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RÉSUMÉ

La Q-matrice établit la correspondance entre les items et les compétences d’un étudiant. Elle
revêt une grande importance pour l’évaluation en éducation, mais sa définition et sa vali-
dation demeurent un défi, car les véritables relations items-compétences ne peuvent jamais
être observées. Les sujets de recherche de cette thèse tournent autour de ce défi, notam-
ment le raffinement d’une Q-matrice définie par un expert, la conception de la Q-matrice la
plus efficace, de même que la dérivation de la Q-matrice pilotée par les données. Grâce à
l’apprentissage automatique, nous disposons maintenant d’outils puissants pour résoudre ces
problèmes.

Nous passons d’abord en revue les modèles et algorithmes associés utilisés dans notre recherche,
puis consacrons des chapitres distincts à trois sujets et contributions distinctes.

Le premier sujet est le problème de l’affinement de la Q-matrice, c’est-à-dire la recherche d’une
correspondance plus précise entre les items et les compétences que celle prédéfinie. Après
avoir d’abord passé en revue trois techniques de raffinement de matrices-Q, à savoir maxD-
iff, minRSS et ALS, nous proposons ensuite d’utiliser un arbre de décision pour combiner
leurs résultats afin d’améliorer leur performance individuelle. Enfin, nous montrons qu’avec
la technique de boosting, nous pouvons encore augmenter les performances de l’arbre de
décision.

Le deuxième sujet concerne le problème de conception de Q-matrice, qui consiste à trouver
une Q-matrice capable de diagnostiquer le plus efficacement possible les profils des étudiants.
Nous montrons d’abord que le principe d’identifiabilité est un facteur de qualité déterminant
et qu’une Q-matrice non conforme à ce principe ne permet pas d’évaluer correctement les
performances des étudiants. Ensuite, les exigences théoriques pour les identifiabilités de
paramètres dans le modèle DINA sont passées en revue, car elles servent de guide pour notre
stratégie de conception de Q-matrice. Par la suite, nous avons effectué deux expériences
pour comparer différentes stratégies de conception de Q-matrice. Le résultat montre que
la meilleure stratégie consiste à répéter les vecteurs unitaires lors de la construction d’une
Q-matrice. Enfin, une argumentation théorique est avancée pour valider notre revendication
de la meilleure stratégie de conception de Q-matrice.

Le dernier sujet est le problème de dérivation de la Q-matrice à partir des données de perfor-
mance observées des étudiants, sans l’aide d’une Q-matrice prédéfinie. Les techniques de Hill
Climbing, LASSO, NMF et ALS sont passées en revue, puis nous proposons notre nouvelle
méthode non paramétrique, IRPtoQ, qui utilise le résultat d’un algorithme de clustering
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(agglomération) et interprète les centres de clusters comme des modèles de réponse idéaux.
Les performances d’IRPtoQ sont comparées à d’autres algorithmes dans différents contextes
d’expérimentation. Les résultats montrent que IRPtoQ surpasse les autres méthodes dans la
plupart des cas.
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ABSTRACT

Q-matrix as a tool for mapping items to skills is of great importance in educational assess-
ment. However, a Q-matrix is merely a way to manually define the mapping between item
and skills, since the genuine relationships between them can never be observed. Therefore,
the refinement of an expert-given Q-matrix, the design of the most efficient Q-matrix, and
the data-driven derivation of the Q-matrix are the research topics of this thesis. With the
help of machine learning, now we have more tools to tackle these problems.

We first review the related models and algorithms used in our research and then devote
separate chapters to each topic.

The first topic is the Q-matrix refinement problem, that is, to find a more accurate mapping
between items and skills than pre-given one. We first reviewed three existing techniques,
which are maxDiff, minRSS and ALS respectively. Then we propose to use a decision tree
to combine their results in order to achieve better performance. Finally, we show that with
boosting technique applied, we can even further increase the performance of the decision tree.

The second topic is the Q-matrix design problem, which is to find a Q-matrix being able to
diagnose student profiles the most efficiently. We first show an example of an unqualified Q-
matrix, which fails to correctly assess student performance. Then the theoretical requirements
for parameter identifiability in the DINA model are reviewed, as they are the guidance for
our Q-matrix design strategy. Subsequently, we run two experiments to compare different Q-
matrix design strategies, and the results show that the best strategy is to repeat unit vectors
in building a Q-matrix. Finally, a theoretical discussion is offered to validate our claim for
the best Q-matrix design strategy.

And the last topic is the Q-matrix derivation problem, which is to derive a Q-matrix di-
rectly from the observed student performance data, without aid of a pre-given Q-matrix.
Techniques of Hill Climbing, LASSO, NMF and ALS are reviewed, then we propose our
new nonparameter method, IRPtoQ, which utilizes the result of a clustering algorithm, and
interprets the cluster centers as ideal response patterns. The performance of IRPtoQ is com-
pared with other algorithms under different experiment settings. Results show that IRPtoQ
is outperforming other methods in most cases.
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CHAPTER 1 INTRODUCTION

1.1 Problem definition

Suppose an engineering school has a one hour, thirty questions test that is intended to assess
mastery of college math for newly enrolled students. College math is, somewhat arbitrarily,
broken down into nine topics. How does one decide which question item assesses each of the
nine topics? Or suppose a psychologist wants to measure psychological traits of an individual,
then how to obtain useful information on these traits from a given questionnaire?

These are both measurement problems. But unlike measuring the height or weight of a
man with the help of devices, in the problems above, we are trying to measure unobservable
quantities, or say, some latent variables. Since we cannot directly observe them, we have to
make inferences based on some observable data, which carries the information of the latent
variables we want to measure.

These kinds of problems are typical in psychology and education assessment. The quantities
of interest are almost always unobserved. However, there are also some differences in the
above scenarios. In the math test case, the latent variable is discrete and usually multidimen-
sional since we are considering more than one skill, while in the psychological case, the latent
variable is usually continuous and one-dimensional, since we are concerned with a particular
trait.

This thesis is centered around the first scenario, that is, to assess student mastery levels
of multiple skills. To tackle this, researchers often predefine an item-skill mapping, which
is denoted by a matrix, named Q-matrix (Tatsuoka, 1983). However, this Q-matrix can
be misspecified, or misdesigned or difficult to obtain. Therefore, the Q-matrix refinement,
design and derivation problems become essential, which are the topics of this thesis. The
tools we use to solve these problems are from machine learning and statistics.
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1.2 Thesis Vocabulary

In this thesis, we use a collection of terms across all chapters.

assessment: The process of diagnosing student profile of skills

attribute: The ability required to answer a question

cognitive diagnosis: Synonym of assessment

item: A question used in a test

profile: The mastery level of all concerned skills of a student

respondent: The people who participate in tests and skills of whom we want
to assess

skill: Synonym of attribute

student: Synonym of respondent

To better illustrate the term attribute and skill, we show an example from (De La Torre,
2009). In the article, the data analyzed is the fraction subtraction data (Tatsuoka, 1990).
The author has defined five skills/attributes for solving the fraction subtraction problems
which are

1. Subtract basic fractions

2. Reduce and simplify

3. Separate whole from fraction

4. Borrow from whole

5. Convert whole to fraction

We can see that the definitions of skills depend on the domain knowledge, and different
experts can have different specifications of them.

Typically, the collected data from students and with which we determine their respective
profile can be written in a matrix form. We call it a response matrix or performance matrix.
Denote this matrix by R, then R has the form:
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R =



i1 i2 i3 i4 i5 i6 i7 i8 i9

r1 0 0 0 0 0 1 0 0 0
r2 1 0 0 1 0 1 0 0 0
r3 1 1 1 1 1 1 1 1 1
r4 0 1 0 0 1 1 0 1 1

 (1.1)

in which the rows represents the respondents, or students, while the columns indicate the
items, or questions. The letter r stands for respondent and i stands for item. The entries
show the observed data, and Rij = 1 means the i − th respondent answers the j − th item
correctly and Rij = 0 means otherwise. An example of Q-matrix is

Q =



s1 s2 s3

i1 1 1 0
i2 0 1 1
i3 1 0 1
i4 1 0 0
i5 0 0 1
i6 0 1 0
i7 1 1 1
i8 0 1 1
i9 0 1 1



(1.2)

where the letter s stands for skill, and an example of profile matrix is

P =



s1 s2 s3

r1 0 1 0
r2 1 1 0
r3 1 1 1
r4 0 1 1

 (1.3)

1.3 Research Questions

The research questions investigated in this thesis are:

1. Given a prespecified Q-matrix, how can we improve it based on observed data? Con-
sidering there are some off-the-shelf methods, can we combine them to produce better
results?
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2. How do we design a Q-matrix so that the assessment of skills is more efficient?

3. Can we derive the Q-matrix directly from data, instead of relying on experts? More
specifically, can we develop a nonparametric algorithm for this purpose since there are
already parametric methods?

1.4 Contribution

1.4.1 First Study: Q-matrix Refinement

In this study, we explore ways to enhance an expert given Q-matrix. In fact, expert can
make mistakes in mapping item to skills, and misspecified mapping can cause problems in
student profile diagnosis (Rupp & Templin, 2008). Therefore, the research question is, given
a possibly misspecified Q-matrix, how can we fix the erroneous values in it based on observed
performance data? We propose an improvement over a decision tree approach to combine
methods, developed in our lab, and use boosting to further increase the performance of the
method, which combines maxDiff, minRSS and ALS methods. The experiments showed that
boosting can indeed yield better performance. Section 3 is dedicated to this study.

1.4.2 Second Study: Q-matrix Design

We compared different strategies for Q-matrix design and investigated their relations with
parameter identifiability. We claim that the strategy of repeating unit q-vectors is the best
way to construct a Q-matrix. Section 4 is dedicated to this study.

1.4.3 Third Study: Q-matrix Derivation

After a review of the heuristic hill climbing, classic LASSO, NMF and ALS methods for
Q-matrix estimation, we propose a novel nonparametric way to derive Q-matrix, which is
based on the result of clustering performance data and interpret the cluster centers as ideal
response patterns. Section 5 is dedicated to this study.

1.5 Organization of the thesis

First, we review the common models in cognitive diagnosis in Chapter 2. Then we discuss the
three projects in subsequent chapters. Q-matrix refinement is researched in Chapter 3, Q-
matrix design problem is explored in Chapter 4, and Q-matrix derivation problem in Chapter
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5. Finally, the work is concluded in Chapter 6. Since the experiment results of Chapter 5
are large, we show figures in Chapter 5, but details of the results are in Appendix A and B.
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CHAPTER 2 LITERATURE REVIEW

As discussed in Chapter 1, we want to measure the skill mastery level of students. In order to
do so, we need to establish some models and the quantity of interest should be some variable
in the model. Moreover, the data we can observe are also in the model as a variable that is
dependent on the latent variable we want to infer.

Fortunately, our predecessors have already established a set of interesting models. We will
review some of them and emphasize one particular model that our research is based on, the
DINA model.

Since we are dealing with latent variable models, first we introduce a taxonomy of them. De-
pending on whether the observed and latent variables are continuous or discrete, we can clas-
sify latent variable models into four categories, which is detailed in Table 2.1 (Bartholomew,
Knott, & Moustaki, 2011).

Table 2.1 Taxonomy of latent variable models

Latent Variable
Observed Variable Continuous Discrete

Continuous Factor Analysis Item Response Theory
Discrete Latent Profile Analysis Latent Class Model

The response data (observed variable) we are considering here are binary, thus the models
we use are the two models in the rightmost column. One is the item response theory model
and its variants, which usually assume the latent variable to be continuous and the quantity
it represents is usually called trait or ability in the literature. And the other type of models is
the latent class model, which is also called diagnostic classification model in some literature
(Rupp, Templin, & Henson, 2010), since respondents are classified into a finite number of
groups based on their diagnostic results.

2.1 IRT models

An IRT model is essentially a logistic regression model, but with latent variables. It is
a widely researched model and has a huge literature base (Andrich, 1978, 1988; Lord &
Novick, 2008; Lord, 2012; Embretson & Reise, 2013; Rasch, 1960). In a typical setting, the
quantity we are interested is represented by a continuous latent variable, and depending on
the number of parameters, we have 1-PL, 2-PL, 3-PL and 4-PL IRT models, where P stands
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for parameter and L stands for logistic. In an IRT model, the likelihood function is also
called item response function or IRF. For the 1-PL model, the item response function, or the
probability of a respondent of ability θ to answer the item j correctly, is:

p(X = 1|θ, bj) = 1
1 + e−(θ−bj)

(2.1)

where the parameter bj represents the difficulty of the item j, and is called location parameter.
We can see that when θ = bj then p(X = 1|θ, bj) = 1

2 , indicating that if the respondent has
just reached the difficulty level of item j, then one will answer the item correctly with
probability 0.5. If θ � bj, then p(X = 1|θ, bj) is close to 1, and if θ � bj, then p(X = 1|θ, bj)
is close to 0, indicating the two extreme cases of the trait level of the respondent. Notice that
following the tradition of latent variable model literature, we distinguish the term “variable”
and “parameter”. In this model, θ is a latent variable where we want to make inference while
bj is a parameter we want to estimate. The 1-PL is also called Rasch model (Rasch, 1960).

1-PL model did not consider that some item can distinguish respondents better, thus we have
the 2-PL model, and the item response function is:

p(X = 1|θ, aj, bj) = 1
1 + e−aj(θ−bj)

(2.2)

where the new parameter aj is the item discrimination parameter that determines the steep-
ness of the IRF, the higher the number of aj, the more effective of the item j to distinguish
respondents.

However, low-profile respondents can still answer an item correctly due to chance. To consider
this situation, we have the 3-PL model where the item response function is:

p(X = 1|θ, aj, bj, cj) = cj + (1− cj)
1

1 + e−aj(θ−bj)
(2.3)

and where the new parameter cj is the “guessing” parameter, or the lower asymptote pa-
rameter. It indicates that even if a respondent is very low on the trait, one can still answer
the item correctly. For example, if cj = 0.1, then a respondent has at least a probability of
around 0.1 to answer the item j correctly no matter how far away the trait deviates from the
item location.

Correspondingly, high profile respondents can still make errors. Adding this factor, we have
the 4-PL model and the item response function is:

p(X = 1|θ, aj, bj, cj, dj) = cj + (dj − cj)
1

1 + e−aj(θ−bj)
(2.4)
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where the new parameter dj is the “slipping” parameter, or the upper asymptote parameter.
It indicates that even if a respondent is very high on the trait, one can still miss the item.
For example, if cj = 0.1 and dj = 0.9, then even if a respondent has a trait far higher than
the required amount of bj, one can still only answer the item correctly with a probability of
around 0.9. To summarize, the parameter tuple (aj, bj, cj, dj) characterizes the item j, where
aj controls its discrimination ability, bj controls the difficulty, cj controls the lower bound
and dj controls the upper bound. And the latent variable, or the student ability θ interacts
with them through the IRF given by Eq (2.4).

The idea of “slip” and “guess” are also used in other models, which we will discuss below.

2.2 Latent Class Models

Instead of directly modeling the measured quantity, we can assume that there is a finite
number of student classes, and each student class shares the same attributes. This idea leads
to the latent class model. For a comparison, in the IRT model, the latent variable is the
student trait. Once the trait is known, the item response probability can be calculated based
on the logistic likelihood function. By contrast, in latent class model, the latent variable,
or a bunch of them together, represents the student class. Once this class is known, the
probability of answering an item correctly can also be calculated based on the likelihood
function of that class. If there is no assumption about particular attributes required for
items, nor assumptions about how the attributes are utilized, then the latent class model is
unrestricted. In contrast, if there are assumptions on which attributes are needed for which
items, and how the attributes are utilized to construct a response, then the latent class model
is restricted (Chiu, Douglas, & Li, 2009).

2.2.1 Unrestricted Latent Class Model

In the unrestricted latent class model, we have a single latent variable indicating the student
class. Suppose the latent variable indicating the class of student i is zi, and there are J items,
then the conditional likelihood is:

p(xi|zi = k,θ) = pk(xi|θk) (2.5)

where xi = (x1, x2, ..., xJ) is the response vector of student i, pk(·) is the likelihood function
for the k-th class, and θk represents the parameters for the k-th class distribution. However,
since the variable zi is not observed, suppose there are K classes, then the marginal likelihood
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is:
p(xi|θ) =

K∑
k=1

πkpk(xi|θk) (2.6)

where πk is the prior for each class. From the formula above, we see that the likelihood under
this model is a mixture of several component distributions. This is why this model is also
called mixture model in the machine learning community.

The response data we are dealing with are binary, thus we can model them by multivariate
Bernoulli distribution, that is (Chiu et al., 2009; Murphy, 2012):

p(xi|θ) =
K∑
k=1

πkpk(xi|θk) =
K∑
k=1

πk
J∏
j=1

Ber(xij|θjk) =
K∑
k=1

πk
J∏
j=1

θ
xij
jk (1− θjk)1−xij (2.7)

where θjk is the probability of the k-th class to get the j-th item to be 1. The parameters of
this model can be learned by EM algorithm. More detailed discussion of this model can be
found in (Bartholomew et al., 2011).

We call this model Mixture of Multivariate Bernoulli (MMB), sometimes it is also called
Mixture of Multinoulli (Murphy, 2012). This model has been used in image classification
(Juan & Vidal, 2004), text classification (Juan & Vidal, 2002), but in psychometrics or
education assessment, it is not researched much because of the parameters’ lack of practical
interpretation. Nevertheless, we will use this model for a comparison purpose in Chapter 5.

2.2.2 Restricted Latent Class Model

If we assume relationships between items and latent attributes, then we are in fact adding
a kind of restrictions to the latent class model (G. Xu & Shang, 2018), and these types
of models are usually named diagnostic classification model (DCM) (Rupp et al., 2010) or
cognitive diagnosis model (CDM) (DiBello, Roussos, & Stout, 2006). Such relationships are
often given by a J ×K binary matrix, which corresponds to the Q-matrix introduced in the
previous chapter (Tatsuoka, 1983, 2009). Latent Class Models that are restricted by a Q-
matrix are thus called Q-restricted latent class model (G. Xu & Shang, 2018). For simplicity,
we will use the term diagnostic classification model or DCM in this thesis.

Different from the unrestricted latent class model, where each student belongs to a class
which is represented by a single variable, in diagnostic classification models, each student
has a profile, which is a vector of their mastery of skills. For example, if there are 3 skills
considered, then the profile of student i is denoted by αi = (α1, α2, α3). Each entry of this
vector indicates the mastery level of the corresponding skill. For diagnostic classification
models, these entries are binary, indicating there are only 2 possible states of skill mastery,
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either mastered or not. It is obvious that in this case the number of different classes of
students is finite, and for 3-skill case there are exactly 23 = 8 different class of students. For
student profile αi, we use θj,αi to denote the positive response probability for item j:

θj,αi = p(xij = 1|αi) (2.8)

Then the different DCMs are defined by different expressions of θj,αi .

Besides of the restrictions on the relationships between items and skills, we can also classify
different types based on how the skill and item interact. More specifically, whether the skills
needed for an item are in conjunctive, disjunctive or compensatory variants. In conjunctive
variant, one must master all required skills to get the correct answer, while in disjunctive
variant, just mastering one of the required skills is sufficient for positive response, and last
in compensatory variant, the more required skills are mastered, the higher probability to
answer the item correctly. We will see examples of them below.

DINA model

Deterministic Input Noisy And (DINA) gate model (Tatsuoka, 1995) is one of the most
researched models for educational assessment and is identified as a latent class model in
(Haertel, 1989), where the latent variable is defined as:

ξij =
K∏
k=1

α
qjk
ik (2.9)

in which αik is the mastery level of skill k by student i, and the profile of student i, i.e.
αi = (αi1, αi2, ..., αiK) is also called the knowledge state in (Tatsuoka, 1995). qjk is the
requirement of skill k by item j. If skill k is required, then qjk = 1, otherwise qjk = 0. The
vector ξi = (ξi1, ξi2, ..., ξiJ) is called the ideal response of student i. We can see that this
is a conjunctive model since only when αik < qik holds for all k would we expect ξij = 1.
However, there are uncertainties in practice and we can define two types of uncertainty for
each item. One is slip, denoted by sj for item j. It represents the probability that a student
would miss item j even if all required skills are mastered. The other one is guess, denoted by
gj for item j. It represents the probability that a student can guess item j correctly even if
at least one required skill is not mastered. With these parameters under consideration, the
item response function or the likelihood function of DINA model is:

p(Xij = 1|ξij) = (1− sj)ξijg1−ξij
j (2.10)
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DINO model

Deterministic Input Noisy Or (DINO) gate model (Templin & Henson, 2006) is similar to
the DINA model, but replaces the conjunctive assumption by the disjunctive assumption. In
the DINO model, the latent variable becomes:

ωij = 1−
K∏
k=1

(1− αik)qjk (2.11)

where we can see that so long as αik = qjk = 1 holds for at least one k, we would have
ωij = 1. Similar to DINA model, the likelihood function of DINO model is:

p(Xij = 1|ωij) = (1− sj)ωijg1−ωij
j (2.12)

LLM model

The compensatory model is somewhat between the conjunctive and disjunctive models. An
example of a compensatory model is the Linear Logistic Model (LLM) (Maris, 1999) which
models the performance data by logistic regression model with latent variables (Hagenaars,
1993). In this model (G. Xu, 2017), the likelihood function for profile α is:

logit(θj,α) = βj0 + ΣK
k=1βjkqjkαjk (2.13)

or equivalently:

θj,α = exp(βj0 + ΣK
k=1βjkqjkαjk)

1 + exp(βj0 + ΣK
k=1βjkqjkαjk)

(2.14)

In this model, each skill contributes to the chances of success of an item.

Note that in this thesis, DINA is the model we use, as it is the most common. While it is
not shown that the findings geneneralize to the other models, the investigation methodology
can be extended to these models.

2.3 Parameter Estimation of DINA model

While we will focus on the DINA model here, parameter estimation for DINA is much like
other latent variable models, and EM and MCMC are the two most used methods for this
purpose.
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2.3.1 EM

EM (Expectation Maximization) (Moon, 1996) is a general algorithm used in statistics and
machine learning to deal with latent variable models (Bishop, 2006; Murphy, 2012). In
general, we want to maximize the log likelihood of the observed data:

`(θ) =
N∑
i=1

log p(xi|θ) =
N∑
i=1

log
[∑
zi

p(xi, zi|θ)
]

(2.15)

However, this is difficult to compute because of the log of the sum. Instead, EM gets around
this problem by considering the complete data log likelihood:

`c(θ) =
N∑
i=1

log p(xi, zi|θ) (2.16)

This also cannot be computed since zi is unknown. So we compute the expected complete
data log likelihood:

Q(θ, θt−1) = E[`c(θ)|D, θt−1] (2.17)

where t is the current iteration number, E is the expectation operator and D is the data.
This can be proven to be a tight lower bound of `(θ) by using Jensen inequality (Murphy,
2012), and by maximizing this bound we indirectly maximize the real likelihood. Details of
using EM on DINA model can be found in (De La Torre, 2009).

2.3.2 MCMC

MCMC is another means to tackle the parameter estimation problems in latent variable
models (Murphy, 2012). It is based on a Bayesian perspective. From this perspective,
model parameters are treated as random variables, and we estimate the posterior distribution
function of them. Usually these posterior distributions are difficult to obtain, but we are
only interested in its expectations (as parameter estimator), which can be obtained in a
Monte Carlo way. Since this distribution is usually high dimensional (multiple parameters
to estimate), a common way to use Monte Carlo method is implementing the Markov Chain
Monte Carlo (MCMC). The basic idea of MCMC is to construct a Markov Chain, whose
stationary distribution is our distribution of interest, which is the posterior distribution here.
Then by drawing samples from this Markov Chain, we can perform Monte Carlo integration
with respect to the distribution (Murphy, 2012).

This idea can be applied to DINA model. Different ways to implement MCMC on DINA
model have been tried by researchers. First with Metropolis-Hasting sampler (MH sampler)



13

in (De La Torre & Douglas, 2004), then since for DINA model, the posterior distribution for
each parameter can be directly calculated, Gibbs sampler is also used (Li, 2008; DeCarlo,
2012; Culpepper, 2015). After considering the identifiability conditions of DINA model
(G. Xu & Zhang, 2015), a constrained Gibbs sampler is proposed in (Chen, Culpepper, Chen,
& Douglas, 2018). In recent years, the No-U-Turn sampler (NUTS) (Hoffman & Gelman,
2014), an extension of Hamiltonian Monte Carlo (Duane, Kennedy, Pendleton, & Roweth,
1987) is proposed to implement MCMC. Researchers have claimed that it performs better
than traditional MH sampler and Gibbs sampler (Nugroho & Morimoto, 2015; Grant, Furr,
Carpenter, & Gelman, 2017). Research on using No-U-Turn sampler on DINA model can be
found in (da Silva, de Oliveira, von Davier, & Bazán, 2018).

2.4 Nonparametric Method

Before reviewing the nonparametric methods used in the student profile assessment, some
remarks on the term nonparametric needs to be addressed since this term has different
meanings in the statistics and machine learning literature.

On the one hand, it means literally “nonparametric”, indicating there are no statistical
parameter involved, or in other words, “distribution free” (Kendall, Stuart, Ord, & Arnold,
1999). Examples of this usage include order statistics, which uses ranks of samples to conduct
statistical inference, and sign test, which conducts a statistical test based on the signs of
samples. Neither of these methods requires presumptions on the distribution of samples, nor
do they involve parameters.

On the other hand, the term “nonparametric” can also mean the structure of a statistical
model is not fixed (Hjort, Holmes, Müller, & Walker, 2010). Sometimes, it might be even
better to call it “infinite parametric” (Wasserman, 2006). In fact, the data is modeled from
a collection of distributions, or distribution of distributions (Murphy, 2012). For example, a
Dirichlet process mixture model (Antoniak, 1974; Murphy, 2012) is a mixture model, but it
does not assume the number k of mixtures. That means each sample comes from a mixture
of clusters, and each cluster is modeled by a Dirichlet distribution. The number of clusters k
is not predetermined, and can be any positive integer, thus the weights of mixtures are also
not fixed. Usually, a prior is given to these weights to model the process. As the number
of samples grows, the number of clusters also increases. For a single discrete latent variable
like the number of mixtures k, the most commonly used prior is the Chinese Restaurant
Process (Aldous, 1985; Pitman, 2002) which implies the idea of “rich get richer”, meaning
a new sample is more likely to be assigned to a cluster having the most samples, instead of
creating a new cluster for it (Murphy, 2012). It is worth mentioning that Dirichlet process
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mixture model has also found its application in student performance prediction (Lindsey,
Khajah, & Mozer, 2014) and cognitive process modeling (Austerweil, Gershman, Tenenbaum,
& Griffiths, 2015). A good tutorial of Bayesian nonparametric models and their applications
in cognitive science can be found in (Gershman & Blei, 2012). However, in this thesis, all the
nonparametric methods we discussed are using the first meaning of the term nonparametric.

Chiu and Douglas (2013) proposed a nonparametric method to classify students given their
response data and Q-matrix. This method links the Q-matrix to ideal response patterns. In
essence, for a given number of attributes or skills, there are fixed number of profile patterns
(e.g, for 3 skills, there are 23 = 8 possible profile patterns). Then, since the Q-matrix is given,
for each profile pattern, we can obtain its ideal response pattern. If there are 8 possible profile
patterns, then there are also 8 ideal response patterns. To classify the students, we just need
to assign each student to the class that has the closest ideal response pattern based on some
distance measure.

To illustrate this idea, let us look at an example below. Suppose there are 3 skills, thus the
8 possible profile patterns are:



a1 a2 a3

p1 0 0 0
p2 1 0 0
p3 0 1 0
p4 0 0 1
p5 1 1 0
p6 1 0 1
p7 0 1 1
p8 1 1 1


Suppose the Q-matrix for 4 items are:



a1 a2 a3

q1 1 0 0
q2 0 1 0
q3 0 0 1
q4 1 1 1
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then, the corresponding ideal response patterns are:



q1 q2 q3 q4

p1 0 0 0 0
p2 1 0 0 0
p3 0 1 0 0
p4 0 0 1 0
p5 1 1 0 0
p6 1 0 1 0
p7 0 1 1 0
p8 1 1 1 1


Take p6 for instance, respondents of profile p6 master skills/attributes a1 and a3, therefore
they should succeed in any item that requires only a1 or a3 or both, which are items q1 and q3

in this example. We see that there is a 1–1 correspondence between the profile patterns and
the ideal response patterns. Thus if we know the ideal response pattern of one student, then
we know the profile pattern. Therefore, the core problem is to determine the ideal response
pattern of each student based on observed noisy responses.

Naturally, we would want to compare the observed responses with all ideal response patterns,
and the closest ideal response patterns should be the true ideal response patterns of students.
Therefore, choosing the right distance measure to define the closeness is key to the success of
the method. Chiu and Douglas (2013) suggest to use the weighted Hamming Distance. First
we know that Hamming distance is a commonly seen distance measure for binary data. It is
defined as:

dh(x,η) =
J∑
j=1
|xj − ηj|

where x and η denote the observed response vector and the ideal response pattern vector
respectively.

However this measure does not take into account the uncertainty of items. For example,
if item j1 is answered correctly by 90% of students while item j2 is answered correctly by
only 50%, then, when calculating distance, item j1 should have higher weights since it is
more reliable. Based on this idea, Chiu and Douglas (2013) proposed the weighted Hamming
distance

dωh(x,η) =
J∑
j=1

1
p̄j(1− p̄j)

|xj − ηj|

where p̄j is the proportion correct on the jth item.
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Besides the uncertainty directly coming from different uncertainty level of items, we can also
apply different weights on guessed and slipped responses. For example, if the item is an open-
ended question, then it makes sense to penalize guess, while if the item is a multiple-choice
question, then at least guess should not be penalized as much as slip since it is perhaps easier
to guess correctly than choosing incorrectly while in fact mastered all the required skills.
With these considerations, Chiu and Douglas (2013) defined penalized Hamming distance

dgs(x,η) =
J∑
j=1

ωgI[xj = 1]|xj − ηj|+
J∑
j=1

ωsI[xj = 0][xj − ηj|

where ωg and ωs are weights for the guess and slip items respectively, I[·] is the indicator
function. When ωg = ωs = 1, this penalized Hamming distance reduces to Hamming distance.
In other words, this penalization is targeting at cases when slip and guess are supposed to
be different.

There are some advantages to using the nonparametric methods for student classification.
First, efficiency, the method does not involve much computation compared to other paramet-
ric methods. Second, flexibility, the method is basically model free, it can be used in models
so long as ideal response pattern can be defined through Q-matrix. Third, robustness, when
the given Q-matrix is misspecified, the nonparametric method can still classify students even
better than model-based methods.
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CHAPTER 3 Q-MATRIX REFINEMENT

3.1 Introduction

The Q-matrix is often expert-given. However, experts can make mistakes and a misspecified
Q-matrix leads to incorrect student skill diagnosis (Rupp & Templin, 2008). Moreover, even
if the expert is confident in the Q-matrix, there might still be some space for improvement.
These considerations lead to the field of Q-matrix refinement, which differs from the problem
of Q-matrix derivation because it starts from a given plausible Q-matrix, unlike the complete
unknowingness situation in Q-matrix derivation problems. In general, we assume that this
Q-matrix is based on expert knowledge thus it only has small differences from the true
Q-matrix. Mathematically, the problem can be formulated as finding a function f , that
Qnew = f(R,Qold), where R is the response matrix and Qold is the original Q-matrix that
needs to be refined.

In this chapter, we discuss different Q-matrix refinement techniques, and propose ways to
enhance them. In Section 3.2, we introduce the maxDiff method that relies on maximizing
the difference between mastered profile and not-mastered profile. In Section 3.3, we introduce
a nonparametric method by minimizing a residual of squared sums. In Section 3.4, we talk
about a matrix factorization method named ALS. In Section 3.5 we propose to use a decision
tree to combine results from previous methods. And finally in Section 3.6, we further enhance
the result of a decision tree by using Adaboost algorithm.

3.2 maxDiff

An early method of Q-matrix refinement is maxDiff (De La Torre, 2008)1. This method is
based on the observation that a correctly specified q-vector should maximize the difference
of the probability of answering correctly between respondents who master all required skills
and respondents who do not. To see this, we can look at table 3.1.

For the 3-skills case, we can see that there are eight (23 = 8) possible skill patterns, or profile
patterns. η is the ideal response, that is, the response if there is no slip or guess involved.
Table 3.1 shows the probabilities of correct response for a hypothetical item in a 3-attribute
domain, where attribute 1 and 2 are required to answer the item correctly, meaning the q-
vector can be denoted as (1,1,0). The second column shows the ideal response, η. Column 3,

1The names maxDiff and minRSS (section 3.3) are from M. C. Desmarais, Xu, and Beheshti (2015), not
from the original authors.
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Table 3.1 A toy example to illustrate maxDiff method

Under True Q
Vector

Attributes
(skill pattern)

Under Pattern
Q Vector

Pattern η P (X = 1|η) α1 α2 α3 P (X = 1|η∗ = 0) P (X = 1|η∗ = 1) δ∗

1 0 0.20 0 0 0 - - -
2 0 0.20 0 0 1 0.35 0.35 0.00
3 0 0.20 0 1 0 0.20 0.50 0.30
4 0 0.20 0 1 1 0.30 0.50 0.20
5 0 0.20 1 0 0 0.20 0.50 0.30
6 0 0.20 1 0 1 0.30 0.50 0.20
7 1 0.80 1 1 0 0.20 0.80 0.60
8 1 0.80 1 1 1 0.29 0.80 0.51

P (X = 1|η), shows the probability of answering it correctly when slip and guess are involved.
Both slip and guess are assumed to be 0.2 in this simple example. For example, in the third
row, the skill pattern is (0, 1, 0), then its ideal response η is 0 since the true q-vector is (1, 1, 0).
Subsequently in this case, P (X = 1|η) = guess = 0.2. We know that only skill patterns 7 and
8 allow a correct answer to this item. Thus in these two rows, P (X = 1|η) = 1− slip = 0.8.

In practice we do not know the true q-vector is (1, 1, 0), thus we want to examine all the
possible q-vectors (which are the same as all possible skill patterns) and record relevant
values. Now we have to use η∗ instead of η to represent the possible ideal response since
the true ideal response is unknown. The values we are interested now are P (X = 1|η∗ = 0),
P (X = 1|η∗ = 1) and δ∗, where δ∗ = |P (X = 1|η∗ = 1) − P (X = 1|η∗ = 0)|. In the
expression of δ∗, the first term is the probability of answering the item correctly by the
“mastered” profile patterns, while the second term is the probability of answering the item
correctly by the “not-mastered” profile patterns. The idea of maxDiff is that the true q-
vector should maximize the difference of these two probabilities. We still use the third row
as an example to show how these values are calculated. In this case, the examined q-vector
is (0, 1, 0), thus there are four profile patterns that cover this Q-vector (profiles that leads to
η∗ = 1), and four profile patterns that do not (that lead to η∗ = 0). Among the four profile
patterns that cover this Q-vector, two (profiles (1,1,0) and (1,1,1)) will answer correctly with
probability 0.8. The other two (profiles (0,1,0), (0,1,1)) will answer correctly with probability
0.2. In the other hand, among the four profile patterns that do not cover this Q-vector, all
of them (profiles (0,0,0), (0,0,1), (1,0,0), (1,0,1) will answer correctly with probability 0.2.
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Therefore, we have:

P (X = 1|η∗ = 1) = (0.2 ∗ 2 + 0.8 ∗ 2)/4 = 0.50

P (X = 1|η∗ = 0) = (0.2 ∗ 4)/4 = 0.20

δ∗ = P (X = 1|η∗ = 1)− P (X = 1|η∗ = 0) = 0.50− 0.20 = 0.30

In the same way we can calculate δ∗ for all possible q-vectors and record relevant values in
the last three columns. We find that the true q-vector (1, 1, 0) has the largest δ∗ = 0.60,
which validates the hypothesis of the maxDiff method.

To put maxDiff into practical usage, a straightforward thought is to calculate δ∗ for all
possible q-vectors, as in table 3.1, however this is computationally expensive with complexity
O(2K). (De La Torre, 2008) proposed a sequential method that reduces the complexity to
O(K2) which is named as δ-method.

Table 3.2 shows how the δ-method is done for a 3-skill q-vector. In the first step, we consider
the 1-skill case, the column 3-5 correspondent to profile (1,0,0), (0,1,0) and (0,0,1). We can
see that either skill 1 or 2 offers the largest difference 0.30 (0.50-0.20). We can choose either
of them as the first skill. Here we choose skill 1. In the the second step, skill 1 is fixed and we
need to decide whether to include skill 2 or 3, that is, to check profile (1,1,0) and (1,0,1). We
see that profile (1,1,0) gives the largest difference, 0.60, thus we keep skill 2 and move to step
3. For this step, we need to decide whether to include skill 3 by checking profile (1,1,1), and
we see that the difference is decreased from 0.60 to 0.51, which implies that skill 3 should not
be included. We see that in this δ-method, the number of δ∗ has been calculated (K2 +K)/2
times for K-skill domains, which is much less than 2K − 1 times in the exhaustive search
algorithm.

We can see that the calculation of P (X = 1|η∗ = 1) and P (X = 1|η∗ = 0) depends on slip,

Table 3.2 Relevant probabilities of correct response based on the δ-method

Sequential Steps
Number of Attributes η∗ 1 2 3

One 0 0.20 0.20 0.35
1 0.50 0.50 0.35

Two(α(1) = α1) 0 - 0.20 0.30
1 - 0.80 0.50

Three(α(1) = α1, α(2) = α2) 0 - - 0.29
1 - - 0.80
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guess, and the ratio of each profile pattern, which needs to be estimated given the prespecified
Q-matrix. This can be done through an EM algorithm, details can be found in De La Torre
(2009).

Based on the above discussion, the maxDiff method involves two steps. First, with a prespec-
ified Q-matrix, use the EM algorithm to estimate slip, guess and profile proportions. Then
use these estimated parameters with the δ-method and construct a new Q-matrix. Detailed
examples can be found in (De La Torre, 2008).

3.3 minRSS

Another method for Q-matrix validation proposed by Chiu (2013) is a nonparametric method,
which we denote as minRSS in this thesis, meaning minimization of Residual Sum of Squares.

The nonparametric minRSS approach takes advantage of the nonparametric method of stu-
dent classification we introduced in section 2. With the pregiven Q-matrix, we can obtain
the profile of each student using that method. Then, with these student profiles, we make
inferences on each q-vectors. The hypothesis is, if the Q-matrix is correct, then the student
response should be as close to the ideal response pattern as possible. Based on this hypoth-
esis, we can calculate the deviance between observed responses and ideal responses for each
item and each student, this deviance is named RSS (Residual Sum of Squares).

Denote Yij and ηij as the observed and ideal response of student i to item j, then the RSS
of item j for student i is defined as:

RSSij = (Xij − ηij)2

And the RSS of item j across all students is defined as:

RSSj =
N∑
i=1

(Xij − ηij)2 =
2K∑
m=1

∑
i∈Cm

(Xij − ηjm)2

And a large RSSj indicates that the q-vector for item j might not be correct. Thus for each
item j, we only need to calculate the RSSj for all q-vectors, and choose the q-vector that
yields the smallest RSSj to be the refined new q-vector. This updating process is done one
by one for each item and finally outputs a refined new Q-matrix. More details can be found
in Chiu (2013).
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3.4 ALS

Matrix factorization is a common technique used in statistics and machine learning. In
fact, for the observed target variable, denoted as y, the fitting of linear regression model
y = Xw + ε is equivalent to find w that minimize the distance ||y −Xw||2, the Ordinary
Linear Squares (OLS) method gives the parameter estimation

ŵOLS = (XTX)−1XTy = X+y

whereX+ denotes the Moore-Penrose Generalized Inverse of matrixX(Penrose, 1956). This
result can be extended to matrix case. In fact, if Y = (y1,y2, ...,yn) is a matrix, each
column vector yi will yield a parameter vector wi using above formula, then denote W =
(w1,w2, ...,wn), we have(Penrose, 1956):

W = X+Y

which minimize the distance ||Y −XW ||F 2, and thus XW can be seen as an approximate
matrix factorization of Y .

Suppose that for student response data, we also have the linear interaction between student
profile and Q-vectors, then the model is:

Xm×n = Pm×kQ
T
n×k + εm×n

where m is the number of students , n is the number of items, k is the number of skills, P
is the profile matrix and Q is the Q-matrix. For simplicity, we omit the subscripts, that is:

X = PQT + ε

In Q-matrix validation problem, there is a pre-given Q-matrix Q0, thus we can calculate a
P0 using the formulas above, that is:

P0 = X(QT
0 )+

2Here F denotes the Frobenius Norm, note that || · ||2 in matrix case is induced by `2 vector norm and we
have the inequality ||A||2 = σmax(A) ≤ ||A||F = (Σm

i=1Σn
j=1|a2

ij |)1/2, where σmax(A) represents the largest
singular value of matrix A.
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with this P0 we can calculate Q again, denoted as Q1, that is:

QT
1 = P+

0 X

then we can calculate P again, this process will generate a sequence of P0,P1,P2, ... and a
sequence of Q0,Q1,Q2, ..., both of these two sequences are convergent, since each step of
calculation is equivalent to minimizing the distance ||X−PQT ||F , and the distance sequence
d0, d1, d2, ... is decreasing and always positive, from calculus we know it is convergent, thus
the sequence {Pi} and sequence {Qi} are also convergent.

M. C. Desmarais and Naceur (2013) proposed to use the above method to obtain the refined
Q-matrix Qref . Note that this model is a compensatory model, that is, the more skills a
student mastered for an item, the higher probability that item will be answered right. This is
not the case of the commonly researched DINA model, which is a conjunctive model, meaning
one must master all required skills to answer an item correctly. Fortunately, (M. C. Des-
marais, Beheshti, & Naceur, 2012) and (Sun, Ye, Inoue, & Sun, 2014) points out that for the
conjunctive model, we have:

X = P �QT

where � denotes the Boolean Matrix Product.

Note that this problem is no longer an ordinary matrix factorization problem, but a Binary
Matrix Factorization(BMF) problem. BMF is much more difficult due to the limitation
of matrix entries to be 0 and 1. Sun et al. (2014) also tries to implement BMF with an
alternating methods, akin to ALS. However it gets more computationally intensive. Here
since the main aim is for Q-matrix validation, M. C. Desmarais et al. (2012) consider using
ordinary matrix factorization instead, and evaluate the obtained new Q-matrix directly. To
separate this conjunctive case with the compensatory case, this method is denoted as ALSC.
By comparison of prediction performance, it is shown that the ALSC proposed new Q-matrix
is better than the original given Q-matrix.

3.5 Decision Tree

With those Q-matrix validation methods discussed before, a natural idea is to find a way to
combine them to obtain a more powerful tool. In other words, for initial Q-matrix Q0, we
use methods 1, 2, 3, etc., to obtain new proposed Q-matrices Q1, Q2, Q3 etc, and we want
to find a combined refinement Qcombined, that is

Qcombined = f(Q1,Q2,Q3, ...)
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Thus the problem is how to find a satisfactory function f . Obviously, we can manually set
rules for f , for example, this f can be vote-based. For an entry Qij, if both Q1

ij and Q2
ij says

it is 1, but Q3
ij says it is 0, then we decide it is 1 since 1 has more votes than 0. However

we know that different refinement methods might have different accuracy and one entry’s
prediction might not be only dependent on that specific entry. Therefore, can we learn the
rules of f from the data instead of setting the rules by ourselves? The answer is yes and a
classical approach to do so is decision tree.

A decision tree is a well-known technique in machine learning that serves as an ensemble
learning method to combine different base classifiers or regressers. There are several al-
gorithms to estimate the parameters of decision tree, including ID3 (Quinlan, 1986), C4.5
(Quinlan, 1993) and CART (Breiman, Friedman, Stone, & Olshen, 1984). Except for ID3,
these algorithms have two steps (ID3 only has the first step). The first step is to grow the
trees, which is to sequentially choosing feature variables by checking their contribution of un-
certainty change. For example, denote target variable as Y and feature variables as X1, X2,
etc., then the first step is to compare Uncertainty(Y ) versus Uncertainty(Y |Xi) to obtain
the information gain. The uncertainty can be measured by entropy, like in ID3 and C4.5, or
Gini Index, like in CART. The uncertainty change can be measured by difference, which is
called information gain (ID3, CART), or by a ratio, which is called information gain ratio
(C4.5). The second step is pruning, which is to collapse those nodes that are too deep to
avoid overfitting, and is implemented by minimizing a loss function for all nodes as a whole
and penalized by number of nodes.

Using terms of machine learning, decision tree is a supervised learning method, which means
it requires a training dataset to estimate the parameters of the model. In our case, how do
we design such a training dataset to learn the rules? M. C. Desmarais et al. (2015) propose
to use simulated data and a way to generate it. The whole process starts from Q-matrix Q0,
suppose it is a 9× 3 matrix, that is, 9 items and 3 skills, then using it as input, the following
steps are implemented

1. Randomly permute the Q-matrix to obtain up to 1000 new Q-matrices Q1, Q2, ...,
Q1000, this randomization is done cell-wisely, meaning only the ratio of 0 and 1 are
kept.

2. For each Qi, generate a response matrix Xi with 400 respondents, using DINA model,
with slip=guess=0.2 and profiles uniformely distributed.

3. For each Qi, since there are 9×3 = 27 cells, for 1-cell perturbation, we have 27 possible
ways, and these 27 pertubated Q-matrix will be denoted as Q1

i , Q2
i ,...,Q27

i
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4. For each validation method, calculate the refined Q-matrix. For instance, feed Xi and
Q1
i to minRSS, maxDiff and ALSC method we will yield refined Q-matrices Q1

iminRSS
,

Q1
imaxDiff

and Q1
iALSC

respectively.

5. Calculate other factors.
(1) Skills per Row (SR): The number of skills required of an item
(2) Skills per Column (SC): Times of the skill get tested across all items
(3) Stickiness Factor (SF): The rigidity of a cell under each validation method. To get
the intuition of this factor, we look at an example for minRSS method. For a 9 × 3
Q-matrix in a particular run of experiment, there are 27 possible perturbation places.
And suppose a particular cell, like cell 1, has 12 false positive (minRSS proposed to
change, but it should not change) during the 27 cases, then the stickiness factor of
minRSS for this cell is 12/27=0.44.

6. Feed the data into a decision tree.

The final dataset generated before feeding into a decision tree from the above procedure will
have the form below

Algorithm target prediction Other factors
Target minRSS maxDiff ALSC SR SC SF.minRSS SF.maxDiff SF.ALSC

1 1 0 1 3 5 0.44 0.32 0.27
0 0 1 0 3 7 0.35 0.37 0.52
... ... ... ... ... ... ... ... ...

Other factors are designed to help decision tree using more information to yield better perfor-
mance. Based on the proposed factors, three different strategies of decision tree are proposed.
They are:

(1) minRSS+maxDiff+ALSC

(2) minRSS+maxDiff+ALSC+SR+SC

(3) minRSS+maxDiff+ALSC+SR+SC+Stickiness.minRSS+Stickiness.maxDiff+Stickiness.ALSC

The performance of the decision tree is measured by two metrics, accuracy and F-score
respectively. To define them, first we look at the four cases for each cell

• True Positive (TP): perturbed cell that was correctly changed

• True Negative (TN): non perturbed cell left unchanged
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• False Positive (FP): non perturbed cell incorrectly changed

• False Negative (FN): perturbed cell left unchanged

Then the accuracy is defined as

accuracy = TP + TN

TP + TN + FP + FN

And the F-score is defined as

Fscore = 2× Precision×Recall
Precision+Recall

where
Precision = TP

TP + FP

and
Recall = TP

TP + FN

Experiments in (M. C. Desmarais et al., 2015) showed that the strategy 3 has the best
performance, thus it is used in our next Q-matrix refined method, boosted decision tree. We
will look at the detailed results when we compare them with the Boosted decision tree ones
in table 3.4.

3.6 Boosted Decision Tree

Boosting is a popular technique in Machine Learning. It transforms a weak learner into
a strong one by reweighting the training samples and combining multiple learners. The
word “weak” means it performs only better than random guessing. Originally boosting was
designed for two-class classification (Schapire, 1990), later it was generalized to multi-class
classification (J. Friedman, Hastie, & Tibshirani, 2000; Hastie, Rosset, Zhu, & Zou, 2009)
and regression (J. H. Friedman, 2002).

Boosting was first proposed in (Schapire, 1990) in the PAC-learning framework (Valiant, 1984;
Kearns, Vazirani, & Vazirani, 1994). In this early version of boosting, the implementation
follows the steps below. First an initial classifier h1 is trained on N samples, then a second
classifier h2 is trained on a new group of N samples, half of which are misclassified by h1.
Subsequently, h3 is trained on N samples where h1 and h2 disagree. And the final boosted
classifier is hB = MajorityVote(h1, h2, h3).

Schapire’s work was further advanced in (Freund, 1995) by combining many weak learners
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simultaneously. However, both these two algorithms require producing a classifier with a
fixed error rate, this limitation was removed in the later development in Freund and Schapire
(1996a) which is adaptive and named AdaBoost. This algorithm became widely spread and
praised. In fact, this algorithm was so successful that it won the prestigious Gödel prize. It
is also used in our experiment for Q-matrix refinement.

Many researchers tried to offer theoretical explanation of boosting. An overview can be found
in Meir and Rätsch (2003). Originally, using PAC learning, (Freund & Schapire, 1996a) and
(Schapire & Singer, 1999) offers upper bounds on generalization error to offer support for
their algorithms, but those bounds are too loose to explain the high performance of boosting.
Other explanations come from game theory (Freund & Schapire, 1996b), VC theory (Schapire
& Singer, 1999), additive models (J. Friedman et al., 2000) and dynamic systems (Rudin,
Daubechies, & Schapire, 2004).

While Boosting can be used with any classifier, many authors have explored it with decision
tree. In fact, Adaboost with decision trees are even called the “best off-the-shelf classifier in
the world” (Breiman, 1999). In this thesis, the decision tree type we used is CART which was
introduced in the previous section, since it is the most popular one due to its availability of
handling missing data and mixed inputs with both categorical and continuous data (Murphy,
2012).

For a training set of N samples, the whole procedure for Adaboost is shown below (Freund
& Schapire, 1996a; Murphy, 2012):

Algorithm 1: Adaboost
1. Start with weights ωi = 1/N, i = 1, ..., N ;
2. for i← 1 to M do

(a) Fit the classifier φm(x) ∈ {−1, 1} using weights ωi on the training data;

(b) Compute errm =

N∑
i=1

ωiI(ỹi 6=φm(xi))

N∑
i=1

ωi

;

(c) Compute αm = log[(1− errm)/errm];
(d) Set ωi ← ωi exp[αmI(ỹi 6= φm(xi)] and renormalize so that ∑i ωi = 1;

end
3. Output the classifier

f(x) = sgn(
M∑
m=1

αmφm(x))

In whichM is the number of iterations (10 in our experiment), ωi, is the weight for i-th data,
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I(·) is the indicator function, ỹi ∈ {−1, 1} is the class label of training data, and φm(x) is
the decision tree model in our case.

We apply this boosting technique on our decision tree model introduced in the previous
section. Based on the result of the comparison of the three strategies, we implement the
best performing one, that is, besides using the outputs of three different refinement methods
(minRSS, maxDiff and ALSC), we also use extra features including skills per row, skills per
column and stickiness for each classifier.

In order to compare with results obtained in the previous decision tree method, we use the
same procedure to generate synthetic datasets and also compare on the same real datasets.
The real dataset we are considering is the famous fraction algebra dataset (Tatsuoka, 1984).
A number of Q-matrices have been proposed for this Q-matrix, three of them are used in our
research together with a Q-matrix proposed by ourselves. Table 3.3 shows these Q-matrices
we used.

To evaluate the performance, we use the same two metrics introduced in the previous section,
i.e, the accuracy and F-score.

The results of our study (P. Xu & Desmarais, 2016) show that the decision tree strategy can
be further improved with boosting. At the synthetic data side, the results show an F-score
error reduction gain from boosting over the DT score of close to 50% on average for all four
Q-matrices (Table 3.4), while a 17.8% reduction for real data (Table 3.5). The error reduction
gain of F-scores from F0 to F1 is computed as follow:

Gain(F0, F1) = F1 − F0

1− F0

Table 3.3 Q-matrix for refinement

Name Number of DescriptionSkills Items Cases
QM1 3 11 536 Expert driven from (Henson,

Templin, & Willse, 2009)
QM2 3 11 536 Expert driven from

(De La Torre, 2008)
QM3 5 11 536 Expert driven from (Robitzsch,

Kiefer, George, & Ünlü, 2017)
QM4 3 11 536 Data driven, SVD based
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Table 3.4 Refinement results for synthetic data

Individual Ensemble
QM minRSS maxDiff ALSC DT Gain% BDT Gain%

Accuracy of perturbated cells
1 0.809 0.465 0.825 0.946 69.1% 0.951 9.3%
2 0.069 0.259 0.359 0.828 73.2% 0.903 43.6%
3 0.961 0.488 0.953 1.000 99.7% 1.000 0.0%
4 0.903 0.489 0.853 0.956 54.6% 0.971 34.1%
X 0.685 0.425 0.747 0.933 74.2% 0.956 21.8%

Accuracy of non perturbated cells
1 0.970 0.558 0.387 0.990 66.7% 0.990 0.0%
2 0.987 0.529 0.431 0.989 15.4% 0.996 63.6%
3 0.950 0.258 0.736 0.994 88.0% 1.000 100.0%
4 0.966 0.559 0.391 0.997 91.2% 0.998 33.3%
X 0.968 0.476 0.486 0.993 65.3% 0.996 49.2%

F-score
1 0.882 0.507 0.527 0.968 72.9% 0.970 6.3%
2 0.128 0.348 0.392 0.902 83.9% 0.947 45.9%
3 0.955 0.337 0.831 0.997 93.3% 1.000 100.0%
4 0.934 0.522 0.536 0.976 63.6% 0.984 33.3%
X 0.725 0.429 0.571 0.961 78.4% 0.975 46.4%
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Table 3.5 Refinement results for real data

Individual Ensemble
QM minRSS maxDiff ALSC DT Gain% BDT Gain%

Accuracy of perturbated cells
1 0.485 0.167 0.515 0.758 50.1% 0.758 0.0%
2 0.345 0.093 0.564 0.618 12.4% 0.764 38.2%
3 0.212 0.091 0.364 0.818 71.4% 0.818 0.0%
4 0.394 0.111 0.576 0.576 0.0% 0.818 57.1%
X 0.359 0.115 0.505 0.692 33.5% 0.789 23.8%

Accuracy of non perturbated cells
1 0.435 0.670 0.418 0.606 -19.4% 0.606 0.0%
2 0.875 0.929 0.110 0.956 38.0% 0.966 22.7%
3 0.661 0.830 0.219 0.785 -26.5% 0.752 -15.3%
4 0.520 0.889 0.148 0.546 -309.0% 0.658 24.7%
X 0.623 0.829 0.224 0.723 -79.2% 0.746 8.0%

F-score
1 0.459 0.267 0.461 0.673 39.3% 0.673 0.0%
2 0.495 0.168 0.184 0.751 50.7% 0.853 41.0%
3 0.321 0.164 0.273 0.801 70.7% 0.784 -8.5%
4 0.448 0.198 0.235 0.560 20.3% 0.730 38.6%
X 0.431 0.199 0.288 0.696 45.3% 0.760 17.8%
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And the error reduction gains of accuracy are calculated similarly. Compared with the score
of the three individual refinement algorithms, minRSS, maxDiff, and ALSC, the combined
ensemble learning of decision tree is very effective.

However, we find strong differences between the Q-matrices. For example, QM2 benefits of
improvements close to 50% (QM2), while QM1 has a null improvement for real data and
only 6.3% for synthetic data. In that respect, the boosting does not provide a gain that is
as systematic as the one obtained from the DT which is positive for all matrices.

An important advantage of the boosting approach outlined here is that it can be applied
to any classifiers. The base decision tree can also combine many algorithms to validate Q-
matrices. Future work could look into combining more than the three algorithms of this
study, and add new algorithms that potentially outperform them. And if the current results
generalize, we would expect to make supplementary gains over any of them.

Moreover, the Q-matrices used in this research are quite small in size. The performance of
boosted decision tree on larger Q-matrix and larger dataset would also be of interest.

Another interesting contribution is the demonstration that we can use ensemble algorithms
such as the decision tree and Boosting by training over simulated data of Q-matrices. Without
this synthetic data, training and extraction of features, such as the stickiness property, would
not be feasible.
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CHAPTER 4 Q-MATRIX DESIGN

4.1 Introduction

Regardless if student skill assessment is for classroom assessment or for online tutoring sys-
tem, there is a strong incentive to minimize the number of questions. The number of questions
needs to be large enough to correctly distinguish different student profiles, yet it also needs
to be small enough to assess student profiles efficiently, avoiding too much work on both stu-
dent side and tutors side. To tackle this problem, we see that there are two steps involved.
First, the Q-matrix design needs to guarantee the feasibility of distinguishing different skill
mastery levels. Since student profiles are parameters in statistical models, this question leads
to the identifiability problem. Second, when identifiability requirement is satisfied, how does
one find the best Q-matrix from a pool of candidates? More specifically, this problem can be
rephrased as, given a set of skills to assess and a fixed number of question items, determine
the optimal set of items, out of a potentially large pool, that will yield the most accurate as-
sessment based on some criterion or loss function. Since all candidate Q-matrices are binary,
this is a discrete optimization problem.

In recent years, the Q-matrix identifiability under DINA/DINO models has been proposed
as a guiding principle for that purpose. We empirically investigate the extent to which
identifiability can serve that purpose. Identifiability of Q-matrices is studied throughout
a range of conditions in an effort to measure and understand its relation to student skills
assessment. The investigation relies on simulation studies of skills assessment with synthetic
data. Results show that identifiability is an important factor that determines the capacity
of a Q-matrix to lead to accurate skills assessment with the least number of questions.

The rest of this chapter is organized as follows. In Section 4.2, a deterministic case with
no uncertainty involved is analyzed for inspiration. In Section 4.3, the theoretical results of
identifiabilities of DINA model parameters are given. In Section 4.4 and 4.5, two experiment
results (P. Xu & Desmarais, 2018) are given to show the best Q-matrix design strategy. The
conclusion is, the best Q-matrix design is to use only the unit vectors {ei : i = 1, ..., K} since
it offers quicker convergence speed (as shown in experiment 1) and better robustness against
slip and guess (as shown both in experiments 1 and 2). This conclusion is further solidified
theoretically in Section 4.6.
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4.2 Deterministic Case

Before talking about identifiability in a statistical framework, we first examine the determin-
istic case where no probability is involved thus identifiability becomes uniqueness in this case.
For example, if slip=guess=0, then DINA model becomes a deterministic model. That is, if
a student mastered all required skills for an item, then the answer will always be correct. We
know that for this case, we have the binary decomposition formula

X = P �QT

where� is denotes Boolean Matrix Product, the overline operator is the negation (A = 1−A)
and P , Q denote the profile matrix and Q-matrix respectively.

Mathematically, finding a decomposition of a matrix X satisfying above formula is basically
find a decomposition in the form below

Y = A�B

where Y = X, A = P and B = QT . The question is, for a given result matrix Y , how to
find such a decomposition and is this decomposition unique?

This is the Binary Matrix Factorization (BMF) problem. Here we show that the decom-
position is not unique by showing its equivalence to block covering problem. A block
of a binary matrix is a submatrix where every entry is 1. For example, consider matrix

Y =


1 1 0 0
0 1 1 1
1 1 1 1
0 0 1 1

, then K1 = {(1, 3), (1, 2)} =


1 1 0 0
0 0 0 0
1 1 0 0
0 0 0 0

 is a block. Here {(1, 3), (1, 2)}

means choosing the rows (1,3) and the columns (1,2). A block is said to cover its entries. A
block covering of a binary matrix Y is a collection of blocks that any entry of Y is covered
by at least one of the blocks. Then to find a Boolean matrix factorization of Y is equivalent
to find a block covering of Y (Phelps, 1996). To show this, we can look at an example.
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Consider the decomposition below of matrix Y

Y =


1 1 0 0
0 1 1 1
1 1 1 1
0 0 1 1

 =


1 1 0 0
0 0 0 0
1 1 0 0
0 0 0 0

⊕


0 0 0 0
0 1 1 1
0 1 1 1
0 0 0 0

⊕


0 0 0 0
0 0 1 1
0 0 1 1
0 0 1 1



=


1
0
1
0


[
1 1 0 0

]
⊕


0
1
1
0


[
0 1 1 1

]
⊕


0
1
1
1


[
0 0 1 1

]

=


1 0 0
0 1 1
1 1 1
0 0 1




1 1 0 0
0 1 1 1
0 0 1 1



Here the Boolean matrix product symbol � is omitted for simplicity. We can easily see from
the above process that the decomposition is not unique. In fact we also have a different
decomposition below

Y =


1 1 0 0
0 1 1 1
1 1 1 1
0 0 1 1

 =


1 1 0 0
0 0 0 0
1 1 0 0
0 0 0 0

⊕


0 0 0 0
0 1 1 1
0 0 0 0
0 0 0 0

⊕


0 0 0 0
0 0 1 1
0 0 1 1
0 0 1 1



=


1
0
1
0


[
1 1 0 0

]
⊕


0
1
0
0


[
0 1 1 1

]
⊕


0
1
1
1


[
0 0 1 1

]

=


1 0 0
0 1 1
1 0 1
0 0 1




1 1 0 0
0 1 1 1
0 0 1 1



We know that in the right side of this decomposition, the first matrix is correspondent to
the profile matrix P while the second matrix is correspondent to the Q-matrix QT . We
see thereby that this Q-matrix can not assess student profiles correctly since it can not give
unique results.



34

Therefore, when we design a Q-matrix, we first need to guarantee that this Q-matrix can
assess skills correctly, with no ambiguity. The above example is just a counterexample for
genuine deterministic “DINA” , then what about the probabilistic DINA model? Fortunately,
the theoretical results of identifiability of DINA model have already been established, which
we will give in the next section.

4.3 Identifiability

First we need to define the notion of complete and identifiable.

Definition (Chiu et al., 2009; Chen, Liu, Xu, & Ying, 2015) A matrix Q is complete if
{ei : i = 1, ..., K} ⊂ RQ, where RQ is the set of row vectors of Q and ei is a row vector such
that the i-th element is one and the rest are zero (i.e. a binary unit vector).

Definition (Casella & Berger, 2002) A parameter θ for a family of distribution f(x|θ : θ ∈ Θ)
is identifiable if distinct values of θ correspond to distinct pdfs or pmfs. That is, if θ 6= θ′,
then f(x|θ) is not the same function of x as f(x|θ′).

For the DINA model, the model parameters are s, g, p and Q. Chen et al. (2015) established
the identifibility results for all these parameters. The conditions can be listed below (Chen
et al., 2015)

A1. α1,α2, ...,αN are independently and identically distributed random vectors following
distribution p(αi = α) = pα and the population is fully diversified meaning that pα > 0 for
all α.

A2. All items have discriminating power meaning that 1− sj > gj for all j.

A3. The true matrix Q0 is complete.

A4. Each attribute is required by at least two items, that is, ∑J
j=1 qjk ≥ 2 for all k.

A5. Each attribute of Q-matrix is associated to at least three items, that is, ∑J
j=1 qjk ≥ 3

for all k.

A6. Q has two complete submatrices, that is, for each attribute, there exists at least items
requiring only that attribute. If so, the matrix can be rearranged into the form below

Q =


Ik

Ik

Q1


The main theoretical results are
Theorem 1 (Liu, Xu, & Ying, 2013) For the DINA model, if the guessing parameters gj’s
are known, under Conditions A1, A2 and A3, the Q-matrix is identifiable.
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Theorem 2 (Chen et al., 2015) Under the setting of Theorem 1, the slipping parameters sj
and the attribute parameter p are identifiable if and only if Condition A4 holds.

Theorem 3 (Chen et al., 2015) Under the DINA and DINO models, with (s, g, p) unknown,
if Conditions A1,2,5 and 6 holds, then Q, s, g, p are all identifiable.

4.4 Experiment 1: Comparison of three Q-matrix design strategies

From the discussion above we can see that identity matrix plays an import role in guaran-
teeing the identifiability of model parameters. In fact, when the uncertainty increases, we
need more unit vectors in Q-matrix (Theorem 3). This observation inspires the idea that the
Q-matrix design should also incorporate the identity matrix to guarantee the identifiability of
student profile parameters, and the hypothesis is more unit vectors in Q-matrix can decrease
the uncertainty in student profile diagnosis. This corresponds to a Q-matrix design strategy
of repeating identity matrix.

To see how this strategy works, we compare it with two other strategies in both 3-skill and
4-skill cases, and we specify all three strategies below

• Strategy 1: Using the identifiability condition by only repeatedly using the vectors
{ei : i = 1, ..., K} (binary unit vectors, or one-hot encodings). Q-matrix used in this
strategy is denoted as Q-matrix 1.

• Strategy 2: Using the vectors {ei : i = 1, ..., K} plus an all-one vector (1, 1, 1) (in the
3-skill case) or (1, 1, 1, 1) (in 4-skill case). This is inspired by orthogonal array design,
which is a commonly seen design of experiments (Montgomery, 2017). Q-matrix used
in this strategy is denoted as Q-matrix 2.

• Strategy 3: Repeatedly using all q-vectors. Q-matrix used in this strategy is denoted
as Q-matrix 3.

For the 3-skill case, all these three Q-matrices are shown in Figure 4.1. The general pattern is
to recycle the rows above the lines denoted by ...[..., ..., ...]. The 4-skill case is similar, which
is omitted here.

After defining the three strategies, we need to find a metric to compare their performance
for assessing student profiles. We need to compare the profiles assessed from a DINA model
based on the given Q-matrices with the true profiles. For the 3-skill case, there are 8 different
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student profiles. We use one-hot encoding to denote all profile categories. Set M to be the
number of profile categories. Then, in the 3-skill case, the M = 8 profile categories pci are:



k1 k2 k3

pc1 0 0 0
pc2 1 0 0
pc3 0 1 0
pc4 0 0 1
pc5 1 1 0
pc6 1 0 1
pc7 0 1 1
pc8 1 1 1


Therefore, a student belonging to profile pc1 is encoded as a binary unit vector α1 =
(1, 0, 0, 0, 0, 0, 0, 0), and so on for pc2 encoded α2 = (0, 1, 0, 0, 0, 0, 0, 0), ..., and pc8 encoded
α8 = (0, 0, 0, 0, 0, 0, 0, 1). For this case, the DINA model parameter p = (p1, p2, ..., p8) =
(P (α1), P (α2), ..., P (α8)) where P is a probability.

For a given profile αi, for the DINA model, we have the likelihood

P (Xi|αi) =
J∏
j=1

Pj(αi)Xij [1− Pj(αi)]1−Xij

and we need to conduct inference on αi by maximizing

P (αi|Xi) ∝ P (Xi|αi)P (αi)

This is essentially a MAP (Maximum a posteriori) estimation. Here we only have 8 possible
αi, and the prior of them is uniformly distributed, thus we can calculate the likelihood of
each of them and choose the correspondent αi yielding the highest likelihood as the MAP
estimation of αi. Now, for any Q-matrix configuration, the loss function is defined by

Loss(Q) =
∑

i∈students
||α̂i − αtrue||2

where || · ||2 is the Euclidean norm.

Now the question that remains is how to generate the synthetic data? Since we are only con-
cerned with DINA model, the dataset will also be generated under DINA model constraints.
To generate student response data based on DINA model, we need to offer slip, guess, Q-
matrix and student profiles. Here the student profiles are fixed, we use N = 200 student for
3-skill case, with each type of the 8 profile categories represented by 25 students. For the
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4-skill case, we use N = 400, with each of type of the 16 profile categories also represented by
25 students. These profiles are the ground truth and we will estimate them by using DINA
model again. The performance of different Q-matrix design strategies will be shown under
different setting of s and g.

We show the result of loss versus number of questions under different strategies, 3-skill and
4-skill cases in in Figure 4.2 and Figure 4.3 respectively.

From the result of this experiment we can see that strategy 1 always works better than the
other two strategies, meaning that simply repeating the vectors {ei : i = 1, ..., K} in Q-matrix
design, without using any combination of skills, yields better student diagnosis performance,
which validates our hypothesis. However, this is a comparison among three particular Q-
matrix design strategies. For a given pool of q-vectors, there are tons of different Q-matrix
available to be used, can we have a more refined comparison on all of them? To answer this
question, we conduct the second experiment below.

4.5 Experiment 2: Find best configuration

The second experiment takes the brute force approach. We directly examine all possible
Q-matrix configurations. First, for a given pool of q-vectors to choose from and an integer
indicating the number of questions, we need to know the number of possible configurations
of Q-matrices we have. This is equivalent to a classical combinatorial problem, that is, to
allocate distinguished balls (q-vectors) to indistinguished cells (questions). It can be easily
computed by combinatorial coefficients and interpreted by using stars and bars methods.
For example, in 3-skills case, we have 7 q-vectors, and if we have 4 questions to allocate
them, then we have

(
4+7−1

7−1

)
= 210 possible configurations. This number grows up sharply

as a number of questions increases or number of patterns increases. As a comparison, in the
4-skills case, if we have 5 questions to allocate them, then we have

(
5+15−1

15−1

)
= 11628 possible

configurations.

The setting of experiment 2 is the same as experiment 1. For each configuration, we calculate
the MAP estimation for all categories of each student, and compare with the one-hot encoding
for their true categories. The total loss is reported as the performance index.

Since now the aim is to show a comparison among all Q-matrix design strategies, we show
the results of 6 combinations of different numbers of skills and questions:

• 3-skills case, 4 questions: Figure 4.4, Figure 4.5

• 3-skills case, 8 questions: Figure 4.6, Figure 4.7
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Q-matrix 1
(binary unit vectors)



k1 k2 k3

q1 1 0 0
q2 0 1 0
q3 0 0 1
... ... ... ...
q19 1 0 0
q20 0 1 0
q21 0 0 1



Q-matrix 2
(binary unit + all-1s vectors)



k1 k2 k3

q1 1 0 0
q2 0 1 0
q3 0 0 1
q4 1 1 1
... ... ... ...
q17 1 0 0
q18 0 1 0
q19 0 0 1
q20 1 1 1
q21 1 0 0



Q-matrix 3
(all combinations)



k1 k2 k3

q1 1 0 0
q2 0 1 0
q3 0 0 1
q4 1 1 0
q5 1 0 1
q6 0 1 1
q7 1 1 1
... ... ... ...
q15 1 0 0
q16 0 1 0
q17 0 0 1
q18 1 1 0
q19 1 0 1
q20 0 1 1
q21 1 1 1



Figure 4.1 Q-matrix design strategies
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• 4-skills case, 5 questions: Figure 4.8, Figure 4.9

From the result of experiment 2, when slip and guess parameters are as low as 0.01, we can
see obvious graded patterns among different configurations. This can be explained by the
distinguishability of Q-matrix. For example, in Figure 4.4, we can see there are 7 layers. In
fact, the first layer consisted of Q-matrix that can only cluster students into 2 categories.
One example of such kind Q-matrix is:



k1 k2 k3

q1 1 0 0
q1 1 0 0
q1 1 0 0
q1 1 0 0



This Q-matrix can only discriminate between a student that mastered skill 1 or not. We
know that there are in fact 8 categories of students, the 7 layers in Figure 4.4 from top to
bottom correspond to the Q-matrix that can separate students into 2 to 8 categories. We
can see that complete Q-matrices always fall in the bottom layer, which concurs with our
hypothesis. The 4-skills case is similar in Figure 4.8.

When slip and guess parameter increase, it makes the points becomes more divergent which
can be easily seen by comparison between Figure 4.4 and Figure 4.5. In order to see some
more details, we categorize three types of Q-matrices.
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• Type I: Complete and confined, meaning it is only consisted of vectors {ei : i = 1, ..., K}.

• Type II: Complete but not confined, meaning it not only contains all vectors {ei : i =
1, ..., K}, but also contains at least one other q-vector.

• Type III: Incomplete Q-matrix.

Type I and Type II Q-matrices performs the same when slip and guess are low (Figure 4.4,
Figure 4.8), but when they get higher, Type I Q-matrices show a better performance (Fig-
ure 4.5, Figure 4.9).

However, when more questions are involved in high slip and guess, the performance becomes
more unstable. Therefore, we again consider more subtypes. In 3-skills case for 8 questions,
we consider three subtypes below.

• Subtype 1: Q-matrix contains each component of {ei : i = 1, ..., K} at least twice.

• Subtype 2: Other situations (e.g a complete Q-matrix but all the other vectors are just
repeated e1).

• Subtype 3: Q-matrix contains all q-vectors.

From Figure 4.7 we can see that the subtype 1 (denoted by triangle) shows better performance
than subtype 2, meaning that repeating the whole set of {ei : i = 1, ..., K} is a better strategy
just like the strategy 1 we used in experiment 1. Subtype 3 corresponds to the strategy 3 in
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experiment 1, it has only 7 possible configurations in 8-question setting and we can see that
they do not perform well.

Therefore, we argue that the best Q-matrix design is to use only the vectors {ei : i = 1, ..., K}
since it offers quicker convergence speed (as shown in experiment 1) and better robustness
against slip and guess (as shown both in experiments 1 and 2).

4.6 Theoretical Discussion

After seeing the promising result of the two experiments, we would like to offer a theoretical
explanation to the results. For simplicity, here we consider the 3-skill case. The profile of a
student can be written as (α1, α2, α3), in which αi is a Bernoulli variable indicating whether
the student has mastered skill i or not. Let p(αi = 1) = θi, i = 1, 2, 3, then θi, i = 1, 2, 3
are the parameters we want to learn. Without loss of generality, we choose a focus attribute
α1, and we want to know the effect of different choices of questions on the uncertainty of α1.
Here we use entropyH(α1) to measure the uncertainty, that isH(α1) = −∑α1 p(α1) log p(α1).
Now with different questions answered, we will have different entropy of α1, in other words,
different conditional entropy. Below we prove that H(α1|r1 = 1) < H(α1|r12 = 1) which
indicates that answering question q1 = (1, 0, 0) correctly will give less uncertainty on α1 than
answering question q12 = (1, 1, 0) correctly.

First consider question q1 = (1, 0, 0), the response to this question is denoted as r1, we have

p(α1 = 1|r1 = 1) = p(r1 = 1|α1 = 1)p(α1 = 1)
p(r1 = 1|α1 = 1)p(α1 = 1) + p(r1 = 1|α1 = 0)p(α1 = 0)

= (1− s)θ1

(1− s)θ1 + g(1− θ1)

(4.1)

And we have

p(α1 = 0|r1 = 1) = 1− p(α1 = 1|r1 = 1)

= g(1− θ1)
(1− s)θ1 + g(1− θ1)

(4.2)

p(α1 = 1|r1 = 0) = p(r1 = 0|α1 = 1)p(α1 = 1)
p(r1 = 0|α1 = 1)p(α1 = 1) + p(r1 = 0|α1 = 0)p(α1 = 0)

= sθ1

sθ1 + (1− g)(1− θ1)

(4.3)
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p(α1 = 0|r1 = 0) = 1− p(α1 = 1|r1 = 0)

= (1− g)(1− θ1)
sθ1 + (1− g)(1− θ1)

(4.4)

Then consider question q12 = (1, 1, 0), the response to this question is denoted as r12, we
have

p(α1 = 1|r12 = 1) = p(r12 = 1|α1 = 1)p(α1 = 1)
p(r12 = 1|α1 = 1)p(α1 = 1) + p(r12 = 1|α1 = 0)p(α1 = 0) (4.5)

in which

p(r12 = 1|α1 = 1) = p(r12 = 1|α1 = 1, α2 = 1)p(α2 = 1) + p(r12 = 1|α1 = 1, α2 = 0)p(α2 = 0)

= (1− s)θ2 + g(1− θ2)
(4.6)

and

p(r12 = 1|α1 = 0) = p(r12 = 1|α1 = 0, α2 = 1)p(α2 = 1) + p(r12 = 1|α1 = 0, α2 = 0)p(α2 = 0)

= gθ2 + g(1− θ2)

= g

(4.7)

Therefore
p(α1 = 1|r12 = 1) = ((1− s)θ2 + g(1− θ2))θ1

((1− s)θ2 + g(1− θ2))θ1 + g(1− θ1) (4.8)

We want to compare H(α1|r1 = 1) with H(α1|r12 = 1). Notice that α1 is a Bernoulli variable,
we can just compare p(α1 = 1|r1 = 1) with p(α1 = 1|r12 = 1) instead. In fact, from the graph
of entropy function of Bernoulli variable we know that when p < 0.5, H(X) is monotonically
increasing while when p > 0.5, H(X) is monotonically decreasing.

Now let us look at the two expressions (4.1) and (4.8), they share the same structure, in fact
they can be seen as the values of function f(T ) = Tθ1

Tθ1+g(1−θ1) at point 1− s and (1− s)θ2 +
g(1 − θ2) respectively. We can rewrite f(T ) as f(T ) = T

T+k = 1 − 1
T+k where k = g(1−θ1)

θ1
,

then we can easily see this is a hyperbola with asymptote at x = −k = −g(1−θ1)
θ1

< 0 and the
function increases in both two branches.
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Now we only need to compare 1 − s with (1 − s)θ2 + g(1 − θ2) which can be easily figured
out since the latter is a convex combination of point 1− s and g, thus its value is between g
and 1− s, supposed we have 0 < s, g < 0.5.

Now we only need to show that both p(α1 = 1|r1 = 1) and p(α1 = 1|r12 = 1) are bigger than
0.5 so their values can be easily compared in H(α1). In fact, we have

p(α1 = 1|r1 = 1) = 1− s
(1− s)θ1 + g(1− θ1)θ1 (4.9)

We see that p(α1 = 1|r1 = 1) > θ1 since 1−s
(1−s)θ1+g(1−θ1) > 1 considered that the denominator is

a convex combination of point 1− s and g. The same reasoning holds for p(α1|r12 = 1) > θ1

too. If the previous knowledge of θ1 or the prior of θ1 is θ1 = 0.5 then we have both
p(α1 = 1|r1 = 1) > 0.5 and p(α1 = 1|r12 = 1) > 0.5.

Now, from all the discussion above, we conclude that H(α1|r1 = 1) < H(α1|r12 = 1), which
means tested by item q1 = (1, 0, 0) will make the skill mastery state α1 less uncertain than
tested by item q12 = (1, 1, 0). Therefore, it theoretically solidifies the strategy of using unit
vectors in Q-matrix design.
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CHAPTER 5 Q-MATRIX DERIVATION

5.1 Introduction

For educational assessment, the item-skill mapping matrix, namely Q-matrix, is often needed
to determine the status of skill mastery of a student. Typically, this Q-matrix is given by
experts. However, different experts might give different Q-matrices. Even for a single expert,
one might not be so sure of the given Q-matrix. Therefore, can we directly obtain a Q-matrix
from the students response data? In other words, can we empirically estimate the Q-matrix
from the data itself, instead of relying on an artificial one?

In fact, experts can just add these Q-matrix derivation techniques into their tool box for
initiating a reasonable Q-matrix, which helps to build their own Q-matrix.

One way to tackle the Q-matrix derivation problem is to convert it into a Q-matrix refinement
problem which we discussed in Chapter 3. A natural thought is starting from a random Q-
matrix, pretending it to be an expert-given matrix and then use Q-matrix refinement method
to obtain a new one. However, the feasibility of those refinement methods under this situation
is not well researched, and due to the identifiability problem, we may expect unsatisfactory
results. Therefore, researchers have developed other methods for deriving Q-matrix directly
from student performance data, and in this chapter we will discuss them, in addition to
proposing our own new method.

We first review several Q-matrix derivation methods in previous research, including Hill
Climbing in Section 5.2, LASSO in Section 5.3, NMF in Section 5.4 and ALS in Section
5.5. Then we propose our new method, which we name ClusterToQ. It consists of two major
steps of novelty, the first one is to use clustering techniques to obtain a set of ideal response
patterns, and then to use a proposed algorithm to convert those patterns into a Q-matrix.
Both advantages and disadvantages of this method compared to other methods are discussed
in Section 5.6.

5.2 Hill Climbing

If we think each Q-matrix is associated with a “cost”, and our aim is to find a Q-matrix from
all possible ones that minimize a predefined “cost”, then the Q-matrix derivation problem
becomes an optimization problem. And more specifically, a discrete optimization problem if
we require the entry of the Q-matrix to be binary. Using terms of discrete optimization, each
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Q-matrix is a candidate solution, and our aim is to find the one that minimizes its associated
cost.

However, just like many discrete optimization problems, the size of the search space, or the
feasible region is very big. For example, consider a Q-matrix with 9 items and 3 skills,
since each of its entry can be 0 or 1, then there are 227 possible Q-matrices (over 130M).
Considering that each matrix must be evaluated, often through a cross validation process,
the computations over all possible Q-matrices would thereby become impractical.

One way to solve this problem is using heuristics. Hill Climbing, as a method of local search, is
a commonly used heuristic algorithm in mathematical optimization. Barnes (2010) applied
this algorithm into Q-matrix derivation problem. The idea follows a typical local search
scheme. First we start with a random Q-matrix and calculate the cost associated with it,
then apply a small change on a random cell of the Q-matrix and calculate the new cost
associated with this new Q-matrix, if the new candidate solution yields lower cost, then keep
the update, otherwise abandon it. This process iterates until no further improvement can be
made. A pseudo-code is given in Algorithm 2.

There are several concerns of this algorithm. First is the definition of cost, which is called
error in (Barnes, 2010). To calculate the error of each Q-matrix configuration, the IRP
method discussed in Section 2 is used, that is, associate each student response vector to the
closest ideal response pattern, which is called IDR (Ideal Response Vector) in (Barnes, 2010).
The distance used to measure the closeness is `1 distance, that is

d(RESP, IDR) =
∑
k

|RESP (k)− IDR(k)|

where k is the index of skills, RESP (k) is the k-th entry of the response vector, and IDR(k)
is the k-th entry of the IDR.

The second important problem is the choice of the small change delta involved in the search
process. Since a Q-matrix is binary, the commonly used small real number change will sab-
otage this limitation. Therefore, Barnes (2010) relaxed the binary limitation by allowing
Q-matrix entries to be real values ranging from 0 to 1. But doing this needs a new interpre-
tation of a Q-matrix, and the author used one from (Brewer, 1996), which is, each Q-matrix
entry indicates the probability that a student will miss a question component incorrectly if
he or she does not master that skill. We can see this idea consider questions in a component
level. From a DINA model point of view, this can also be parameterized as 1 − g, but on
the skill level, not the item level. For example, if Q[3][1] = 0.3, Q[3][2] = 0.2, Q[3][3] = 1,
it means for a student who does not master any of the three skills, he or she will miss the
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Algorithm 2: Hill Climbing for Q-matrix Derivation (Barnes, 2010)
1. Set MinError = LargeNumber;
2. for Starts← 1 to NumStarts do

(a) Random initialization of Q[J ][K] where J is the number of questions and K is
the number of skills;
(b) Set Q∗ = Q, CurrError = Error(Q);
(c) for Iters← 1 to NumIters do

for k ← 1 to K do
for j ← 1 to J do

Q∗[j][k] = Q[j][k] + delta;
if Error(Q∗) < CurrError then

do
set Q∗ = Q;
set CurrError = Error(Q∗);
Q∗[j][k] = Q[j][k] + delta;

while Error(Q∗) < CurrError;
else

Q∗[j][k] = Q[j][k]− delta ;
while Error(Q∗) < CurrError do

set Q∗ = Q;
set CurrError = Error(Q∗);
Q∗[j][k] = Q[j][k]− delta;

end
end

end
end

end
(d) if CurrError < MinError then

set BestQ = Q;
set minError = currError;

end



48

first component of question 3 with probability 0.3, the second component with probability
0.2 and third component with probability 1. Then the probability of student i to get item 3
correctly is P (Xi3 = 1) = (1− 0.3) ∗ (1− 0.2) ∗ (1− 1) = 0.

The third problem is how to avoid getting stuck in local optima, since it is an inherent feature
of local search heuristics. Barnes (2010) used the traditional way, by trying multiple random
starts, and choosing the best performing one.

The fourth problem is whether to fix the number of skills, since it is also a latent variable.
The author did not fix it, but increase it gradually starting from 1. Then there is the problem
of when to stop increasing. The author proposed to preset a threshold error, like less than 1
error for every student. The increase of number of skills stops when this criterion is reached.

This HC method is used for comparison in our later experiments, but we fixed the number of
skills in advance since our main aim is to compare different Q-matrix derivation algorithms
for the same datasets.

5.3 LASSO

Another way to tackle the Q-matrix derivation problem is to treat it as a variable selection
problem in a statistical model (Chen et al., 2015). We survey this approach by first reviewing
an alternative representation of DINA model given in Chen et al. (2015).

The item response function of DINA model can be alternatively written as:

θj,α = P (Xj = 1|α, βj) =logit−1(βj0 +
K∑
k=1

βjkαk +
∑

1≤k1<k2≤K
βjk1k2αk1αk2

+
∑

1≤k1<k2<k3≤K
βjk1k2k3αk1αk2αk3 + ...+ βj12...K

K∏
k=1

αk)
(5.1)

where logit(p) = log p
1−p for p ∈ (0, 1), and logit−1(x) = logistic(x) = 1

1+e−x where x ∈ R.
Notice here the item index j is moved from subscript to superscript to be consistent with the
original paper. More precisely, Xj

i is the response data of student i towards item j and here
i is omitted for the specific profile pattern α. We can see this is a Generalized Linear Model
(GLM) but with all interaction terms.

DINA model can be considered as a special case in this expression where only one coefficient
is non-zero besides the constant term βj0. For example, if βj23 is non-zero, then the q-vector
for j − th item has 1 for the 2nd and 3rd skills, and 0 for all the remaining skills. For this
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item, the item response function is

θj,α = logit−1(βj0 + βj23α2α3)

Notice that in original DINA model expression, the item response function is:

θj,α = P (Xj = 1|α, gj, sj) =

gj, if at least one skill not mastered

1− sj, if all skill mastered
(5.2)

For our example, when α2 = 1 and α3 = 1, then θj,α = 1 − sj = e
β
j
0+βj23

1+eβ
j
0+βj23

; otherwise

θj,α = gj = e
β
j
0

1+eβ
j
0
. Thus we see how the parameters of DINA model, i.e. gj and sj are

expressed by the new parameters βj. In fact, the original parameters sj and gj in this
example are replaced by parameters βj0 and βj23.

From the discussion above, we see that the non-zeros of coefficients βj determine the structure
of q-vectors. In fact, for DINA model, only the constant βj0 and one other coefficient should
be non-zero. Therefore, if we can find a way to estimate those coefficients while forcing most
of them to be 0, then we can obtain the correspondent Q-matrix. By doing this, we actually
convert the Q-matrix derivation problem into a variable selection problem.

Fortunately, for generalized linear model, LASSO (Least Absolute Shrinkage and Selection
Operator) is a popular approach to do so. Originally proposed in (Tibshirani, 1996), LASSO
is a general way to do variable selection by regularizing likelihood through adding a `1 penalty
term. The consistency of LASSO, that is, the condition of LASSO to find the true model
by variable selection is developed in Fan and Li (2001); Zhao and Yu (2006); Fan and Lv
(2011). Compared to `2 regularization, or ridge regression, the main property of LASSO is
it can force the irrelevant parameters to be 0, thus achieving the aim of variable selection.

Therefore, a regularized MLE (Maximum Likelihood Estimation) of the parameters is given
by:

(β̂1, ...β̂J) = arg max
β1,...βJ

log[L(β1, ...βJ ;X i, i = 1, ..., N)]−N
J∑
j=1

pλj(βj) (5.3)

where pλj is the penalty function and λj is the regularization parameter. In our research, we
use LASSO regularization, namely the second term:

pλ(β) = λ
K∑
k=1
|βk|



50

and since the conditional likelihood function is:

L(β1, ...βJ ;X i,αi, i = 1, ..., N) =
∏
i,j

(θj,αi
)X

j
i (1− θj,αi

)1−Xj
i ) (5.4)

then the first term in (5.3), or the observed data likelihood, is:

L(β1, ...βJ ;X i, i = 1, ..., N) =
N∏
i,j

∑
αi

[pαi(θj,αi)X
j
i (1− θj,αi)1−Xj

i )] (5.5)

Since this optimization is again involved with latent variables, EM algorithm is used for
calculation.

5.4 NMF

Initially proposed in Paatero and Tapper (1994); Paatero (1997) and flourished after (Lee &
Seung, 1999, 2001), Nonnegative Matrix Factorization (NMF) is now a popular method used
in many fields, including document clustering (W. Xu, Liu, & Gong, 2003; Shahnaz, Berry,
Pauca, & Plemmons, 2006), image classification (Gupta & Xiao, 2011), stock market pricing
(de Fréin, Drakakis, Rickard, & Cichocki, 2008), etc. Using NMF for Q-matrix derivation
has also been explored in M. Desmarais (2011); M. C. Desmarais (2012). A more detailed
overview of NMF and its applications can be found in Wang and Zhang (2013).

In its classic form, NMF tries to decompose a nonnegative matrix into a product of two
nonnegative matrices. Because of its nonnegativity, the original matrix can be considered
as a combination of parts for which only additive relation is allowed. This usually leads
to a more meaningful interpretation than ordinary matrix factorization like those used in
Principle Component Analysis (PCA) or Vector Quantization (VQ). For example in Lee and
Seung (1999), the component matrix obtained by NMF can be interpreted as parts of an
image, while the component matrix obtained by PCA or VQ are interpreted as wholistic
features.

This additive constraint in NMF has a similarity in DINA model, or in general, conjunctive
models. Therefore, we can interpret one component matrix as skill parts and the other as
each student profile of these skills. If we binarize the skill parts component matrix, we again
obtain the Q-matrix.
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5.5 ALS

Just like the hill climbing method mentioned above that uses random starts as initial Q-
matrices, we can apply this strategy to ALS method that was originally used for Q-matrix
refinement too, which also serves as an option to derive Q-matrix. More specifically, we start
with a random binary matrix instead of expert given Q-matrix, then minimize ||X −PQT ||
with respect to P and Q alternatively. The final result is binarized to obtain a meaningful
Q-matrix. Details of ALS can be found in Section 3.4.

5.6 From Clustering to Q-matrix

Inspired by the nonparametric method used in student profile diagnosis (Chiu & Douglas,
2013) discussed in Section 2.4 and Q-matrix refinement (Chiu, 2013) discussed in Section 3.3,
we propose to use a nonparametric method to find Q-matrix. The core idea is to associate
Q-matrix with ideal response patterns, which is obtained by clustering the observed student
performance data and extract information from the cluster centers. Details are given below.

5.6.1 Clustering

The first step is to obtain the unobserved ideal response patterns. This is done through
clustering. And the center of each cluster is interpreted as an ideal response pattern.

Cluster analysis is not new to psychometrics and educational assessment. A typical applica-
tion of it can be found in Chiu et al. (2009). In that research, each student response vector
is transformed into a vector of sum-scores, which is the score of the student on each skill.
This calculation is feasible because the Q-matrix is given. Two methods were considered
for clustering, which are k-means and Hierachical Agglomerative Cluster Analysis (HACA).
However, that research is dealing with the case where the Q-matrix is already given, thus it
is different from our situation.

In our research, the observed data is solely the student performance data, and we want to
cluster them to obtain the ideal response patterns. Since the quality of clustering is critical
to the second step of our method, We compare multiple clustering techniques here. First,
we consider model based clustering method, since the response data is binary, we use the
Bernoulli distribution based model, which is called Mixture of Multivariate Bernoulli (MMB)
model. Second we consider partition based clustering method by discussing the popular k-
means method, and its variation, the k-medoids method.
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MMB, Mixture of Multivariate Bernoulli

Models with hidden variables are called Latent Variable Models (LVM). Denote the latent
variable for i-th sample as zi, if the distribution of zi is discrete, then this simple LVM is
called a Mixture Model (McLachlan, 1988; Bishop, 1994, 2006), which is also called Latent
Class Model in the statistics and psychometrics community (Roussos, Templin, & Henson,
2007; Chen, Li, Liu, & Ying, 2017; G. Xu & Shang, 2018; De Menezes, 1999). Generally, the
conditional likelihood of a mixture model can be written as:

p(xi|zi = k) = pk(xi)

where pk is the k’th base distribution and can be of any type. It is called a mixture model,
because we are mixing K base distributions in its likelihood:

p(xi|θ) =
K∑
k=1

πkpk(xi|θ)

We can require the base distribution of mixture model to be a product of Bernoulli, that is:

p(xi|θ) =
K∑
k=1

πk
J∏
j=1

Ber(xij|µjk) =
K∑
k=1

πk
J∏
j=1

µ
xij
jk (1− µjk)1−xij

where µjk is the Bernoulli parameter, or the probability of the k-th cluster to get the j-th
item to be 1, then this model is called Mixture of Multivariate Bernoulli (MMB) model
(Murphy, 2012). The parameters of this model can be learned by the EM algorithm.

k-means and k-medoids

Originated from signal processing, k-means algorithm is commonly used for clustering. It
has an intuitive implementation. First initialize k centers. Then assign each sample into its
closest cluster. After that, the center of each cluster is updated by the mean value of its
assigned samples. The whole process is repeated until convergence.

If the distance used to calculate the closeness in k-means clustering is Euclidean, then k-means
algorithm also has a probabilistic interpretation. In fact, it is a simplified version of the EM
algorithm. In the above mentioned mixture model, if we require each base distribution to be
a Gaussian distribution, that is:

p(xi|θ) =
K∑
k=1

πkN (xi|µk,Σk)



53

where N (xi|µk,Σk) is the k’th Gaussian distribution, and we require Σk = σ2IJ to be fixed,
and πk = 1/K to be also fixed, then we only have parameters µk left to be learned. Using the
EM algorithm to learn this model will yield the classic k-means algorithm (Murphy, 2012).

Ignoring the probabilistic interpretation, we will use two different ways to calculate distance
in the k-means algorithm. One is the `2 distance or the Euclidean distance, the other is the
`1 distance or the Manhattan distance.

If we always choose a representative sample as the center, instead of using the means, then
we obtain the k-medoids algorithm (Park & Jun, 2009). So instead of calculating the mean,
we calculate the “cost” of assigning one sample as the cluster center. This “cost” is a sum of
distances between the chosen sample and all other in-cluster samples. Since it also involves
calculating distance, we also test it with both `2 distance and `1 distance.

To compare the performance of different clustering techniques, we use four metrics to evaluate
their results. In spite of the true cluster centers being binary, all clustering techniques except
k-medoids yield real-value cluster centers. Therefore, we first compare them by RMSE, then
after binarization, we compare them by F-score, cell-wise accuracy and vector-wise accuracy.
The definition of F-score was given in Section 3.5, and the definition of other metrics are
given below

RMSE =
√∑

i

∑
j

(IRP estimated
ij − IRP true

ij )2 (5.6)

Cell-wise Accuracy = True Positive + True Negative
True Positive + True Negative + False Positive + False Negative

(5.7)
In cell-wise case, each correctly predicted entry 1 or 0 is considered as a true positive or true
negative. But in vector-wise case, only when all entries in an IRP are predicted correctly
would that IRP be considered as a correct prediction. We can see here that it is meaningless
to distinguish true positives and true negatives in vector-wise case, thus we only need to
consider the accuracy and ignore the F-score. To summarize, the vector-wise accuracy here
is defined as

Vector-wise Accuracy = Number of Correctly Predicted IRPs
Number of All Predicted IRPs (5.8)

Note that there is no order of those IRPs, thus we need to align IRPs before comparison.
Here since we are dealing with synthetic data, we thereby have the true IRP matrix (each
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row is an IRP). Consequently, we will align the IRPs obtained by clustering methods to the
true IRP matrix. The alignment is done simply by comparing each IRP to the true IRP
matrix and choose the closest IRP one by one.

Experiment

We run experiments for different configurations of parameters. First, we consider both 3-skill
and 4-skill cases. In the 3-skill case, we consider two sample sizes for students, N = 100 and
N = 500, while in 4-skill case, we consider the case N = 200 and N = 500. For each of
them, we check the performance under different slip and guess values of 0.05, 0.1 and 0.2
respectively. To summarize, we have the following 12 configurations:

• 3-skill, students={100,500}, slip=guess={0.05, 0.1, 0.2} (6 cases)

• 4-skill, students={200,500}, slip=guess={0.05, 0.1, 0.2} (6 cases)

Inside each configuration, we consider different number of items. In 3-skill case, we consider
numbers from 3 to 10, while in 4-skill case, we consider numbers of 4 to 20. For each
number case of items, first we generate a random Q-matrix which satisfies the identifiability
requirement. Then we generate the student profiles uniformly. In fact, for the 3-skill case, the
student profiles are generated uniformly from 8 patterns, while in the 4-skill case, the student
profiles are generated uniformly from 16 patterns. With the student profiles and Q-matrix
we can generate the performance matrix given slip and guess parameters. Then we apply
different clustering techniques on the performance matrix. When multiple random starts are
needed like in k-means, 10 starts are used. This process is run 128 times for each number
of items in each configuration, and the average performance is reported as final results. The
detailed results are given in Appendix A. Here we show the figures of cell-wise F-score and
vector-wise accuracy for a visual comparison.

Results

Now let us look at the results of the step 1 of our method, that is, the results of clustering.

We can see that when slip and guess are as low as 0.05, then with more items tested, we
get better performance with all clustering methods. But when slip and guess are high, at
0.2, we get worse performance with all methods with more items tested. This observation
matches intuition, since the IRPs are clear when the performance data is of low randomness,
but would be much disturbed when the randomness is high in performance data, thus making
clustering methods difficult to find true IRPs.
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Figure 5.1 Clustering Method Comparison on k=3, N=100
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Figure 5.2 Clustering Method Comparison on k=3, N=500
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Figure 5.3 Clustering Method Comparison on k=4, N=200
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Figure 5.4 Clustering Method Comparison on k=4, N=500
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From the figures we can also see that the k-medoids using `2 distance performs best almost
across all configurations, except when slip and guess are high, then k-means using `2 distance
might surpass k-medoids in case of large number of items (Figures 5.3f, 5.4f).

5.6.2 IRPtoQ: A Nonparametric Method to derive Q-matrix

After having obtained the IRPs from clustering, now we can derive Q-matrix from them. It
is obvious that each IRP is associated with a student profile pattern, but how can we find
the desired Q-matrix from it?

Let us observe an example first. Consider a Q-matrix

Q =



1 1 0
0 1 1
1 0 1
1 0 0
0 0 1
0 1 0
1 1 1
0 1 1
0 1 1



(5.9)

then the correspondence between all profiles and their ideal response patterns correspondence
under DINA model can be calculated and written out in table 5.1, in which we ordered them
increasingly by the row sum.

Table 5.1 Profile-IRP correspondence example

Profiles Ideal Response Patterns
s1 s2 s3 i1 i2 i3 i4 i5 i6 i7 i8 i9 row sum

pr1 0 0 0 0 0 0 0 0 0 0 0 0 0
pr2 1 0 0 0 0 0 1 0 0 0 0 0 1
pr3 0 1 0 0 0 0 0 0 1 0 0 0 1
pr4 0 0 1 0 0 0 0 1 0 0 0 0 1
pr5 1 1 0 1 0 0 1 0 1 0 0 0 3
pr6 1 0 1 0 0 1 1 1 0 0 0 0 3
pr7 0 1 1 0 1 0 0 1 1 0 1 1 5
pr8 1 1 1 1 1 1 1 1 1 1 1 1 9
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Our hypothesis is we can get the correct IRP matrix through clustering, which looks like the
ideal response patterns in Table 5.1, under some row exchanges. Moreover, if we reorder our
clustering result increasingly by row sum, we should obtain the IRP matrix looking exactly
like the one in the Table 5.1 (there might still be some exceptions due to the same number
of some row sums, just like the row 2-4 in our example). The reason is, for a two-skill profile
like pr5 = (1, 1, 0), the row sum of its IRP should always be bigger than the row sum of the
IRPs of one-skill profiles pr2 = (1, 0, 0) and pr3 = (0, 1, 0), since if a student masters skill
1 and 2, one also should always answer those questions involving only skill 1 or 2 correctly.
However, we point out that this is not true for a third skill. For example, the row sum of the
IRP of the profile pr5 = (1, 1, 0) is not necessarily bigger than the row sum of the IRP of the
profile pr4 = (0, 0, 1). The reason is we might have a lot of items requiring the skill 3 solely,
while only a few items requiring skill 1 or skill 2 or both. If the sum of the numbers of items
of all these three cases (only requiring skill 1 or skill 2 or both) is still smaller than number
of items requiring only skill 3, then we will have the row sum of the IRP of a one-skill profile
pr4 = (0, 0, 1) being bigger than the one of two-skill profile pr5 = (1, 1, 0). Nevertheless,
practically speaking that would be a rare case, since it means we will have a test of items
that extremely focus on one particular skill, and the number of which even surpasses that of
the items diagnosing all other skills.

Therefore, if we denote the number of items requiring item i by ci, then we can make an
assumption that different ci does not differ that much. We will call this assumption evenness
hypothesis in this thesis. In fact, we can see that ci corresponds to the sum of the i-th column
of the Q-matrix. Thus in the above example we have c1 = 4, c2 = 6, c3 = 6, which would
not cause the problem we described above.

Subsequently, with the evenness hypothesis, together with the separability hypothesis for
the clustering (all possible profiles are present and distinguishable by clustering, except the
no-skill-mastered profile is allowed to miss), we can start to find the correspondent profiles of
all our obtained IRPs, which helps find out the q-vectors for each item. For example, we can
write down the IRPs obtained from some clustering method after reordering in Table 5.2.
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Table 5.2 IRPs derived from clustering algorithm

Profiles Ideal Response Patterns from Clustering
s1 s2 s3 i1 i2 i3 i4 i5 i6 i7 i8 i9 row sum

pr1 0 0 0 0 0 0 0 0 0 0 0 0 0
pr2 1 0 0 0 0 0 1 0 0 0 0 0 1
pr3 0 1 0 0 0 0 0 1 0 0 0 0 1
pr4 0 0 1 0 0 0 0 0 1 0 0 0 1
pr5 1 1 0 0 0 1 1 1 0 0 0 0 3
pr6 1 0 1 1 0 0 1 0 1 0 0 0 3
pr7 0 1 1 0 1 0 0 1 1 0 1 1 5
pr8 1 1 1 1 1 1 1 1 1 1 1 1 9

We can see that the differences are that row 3 and row 4 are exchanged, row 5 and row
6 are also exchanged. Then we know that row 2-4 corresponds to 1-skill profile, row 5-
7 corresponds to 2-skill profile and row 8 corresponds to 3-skill profile. For row 2-4, we
can easily assign a different 1-skill profile for each of them, and the order of them does
not matter. Afterwards, we get to know the q-vectors of item 4, 5 and 6 since we know
now that they only require 1 skill. If we assign profile (1, 0, 0), (0, 1, 0), (0, 0, 1) to IRP2,
IRP3, IRP4 respectively, then we can write our estimated q-vectors for items 4, 5, 6 to be
q4 = (1, 0, 0), q5 = (0, 1, 0) and q6 = (0, 0, 1). For row 5-7, we need to compare each of
them with the sum of two one-skill IRPs. That is, we calculate the sum of vectors IRP2 and
IRP3, the sum of vectors IRP2 and IRP4 and the sum of vectors IRP3 and IRP4, yielding
IRP vectors IRP2,3 = (0, 0, 0, 1, 0, 1, 0, 0, 0), IRP2,4 = (0, 0, 0, 1, 1, 0, 0, 0, 0) and IRP3,4 =
(0, 0, 0, 0, 1, 1, 0, 0, 0). Then for IRP5, we compare it with all three of them. If we find an
IRP vector IRPi,j satisfying the partial order constraint IRP5 < IRPi,j, meaning each cell
of IRP5 is no less than its correspondence in vector IRPi,j, then IRP5 is correspondent to
profile that masters skill i and skill j. In our case, IRP5 < IRP2,3, thus IRP5 corresponds to
profile (1, 1, 0) and the non-zero items in IRP5 which has not been assigned q-vectors (unlike
item i4 and i5), i.e. i3, is now assigned with q-vector q3 = (1, 1, 0). This calculation proceeds
for all the remaining 2-skill items and also 3-skill items. After exhausting all IRPs, we will
obtain all their correspondent profiles as well as q-vectors as byproducts. Finally, for our
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example, we obtain an estimated Q-matrix

Q̂ =



1 0 1
0 1 1
1 1 0
1 0 0
0 1 0
0 0 1
1 1 1
0 1 1
0 1 1



(5.10)

We can see that it is equivalent to the true Q-matrix in 5.9, since the only difference is that
the former is a column 2-3 exchanged version of the latter.

We summarize the whole procedure described above in Algorithm 3.

Algorithm 3: IRPtoQ Algorithm
input : A K by J Matrix M representing ideal response patterns (IRPs) learned

from clustering, latent number of skills k, notice K = 2k

output: Q-matrix
1. Order the rows of the matrix M increasingly based on row sums;
2. Ignoring the first row, and choose the first k rows as the IRPs for one-skill profiles;
3. Remove conflicts;
4. Assign one-skill q-vectors to the non-zero items for the first k IRPs;
5. for i← 2 to k do

a. Compare i-skill IRPs with combinations of one-skill IRPs, and choose the one
satisfying the partial order constraint the most;
b. Assign q-vector for i-skill case items

end
5. return (Q-matrix)

The step 3 is to remove conflicts, which is a practical situation we have to deal with. Because
of slip and guess, we do not always get completely correct IRPs. Ideally for the one-skill IRP,
there should not be any item that appears to be 1 in two or more one-skill IRPs, since that
means it is not a one-skill item which contradicts to being 1 in a one-skill IRP. Therefore we
add the step 3 of conflict removal, which changes the entries of an item that shows to be 1
across multiple IRPs to be 0 starting from the second time of show-up. For example, if the
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first three IRP we obtain are 
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 1 0 0 0 0


Then the item 4 has conflicts, since if we assign skill 1,2,3 to each of them, then item 4
requires both skill 1 and 3, which is incorrect for one-skill IRP case. Since these rows are
ordered by row sum, we always favour to solve conflicts on later rows. Therefore, here we set
the entry of item 4 in the third row to be 0, after that, the first three IRPs become

0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0


and the conflict is removed.

Similarly for step 5, we might not find a combination of one-skill IRPs that completely
satisfying the partial order constraint, thus we have to choose the one that has the least
conflicts, meaning it has the most cells that satisfying the constraint. For example, if the
first three IRPs are: 

1 0 0 1 0 0 0 0 0
0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 1 0 0


and the fourth IRP we have is:

[
0 0 1 1 0 1 0 1 0

]
Then the combination of the three one-skill IRP for two-skill IRPs are IRP1,2 = (1, 0, 1, 1, 0, 1, 0, 0, 0),
IRP1,3 = (1, 0, 0, 1, 1, 0, 1, 0, 0), IRP2,3 = (0, 0, 1, 0, 1, 1, 1, 0, 0), We can see that the conflicts
(cells that in IRP4 are smaller than those in the combination IRP) between IRP4 and these
three IRPs are conflict1,2 = 1, conflict1,3 = 3, conflict2,3 = 2, thus we deduce that IRP4

corresponds to profile (1, 1, 0) and the q-vector for item 8 is q8 = (1, 1, 0).

Experiments

Now we can compare our new IRPtoQ method with other Q-matrix derivation methods by
experiments. Here we use the same experiment setup applied in the previous clustering
experiments since we are using the IRPtoQ algorithm on their clustering results. Similarly
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to the clustering methods comparison, we use three metrics to compare different Q-matrix
derivation methods, which are cell-wise F-score, cell-wise accuracy and vector-wise accuracy.
RMSE is no longer used here since all the Q-matrices considered are binary. The definitions of
these metrics are the same as those used in clustering methods comparison, only except that
here the vectors or cells are q-vectors or their entries, while in clustering methods comparison
the vectors or cells are the IRPs or their entries.

Results

For conciseness, we only show IRPtoQ performance using k-medoids with `2 distance cluster-
ing results, since we have shown in Section 5.6.1 that it is the best performing method among
all clustering methods. But IRPtoQ method using clustering results from other clustering
methods are still reported in Appendix B for reference.

First, from the result we can see that even if the clustering techniques gives accurate ideal
response patterns (Figure 5.1a), our algorithm of converting it to Q-matrix still does not
yield a completely correct Q-matrix (Figure 5.5a). The reason can be illustrated from the
example below. Consider a Q-matrix:

Q =



1 0 0
0 1 0
0 0 1
1 0 0
1 0 0


(5.11)

This Q-matrix in 5.11 is problematic for the IRPtoQ method, since it does not satisfy our
“evenness” hypothesis. In fact, skill 1 is tested 3 times, more than the combination of skill 2
and 3. However, in our simulation, the generation of this kind of Q-matrices are permitted.

Second, we see that the IRPtoQ performance is highly dependent on the accuracy of clustering
results. When IRPs obtained from clustering are accurate, then IRPtoQ will perform well,
otherwise it would perform badly. This can be found by seeing the consistency between the
correspondent figures (e.g. Figure 5.4a and 5.8a). In fact, for those good clustered cases, we
can see that IRPtoQ generally performs well (Figure 5.7a, 5.7b, 5.8a, 5.8b, 5.8c, 5.8d).

Third, we see that NMF is also a comparatively good method. Not only the performance of
it is close to IRPtoQ in 3-skill case (Figures 5.5a, 5.5b), but also it can be more robust under
some situations (e.g. Figures 5.7d, 5.7f).
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Figure 5.5 Derivation Method Comparison on k=3, N=100
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Figure 5.6 Derivation Method Comparison on k=3, N=500
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Figure 5.7 Derivation Method Comparison on k=4, N=200
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Figure 5.8 Derivation Method Comparison on k=4, N=500
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CHAPTER 6 CONCLUSION

6.1 Summary of Works

We conducted studies in three topics, namely Q-matrix refinement, design and derivation. For
Q-matrix refinement, we introduced an ensemble technique to combine multiple refinement
models, and used a boosted decision tree algorithm to improve the performance. For Q-
matrix design, we investigated the relationship between identifiability and Q-matrix design,
and concludes that a good Q-matrix design is consists of single skill questions, rather than
questions involving more skills. The claim is supported both empirically and theoretically.
Last, we proposed a new method for Q-matrix derivation, which contrasted with current
state-of-the-art methods, in the way that it is essentially nonparametric, which makes it easy
to implement. The approach outperforms other algorithms in synthetic datasets.

The research in this thesis has its practical usage. In fact, techniques of Q-matrix refine-
ment can help teachers better inspect expert-given or self-precified Q-matrix. Principles of
Q-matrix design can help teachers devise better question set for efficient student profile di-
agnosis. And last, Q-matrix derivation algorithms can help teachers solve the “cold-start”
problem, meaning when there is no expert-given Q-matrix at hand, we can still obtain a
reasonable Q-matrix directly from student response data.

6.2 Limitations and future research

A first limitation of our research is its reliance on static data, which do not consider the time
factor, or sequential data. It implicitly relies on the assumption that no learning occurs within
the data. For online tutoring system that gather sequential data in time, this assumption
is unrealistic. How much the violation of the assumption affects the result is a topic of
future research, and new models that can handle dynamic student profiles will be required.
The work of Koedinger, Stamper, McLaughlin, and Nixon (2013) is a good example of such
developments.

A second limitation is that all of our research is based on the DINA model, which is an
over-simplified model in some cases. This limitation may not be that significant for some of
the findings in this thesis. For example, the Q-matrix refinement technique that learns from
synthetic data and a boosted decision tree is likely to also work to improve over existing
techniques that work with DINO or compensatory models, albeit with different levels of
improvements, whether better or worse. The same conjecture may be asserted for the non
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parametric Q-matrix derivation method proposed, although this is likely more speculative
and would obviously need to be investigated empirically. However, the identifiability design
principle would likely not hold, but more theoretical and empirical research would need to
be conducted.

A particularly interesting and difficult case can be made for Q-matrices that are mixtures of
conjunctive, disjunctive and compensatory principles. No research in that direction has yet
been done, while it seems reasonable that some tasks can involve conjunction of skills as well
as disjunctions. In the same whelm of research, Q-matrix with non binary data also appear
to be a realistic relaxation of the binary constraint, albeit leading to more difficult human
interpretation.

Finally, the research that use item features to create clusters and links between answers
and questions, such as Goutte, Léger, and Durand (2015); Durand, Belacel, and Goutte
(2016), is a highly promising and complementary approach to the work that relies on student
performance data such as ours. There is an obvious gain to bridge and merge these two
approaches and no work has been conducted in that direction yet.
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APPENDIX A EXPERIMENT RESULTS OF CLUSTERING

A.1 Results of Clustering for IRPtoQ: 3-skill case

A.1.1 N=100, slip=guess=0.05

Table A.1 RMSE of clustering, k=3, N=100, s=g=0.05

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
3 0.0000 0.0000 0.0000 0.0000 0.1551
4 0.0838 0.1170 0.0041 0.0037 0.1218
5 0.0865 0.1285 0.0042 0.0045 0.1155
6 0.0829 0.1206 0.0051 0.0047 0.1104
7 0.0705 0.1159 0.0028 0.0031 0.1003
8 0.0625 0.1147 0.0031 0.0029 0.1001
9 0.0536 0.1060 0.0026 0.0019 0.0882
10 0.0517 0.1124 0.0030 0.0020 0.0851

Table A.2 F-score of clustering, k=3, N=100, s=g=0.05

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
3 1.0000 1.0000 1.0000 1.0000 0.7736
4 0.8943 0.8603 0.9956 0.9960 0.8237
5 0.8895 0.8399 0.9954 0.9951 0.8474
6 0.8910 0.8438 0.9940 0.9945 0.8557
7 0.9055 0.8471 0.9967 0.9963 0.8675
8 0.9174 0.8481 0.9962 0.9964 0.8690
9 0.9288 0.8574 0.9967 0.9976 0.8820
10 0.9317 0.8506 0.9961 0.9974 0.8866

Table A.3 Cell-wise accuracy of clustering, k=3, N=100, s=g=0.05

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
3 1.0000 1.0000 1.0000 1.0000 0.7750
4 0.9028 0.8704 0.9959 0.9963 0.8379
5 0.9008 0.8550 0.9958 0.9955 0.8597
6 0.9059 0.8635 0.9949 0.9953 0.8734
7 0.9215 0.8700 0.9972 0.9969 0.8878
8 0.9319 0.8720 0.9969 0.9971 0.8896
9 0.9434 0.8834 0.9974 0.9981 0.9045
10 0.9459 0.8781 0.9970 0.9980 0.9082
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Table A.4 Vector-wise accuracy of clustering, k=3, N=100, s=g=0.05

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
3 1.0000 1.0000 1.0000 1.0000 0.4583
4 0.7530 0.6545 0.9891 0.9901 0.5393
5 0.7207 0.5868 0.9874 0.9862 0.5785
6 0.7194 0.5884 0.9850 0.9862 0.6087
7 0.7544 0.5915 0.9896 0.9890 0.6349
8 0.7760 0.5896 0.9892 0.9894 0.6365
9 0.8040 0.6150 0.9904 0.9922 0.6740
10 0.8100 0.6105 0.9893 0.9915 0.6801

A.1.2 N=100, slip=guess=0.1

Table A.5 RMSE of clustering, N=100, slip=guess=0.1

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
3 0.0000 0.0000 0.0000 0.0000 0.1543
4 0.1064 0.1382 0.0232 0.0225 0.1322
5 0.1086 0.1360 0.0334 0.0375 0.1387
6 0.1025 0.1312 0.0351 0.0378 0.1371
7 0.0921 0.1263 0.0330 0.0350 0.1271
8 0.0800 0.1223 0.0266 0.0244 0.1181
9 0.0747 0.1194 0.0251 0.0238 0.1073
10 0.0681 0.1142 0.0238 0.0204 0.0984

Table A.6 F-score of clustering, k=3, N=100, s=g=0.1

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
3 1.0000 1.0000 1.0000 1.0000 0.7768
4 0.8686 0.8336 0.9751 0.9758 0.8071
5 0.8577 0.8238 0.9628 0.9587 0.8122
6 0.8633 0.8238 0.9600 0.9571 0.8179
7 0.8775 0.8259 0.9602 0.9585 0.8294
8 0.8927 0.8278 0.9669 0.9699 0.8380
9 0.9015 0.8327 0.9684 0.9702 0.8530
10 0.9125 0.8403 0.9698 0.9742 0.8664
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Table A.7 Cell-wise accuracy of clustering, k=3, N=100, s=g=0.1

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
3 1.0000 1.0000 1.0000 1.0000 0.7781
4 0.8781 0.8443 0.9768 0.9775 0.8208
5 0.8741 0.8427 0.9666 0.9625 0.8287
6 0.8820 0.8463 0.9649 0.9622 0.8386
7 0.8972 0.8517 0.9670 0.9650 0.8523
8 0.9130 0.8581 0.9734 0.9756 0.8640
9 0.9206 0.8626 0.9749 0.9762 0.8788
10 0.9306 0.8704 0.9762 0.9796 0.8906

Table A.8 Vector-wise accuracy of clustering, k=3, N=100, s=g=0.1

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
3 1.0000 1.0000 1.0000 1.0000 0.4685
4 0.6886 0.5898 0.9357 0.9369 0.4997
5 0.6412 0.5411 0.9019 0.8865 0.4917
6 0.6380 0.5247 0.8906 0.8772 0.4920
7 0.6672 0.5327 0.8903 0.8756 0.5148
8 0.7021 0.5347 0.9025 0.9037 0.5433
9 0.7139 0.5451 0.8981 0.8983 0.5778
10 0.7470 0.5657 0.8991 0.9079 0.6071

A.1.3 N=100, slip=guess=0.2

Table A.9 RMSE of clustering, k=3, N=100, s=g=0.2

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
3 0.0000 0.0000 0.0000 0.0000 0.1541
4 0.1393 0.1534 0.0964 0.0936 0.1488
5 0.1496 0.1669 0.1251 0.1303 0.1717
6 0.1508 0.1649 0.1373 0.1569 0.1760
7 0.1507 0.1633 0.1425 0.1628 0.1720
8 0.1427 0.1585 0.1439 0.1639 0.1639
9 0.1404 0.1542 0.1448 0.1588 0.1594
10 0.1359 0.1530 0.1467 0.1572 0.1567
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Table A.10 F-score of clustering, k=3, N=100, s=g=0.2

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
3 1.0000 1.0000 1.0000 1.0000 0.7761
4 0.8259 0.8132 0.8976 0.9005 0.7780
5 0.7958 0.7715 0.8584 0.8536 0.7593
6 0.7826 0.7612 0.8367 0.8171 0.7503
7 0.7774 0.7559 0.8289 0.8081 0.7506
8 0.7847 0.7585 0.8250 0.8043 0.7588
9 0.7857 0.7610 0.8201 0.8059 0.7602
10 0.7922 0.7599 0.8182 0.8076 0.7621

Table A.11 Cell-wise accuracy of clustering, k=3, N=100, s=g=0.2

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
3 1.0000 1.0000 1.0000 1.0000 0.7773
4 0.8377 0.8250 0.9036 0.9064 0.7909
5 0.8202 0.7971 0.8749 0.8697 0.7811
6 0.8161 0.7953 0.8627 0.8431 0.7808
7 0.8139 0.7936 0.8575 0.8372 0.7838
8 0.8231 0.7993 0.8561 0.8361 0.7941
9 0.8270 0.8051 0.8552 0.8412 0.7989
10 0.8330 0.8051 0.8533 0.8428 0.8016

Table A.12 Vector-wise accuracy of clustering, N=100, s=g=0.2

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
3 1.0000 1.0000 1.0000 1.0000 0.4697
4 0.5585 0.5213 0.7231 0.7313 0.4061
5 0.4552 0.3909 0.6130 0.5897 0.3348
6 0.3948 0.3308 0.5359 0.4662 0.2859
7 0.3565 0.2959 0.4808 0.4053 0.2629
8 0.3455 0.2823 0.4312 0.3666 0.2615
9 0.3365 0.2771 0.4047 0.3540 0.2511
10 0.3299 0.2571 0.3681 0.3348 0.2411
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A.1.4 N=500, slip=guess=0.05

Table A.13 RMSE of clustering, k=3, N=500, s=g=0.05

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
3 0.0000 0.0000 0.0000 0.0000 0.1477
4 0.1078 0.1219 0.0000 0.0000 0.1218
5 0.1052 0.1176 0.0000 0.0000 0.1133
6 0.0961 0.1112 0.0000 0.0000 0.1110
7 0.0809 0.0989 0.0000 0.0000 0.0975
8 0.0672 0.0959 0.0000 0.0000 0.0838
9 0.0548 0.0932 0.0000 0.0000 0.0784
10 0.0450 0.0824 0.0000 0.0000 0.0645

Table A.14 F-score of clustering, k=3, N=500, s=g=0.05

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
3 1.0000 1.0000 1.0000 1.0000 0.7918
4 0.8651 0.8523 1.0000 1.0000 0.8225
5 0.8555 0.8467 1.0000 1.0000 0.8418
6 0.8633 0.8485 1.0000 1.0000 0.8455
7 0.8813 0.8599 1.0000 1.0000 0.8614
8 0.9022 0.8634 1.0000 1.0000 0.8801
9 0.9194 0.8688 1.0000 1.0000 0.8877
10 0.9346 0.8823 1.0000 1.0000 0.9072

Table A.15 Cell-wise accuracy of clustering, k=3, N=500, s=g=0.05

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
3 1.0000 1.0000 1.0000 1.0000 0.7929
4 0.8737 0.8616 1.0000 1.0000 0.8347
5 0.8712 0.8614 1.0000 1.0000 0.8560
6 0.8824 0.8684 1.0000 1.0000 0.8639
7 0.9021 0.8827 1.0000 1.0000 0.8828
8 0.9200 0.8866 1.0000 1.0000 0.9008
9 0.9353 0.8914 1.0000 1.0000 0.9079
10 0.9484 0.9048 1.0000 1.0000 0.9256



84

Table A.16 Vector-wise accuracy of clustering, k=3, N=500, s=g=0.05

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
3 1.0000 1.0000 1.0000 1.0000 0.5023
4 0.6689 0.6372 1.0000 1.0000 0.5419
5 0.6342 0.5905 1.0000 1.0000 0.5689
6 0.6411 0.5886 1.0000 1.0000 0.5606
7 0.6795 0.6125 1.0000 1.0000 0.5990
8 0.7196 0.6196 1.0000 1.0000 0.6521
9 0.7630 0.6244 1.0000 1.0000 0.6677
10 0.8050 0.6681 1.0000 1.0000 0.7235

A.1.5 N=500, slip=guess=0.1

Table A.17 RMSE of clustering, k=3, N=500, s=g=0.1

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
3 0.0000 0.0000 0.0000 0.0000 0.1466
4 0.1100 0.1287 0.0000 0.0000 0.1258
5 0.1149 0.1304 0.0001 0.0005 0.1184
6 0.1054 0.1220 0.0000 0.0001 0.1239
7 0.0908 0.1109 0.0000 0.0000 0.1146
8 0.0752 0.1035 0.0000 0.0001 0.0972
9 0.0616 0.0944 0.0000 0.0000 0.0785
10 0.0473 0.0851 0.0000 0.0000 0.0742

Table A.18 F-score of clustering, k=3, N=500, s=g=0.1

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
3 1.0000 1.0000 1.0000 1.0000 0.7938
4 0.8667 0.8468 1.0000 1.0000 0.8169
5 0.8436 0.8239 0.9999 0.9995 0.8294
6 0.8522 0.8322 1.0000 0.9999 0.8287
7 0.8669 0.8384 1.0000 1.0000 0.8358
8 0.8911 0.8493 1.0000 0.9999 0.8640
9 0.9128 0.8600 1.0000 1.0000 0.8904
10 0.9374 0.8765 1.0000 1.0000 0.8980
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Table A.19 Cell-wise accuracy of clustering, k=3, N=500, s=g=0.1

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
3 1.0000 1.0000 1.0000 1.0000 0.7947
4 0.8745 0.8547 1.0000 1.0000 0.8282
5 0.8624 0.8435 0.9999 0.9996 0.8474
6 0.8716 0.8518 1.0000 0.9999 0.8465
7 0.8905 0.8646 1.0000 1.0000 0.8598
8 0.9112 0.8748 1.0000 0.9999 0.8857
9 0.9308 0.8857 1.0000 1.0000 0.9105
10 0.9502 0.8986 1.0000 1.0000 0.9166

Table A.20 Vector-wise accuracy of clustering, k=3, N=500, s=g=0.1

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
3 1.0000 1.0000 1.0000 1.0000 0.5128
4 0.6720 0.6145 1.0000 1.0000 0.5207
5 0.6077 0.5458 0.9997 0.9986 0.5480
6 0.6137 0.5358 1.0000 0.9996 0.5155
7 0.6413 0.5511 1.0000 0.9999 0.5348
8 0.6967 0.5743 0.9998 0.9993 0.6151
9 0.7431 0.5961 1.0000 0.9999 0.6821
10 0.8051 0.6399 1.0000 0.9997 0.7053

A.1.6 N=500, slip=guess=0.2

Table A.21 RMSE of clustering, k=3, N=500, s=g=0.2

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
3 0.0000 0.0000 0.0000 0.0000 0.1474
4 0.1367 0.1431 0.0127 0.0125 0.1403
5 0.1502 0.1562 0.0313 0.0588 0.1399
6 0.1405 0.1545 0.0246 0.0569 0.1544
7 0.1248 0.1454 0.0234 0.0600 0.1453
8 0.1087 0.1348 0.0191 0.0477 0.1344
9 0.0975 0.1260 0.0174 0.0442 0.1252
10 0.0867 0.1223 0.0121 0.0332 0.1204
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Table A.22 F-score of clustering, k=3, N=500, s=g=0.2

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
3 1.0000 1.0000 1.0000 1.0000 0.7915
4 0.8358 0.8330 0.9854 0.9856 0.7902
5 0.8013 0.7950 0.9654 0.9352 0.7962
6 0.8015 0.7805 0.9714 0.9344 0.7839
7 0.8227 0.7861 0.9713 0.9278 0.7971
8 0.8508 0.8026 0.9763 0.9413 0.8158
9 0.8722 0.8167 0.9778 0.9440 0.8310
10 0.8948 0.8240 0.9846 0.9576 0.8402

Table A.23 Cell-wise accuracy of clustering, k=3, N=500, s=g=0.2

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
3 1.0000 1.0000 1.0000 1.0000 0.7923
4 0.8469 0.8442 0.9873 0.9875 0.8061
5 0.8222 0.8147 0.9687 0.9412 0.8154
6 0.8304 0.8094 0.9754 0.9431 0.8081
7 0.8536 0.8199 0.9766 0.9400 0.8239
8 0.8780 0.8352 0.9809 0.9523 0.8427
9 0.8980 0.8494 0.9826 0.9558 0.8584
10 0.9158 0.8548 0.9879 0.9668 0.8658

Table A.24 Vector-wise accuracy of clustering, k=3, N=500, s=g=0.2

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
3 1.0000 1.0000 1.0000 1.0000 0.5069
4 0.5809 0.5790 0.9602 0.9605 0.4728
5 0.4785 0.4452 0.8972 0.8030 0.4496
6 0.4782 0.4016 0.9099 0.7882 0.3976
7 0.5218 0.4130 0.8989 0.7541 0.4079
8 0.5800 0.4448 0.8984 0.7695 0.4624
9 0.6284 0.4699 0.8922 0.7615 0.4989
10 0.6801 0.4761 0.9135 0.8062 0.5045
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A.2 Results of Clustering for IRPtoQ: 4-skill case

A.2.1 N=200, slip=guess=0.05

Table A.25 RMSE of clustering, k=4, N=200, s=g=0.05

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
4 0.0000 0.0000 0.0000 0.0000 0.1596
5 0.1147 0.1381 0.0050 0.0048 0.1268
6 0.1258 0.1469 0.0076 0.0084 0.1238
7 0.1181 0.1411 0.0088 0.0091 0.1335
8 0.1104 0.1347 0.0089 0.0103 0.1321
9 0.1038 0.1285 0.0093 0.0098 0.1270
10 0.0960 0.1253 0.0096 0.0091 0.1200
11 0.0938 0.1261 0.0101 0.0078 0.1209
12 0.0834 0.1137 0.0081 0.0049 0.1156
13 0.0868 0.1193 0.0085 0.0052 0.1116
14 0.0811 0.1170 0.0122 0.0096 0.1032
15 0.0728 0.1064 0.0056 0.0062 0.1151
16 0.0719 0.1116 0.0082 0.0059 0.1053
17 0.0722 0.1084 0.0062 0.0057 0.0984
18 0.0669 0.1035 0.0070 0.0057 0.1043
19 0.0720 0.1155 0.0040 0.0013 0.1081
20 0.0691 0.0988 0.0029 0.0048 0.1012

Table A.26 F-score of clustering, k=4, N=200, s=g=0.05

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
4 1.0000 1.0000 1.0000 1.0000 0.7727
5 0.8574 0.8360 0.9946 0.9948 0.8151
6 0.8323 0.8106 0.9913 0.9904 0.8268
7 0.8345 0.8086 0.9893 0.9888 0.8161
8 0.8403 0.8097 0.9886 0.9869 0.8166
9 0.8451 0.8134 0.9878 0.9873 0.8193
10 0.8536 0.8150 0.9866 0.9874 0.8257
11 0.8575 0.8154 0.9862 0.9892 0.8256
12 0.8708 0.8262 0.9883 0.9929 0.8282
13 0.8676 0.8233 0.9878 0.9924 0.8351
14 0.8720 0.8193 0.9820 0.9857 0.8430
15 0.8801 0.8251 0.9905 0.9895 0.8153
16 0.8889 0.8268 0.9879 0.9913 0.8399
17 0.8862 0.8282 0.9907 0.9911 0.8445
18 0.8926 0.8349 0.9892 0.9912 0.8357
19 0.8845 0.8173 0.9937 0.9979 0.8326
20 0.8960 0.8478 0.9957 0.9926 0.8476
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Table A.27 Cell-wise accuracy of clustering, k=4, N=200, s=g=0.05

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
4 1.0000 1.0000 1.0000 1.0000 0.7738
5 0.8683 0.8475 0.9950 0.9952 0.8315
6 0.8545 0.8337 0.9924 0.9916 0.8476
7 0.8639 0.8404 0.9912 0.9909 0.8452
8 0.8740 0.8476 0.9911 0.9897 0.8508
9 0.8818 0.8549 0.9907 0.9902 0.8572
10 0.8916 0.8606 0.9904 0.9909 0.8655
11 0.8943 0.8599 0.9899 0.9922 0.8662
12 0.9084 0.8742 0.9919 0.9951 0.8732
13 0.9050 0.8693 0.9915 0.9948 0.8775
14 0.9120 0.8720 0.9878 0.9904 0.8875
15 0.9233 0.8842 0.9944 0.9938 0.8759
16 0.9242 0.8786 0.9918 0.9941 0.8861
17 0.9239 0.8820 0.9938 0.9943 0.8931
18 0.9297 0.8884 0.9930 0.9943 0.8871
19 0.9240 0.8755 0.9960 0.9987 0.8849
20 0.9284 0.8938 0.9971 0.9952 0.8913

Table A.28 Vector-wise accuracy of clustering, k=4, N=200, s=g=0.05

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
4 1.0000 1.0000 1.0000 1.0000 0.3426
5 0.5960 0.5225 0.9833 0.9839 0.4287
6 0.5200 0.4366 0.9754 0.9719 0.4526
7 0.5216 0.4277 0.9712 0.9697 0.4321
8 0.5412 0.4345 0.9700 0.9635 0.4349
9 0.5476 0.4368 0.9667 0.9636 0.4397
10 0.5672 0.4531 0.9684 0.9664 0.4473
11 0.5777 0.4434 0.9598 0.9660 0.4461
12 0.6086 0.4840 0.9707 0.9770 0.4730
13 0.6148 0.4711 0.9652 0.9754 0.4875
14 0.6324 0.4816 0.9520 0.9590 0.5238
15 0.6472 0.4826 0.9667 0.9688 0.4743
16 0.6582 0.4906 0.9621 0.9723 0.5137
17 0.6836 0.5066 0.9688 0.9707 0.5367
18 0.6754 0.5039 0.9637 0.9730 0.4996
19 0.6535 0.4826 0.9750 0.9847 0.4979
20 0.7097 0.5604 0.9785 0.9708 0.5618
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A.2.2 N=200, slip=guess=0.1

Table A.29 RMSE of clustering, k=4, N=200, s=g=0.1

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
4 0.0000 0.0000 0.0000 0.0000 0.1597
5 0.1333 0.1513 0.0299 0.0295 0.1340
6 0.1425 0.1558 0.0430 0.0464 0.1444
7 0.1343 0.1504 0.0492 0.0559 0.1561
8 0.1292 0.1458 0.0513 0.0585 0.1543
9 0.1210 0.1399 0.0537 0.0601 0.1465
10 0.1158 0.1364 0.0545 0.0607 0.1417
11 0.1101 0.1318 0.0537 0.0586 0.1365
12 0.1020 0.1283 0.0517 0.0578 0.1301
13 0.1009 0.1261 0.0508 0.0579 0.1292
14 0.0943 0.1205 0.0484 0.0547 0.1236
15 0.0891 0.1189 0.0493 0.0563 0.1216
16 0.0883 0.1191 0.0494 0.0553 0.1191
17 0.0856 0.1159 0.0500 0.0554 0.1192
18 0.0826 0.1155 0.0522 0.0568 0.1163
19 0.0793 0.1146 0.0511 0.0570 0.1149
20 0.0781 0.1137 0.0524 0.0605 0.1159

Table A.30 F-score of clustering, k=4, N=200, s=g=0.1

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
4 1.0000 1.0000 1.0000 1.0000 0.7729
5 0.8356 0.8189 0.9678 0.9682 0.8018
6 0.8109 0.7966 0.9505 0.9466 0.7987
7 0.8095 0.7899 0.9395 0.9319 0.7818
8 0.8083 0.7857 0.9334 0.9249 0.7771
9 0.8172 0.7907 0.9285 0.9204 0.7844
10 0.8215 0.7908 0.9258 0.9181 0.7861
11 0.8269 0.7915 0.9246 0.9188 0.7901
12 0.8414 0.7972 0.9273 0.9190 0.7996
13 0.8369 0.7932 0.9251 0.9152 0.7944
14 0.8483 0.8019 0.9281 0.9191 0.8024
15 0.8565 0.8033 0.9252 0.9151 0.8038
16 0.8586 0.8038 0.9257 0.9172 0.8087
17 0.8632 0.8090 0.9244 0.9166 0.8079
18 0.8677 0.8089 0.9206 0.9134 0.8111
19 0.8737 0.8102 0.9217 0.9127 0.8126
20 0.8720 0.8080 0.9174 0.9047 0.8074
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Table A.31 Cell-wise accuracy of clustering, k=4, N=200, s=g=0.1

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
4 1.0000 1.0000 1.0000 1.0000 0.7736
5 0.8473 0.8310 0.9701 0.9705 0.8177
6 0.8339 0.8202 0.9570 0.9536 0.8199
7 0.8432 0.8250 0.9508 0.9441 0.8142
8 0.8496 0.8291 0.9487 0.9415 0.8183
9 0.8589 0.8358 0.9463 0.9399 0.8272
10 0.8662 0.8397 0.9455 0.9393 0.8325
11 0.8737 0.8453 0.9463 0.9414 0.8397
12 0.8848 0.8503 0.9483 0.9422 0.8481
13 0.8865 0.8530 0.9492 0.9421 0.8496
14 0.8954 0.8605 0.9516 0.9453 0.8572
15 0.9031 0.8635 0.9507 0.9437 0.8604
16 0.9041 0.8635 0.9506 0.9447 0.8635
17 0.9079 0.8680 0.9500 0.9446 0.8638
18 0.9121 0.8693 0.9478 0.9432 0.8678
19 0.9167 0.8707 0.9489 0.9430 0.8696
20 0.9182 0.8724 0.9476 0.9395 0.8690

Table A.32 Vector-wise accuracy of clustering, k=4, N=200, s=g=0.1

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
4 1.0000 1.0000 1.0000 1.0000 0.3463
5 0.5262 0.4716 0.9008 0.9029 0.3889
6 0.4470 0.3986 0.8597 0.8473 0.3687
7 0.4427 0.3756 0.8330 0.8059 0.3266
8 0.4365 0.3588 0.8195 0.7851 0.3127
9 0.4492 0.3590 0.8012 0.7706 0.3200
10 0.4627 0.3579 0.7883 0.7537 0.3286
11 0.4768 0.3690 0.7828 0.7526 0.3395
12 0.5038 0.3822 0.7750 0.7484 0.3570
13 0.5017 0.3753 0.7610 0.7347 0.3490
14 0.5345 0.3974 0.7583 0.7368 0.3762
15 0.5471 0.4027 0.7425 0.7208 0.3801
16 0.5573 0.4076 0.7247 0.7078 0.3954
17 0.5724 0.4201 0.7119 0.6931 0.3940
18 0.5844 0.4174 0.6842 0.6697 0.4003
19 0.5973 0.4261 0.6744 0.6558 0.4077
20 0.5933 0.4271 0.6421 0.6184 0.3920
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A.2.3 N=200, slip=guess=0.2

Table A.33 RMSE of clustering, k=4, N=200, s=g=0.2

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
4 0.0000 0.0000 0.0000 0.0000 0.1593
5 0.1530 0.1612 0.0921 0.0918 0.1512
6 0.1695 0.1758 0.1243 0.1395 0.1724
7 0.1708 0.1765 0.1465 0.1718 0.1877
8 0.1669 0.1743 0.1589 0.1848 0.1845
9 0.1629 0.1717 0.1640 0.1859 0.1812
10 0.1603 0.1669 0.1709 0.1895 0.1761
11 0.1581 0.1666 0.1741 0.1897 0.1744
12 0.1553 0.1637 0.1738 0.1877 0.1708
13 0.1522 0.1607 0.1762 0.1867 0.1671
14 0.1499 0.1595 0.1760 0.1836 0.1651
15 0.1475 0.1567 0.1738 0.1828 0.1637
16 0.1450 0.1557 0.1734 0.1800 0.1611
17 0.1438 0.1536 0.1752 0.1804 0.1604
18 0.1401 0.1515 0.1730 0.1793 0.1580
19 0.1386 0.1505 0.1742 0.1801 0.1557
20 0.1371 0.1511 0.1791 0.1817 0.1537

Table A.34 F-score of clustering, k=4, N=200, s=g=0.2

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
4 1.0000 1.0000 1.0000 1.0000 0.7723
5 0.8119 0.8048 0.9004 0.9008 0.7729
6 0.7698 0.7620 0.8549 0.8384 0.7530
7 0.7514 0.7441 0.8199 0.7935 0.7296
8 0.7448 0.7323 0.7986 0.7714 0.7235
9 0.7388 0.7242 0.7838 0.7610 0.7153
10 0.7383 0.7266 0.7746 0.7554 0.7192
11 0.7350 0.7190 0.7658 0.7500 0.7146
12 0.7352 0.7200 0.7637 0.7496 0.7166
13 0.7316 0.7149 0.7531 0.7430 0.7126
14 0.7339 0.7151 0.7526 0.7457 0.7146
15 0.7362 0.7174 0.7547 0.7453 0.7143
16 0.7403 0.7179 0.7537 0.7478 0.7173
17 0.7381 0.7166 0.7476 0.7431 0.7137
18 0.7437 0.7168 0.7480 0.7412 0.7151
19 0.7481 0.7212 0.7479 0.7419 0.7215
20 0.7601 0.7273 0.7478 0.7463 0.7333
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Table A.35 Cell-wise accuracy of clustering, k=4, N=200, s=g=0.2

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
4 1.0000 1.0000 1.0000 1.0000 0.7730
5 0.8256 0.8182 0.9079 0.9082 0.7895
6 0.7990 0.7905 0.8757 0.8605 0.7787
7 0.7935 0.7847 0.8535 0.8282 0.7670
8 0.7954 0.7828 0.8411 0.8152 0.7697
9 0.7989 0.7846 0.8360 0.8141 0.7711
10 0.8000 0.7882 0.8291 0.8105 0.7760
11 0.8018 0.7873 0.8259 0.8103 0.7767
12 0.8046 0.7906 0.8262 0.8123 0.7812
13 0.8085 0.7934 0.8238 0.8133 0.7846
14 0.8116 0.7951 0.8240 0.8164 0.7873
15 0.8144 0.7982 0.8262 0.8172 0.7886
16 0.8184 0.7998 0.8266 0.8200 0.7921
17 0.8200 0.8025 0.8248 0.8196 0.7929
18 0.8263 0.8052 0.8270 0.8207 0.7963
19 0.8284 0.8072 0.8258 0.8199 0.8001
20 0.8322 0.8067 0.8209 0.8183 0.8038

Table A.36 Vector-wise accuracy of clustering, k=4, N=200, s=g=0.2

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
4 1.00000 1.00000 1.00000 1.00000 0.33892
5 0.44067 0.41396 0.69336 0.69561 0.30366
6 0.30776 0.27827 0.56196 0.50781 0.22925
7 0.24780 0.21270 0.44155 0.34590 0.17017
8 0.21616 0.17856 0.35894 0.26074 0.15371
9 0.19189 0.15854 0.29409 0.22036 0.13335
10 0.18032 0.14541 0.24517 0.18950 0.13047
11 0.16709 0.13291 0.21074 0.16733 0.11611
12 0.16216 0.12686 0.18672 0.15454 0.11128
13 0.15166 0.11841 0.15786 0.13882 0.10337
14 0.14731 0.11582 0.14199 0.12939 0.10791
15 0.14790 0.11294 0.13037 0.11680 0.10093
16 0.15195 0.11040 0.11255 0.10327 0.10264
17 0.14429 0.10933 0.09624 0.08774 0.09580
18 0.15137 0.10908 0.08389 0.07812 0.09531
19 0.15039 0.10498 0.07124 0.06753 0.09897
20 0.15057 0.10227 0.06023 0.05455 0.09716
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A.2.4 N=500, slip=guess=0.05

Table A.37 RMSE of clustering, k=4, N=500, s=g=0.05

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
4 0.0000 0.0000 0.0000 0.0000 0.1572
5 0.1312 0.1432 0.0000 0.0000 0.1237
6 0.1370 0.1448 0.0001 0.0001 0.1256
7 0.1275 0.1353 0.0000 0.0001 0.1341
8 0.1161 0.1285 0.0000 0.0000 0.1281
9 0.1049 0.1240 0.0000 0.0000 0.1213
10 0.0984 0.1201 0.0000 0.0000 0.1144
11 0.0888 0.1113 0.0000 0.0000 0.1096
12 0.0863 0.1128 0.0000 0.0000 0.1056
13 0.0782 0.1077 0.0000 0.0000 0.1048
14 0.0749 0.1045 0.0000 0.0000 0.0967
15 0.0712 0.1021 0.0000 0.0001 0.0948
16 0.0697 0.1016 0.0000 0.0000 0.0969
17 0.0668 0.1005 0.0000 0.0000 0.0926
18 0.0641 0.0984 0.0000 0.0000 0.0916
19 0.0621 0.0943 0.0000 0.0000 0.0906
20 0.0608 0.0926 0.0000 0.0000 0.0884

Table A.38 F-score of clustering, k=4, N=500, s=g=0.05

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
4 0.0000 0.0000 0.0000 0.0000 0.1572
5 0.1312 0.1432 0.0000 0.0000 0.1237
6 0.1370 0.1448 0.0001 0.0001 0.1256
7 0.1275 0.1353 0.0000 0.0001 0.1341
8 0.1161 0.1285 0.0000 0.0000 0.1281
9 0.1049 0.1240 0.0000 0.0000 0.1213
10 0.0984 0.1201 0.0000 0.0000 0.1144
11 0.0888 0.1113 0.0000 0.0000 0.1096
12 0.0863 0.1128 0.0000 0.0000 0.1056
13 0.0782 0.1077 0.0000 0.0000 0.1048
14 0.0749 0.1045 0.0000 0.0000 0.0967
15 0.0712 0.1021 0.0000 0.0001 0.0948
16 0.0697 0.1016 0.0000 0.0000 0.0969
17 0.0668 0.1005 0.0000 0.0000 0.0926
18 0.0641 0.0984 0.0000 0.0000 0.0916
19 0.0621 0.0943 0.0000 0.0000 0.0906
20 0.0608 0.0926 0.0000 0.0000 0.0884
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Table A.39 Cell-wise accuracy of clustering, k=4, N=500, s=g=0.05

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
4 1.0000 1.0000 1.0000 1.0000 0.7760
5 0.8474 0.8385 1.0000 1.0000 0.8338
6 0.8382 0.8325 0.9999 0.9999 0.8432
7 0.8490 0.8420 1.0000 0.9999 0.8392
8 0.8629 0.8497 1.0000 1.0000 0.8484
9 0.8769 0.8557 1.0000 1.0000 0.8578
10 0.8854 0.8614 1.0000 1.0000 0.8670
11 0.8970 0.8714 1.0000 1.0000 0.8706
12 0.9010 0.8709 1.0000 1.0000 0.8802
13 0.9111 0.8769 1.0000 1.0000 0.8802
14 0.9155 0.8815 1.0000 1.0000 0.8901
15 0.9203 0.8848 1.0000 0.9999 0.8930
16 0.9226 0.8860 1.0000 1.0000 0.8912
17 0.9262 0.8872 1.0000 1.0000 0.8966
18 0.9294 0.8902 1.0000 1.0000 0.8981
19 0.9321 0.8949 1.0000 1.0000 0.8998
20 0.9337 0.8976 1.0000 1.0000 0.9024

Table A.40 Vector-wise accuracy of clustering, k=4, N=500, s=g=0.05

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
4 1.0000 1.0000 1.0000 1.0000 0.3528
5 0.5268 0.4940 1.0000 0.9999 0.4451
6 0.4600 0.4329 0.9998 0.9998 0.4394
7 0.4598 0.4276 1.0000 0.9998 0.3992
8 0.4899 0.4278 1.0000 1.0000 0.4111
9 0.5207 0.4368 1.0000 1.0000 0.4271
10 0.5415 0.4504 0.9999 1.0000 0.4510
11 0.5528 0.4597 1.0000 1.0000 0.4451
12 0.5891 0.4722 1.0000 1.0000 0.4935
13 0.6104 0.4827 1.0000 1.0000 0.4853
14 0.6312 0.4963 1.0000 1.0000 0.5206
15 0.6504 0.5065 1.0000 0.9998 0.5366
16 0.6501 0.5071 0.9999 1.0000 0.5230
17 0.6678 0.5194 1.0000 1.0000 0.5516
18 0.6777 0.5295 1.0000 1.0000 0.5524
19 0.6929 0.5474 1.0000 1.0000 0.5694
20 0.7083 0.5636 0.9999 0.9999 0.5809
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A.2.5 N=500, slip=guess=0.1

Table A.41 RMSE of clustering, k=4, N=500, s=g=0.1

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
4 0.0000 0.0000 0.0000 0.0000 0.1565
5 0.1421 0.1483 0.0016 0.0015 0.1304
6 0.1470 0.1532 0.0045 0.0074 0.1399
7 0.1381 0.1461 0.0059 0.0099 0.1514
8 0.1281 0.1414 0.0049 0.0087 0.1447
9 0.1160 0.1334 0.0052 0.0084 0.1347
10 0.1062 0.1259 0.0047 0.0066 0.1256
11 0.0980 0.1195 0.0043 0.0060 0.1208
12 0.0918 0.1158 0.0048 0.0064 0.1157
13 0.0837 0.1113 0.0044 0.0051 0.1079
14 0.0810 0.1088 0.0035 0.0041 0.1034
15 0.0744 0.1039 0.0031 0.0036 0.1034
16 0.0702 0.1016 0.0034 0.0029 0.0998
17 0.0672 0.0979 0.0024 0.0024 0.0963
18 0.0621 0.0973 0.0025 0.0025 0.0954
19 0.0624 0.0961 0.0029 0.0025 0.0953
20 0.0600 0.0977 0.0036 0.0032 0.0959

Table A.42 F-score of clustering, k=4, N=500, s=g=0.1

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
4 1.0000 1.0000 1.0000 1.0000 0.7768
5 0.8260 0.8219 0.9982 0.9983 0.8071
6 0.8009 0.7964 0.9947 0.9915 0.7973
7 0.8014 0.7941 0.9929 0.9883 0.7821
8 0.8064 0.7905 0.9937 0.9889 0.7860
9 0.8204 0.7965 0.9933 0.9892 0.7976
10 0.8323 0.8026 0.9936 0.9911 0.8065
11 0.8444 0.8105 0.9941 0.9917 0.8138
12 0.8497 0.8095 0.9931 0.9908 0.8150
13 0.8661 0.8198 0.9936 0.9927 0.8309
14 0.8692 0.8191 0.9947 0.9938 0.8351
15 0.8796 0.8260 0.9953 0.9945 0.8340
16 0.8865 0.8289 0.9947 0.9954 0.8384
17 0.8912 0.8354 0.9962 0.9962 0.8437
18 0.8989 0.8323 0.9961 0.9960 0.8419
19 0.8998 0.8361 0.9954 0.9959 0.8432
20 0.9031 0.8312 0.9941 0.9948 0.8406
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Table A.43 Cell-wise accuracy of clustering, k=4, N=500, s=g=0.1

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
4 1.0000 1.0000 1.0000 1.0000 0.7771
5 0.8373 0.8332 0.9984 0.9985 0.8227
6 0.8262 0.8212 0.9955 0.9926 0.8212
7 0.8347 0.8269 0.9941 0.9901 0.8135
8 0.8466 0.8316 0.9951 0.9913 0.8237
9 0.8617 0.8404 0.9948 0.9916 0.8373
10 0.8745 0.8495 0.9953 0.9934 0.8487
11 0.8858 0.8576 0.9957 0.9940 0.8568
12 0.8940 0.8623 0.9952 0.9936 0.8635
13 0.9048 0.8686 0.9956 0.9949 0.8744
14 0.9093 0.8712 0.9965 0.9959 0.8804
15 0.9182 0.8784 0.9969 0.9964 0.8813
16 0.9237 0.8815 0.9966 0.9971 0.8865
17 0.9274 0.8868 0.9976 0.9976 0.8907
18 0.9344 0.8875 0.9975 0.9975 0.8923
19 0.9345 0.8897 0.9971 0.9975 0.8927
20 0.9377 0.8877 0.9964 0.9968 0.8921

Table A.44 Vector-wise accuracy of clustering, k=4, N=500, s=g=0.1

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
4 1.0000 1.0000 1.0000 1.0000 0.3552
5 0.4884 0.4760 0.9941 0.9942 0.4082
6 0.4128 0.3962 0.9855 0.9757 0.3814
7 0.4069 0.3729 0.9804 0.9659 0.3226
8 0.4252 0.3618 0.9839 0.9676 0.3268
9 0.4606 0.3736 0.9812 0.9672 0.3531
10 0.4889 0.3869 0.9815 0.9707 0.3800
11 0.5192 0.4048 0.9816 0.9737 0.4031
12 0.5415 0.4111 0.9776 0.9687 0.4217
13 0.5856 0.4463 0.9793 0.9742 0.4659
14 0.6017 0.4473 0.9811 0.9768 0.4761
15 0.6200 0.4642 0.9828 0.9795 0.4800
16 0.6433 0.4815 0.9804 0.9803 0.5063
17 0.6587 0.4933 0.9818 0.9820 0.5180
18 0.6789 0.5006 0.9784 0.9775 0.5248
19 0.6870 0.5051 0.9759 0.9760 0.5240
20 0.6999 0.5020 0.9671 0.9700 0.5208
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A.2.6 N=500, slip=guess=0.2

Table A.45 RMSE of clustering, k=4, N=500, s=g=0.2

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
4 0.0000 0.0000 0.0000 0.0000 0.1560
5 0.1554 0.1613 0.0411 0.0405 0.1463
6 0.1688 0.1703 0.0709 0.0956 0.1584
7 0.1652 0.1732 0.0795 0.1321 0.1789
8 0.1576 0.1669 0.0906 0.1494 0.1748
9 0.1490 0.1610 0.1022 0.1547 0.1688
10 0.1420 0.1552 0.1067 0.1525 0.1610
11 0.1393 0.1521 0.1115 0.1531 0.1579
12 0.1335 0.1484 0.1151 0.1448 0.1532
13 0.1276 0.1446 0.1119 0.1372 0.1488
14 0.1259 0.1429 0.1151 0.1358 0.1475
15 0.1220 0.1403 0.1137 0.1320 0.1436
16 0.1179 0.1369 0.1116 0.1268 0.1401
17 0.1161 0.1352 0.1155 0.1272 0.1378
18 0.1119 0.1317 0.1134 0.1232 0.1352
19 0.1111 0.1299 0.1145 0.1247 0.1340
20 0.1059 0.1268 0.1139 0.1212 0.1303

Table A.46 F-score of clustering, k=4, N=500, s=g=0.2

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
4 1.0000 1.0000 1.0000 1.0000 0.7780
5 0.8108 0.8073 0.9554 0.9560 0.7764
6 0.7710 0.7710 0.9178 0.8900 0.7627
7 0.7554 0.7462 0.9006 0.8381 0.7342
8 0.7556 0.7434 0.8821 0.8115 0.7321
9 0.7660 0.7471 0.8658 0.8023 0.7377
10 0.7748 0.7529 0.8590 0.8036 0.7478
11 0.7689 0.7463 0.8446 0.7921 0.7421
12 0.7772 0.7504 0.8377 0.8004 0.7481
13 0.7868 0.7528 0.8399 0.8078 0.7530
14 0.7856 0.7516 0.8324 0.8059 0.7517
15 0.7931 0.7547 0.8333 0.8095 0.7585
16 0.8001 0.7598 0.8346 0.8145 0.7633
17 0.8067 0.7643 0.8306 0.8154 0.7695
18 0.8158 0.7703 0.8324 0.8196 0.7733
19 0.8145 0.7704 0.8273 0.8136 0.7723
20 0.8274 0.7786 0.8287 0.8193 0.7810
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Table A.47 Cell-wise accuracy of clustering, k=4, N=500, s=g=0.2

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
4 1.0000 1.0000 1.0000 1.0000 0.7788
5 0.8242 0.8202 0.9589 0.9595 0.7934
6 0.7980 0.7970 0.9291 0.9044 0.7879
7 0.7984 0.7883 0.9205 0.8679 0.7739
8 0.8059 0.7922 0.9094 0.8506 0.7784
9 0.8167 0.7983 0.8978 0.8453 0.7853
10 0.8257 0.8047 0.8933 0.8475 0.7958
11 0.8303 0.8093 0.8885 0.8469 0.8008
12 0.8389 0.8149 0.8849 0.8552 0.8078
13 0.8481 0.8195 0.8881 0.8628 0.8143
14 0.8507 0.8220 0.8849 0.8642 0.8169
15 0.8571 0.8254 0.8863 0.8680 0.8234
16 0.8638 0.8310 0.8884 0.8732 0.8288
17 0.8674 0.8333 0.8845 0.8728 0.8334
18 0.8747 0.8391 0.8866 0.8768 0.8370
19 0.8768 0.8423 0.8855 0.8753 0.8398
20 0.8853 0.8479 0.8861 0.8788 0.8462

Table A.48 Vector-wise accuracy of clustering, k=4, N=500, s=g=0.2

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB
4 1.0000 1.0000 1.0000 1.0000 0.3598
5 0.4339 0.4259 0.8608 0.8637 0.3197
6 0.3063 0.3012 0.7588 0.6653 0.2698
7 0.2671 0.2323 0.6991 0.5024 0.2026
8 0.2583 0.2092 0.6380 0.4126 0.1813
9 0.2697 0.2062 0.5651 0.3583 0.1878
10 0.2799 0.2132 0.5201 0.3399 0.1907
11 0.2778 0.2095 0.4702 0.3068 0.1889
12 0.2921 0.2130 0.4399 0.3202 0.1955
13 0.3082 0.2178 0.4172 0.3200 0.1988
14 0.3089 0.2192 0.3840 0.3041 0.2060
15 0.3252 0.2269 0.3572 0.2964 0.2151
16 0.3411 0.2386 0.3364 0.2854 0.2236
17 0.3540 0.2428 0.2949 0.2626 0.2334
18 0.3651 0.2553 0.2627 0.2361 0.2375
19 0.3761 0.2591 0.2259 0.2040 0.2432
20 0.4012 0.2738 0.1987 0.1837 0.2571
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APPENDIX B EXPERIMENT RESULTS OF Q-MATRIX DERIVATION

B.1 Results of Q-matrix Derivation: 3-skill case

B.1.1 N=100, slip=guess=0.05

Table B.1 F-score of derivation, k=3, N=100, s=g=0.05

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
3 1.0000 1.0000 1.0000 1.0000 0.8590 0.9924 0.3356 0.9984 0.7499
4 0.9231 0.8757 0.9975 0.9973 0.8644 0.9730 0.5989 0.9825 0.7740
5 0.8896 0.8314 0.9678 0.9679 0.8519 0.9429 0.6854 0.9744 0.7819
6 0.8922 0.8359 0.9743 0.9761 0.8528 0.9446 0.7184 0.9760 0.7940
7 0.9015 0.8421 0.9728 0.9731 0.8558 0.9436 0.7292 0.9727 0.8063
8 0.9043 0.8390 0.9698 0.9711 0.8557 0.9360 0.7427 0.9702 0.8091
9 0.9205 0.8526 0.9836 0.9852 0.8713 0.9442 0.7439 0.9762 0.8131
10 0.9212 0.8479 0.9815 0.9830 0.8756 0.9396 0.7450 0.9700 0.8215

Table B.2 Cell-wise accuracy of derivation, k=3, N=100, s=g=0.05

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
3 1.0000 1.0000 1.0000 1.0000 0.8899 0.9940 0.5556 0.9991 0.7644
4 0.9357 0.8971 0.9980 0.9978 0.8805 0.9761 0.6650 0.9850 0.7741
5 0.9029 0.8529 0.9701 0.9702 0.8681 0.9481 0.7281 0.9766 0.7738
6 0.8997 0.8482 0.9746 0.9763 0.8648 0.9464 0.7443 0.9780 0.7851
7 0.9031 0.8466 0.9715 0.9718 0.8607 0.9426 0.7473 0.9740 0.7922
8 0.9045 0.8413 0.9673 0.9685 0.8593 0.9340 0.7602 0.9708 0.7918
9 0.9171 0.8481 0.9819 0.9835 0.8685 0.9395 0.7556 0.9773 0.7971
10 0.9183 0.8438 0.9798 0.9813 0.8730 0.9346 0.7575 0.9704 0.8021

Table B.3 Vector-wise accuracy of derivation, k=3, N=100, s=g=0.05

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
3 1.0000 1.0000 1.0000 1.0000 0.7180 0.9789 0.3323 0.9974 0.4206
4 0.8668 0.7912 0.9955 0.9955 0.7109 0.9277 0.3670 0.9586 0.4336
5 0.7823 0.6827 0.9120 0.9122 0.7033 0.8422 0.4372 0.9352 0.4194
6 0.7742 0.6712 0.9279 0.9319 0.7079 0.8402 0.4359 0.9401 0.4281
7 0.7801 0.6612 0.9181 0.9185 0.7023 0.8267 0.4326 0.9292 0.4494
8 0.7858 0.6491 0.9067 0.9090 0.6983 0.8034 0.4454 0.9208 0.4447
9 0.8180 0.6692 0.9497 0.9535 0.7247 0.8221 0.4315 0.9383 0.4542
10 0.8204 0.6525 0.9455 0.9486 0.7295 0.8061 0.4252 0.9198 0.4594



100

B.1.2 N=100, slip=guess=0.1

Table B.4 F-score of derivation, k=3, N=100, s=g=0.1

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
3 1.0000 1.0000 1.0000 1.0000 0.8618 0.9929 0.3354 0.9994 0.7494
4 0.8968 0.8450 0.9787 0.9790 0.8450 0.9628 0.5827 0.9759 0.7666
5 0.8640 0.8258 0.9550 0.9492 0.8165 0.9374 0.6678 0.9644 0.7711
6 0.8602 0.8169 0.9491 0.9459 0.8072 0.9314 0.7109 0.9629 0.7913
7 0.8678 0.8170 0.9482 0.9448 0.8146 0.9255 0.7305 0.9561 0.7926
8 0.8795 0.8213 0.9453 0.9487 0.8216 0.9278 0.7350 0.9563 0.8089
9 0.8885 0.8240 0.9520 0.9510 0.8398 0.9291 0.7386 0.9569 0.8099
10 0.8974 0.8362 0.9503 0.9529 0.8549 0.9362 0.7486 0.9542 0.8157

Table B.5 Cell-wise accuracy of derivation, k=3, N=100, s=g=0.1

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
3 1.0000 1.0000 1.0000 1.0000 0.8928 0.9943 0.5567 0.9997 0.7641
4 0.9145 0.8732 0.9825 0.9828 0.8669 0.9679 0.6640 0.9801 0.7704
5 0.8789 0.8456 0.9594 0.9549 0.8380 0.9423 0.7121 0.9690 0.7657
6 0.8706 0.8314 0.9518 0.9490 0.8250 0.9343 0.7388 0.9661 0.7789
7 0.8729 0.8257 0.9490 0.9457 0.8263 0.9253 0.7507 0.9594 0.7766
8 0.8788 0.8228 0.9430 0.9473 0.8254 0.9255 0.7487 0.9586 0.7915
9 0.8867 0.8228 0.9497 0.9490 0.8404 0.9254 0.7518 0.9585 0.7898
10 0.8929 0.8322 0.9465 0.9494 0.8528 0.9317 0.7601 0.9562 0.7957

Table B.6 Vector-wise accuracy of derivation, k=3, N=100, s=g=0.1

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
3 1.0000 1.0000 1.0000 1.0000 0.7318 0.9818 0.3344 0.9990 0.4219
4 0.8250 0.7443 0.9625 0.9637 0.6871 0.9064 0.3924 0.9482 0.4236
5 0.7389 0.6745 0.8945 0.8847 0.6530 0.8348 0.4113 0.9206 0.4028
6 0.7204 0.6391 0.8831 0.8768 0.6358 0.8091 0.4341 0.9116 0.4203
7 0.7228 0.6273 0.8751 0.8689 0.6362 0.7901 0.4302 0.8942 0.4138
8 0.7408 0.6209 0.8604 0.8733 0.6368 0.7896 0.4231 0.8928 0.4410
9 0.7552 0.6199 0.8826 0.8847 0.6620 0.7888 0.4194 0.8913 0.4355
10 0.7648 0.6292 0.8694 0.8778 0.6823 0.8045 0.4395 0.8865 0.4478
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B.1.3 N=100, slip=guess=0.2

Table B.7 F-score of derivation, k=3, N=100, s=g=0.2

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
3 1.0000 1.0000 1.0000 1.0000 0.8621 0.9940 0.3355 0.9995 0.7488
4 0.8322 0.8142 0.9075 0.9081 0.7970 0.9222 0.5149 0.9235 0.7520
5 0.7858 0.7626 0.8472 0.8334 0.7526 0.8585 0.5899 0.9103 0.7577
6 0.7737 0.7518 0.8210 0.7947 0.7401 0.8679 0.6271 0.8955 0.7678
7 0.7648 0.7409 0.8052 0.7786 0.7361 0.8528 0.6615 0.8853 0.7735
8 0.7681 0.7451 0.7958 0.7756 0.7428 0.8610 0.6796 0.8898 0.7834
9 0.7695 0.7446 0.7981 0.7783 0.7445 0.8592 0.6881 0.8837 0.7916
10 0.7671 0.7391 0.7777 0.7725 0.7413 0.8594 0.7037 0.8881 0.7915

Table B.8 Cell-wise accuracy of derivation, k=3, N=100, s=g=0.2

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
3 1.0000 1.0000 1.0000 1.0000 0.8924 0.9951 0.5568 0.9997 0.7635
4 0.8637 0.8505 0.9253 0.9260 0.8314 0.9356 0.6299 0.9403 0.7534
5 0.8117 0.7927 0.8654 0.8537 0.7844 0.8743 0.6638 0.9272 0.7524
6 0.7896 0.7713 0.8311 0.8099 0.7617 0.8718 0.6728 0.9109 0.7557
7 0.7773 0.7560 0.8135 0.7913 0.7527 0.8534 0.6924 0.8995 0.7556
8 0.7755 0.7542 0.8003 0.7838 0.7538 0.8585 0.7007 0.9010 0.7627
9 0.7720 0.7488 0.7988 0.7815 0.7498 0.8530 0.7040 0.8929 0.7680
10 0.7673 0.7410 0.7764 0.7737 0.7438 0.8514 0.7158 0.8980 0.7704

Table B.9 Vector-wise accuracy of derivation, k=3, N=100, s=g=0.2

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
3 1.0000 1.0000 1.0000 1.0000 0.7273 0.9833 0.3346 0.9992 0.4172
4 0.7332 0.7080 0.8447 0.8467 0.6393 0.8389 0.3658 0.8605 0.4027
5 0.6173 0.5828 0.7116 0.6867 0.5656 0.7081 0.3767 0.8311 0.3930
6 0.5711 0.5332 0.6422 0.6069 0.5227 0.6892 0.3535 0.7935 0.3875
7 0.5502 0.5044 0.6103 0.5756 0.4992 0.6460 0.3503 0.7691 0.3875
8 0.5403 0.4974 0.5804 0.5591 0.4957 0.6567 0.3628 0.7677 0.3916
9 0.5345 0.4937 0.5850 0.5601 0.4916 0.6436 0.3596 0.7526 0.4010
10 0.5272 0.4738 0.5398 0.5390 0.4755 0.6377 0.3728 0.7668 0.4001
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B.1.4 N=500, slip=guess=0.05

Table B.10 F-score of derivation, k=3, N=500, s=g=0.05

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
3 1.0000 1.0000 1.0000 1.0000 0.8920 0.9963 0.3333 0.9994 0.7402
4 0.8976 0.8753 1.0000 1.0000 0.8691 0.9749 0.6196 0.9875 0.7682
5 0.8598 0.8429 0.9799 0.9799 0.8577 0.9540 0.6721 0.9881 0.7828
6 0.8565 0.8378 0.9730 0.9730 0.8449 0.9479 0.6955 0.9866 0.7878
7 0.8705 0.8433 0.9740 0.9740 0.8572 0.9532 0.6908 0.9881 0.8010
8 0.8947 0.8550 0.9857 0.9857 0.8818 0.9519 0.7076 0.9849 0.8148
9 0.9039 0.8587 0.9690 0.9690 0.8863 0.9496 0.7087 0.9837 0.8165
10 0.9243 0.8730 0.9808 0.9808 0.9047 0.9562 0.7128 0.9876 0.8238

Table B.11 Cell-wise accuracy of derivation, k=3, N=500, s=g=0.05

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
3 1.0000 1.0000 1.0000 1.0000 0.9152 0.9971 0.5556 0.9997 0.7531
4 0.9142 0.8962 1.0000 1.0000 0.8861 0.9784 0.6829 0.9889 0.7696
5 0.8746 0.8617 0.9812 0.9812 0.8715 0.9583 0.7173 0.9892 0.7764
6 0.8648 0.8480 0.9727 0.9727 0.8537 0.9499 0.7239 0.9875 0.7748
7 0.8717 0.8455 0.9728 0.9728 0.8594 0.9521 0.7108 0.9887 0.7878
8 0.8932 0.8542 0.9840 0.9840 0.8800 0.9500 0.7254 0.9853 0.7990
9 0.9001 0.8556 0.9653 0.9653 0.8828 0.9457 0.7254 0.9837 0.7978
10 0.9196 0.8672 0.9786 0.9786 0.8995 0.9530 0.7284 0.9876 0.8059

Table B.12 Vector-wise accuracy of derivation, k=3, N=500, s=g=0.05

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
3 1.0000 1.0000 1.0000 1.0000 0.7701 0.9911 0.3333 0.9990 0.3922
4 0.8189 0.7834 1.0000 1.0000 0.7188 0.9332 0.4010 0.9689 0.4209
5 0.7202 0.6977 0.9437 0.9437 0.6900 0.8720 0.4342 0.9692 0.4217
6 0.6987 0.6712 0.9180 0.9180 0.6763 0.8488 0.4142 0.9641 0.4165
7 0.7196 0.6643 0.9230 0.9230 0.6911 0.8541 0.3837 0.9669 0.4355
8 0.7650 0.6825 0.9521 0.9521 0.7420 0.8506 0.3977 0.9576 0.4560
9 0.7711 0.6762 0.8984 0.8984 0.7339 0.8377 0.3942 0.9526 0.4501
10 0.8223 0.7057 0.9422 0.9422 0.7787 0.8561 0.3911 0.9634 0.4676
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B.1.5 N=500, slip=guess=0.1

Table B.13 F-score of derivation, k=3, N=500, s=g=0.1

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
3 1.0000 1.0000 1.0000 1.0000 0.8885 0.9960 0.3333 0.9994 0.7428
4 0.8951 0.8708 1.0000 1.0000 0.8665 0.9713 0.6060 0.9857 0.7666
5 0.8547 0.8294 0.9888 0.9887 0.8451 0.9471 0.6620 0.9787 0.7766
6 0.8422 0.8181 0.9691 0.9691 0.8213 0.9337 0.6831 0.9814 0.7877
7 0.8561 0.8250 0.9816 0.9816 0.8370 0.9369 0.6835 0.9718 0.8058
8 0.8813 0.8371 0.9893 0.9892 0.8608 0.9458 0.6986 0.9764 0.8089
9 0.9056 0.8479 0.9845 0.9844 0.8869 0.9456 0.7013 0.9769 0.8187
10 0.9180 0.8633 0.9803 0.9802 0.8951 0.9468 0.7092 0.9719 0.8224

Table B.14 Cell-wise accuracy of derivation, k=3, N=500, s=g=0.1

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
3 1.0000 1.0000 1.0000 1.0000 0.9134 0.9968 0.5556 0.9997 0.7570
4 0.9135 0.8949 1.0000 1.0000 0.8855 0.9759 0.6819 0.9876 0.7710
5 0.8687 0.8472 0.9895 0.9894 0.8581 0.9510 0.7008 0.9803 0.7681
6 0.8528 0.8335 0.9688 0.9688 0.8361 0.9371 0.7152 0.9823 0.7759
7 0.8575 0.8285 0.9799 0.9799 0.8400 0.9358 0.7038 0.9717 0.7881
8 0.8804 0.8377 0.9879 0.9879 0.8604 0.9444 0.7155 0.9771 0.7924
9 0.9014 0.8442 0.9826 0.9825 0.8829 0.9429 0.7159 0.9771 0.7993
10 0.9144 0.8599 0.9784 0.9783 0.8917 0.9441 0.7270 0.9718 0.8009

Table B.15 Vector-wise accuracy of derivation, k=3, N=500, s=g=0.1

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
3 1.0000 1.0000 1.0000 1.0000 0.7724 0.9898 0.3333 0.9990 0.4018
4 0.8221 0.7836 1.0000 1.0000 0.7219 0.9264 0.4221 0.9662 0.4244
5 0.7131 0.6777 0.9686 0.9683 0.6716 0.8572 0.3952 0.9472 0.4053
6 0.6753 0.6431 0.9062 0.9062 0.6444 0.8158 0.4033 0.9517 0.4130
7 0.6891 0.6287 0.9397 0.9397 0.6552 0.8167 0.3721 0.9210 0.4362
8 0.7382 0.6491 0.9647 0.9646 0.6957 0.8373 0.3838 0.9374 0.4424
9 0.7802 0.6566 0.9479 0.9476 0.7428 0.8328 0.3871 0.9374 0.4543
10 0.8103 0.6891 0.9383 0.9382 0.7550 0.8387 0.3983 0.9221 0.4563
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B.1.6 N=500, slip=guess=0.2

Table B.16 F-score of derivation, k=3, N=500, s=g=0.2

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
3 1.0000 1.0000 1.0000 1.0000 0.8881 0.9946 0.3333 0.9992 0.7398
4 0.8521 0.8493 0.9667 0.9667 0.8310 0.9445 0.5033 0.9606 0.7709
5 0.7940 0.7847 0.9430 0.9025 0.7916 0.8818 0.5989 0.9500 0.7646
6 0.7972 0.7705 0.9453 0.8988 0.7792 0.8905 0.6341 0.9303 0.7906
7 0.8171 0.7839 0.9437 0.8894 0.7905 0.8828 0.6498 0.9448 0.7928
8 0.8393 0.7930 0.9544 0.8994 0.8140 0.8881 0.6620 0.9377 0.8015
9 0.8618 0.8071 0.9551 0.9037 0.8248 0.8873 0.6675 0.9413 0.8107
10 0.8747 0.8075 0.9529 0.9121 0.8288 0.8864 0.6802 0.9423 0.8138

Table B.17 Cell-wise accuracy of derivation, k=3, N=500, s=g=0.2

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
3 1.0000 1.0000 1.0000 1.0000 0.9126 0.9958 0.5556 0.9996 0.7538
4 0.8783 0.8757 0.9741 0.9741 0.8562 0.9535 0.6213 0.9683 0.7736
5 0.8192 0.8120 0.9484 0.9127 0.8147 0.8958 0.6713 0.9572 0.7577
6 0.8112 0.7886 0.9471 0.9052 0.7963 0.8950 0.6776 0.9357 0.7740
7 0.8211 0.7916 0.9427 0.8918 0.7993 0.8826 0.6809 0.9491 0.7757
8 0.8410 0.7980 0.9529 0.9012 0.8181 0.8864 0.6879 0.9413 0.7809
9 0.8586 0.8062 0.9532 0.9030 0.8233 0.8826 0.6879 0.9442 0.7912
10 0.8713 0.8059 0.9499 0.9097 0.8276 0.8814 0.7008 0.9446 0.7917

Table B.18 Vector-wise accuracy of derivation, k=3, N=500, s=g=0.2

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
3 1.0000 1.0000 1.0000 1.0000 0.7664 0.9870 0.3333 0.9987 0.3997
4 0.7559 0.7516 0.9613 0.9613 0.6779 0.8785 0.3574 0.9293 0.4299
5 0.6305 0.6172 0.8608 0.7816 0.6034 0.7530 0.3959 0.9039 0.3936
6 0.6049 0.5661 0.8712 0.7895 0.5736 0.7332 0.3706 0.8608 0.4130
7 0.6164 0.5607 0.8592 0.7633 0.5779 0.7083 0.3549 0.8825 0.4136
8 0.6637 0.5763 0.8913 0.7981 0.6103 0.7146 0.3521 0.8682 0.4232
9 0.6978 0.5860 0.8983 0.8110 0.6165 0.7035 0.3546 0.8753 0.4386
10 0.7212 0.5820 0.8773 0.8120 0.6241 0.6987 0.3588 0.8723 0.4398
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B.2 Results of Q-matrix Derivation: 4-skill case

B.2.1 N=200, slip=guess=0.05

Table B.19 F-score of derivation, k=4, N=200, s=g=0.05

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
4 1.0000 1.0000 1.0000 1.0000 0.8106 0.8704 0.2500 0.9996 0.6502
5 0.8436 0.8075 0.9969 0.9973 0.8066 0.8601 0.5124 0.9472 0.6808
6 0.8007 0.7667 0.9814 0.9813 0.7945 0.8571 0.5928 0.9367 0.6991
7 0.7913 0.7541 0.9676 0.9668 0.7587 0.8601 0.6361 0.9321 0.7170
8 0.8042 0.7628 0.9668 0.9655 0.7636 0.8624 0.6657 0.9245 0.7306
9 0.8012 0.7594 0.9553 0.9538 0.7626 0.8653 0.6667 0.9177 0.7461
10 0.8188 0.7650 0.9437 0.9402 0.7513 0.8741 0.6752 0.9066 0.7500
11 0.8236 0.7670 0.9545 0.9542 0.7699 0.8690 0.6868 0.9091 0.7635
12 0.8445 0.7845 0.9654 0.9686 0.7930 0.8743 0.6741 0.8979 0.7646
13 0.8161 0.7773 0.9381 0.9413 0.7878 0.8748 0.6983 0.9024 0.7685
14 0.8449 0.7945 0.9608 0.9642 0.7994 0.8811 0.6649 0.8947 0.7761
15 0.8376 0.7824 0.9424 0.9454 0.7883 0.8909 0.6519 0.8992 0.7767
16 0.8492 0.8016 0.9438 0.9490 0.7937 0.8897 0.6899 0.8902 0.7816
17 0.8637 0.8148 0.9697 0.9735 0.8149 0.8944 0.6747 0.8887 0.7881
18 0.8540 0.7979 0.9440 0.9455 0.8093 0.8883 0.6604 0.8893 0.7863
19 0.8409 0.7841 0.9184 0.9223 0.7867 0.8860 0.6880 0.8933 0.7886
20 0.8676 0.8081 0.9646 0.9594 0.8095 0.8849 0.6834 0.8919 0.7906

Table B.20 Cell-wise accuracy of derivation, k=4, N=200, s=g=0.05

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
4 1.0000 1.0000 1.0000 1.0000 0.8850 0.9147 0.6250 0.9998 0.7199
5 0.9013 0.8796 0.9980 0.9982 0.8677 0.8946 0.6863 0.9668 0.7241
6 0.8599 0.8357 0.9877 0.9876 0.8509 0.8851 0.7163 0.9576 0.7295
7 0.8427 0.8150 0.9759 0.9753 0.8185 0.8800 0.7321 0.9524 0.7355
8 0.8449 0.8138 0.9737 0.9727 0.8148 0.8780 0.7459 0.9444 0.7404
9 0.8354 0.8030 0.9622 0.9610 0.8066 0.8750 0.7407 0.9383 0.7524
10 0.8466 0.8003 0.9528 0.9495 0.7922 0.8811 0.7447 0.9278 0.7524
11 0.8513 0.8050 0.9624 0.9621 0.8101 0.8752 0.7547 0.9277 0.7616
12 0.8604 0.8099 0.9673 0.9698 0.8187 0.8757 0.7365 0.9174 0.7598
13 0.8377 0.8071 0.9421 0.9445 0.8160 0.8783 0.7593 0.9201 0.7633
14 0.8584 0.8147 0.9641 0.9672 0.8203 0.8787 0.7285 0.9128 0.7677
15 0.8381 0.7867 0.9413 0.9443 0.7948 0.8834 0.7004 0.9160 0.7681
16 0.8592 0.8187 0.9466 0.9512 0.8128 0.8854 0.7487 0.9073 0.7709
17 0.8692 0.8257 0.9713 0.9754 0.8255 0.8897 0.7316 0.9049 0.7775
18 0.8569 0.8053 0.9440 0.9456 0.8194 0.8795 0.7168 0.9049 0.7749
19 0.8462 0.7961 0.9186 0.9228 0.8032 0.8801 0.7437 0.9089 0.7783
20 0.8769 0.8204 0.9669 0.9619 0.8263 0.8796 0.7410 0.9075 0.7793
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Table B.21 Vector-wise accuracy of derivation, k=4, N=200, s=g=0.05

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
4 1.0000 1.0000 1.0000 1.0000 0.6418 0.6660 0.2500 0.9992 0.2465
5 0.7772 0.7278 0.9947 0.9952 0.6177 0.5958 0.3203 0.9350 0.2514
6 0.6674 0.6109 0.9563 0.9559 0.6076 0.5661 0.3230 0.8935 0.2460
7 0.6272 0.5574 0.9123 0.9106 0.5622 0.5551 0.3138 0.8777 0.2451
8 0.6253 0.5555 0.9063 0.9049 0.5576 0.5557 0.3257 0.8560 0.2526
9 0.5984 0.5257 0.8683 0.8660 0.5353 0.5392 0.3210 0.8385 0.2751
10 0.6144 0.5075 0.8413 0.8344 0.5081 0.5537 0.3356 0.8279 0.2672
11 0.6114 0.5205 0.8670 0.8676 0.5369 0.5347 0.3153 0.8268 0.2788
12 0.6589 0.5464 0.9031 0.9135 0.5656 0.5604 0.3125 0.8038 0.2783
13 0.6077 0.5260 0.8313 0.8375 0.5635 0.5471 0.3351 0.8075 0.2760
14 0.6540 0.5540 0.8862 0.8938 0.5701 0.5656 0.2853 0.7939 0.2938
15 0.6030 0.4985 0.8215 0.8326 0.4970 0.6022 0.2570 0.7990 0.2921
16 0.6500 0.5543 0.8375 0.8500 0.5582 0.5855 0.3109 0.7895 0.2977
17 0.6772 0.5618 0.9132 0.9250 0.5676 0.6018 0.2982 0.7750 0.3063
18 0.6507 0.5233 0.8347 0.8378 0.5698 0.5691 0.2708 0.7737 0.3035
19 0.6211 0.4848 0.7532 0.7649 0.5333 0.5696 0.3076 0.7873 0.3100
20 0.6861 0.5533 0.8967 0.8861 0.5711 0.5589 0.2994 0.7773 0.3105

B.2.2 N=200, slip=guess=0.1

Table B.22 F-score of derivation, k=4, N=200, s=g=0.1

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
4 1.0000 1.0000 1.0000 1.0000 0.8153 0.8752 0.2500 0.9999 0.6545
5 0.8207 0.7865 0.9732 0.9732 0.7821 0.8400 0.4905 0.9317 0.6750
6 0.7659 0.7419 0.9428 0.9340 0.7428 0.8389 0.5813 0.9146 0.7019
7 0.7624 0.7339 0.9358 0.9244 0.7200 0.8418 0.6241 0.9049 0.7157
8 0.7591 0.7256 0.9209 0.9032 0.7087 0.8473 0.6422 0.8808 0.7314
9 0.7580 0.7226 0.8970 0.8836 0.7074 0.8492 0.6546 0.8740 0.7407
10 0.7619 0.7295 0.8900 0.8726 0.7128 0.8519 0.6645 0.8785 0.7427
11 0.7727 0.7281 0.8871 0.8697 0.7278 0.8569 0.6752 0.8690 0.7569
12 0.7887 0.7452 0.8799 0.8701 0.7393 0.8572 0.6790 0.8694 0.7605
13 0.7884 0.7463 0.8821 0.8710 0.7364 0.8651 0.6707 0.8755 0.7590
14 0.8048 0.7574 0.8787 0.8728 0.7484 0.8695 0.6746 0.8675 0.7711
15 0.8071 0.7588 0.8810 0.8723 0.7524 0.8703 0.6757 0.8560 0.7747
16 0.8122 0.7617 0.8717 0.8623 0.7580 0.8720 0.6843 0.8561 0.7807
17 0.8152 0.7663 0.8653 0.8606 0.7572 0.8748 0.6828 0.8607 0.7818
18 0.8232 0.7642 0.8636 0.8589 0.7656 0.8755 0.6728 0.8574 0.7807
19 0.8177 0.7643 0.8541 0.8541 0.7620 0.8795 0.6814 0.8509 0.7918
20 0.8241 0.7744 0.8608 0.8524 0.7672 0.8829 0.6740 0.8477 0.7939
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Table B.23 Cell-wise accuracy of derivation, k=4, N=200, s=g=0.1

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
4 1.0000 1.0000 1.0000 1.0000 0.8891 0.9182 0.6250 1.0000 0.7246
5 0.8880 0.8670 0.9830 0.9830 0.8551 0.8811 0.6880 0.9590 0.7221
6 0.8378 0.8221 0.9605 0.9546 0.8210 0.8733 0.7174 0.9441 0.7304
7 0.8208 0.8009 0.9518 0.9436 0.7908 0.8653 0.7277 0.9354 0.7343
8 0.8078 0.7845 0.9365 0.9226 0.7722 0.8635 0.7268 0.9139 0.7390
9 0.8020 0.7760 0.9133 0.9029 0.7666 0.8622 0.7329 0.9072 0.7444
10 0.7991 0.7759 0.9045 0.8899 0.7643 0.8614 0.7349 0.9089 0.7439
11 0.8042 0.7689 0.8995 0.8849 0.7718 0.8624 0.7400 0.9007 0.7542
12 0.8154 0.7812 0.8925 0.8840 0.7783 0.8622 0.7435 0.8988 0.7564
13 0.8082 0.7738 0.8905 0.8810 0.7682 0.8650 0.7300 0.9030 0.7539
14 0.8207 0.7811 0.8850 0.8807 0.7753 0.8674 0.7326 0.8939 0.7639
15 0.8193 0.7793 0.8855 0.8777 0.7747 0.8669 0.7311 0.8842 0.7650
16 0.8251 0.7813 0.8776 0.8694 0.7802 0.8688 0.7398 0.8819 0.7694
17 0.8264 0.7846 0.8715 0.8675 0.7784 0.8709 0.7390 0.8860 0.7706
18 0.8323 0.7797 0.8688 0.8651 0.7831 0.8697 0.7278 0.8811 0.7675
19 0.8272 0.7800 0.8606 0.8612 0.7795 0.8741 0.7366 0.8748 0.7773
20 0.8280 0.7845 0.8634 0.8557 0.7795 0.8746 0.7256 0.8716 0.7791

Table B.24 Vector-wise accuracy of derivation, k=4, N=200, s=g=0.1

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
4 1.0000 1.0000 1.0000 1.0000 0.6486 0.6789 0.2500 0.9998 0.2541
5 0.7489 0.6997 0.9519 0.9514 0.6070 0.5633 0.3239 0.9178 0.2487
6 0.6134 0.5789 0.8757 0.8646 0.5561 0.5465 0.3247 0.8772 0.2527
7 0.5796 0.5292 0.8624 0.8459 0.5016 0.5294 0.3134 0.8481 0.2520
8 0.5424 0.4943 0.8159 0.7909 0.4641 0.5315 0.2984 0.8154 0.2538
9 0.5229 0.4660 0.7428 0.7266 0.4510 0.5180 0.3087 0.7933 0.2613
10 0.5163 0.4677 0.7259 0.6984 0.4427 0.5173 0.3062 0.8013 0.2544
11 0.5293 0.4516 0.7213 0.6942 0.4612 0.5217 0.3152 0.7857 0.2705
12 0.5521 0.4764 0.7068 0.6949 0.4710 0.5247 0.3192 0.7755 0.2743
13 0.5386 0.4657 0.7083 0.6927 0.4536 0.5299 0.2952 0.7855 0.2598
14 0.5720 0.4828 0.7053 0.7044 0.4659 0.5434 0.3064 0.7663 0.2839
15 0.5709 0.4771 0.7063 0.6943 0.4659 0.5435 0.3038 0.7547 0.2823
16 0.5795 0.4778 0.6880 0.6778 0.4761 0.5486 0.3113 0.7450 0.2889
17 0.5822 0.4815 0.6767 0.6740 0.4704 0.5526 0.3059 0.7513 0.2971
18 0.5935 0.4724 0.6748 0.6716 0.4787 0.5468 0.2888 0.7375 0.2873
19 0.5863 0.4755 0.6634 0.6659 0.4687 0.5620 0.3020 0.7336 0.3120
20 0.5945 0.4861 0.6715 0.6547 0.4694 0.5691 0.2812 0.7189 0.3122
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B.2.3 N=200, slip=guess=0.2

Table B.25 F-score of derivation, k=4, N=200, s=g=0.2

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
4 1.0000 1.0000 1.0000 1.0000 0.8117 0.8639 0.2500 0.9993 0.6567
5 0.7837 0.7718 0.8960 0.8928 0.7443 0.7990 0.4117 0.9054 0.6660
6 0.7145 0.6993 0.8144 0.7898 0.6920 0.7880 0.4877 0.8588 0.6859
7 0.6873 0.6766 0.7638 0.7252 0.6612 0.7882 0.5316 0.8301 0.6980
8 0.6758 0.6631 0.7310 0.6900 0.6502 0.7815 0.5648 0.8154 0.7065
9 0.6683 0.6555 0.7079 0.6762 0.6452 0.7826 0.5790 0.7924 0.7172
10 0.6603 0.6507 0.6974 0.6673 0.6473 0.7830 0.6090 0.7911 0.7283
11 0.6600 0.6428 0.6812 0.6640 0.6455 0.7848 0.6086 0.7780 0.7363
12 0.6607 0.6469 0.6783 0.6632 0.6422 0.7867 0.6291 0.7671 0.7410
13 0.6572 0.6457 0.6666 0.6580 0.6402 0.7970 0.6274 0.7634 0.7459
14 0.6549 0.6433 0.6655 0.6560 0.6398 0.7907 0.6343 0.7623 0.7515
15 0.6597 0.6451 0.6639 0.6591 0.6424 0.7965 0.6406 0.7587 0.7552
16 0.6609 0.6475 0.6614 0.6563 0.6416 0.7980 0.6459 0.7739 0.7558
17 0.6601 0.6477 0.6597 0.6564 0.6444 0.7969 0.6486 0.7553 0.7635
18 0.6649 0.6492 0.6549 0.6511 0.6442 0.8038 0.6461 0.7538 0.7652
19 0.6627 0.6499 0.6496 0.6482 0.6455 0.8074 0.6543 0.7543 0.7663
20 0.6686 0.6541 0.6540 0.6492 0.6472 0.8105 0.6508 0.7464 0.7732

Table B.26 Cell-wise accuracy of derivation, k=4, N=200, s=g=0.2

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
4 1.0000 1.0000 1.0000 1.0000 0.8862 0.9097 0.6250 0.9997 0.7276
5 0.8661 0.8587 0.9352 0.9332 0.8335 0.8525 0.6630 0.9457 0.7150
6 0.8024 0.7924 0.8705 0.8547 0.7871 0.8349 0.6740 0.9138 0.7194
7 0.7679 0.7616 0.8222 0.7965 0.7518 0.8220 0.6813 0.8918 0.7178
8 0.7521 0.7435 0.7898 0.7636 0.7350 0.8099 0.6876 0.8788 0.7194
9 0.7356 0.7268 0.7624 0.7435 0.7205 0.8020 0.6852 0.8587 0.7221
10 0.7272 0.7215 0.7539 0.7356 0.7203 0.8009 0.6994 0.8554 0.7306
11 0.7199 0.7090 0.7352 0.7267 0.7113 0.7977 0.6911 0.8421 0.7327
12 0.7182 0.7084 0.7304 0.7214 0.7056 0.7963 0.7016 0.8317 0.7352
13 0.7063 0.6988 0.7138 0.7088 0.6954 0.8005 0.6932 0.8277 0.7389
14 0.7020 0.6939 0.7107 0.7047 0.6920 0.7920 0.6968 0.8253 0.7429
15 0.7048 0.6943 0.7076 0.7056 0.6925 0.7966 0.7004 0.8199 0.7432
16 0.7038 0.6943 0.7040 0.7016 0.6900 0.7971 0.7050 0.8316 0.7452
17 0.6992 0.6901 0.6998 0.6980 0.6881 0.7937 0.7049 0.8150 0.7503
18 0.7001 0.6884 0.6921 0.6901 0.6851 0.7976 0.7008 0.8114 0.7502
19 0.6984 0.6891 0.6892 0.6887 0.6863 0.8025 0.7098 0.8128 0.7509
20 0.7075 0.6977 0.6968 0.6945 0.6897 0.8071 0.7086 0.8039 0.7562
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Table B.27 Vector-wise accuracy of derivation, k=4, N=200, s=g=0.2

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
4 1.0000 1.0000 1.0000 1.0000 0.6457 0.6420 0.2500 0.9988 0.2551
5 0.6947 0.6711 0.8481 0.8456 0.5752 0.5083 0.2747 0.8872 0.2341
6 0.5398 0.5160 0.6893 0.6578 0.4984 0.4940 0.2818 0.8178 0.2367
7 0.4569 0.4366 0.5819 0.5281 0.4223 0.4723 0.2763 0.7710 0.2265
8 0.4232 0.3943 0.5008 0.4469 0.3833 0.4433 0.2622 0.7385 0.2230
9 0.3885 0.3705 0.4480 0.4148 0.3597 0.4273 0.2491 0.7065 0.2254
10 0.3670 0.3523 0.4266 0.3944 0.3531 0.4199 0.2494 0.6941 0.2341
11 0.3592 0.3357 0.3885 0.3793 0.3345 0.4174 0.2330 0.6779 0.2375
12 0.3544 0.3320 0.3781 0.3632 0.3229 0.4068 0.2516 0.6477 0.2467
13 0.3317 0.3151 0.3577 0.3466 0.3078 0.4203 0.2318 0.6550 0.2433
14 0.3232 0.3040 0.3437 0.3333 0.3061 0.3961 0.2420 0.6447 0.2491
15 0.3353 0.3094 0.3383 0.3376 0.3027 0.4084 0.2416 0.6338 0.2481
16 0.3355 0.3134 0.3309 0.3325 0.3033 0.4124 0.2557 0.6453 0.2498
17 0.3241 0.3027 0.3294 0.3244 0.2977 0.4051 0.2527 0.6277 0.2582
18 0.3280 0.3020 0.3128 0.3100 0.2885 0.4113 0.2484 0.6207 0.2618
19 0.3227 0.2983 0.3033 0.3060 0.2881 0.4263 0.2636 0.6199 0.2599
20 0.3395 0.3150 0.3023 0.3145 0.3000 0.4277 0.2714 0.6096 0.2712

B.2.4 N=500, slip=guess=0.05

Table B.28 F-score of derivation, k=4, N=500, s=g=0.05

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
4 1.0000 1.0000 1.0000 1.0000 0.8297 0.8841 0.2500 0.9997 0.6523
5 0.8288 0.8095 1.0000 0.9999 0.8218 0.8561 0.5385 0.9632 0.6801
6 0.7673 0.7583 0.9804 0.9804 0.7884 0.8635 0.6004 0.9390 0.7073
7 0.7704 0.7596 0.9752 0.9751 0.7530 0.8628 0.6301 0.9312 0.7216
8 0.7850 0.7594 0.9650 0.9650 0.7588 0.8674 0.6499 0.9191 0.7298
9 0.7908 0.7612 0.9586 0.9586 0.7647 0.8686 0.6587 0.9136 0.7461
10 0.8061 0.7726 0.9676 0.9676 0.7885 0.8759 0.6628 0.9196 0.7559
11 0.8138 0.7697 0.9506 0.9506 0.7944 0.8725 0.6549 0.9071 0.7611
12 0.8221 0.7782 0.9438 0.9438 0.8045 0.8796 0.6736 0.9137 0.7639
13 0.8343 0.7958 0.9555 0.9555 0.8123 0.8860 0.6651 0.9103 0.7716
14 0.8453 0.7939 0.9567 0.9567 0.8170 0.8836 0.6672 0.9067 0.7757
15 0.8495 0.7969 0.9498 0.9497 0.8219 0.8886 0.6732 0.9065 0.7812
16 0.8487 0.8003 0.9514 0.9516 0.8265 0.8921 0.6581 0.9081 0.7814
17 0.8597 0.8026 0.9448 0.9448 0.8318 0.8952 0.6695 0.9020 0.7832
18 0.8725 0.8136 0.9616 0.9615 0.8414 0.9014 0.6646 0.8953 0.7850
19 0.8715 0.8119 0.9557 0.9557 0.8384 0.8988 0.6690 0.9013 0.7922
20 0.8701 0.8100 0.9507 0.9507 0.8324 0.9014 0.6759 0.8983 0.7922



110

Table B.29 Cell-wise accuracy of derivation, k=4, N=500, s=g=0.05

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
4 1.0000 1.0000 1.0000 1.0000 0.8979 0.9254 0.6250 0.9999 0.7228
5 0.8929 0.8810 1.0000 1.0000 0.8788 0.8927 0.7017 0.9769 0.7256
6 0.8362 0.8298 0.9867 0.9867 0.8458 0.8900 0.7231 0.9584 0.7345
7 0.8281 0.8206 0.9816 0.9815 0.8137 0.8834 0.7271 0.9507 0.7371
8 0.8306 0.8113 0.9724 0.9724 0.8096 0.8833 0.7354 0.9405 0.7404
9 0.8299 0.8077 0.9659 0.9659 0.8095 0.8811 0.7377 0.9330 0.7500
10 0.8351 0.8093 0.9719 0.9719 0.8210 0.8831 0.7348 0.9369 0.7583
11 0.8341 0.7990 0.9545 0.9545 0.8199 0.8756 0.7222 0.9262 0.7592
12 0.8433 0.8069 0.9483 0.9483 0.8292 0.8826 0.7405 0.9304 0.7607
13 0.8479 0.8155 0.9573 0.9573 0.8298 0.8851 0.7276 0.9263 0.7670
14 0.8570 0.8128 0.9583 0.9583 0.8338 0.8818 0.7302 0.9226 0.7685
15 0.8595 0.8127 0.9512 0.9511 0.8361 0.8855 0.7342 0.9216 0.7736
16 0.8557 0.8128 0.9522 0.9524 0.8376 0.8875 0.7191 0.9229 0.7747
17 0.8664 0.8144 0.9449 0.9449 0.8431 0.8908 0.7299 0.9167 0.7741
18 0.8767 0.8223 0.9617 0.9617 0.8492 0.8963 0.7249 0.9111 0.7737
19 0.8765 0.8215 0.9548 0.9548 0.8469 0.8940 0.7287 0.9145 0.7810
20 0.8747 0.8184 0.9516 0.9516 0.8405 0.8961 0.7352 0.9120 0.7814

Table B.30 Vector-wise accuracy of derivation, k=4, N=500, s=g=0.05

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
4 1.0000 1.0000 1.0000 1.0000 0.6660 0.7021 0.2500 0.9994 0.2404
5 0.7630 0.7331 1.0000 0.9998 0.6391 0.5837 0.3323 0.9428 0.2558
6 0.6221 0.6030 0.9466 0.9466 0.6010 0.5863 0.3367 0.8961 0.2562
7 0.5896 0.5667 0.9286 0.9283 0.5463 0.5651 0.3119 0.8724 0.2513
8 0.5894 0.5349 0.8983 0.8983 0.5268 0.5636 0.3196 0.8558 0.2540
9 0.5824 0.5390 0.8793 0.8793 0.5345 0.5599 0.3196 0.8349 0.2666
10 0.6012 0.5345 0.8992 0.8992 0.5623 0.5585 0.3070 0.8443 0.2744
11 0.6061 0.5384 0.8586 0.8586 0.5495 0.5495 0.3051 0.8268 0.2789
12 0.6089 0.5401 0.8199 0.8199 0.5836 0.5629 0.3070 0.8290 0.2773
13 0.6257 0.5499 0.8552 0.8552 0.5863 0.5800 0.2961 0.8239 0.2832
14 0.6442 0.5433 0.8610 0.8610 0.5919 0.5635 0.3000 0.8164 0.2916
15 0.6467 0.5432 0.8453 0.8451 0.5947 0.5744 0.3096 0.8098 0.2993
16 0.6428 0.5449 0.8532 0.8535 0.5949 0.5851 0.2802 0.8113 0.3010
17 0.6612 0.5417 0.8435 0.8435 0.5981 0.5928 0.2935 0.8085 0.3015
18 0.6936 0.5648 0.8872 0.8871 0.6199 0.6165 0.2819 0.7903 0.3025
19 0.6870 0.5602 0.8647 0.8647 0.6104 0.6066 0.2845 0.8009 0.3150
20 0.6857 0.5514 0.8600 0.8600 0.5992 0.6167 0.2934 0.7955 0.3141
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B.2.5 N=500, slip=guess=0.1

Table B.31 F-score of derivation, k=4, N=500, s=g=0.1

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
4 1.0000 1.0000 1.0000 1.0000 0.8272 0.8813 0.2500 0.9997 0.6513
5 0.8005 0.7905 0.9966 0.9966 0.8085 0.8468 0.5041 0.9380 0.6773
6 0.7598 0.7512 0.9836 0.9816 0.7540 0.8418 0.5846 0.9106 0.7053
7 0.7473 0.7376 0.9741 0.9703 0.7209 0.8496 0.6136 0.8928 0.7135
8 0.7527 0.7300 0.9648 0.9594 0.7233 0.8530 0.6324 0.8944 0.7338
9 0.7667 0.7360 0.9615 0.9564 0.7359 0.8557 0.6487 0.8898 0.7425
10 0.7755 0.7388 0.9395 0.9338 0.7455 0.8526 0.6537 0.8718 0.7567
11 0.7845 0.7491 0.9456 0.9410 0.7627 0.8569 0.6521 0.8842 0.7557
12 0.8047 0.7610 0.9520 0.9490 0.7817 0.8722 0.6623 0.8957 0.7584
13 0.8162 0.7693 0.9469 0.9435 0.7920 0.8702 0.6671 0.8735 0.7665
14 0.8357 0.7790 0.9616 0.9601 0.8027 0.8773 0.6665 0.8702 0.7746
15 0.8271 0.7776 0.9499 0.9488 0.8031 0.8838 0.6607 0.8784 0.7765
16 0.8422 0.7815 0.9517 0.9502 0.8063 0.8821 0.6715 0.8646 0.7825
17 0.8465 0.7897 0.9482 0.9476 0.8133 0.8844 0.6682 0.8566 0.7848
18 0.8648 0.7961 0.9609 0.9597 0.8249 0.8914 0.6593 0.8604 0.7892
19 0.8634 0.7952 0.9425 0.9420 0.8208 0.8920 0.6678 0.8629 0.7962
20 0.8648 0.7979 0.9485 0.9488 0.8184 0.8966 0.6654 0.8553 0.7957

Table B.32 Cell-wise accuracy of derivation, k=4, N=500, s=g=0.1

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
4 1.0000 1.0000 1.0000 1.0000 0.8971 0.9221 0.6250 0.9999 0.7215
5 0.8747 0.8691 0.9978 0.9978 0.8725 0.8869 0.6939 0.9624 0.7216
6 0.8313 0.8264 0.9890 0.9878 0.8240 0.8736 0.7150 0.9413 0.7318
7 0.8094 0.8039 0.9804 0.9778 0.7904 0.8731 0.7171 0.9256 0.7301
8 0.8028 0.7873 0.9719 0.9677 0.7813 0.8690 0.7200 0.9239 0.7420
9 0.8091 0.7860 0.9674 0.9633 0.7858 0.8678 0.7278 0.9181 0.7463
10 0.8088 0.7817 0.9471 0.9421 0.7875 0.8614 0.7268 0.9021 0.7550
11 0.8135 0.7865 0.9517 0.9479 0.7982 0.8641 0.7233 0.9099 0.7539
12 0.8241 0.7888 0.9558 0.9531 0.8066 0.8748 0.7264 0.9196 0.7574
13 0.8349 0.7972 0.9500 0.9469 0.8165 0.8729 0.7316 0.8991 0.7585
14 0.8495 0.8013 0.9634 0.9619 0.8221 0.8778 0.7287 0.8948 0.7654
15 0.8380 0.7956 0.9503 0.9493 0.8190 0.8820 0.7221 0.9012 0.7674
16 0.8516 0.7989 0.9529 0.9516 0.8215 0.8802 0.7304 0.8890 0.7707
17 0.8532 0.8035 0.9477 0.9472 0.8260 0.8807 0.7269 0.8820 0.7721
18 0.8684 0.8056 0.9599 0.9588 0.8327 0.8854 0.7161 0.8831 0.7754
19 0.8671 0.8052 0.9425 0.9422 0.8293 0.8872 0.7243 0.8849 0.7829
20 0.8673 0.8059 0.9479 0.9481 0.8257 0.8910 0.7216 0.8790 0.7818
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Table B.33 Vector-wise accuracy of derivation, k=4, N=500, s=g=0.1

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
4 1.0000 1.0000 1.0000 1.0000 0.6730 0.6926 0.2500 0.9994 0.2541
5 0.7156 0.7027 0.9952 0.9952 0.6366 0.5741 0.3333 0.9273 0.2489
6 0.6001 0.5895 0.9574 0.9540 0.5678 0.5493 0.3217 0.8755 0.2583
7 0.5430 0.5371 0.9244 0.9184 0.4953 0.5512 0.3047 0.8470 0.2435
8 0.5316 0.4938 0.8941 0.8837 0.4747 0.5370 0.2984 0.8291 0.2562
9 0.5470 0.4918 0.8835 0.8730 0.4901 0.5323 0.3012 0.8175 0.2579
10 0.5366 0.4755 0.8216 0.8092 0.4869 0.5129 0.3012 0.7942 0.2666
11 0.5459 0.4855 0.8350 0.8268 0.5037 0.5224 0.2977 0.7984 0.2645
12 0.5775 0.4980 0.8612 0.8556 0.5311 0.5606 0.3014 0.8180 0.2689
13 0.5932 0.5070 0.8372 0.8300 0.5423 0.5533 0.3069 0.7749 0.2771
14 0.6319 0.5204 0.8864 0.8839 0.5579 0.5696 0.2980 0.7647 0.2838
15 0.6043 0.5077 0.8520 0.8502 0.5503 0.5793 0.2845 0.7816 0.2869
16 0.6347 0.5184 0.8623 0.8600 0.5571 0.5762 0.2956 0.7554 0.2934
17 0.6412 0.5257 0.8464 0.8461 0.5699 0.5804 0.2891 0.7530 0.2951
18 0.6812 0.5323 0.8826 0.8810 0.5859 0.5927 0.2691 0.7541 0.3071
19 0.6703 0.5296 0.8343 0.8338 0.5729 0.5978 0.2796 0.7583 0.3194
20 0.6712 0.5295 0.8525 0.8534 0.5670 0.6113 0.2728 0.7390 0.3172

B.2.6 N=500, slip=guess=0.2

Table B.34 F-score of derivation, k=4, N=500, s=g=0.2

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
4 1.0000 1.0000 1.0000 1.0000 0.8272 0.8774 0.2500 0.9999 0.6508
5 0.7823 0.7740 0.9453 0.9445 0.7599 0.8002 0.3975 0.9077 0.6713
6 0.7196 0.7214 0.8988 0.8532 0.7076 0.7857 0.4945 0.8498 0.6981
7 0.6964 0.6819 0.8702 0.7751 0.6766 0.7996 0.5274 0.8269 0.7068
8 0.6904 0.6709 0.8342 0.7304 0.6626 0.7887 0.5658 0.8031 0.7198
9 0.6967 0.6736 0.7989 0.7104 0.6660 0.7919 0.5848 0.8128 0.7274
10 0.7008 0.6746 0.7760 0.7037 0.6713 0.7867 0.6124 0.7868 0.7372
11 0.7058 0.6746 0.7696 0.7006 0.6782 0.7977 0.6011 0.7986 0.7432
12 0.7082 0.6764 0.7599 0.7053 0.6815 0.8006 0.6111 0.7816 0.7577
13 0.7154 0.6833 0.7536 0.7134 0.6864 0.8044 0.6143 0.7788 0.7633
14 0.7166 0.6870 0.7482 0.7143 0.6906 0.8080 0.6196 0.7808 0.7609
15 0.7208 0.6853 0.7372 0.7133 0.6943 0.8094 0.6295 0.7751 0.7692
16 0.7269 0.6926 0.7438 0.7222 0.7015 0.8135 0.6319 0.7764 0.7685
17 0.7358 0.7018 0.7396 0.7261 0.7045 0.8165 0.6374 0.7736 0.7748
18 0.7324 0.6968 0.7321 0.7207 0.7063 0.8157 0.6382 0.7742 0.7766
19 0.7416 0.7042 0.7317 0.7214 0.7134 0.8234 0.6412 0.7753 0.7819
20 0.7470 0.7064 0.7254 0.7203 0.7152 0.8270 0.6426 0.7715 0.7841
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Table B.35 Cell-wise accuracy of derivation, k=4, N=500, s=g=0.2

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
4 1.0000 1.0000 1.0000 1.0000 0.8968 0.9198 0.6250 1.0000 0.7195
5 0.8632 0.8590 0.9653 0.9648 0.8419 0.8530 0.6532 0.9484 0.7188
6 0.8071 0.8083 0.9297 0.8988 0.7979 0.8350 0.6807 0.9091 0.7264
7 0.7723 0.7624 0.9002 0.8313 0.7584 0.8306 0.6759 0.8902 0.7247
8 0.7564 0.7448 0.8671 0.7898 0.7383 0.8148 0.6854 0.8687 0.7295
9 0.7583 0.7438 0.8349 0.7713 0.7382 0.8153 0.6897 0.8730 0.7334
10 0.7592 0.7421 0.8149 0.7653 0.7396 0.8082 0.7072 0.8520 0.7375
11 0.7503 0.7284 0.7994 0.7494 0.7313 0.8071 0.6841 0.8574 0.7401
12 0.7494 0.7267 0.7901 0.7508 0.7306 0.8082 0.6885 0.8416 0.7514
13 0.7510 0.7279 0.7823 0.7532 0.7295 0.8080 0.6876 0.8374 0.7538
14 0.7470 0.7264 0.7732 0.7492 0.7284 0.8087 0.6872 0.8366 0.7509
15 0.7493 0.7225 0.7626 0.7461 0.7289 0.8083 0.6939 0.8319 0.7577
16 0.7530 0.7272 0.7674 0.7514 0.7339 0.8114 0.6954 0.8312 0.7561
17 0.7602 0.7351 0.7642 0.7548 0.7353 0.8145 0.6996 0.8280 0.7619
18 0.7564 0.7298 0.7570 0.7489 0.7360 0.8125 0.7006 0.8271 0.7636
19 0.7601 0.7309 0.7532 0.7452 0.7378 0.8174 0.6993 0.8276 0.7681
20 0.7642 0.7325 0.7474 0.7447 0.7387 0.8208 0.7017 0.8232 0.7685

Table B.36 Vector-wise accuracy of derivation, k=4, N=500, s=g=0.2

J k-means(`2) k-means(`1) k-medoids(`2) k-medoids(`1) MMB HC LASSO NMF ALS
4 1.0000 1.0000 1.0000 1.0000 0.6742 0.6836 0.2500 0.9998 0.2459
5 0.6898 0.6855 0.9120 0.9111 0.5930 0.5112 0.2675 0.8953 0.2430
6 0.5396 0.5432 0.8061 0.7499 0.5203 0.5022 0.2888 0.8290 0.2469
7 0.4694 0.4474 0.7357 0.6058 0.4334 0.4962 0.2792 0.8006 0.2326
8 0.4240 0.3979 0.6580 0.5103 0.3888 0.4597 0.2724 0.7633 0.2370
9 0.4313 0.3987 0.5843 0.4729 0.3869 0.4567 0.2574 0.7589 0.2377
10 0.4340 0.3966 0.5452 0.4612 0.3980 0.4271 0.2759 0.7433 0.2398
11 0.4263 0.3726 0.5268 0.4322 0.3724 0.4304 0.2376 0.7410 0.2463
12 0.4212 0.3701 0.5137 0.4334 0.3764 0.4365 0.2433 0.7218 0.2669
13 0.4272 0.3740 0.4966 0.4436 0.3737 0.4274 0.2421 0.7118 0.2648
14 0.4148 0.3706 0.4816 0.4373 0.3670 0.4352 0.2343 0.7109 0.2569
15 0.4247 0.3652 0.4598 0.4257 0.3743 0.4320 0.2536 0.7002 0.2670
16 0.4310 0.3763 0.4695 0.4346 0.3804 0.4415 0.2458 0.7013 0.2645
17 0.4479 0.3941 0.4609 0.4438 0.3889 0.4373 0.2590 0.6994 0.2758
18 0.4429 0.3814 0.4444 0.4333 0.3895 0.4366 0.2610 0.6907 0.2792
19 0.4504 0.3840 0.4441 0.4271 0.3880 0.4480 0.2572 0.6912 0.2928
20 0.4575 0.3846 0.4309 0.4239 0.3935 0.4559 0.2531 0.6934 0.2880
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