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RÉSUMÉ

Les statistiques ont estimé à environ 14,1 millions le nombre de cas de cancer en 2018 dans le
monde, et qui devrait passer à 24 millions d’ici 2035. La radiothérapie est l’une des premières
méthodes de traitement du cancer, qu’environ 50% des patients reçoivent au cours de leur
maladie. Cette méthode endommage le matériel génétique des cellules cancéreuses, détruisant
ainsi leur capacité de reproduction. Cependant, les cellules normales sont également affectées
par le rayonnement ; par conséquent, le traitement doit être effectué de manière à maximiser
la dose de rayonnement aux tumeurs, tout en minimisant les effets néfastes des radiations
sur les tissus sains. Les techniques d’optimisation sont utilisées afin de déterminer la dose et
la position du rayonnement à administrer au corps du patient.

Ce projet aborde la radiothérapie externe à travers la radiothérapie par modulation d’intensité
(IMRT), ainsi qu’une nouvelle forme appelée modulation d’intensité volumétrique par thérapie
par arcs (VMAT). En IMRT, un nombre fini de directions sont déterminées pour le rayon-
nement du faisceau, tandis qu’en VMAT l’accélérateur linéaire tourne autour du corps du
patient alors que le faisceau est allumé. Cette technologie permet de modifier dynamiquement
la forme du faisceau et le débit de dose pendant le traitement. Le problème de planification
du traitement consiste à choisir une séquence de distribution des formes de faisceaux, à op-
timiser le dé bit de dose du faisceau et à déterminer la vitesse de rotation du portique, si
nécessaire.

Cette recherche tire profit de la méthode de génération de colonnes, en tant que méthode
d’optimisation efficace en particulier pour les problèmes à grande échelle. Cette technique
permet d’améliorer le temps de traitement et les objectifs cliniques non linéaires et non
convexes, dans la planification de traitement en VMAT. Un nouveau modèle multi-objectif
de génération de colonnes pour l’IMRT est également développé.

Dans le premier essai, nous développons un nouvel algorithme de génération de colonnes qui
optimise le compromis entre le temps et la qualité du traitement délivré pour la planification
de traitement en VMAT. Pour ce faire, une génération simultanée de colonnes et de rangées est
développée, afin de relier les colonnes, contenant la configuration des ouvertures de faisceaux,
aux rangées du modèle, représentant la restriction de temps de traitement. De plus, nous
proposons une technique de regroupement par grappe modifiée, afin d’agréger des éléments
de volume similaires du corps du patient, et de réduire efficacement le nombre de contraintes
dans le modèle. Les résultats de calcul montrent qu’il est possible d’obtenir un traitement
de haute qualité sur quatre processeurs en parallèle.
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Dans le deuxième essai, nous développons une approche de planification automatique inté-
grant les critères de l’histogramme dose-volume (DVH). Les DVH sont la représentation de
dose la plus courante pour l’évaluation de la qualité de traitement en technologie VMAT.
Nous profitons de la procédure itérative de génération de colonnes pour ajuster les paramètres
du modèle lors de la génération d’ouverture, et répondre aux critères DVH non linéaires, sans
tenir compte des contraintes dures dans le modèle. Les résultats sur les cas cliniques montrent
que notre méthodologie a été significativement améliorée, pour obtenir des plans clinique-
ment acceptables sans intervention humaine par rapport à une simple optimisation VMAT.
De plus, la comparaison avec un système de planification de traitement commercial existant
montre que la qualité des plans obtenus à partir de la méthode proposée, en particulier pour
les tissus sains, est largement meilleure alors que le temps de calcul est moindre.

Dans le troisième essai, nous abordons la planification de traitement en IMRT, qui est for-
mulée comme un problème d’optimisation convexe à grande échelle, avec un espace de faisabil-
ité simplex. Nous intégrons d’abord une nouvelle approche de solution basée sur la méthode
Frank-Wolfe, appelée Blended Conditional Gradients, dans la génération de colonnes, pour
améliorer les performances de calcul de la méthode. Nous proposons ensuite une technique
de génération de colonnes multi-objectif, pour obtenir directement des ouvertures qui se
rapprochent d’un ensemble efficace de plans de traitement non dominés. A cette fin, nous
trouvons les limites inférieure et supérieure du front de Pareto, et générons une colonne avec
un vecteur de poids des objectifs pré-assigné ou nouveau, réduisant la distance maximale
de deux bornes. Nous prouvons que cet algorithme converge vers le front de Pareto. Les
résultats de recherche d’un bon compromis de traitement entre la destruction des volumes
cibles et la protection des structures saines dans un espace objectif bidimensionnel, montrent
l’efficacité de l’algorithme dans l’approche du front de Pareto, avec des plans de traitement
livrables en 3 minutes environ, et évitant un grand nombre de colonnes. Cette méthode
s’applique également à d’autres classes de problèmes d’optimisation convexe, faisant appel à
la fois à une génération de colonnes et à une optimisation multi-objectifs.
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ABSTRACT

The statistics have estimated about 18.1 million cancer cases in 2018 around the world, which
is expected to increase to 24 million by 2035. Radiation therapy is one of the most important
cancer treatment methods, which about 50% of patients receive during their illness. This
method works by damaging the genetic material within cancerous cells and destroying their
ability to reproduce. However, normal cells are also affected by radiation; therefore, the
treatment should be performed in such a way that it maximizes the dose of radiation to
tumors, while simultaneously minimizing the adverse effects of radiations to healthy tissues.
The optimization techniques are useful to determine where and how much radiation should
be delivered to patient’s body.

In this project, we address the intensity-modulated radiation therapy (IMRT) as a widely-
used external radiotherapy method and also a novel form called volumetric modulated arc
therapy (VMAT). In IMRT, a finite number of directions are determined for the beam ra-
diation, while in VMAT, the linear accelerator rotates around the patient’s body while the
beam is on. These technologies give us the ability of changing the beam shape and the dose
rate dynamically during the treatment. The treatment planning problem consists of selecting
a delivery sequence of beam shapes, optimizing the dose rate of the beam, and determining
the rotation speed of the gantry, if required.

In this research, we take advantages of the column generation technique, as a leading op-
timization method specifically for large-scale problems, to improve the treatment time and
non-linear non-convex clinical objectives in VMAT treatment planning, and also develop a
new multi-objective column generation framework for IMRT.

In the first essay, we develop a novel column generation algorithm optimizing the trade-off
between delivery time and treatment quality for VMAT treatment planning. To this end,
simultaneous column-and-row generation is developed to relate the configuration of beam
apertures in columns to the treatment time restriction in the rows of the model. Moreover, we
propose a modified clustering technique to aggregate similar volume elements of the patient’s
body and efficiently reduce the number of constraints in the model. The computational
results show that a high-quality treatment is achievable using a four-thread CPU.

In the second essay, we develop an automatic planning approach integrating dose-volume
histogram (DVH) criteria, the most common method of treatment evaluation in practice,
for VMAT treatment planning. We take advantage of the iterative procedure of column
generation to adjust the model parameters during aperture generation and meet nonlinear
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DVH criteria without considering hard constraints in the model. The results on clinical cases
show that our methodology had significant improvement to obtain clinically acceptable plans
without human intervention in comparison to simple VMAT optimization. In addition, the
comparison to an existing commercial treatment planning system shows the quality of the
obtained plans from the proposed method, especially for the healthy tissues, is significantly
better while the computational time is less.

In the third essay, we address the IMRT treatment planning, which is formulated as a large
scale convex optimization problem with simplex feasibility space. We first integrate a novel
Frank-Wolfe-based solution approach, so-called Blended Conditional Gradients, into the col-
umn generation to improve the computational performance for the method. We then propose
a multi-objective column generation technique to directly obtain apertures that approximate
an efficient non-dominated set of treatment plans. To this end, we find lower and upper
bounds for the Pareto front and generate a column with a pre-assigned or new weight-vector
of the objectives, reducing the maximum distance of two bounds. We prove this algorithm
converges to the Pareto front. The results in a two-dimensional objective space to find the
trade-off plans between the treat of target volumes and sparing the healthy structures show
the efficiency of the algorithm to approximate the Pareto front with deliverable treatment
plans in about 3 minutes, avoiding a large number of columns. This method is also applica-
ble for other classes of convex optimization problems requiring both column generation and
multi-objective optimization.
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CHAPTER 1 INTRODUCTION

The statistics have estimated about 18.1 million cancer cases in 2018 around the world, which
is expected to increase to 24 million by 2035 [130]. In Canada, it has been estimated about
206,200 new cases of cancer in 2018, which will cause the death of approximately 80,800
people. Canadian Cancer Society has also predicted that 40% of Canadians will develop
cancer in their lifetime, and about 25% will die of this disease [121].

Radiation therapy is an effective technique against cancer, from which approximately 50
percent of all cancer patients can benefit. This method works by damaging the genetic
material within cancerous cells and destroying their ability to reproduce [10]. However,
normal cells will be damaged as well as cancer cells in this process. Therefore, the treatment
should be performed in such a way that it maximizes the dose of radiation to tumors, while
minimizing the adverse effects of radiations to healthy tissues, simultaneously [52].

The source of radiation may be external, referred to as external radiotherapy, by producing
photon beams outside the body or internal by placing the source inside the patient, called
brachytherapy. In this project, we focus on the external radiotherapy, which is more common.
In this type of treatment, the radiation beams are delivered by a linear accelerator (linac)
mounted on a gantry from several directions to the patient. Figure 1.1 shows these pieces
of equipment in external radiation therapy. This device is capable of rotating so that beams
can be delivered from around the patient. The combination of gantry and couch rotation can
facilitate the delivery of radiation beams from different feasible directions.

1.1 Treatment process

After a patient is diagnosed with cancer and the physician includes radiation therapy as part
of the treatment, the patient takes the following steps in the treatment-flow [60]:

• Step 1 (CT Scan): A Computed Tomography (CT) scan of the patient is performed,
which gives a 3D density map of the internal geometry of the patient.
• Step 2 (Image Segmentation): Different organs in the CT scan are identified, either by

automated software or by manual contouring of the CT images.
• Step 3 (Beam Dose Calculation): Given a set of candidate beams of different locations,

the dose delivered to the patient is estimated for each direction.
• Step 4 (Beam Optimization): Given the patient geometry, candidate beams, and a

physician prescribed desired dose distribution, an optimal set of beam directions and
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Figure 1.1 Linear accelerator [1]

intensities is computed.
• Step 5 (Plan Evaluation): Once the dose distribution has been computed, a radiologist

and physician evaluate the plan in details and approve.

The output of this process is a treatment plan consisting the optimal beam directions, beam
shapes, and their corresponding intensity, to make a trade-off between the treatment of the
tumor in conflict with sparing the healthy tissues. This treatment plan can be delivered over
several sessions, known as fractions. In practice, this process, still in a large degree, is ac-
complished through a trial-and-error process that is guided by a physician [62]. Optimization
techniques can be useful to implement this process automatically, and make it more precise
and efficient.

1.2 Radiation therapy techniques

There are several external radiotherapy modalities, of which the oncologist recommends the
most effective method to the patient bounded by what is available at the clinic.

• Three-dimensional conformal radiation therapy (3D-CRT): This technique uses sophis-
ticated scans to create detailed three-dimensional representations of the tumor and
surrounding tissues. Then, several blocks would be employed to shape the radiation
beams. This method cannot conform well to an arbitrary three-dimensional shape
unless the target has a relatively simple shape or large number of beams are used [127].
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• Intensity Modulated Radiation Therapy (IMRT): This technique is a specialized form
of 3D-CRT, which has more flexibility to fit the tumor by breaking up the beam into
many small beamlets, and adjust the intensity of each beamlet individually [51].

• Volumetric Modulated Arc Therapy (VMAT): Contrary to IMRT that employs only a
few fixed directions, VMAT is a form of radiotherapy which incorporates rotation of the
beam around the patient’s body while the beam is on. Moreover, the dose rate, beam
shape, and gantry speed are dynamically adjustable during the rotation. Therefore,
the conformity is greater in this method, while takes less treatment time [25].

• Stereotactic Radiotherapy: The beam in this technique is precise, achieved through
rigid immobilization, e.g., with a head frame as is used in the treatment of brain
tumors [84].

• Proton Beam Therapy: This method is a form of radiation treatment that uses protons
rather than X-rays to treat certain cancers. This type of radiation deposits less energy
before and after the tumor and allows to reduce the dose to nearby healthy tissues [74].

• Neutron Beam Therapy: This method is a specialized form of high-energy radiation
therapy, typically useful for certain radioresistant tumors, i.e., the irradiation is unable
or difficult to reduce the tumor volume [85].

In this research, we focus on the treatment planning in IMRT and VMAT, which are widely
applicable for different cancer patients and their technology in principle is similar. In both
methods, the radiation beam is decomposed into a rectangular grid of beamlets, and a piece
of equipment called Multi-Leaf Collimator (MLC) is used to adjust the intensity of each
beamlet. This equipment is made up of two opposite banks of metal leaves, leading and
trailing, which can be shifted towards each other, automatically. Then, a beamlet is open if
it is not blocked by either the leading or trailing leaf, and the relative motion of the leaves
controls the intensity. A sample of MLC is shown in Figure 1.2.

1.3 Intensity Modulated Radiation Therapy (IMRT)

IMRT is the most commonly used type of external radiotherapy. This method achieves the
geometric shape of the tumor and its optimal dose intensity by delivering through sequential
different beam shapes, called apertures, each with uniform intensity level. In IMRT, a fixed
number of directions are used to deliver radiation through multiple apertures. Along with
shaping the MLC apertures and adjusting the corresponding intensities, we can limit the
dose reaching the healthy tissues.
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Figure 1.2 A sample of MultiLeaf Collimator (MLC) [126].

To evaluate the dose absorbed by the patient, we divide the body into small cubic volume
elements called voxel. The number of voxels is typically in order of O(105). The dose received
by voxel v from beamlet i at unit intensity is estimated in each beam direction by dosimetry
methods, denoted Div. D = [Div] is called the dose-influence matrix. The planning process
is usually divided into three following problems [52]

1. Beam Angle Optimization (BAO): In this problem, a finite number of directions, or
beam angles, which makes up set B, are selected, from which the treatment will be
delivered. This number is typically between 5 to 9 beams, based on the cancer type.
If candidate directions are only obtained from the rotation of the gantry, it is called
coplanar, otherwise if other parameters such as coach angles were also involved, it would
be non-coplanar.

2. Fluence Map Optimization (FMO): In this problem, we optimize the intensity, or
fluence, of each beamlet i from each direction b ∈ B. Let x denote the beamlet intensity,
the basic FMO model with objective function F is as follows:

min F (z) (1.1a)

zv =
∑
b∈B

∑
i∈I

Db
iv x

b
i ∀v ∈ V (1.1b)

xbi ≥ 0 ∀i ∈ I, b ∈ B (1.1c)

There are a variety of linear and non-linear models developed for this problem, which
are reviewed in Section 2.1.2.

3. Leaf Sequencing (LS): IMRT cannot directly deliver the fluence map, since the radia-
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tion source can only deliver a uniform intensity at any time. We can decompose the
fluence map into a finite number of MLC apertures and optimize their corresponding
uniform intensity. This problem is known as Leaf Sequencing (LS) problem, matrix
decomposition or realization.

This hierarchical approach may have a major effect on the quality of treatment plans [47].
Moreover, the number of apertures required in this method is often relatively large which
causes long treatment time. To solve this problem, FMO and LS problems are integrated, as
Direct Aperture Optimization (DAO), to directly form the aperture shapes and optimize their
intensity [108]. Let Ak indicate the shape of aperture k, yk be the intensity of the aperture k,
and D(Ak) denote the vector of dose deposition coefficients corresponding to aperture k ∈ K,
i.e., D(Ak) =

∑
i∈Ak

Dk
i . The basic DAO treatment planning model looks as follows:

min F (z) (1.2a)

zv =
∑
k∈K

Dv(Ak) yk ∀v ∈ V (1.2b)

yk ≥ 0 ∀k ∈ K. (1.2c)

However, this integration results in a large-scale optimization problem with enormous number
of decision variables.

We will review the mathematical models and algorithms proposed for FMO and LS problems
and specifically the column-generation based algorithms for DAO, in details, in Section 2.1.

1.4 Volumetric Modulated Arc Therapy (VMAT)

Recently, the arc therapy has emerged and gained widespread clinical interest as a technique
to address the limitations of fixed-field treatments. In this method, the radiation can be
delivered from up to 360◦ of beam angles, with dynamic dose rate and gantry speed [98]. In
this problem, the full arc around the patient is divided into arc segments, and the fluence
maps and MLC leaf trajectories are optimized for each arc. The treatment time by VMAT is
about half of plans implemented by IMRT [25]. However, VMAT is much more complex due
to the dynamic nature of the gantry motion, dose rate constraints, and MLC leaf constraints.
A sample of these machines is shown in Figure 1.3.

To model this problem, there are two approaches: The first approach forms partial arcs
covering the work-area around the patient, and determines the trajectory of MLC leaves
during the arc. Another approach is to consider a finite number of points around the patient,
so-called control points or sectors and optimize the aperture shape and intensity associated
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with each point. We briefly review these models for VMAT treatment planning in Section
2.2.

Figure 1.3 A VMAT machine [2].

1.5 Column generation

IMRT and VMAT treatment planning are large scale problems due to the large number of
voxels and candidate apertures. To have an idea of the number of apertures in VMAT,
suppose a small rectangular (5 × 10) beam and 100 control points. There are 7.1 × 10251

possible apertures. In real cases, the number of beamlets and sectors is usually much larger.

Column generation (CG) is a leading optimization technique to solve large-scale problems
with decomposable structure specially when there are a large number of variables [43]. This
approach has successfully been used in many applications such as Vehicle Routing Problem
(VRP) [56], airline crew pairing [44], and cutting-stock problems [125] as exact or heuristic
methods.

In this technique, instead of generating all the feasible columns in advance, we decompose
the model into two subproblems: (1) the restricted master problem (RMP), which contains
a subset of the columns, and (2) the pricing sub-problem (PSP), in which promising new
columns are generated, expecting to improve the RMP objective function. This iterative
procedure continues until there is no more promising column to improve the solution.

We use this method for IMRT and VMAT treatment planning problems to consider new
features and also extend this technique to the multi-objective framework.
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1.6 Clinical evaluation criteria

Several measures have been proposed to evaluate the quality of treatment plans. One of
the most commonly used methods in practice is Dose-Volume-Histogram (DVH). These
histograms relate the radiation dose to tissue volume, describing the fraction of the structure,
in percentage, which receives a certain dose or above. For example, V20 = 30% means “no
more than 30% of the structure exceeds a radiation dose of 20 Gy”. Gy is the unit of absorbed
dose and one Gy is equal to one Joule (J) of energy deposited in one kilogram (kg) of matter.
A sample of DVH diagram is shown in Figure 1.4.

Figure 1.4 A sample of Dose-Volume-Histogram (DVH).

1.7 General contributions

In this dissertation, we focus on developing column generation-based algorithms to improve
the quality of treatment plans and also delivery times in IMRT and VMAT.

In the first article presented in Chapter 4, we propose a matheuristic algorithm for the
VMAT treatment planning problem, optimizing the trade-off between the treatment time
and treatment quality. In this model, the multi-leaf collimator leaf positions, dose rates, and
the gantry speed are determined, simultaneously. To this end, column-and-row generation
is developed to relate the MLC apertures configuration in columns to time restriction in the
rows.

In the second article presented in Chapter 5, we develop an automatic planning approach
integrating dose-volume histogram (DVH) criteria in direct aperture optimization for VMAT,
during the course of column generation. We take the advantage of iterative procedure in this
method to modify the weight vector of the penalty function based on the DVH criteria and
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decrease the use of trial-and-error in the search for clinically acceptable plans.

In the third article presented in Chapter 6, we first improve the computational performance
of the column generation method developed for DAO in IMRT, using a new efficient first-
order solution method to solve the convex restricted master model. We then propose a
multi-objective column generation technique to directly obtain columns that efficiently ap-
proximates a non-dominated set of solutions. In this algorithm, a column is generated to
improve the entire Pareto front rather than a single-objective. This method is implemented
for direct aperture optimization (DAO) to find the trade-off plans between the treatment of
target volumes and sparing the healthy structures.
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CHAPTER 2 LITERATURE REVIEW

In this chapter, we review the prior researches in the same area of this dissertation. The
literature on mathematical models of the IMRT and VMAT treatment planning are briefly
surveyed in Sections 2.1 and 2.2, respectively. Moreover, we specifically survey the literature
on modelling the DVH criteria in Section 2.3 and also multi-objective optimization in IMRT
in Section 2.4.

2.1 Intensity Modulated Radiation Therapy (IMRT)

The first optimization model applied in radiation therapy treatments was a linear model by
Bahr et al. [13]. After, there has been an increasing attention to applications of OR methods
in medical physics [62]. IMRT was introduced in the 1990s, in which each treatment beam
has its intensity distribution, individually [28]. As categorized in Chapter 1, the traditional
treatment planning is divided into three problems, which can be solved sequentially: Beam
Angle Optimization (BAO), Fluence Map Optimization (FMO), and Leaf Sequencing (LS).
We briefly review these problems in this chapter. For more detailed information, we refer
the reader to the comprehensive reviews by Shepard et al. [117], Holder and Salter [62], and
Ehrgott et al. [52].

2.1.1 Beam Angle Optimization (BAO)

The purpose of beam angle optimization problem is to select the best set of directions from
all available beam orientations that satisfy the treatment goals [8, 76]. The main difficulty
of this problem is evaluating each set of directions based on the quality of dose distribution,
while it will be optimized in the second stage. Therefore, the beam’s-eye-view, the geometric
characteristics of candidate directions, and the estimation of FMO objectives are useful mea-
sure employed to assess the candidate solutions. Several exact, heuristic, and metaheuristic
algorithms have been developed for this problem [7, 8, 50, 73]. In this study, we assume the
directions are given and fixed, and our focus is on aperture generation and optimization.

2.1.2 Fluence Map Optimization (FMO)

In the second step, we optimize the intensity (or fluence) of beamlets for the fixed beam
directions. The main goal is to deliver a specific level of radiation dose, so-called prescription
dose, to the targets, while sparing critical structures by ensuring that the level of dose received
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by the normal structures does not exceed a tolerance dose. This problem has received lots of
attention in terms of medical aspects, as well as optimization techniques [51].

FMO objectives: In the literature, various mathematical optimization models and algo-
rithms have been proposed for the FMO problem, with respect to different objective functions
and constraints. Inspired by Ehrgott et al. [52], we classify these mathematical models into
three categories as follow:

In the first category, the objectives of linear programming models are taken into account min-
imizing the average/min/max deviation from lower or upper bounds. The main constraints
are: (1) non-negativity constraints for the beam intensities, and (2) lower/upper bounds on
the dose to the target and critical organs. The proposed linear models may be infeasible
in practice. Thus, Holder [61] has proposed a new linear programming model with elastic
constraints, in which the constraints are allowed to be violated and penalized in the objective
function.

wC ‖ TC − ZC ‖ 8 +wN ‖ ZN − TN ‖ 8 (2.1)

where TC and TN are the threshold of the target and normal structures; and ZC and ZN are
the total dose to the target and normal structures.

In the second category, we minimize the weighted least squares, penalizing the weighted sum of
average squared deviation from the prescribed dose for each structure as follows [20, 120, 138].

wC ‖ TC − ZC ‖2
2 +wN ‖ ZN − TN ‖2

2 (2.2)

This function is convex and the most prevalent objective in the literature [7, 8, 106, 109].

In the third category, nonlinear radio-biological models have been developed. In these criteria,
biological effects produced by the underlying dose distributions are optimized, e.g., equiva-
lent uniform dose (EUD), estimated probabilities of tumor control (TCP) and normal-tissue
complications (NTCP) [93, 95, 132, 136].

FMO techniques: Many exact, heuristic, and metaheuristic algorithms have been devel-
oped for FMO, and we review some popular and recent studies briefly. Webb [131] proposed a
Simulated Annealing (SA) algorithm for this problem and different variants of this algorithm
were developed by Mageras and Mohan [81]. Genetic algorithm is also implemented in this
problem to find quick and promising solutions by Langer et al. [71] and Cotrutz and Xing
[30]. However, these algorithms are very slow in reaching the optimum in comparison to gra-
dient based methods [120]. Alber and Reemtsen [6] proposed a Lagrangian barrier-penalty
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algorithm to optimize a biological model including EUD and partial volume constraints and
employed tumor control probability as the objective. Aleman et al. [9] presented a con-
vex FMO formulation using the objective function proposed by Romeijn et al. [106] and
implemented an interior point algorithm that yields an optimal treatment plan in seconds.
Moreover, Men et al. [87] implemented the fluence optimization on graphics processing units
(GPU). In this paper, a penalty-based quadratic optimization model, using a gradient pro-
jection method with Armijo’s line search rule, was adopted. They achieved speedup factors
of 20–40, without losing accuracy using GPU computing.

2.1.3 Leaf Sequencing (LS)

The outcome of the FMO problem is a fluence map for each beam direction. In order to deliver
this ideal map, we find a positive linear combination of apertures formed by MLC, where the
coefficient of each aperture represents the intensity or time the aperture is irradiated to the
patient. The number of apertures obtained from this decomposition algorithm and sum of
all aperture intensities, so-called beam-on time, are two measures of this problem.

It has been proved that minimizing the number of necessary apertures in LS is NP-hard in
the strong sense, i.e., the exact solution cannot be obtained in a polynomial computational
time using current computing methods [12]. Therefore, a large number of heuristics have
been developed [54]. Kalinowski [64] has proposed a heuristic, which first minimizes the
beam-on time and then among available decompositions finds the one with minimal number
of apertures. Moreover, there are different technical constraints in MLC to form the aperture,
such as leaf collision, leaf perturbation, and interdigitation.

2.1.4 Direct Aperture Optimization (DAO)

The sequential approach of the traditional IMRT treatment planning may lead to a potential
loss in the treatment quality, dose discrepancy, and a long treatment time. Due to these rea-
sons, the Direct Aperture Optimization (DAO) problem has been developed, which integrates
FMO and LS problems and directly optimizes the shape and intensity of MLC apertures.

However, the integrated model is large, with enormous number of candidate apertures. Col-
umn generation has successfully been used as exact or heuristic methods for large-scale prob-
lems with decomposable structure. The heuristic versions of CG have also been applied for
IMRT and VMAT treatment planning.

Preciado-Walters et al. [102] formulated this problem as a mixed integer linear program
maximizing minimum tumor dose and considering dose-volume constraints. A coupled pair
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of column generation is proposed, in which the first one is designed to produce intensity maps,
and the second one to enforce the dose-volume restrictions. In each iteration, the aperture
which makes the largest improvement to the objective function will be added to the treatment
plan until the plan quality is acceptable. Results have shown that the method could find near-
optimal solutions for FMO with DVH constraints, but took a few hours. Romeijn et al. [108]
proposed a column generation-based algorithm to produce aperture shapes in this problem
and could present outstanding results. To demonstrate dose-volume constraints, a convex
approximation developed by Romeijn et al. [106] using Conditional Value-at-Risk (CVaR)
was utilized. For the pricing subproblem, they have developed an integer programming
model, which was reduced to the network flow problem. Moreover, three MLC constraints
including consecutiveness, interdigitation, and connectedness of leaves are considered in the
pricing subproblem. Men et al. [86] extended this work by allowing the incorporation of more
convex treatment plan criteria, and also the effects of transmission of radiation through the
leaves of MLC. In addition to three MLC constraints formulated by Romeijn et al. [108], they
considered the MLC systems which work only with the rectangular shape. The results on
ten head-and-neck cancer cases show that incorporating the transmission effects could spare
all saliva glands, effectively. In the same line of research, Men et al. [88] implemented their
column generation-based algorithm for DAO by GPU. The results in 10 prostate and head-
and-neck cases show that the computational time has significantly decreased from about 2
minutes to 0.7 – 3.8 seconds.

2.2 Volumetric Modulated Arc Therapy (VMAT)

An initial version of VMAT, Intensity Modulated Arc Therapy (IMAT), was proposed by
Yu [134] as a rotational alternative to the IMRT delivery technique. As mentioned earlier
in Section 1.4, to model the dynamic gantry motion, we divide the work area around the
patient into a finite number of equi-spaced points, so-called control points, each point is a
snapshot of the gantry and MLC during the continuous delivery. Also, instead of fixed beam
directions, we can consider arcs to identify the MLC leaf trajectories. Earl et al. [47] proposed
a simulated annealing heuristic for IMAT to determine the position of MLC leaves during
each arc, whereas the number and range of arcs were fixed. Unfortunately, IMAT was not
successful in practice because of its time inefficiency.

In 2008, Otto [96] presented a simple heuristic which sequentially adds the control-points and
uses simulated annealing in each iteration to determine the aperture shapes and intensities.

Thereafter, two main approaches have been developed: (1) two-stage and (2) direct aperture.
In the former, at the first stage, a huge FMO is solved to find the optimal intensity for
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each beamlet in each control-point and obtain an ideal fluence map. At the second stage,
this map is converted into a sequence of deliverable arcs such that the dose distribution is
similar to the ideal fluence map [39]. The deliverable arc-sequencing is typically based on
unidirectional leaf motion in which, the leaf pairs move unidirectionally from one side of
the field to the other. Craft et al. [39] proposed an algorithm to determine the arcs in the
second stage, so-called VMERGE, by merging the neighbouring fluence maps, iteratively,
based on a similarity score to decrease the delivery time. Wala et al. [129] made this method
more flexible and efficient by generating partial-arc plans via an iterative heuristic called
PMERGE, and eliminating the unneeded arc segments without significantly compromising
dose quality. Salari et al. [113] replaced the merging heuristic with an exact discrete bi-criteria
optimization based on a network flow model. The objectives were minimizing the treatment
time and minimizing the deviation from the ideal dose. They employed a customized box
algorithm to characterize the Pareto frontier. Also, Papp and Unkelbach [99] proposed an
arc-based model to deliver the ideal fluence map and directly optimize the unidirectional leaf
trajectories. They proposed a linear model by approximating the dose deposition coefficient
at each arc and solve it sequentially to find a good approximation for direct leaf trajectory
problem in VMAT. Similarly, the number of arcs, the size of arcs, and dose rate are assumed
to be constant.

The required computation in the two-stage approach is drastically time-consuming. The
direct-aperture approach extends DAO to VMAT, i.e., it generates the apertures for the
control-points and optimizes their corresponding intensities, simultaneously. Men et al. [89]
proposed a column generation-based heuristic which sequentially adds aperture shapes at
177 control points while ensuring that each new aperture is compatible with the previous
ones. They implemented the CUDA to take advantage of the parallel processing power of
GPU. Peng et al. [100] improved this approach by considering the dynamicity of gantry
speed and bounds on the dose rate after fixing the apertures. Using CUDA programming,
the treatment plans by this algorithm could be produced in around one minute. Moreover,
Peng et al. [101] studied VMAT with constant gantry speed and dose rate (VMATc), bene-
ficial in developing countries without access to specialized treatment equipment to vary the
parameters continuously.

Unkelbach et al. [123] provide a comprehensive review of optimization techniques for VMAT
treatment planning.

Recent studies have extended VMAT optimization tools to take the treatment times and
clinical criteria into account. Akartunalı et al. [5] proposed a mixed-integer programming
model for VMAT treatment planning problem and developed new valid inequalities. The
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model still was large, complex, and difficult to solve. They also developed two Lagrangian
relaxation (LR) heuristics, a centring-based heuristic, and a guided variable neighborhood
search (GVNS); the last approach was the most efficient. Balvert and Craft [14] investigated
the trade-off between delivery time and fluence map optimization in VMAT. They optimized
the leaf trajectories and dose rates for a given delivery time and obtained the complete
trade-off curve for delivery time and plan quality. Recently, Dursun et al. [46] formulated
a mixed integer programming model for the VMAT treatment planning and proposed an
exact branch-and-price algorithm. To reduce the complexity of the model for the exact
method, they minimize the beam-on time, as a linear objective. The pricing sub-problem
is decomposable by rows of the MLC and modelled using graph theory; the shortest path
problem is employed to solve it.

2.3 DVH criteria

One of the main technical challenges of the treatment planning is to find the optimal model
parameters for generating an acceptable plan within a reasonable time. The dose–volume
histogram is the most common method to evaluate the quality of obtained plan. In practice,
the treatment planning technicians solve the problem several times for each patient, taking
into account various parameters, e.g., the weights for target volumes and healthy organs, to
find a clinically acceptable DVH. This manual procedure is time-consuming, especially for
complex cases.

Langer [70] was the first study that considered dose-volume constraints (DVCs) by solving
large number of successive linear programming models. The nonlinear form of DVCs can
be considered as penalty in the objective function [27, 120] or within model constraints [29].
When DVCs are directly incorporated into the objective functions of least-squares models,
the objective function becomes non-convex and non-differentiable [138].

Two approaches have been developed to handle DVH criteria. The first adds dose–volume
constraints directly to the mathematical model, and the second automatically adjusts the
penalty parameters in the objective function to reduce the violation of the predetermined
thresholds.

In the first method, the non-convex nature of the DVCs leads to a nonlinear model [41].
We can linearize these types of constraints by introducing binary variables, but this results
in a large mixed integer problem (MIP) [72, 102]. Despite many improvements to the MIP
formulation [58], it is has been shown that the FMO problem with DVCs is non-convex and
NP-hard [122]. Romeijn et al. [106] proposed a linear approximation of the DVCs based
on the Conditional Value-at-Risk (CVaR) for FMO. Then, Romeijn et al. [108] developed



15

a column generation based algorithm for DAO and used the CVaR-based constraints in the
model. However, this approach drastically increases the number of constraints in the model.

The second method automatically adjusts the model parameters in the objective function to
meet the predetermined DVH criteria [22, 23, 128]. Wu and Mohan [133] employed a gradient
optimization method for the FMO model and considered a simple algorithm adjusting voxel
weights in the objective function based on dose-volume histogram. Li et al. [75] improved
the previous work by a two-step approach for FMO problem: In the first step, the organ
weights of the quadratic objective function are roughly adjusted; and in the second step, the
voxel weighting factors are adjusted based on the DVH curves. In the same line of research,
Zarepisheh et al. [137] have proposed an algorithm that automatically adjusts the FMO
parameters to minimize the distance between the DVHs for the entire plan and the reference
DVHs. They iteratively navigate the Pareto front and project the plan corresponding to the
reference DVHs onto that surface. Recently, fuzzy inference systems also have been used for
the FMO problem [45].

2.4 Multi-criteria optimization in radiation therapy

To find a trade-off between contradictory normal and tumor structures in radiotherapy treat-
ment planning, several multi-criteria optimization (MCO) techniques have been developed.
These methods look for solutions that cannot improve any single objective without deteriorat-
ing at least one other. We can can classify these techniques into several categories regarding
the type of preference of the decision maker (DM). In Lexicographic techniques, the decision
maker prioritize the objectives based on their importance a priori [22, 23, 78, 124]. In in-
teractive methods, the decision maker guides the exploration during an iterative procedure
[139]. In Pareto frontier (PF) optimization, we explore for a set of solutions, so-called non-
dominated points, in which we cannot improve any objective without deteriorating at least
one other objective [31, 34, 36, 37]. For a general review of MCO approaches in IMRT, we
refer the reader to two comprehensive reviews by Küfer et al. [69] and Craft [33]. For the
rest of the chapter, we limit ourselves to Pareto frontier optimization with convex objectives.

In PF optimization, the set of all non-dominated points is called Pareto front or Pareto
frontier or Pareto surface, and there are a variety of methods to approximate this set. These
approaches can be classified into inner approximation methods [114], outer approximation
methods [16], and sandwich methods [66, 119]. In inner approximation, the lower boundary
facets of the convex hull of the Pareto points contained in the set are used, while outer
approximations find supporting tangential hyperplanes of the Pareto frontier and take their
intersection to approximate the Pareto set. Sandwich methods combine these two techniques
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and we can have an upper bound on the approximation error. For more details on this topic,
we refer the reader to a comprehensive review by Ruzika and Wiecek [110].

In IMRT, Küfer et al. [67] have formulated the first multi-objective model for FMO problem.
Craft et al. [38] have introduced the Sandwich method for higher dimensional IMRT problem.
Later, they have shown that the number of required Pareto optimal solutions to represent
Pareto frontier of up to five dimensions is linearly dependent to the number of objectives
[32]. Moreover, Craft and Richter [35] proposed a Pareto front navigation algorithm for the
stop and shoot IMRT problem based on deliverable plans, while the number of segments
are restricted. In this work, the plans are already segmented to maximum 50 segments
using Raystation 2.0 and two methods 2D-cut and ND navigation methods are developed
to navigate by combining a limited number of plans. Shao and Ehrgott [116] also proposed
a Sandwich algorithm for the multiobjective linear programming problem in FMO. In the
same line of research, Ehrgott et al. [53] extended their algorithm to approximate the convex
multi-objective nonlinear programming problems. Rennen et al. [104] enhanced the higher
dimensional Sandwich algorithms by introducing the concept of dummy points to the inner
approximation and a new error measure. Bokrantz [17] proposed a sandwich algorithm for
approximating Pareto fronts of MOO problems based on enumerating the vertices of an outer
approximation of the Pareto frontier in IMRT and the details are described by Bokrantz and
Forsgren [18].

In most of these methods, the multi-criteria optimization has been formulated for the FMO
problem. This model is easy to solve for multiple times, approximating the Pareto frontier.
However, it is not deliverable in practice and another algorithm is required to produce a
deliverable plan as close as desired to the obtained FMO plan.

Although the column generation technique has been widely used specially for DAO, few stud-
ies have addressed its implementation in MCO. Salari and Romeijn [111] incorporated the
beam-on time into the treatment planning using direct aperture optimization in IMRT. They
proposed an iterative solution approach which sequentially finds the optimal treatment plan
for different segments of the beam-on time to obtain the set of Pareto-efficient frontier. In
another study, Salari and Unkelbach [112] proposed a multi-criteria column-generation for
IMRT treatment planning. The idea to extend the standard CG to multi-criteria approach
was to consider multiple weighted-sum restricted master models based on fixed weight vector
scenarios, e.g., three in the case. For the multi-criteria pricing problem, they formulated a
mixed-integer programming (MIP) model and three heuristics to obtain the aperture yield-
ing the largest improvement in the entire Pareto front. The computational results have
validated that their method obtained a balanced approximation of the Pareto front over a
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wide range of clinically relevant plans. However, the penalty weight scenarios are fixed during
the column generation process and they can not guarantee that the non-dominated set is well-
approximated. Recently, Lin et al. [77] developed a MOLP formulation for direct aperture
optimization in IMRT treatment planning, so-called revised normal boundary intersection,
and used the column generation algorithm to solve the linear models in its sub-problems.
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CHAPTER 3 GENERAL ORGANIZATION OF THE DOCUMENT

The literature review on VMAT treatment planning techniques in Section 2.2 shows that the
delivery time is assumed fixed, in most of the studies, at different levels of the treatment plan-
ning and minimized in the post-optimization phase. This fixing procedure in independent
phases may cause a potential loss in the treatment time. Considering these shortcomings,
in Chapter 4, we propose an efficient algorithm that simultaneously optimizes the aperture
shapes and their corresponding intensity, and total delivery time in VMAT treatment plan-
ning. This method incorporates the advantages of both arc-based and control-point-based
approaches.

The literature review on DVH criteria in Section 2.3 reveals that most studies have focused
on FMO and there is no work in the literature addressing DVH criteria in DAO. This feature
is especially useful in VMAT with respect to the large scale of the mathematical models in
this problem. In Chapter 5, we take advantage of iterative procedure of column generation
for aperture generation and intensity optimization to automatically handle dose-volume cri-
teria by adjusting the priority of the structures and voxels in VMAT treatment planning.
Thus, both the dosimetric-derived non-convexity of DVH criteria, and the hardware-derived
constraints, i.e., the MLC apertures, are taken into account, simultaneously.

Our literature review in Section 2.4 showed that few studies, in general, have addressed the
column generation-based multi-criteria optimization. To address this gap in the literature,
in Chapter 6, we develop an algorithm to find an approximation of a non-dominated set
of solutions during the course of column generation, avoiding a large number of columns.
This extension to column generation, so-called Pareto-based column generation (PCG), is
formulated for multi-criteria DAO treatment planning. Moreover, for the efficiency of the
algorithm, we improved the column generation algorithm proposed for DAO by integrating
a new first-order optimization technique in the master model. In this method, we generate
strong columns without solving the master model to optimality in each iteration.

In Chapter 7, we provide a general discussion on the proposed methods as a whole. Finally,
in Chapter 8, we summarize the contributions of the dissertation, explain the limitations of
the proposed approaches, and offer future research directions.
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Abstract. In this paper, we propose a novel heuristic algorithm for the volumetric-modulated
arc therapy (VMAT) treatment planning problem, optimizing the trade-off between delivery time
and treatment quality. We present a new mixed integer programming model in which the multi-
leaf collimator leaf positions, gantry speed, and dose rate are determined simultaneously. Our
heuristic is based on column generation; the aperture configuration is modeled in the columns and
the dose distribution and time restriction in the rows. To reduce the number of voxels and increase
the efficiency of the master model, we aggregate similar voxels using a clustering technique. The
efficiency of the algorithm and the treatment quality are evaluated on a benchmark clinical prostate
cancer case. The computational results show that a high-quality treatment is achievable using a
four-thread CPU. Finally, we analyze the effects of the various parameters and two leaf-motion
strategies.
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4.1 Introduction

Volumetric-modulated arc therapy (VMAT) is a novel form of external radiotherapy which
incorporates rotation of the beam around the patient’s body, while the beam is on. In this
technology, the beam shape, rotation speed, and dose rate change continuously [96]. This
minimizes the adverse effects of radiation to normal tissues and matches the radiation to the
profile of the tumor. In general, the main advantages are a better dose distribution around the
patient, lower radiation to normal tissues, faster treatment, and decreased patient discomfort
[135].

Similar to intensity modulated radiation therapy (IMRT), the beams are formed by a multi-
leaf collimator (MLC). This equipment has a finite number of leaf pairs, each consisting of
a leading and a trailing leaf. The treatment planning problem in VMAT involves selecting
sequences of MLC shapes and determining the optimal dose rate and gantry rotation speed
around the patient [105].

An initial version of VMAT, intensity modulated arc therapy (IMAT), was proposed by
Yu [134] as a rotational alternative to the IMRT delivery technique in radiotherapy. Un-
fortunately, IMAT was not widely adopted because of its time inefficiency. Otto [96] pro-
posed a simple heuristic as the first study for VMAT treatment planning problem. Several
optimization approaches have subsequently been developed for this large-scale problem; a
comprehensive review is provided by Unkelbach et al. [123].

The methods proposed to model MLC restrictions in VMAT treatment planning can be clas-
sified into two groups: (1) arc-based and (2) control-point-based. In the arc-based approach,
leaf motions during an arc are determined using a traditional two-stage method. In the first
stage, fluence map optimization (FMO), the profile of beams for all the sectors are deter-
mined. A deliverable arc-sequencing, typically based on unidirectional leaf motion, is then
designed such that the dose distribution is similar to the ideal fluence map [26, 39]. Wala et al.
[129] improved this method by generating efficient partial-arc plans via an iterative heuristic
called PMERGE. Salari et al. [113] replaced the merging heuristic with an exact discrete
bi-criteria optimization. In the same line of research, Papp and Unkelbach [99] proposed an
arc-based model to deliver the ideal fluence map and directly optimize the unidirectional leaf
trajectories. Although the treatment plan resulting from the arc-based approach is reliable,
the required computation is very time-consuming.

The control-point-based approach considers a finite number of points around the patient, the
so-called control points or sectors, and each is associated with an aperture. The apertures
are designed taking into account the MLC constraints, and the model optimizes the cor-
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responding intensity. For this approach, heuristics based on column generation (CG) have
been developed. These algorithms sequentially generate new aperture shapes in the pric-
ing sub-problem (PSP) and add them to the master model, thus ensuring that each new
aperture is compatible with the previous ones [89, 100]. Moreover, to take advantages of
GPU computing, effective parallel processing algorithm have been implemented. The goal
of this approach is to develop online adaptive radiotherapy techniques that can handle the
inter-fraction variation of the patient’s geometry.

Recently, Peng et al. [101] extended the control-point-based approach to the case with con-
stant gantry speed and dose rate (VMATc) using a heuristic framework. VMATc is beneficial
in developing countries without access to specialized treatment equipment which allows the
parameters to vary continuously. Akartunalı et al. [5] proposed a unified mixed-integer pro-
gramming model for VMAT, tomotherapy, and CyberKnife. Although the formulation was
improved by considering polyhedral analysis and valid inequalities, this model is large, com-
plex, and difficult to solve. The authors developed two Lagrangian relaxation (LR) heuristics,
a centring-based heuristic, and a guided variable neighborhood search; the last approach was
the most efficient. Nguyen et al. [92] developed a nongreedy approach using an L2-norm
fidelity term in the objective and a level set function to optimize the fluence intensity and
aperture shapes simultaneously. Balvert and Craft [14] investigated the trade-off between
delivery time and fluence map matching. They optimized the leaf trajectories and dose rates
for a given delivery time and obtained the complete trade-off curve for delivery time and plan
quality by solving the model heuristically with a sequence of delivery times.

Most models in the literature fix the key parameters—delivery time and dose rate—at dif-
ferent levels of the treatment planning. In this paper, we propose an efficient algorithm that
simultaneously optimizes the aperture shapes, delivery time, and dose rate. The method
incorporates the advantages of both arc-based and control-point-based approaches. We for-
mulate a new mixed integer programming model. We form successive generations of apertures
using graph algorithms for the sequencing and a gradient-based model with column-and-row
generation to optimize the intensities. To increase the computational efficiency and also the
treatment quality, we avoid solving the large FMO optimization model, and evaluate the
treatment plans directly using voxels rather than fluence maps. Our model could easily be
generalized to take into account multiple gantry rotations. However, in this paper we focus
on treatment plans with a single gantry rotation to determine high-quality plans with a min-
imum delivery time. In summary, this paper makes the following contributions to VMAT
treatment planning problem:

1. The new formulation simultaneously optimizes the gantry speed, dose rate, and leaf
trajectories.
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2. We optimize the total delivery time and the treatment quality. The gantry speed
and consequently the delivery time at each sector around the patient are considered
dynamic.

3. The algorithm is based on simultaneous column-and-row generation to relate the MLC
apertures and the delivery time. Moreover, the feasibility of the movement constraints
is taken into account in the PSP rather than the master problem, which increases the
efficiency of the algorithm.

4. To decrease the computational time, we propose a new model of down-sampling based
on the geometry of the voxels in the patient’s body and clustering algorithms from data
mining. This method aggregates similar voxels while considering the effect of all the
voxels in the objective function of the model.

The remainder of the paper is organized as follows. Section 2 introduces the basic notation
and the VMAT formulation in our framework. In Section 3, we propose our CG-based
heuristic including the master model, PSP, greedy heuristic, and post-optimization. Section
4 presents computational experiments and results for a prostate case. Finally, Section 5
provides concluding remarks and discusses future research.

4.2 VMAT treatment planning formulation

To model the problem, we discretize each structure s of the patient into small cubic volume
elements called voxels, Vs, and denoted VT and VN for tumorous and normal tissues. Each
beam is decomposed into a rectangular grid of beamlets, I. A beamlet is on if it is not
blocked by either the leading or trailing leaf, and the relative motion of the leaves controls
the intensity. The estimated dose received by voxel j from beamlet i at unit intensity is
denoted Dij, in Gy/MU. D = [Dij] is called the dose-influence matrix. We assume that
the dose absorbed by a given voxel can be determined by adding the dose from each of
the individual beamlets comprising the aperture. The dose received at voxel j from all the
beamlets of aperture A is denoted Dj(A).

In VMAT treatment planning, the continuous dose delivery is discretized over a finite number
of sectors, H, by changing the angle of the beam, with typically 180 2◦-spaced beam angles.
This discretization is necessary because estimating the dose-influence matrix in each sector,
Dh
ij, by dosimetry techniques is time-consuming. Moreover, each sector is associated with an

aperture A regarding the position of the MLC trailing (left) and leading (right) leaves, the
dose rate ρ (in MU/s), and the gantry speed νg (in deg/s). We assume that the aperture,
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dose rate, gantry speed, and dose-influence matrices are constant for adjacent sectors. This
approximation is good-enough when the angular distance between the two sectors is small.
In addition, the gantry speed is the inverse of the sector time, and we use these terms
interchangeably.

In this paper, the 360 degrees around the patient are covered by the set of arcs K, and
each arc k of length δk contains a finite number of equi-spaced sectors, Hk, from hks to hkf .
Moreover, Akh denotes the aperture corresponding to sector h in arc k. To model the feasible
treatment plans, we restrict the machine characteristics as follows:

• MLC constraints: The leading and trailing leaves are taken into account in the MLC
ranges in the leaf motion constraints, and no overlap is allowed. Moreover, compatibility
between adjacent MLC apertures, ∆A, is required based on the maximum MLC leaf
speed, νUl .
• Gantry speed constraints: We impose lower and upper bounds νLg and νUg on the gantry

speed to guarantee that the machine is in motion and within the feasible range.
• Dose rate constraints: We assume that the dose rate is bounded above by R, and a

zero dose rate is allowed to avoid useless apertures.
• Adjacency constraints: We require compatibility of adjacent sectors in terms of the

dose rate and the sector time in addition to the aperture shape, ∆A. Thus, we restrict
the rate of change of the dose rate, ∆ρ, and the sector time, ∆t.

The model for the VMAT problem is as follows, where yk = 1 if and only if arc k is selected
in the solution:
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GP : min
y ,ρ ,t

F(z) + w T (4.1a)

s.t.

zj =
∑

k∈K

∑
h∈Hk

Djh(Akh) yk ρh th ∀j ∈ V (4.1b)∑
k∈K

akh y
k = 1 ∀h ∈ H (4.1c)

| ρh+1 − ρh |≤ ∆ρ ∀h = 1, 2, · · · , |H| − 1 (4.1d)

0 ≤ ρh ≤ R ∀h ∈ H (4.1e)∑
k∈K

τ kh,h+1 y
k ≤ th ∀h ∈ H (4.1f)

| th+1 − th |≤ ∆t ∀h = 1, 2, · · · , |H| − 1 (4.1g)

T ≤ th ≤ T ∀h ∈ H (4.1h)∑
h∈H

th ≤ T (4.1i)

yk ∈ {0, 1} ∀k ∈ K (4.1j)

Here vector z is the dose absorbed by the voxels, and F(z) is a voxel-based convex function.
T is the total delivery time, which is penalized by a small value of w. The objective is to
maximize the treatment quality and minimize the delivery time. The dose absorbed by voxel
j, zj, is computed in Equation (4.1b) based on the sectors covered by arc k, Hk; the dose-
influence matrix D; the aperture shape Akh; the arc selection variable yk; and the sector time
th. Also, akh indicates the coverage of sector h by arc k, and thus Constraint (4.1c) ensures
that each sector h is covered exactly by one arc. Constraints (4.1d, 4.1e) enforce lower and
upper bounds on the dose rate and limit the change in the rate between adjacent sectors
to at most ∆ρ. Constraints (4.1f) ensure that the time spent at each sector th is sufficient
to allow the leaf movements to reach the aperture shape positions in the next sector, Akh+1,
given the maximum leaf speed νUl . Constraint (4.1g) limits the rate of change in the sector
time between adjacent sectors to at most ∆t. Finally, Constraint (4.1h) enforces the lower
and upper bounds on the delivery time, and Constraint (4.1i) determines the total delivery
time T .

Because of the non-linearity in Equation (4.1b) and the binary variable y, this is a large-scale
mixed integer nonlinear programming (MINLP) model. It is difficult to solve the proposed
MINLP model, especially in real-world cases even by commercial software. In the next
section, we propose an efficient heuristic to produce high-quality treatment plans.
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4.3 Proposed method

Column generation (CG) is a leading optimization technique to solve large-scale problems
with decomposable structure specially when there are a large number of variables [43]. This
approach has successfully been used in many applications such as Vehicle Routing Problem
(VRP) [56], airline crew pairing [44], and cutting-stock problems [125] as exact or heuristic
methods. This method has also been applied in classic radiotherapy treatment planning
problems, e.g. Intensity Modulated Radiation Therapy (IMRT) [108], and new technologies,
e.g., Volumetric Modulated Arc Therapy (VMAT) [100].

In the column generation (CG) technique, instead of generating all the feasible columns in
advance, we decompose the model into two subproblems: (1) the restricted master problem
(RMP), which contains a subset of the columns, and (2) the PSP, in which promising new
columns are generated, expecting to improve the RMP objective function. In our model,
each column k is an arc from sector hks to hkf , made up of the apertures of the leading and
trailing leaves in a sequence of sectors. Without loss of generality and to simplify the method,
we assume that the number of arcs and their lengths are fixed. The procedure starts with
a subset of initial arcs completely surrounding the patient. We then repeatedly solve the
following two subproblems until no new improving column is available:

• RMP: Given a large set of arcs (K ′ ⊆ K), we select the best subset that covers all the
sectors, optimizing the intensities, gantry speed, and dose distribution z∗. We transfer
the dual values of the voxels to the PSP.

• PSP: Given the dual values from RMP, we identify promising arcs using graph theory
and add them to the pool of generated arcs (K ′).

To see the benefits of CG in VMAT, consider a rectangular (nr, nc) beam, with nr rows and nc
columns, and h sectors. The total number of aperture shapes is about ((nr/2)(nc+1)(nc+2))h

while the optimal solution has only h apertures. In an instance with a (5, 10) beam and 100
sectors, there are 7.1 × 10251 possible apertures. In real cases, the number of beamlets and
sectors is usually much larger. Therefore, CG generates good apertures while avoiding those
that are unhelpful, similar, or infeasible. Furthermore, CG is a linearization method that
converts the nonlinear GP model into two linear models.

4.3.1 Master Model

The master model optimizes the dose rate and gantry speed during the LINAC rotation
around the patient given the generated arcs. The total number of potential arcs K is large,
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so a subset K ′ ⊂ K is considered in the RMP. This model is solved several times during the
CG procedure, so the algorithm must be efficient. To decrease the computational time, we
have developed a convex model with a convex cost function, linearized the solution space,
and reduced the number of constraints by aggregating similar voxels.

Cost function

Several objective functions have been proposed in radiotherapy treatment planning, including
quadratic objectives, nonlinear radio-biological objectives, e.g., TCP and NTCP, and the
equivalent uniform dose (EUD) [52]. We use the following quadratic voxel-based least square
penalty function to measure the treatment quality:

F(z) =
∑

s∈S

∑
j∈Vs

ws [dj − zj]2+ + ws [zj − dj]2+, (4.2)

where [•]+ denotes max{0, •} and dj and dj are prespecified lower and upper dose thresholds
for voxel j. Moreover, ws and ws are the weights for the underdose and overdose in structure
s, respectively. This objective is well known because of its convexity and the quality of the
resulting treatment plans [99, 100, 108]. Its disadvantage is the large number of constraints
required to linearize the [•]+ operator for the relevant voxels.

Linearization

In model (GP), the dose received by each voxel j depends on the dose rate and the time in the
sectors, which is the so-called sector-dependent approach. This approach is nonlinear, and
we make two simplifying assumptions to linearize the model. First, we replace the product
of the decision variables ρ and t in Constraint (4.1b) by a new variable called the fluence
rate, defined to be γ = ρ t. We can determine the optimal dose rate for each sector by
simultaneously optimizing the fluence rate and the sector time. Second, the nonlinear term
γh y

k gives the fluence rate of sector h in arc k if selected. To avoid this product, we assume
a constant fluence rate through the arc, γk, as in the arc-dependent approach. Constraint
(4.1b) is thus replaced by Equation (4.3), where the dose absorbed by voxel j depends only
on the fluence rate of arc k, γk, and aperture k, Ak:

zj =
∑

k∈K
Djh(Akh) γk ∀j ∈ Vs (4.3)

The linear feasible space of the arc fluence rate, γk, with regard to the arc variable, yk, the
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sector time th, the maximum dose rate R, and the linearizing relaxations [3] is as follows:

γk ≤ R th ∀k ∈ K, ∀h ∈ Hk (4.4)

0 ≤ γk ≤ yk RT ∀k ∈ K (4.5)

γk ≥ 0 ∀k ∈ K (4.6)

To make the model more efficient, we replace Constraints (4.4) by

∑
k∈K

akh γ
k ≤ R th ∀h ∈ H (4.7)

Although the fluence rate is fixed for any given arc, it can change between arcs. Moreover,
the gantry speed, νhg , can change from one sector to another. Finally, when we have found
the final arcs, we use a post-optimization model to determine the sector-based fluence rates
(see Section 4.3.4). In addition, restricting the leap of fluence rate between adjacent sectors
is taken into account in the post-optimization model.

The proposed master model is a mixed integer programming model with binary arc variables,
yk. At the beginning of the algorithm, we relax the binary variables in the relaxed restricted
master problem (RRMP):

RRMP : min
y ,γ ,t

F (z) + w T (4.8a)

s.t.

zj =
∑

k∈K′
Djh(Akh) γk ∀ j ∈ Vs (4.8b)∑

k∈K′
akh y

k ≤ 1 ∀h ∈ H (4.8c)∑
k∈K′

τ kh,h+1 y
k ≤ th ∀h ∈ H (4.8d)∑

h∈H
th ≤ T (4.8e)∑

k∈K′
akh γ

k ≤ R th ∀h ∈ H (4.8f)

γk ≤ yk RT ∀ k ∈ K ′ (4.8g)

T ≤ th ≤ T ∀h ∈ H (4.8h)

yk, γk ≥ 0, ∀ k ∈ K ′ (4.8i)

In this relaxation, the upper bound yk ≤ 1 is dropped because it is induced by (4.8c). In
addition to the quadratic objective function, the column-dependent rows in Constraints (4.8g)
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and the large number of Constraints (4.8b) are the two main challenges of this model. We
discuss the first challenge in Section 4.3.1 and develop an objective function for the PSP based
on an equivalent relaxation. To overcome the second challenge, we develop a down-sampling
algorithm inspired by clustering methods to aggregate similar voxels (Section 4.3.1).

Column-dependent rows

In standard CG, the effect of a new column is computed by minimizing its reduced cost in
the objective function of the PSP [43]:

min
k∈K\K′

z∗ = ck − πTak, (4.9)

where c and a are the objective and constraint coefficients, and π is the vector of the dual
values of the corresponding constraints in the master model. If z∗ < 0, introducing the new
column into the solution of the master problem would decrease the objective. However, in
our model, there are two columns yk and γk for each arc k, determining the selection value
and fluence rate, respectively. These columns are linked by Constraint (4.8g), and the linking
constraints are not in the RRMP a priori; thus, the reduced costs of the columns may be
computed incorrectly in the PSP because no dual information for the missing constraints is
available.

General approaches for simultaneous column-and-row generation have been developed [91].
However, our model has the following simplifying properties:

Property 1. For each arc, columns y and γ are linked through a single linking constraint.
Property 2. γ cannot take a positive value unless y is positive.
Property 3. Adding new linking constraints does not violate primal feasibility.

In this case, analyzing the reduced costs of columns y and γ separately would lead to incorrect
results. In particular, column y, considered independently of γ, cannot have a negative
reduced cost because it does not affect the dose distribution z. Moreover, suppose that for a
given arc, the reduced cost of γ is negative while the reduced cost of y is positive. Although
column γ is eligible to enter the basis, it is forced to be zero and the resulting iteration will
be degenerate because of Property (2). To avoid this, we must generate the two columns
simultaneously together with the corresponding linking constraint (4.8g).

In Appendix A, we present a new model, RRMP′, based on only column γ. It is shown that
any optimal solution of RRMP can be transformed into an equivalent optimal solution in
RRMP′. Then, models RRMP and RRMP′ are equivalent, and we can derive the objective
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function of the PSP from RRMP′ in Section 4.3.2. To determine the best combination of
arcs in the integer model, we generate column y and the linking constraint (4.8g) based on
column γ and add them to the model.

Voxel aggregation

As mentioned earlier, the master model is time-consuming because of the large number
of voxels. In the literature, random down-sampling is often implemented to simplify the
problem. In a new technique, Küfer et al. [68] and Scherrer et al. [115] clustered the voxels
via heuristics based on hierarchy construction in IMRT optimization; they developed an
acceptable approximation that could be solved ten times faster.

In this paper, we propose an efficient method inspired by the K-means algorithm, a well-
known technique to classify data by fixing a certain number of clusters a priori [80]. We treat
the voxels as points that must be clustered into |C| groups. To define the set of observations,
we consider full open radiation (open beamlets in all sectors, i.e., ∑

h∈H Dh). The effect of
beamlets on each voxel is a vector in Rn with n beamlets. We first randomly assign the voxels
to the clusters and define the centroid of each cluster to be the mean of the observations.
The original K-means method computes the distance of each voxel from the centroid of all
the clusters and assigns it to the nearest one. We instead calculate the distance of the voxel
from its neighboring clusters; this is because we expect a high degree of similarity among
neighbors. We also take into account the average Euclidean distance of the voxels from
the corresponding centroid as a measure of the quality of the clustering. This objective is
nonincreasing, and the process continues until there is no significant improvement.

This method uses the geometric information about the voxels and the fact that neighboring
voxels usually have similar dosimetry profiles. The weight of each cluster in the objective
is proportional to the number of embedded voxels, so all the voxels are taken into account
despite the down-sampling. Algorithm 1 gives the pseudocode for the aggregation method.
We perform the aggregation at the beginning of the CG, and the sets of aggregated voxels
are then fixed until the post-optimization.

4.3.2 Pricing subproblem

In the PSP, we use a graph approach to determine the arrangement of the leading and trailing
leaves in the δ sectors from hs to hf . This approach was inspired by Boland et al. [19] and
Romeijn et al. [108], who proposed a network model to produce the aperture shapes in IMRT,
and also by Luan et al. [79], who extended it to IMAT. In our model, each node represents
a pair of MLC leaves in a sector, and the arcs represent feasible movements in the graph.



30

Algorithm 1 Voxel Aggregation
1: Input: Dose-influence matrices in all sectors Dh, number of clusters |C|
2: Output: List of voxels in each cluster c∗
3: Calculate DF with full radiation: DF =

∑
h∈H D

h

4: Randomly assign voxels to clusters
5: while stop criteria not satisfied do
6: for voxel j = 1 to |V | do
7: dj,cj = distance from voxel j to its current cluster cj
8: for neighboring voxel j′ = 1 to |Nj | do
9: dj,cj′ =‖ DF

j −DF
cj′
‖22

10: if dj,cj′ < dj,c∗ then
11: c∗j = cj′

12: end if
13: end for
14: if c∗j 6= cj then
15: Move voxel j to cluster c∗j
16: end if
17: end for
18: end while
19: stop

Graph algorithm

Let graph G = (V,E) be a layered acyclic digraph where V is the set of nodes and E the set
of arcs. Each node in the hth layer (denoted by Lh) defines a feasible arrangement of MLC
leaves in each row of sector h. The arrangement of trailing and leading leaves (t, l) in row m

and sector h is denoted by (h, t, l)m. Figure 4.1 shows example positions for a pair of leaves.
Moreover, E contains the multi-layer arcs (u, v) where if u ∈ Lh then v ∈ Lh+1. Our goal is
to cover all the sectors in an arc, even possibly with closed apertures if required. We define
two dummy nodes D and D′: the start node D is linked to the first layer, and the nodes of
the last layer are linked to D′. Smaller partial arcs could easily be generated by linking D
and D′ to all the layers.

Our network takes into account the MLC constraints by eliminating infeasible nodes and
arcs. As the first constraint, the range of leaf movements must be within certain limits,
∆min ≤ l − t ≤ ∆max. This constraint avoids collisions of leaves with ∆min > 0 and
also ensures that the maximum tip difference is in the specified range ∆max. We remove
infeasible nodes outside of these bounds. Moreover, leaf movements should be compatible
between adjacent sectors, i.e., leaf movements between adjacent sectors are restricted based
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Figure 4.1 Leaf position with (t, l) = (1, 4). The trailing (left) leaf is located in beamlet 1,
and the leading (right) leaf is located in beamlet 4. The beamlets between these two are open
and the others are blocked. Columns 0 and 5 are dummy blocked beamlets demonstrating
the range of the leaf movement.

on the maximum leaf speed, νUl . We remove the infeasible arcs from the graph to guarantee
the compatibility of adjacent sectors in the PSP. To consider the effect of the adjacency
constraints, we transfer the minimum required time for the leaf movement at each sector h
of arc k to the master model with the parameter τ kh . Figure 4.2 shows an instance of the
pricing graph with three layers and maximum leaf movement ∆l = 1. An advantage of the
graph approach is that increasing the number of technical constraints decreases the size of
the graph.

Figure 4.2 A pricing graph with three layers. We assume that the leaf movement is unidi-
rectional from left to right and the maximum leaf movement is ∆l = 1 beamlet. ∆l depends
on the leaf and gantry speed parameters. For instance, if νUl = 3 cm/s, νg = 6◦/s, δ = 2◦,
and the beamlet width wb = 1 cm, ∆l is 1. This value affects the arc feasibility during the
building of the graph. For example, movement from node (101) to (213) is infeasible, and
the corresponding arc is removed.
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Pricing objective function

As explained in Section 4.3.1 and A, the PSP is based on the reduced cost of RRMP′:

min
k∈K\K′

{
∑
h∈H

∑
j∈V

Dk
jh(Ak) π̂j −

∑
h∈H

(τ kh,h+1 ϕ̂
h + akh σ̂h)}, (4.10)

where π̂j, ϕ̂h ≤ 0, and σ̂h ≤ 0 are the dual values of Equations (A.5), (A.6), and (A.7)
in RRMP′, respectively. Therefore, it suffices to solve the PSP with the objective function
(4.10) and to add columns to the master model if the objective value is negative. To transfer
this objective into the graph, we define the weight of each node (h, t, l)m as follows:

∑
j∈V

D
(t,l)m

jh (A(t,l)m) π̂j − σ̂h. (4.11)

The weight of each arc connecting node (h, t, l)m in sector h to (h+ 1, t′, l′)m in sector h+ 1
is computed as follows:

−τ(h,t,l)m,(h+1,t′,l′)m ϕ̂
h, (4.12)

where τ(h,t,l)m,(h+1,t′,l′)m is the minimum time for vertex (h, t, l)m in sector h to reach (h +
1, t′, l′)m. Obviously, if a node is on the shortest path, akh = 1 and the corresponding cost
according to its sector and leaf position is taken into account; otherwise, the cost is not
considered and akh = 0.

Implementation details

The pricing subproblem, determining the best leaf pattern for a given range of sectors is
solved by a polynomial-time shortest-path algorithm [4]. According to the directed acyclic
graph G in this problem, we use the topological sorting technique, which runs in O(|V |+ |E|)
time. Although the run time is negligible, the time to refeed the graph weights regarding the
large number of voxels is considerable. We solve the PSPs in parallel for new arcs to reduce
the computational time. To this end, a large graph with 180 layers (sectors) is defined and a
slave PSP for each new arc k is implemented. For instance, if the length of the arcs is four,
the PSPs are PSP1 (1–4), PSP2 (5–8), · · · , PSP45 (177–180).

The independent arcs around the patient and the shared memory of the problem allow us to
implement pricing in parallel using open multi-processing (openMP). This approach is easy
to implement and flexible [65]. It starts with a single thread (the master thread) that creates
sets of parallel worker threads (forks) in the parallel region. The threads are executed in
parallel, and they synchronize and join the master thread at the end of the parallelization.
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In our work, the graph is shared among all the threads, and the threads simultaneously
generate disjoint arcs in different parts of the graph.

4.3.3 Greedy Heuristic

The optimal solution for the arc selection variable yk in the RRMP is usually fractional. The
next step is 1) a branch-and-price search on the set of columns generated or 2) the use of a
simple heuristic to round and fix the best columns. The first approach is too time-consuming,
so we use a greedy heuristic to provide a feasible solution. At each CG iteration, we fix the
lower bound of the yk variable with the largest fractional part to 1. This method is fast
but greedy. To accelerate the process, if there are other arcs with high fractional values,
e.g., yk > 0.85, we fix them also to 1 and skip the pricing problem for arcs that contain
some or all of the corresponding sectors. Algorithm 2 gives the pseudocode for the greedy
column-and-row generation heuristic (GCRGH).

Algorithm 2 GCRGH procedure
1: Initial random heuristic columns (arcs)
2: while stopping criteria not satisfied do
3: Master Model (Arc-based)
4: Fix the best arc to 1
5: Pricing subproblem
6: end while
7: Post-Optimization (Sector-based)
8: Re-optimize gantry speed & intensities
9: stop

4.3.4 Post-Optimization

The proposed column generation-based heuristic returns the final aperture shapes and the arc-
dependent fluence rates, γk. To improve the treatment plan, we propose a post-optimization
model with three features. First, the arc-dependent approach is replaced by sector-dependent
fluence rates. Second, we consider all the voxels and restrict the rate of change in the fluence
rate, ∆γ, and the sector time, ∆t, between adjacent sectors. Third, the MLC leaf positions at
the intersection points of adjacent arcs must satisfy the maximum leaf-movement constraint.
If necessary, a simple heuristic removes any inconsistency with as little change as possible.
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Let the set of arcs found by the CG be K∗. The post-optimization model is as follows:

Post-Opt : min
γ ,t

F (z) + w T (4.13a)

s.t.

zj =
∑

h∈H
Dh
j (AK∗) γh ∀j ∈ V (4.13b)

γh ≤ R th ∀h ∈ H (4.13c)

τh,h+1 ≤ th ≤ T ∀h ∈ H (4.13d)

th+1 − th ≤ ∆t ∀h = 1, 2, · · · , |H| − 1 (4.13e)

γh+1 − γh ≤ ∆γ ∀h = 1, 2, · · · , |H| − 1 (4.13f)∑
h∈H

th ≤ T (4.13g)

th, γh ≥ 0 ∀h ∈ H (4.13h)

4.4 Experiments and results

We implemented the GCRGH algorithm in C++ and used IBM ILOG CPLEX 12.6.2 for
the mathematical models. If not stated otherwise, the computational experiments were run
on four threads of a 3.07GHz Intel(R) Xeon(R) X5675 Linux workstation. The quadratic
RRMP is solved at each iteration using the CPLEX Barrier Optimizer, which is based on
an interior-point method. To evaluate the quality of the treatment plan, we use the dose
volume histogram (DVH), the most common method in practice. These diagrams indicate
the percentage of a volume that receives at least a certain dose. We export our plans to
Computational Environment for Radiotherapy Research (CERR) to visualize the results and
obtain DVHs [42].

4.4.1 Data and benchmark

To evaluate the efficiency of the proposed heuristic, we considered a challenging prostate case
in the CORT dataset, with 180 sectors, 25,404 beamlets, and 699,864 voxels [40]. There are
two tumors, PTV-56 and PTV-68, and seven healthy tissues including the bladder, rectum,
left and right femoral heads, prostate bed, and penile bulb. The parameters are listed in
Table 4.1. A pencil beam type algorithm referred as the Quadrant Infinite Beam (QIB)
model is used for dose calculation in this case. To the best of our knowledge, CERR uses
the CT information to do first-order heterogeneity corrections along the path of the pencil
beam.
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The fraction treatment is the standard 2 Gy per fraction, the prescribed radiation dose is
68Gy for PTV-68, and the treatment plans were optimized for 34 fractions. Furthermore,
the machine parameters of the VMAT problem, typically considered in the literature, are
listed in Table 4.2 [40]. In proportion to the range of the gantry speed, νg, the delivery time
is between 1 and 6 minutes.

Table 4.1 Prostate case parameters

Total # beamlets 25,404
Beamlet size (cm) 1 × 1
Voxel resolution (mm) 3, 3, 3
# Target voxels 9491
# Body voxels 690,373

Table 4.2 VMAT machine parameters

Maximum leaf speed, νUl 3 cm/s
Gantry speed, νg 1–6◦/s
Maximum dose rate, ρU 600MU/min
Maximum fluence change, ∆γ 2MU
Maximum change of sector time, ∆t 2 s

4.4.2 GCRGH heuristic treatment plan

In this section, we measure the performance of our GCRGH heuristic on the prostate case.

To find an acceptable treatment plan regarding DVH constraints, we dynamically adapt the
structure underdose and overdose weights, ws and ws, based on the coarse-adjusting stage
proposed by Li et al. [75], during some iterations of the column-generation procedure and
also during post-optimization. In this approach, we increase the weighting factors of the
structures whose DVH measures are worse than the critical dosimetry references. The best
delivery time found is 3.44 minutes (Plan-Opt). As shown in Figure 4.3 all the healthy tissues
are far from the thresholds, and the tumor tissues are sufficiently irradiated.

A challenge in this case is multi-organ voxels: a voxel could be in more than one organ,
especially at boundaries. This could introduce bias in the objective function and DVH
diagrams. In these cases, if a voxel belongs to both tumor and healthy tissues, we penalize it
twice in the objective function; if it is in two similar structures, we penalize the organ with
higher priority. For example, if a voxel belongs to both PTV-68 and PTV-56, we choose
PTV-68. Anyway the calculations for the treatment measures and DVH diagrams take all
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the tissues into account. As shown in Figure 4.3, the tail of the rectum and the bladder have
some overlapping parts and tumors. The more accuracy in the boundaries and the fewer the
multi-organ voxels, the greater the accuracy in the DVHs and plans.

The computational time is about 4.34 minutes, which compares well with the literature,
especially since we use only four threads. Note that this does not include the time required
to read the data and plot the diagrams.
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Figure 4.3 DVH plots for Plan-Opt for the prostate case using GCRGH.

4.4.3 Delivery time

In this section, we investigate the effect of delivery time on solution quality. To find the
balance between these two objectives, we evaluate the heuristic with values of the penalty
weight w of Equation (4.1a) ranging from 0 to infinity. Table 4.3 compares the delivery
time and critical measures of 13 treatment plans. When w = 0, there is no constraint for
delivery time, which results in a delivery time six minutes. For a very large penalty weight
w, the gantry rotates at the maximum speed, one minute, with closed apertures. The results
indicate a general trend of increasing the delivery time with increasing w, although it it is
not completely monotone, due to the heuristic nature of the algorithm. Moreover, when the
quality of the solution decreases when w increases, and the best value in terms of delivery
time and plan quality is w = 1. For penalties between 0 and 1, the priority of delivery
time becomes negligible and the plan quality is optimized, while the delivery time does not
necessarily increases.
In Figure 4.4 we compare the DVH diagram for w = 1 (Plan-Opt) to that for w = 10 with
delivery time about 3 minutes (Plan-3). In Plan-3, similar to Plan-Opt, the healthy tissues
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Table 4.3 Delivery time vs. treatment plan dosimetry measures

Delivery PTV-56 PTV-68 Rectum Bladder
w time (min) V56 ≥ 95 V68 ≥ 95 V30 ≤ 80 V50 ≤ 50 V60 ≤ 25 V40 ≤ 70 V65 ≤ 50
0 5.98 95.65 95.39 62.24 21.83 8.67 66.32 22.13
1 3.44 96.15 95.82 73.64 23.07 9.52 64.51 21.98
5 3.34 97.01 93.09 86.73 30.10 14.06 61.25 23.05

10 3.32 84.50 92.11 81.35 26.98 13.72 65.59 24.17
20 3.10 79.94 89.14 85.15 27.32 14.23 46.37 21.28
30 2.74 82.58 88.54 87.07 30.95 13.61 60.97 20.76
50 3.01 76.32 78.58 56.46 24.49 10.77 62.34 22.46
100 2.37 90.70 87.70 82.20 32.82 9.92 54.31 21.63
150 1.91 87.10 90.69 89.23 50.68 13.89 90.76 20.44
250 1.84 94.94 86.12 90.42 76.08 15.42 99.84 44.77
500 1.74 86.55 88.63 90.53 74.94 19.84 99.84 29.43

1000 1.65 99.08 79.23 91.44 88.38 77.38 100.00 53.23
INF 1.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Acceptable measures are printed in bold.

are protected, but the doses in the tumor tissues are substantially lower, especially for PTV-
68. In addition, to assess the effect of increased treatment time on the solution quality, we
restricted the total delivery time to 4, 5, and 6 minutes and compared Plans 4-6, respectively,
to Plan-Opt in Figures 4.5 - 4.7. These treatment plans provide enough time for treatment
delivery and could meet clinical needs, as expected. In comparison to Plan-Opt, the rectum
is protected better but the bladder receives more dose in Plans 4-6. In general, Plan-Opt
still has good enough quality and it is not dominated for all critical measures by other plans,
while delivered in less time. The mean absolute difference between Plan-Opt and Plan-6, as
the worst case, in the critical measures is about 2.34%. Therefore, the difference between
plans with more delivery time and Plan-Opt is not meaningful and our algorithm finds a
trade-off between the delivery time and the dose distribution.

4.4.4 Voxel aggregation

We now analyze the efficiency of the voxel aggregation algorithm and its effect in the prostate
case. Its computational time (see Table 4.4) is about 11 seconds. The number of voxel
transfers from one cluster to another has a decreasing trend. We run the algorithm for four
iterations until the total average distance of the voxels from the cluster centroids is improved
by less than one. The improvement in the solution after the first iteration is about 6.5%,
and it seems that one iteration suffices.

Figure 4.8 shows the DVH curves for the full plan and the aggregated version. The latter
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Figure 4.4 Plan-Opt (3.44 minutes) vs. Plan-3
(3 minutes)
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Figure 4.5 Plan-Opt (3.44 minutes) vs. Plan-4
(4 minutes)
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Figure 4.6 Plan-Opt (3.44 minutes) vs. Plan-5
(5 minutes)
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Figure 4.7 Plan-Opt (3.44 minutes) vs. Plan-6
(6 minutes)

Table 4.4 Voxel aggregation results

Iter. # Transfer CPU Time (s) Avg. Dist.
0 176.99
1 37836 5.50 51.48
2 10454 1.99 42.17
3 3758 1.11 40.45
4 1755 0.86 39.94
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has 5% of the normal voxels and 15% of the tumor voxels; it reduces the computational time
from 28.90 to 4.34 minutes. The aggregated plan has similar target coverage for PTV-68
and PTV-56, even better in PTV-56, and the results for the normal tissues are adequate.
Then, the aggregation has significantly reduced the computational time, and the quality of
the resulting plan is acceptable.

4.4.5 Arc length

In the proposed approach, we assume that the arcs are of equal length. To evaluate the impact
of this parameter, we tested four plans with very small (length 6◦), small (length 8◦), medium
(length 12◦), large (length 20◦), and very large (length 30◦) arcs. Table 4.5 gives the delivery
times and critical dosimetry measures for these five arc lengths. As expected, using longer
arcs reduces the delivery time, but also the treatment quality. Plans with the arcs of lengths
20◦ and 30◦ are not acceptable, because of the overdose in the normal tissues, especially in the
rectum. In terms of computational time, plans with 6◦ and 8◦ arcs are more time-consuming
due to more iterations of column generation. These plans take 10.83 and 7.78 minutes,
respectively, while the plan with 12◦ arc takes 4.34 minutes. Figures 4.9 and 4.10 show the
comparison of DVH curves of these two plans. Despite the higher computational time of the
plans with 6◦ and 8◦ arcs, it resulted in more delivery time. Although both treatment plans
provide acceptable quality in normal tissues, there was significant improvement in tumors
quality in the 12◦-arc plan. Finally, the critical dosimetry measures of the plan with 12◦ arcs
are all in the preferred range and this plan offers better trade-off between computational time
and solution quality.

Table 4.5 The effect of arc length on the delivery time and treatment plan dosimetry measures

Delivery time PTV-56 PTV-68 Rectum Bladder
l (◦) (min) V56 ≥ 95 V68 ≥ 95 V30 ≤ 80 V50 ≤ 50 V60 ≤ 25 V40 ≤ 70 V65 ≤ 50

6 4.37 95.36 98.21 73.58 22.73 10.71 69.13 23.35
8 3.82 94.43 95.72 77.21 22.62 10.26 64.73 20.83
12 3.44 96.15 95.82 73.64 23.07 9.52 64.51 21.98
20 1.82 91.99 91.91 86.17 31.80 12.02 63.39 20.39
30 1.37 98.99 88.61 89.40 79.71 14.85 97.21 67.31

4.4.6 Leaf movement strategy

In this study, we assume that the MLC leaves movement are bidirectional, i.e., the leaves are
free to move in any direction. However, some MLCs have only unidirectional leaf sequencing.
In this technology, the leaves are aligned at one edge of the field at the beginning of the arc
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Figure 4.8 DVH curves for the aggregated plan (15%–5%; solid line) and full plan (100%–
100%; dashed line) for the prostate case using GCRGH heuristic.

and at the opposite edge of the field at the end of the arc. In this section we compare these
two approaches.

Table 4.6 presents the results for arc lengths of 12 ◦ and 20 ◦ to evaluate these two strategies for
small and large arc lengths. The unidirectional approach has less leaf motion time; however,
since the aperture opens and closes several times during the rotation, the treatment time
is higher. With fewer arcs, the delivery time decreases. As the critical dosimetry measures
indicate, both bidirectional and unidirectional strategies are acceptable for arc lengths of 12 ◦,
but none is satisfactory for arc lengths of 20 ◦. Figure 4.11 shows the DVH diagrams for the
12 ◦ arcs. The diagrams are similar, showing that both strategies are acceptable. However,
the bidirectional approach is somewhat better especially in terms of the over-dosage in tumors
and rectum under-dosage, because of its flexibility in leaf motion.

Table 4.6 The effect of leaf motion strategy on the delivery time and treatment plan dosimetry
measures

Delivery time PTV-56 PTV-68 Rectum Bladder
Strategy l (◦) (min) V56 ≥ 95 V68 ≥ 95 V30 ≤ 80 V50 ≤ 50 V60 ≤ 25 V40 ≤ 70 V65 ≤ 50
Bidirect 12 3.44 96.15 95.82 73.64 23.07 9.52 64.51 21.98

20 1.82 91.99 91.91 86.17 31.80 12.02 63.39 20.39
Unidirect 12 5.11 95.01 96.32 77.44 31.69 13.21 67.46 26.87

20 3.64 88.10 92.32 87.30 58.96 8.90 53.42 18.22
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Figure 4.9 DVH curves for treatment plans with arc lengths 6◦ (solid line) and 12◦ (dashed
line).
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Figure 4.11 Comparison of unidirectional and free leaf-movement strategies for 12 ◦ arc
lengths.

4.5 Discussion and conclusion

In this paper, we have developed a novel column-and-row generation algorithm embedded in
a heuristic for VMAT treatment planning. The problem is decomposed into the PSP, which
generates possible aperture shapes, and the RMP, which optimizes the dose rate and delivery
time. The proposed RMP is a large-scale integer programming model that minimizes the
quadratic dose deviation from the prescribed lower and upper bounds. In addition to voxel-
based dose distribution constraints, the columns are also linked to delivery time constraints.
The heuristic repeatedly solves the relaxed restricted master problem and fixes the best arcs.
In the PSP, graph algorithms form the aperture shapes around the patient in polynomial
time.

The proposed heuristic algorithm has the following advantages in comparison to the methods
that can be found in the literature:

• Most of previous works in the literature take into account constant delivery time [96,
101] in VMAT treatment planning. Some recent methods minimize the delivery time
after determining the fluence maps [39] or fixing the MLC shapes and dose rates at the
final step [100]. In this paper, the delivery time is integrated into the column generation
algorithm to simultaneously optimize the aperture shapes, dose rates, gantry speeds,
and delivery time.

• Another contribution of the proposed approach when compared to papers such as Peng
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et al. [100] is that we can consider most of the MLC leaf-movement constraints in
the PSP rather than the RMP. Then, in this approach, it is not required to check
the feasibility of all adjacent control-points and regenerate new columns in the master
model, which makes the algorithm more efficient.

• This method can easily handle both bidirectional and unidirectional leaf motions ac-
cording to the machine capabilities, which makes the model more flexible in practice.

In addition to the contributions in the model, we also propose an aggregation algorithm
inspired by the K-means technique in clustering to reduce the number of voxel-based con-
straints. This aggregation takes about 11 seconds; it greatly reduces the number of constraints
with a negligible effect on the treatment quality.

Finally, we have evaluated our algorithm on a prostate cancer benchmark to demonstrate
the efficiency of our model. We solved this benchmark in about 4.34 minutes using only four
threads, whereas some approaches in the literature require GPU computing. Moreover, we
analyzed the effect of unidirectional and bidirectional leaf movement.

There are still many challenges which can be considered for the future works. First, the
restricted master problem is the main bottleneck of the algorithm, requiring 60% of the
computational time. To decrease this time and improve the voxel sampling, a dynamic voxel
aggregation could be developed. The sampling would be more precise, fewer voxels would
be required, and the computational time would decrease. Second, the columns generated
at each iteration from different sectors are not disjoint and have similar effects; this could
be investigated in future research. Another possibility would be to use GPU computing to
accelerate the method.
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Abstract. Volumetric-modulated arc therapy (VMAT) treatment planning is an efficient treat-
ment technique with a high degree of flexibility in terms of dose rate, gantry speed, and aperture
shapes during rotation around the patient. However, the dynamic nature of VMAT results in a
large-scale nonconvex optimization problem. Determining the priority of the tissues and voxels
to obtain clinically acceptable treatment plans poses additional challenges for VMAT optimiza-
tion. The main purpose of this paper is to develop an automatic planning approach integrating
dose-volume histogram (DVH) criteria in direct aperture optimization for VMAT, by adjusting the
model parameters during the algorithm.

The proposed algorithm is based on column generation, an optimization technique that sequentially
generates the apertures and optimizes the corresponding intensities. We take the advantage of
iterative procedure in this method to modify the weight vector of the penalty function based on the
DVH criteria and decrease the use of trial-and-error in the search for clinically acceptable plans.

We evaluate the efficiency of the algorithm and treatment quality using a clinical prostate case and
a challenging head-and-neck case. In both cases, we generate 15 random initial weight vectors to
assess the robustness of the algorithm. In the prostate case, our methodology obtained clinically
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acceptable plans in all instances with only a 10% increase in the computational time, while sim-
ple VMAT optimization found just three acceptable plans. To have an idea with respect to the
existing software, we compared the obtained DVH to a commercial software. The quality of the
diagrams of the proposed method, especially for the healthy tissues, is significantly better while the
computational time is less. In the head-and-neck case, the obtained treatment plans are clinically
acceptable in 93.3% of instances while no plan was acceptable in simple VMAT. In sum, the results
demonstrate the ability of the proposed optimization algorithm to obtain clinically acceptable plans
without human intervention and also its robustness to weight parameters. Moreover, our proposed
weight adjustment procedure proves to reduce the symmetry in the solution space and the time
required for the post-optimization phase.

Keywords. Volumetric-modulated arc therapy, direct-aperture optimization, dose–volume criteria,
column generation.

History. This article is published in Physics in Medicine and Biology, Vol. 64, No. 8, 1-14 ,
(2019).

5.1 Introduction

Volumetric-modulated arc therapy (VMAT) is an efficient form of external radiotherapy
which has been widely used during the past decade. In this technology, the beam rotates
around the patient’s body while the dose rate, gantry speed, and beam shape change contin-
uously [96]. The beams are formed by a multi-leaf collimator (MLC) that has a finite number
of leaf pairs, each consisting of a leading and a trailing leaf.

Several optimization techniques have been developed for the treatment planning problem in
VMAT [15, 17, 24, 26, 39, 89, 96, 99, 100]. In general, we categorize these methods into two
main approaches: (1) two-stage and (2) direct aperture. In the former, at the first stage, each
beam is discretized into beamlets, and fluence map optimization (FMO) is used to find the
optimal intensity for each beamlet. At the second stage, the ideal fluence map is converted
into a sequence of deliverable arcs, typically based on unidirectional leaf motion, maximizing
the similarity of the dose distribution to the FMO plan [17, 39, 99, 113].

In the direct-aperture approach, the apertures around the patient and the corresponding
intensities are optimized subject to the MLC constraints. In this approach, the column
generation (CG) technique has been widely used. This algorithm sequentially generates
new apertures and optimizes the corresponding intensities, ensuring to be compatible with
adjacent apertures [89, 100, 101, 103]. Unkelbach et al. [123] provide a comprehensive review
of optimization techniques for VMAT treatment planning.
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Recent studies have extended VMAT optimization to take the treatment times and clinical
criteria into account. Nguyen et al. [92] developed a non-greedy approach; it uses an L2-norm
fidelity term in the objective and a level set function to simultaneously optimize the fluence
intensity and aperture shapes. Balvert and Craft [14] investigated the trade-off between
delivery time and fluence map matching. They optimized the leaf trajectories and dose rates
for a given delivery time and obtained the complete trade-off curve for delivery time and plan
quality by solving the model heuristically with a range of delivery times. Recently, Mahnam
et al. [82] have developed a CG-based heuristic for VMAT that optimizes the trade-off between
delivery time and treatment quality.

One of the main technical challenges of treatment planning is to find the optimal model
parameters for generating an acceptable plan within a reasonable time. In practice, the
treatment planning system (TPS) technicians solve the problem several times for each patient,
taking into account various model parameters, e.g., the overdose and underdose weights for
target volumes and healthy organs. This manual procedure is time-consuming, especially for
complex cases.

Several researchers have studied systematic techniques for the evaluation of treatment plan-
ning. The dose–volume histogram (DVH) is the most common method for evaluating the
quality of the plan. It indicates the percentage of a volume that receives at least a certain
dose. For example, in prostate cancer the planner may specify that “no more than 80% of the
rectum is allowed to receive 30Gy or more.” Two approaches have been developed to handle
DVH criteria. The first adds dose–volume constraints (DVCs) directly to the mathematical
model, and the second automatically adjusts the penalty parameters in the objective function
to reduce the violation of the predetermined thresholds.

In the first method, the nonconvex nature of the DVCs leads to a nonlinear model [41]. We
can handle this nonlinearity by introducing binary variables, which results in a large mixed
integer problem (MIP) [72, 102]. Despite many improvements to the MIP formulation Halabi
et al. [58], the FMO problem with DVCs is nonconvex and NP-hard, i.e., the exact solution
cannot be obtained in a polynomial computational time using current computing methods
[122]. Romeijn et al. [106] proposed a linear approximation of the DVCs based on the
Conditional Value-at-Risk (CVaR) in FMO. Then, Romeijn et al. [108] developed a column
generation based algorithm for IMRT treatment planning and used the CVaR constraints
in the model. However, this approach drastically increases the number of constraints and
consequently the computational time.

The second method automatically adjusts the model parameters in the objective function to
meet the predetermined DVH criteria [22, 23, 128]. Wu and Mohan [133] employed a gradient
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optimization method for the FMO model and considered a simple algorithm adjusting voxel
weights in the objective function based on dose-volume histogram. Li et al. [75] improved
the previous work by a two-step approach for FMO problem: In the first step, the organ
weights in the quadratic objective function are roughly adjusted; and in the second step, the
voxel weighting factors are adjusted based on the DVH curves. In the same line of research,
Zarepisheh et al. [137] have proposed an algorithm that automatically adjusts the FMO
parameters to minimize the distance between the DVHs for the entire plan and the reference
DVHs. They iteratively navigate the Pareto surface and project the plan corresponding to
the reference DVHs onto that surface. Recently, fuzzy inference systems also have been used
for the FMO problem [45].

To the best of our knowledge, most studies on DVH-based re-optimization have focused on
FMO. The current work is on VMAT and such an approach could be effective because of the
large scale of the VMAT problem. Moreover, in this paper, we take advantage of Direct Aper-
ture Optimization (DAO) approach, incorporating the sequencing and intensity optimization
using column generation [82, 86, 100]. To this end, we use the iterative procedure of column
generation to automatically handle dose-volume criteria in VMAT treatment planning. Thus,
the deliverability of the plan is considered at the same time of weight adjustment; Then, both
the dosimetric-derived nonconvexity, i.e., the DVH criteria, and the hardware-derived non-
convexity, i.e., the MLC apertures, are taken into account, simultaneously. We test several
strategies, in which the weight of the structures and voxels in the cost function are adjusted
at the same time the apertures are generated.

5.2 Methods and materials

5.2.1 VMAT optimization model

In this section, we briefly describe our column generation-based heuristic algorithm for VMAT
treatment planning [82]. In this technique, we decompose the complicated and nonlinear
VMAT optimization model into two linear sub-problems, which iteratively generate and
select apertures that are expected to improve the objective function. We focus on treatment
plans with a single gantry rotation, which results in less total treatment time and required
number of monitor units. However, this approach could easily be generalized to take into
account multiple gantry rotations if required in practice.
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Notation

We discretize each structure s of the patient into small cubic volume elements called voxels,
Vs, and denoted VT and VN for tumorous and normal tissues. Each beam is decomposed into
a rectangular grid of beamlets, I. A beamlet is on if it is not blocked by either the leading or
trailing MLC leaf, and the relative motion of the leaves controls the intensity. The estimated
dose received by voxel j from beamlet i at unit intensity is given by the dose-influence matrix
(Dij), in Gy/MU.

The continuous dose delivery is discretized over a finite number of sectors, H, by changing
the angle of the beam, with typically 2◦-spaced beam angles. Each sector is associated with
an aperture A specifying the position of the MLC trailing (left) and leading (right) leaves and
the dose rate ρ (in MU/s). Another variable is the gantry speed in sector h, νh. Without loss
of generality, we use its inverse as the sector time, th, to simplify the model. The absorbed
dose in this problem is estimated by the product of dose intensity and sector time variables,
which makes the model nonlinear. To avoid this nonlinearity, we replace ρh th by a new
variable called the fluence rate, γh. We assume that the dose absorbed by a given voxel
can be determined by summing the dose from each of the beamlets comprising the aperture.
Thus, the dose received at voxel j, zj, is calculated as zj = ∑

h∈H Dj(Ah) γh, where Dj(Ah)
denotes the total dose received by voxel j of aperture h,Ah. We measure the treatment
quality via a convex objective function with a piecewise quadratic voxel-based penalty as
follows [99, 100, 108]:

f(z) =
∑
s∈S

∑
j∈Vs

wj [ds − zj]2+ + wj [zj − ds]2+ (5.1)

where [•]+ denotes max{0, •} and ds and ds are prespecified lower and upper dose thresholds
for structure s. Moreover, wj and wj are the weights for the underdose and overdose in
voxel j, respectively. The weights could be equal for all voxels in the same structure or be
independent. We adjust these parameters in Section 5.2.2 to obtain clinically acceptable
treatment plans.

Column generation

In this model, each column k is a partial arc made up of the apertures, Akh, in a sequence of
sectors from sector hks to hkf , Hk. The procedure starts with a subset of initial columns com-
pletely surrounding the patient. The following two sub-problems are then solved repeatedly
until no improving column is available:
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• RMP: Given a set of columns (K ′ ⊆ K), we select the best subset that covers all the
sectors, optimizing the intensities, gantry speed, and dose distribution.

• SP: Given the extra voxel information from the RMP and the effects of the beamlets
on the dose distribution, we generate promising columns and add them to the RMP to
improve its objective function.

Restricted master model: In the RMP, we determine the best combination of columns around
the patient and optimize the corresponding fluence rates. We define the binary variable y:
yk = 1 if and only if column k is selected. The dose in each sector h is then Dh(Akh)yk γh. To
linearize the model, we assume a constant fluence rate through the covered sectors of column
k, denoted γk, and we introduce a constraint to restrict it based on yk. The formulation of
the restricted master problem is described in Appendix B.

Although the fluence rate is fixed for the sectors in a given column, it can change between
columns. Moreover, the gantry speed can change between sectors. To make CG more efficient
in this phase, we use the voxel aggregation algorithm of Mahnam et al. [82] to cluster similar
voxels and decrease the number of constraints.

After selecting the final apertures at the end of CG, we use a post-optimization (PO) model
to determine the sector-based fluence rates. This model considers all the voxels and restricts
changes in the fluence rate between adjacent sectors.

Subproblem(SP): In the subproblem, also called the pricing problem, we use the dose distri-
bution z to compute the potential effect of each beamlet i ∈ I in sector h for an increase of
one unit of intensity:

λhi =
∑

j∈V
−Of(zj)Dh

ij, (5.2)

where Of is the gradient of the objective function f . We then use a graph approach to
determine the position of the leading and trailing leaves in the new arc. Each node defines
a feasible arrangement of MLC leaves, and each edge determines the feasibility between two
adjacent nodes. The cost of node n in sector h is based on the potential effects of the open
beamlets, Ion, as follows:

chn =
∑

i∈Io
n
λhi . (5.3)

The network takes into account the MLC constraints by eliminating infeasible graph nodes
and edges. These constraints avoid collisions of leaves with ∆min > 0 and also ensure that the
maximum tip difference is in the specified range ∆max. Moreover, leaf movements between
adjacent sectors are restricted based on the maximum leaf speed. Finally, we determine the
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best MLC aperture for a given range of sectors by a polynomial-time shortest-path algorithm
and add the new columns to the RMP if the objective value is negative.

Greedy Heuristic: As mentioned, the RMP is a MIP because of the binary variables yk. At
the beginning of the algorithm, we relax the binary requirement, and so the yk variables are
usually fractional. To find a feasible plan in a reasonable time, we fix the lower bound of the
column with the largest fractional part to 1 at each CG iteration and remove the conflicting
partial-arcs. Also, we keep other generated columns in the model for the next iterations.

More details about the CG-based heuristic and its efficiency can be found in our previous
publication Mahnam et al. [82].

5.2.2 Adjustment approach

In this section, we formulate the adjustment model for the structure and voxel weight vectors,
and also the adjustment procedure embedded in the column generation algorithm.

Weight adjustment

Let F be the feasible solution space of model RMP and f the voxel-based objective function.
We formulate the treatment planning problem using the weighted-sum method to convert
the multi-criteria DVH objectives into a single-objective optimization problem as follows:

P : min
(y,γ,t)∈F

w>f(z(y, γ, t)) (5.4)

where w is a vector of non-negative weights representing the relative importance of the
structures or voxels. For the lth DV objective of structure s with dose value dls, let Vdl

s
and

vdl
s
denote the desired and actual percentages of the structure volume, respectively.

To implement this general model in the course of column generation algorithm, we first find
the treatment plan subject to the delivery constraints at each iteration. We then evaluate
its DVH criteria, v, and update the weight vector w based on the formulation. This process
continues until we find an acceptable DVH or the stopping criteria are satisfied. The details
of the algorithm are provided in subsequent sections.

In the structure-based weight vector, all voxels in a structure have the same weight in the
objective function, while in the voxel-based adjustment, the weights are independent. The
solution space of the model P is larger in the second approach, which makes the problem
more complicated but also more flexible.
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Structure-based weight vector: In this case, it suffices to find the underdose, w−s , and over-
dose, w+

s , weighting factors of structure s. To adjust the weights during the CG, we use the
formulations inspired by Li et al. [75], which increase the weight of structures corresponding
to the violations from the prescribed thresholds. Let L+

s be the DVH criteria for the overdose
in structure s. The total overdose is as follows:

δA+
s =

∑
l∈L+

s

max(0, vdl
s
− Vdl

s
). (5.5)

Similarly, we can compute the total underdose of structure s, δA−s . We update the organ
weights at each iteration of CG for the restricted master problem (RMP) based on the weights
in the previous iteration and the ratio of the overdose (δA+

s ) or underdose (δA−s ) in structure
s to the total overdose and underdose in all structures. This formulation is shown for overdose
weighting factor, w+

s , in Equation (5.6) and the overdose weighting factors can be computed
similarly.

w+
s,k+1 = αw+

s,k (1 + δA+
s∑

s∈S(δA+
s + δA−s )) (5.6)

where the parameter α controls the effectiveness of the weight adjustment. This adaptive
parameter has a relatively small value in the initial iterations and increases at a constant
rate as the algorithm proceeds. It helps to adjust the treatment plan, especially in the PO
phase, where the values of the overdose and underdose are small.

Voxel-based weight vector: In this approach, the voxel weights are the same for each structure
at the beginning of the algorithm but are adjusted independently during the CG according
to the treatment plan. However, the DVH criteria are cumulative measures, in which there is
no direct relationship between a certain voxel and a DVH goal. Let π(zs) be a permutation of
the voxel doses in structure s, and let π̃(ds) be the permutation that sorts zs in nondecreasing
order. Zarepisheh et al. [137] have shown that π̃(zs) yields the best approximation to the
DVH goals among all permutations of z. For the lth DV objective in structure s, denoted
(dls, Vdl

s
), we obtain π̃(zs) and for each voxel j we modify the weight at iteration k + 1 as

follows:
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wk+1
j,s =



αwkj,s
dl

s

zj,s
s ∈ T, V (π̃(zj,s)) ≤ Vdl

s
, zj,s ≤ dls

αwkj,s
zj,s

dl
s

s ∈ N, V (π̃(zj,s)) ≥ Vdl
s
, zj,s ≥ dls

wkj,s o.w.

(5.7)

where V (π̃(dsj)) is the percentage of the organ receiving dose zsj or more in the sorted version
of the current solution. Figure 5.1 shows a sample of this criterion for V 30 ≤ 80% in a normal
structure and the voxel weight adjustment area. If there is more than one goal point in the
structure, we consider the penalty for voxel j based on the closest DVH reference point.

The difference between the actual and desired DVH criteria, especially in the final iterations
of the algorithm, is usually insignificant. For example, V 30 = 80.01% while the desired
volume is 80%. In these cases, the weight of just few voxels will be modified during the
weight adjustment, and the unsatisfied DVH goal will not be improved. Thus, in addition to
α, which controls the intention of the weight adjustment, we need a parameter to increase
the range of the affected voxels when the actual and desired criteria are very close. To affect
an additional ε% of the voxels, we adjust the desired dose dls in the conditions of Equation
(5.7) to zj,s ≤ (1 + ε) dls and zj,s ≥ (1 − ε) dls for tumorous and normal voxels, respectively.
Figure 5.1 shows a DVH objective (dls, Vdl

s
), the voxel weight adjustment area, and the ε%

extension in the range of affected voxels.

Proposed strategy

In the proposed CG, we dynamically update the weight vector. To this end, we must de-
termine (1) the adjustment approach, (2) the best iteration for the adjustment, (3) a DVH
evaluation heuristic, and (4) the post-optimization (PO). These strategies are explained in
more detail below.

Adjustment approach: We first choose between structure-based adjustment (SA-CG) and
voxel-based adjustment (VA-CG), explained in Section 5.2.2. The former has a smaller
solution space and the latter has more flexibility.

Adjustment iteration: We perform the adjustment every p iterations. For small values of
p, the objective function will change frequently, and our method approximates a greedy
algorithm. On the contrary, when p is large, the weight adjustment will be less effective.
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Figure 5.1 Voxel weight adjustment for V 30 ≤ 80% in a normal tissue. The voxel doses (zj)
are sorted in non-decreasing order on the horizontal axis, and the percentage of the organ
is indicated on the vertical axis. The hatched area shows the penalized voxels. The ε%
extension in the range of affected voxels is shown in the dotted area.

DVH evaluation: As explained in Section 5.2.1, the variables associated with the columns,
yk, are fractional at the beginning of the CG procedure and are gradually fixed to 0 or 1.
We developed two simple heuristics to evaluate the quality of the treatment plan during
the algorithm: the partial relaxed plan (PRP) and the greedy plan (GP). In PRP, column
variables in the solution may be fractional, and the doses at the voxels are based on the
partial plan. Due to the fractional values, this estimation is usually optimistic. In GP, we fix
the column with the largest value at each sector to 1 to make a complete feasible solution.
We then solve the model again and evaluate the DVH criteria.

Post-optimization (PO): At the end of the column generation procedure, we can continue
the re-optimization process. In the PO phase, the apertures are fixed, but the fluence rate is
sector-dependent, i.e., the fluence rates in sectors are independent, but we restrict the changes
between adjacent sectors. However, because it considers all the voxels, the PO model is large
and time-consuming to solve. We perform a maximum of 20 iterations in the PO phase,
updating the weights between the iterations. We terminate the algorithm when the DVH
criteria are satisfied.

Figure 5.2 depicts a flowchart of our CG procedure with weight adjustment. To find the best
strategy, we tested several approaches and parameter settings; see Section 5.3.
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Figure 5.2 Flow chart of CG heuristic with weight adjustment. The adjustment process is
determined by a dashed outline.
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5.2.3 Materials

We evaluate the efficiency of the proposed algorithm on two clinical cases from the CORT
data set [40]: a prostate (P) patient and a head-and-neck (H&N) patient. The prostate
case has two target volumes with different prescription, PTV-56 and PTV-68, and six organs
at risk: the bladder, rectum, left and right femoral heads, prostate bed, and penile bulb.
The head-and-neck case has three target volumes, PTV-56, PTV-63, and PTV-70, and four
organs at risk: the brainstem, spinal cord, and right and left parotids. Doses of 68Gy in the
prostate case and 70Gy in the head-and-neck case were prescribed in 2Gy per fraction. Then,
the treatment plans were optimized for 34 and 35 fractions, respectively. The parameters for
the two cases are listed in Table 5.1. As one can see, there are more voxels in the prostate
case and more beamlets in the head-and-neck case. From the mathematical point of view,
the former has more constraints, and the latter has more potential columns. Therefore, the
algorithm is analyzed in terms of both aspects. Also, the machine parameters, typically
considered in the literature [40], are listed in Table 5.2.

In both cases, the 360 degrees around the patient are covered by 180 equally spaced sectors.
Based on the sensitivity analysis for the arc length in our previous work [82], we take into
account 12◦ per arc, i.e., 30 arc segments.

We use standard DVH reference points based on those in the literature and the advice of
a medical physicist; see Table 5.3. The goal is to ensure that 95% of the target volumes
are covered by 100% of the prescribed dose while minimizing the dose to normal tissues.
Moreover, to avoid pockets of high doses (hot spots) within the target, high dose values are
restricted.

Table 5.1 Parameters of clinical cases
Prostate (P) Head & neck (H&N)

Total # beamlets 25,404 203,765
Beamlet size (cm) 1 × 1 0.5 × 0.5
Voxel resolution (mm) 3, 3, 3 3, 3, 5
# Target voxels 9,491 25,388
# Body voxels 690,373 251,893
Prescribed dose (Gy) 68 70
# Fractions 34 35

5.3 Results

We implemented the algorithms in C++ and used IBM ILOG CPLEX 12.6.2 for the math-
ematical models. The computational experiments were run on a 2.67GHz Intel(R) Xeon(R)
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Table 5.2 VMAT machine parameters

Maximum leaf speed, νUl 3 cm/s
Gantry speed, νg 1–6◦/s
Maximum dose rate, ρU 600MU/min
Maximum fluence change, ∆γ 2MU
Maximum change in sector time, ∆t 2 s

Table 5.3 Treatment plan dose-volume criteria

Prostate (P) Head-and-neck (H&N)
Structure Measure Structure Measure
PTV-56 V56 ≥ 95% PTV-56 V56 ≥ 95%
PTV-68 V68 ≥ 95% PTV-63 V63 ≥ 95%

V74.8 ≤ 1% PTV-70 V70 ≥ 95%
Rectum V30 ≤ 70% V76.3 ≤ 1 %

V50 ≤ 50% Rt. Parotid V50 ≤ 20%
V65 ≤ 25% Lt. Parotid V50 ≤ 20%

Bladder V40 ≤ 60% Spinal cord V48 ≤ 1%
V65 ≤ 30% Brainstem V60 ≤ 1%

Femoral heads V50 ≤ 1 %

E7-8837 Linux workstation. To improve the efficiency of the algorithm for the subproblem,
we used parallel programming techniques with a maximum of 10 threads. We solved the
quadratic RMP at each iteration using the CPLEX Barrier Optimizer, which is based on an
interior-point method.

To assess the effectiveness of the proposed algorithm in the prostate and head-and-neck
cases, we randomly generated 15 scenarios for the initial weights of the structures in each
case. For instance, the weight of bladder in the prostate case in one scenario is 0.2 while
it is 0.4 in another scenario. This allows us to analyze the robustness of the algorithm to
initial parameters and its adaptability to different cases and priorities. Then, we tested
the generated scenarios on 15 strategies, where each strategy is a combination of an adjust-
ment approach (adjust. method), the frequency of the weight adjustment (p ), and a DVH
evaluation heuristic (DVH eval.).

The adjustment approach is structure- or voxel-based, and we adjust the weights every p =
1, 5, or 10 iterations. Moreover, the DVH evaluation heuristic is Partial Relaxed Plan (PRP)
or Greedy Plan (GP). In addition to weight adjustment during the column generation, we
perform the DVH-based re-optimization for a maximum of 20 iterations in the PO phase.
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5.3.1 Prostate case

The details of the strategies and the results are summarized in Table 5.4. In the first strat-
egy, so-called simple VMAT, we test the column-generation based heuristic without weight
adjustment neither during CG nor the PO phase [82]. Then, for each adjustment approach,
we take into account one strategy, so-called PO-Adjustment, with adjustment only for the
post-optimization iterations and six strategies with weight adjustment both during the CG
and PO phases.

The cumulative number of instances with acceptable plans at the end of iterations 1, 5, 10,
15, and 20 in the PO phase are reported in the column # plans during PO. The avg. iter.
column gives the average number of PO iterations, and the avg. deliv. time column gives
the average delivery time (in minutes).

Table 5.4 The results of proposed strategies in the prostate case.

Strateg. adjust.
method p DVH

eval.
# plans during PO avg.

iter.
avg. deliv.
time (min)1 5 10 15 20

S-P-1 Simple CG N/P N/P 3 - - - - - 3.02

S-P-2 SA-PO N/P N/P 3 7 10 11 13 8.40 3.07
S-P-3 SA-CG 1 PRP 8 11 14 14 14 3.73 3.14
S-P-4 5 PRP 4 10 13 13 14 5.73 3.13
S-P-5 10 PRP 4 10 13 13 14 5.40 3.07
S-P-6 1 GP 6 9 11 13 13 6.33 3.12
S-P-7 5 GP 6 9 12 13 13 6.40 3.16
S-P-8 10 GP 4 10 14 15 - 4.46 3.13

S-P-9 VA-PO N/P N/P 1 13 15 - - 2.33 3.07
S-P-10 VA-CG 1 PRP 13 15 - - - 1.27 3.20
S-P-11 5 PRP 6 14 15 - - 2.47 3.16
S-P-12 10 PRP 7 13 13 13 13 4.00 3.05
S-P-13 1 GP 2 13 15 - - 3.27 3.06
S-P-14 5 GP 3 14 14 15 - 2.87 3.10
S-P-15 10 GP 7 15 - - - 1.60 3.09

The results indicate that the simple strategy S-P-1 finds just three clinically acceptable plans
out of 15 and takes about 6.51 min. The main challenge is to cover PTV-56 and PTV-68
at their prescribed doses while satisfying the upper thresholds for the rectum and the target
volumes. As a PO-Adjustment strategy, S-P-2 use CG to generate efficient apertures but
adjust the structure weights in PO iterations. Strategies S-P-3 to S-P-8 use the structure-
based adjustment also embedded in column generation (SA-CG) and find up to 13-15 plans
gradually during the PO phase. Similar to S-P-2, strategy S-P-9 modifies the weight vector
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only in PO iterations but based on voxel adjustment. Strategies S-P-10 to S-P-15 with voxel-
based adjustment approach during the CG and PO procedures (VA-CG) find acceptable plans
for 14-15 instances.

To compare the trends of the structure- and voxel-based strategies during PO phase, Figure
5.3 indicates the cumulative number of obtained acceptable plans at each iteration. It can
be seen that the VA-CG strategies are closer to the top left side of the diagram, i.e., more
plans in fewer iterations. It shows that the VA-CG approach finds 89 plans in at most three
PO iterations; this value is only 55 for SA-CG. S-P-10 finds plans for all the instances in 7.18
minutes on average and at most two PO iterations (the average is 1.27). It requires about
10% more computational time than simple VMAT, which is negligible in comparison with
the improvement. Also, the obtained average delivery time is about 3 minutes in different
strategies.

Moreover, Figures 5.3a and 5.3b show that the results of Strategies S-P-2 and S-P-9, modify-
ing the weight vectors only in the PO phase, are less efficient than strategies with adjustment
during CG. These results gain a better insight into the value of the integration of DVH cri-
teria in column generation. We conclude that adjusting the weight during the CG leads to
more clinically acceptable plans within less computational time.

Figure 5.4 illustrates the DVHs for an instance solved by S-P-1 (simple VMAT) and S-P-10
(VA-CG) as the best found strategy. The plans for this instance, both are obtained in the first
PO iteration of S-P-1 and S-P-10, respectively. It can be seen that the S-P-1 plan does not
deliver the prescribed doses to the target volumes and the criteria associated to the femoral
heads and target overdose are close to the pre-determined limits. However, the S-P-10 plan
satisfies all the requirements for normal and target volumes.

5.3.2 Head-and-neck case

In the large and challenging head-and-neck case, the goal of the treatment plan is to cover
all three targets while avoiding hot spots and sparing the parotid glands, spinal cord, and
brainstem. Similarly to the prostate case, we compare the structure- and voxel-based weight
adjustment approaches, PRP and GP evaluation heuristics, the frequency of the weight
adjustment for p = 1, 5 and 10 in 15 randomly generated weight scenarios in the range of
user experience. In total, we test 15 strategies; the results are summarized in Table 5.5.

The simple VMAT algorithm, S-HN-1, finds no acceptable treatment plan, but the proposed
algorithm finds admissible plans for 14 out of 15 (93.33%) instances in three strategies. S-
HN-3 to S-HN-8 strategies, using the SA-CG approach, find 11-14 acceptable plans during
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Figure 5.3 Number of clinically acceptable plans for the prostate case during the post-
optimization iterations: (a) structure-based adjustment strategies, SA-PO and SA-CG, (b)
voxel-based adjustment strategies, SA-PO and SA-CG.
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Figure 5.4 DVH of the prostate treatment plan for instance #1 in two strategies: S-P-1 (solid
line) as simple VMAT and S-P-10 (dashed line) as the best found approach. Empty circles
( ) indicate overdosage and solid circles ( ) indicate underdosage DVH criteria. An arrow
with a letter above indicates the direction of allowed curves for the specified structure. “B"
is the bladder, “R" the rectum, “FM" the femoral heads; “56" indicates PTV-56 and “68"
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Table 5.5 The results of proposed strategies in the head & neck case

Strateg. adjust.
method p DVH

eval.
# plans during PO avg.

iter.
avg. deliv.
time (min)1 5 10 15 20

S-HN-1 Simple CG N/P N/P 0 - - - - - 2.62

S-HN-2 SA-PO N/P N/P 0 0 5 7 10 14.47 2.62
S-HN-3 SA-CG 1 PRP 0 5 9 11 11 10.47 2.62
S-HN-4 5 PRP 0 1 8 12 14 12.20 2.62
S-HN-5 10 PRP 0 7 9 10 11 10.00 2.61
S-HN-6 1 GP 0 2 8 11 11 11.33 2.63
S-HN-7 5 GP 0 2 5 9 12 13.40 2.62
S-HN-8 10 GP 0 3 8 12 13 10.60 2.63

S-HN-9 VA-PO N/P N/P 0 9 11 11 11 8.27 2.62
S-HN-10 VA-CG 1 PRP 0 12 12 14 14 5.07 2.62
S-HN-11 5 PRP 0 9 12 14 14 6.07 2.63
S-HN-12 10 PRP 0 9 11 12 12 7.87 2.62
S-HN-13 1 GP 0 5 6 10 11 11.53 2.63
S-HN-14 5 GP 0 9 10 12 13 7.87 2.63
S-HN-15 10 GP 0 6 9 10 11 10.53 2.61

the PO iterations. This number is the same for the VA-CG approach, strategies S-HN-10
to S-HN-15. To differentiate between two approaches, we take into account the first 5 PO
iterations which results in 20 and 50 acceptable plans for SA-CG and VA-CG, respectively.
Figures 5.5a and 5.5b indicate the number of acceptable plans at each iteration for the SA-
CG and VA-CG strategies. The comparison of two graphs shows clearly that VA-CG is
significantly more efficient than SA-CG. S-HN-10 has the best performance: 14 acceptable
plans found while the average computational time is 38.48 minutes. This strategy uses PRP
heuristic in every CG iteration and solves the instances in an average of 5.07 PO iterations.
The average delivery time is about 2.62± 0.01 minutes and robust for different strategies.

Furthermore, S-HN-2 and S-HN-9, which perform the adjustment only in the post-optimization
phase, are among the least efficient strategies. Moreover, it can be seen that no acceptable
plan was found in the first iteration of the PO phase because of high complexity of the case.
However, the algorithm could adapt rapidly and reach an acceptable plan.

Figure 5.6 compares the DVHs for one of instances solved by S-HN-1 (simple VMAT) and
S-HN-10 as a VA-CG approach. It can be seen that S-HN-1 fails to cover PTV-63 and also
does not satisfy the tumor overdose criterion, V76.3 ≤ 1%. Also, the criteria associated to left
and right parotids are close to their limit, V50 ≤ 20%. However, S-HN-10 finds an acceptable
plan in the second PO iteration. The tail of PTV-63 and PTV-70 have some overlapping
parts because of the multi-organ voxels and inaccuracy at the boundaries in both targets.
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Figure 5.5 Number of clinically acceptable plans for the head-and-neck case during the PO
iterations: (a) structure-based adjustment strategies, SA-PO and SA-CG, (b) voxel-based
adjustment strategies, VA-PO and VA-CG.
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5.4 Discussion

The main difficulty in VMAT optimization is the large number of potential apertures and
voxel-based constraints which does not allow additional DVH based constraints in the model.
Therefore, to integrate the DVH criteria in the column generation technique, we need to find
an efficient strategy that automatically obtains acceptable plans. To this end, we have
implemented two adjustment approaches: structure-based and voxel-based. The former has
a smaller solution space; the latter has more flexibility. We tested our approach on a prostate
and a head-and-neck case. The simple VMAT optimization technique [82] found three plans
in the prostate case (out of 15 scenarios with random initial weight vectors) and none in
the head-and-neck case. The proposed algorithm could find the acceptable plans for most
of instances in both cases which confirms its advantage over the simple VMAT optimization
technique.

The voxel-based adjustment (VA-CG) was more successful even with a more complicated
solution space. In the prostate case, S-P-10 found plans for all instances with an increase of
just 10% in the computational time and 3 PO iterations. The results in the head-and-neck
case confirm this conclusion. The best strategy was S-HN-10, finding acceptable plans for
93.3% of instances. The average of PO iterations to achieve an acceptable plan for all 15
instances is 5.07 iterations with an average computational time of 38.48 minutes.

The best strategies, S-P-10 and S-HN-10, had a high frequency of adjustment during the
column generation process. This indicates that the integration is effective in improving the
results and the adjustment is usefully employed. In both cases, PRP could find satisfying
evaluations of DVH in less computational time than GP. The difference between the average
PO iterations by S-P-9 (2.33) and the number found by S-P-10 (1.27) shows more efficiency
in S-P-10, in which the DVH is evaluated inside CG frequently. In the larger head-and-neck
case, there is an even greater difference between S-HN-9 and S-HN-10, such that the the
number of acceptable plans found by S-HN-10 is 14 out of 15 and this number found by
S-HN-9 is 10. These comparisons show the value of the integration of the weight adjustment
procedure inside the CG algorithm rather than the PO-Adjustment approach.

From the dosimetry point of view (Figures 5.4 and 5.6), the target volumes are barely covered
in both cases. This is likely due to the structure of column generation technique, which starts
from no column, as the best plan for normal tissues, and gradually adds columns to cover
the target volumes. The advantage of this approach is that it controls the dose to normal
tissues.

In terms of computational time, the extra tasks of DVH evaluation and weight adjustment



63

increase the CPU time in automatic VMAT in comparison to simple VMAT. However, it is
negligible as shown in the best obtained strategies, S-P-10 and S-HN-10. We believe that the
symmetry of the model is one of the main causes of its complexity, and the weight adjust-
ment breaks the symmetry and consequently decreases the computational time. Moreover,
the number of PO iterations to find an acceptable plan decreases when we perform DVH eval-
uation during the CG. Therefore, we can find better treatment plans with minor additional
computational time.

Finally, to have an idea of the efficiency of the proposed algorithm in comparison to a
commercial software, a treatment plan is designed by an expert for the prostate case with
Pinnacle. The DVH diagram of the plan is shown in Figure 5.7. This DVH is obtained from
a treatment plan with double gantry rotation in about 20 minutes computational time. The
other assumptions and parameters are the same as shown in Table 5.2. The computational
time in our plan is less, 7.18 minutes, and at the same time, the quality of the diagrams,
especially for the healthy tissues is significantly better. As shown, the DVH obtained from
Pinnacle is not acceptable due to high dose to Rectum (V30 > 70%), overdosage in PTV-68
(V74.8 > 1 %) , and not enough coverage to PTV-56 (V56 < 95 %). This single case does
not allow us to draw any firm conclusion regarding the efficiency of the proposed algorithm
in comparison to a commercial software. In addition, to fully assess the potential of this
idea in the context of existing clinical software, we would need to have access to the core
algorithm of these software, which is obviously not possible. However, we believe this shows,
in a limited way, that our model and our algorithm can provide state-of-the-art results and
they could possibly be used to improve existing software.

In sum, the advantages of the proposed algorithm in comparison to most studies in the
literature and commercial software are as follows:

• To the best of our knowledge, most studies and software take into account DVH criteria
as constraints in the mathematical model which makes the model non-linear or large
and consequently more costly to solve.

• The DVH based models are mostly considered only in FMO while the current work is
on VMAT and such an approach could be effective because of the large scale of the
VMAT problem.

• The proposed algorithms integrating DVH constraints and direct aperture optimization
are in large-scale [108] and non-applicable in practice for VMAT.

• In this paper, we incorporate the sequencing and intensity optimization using column
generation. Thus, the deliverability of the plan is considered at the same time of weight
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adjustment; Then, both the dosimetric-derived nonconvexity, i.e., the DVH criteria, and
the hardware-derived nonconvexity, i.e., the MLC apertures, are taken into account,
simultaneously.

• Less trial-and-error in the search for clinically acceptable plans increase the efficiency
of the software and also the center.

Figure 5.7 DVH of the prostate treatment plan with commercial software.

5.5 Conclusion

In this paper, we have taken into account both dosimetric and hardware constraints to
produce deliverable plans for VMAT treatment planning and also dynamically adjusted the
penalty weights of the objective function to automatically obtain clinically acceptable plans.
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This approach increases the efficiency of the algorithm and consequently decreases the human
interventions.

To this end, we integrated structure-based and voxel-based adjustment algorithms in the
column generation technique to update the weight vectors based on DVH criteria in the
objective function. This approach does not require additional dose-volume constraints in
the master model, leading to minimal re-optimization in the PO phase and increasing the
efficiency of the treatment planning. We evaluated our approach on a prostate and a head-
and-neck case; the former has more voxels (constraints), and the latter has more beamlets
(columns). The performance of the proposed voxel-based adjustment in column generation
(VA-CG) is significantly better than simple VMAT, without weight adjustment, and also PO-
Adjustment approach, considering weight adjustment only in the post-optimization phase.

Further work could be carried out with more analysis on a wide range of patients to analyze
and improve the efficiency of the algorithm in practice in existing commercial software. More-
over, the proposed algorithm considers multiple DVH criteria in the treatment evaluation. It
would also be possible to apply this methodology to the whole DVH curve. Future work will
also consider the use of graphics processing unit (GPU) to accelerate the method.
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CHAPTER 6 A MULTI-OBJECTIVE COLUMN GENERATION METHOD
TO APPROXIMATE THE PARETO FRONT IN DIRECT APERTURE

OPTIMIZATION

Abstract. Radiation therapy planning revolves around an inherent tradeoff between treating the
tumor and sparing surrounding healthy tissues. The classic way to handle this problem is to solve
a convex multi-objective programming model to obtain an ideal intensity profile and then decom-
pose it into a set of feasible apertures with optimal dose intensities. In this paper, we address
direct aperture optimization (DAO), which designs the apertures and their corresponding inten-
sities, simultaneously, and propose a multi-objective column generation technique that efficiently
approximates a non-dominated set of treatment plans. To this end, first, a novel first-order solution
method, called Blended Conditional Gradients (BCG), is integrated into column generation to im-
prove the computational performance for the single objective DAO. We then develop a Pareto-based
column generation technique, to directly obtain apertures that approximate the Pareto frontier. We
find an upper bound approximation of the Pareto front from a discrete set of points and their convex
combinations and develop a lower bound for the Pareto frontier. In each iteration, the algorithm
generates a column which reduces the maximum distance of two bounds of the Pareto front. We
show the algorithm converges to the optimal Pareto frontier with a large enough number of itera-
tions.

To evaluate the efficiency of the proposed algorithms, two clinical cases, a prostate and a head-and-
neck, from CORT dataset benchmark are taken into account. For the BCG-based column generation
algorithm, the results show this new method improves the plan quality, on average by 13.96% and
57.14% for the prostate and head-and-neck cases, respectively, in comparison to CPLEX, a commer-
cial solver, in the same amount of time. Also, for the multi-objective column generation algorithm,
the results in a two-dimensional objective space validate the algorithm can achieve an appropriate
approximation of the Pareto frontier with a small number of columns and low computational effort.

Keywords. Radiation therapy treatment planning; column-generation; multi-criteria optimization;
Pareto-optimality.
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6.1 Introduction

Radiation therapy is an effective technique against cancer, from which approximately 50
percent of all cancer patients can benefit [63]. This method works by damaging the genetic
material within cancerous cells and destroying their ability to reproduce. However, normal
cells will also be damaged in this process and the treatment should be performed in such a
way that it maximizes the dose of radiation to tumors, while minimizing the adverse effects
of radiations to healthy tissues, simultaneously [52]. External radiation therapy is the most
common type of radiotherapy in which the radiation beam is delivered from several directions
by a linear accelerator (linac) mounted on a gantry.In Intensity Modulated Radiation Therapy
(IMRT), a piece of equipment called multi-leaf collimator (MLC) is used to form the shape
of the beam. This equipment has a finite number of leaves, leading and trailing, which move
independently towards each other and shape the exposed field as an aperture. The treatment
plan optimization is the process of automatically determining the beam directions, apertures,
and intensities delivering the distribution of dose.

In the traditional approach to IMRT treatment planning, first, each beam is discretized
into hundreds of small beamlets and the optimal amount of radiation intensity, or fluence,
of each beamlet is determined by solving a problem, so-called fluence map optimization
(FMO) [9, 94, 109]. FMO can not be directly delivered because of the uniformity of the
source of radiation at any time. Then, in the second step, the obtained fluence map is
decomposed into a number of apertures, and a deliverable MLC leaf-sequencing is planned
[19, 54, 55]. However, this sequential approach may cause a potential loss in the treatment
quality. Therefore, an integrated approach, so-called Direct Aperture Optimization (DAO),
is proposed which directly models the aperture shapes and their intensities at the same
time [118]. The number of aperture variables in DAO formulation is large, which requires
significant computational time.

Column generation (CG) is a leading optimization technique to solve large-scale problems
with decomposable structure [43]; which has successfully been used for several variants of
DAO [82, 83, 87, 102, 108]. Despite decomposing the problem into a master model and pric-
ing subproblems in column generation, the quadratic objective functions and large number of
variables and constraints in real-life application result in large and complex models. In this
paper, we first enhance the efficiency of the CG-based algorithms by integrating a new first-
order optimization method, so-called Blended Conditional Gradients, in the master model.
In this method, called CG-BCG, we manage to generate efficiently strong columns without
solving the master model to optimality in each iteration. We then address the trade-off be-
tween contradictory normal and tumor structures, as one of the main technical challenges of
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the treatment planning problem in practice, by developing a new multi-objective column gen-
eration method. Several multi-criteria optimization (MCO) techniques have been developed
for IMRT problem. These techniques can be classified into several categories regarding the
role of the decision maker [48]. In Lexicographic techniques, the decision maker prioritizes
the objectives based on their importance a priori [22, 23, 78, 124].In interactive methods, the
user guides the exploration during an interactive procedure [139]. In Pareto frontier (PF)
optimization, we explore for a set of Pareto optimal solutions, in which we cannot improve
any single objective without deteriorating at least one other objective [31, 34, 36, 37]. For
a general review of MCO approaches in IMRT, we refer the reader to two comprehensive
reviews by Küfer et al. [69] and Craft [33]. For the rest of the paper, we limit ourselves to
approaches based on Pareto frontier optimization with convex objectives.

The purpose of this paper is to develop an efficient algorithm to find an approximation of
a non-dominated set of solutions during the course of column generation avoiding a large
number of columns. Unlike the classic PF optimization methods, we do not have an optimal
point for a given priority of objectives in each iteration of column generation. However,
the feasible points are deliverable to the patient, which is useful in practice. We provide
lower bound and upper bounds for the Pareto front and generate columns that reduce the
maximum gap of two bounds and improve the entire Pareto font. This extension to column
generation, which we call Pareto-based column generation (PCG), is implemented for multi-
criteria IMRT treatment planning also applicable to more classes of problems. We take
into account feasible and deliverable apertures and deal with both dosimetric derived non-
convexity, i.e., clinical objectives, and hardware derived non-convexity, i.e., MLC apertures,
simultaneously. The main contributions of this study are:

• We develop a novel quadratic optimization method, based on BCG method integrated
to column generation, as CG-BCG.

• We develop a lower bound for the single-objective problem at each iteration of the
CG-BCG.

• The CG-BCG method is implemented for the DAO problem and is shown to be more
efficient in comparison to the traditional Frank-Wolfe algorithm and also CPLEX soft-
ware in the master model.

• We develop a new multi-objective column generation method, which improves the ap-
proximation of Pareto front rather than a single objective.

• We propose lower and upper bounds for the Pareto front and generate a column in each
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iteration for the weight vector that reduces the maximum gap of two lower and upper
bounds.

• We show that the proposed algorithm converges to the Pareto front after a large number
of iterations.

• Finally, we test our algorithms on two benchmark clinical cases of IMRT in a bi-
objective space. The results show that the proposed algorithms are able to find high-
quality plans for clinical size problems efficiently.

The remainder of the paper is organized as follows. Section 6.2 surveys the multi-criteria
approaches in radiation therapy. We summarize preliminary material in Section 6.3. Section
6.4 introduces the problem statement and the basic formulation. In Section 6.5, we propose
our column-generation based quadratic optimization algorithm to enhance the efficiency of
the single objective problem. In Section 6.6.1, we develop the Pareto-based Column Gener-
ation algorithm for Pareto frontier approximation. Section 6.7 presents the computational
experiments and results for a prostate case and a head-and-neck case. Finally, Section 6.8
provides the conclusion and future potential area.

6.2 Literature review

There are a variety of methods to approximate the Pareto optimal set, which can be classified
into inner approximation [114], outer approximation [16], and sandwich algorithms [66, 119].
In inner approximation, the bounding facets of the convex hull of the Pareto points contained
in the set are used, while outer approximations find supporting tangential hyperplanes of
the Pareto frontier and take their intersection to approximate the Pareto front. Sandwich
methods combine these two techniques and we can have an upper bound on the approximation
error. For more details on this topic, we refer the reader to a comprehensive review by [110].

In IMRT, Küfer et al. [67] have formulated the first multi-criteria model for FMO problem.
Craft et al. [38] have introduced the sandwich method for higher dimensional problem. Later,
they have shown that the number of required Pareto optimal solutions to represent the
Pareto front of up to five dimensions is linearly dependent to the number of objectives
[32]. Moreover, Craft and Richter [35] proposed a Pareto front navigation algorithm for the
stop and shoot IMRT problem based on deliverable plans while the number of segments
are restricted. In this work, the plans are already segmented to maximum 50 apertures, a
priori, and two methods are developed to navigate by combining a limited number of plans.
Shao and Ehrgott [116] also proposed a sandwich algorithm for the multiobjective linear
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programming problem (MOLP) in FMO. In the same line of research, Ehrgott et al. [53]
have proven that the Pareto front points lie on the boundary of a convex set if the objective
functions are convex. They extended their algorithm for MOLP models to approximate
the convex multi-objective nonlinear programming problems. Rennen et al. [104] enhanced
the higher dimensional sandwich algorithms by introducing the concept of dummy points to
the inner approximation and a new error measure. Bokrantz and Forsgren [18] proposed a
sandwich algorithm for approximating Pareto fronts of MCO problems based on enumerating
the vertices of an outer approximation of the Pareto front and dual techniques.

In most of these methods, the multi-criteria optimization has been formulated for the FMO
problem. This model is easy to solve for multiple times, approximating the Pareto frontier.
However, it is not deliverable in practice and a leaf sequencing algorithm is required to
produce a deliverable plan.

6.2.1 Multi-objective column generation in IMRT treatment planning

Although the column generation technique has been widely used specially for DAO, few
studies have addressed its implementation in MCO. Salari and Romeijn [111] proposed an
exact bi-objective solution approach based on the special structure of DAO, optimizing the
treatment quality and the beam-on time. The treatment quality is evaluated based on voxel-
based least square penalty function and the beam-on time is expressed as the sum of all
aperture intensities. First, they find the smallest beam-on time, beyond which the optimal
solution is not to treat. Then, sequentially an optimal treatment plan for the obtained
beam-on time is produced using the column-generation method; and the maximum range the
solution remains optimal is determined. They decrease the beam-on time to the point the
current solution is not valid and continue the procedure until no treatment plan is feasible for
the new beam-on time. In another study, Salari and Unkelbach [112] proposed a multi-criteria
column-generation for IMRT treatment planning. The idea to extend the standard CG to
multi-criteria approach was to consider multiple weighted-sum restricted master models based
on fixed weight vector scenarios, e.g., three in the case. For the multi-criteria pricing problem,
they formulated a mixed-integer programming (MIP) model and three heuristics to obtain the
aperture yielding the largest improvement in the entire Pareto front. However, the penalty
weight scenarios are fixed during the column generation process and they can not guarantee
that the non-dominated set is well-approximated. Recently, Lin et al. [77] developed a MOLP
formulation for direct aperture optimization in IMRT treatment planning, so-called revised
normal boundary intersection, and used the column generation algorithm to solve the linear
models in its subproblems.
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6.2.2 Multi-objective column generation in other applications

The integration of multi-objective techniques and column-generation has also rarely been
studied in other applications. Moradi et al. [90] implemented column generation for the linear
multi-commodity minimum cost flow problem based on a bi-objective simplex algorithm. In
this method, two dual values, corresponding two objectives, are considered for each master
model constraint. In the pricing subproblem, the column for the next iteration is generated
such that the ratio of improvement of the second objective over deterioration of the first one is
maximized. Moreover, Artigues et al. [11] developed a bi-criteria column generation for multi-
vehicle covering tour problem with a min-max objective. In this special case, the route time
is factual when the column is generated in the pricing subproblem. Then, instead of adding
constraints in the master model, they easily remove the unsatisfied columns. This approach
is not useful in problems such as IMRT planning, in which the effect of one particular column
is in conjunction with other columns.

6.3 Preliminaries

For a set Y , we denote by conv(Y ) the convex hull of set Y ; and for two sets Y1 and Y2,
we denote by Y1 + Y2 the Minkowski sum, which is defined as {y1 + y2 | y1 ∈ Y1, y2 ∈ Y2}.
Moreover, we define polyhedral Y+ = Y + Rn

+, where Rn
+ is the non-negative cone.

We denote by ei the i-th coordinate vector and and 1 = (1, 1, · · · , 1) = e1 + e2 + · · · denote
the all-one vector. The probability simplex ∆k = conv {e1, · · · ek} is the convex hull of the
coordinate vectors in dimension k. The shorthand [ . ]+ denotes max{0, .} and ‖ . ‖ denotes
the Euclidean norm.

Let f be a differentiable convex function over a polytope P . f is L-smooth such that

‖ f ′(x1)− f ′(x2) ‖≤ L ‖ x1 − x2 ‖, ∀x1, x2 ∈ P , (6.1)

Moreover, f is strongly convex if for some α > 0 we have

f(x2)− f(x1)−∇f(x1)(x2 − x1) ≥ α ‖ x2 − x1 ‖ /2, ∀x1, x2 ∈ P , (6.2)

A hyperplane {z ∈ Rn : w>z = w>b} with non-zero normal w and offset b is denoted by
H(w, b). Moreover, the distance of a point a from hyperplane H(w, b) is as follows:

ψ(w, a, b) = ‖a− b‖/‖w‖. (6.3)
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6.4 Problem description

In this section, we briefly introduce the notation and basic formulation for the mathematical
model of the direct aperture optimization in IMRT treatment planning.

Let S be the set of structures including the target volumes and organs at risk. Each structure
s ∈ S is discretized into small cubic volume elements called voxels, Vs. There are also equi-
spaced beam angles, B, around the patient. Each beam is decomposed into a rectangular
grid of beamlets.A beamlet (r, c), located in row r and column c of MLC, is open if it is not
blocked by either the left and right leaves. The relative motion of the leaves controls the
intensity. A two-dimensional nr × nc binary matrix A represents an aperture for an MLC
with nr rows and nc columns. A sample of voxels and beamlets are shown in Figure (6.1).

The estimated dose received by voxel v from beamlet (r, c) at unit intensity is denoted Drcv,
in Gy/MU. D = [Drcv] is called the dose-influence matrix. We assume that the dose absorbed
by a given voxel can be determined by adding the doses from each of the individual beamlets
comprising the aperture.

6.4.1 The formulation

The dose irradiated from each aperture depends on its corresponding shape and intensity.
Let Kb denote the set of allowed apertures from beam direction b ∈ B, with respect to the
MLC leaf positions. We also denote the set of all deliverable apertures by K ≡ ∪b∈BKb.
To form the shape of aperture k, we define a binary decision variable qkrc that is equal to
1 if beamlet (r, c) is open, between the left and right leaves of row r. We also define two
integer variables τ kr and νkr that represent the position of left and right leaves, respectively.
The set of following constraints are used to form the aperture based on the consecutive open
beamlets between left and right leaves in each row of MLC.

τ kr ≤ νkr − 1 ∀k ∈ K, ∀r = 1, 2, · · · , nr (6.4a)

1 ≤ νkr ≤ nc + 1 ∀k ∈ K, ∀r = 1, 2, · · · , nr (6.4b)

c qkrc ≤ νkr − 1 ∀k ∈ K, ∀r = 1, 2, · · · , nr,∀c = 1, 2, · · · , nc (6.4c)

(nc + 1− c) qkrc + τ kr ≤ nc ∀k ∈ K, ∀r = 1, 2, · · · , nr,∀c = 1, 2, · · · , nc (6.4d)∑nc

c=1 q
k
rc = νkr − τ kr − 1 ∀k ∈ K, ∀r = 1, 2, · · · , nr (6.4e)

qkrc ∈ {0, 1} ∀k ∈ K, ∀r = 1, 2, · · · , nr,∀c = 1, 2, · · · , nc (6.4f)

τ, ν ∈ Znr×|K|
+ , (6.4g)
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Figure 6.1 Voxels and beamlets in radiation therapy [59].

where constraints (6.4a)-(6.4b) are the MLC mechanical restrictions. Constraints (6.4a)
ensure that left and right leaves in each pair have no overlap. The range of leaves are
restricted in constraints (6.4b). In constraints (6.4c)-(6.4e), the model shapes the aperture
based on the consecutive open beamlets between left and right leaves in each row of MLC.
To simplify the model in the rest of the paper, we show this solution space as Q.

The intensity of aperture k is denoted as variable xk, which is dependent to the dose rate and
also the amount of time it is irradiated from. In this model, the total intensity is restricted
to Λ in practice. However, without loss of generality, we normalize the intensities and also
assume a dummy aperture in K, which has no open beamlet and serves only as a placeholder.
Thus, the total intensity is restricted to one as follows:

∑
k∈K

xk = 1 (6.5)

Obviously, we can easily replace Λxk to obtain the actual aperture intensity. The dose zv
absorbed by voxel v from all apertures is computed based on the dose-influence matrix D,
the aperture shape qk, and the aperture intensity xk as follows:

zv =
∑
k∈K

nr∑
r=1

nc∑
c=1

ΛDk
rcv q

k
rc xk ∀v ∈ V (6.6)

To assess the treatment plan, several objective functions are developed in the literature.
A well-known objective is the quadratic voxel-based least-square function penalizing the
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underdose and overdose for involved voxels as follows [108]:

∑
s∈S

∑
v∈Vs

λs [dv − zv]2+ + λs [zv − dv]2+ (6.7)

where dv is pre-specified dose for voxel v. Also, λ and λ are penalty weights obtained from the
product of the weight of structure s, ws, and the weight of the underdosage ρ and overdosage
ρ, respectively.

Finally, a simple presentation of the general model is as follows:

GP : min
∑
s∈S

∑
v∈Vs

λs [dv − zv]2+ + λs [zv − dv]2+ (6.8a)

zv =
∑
k∈K

nr∑
r=1

nc∑
c=1

Dk
rcv q

k
rc xk ∀v ∈ V (6.8b)

∑
k∈K

xk = 1 (6.8c)

q ∈ Q (6.8d)

x ∈ R|K|+ (6.8e)

z ∈ R|V|. (6.8f)

The non-linearity in equation (6.8b) and the binary variables q result in a large-scale mixed
integer nonlinear programming model.

6.4.2 Column generation

To avoid the large number of columns and non-linearity in model GP, we decompose it into
a master model and a pricing subproblem, and solve it by the column generation technique.

Let Ak indicate the shape of aperture k and D(Ak) denote the vector of dose deposition

coefficients corresponding to aperture k ∈ K, i.e., Dv(Ak) =
nr∑
r=1

nc∑
c=1

Dk
rcvq

k
rc. The problem

reduces to the following master problem (MP):

MP : min f(x) (6.9a)

zv =
∑
k∈K

Dv(Ak)xk ∀v ∈ V (6.9b)
∑
k∈K

xk = 1 (6.9c)

xk ≥ 0 ∀k ∈ K, (6.9d)
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The feasibility space of the model is the probability simplex ∆|K|, where |K| is the number
of columns. However, set K is large and a restricted set of columns K ′ ⊆ K is taken into
account as RMP.

RMP : min f(x) (6.10a)

zv =
∑
k∈K′

Dv(Ak)xk ∀v ∈ V (6.10b)
∑
k∈K′

xk = 1 (6.10c)

xk ≥ 0 ∀k ∈ K ′. (6.10d)

Given a small set of feasible apertures (K ′ ⊆ K) in RMP, the best subset optimizing the in-
tensities and dose distribution, is selected. Therefore, each feasible solution to RMP provides
a deliverable plan that can be feasible for GP.

The pricing subproblem (PSP) generates promising new apertures, expected to improve the
RMP objective function. Let (x, z) be the optimal solution of RMP and Db indicate the
dose deposition matrix in direction b. The formulation of PSP to generate the column with
the largest reduced cost is as follows:

PSP : min
q∈Q

∑
b∈B

nr∑
r=1

nc∑
c=1

∑
v∈V

πvD
b
rcvqrc, (6.11)

where (πv : v ∈ V)> ≡ −∇f(z) are the dual values of RMP. To find a new aperture that
prices out (or determine that none exists at this stage), this model is solved for each beam
b ∈ B by an efficient algorithm proposed by Romeijn et al. [108] in O(nrnc) time per beam.
If no new aperture with negative reduced cost is found, the model is tackled with the exact
model.

In the RMP model, we require a large number of constraints in real cases to linearize the
positive the [ . ]+ operator for large number of voxels, which along with the quadratic objective
function, make the model time-consuming. Moreover, this model is required to be solved
several times during the column generation algorithm. To speed-up the algorithm, we propose
a new first-order algorithm in Section 6.5.

6.5 Solution approach for the single-objective problem

In this section, we first present the standard Frank-Wolfe (FW) algorithm, a well-know
method for quadratic problems, to solve the RMP and then integrate the blended conditional
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gradients algorithm, as a novel first-order optimization method, into column generation.

6.5.1 CG-based Frank-Wolfe (CG-FW)

The Frank-Wolfe or conditional gradient algorithm is a classical first-order method for min-
imizing a smooth convex function f : X → R over a convex compact set X ⊆ Rn [57]. The
FW algorithm is an iterative method which minimizes a series of linear approximations of f
over the feasible set X . The candidate solution xt in iteration t is updated through the fol-
lowing steps. Firstly, a first-order oracle computes ∇f(xt). Secondly, the linear optimization
oracle computes pt ∈ arg minx∈X < ∇f(xt), xt >, as the extreme point of X . Finally, one
sets xt = (1− αt)xt−1 + αtpt for some αt ∈ [0, 1].

As explained earlier, the feasibility space X is the probability simplex ∆|K| and the extreme
points are the columns. The extreme point pt is either already present among the existing
columns, K ′ ⊆ K, or it has not been generated yet, and it belongs to K ′′ = K\K ′. The
gradient of objective function f , defined in Equation (6.7), with respect to column k is

∇f(xt)k = 2D(Ak)>(zt − zt), (6.12)

where zvt = λv[zvt− dv]+ and zvt = λv[dv− zvt]+ for each voxel v. We can obtain the vertices
with the lowest and highest gradients in the set of existing columns in RMP, K ′, as follows:

st = arg min
k∈K′

∇f(xt)k, (6.13)

at = arg max
k∈K′

∇f(xt)k. (6.14)

Moreover, the vertex with the lowest reduced cost, obtained by the pricing subproblem, is
the extreme point with the minimum gradient in K ′′ as follows:

vt = arg min
k∈K\K′

∇f(xt)k. (6.15)

Thus, the extreme point pt in the whole solution space ∆|K| is eut , where

ut = arg min
s∈{st,vt}

∇f(xt)s. (6.16)

Finally, the solution in each iteration t, is computed as follows:

xt+1 = (1− αt)xt + αt pt, (6.17)
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where αt = 2/(t + 2) is the standard step-size for the FW algorithm. The pseudocode of
the algorithm is shown in Algorithm 3. This method is interesting due to the low memory
requirements and projection-free iterations.

Algorithm 3 Column generation-based Frank-Wolfe algorithm
1: t← 0, x0 be an initial point
2: st ← arg mink∈K′ ∇f(xt)k
3: vt ← arg mink∈K\K′ ∇f(xt)k . Based on pricing subproblem
4: ut ← arg mins∈{st,vt}∇f(xt)s
5: pt ← eut

6: αt ← 2/(t+ 2) or an alternative value
7: xt+1 ← (1− αt)xt + αtpt

8: t← t+ 1 and go to step 2

6.5.2 CG-based Blended conditional gradients (CG-BCG)

The blended conditional gradients algorithm is a recent variant of FW method developed
by [21]. This method is interesting in this problem because it uses less extreme points
rather than the standard FW method, which results in less apertures in the IMRT problem
and consequently less treatment time. In this algorithm, xt in each iteration t is a convex
combination of the active vertices of X . At each iteration, the algorithm either searches for
a better combination of active vertices or finds a new vertex, whichever promises the smaller
objective value. In column generation, all vertices of the solution space are not in RMP;
however, for this model that the feasibility space is a probability simplex, the vertex with the
most negative reduced cost provided by the pricing subproblem is the extreme point required
for BCG. The pseudocode of proposed CG-BCG algorithm is given in Algorithm 4.

In each iteration of CG-BCG, the algorithm determines the search direction either in the
current RMP solution space or adding a new column. This is based on a value Φt, which is
an estimation for the gap between the current function value f(xt) and the optimal function
value. If the maximum possible progress with the existing columns, ∇f(xt)at −∇f(xt)st , is
greater than value Φt, the algorithm decides to search more deeply inside RMP feasibility
space. Otherwise, PSP generates a new column for the model. We implement a line search
method to find the local optimum on the line segment from the current solution xt to the
selected vertex of the simplex, pt. The details of this procedure used in lines (14) and (24) of
Algorithm (4) are described in Appendix C. The gradient function guarantees minimizing the
objective over the line; however, the solution obtained is not optimal for the restricted master
problem. Note that the line search between the vertices of the probability simplex keeps the
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feasibility of constraint (6.10c). When the value of Φt is discovered to be an overestimate of
the dual gap (in Line 20), it is halved.

Algorithm 4 Column generation based Blended Conditional Gradients
Input: smooth convex function f , κ = 3
Output: solution xt for t = 1, 2, · · · , T and set of apertures K ′

1: x0 ← e1, S0 ← {0}, K ′ ← {A0}, . The first column is dummy.
2: Φ0 ← maxx∈X (∇f(x0)x0 −∇f(x0)x)/2
3: for t = 0 to T − 1 do
4: St ← {k ∈ K ′ : xtk > 0} . Active columns
5: at ← arg maxk∈St

∇f(xt)k
6: st ← arg mink∈St

∇f(xt)k
7: if (∇f(xt)at −∇f(xt)st ≥ Φt) then
8: determine direction d based on ∇f(xt)
9: η = max{β : xt − β d ≥ 0}
10: x̂ = xt − η d
11: if (f(x̂) < f(xt)) then
12: xt+1 ← x̂
13: else
14: xt+1 ← arg minx∈[xt,x̂] f(x) . Line search between solution xt and x̂
15: Φt+1 ← Φt

16: else
17: vt ← arg mink∈K\K′ ∇f(xt)k . The best column obtained from PSP
18: if |∇f(xt)| < ε and vt ≥ 0 then
19: return xt
20: if (∇f(xt)xt −∇f(xt)vt ≥ Φt/κ) then
21: Φt+1 ← Φt

22: else
23: Φt+1 ← Φt/2
24: xt+1 ← arg minx∈[xt, evt ] f(x) . Line search between solution xt and the new vertex evt

Lower bound

The gap between the obtained feasible solution xt of CG-BCG in each iteration t and the
optimal value x∗ consists of two parts: (1) a part between f(xt) and the optimal value of
RMP, f(x∗RMP ), and (2), a part between f(x∗RMP ) and the optimal value of global problem,
f(x∗), due to missing columns. The following lemma obtains a lower bound of the problem
in each iteration based on the indices st and vt of columns with maximum possible progress
obtained in RMP and PSP from Equations (6.13) and (6.15), respectively.

Lemma 1. Let f be a smooth convex function, St = {k ∈ K ′ : xtk > 0} set of active columns
in iteration t. A lower bound on f in iteration t is as follows:
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lt = f(xt)−∇f(xt)xt + min{∇f(xt)st ,∇f(xt)vt}. (6.18)

Proof. Provided by the convexity of f , for any x ∈ R|K
′|

+ in each iteration t

f(x) ≥ f(xt) +∇f(xt) (x− xt) (6.19)

and consequently
min
x∈X

f(x) ≥ f(xt) + min
x∈X
∇f(xt) (x− xt) (6.20)

Thus, to find the lower bound, it is enough to solve the following model:

lt = f(xt) + min
x∈X
∇f(xt) (x− xt) (6.21)

and
lt = f(xt)−∇f(xt)xt + min

x∈X
∇f(xt)x (6.22)

where x ≤ 1 regarding Equation (6.10c) and the solution of the minimization in the last term
is min{∇f(xt)st ,∇f(xt)vt} as discussed in Sections 6.5.1 and 6.5.2.

lt = f(xt)−∇f(xt)xt + min{∇f(xt)st ,∇f(xt)vt}. (6.23)

�

Also, the lower bound of the problem would be updated as l̂t = max{l̂t−1, lt}. This lower
bound is valid only when the pricing-sub problem is solved, in line 18 of Algorithm 4, and
we have information on both st and vt.

Convergence of the algorithm

Braun et al. [21] have proven the convergence of the BCG algorithm for the probability sim-
plex ∆k as the feasibility space X and L-smooth function f ; and also obtained the convergence
rate as shown in the following lemma.

Lemma 2. (Braun et al. 2018-Corollary 4.2) Let f be an α-strongly convex and L-smooth
function over the probability simplex ∆k with k ≥ 2. Let x∗ be a minimum point of f in ∆k.
Then, the algorithm converges with rate

f(xT )− f(x∗) ≤ (1− α

4Lk )T .(f(x0)− f(x∗)), T = 1, 2, · · · (6.24)
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If f is not strongly convex (i.e., α = 0), we have

f(xT )− f(x∗) ≤ 8L
T
, T = 1, 2, · · · (6.25)

In our problem, function f defined in Equation (6.7) is convex and also L-smooth. The Lips-
chitz constant L is provided in Appendix C. The procedure CG-BCG is similar to BCG. The
difference is that we search for the vertex with minimum gradient among non-generated ver-
tices using the pricing subproblem and add a new column rather than perform a Frank-Wolfe
step. Therefore, we implicitly consider all extreme vertices in the feasibility space through
RMP and PSP and the convergence rate of the algorithm is similarly (1− α/(4L|K|))T .

6.6 Extension to multi-objective problem

In this section, we formulate the master model and pricing subproblem of column generation
based on multiple objectives and present the detailed fundamentals and procedure of PCG
algorithm to explore the Pareto frontier.

6.6.1 Multi-objective formulation

The general multi-objective model is formulated as follows:

MOP : min
x∈X

f(x) = {f1(x), f2(x), · · · , fn(x)} (6.26)

where x = (x1, x2, · · · , xm) is the decision variable vector in the feasible set X ⊆ Rm, and
f : Rm → Rn consists of n objectives in set N = [1, 2, · · · , n]. Then, Rm is the decision space,
and Rn is the objective space. We define the image of the feasible region under the objective
function mapping Y as follows:

Y = {y ∈ Rn : yi = fi(x), x ∈ X}. (6.27)

Moreover, we define polyhedral Y+ as Y + Rn
+.

Definition 1. For two vectors y1 and y2 in the objective space, we write y1 ≤ y2 if and only
if y1

i ≤ y2
i for all i ∈ N and y1 6= y2. Moreover, y1 < y2 if and only if y1

i < y2
i for all i ∈ N .

Definition 2 (Efficient set). A feasible solution x̂ is called efficient if there does not exist
any x such that f(x) < f(x̂). The set of all efficient solutions is called the efficient set XE

in the decision space.
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Definition 3 (Pareto front). In the objective space, the image ŷ of the efficient solution x̂ is
called a Pareto optimal or a non-dominated point (NDP). We refer to the set of all Pareto
optimal objective vectors as the Pareto front Y ∗ in the objective space and the polyhedral
corresponding to the epigraph of Y ∗ as Y ∗+.

In addition to the efficient and Pareto sets, the ideal points are used as initial upper bounds
in the Pareto front approximation.

Definition 4 (Ideal point). The ideal point yideal ∈ Rn with yideali = minx∈X fi(x) is the point
that corresponds to the optimal value for each objective function.

To assess the treatment plan, several objective functions can be considered by the physician.
We make the following mild assumptions on the feasibility set and the objective function fi.

Assumption 1. The feasible region is nonempty convex and compact subset of Rm.

Assumption 2. Each function fi(x) is continuously differentiable and convex on the feasi-
bility set.

In this model, we consider the quadratic voxel-based least-square penalty function for n
structures along the lines of equation (6.7). Romeijn et al. [107] have shown that the Pareto
optimal set is a connected surface in the boundary of a convex set, and Ehrgott et al. [53] have
shown that the polyhedral Y ∗+ corresponding to the epigraph of the Pareto front is a convex
set whenever multi-objective programming model is convex. The Pareto optimal solutions
under these convexity assumptions can be found by the weighted-sum method, wherein each
objective is associated with a weighting coefficient and the weighted sum of the objectives is
minimized. We employ this method to transform the multi-criteria restricted master problem
to a single objective model as follows:

MORMP (w) : min
x∈X

∑
i∈N

wi fi(x), (6.28)

where w ∈ Rn
+ is a non-negative weight vector for the objectives i ∈ N , and ∑

i∈N wi = 1.
Since the non-negative linear combinations preserve the convexity, this is a convex optimiza-
tion problem. For any positive weight vector w, any optimal solution of MORMP(w) is an
efficient solution for MOP. In other words, any x∗ that is optimal for MORMP(w) for some
weight vector w, defines a hyperplane H(w, f(x∗)) that supports the feasible objective space
at f(x∗). We compute the gradient of the multi-objective function f(x) with respect to col-
umn k is a vector of gradients of functions fi(x), ∇f(x)k = (∇fki : i ∈ N), as computed in
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Equation (6.12). Let π̂ be the dual multipliers of RMP, we solve the following PSP model
with a polynomial-time algorithm developed by [108].

min
k∈K\K′

wᵀ∇f(x̂)k −D(Ak) π̂. (6.29)

The general idea of the proposed Pareto-based column generation in this paper is to explore
the Pareto front during the CG procedure rather than optimizing a single objective. To this
end, we first develop lower and upper bounds for the Pareto front. These concepts are similar
to outer and inner approximations in traditional MCO techniques; however, we do not have
the optimal objective values for each weight vector w during CG. Then, in each iteration,
we assess the gap between these two bounds and generate one column based on CG-BCG
algorithm with a pre-assigned weight vector or a new weight that reduces the maximum
gap. We continue this process until the maximum distance between the lower and upper
bounds becomes less than some desired value ε > 0. In the remainder of this section, we first
discuss some fundamental properties of the problem in Section 6.6.2, describe the details of
the algorithm in Section 6.6.3, and discuss the convergence of the algorithm in Section 6.6.4.

6.6.2 Fundamental properties

In this section, we develop lower and upper bounds for the Pareto front and investigate
their properties that provide the foundation of our solution method. We form the upper
bound from a subset of obtained nondominated points and derive the lower bound from the
hyperplanes supporting the Pareto front.

Upper Pareto front

In each iteration of column generation for MORMP(w), we have a feasible solution rather
than an optimal solution. Let Y F ⊆ Y ∗+ denote all obtained solutions in the criterion space;
we define the upper bound of the Pareto front inspired by Ehrgott and Gandibleux [49] as
follows.

Definition 5 (Upper bound of the Pareto front). For the set of obtained solutions, point
y ∈ Y F in the objective space is an upper bound of the Pareto front if there does not exist
any other obtained point y′ ∈ Y F such that y′ < y. The set of these obtained points are called
upper nondominated points, denoted by Y N .

Although the epigraph of the optimal Pareto front, Y ∗+, for convex MOP is a convex set [53,
107], the similar set for the upper bounds Y N is not necessarily convex. We define the extreme
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supported upper nondominated points inspired by multi-objective integer programming [97]
in definition 6. Examples for these points are shown in Figure 6.2.

Definition 6 (Extreme supported upper nondominated point). The point ŷ ∈ Y N is an
extreme supported upper nondominated (ESN) if it is an upper nondominated point and an
extreme point of conv(Y N). We denote the set of ESN points by Y U ⊆ Y N .

Definition 7 (Upper Pareto front). Let conv(Y U) indicate the convex hull of the obtained
ESN points. We define the lower envelope of conv(Y U) as the upper Pareto front (UPF) and
each point in this set as an upper Pareto point.

Remark 1. The upper Pareto front is the closest approximation to the Pareto front Y ∗ in
the set of obtained nondominated points, Y N .

Proof. We have Y U ⊆ Y N from Definition 6 and consequently conv(Y U) ⊆ conv(Y N). More-
over, there is no y′ ∈ conv(Y N) and y ∈ conv(Y U), that y′ < y, regarding the definition of
extreme upper nondominated point. Thus, the lower envelop of conv(Y U) is equal to the
lower envelop of conv(Y N).

Furthermore, for each extreme supported nondominated point ŷ ∈ Y U , there is at least
one point y∗ on the Pareto front Y ∗ that y∗ ≤ ŷ, with respect to Definition 3. Thus, the
corresponding epigraph of the convex hull conv(Y U) as Y U

+ = conv(Y U) + Rn
+ ⊆ Y ∗+. We

conclude that any facet of conv(Y U) is an approximation for Y ∗. Finally, the lower envelop
of Y U , equal to the lower envelop of Y N , is the closest approximation to Y ∗. �

The corollary of this remark is that the set of extreme supported nondominated points Y U

is enough to approximate the Pareto front rather than all upper nondominated points.

Lower Pareto front

In this section, we first define a lower-bound for the Pareto front inspired by Ehrgott and
Gandibleux [49]. Then, we obtain two supporting hyperplanes for the Pareto front as lower-
bounds. Finally, we consider the upper envelope of obtained hyperplanes as the closest
lower-bound to the Pareto front, so-called lower Pareto front (LPF).

Definition 8 (Lower bound of Pareto front). A set Γ in the objective space is a lower bound
for the Pareto front Y ∗ if the epigraph of the Pareto front is a subset of the epigraph of the
lower bound, Y ∗+ ⊆ Γ+.

We develop two types of hyperplanes supporting the Pareto front based on existing ESN
points and the facets between ESN points.
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Figure 6.2 Pareto front and upper non-dominated points.

Lower bound based on existing ESN points: Each extreme supported nondominated
point ŷl ∈ Y U is corresponding to a weighted-sum model (6.28) with a pre-assigned weight
vector ŵl. Let γ̂l indicate the lower bound of this model, as described in Section 6.5.2. A
lower bound for the Pareto front Y ∗ based on point γ̂l is obtained in lemma 3. This lower
bound is schematically illustrated for the bi-objective space in Figure 6.3.

Lemma 3. Let ŷl be an ESN point in Y U and γ̂l be its lower bound based on normal vector
ŵl. The hyperplane H(ŵl, γ̂l) is a lower bound for the Pareto front denoted by Γl.

Proof. It is shown by [107] that there is a point y∗l on the Pareto front Y ∗ corresponding
to the weight vector wl. The hyperplane H(ŵl, y∗l ) supports the feasible objective space at
y∗l , due to convexity of Y ∗+. Also, Lemma 1 provides that γ̂l is a lower bound for function f
corresponding to the normal vector ŵl, i.e., ŵ>l γ̂l ≤ ŵ>l y

∗
l . Thus, the hyperplane H(ŵl, γ̂l),

is parallel to tangent hyperplane to Y ∗+ and include Y ∗. Therefore this hyperplane is a lower
bound for the Pareto front Y ∗. �

Lower bound based on the improvement estimation between ESN points: In
addition to the existing ESN points and their corresponding weight vectors, we are also
interested in the lower bound of PF based on non-assigned weight vectors between the ESN
points in the criterion space. Let P indicate the lower envelope facets of the convex hull of
Y U . Each facet Pp ∈ P includes n non-dominated points {ŷp1 , · · · , ŷpn} ⊆ Y U ; each point
ŷpl

has its corresponding weight vector ŵpl
and lower bound γ̂pl

, respectively. We approximate
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Figure 6.3 The lower bound of Pareto front based on existing ESN point ŷl (Lemma 3).

a new lower bound for the Pareto front in Lemma 4. A sample of the this lower bound in a
bi-objective model is shown in Figure 6.4.

Lemma 4. Let γp indicate the intersection of hyperplanes H(ŵpl
, γ̂pl

) for all points ŷpl
∈Pp

and wp be any convex combination of weights vectors ŵpl
, Γp = H(wp, γp) is a lower bound

for the Pareto front.

Proof. As shown in Lemma 3, each lower bound hyperplane H(ŵpl
, γ̂pl

) is parallel to a sup-
porting hyperplane for the Pareto front and Y ∗+ ⊆ Γl+. Any hyperplane passing through the
intersection of these hyperplanes, γp, with a convex combination of the pre-assigned weight
vectors, wp ∈ conv(ŵp1 , · · · , ŵpn), is also supportive for Γp+ = ∩l=p1,··· ,pnΓl+ and thus Y ∗.
Therefore, H(wp, γp) is a lower bound for the Pareto front. �

The lower Pareto front: The upper envelope of hyperplanes H(ŵl, γ̂l) for ŷl ∈ Y U and
H(wp, γp) for Pp ∈P, obtained from Lemmas 3 and 4, forms the lower Pareto front denoted
by ΓL as the closest lower bound to the Pareto front, see Figure 6.5. The upper envelope
of a family of hyperplanes is a convex function. Thus, the LPF function is convex and its
corresponding epigraph includes Y ∗+, i.e., Y ∗+ ⊆ ΓL+ ≡ {∩l∈Y U Γl+} ∩ {∩Pp∈PΓp+}.
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Figure 6.4 The lower bound of Pareto front based on new weight vector w between two ESN
points (Lemma 4).

Figure 6.5 Lower Pareto front.
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6.6.3 PCG algorithmic framework

In this section, we propose the details of PCG algorithm based on the bounds provided in
Section 6.6.2. This is an iterative procedure, where during in each iteration, we approximate
the Pareto front based on the UPF and assess an estimation of the potential improvement in
UPF. We choose one of the existing points in UPF with its pre-assigned weight vector or con-
sider a new weight vector for column generation and solve the proposed CG-BCG algorithm
for the selected weight vector to generate one column and repeat the PCG procedure.

Step 1: Initialization

In the first step, PCG sequentially runs the CG-BCG algorithm, with a given number of
iterations, for n extreme weight vectors corresponding to the objectives, i.e., w = ei. This
results in n initial nondominated points but do not necessarily lie on the Pareto front, because
CG-BCG does not continue to optimality but provide efficient extreme points in the criterion
space.

Step 2: Estimating the potential improvement of UPF

In each iteration, we assess the maximum potential improvement of obtained upper Pareto
front based on the distance of UPF extreme points to lower bound hyperplanes proposed in
Section 6.6.2.

∆d1
ŷl

= ψ(ŵl, ŷl, γ̂l). (6.30)

This gap is due to non-optimal solution of CG in each iteration. The point with maximum
potential improvement of set Y U is as follows:

ỹt = arg max
ŷl∈Y U

t

∆d1
ŷl
, (6.31)

and the corresponding distance is denoted by ∆d1
max = ∆d1

ỹt
.

Gap of UPF facets w.r.t. new weight vectors: For each n−subset facet Pp in the
lower envelope of upper Pareto front, we can compute the maximum distance to the lower
bound considering a non-assigned weight vector provided by Lemma 4. The set of lower
envelope facets in 2-dimensional criterion space are adjacent pairs of UPF points, sorted in
non-decreasing order of the first objective, i.e., y1

1 ≤ y1
2 ≤ · · · ≤ y1

l . In higher dimensions,
heuristic techniques are required to find efficient facets [38].
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Based on Lemma 4, the new weight vector wp is in the convex hull of the pre-assigned weight
vectors of facet p as

Wp = {w ∈ Rn|w =
n∑
i=1

µiŵpi
,

n∑
i=1

µi = 1, µi ≥ 0 ∀i = 1, 2, · · · , n}. (6.32)

Thus, the gap of facet p to the lower bound hyperplane Γp is

∆d2
p = min

i=1,··· ,n
ψ(wp, ŷpi

γp), (6.33)

and the maximum improvement can be obtained with the following weight vector.

wmax
p = arg max

w∈Wp

min
ŷp∈p

ψ(w, ŷp, γp). (6.34)

This weight vector is optimal to minimize the gap of UPF to LPF in each iteration and
decrease the maximum error of the algorithm. However, for more efficiency of the algorithm,
specifically in initial iterations, we use two heuristics to find an efficient wp instead of solving
model (6.34). The first one is the normal vector of the facet p, if it is in set Wp. The second
heuristic is the mean vector (1/n) ∑n

i=1 ŵpi
.

The facet with maximum potential improvement of UPF is

p = arg max
p∈P

∆d2
p, (6.35)

and its corresponding improvement is denoted by ∆d2
max = ∆d2

p.

Step 3: Identifying the next weight vector for CG

Having the estimations of improvement for ESN points and UPF lower envelope facets, we
identify the next weighted-sum problem for column generation. This choice depends on
the maximum potential improvements in UPF and corresponds to the greedy strategy of
maximizing the decrease and frequently used in multi-objective optimization [18].

∆dmax = max{∆d1
max,∆d2

max}. (6.36)

If ∆d1
max ≥ ∆d2

max, it means the gap of existing point ỹt to LPF is greater than the similar
gap for a new weight vector, and we set yt = ỹt and wt = w̃t for the next iteration of CG.
Otherwise, the algorithm takes into account a new weight-vector wp. In the latter, to have
more efficiency, we use the set of columns in points of selected facet p as initial columns for
the new point.
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Step 4: column generation algorithm

In this step, we solve the CG-BCG algorithm proposed in Section 6.5 for the selected point yt
with the weight vector wt and set Kt of columns. This algorithm continues until the obtained
solution is optimal or a new extreme supported nondominated point in Y U

t . The CG-BCG
procedure does not necessarily generates a column in each iteration; thus, we continue the
iterations to have at least one new column. This is required to update the lower bound as
mentioned in Section 6.5.2.

Approximation error

We assess the approximation error based on the gap between UPF and LPF in each iteration
of PCG as follows:

St = max
y∈Y U

t

min
γ∈ΓL

t

‖y − γ‖. (6.37)

If St becomes less than an acceptable error ε, we stop the PCG algorithm. In such a case,
we say that the upper Pareto front is ε-closed to Pareto front Y ∗. The obtained lower and
upper Pareto fronts are finite number of hyperplanes, e.g., two piece-wise linear functions in
2D objective space, and we can easily find the maximum distance. It should be noted that
∆dmax in Equation (6.36) considers the maximum potential improvement in the upper Pareto
front while S evaluate the error of actual approximation of Pareto front based on UPF.

Pseudocode

The detailed pseudocode of the proposed algorithm for the Pareto-based column generation
algorithm is shown in Algorithm 5.

6.6.4 Convergence of the PCG algorithm

In this section, we investigate the behaviour of PCG algorithm. We first show the convergence
of a weighted-sum function and then analyze the convergence of PCG.

As discussed in Section 6.5.2, the single-objective function of the DAO problem converges to
optimality. Let Li denote the Lipschitz constant of function fi and ρ(Li) be its correspond-
ing convergence rate. The worst-case convergence rate of the weighted-sum function of n
objectives is shown in Lemma 5.

Lemma 5. Let ρ indicate the convergence rate of weighted function with a weight vector w.
We have ρ ≤ ρ(Lmax), where Lmax = max

i=1,··· ,n
Li.
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Algorithm 5 Pareto-based Column Generation (PCG)
1: Set t← 0, Y U

t ← ∅
2: for (i = 1 to n) do . Initial extreme points
3: wi ← ei, Ki ← {k1}
4: function ŷi = GCG(Ki, wi)
5: Y U

t = Y U
t ∪ {ŷi}

6: Update St

7: while (no stop criteria and St > ε) do
8: Update the UPF set Y U

t . List of extreme supported points
9: Update the lower envelope facets of UPF, P

10: ∆d1
max ← maxŷl∈Y U

t
∆d1

ŷl
∈ Y U

t . The existing point with max LB gap
11: ∆d2

max ← maxp∈P ∆d2
p

12: if ∆d1
max ≥ ∆d2

max then
13: ỹt ← arg maxŷl∈Y U

t
∆d1

ŷl
∈ Y U

t . The existing point with max LB gap
14: yt ← ỹt, wt ← w̃t,Kt ← K̃t

15: else
16: P ← arg maxp∈P ∆d2

p

17: yt ← arg minŷl∈Y U
t
ψ(wP , ŷl, yP ) . The closest existing point for the new weight with

max LB gap
18: yt ← yt, wt ← wt,Kt ← Kyt

19: function ŷt = GG-BCG(Kt, wt)
20: Y U

t = Y U
t ∪ {ŷt}

21: Update St

22: Return Y U
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Proof. By corollary 1 of Appendix C, the Lipschitz constant of weighted-sum function f

is L = ∑n
i=1wiLi. We have also ∑n

i=1wi = 1, thus L ≤ Lmax and consequently ρ(L) ≤
ρ(Lmax). �

Therefore, each point ŷ on UPF with weight-vector ŵ individually converges to its optimal
value using CG-BCG. The optimal vector ŷ∗ = f(x̂∗) is a Pareto point on the Pareto front
Y ∗ based on Karush-Kahn-Tucker (KKT) conditions as:

n∑
i=1

ŵi∇fi(x̂∗) = 0. (6.38)

In the next step, we define the ε-closeness of UPF and LPF, based on the gap S as follows.

Definition 9. Y U
t is called ε-closed to Pareto front Y ∗ if St < ε.

As the PCG algorithm proceeds from iteration t to t+ 1, if an extreme supported nondomi-
nated point ŷ is chosen as the the point with maximum distance to LPF, it becomes closer
to its optimal value, and consequently to the Pareto front, by convergence rate ρ(L̂) which
is less than or equal to ρ(Lmax). If a new point yt with a new weight vector in the criterion
space is selected by solving model (6.34), its convergence rate to PF is ρ ≤ ρ(Lmax). Thus,
the gap St between LPF and UPF is non-increasing due to the way it is defined and it is
guaranteed that we have a new ESN point and a strict improvement, even by a little, in UPF
at each iteration as explained in Section 6.6.3. Therefore, the algorithm converges ε-closed
to PF by large number of iterations as it is numerically shown in Section 6.7.3. If we do
not solve model (6.34) to optimality and employ heuristics to find the maximum potential
improvement in lower envelope facets of UPF, the algorithm may go through a sequence of
degenerate steps. In this case, using an appropriate anti-cycling rule, avoiding repetitive
weight vectors will prevent the algorithm from cycling.

6.7 Computational results

We implemented the algorithms in C++ and the computational experiments were run on a
2.1GHz Intel E5-2683 v4 Broadwell Linux workstation. To compare the proposed methods
to a commercial solver, we used IBM ILOG CPLEX 12.6.2 for the mathematical models.

6.7.1 Data and benchmark

We evaluate the efficiency of the proposed algorithms on two clinical cases from the CORT
dataset [40]: a prostate (PR) patient and a head-and-neck (H&N) patient. The prostate case
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has two target volumes, PTV-56 and PTV-68, and five organs at risk: the bladder, rectum,
left and right femoral heads, and body. The head-and-neck case has three target volumes,
PTV-56, PTV-63, and PTV-70, and nine organs at risk: the brainstem, spinal cord, right
and left parotids, cerrebelum, lips, larynx,chiasma, and external. The doses of 68Gy in the
prostate case and 70Gy in the head-and-neck case were prescribed in 2Gy per fraction. The
parameters for the two cases are listed in Table 6.1. As one can see, there are more voxels
in the prostate case and more beamlets in the head-and-neck case. From the mathematical
point of view, the former has more constraints, and the latter has more potential columns.
Therefore, the algorithm is analyzed in terms of both aspects. Besides, the number of voxels
at each structure and the percentage of each structure in the model are reported in Table
6.2.

Table 6.1 Parameters of the CORT prostate and Head-and-neck cases

P H&N
Total # beamlets 25,404 203,765
Beamlet size (cm) 1 × 1 0.5 × 0.5
Voxel resolution (mm) 3, 3, 3 3, 3, 5
# Target voxels 9,491 25,388
# Body voxels 690,373 251,893
Prescribed dose (Gy) 68 70
# Fractions 34 35

Table 6.2 Number of voxels in the model

P H&N

structure # voxels (%) voxels
in

the model

structure # voxels (%) voxels
in

the model
PTV-56 9,491 100 PTV-56 2,104 100
PTV-68 6,770 100 PTV-63 22,682 100
Rectum 1,764 50 PTV-70 5,768 100
Bladder 11,596 50 Spinal cord 380 100
Rt. Femoral head 5,974 20 Brain stem 423 100
Lt. Femoral head 5,957 20 Lt. Parotid 434 100
Body 690,373 1.1 Rt. Parotid 612 100

Cerebellum 2,631 100
Lips 140 100
Larynx 139 100
Chiasma 37 100
External 251,893 1
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6.7.2 CG-BCG vs. CG-FW and CPLEX

In this section, we compare the efficiency of CG-based blended conditional Gradient and CG-
based Frank-Wolfe with CPLEX solver. We consider three weight vectors for each case to
evaluate the algorithms. The details of weights are reported in Table 6.3. In these scenarios,
w1 is more biased to target volumes and w2 and w3 are more biased to the Bladder and
Rectum, respectively. The results for weight vectors w1, w2, and w3 of PR and H&N cases
are summarized in Tables 6.4 - 6.9. In each row, we compare the objective values, number
of generated columns, and number of non-zero columns, in the same levels of computational
time, 3, 10, 30, 60, 120, and 180 seconds. The computational time for PSP and RMP
subproblems are also reported in each method.

As mentioned earlier, in the standard column generation, we solve the restricted master
problem to optimality in each iteration. In CG with Frank-Wolfe, FW does not solve RMP
to optimality but still generates one column per iteration. Finally, CG-BCG neither solves
RMP to optimality nor necessarily generates a new column in each iteration, only if required
to improve the solution. In all instances, we observe that CPLEX takes much more time
for RMP, while the final objective value is greater than CG-BCG. In FW, as expected,
the computational time of the search algorithm was less specifically in initial iterations.
However, PSP was solved in every iteration and a new column was added to the model. This
significantly increases the dimension of the solution space and results in high computational
time. CG-BCG presents better results in terms of both the computational time and objective
value in all instances for both cases. The gap after three minutes of computational time
between the objective value of CG-BCG and the lower bound in the prostate case is about
8%, while this value is about 15% for CG-FW and 23% for CPLEX, respectively. Therefore,
CG-BCG is, on average, 13.96% more efficient than CPLEX. In the head-and-neck case,
the objective value within the same amount of time in CG-BCG is, on average, 6.56% and
57.15% better than CG-FW and CPLEX, respectively. The gap in H&N is significantly more
because the beam is larger and there are much more potential apertures.
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Table 6.3 The balanced scenarios for the weight-vector

P H&N

structure w1 w2 w3 structure w1 w2 w3
PTV-56 0.2 0.1 0.1 PTV-56 0.06 0.1 0.04
PTV-68 0.49 0.49 0.49 PTV-63 0.12 0.2 0.08
Rectum 0.1 0.01 0.37 PTV-70 0.23 0.3 0.2
Bladder 0.1 0.37 0.01 Spinal cord 0.1 0.08 0.13
Rt. Femoral head 0.05 0.01 0.01 Brain stem 0.1 0.08 0.14
Lt. Femoral head 0.05 0.01 0.01 Lt. Parotid 0.07 0.04 0.03
Body 0.01 0.01 0.01 Rt. Parotid 0.07 0.04 0.09

Cerebellum 0.05 0.03 0.07
Lips 0.07 0.04 0.1
Larynx 0.07 0.04 0.1
Chiasma 0.05 0.04 0.07
External 0.01 0.01 0.01
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Table 6.4 Results of CPLEX, CG-FW, and CG-BCG for the weight vector w1 in the Prostate case

No. CPLEX CG-FW CG-BCG

Pricing
Time
(sec)

RMP
Time
(sec)

Total
Time
(sec)

Obj.
value

#
total
col.

# non-
zero
col.

Pricing
Time
(sec)

RMP
Time
(sec)

Total
Time
(sec)

Obj.
value

#
total
col.

# non-
zero
col.

Pricing
Time
(sec)

RMP
Time
(sec)

Total
Time
(sec)

Obj.
value

#
total
col.

# non-
zero
col.

LB

1 0.07 3.53 3.60 1007.69 4 4 1.63 1.38 3.01 379.25 118 118 1.17 3.84 5.01 266.84 78 56 0.00
2 0.16 11.33 11.49 683.53 8 8 4.12 5.92 10.04 307.49 302 302 1.71 8.29 10.00 249.18 110 70 109.73
3 0.31 30.47 30.78 467.02 17 17 8.62 21.38 30.00 276.73 629 629 2.29 27.72 30.01 240.33 157 93 171.36
4 0.51 60.89 61.40 360.84 28 27 13.12 46.93 60.05 265.55 954 954 2.88 57.14 60.02 236.28 158 115 200.44
5 0.78 120.21 120.99 299.78 45 27 19.50 100.59 120.09 257.47 1414 1414 3.40 116.65 120.05 234.46 232 128 206.67
6 0.97 180.45 181.42 279.67 58 43 24.68 155.41 180.09 253.69 1776 1776 3.88 176.14 180.02 233.45 263 141 215.36

Table 6.5 Results of CPLEX, CG-FW, and CG-BCG for the weight vector w2 in the Prostate case

No. CPLEX CG-FW CG-BCG

Pricing
Time
(sec)

RMP
Time
(sec)

Total
Time
(sec)

Obj.
value

#
total
col.

# non-
zero
col.

Pricing
Time
(sec)

RMP
Time
(sec)

Total
Time
(sec)

Obj.
value

#
total
col.

# non-
zero
col.

Pricing
Time
(sec)

RMP
Time
(sec)

Total
Time
(sec)

Obj.
value

#
total
col.

# non-
zero
col.

LB

1 0.09 3.75 3.84 1681.34 4 4 1.51 1.5 3.01 642.63 115 115 0.78 2.24 3.02 505.10 47 42 0
2 0.17 10.88 11.05 860.22 8 7 3.82 6.19 10.01 531.73 296 296 1.41 8.60 10.01 457.19 89 66 269.11
3 0.33 30.23 30.56 629.69 18 16 8.10 21.96 30.06 491.16 632 632 2.01 27.99 30.00 445.39 130 85 359.45
4 0.47 60.36 60.88 531.86 29 26 12.63 47.41 60.04 476.39 977 977 2.47 57.53 60.00 442.55 160 103 389.86
5 1.04 120.47 121.51 494.24 44 38 18.84 101.26 120.10 466.10 1459 1459 3.10 116.90 120.00 439.76 200 130 407.451
6 0.94 183.17 184.11 478.86 56 44 23.72 156.36 180.08 461.31 1838 1838 3.25 176.77 180.02 439.04 207 1.22 407.451
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Table 6.6 Results of CPLEX, CG-FW, and CG-BCG for the weight vector w3 in the Prostate case

No. CPLEX CG-FW CG-BCG

Pricing
Time
(sec)

RMP
Time
(sec)

Total
Time
(sec)

Obj.
value

#
total
col.

# non-
zero
col.

Pricing
Time
(sec)

RMP
Time
(sec)

Total
Time
(sec)

Obj.
value

#
total
col.

# non-
zero
col.

Pricing
Time
(sec)

RMP
Time
(sec)

Total
Time
(sec)

Obj.
value

#
total
col.

# non-
zero
col.

LB

1 0.06 3.44 3.50 1361.08 4 4 1.6 1.41 3.01 428.38 119 119 0.74 2.26 3.00 305.96 66 51 55.81
2 0.11 9.95 10.06 902.71 8 7 4.08 5.92 10.02 341.85 305 305 1.38 8.62 10.00 285.31 127 89 220.51
3 0.22 31.34 31.56 481.43 17 15 8.61 21.45 30.06 313.64 631 631 1.91 28.10 30.01 279.15 176 112 241.74
4 0.33 60.66 60.99 377.29 28 25 14.17 45.89 60.06 303.09 961 961 2.24 57.76 60.00 277.08 205 118 248.63
5 0.51 121.67 122.18 327.54 45 36 19.61 100.42 120.03 295.54 1429 1429 2.74 117.27 120.01 275.47 247 137 259.60
6 0.64 182.91 183.55 310.86 58 45 24.65 155.37 180.02 292.03 1795 1795 2.98 177.03 180.01 275.08 261 137 259.60

Table 6.7 Results of CPLEX, CG-FW, and CG-BCG for the weight vector w1 in the H&N case

No. CPLEX CG-FW CG-BCG

Pricing
Time
(sec)

RMP
Time
(sec)

Total
Time
(sec)

Obj.
value

#
total
col.

# non-
zero
col.

Pricing
Time
(sec)

RMP
Time
(sec)

Total
Time
(sec)

Obj.
value

#
total
col.

# non-
zero
col.

Pricing
Time
(sec)

RMP
Time
(sec)

Total
Time
(sec)

Obj.
value

#
total
col.

# non-
zero
col.

LB

1 0.27 2.75 3.03 3015.90 2 2 2.65 0.38 3.03 1431.86 29 29 2.66 0.46 3.12 1044.18 17 17 0
2 0.59 13.53 14.12 1919.88 4 4 8.27 1.84 10.11 791.78 94 94 7.01 3.07 10.08 652.52 40 36 0
3 0.96 31.75 32.71 1539.10 6 6 21.92 8.12 30.04 639.24 255 255 15.71 14.32 30.03 586.58 107 89 0
4 1.48 65.33 66.81 1135.27 9 9 38.24 21.89 60.13 615.94 449 449 23.63 36.37 60.00 572.26 168 141 239.20
5 2.13 131.49 133.62 920.81 13 12 63.63 56.55 120.08 602.91 750 750 36.15 84.02 120.17 564.58 273 225 391.25
6 2.45 177.13 179.58 875.21 15 14 14.16 96.07 180.23 597.09 994 994 38.66 141.42 180.08 562.64 294 234 397.41
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Table 6.8 Results of CPLEX, CG-FW, and CG-BCG for the weight vector w2 in the H&N case

No. CPLEX CG-FW CG-BCG

Pricing
Time
(sec)

RMP
Time
(sec)

Total
Time
(sec)

Obj.
value

#
total
col.

# non-
zero
col.

Pricing
Time
(sec)

RMP
Time
(sec)

Total
Time
(sec)

Obj.
value

#
total
col.

# non-
zero
col.

Pricing
Time
(sec)

RMP
Time
(sec)

Total
Time
(sec)

Obj.
value

#
total
col.

# non-
zero
col.

LB

1 0.22 2.83 3.06 2587.73 2 2 2.73 0.40 3.13 1243.63 30 30 2.80 0.28 3.08 1199.66 12 12 0
2 0.46 12.99 13.45 1573.62 4 4 8.21 1.80 10.02 769.62 93 93 8.10 2.07 10.16 687.15 36 34 0
3 0.83 42.46 43.29 1274.68 7 7 21.86 8.26 30.12 629.95 253 253 18.76 11.36 30.12 578.50 82 71 0
4 1.06 69.39 70.45 1142.77 9 9 38.10 22.01 60.10 601.96 445 445 32.66 27.39 60.06 553.35 143 122 53.86
5 1.42 123.12 124.54 939.55 12 12 63.50 56.92 120.42 586.35 746 746 48.82 71.32 120.14 541.80 228 189 258.22
6 1.78 180.97 182.75 840.24 15 14 83.92 96.09 180.00 579.46 988 988 55.33 124.74 180.07 538.63 261 210 312.61

Table 6.9 Results of CPLEX, CG-FW, and CG-BCG for the weight vector w3 in the H&N case

No. CPLEX CG-FW CG-BCG

Pricing
Time
(sec)

RMP
Time
(sec)

Total
Time
(sec)

Obj.
value

#
total
col.

# non-
zero
col.

Pricing
Time
(sec)

RMP
Time
(sec)

Total
Time
(sec)

Obj.
value

#
total
col.

# non-
zero
col.

Pricing
Time
(sec)

RMP
Time
(sec)

Total
Time
(sec)

Obj.
value

#
total
col.

# non-
zero
col.

LB

1 0.33 2.53 2.86 2716.20 2 2 2.71 0.35 3.06 1306.46 26 26 2.61 0.45 3.06 872.77 17 17 0.00
2 0.62 11.79 12.41 1763.86 4 4 8.34 1.72 10.06 756.33 86 86 7.13 2.96 10.10 612.04 48 42 0.00
3 1.00 28.32 29.32 1428.38 6 6 22.33 7.72 30.04 608.60 234 234 15.39 14.63 30.03 556.53 109 93 0.00
4 1.44 68.29 69.72 1166.59 9 9 39.60 20.41 60.01 583.29 422 422 24.05 35.96 60.02 541.78 173 139 195.99
5 2.02 122.65 124.67 971.81 12 11 67.19 52.84 120.03 569.71 705 705 30.46 89.57 120.03 535.19 228 177 278.22
6 2.59 190.03 192.62 850.54 15 14 90.19 89.93 180.12 563.73 933 933 37.54 142.47 180.01 531.95 292 227 362.16
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6.7.3 Pareto approximation results

We implemented the PCG algorithm for the Prostate case with two objectives, the penalty
function for the bladder and PTV-68. The results for 1000 iterations are shown in Table
6.10. In this table, column # total apertures lists the total number of apertures generated
during the algorithm, # ESN shows the total number of extreme upper non-dominated points
on the approximated Pareto front, # non-extreme non-dominated points indicates the
total number of upper non-dominated points, comp. time (min) shows the cumulative
computational time in minutes, and gap shows the approximation error of upper Pareto front
to the lower Pareto front as explained in Section 6.6.3. Although the non-extreme points do
not lie on the upper Pareto front; this number shows the flexibility of the technician to
evaluate similar treatment plans to extreme points with respect to other clinical features.
Moreover, the lower and upper Pareto fronts for the Prostate case obtained after 100, 250,
500, and 1000 iterations are shown in Figure 6.6.

As expected, the approximation error has a decreasing trend and the Pareto front is well-
approximated by upper Pareto front. In this case, it seems 500 iterations is enough to achieve
acceptable Pareto frontier with reasonable computational time. This validates the efficiency
of the algorithm with large number of non-dominated points, despite relatively small number
of generated columns. In practice, each point is a deliverable treatment plan with assigned
apertures and useful for the technician.

For the head-and-neck case, the target PTV-70 is close to the spinal cord, and thus, we chose
these two critical structures. The results for 1000 iterations are shown in Table 6.11. Also,
the comparison for 100, 250, 500, and 1000 iterations of the obtained upper Pareto fronts in
the head-and-neck case are shown in Figure 6.7. In this case, the objective values are close to
zero and the obtained lower bounds are negative, while a lower bound of the problem is zero,
due to non-negative dose intensities and the quadratic formulation of the objective function.
Therefore, the lower Pareto front is the horizontal and vertical axes of the bi-objective space.
We observe less number of non-dominated points in this case but the UPF is close enough
to LPF after 500 iterations.

6.8 Conclusion

In this paper, we first improved the efficiency of the column generation-based method for
direct aperture optimization, by integrating the blended conditional gradient algorithm, as a
new first-order optimization technique, to solve the restricted master model. This algorithm
does not find the optimal solution of RMP in each iteration of CG, but balances between
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Table 6.10 Results of PCG for the prostate case with two objectives of PTV-68 and bladder

Iter. # total
apertures

# ESN #
non-extreme

non-
dominated

comp. time
(min)

gap

1 31 3 1 0.97 2178.1
10 40 6 2 1.36 1269.97
25 55 7 4 1.93 1095.64
50 80 7 2 3.13 1004.72

100 130 8 7 5.79 779.14
250 280 13 18 11.50 373.19
500 530 22 61 34.84 204.55
800 830 31 112 62.14 147.07

1000 1030 33 160 90.42 107.89

Figure 6.6 The comparison of obtained upper Pareto fronts of PCG for the prostate case
after 100, 250, 500 and 1000 iterations.
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Table 6.11 Results of PCG for the head-and-neck case with two objectives of PTV-70 and
spinal cord

Iter. # total
apertures

# ESN #
non-extreme

non-
dominated

comp. time
(min)

gap

1 31 3 1 0.97 2178.1
10 40 6 2 1.36 1269.97
25 55 7 4 1.93 1095.64
50 80 7 2 3.13 1004.72

100 130 8 7 5.79 779.14
250 280 13 18 11.50 373.19
500 530 22 61 34.84 204.55
800 830 31 112 62.14 147.07

1000 1030 33 160 90.42 107.89

Figure 6.7 The comparison of obtained upper Pareto fronts of PCG for the head-and-neck
case after 100, 250, 500 and 1000 iterations.
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searching in the solution space of RMP and generating new columns. As a result, a smaller
number of inner iterations is usually needed to solve each RMP and the running times per
outer iteration is reduced. Another advantage of CG-BCG is that the solutions are close-to-
optimality, but at the same time not far from the central trajectory in the dual feasible set.
Therefore, a more stable column generation strategy is likely to be obtained. This method
outperforms CPLEX in terms of both solution quality and time efficiency.

We then extended the column generation algorithm to approximate the Pareto frontier for
contradictory objectives in DAO treatment planning. To this end, we developed lower and
upper bounds for the Pareto front and assess the potential improvement of the upper bound
with the pre-assigned and new weight vectors. In each iteration, the algorithm generates a
column which is most beneficial to reduce the maximum gap of two bounds and improves
the entire Pareto front. This technique dynamically adds the required weight vectors during
the algorithm.

For two prostate and head-and-neck cases with contradictory objectives between target cov-
erage and normal tissue sparing, the results demonstrate numerically the decreasing trend of
the approximation error between lower and upper bounds of the Pareto front and achieving
acceptable plans in reasonable time. This method is also useful for the technician to analyze
the details of obtained deliverable plans at each iteration in terms of other clinical criteria
and choose the most appropriate plan. In addition, the user can interactively work with the
points that the physician prefers and navigate between specific weight vectors with respect
to user experience or observation during the procedure.

For the future work, there are still many challenges to be considered. We can evaluate other
clinical objectives and also in higher dimensions. Also, this technique is useful for other
classes of problems requiring both column generation and multi-objective optimization to
provide acceptable solutions in practice.
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CHAPTER 7 GENERAL DISCUSSION

In radiation therapy, IMRT is the most widely used technique around the world and VMAT
is an advanced rotational format of IMRT. Minimizing the treatment time to reduce the
patient discomfort and uncertainty of the treatment, obtaining clinically admissible plans,
and finding the trade-off between contradictory structures are among the main challenges of
treatment planning in these technologies.

In this dissertation, we studied the applications of column generation in IMRT and VMAT
treatment planning to improve the efficiency of the algorithms in terms of computational
time, treatment time, and quality of the plans. In Chapter 4, we proposed a column-and-
row generation method to optimize the solution quality and the treatment time in VMAT,
simultaneously; while, in Chapter 5, we take advantage of the iterative procedure of column
generation to adjust the objective function of the proposed mathematical model based on
nonlinear clinical criteria. From a practical point of view, the model proposed in the first
article is beneficial to decrease delivery time and consequently discomfort of the patient;
while the technique employed in the second article makes the VMAT treatment planning
more robust to initial parameters and decreases the trial-and-errors to find clinically accept-
able plans. The method in Chapter 5 is also compared to commercial treatment planning
system, and the results validated the efficiency of of the proposed algorithm. However, our
approach in Chapter 6 is more focused on developing new methodologies in column genera-
tion, based on their application for DAO problem in IMRT. First, a new solution method is
proposed to solve the master model, generating strong columns without solving to optimality
in each generation. In Chapters 4 and 5, we use CPLEX to solve the master model, and we
show that the proposed algorithm in Chapter 6 outperforms CPLEX. Second, we propose
a multi-objective column generation method, which finds a set of nondominated solutions,
approximating the Pareto frontier. To the best of our knowledge, this is the first algorithm
which dynamically navigates the entire Pareto front during the column generation iterations.
We designed these two algorithms for the multi-criteria IMRT treatment planning problem;
however, both methods can be effective for general large-scale convex optimization problems
with similar structure.
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CHAPTER 8 CONCLUSION AND RECOMMENDATION

In this dissertation, we studied the application of column generation technique in IMRT and
VMAT treatment planning problems. In the following, we first present a summary of the
contributions achieved by this dissertation. Then we highlight its limitations and possible
future research directions.

8.1 Contributions

In the first essay of this dissertation, we addressed the simultaneous delivery time and aper-
ture shape optimization for the VMAT treatment planning. Most of previous works in the
literature take into account constant delivery time or minimize the delivery time after fixing
the MLC shapes at the final step. In this study, the delivery time is integrated into the
column generation algorithm to simultaneously optimize the aperture shapes, dose rates,
gantry speeds, and delivery time. To this end, we developed a column-and-row generation
algorithm embedded in a greedy heuristic. In the master model, in addition to voxel-based
dose distribution constraints, the columns are also linked to delivery time constraints. An-
other contribution of the proposed approach when compared to papers is that we can consider
most of the MLC leaf-movement constraints in the PSP rather than the RMP. Then, in this
approach, it is not required to check the feasibility of all adjacent control-points and regener-
ate new columns in the master model, which makes the algorithm more efficient. Moreover,
this method can easily handle both bidirectional and unidirectional leaf motions according
to the machine capabilities, which makes the model more flexible in practice. In addition to
the contributions in the model, we also proposed an aggregation algorithm inspired by the
K-means technique in clustering to reduce the number of voxel-based constraints. This aggre-
gation takes about 11 seconds; but greatly reduces the number of constraints with a negligible
effect on the treatment quality. The results on a prostate cancer benchmark demonstrate the
efficiency of our model to decrease the delivery time of the plan to the patient even though
its priority is considered much less in comparison to the the clinical objectives.

As the second essay of this dissertation, we take advantage of iterative procedure of column
generation to automatically handle dose-volume criteria in VMAT treatment planning. To
this end, we adjust the weight of structures and voxels based on DVH criteria during itera-
tions of column generation. This approach increases the efficiency of the algorithm and con-
sequently decreases the human interventions. The results on a prostate and a head-and-neck
case shows significant improvement to achieve clinically acceptable plans. In the prostate
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case, the proposed algorithm found 100% admissible plans for instances with randomly-
generated weights. The results in the head-and-neck case confirm this conclusion. In this
case, it finds acceptable plans for 93.3% of instances. Moreover, to have an idea of the effi-
ciency of the proposed algorithm in comparison to a commercial software, a treatment plan
is designed by an expert for the prostate case with Pinnacle software. The computational
time in the commercial software was about 20 minutes, while the process of the proposed
algorithm in this project is less, 7.18 minutes. The quality of the DVH diagrams, especially
for the healthy tissues is significantly better in the proposed method.

In the third essay, we addressed the DAO treatment planning and improved the efficiency of
the algorithm integrating a new first-order gradient algorithm, BCG, to column generation.
Also, we developed a lower-bound for the single-objective problem at each iteration of the
algorithm. The proposed method outperformed the classic Frank-Wolfe method and also
CPLEX solver, significantly. For two prostate and head-and-neck cases in several weight sets,
in average, the gap of the final solution in CG-BCG to the lower bound of the problem was
three times better in comparison to CPLEX. Another contribution of this was on extending
the column generation technique to the multi-objective framework which approximate the
Pareto frontier for contradictory objectives. In this method, a column is generated to improve
the entire Pareto set rather than a single-objective solution. To this end, we developed
lower and upper bounds for the Pareto front and assessed the existing and also potential
improvements of the weight vectors in each iteration, and then generate a column that reduces
the maximum gap of two bounds. Our technique has an advantage over other algorithms
that dynamically adds weight vectors and obtains deliverable treatment plans. It is shown
that the proposed algorithm converges to the Pareto front for large number of iterations.
The results demonstrate numerically the decreasing trend of the maximum distance between
lower and upper bounds of the Pareto frontier in reasonable time.

8.2 Limitations and future research directions

For the future works, we believe there are still many challenges which can be considered
in the first essay. To decrease the computational time in the master model and improve
the voxel sampling, a dynamic voxel aggregation could be developed. In this extension, the
clusters dynamically update during the column generation iterations and fewer voxels would
be required in the master model to achieve acceptable plans. In addition, we have noted
that the columns generated at each iteration from different sectors are not disjoint and have
similar effects; this could be investigated in future research. For another future research, we
recommend to consider a wide range of lengths instead of fixed and equal arc segments in
the model.
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In integrating DVH criteria in VMAT treatment planning studied in the second essay, more
analysis on a wide range of patients is required to validate the efficiency of the algorithm
in practice in comparison to the existing commercial software. Moreover, we considered a
finite number and pre-determined DVH criteria in the treatment evaluation. Considering the
whole DVH curve is interesting and can be the subject of future research.

The proposed multi-objective column generation approach in the third essay was evaluated
in the bi-objective space. Although the fundamentals of the algorithm are the same for the
cases with more than two objectives, the algorithm would be more complicated in terms of
computational aspects especially to find the lower bound for the Pareto frontier. Moreover,
this technique is useful for other classes of problems requiring both column generation and
multi-objective optimization to provide acceptable solutions in practice.
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APPENDIX A SUPPLEMENTS OF CHAPTER 4

A.1 Equivalent RRMP′ model

In this appendix, we show the RRMP′ is an equivalent model for the RRMP with a single column γ. We use
this model to provide a simultaneous reduced cost as the objective function of the PSP.

As mentioned in Section 4.3.1, there are two columns y and γ in the RRMP. Any optimal solution (ỹ, γ̃, t̃)
of the RRMP in which γ̃k < ỹk RT for at least one index k can be transformed into an equivalent optimal
solution via

yk = (RT )−1γk ∀k ∈ K ′. (A.1)

Therefore, we can consider the equivalent problem RRMP′ in which Constraint (4.8g) is removed and yk is
replaced by γk/(RT ) in (4.8c) and (4.8d):∑

k∈K′
akh γ

k = RT ∀h ∈ H (A.2)∑
k∈K′

τkh,h+1 γ
k ≤ RT th ∀h ∈ H (A.3)

Constraint (A.2) is dominated by Equations (4.8c) and (4.8h). This leads to a model based only on column
γ:

RRMP′:min
γ,t

F(z) + wT (A.4)

zj =
∑

k∈K′
Djh(Akh) γk ∀ j ∈ Vs (A.5)∑

k∈K′
τkh,h+1 γ

k ≤ RT th ∀h ∈ H (A.6)∑
k∈K′

akh γ
k = R th ∀h ∈ H (A.7)∑

h∈H
th ≤ T (A.8)

T ≤ th ≤ T ∀h ∈ H (A.9)

γk ≥ 0 ∀ k ∈ K ′ (A.10)
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APPENDIX B SUPPLEMENTS OF CHAPTER 5

B.1 Formulation of the master model

The formulation of the restricted master problem is as follows:

RMP : min f(z) (B.1a)

s.t.

zj =
∑

k∈K′

∑
h∈Hk

Djh(Akh) γk ∀j ∈ V (B.1b)∑
k∈K′

bkh y
k ≤ 1 ∀h ∈ H (B.1c)

γk ≤ Γk yk ∀k ∈ K ′ (B.1d)∑
k∈K′

bkh γ
k ≤ ρ th ∀h ∈ H (B.1e)∑

k∈K′
τkh,h+1 y

k ≤ th ∀h ∈ H (B.1f)

T ≤ th ≤ T ∀h ∈ H (B.1g)

yk ∈ {0, 1}, γk ≥ 0 ∀k ∈ K ′ (B.1h)

where zj , the dose absorbed by voxel j, is computed in Constraint B.1b based on the sectors covered by
column k, Hk; the aperture shape, Akh; and the column fluence rate, γk. In Constraint B.1c bkh indicates the
coverage of sector h by column k, and the constraint ensures that each sector h is covered by at most one
column. Constraints B.1d and B.1e enforce the upper bound on the fluence rate. In constraints B.1d, the
fluence rate of each column is restricted to the maximum fluence rate of column k, Γk, if selected, based on
the maximum dose rate and the minimum gantry speed. In constraints B.1e, the fluence rate at each sector is
bounded by the maximum dose rate ρ and the sector time. Also, Constraints B.1f ensure that the time spent
at sector h is sufficient to allow the leaf movements to reach the next aperture Akh+1. Finally, Constraints
B.1g enforce the lower and upper bounds on the sector time.
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APPENDIX C SUPPLEMENTS OF CHAPTER 6

C.1 Line search algorithm in CG-BCG

The line search algorithm in lines (15) and (25) of Algorithm 4 is easily implemented based on the bisection
algorithm. In this algorithm, two solutions x1 and x2 are given and the output is solution x = µx1 +(1−µ)x2

where µ ∈ [0, 1]. To implement this method with less computational time, we formulated the gradient ∇f(x)
according to µ as follows and tried to find the root of this function.

∇f(µ) =
∑
s∈S

∑
v∈Vs

2 (z1
v − z2

v) (λv [µ z1
v + (1− µ)z2

v − dv]+ − λv [dv − µ z1
v − (1− µ)z2

v ]+) (C.1)

The pseudo-code of this algorithm is shown in Algorithm (6). This algorithm is recursive and we consider
µ0 = 1 and µ0 = 0 for the first iteration.

Algorithm 6 Bisection (x1, x2, µt, µt, µt)
Input: µ0 ← 0, µ0 ← 1
Output: µ∗ and solution x∗

1: xt ← µt (x1 + x2)µt x1 + (1− µ)x2

2: compute ∇f(µt)
3: if (|∇f(µt)| < ε) then
4: return µt and xt
5: if (∇f(1)∇f(µt) < 0) then
6: µt+1 ← 0.5 (µt + µt)
7: µ

t+1 ← µt, µt+1 ← µt

8: else
9: µt+1 ← 0.5 (µ

t
+ µt)

10: µ
t+1 ← µ

t
, µt+1 ← µt

11: Bisection (x1, x2, µt+1, µt+1, µt+1)

C.2 L-smoothness of function f

To use the mathematical properties of the model specifically in the convergence of the CG-FW and CG-BCG
algorithms, we need to show that the objective function f in Equation (6.7) is L-smooth and obtain the
Lipschitz constant L.

First, we define L-smooth function as follows:

Definition 10. Function f is L-smooth over a polytope P, if for any x1, x2 ∈ P, there is a Lipschitz scalar
L for which

‖f ′(x1)− f ′(x2)‖ ≤ L‖x1 − x2‖, ∀x1, x2 ∈ P (C.2)
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We have also the following basic lemma for definition of the L-smooth function.

Lemma 6. If f : X → R and ∂f
∂xk

exists, it is continuous and there is a constant L ≥ 0 such that

| ∂f
∂xk
| ≤ L ∀k ∈ K (C.3)

where L is the Lipschitz constant of the function.

We use the above lemma to find the Lipschitz constant of our function.

Lemma 7. Function f in model RMP is Lipschitz continuous and the Lipschitz constant L is∑
s∈S

∑
v∈Vs

∑
k∈K

2λvDk′

v Dk
v . (C.4)

Proof. In model RMP, f : Rm → R and xk ∈ [0, 1] for all columns k. We have

∂f

∂xk′
=

∑
s∈S

∑
v∈Vs

2Dk′

v (λv[zv − dv]+ − λv[dv − zv]+). (C.5)

Since zv ≥ zv − λv, dv [dv − zv]+ ≥ 0, and zv ≥ 0 , we have

∂f

∂xk′
≤

∑
s∈S

∑
v∈Vs

2Dk′

v λvzv, (C.6)

and zv =
∑
k∈K

Dk
v yk, thus

∂f

∂xk′
≤

∑
s∈S

∑
v∈Vs

2Dk′

v λv
∑
k∈K

Dk
v xk,

≤
∑
s∈S

∑
v∈Vs

∑
k∈K

2λvDk′

v Dk
v xk,

≤
∑
s∈S

∑
v∈Vs

∑
k∈K

2λvDk′

v Dk
v .

(C.7)

Finally, considering Dv = max
k∈K

Dk
v , we have the Lipschitz constant as follows:

L =
∑
s∈S

∑
v∈Vs

∑
k∈K

2λvDvD
k
v . (C.8)

�

Corollary 1. Let Li indicate the Lipschitz constant of fi and wi be the weight of objective i. The Lipschitz
constant of weighted sum function is

L(w) =
n∑
i=1

wiLi. (C.9)

Proof. We can easily decompose function f and also obtained Lipschitz in Equation (C.8) based on the set
of structures, S, and obtain the weighted Lipschitz constant. �
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