation statique Mw0 = ±Msẑ, laquelle présente un

comportement bistable en fonction du champ magnétique statique appliqué Hext0. Lorsque
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Hext0 est assez élevé pour aligner l’aimantation de tous les fils dans la même direction, le

réseau est saturé et possède une aimantation statique moyenne donnée par

〈M0〉 = ±fMsẑ = ±〈M0s〉 ẑ, (5.3)

où le signe à choisir correspond à celui de Hext0.

〈M0〉 = (g↑ − g↓) fMsẑ

z

y

x
Hext0 = Hext0ẑ

Champ magnétique statique appliqué

Aimantation statique
moyenne du réseau

Figure 5.2 Représentation schématique d’un réseau non saturé soumis au champ magnétique
statique externe Hext0 = Hext0ẑ et formé de deux populations antiparallèles de nanofils bis-
tables aimantés axialement. Le système de coordonnées cartésiennes xyz et l’aimantation
statique moyenne 〈M0〉 du réseau sont également définis.

En régime non saturé, l’aimantation statique moyenne |〈M0〉| = 〈M0〉 est inférieure à

〈M0s〉. Nous posons alors l’hypothèse que cette réduction est causée par le renversement aléa-

toire de l’aimantation d’un certain nombre de fils du réseau, ce qui résulte en une distribution

spatialement uniforme de deux populations de nanofils bistables aimantés antiparallèlement.

Cette configuration magnétique est montrée à la figure 5.2 et possède une aimantation sta-

tique moyenne

〈M0〉 = 〈M0〉 ẑ = (g↑ − g↓) fMsẑ = ∆gfMsẑ = ∆fMsẑ, (5.4)

où g↑ et g↓ désignent les fractions de fils ayant leur aimantation orientée dans les directions

positive et négative de l’axe z, respectivement. Ces deux quantités satisfont la relation g↑ +

g↓ = 1 et définissent le terme ∆g = g↑ − g↓, lequel doit être interprété comme l’aimantation

moyenne du réseau dans la direction z, normalisée par son aimantation à saturation 〈M0s〉 =
fMs. Nous définissons également ∆f = ∆gf = f↑ − f↓, avec f↑,↓ = g↑,↓f . Suivant ces

définitions, nous trouvons que ∆g = ±1 aux saturations positive (+) et négative (−), alors

que ∆g = 0 et 〈M0〉 = 0 (aimantation moyenne nulle) à la coercivité. De même, lorsque le

champ appliqué est nul, 〈M0〉 = 〈M0r〉 ẑ, où 〈M0r〉 représente l’aimantation rémanente du

réseau. Dans cette limite, ∆gr = 〈M0r〉 / 〈M0s〉 correspond alors à la rémanence normalisée

du réseau.
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Avant de passer au traitement de la réponse dynamique du réseau de fils, il est important

de souligner qu’obtenir la valeur de l’aimantation statique normalisée du réseau en fonction

du champ appliqué, c’est-à-dire établir la relation fonctionnelle ∆g (Hext0), n’est pas trivial

et implique la modélisation de la courbe d’hystérésis du réseau. Cet aspect dépasse le cadre

de cette thèse. Par conséquent, la configuration magnétique statique ∆g (Hext0) devra être

déterminée à partir de mesures magnétométriques, puis utilisée à un champ appliqué Hext0

donné comme paramètre dans les calculs dynamiques en fonction de la fréquence.

5.2.2 Formalisme de Maxwell Garnett

Nous allons maintenant établir une expression théorique pour le tenseur de perméabilité

effective ¯̄µeff d’un réseau non saturé de nanofils bistables, aimantés axialement et distribués

selon deux populations antiparallèles de fils en interaction. Pour la gamme de fréquences (1–

100 GHz) et les paramètres géométriques des réseaux de nanofils (a . 100 nm etD . 400 nm)

considérés dans le cadre de cette thèse, l’approximation QS est satisfaite [Éqs. (2.16) et (2.18)].

Par conséquent, l’aimantation des fils individuels est excitée dans un mode de précession

uniforme et la réponse des fils ne dépend pas de kwa.

Au chapitre 2, nous avons développé une procédure d’homogénéisation de Maxwell Gar-

nett basée sur la satisfaction des conditions de continuité des champs à la surface d’une

cellule unitaire équivalente plongée dans le milieu effectif (voir la figure 2.4). L’application de

cette approche nous a notamment permis d’établir l’équation (3.20), qui exprime le tenseur

de perméabilité effective ¯̄µeff en régime EQS d’un réseau saturé en fonction du tenseur de

susceptibilité externe ¯̄ηw des fils individuels.

Dans ce chapitre, nous allons maintenant généraliser cette méthode au traitement de la

réponse QS d’un réseau non saturé, constitué de deux populations d’inclusions gyromagné-

tiques aimantées antiparallèlement et interagissant par l’intermédiaire des champs dipolaires.

En particulier, nous allons montrer que l’équation (3.20) demeure formellement valide, à la

condition de redéfinir le tenseur ¯̄ηw comme la somme des susceptibilités externes ¯̄ηw↑ et ¯̄ηw↓

des fils individuels de chaque population, pondérées par leurs proportions relatives respectives

g↑ et g↓ [voir l’équation (5.11)].

La première étape pour obtenir ¯̄µeff consiste donc à définir la réponse externe ¯̄ηw↑,↓ d’un

fil individuel de chaque population, laquelle permet de lier l’aimantation dynamique mw↑,↓

du fil au champ local hloc. Dans le cas d’une distribution uniforme et aléatoire des deux

populations, tous les nanofils du réseau sont soumis au même champ local, lequel est orienté

perpendiculairement à l’axe des fils. Le champ local hloc agissant sur un fil donné est alors

formé, d’une part, du champ externe hext, qui provient de sources situées à l’extérieur de

l’échantillon et, d’autre part, du champ hint, qui représente la somme des interactions dipo-
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laires interfils dynamiques générées par la précession de l’aimantation de tous les autres fils

du réseau. Par conséquent, le comportement de l’aimantation des fils dans le champ local est

décrit par la relation constitutive suivante :

mw↑,↓ = ¯̄ηw↑,↓hloc =







η↑,↓ −iηt↑,↓ 0

iηt↑,↓ η↑,↓ 0

0 0 η‖↑,↓






hloc, (5.5)

où le tenseur de susceptibilité externe ¯̄ηw↑,↓ de chaque population est caractérisé par des com-

posantes transverses diagonales η↑,↓ et hors diagonales et ηt↑,↓, dont les expressions explicites

seront déterminées à la sous-section suivante. Soulignons que la composante axiale η‖↑,↓ n’in-

tervient pas dans la configuration TM considérée ici et, par conséquent, ne sera pas étudiée

de façon explicite dans le cadre de ce chapitre.

L’étape suivante du problème d’homogénéisation consiste à satisfaire les conditions aux

frontières appropriées pour le champ et l’induction magnétiques à l’interface entre la cellule

unitaire équivalente et le milieu effectif. Toutefois, pour un réseau non saturé, la présence des

deux populations de fils requiert de définir deux cellules unitaires équivalentes. Ces cellules,

associées aux populations aimantées vers le haut et vers le bas, possèdent des dimensions

géométriques a et b = D/
√
πf0 identiques, mais se distinguent par la susceptibilité externe

du fil placée en leur centre (¯̄ηw↑ et ¯̄ηw↓, respectivement) et par leur pondération dans les

conditions aux frontières avec le milieu effectif (g↑ et g↓, respectivement).

Le problème à résoudre est illustré à la figure 5.3. Comme à l’équation (3.15), le champ

dans la matrice (a < ρ < b) de chacune des cellules est composé du champ local hloc incident

sur le fil, de même que du champ dipolaire hscat↑,↓ diffusé par celui-ci et exprimé en fonction

de son tenseur de susceptibilité externe ¯̄ηw↑,↓. Il s’ensuit que l’équation (3.15) peut être

généralisée comme

hm↑,↓ = hloc + hscat↑,↓

= hloc +
a2

2ρ2

[

2 (ρ̂⊗ ρ̂)− ¯̄I
]

¯̄ηw↑,↓hloc,
(5.6)

où la forme matricielle de
[

2 (ρ̂⊗ ρ̂)− ¯̄I
]

en coordonnées cartésiennes est donnée à l’équa-

tion (3.16). Rappelons ici que l’induction dans la matrice s’obtient ensuite directement à

partir de la relation bm↑,↓ = µ0hm↑,↓.

La procédure nécessite ensuite de lier hm↑,↓ et bm↑,↓ aux champs moyens 〈h〉 et 〈b〉. Pour
ce faire, nous devons satisfaire les conditions de continuité appropriées en ρ = b, que nous
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z

y

x

ρ

φ

a

b = D√
πf0

a

b = D√
πf0

bm↑ = µ0hm↑ bm↓ = µ0hm↓

〈b〉 = µ̄eff 〈h〉
Milieu effectif

Population aimantée

vers le haut

Population aimantée

vers le bas

η̄w↑Susceptibilité externe
Proportion relative g↑

η̄w↓Susceptibilité externe
Proportion relative g↓

Figure 5.3 Définition du problème d’homogénéisation à résoudre pour déterminer le tenseur
de perméabilité effective ¯̄µeff d’un réseau non saturé formé de deux populations de nanofils bis-
tables aimantés antiparallèlement. Les cellules unitaires équivalentes, de rayon b = D/

√
πf0,

sont associées aux populations aimantées vers le haut (proportion relative g↑) et vers le bas
(proportion relative g↓) et incluent en leur centre un fil de rayon a et de susceptibilité ex-
terne ¯̄ηw↑ et ¯̄ηw↓, respectivement. Les deux cellules sont plongées dans le milieu effectif de
perméabilité ¯̄µeff , que nous cherchons à déterminer. Notons que pour chaque cellule, l’origine
des systèmes de coordonnées cöıncide avec le centre du fil.

généralisons en pondérant l’importance des champs associés à chaque cellule par sa proportion

relative respective g↑,↓. Les conditions aux frontières s’expriment alors comme

〈hy〉 = g↑hm,y↑ + g↓hm,y↓ = −
[

1− f

2
(g↑η↑ + g↓η↓)

]

hloc, (5.7a)

〈bx〉 = g↑bm,x↑ + g↓bm,x↓ = iµ0

[

f

2
(g↑ηt↑ + g↓ηt↓)

]

hloc (5.7b)

en (ρ = b, φ = 0, π) et

〈hx〉 = g↑hm,x↑ + g↓hm,x↓ = −i

[

f

2
(g↑ηt↑ + g↓ηt↓)

]

hloc, (5.8a)

〈by〉 = g↑bm,y↑ + g↓bm,y↓ = −µ0

[

1 +
f

2
(g↑η↑ + g↓η↓)

]

hloc (5.8b)
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en (ρ = b, φ = ±π/2), que nous pouvons combiner pour obtenir les expressions tensorielles

〈h〉 =
[

¯̄I − f ¯̄Nw (g↑ ¯̄ηw↑ + g↓ ¯̄ηw↓)
]

hloc, (5.9a)

〈b〉 = µ0

[

¯̄I + f
(

¯̄I − ¯̄Nw

)

(g↑ ¯̄ηw↑ + g↓ ¯̄ηw↓)
]

hloc, (5.9b)

où ¯̄Nw est donné à l’équation (2.2) avec Nw
ip ≈ 1/2 et Nw

op ≈ 0 dans la limite de fils très

longs (L ≫ d). Soulignons qu’en régime saturé, les équations (5.7)–(5.9) se réduisent, comme

attendu, aux équations (3.17)–(3.19). Enfin, en insérant l’équation (5.9a) dans 〈b〉 = ¯̄µeff 〈h〉
[Éq. (2.20b)], puis en comparant le résultat avec l’équation (5.9b), nous obtenons notre ex-

pression générale pour le tenseur de perméabilité effective du réseau non saturé

¯̄µeff

µ0

= ¯̄I + ¯̄χeff = ¯̄I + f
[

¯̄η−1
w − f ¯̄Nw

]−1

, (5.10)

où ¯̄χeff est le tenseur de susceptibilité effective du réseau et

¯̄ηw = g↑ ¯̄ηw↑ + g↓ ¯̄ηw↓ (5.11)

est défini ici comme un tenseur de susceptibilité externe équivalent, qui représente la somme

des réponses externes ¯̄ηw↑ et ¯̄ηw↓ associées aux deux populations, pondérées par leurs propor-

tions relatives respectives g↑ et g↓.

Il convient de souligner que l’introduction de ¯̄ηw à l’équation (5.10) mène à une expression

pour ¯̄µeff qui s’avère formellement identique à l’équation (3.20), valide dans le cas d’un réseau

saturé formé d’une seule population de fils. Pour aller plus loin avec l’équation (5.10), nous

devons dériver des expressions explicites pour les tenseurs de susceptibilité externe ¯̄ηw↑ et ¯̄ηw↓

des fils individuels aimantés vers le haut et vers le bas.

5.2.3 Réponse d’un fil individuel : tenseur de susceptibilité externe

Examinons maintenant la réponse externe de l’aimantation mw↑,↓ = ¯̄ηw↑,↓hloc des fils

individuels de chaque population en fonction du champ local. Le comportement dynamique

d’un fil caractérisé par une aimantation totale

Mw↑,↓ = ±Msẑ+mw↑,↓ (5.12)

peut être décrit par l’équation du mouvement de l’aimantation
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∂Mw↑,↓

∂t
= −Mw↑,↓ ×

(

µ0|γ|Hw↑,↓ −
α

Ms

∂Mw↑,↓

∂t

)

, (5.13)

où le terme Hw↑,↓ = Hw0↑,↓ +hw↑,↓ représente la somme des champs statiques et dynamiques

agissant sur les moments magnétiques à l’intérieur de chacun des fils. Dans le cas de fils

longs (L ≫ d) et aimantés axialement, le facteur de désaimantation de forme axial Nw
op est

essentiellement nul, de sorte que le champ statique total Hw0↑,↓ à l’intérieur d’un fil donné

est constitué du champ appliqué Hext0, auquel s’ajoute le champ d’interaction interfil axial

produit par tous les autres fils du réseau (c.-à-d., des deux populations). Il en résulte un

champ statique interne identique pour les deux populations, qui vaut

Hw0↑,↓ = Hw0 =
(

Hext0 −∆gN int
op Ms

)

ẑ, (5.14)

où N int
op est l’élément hors plan (c.-à-d., axial) du tenseur d’interaction donné à l’équa-

tion (3.107). Ce terme dépend uniquement des paramètres géométriques du réseau et tend

asymptotiquement vers la porosité f en régime monopolaire, où L ≫ D et dans lequel nous

nous plaçons dans le cadre de ce chapitre. L’équation (5.14) se réduit alors à

Hw0 = (Hext0 −∆gfMs) ẑ = (Hext0 −∆fMs) ẑ, (5.15)

de sorte que selon le signe de ∆g, le champ d’interaction statique sera parallèle ou antiparallèle

à l’axe z. Pour le cas de longs fils caractérisés par des facteurs de désaimantation de forme

transverses Nw
ip = 1/2, l’équation (3.31) liant le champ dynamique transverse à l’intérieur

des fils au champ local se généralise comme

hw↑,↓ = hloc − 1
2
mw↑,↓. (5.16)

Enfin, la mise en commun des équations (5.15) et (5.16) permet d’écrire

Hw↑,↓ = Hw0 + hw↑,↓

= (Hext0 −∆fMs) ẑ+ hloc − 1
2
mw↑,↓.

(5.17)

Dans la limite des signaux de faible amplitude (c.-à-d., |mw↑,↓| ≪ Ms et |hw↑,↓| ≪ |Hw0|)
et pour une dépendance temporelle harmonique proportionnelle à e−iωt, la substitution des

équations (5.12) et (5.17) dans l’équation du mouvement (5.13) mène aux équations du mou-

vement linéarisées pour mw↑ et mw↓
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iωmw↑ = ẑ×
(

ωMhloc − ω∗
↑mw↑

)

, (5.18a)

−iωmw↓ = ẑ×
(

ωMhloc − ω∗
↓mw↓

)

, (5.18b)

avec ωM = µ0 |γ|Ms et

ω∗
↑,↓ = ω↑,↓ − iαω =

(ωM

2
± ωH

)

− iαω, (5.19)

où

ωH = µ0 |γ| (Hext0 −∆fMs) = ω0 −∆fωM (5.20)

et ω0 = µ0 |γ|Hext0 correspondent respectivement au champ statique interne et au champ

statique appliqué exprimés en unités de fréquence angulaire. De plus, soulignons que les

signes + et − à l’équation (5.19) réfèrent respectivement aux populations aimantées vers le

haut (↑) et vers le bas (↓). Enfin, la résolution des équations (5.18a) et (5.18b) conduit au

résultat cherché, soit au tenseur de susceptibilité externe de chacune des populations

¯̄ηw↑,↓ =







η↑,↓ −iηt↑,↓ 0

iηt↑,↓ η↑,↓ 0

0 0 η‖↑,↓






, (5.21)

dont les composantes transverses diagonales et hors diagonales s’expriment comme

η↑,↓ =
ωMω∗

↑,↓

(ω∗
↑,↓)

2 − ω2
, ηt↑,↓ = ± ωMω

(ω∗
↑,↓)

2 − ω2
. (5.22)

Le tenseur ¯̄ηw↑,↓ décrit le comportement de l’aimantation mw↑,↓ d’un fil individuel en

fonction de la fréquence d’opération, du champ statique interne, de la forme du fil ¯̄Nw et

de ses propriétés intrinsèques Ms, g et α. Les composantes diagonales et hors diagonales

de ¯̄ηw↑ et ¯̄ηw↓ peuvent alors être substituées dans l’équation (5.11), ce qui mène au tenseur

de susceptibilité externe équivalent ¯̄ηw, lequel prend en compte la configuration magnétique

statique du réseau, c’est-à-dire les fractions relatives g↑ et g↓ de fils aimantés vers le haut et

vers le bas.

Dans la limite de faible amortissement (α ≪ 1), les fréquences de résonance dans le

champ local hloc des populations aimantées vers le haut et vers le bas sont égales à |ω↑| et
|ω↓|, respectivement. En revanche, les deux pics observés expérimentalement correspondent

aux conditions de résonance de la perméabilité effective ¯̄µeff , c’est-à-dire de la réponse du

réseau au champ dynamique moyen 〈h〉, laquelle sera formulée en 5.2.4. Or, les champs local
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hloc et moyen 〈h〉 diffèrent en raison des interactions interfils dynamiques liant les précessions

de mw↑ et mw↓. En effet, en insérant l’équation (5.5) pour mw↑ et mw↓ dans l’équation (5.9a),

la relation entre 〈h〉 et hloc devient

〈h〉 = hloc − ¯̄Nw (f↑mw↑ + f↓mw↓) , (5.23)

où les deux derniers termes du membre de droite correspondent aux champs dynamiques

d’interaction exercés sur chacun des fils par l’ensemble des autres fils du réseau. L’équa-

tion (5.23) permet de faire ressortir le couplage entre les aimantations dynamiques mw↑ et

mw↓ des deux populations ou, de façon équivalente, d’illustrer comment la réponse d’un fil

de l’une ou l’autre des populations subit l’influence de l’aimantation dynamique des deux

populations. Il est important de noter que ce couplage est habituellement pris en compte

implicitement dans la procédure d’homogénéisation de Maxwell Garnett.

5.2.4 Réponse du réseau de fils : tenseur de perméabilité effective

Nous pouvons maintenant obtenir la perméabilité effective ¯̄µeff du réseau en substituant

notre expression pour ¯̄ηw = g↑ ¯̄ηw↑ + g↓ ¯̄ηw↓ dans l’équation (5.10), ce qui mène à

¯̄µeff = µ0

(

¯̄I + ¯̄χeff

)

=







µeff −iµeff,t 0

iµeff,t µeff 0

0 0 µeff‖






. (5.24)

Nous constatons que ¯̄µeff prend la forme d’un tenseur gyrotrope dont les composantes trans-

verses diagonales et hors diagonales sont données explicitement par

µeff

µ0

= 1 + χeff = 1 +
ωM

Ω+Ω−

{

f↑ω
∗
↑

[

(ω∗
↓)

2 − ω2
]

+ f↓ω
∗
↓

[

(ω∗
↑)

2 − ω2
]

−
(ωM

2

) [

(

f↑ω
∗
↓ + f↓ω

∗
↑

)2 − (∆fω)2
]

}

,

(5.25a)

µeff,t

µ0

= χeff,t = ωMω
f↑
[

(ω∗
↓)

2 − ω2
]

− f↓
[

(ω∗
↑)

2 − ω2
]

Ω+Ω−

, (5.25b)

où χeff et χeff,t correspondent aux composantes transverses du tenseur de susceptibilité effec-

tive ¯̄χeff du réseau de fil, avec 〈m〉 = ¯̄χeff 〈h〉 et 〈m〉 = f↑mw↑ + f↓mw↓. De plus, les termes

Ω+ et Ω− au dénominateur de µeff et µeff,t valent
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Ω± = ω2 ∓ ω

(

2ωH − ∆fωM

2

)

− ω∗
↑ω

∗
↓ +

ωM

2

(

f↑ω
∗
↓ + f↓ω

∗
↑

)

. (5.26)

Soulignons que la résolution des équations quadratiques Ω+ = 0 et Ω− = 0 pour ω mène aux

deux fréquences de résonance ωres+ et ωres− du tenseur de perméabilité effective, lesquelles

seront obtenues à la prochaine sous-section [Éq. (5.27)]. Pour sa part, la composante axiale

µeff‖ n’intervient pas dans la configuration TM traitée ici. Elle s’exprime en fonction de η‖↑ et

η‖↓ comme µeff‖ = µ0

(

1 + f↑η‖↑ + f↓η‖↓
)

et ne montrera typiquement pas de comportement

résonant dans le cas de nanofils aimantés axialement.

Nos expressions pour les composantes µeff et µeff,t du tenseur de perméabilité effective ¯̄µeff

constituent le résultat principal de ce chapitre. Elles fournissent une description complète

de la réponse gyromagnétique, complexe et dispersive des réseaux non saturés de nanofils

ferromagnétiques bistables et aimantés axialement. En particulier, elles interviennent dans

la constante de propagation qui gouverne l’interaction d’ondes électromagnétiques avec un

réseau placé à l’intérieur d’une ligne de transmission. Enfin, rappelons qu’en accord avec

l’équation (5.2), le remplissage partiel des pores par les nanofils peut être pris en compte en

multipliant les composantes diagonales χeff et hors diagonales χeff,t du tenseur de susceptibilité

effective par le facteur L/h.

5.2.5 Conditions de résonance

Nous allons maintenant dériver des expressions explicites pour les fréquences de réso-

nance du tenseur de perméabilité effective ¯̄µeff . Dans la limite des faibles pertes (α ≪ 1),

nous pouvons remplacer ω∗
↑,↓ par ω↑,↓ dans l’équation (5.26), ce qui mène à deux équations

quadratiques, Ω+ = 0 et Ω− = 0, que nous pouvons résoudre pour ω. Les deux solutions po-

sitives correspondent aux fréquences de résonance ωres+ et ωres− de la perméabilité effective

et s’expriment comme

ωres± =
ωM

2







[

1− f +

(

∆f

2

)2
]1/2

∓ ∆f

2







± ωH , (5.27)

où nous rappelons que ωH = ω0 −∆fωM .

Les fréquences ωres± donnent la position des deux pics d’absorption observés expérimen-

talement dans les réseaux non saturés de nanofils ferromagnétiques bistables et aimantés

axialement. Par conséquent, lorsque les paramètres géométriques, les propriétés intrinsèques

et les valeurs de Hext0 et ∆g sont données, le modèle théorique permet de prédire à la fois la

position et l’amplitude relative des deux pics de résonance, par l’intermédiaire des fréquences
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de résonance ωres± et des composantes du tenseur de perméabilité effective ¯̄µeff , respective-

ment.

Pour un réseau saturé, nous avons ∆g = ±1, de sorte que l’équation (5.27) se simplifie et

cöıncide, comme attendu, avec le résultat présenté initialement à la référence [57] et valide

en régime monopolaire

ωres± =
ωM

2
(1− 3f)± ω0. (5.28)

Dans le cas d’un réseau non saturé, nous avons plutôt que |∆g| < 1, de sorte qu’il s’avère

avantageux de réexprimer l’équation (5.27) comme

ωres± = ωres ±
∆ωres

2
, (5.29)

où

ωres =
ωM

2

[

(

1− f

2

)2

− f↑f↓

]1/2

, (5.30)

∆ωres = 2
(

ω0 − 5
4
∆fωM

)

(5.31)

représentent respectivement la moyenne et l’écart entre les fréquences de résonance ωres+

et ωres−. Notons ici que le résultat (∆f)2 = f 2 − 4f↑f↓ a été utilisé pour obtenir, à partir

de l’équation (5.27), notre expression pour ωres sous la forme donnée à l’équation (5.30).

L’équation (5.29) implique notamment que les deux pics sont confondus lorsque ∆ωres = 0,

ce qui correspond à un champ appliqué

Hext0 =
5
4
∆fMs =

5
4
〈M0s〉∆g. (5.32)

Soulignons toutefois que l’équation (5.32) demeure une condition implicite pour Hext0, étant

donné le comportement hystérétique non trivial montré par l’aimantation normalisée du

réseau ∆g (Hext0), qui dépend elle-même du champ appliqué (voir notamment la figure 5.6).

À la rémanence, le champ appliqué Hext0 est nul (c.-à-d., ω0 = 0) et le réseau est autopo-

larisé. Il s’ensuit que l’écart entre les deux pics devient égal à ∆ωres = −5∆frωM/2, de sorte

que l’équation (5.29) se réduit à

ωres± = ωres ∓ 5
4
∆frωM , (5.33)
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où ∆fr = ∆grf . Ce résultat indique qu’à l’état rémanent, la séparation entre les pics devient

proportionnelle à la rémanence normalisée ∆gr du réseau, laquelle peut être ajustée par

l’intermédiaire de cycles d’hystérésis mineurs.

Interprétation physique de la solution

Exprimée sous la forme de l’équation (5.27), notre solution générale pour les fréquences

de résonance manque de transparence, de sorte que la signification physique des différents

termes qui contribuent à ωres± ne ressort pas explicitement. Pour mettre en évidence cet

aspect, nous développons le terme sous la racine carrée dans l’équation (5.27) en série de

Maclaurin au deuxième ordre par rapport à f , ce qui mène à la solution approximative

ωres± ≈ ωM

2

(

1− f↑,↓ −
f↑f↓
2

)

± (ω0 − f↑ωM + f↓ωM) , (5.34)

où nous avons utilisé la relation f↑,↓ = (f ±∆f) /2 pour exprimer le résultat de l’équa-

tion (5.34) en fonction de f↑ et f↓. Notons que cette procédure est appropriée, puisque pour

des réseaux de nanofils typiques, la valeur de f est généralement petite devant l’unité.

Nous allons maintenant identifier l’origine physique des six termes qui apparaissent dans

l’expression pour ωres± donnée à l’équation (5.34). D’abord, à des fins d’interprétation, il est

approprié d’associer ωres+ et ωres− aux fréquences de résonance des populations aimantées

vers le haut et vers le bas, respectivement. 5 Ensuite, nous pouvons séparer les six termes en

trois contributions dynamiques et trois contributions statiques, que nous avons regroupées à

l’intérieur de la première et de la seconde paires de parenthèses, respectivement.

D’une part, les trois champs dynamiques sont perpendiculaires à l’axe des fils et incluent

le champ de désaimantation de forme des fils individuels 1
2
ωM , de même que deux champs

d’interaction interfil. Ces deux champs correspondent à l’interaction entre l’aimantation du

fil qui résonne à la fréquence ωres± et les champs dipolaires produits, d’une part, par tous les

autres fils de la population résonante (−1
2
f↑ωM pour ωres+ et −1

2
f↓ωM pour ωres−) et, d’autre

part, par tous les fils de la population non résonante (−1
4
f↑f↓ωM à la fois pour ωres+ et ωres−).

D’autre part, les trois champs statiques sont orientés quant à eux parallèlement à l’axe des

fils et comprennent le champ appliqué ±ω0, de même que le champ d’interaction dipolaire

axial ∓∆fωM généré par les deux populations aimantées antiparallèlement. Ce dernier se

5. Nous verrons en 5.2.6 que cette association devient parfaitement rigoureuse seulement lorsque les dé-
veloppements de ωres+ et ωres+ par rapport à f sont limités au premier ordre [Éq. (5.35)]. En général, le
pic d’absorption en ωres+ (ωres−) décrit principalement la résonance de la population aimantée vers le haut
(bas), mais comporte tout de même une contribution non nulle provenant de la population aimantée vers le
bas (haut).
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décompose en une contribution ∓f↑ωM due à la population aimantée vers le haut et une

contribution ±f↓ωM due à la population aimantée vers le bas.

Or, pour la majorité des réseaux de nanofils considérés expérimentalement, f est assez

faible par rapport à 1 pour que l’interaction dynamique entre les populations résonante et non

résonante, laquelle est proportionnelle à f↑f↓ ≤ f 2/4 ≪ 1 [troisième terme à l’équation (5.34)],

demeure négligeable. Dans ce contexte, un développement de l’équation (5.27) au premier

ordre en f est généralement suffisant et mène à la relation approximative plus simple

ωres± ≈ ωM

2
(1− f↑,↓)± (ω0 − f↑ωM + f↓ωM)

=
ωM

2
(1− f↑,↓)± ωH .

(5.35)

Ce résultat correspond ainsi à l’équation (5.27) dans la limite où l’interaction dipolaire dy-

namique interpopulation, proportionnelle à f↑f↓ à l’équation (5.34), peut être négligée.

Physiquement, l’équation (5.35) implique qu’à la fréquence ωres+, les fils aimantés vers le

haut résonnent, alors que les fils aimantés vers le bas précessent avec une amplitude suffi-

samment faible pour que nous puissions les considérer comme étant figés et supposer alors

que seule la composante statique de leur aimantation influence la résonance de la population

aimantée vers le haut. En revanche, à la fréquence ωres−, les fils aimantés vers le bas entrent en

résonance, alors que l’amplitude de précession des fils aimantés vers le haut est très faible, ce

qui permet de considérer ces derniers comme étant immobiles et donc de supposer que seule

la composante statique de leur aimantation modifie la résonance de la population aimantée

vers le bas. Dans cette limite, les précessions de mw↑ et mw↓ n’interagissent pas entre elles,

de sorte que le pic d’absorption en ωres+ peut être associé exclusivement à la résonance de

l’aimantation mw↑ de la population de fils aimantés vers le haut, alors que le pic en ωres−

peut être associé exclusivement à la résonance de l’aimantation mw↓ de la populations de fils

aimantés vers le bas. 6

Enfin, à la rémanence, l’équation (5.35) se réduit à

ωres± ≈ ωM

2

[

1− f

2
(1± 5∆gr)

]

(5.36)

et varie linéairement avec la rémanence normalisée ∆gr.

6. Nous devons insister sur le fait que la précession de chacune des aimantations dynamiques mw↑ et mw↓

demeure toutefois toujours influencée par les champs dipolaires statiques produits par les deux populations.
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Comparaison avec la littérature

Nous allons maintenant comparer notre résultat pour les fréquences de résonance ωres+ et

ωres− avec les expressions proposées par Kou et al. [66] et De La Torre Medina et al. [69, 70].

Ces deux groupes ont établi des conditions de résonance pour le cas de réseaux non satu-

rés de nanofils ferromagnétiques qui interagissent par l’intermédiaire des champs dipolaires.

Toutefois, dans les deux cas, le traitement des interactions dipolaires demeurent incomplet.

Nous allons montrer que leurs expressions représentent en fait deux cas particuliers de notre

résultat général [Éq. (5.27)], que nous pouvons déduire directement en négligeant certains

termes dans notre développement de ωres± au deuxième ordre par rapport à f [Éq. (5.34)].

Premièrement, le modèle établi par Kou et al. [66] inclut les interactions dipolaires sta-

tiques axiales, mais ne tient pas compte des interactions dynamiques transverses. Par consé-

quent, leur résultat peut être obtenu directement à partir de l’équation (5.34) en négligeant

les deuxième et troisième termes dynamiques à l’intérieur de la première paire de parenthèses,

ce qui mène à

ωres± ≈ ωM

2
(1∓ 2∆f)± ω0. (5.37)

Or, puisque leur condition de résonance a été établie pour des réseaux à l’état rémanent,

nous posons ω0 = 0 et ∆f = ∆fr dans l’équation (5.37), ce qui nous permet de retrouver

l’équation (4) de la référence [66]

ωres± ≈ ωM

2
(1∓ 2∆fr) . (5.38)

Ce résultat montre que l’approche développée par Kou et al. néglige implicitement les in-

teractions dipolaires dynamiques perpendiculaires à l’axe des fils, d’une part au sein de la

population résonante et d’autre part entre les populations résonante et non résonante. De

plus, l’équation (5.37) se réduit à ωres± ≈ 1
2
ωM (1− 2f)± ω0 dans le cas d’un réseau saturé,

en désaccord avec le résultat de l’équation (5.28).

Deuxièmement, l’approche préconisée par De La Torre Medina et al. [69, 70] suppose

que chacun des pics d’absorption observés expérimentalement est associé exclusivement à la

résonance de l’une ou l’autre des deux populations. Cette hypothèse implique que le réseau

est constitué de deux populations indépendantes, à l’intérieur desquelles les fils individuels

interagissent par l’intermédiaire des interactions dipolaires à la fois statiques et dynamiques.

Leurs expressions phénoménologiques pour ωres+ et ωres− peuvent être obtenues à partir de

notre résultat général en négligeant toutes les interactions dipolaires interpopulations, c’est-à-

dire en omettant, dans l’équation (5.34), le terme dynamique −1
4
f↑f↓ωM , ainsi que les termes

statiques f↓ωM pour ωres+ et f↑ωM pour ωres−. Il en résulte que
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ωres± ≈ ωM

2
(1− 3f↑,↓)± ω0

=
ωM

2

[

1− 3f

2
(1±∆g)

]

± ω0,

(5.39)

qui cöıncide avec les équations (14) et (15) de la référence [70].

En terminant, il convient de mentionner que l’équation (5.39) représente également une

interpolation linéaire entre le cas d’un réseau saturé, décrit par ωres± = 1
2
ωM (1− 3f) ± ω0

lorsque f↑,↓ = f , et le cas d’un fil isolé, caractérisé par ωres± = 1
2
ωM ± ω0 lorsque f↑,↓ = 0.

Cette interprétation nous semble erronée. En effet, ce résultat implique, par exemple, que la

réponse d’un fil aimanté vers le haut placé à l’intérieur d’un réseau où tous les autres fils sont

aimantés vers le bas (c.-à-d., avec ∆f ≈ − f) est formellement identique à la réponse de ce

même fil lorsque placé dans le vide. Cette conclusion résulte du fait que l’approche proposée

aux références [69, 70] néglige explicitement toutes les interactions dipolaires interpopulations.

En revanche, selon notre formalisme, un fil aimanté vers le haut placé dans un réseau de fils

aimantés vers le bas (c.-à-d., avec f ≈ f↓) subira un champ statique d’interaction dipolaire

égal à f↓ωM ≈ fωM et résonnera à la fréquence ωres+ ≈ 1
2
ωM (1 + 2f) + ω0, laquelle diffère

de l’expression pour un fil isolé. 7

5.2.6 Étude des modes propres

Le tenseur de perméabilité effective ¯̄µeff obtenu à la sous-section 5.2.4 adopte la forme

gyrotrope de l’équation (5.24) en coordonnées cartésiennes, c’est-à-dire lorsque les projections

de 〈h〉 et 〈b〉 dans le plan perpendiculaire à l’axe de gyrotropie (c.-à-d., dans le plan xy)

s’expriment comme

〈h⊥〉 = 〈hx〉 x̂+ 〈hy〉 ŷ, (5.40)

〈b⊥〉 = 〈bx〉 x̂+ 〈by〉 ŷ. (5.41)

Dans cette base, les éléments diagonaux et hors diagonaux de ¯̄µeff sont donnés respective-

ment par les équations (5.25a) et (5.25b). Chacune de ces composantes possède deux pics

de résonance distincts en ωres+ et ωres− [sauf lorsque les pics cöıncident, comme indiqué à

l’équation (5.32)].

7. Notons que le résultat ωres+ = 1

2
ωM (1 + 2f) + ω0 peut être calculé directement en posant ∆f = −f

dans l’équation (5.27) pour ωres+.
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Il est instructif d’obtenir les modes propres liés aux deux fréquences propres, de même

que la susceptibilité effective scalaire à un seul pic associée à chacun de ces modes. Or, il est

aisé de montrer que le tenseur de perméabilité effective gyrotrope devient diagonal dans une

base circulaire et que, dans ce cas, les deux composantes transverses de ¯̄µeff correspondent

à des modes de polarisations circulaires droite et gauche (voir par exemple la référence [26],

p. 13–14). Nous pouvons alors écrire que

〈b⊥〉 =
(

〈b+〉
〈b−〉

)

=

(

µeff+ 0

0 µeff−

)(

〈h+〉
〈h−〉

)

, (5.42)

où 〈h±〉 = 〈hx〉 ∓ i 〈hy〉 et 〈b±〉 = 〈bx〉 ∓ i 〈by〉, de sorte que les signes du haut et du bas

réfèrent aux modes de polarisations circulaires droite et gauche, respectivement. 8 De plus,

les composantes circulaires de perméabilité effective µeff+ et µeff− s’expriment en fonction des

composantes transverses diagonales et hors diagonales comme

µeff± = µeff ± µeff,t. (5.43)

De façon équivalente, nous pouvons écrire µeff et µeff,t en fonction des composantes circulaires

µeff =
µeff+ + µeff−

2
, µeff,t =

µeff+ − µeff−

2
. (5.44)

La substitution des équations (5.25a) et (5.25b) dans l’équation (5.43) permet alors d’obtenir

des expressions explicites pour les composantes circulaires

µeff±

µ0

= 1− ωM

f↑
(

ω∗
↓ ± ω

)

+ f↓
(

ω∗
↑ ∓ ω

)

Ω±

, (5.45)

lesquelles adoptent une forme beaucoup plus compacte que celle de µeff et µeff,t. L’équa-

tion (5.45) indique notamment que la fréquence propre ωres+, solution de Ω+ = 0, correspond

à un mode propre de polarisation circulaire droite, auquel est associée la perméabilité effective

scalaire µeff+. De même, la fréquence propre ωres−, solution de Ω− = 0, décrit plutôt un mode

propre de polarisation circulaire gauche, auquel est associée la perméabilité effective scalaire

µeff−. Autrement dit, les composantes de perméabilité µeff+ et µeff− possèdent chacune un

seul pic de résonance, dont la position est donnée par ωres+ et ωres−, respectivement.

L’équation (5.45) permet également de constater que les composantes circulaires µeff+ et

µeff− possèdent chacune un terme proportionnel à f↑ et un terme proportionnel à f↓, lesquels

représentent respectivement les contributions des populations de fils aimantés vers le haut et

8. Mentionnons que la faible réponse dynamique parallèle à l’axe des nanofils n’est pas prise en compte
dans l’équation (5.42).
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vers le bas. Par conséquent, nous pouvons décomposer chacune des composantes circulaires

comme la somme de deux termes, soit

µeff± = µeff±↑ + µeff±↓, (5.46)

où µeff±↑ et µeff±↓ sont liés aux populations de fils aimantés vers le haut et vers le bas,

respectivement.

mw↓

mw↑

mw↓

mw↑

Fil vers le haut avec µeff+↑ Fil vers le bas avec µeff+↓

(a) Mode de polarisation circulaire droite avec perméabilité effective
µeff+ à la fréquence propre ω = ωres+

Fil vers le haut avec µeff−↑ Fil vers le bas avec µeff−↓

(b) Mode de polarisation circulaire gauche avec perméabilité effective
µeff− à la fréquence propre ω = ωres−

Figure 5.4 Représentation schématique de la précession de l’aimantation des fils aimantés vers
le haut et vers le bas lorsqu’excités dans les modes propres du tenseur de perméabilité effective
¯̄µeff . (a) Mode de polarisation circulaire droite, de fréquence propre ωres+ et de perméabilité
effective scalaire µeff+. Lorsque la fréquence d’excitation approche ωres+, nous trouvons que
|mw↑| ≫ |mw↓|. (b) Mode de polarisation circulaire gauche, de fréquence propre ωres− et de
perméabilité effective scalaire µeff−. Lorsque la fréquence d’excitation approche ωres−, nous
trouvons que |mw↑| ≪ |mw↓|.

Dans ce contexte, la figure 5.4 montre une représentation schématique de la précession

de l’aimantation des fils aimantés vers le haut et vers le bas lorsqu’excités dans les modes
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propres de polarisations circulaires droite et gauche. Un calcul direct permet de montrer que

près de ωres+, la contribution de la population de fils aimantés vers le haut à la perméabilité

µeff+ du mode de polarisation circulaire droite devient beaucoup plus importante que celle

de la populations aimantée vers le bas, de sorte que |mw↑| ≫ |mw↓|, comme montré à la

figure 5.4(a). Au contraire, lorsque ω s’approche de ωres−, la population de fils aimantés

vers le bas gouverne la perméabilité µeff− du mode de polarisation circulaire gauche et, par

conséquent, |mw↑| ≪ |mw↓|, comme illustré à la figure 5.4(b).

Compte tenu de ces considérations, les équations (5.25a) et (5.44) pour l’élément diagonal

µeff peuvent être simplifiées et exprimées sous la forme compacte

µeff

µ0

≈ 1− ωM

2

[

f↑
(

ω∗
↓ + ω

)

Ω+

+
f↓
(

ω∗
↑ + ω

)

Ω−

]

, (5.47)

où nous avons négligé les petites contributions à la susceptibilité effective dues à µeff+↓ et

µeff−↑. Dans cette limite, l’équation Ω± = 0 est satisfaite en ω = ωres±, où ωres± est donnée à

l’équation (5.35). L’équation (5.47) prédit alors que les pôles situés en ωres+ et ωres+ corres-

pondent exclusivement à la résonance des populations aimantées vers le haut (terme ∝ f↑)

et vers le bas (terme ∝ f↓), respectivement.

5.3 Comparaison avec l’expérience

5.3.1 Méthode expérimentale

Nous allons maintenant comparer les prédictions du modèle avec l’expérience. Avant de

débuter, il convient de mentionner que la fabrication des échantillons, la prise de mesures et

l’extraction des données expérimentales considérées au cours de cette section ont été effectuées

par M. Louis-Philippe Carignan, étudiant au doctorat en génie physique. En revanche, l’ana-

lyse des résultats expérimentaux, la comparaison avec le modèle théorique et la discussion

ont été réalisées par l’auteur de cette thèse.

Les mesures expérimentales en hyperfréquences ont été obtenues en configuration de ligne

microruban, dans laquelle le réseau de nanofils joue le rôle de substrat, comme montré à la

figure 5.5. Une procédure d’anodisation en deux étapes [147, 148] a d’abord été utilisée pour

la fabrication de la membrane nanoporeuse d’alumine. Des images obtenues par microscopie

électronique à balayage ont révélé un arrangement quasi hexagonal des pores, caractérisé par

un diamètre moyen d = 45 nm et une distance interpore moyenne D = 110 nm. Une couche

d’adhésion en titane (15 nm) et une couche d’or (1 µm) ont été successivement déposées

sur un des côtés de la membrane d’alumine, préalablement à l’électrodéposition de nanofils

amorphes de Co94Fe5B1 à l’intérieur des pores (h = 220 µm) de la membrane d’alumine [61].
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La couche d’or, qui a servi de cathode lors du processus d’électrodéposition, a ensuite été

fixée au plan de masse de cuivre (500 µm) de la ligne microruban à l’aide de colle époxy

conductrice à l’argent. Un processus de lithographie a alors été utilisé pour obtenir une ligne

microruban d’une largeur de 0,5 mm et d’une longueur de 16 mm sur le réseau de nanofils de

CoFeB. Enfin, une transition de type coaxial-microruban a permis de connecter un analyseur

de réseau vectoriel à la ligne microruban. Notons ici que l’ajustement de la largeur de la

ligne microruban à des fins d’adaptation d’impédances n’était pas critique, puisque l’objectif

principal de la procédure expérimentale consistait à extraire la perméabilité effective du réseau

de nanofils, en vue de la comparer au modèle théorique.

Couche de colle époxy (10 µm)

Ligne microruban de Cu (25 µm)

Couches de Ti et de Au (15 nm et 1 µm)

Couche de colle époxy de Ag (50 µm)

Plan de masse de Cu (500 µm)

Réseau de nanofils ferromagnétiques (220 µm)

Figure 5.5 Vue en éclaté de la ligne microruban à l’intérieur de laquelle est incorporé le
réseau de nanofils ferromagnétiques et définition de la valeur des paramètres géométriques
pertinents.

Un magnétomètre à échantillon vibrant a été utilisé pour obtenir des courbes d’hystérésis

vectorielles d’un réseau de nanofils de CoFeB provenant de la membrane ayant servi pour la

fabrication de la ligne microruban. La figure 5.6 montre la composante d’aimantation nor-

malisée ∆g = 〈M0〉 / 〈M0s〉 (courbe continue), mesurée parallèlement au champ magnétique

statique Hext0 appliqué le long de l’axe des nanofils. Pour toutes les mesures effectuées, la

composante de l’aimantation perpendiculaire au champ appliqué était négligeable, en accord

avec notre hypothèse de deux populations antiparallèles de nanofils bistables. La figure 5.6

présente également six cycles d’hystérésis mineurs (courbes tiretées) débutant à des champs

de renversement Hr allant de −2,5 kOe à 0 kOe, par pas de 0,5 kOe. Ces cycles mineurs

permettent d’ajuster la valeur de ∆gr = 〈M0r〉 / 〈M0s〉 à champ nul et ainsi de préparer des

états rémanents spécifiques. Les carrés et les cercles indiquent les configurations magnétiques
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statiques correspondant aux spectres de perméabilité considérés dans ce qui suit et montrés

aux figures 5.7 et 5.9, respectivement. La courbe en trait pointillé correspond quant à elle

à la condition de cöıncidence des pics [Éq. (5.32)], calculée en utilisant Ms = 1400 kA/m

et f = 0,12 comme paramètres. Notons que la droite résultante croise la branche supérieure

de la courbe d’hystérésis majeure à Hext0 ≈ 2,6 kOe et ∆g ≈ 1. Enfin, la figure en mé-

daillon montre le comportement de l’aimantation rémanente normalisée ∆gr = 〈M0r〉 / 〈M0s〉
en fonction du champ de renversement Hr.

-5,0 -2,5 0,0 2,5 5,0
-1,0

-0,5
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Figure 5.6 Courbe d’hystérésis majeure (trait continu) de l’aimantation normalisée ∆g =
〈M0〉 / 〈M0s〉 d’un réseau de nanofils de CoFeB, mesurée parallèlement au champ magnétique
statique axial Hext0. Les traits tiretés représentent des courbes d’hystérésis mineures mesurées
pour plusieurs valeurs du champ de renversement Hr et menant à différentes aimantations
rémanentes normalisées ∆gr = 〈M0r〉 / 〈M0s〉. Les carrés et les cercles indiquent les configu-
rations magnétiques correspondant aux spectres de perméabilité montrés aux figures 5.7 et
5.9, respectivement. La courbe en trait pointillé illustre la condition de cöıncidence des pics
[Éq. (5.32)], calculée avec Ms = 1400 kA/m et f = 0,12. La figure en médaillon montre le
comportement de l’aimantation rémanente normalisée du réseau 〈M0r〉 / 〈M0s〉 en fonction
du champ de reversement Hr. Notons que 1 kOe = 1000/4π ≈ 79,58 kA/m dans le Système
international d’unités (SI).

Des mesures de résonance ferromagnétique large bande en configuration de ligne microru-

ban ont été réalisées afin de confronter notre modèle de perméabilité effective à des données

expérimentales. Les paramètres de réflexion S11 et de transmission S21 de la ligne microruban

ont été mesurés en fonction de la fréquence (1–40 GHz), pour plusieurs états magnétiques

statiques, correspondant à différentes valeurs de Hext0 et ∆g. Le paramètre S21 tient compte
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des pertes en transmission dans la structure et est directement relié à la puissance absorbée

à la résonance ferromagnétique (c.-à-d., un minimum dans la transmission correspond à un

maximum dans l’absorption). Soulignons ici que la partie de l’énergie électromagnétique ré-

fléchie et les défauts d’adaptation d’impédances, décrits par le paramètre S11 et montrés à la

référence [43], n’ont pas fait l’objet d’un ajustement particulier en vue d’obtenir une struc-

ture adaptée de façon optimale et dotée d’une impédance caractéristique spécifique. Encore

un fois, cette situation ne posait pas de problèmes significatifs dans le cadre de cette thèse,

puisque nous mettions surtout l’accent sur la validation du formalisme pour le tenseur de

perméabilité effective.

Nous faisons l’hypothèse que la ligne microruban supporte un mode fondamental de pro-

pagation quasi transverse électromagnétique (TEM), pour lequel les champs dynamiques

électrique et magnétique sont respectivement parallèle et perpendiculaire à l’axe des fils (voir

notamment la référence [142], p. 59). Par conséquent, la direction de propagation de l’onde

est transverse à l’aimantation statique du réseau. Pour un milieu non borné, la perméabilité

scalaire qui caractérise la propagation d’ondes électromagnétiques dans cette configuration

est la perméabilité effective de Voigt, donnée par µeff⊥ = (µ2
eff − µ2

eff,t)/µeff . Cependant, pour

le cas considéré ici, qui correspond à la propagation d’ondes guidées à l’intérieur d’une struc-

ture bornée, c’est plutôt la composante diagonale µeff [Éq. (5.25a)] qui intervient dans la

constante de propagation de la ligne microruban et qui doit être comparée à la perméabilité

extraite des paramètres S mesurés [134, 158].

Une procédure numérique similaire à la méthode d’optimisation de transmission/réflexion

établie par Baker-Jarvis et al. [159] a par la suite été utilisée pour extraire, à partir des

paramètres S mesurés, des valeurs expérimentales pour la permittivité ǫc et la perméabilité

µc caractéristiques de la ligne microruban, qui définissent l’impédance caractéristique Zc =
√

µc/ǫc et la constante de propagation kc = ω
√
ǫcµc de la structure dans le mode quasi

TEM [142]. La référence [159] utilise des développements en séries de Laurent tronqués pour

extraire ǫc et µc à partir des paramètres S mesurés. Or, dans le cas traité ici, nous avons

plutôt supposé des profils spectraux correspondant à une réponse complexe non dispersive

pour ǫc et à une double lorentzienne pour µc, comme attendu des équations (4.5) et (5.25),

respectivement.

La perméabilité caractéristique µc dépend à la fois de la perméabilité effective µeff du

réseau de nanofils (composante diagonale de ¯̄µeff) et des paramètres géométriques de la ligne

microruban. De façon générale, la présence de champs de fuite dans l’air impliquent que la

valeur de µc est inférieure à celle de µeff . Des relations exprimant µc en fonction de µeff , ba-

sées sur un facteur de remplissage en hyperfréquences, ont été proposées dans la littérature,

notamment par Pucel et Massé [160]. Leur approche requiert toutefois que le substrat de la
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ligne microruban (c.-à-d., le réseau de nanofils dans la cas étudié ici) possède une perméabilité

isotrope, dont la partie réelle demeure strictement positive, ce qui n’est pas le cas des réseaux

de nanofils ferromagnétiques. De plus, la présence d’une couche d’époxy de faible permittivité

et d’épaisseur de 10 µm entre la ligne microruban de cuivre et le réseau de nanofils (voir la

figure 5.5), ainsi que le remplissage incomplet des pores par les nanofils augmentent sub-

stantiellement les champs de fuite dans la structure, ce qui réduit davantage la perméabilité

caractéristique µc de la ligne microruban par rapport à la perméabilité effective µeff du réseau

de nanofils prédite par le modèle.

Sur la base de ces considérations, on peut s’attendre à ce qu’un facteur a priori inconnu,

mais lié à la fois au remplissage incomplet des pores par les nanofils et aux paramètres

géométriques de la ligne microruban, modifie la perméabilité µeff calculée par le modèle. Dans

ce contexte, nous avons constaté que l’ensemble des spectres expérimentaux pour µc peuvent

être bien décrits par l’équation (5.25a) pour µeff = µ0 (1 + χeff), à la condition d’utiliser la

relation empirique suivante, sous la forme proposée par Dionne et Oates [161] :

µc = µ0 (1 + qχeff) = µ0 + q (µeff − µ0) , (5.48)

où q est un facteur de remplissage géométrique déterminé expérimentalement. L’effet de q

est alors équivalent à celui de diluer la susceptibilité magnétique effective χeff d’un facteur

q. Cette procédure est justifiée, d’une part, par l’incorporation du réseau à l’intérieur de la

ligne microruban et, d’autre part, par le remplissage incomplet des pores de la matrice par

les fils (autrement dit, le facteur q fait notamment intervenir le rapport L/h). Or, comme

nous allons le constater dans ce qui suit, une valeur unique, q = 0,13, nous a permis de rendre

compte de tous les résultats expérimentaux, sans ajustement supplémentaire des données. La

modélisation du facteur q en fonction des paramètres de la ligne microruban dépasse toutefois

le cadre de cette thèse.

Tableau 5.1 Paramètres physiques utilisés dans les calculs théoriques pour modéliser les ré-
sultats expérimentaux.

Paramètre Symbole (unités) Valeur
Aimantation spontanée Ms (kA/m) 1400
Facteur gyromagnétique g 2,26
Paramètre d’amortissement de Gilbert α 0,06
Fraction volumique occupée par les nanofils f 0,12
Facteur de remplissage géométrique q 0,13
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5.3.2 Double résonance ferromagnétique

Considérons d’abord les spectres de perméabilité obtenus en balayant le champ appliqué

de 5 kOe à −5 kOe en suivant la branche supérieure de la courbe d’hystérésis majeure. La

figure 5.7 montre les parties réelle et imaginaire de la perméabilité caractéristique relative

µc/µ0 en fonction de la fréquence pour les six valeurs du champ magnétique appliqué indi-

quées par des carrés à la figure 5.6. Les spectres considérés couvrent des états magnétiques

statiques allant de la saturation positive à la saturation négative. Les courbes tiretées cor-

respondent à la perméabilité caractéristique extraite des paramètres S mesurés, alors que les

courbes continues représentent la perméabilité caractéristique théorique obtenue à partir de

l’équation (5.48), avec q = 0,13 et µeff donné par l’équation (5.25a), elle-même calculée à

l’aide des paramètres du tableau 5.1. Il est important de souligner qu’un seul ensemble de

paramètres a été utilisé dans le calcul de toutes les courbes théoriques présentées dans ce

chapitre.

La figure 5.7 démontre que le modèle rend compte de façon satisfaisante de la position,

de la forme, de la largeur et de l’amplitude des spectres de perméabilité à deux pics obte-

nus à différentes valeurs du champ appliqué Hext0 et de la configuration magnétique statique

∆g (Hext0) qui lui est associée. L’accord est particulièrement bon à la saturation, où la per-

méabilité effective ne possède qu’un seul pic d’absorption [Figs. 5.7(a) et 5.7(f)], de même que

pour les états non saturés caractérisés par deux pics distincts, relativement éloignés l’un de

l’autre et d’amplitudes nettement différentes [Figs. 5.7(b) et 5.7(c)]. Certains désaccords sont

toutefois observés pour les spectres montrant deux pics relativement rapprochés et d’ampli-

tudes similaires [Figs. 5.7(d) et 5.7(e)]. Dans ces deux derniers cas, pour lesquels la proportion

de fils aimantés vers le bas compense ou excède la proportion de fils aimantés vers le haut,

le modèle tend à surestimer la fréquence de résonance du pic à plus basse fréquence et donc

à sous-estimer la séparation entre les pics observée expérimentalement.

5.3.3 Interactions dipolaires

La figure 5.8 montre le comportement des deux fréquences de résonance ωres+ et ωres−

en fonction du champ magnétique statique appliqué le long de la branche supérieure de la

courbe d’hystérésis majeure. Les calculs théoriques, obtenus à partir de l’équation (5.27), et

les données expérimentales sont désignés par des traits continus et des carrés, respectivement.

La portion tiretée de chaque courbe théorique indique l’intervalle de valeurs pour le champ

appliqué à l’intérieur duquel le pic prédit en ωres+ ou ωres− n’est pas observé dans la per-

méabilité effective (c.-à-d., Hext0 inférieur à −2,5 kOe pour ωres+ et supérieur à 1 kOe pour

ωres−). En effet, ces régions correspondent à des configurations magnétiques statiques avec
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Figure 5.7 Parties réelle et imaginaire de la perméabilité caractéristique relative µc/µ0 en
fonction de la fréquence pour le réseau de nanofils de CoFeB placé dans les différents états ma-
gnétiques statiques (Hext0, ∆g) indiqués par des carrés à la figure 5.6 et situés sur la branche
supérieure de la courbe d’hystérésis majeure. (a) (5, 0,99), (b) (0,5, 0,67), (c) (−0,5, 0,25), (d)
(−1, 0,001), (e) (−2, −0,46) et (f) (−5, −0,99). Les courbes tiretées représentent les données
expérimentales extraites des paramètres S mesurés. Les courbes continues correspondent aux
expressions théoriques obtenues à partir de l’équation (5.48) avec q = 0,13 et µeff donné par
l’équation (5.25a), elle-même calculée à l’aide des paramètres du tableau 5.1. Notons que
1 kOe = 1000/4π ≈ 79,58 kA/m en unités SI.

|∆g| & 0,75, pour lesquelles la proportion relative de l’une des deux populations est trop

faible pour produire une réponse significative, de sorte que le réseau se comporte, à toutes

fins pratiques, comme un matériau effectif saturé, décrit par l’équation (5.28).

De façon générale, les résultats de la figure 5.8 démontrent que les fréquences de réso-

nance sont bien décrites par le modèle théorique [Éq. (5.27)]. Le comportement en champ

appliqué des deux pics de résonance peut être décrit en considérant les interactions dipolaires

agissant sur chaque population de fils en fonction de ∆g (Hext0) [67, 68]. Pour des champs

appliqués supérieurs à 1 kOe et inférieurs à −2,5 kOe, le réseau est essentiellement saturé.
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Figure 5.8 Fréquences de résonance ωres+ et ωres− mesurées en fonction du champ magnétique
statique Hext0 suivant la branche supérieure de la courbe d’hystérésis majeure montrée à
la figure 5.6. Les courbes continues correspondent aux expressions théoriques pour ωres+ et
ωres−, calculées à l’aide de l’équation (5.27) et des paramètres donnés au tableau 5.1. La
région tiretée de chaque courbe indique l’intervalle de valeurs de champ magnétique pour
lequel l’amplitude du pic en ωres± est négligeable par rapport à celle du pic en ωres∓, ce qui
correspond à des configurations magnétiques statiques caractérisées par |∆g| & 0,75. Notons
que 1 kOe = 1000/4π ≈ 79,58 kA/m en unités SI.

L’équation (5.28) donne alors la fréquence de résonance de la perméabilité effective à un

seul pic, laquelle varie linéairement en fonction du champ appliqué, en accord avec les résul-

tats expérimentaux montrés à la figure 5.8. Une diminution du champ appliqué en suivant la

branche supérieure de la courbe d’hystérésis majeure provoque le renversement irréversible de

l’aimantation d’un certain nombre de fils ce qui, en retour, modifie le spectre de perméabilité

effective.

Le champ d’interaction dipolaire statique est orienté initialement vers le bas, antiparallèle-

ment à l’aimantation de la population majoritaire. Lorsque l’aimantation de certains nanofils

commence à se renverser de façon aléatoire dans le réseau, l’amplitude du champ effectif d’in-

teraction statique est graduellement réduite, ce qui produit la courbure vers le haut observée

dans la dépendance de ωres+ en fonction de Hext0. À partir de Hext0 ≈ 0,5 kOe, un second pic

de résonance, d’amplitude plus faible et de fréquence de résonance ωres− plus élevée, apparâıt

alors dans le spectre de perméabilité effective. Pendant que le renversement des fils individuels

se poursuit, le champ d’interaction augmente parallèlement à l’aimantation de la population
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aimantée vers haut et antiparallèlement à l’aimantation de la population aimantée vers le

bas. Il en résulte que les deux pics présentent des comportements en fréquence opposés en

fonction du champ Hext0 décroissant (c.-à-d., ωres+ augmente et ωres− diminue) et tendent à

se rapprocher jusqu’à l’atteinte de la saturation négative à Hext0 ≈ − 2,5 kOe. À partir de

ce point, la réponse est gouvernée uniquement par celle de la population aimantée vers le

bas, de sorte que le comportement de ωres− redevient linéaire en fonction du champ appliqué,

comme prédit par l’équation (5.28).

Comme pour les spectres de perméabilité effective de la figure 5.7, l’accord entre les résul-

tats théoriques et expérimentaux pour les fréquences de résonance devient moins satisfaisant

entre −1 kOe et −2,5 kOe, où le modèle prédit alors une valeur pour ωres+ supérieure à

celle observée expérimentalement. Bien que l’extraction de µc à partir des paramètres S me-

surés devient probablement moins fiable lorsque les pics sont près l’un de l’autre et donc

plus fortement convolués, cette procédure ne semble pas susceptible de produire ces écarts

systématiques, lesquels semblent plutôt liés au processus de renversement. En effet, la po-

sition exacte des pics de résonance durant le renversement s’avère particulièrement sensible

à notre hypothèse de départ, c’est-à-dire celle d’un réseau idéalisé et caractérisé, en régime

non saturé, par deux distributions uniformes de nanofils identiques aimantés vers le haut

et vers le bas. Par conséquent, nous anticipons que les fluctuations spatiales du champ lo-

cal d’interaction, supposé uniforme dans notre modèle, deviennent plus importantes entre le

champ coercitif, à Hext0 ≈ −1 kOe, et le champ de renversement complet de tous les nanofils

(saturation négative), à Hext0 ≈ − 2,5 kOe. Cet aspect sera élaboré de façon plus détaillée

à la section 5.4 en relation, notamment, avec les résultats pour les états rémanents examinés

dans ce qui suit.

5.3.4 États rémanents

Examinons maintenant la réponse dynamique du réseau de nanofils placé dans différents

états rémanents décrits par le paramètre ∆gr = 〈M0r〉 / 〈M0s〉 et obtenus à l’aide de cycles

d’hystérésis mineurs. La figure 5.9 montre les parties réelle et imaginaire de la perméabilité

caractéristique relative µc/µ0 en fonction de la fréquence, pour Hext0 = 0 et six valeurs du

champ de renversement Hr, entre −2,5 kOe et 0 kOe, par pas de 0,5 kOe. Ces valeurs de Hr

correspondent aux courbes mineures menant à des états rémanents avec ∆gr = 〈M0r〉 / 〈M0s〉
allant de −0,41 à 0,48, lesquels sont indiqués par des cercles sur l’axe vertical Hext0 = 0 à

la figure 5.6. De plus, les courbes tiretées et continues représentent la perméabilité caracté-

ristique extraite des paramètres S mesurés et calculée à l’aide de l’équation (5.48) avec µeff

donné par l’équation (5.25a), respectivement. Nous constatons que l’accord entre le modèle

et l’expérience est très satisfaisant, à l’exception du cas montré à la figure 5.9(d), où la réma-
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Figure 5.9 Parties réelle et imaginaire de la perméabilité caractéristique relative µc/µ0 en
fonction de la fréquence pour le réseau de nanofils de CoFeB placé dans les différents états ré-
manents (Hr, ∆gr) indiqués par des cercles à la figure 5.6. (a) (−2,5, −0,41), (b) (−2, −0,32),
(c) (−1,5, −0,17), (d) (−1, 0,03), (e) (−0,5, 0,27) et (f) (0, 0,48). Les courbes tiretées repré-
sentent les données expérimentales extraites des paramètres S mesurés. Les courbes continues
correspondent aux expressions théoriques calculées à l’aide de l’équation (5.48), avec q = 0,13
et µeff donné par l’équation (5.25a) avec Hext0 = 0 et les paramètres du tableau 5.1. Notons
que 1 kOe = 1000/4π ≈ 79,58 kA/m en unités SI.

nence est très faible (c.-à-d., |∆gr| ≪ 1 et g↑ ≈ g↓) et où la perméabilité théorique ne prédit

qu’un seul pic, alors que deux pics peuvent être identifiés sur le spectre expérimental.

Cet écart observé près de |∆gr| = 0 est mis en évidence à la figure 5.10, laquelle com-

pare les fréquences de résonance mesurées expérimentalement en fonction de l’état rémanent

avec les courbes théoriques calculées à l’aide de l’équation (5.33). Par ailleurs, notons que

le désaccord s’avère plus important pour le pic à basse fréquence de la population majori-

taire, laquelle correspond à la population aimantée vers le haut lorsque ∆gr > 0 et à celle

aimantée vers le bas lorsque ∆gr < 0. La considération des interactions dipolaires interfils
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Figure 5.10 Fréquences de résonance ωres+ et ωres− mesurées en fonction de la rémanence
normalisée ∆gr = 〈M0r〉 / 〈M0s〉 du réseau de nanofils de CoFeB. Les courbes continues
correspondent aux expressions théoriques de ωres+ et ωres− en fonction de ∆gr, obtenues à
l’aide de l’équation (5.33) et des paramètres donnés au tableau 5.1. Notons que 1 kOe =
1000/4π ≈ 79,58 kA/m en unités SI.

à la rémanence permet de déduire que la population majoritaire est soumise à un champ

de désaimantation effectif plus important que la population minoritaire, ce qui mène à un

pic d’amplitude supérieure et de fréquence de résonance inférieure à celui de la population

minoritaire.

5.4 Discussion

Les figures 5.7–5.10 démontrent un bon accord entre les prédictions théoriques et les

mesures expérimentales. Ces résultats illustrent la capacité du modèle à décrire la réponse

magnétique dynamique complexe (c.-à-d., dispersive et dissipative) de réseaux de nanofils

ferromagnétiques et ce, pour plusieurs configurations magnétiques statiques caractérisées par

Hext0 et ∆g. En particulier, le modèle rend bien compte de la position et de la largeur des

deux pics de résonance, de même que du profil spectral des parties réelle et imaginaire de

la perméabilité effective, à l’exception de faibles désaccords dans les positions de résonance

lorsque les deux pics sont près l’un de l’autre. Il semble que ces écarts ne soient toutefois pas

liés au modèle de perméabilité effective en tant que tel, mais plutôt à notre hypothèse idéalisée

exigeant que les fils renversent leur aimantation de façon à toujours préserver une configu-
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ration magnétique statique constituée de deux populations aimantées antiparallèlement et

distribuées uniformément, pouvant être décrite à l’aide du paramètre unique ∆g.

Les fluctuations spatiales des interactions dipolaires, nécessairement présentes dans le cas

de réseaux réels non idéaux, modifient en principe la perméabilité effective. L’effet est par-

ticulièrement important lorsque les deux pics de résonance sont près l’un de l’autre ou, de

façon équivalente, lorsque les deux populations sont soumises à des champs effectifs simi-

laires. La condition ∆ωres = 0, à laquelle les pics cöıncident, est représentée par une droite

de pente 4/ (5 〈M0s〉) passant par l’origine sur la courbe d’aimantation normalisée de la fi-

gure 5.6. Le modèle prédit que la convergence des pics est satisfaite lorsque la droite croise

un chemin parcouru par l’aimantation à l’intérieur du cycle d’hystérésis. Pour le système

étudié, cette condition survient à Hext0 ≈ 2,6 kOe, comme montré aux figures 5.6 et 5.8.

Par conséquent, la cöıncidence n’est pas observée expérimentalement, puisqu’elle correspond

à un point (Hext0, ∆g) situé dans la portion (quasi) saturée de la courbe d’hystérésis, pour

laquelle la perméabilité effective ne présente déjà qu’un seul pic.

La situation idéale pour valider notre hypothèse d’un champ d’interaction uniforme dans

le réseau consiste à obtenir un état à la fois rémanent (Hext0 = 0) et globalement désaimanté

(∆gr = 0), pour lequel le champ de résonance effectif est contrôlé uniquement par les in-

teractions dipolaires. Dans ce contexte, la figure 5.10 démontre que les cycles d’hystérésis

mineurs permettent de préparer un tel état. Or, selon l’équation (5.33), les fréquences de

résonance ωres+ et ωres− devraient alors cöıncider en ωM

(√
1− f

)

/2, ce qui n’est pas le cas

expérimentalement. En effet, la figure 5.9(d) montre que pour ∆gr = 0,03 (c.-à-d., ∆gr ≈ 0),

les deux pics peuvent encore être clairement distingués, en dépit du fait que l’aimantation

rémanente du réseau est essentiellement nulle. Cette constatation suggère la présence d’une

interaction résiduelle entre les deux populations et d’un ordre local de l’aimantation à l’inté-

rieur du réseau, lesquels conduisent à un champ d’interaction non nul parallèlement à l’axe

des fils et à des valeurs distinctes pour ωres+ et ωres−. La prise en compte de ces effets pour

expliquer les résultats expérimentaux lorsque l’écart entre les pics devient faible nécessiterait

alors d’établir un modèle pour la courbe d’aimantation statique du réseau ∆g (Hext0). Il s’agit

là d’un problème d’une complexité considérable, qui n’est pas traité dans le cadre de cette

thèse.

5.5 Sommaire

Ce chapitre a été consacré à l’établissement d’une expression pour le tenseur de perméa-

bilité effective ¯̄µeff de réseaux non saturés de nanofils ferromagnétiques bistables et aimantés

axialement. Le modèle s’appuie sur le formalisme de Maxwell Garnett, que nous avons géné-
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ralisé pour inclure le cas de deux populations de fils gyrotropes, aimantés antiparallèlement

et liés par les interactions dipolaires. Nous avons dérivé des expressions explicites pour les

composantes complexes diagonales et hors diagonales de ¯̄µeff , de même que pour les deux fré-

quences de résonance qui leur sont associées. Le formalisme incorpore l’effet des interactions

dipolaires interfils à la fois statiques et dynamiques, lesquelles sont orientées respectivement

parallèlement et perpendiculairement à l’axe des nanofils.

De manière générale, l’accord entre la théorie et les résultats expérimentaux obtenus par

des mesures large bande en configuration de ligne microruban s’avère excellent. Le modèle

permet de reproduire les spectres de perméabilité complexe extraits des paramètres S me-

surés, notamment en ce qui concerne le profil, la position, l’amplitude et la largeur de la

résonance. La théorie explique le comportement des fréquences résonance ωres± en fonction

du champ magnétique appliqué Hext0 et de l’aimantation rémanente normalisée ∆gr. L’ac-

cord est quelque peu diminué lorsque les pics sont près l’un de l’autre, ce qui suggère une

dispersion spatiale non négligeable du champ local d’interaction, laquelle n’est pas prise en

compte dans le traitement présenté ici.

En conclusion, notre formalisme propose un cadre théorique général permettant de modé-

liser la perméabilité dynamique effective de systèmes formés de deux populations d’inclusions

gyromagnétiques, qui interagissent entre elles par l’intermédiaire des champs dipolaires. Du

point de vue pratique, la théorie présentée dans ce chapitre s’avère pertinente en vue de

prédire la réponse électromagnétique de dispositifs en hyperfréquences basés sur des réseaux

de nanofils ferromagnétiques placés dans diverses configurations magnétiques statiques, no-

tamment des états rémanents partiellement désaimantés.
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CHAPITRE 6

CONCLUSION

6.1 Synthèse et contributions originales du travail

Les travaux menés dans le cadre de cette thèse s’inscrivent dans le domaine de recherche

des métamatériaux électromagnétiques, une nouvelle classe de matériaux composites artifi-

ciels, structurés à l’échelle sous-longueur d’onde et caractérisés par des propriétés hors du

commun, qui dépassent souvent celles des matériaux naturels. En particulier, leur structura-

tion sous-longueur d’onde permet de les modéliser comme des matériaux homogènes décrits

par des tenseurs de permittivité et de perméabilité effectives, lesquels dépendent à la fois de

la composition et de la structuration de leurs constituants. L’intérêt de notre étude réside

dans l’engouement considérable suscité par les métamatériaux depuis une quinzaine d’an-

nées, lequel s’explique notamment par leur potentiel pour des applications à des dispositifs

novateurs ou plus performants.

La majorité des métamatériaux étudiés dans la littérature s’appuient sur des arrangements

astucieux d’inclusions conductrices ou de permittivité élevée, mais ne font pas intervenir de

matériaux intrinsèquement magnétiques. L’obtention d’une perméabilité effective macrosco-

pique repose alors sur un effet de magnétisme artificiel, lequel peut être généré par l’excitation

de résonances de type RLC dans des inclusions métalliques ou de résonances dipolaires ma-

gnétiques de type Mie à l’intérieur d’inclusions diélectriques.

En revanche, dans les hyperfréquences, les matériaux ferromagnétiques possèdent un riche

spectre d’excitations magnétiques intrinsèques, ce qui ouvre la voie au développement d’une

nouvelle classe de métamatériaux caractérisés par des propriétés effectives ajustables par

l’application d’un champ magnétique statique. L’exploitation du potentiel technologique de

ces nouveaux matériaux nécessite alors de modéliser leur interaction avec des ondes électro-

magnétiques.

Afin de contribuer à cet effort, cette thèse a été consacrée à l’établissement d’un for-

malisme théorique permettant de dériver des expressions analytiques pour la permittivité

et la perméabilité effectives dans les hyperfréquences de métamatériaux à base de réseaux

de fils ferromagnétiques conducteurs. La modélisation entreprise dans le cadre de ce travail

visait notamment à combler un certain nombre de manques et de lacunes répertoriés dans la

littérature, lesquels concernent principalement la prise en compte simultanée des effets gyro-
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Tableau 6.1 Fonctions de réponse associées aux quatre niveaux hiérarchiques de l’approche
théorique, introduits pour décrire la réponse de réseaux de fils ferromagnétiques.

Propriétés d’un fil Propriétés du réseau

Intrinsèques Externes Effectives Effectives externes

dw = ¯̄ǫwew 〈pw〉 = ǫm ¯̄κweloc 〈d〉 = ¯̄ǫeff 〈e〉 〈p〉 = ǫ0 ¯̄κeffeext

bw = ¯̄µwhw 〈mw〉 = ¯̄ηwhloc 〈b〉 = ¯̄µeff 〈h〉 〈m〉 = ¯̄ηeffhext

tropes et de retard électromagnétique à l’intérieur des fils, de même que l’incorporation des

interactions dipolaires dans le traitement de réseaux de taille finie. Une attention spéciale a

également été portée à l’évaluation du potentiel des réseaux de fils à présenter, sur une même

plage de fréquences, des réponses électrique et magnétique significatives et simultanément

ajustables par un champ magnétique statique.

Pour ce faire, nous avons utilisé la procédure d’homogénéisation de Maxwell Garnett et

l’avons généralisée dans le but d’incorporer l’effet combiné du retard électromagnétique à

l’intérieur des fils (c.-à-d., de l’effet de peau) et de la nature gyrotrope de leur perméabilité

intrinsèque (c.-à-d., tensorielle). Au meilleur de notre connaissance, la prise en compte si-

multanée de ces deux éléments n’a jamais été considérée explicitement dans la littérature et

constitue une des contributions originales de cette thèse. De plus, notre formalisme s’appuie

sur une structure hiérarchique, basée sur les quatre niveaux résumés au tableau 6.1 et carac-

térisés chacun par des fonctions de réponse spécifiques. Cette approche multiniveau permet

notamment de lier les propriétés intrinsèques des fils individuels à la réponse effective externe

de réseaux de taille finie de fils en interaction, d’une manière qui fait ressortir clairement les

hypothèses et les quantités physiques impliquées à chacun des niveaux.

La première étape de notre procédure d’homogénéisation nécessite de résoudre le problème

de la diffusion d’une onde plane par un fil ferromagnétique infini, aimanté axialement et

excité dans la configuration TM, en vue d’obtenir la réponse dipolaire de sa polarisation

〈pw〉 et de son aimantation 〈mw〉 dynamiques moyennes en régime d’effet de peau arbitraire

(régime EQS). Suivant l’approche théorique du tableau 6.1, cette réponse est décrite par

les tenseurs de susceptibilités externes électrique ¯̄κw et magnétique ¯̄ηw, lesquels tiennent

compte des propriétés intrinsèques ¯̄ǫw et ¯̄µw du fil, de ses paramètres géométriques (taille et

forme), de son état magnétique statique et de la configuration des champs locaux (c.-à-d., la

configuration TM).

Notre résolution du problème de diffusion a montré que la solution générale s’exprime

comme une expansion multipolaire d’ondes partielles, qui forment alors une infinité de modes

orthogonaux. En régime EQS, les modes dipolaires électrique n = 0 et magnétique n = ±1
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dominent la réponse du fil et mènent à des expressions explicites pour ¯̄κw et ¯̄ηw, respecti-

vement. En particulier, la dérivation du tenseur gyrotrope ¯̄ηw d’un fil individuel en régime

EQS constitue un des résultats importants de cette thèse. Ses éléments diagonaux et hors

diagonaux adoptent une forme compacte, grâce à définition des composantes de perméabi-

lité renormalisée µ̃ et µ̃t, lesquelles incorporent l’influence de l’effet de peau sur la réponse

gyromagnétique du fil.

L’étape suivante de la méthode de dérivation consiste à utiliser les résultats du problème

de diffusion dans le but de dériver la perméabilité et la permittivité effectives d’un réseau

de fils ferromagnétiques. D’abord, l’utilisation de notre expression pour ¯̄ηw dans la procédure

de Maxwell Garnett généralisée a mené à des expressions compactes pour les composantes

transverses diagonales et hors diagonales du tenseur gyrotrope de perméabilité effective ¯̄µeff

en régime EQS. Notre résultat pour ¯̄µeff représente un apport significatif aux théories existant

pour décrire la perméabilité effective de matériaux composites à base d’inclusions ferroma-

gnétiques, lesquelles proposent soit des expressions tensorielles restreintes à la limite QS, soit

des expressions valides en régime EQS, mais qui négligent la gyrotropie des inclusions. En

particulier, notre modèle étend au cas de fils gyromagnétiques le formalisme précurseur de

Lewin [79], lequel constitue une des premières tentatives visant à inclure le retard électroma-

gnétique dans la procédure de Maxwell Garnett.

De façon similaire, nous avons ensuite déterminé la permittivité effective ǫ̃eff d’un réseau

de fils excités par un champ électrique axial. Notre expression pour ǫ̃eff s’écrit en fonction

de l’impédance normalisée Ztot/Rdc d’un fil placé dans le réseau, laquelle se décompose en

contributions interne et externe. D’abord, la partie interne tient compte de l’effet de peau et

correspond, pour des fils ferromagnétiques, à une magnétoimpédance, laquelle peut résulter

en une réponse magnétodiélectrique de ǫ̃eff . En revanche, la partie externe est de nature

inductive et dépend essentiellement des paramètres géométriques du réseau. Au meilleur de

notre connaissance, la permittivité effective d’un réseau de fils ferromagnétiques n’a jamais

été exprimée de façon compacte en fonction du rapport Ztot/Rdc. De plus, à la différence des

modèles existants, notre résultat découle de la solution rigoureuse du problème de la diffusion

d’une onde électromagnétique par un fil individuel. En ce sens, notre dérivation formelle de

ǫ̃eff constitue un apport original de ce travail.

Les propriétés effectives ¯̄ǫeff et ¯̄µeff obtenues à partir du formalisme de Maxwell Garnett

décrivent le comportement macroscopique intrinsèque d’un réseau de fils ferromagnétiques,

sans égard à sa forme ou sa taille. Or, dans cette thèse, nous avons également introduit les

tenseurs de susceptibilité effective externe ¯̄κeff et ¯̄ηeff , afin de décrire la réponse d’un réseau de

taille finie excité par des champs dynamiques spatialement uniformes en son voisinage. Les

tenseurs ¯̄κeff et ¯̄ηeff forment alors le quatrième niveau hiérarchique présenté au tableau 6.1
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et dépendent respectivement de ¯̄ǫeff et ¯̄µeff , mais également des dimensions macroscopiques

du réseau, prises en compte par le tenseur de désaimantation effectif ¯̄Neff . Il convient de

souligner que l’introduction du concept de réponse effective externe d’un matériau composite

et sa distinction avec la réponse effective constituent une contribution importante de cette

thèse.

Dans ce contexte, nous avons montré que le tenseur ¯̄ηeff représente la fonction de réponse

appropriée pour décrire la résonance ferromagnétique du mode uniforme d’un réseau de fils

ferromagnétiques liés par les interactions dipolaires. En particulier, nous avons dérivé une

expression générale pour le tenseur ¯̄Neff en fonction des tenseurs ¯̄Nw et ¯̄Nint, lesquels dé-

pendent uniquement des paramètres géométriques internes du réseau et tiennent compte des

interactions dipolaires intra et interfils, respectivement. Notre traitement mène également à

une distinction explicite entre les interactions dipolaires statiques et dynamiques.

Nous avons suivi la présentation de notre modèle théorique par une analyse détaillée de

ses implications et de ses limites, en vue notamment d’évaluer le potentiel des réseaux de fils

ferromagnétiques à montrer des dispersions magnétique et diélectrique simultanément ajus-

tables à l’aide d’un champ magnétique statique. D’abord, nous avons constaté que l’obtention

d’une perméabilité effective substantielle et possiblement négative requiert des réseaux denses

et un effet de peau faible. En revanche, de tels réseaux se comportent comme des métaux

magnétiques effectifs, ce qui entrâıne des pertes diélectriques considérables et empêche d’ex-

ploiter les effets magnétodiélectriques prédits par le modèle.

Nous avons ensuite montré que l’obtention d’une réponse magnétodiélectrique optimale

dans les hyperfréquences, c’est-à-dire substantielle et accompagnée de pertes acceptables, re-

quiert respectivement un effet de peau modéré (a/δw0 ≈ 1) et une distance interfil de l’ordre

du millimètre, ce qui correspond typiquement à des réseaux dilués de microfils ferromagné-

tiques. De même, nous avons décrit comment il est possible de tirer profit de la perméabilité

effective de réseaux denses de nanofils en considérant des fils semi-isolés, c’est-à-dire dont

la continuité électrique n’est pas assurée. De tels réseaux se comportent alors comme des

isolants magnétiques effectifs, mais ne présentent plus de réponse magnétodiélectrique.

En somme, ces résultats indiquent qu’il semble exister un principe d’exclusion mutuelle

dans les réseaux de fils ferromagnétiques conducteurs, qui tend à s’opposer à l’observation de

dispersions magnétique et diélectrique simultanément ajustables par un champ magnétique

statique. En particulier, cette conclusion limite les perspectives d’obtenir, à partir de ces

réseaux, un indice de réfraction négatif et accompagné de pertes raisonnables.

Nous avons par la suite validé notre modèle de perméabilité effective, en l’appliquant à

l’étude de réseaux de nanofils aimantés axialement et incorporés à l’intérieur des pores d’une

membrane diélectrique. Pour ces réseaux, l’aimantation des fils individuels montre un com-
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portement bistable en fonction du champ magnétique statique axial, de sorte que sous la

saturation du réseau, les fils se répartissent selon deux populations aimantées antiparallèle-

ment, dont les fractions relatives peuvent être ajustées en parcourant des cycles d’hystérésis

mineurs. La configuration magnétique statique du réseau non saturé se répercute alors sur

son spectre de perméabilité effective, notamment par la présence de deux pics de résonance

ferromagnétique.

Dans ce contexte, nous avons montré que notre expression pour la perméabilité effective

¯̄µeff s’applique intégralement au cas de deux populations, à la condition de redéfinir le tenseur

de susceptibilité externe ¯̄ηw comme la somme des susceptibilités externes ¯̄ηw↑ et ¯̄ηw↓ des

fils individuels de chaque population, pondérées par leur proportion relative respective. En

considérant ce changement dans la définition de ¯̄ηw, la résolution de l’équation du mouvement

de l’aimantation de chacune des deux populations et l’application de notre procédure de

Maxwell Garnett ont mené à des expressions explicites pour les composantes diagonales et

hors diagonales de ¯̄µeff , de même que pour les fréquences de résonance ωres+ et ωres− qui leur

sont associées. Ces résultats constituent un apport significatif à la modélisation de la réponse

d’ensembles non saturés d’inclusions gyromagnétiques en interaction. En particulier, notre

description de l’origine physique des différents champs d’interaction contribuant à ωres+ et

ωres− a fourni une première explication complète du phénomène de double résonance dans les

réseaux non saturés de nanofils ferromagnétiques.

Des mesures de résonance ferromagnétique large bande (1–40 GHz) en configuration de

ligne microruban sur un réseau de nanofils de Co94Fe5B1 de diamètre moyen de 45 nm incor-

porés dans une membrane d’alumine de distance interpore moyenne de 110 nm ont ensuite

permis de valider notre modèle de perméabilité effective. De façon générale, les spectres de

perméabilité complexe extraits des paramètres S mesurés ont démontré un excellent accord

avec les spectres théoriques, notamment pour ce qui est du profil, de la position, de l’ampli-

tude et de la largeur des deux pics de résonance en fonction de l’état magnétique statique du

réseau.

Ces résultats indiquent que l’anisotropie magnétique des réseaux considérés est bien dé-

crite en supposant que les interactions dipolaires sont dues à une distribution spatialement

uniforme des deux populations de nanofils. En revanche, l’accord est un peu moins satisfai-

sant lorsque la séparation entre les pics devient faible, notamment dans le cas de réseaux

globalement désaimantés à la rémanence. Ces écarts observés entre la théorie et les mesures

expérimentales ont été attribués à des variations spatiales du champ local d’interaction, les-

quelles sont nécessairement présentes dans le cas de réseaux réels non idéaux, mais ne sont

pas prises en compte dans le modèle considéré ici.

En résumé, ce travail apporte les contributions originales suivantes :
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1. Établissement d’un formalisme de Maxwell Garnett généralisé, qui incorpore simulta-

nément le retard électromagnétique à l’intérieur des fils et la nature gyrotrope de la

perméabilité intrinsèque.

2. Expression de la permittivité effective du réseau en fonction de l’impédance normalisée

Ztot/Rdc et formalisation de la méthode de dérivation.

3. Développement d’une procédure d’homogénéisation multiniveau, qui inclut la définition

de la réponse effective externe d’un matériau composite de taille finie.

4. Détermination du lien entre le tenseur de désaimantation effectif ¯̄Neff d’un réseau de

taille finie et le tenseur ¯̄Nint décrivant les interactions dipolaires interfils.

5. Étude des paramètres de résonance ferromagnétique en régime EQS d’un fil individuel

et établissement des conditions requises pour obtenir une perméabilité effective et une

réponse magnétodiélectrique significatives à l’aide des réseaux de fils ferromagnétiques.

6. Démonstration de la difficulté à obtenir, sur une même plage de fréquences, des réponses

électrique et magnétique substantielles, ajustables par un champ magnétique statique

et accompagnées de pertes raisonnables.

7. Généralisation du formalisme de Maxwell Garnett au cas d’un réseau non saturé, consti-

tué de deux populations de nanofils gyrotropes, bistables et liés par les interactions

dipolaires.

8. Description théorique et validation expérimentale du phénomène de double résonance

dans les réseaux non saturés de nanofils ferromagnétiques.

6.2 Perspectives et travaux futurs

Le formalisme théorique établi dans le cadre de cette thèse contribue à une meilleure

compréhension des propriétés électromagnétiques effectives de métamatériaux à base de ré-

seaux de fils ferromagnétiques conducteurs. Or, malgré son caractère assez général, le modèle

peut encore être étendu ou raffiné à plusieurs égards. Dans cette section, nous allons exami-

ner certains éléments théoriques qui n’ont pas été couverts, ou pas suffisamment, mais qui

mériteraient de l’être. Cette analyse nous permettra également de préciser certaines limites

ou difficultés à généraliser le modèle et d’évaluer l’impact de certaines hypothèses posées

en cours de dérivation. De plus, nous allons exposer des perspectives de recherche pour des

travaux futurs, notamment en ce qui a trait à la validation expérimentale de nos prédictions

théoriques et à l’application du formalisme à d’autres systèmes d’intérêt.
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Généralisation et validation du modèle théorique

Une première extension du modèle de perméabilité effective consisterait à raffiner le mo-

dèle d’anisotropie magnétique utilisé pour dériver la perméabilité intrinsèque ¯̄µw des fils,

notamment par la prise en compte des anisotropies magnétocristalline, magnétoélastique ou

surfacique, ainsi que de l’interaction d’échange intercouche dans le cas de fils multicouches.

En effet, bien que l’anisotropie magnétique des réseaux de fils doux de CoFeB considérés au

chapitre 5 soit largement dominée par les interactions dipolaires intra et interfils, le traitement

d’autres systèmes, tels que les fils cristallins de cobalt, nécessiterait probablement d’aller au-

delà du modèle considéré ici. Or, l’inclusion de divers types d’anisotropies par l’intermédiaire

de champs effectifs internes dans l’équation du mouvement de l’aimantation [Éq. (2.7)] est

une procédure connue et habituellement assez directe [26].

Le tenseur gyromagnétique de susceptibilité externe ¯̄ηw des fils individuels pourrait éga-

lement être utilisé dans une approche de milieu effectif de type Bruggeman [5], plutôt que

Maxwell Garnett, ce qui permettrait de modéliser la perméabilité effective de matériaux com-

posites très hétérogènes ou formés d’inclusions moins bien définies. Toutefois, l’application

de la condition d’homogénéisation autoconsistante propre à la procédure de Bruggeman ne

mène généralement pas à des expressions explicites compactes pour les composantes de ¯̄µeff .

Il convient de rappeler qu’une hypothèse simplificatrice associée à la dérivation de notre

expression pour ¯̄µeff réside dans le fait que l’interaction d’échange et, par conséquent, les

effets d’échange-conductivité ont été négligés. Ces effets surviennent dans les métaux ferro-

magnétiques en raison de la génération d’ondes de spin par le champ magnétique dynamique

fortement non uniforme à l’intérieur de la profondeur de peau. Il en résulte alors une réponse

non locale de la perméabilité intrinsèque ¯̄µw, de même qu’un élargissement et un déplacement

de son spectre de résonance ferromagnétique. Or, il a été démontré que les effets d’échange-

conductivité sont d’autant plus prononcés que les fréquences d’opération sont faibles [162], de

sorte que nous avons pu les ignorer aux fréquences considérées dans ce travail, c’est-à-dire de

l’ordre ou supérieures à 10 GHz. De plus, le fait de négliger le terme d’échange dans l’équa-

tion du mouvement de l’aimantation nous empêche de traiter l’excitation d’ondes de spin à

l’intérieur des fils, lesquelles mèneraient à des spectres de perméabilité plus complexes. Or,

de tels effets ne semblent pas avoir été observés dans les mesures que nous avons effectuées

à ce jour.

Un modèle qui incorpore rigoureusement l’interaction d’échange dans la réponse de fils

ferromagnétiques uniques aimantés axialement a été élaboré par Kraus [73]. Son approche

mène à des expressions relativement complexes pour l’impédance de surface et la puissance

absorbée des différents modes de résonance du fil (incluant le mode n = ±1), mais ne se prête

pas aisément à la dérivation d’un tenseur de susceptibilité externe ¯̄ηw qui incorporerait les



155

effets d’échange-conductivité par l’intermédiaire de composantes de perméabilité renormali-

sée. Or, dans le formalisme de Maxwell Garnett, l’obtention de la perméabilité effective ¯̄µeff

du réseau requiert en général une expression pour ¯̄ηw.

Compte tenu de ces considérations, l’établissement d’une expression généralisée pour ¯̄ηw

qui inclurait les effets d’échange-conductivité ou les modes d’ondes de spin d’un cylindre ai-

manté axialement [62] est a priori possible, mais s’accompagne de difficultés importantes. En

ce sens, nous croyons que les travaux des références [73, 136] fournissent des pistes intéres-

santes pour tenir compte de l’interaction d’échange dans notre procédure de renormalisation.

De même, la généralisation de notre modèle pour ¯̄µeff en vue de décrire l’excitation d’ondes

de spin dans les réseaux de nanofils ferromagnétiques [62–65] constitue une suite logique de ce

travail. Dans ce contexte, les travaux de la référence [163] nous apparaissent comme un bon

point de départ pour incorporer la dépendance spatiale des champs dynamiques d’interaction

à l’intérieur du modèle de la référence [61] utilisé dans le cadre de cette thèse.

Une autre limite du modèle concerne l’exigence que le champ et l’aimantation statiques

soient parallèles à l’axe des fils. Cette configuration symétrique permet notamment d’utiliser

la méthode de séparation des variables en coordonnées cylindriques dans le problème de diffu-

sion, lequel doit nécessairement être résolu pour obtenir ¯̄ηw en régime EQS. Par conséquent,

l’extension de notre formalisme à d’autres orientations du champ magnétique statique pose

de sérieuses complications. Il faut toutefois souligner que dans la limite QS, l’équation (3.32)

pour ¯̄ηw demeure valide peu importe l’orientation du champ statique par rapport à l’axe des

fils, à la condition d’exprimer les tenseurs ¯̄χw et ¯̄Nw dans un même système de coordonnées.

De façon similaire, la généralisation de notre formalisme EQS à d’autres formes d’in-

clusions, notamment en vue de décrire la réponse d’ensembles d’inclusions sphériques [84–

87, 89–93], pose un défi théorique considérable. En effet, le problème de la diffusion d’une

onde électromagnétique plane par une sphère gyrotrope n’a pas été résolu de façon analy-

tique, puisque les équations de Maxwell ne sont alors plus séparables [164]. Toutefois, nous

croyons qu’il serait pertinent de tenter de résoudre le problème en se plaçant dès le départ

en régime EQS, c’est-à-dire en supposant d’emblée que les champs à l’extérieur de la sphère

sont spatialement uniformes en son voisinage.

Au chapitre 5, nous avons modélisé de façon satisfaisante les spectres de perméabilité

effective complexe de réseaux de nanofils ferromagnétiques bistables soumis à un champ

magnétique statique axial. Toutefois, notre modèle dynamique pour ¯̄µeff ne permet pas de

prédire l’état magnétique statique du réseau en fonction du champ appliqué, c’est-à-dire

sa courbe d’hystérésis. En pratique, cette information doit alors être déterminée à partir

de mesures magnétométriques. Dans ce contexte, il serait pertinent de tenter d’incorporer
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l’effet de la coercivité, de la rémanence ou de l’approche lente à la saturation dans le modèle

d’interaction dipolaire proposé la référence [61].

En raison de la symétrie des équations de Maxwell, le formalisme élaboré dans le cadre

de cette thèse peut être directement adapté pour dériver le tenseur de permittivité effective

¯̄ǫeff dépendant de kwa d’un réseau de fils aimantés axialement, caractérisés par un tenseur de

permittivité intrinsèque gyrotrope ¯̄ǫw et soumis à un champ électrique dynamique perpendicu-

laire à leur axe (c.-à-d., dans la configuration TE). Le calcul de ¯̄ǫeff dans cette configuration

permettrait alors de décrire la réponse gyroélectrique de réseaux de fils ferromagnétiques,

notamment les effets magnéto-optiques [48, 49] et l’effet Hall dans les hyperfréquences.

Il convient de souligner que l’équation (4.4) pour la permittivité effective ǫeff de nanofils

semi-isolés doit être considérée comme une ébauche, qui fournit une approximation raison-

nable du comportement diélectrique du réseau dans la limite où ∆L ≫ a,D. En ce sens,

nous croyons qu’il serait possible d’améliorer le modèle en s’inspirant du calcul de capacité

équivalente proposé à la référence [145], lequel incorpore l’effet des interactions électrosta-

tiques entre les fils. Suivant cette méthode, nous anticipons que le calcul de ǫeff , qui ferait

alors intervenir une sommation d’interactions mutuelles entre des charges de surface, pour-

rait mener à un tenseur formellement similaire au tenseur d’interaction dipolaire dérivé à

la référence [61]. De même, comme suggéré à la référence [137], nous pourrions également

adapter l’équation (3.72) pour Ztot en y ajoutant un terme d’impédance capacitive ZC , qui

tiendrait compte de la capacité non nulle des fils semi-isolés et qui dépendrait des paramètres

géométriques du réseau, notamment du facteur de remplissage des fils.

Il va sans dire que la généralisation du formalisme théorique devra être complétée par

des mesures expérimentales. En effet, au cours de ce travail, seul le modèle de perméabilité

effective de réseaux non saturés de nanofils dans la limite QS a été confronté directement

à l’expérience. D’abord, des mesures systématiques sur des fils ferromagnétiques de tailles

micrométrique et sous-micrométrique devront être réalisées afin de valider notre expression

pour la susceptibilité externe ¯̄ηw d’un fil individuel en régime EQS. Dans ce contexte, un

collègue du Laboratoire de magnétisme, M. Basile Dufay, a effectué des mesures de résonance

ferromagnétique en cavité résonante sur des microfils magnétiques doux de rayon a ≈ 10 µm,

caractérisés par un effet de peau modéré à fort. Les spectres obtenus expérimentalement ont

pu être reproduits à l’aide du modèle et ont montré les comportements attendus pour ce qui

est de la résonance, de l’antirésonance, de même que du profil et de la largeur de la courbe

d’absorption. Toutefois, ces mesures devront faire partie d’une étude ultérieure plus complète.

De même, il serait intéressant d’appliquer le modèle pour ¯̄µeff établi au chapitre 5 à des

réseaux de nanofils de composition ou de géométrie différentes. Nous croyons que de telles

mesures pourraient permettre de mieux comprendre les écarts observés entre le modèle et
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l’expérience lorsque les deux pics de résonance sont près l’un de l’autre et, éventuellement,

d’établir un lien entre l’importance de ces écarts et la forme de la courbe d’hystérésis du

réseau.

Enfin, l’amélioration du modèle pour la permittivité effective des réseaux de nanofils semi-

isolés devra être accompagnée par des mesures expérimentales. Dans ce contexte, une étude

récente [43] effectuée par M. Louis-Philippe Carignan, un collègue du Laboratoire de ma-

gnétisme, a permis d’extraire la permittivité du substrat de la ligne microruban montrée à

la figure 5.5. Or, dans cette configuration, le substrat est formé non seulement du réseau de

nanofils, mais également d’une couche d’époxy, de sorte que les résultats de la référence [43]

ne mènent pas directement à la permittivité effective ǫeff du réseau de nanofils, telle que

définie dans le cadre de notre modèle. Pour aller plus loin, nous envisageons que des mesures

large bande en configuration de ligne microruban ou des mesures en cavité résonante consti-

tueraient, en l’absence de couche d’époxy dans les deux cas, des méthodes pertinentes pour

caractériser plus en détail la réponse diélectrique de réseaux de nanofils semi-isolés. De telles

expériences permettraient alors de mieux comprendre l’influence des paramètres géométriques

du réseau (notamment du facteur de remplissage vertical des pores), de la composition des

fils et du champ magnétique statique sur la permittivité effective ǫeff .

Application à d’autres systèmes d’intérêt

Ce travail a été consacré à la modélisation des propriétés électromagnétiques dans les

hyperfréquences de réseaux de fils ferromagnétiques conducteurs. Or, pour ce faire, nous

avons développé une approche théorique générale, qui peut être adaptée, en principe, à tout

matériau composite dont la structure hiérarchique s’apparente à celle des réseaux de fils.

Dans cette dernière section, nous allons présenter quelques perspectives d’application du

formalisme à d’autres systèmes étudiés au Laboratoire de magnétisme ou en voie de l’être.

D’abord, notre procédure d’homogénéisation pourrait être utilisée pour modéliser la ré-

ponse de matériaux composites à base d’inclusions sphériques à la fois métalliques et fer-

romagnétiques. En effet, il a été proposé que l’activité magnéto-optique de tels matériaux

puisse être significativement amplifiée près de la résonance plasmonique de surface des in-

clusions individuelles [165]. Dans ce contexte, une étude récente [166] menée par M. Gabriel

Monette, un collègue du Laboratoire de magnétisme, a rapporté un effet Faraday géant dans

un ensemble de nanoagrégats ferromagnétiques de MnP encastrés dans une épicouche semi-

conductrice de GaP. Nous croyons que notre formalisme pourrait alors être utilisé dans le

but de dériver le tenseur gyrotrope de permittivité effective ¯̄ǫeff de ce système et ainsi de

décrire la réponse magnéto-optique observée expérimentalement. En particulier, la générali-

sation du formalisme de Maxwell Garnett au cas de deux populations gyrotropes, telle que



158

présentée dans ce travail, pourrait s’avérer utile en vue d’incorporer l’effet des différentes

orientations cristallographiques des nanoagrégats de MnP dans la matrice de GaP. Enfin, des

calculs préliminaires semblent indiquer que la limite QS s’applique pour les fréquences d’opé-

ration et les tailles d’inclusions considérées à la référence [166]. Par conséquent, les difficultés

décrites précédemment associées au traitement d’inclusions sphériques gyrotropes en régime

EQS pourraient être évitées.

Notre formalisme théorique pourrait également être appliqué à l’étude de l’impédance

électrique d’un ensemble de microfils ferromagnétiques parallèles et interagissant fortement.

De tels arrangements ont récemment fait l’objet d’études expérimentales [167, 168], mais leur

réponse électromagnétique n’a toutefois pas été modélisée de façon théorique. De même, la

question de savoir si une configuration multifil peut présenter une magnétoimpédance plus

sensible que celle d’un fil unique demeure ouverte. Nous anticipons que ce système, dont les

dimensions latérales demeurent inférieures à la longueur des fils, pourrait être modélisé comme

un conducteur magnétique cylindrique macroscopique, caractérisé par une permittivité et

une perméabilité effectives. Nous souhaiterions notamment étudier l’effet de peau effectif du

cylindre homogénéisé, en vue de vérifier si la magnétoimpédance des fils individuels mène à

une magnétoimpédance effective du matériau composite.

L’étude de la réponse électromagnétique des réseaux de nanofils multicouches constitue

une autre suite logique de cette thèse. En effet, bien que la résonance ferromagnétique et les

interactions dipolaires dans ces réseaux aient fait l’objet de travaux récents [61, 169], leur

permittivité et leur perméabilité effectives n’ont pas, au meilleur de notre connaissance, été

considérées de façon explicite. Dans ce contexte, le caractère multiniveau de notre approche

théorique se prête naturellement au traitement de tels systèmes, lesquels comportent trois

échelles de structuration, c’est-à-dire les couches ferromagnétiques, les fils et le réseau global.

Une première étape consisterait à déterminer une expression pour le tenseur de susceptibilité

externe ¯̄ηw d’un fil multicouche individuel, qui tiendrait compte de sa géométrie, de sa com-

position et des interactions entre les couches magnétiques. Cette expression généralisée pour

¯̄ηw pourrait ensuite être utilisée dans la procédure de Maxwell Garnett, en vue de dériver la

perméabilité effective ¯̄µeff du réseau. De plus, la modélisation des propriétés électromagné-

tiques effectives des réseaux de nanofils multicouches devrait notamment inclure l’interaction

d’échange entre les couches et l’influence de différents effets de magnétotransport, tels que la

magnétorésistance géante et le transfert de spin.

En définitive, le formalisme général développé dans le cadre de cette thèse a mené à des

expressions analytiques pour les propriétés électromagnétiques effectives de métamatériaux à

base de réseaux de fils ferromagnétiques conducteurs. Une contribution importante du travail

réside dans l’incorporation simultanée du retard électromagnétique à l’intérieur des fils et de
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la nature gyrotrope de leur perméabilité intrinsèque. L’analyse détaillée du modèle théorique

nous a permis d’établir les limites et les possibilités offertes par ces réseaux, notamment

la difficulté à obtenir à la fois une permittivité et une perméabilité effectives substantielles

dans les hyperfréquences. De plus, des mesures expérimentales ont validé le modèle pour la

perméabilité effective de réseaux de nanofils, notamment le phénomène de double résonance

en régime non saturé. Enfin, le modèle élaboré au cours de ce travail représente un apport

significatif à la compréhension de la réponse électromagnétique de métamatériaux constitués

d’inclusions gyromagnétiques conductrices et s’avère suffisamment général pour être appliqué

ou étendu à l’étude de plusieurs systèmes d’intérêt.
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ANNEXE A

Remarques sur la singularité des tenseurs de

susceptibilité magnétique de dimension 3×3 dans

l’approximation des petits signaux

Dans cette annexe, nous allons clarifier une difficulté formelle liée à la dimension (c.-à-d.,

2 × 2 ou 3 × 3) des tenseurs de susceptibilité magnétique considérés dans le cadre de ce

travail, soit ¯̄χw, ¯̄ηw, ¯̄χeff et ¯̄ηeff . En particulier, nous allons indiquer en quoi la relation donnée

à l’équation (3.32), c’est-à-dire

¯̄η−1
w = ¯̄χ−1

w + ¯̄Nw, (A.1)

conduit, sous cette forme, à des singularités dans l’approximation des petits signaux et nous

allons montrer comment on peut remédier à ce problème. Ces remarques vont également

s’appliquer aux relations similaires existant entre les différents tenseurs de susceptibilité ma-

gnétique, comme par exemple les équations (3.36), (3.104), (3.108) et (3.117). De plus, l’ana-

lyse présentée ici va permettre d’expliciter davantage les façons bien distinctes de prendre

en compte les champs de désaimantation (et d’interaction) statique et dynamique dans les

relations constitutives.

Tenseur de susceptibilité intrinsèque dans l’approximation des petits signaux

Considérons d’abord l’équation du mouvement de l’aimantation exprimée sous la forme

donnée à l’équation (2.7), c’est-à-dire avec un terme d’amortissement phénoménologique α

de Gilbert

∂Mw

∂t
= −Mw ×

(

µ0|γ|Hw − α

Ms

∂Mw

∂t

)

, (A.2)

où l’aimantation et le champ effectif peuvent être séparés en une composante statique et une

composante dynamique [Éqs. (2.8) et (2.9)]

Mw = Mw0 +mw = Msẑ+mw, (A.3)

Hw = Hw0 + hw = Hw0ẑ+ hw. (A.4)
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Signalons que sous cette forme, l’équation du mouvement conserve la norme de l’aimantation.

En effet, en multipliant scalairement les deux membres de l’équation (A.2) par Mw, nous

trouvons que ∂
(

|Mw|2
)

/∂t = 0, ce qui nous permet de déduire que |Mw| ne varie pas dans le
temps.

L’approximation des petits signaux consiste alors à poser que l’amplitude des champs

dynamiques est très faible par rapport à celle des champs statiques, c’est-à-dire que |mw| ≪
Ms et |hw| ≪ Hw0, ce qui permet de linéariser l’équation (A.2). En supposant ensuite une

dépendance temporelle harmonique proportionnelle à e−iωt pour les composantes de hw etmw,

la résolution du système d’équations résultant mène au tenseur de susceptibilité magnétique

intrinsèque transverse ¯̄χw, qui définit la relation

mw = ¯̄χwhw =





χ −iχt

iχt χ



hw, (A.5)

où

χ =
ωMω∗

H

(ω∗
H)

2 − ω2
, (A.6a)

χt =
ωMω

(ω∗
H)

2 − ω2
(A.6b)

sont les composantes diagonales et hors diagonales de ¯̄χw, lesquelles sont liées aux compo-

santes transverses du tenseur de perméabilité intrinsèque ¯̄µw de l’équation (2.12) par les

relations µ = µ0 (1 + χ) et µt = µ0χt, respectivement.

Ce résultat indique notamment que dans l’approximation des petits signaux, l’aimantation

dynamique mw demeure confinée dans le plan transverse à l’axe de gyrotropie (c.-à-d., l’axe z

dans le cas traité ici), de sorte que ¯̄χw se réduit à un tenseur 2×2. En effet, lorsque les termes

non linéaires sont négligés, la résolution du système décrit par l’équation (A.2) conduit à la

relation triviale mw,z = χ‖hw,z = 0, ce qui implique que nous devons poser χ‖ = 0, où χ‖ est

la composante axiale de ¯̄χw, telle que µ‖ = µ0

(

1 + χ‖

)

.
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Tenseur de susceptibilité externe d’un fil individuel dans l’approximation des

petits signaux et la limite quasi statique

Nous allons maintenant considérer la réponse externe d’un fil individuel caractérisé par

le tenseur de désaimantation ¯̄Nw, lequel possède des composantes dans le plan Nw
ip ≈ 1/2 et

hors plan Nw
op ≈ 0 [Éq. (2.2)]. Nous supposons que le fil est soumis à un champ dynamique

local hloc, qui demeure spatialement uniforme en son voisinage. Dans la limite QS, le champ

dynamique hw à l’intérieur du fil est également uniforme et peut être obtenu à partir de la

version bidimensionnelle de l’équation (3.31), c’est-à-dire

hw = hloc − ¯̄Nw⊥mw, (A.7)

où ¯̄Nw⊥ est un tenseur de désaimantation transverse 2× 2 donné par

¯̄Nw⊥ =





Nw
ip 0

0 Nw
ip .



 (A.8)

Notons ici que le terme − ¯̄Nw⊥mw représente le champ de désaimantation dynamique.

La réponse de l’aimantationmw du fil dans le champ local hloc est décrite par le tenseur de

susceptibilité externe ¯̄ηw, lequel établit la relation constitutive mw = ¯̄ηwhloc définie à l’équa-

tion (3.28). Pour déterminer ¯̄ηw, nous pouvons remplacer hw et hloc dans l’équation (A.7)

par ¯̄χ−1
w mw et ¯̄η−1

w mw, respectivement. Le calcul est direct et mène à l’expression tensorielle

de dimension 2× 2

¯̄η−1
w = ¯̄χ−1

w + ¯̄Nw⊥, (A.9)

que nous pouvons expliciter comme





η −iηt

iηt η





−1

=





χ −iχt

iχt χ





−1

+





Nw
ip 0

0 Nw
ip



 . (A.10)

Enfin, en substituant l’équation (A.6) dans l’équation (A.10), nous trouvons que les compo-

santes transverses de ¯̄ηw s’expriment comme

η =
ωM

(

ω∗
H +Nw

ipωM

)

(

ω∗
H +Nw

ipωM

)2 − ω2
, (A.11a)

ηt =
ωMω

(

ω∗
H +Nw

ipωM

)2 − ω2
, (A.11b)
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ce qui, comme attendu, cöıncide avec les relations obtenues à l’équation (3.29), dans la limite

où Nw
ip = 1/2.

Problème avec l’équation (A.1) dans l’approximation des petits signaux

Les résultats que nous venons de présenter montrent que dans l’approximation des petits

signaux, nous travaillons, en général, dans un sous-espace bidimensionnel, de sorte que ¯̄χw et

¯̄ηw se réduisent à des tenseurs 2 × 2, liés par l’intermédiaire du tenseur ¯̄Nw⊥. D’un point de

vue strictement mathématique, il en résulte que l’application de la relation ¯̄η−1
w = ¯̄χ−1

w + ¯̄Nw,

donnée à l’équation (A.1) et impliquant des tenseurs 3 × 3, pose une difficulté formelle. En

effet, l’équation (A.1) s’écrit alors de façon explicite comme













η −iηt 0

iηt η 0

0 0 0













−1

=













χ −iχt 0

iχt χ 0

0 0 0













−1

+













Nw
ip 0 0

0 Nw
ip 0

0 0 Nw
op













(A.12)

et s’avère problématique. En effet, lorsque les susceptibilités ¯̄χw et ¯̄ηw sont exprimées comme

des matrices 3 × 3, caractérisées par des composantes axiales χ‖ et η‖ strictement égales

à 0, nous trouvons que leur déterminant respectif s’annule, ce qui implique que ¯̄χw et ¯̄ηw

sont des matrices singulières, c’est-à-dire que les matrices inverses ¯̄χ−1
w et ¯̄η−1

w n’existent

pas (voir notamment la référence [130], p. 181). Par conséquent, nous devons en conclure

que l’équation (A.1) requiert un traitement particulier pour pouvoir être employée dans

l’approximation des petits signaux.

Or, dans la littérature, la distinction entre les équations (A.1), dimension 3×3, et (A.9), de

dimension 2× 2, est rarement établie de façon explicite. Par exemple, à la référence [26] [voir

en particulier les équations (1.42), (1.111) et (1.112)], nous constatons que la relation (A.1) est

utilisée dans l’approximation des petits signaux, même si les susceptibilités intrinsèque ¯̄χw et

externe ¯̄ηw y sont définies comme des tenseurs 3×3, comme à l’équation (A.12). En revanche,

à la référence [170], la relation liant ¯̄χw et ¯̄ηw est présentée sous une forme équivalente à celle

de notre équation (A.9), c’est-à-dire en fonction d’un tenseur de désaimantation transverse
¯̄Nw⊥ de dimension 2× 2.

Dans le cadre de cette thèse, il nous est apparu souhaitable et avantageux de pouvoir géné-

raliser les tenseurs de susceptibilité magnétique ¯̄χw, ¯̄ηw, ¯̄χeff et ¯̄ηeff en les exprimant comme des

matrices 3×3, malgré que dans la configuration TM considérée, la réponse magnétique est es-

sentiellement bidimensionnelle, c’est-à-dire qu’elle reste confinée dans le plan perpendiculaire

à l’axe de gyrotropie. Pour ce faire, une approche possible consiste à ajouter la composante de
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susceptibilité axiale χ‖ ≪ 1 au tenseur de susceptibilité intrinsèque ¯̄χw, ce qui est équivalent

à admettre que µ‖ 6= µ0 dans le tenseur de perméabilité intrinsèque de l’équation (2.11). Il

convient d’insister ici sur le fait que la présence d’une composante axiale χ‖ différente de 0

est physiquement raisonnable et attendue, en raison notamment des réponses diamagnétique

et paramagnétique intrinsèques du matériau, de même que des contributions non linéaires

à l’équation du mouvement [Éq. (2.7)]. Dans ce contexte, l’équation (A.1) s’exprime alors

comme













η −iηt 0

iηt η 0

0 0 η‖













−1

=













χ −iχt 0

iχt χ 0

0 0 χ‖













−1

+













Nw
ip 0 0

0 Nw
ip 0

0 0 Nw
op













, (A.13)

où les composantes transverses η et ηt sont toujours données par l’équation (A.11). Nous

pouvons également montrer que dans la limite où χ‖ tend vers 0, la composante axiale de la

susceptibilité externe vaut

η‖ =
χ‖

1 +Nw
opχ‖

≈ χ‖ ≪ 1 (A.14)

et demeure donc négligeable.

Ce résultat montre que l’introduction d’une faible composante axiale au tenseur ¯̄χw assure

la rigueur mathématique de la relation tensorielle ¯̄η−1
w = ¯̄χ−1

w + ¯̄Nw, sans toutefois modifier

les réponses transverses η et ηt de l’aimantation excitée dans la configuration TM. Mention-

nons enfin que la présence de χ‖ 6= 0 va également introduire une faible composante axiale

aux tenseurs de susceptibilités effective ¯̄χeff et effective externe ¯̄ηeff , par l’intermédiaire des

équations (3.36) et (3.117).

Distinction entre les contributions statique et dynamique aux champs de désai-

mantation et d’interaction

Les résultats présentés dans cette annexe permettent également d’illustrer plus explici-

tement comment les champs de désaimantation statique (axial) et dynamique (transverse)

interviennent dans les expressions pour les composantes transverses η et ηt du tenseur de

susceptibilité externe ¯̄ηw, données à l’équation (A.11).

D’abord, le champ de désaimantation dynamique, pris en compte par le terme Nw
ipωM , ap-

parâıt explicitement dans les expressions pour η et ηt lors de l’application de l’équation (A.9)

[ou, de façon équivalente, de l’équation (A.1)]. En effet, l’examen des équations (A.6) et
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(A.11) permet de constater que les composantes η et ηt peuvent être obtenues à partir des

expressions pour les composantes χ et χt en remplaçant simplement ω∗
H par ω∗

H +Nw
ipωM .

Pour sa part, le champ de désaimantation statique est contenu à l’intérieur du terme

ω∗
H = ωH − iαω, lequel apparâıt dans les composantes χ et χt du tenseur de susceptibilité

intrinsèque ¯̄χw [Éq. (A.6)]. En effet, le terme ωH peut être décomposé comme ωH = ω0 −
Nw

opωM , où ω0 représente le champ magnétique statique appliqué et −Nw
opωM désigne le champ

de désaimantation statique. La substitution de ωH par ω0 − Nw
opωM dans l’équation (A.11)

mène alors à

η =
ωM

[

ω0 +
(

Nw
ip −Nw

op

)

ωM − iαω
]

[

ω0 +
(

Nw
ip −Nw

op

)

ωM − iαω
]2 − ω2

, (A.15a)

ηt =
ωMω

[

ω0 +
(

Nw
ip −Nw

op

)

ωM − iαω
]2 − ω2

. (A.15b)

Lorsque les pertes sont faibles (α ≪ 1), les composantes η et ηt possèdent un pôle en

ωres = ω0 +
(

Nw
ip −Nw

op

)

ωM , (A.16)

qui correspond à la formule de Kittel appliquée à un ellipsöıde de révolution [26, 118]. De plus,

dans la limite d’un fil infini caractérisé par Nw
ip = 1/2 et Nw

op = 0, l’équation (A.16) cöıncide,

comme attendu, avec l’équation (3.30) pour ωcyl [notons qu’à l’équation (3.30), ωH = ω0

lorsque Nw
op = 0].

Soulignons que ces considérations s’appliquent également aux interactions dipolaires in-

terfils. Par exemple, dans la limite QS, nous avons montré à l’équation (3.117) que le tenseur

de susceptibilité effective externe ¯̄ηeff du réseau est lié au tenseur de susceptibilité intrinsèque

¯̄χw des fils comme

(

¯̄ηeff
f

)−1

= ¯̄χ−1
w + ¯̄N, (A.17)

où ¯̄N = ¯̄Nw + ¯̄Nint est le tenseur de désaimantation total du réseau défini à la référence [61]

et à l’équation (3.116).

D’abord, par analogie avec les équations (A.1) et (A.11), nous pouvons tenir compte des

interactions intra et interfils dynamiques en remplaçant ω∗
H dans χ et χt par ω

∗
H +NipωM =
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ω∗
H +

(

Nw
ip +N int

ip

)

ωM , ce qui nous permet de dériver des expressions explicites pour les

composantes transverses de ¯̄ηeff :

ηeff =
fωM (ω∗

H +NipωM)

(ω∗
H +NipωM)2 − ω2

, (A.18a)

ηeff,t =
fωMω

(ω∗
H +NipωM)2 − ω2

. (A.18b)

Le champ d’interaction statique est ensuite obtenu en exprimant ωH , dans ω
∗
H = ωH − iαω,

comme ωH = ω0 − NopωM = ω0 −
(

Nw
op +N int

op

)

ωM , où ω0 est proportionnel au champ

magnétique appliqué et −NopωM = −
(

Nw
op +N int

op

)

ωM décrit les interactions intra et interfils

statiques. En considérant cette expressions pour ωH dans l’équation (A.18), nous trouvons

alors

ηeff =
fωM [ω0 + (Nip −Nop)ωM − iαω]

[ω0 + (Nip −Nop)ωM − iαω]2 − ω2
, (A.19a)

ηeff,t =
fωMω

[ω0 + (Nip −Nop)ωM − iαω]2 − ω2
. (A.19b)

Dans la limite α ≪ 1, les composantes ηeff et ηeff,t ont un pôle en

ωres,eff = ω0 +
(

Nw
ip −Nw

op

)

ωM , (A.20)

qui adopte une forme identique à la formule de Kittel de l’équation (A.16).

Enfin, dans le cas de longs fils (L ≪ d) en régime monopolaire (L ≪ D), nous avons Nw
ip =

1/2, N int
ip = −f/2, Nw

op = 0 et N int
op = f , ce qui implique que Nip = (1− f) /2 et Nop = f .

Dans cette limite, nous trouvons que l’équation (A.19) se réduit à l’équation (3.114), alors que

la fréquence de résonance ωres,eff se simplifie et cöıncide avec le résultat de l’équation (3.115),

c’est-à-dire

ωres,eff = ω0 +
ωM

2
(1− 3f) , (A.21)

qui correspond à la condition de résonance du mode uniforme d’un ensemble de fils en inter-

action excités dans la limite QS.
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ANNEXE B

Démonstration de l’équivalence de deux procédures

d’homogénéisation dans la limite isotrope

Dans cette annexe, nous allons démontrer l’équivalence, dans la limite isotrope, de deux

procédures d’homogénéisation basées sur la définition d’une cellule unitaire équivalente plon-

gée dans le milieu effectif dont nous cherchons à déterminer les propriétés. Pour un réseau de

fils excités dans la configuration TM, la cellule unitaire équivalente consiste en un cylindre

de rayon a et de perméabilité intrinsèque isotrope µw, représentant le fil, lequel est recouvert

d’une coquille cylindrique de rayon externe b et de perméabilité µ0, représentant la matrice.

En régime EQS, la perméabilité renormalisée du fil vaut µ̃w = µwG (kwa) [Éq. (3.26)], ce qui

mène à une susceptibilité externe donnée par η̃w = 2 (µ̃w − µ0) / (µ̃w + µ0) [Éq. (3.25)]. La

situation considérée correspond à la limite isotrope de la figure 3.1.

Nous voulons démontrer que pour des fils caractérisés par une perméabilité intrinsèque

isotrope, la perméabilité effective µ̃eff du réseau en régime EQS peut être déterminée à l’aide

de deux méthodes équivalentes. D’une part, en imposant que le champ diffusé par la cellule

unitaire plongée dans le milieu effectif s’annule et, d’autre part, en satisfaisant les conditions

de continuité des champs à l’interface entre la cellule et le milieu effectif.

Considérons d’abord la première méthode. La condition de diffusion nulle par la cellule

unitaire équivalente consiste à imposer que sa susceptibilité externe renormalisée η̃cell s’an-

nule. 1 Dans ce contexte, la référence [171] a montré que dans la configuration TM considérée

ici, η̃cell peut s’exprimer comme

η̃cell = 2
(µ0 − µ̃eff) (µ̃w + µ0) + f (µ0 + µ̃eff) (µ̃w − µ0)

(µ0 + µ̃eff) (µ̃w + µ0) + f (µ0 − µ̃eff) (µ̃w − µ0)
, (B.1)

où f = (a/b)2 désigne la fraction du réseau occupée par les fils. 2 La condition de diffusion nulle

impose alors que η̃cell = 0, ce qui requiert que le numérateur de η̃cell s’annule à l’équation (B.1).

Le calcul est direct et mène à

1. Comme dans le cas d’un fil individuel, signalons que l’amplitude du champ magnétique diffusé par la
cellule unitaire équivalente est proportionnelle à sa susceptibilité externe η̃cell en régime EQS.

2. Signalons qu’à la référence [171], l’équation (B.1) a toutefois été dérivée dans la limite QS. Pour généra-
liser ce résultat au régime EQS, nous avons dû effectuer les substitutions suivantes : ηcell → η̃cell, µeff → µ̃eff

et µw → µ̃w.
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µ̃eff − µ0

µ̃eff + µ0

= f
µ̃w − µ0

µ̃w + µ0

, (B.2)

ce qui correspond à la formule implicite de Maxwell Garnett appliquée à un réseau de longs fils

cylindriques parallèles excités dans la configuration TM. Enfin, en isolant µ̃eff , nous déduisons

la relation explicite suivante

µ̃eff = µ0
2 + fη̃w
2− fη̃w

= µ0
µ̃w (1 + f) + µ0 (1− f)

µ̃w (1− f) + µ0 (1 + f)
(B.3)

qui, comme attendu, est identique au résultat donné à l’équation (3.27).

Examinons maintenant la deuxième méthode, qui consiste plutôt à satisfaire les conditions

de continuité des champs à l’interface entre la cellule unitaire équivalente et le milieu effectif.

D’abord, le champ hm dans la matrice (a < ρ < b) est constitué du champ local hloc qui

excite le fil et du champ hscat diffusé par celui-ci. Nous pouvons alors écrire

hm = hloc + hscat

= hloc +
a2

2ρ2

[

2 (ρ̂⊗ ρ̂)− ¯̄I
]

η̃whloc,
(B.4)

ce qui correspond à l’équation (3.15) dans la limite isotrope, où ¯̄ηw → η̃w avec η̃w donné

à l’équation (3.25). Rappelons que la forme matricielle de
[

2 (ρ̂⊗ ρ̂)− ¯̄I
]

est explicitée à

l’équation (3.16).

La procédure d’homogénéisation requiert ensuite de lier les champs hm et bm = µ0hm

dans la matrice (a < ρ < b) aux champs moyens 〈h〉 et 〈b〉 = µ̃eff 〈h〉 dans le milieu effectif

(ρ > b), lorsque les fils sont soumis au champ local hloc = −hlocŷ. Pour ce faire, nous

devons considérer les conditions aux frontières en ρ = b pour la continuité de la composante

tangentielle du champ magnétique (en φ = 0) et de la composante normale de l’induction

magnétique (en φ = π/2). Il en résulte que

〈hy〉 = −
(

1− f

2
η̃w

)

hloc (B.5)

pour la composante tangentielle du champ magnétique et

〈by〉 = −µ0

(

1 +
f

2
η̃w

)

hloc (B.6)

pour la composante normale de l’induction magnétique. La perméabilité effective µ̃eff =

〈by〉 / 〈hy〉 vaut alors
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µ̃eff =
〈by〉
〈hy〉

= µ0
2 + fη̃w
2− fη̃w

= µ0
µ̃w (1 + f) + µ0 (1− f)

µ̃w (1− f) + µ0 (1 + f)
, (B.7)

qui est identique à l’équation (B.3). Ceci complète la démonstration.
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ANNEXE C

Dérivation du paramètre d’amortissement critique dans

la limite quasi statique

Cette annexe est consacrée à la dérivation, dans la limite QS, du paramètre d’amortisse-

ment critique αc, qui correspond à la valeur maximale du paramètre α de Gilbert au-delà de

laquelle la partie réelle de µeff⊥ ne devient plus négative entre ses fréquences de résonance et

d’antirésonance.

La composante de perméabilité effective µeff⊥ correspond à l’équation (3.24) pour µ̃eff⊥

dans la limite QS, c’est-à-dire

µeff⊥ =
µ2
eff − µ2

eff,t

µeff

= µ0
(fη + 2)2 − (fηt)

2

4− f 2 (η2 − η2t )
, (C.1)

où les composantes transverses diagonales η et hors diagonales ηt du tenseur de susceptibilité

externe ¯̄ηw sont données respectivement aux équations (3.29a) et (3.29b). Pour déterminer

αc, nous substituons d’abord les expressions pour η et ηt dans l’équation (C.1), ce qui mène

à

µeff⊥

µ0

=

(

ω∗
res,eff + fωM

)2 − ω2

ω∗
res,eff

(

ω∗
res,eff + fωM

)

− ω2
, (C.2)

avec ω∗
res,eff = ωres,eff − iαω, où ωres,eff est donnée à l’équation (3.115). Nous devons ensuite

déterminer les fréquences qui annulent la partie réelle de µeff⊥. Lorsque la valeur du paramètre

d’amortissement α est suffisamment petite (c.-à-d., α ≤ αc), il s’ensuit que la condition

Re [µeff⊥] = 0 est satisfaite aux deux fréquences suivantes

ω± =

√

(ωres,eff + fωM)
[

(1− α2) (2ωres,eff + fωM)±∆ω
]

√
2 (1 + α2)

, (C.3)

où le terme

∆ω =

√

[

(1− α2) fωM

]2 − 16α2ωres,eff (ωres,eff + fωM) (C.4)

tient compte de la séparation entre les fréquences de résonance (ω−) et d’antirésonance (ω+)

de µeff⊥. Ces deux fréquences cöıncident lorsque ∆ω = 0 (et donc que α = αc), ce qui
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représente la limite au-delà de laquelle Re [µeff⊥] demeure toujours positive. La résolution de

l’équation ∆ω = 0 pour α mène alors à notre résultat final pour le paramètre d’amortissement

critique αc, que nous exprimons de façon compacte comme

αc = αc0 −
√

α2
c0 − 1, (C.5)

où

αc0 =
2

f

[

Hext0

Ms

+
(1− 2f)

2

]

(C.6)

dépend de la fraction du réseau f occupée par les fils et du rapport Hext0/Ms entre le champ

magnétique statique externe Hext0 et l’aimantation spontanée Ms. Pour α < αc, la partie

réelle de la perméabilité effective µeff⊥ possède un intervalle de valeurs négatives entre ses

fréquences de résonance et d’antirésonance. En revanche, lorsque α > αc, la partie réelle

de µeff⊥ demeure toujours positive et aucune région de perméabilité effective négative n’est

observée.


